mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-01-08 22:48:25 -05:00
add a flag to skip bert train (#9349)
This commit is contained in:
@@ -771,48 +771,50 @@ def train_bert():
|
||||
if MLLOGGER:
|
||||
MLLOGGER.start(key=mllog_constants.EPOCH_START, value=i*BS, metadata={"epoch_num": i*BS})
|
||||
|
||||
# TODO: put copy into jit
|
||||
while train_data is not None and i < train_steps and not achieved:
|
||||
Tensor.training = True
|
||||
BEAM.value = TRAIN_BEAM
|
||||
st = time.perf_counter()
|
||||
GlobalCounters.reset()
|
||||
loss, global_norm = train_step_bert(model, optimizer_group, scheduler_group, loss_scaler,
|
||||
train_data["input_ids"], train_data["segment_ids"], train_data["input_mask"], train_data["masked_lm_positions"], \
|
||||
train_data["masked_lm_ids"], train_data["masked_lm_weights"], train_data["next_sentence_labels"], GPUS)
|
||||
if getenv("TRAIN", 1):
|
||||
Tensor.training = True
|
||||
BEAM.value = TRAIN_BEAM
|
||||
st = time.perf_counter()
|
||||
GlobalCounters.reset()
|
||||
loss, global_norm = train_step_bert(model, optimizer_group, scheduler_group, loss_scaler,
|
||||
train_data["input_ids"], train_data["segment_ids"], train_data["input_mask"], train_data["masked_lm_positions"], \
|
||||
train_data["masked_lm_ids"], train_data["masked_lm_weights"], train_data["next_sentence_labels"], GPUS)
|
||||
|
||||
pt = time.perf_counter()
|
||||
pt = time.perf_counter()
|
||||
|
||||
try:
|
||||
next_data = next(train_it)
|
||||
except StopIteration:
|
||||
next_data = None
|
||||
try:
|
||||
next_data = next(train_it)
|
||||
except StopIteration:
|
||||
next_data = None
|
||||
|
||||
dt = time.perf_counter()
|
||||
dt = time.perf_counter()
|
||||
|
||||
device_str = loss.device if isinstance(loss.device, str) else f"{loss.device[0]} * {len(loss.device)}"
|
||||
loss = loss.item()
|
||||
device_str = loss.device if isinstance(loss.device, str) else f"{loss.device[0]} * {len(loss.device)}"
|
||||
loss = loss.item()
|
||||
|
||||
cl = time.perf_counter()
|
||||
if BENCHMARK: step_times.append(cl - st)
|
||||
cl = time.perf_counter()
|
||||
if BENCHMARK: step_times.append(cl - st)
|
||||
|
||||
tqdm.write(
|
||||
f"{i:5} {((cl - st)) * 1000.0:7.2f} ms run, {(pt - st) * 1000.0:7.2f} ms python, {(dt - pt) * 1000.0:6.2f} ms fetch data, "
|
||||
f"{(cl - dt) * 1000.0:7.2f} ms {device_str}, {loss:5.2f} loss, {optimizer_wd.lr.numpy()[0]:.6f} LR, "
|
||||
f"{GlobalCounters.mem_used / 1e9:.2f} GB used, {GlobalCounters.global_ops * 1e-9 / (cl - st):9.2f} GFLOPS")
|
||||
if WANDB:
|
||||
wandb.log({"lr": optimizer_wd.lr.numpy(), "train/loss": loss, "train/global_norm": global_norm.item(), "train/step_time": cl - st,
|
||||
"train/python_time": pt - st, "train/data_time": dt - pt, "train/cl_time": cl - dt,
|
||||
"train/GFLOPS": GlobalCounters.global_ops * 1e-9 / (cl - st), "epoch": (i+1)*BS})
|
||||
tqdm.write(
|
||||
f"{i:5} {((cl - st)) * 1000.0:7.2f} ms run, {(pt - st) * 1000.0:7.2f} ms python, {(dt - pt) * 1000.0:6.2f} ms fetch data, "
|
||||
f"{(cl - dt) * 1000.0:7.2f} ms {device_str}, {loss:5.2f} loss, {optimizer_wd.lr.numpy()[0]:.6f} LR, "
|
||||
f"{GlobalCounters.mem_used / 1e9:.2f} GB used, {GlobalCounters.global_ops * 1e-9 / (cl - st):9.2f} GFLOPS")
|
||||
if WANDB:
|
||||
wandb.log({"lr": optimizer_wd.lr.numpy(), "train/loss": loss, "train/global_norm": global_norm.item(), "train/step_time": cl - st,
|
||||
"train/python_time": pt - st, "train/data_time": dt - pt, "train/cl_time": cl - dt,
|
||||
"train/GFLOPS": GlobalCounters.global_ops * 1e-9 / (cl - st), "epoch": (i+1)*BS})
|
||||
|
||||
train_data, next_data = next_data, None
|
||||
i += 1
|
||||
train_data, next_data = next_data, None
|
||||
i += 1
|
||||
|
||||
if i == BENCHMARK:
|
||||
median_step_time = sorted(step_times)[(BENCHMARK + 1) // 2] # in seconds
|
||||
estimated_total_minutes = int(median_step_time * train_steps / 60)
|
||||
print(f"Estimated training time: {estimated_total_minutes // 60}h{estimated_total_minutes % 60}m")
|
||||
print(f"epoch global_ops: {train_steps * GlobalCounters.global_ops:_}, "
|
||||
f"epoch global_mem: {train_steps * GlobalCounters.global_mem:_}")
|
||||
if i == BENCHMARK:
|
||||
median_step_time = sorted(step_times)[(BENCHMARK + 1) // 2] # in seconds
|
||||
estimated_total_minutes = int(median_step_time * train_steps / 60)
|
||||
print(f"Estimated training time: {estimated_total_minutes // 60}h{estimated_total_minutes % 60}m")
|
||||
print(f"epoch global_ops: {train_steps * GlobalCounters.global_ops:_}, "
|
||||
f"epoch global_mem: {train_steps * GlobalCounters.global_mem:_}")
|
||||
|
||||
# ** eval loop **
|
||||
if i % eval_step_freq == 0 or (BENCHMARK and i == BENCHMARK) or i == train_steps:
|
||||
|
||||
Reference in New Issue
Block a user