fixup training loop

This commit is contained in:
George Hotz
2020-12-27 18:35:56 -05:00
parent f15bec6dbc
commit a361ef6861
4 changed files with 80 additions and 45 deletions

View File

@@ -3,6 +3,10 @@ import numpy as np
import random
from tinygrad.tensor import Tensor
from extra.utils import get_parameters
from extra.training import train, evaluate
from tinygrad.optim import Adam
# dataset idea from https://github.com/karpathy/minGPT/blob/master/play_math.ipynb
def make_dataset():
ds = []
@@ -19,8 +23,6 @@ def make_dataset():
return ds_X_train, ds_Y_train, ds_X_test, ds_Y_test
#X_train, Y_train, X_test, Y_test = make_dataset()
class TransformerBlock:
def __init__(self, embed_dim, num_heads):
# Multi-Head Attention
@@ -33,44 +35,72 @@ class TransformerBlock:
self.key_dense = Tensor.uniform(embed_dim, embed_dim)
self.value_dense = Tensor.uniform(embed_dim, embed_dim)
self.final = Tensor.uniform(embed_dim, embed_dim)
self.ff1 = Tensor.uniform(embed_dim, embed_dim)
self.ff2 = Tensor.uniform(embed_dim, embed_dim)
def __call__(self, x):
# bs x T x embed_dim
bs = x.shape[0]
x = x.reshape(shape=(-1, self.num_heads * self.head_size))
inputs = x.reshape(shape=(-1, self.num_heads * self.head_size))
# run multi head attention (bs, T, num_heads, head_size)
query, key, value = [x.dot(y) \
query, key, value = [inputs.dot(y) \
.reshape(shape=(bs, -1, self.num_heads, self.head_size)) \
for y in [self.query_dense, self.key_dense, self.value_dense]]
query = query.transpose(order=(0,2,1,3)) # (bs, num_heads, T, head_size)
key = key.transpose(order=(0,2,3,1)) # (bs, num_heads, head_size, T)
score = query.dot(key)
print(query.shape)
print(key.shape)
print(score.shape)
value = value.transpose(order=(0,2,1,3)) # (bs, num_heads, T, head_size)
score = query.dot(key) * (1 / np.sqrt(self.head_size))
weights = score.logsoftmax() # (bs, num_heads, T, T)
attention = weights.dot(value).transpose(order=(0,2,1,3))
x = inputs + attention.reshape(shape=(-1, self.num_heads * self.head_size)).dot(self.final)
print(x.shape)
# layernorm
x = x + x.dot(self.ff1).relu().dot(self.ff2)
print(x.shape)
# layernorm
return x.reshape(shape=(bs, -1, self.num_heads * self.head_size))
class Transformer:
def __init__(self, syms, maxlen, cnt, embed_dim, num_heads):
self.maxlen, self.syms = maxlen, syms
self.embed = Tensor.uniform(maxlen+syms, embed_dim)
self.tbs = []
for i in range(cnt):
self.tbs.append(TransformerBlock(embed_dim, num_heads))
self.final = Tensor.uniform(embed_dim, syms)
def forward(self, x):
bs = x.shape[0]
xnp = x.cpu().data
onehot = np.zeros((bs, x.shape[1], self.maxlen+self.syms), dtype=np.float32)
print(onehot.shape)
for i in range(x.shape[1]):
onehot[range(bs), i, i] = 1
onehot[range(bs), i, self.maxlen + xnp[:, i]] = 1
x = Tensor(onehot, device=x.device).dot(self.embed)
print(x.shape)
for t in self.tbs:
x = t(x)
return x.dot(self.final).logsoftmax()
#score = query.reshape(shape=(-1, self.projection_dim)).dot(
# key.reshape(shape=(-1, self.projection_dim)).transpose(order=(1,0)))
#scaled_score = score * (1/np.sqrt(self.projection_dim))
#print(value.shape)
#print(scaled_score.shape)
#query = self.query_dense(x).reshape((bs, -1, self.num_heads, self.projection_dim))
#key = self.key_dense(x).reshape((bs, -1, self.num_heads, self.projection_dim))
#value = self.value_dense(x).reshape((bs, -1, self.num_heads, self.projection_dim))
#x = self.ff2(self.ff1(x).relu())
#return x
from tinygrad.optim import Adam
if __name__ == "__main__":
tb = TransformerBlock(128, 4)
tmp = Tensor.zeros(20, 10, 128)
ret = tb(tmp)
print(ret)
model = Transformer(10, 6, 2, 128, 4)
#in1 = Tensor.zeros(20, 6, 128)
#ret = model.forward(in1)
#print(ret.shape)
X_train, Y_train, X_test, Y_test = make_dataset()
optim = Adam(get_parameters(model), lr=0.001)
train(model, X_train, Y_train, optim, 100)

View File

@@ -4,20 +4,25 @@ from tqdm import trange
from extra.utils import get_parameters
from tinygrad.tensor import Tensor, GPU, Device
def train(model, X_train, Y_train, optim, steps, num_classes=None, BS=128, device=Device.CPU, lossfn = lambda out,y: out.mul(y).mean()):
def sparse_categorical_crossentropy(out, Y):
num_classes = out.shape[-1]
YY = Y.flatten()
y = np.zeros((YY.shape[0], num_classes), np.float32)
# correct loss for NLL, torch NLL loss returns one per row
y[range(y.shape[0]),YY] = -1.0*num_classes
y = y.reshape(list(Y.shape)+[num_classes])
y = Tensor(y, device=out.device)
return out.mul(y).mean()
def train(model, X_train, Y_train, optim, steps, BS=128, device=Device.CPU, lossfn=sparse_categorical_crossentropy):
if device == Device.GPU: [x.gpu_() for x in get_parameters([model, optim])]
elif device == Device.ANE: [x.ane_() for x in get_parameters([model, optim])]
if num_classes is None: num_classes = Y_train.max().astype(int)+1
losses, accuracies = [], []
for i in (t := trange(steps, disable=os.getenv('CI') is not None)):
samp = np.random.randint(0, X_train.shape[0], size=(BS))
x = Tensor(X_train[samp].reshape((-1, 28*28)).astype(np.float32), device=device)
Y = Y_train[samp]
y = np.zeros((len(samp),num_classes), np.float32)
# correct loss for NLL, torch NLL loss returns one per row
y[range(y.shape[0]),Y] = -1.0*num_classes
y = Tensor(y, device=device)
x = Tensor(X_train[samp], device=device)
y = Y_train[samp]
# network
out = model.forward(x)
@@ -29,7 +34,7 @@ def train(model, X_train, Y_train, optim, steps, num_classes=None, BS=128, devic
optim.step()
cat = np.argmax(out.cpu().data, axis=1)
accuracy = (cat == Y).mean()
accuracy = (cat == y).mean()
# printing
loss = loss.cpu().data
@@ -41,7 +46,7 @@ def evaluate(model, X_test, Y_test, num_classes=None, device=Device.CPU, BS=128)
def numpy_eval(num_classes):
Y_test_preds_out = np.zeros((len(Y_test),num_classes))
for i in trange(len(Y_test)//BS, disable=os.getenv('CI') is not None):
Y_test_preds_out[i*BS:(i+1)*BS] = model.forward(Tensor(X_test[i*BS:(i+1)*BS].reshape((-1, 28*28)).astype(np.float32), device=device)).cpu().data
Y_test_preds_out[i*BS:(i+1)*BS] = model.forward(Tensor(X_test[i*BS:(i+1)*BS], device=device)).cpu().data
Y_test_preds = np.argmax(Y_test_preds_out, axis=1)
return (Y_test == Y_test_preds).mean()

View File

@@ -11,9 +11,9 @@ from extra.utils import fetch, get_parameters
def fetch_mnist():
import gzip
parse = lambda dat: np.frombuffer(gzip.decompress(dat), dtype=np.uint8).copy()
X_train = parse(fetch("http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz"))[0x10:].reshape((-1, 28, 28))
X_train = parse(fetch("http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz"))[0x10:].reshape((-1, 28*28)).astype(np.float32)
Y_train = parse(fetch("http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz"))[8:]
X_test = parse(fetch("http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz"))[0x10:].reshape((-1, 28, 28))
X_test = parse(fetch("http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz"))[0x10:].reshape((-1, 28*28)).astype(np.float32)
Y_test = parse(fetch("http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz"))[8:]
return X_train, Y_train, X_test, Y_test

View File

@@ -138,10 +138,6 @@ class ReLU(Function):
return grad_output * (input >= 0)
register('relu', ReLU)
def _exp_normalize(x, axis=None):
y = np.exp(x - x.max(axis=axis, keepdims=True))
return y / y.sum(axis=axis, keepdims=True)
class Sigmoid(Function):
@staticmethod
def forward(ctx, input):
@@ -160,17 +156,21 @@ class Sigmoid(Function):
return grad_output * (ret * (1 - ret))
register('sigmoid', Sigmoid)
def _exp_normalize(x, axis=None):
y = np.exp(x - x.max(axis=axis, keepdims=True))
return y / y.sum(axis=axis, keepdims=True)
class LogSoftmax(Function):
@staticmethod
def forward(ctx, input):
softmax = _exp_normalize(input, axis=1)
softmax = _exp_normalize(input, axis=-1)
ctx.save_for_backward(softmax)
return np.log(softmax)
@staticmethod
def backward(ctx, grad_output):
softmax, = ctx.saved_tensors
return grad_output - grad_output.sum(axis=1, keepdims=True)*softmax
return grad_output - grad_output.sum(axis=-1, keepdims=True)*softmax
register('logsoftmax', LogSoftmax)