mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-01-09 15:08:02 -05:00
add AdamW optimizer (#716)
* add AdamW optimizer * one liner Adam optimizer
This commit is contained in:
@@ -2,7 +2,7 @@ import numpy as np
|
||||
import torch
|
||||
import unittest
|
||||
from tinygrad.tensor import Tensor
|
||||
from tinygrad.nn.optim import Adam, SGD, RMSprop
|
||||
from tinygrad.nn.optim import Adam, SGD, RMSprop, AdamW
|
||||
|
||||
np.random.seed(1337)
|
||||
x_init = np.random.randn(1,4).astype(np.float32)
|
||||
@@ -41,6 +41,7 @@ class TestOptim(unittest.TestCase):
|
||||
def _test_sgd(self, steps, opts, atol, rtol): self._test_optim(SGD, torch.optim.SGD, steps, opts, atol, rtol)
|
||||
def _test_rmsprop(self, steps, opts, atol, rtol): self._test_optim(RMSprop, torch.optim.RMSprop, steps, opts, atol, rtol)
|
||||
def _test_adam(self, steps, opts, atol, rtol): self._test_optim(Adam, torch.optim.Adam, steps, opts, atol, rtol)
|
||||
def _test_adamw(self, steps, opts, atol, rtol): self._test_optim(AdamW, torch.optim.AdamW, steps, opts, atol, rtol)
|
||||
|
||||
def test_sgd(self): self._test_sgd(1, {'lr': 0.001}, 1e-6, 0)
|
||||
def test_sgd_high_lr(self): self._test_sgd(1, {'lr': 10}, 1e-6, 1e-5)
|
||||
@@ -58,12 +59,17 @@ class TestOptim(unittest.TestCase):
|
||||
def test_rmsprop_high_lr(self): self._test_rmsprop(1, {'lr': 10, 'alpha': 0.99}, 1e-5, 1e-5)
|
||||
def test_adam(self): self._test_adam(1, {'lr': 0.001}, 1e-5, 0)
|
||||
def test_adam_high_lr(self): self._test_adam(1, {'lr': 10}, 1e-5, 1e-5)
|
||||
def test_adamw(self): self._test_adamw(1, {'lr': 0.001}, 1e-5, 0)
|
||||
def test_adamw_high_lr(self): self._test_adamw(1, {'lr': 10}, 1e-5, 1e-5)
|
||||
|
||||
def test_multistep_rmsprop(self): self._test_rmsprop(10, {'lr': 0.001}, 1e-5, 0)
|
||||
def test_multistep_rmsprop_high_lr(self): self._test_rmsprop(10, {'lr': 10}, 1e-5, 3e-4)
|
||||
|
||||
def test_multistep_adam(self): self._test_adam(10, {'lr': 0.001}, 1e-5, 0)
|
||||
def test_multistep_adam_high_lr(self): self._test_adam(10, {'lr': 10}, 1e-5, 3e-4)
|
||||
|
||||
def test_multistep_adamw(self): self._test_adamw(10, {'lr': 0.001}, 1e-5, 0)
|
||||
def test_multistep_adamw_high_lr(self): self._test_adamw(10, {'lr': 10}, 1e-5, 3e-4)
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
|
||||
@@ -59,11 +59,11 @@ class RMSprop(Optimizer):
|
||||
t.assign(t.detach() - (g * self.lr).div(self.v[i].sqrt() + self.eps))
|
||||
self.realize(self.v)
|
||||
|
||||
class Adam(Optimizer):
|
||||
def __init__(self, params: List[Tensor], lr=0.001, b1=0.9, b2=0.999, eps=1e-8):
|
||||
class AdamW(Optimizer):
|
||||
def __init__(self, params: List[Tensor], lr=0.001, b1=0.9, b2=0.999, eps=1e-8, wd=0.01):
|
||||
super().__init__(params)
|
||||
# NOTE: self.t is a tensor so Adam can be jitted
|
||||
self.lr, self.b1, self.b2, self.eps, self.t = lr, b1, b2, eps, Tensor([0], requires_grad=False).realize()
|
||||
self.lr, self.b1, self.b2, self.eps, self.wd, self.t = lr, b1, b2, eps, wd, Tensor([0], requires_grad=False).realize()
|
||||
|
||||
self.m = [Tensor.zeros(*t.shape, device=t.device, requires_grad=False) for t in self.params]
|
||||
self.v = [Tensor.zeros(*t.shape, device=t.device, requires_grad=False) for t in self.params]
|
||||
@@ -76,9 +76,11 @@ class Adam(Optimizer):
|
||||
g = t.grad.realize()
|
||||
self.m[i].assign(self.b1 * self.m[i] + (1.0 - self.b1) * g).realize()
|
||||
self.v[i].assign(self.b2 * self.v[i] + (1.0 - self.b2) * (g * g)).realize()
|
||||
t.assign(t.detach() - a * self.m[i].div(self.v[i].sqrt() + self.eps))
|
||||
t.assign(t.detach() - a * self.m[i].div(self.v[i].sqrt() + self.eps) - self.lr * self.wd * t.detach())
|
||||
self.realize([self.t] + self.m + self.v)
|
||||
|
||||
def Adam(params: List[Tensor], lr=0.001, b1=0.9, b2=0.999, eps=1e-8): return AdamW(params, lr, b1, b2, eps, 0.0)
|
||||
|
||||
def get_state_dict(obj, prefix:str='') -> Dict[str, Tensor]:
|
||||
if isinstance(obj, Tensor): return {prefix.strip('.'):obj}
|
||||
if hasattr(obj, '__dict__'): return get_state_dict(obj.__dict__, prefix)
|
||||
|
||||
Reference in New Issue
Block a user