This commit is contained in:
George Hotz
2020-10-25 07:43:34 -07:00
parent 3cef527e80
commit b91fd3afad
2 changed files with 41 additions and 0 deletions

View File

@@ -64,6 +64,7 @@ class TestTinygrad(unittest.TestCase):
# coarse approx. since a "big" eps and the non-linearities of the model
self.assertFalse(gradcheck(tiny_func, tiny_x, eps = 0.1))
class TestOps(unittest.TestCase):
def test_conv2d(self):
x = torch.randn((5,2,10,7), requires_grad=True)
w = torch.randn((4,2,3,3), requires_grad=True)
@@ -80,6 +81,22 @@ class TestTinygrad(unittest.TestCase):
np.testing.assert_allclose(w.grad, wt.grad, atol=1e-5)
np.testing.assert_allclose(x.grad, xt.grad, atol=1e-5)
def test_maxpool2x2(self):
x = torch.randn((5,2,10,8), requires_grad=True)
xt = Tensor(x.detach().numpy())
# in tinygrad
ret = xt.maxpool2x2()
assert ret.shape == (5,2,10//2,8//2)
ret.mean().backward()
# in torch
out = torch.nn.MaxPool2d((2,2))(x)
out.mean().backward()
# forward and backward the same
np.testing.assert_allclose(ret.data, out.detach().numpy(), atol=1e-5)
np.testing.assert_allclose(x.grad, xt.grad, atol=1e-5)
if __name__ == '__main__':
unittest.main()

View File

@@ -167,3 +167,27 @@ class FastConv2D(Function):
return dx, dw
register('conv2d', FastConv2D)
# TODO: make this parameterizable
class MaxPool2x2(Function):
@staticmethod
def forward(ctx, x):
stack = []
for Y in range(2):
for X in range(2):
stack.append(x[:, :, Y::2, X::2][None])
stack = np.concatenate(stack, axis=0)
idxs = np.argmax(stack, axis=0)
ctx.save_for_backward(idxs)
return np.max(stack, axis=0)
@staticmethod
def backward(ctx, grad_output):
idxs, = ctx.saved_tensors
s = grad_output.shape
ret = np.zeros((s[0], s[1], s[2]*2, s[3]*2), dtype=grad_output.dtype)
for Y in range(2):
for X in range(2):
ret[:, :, Y::2, X::2] = grad_output * (idxs == (Y*2+X))
return ret
register('maxpool2x2', MaxPool2x2)