copy mlperf stuff to 5.1 (#10576)

5.0 is finalized, new changes go to 5.1
This commit is contained in:
chenyu
2025-05-30 16:12:39 -04:00
committed by GitHub
parent 883bb4541c
commit baf482d314
31 changed files with 847 additions and 0 deletions

View File

@@ -0,0 +1,15 @@
#!/bin/bash
export PYTHONPATH="." AMD=1
export MODEL="bert"
export DEFAULT_FLOAT="HALF" GPUS=1 BS=128 EVAL_BS=128
export BEAM=3 BEAM_UOPS_MAX=4000 BEAM_UPCAST_MAX=256 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=5
export IGNORE_JIT_FIRST_BEAM=1
# export BEAM_LOG_SURPASS_MAX=1
# export BASEDIR="/raid/datasets/wiki"
export RESET_STEP=1
export BENCHMARK=10 BERT_LAYERS=2 DEBUG=2
python3 examples/mlperf/model_train.py

View File

@@ -0,0 +1,69 @@
# 1. Problem
This problem uses BERT for NLP.
## Requirements
Install tinygrad and mlperf-logging (uncomment mlperf from setup.py) from branch mlperf_training_v5.0.
```
git clone https://github.com/tinygrad/tinygrad.git
python3 -m pip install -e ".[mlperf]"
```
Also install gdown (for dataset), numpy, tqdm and tensorflow.
```
pip install gdown numpy tqdm tensorflow
```
### tinybox_green
Install the p2p driver per [README](https://github.com/tinygrad/open-gpu-kernel-modules/blob/550.54.15-p2p/README.md)
This is the default on production tinybox green.
# 2. Directions
## Steps to download and verify data
### 1. Download raw data
```
BASEDIR="/raid/datasets/wiki" WIKI_TRAIN=1 VERIFY_CHECKSUM=1 python3 extra/datasets/wikipedia_download.py
```
### 2. Preprocess train and validation data
Note: The number of threads used for preprocessing is limited by available memory. With 128GB of RAM, a maximum of 16 threads is recommended.
#### Training:
```
BASEDIR="/raid/datasets/wiki" NUM_WORKERS=16 python3 extra/datasets/wikipedia.py pre-train all
```
Generating a specific topic (Between 0 and 499)
```
BASEDIR="/raid/datasets/wiki" python3 extra/datasets/wikipedia.py pre-train 42
```
#### Validation:
```
BASEDIR="/raid/datasets/wiki" python3 extra/datasets/wikipedia.py pre-eval
```
## Running
### tinybox_green
#### Steps to run benchmark
```
examples/mlperf/training_submission_v5.0/tinycorp/benchmarks/bert/implementations/tinybox_green/run_and_time.sh
```
### tinybox_red
#### Steps to run benchmark
```
examples/mlperf/training_submission_v5.0/tinycorp/benchmarks/bert/implementations/tinybox_red/run_and_time.sh
```
### tinybox_8xMI300X
#### Steps to run benchmark
```
examples/mlperf/training_submission_v5.0/tinycorp/benchmarks/bert/implementations/tinybox_8xMI300X/run_and_time.sh
```

View File

@@ -0,0 +1,14 @@
#!/bin/bash
export PYTHONPATH="." AMD=1
export MODEL="bert"
export DEFAULT_FLOAT="HALF" GPUS=8 BS=1024 EVAL_BS=1024
export OPT_BASE_LEARNING_RATE=0.0011 OPT_LAMB_BETA_1=0.60466 OPT_LAMB_BETA_2=0.85437 DECAY=0.1
export BEAM=3 BEAM_UOPS_MAX=6000 BEAM_UPCAST_MAX=256 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=5
export IGNORE_JIT_FIRST_BEAM=1 FREE_INTERMEDIATE=0
export BASEDIR="/raid/datasets/wiki"
export BENCHMARK=10 BERT_LAYERS=2 DEBUG=2
python3 examples/mlperf/model_train.py

View File

@@ -0,0 +1,17 @@
#!/bin/bash
export PYTHONPATH="." AMD=1
export MODEL="bert"
export DEFAULT_FLOAT="HALF" GPUS=8 BS=1024 EVAL_BS=1024
# similar to https://github.com/mlcommons/training_results_v3.1/blob/d06288b2bd675a9d88e0e6181f5bb5626b71ec19/Quanta_Cloud_Technology/results/D54U-3U/bert/result_1.txt#L54
export OPT_BASE_LEARNING_RATE=0.0011 OPT_LAMB_BETA_1=0.60466 OPT_LAMB_BETA_2=0.85437 DECAY=0.1
export TRAIN_STEPS=3900
export BEAM=3 BEAM_UOPS_MAX=6000 BEAM_UPCAST_MAX=256 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=5
export IGNORE_JIT_FIRST_BEAM=1 FREE_INTERMEDIATE=0
export BASEDIR="/raid/datasets/wiki"
export WANDB=1 PARALLEL=0
RUNMLPERF=1 python3 examples/mlperf/model_train.py

View File

@@ -0,0 +1,28 @@
#!/bin/bash
set -e # Exit on any error
export PYTHONPATH="." AMD=1
export MODEL="bert"
export SUBMISSION_PLATFORM="tinybox_8xMI300X"
export DEFAULT_FLOAT="HALF" GPUS=8 BS=1024 EVAL_BS=1024
# similar to https://github.com/mlcommons/training_results_v3.1/blob/d06288b2bd675a9d88e0e6181f5bb5626b71ec19/Quanta_Cloud_Technology/results/D54U-3U/bert/result_1.txt#L54
export OPT_BASE_LEARNING_RATE=0.0011 OPT_LAMB_BETA_1=0.60466 OPT_LAMB_BETA_2=0.85437 DECAY=0.1
export TRAIN_STEPS=3900
export BEAM=3 BEAM_UOPS_MAX=6000 BEAM_UPCAST_MAX=256 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=5
export IGNORE_JIT_FIRST_BEAM=1 FREE_INTERMEDIATE=0
export BASEDIR="/raid/datasets/wiki"
# pip install -e ".[mlperf]"
export LOGMLPERF=1
export SEED=$RANDOM
DATETIME=$(date "+%m%d%H%M")
LOGFILE="bert_8xMI300x_${DATETIME}_${SEED}.log"
# init # TODO: without DEBUG=2 it hangs
BENCHMARK=10 INITMLPERF=1 BERT_LAYERS=2 DEBUG=2 python3 examples/mlperf/model_train.py | tee $LOGFILE
# run
PARALLEL=0 RUNMLPERF=1 python3 examples/mlperf/model_train.py | tee -a $LOGFILE

View File

@@ -0,0 +1,69 @@
# 1. Problem
This problem uses BERT for NLP.
## Requirements
Install tinygrad and mlperf-logging (uncomment mlperf from setup.py) from branch mlperf_training_v5.0.
```
git clone https://github.com/tinygrad/tinygrad.git
python3 -m pip install -e ".[mlperf]"
```
Also install gdown (for dataset), numpy, tqdm and tensorflow.
```
pip install gdown numpy tqdm tensorflow
```
### tinybox_green
Install the p2p driver per [README](https://github.com/tinygrad/open-gpu-kernel-modules/blob/550.54.15-p2p/README.md)
This is the default on production tinybox green.
# 2. Directions
## Steps to download and verify data
### 1. Download raw data
```
BASEDIR="/raid/datasets/wiki" WIKI_TRAIN=1 VERIFY_CHECKSUM=1 python3 extra/datasets/wikipedia_download.py
```
### 2. Preprocess train and validation data
Note: The number of threads used for preprocessing is limited by available memory. With 128GB of RAM, a maximum of 16 threads is recommended.
#### Training:
```
BASEDIR="/raid/datasets/wiki" NUM_WORKERS=16 python3 extra/datasets/wikipedia.py pre-train all
```
Generating a specific topic (Between 0 and 499)
```
BASEDIR="/raid/datasets/wiki" python3 extra/datasets/wikipedia.py pre-train 42
```
#### Validation:
```
BASEDIR="/raid/datasets/wiki" python3 extra/datasets/wikipedia.py pre-eval
```
## Running
### tinybox_green
#### Steps to run benchmark
```
examples/mlperf/training_submission_v5.0/tinycorp/benchmarks/bert/implementations/tinybox_green/run_and_time.sh
```
### tinybox_red
#### Steps to run benchmark
```
examples/mlperf/training_submission_v5.0/tinycorp/benchmarks/bert/implementations/tinybox_red/run_and_time.sh
```
### tinybox_8xMI300X
#### Steps to run benchmark
```
examples/mlperf/training_submission_v5.0/tinycorp/benchmarks/bert/implementations/tinybox_8xMI300X/run_and_time.sh
```

View File

@@ -0,0 +1,16 @@
#!/bin/bash
export PYTHONPATH="." NV=1
export MODEL="bert"
export DEFAULT_FLOAT="HALF" SUM_DTYPE="HALF" GPUS=6 BS=96 EVAL_BS=96
export FUSE_ARANGE=1 FUSE_ARANGE_UINT=0
export BEAM=8 BEAM_UOPS_MAX=10000 BEAM_UPCAST_MAX=256 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=5
export IGNORE_JIT_FIRST_BEAM=1
export BEAM_LOG_SURPASS_MAX=1
export BASEDIR="/raid/datasets/wiki"
export BENCHMARK=10 BERT_LAYERS=2 DEBUG=2
python3 examples/mlperf/model_train.py

View File

@@ -0,0 +1,15 @@
#!/bin/bash
export PYTHONPATH="." NV=1
export MODEL="bert"
export DEFAULT_FLOAT="HALF" SUM_DTYPE="HALF" GPUS=6 BS=96 EVAL_BS=96
export FUSE_ARANGE=1 FUSE_ARANGE_UINT=0
export BEAM=8 BEAM_UOPS_MAX=10000 BEAM_UPCAST_MAX=256 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=5
export IGNORE_JIT_FIRST_BEAM=1
export BASEDIR="/raid/datasets/wiki"
export WANDB=1 PARALLEL=0
RUNMLPERF=1 python3 examples/mlperf/model_train.py

View File

@@ -0,0 +1,26 @@
#!/bin/bash
set -e # Exit on any error
export PYTHONPATH="." NV=1
export MODEL="bert"
export SUBMISSION_PLATFORM="tinybox_green"
export DEFAULT_FLOAT="HALF" SUM_DTYPE="HALF" GPUS=6 BS=96 EVAL_BS=96
export FUSE_ARANGE=1 FUSE_ARANGE_UINT=0
export BEAM=8 BEAM_UOPS_MAX=10000 BEAM_UPCAST_MAX=256 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=5
export IGNORE_JIT_FIRST_BEAM=1
export BASEDIR="/raid/datasets/wiki"
# pip install -e ".[mlperf]"
export LOGMLPERF=1
export SEED=$RANDOM
DATETIME=$(date "+%m%d%H%M")
LOGFILE="bert_green_${DATETIME}_${SEED}.log"
# init
BENCHMARK=10 INITMLPERF=1 BERT_LAYERS=2 python3 examples/mlperf/model_train.py | tee $LOGFILE
# run
PARALLEL=0 RUNMLPERF=1 python3 examples/mlperf/model_train.py | tee -a $LOGFILE

View File

@@ -0,0 +1,69 @@
# 1. Problem
This problem uses BERT for NLP.
## Requirements
Install tinygrad and mlperf-logging (uncomment mlperf from setup.py) from branch mlperf_training_v5.0.
```
git clone https://github.com/tinygrad/tinygrad.git
python3 -m pip install -e ".[mlperf]"
```
Also install gdown (for dataset), numpy, tqdm and tensorflow.
```
pip install gdown numpy tqdm tensorflow
```
### tinybox_green
Install the p2p driver per [README](https://github.com/tinygrad/open-gpu-kernel-modules/blob/550.54.15-p2p/README.md)
This is the default on production tinybox green.
# 2. Directions
## Steps to download and verify data
### 1. Download raw data
```
BASEDIR="/raid/datasets/wiki" WIKI_TRAIN=1 VERIFY_CHECKSUM=1 python3 extra/datasets/wikipedia_download.py
```
### 2. Preprocess train and validation data
Note: The number of threads used for preprocessing is limited by available memory. With 128GB of RAM, a maximum of 16 threads is recommended.
#### Training:
```
BASEDIR="/raid/datasets/wiki" NUM_WORKERS=16 python3 extra/datasets/wikipedia.py pre-train all
```
Generating a specific topic (Between 0 and 499)
```
BASEDIR="/raid/datasets/wiki" python3 extra/datasets/wikipedia.py pre-train 42
```
#### Validation:
```
BASEDIR="/raid/datasets/wiki" python3 extra/datasets/wikipedia.py pre-eval
```
## Running
### tinybox_green
#### Steps to run benchmark
```
examples/mlperf/training_submission_v5.0/tinycorp/benchmarks/bert/implementations/tinybox_green/run_and_time.sh
```
### tinybox_red
#### Steps to run benchmark
```
examples/mlperf/training_submission_v5.0/tinycorp/benchmarks/bert/implementations/tinybox_red/run_and_time.sh
```
### tinybox_8xMI300X
#### Steps to run benchmark
```
examples/mlperf/training_submission_v5.0/tinycorp/benchmarks/bert/implementations/tinybox_8xMI300X/run_and_time.sh
```

View File

@@ -0,0 +1,17 @@
#!/bin/bash
export PYTHONPATH="." AMD=1
export MODEL="bert"
export DEFAULT_FLOAT="HALF" SUM_DTYPE="HALF" GPUS=6 BS=96 EVAL_BS=96
export FUSE_ARANGE=1 FUSE_ARANGE_UINT=0
export BEAM=5 BEAM_UOPS_MAX=8000 BEAM_UPCAST_MAX=256 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=5
export IGNORE_JIT_FIRST_BEAM=1
export BEAM_LOG_SURPASS_MAX=1
export BASEDIR="/raid/datasets/wiki"
export RESET_STEP=1
export BENCHMARK=10 BERT_LAYERS=2 DEBUG=2
python3 examples/mlperf/model_train.py

View File

@@ -0,0 +1,15 @@
#!/bin/bash
export PYTHONPATH="." AMD=1
export MODEL="bert"
export DEFAULT_FLOAT="HALF" SUM_DTYPE="HALF" GPUS=6 BS=96 EVAL_BS=96
export FUSE_ARANGE=1 FUSE_ARANGE_UINT=0
export BEAM=5 BEAM_UOPS_MAX=8000 BEAM_UPCAST_MAX=256 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=5
export IGNORE_JIT_FIRST_BEAM=1
export BASEDIR="/raid/datasets/wiki"
export WANDB=1 PARALLEL=0
RUNMLPERF=1 python3 examples/mlperf/model_train.py

View File

@@ -0,0 +1,31 @@
#!/bin/bash
set -e # Exit on any error
export PYTHONPATH="." AMD=1
export MODEL="bert"
export SUBMISSION_PLATFORM="tinybox_red"
export DEFAULT_FLOAT="HALF" SUM_DTYPE="HALF" GPUS=6 BS=96 EVAL_BS=96
export FUSE_ARANGE=1 FUSE_ARANGE_UINT=0
export BEAM=5 BEAM_UOPS_MAX=8000 BEAM_UPCAST_MAX=256 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=5
export IGNORE_JIT_FIRST_BEAM=1
export BASEDIR="/raid/datasets/wiki"
# pip install -e ".[mlperf]"
export LOGMLPERF=1
export SEED=$RANDOM
DATETIME=$(date "+%m%d%H%M")
LOGFILE="bert_red_${DATETIME}_${SEED}.log"
export HCQDEV_WAIT_TIMEOUT_MS=100000 # prevents hang?
# init
sleep 5 && sudo rmmod amdgpu || true
BENCHMARK=10 INITMLPERF=1 BERT_LAYERS=2 python3 examples/mlperf/model_train.py | tee $LOGFILE
# run
# TODO: AM driver resulted in nan
sudo modprobe amdgpu
PARALLEL=0 RUNMLPERF=1 python3 examples/mlperf/model_train.py | tee -a $LOGFILE

View File

@@ -0,0 +1,50 @@
# 1. Problem
This problem uses the ResNet-50 CNN to do image classification.
## Requirements
Install tinygrad and mlperf-logging from master.
```
git clone https://github.com/tinygrad/tinygrad.git
python3 -m pip install -e ".[mlperf]"
```
### tinybox_green
Install the p2p driver per [README](https://github.com/tinygrad/open-gpu-kernel-modules/blob/550.54.15-p2p/README.md)
This is the default on production tinybox green.
### tinybox_red
Disable cwsr
This is the default on production tinybox red.
```
sudo vi /etc/modprobe.d/amdgpu.conf
cat <<EOF > /etc/modprobe.d/amdgpu.conf
options amdgpu cwsr_enable=0
EOF
sudo update-initramfs -u
sudo reboot
# validate
sudo cat /sys/module/amdgpu/parameters/cwsr_enable #= 0
```
# 2. Directions
## Steps to download and verify data
```
IMGNET_TRAIN=1 python3 extra/datasets/imagenet_download.py
```
## Steps for one time setup
### tinybox_red
```
examples/mlperf/training_submission_v4.0/tinycorp/benchmarks/resnet/implementations/tinybox_red/setup.sh
```
## Steps to run benchmark
```
examples/mlperf/training_submission_v4.0/tinycorp/benchmarks/resnet/implementations/tinybox_red/run_and_time.sh
```

View File

@@ -0,0 +1,13 @@
#!/bin/bash
export PYTHONPATH="." NV=1
export MODEL="resnet"
export DEFAULT_FLOAT="HALF" GPUS=6 BS=1536 EVAL_BS=192
export RESET_STEP=0
export TRAIN_BEAM=4 IGNORE_JIT_FIRST_BEAM=1 BEAM_UOPS_MAX=1500 BEAM_UPCAST_MAX=64 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=10 BEAM_PADTO=0
export BENCHMARK=10 DEBUG=2
python3 examples/mlperf/model_train.py

View File

@@ -0,0 +1,15 @@
#!/bin/bash
export PYTHONPATH="." NV=1
export MODEL="resnet"
export DEFAULT_FLOAT="HALF" GPUS=6 BS=1536 EVAL_BS=192
export RESET_STEP=0
export TRAIN_BEAM=4 IGNORE_JIT_FIRST_BEAM=1 BEAM_UOPS_MAX=1500 BEAM_UPCAST_MAX=64 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=10 BEAM_PADTO=0
export EVAL_START_EPOCH=3 EVAL_FREQ=4
export WANDB=1 PARALLEL=0
python3 examples/mlperf/model_train.py

View File

@@ -0,0 +1,24 @@
#!/bin/bash
set -e # Exit on any error
export PYTHONPATH="." NV=1
export MODEL="resnet"
export SUBMISSION_PLATFORM="tinybox_green"
export DEFAULT_FLOAT="HALF" GPUS=6 BS=1536 EVAL_BS=192
export RESET_STEP=0
export TRAIN_BEAM=4 IGNORE_JIT_FIRST_BEAM=1 BEAM_UOPS_MAX=1500 BEAM_UPCAST_MAX=64 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=10 BEAM_PADTO=0
# pip install -e ".[mlperf]"
export LOGMLPERF=${LOGMLPERF:-1}
export SEED=$RANDOM
DATETIME=$(date "+%m%d%H%M")
LOGFILE="resnet_green_${DATETIME}_${SEED}.log"
# init
BENCHMARK=10 INITMLPERF=1 python3 examples/mlperf/model_train.py | tee $LOGFILE
# run
PARALLEL=0 RUNMLPERF=1 EVAL_START_EPOCH=3 EVAL_FREQ=4 python3 examples/mlperf/model_train.py | tee -a $LOGFILE

View File

@@ -0,0 +1,50 @@
# 1. Problem
This problem uses the ResNet-50 CNN to do image classification.
## Requirements
Install tinygrad and mlperf-logging from master.
```
git clone https://github.com/tinygrad/tinygrad.git
python3 -m pip install -e ".[mlperf]"
```
### tinybox_green
Install the p2p driver per [README](https://github.com/tinygrad/open-gpu-kernel-modules/blob/550.54.15-p2p/README.md)
This is the default on production tinybox green.
### tinybox_red
Disable cwsr
This is the default on production tinybox red.
```
sudo vi /etc/modprobe.d/amdgpu.conf
cat <<EOF > /etc/modprobe.d/amdgpu.conf
options amdgpu cwsr_enable=0
EOF
sudo update-initramfs -u
sudo reboot
# validate
sudo cat /sys/module/amdgpu/parameters/cwsr_enable #= 0
```
# 2. Directions
## Steps to download and verify data
```
IMGNET_TRAIN=1 python3 extra/datasets/imagenet_download.py
```
## Steps for one time setup
### tinybox_red
```
examples/mlperf/training_submission_v4.0/tinycorp/benchmarks/resnet/implementations/tinybox_red/setup.sh
```
## Steps to run benchmark
```
examples/mlperf/training_submission_v4.0/tinycorp/benchmarks/resnet/implementations/tinybox_red/run_and_time.sh
```

View File

@@ -0,0 +1,13 @@
#!/bin/bash
export PYTHONPATH="." AMD=1
export MODEL="resnet"
export DEFAULT_FLOAT="HALF" GPUS=6 BS=1536 EVAL_BS=192
export RESET_STEP=0
export TRAIN_BEAM=4 IGNORE_JIT_FIRST_BEAM=1 BEAM_UOPS_MAX=2000 BEAM_UPCAST_MAX=96 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=5 BEAM_PADTO=0
export BENCHMARK=10 DEBUG=${DEBUG:-2}
python3 examples/mlperf/model_train.py

View File

@@ -0,0 +1,15 @@
#!/bin/bash
export PYTHONPATH="." AMD=1
export MODEL="resnet"
export DEFAULT_FLOAT="HALF" GPUS=6 BS=1536 EVAL_BS=192
export RESET_STEP=0
export TRAIN_BEAM=4 IGNORE_JIT_FIRST_BEAM=1 BEAM_UOPS_MAX=2000 BEAM_UPCAST_MAX=96 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=5 BEAM_PADTO=0
export EVAL_START_EPOCH=3 EVAL_FREQ=4
export WANDB=1 PARALLEL=0
python3 examples/mlperf/model_train.py

View File

@@ -0,0 +1,25 @@
#!/bin/bash
set -e # Exit on any error
export PYTHONPATH="." AMD=1
export MODEL="resnet"
export SUBMISSION_PLATFORM="tinybox_red"
export DEFAULT_FLOAT="HALF" GPUS=6 BS=1536 EVAL_BS=192
export RESET_STEP=0
export TRAIN_BEAM=4 IGNORE_JIT_FIRST_BEAM=1 BEAM_UOPS_MAX=2000 BEAM_UPCAST_MAX=96 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=5 BEAM_PADTO=0
# pip install -e ".[mlperf]"
export LOGMLPERF=${LOGMLPERF:-1}
export SEED=$RANDOM
DATETIME=$(date "+%m%d%H%M")
LOGFILE="resnet_red_${DATETIME}_${SEED}.log"
# init
sleep 5 && sudo rmmod amdgpu || true
BENCHMARK=10 INITMLPERF=1 python3 examples/mlperf/model_train.py | tee $LOGFILE
# run
PARALLEL=0 RUNMLPERF=1 EVAL_START_EPOCH=3 EVAL_FREQ=4 python3 examples/mlperf/model_train.py | tee -a $LOGFILE

View File

@@ -0,0 +1,8 @@
#!/bin/bash
rocm-smi --setprofile compute
rocm-smi --setmclk 3
rocm-smi --setperflevel high
# power cap to 350W
echo "350000000" | sudo tee /sys/class/drm/card{1..6}/device/hwmon/hwmon*/power1_cap

View File

@@ -0,0 +1,38 @@
# 1. Problem
This problem uses RetinaNet for SSD.
## Requirements
Install tinygrad and mlperf-logging (uncomment mlperf from setup.py) from branch mlperf_training_v5.0.
```
git clone https://github.com/tinygrad/tinygrad.git
python3 -m pip install -e ".[mlperf]"
```
Also install the following dependencies:
```
pip install tqdm numpy pycocotools boto3 pandas torch torchvision
```
### tinybox_green
Install the p2p driver per [README](https://github.com/tinygrad/open-gpu-kernel-modules/blob/550.54.15-p2p/README.md)
This is the default on production tinybox green.
# 2. Directions
## Steps to download data
Run the following:
```
BASEDIR=/raid/datasets/openimages python3 extra/datasets/openimages.py
```
## Running
### tinybox_green
#### Steps to run benchmark
```
examples/mlperf/training_submission_v5.0/tinycorp/benchmarks/retinanet/implementations/tinybox_green/run_and_time.sh
```

View File

@@ -0,0 +1,14 @@
#!/bin/bash
export PYTHONPATH="." NV=1
export MODEL="retinanet"
export DEFAULT_FLOAT="HALF" GPUS=6 BS=96 EVAL_BS=96
export BASEDIR="/raid/datasets/openimages"
# export RESET_STEP=0
export TRAIN_BEAM=2 IGNORE_JIT_FIRST_BEAM=1 BEAM_UOPS_MAX=1500 BEAM_UPCAST_MAX=64 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=5 BEAM_PADTO=0
export BENCHMARK=5 DEBUG=2
python examples/mlperf/model_train.py

View File

@@ -0,0 +1,15 @@
#!/bin/bash
export PYTHONPATH="." NV=1
export MODEL="retinanet"
export DEFAULT_FLOAT="HALF" GPUS=6 BS=96 EVAL_BS=96
export BASEDIR="/raid/datasets/openimages"
# export RESET_STEP=0
export TRAIN_BEAM=2 IGNORE_JIT_FIRST_BEAM=1 BEAM_UOPS_MAX=1500 BEAM_UPCAST_MAX=64 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=5 BEAM_PADTO=0
export WANDB=1 PARALLEL=0
export RUNMLPERF=1
python examples/mlperf/model_train.py

View File

@@ -0,0 +1,24 @@
#!/bin/bash
set -e # Exit on any error
export PYTHONPATH="." NV=1
export MODEL="retinanet"
export SUBMISSION_PLATFORM="tinybox_green"
export DEFAULT_FLOAT="HALF" GPUS=6 BS=96 EVAL_BS=96
export TRAIN_BEAM=2 BEAM_UOPS_MAX=1500 BEAM_UPCAST_MAX=64 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=5 BEAM_PADTO=0
export IGNORE_JIT_FIRST_BEAM=1
export BASEDIR="/raid/datasets/openimages"
# pip install -e ".[mlperf]"
export LOGMLPERF=1
export SEED=$RANDOM
DATETIME=$(date "+%m%d%H%M")
LOGFILE="retinanet_green_${DATETIME}_${SEED}.log"
# init
BENCHMARK=10 INITMLPERF=1 python3 examples/mlperf/model_train.py | tee $LOGFILE
# run
PARALLEL=0 RUNMLPERF=1 python3 examples/mlperf/model_train.py | tee -a $LOGFILE

View File

@@ -0,0 +1,14 @@
#!/bin/bash
export PYTHONPATH="." AMD=1
export MODEL="retinanet"
export DEFAULT_FLOAT="HALF" GPUS=6 BS=96 EVAL_BS=96
export BASEDIR="/raid/datasets/openimages"
# export RESET_STEP=0
export TRAIN_BEAM=2 IGNORE_JIT_FIRST_BEAM=1 BEAM_UOPS_MAX=1500 BEAM_UPCAST_MAX=64 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=5 BEAM_PADTO=0
export BENCHMARK=5 DEBUG=2
python examples/mlperf/model_train.py

View File

@@ -0,0 +1,15 @@
#!/bin/bash
export PYTHONPATH="." AMD=1
export MODEL="retinanet"
export DEFAULT_FLOAT="HALF" GPUS=6 BS=96 EVAL_BS=96
export BASEDIR="/raid/datasets/openimages"
# export RESET_STEP=0
export TRAIN_BEAM=2 IGNORE_JIT_FIRST_BEAM=1 BEAM_UOPS_MAX=1500 BEAM_UPCAST_MAX=64 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=5 BEAM_PADTO=0
export WANDB=1 PARALLEL=0
export RUNMLPERF=1
python examples/mlperf/model_train.py

View File

@@ -0,0 +1,38 @@
{
"submitter": "tinycorp",
"division": "closed",
"status": "Available on-premise",
"system_name": "tinybox 8xMI300X",
"number_of_nodes": "1",
"host_processors_per_node": "2",
"host_processor_model_name": "AMD EPYC 9354",
"host_processor_core_count": "32",
"host_processor_vcpu_count": "64",
"host_processor_frequency": "",
"host_processor_caches": "",
"host_processor_interconnect": "",
"host_memory_capacity": "2304GB",
"host_storage_type": "NVMe SSD",
"host_storage_capacity": "3x 4TB raid array",
"host_networking": "",
"host_networking_topology": "",
"host_memory_configuration": "24x 96GB DDR5",
"accelerators_per_node": "8",
"accelerator_model_name": "AMD Instinct MI300X 192GB HBM3",
"accelerator_host_interconnect": "PCIe 5.0 x16",
"accelerator_frequency": "",
"accelerator_on-chip_memories": "",
"accelerator_memory_configuration": "HBM3",
"accelerator_memory_capacity": "192GB",
"accelerator_interconnect": "",
"accelerator_interconnect_topology": "",
"cooling": "air",
"hw_notes": "",
"framework": "tinygrad, branch mlperf_training_v5.0",
"other_software_stack": {
"python": "3.10.16",
"ROCm": "3.0.0+94441cb"
},
"operating_system": "Ubuntu 24.04.1 LTS",
"sw_notes": ""
}

View File

@@ -0,0 +1,38 @@
{
"submitter": "tinycorp",
"division": "closed",
"status": "Available on-premise",
"system_name": "tinybox green",
"number_of_nodes": "1",
"host_processors_per_node": "1",
"host_processor_model_name": "AMD EPYC 7532",
"host_processor_core_count": "32",
"host_processor_vcpu_count": "64",
"host_processor_frequency": "",
"host_processor_caches": "",
"host_processor_interconnect": "",
"host_memory_capacity": "128GB",
"host_storage_type": "NVMe SSD",
"host_storage_capacity": "4 TB raid array + 1 TB boot",
"host_networking": "",
"host_networking_topology": "",
"host_memory_configuration": "8x 16GB DDR4",
"accelerators_per_node": "6",
"accelerator_model_name": "NVIDIA GeForce RTX 4090",
"accelerator_host_interconnect": "PCIe 4.0 x16",
"accelerator_frequency": "",
"accelerator_on-chip_memories": "",
"accelerator_memory_configuration": "GDDR6X",
"accelerator_memory_capacity": "24GB",
"accelerator_interconnect": "",
"accelerator_interconnect_topology": "",
"cooling": "air",
"hw_notes": "",
"framework": "tinygrad, branch mlperf_training_v5.0",
"other_software_stack": {
"python": "3.10.12",
"CUDA": "12.4"
},
"operating_system": "Ubuntu 22.04.4",
"sw_notes": ""
}

View File

@@ -0,0 +1,37 @@
{
"submitter": "tinycorp",
"division": "closed",
"status": "Available on-premise",
"system_name": "tinybox red",
"number_of_nodes": "1",
"host_processors_per_node": "1",
"host_processor_model_name": "AMD EPYC 7532",
"host_processor_core_count": "32",
"host_processor_vcpu_count": "64",
"host_processor_frequency": "",
"host_processor_caches": "",
"host_processor_interconnect": "",
"host_memory_capacity": "128GB",
"host_storage_type": "NVMe SSD",
"host_storage_capacity": "4 TB raid array + 1 TB boot",
"host_networking": "",
"host_networking_topology": "",
"host_memory_configuration": "8x 16GB DDR4",
"accelerators_per_node": "6",
"accelerator_model_name": "AMD Radeon RX 7900 XTX",
"accelerator_host_interconnect": "PCIe 4.0 x16",
"accelerator_frequency": "",
"accelerator_on-chip_memories": "",
"accelerator_memory_configuration": "GDDR6",
"accelerator_memory_capacity": "24GB",
"accelerator_interconnect": "",
"accelerator_interconnect_topology": "",
"cooling": "air",
"hw_notes": "",
"framework": "tinygrad, branch mlperf_training_v5.0",
"other_software_stack": {
"python": "3.10.12"
},
"operating_system": "Ubuntu 22.04.4",
"sw_notes": ""
}