mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-01-10 23:48:01 -05:00
copy mlperf stuff to 5.1 (#10576)
5.0 is finalized, new changes go to 5.1
This commit is contained in:
@@ -0,0 +1,15 @@
|
||||
#!/bin/bash
|
||||
|
||||
export PYTHONPATH="." AMD=1
|
||||
export MODEL="bert"
|
||||
export DEFAULT_FLOAT="HALF" GPUS=1 BS=128 EVAL_BS=128
|
||||
|
||||
export BEAM=3 BEAM_UOPS_MAX=4000 BEAM_UPCAST_MAX=256 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=5
|
||||
export IGNORE_JIT_FIRST_BEAM=1
|
||||
# export BEAM_LOG_SURPASS_MAX=1
|
||||
# export BASEDIR="/raid/datasets/wiki"
|
||||
|
||||
export RESET_STEP=1
|
||||
export BENCHMARK=10 BERT_LAYERS=2 DEBUG=2
|
||||
|
||||
python3 examples/mlperf/model_train.py
|
||||
@@ -0,0 +1,69 @@
|
||||
# 1. Problem
|
||||
|
||||
This problem uses BERT for NLP.
|
||||
|
||||
## Requirements
|
||||
|
||||
Install tinygrad and mlperf-logging (uncomment mlperf from setup.py) from branch mlperf_training_v5.0.
|
||||
```
|
||||
git clone https://github.com/tinygrad/tinygrad.git
|
||||
python3 -m pip install -e ".[mlperf]"
|
||||
```
|
||||
Also install gdown (for dataset), numpy, tqdm and tensorflow.
|
||||
```
|
||||
pip install gdown numpy tqdm tensorflow
|
||||
```
|
||||
|
||||
### tinybox_green
|
||||
Install the p2p driver per [README](https://github.com/tinygrad/open-gpu-kernel-modules/blob/550.54.15-p2p/README.md)
|
||||
This is the default on production tinybox green.
|
||||
|
||||
# 2. Directions
|
||||
|
||||
## Steps to download and verify data
|
||||
|
||||
### 1. Download raw data
|
||||
|
||||
```
|
||||
BASEDIR="/raid/datasets/wiki" WIKI_TRAIN=1 VERIFY_CHECKSUM=1 python3 extra/datasets/wikipedia_download.py
|
||||
```
|
||||
|
||||
### 2. Preprocess train and validation data
|
||||
|
||||
Note: The number of threads used for preprocessing is limited by available memory. With 128GB of RAM, a maximum of 16 threads is recommended.
|
||||
|
||||
#### Training:
|
||||
```
|
||||
BASEDIR="/raid/datasets/wiki" NUM_WORKERS=16 python3 extra/datasets/wikipedia.py pre-train all
|
||||
```
|
||||
|
||||
Generating a specific topic (Between 0 and 499)
|
||||
```
|
||||
BASEDIR="/raid/datasets/wiki" python3 extra/datasets/wikipedia.py pre-train 42
|
||||
```
|
||||
|
||||
#### Validation:
|
||||
```
|
||||
BASEDIR="/raid/datasets/wiki" python3 extra/datasets/wikipedia.py pre-eval
|
||||
```
|
||||
## Running
|
||||
|
||||
### tinybox_green
|
||||
|
||||
#### Steps to run benchmark
|
||||
```
|
||||
examples/mlperf/training_submission_v5.0/tinycorp/benchmarks/bert/implementations/tinybox_green/run_and_time.sh
|
||||
```
|
||||
|
||||
### tinybox_red
|
||||
|
||||
#### Steps to run benchmark
|
||||
```
|
||||
examples/mlperf/training_submission_v5.0/tinycorp/benchmarks/bert/implementations/tinybox_red/run_and_time.sh
|
||||
```
|
||||
### tinybox_8xMI300X
|
||||
|
||||
#### Steps to run benchmark
|
||||
```
|
||||
examples/mlperf/training_submission_v5.0/tinycorp/benchmarks/bert/implementations/tinybox_8xMI300X/run_and_time.sh
|
||||
```
|
||||
@@ -0,0 +1,14 @@
|
||||
#!/bin/bash
|
||||
|
||||
export PYTHONPATH="." AMD=1
|
||||
export MODEL="bert"
|
||||
export DEFAULT_FLOAT="HALF" GPUS=8 BS=1024 EVAL_BS=1024
|
||||
export OPT_BASE_LEARNING_RATE=0.0011 OPT_LAMB_BETA_1=0.60466 OPT_LAMB_BETA_2=0.85437 DECAY=0.1
|
||||
|
||||
export BEAM=3 BEAM_UOPS_MAX=6000 BEAM_UPCAST_MAX=256 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=5
|
||||
export IGNORE_JIT_FIRST_BEAM=1 FREE_INTERMEDIATE=0
|
||||
export BASEDIR="/raid/datasets/wiki"
|
||||
|
||||
export BENCHMARK=10 BERT_LAYERS=2 DEBUG=2
|
||||
|
||||
python3 examples/mlperf/model_train.py
|
||||
@@ -0,0 +1,17 @@
|
||||
#!/bin/bash
|
||||
|
||||
export PYTHONPATH="." AMD=1
|
||||
export MODEL="bert"
|
||||
export DEFAULT_FLOAT="HALF" GPUS=8 BS=1024 EVAL_BS=1024
|
||||
|
||||
# similar to https://github.com/mlcommons/training_results_v3.1/blob/d06288b2bd675a9d88e0e6181f5bb5626b71ec19/Quanta_Cloud_Technology/results/D54U-3U/bert/result_1.txt#L54
|
||||
export OPT_BASE_LEARNING_RATE=0.0011 OPT_LAMB_BETA_1=0.60466 OPT_LAMB_BETA_2=0.85437 DECAY=0.1
|
||||
export TRAIN_STEPS=3900
|
||||
|
||||
export BEAM=3 BEAM_UOPS_MAX=6000 BEAM_UPCAST_MAX=256 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=5
|
||||
export IGNORE_JIT_FIRST_BEAM=1 FREE_INTERMEDIATE=0
|
||||
export BASEDIR="/raid/datasets/wiki"
|
||||
|
||||
export WANDB=1 PARALLEL=0
|
||||
|
||||
RUNMLPERF=1 python3 examples/mlperf/model_train.py
|
||||
@@ -0,0 +1,28 @@
|
||||
#!/bin/bash
|
||||
set -e # Exit on any error
|
||||
|
||||
export PYTHONPATH="." AMD=1
|
||||
export MODEL="bert"
|
||||
export SUBMISSION_PLATFORM="tinybox_8xMI300X"
|
||||
export DEFAULT_FLOAT="HALF" GPUS=8 BS=1024 EVAL_BS=1024
|
||||
|
||||
# similar to https://github.com/mlcommons/training_results_v3.1/blob/d06288b2bd675a9d88e0e6181f5bb5626b71ec19/Quanta_Cloud_Technology/results/D54U-3U/bert/result_1.txt#L54
|
||||
export OPT_BASE_LEARNING_RATE=0.0011 OPT_LAMB_BETA_1=0.60466 OPT_LAMB_BETA_2=0.85437 DECAY=0.1
|
||||
export TRAIN_STEPS=3900
|
||||
|
||||
export BEAM=3 BEAM_UOPS_MAX=6000 BEAM_UPCAST_MAX=256 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=5
|
||||
export IGNORE_JIT_FIRST_BEAM=1 FREE_INTERMEDIATE=0
|
||||
export BASEDIR="/raid/datasets/wiki"
|
||||
|
||||
# pip install -e ".[mlperf]"
|
||||
export LOGMLPERF=1
|
||||
|
||||
export SEED=$RANDOM
|
||||
DATETIME=$(date "+%m%d%H%M")
|
||||
LOGFILE="bert_8xMI300x_${DATETIME}_${SEED}.log"
|
||||
|
||||
# init # TODO: without DEBUG=2 it hangs
|
||||
BENCHMARK=10 INITMLPERF=1 BERT_LAYERS=2 DEBUG=2 python3 examples/mlperf/model_train.py | tee $LOGFILE
|
||||
|
||||
# run
|
||||
PARALLEL=0 RUNMLPERF=1 python3 examples/mlperf/model_train.py | tee -a $LOGFILE
|
||||
@@ -0,0 +1,69 @@
|
||||
# 1. Problem
|
||||
|
||||
This problem uses BERT for NLP.
|
||||
|
||||
## Requirements
|
||||
|
||||
Install tinygrad and mlperf-logging (uncomment mlperf from setup.py) from branch mlperf_training_v5.0.
|
||||
```
|
||||
git clone https://github.com/tinygrad/tinygrad.git
|
||||
python3 -m pip install -e ".[mlperf]"
|
||||
```
|
||||
Also install gdown (for dataset), numpy, tqdm and tensorflow.
|
||||
```
|
||||
pip install gdown numpy tqdm tensorflow
|
||||
```
|
||||
|
||||
### tinybox_green
|
||||
Install the p2p driver per [README](https://github.com/tinygrad/open-gpu-kernel-modules/blob/550.54.15-p2p/README.md)
|
||||
This is the default on production tinybox green.
|
||||
|
||||
# 2. Directions
|
||||
|
||||
## Steps to download and verify data
|
||||
|
||||
### 1. Download raw data
|
||||
|
||||
```
|
||||
BASEDIR="/raid/datasets/wiki" WIKI_TRAIN=1 VERIFY_CHECKSUM=1 python3 extra/datasets/wikipedia_download.py
|
||||
```
|
||||
|
||||
### 2. Preprocess train and validation data
|
||||
|
||||
Note: The number of threads used for preprocessing is limited by available memory. With 128GB of RAM, a maximum of 16 threads is recommended.
|
||||
|
||||
#### Training:
|
||||
```
|
||||
BASEDIR="/raid/datasets/wiki" NUM_WORKERS=16 python3 extra/datasets/wikipedia.py pre-train all
|
||||
```
|
||||
|
||||
Generating a specific topic (Between 0 and 499)
|
||||
```
|
||||
BASEDIR="/raid/datasets/wiki" python3 extra/datasets/wikipedia.py pre-train 42
|
||||
```
|
||||
|
||||
#### Validation:
|
||||
```
|
||||
BASEDIR="/raid/datasets/wiki" python3 extra/datasets/wikipedia.py pre-eval
|
||||
```
|
||||
## Running
|
||||
|
||||
### tinybox_green
|
||||
|
||||
#### Steps to run benchmark
|
||||
```
|
||||
examples/mlperf/training_submission_v5.0/tinycorp/benchmarks/bert/implementations/tinybox_green/run_and_time.sh
|
||||
```
|
||||
|
||||
### tinybox_red
|
||||
|
||||
#### Steps to run benchmark
|
||||
```
|
||||
examples/mlperf/training_submission_v5.0/tinycorp/benchmarks/bert/implementations/tinybox_red/run_and_time.sh
|
||||
```
|
||||
### tinybox_8xMI300X
|
||||
|
||||
#### Steps to run benchmark
|
||||
```
|
||||
examples/mlperf/training_submission_v5.0/tinycorp/benchmarks/bert/implementations/tinybox_8xMI300X/run_and_time.sh
|
||||
```
|
||||
@@ -0,0 +1,16 @@
|
||||
#!/bin/bash
|
||||
|
||||
export PYTHONPATH="." NV=1
|
||||
export MODEL="bert"
|
||||
export DEFAULT_FLOAT="HALF" SUM_DTYPE="HALF" GPUS=6 BS=96 EVAL_BS=96
|
||||
|
||||
export FUSE_ARANGE=1 FUSE_ARANGE_UINT=0
|
||||
|
||||
export BEAM=8 BEAM_UOPS_MAX=10000 BEAM_UPCAST_MAX=256 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=5
|
||||
export IGNORE_JIT_FIRST_BEAM=1
|
||||
export BEAM_LOG_SURPASS_MAX=1
|
||||
export BASEDIR="/raid/datasets/wiki"
|
||||
|
||||
export BENCHMARK=10 BERT_LAYERS=2 DEBUG=2
|
||||
|
||||
python3 examples/mlperf/model_train.py
|
||||
@@ -0,0 +1,15 @@
|
||||
#!/bin/bash
|
||||
|
||||
export PYTHONPATH="." NV=1
|
||||
export MODEL="bert"
|
||||
export DEFAULT_FLOAT="HALF" SUM_DTYPE="HALF" GPUS=6 BS=96 EVAL_BS=96
|
||||
|
||||
export FUSE_ARANGE=1 FUSE_ARANGE_UINT=0
|
||||
|
||||
export BEAM=8 BEAM_UOPS_MAX=10000 BEAM_UPCAST_MAX=256 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=5
|
||||
export IGNORE_JIT_FIRST_BEAM=1
|
||||
export BASEDIR="/raid/datasets/wiki"
|
||||
|
||||
export WANDB=1 PARALLEL=0
|
||||
|
||||
RUNMLPERF=1 python3 examples/mlperf/model_train.py
|
||||
@@ -0,0 +1,26 @@
|
||||
#!/bin/bash
|
||||
set -e # Exit on any error
|
||||
|
||||
export PYTHONPATH="." NV=1
|
||||
export MODEL="bert"
|
||||
export SUBMISSION_PLATFORM="tinybox_green"
|
||||
export DEFAULT_FLOAT="HALF" SUM_DTYPE="HALF" GPUS=6 BS=96 EVAL_BS=96
|
||||
|
||||
export FUSE_ARANGE=1 FUSE_ARANGE_UINT=0
|
||||
|
||||
export BEAM=8 BEAM_UOPS_MAX=10000 BEAM_UPCAST_MAX=256 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=5
|
||||
export IGNORE_JIT_FIRST_BEAM=1
|
||||
export BASEDIR="/raid/datasets/wiki"
|
||||
|
||||
# pip install -e ".[mlperf]"
|
||||
export LOGMLPERF=1
|
||||
|
||||
export SEED=$RANDOM
|
||||
DATETIME=$(date "+%m%d%H%M")
|
||||
LOGFILE="bert_green_${DATETIME}_${SEED}.log"
|
||||
|
||||
# init
|
||||
BENCHMARK=10 INITMLPERF=1 BERT_LAYERS=2 python3 examples/mlperf/model_train.py | tee $LOGFILE
|
||||
|
||||
# run
|
||||
PARALLEL=0 RUNMLPERF=1 python3 examples/mlperf/model_train.py | tee -a $LOGFILE
|
||||
@@ -0,0 +1,69 @@
|
||||
# 1. Problem
|
||||
|
||||
This problem uses BERT for NLP.
|
||||
|
||||
## Requirements
|
||||
|
||||
Install tinygrad and mlperf-logging (uncomment mlperf from setup.py) from branch mlperf_training_v5.0.
|
||||
```
|
||||
git clone https://github.com/tinygrad/tinygrad.git
|
||||
python3 -m pip install -e ".[mlperf]"
|
||||
```
|
||||
Also install gdown (for dataset), numpy, tqdm and tensorflow.
|
||||
```
|
||||
pip install gdown numpy tqdm tensorflow
|
||||
```
|
||||
|
||||
### tinybox_green
|
||||
Install the p2p driver per [README](https://github.com/tinygrad/open-gpu-kernel-modules/blob/550.54.15-p2p/README.md)
|
||||
This is the default on production tinybox green.
|
||||
|
||||
# 2. Directions
|
||||
|
||||
## Steps to download and verify data
|
||||
|
||||
### 1. Download raw data
|
||||
|
||||
```
|
||||
BASEDIR="/raid/datasets/wiki" WIKI_TRAIN=1 VERIFY_CHECKSUM=1 python3 extra/datasets/wikipedia_download.py
|
||||
```
|
||||
|
||||
### 2. Preprocess train and validation data
|
||||
|
||||
Note: The number of threads used for preprocessing is limited by available memory. With 128GB of RAM, a maximum of 16 threads is recommended.
|
||||
|
||||
#### Training:
|
||||
```
|
||||
BASEDIR="/raid/datasets/wiki" NUM_WORKERS=16 python3 extra/datasets/wikipedia.py pre-train all
|
||||
```
|
||||
|
||||
Generating a specific topic (Between 0 and 499)
|
||||
```
|
||||
BASEDIR="/raid/datasets/wiki" python3 extra/datasets/wikipedia.py pre-train 42
|
||||
```
|
||||
|
||||
#### Validation:
|
||||
```
|
||||
BASEDIR="/raid/datasets/wiki" python3 extra/datasets/wikipedia.py pre-eval
|
||||
```
|
||||
## Running
|
||||
|
||||
### tinybox_green
|
||||
|
||||
#### Steps to run benchmark
|
||||
```
|
||||
examples/mlperf/training_submission_v5.0/tinycorp/benchmarks/bert/implementations/tinybox_green/run_and_time.sh
|
||||
```
|
||||
|
||||
### tinybox_red
|
||||
|
||||
#### Steps to run benchmark
|
||||
```
|
||||
examples/mlperf/training_submission_v5.0/tinycorp/benchmarks/bert/implementations/tinybox_red/run_and_time.sh
|
||||
```
|
||||
### tinybox_8xMI300X
|
||||
|
||||
#### Steps to run benchmark
|
||||
```
|
||||
examples/mlperf/training_submission_v5.0/tinycorp/benchmarks/bert/implementations/tinybox_8xMI300X/run_and_time.sh
|
||||
```
|
||||
@@ -0,0 +1,17 @@
|
||||
#!/bin/bash
|
||||
|
||||
export PYTHONPATH="." AMD=1
|
||||
export MODEL="bert"
|
||||
export DEFAULT_FLOAT="HALF" SUM_DTYPE="HALF" GPUS=6 BS=96 EVAL_BS=96
|
||||
|
||||
export FUSE_ARANGE=1 FUSE_ARANGE_UINT=0
|
||||
|
||||
export BEAM=5 BEAM_UOPS_MAX=8000 BEAM_UPCAST_MAX=256 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=5
|
||||
export IGNORE_JIT_FIRST_BEAM=1
|
||||
export BEAM_LOG_SURPASS_MAX=1
|
||||
export BASEDIR="/raid/datasets/wiki"
|
||||
|
||||
export RESET_STEP=1
|
||||
export BENCHMARK=10 BERT_LAYERS=2 DEBUG=2
|
||||
|
||||
python3 examples/mlperf/model_train.py
|
||||
@@ -0,0 +1,15 @@
|
||||
#!/bin/bash
|
||||
|
||||
export PYTHONPATH="." AMD=1
|
||||
export MODEL="bert"
|
||||
export DEFAULT_FLOAT="HALF" SUM_DTYPE="HALF" GPUS=6 BS=96 EVAL_BS=96
|
||||
|
||||
export FUSE_ARANGE=1 FUSE_ARANGE_UINT=0
|
||||
|
||||
export BEAM=5 BEAM_UOPS_MAX=8000 BEAM_UPCAST_MAX=256 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=5
|
||||
export IGNORE_JIT_FIRST_BEAM=1
|
||||
export BASEDIR="/raid/datasets/wiki"
|
||||
|
||||
export WANDB=1 PARALLEL=0
|
||||
|
||||
RUNMLPERF=1 python3 examples/mlperf/model_train.py
|
||||
@@ -0,0 +1,31 @@
|
||||
#!/bin/bash
|
||||
set -e # Exit on any error
|
||||
|
||||
export PYTHONPATH="." AMD=1
|
||||
export MODEL="bert"
|
||||
export SUBMISSION_PLATFORM="tinybox_red"
|
||||
export DEFAULT_FLOAT="HALF" SUM_DTYPE="HALF" GPUS=6 BS=96 EVAL_BS=96
|
||||
|
||||
export FUSE_ARANGE=1 FUSE_ARANGE_UINT=0
|
||||
|
||||
export BEAM=5 BEAM_UOPS_MAX=8000 BEAM_UPCAST_MAX=256 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=5
|
||||
export IGNORE_JIT_FIRST_BEAM=1
|
||||
export BASEDIR="/raid/datasets/wiki"
|
||||
|
||||
# pip install -e ".[mlperf]"
|
||||
export LOGMLPERF=1
|
||||
|
||||
export SEED=$RANDOM
|
||||
DATETIME=$(date "+%m%d%H%M")
|
||||
LOGFILE="bert_red_${DATETIME}_${SEED}.log"
|
||||
|
||||
export HCQDEV_WAIT_TIMEOUT_MS=100000 # prevents hang?
|
||||
|
||||
# init
|
||||
sleep 5 && sudo rmmod amdgpu || true
|
||||
BENCHMARK=10 INITMLPERF=1 BERT_LAYERS=2 python3 examples/mlperf/model_train.py | tee $LOGFILE
|
||||
|
||||
# run
|
||||
# TODO: AM driver resulted in nan
|
||||
sudo modprobe amdgpu
|
||||
PARALLEL=0 RUNMLPERF=1 python3 examples/mlperf/model_train.py | tee -a $LOGFILE
|
||||
@@ -0,0 +1,50 @@
|
||||
# 1. Problem
|
||||
|
||||
This problem uses the ResNet-50 CNN to do image classification.
|
||||
|
||||
## Requirements
|
||||
|
||||
Install tinygrad and mlperf-logging from master.
|
||||
```
|
||||
git clone https://github.com/tinygrad/tinygrad.git
|
||||
python3 -m pip install -e ".[mlperf]"
|
||||
```
|
||||
|
||||
### tinybox_green
|
||||
Install the p2p driver per [README](https://github.com/tinygrad/open-gpu-kernel-modules/blob/550.54.15-p2p/README.md)
|
||||
This is the default on production tinybox green.
|
||||
|
||||
### tinybox_red
|
||||
Disable cwsr
|
||||
This is the default on production tinybox red.
|
||||
```
|
||||
sudo vi /etc/modprobe.d/amdgpu.conf
|
||||
cat <<EOF > /etc/modprobe.d/amdgpu.conf
|
||||
options amdgpu cwsr_enable=0
|
||||
EOF
|
||||
sudo update-initramfs -u
|
||||
sudo reboot
|
||||
|
||||
# validate
|
||||
sudo cat /sys/module/amdgpu/parameters/cwsr_enable #= 0
|
||||
```
|
||||
|
||||
# 2. Directions
|
||||
|
||||
## Steps to download and verify data
|
||||
|
||||
```
|
||||
IMGNET_TRAIN=1 python3 extra/datasets/imagenet_download.py
|
||||
```
|
||||
|
||||
## Steps for one time setup
|
||||
|
||||
### tinybox_red
|
||||
```
|
||||
examples/mlperf/training_submission_v4.0/tinycorp/benchmarks/resnet/implementations/tinybox_red/setup.sh
|
||||
```
|
||||
|
||||
## Steps to run benchmark
|
||||
```
|
||||
examples/mlperf/training_submission_v4.0/tinycorp/benchmarks/resnet/implementations/tinybox_red/run_and_time.sh
|
||||
```
|
||||
@@ -0,0 +1,13 @@
|
||||
#!/bin/bash
|
||||
|
||||
export PYTHONPATH="." NV=1
|
||||
export MODEL="resnet"
|
||||
export DEFAULT_FLOAT="HALF" GPUS=6 BS=1536 EVAL_BS=192
|
||||
|
||||
export RESET_STEP=0
|
||||
|
||||
export TRAIN_BEAM=4 IGNORE_JIT_FIRST_BEAM=1 BEAM_UOPS_MAX=1500 BEAM_UPCAST_MAX=64 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=10 BEAM_PADTO=0
|
||||
|
||||
export BENCHMARK=10 DEBUG=2
|
||||
|
||||
python3 examples/mlperf/model_train.py
|
||||
@@ -0,0 +1,15 @@
|
||||
#!/bin/bash
|
||||
|
||||
export PYTHONPATH="." NV=1
|
||||
export MODEL="resnet"
|
||||
export DEFAULT_FLOAT="HALF" GPUS=6 BS=1536 EVAL_BS=192
|
||||
|
||||
export RESET_STEP=0
|
||||
|
||||
export TRAIN_BEAM=4 IGNORE_JIT_FIRST_BEAM=1 BEAM_UOPS_MAX=1500 BEAM_UPCAST_MAX=64 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=10 BEAM_PADTO=0
|
||||
|
||||
export EVAL_START_EPOCH=3 EVAL_FREQ=4
|
||||
|
||||
export WANDB=1 PARALLEL=0
|
||||
|
||||
python3 examples/mlperf/model_train.py
|
||||
@@ -0,0 +1,24 @@
|
||||
#!/bin/bash
|
||||
set -e # Exit on any error
|
||||
|
||||
export PYTHONPATH="." NV=1
|
||||
export MODEL="resnet"
|
||||
export SUBMISSION_PLATFORM="tinybox_green"
|
||||
export DEFAULT_FLOAT="HALF" GPUS=6 BS=1536 EVAL_BS=192
|
||||
|
||||
export RESET_STEP=0
|
||||
|
||||
export TRAIN_BEAM=4 IGNORE_JIT_FIRST_BEAM=1 BEAM_UOPS_MAX=1500 BEAM_UPCAST_MAX=64 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=10 BEAM_PADTO=0
|
||||
|
||||
# pip install -e ".[mlperf]"
|
||||
export LOGMLPERF=${LOGMLPERF:-1}
|
||||
|
||||
export SEED=$RANDOM
|
||||
DATETIME=$(date "+%m%d%H%M")
|
||||
LOGFILE="resnet_green_${DATETIME}_${SEED}.log"
|
||||
|
||||
# init
|
||||
BENCHMARK=10 INITMLPERF=1 python3 examples/mlperf/model_train.py | tee $LOGFILE
|
||||
|
||||
# run
|
||||
PARALLEL=0 RUNMLPERF=1 EVAL_START_EPOCH=3 EVAL_FREQ=4 python3 examples/mlperf/model_train.py | tee -a $LOGFILE
|
||||
@@ -0,0 +1,50 @@
|
||||
# 1. Problem
|
||||
|
||||
This problem uses the ResNet-50 CNN to do image classification.
|
||||
|
||||
## Requirements
|
||||
|
||||
Install tinygrad and mlperf-logging from master.
|
||||
```
|
||||
git clone https://github.com/tinygrad/tinygrad.git
|
||||
python3 -m pip install -e ".[mlperf]"
|
||||
```
|
||||
|
||||
### tinybox_green
|
||||
Install the p2p driver per [README](https://github.com/tinygrad/open-gpu-kernel-modules/blob/550.54.15-p2p/README.md)
|
||||
This is the default on production tinybox green.
|
||||
|
||||
### tinybox_red
|
||||
Disable cwsr
|
||||
This is the default on production tinybox red.
|
||||
```
|
||||
sudo vi /etc/modprobe.d/amdgpu.conf
|
||||
cat <<EOF > /etc/modprobe.d/amdgpu.conf
|
||||
options amdgpu cwsr_enable=0
|
||||
EOF
|
||||
sudo update-initramfs -u
|
||||
sudo reboot
|
||||
|
||||
# validate
|
||||
sudo cat /sys/module/amdgpu/parameters/cwsr_enable #= 0
|
||||
```
|
||||
|
||||
# 2. Directions
|
||||
|
||||
## Steps to download and verify data
|
||||
|
||||
```
|
||||
IMGNET_TRAIN=1 python3 extra/datasets/imagenet_download.py
|
||||
```
|
||||
|
||||
## Steps for one time setup
|
||||
|
||||
### tinybox_red
|
||||
```
|
||||
examples/mlperf/training_submission_v4.0/tinycorp/benchmarks/resnet/implementations/tinybox_red/setup.sh
|
||||
```
|
||||
|
||||
## Steps to run benchmark
|
||||
```
|
||||
examples/mlperf/training_submission_v4.0/tinycorp/benchmarks/resnet/implementations/tinybox_red/run_and_time.sh
|
||||
```
|
||||
@@ -0,0 +1,13 @@
|
||||
#!/bin/bash
|
||||
|
||||
export PYTHONPATH="." AMD=1
|
||||
export MODEL="resnet"
|
||||
export DEFAULT_FLOAT="HALF" GPUS=6 BS=1536 EVAL_BS=192
|
||||
|
||||
export RESET_STEP=0
|
||||
|
||||
export TRAIN_BEAM=4 IGNORE_JIT_FIRST_BEAM=1 BEAM_UOPS_MAX=2000 BEAM_UPCAST_MAX=96 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=5 BEAM_PADTO=0
|
||||
|
||||
export BENCHMARK=10 DEBUG=${DEBUG:-2}
|
||||
|
||||
python3 examples/mlperf/model_train.py
|
||||
@@ -0,0 +1,15 @@
|
||||
#!/bin/bash
|
||||
|
||||
export PYTHONPATH="." AMD=1
|
||||
export MODEL="resnet"
|
||||
export DEFAULT_FLOAT="HALF" GPUS=6 BS=1536 EVAL_BS=192
|
||||
|
||||
export RESET_STEP=0
|
||||
|
||||
export TRAIN_BEAM=4 IGNORE_JIT_FIRST_BEAM=1 BEAM_UOPS_MAX=2000 BEAM_UPCAST_MAX=96 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=5 BEAM_PADTO=0
|
||||
|
||||
export EVAL_START_EPOCH=3 EVAL_FREQ=4
|
||||
|
||||
export WANDB=1 PARALLEL=0
|
||||
|
||||
python3 examples/mlperf/model_train.py
|
||||
@@ -0,0 +1,25 @@
|
||||
#!/bin/bash
|
||||
set -e # Exit on any error
|
||||
|
||||
export PYTHONPATH="." AMD=1
|
||||
export MODEL="resnet"
|
||||
export SUBMISSION_PLATFORM="tinybox_red"
|
||||
export DEFAULT_FLOAT="HALF" GPUS=6 BS=1536 EVAL_BS=192
|
||||
|
||||
export RESET_STEP=0
|
||||
|
||||
export TRAIN_BEAM=4 IGNORE_JIT_FIRST_BEAM=1 BEAM_UOPS_MAX=2000 BEAM_UPCAST_MAX=96 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=5 BEAM_PADTO=0
|
||||
|
||||
# pip install -e ".[mlperf]"
|
||||
export LOGMLPERF=${LOGMLPERF:-1}
|
||||
|
||||
export SEED=$RANDOM
|
||||
DATETIME=$(date "+%m%d%H%M")
|
||||
LOGFILE="resnet_red_${DATETIME}_${SEED}.log"
|
||||
|
||||
# init
|
||||
sleep 5 && sudo rmmod amdgpu || true
|
||||
BENCHMARK=10 INITMLPERF=1 python3 examples/mlperf/model_train.py | tee $LOGFILE
|
||||
|
||||
# run
|
||||
PARALLEL=0 RUNMLPERF=1 EVAL_START_EPOCH=3 EVAL_FREQ=4 python3 examples/mlperf/model_train.py | tee -a $LOGFILE
|
||||
@@ -0,0 +1,8 @@
|
||||
#!/bin/bash
|
||||
|
||||
rocm-smi --setprofile compute
|
||||
rocm-smi --setmclk 3
|
||||
rocm-smi --setperflevel high
|
||||
|
||||
# power cap to 350W
|
||||
echo "350000000" | sudo tee /sys/class/drm/card{1..6}/device/hwmon/hwmon*/power1_cap
|
||||
@@ -0,0 +1,38 @@
|
||||
# 1. Problem
|
||||
|
||||
This problem uses RetinaNet for SSD.
|
||||
|
||||
## Requirements
|
||||
|
||||
Install tinygrad and mlperf-logging (uncomment mlperf from setup.py) from branch mlperf_training_v5.0.
|
||||
```
|
||||
git clone https://github.com/tinygrad/tinygrad.git
|
||||
python3 -m pip install -e ".[mlperf]"
|
||||
```
|
||||
|
||||
Also install the following dependencies:
|
||||
```
|
||||
pip install tqdm numpy pycocotools boto3 pandas torch torchvision
|
||||
```
|
||||
|
||||
### tinybox_green
|
||||
Install the p2p driver per [README](https://github.com/tinygrad/open-gpu-kernel-modules/blob/550.54.15-p2p/README.md)
|
||||
This is the default on production tinybox green.
|
||||
|
||||
# 2. Directions
|
||||
|
||||
## Steps to download data
|
||||
|
||||
Run the following:
|
||||
```
|
||||
BASEDIR=/raid/datasets/openimages python3 extra/datasets/openimages.py
|
||||
```
|
||||
|
||||
## Running
|
||||
|
||||
### tinybox_green
|
||||
|
||||
#### Steps to run benchmark
|
||||
```
|
||||
examples/mlperf/training_submission_v5.0/tinycorp/benchmarks/retinanet/implementations/tinybox_green/run_and_time.sh
|
||||
```
|
||||
@@ -0,0 +1,14 @@
|
||||
#!/bin/bash
|
||||
|
||||
export PYTHONPATH="." NV=1
|
||||
export MODEL="retinanet"
|
||||
export DEFAULT_FLOAT="HALF" GPUS=6 BS=96 EVAL_BS=96
|
||||
export BASEDIR="/raid/datasets/openimages"
|
||||
|
||||
# export RESET_STEP=0
|
||||
|
||||
export TRAIN_BEAM=2 IGNORE_JIT_FIRST_BEAM=1 BEAM_UOPS_MAX=1500 BEAM_UPCAST_MAX=64 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=5 BEAM_PADTO=0
|
||||
|
||||
export BENCHMARK=5 DEBUG=2
|
||||
|
||||
python examples/mlperf/model_train.py
|
||||
@@ -0,0 +1,15 @@
|
||||
#!/bin/bash
|
||||
|
||||
export PYTHONPATH="." NV=1
|
||||
export MODEL="retinanet"
|
||||
export DEFAULT_FLOAT="HALF" GPUS=6 BS=96 EVAL_BS=96
|
||||
export BASEDIR="/raid/datasets/openimages"
|
||||
|
||||
# export RESET_STEP=0
|
||||
|
||||
export TRAIN_BEAM=2 IGNORE_JIT_FIRST_BEAM=1 BEAM_UOPS_MAX=1500 BEAM_UPCAST_MAX=64 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=5 BEAM_PADTO=0
|
||||
|
||||
export WANDB=1 PARALLEL=0
|
||||
export RUNMLPERF=1
|
||||
|
||||
python examples/mlperf/model_train.py
|
||||
@@ -0,0 +1,24 @@
|
||||
#!/bin/bash
|
||||
set -e # Exit on any error
|
||||
|
||||
export PYTHONPATH="." NV=1
|
||||
export MODEL="retinanet"
|
||||
export SUBMISSION_PLATFORM="tinybox_green"
|
||||
export DEFAULT_FLOAT="HALF" GPUS=6 BS=96 EVAL_BS=96
|
||||
|
||||
export TRAIN_BEAM=2 BEAM_UOPS_MAX=1500 BEAM_UPCAST_MAX=64 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=5 BEAM_PADTO=0
|
||||
export IGNORE_JIT_FIRST_BEAM=1
|
||||
export BASEDIR="/raid/datasets/openimages"
|
||||
|
||||
# pip install -e ".[mlperf]"
|
||||
export LOGMLPERF=1
|
||||
|
||||
export SEED=$RANDOM
|
||||
DATETIME=$(date "+%m%d%H%M")
|
||||
LOGFILE="retinanet_green_${DATETIME}_${SEED}.log"
|
||||
|
||||
# init
|
||||
BENCHMARK=10 INITMLPERF=1 python3 examples/mlperf/model_train.py | tee $LOGFILE
|
||||
|
||||
# run
|
||||
PARALLEL=0 RUNMLPERF=1 python3 examples/mlperf/model_train.py | tee -a $LOGFILE
|
||||
@@ -0,0 +1,14 @@
|
||||
#!/bin/bash
|
||||
|
||||
export PYTHONPATH="." AMD=1
|
||||
export MODEL="retinanet"
|
||||
export DEFAULT_FLOAT="HALF" GPUS=6 BS=96 EVAL_BS=96
|
||||
export BASEDIR="/raid/datasets/openimages"
|
||||
|
||||
# export RESET_STEP=0
|
||||
|
||||
export TRAIN_BEAM=2 IGNORE_JIT_FIRST_BEAM=1 BEAM_UOPS_MAX=1500 BEAM_UPCAST_MAX=64 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=5 BEAM_PADTO=0
|
||||
|
||||
export BENCHMARK=5 DEBUG=2
|
||||
|
||||
python examples/mlperf/model_train.py
|
||||
@@ -0,0 +1,15 @@
|
||||
#!/bin/bash
|
||||
|
||||
export PYTHONPATH="." AMD=1
|
||||
export MODEL="retinanet"
|
||||
export DEFAULT_FLOAT="HALF" GPUS=6 BS=96 EVAL_BS=96
|
||||
export BASEDIR="/raid/datasets/openimages"
|
||||
|
||||
# export RESET_STEP=0
|
||||
|
||||
export TRAIN_BEAM=2 IGNORE_JIT_FIRST_BEAM=1 BEAM_UOPS_MAX=1500 BEAM_UPCAST_MAX=64 BEAM_LOCAL_MAX=1024 BEAM_MIN_PROGRESS=5 BEAM_PADTO=0
|
||||
|
||||
export WANDB=1 PARALLEL=0
|
||||
export RUNMLPERF=1
|
||||
|
||||
python examples/mlperf/model_train.py
|
||||
@@ -0,0 +1,38 @@
|
||||
{
|
||||
"submitter": "tinycorp",
|
||||
"division": "closed",
|
||||
"status": "Available on-premise",
|
||||
"system_name": "tinybox 8xMI300X",
|
||||
"number_of_nodes": "1",
|
||||
"host_processors_per_node": "2",
|
||||
"host_processor_model_name": "AMD EPYC 9354",
|
||||
"host_processor_core_count": "32",
|
||||
"host_processor_vcpu_count": "64",
|
||||
"host_processor_frequency": "",
|
||||
"host_processor_caches": "",
|
||||
"host_processor_interconnect": "",
|
||||
"host_memory_capacity": "2304GB",
|
||||
"host_storage_type": "NVMe SSD",
|
||||
"host_storage_capacity": "3x 4TB raid array",
|
||||
"host_networking": "",
|
||||
"host_networking_topology": "",
|
||||
"host_memory_configuration": "24x 96GB DDR5",
|
||||
"accelerators_per_node": "8",
|
||||
"accelerator_model_name": "AMD Instinct MI300X 192GB HBM3",
|
||||
"accelerator_host_interconnect": "PCIe 5.0 x16",
|
||||
"accelerator_frequency": "",
|
||||
"accelerator_on-chip_memories": "",
|
||||
"accelerator_memory_configuration": "HBM3",
|
||||
"accelerator_memory_capacity": "192GB",
|
||||
"accelerator_interconnect": "",
|
||||
"accelerator_interconnect_topology": "",
|
||||
"cooling": "air",
|
||||
"hw_notes": "",
|
||||
"framework": "tinygrad, branch mlperf_training_v5.0",
|
||||
"other_software_stack": {
|
||||
"python": "3.10.16",
|
||||
"ROCm": "3.0.0+94441cb"
|
||||
},
|
||||
"operating_system": "Ubuntu 24.04.1 LTS",
|
||||
"sw_notes": ""
|
||||
}
|
||||
@@ -0,0 +1,38 @@
|
||||
{
|
||||
"submitter": "tinycorp",
|
||||
"division": "closed",
|
||||
"status": "Available on-premise",
|
||||
"system_name": "tinybox green",
|
||||
"number_of_nodes": "1",
|
||||
"host_processors_per_node": "1",
|
||||
"host_processor_model_name": "AMD EPYC 7532",
|
||||
"host_processor_core_count": "32",
|
||||
"host_processor_vcpu_count": "64",
|
||||
"host_processor_frequency": "",
|
||||
"host_processor_caches": "",
|
||||
"host_processor_interconnect": "",
|
||||
"host_memory_capacity": "128GB",
|
||||
"host_storage_type": "NVMe SSD",
|
||||
"host_storage_capacity": "4 TB raid array + 1 TB boot",
|
||||
"host_networking": "",
|
||||
"host_networking_topology": "",
|
||||
"host_memory_configuration": "8x 16GB DDR4",
|
||||
"accelerators_per_node": "6",
|
||||
"accelerator_model_name": "NVIDIA GeForce RTX 4090",
|
||||
"accelerator_host_interconnect": "PCIe 4.0 x16",
|
||||
"accelerator_frequency": "",
|
||||
"accelerator_on-chip_memories": "",
|
||||
"accelerator_memory_configuration": "GDDR6X",
|
||||
"accelerator_memory_capacity": "24GB",
|
||||
"accelerator_interconnect": "",
|
||||
"accelerator_interconnect_topology": "",
|
||||
"cooling": "air",
|
||||
"hw_notes": "",
|
||||
"framework": "tinygrad, branch mlperf_training_v5.0",
|
||||
"other_software_stack": {
|
||||
"python": "3.10.12",
|
||||
"CUDA": "12.4"
|
||||
},
|
||||
"operating_system": "Ubuntu 22.04.4",
|
||||
"sw_notes": ""
|
||||
}
|
||||
@@ -0,0 +1,37 @@
|
||||
{
|
||||
"submitter": "tinycorp",
|
||||
"division": "closed",
|
||||
"status": "Available on-premise",
|
||||
"system_name": "tinybox red",
|
||||
"number_of_nodes": "1",
|
||||
"host_processors_per_node": "1",
|
||||
"host_processor_model_name": "AMD EPYC 7532",
|
||||
"host_processor_core_count": "32",
|
||||
"host_processor_vcpu_count": "64",
|
||||
"host_processor_frequency": "",
|
||||
"host_processor_caches": "",
|
||||
"host_processor_interconnect": "",
|
||||
"host_memory_capacity": "128GB",
|
||||
"host_storage_type": "NVMe SSD",
|
||||
"host_storage_capacity": "4 TB raid array + 1 TB boot",
|
||||
"host_networking": "",
|
||||
"host_networking_topology": "",
|
||||
"host_memory_configuration": "8x 16GB DDR4",
|
||||
"accelerators_per_node": "6",
|
||||
"accelerator_model_name": "AMD Radeon RX 7900 XTX",
|
||||
"accelerator_host_interconnect": "PCIe 4.0 x16",
|
||||
"accelerator_frequency": "",
|
||||
"accelerator_on-chip_memories": "",
|
||||
"accelerator_memory_configuration": "GDDR6",
|
||||
"accelerator_memory_capacity": "24GB",
|
||||
"accelerator_interconnect": "",
|
||||
"accelerator_interconnect_topology": "",
|
||||
"cooling": "air",
|
||||
"hw_notes": "",
|
||||
"framework": "tinygrad, branch mlperf_training_v5.0",
|
||||
"other_software_stack": {
|
||||
"python": "3.10.12"
|
||||
},
|
||||
"operating_system": "Ubuntu 22.04.4",
|
||||
"sw_notes": ""
|
||||
}
|
||||
Reference in New Issue
Block a user