mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-01-09 23:18:04 -05:00
some progress on batchnorms (draft) (#147)
* no of categories for efficientnet * need layer_init_uniforn * merge fail * merge fail * batchnorms * needs work * needs work how determine training * pow * needs work * reshape was needed * sum with axis * sum with axis and tests * broken * works again * clean up * Update test_ops.py * using sum * don't always update running_stats * space * self * default return running_stats * passes test * need to use mean * merge * testing * fixing pow * test_ops had a line dropped * undo pow * rebase
This commit is contained in:
@@ -37,19 +37,21 @@ if __name__ == "__main__":
|
||||
|
||||
Tensor.default_gpu = os.getenv("GPU") is not None
|
||||
TINY = os.getenv("TINY") is not None
|
||||
TRANSFER = os.getenv("TRANSFER") is not None
|
||||
if TINY:
|
||||
model = TinyConvNet(classes)
|
||||
elif TRANSFER:
|
||||
model = EfficientNet(int(os.getenv("NUM", "0")), classes, has_se=True)
|
||||
model.load_weights_from_torch()
|
||||
else:
|
||||
model = EfficientNet(int(os.getenv("NUM", "0")), classes, has_se=False)
|
||||
#model = EfficientNet(int(os.getenv("NUM", "0")), classes, has_se=True)
|
||||
#model.load_weights_from_torch()
|
||||
|
||||
parameters = get_parameters(model)
|
||||
print("parameters", len(parameters))
|
||||
optimizer = optim.Adam(parameters, lr=0.001)
|
||||
|
||||
#BS, steps = 16, 32
|
||||
BS, steps = 64 if TINY else 16, 1024
|
||||
BS, steps = 64 if TINY else 16, 2048
|
||||
|
||||
for i in (t := trange(steps)):
|
||||
samp = np.random.randint(0, X_train.shape[0], size=(BS))
|
||||
|
||||
Reference in New Issue
Block a user