metal matmul from tcores branch

This commit is contained in:
George Hotz
2023-04-14 23:29:29 -07:00
parent 732884653c
commit d66e682205

View File

@@ -1,9 +1,10 @@
import os
os.environ["METAL"] = "1"
import numpy as np
from tinygrad.helpers import dtypes
from tinygrad.helpers import dtypes, getenv
from tinygrad.runtime.ops_metal import RawMetalBuffer, MetalProgram
N = 2048
N = getenv("N", 2048)
a = RawMetalBuffer(N*N, dtypes.float32)
@@ -13,31 +14,16 @@ b = RawMetalBuffer.fromCPU(nb)
c = RawMetalBuffer.fromCPU(nc)
FLOPS = N*N*N*2
BW = N*N*3
BW = N*N*3*4
prog = MetalProgram("test", f"""
#include <metal_stdlib>
#include <metal_simdgroup_matrix> // Available from Metal version 2.3 released with OS X 11.0+
using namespace metal;
kernel void test(device float *a, device const float *data1, device const float *data2, uint3 gid [[thread_position_in_grid]], uint3 xid [[threadgroup_position_in_grid]], uint3 lid [[thread_position_in_threadgroup]], uint sidx [[simdgroup_index_in_threadgroup]]) {{
// 1-2 simd groups
//uint idx = gid.x/32;
//uint pos_x = (idx%{N//32}) * 32;
//uint pos_y = (idx/{N//32}) * 32;
// 4 simd groups
uint idx = gid.x/128;
uint pos_x = (idx%{N//64}) * 64;
uint pos_y = (idx/{N//64}) * 64;
pos_x += (sidx%2) * 32;
pos_y += (sidx/2) * 32;
// 16 simd groups (slow)
/*uint idx = gid.x/512;
uint pos_x = (idx%{N//128}) * 128;
uint pos_y = (idx/{N//128}) * 128;
pos_x += (sidx%4) * 32;
pos_y += (sidx/4) * 32;*/
a += gid.y * 32 * {N} + gid.z * 32;
data1 += gid.y * 32 * {N};
data2 += gid.z * 32;
simdgroup_float8x8 acc[4][4];
for (uint i = 0; i < 4; i++) {{
@@ -45,21 +31,19 @@ kernel void test(device float *a, device const float *data1, device const float
acc[i][j] = simdgroup_float8x8(0);
}}
}}
simdgroup_float8x8 A[4];
simdgroup_float8x8 B[4];
data1 += pos_x * {N};
data2 += pos_y;
for (uint k = 0; k < {N}; k+=8) {{
threadgroup_barrier(mem_flags::mem_threadgroup);
simdgroup_load(A[0], data1, {N}, ulong2(k, 0));
simdgroup_load(A[1], data1, {N}, ulong2(k, 8));
simdgroup_load(A[2], data1, {N}, ulong2(k, 16));
simdgroup_load(A[3], data1, {N}, ulong2(k, 24));
simdgroup_load(B[0], data2, {N}, ulong2(0, k));
simdgroup_load(B[1], data2, {N}, ulong2(8, k));
simdgroup_load(B[2], data2, {N}, ulong2(16, k));
simdgroup_load(B[3], data2, {N}, ulong2(24, k));
simdgroup_load(A[0], data1+k+{0*N}, {N}, ulong2(0, 0));
simdgroup_load(A[1], data1+k+{8*N}, {N}, ulong2(0, 0));
simdgroup_load(A[2], data1+k+{16*N}, {N}, ulong2(0, 0));
simdgroup_load(A[3], data1+k+{24*N}, {N}, ulong2(0, 0));
simdgroup_load(B[0], data2+0+k*{N}, {N}, ulong2(0, 0));
simdgroup_load(B[1], data2+8+k*{N}, {N}, ulong2(0, 0));
simdgroup_load(B[2], data2+16+k*{N}, {N}, ulong2(0, 0));
simdgroup_load(B[3], data2+24+k*{N}, {N}, ulong2(0, 0));
simdgroup_multiply_accumulate(acc[0][0], A[0], B[0], acc[0][0]);
simdgroup_multiply_accumulate(acc[0][1], A[1], B[0], acc[0][1]);
@@ -78,19 +62,30 @@ kernel void test(device float *a, device const float *data1, device const float
simdgroup_multiply_accumulate(acc[3][2], A[2], B[3], acc[3][2]);
simdgroup_multiply_accumulate(acc[3][3], A[3], B[3], acc[3][3]);
}}
for (uint i = 0; i < 4; i++) {{
for (uint j = 0; j < 4; j++) {{
simdgroup_store(acc[i][j], a, {N}, ulong2(pos_y+i*8, pos_x+j*8));
}}
}}
simdgroup_store(acc[0][0], a+{0+0*N}, {N}, ulong2(0, 0));
simdgroup_store(acc[1][0], a+{8+0*N}, {N}, ulong2(0, 0));
simdgroup_store(acc[2][0], a+{16+0*N}, {N}, ulong2(0, 0));
simdgroup_store(acc[3][0], a+{24+0*N}, {N}, ulong2(0, 0));
simdgroup_store(acc[0][1], a+{0+8*N}, {N}, ulong2(0, 0));
simdgroup_store(acc[1][1], a+{8+8*N}, {N}, ulong2(0, 0));
simdgroup_store(acc[2][1], a+{16+8*N}, {N}, ulong2(0, 0));
simdgroup_store(acc[3][1], a+{24+8*N}, {N}, ulong2(0, 0));
simdgroup_store(acc[0][2], a+{0+16*N}, {N}, ulong2(0, 0));
simdgroup_store(acc[1][2], a+{8+16*N}, {N}, ulong2(0, 0));
simdgroup_store(acc[2][2], a+{16+16*N}, {N}, ulong2(0, 0));
simdgroup_store(acc[3][2], a+{24+16*N}, {N}, ulong2(0, 0));
simdgroup_store(acc[0][3], a+{0+24*N}, {N}, ulong2(0, 0));
simdgroup_store(acc[1][3], a+{8+24*N}, {N}, ulong2(0, 0));
simdgroup_store(acc[2][3], a+{16+24*N}, {N}, ulong2(0, 0));
simdgroup_store(acc[3][3], a+{24+24*N}, {N}, ulong2(0, 0));
}}""")
tm = min([prog([N*N//(2*4*4)], [4*32], a, b, c, wait=True) for _ in range(20)])
tm = min([prog([32, N//(8*4), N//(8*4)], [32, 1, 4], a, b, c, wait=True) for _ in range(20)])
na = a.toCPU().reshape(N,N)
comp = nb@nc
if N <= 32:
print(na)
print(comp)
print(f"{N*N:10d} {tm*1e6:9.2f} us, would be {FLOPS*1e-9/tm:.2f} GFLOPS matmul, {BW*1e-9/tm:.2f} GB/s")
print(f"{N*N:10d} {tm*1e6:9.2f} us, would be {FLOPS*1e-9/tm:9.2f} GFLOPS matmul, {BW*1e-9/tm:.2f} GB/s")
np.testing.assert_allclose(na, comp, atol=1e-3)
import time, torch, torch.mps
@@ -103,4 +98,21 @@ def torch_prog(b, c):
torch.mps.synchronize()
return time.perf_counter() - st
tm = min([torch_prog(b, c) for _ in range(20)])
print(f"{N*N:10d} {tm*1e6:9.2f} us, would be {FLOPS*1e-9/tm:.2f} GFLOPS matmul in torch")
print(f"{N*N:10d} {tm*1e6:9.2f} us, would be {FLOPS*1e-9/tm:9.2f} GFLOPS matmul in torch")
from tinygrad.tensor import Tensor
from tinygrad.jit import TinyJit
from tinygrad.runtime.ops_metal import METAL
b = Tensor(nb)
c = Tensor(nb)
# TODO: slowness without the JIT I suspect comes from a lack of a caching allocator
@TinyJit
def tiny_jit(b, c):
return (b@c).realize()
def tiny_prog(b, c):
st = time.perf_counter()
a = tiny_jit(b, c)
METAL.synchronize()
return time.perf_counter() - st
tm = min([tiny_prog(b, c) for _ in range(20)])
print(f"{N*N:10d} {tm*1e6:9.2f} us, would be {FLOPS*1e-9/tm:9.2f} GFLOPS matmul in tinygrad")