updating to work with new internal apis (#2755)

This commit is contained in:
jaredeh
2023-12-13 21:54:47 -08:00
committed by GitHub
parent 2c6814ba28
commit d8952fc575

View File

@@ -2,15 +2,14 @@
import os, sys
os.environ["CLANG"] = '1'
os.environ["GPU"] = '1'
import numpy as np
import subprocess
import tensorflow as tf
import tf2onnx
from examples.compile_efficientnet import compile_net
from extra.onnx import get_run_onnx
from tinygrad.tensor import Tensor
from extra.export_model import export_model_clang, compile_net, jit_model
def get_uncompiled_model2(dataset_size=32, output_size=4):
inputs = tf.keras.Input(shape=(dataset_size,), name="inputs")
@@ -21,44 +20,40 @@ def get_uncompiled_model2(dataset_size=32, output_size=4):
model = tf.keras.Model(inputs=inputs, outputs=outputs)
return model
def create_onnx_model(keras_model):
input_signature = [tf.TensorSpec([1,32], tf.float32, name='x')]
onnx_model, _ = tf2onnx.convert.from_keras(keras_model, input_signature, opset=13)
return onnx_model
class TinyOnnx:
def __init__(self, keras_model):
input_signature = [tf.TensorSpec([1,32], tf.float32, name='x')]
onnx_model, _ = tf2onnx.convert.from_keras(keras_model, input_signature, opset=13)
self.run_onnx = get_run_onnx(onnx_model)
def forward(self, x):
return self.run_onnx({"x": x}, debug=False)['predictions']
def compile_onnx_model(onnx_model):
run_onnx = get_run_onnx(onnx_model)
from tinygrad.jit import TinyJit
@TinyJit
def run(x): return run_onnx({"x": x}, debug=False)['predictions'].realize()
tinyonnx = TinyOnnx(onnx_model)
the_input = Tensor.randn(1,32)
the_output = run(the_input)
the_output = run(the_input)
special_names = {id(the_input.lazydata.realized.cl): "input", id(the_output.lazydata.realized.cl): "outputs"}
cprog, statements, bufs, bufs_to_save = compile_net(run, special_names)
cprog = ["#include <string.h>", "#include <stdio.h>", "#include <stdlib.h>"] + cprog
run, special_names = jit_model(tinyonnx, the_input)
# buffers (all except input)
cprog += [f"float {x[0]}[{x[1]}];" for x in bufs.values() if x[0] != "input"]
functions, statements, bufs, bufs_to_save = compile_net(run, special_names)
prg = export_model_clang(functions, statements, bufs, {}, ["input0"], ["output0"])
the_output = run(the_input)
cprog = ["#include <string.h>", "#include <stdio.h>", "#include <stdlib.h>"]
cprog.append(prg)
# weights
cprog.append("void initialize(float *weights) {")
weights = bytes()
for name,cl in bufs_to_save.items():
cprog.append(f"memcpy({name}, weights + {len(weights)//4}, {len(cl)});")
weights += bytes(memoryview(cl)[0:len(cl)//4])
cprog.append(f"memcpy({name}, weights + {len(weights)//4}, {len(cl._buf)*4});")
weights += bytes(cl._buf)
cprog.append("}")
# write the weights to disk
with open("/tmp/tf_weights", "wb") as f:
f.write(weights)
# the net
cprog += ["float *infer(float *input) {"] + statements + ["return outputs;", "}"]
# test program
cprog.append(f"""int main(int argc, char *argv[]) {{
// read in the weights from disk
@@ -72,8 +67,9 @@ def compile_onnx_model(onnx_model):
// test run
float input[32];
float outputs[4];
for (int i = 0; i < 32; i++) scanf("%f", &input[i]);
float *outputs = infer(input);
net(input, outputs);
printf("%f %f %f %f\\n", outputs[0], outputs[1], outputs[2], outputs[3]);
}}""")
@@ -84,7 +80,7 @@ def compile_onnx_model(onnx_model):
# add test weights
subprocess.check_output(['clang', '-O2', '-lm', '-fPIC', '-x', 'c', '-', '-o', "/tmp/tf_test"], input=prg.encode('utf-8'))
tinygrad_output = [x for x in the_output.numpy()[0]]
tinygrad_output = the_output[0].numpy()[0].tolist()
print("tinygrad:", tinygrad_output, file=sys.stderr)
c_input = ' '.join(["%f" % x for x in the_input[0].numpy()])+"\n"
@@ -96,8 +92,7 @@ def compile_onnx_model(onnx_model):
if __name__ == "__main__":
keras_model = get_uncompiled_model2()
onnx_model = create_onnx_model(keras_model)
test_input, test_output = compile_onnx_model(onnx_model)
test_input, test_output = compile_onnx_model(keras_model)
tf_output = keras_model(test_input).numpy()[0]
print("keras: ", tf_output, file=sys.stderr)
np.testing.assert_allclose(tf_output, test_output, atol=1e-5, rtol=1e-5)