mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-02-08 21:55:14 -05:00
add Buffer abstraction for each device
This commit is contained in:
@@ -1,6 +1,27 @@
|
||||
import numpy as np
|
||||
from .tensor import Function
|
||||
|
||||
class CPUBuffer(np.ndarray):
|
||||
def log(x):
|
||||
return np.log(x)
|
||||
def exp(x):
|
||||
return np.exp(x)
|
||||
def relu(x):
|
||||
return np.maximum(x, 0)
|
||||
def expand(x, shp):
|
||||
return np.broadcast_to(x, shp)
|
||||
def amax(x, *args, **kwargs):
|
||||
return np.amax(x, *args, **kwargs)
|
||||
def permute(x, order):
|
||||
return x.transpose(order)
|
||||
def type(x, tt):
|
||||
return x.astype(tt)
|
||||
def toCPU(x):
|
||||
return x
|
||||
@staticmethod
|
||||
def fromCPU(x):
|
||||
return x
|
||||
|
||||
# ************* unary ops *************
|
||||
|
||||
class ReLU(Function):
|
||||
|
||||
@@ -1,13 +1,44 @@
|
||||
import functools
|
||||
import pyopencl as cl
|
||||
import numpy as np
|
||||
from .tensor import Function, GPUBuffer
|
||||
from .tensor import Function
|
||||
|
||||
cl_ctx, cl_queue = None, None
|
||||
def require_init_gpu():
|
||||
global cl_ctx, cl_queue
|
||||
if cl_queue is None:
|
||||
devices = cl.get_platforms()[0].get_devices(device_type=cl.device_type.GPU)
|
||||
if len(devices) == 0:
|
||||
devices = cl.get_platforms()[0].get_devices(device_type=cl.device_type.CPU)
|
||||
cl_ctx = cl.Context(devices=devices)
|
||||
# this is an in-order command queue
|
||||
cl_queue = cl.CommandQueue(cl_ctx)
|
||||
require_init_gpu()
|
||||
|
||||
class GPUBuffer:
|
||||
def __init__(self, shape, hostbuf=None):
|
||||
self.shape, self.dtype = tuple(shape), np.float32
|
||||
self.cl = hostbuf.cl if isinstance(hostbuf, GPUBuffer) else \
|
||||
cl.Buffer(cl_ctx, cl.mem_flags.READ_WRITE | (cl.mem_flags.COPY_HOST_PTR if hostbuf is not None else 0), 4*np.prod(shape),
|
||||
hostbuf=hostbuf.astype(np.float32).ravel() if hostbuf is not None else None)
|
||||
|
||||
def __repr__(self):
|
||||
return f"<GPUBuffer with shape {self.shape!r}>"
|
||||
|
||||
@staticmethod
|
||||
def fromCPU(x):
|
||||
return GPUBuffer(x.shape, x.view(np.ndarray))
|
||||
|
||||
def toCPU(self):
|
||||
data = np.empty(self.shape, dtype=np.float32)
|
||||
cl.enqueue_copy(cl_queue, data, self.cl, is_blocking=True)
|
||||
return data
|
||||
|
||||
def buffer_new(ctx, shape, zero=False):
|
||||
return GPUBuffer(shape, hostbuf=None if not zero else np.zeros(shape, dtype=np.float32))
|
||||
|
||||
def buffer_np(ctx, x):
|
||||
return cl.Buffer(ctx.cl_ctx, cl.mem_flags.READ_WRITE | cl.mem_flags.COPY_HOST_PTR, hostbuf=x)
|
||||
return cl.Buffer(cl_ctx, cl.mem_flags.READ_WRITE | cl.mem_flags.COPY_HOST_PTR, hostbuf=x)
|
||||
|
||||
@functools.lru_cache
|
||||
def clbuild(cl_ctx, name, prg):
|
||||
@@ -21,13 +52,13 @@ i32 = np.int32
|
||||
|
||||
def unary_op(ctx, code, x):
|
||||
ret = buffer_new(ctx, x.shape)
|
||||
unop = clbuild(ctx.cl_ctx, "unop", """
|
||||
unop = clbuild(cl_ctx, "unop", """
|
||||
__kernel void unop(__global const float *a_g, __global float *res_g) {
|
||||
int gid = get_global_id(0);
|
||||
float a = a_g[gid];
|
||||
res_g[gid] = """+code+""";
|
||||
}""")
|
||||
unop(ctx.cl_queue, [np.prod(ret.shape)], None, x.cl, ret.cl)
|
||||
unop(cl_queue, [np.prod(ret.shape)], None, x.cl, ret.cl)
|
||||
return ret
|
||||
|
||||
class ReLU(Function):
|
||||
@@ -72,7 +103,7 @@ def reduce_op(ctx, code, code2, inp, axis=None, start="0.0"):
|
||||
ret.shape = (1,)
|
||||
|
||||
# TODO: this is insanely slow
|
||||
reduce = clbuild(ctx.cl_ctx, "reduce", """
|
||||
reduce = clbuild(cl_ctx, "reduce", """
|
||||
__kernel void reduce(__global const float *a_g, int sz, __global float *res_g, int prod, int n_dims,
|
||||
__global const int *shape_x, __global const int *shape_ret) {
|
||||
int gid = get_global_id(0);
|
||||
@@ -97,7 +128,7 @@ def reduce_op(ctx, code, code2, inp, axis=None, start="0.0"):
|
||||
}
|
||||
res_g[gid] = """+code2+""";
|
||||
}""")
|
||||
reduce(ctx.cl_queue, [np.prod(osize)], None, inp.cl,
|
||||
reduce(cl_queue, [np.prod(osize)], None, inp.cl,
|
||||
i32(np.prod(inp.shape)//np.prod(osize)), ret.cl,
|
||||
i32(np.prod(osize)), i32(len(osize)),
|
||||
buffer_np(ctx, np.array(inp.shape, dtype=np.int32)),
|
||||
@@ -174,10 +205,10 @@ def binary_op(ctx, code, x, y):
|
||||
for i in range(n_dims): # group together any adjacent dimensions that we can to simplify broadcasting
|
||||
push(i32(max(shape_x[i], shape_y[i])), (shape_x[i] > 1, shape_y[i] > 1))
|
||||
|
||||
prg = get_binop_prg(ctx.cl_ctx, code, tuple(complist))
|
||||
prg = get_binop_prg(cl_ctx, code, tuple(complist))
|
||||
ret = buffer_new(ctx, shape_ret, zero=True)
|
||||
prod_list = np.array(dimlist, dtype=i32)[-1::-1].cumprod(dtype=i32)[-1::-1] # take cumprod from back to front
|
||||
prg.binop(ctx.cl_queue, [prod_list[0]] if len(dimlist) > 0 else [1], None, x.cl, y.cl, ret.cl, *dimlist, *(prod_list[1:]))
|
||||
prg.binop(cl_queue, [prod_list[0]] if len(dimlist) > 0 else [1], None, x.cl, y.cl, ret.cl, *dimlist, *(prod_list[1:]))
|
||||
return ret
|
||||
|
||||
def unbroadcast(ctx, out, in_sh):
|
||||
@@ -245,7 +276,7 @@ class Reshape(Function):
|
||||
def perm_axis(ctx, inp, order):
|
||||
osize = np.array(inp.shape)[list(order)]
|
||||
ret = buffer_new(ctx, osize)
|
||||
perm = clbuild(ctx.cl_ctx, "perm", """
|
||||
perm = clbuild(cl_ctx, "perm", """
|
||||
__kernel void perm(__global const float *a_g, __global float *res_g, int n_axis,
|
||||
__global const int *shape, __global const int *order) {
|
||||
int gid = get_global_id(0);
|
||||
@@ -259,7 +290,7 @@ def perm_axis(ctx, inp, order):
|
||||
}
|
||||
res_g[gid] = a_g[idx];
|
||||
}""")
|
||||
perm(ctx.cl_queue, [np.prod(osize)], None, inp.cl, ret.cl, i32(len(osize)),
|
||||
perm(cl_queue, [np.prod(osize)], None, inp.cl, ret.cl, i32(len(osize)),
|
||||
buffer_np(ctx, np.array(inp.shape, dtype=np.int32)),
|
||||
buffer_np(ctx, np.array(order, dtype=np.int32)))
|
||||
return ret
|
||||
@@ -277,7 +308,7 @@ def inner_slice(ctx, x, arg):
|
||||
shift = [y[0] for y in arg]
|
||||
oshape = [y[1]-y[0] for y in arg]
|
||||
ret = buffer_new(ctx, oshape)
|
||||
gslice = clbuild(ctx.cl_ctx, "gslice", """
|
||||
gslice = clbuild(cl_ctx, "gslice", """
|
||||
__kernel void gslice(__global const float *input, __global float *output, int prod, int n_dims,
|
||||
__global const int *shape_x, __global const int *shape_ret,
|
||||
__global const int *shift) {
|
||||
@@ -292,7 +323,7 @@ def inner_slice(ctx, x, arg):
|
||||
}
|
||||
output[gid] = zero ? input[iptr] : 0.0;
|
||||
}""")
|
||||
gslice(ctx.cl_queue, [np.prod(ret.shape)], None,
|
||||
gslice(cl_queue, [np.prod(ret.shape)], None,
|
||||
x.cl, ret.cl, i32(np.prod(ret.shape)), i32(len(ret.shape)),
|
||||
buffer_np(ctx, np.array(x.shape, dtype=np.int32)),
|
||||
buffer_np(ctx, np.array(ret.shape, dtype=np.int32)),
|
||||
@@ -318,7 +349,7 @@ class Matmul(Function):
|
||||
isize, msize, osize = i32(input.shape[-2]), i32(input.shape[-1]), i32(weight.shape[-1])
|
||||
ret = buffer_new(ctx, list(input.shape[0:-2])+[isize, osize])
|
||||
|
||||
matmul = clbuild(ctx.cl_ctx, "matmul", """
|
||||
matmul = clbuild(cl_ctx, "matmul", """
|
||||
__kernel void matmul(
|
||||
__global const float *input, __global const float *weight, __global float *res,
|
||||
int isize, int is0, int is1, int msize, int ws0, int ws1, int osize
|
||||
@@ -339,7 +370,7 @@ class Matmul(Function):
|
||||
ctx.save_for_backward(input, weight, matmul, cnt)
|
||||
|
||||
# (isize,msize) x (msize,osize) = (isize,osize)
|
||||
matmul(ctx.cl_queue, [isize, osize, cnt], None,
|
||||
matmul(cl_queue, [isize, osize, cnt], None,
|
||||
input.cl, weight.cl, ret.cl, isize,
|
||||
msize, i32(1), msize, i32(1), osize, osize)
|
||||
return ret
|
||||
@@ -352,12 +383,12 @@ class Matmul(Function):
|
||||
grad_weight = buffer_new(ctx, weight.shape)
|
||||
|
||||
# (isize,osize) x (msize,osize) = (isize,msize)
|
||||
matmul(ctx.cl_queue, [isize, msize, cnt], None,
|
||||
matmul(cl_queue, [isize, msize, cnt], None,
|
||||
grad_output.cl, weight.cl, grad_input.cl, isize,
|
||||
osize, i32(1), osize, osize, i32(1), msize)
|
||||
|
||||
# (isize,msize) x (isize,osize) = (msize,osize)
|
||||
matmul(ctx.cl_queue, [msize, osize, cnt], None,
|
||||
matmul(cl_queue, [msize, osize, cnt], None,
|
||||
input.cl, grad_output.cl, grad_weight.cl, msize,
|
||||
i32(1), msize, isize, i32(1), osize, osize)
|
||||
|
||||
@@ -383,7 +414,7 @@ class Conv2D(Function):
|
||||
# weight = (groups, rcout, cin, H, W)
|
||||
# output = (bs, groups, rcout, oy, ox)
|
||||
|
||||
conv = clbuild(ctx.cl_ctx, "conv", """
|
||||
conv = clbuild(cl_ctx, "conv", """
|
||||
__kernel void conv(__global const float *input, __global const float *weight, __global float *output,
|
||||
int H, int W, int groups, int rcout, int cin, int oy, int ox, int iy, int ix, int ys, int xs) {
|
||||
|
||||
@@ -408,7 +439,7 @@ class Conv2D(Function):
|
||||
output[B*groups*rcout*oy*ox + g*rcout*oy*ox + c*oy*ox + Y*ox + X] = acc;
|
||||
}""")
|
||||
|
||||
conv(ctx.cl_queue, [bs*groups*rcout, oy, ox], None,
|
||||
conv(cl_queue, [bs*groups*rcout, oy, ox], None,
|
||||
x.cl, w.cl, ret.cl,
|
||||
i32(H), i32(W), i32(groups), i32(rcout), i32(cin),
|
||||
i32(oy), i32(ox), i32(iy), i32(ix), i32(ys), i32(xs)
|
||||
@@ -433,7 +464,7 @@ class Conv2D(Function):
|
||||
# tensw = (groups*rcout, cin, H, W)
|
||||
# ggg = (bs, groups*rout, oy, ox)
|
||||
|
||||
convw = clbuild(ctx.cl_ctx, "convw", """
|
||||
convw = clbuild(cl_ctx, "convw", """
|
||||
__kernel void convw(__global const float *tensx, __global const float *ggg, __global float *dw,
|
||||
int H, int W, int groups, int rcout, int cin, int oy, int ox, int iy, int ix, int ys, int xs, int bs) {
|
||||
|
||||
@@ -454,7 +485,7 @@ class Conv2D(Function):
|
||||
}
|
||||
dw[get_global_id(0)*H*W + y*W + x] = acc;
|
||||
}""")
|
||||
convx = clbuild(ctx.cl_ctx, "convx", """
|
||||
convx = clbuild(cl_ctx, "convx", """
|
||||
__kernel void convx(__global const float *tensw, __global const float *ggg, __global float *dx,
|
||||
int H, int W, int groups, int rcout, int cin, int oy, int ox, int iy, int ix, int ys, int xs, int bs) {
|
||||
|
||||
@@ -480,6 +511,6 @@ class Conv2D(Function):
|
||||
""")
|
||||
|
||||
conv_args = i32(H), i32(W), i32(ctx.groups), i32(rcout), i32(cin), i32(oy), i32(ox), i32(iy), i32(ix), i32(ys), i32(xs), i32(bs)
|
||||
convw(ctx.cl_queue, [ctx.groups*rcout*cin, H, W], None, x.cl, grad_output.cl, dw.cl, *conv_args)
|
||||
convx(ctx.cl_queue, [bs, ctx.groups, cin], None, w.cl, grad_output.cl, dx.cl, *conv_args)
|
||||
convw(cl_queue, [ctx.groups*rcout*cin, H, W], None, x.cl, grad_output.cl, dw.cl, *conv_args)
|
||||
convx(cl_queue, [bs, ctx.groups, cin], None, w.cl, grad_output.cl, dx.cl, *conv_args)
|
||||
return dx, dw
|
||||
|
||||
@@ -2,6 +2,13 @@ import torch
|
||||
import numpy as np
|
||||
from .tensor import Function
|
||||
|
||||
class TorchBuffer(torch.Tensor):
|
||||
@staticmethod
|
||||
def fromCPU(data):
|
||||
return TorchBuffer(torch.from_numpy(data).requires_grad_(False))
|
||||
def toCPU(x):
|
||||
return x.numpy()
|
||||
|
||||
# ************* unary+binary+reduce ops *************
|
||||
|
||||
from tinygrad.ops_cpu import ReLU, Log, Exp, Add, Sub, Mul, Pow, Sum, Max
|
||||
|
||||
@@ -24,40 +24,17 @@ class ProfileOp:
|
||||
return self
|
||||
def __exit__(self, *junk):
|
||||
if DEBUG:
|
||||
if cl_queue is not None:
|
||||
cl_queue.finish()
|
||||
# TODO: fix this
|
||||
#if cl_queue is not None:
|
||||
# cl_queue.finish()
|
||||
et = (time.time()-self.st)*1000.
|
||||
debug_counts[self.name] += 1
|
||||
debug_times[self.name] += et
|
||||
print(f"{self.name:>20} : {et:>7.2f} ms {str([y.shape for y in self.x]):>40} {'-> '+str(self.output.shape) if self.output is not None else ''}")
|
||||
|
||||
# **** GPU functions ****
|
||||
|
||||
cl_ctx, cl_queue = None, None
|
||||
def require_init_gpu():
|
||||
if not GPU: raise Exception("No GPU Support, install pyopencl")
|
||||
global cl_ctx, cl_queue
|
||||
if cl_queue is None:
|
||||
devices = cl.get_platforms()[0].get_devices(device_type=cl.device_type.GPU)
|
||||
if len(devices) == 0:
|
||||
devices = cl.get_platforms()[0].get_devices(device_type=cl.device_type.CPU)
|
||||
cl_ctx = cl.Context(devices=devices)
|
||||
# this is an in-order command queue
|
||||
cl_queue = cl.CommandQueue(cl_ctx)
|
||||
|
||||
class GPUBuffer:
|
||||
def __init__(self, shape, hostbuf=None):
|
||||
self.shape, self.dtype = tuple(shape), np.float32
|
||||
self.cl = hostbuf.cl if isinstance(hostbuf, GPUBuffer) else \
|
||||
cl.Buffer(cl_ctx, cl.mem_flags.READ_WRITE | (cl.mem_flags.COPY_HOST_PTR if hostbuf is not None else 0), 4*np.prod(shape),
|
||||
hostbuf=hostbuf.astype(np.float32).ravel() if hostbuf is not None else None)
|
||||
|
||||
def __repr__(self):
|
||||
return f"<GPUBuffer with shape {self.shape!r}>"
|
||||
|
||||
# **** start with two base classes, Tensor and Function ****
|
||||
|
||||
class Device: CPU, GPU, TORCH = 0, 1, 2
|
||||
class Device: CPU, GPU, TORCH, buffers = 0, 1, 2, {}
|
||||
|
||||
DEFAULT_DEVICE = (Device.CPU if os.environ.get("GPU", 0) != "1" else Device.GPU) if os.environ.get("TORCH", 0) != "1" else Device.TORCH
|
||||
|
||||
@@ -148,58 +125,22 @@ class Tensor:
|
||||
gt = Tensor(g, device=self.device, requires_grad=False)
|
||||
t.grad = gt if t.grad is None else (t.grad + gt)
|
||||
|
||||
# ***** tinygrad supports CPU and GPU *****
|
||||
# ***** tinygrad supports many devices *****
|
||||
|
||||
@staticmethod
|
||||
def _move_data(data, device):
|
||||
if isinstance(data, GPUBuffer):
|
||||
if device == Device.GPU: return data
|
||||
old = data
|
||||
data = np.empty(old.shape, dtype=np.float32)
|
||||
with ProfileOp("toCPU", [data]):
|
||||
cl.enqueue_copy(cl_queue, data, old.cl, is_blocking=True)
|
||||
|
||||
if str(type(data)).startswith("torch"):
|
||||
data = data.numpy()
|
||||
|
||||
if not isinstance(data, np.ndarray):
|
||||
data = np.array(data, dtype=np.float32)
|
||||
if isinstance(data, np.ndarray):
|
||||
data = data.view(Device.buffers[Device.CPU])
|
||||
if isinstance(data, Device.buffers[device]):
|
||||
return data
|
||||
|
||||
if data.dtype != np.float32 and not Tensor.did_float_warning:
|
||||
# warning? float64 is actually needed for numerical jacobian
|
||||
print(f"warning, {data.shape!r} isn't float32, it's {data.dtype}")
|
||||
Tensor.did_float_warning = True
|
||||
|
||||
if device == Device.CPU:
|
||||
# add these functions to ndarray
|
||||
class CPUBuffer(np.ndarray):
|
||||
def log(x):
|
||||
return np.log(x)
|
||||
def exp(x):
|
||||
return np.exp(x)
|
||||
def relu(x):
|
||||
return np.maximum(x, 0)
|
||||
def expand(x, shp):
|
||||
return np.broadcast_to(x, shp)
|
||||
def amax(x, *args, **kwargs):
|
||||
return np.amax(x, *args, **kwargs)
|
||||
def permute(x, order):
|
||||
return x.transpose(order)
|
||||
def type(x, tt):
|
||||
return x.astype(tt)
|
||||
data = data.view(CPUBuffer)
|
||||
|
||||
if device == Device.GPU:
|
||||
require_init_gpu()
|
||||
with ProfileOp("toGPU", [data]):
|
||||
return GPUBuffer(data.shape, data)
|
||||
|
||||
if device == Device.TORCH:
|
||||
import torch
|
||||
with ProfileOp("toTORCH", [data]):
|
||||
return torch.from_numpy(data).requires_grad_(False)
|
||||
|
||||
return data
|
||||
data = data.toCPU().view(Device.buffers[Device.CPU])
|
||||
return Device.buffers[device].fromCPU(data)
|
||||
|
||||
def to_(self, device):
|
||||
self.data, self.device = self._move_data(self.data, device), device
|
||||
@@ -345,7 +286,8 @@ def register(name, fxn, device=Device.CPU):
|
||||
tt = [arg for arg in x if isinstance(arg, Tensor)][0]
|
||||
x = [Tensor(np.array([arg], dtype=tt.dtype), device=tt.device, requires_grad=False) if not isinstance(arg, Tensor) else arg for arg in x]
|
||||
f = Tensor.ops[tt.device][name]
|
||||
f.cl_ctx, f.cl_queue, f.device = cl_ctx, cl_queue, tt.device
|
||||
#f.cl_ctx, f.cl_queue, f.device = cl_ctx, cl_queue, tt.device
|
||||
f.device = tt.device
|
||||
return f.apply(f, *x, **kwargs)
|
||||
setattr(Tensor, name, dispatch)
|
||||
if name in ['add', 'sub', 'mul', 'pow', 'matmul']:
|
||||
@@ -360,21 +302,18 @@ for device in [device for device in Device.__dict__.keys() if device[0] != "_"]:
|
||||
# this registers all the operations
|
||||
def _register_ops(namespace, device=Device.CPU):
|
||||
for name, cls in inspect.getmembers(namespace, inspect.isclass):
|
||||
if name[0] != "_": register(name.lower(), cls, device=device)
|
||||
if name.endswith("Buffer"): Device.buffers[device] = cls
|
||||
elif name[0] != "_": register(name.lower(), cls, device=device)
|
||||
|
||||
# TODO: refactor this
|
||||
from tinygrad import ops_cpu
|
||||
_register_ops(ops_cpu)
|
||||
try:
|
||||
import pyopencl as cl
|
||||
# TODO: move this import to require_init_gpu?
|
||||
from tinygrad import ops_gpu
|
||||
_register_ops(ops_gpu, device=Device.GPU)
|
||||
GPU = True
|
||||
except ImportError:
|
||||
# no GPU support
|
||||
GPU = False
|
||||
pass
|
||||
try:
|
||||
import torch
|
||||
from tinygrad import ops_torch
|
||||
_register_ops(ops_torch, device=Device.TORCH)
|
||||
except ImportError:
|
||||
|
||||
Reference in New Issue
Block a user