fa: failing test for bwd jit (#14009)

* tk: failing test for bwd jit

* feat: mark expectedFailure

* clean: spaces
This commit is contained in:
wozeparrot
2026-01-04 16:57:43 -05:00
committed by GitHub
parent 7abf4591ba
commit f550f9204c

View File

@@ -807,7 +807,7 @@ class TestTK(unittest.TestCase):
Tensor.manual_seed(42)
B, N, H, H_KV, D = 1, 32, 2, 1, 32
B, N, H, H_KV, D = 1, 1024, 32, 32, 128
with Context(DEBUG=0):
q = Tensor.randn(B, N, H, D, dtype=dtypes.bfloat16, requires_grad=True).contiguous()
@@ -840,5 +840,57 @@ class TestTK(unittest.TestCase):
np.testing.assert_allclose(v.grad.numpy(), v_ref.grad.numpy(), atol=2e-2, rtol=2e-2)
np.testing.assert_allclose(k.grad.numpy(), k_ref.grad.numpy(), atol=5e-2, rtol=2e-2)
@unittest.expectedFailure
def test_fast_fa_bwd_causal_jitted(self):
from extra.thunder.tiny.fa import flash_attention
Tensor.manual_seed(42)
B, N, H, H_KV, D = 1, 1024, 32, 32, 128
with Context(DEBUG=0):
q = Tensor.randn(B, N, H, D, dtype=dtypes.bfloat16, requires_grad=True).contiguous()
k = Tensor.randn(B, N, H_KV, D, dtype=dtypes.bfloat16, requires_grad=True).contiguous()
v = Tensor.randn(B, N, H_KV, D, dtype=dtypes.bfloat16, requires_grad=True).contiguous()
Tensor.realize(q, k, v)
do = Tensor.ones(B, N, H, D, dtype=dtypes.float32).contiguous()
Tensor.realize(do)
def fn(q, k, v, do):
q_, k_, v_ = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
out = flash_attention(q_, k_, v_, is_causal=True)
out = out.float().transpose(1, 2)
out.backward(do)
Tensor.realize(out, q.grad, k.grad, v.grad)
return q.grad, k.grad, v.grad
fn_jitted = TinyJit(fn)
for _ in range(10):
q = Tensor.randn(B, N, H, D, dtype=dtypes.bfloat16, requires_grad=True).contiguous()
k = Tensor.randn(B, N, H_KV, D, dtype=dtypes.bfloat16, requires_grad=True).contiguous()
v = Tensor.randn(B, N, H_KV, D, dtype=dtypes.bfloat16, requires_grad=True).contiguous()
Tensor.realize(q, k, v)
do = Tensor.ones(B, N, H, D, dtype=dtypes.float32).contiguous()
Tensor.realize(do)
q.grad, k.grad, v.grad = fn_jitted(q, k, v, do)
with Context(DEBUG=0):
q_ref = q.detach().clone().requires_grad_(True)
k_ref = k.detach().clone().requires_grad_(True)
v_ref = v.detach().clone().requires_grad_(True)
Tensor.realize(q_ref, k_ref, v_ref)
q_ref_, k_ref_, v_ref_ = q_ref.transpose(1, 2), k_ref.transpose(1, 2), v_ref.transpose(1, 2)
ref = q_ref_.scaled_dot_product_attention(k_ref_, v_ref_, is_causal=True)
ref = ref.float().transpose(1, 2)
ref.backward(do)
Tensor.realize(q_ref.grad, k_ref.grad, v_ref.grad)
np.testing.assert_allclose(q.grad.numpy(), q_ref.grad.numpy(), atol=5e-2, rtol=2e-2)
np.testing.assert_allclose(v.grad.numpy(), v_ref.grad.numpy(), atol=2e-2, rtol=2e-2)
np.testing.assert_allclose(k.grad.numpy(), k_ref.grad.numpy(), atol=5e-2, rtol=2e-2)
if __name__ == "__main__":
unittest.main()