continue llm.c (#4190)

* continue llm.c

* export more

* progress on llm.c

* simpler optim, names work
This commit is contained in:
George Hotz
2024-04-18 10:57:54 +04:00
committed by GitHub
parent 269a58d5fa
commit fa57c3e7ce
3 changed files with 58 additions and 6 deletions

53
examples/llm.c/export.py Executable file
View File

@@ -0,0 +1,53 @@
#!/usr/bin/env python3
import os
#os.environ["NOOPT"] = "1"
from tinygrad import Device, nn, Tensor, dtypes
#Device.DEFAULT = "CLANG"
from train_gpt2 import GPT, GPTConfig
from tinygrad.helpers import dedup, to_function_name, flatten
from tinygrad.engine.schedule import create_schedule
from tinygrad.engine.realize import memory_planner, run_schedule
from tinygrad.ops import BufferOps, LoadOps
from tinygrad.runtime.ops_clang import CLANG_PROGRAM_HEADER
if __name__ == "__main__":
model = GPT(GPTConfig(n_layer=12, n_head=12, n_embd=768))
#model.load_pretrained()
seen = set()
early_sched = create_schedule([x.lazydata for x in nn.state.get_parameters(model)], seen)
print(f"built model {len(early_sched)}")
optimizer = nn.optim.Adam(nn.state.get_parameters(model), lr=1e-4)
for i in range(3): # TODO: why does it take three and not two to stablize
x = Tensor.empty(4, 64, dtype=dtypes.int)
y = Tensor.empty(4, 64, dtype=dtypes.int)
_, loss = model(x, y)
optimizer.zero_grad()
loss.backward()
tensors = optimizer.schedule_step()
sched = create_schedule([loss.lazydata] + [x.lazydata for x in optimizer.params+optimizer.buffers+tensors], seen)
print(f"calls {i}:", len(sched))
#run_schedule(sched[:])
del seen # free the LazyBuffers
sched = memory_planner(sched)
ast_dedup = dedup([si.ast for si in sched if si.ast[0].op is BufferOps.STORE])
srcs = {}
for ast in ast_dedup:
k = Device["CLANG"].get_linearizer(*ast)
k.linearize()
src = Device["CLANG"].compiler.render(to_function_name(k.name), k.uops).strip(CLANG_PROGRAM_HEADER)
srcs[ast] = (k.name, src)
print("functions:", len(srcs))
numbered_bufs = {x:i for i,x in enumerate(dedup(flatten([si.outputs+si.inputs for si in sched])))}
print("buffers:", len(numbered_bufs))
# TODO: why don't the buffer names work for X and Y
state_dict = nn.state.get_state_dict(model)
named_buffers = {v.lazydata.base.buffer:k.replace(".", "_") for k,v in state_dict.items()}
named_buffers['X'] = x.lazydata.base.buffer
named_buffers['Y'] = y.lazydata.base.buffer
for si in sched:
if si.ast[0].op is not BufferOps.STORE: continue
bufs = [named_buffers.get(b, f"b{numbered_bufs[b]}") for b in si.outputs+si.inputs]
print(f"{srcs[si.ast][0]}({', '.join(bufs)})")

View File

@@ -63,7 +63,8 @@ def _internal_memory_planner(buffers:List[Iterable[Buffer]], debug_prefix="") ->
local_cache[key].append(assigned[buf])
if DEBUG >= 1 and len(ak:=dedup(assigned.keys())) != len(av:=dedup(assigned.values())):
print(debug_prefix+f"memory reduced from {sum([x.nbytes for x in ak])/1e6:.2f} MB to {sum([x.nbytes for x in av])/1e6:.2f} MB")
print(debug_prefix+f"memory reduced from {sum([x.nbytes for x in ak])/1e6:.2f} MB -> {sum([x.nbytes for x in av])/1e6:.2f} MB,",
f"{len(ak)} -> {len(av)} bufs")
return assigned
def memory_planner(schedule:List[ScheduleItem]) -> List[ScheduleItem]:

View File

@@ -1,5 +1,5 @@
# sorted in order of increasing complexity
from typing import List, Optional
from typing import List
from tinygrad.helpers import dedup, flatten, getenv
from tinygrad.tensor import Tensor
@@ -18,10 +18,8 @@ class Optimizer:
def zero_grad(self):
for param in self.params: param.grad = None
def realize(self, extra=None):
Tensor.corealize(extra + self.params + self.buffers if extra is not None else self.params + self.buffers)
def step(self, extra:Optional[List[Tensor]]=None): self.realize(self._step() + (extra if extra is not None else []))
def step(self): Tensor.corealize(self.schedule_step())
def schedule_step(self) -> List[Tensor]: return self._step()+self.params+self.buffers
def _step(self) -> List[Tensor]: raise NotImplementedError
class OptimizerGroup(Optimizer):