prepared bfloat16 change. added float() and cast(default_float) in whiteing, explicitly set dtype in various places that convert between numpy and Tensor
* examples/stable_diffusion: support model checkpoints without alphas_cumprod key
(which is most models on civitai)
* fix indent
---------
Co-authored-by: a <a@a.aa>
* working PolynomialDecayWithWarmup + tests.......
add lars_util.py, oops
* keep lars_util.py as intact as possible, simplify our interface
* whitespace
* clean up
* clean up
* asserts
* test polylr for full resnet training run
* add comment
* rename
* fix do_optim
* don't cast lr
* info
* calculate from train_files
* skip it
* lars optimizer + tests
* fix skip list!
* use id to compare in skip list
* go back to using set
* Tensor(bool) * Tensor(bool) is and
* don't lint external/mlperf_resnet
* whitespace
* add external_test_optim to opencl tests
* give mlperf task a name
* mlperf under onnx
* remove track_gnorm
* contiguous instead of realize
* assert momentum and weight decay positive
---------
Co-authored-by: chenyu <chenyu@fastmail.com>
* allow LB <- MLB assign, but don't reuse buffer
* update test
* update test
* assign assert axes are the same
* update tests to manually shard running stats
* unused import
* UnsyncedBatchNorm with synced trainable weights for hlb cifar
* multitensor reshape tests
* test mlb assign change axis
* E501
* argfix axis
* don't import batchnorm from hlb_cifar in test_multitensor
* pass num_devices to UnsyncedBatchNorm in test, allow UnsyncedBatchNorm to be used with LB
* add backprop test for UnsyncedBatchNorm
* break out MLB assign and reshape changes
* manually shard running mean and running var
* don't shard unless syncbn=0
* replace nn.BatchNorm2d with UnsyncedBatchNorm
* don't increment num_batches_tracked if not tracking running stats
* update tests
* oops
* Revert "oops"
This reverts commit 5e8a67a535.
* Revert "update tests"
This reverts commit 7ebf65d89a.
* Revert "don't increment num_batches_tracked if not tracking running stats"
This reverts commit 78de0ea9ee.
* Revert "replace nn.BatchNorm2d with UnsyncedBatchNorm"
This reverts commit d03da53da7.
* don't increment num_batched_tracked if not tracking running stats
* oops
* test_batchnorm_axis
* compare against torch
* types
---------
Co-authored-by: chenyu <chenyu@fastmail.com>
* shrink MLB on sharded axis
use onehot structure to store the real partition. goal is unsynced batchnorm2d that can be run on multigpu for training.
draft version in https://github.com/chenyuxyz/tinygrad/pull/109
* SYNCBN flag
* test unclean shrinks
* UnsyncedBatchNorm reuses BatchNorm
* more robust pad arg check
* better types
* more tests!
* 6 gpus in benchmark
* disable slow GPUS=6 benchmark
* shard llama
* sharding works
* simpler
* simpler
* consume option
* disable that test
* save a line
---------
Co-authored-by: George Hotz <george@tinygrad.org>
* initial multitensor jit support and tests
* Added graphs to multitensor jit and updated tests
* update unbind api
* fix set device, add TinyJit to resnet
* update_stats includes device
---------
Co-authored-by: ramenguy99 <ramenguy99@gmail.com>
* WebGL WIP
* 84% of ops passing test
* tests passing 100%
* Cleanup, refactor
* Shave off some lines
* Work on dtypes
* TestOps at 100% again
* Efficient net shaders compile in browser webgl2
* Compile all efficientnet shaders in browser
* Create empty textures for tensor buffers
* Run program. Up next weight loading
* Exported WebGL model working
* Add tests, refactor
* Explicit cast alu for GLSL
* Fix CI tests
* WebGL efficientnet demo
* Compile and run yolov8 in browser
* Fix imports
* Simplify yolo compile
* Fix bool*bool and cast cmplt to float
* More tests
* Do std tests pass on CI?
* Skip std tests on CI
* Remove explicit_cast_alu hack, and solve it in code_for_op
* Move to new dtype-less alloc api
* Remove local size hack: optimize local_size only if device has local
* Remove glsl.py, and move content to cstyle
* dont_use_locals in opts
* Fix dtype tests
* type_map in CStyleLanguage
* Make core changes smaller, cleaner, refactor export_model and demo
* Skip pad_slice
* Simplify: render_const, render_conditional
* solve bool alu for other binops, cleaner ops_webgl
* Fix noopt hack
* Remove some skipIfs
* WebGL image hack
* type_names is a better name
* global_max
* Fix dtype import
* Fix type_names -> type_map
* Fix lint
* Remove webgpu, back to 5k lines (#3040)
* remove webgpu
* max 5000 lines
* revert those to master
* retain that cstyle
---------
Co-authored-by: Ahmed Harmouche <ahmedharmouche92@gmail.com>