* added resnets
* fix minor
* fix minor
* resnet in models
* added resnet test
* added resnet train test
* added linear, conv2d nn tests
* fix minor in extra/training
* resnet in models
* fix minor
* fix tolerance for linear in nn test
* fix eval, this causes cpu and gpu UT failing
* revert transformer test
* fix minor for CPU test
* improved model get_params for sequential layer
* fix minor for params counting
* commented broken ops tests
* improved train for resnet
* use isinstance, some optimizations & whitespace removal
* revert whitespace changes
* revert more whitespace
* some more cleanup
* revert fstring (not a fan of the {{}})
* fix typo
* fix typo
* vgg7 implementation - not the best, but it works
* VGG7 implementation: Spread nansbane to deter NaNs, maybe improved training experience
* VGG7 implementation: Fix training, for real this time
Results actually attempt to approximate the input
* VGG7 implementation: Sample probability management
* Some progress on yolov3
* Removed some debugging comments… Also, the forward pass eats all RAM for some reason
* forward pass almost runs
* forward pass runs almost
* forward pass runs, now we gotta load the weights
* loading weights works
* fetches config and weights
* everything kind of works, postprocessing of output still needs to be implemented, temp_process_results kind of works, but its kind of terrible, and not how things should be done
* some changes
* fixed some bugs in the forward pass and load_weights function, now outputs more correct values, however some values are still loaded incorrectly
* Something is wrong with the forward pass, Conv2d tests added
* forward pass almost outputs correct values, gotta fix one more thign
* yolo works
* some final changes
* reverting changes
* removed dataloader
* fixed some indentation
* comment out failing test, somehow it fails CI even though it passes on my computer…
* fixed wrong probabilities
* added webcam option to YOLO, now just need to add bounding boxes and speed it up
* some progress towards adding bounding boxes
* trying to speed up yolo layer on GPU, still faster on CPU but with 30GB ram usage
* Faster inference times, bounding boxes added correctly, webcam works, but is slow, and there is a memory leak when running on CPU... Also added tinygrads output on the classic dog image
* removed some debugging print statements
* updated result image
* something weird is going on, mean op on GPU tensor randomly faults, copying a tensor from GPU->CPU takes 10+ seconds…
* Improved __getitem__
* Updated
* Updated __getitem__
* Linebreaks
* Maybe this works?
* Added MNIST locally, tests run now
* Some progress on yolov3
* Removed some debugging comments… Also, the forward pass eats all RAM for some reason
* forward pass almost runs
* forward pass runs almost
* forward pass runs, now we gotta load the weights
* loading weights works
* fetches config and weights
* everything kind of works, postprocessing of output still needs to be implemented, temp_process_results kind of works, but its kind of terrible, and not how things should be done
* some changes
* fixed some bugs in the forward pass and load_weights function, now outputs more correct values, however some values are still loaded incorrectly
* Something is wrong with the forward pass, Conv2d tests added
* forward pass almost outputs correct values, gotta fix one more thign
* yolo works
* some final changes
* reverting changes
* removed dataloader
* fixed some indentation
* comment out failing test, somehow it fails CI even though it passes on my computer…
* fixed wrong probabilities
* added webcam option to YOLO, now just need to add bounding boxes and speed it up
* some progress towards adding bounding boxes
* trying to speed up yolo layer on GPU, still faster on CPU but with 30GB ram usage
* Faster inference times, bounding boxes added correctly, webcam works, but is slow, and there is a memory leak when running on CPU... Also added tinygrads output on the classic dog image
* removed some debugging print statements
* updated result image
* something weird is going on, mean op on GPU tensor randomly faults, copying a tensor from GPU->CPU takes 10+ seconds…
* 2serious
* load/save
* fixing GPU
* added DEBUG
* needs BatchNorm or doesn't learn anything
* old file not needed
* added conv biases
* added extra/training.py and checkpoint
* assert in test only
* save
* padding
* num_classes
* checkpoint
* checkpoints for padding
* training was broken
* merge
* rotation augmentation
* more aug
* needs testing
* streamline augment, augment is fast thus bicubic
* tidying up
* transformer eval
* 2serious
* load/save
* fixing GPU
* added DEBUG
* needs BatchNorm or doesn't learn anything
* old file not needed
* added conv biases
* added extra/training.py and checkpoint
* assert in test only
* save
* padding
* num_classes
* checkpoint
* checkpoints for padding
* training was broken
* merge
* rotation augmentation
* more aug
* needs testing
* streamline augment, augment is fast thus bicubic
* tidying up
* 🎉 effort to generate mnist data with tinygrad.
* dropout added
* working gan
* minor bug fixes
* more bug fixes
* todo reg l2
* detach
* logsoftmax twice