* shard llama
* sharding works
* simpler
* simpler
* consume option
* disable that test
* save a line
---------
Co-authored-by: George Hotz <george@tinygrad.org>
* initial multitensor jit support and tests
* Added graphs to multitensor jit and updated tests
* update unbind api
* fix set device, add TinyJit to resnet
* update_stats includes device
---------
Co-authored-by: ramenguy99 <ramenguy99@gmail.com>
* WebGL WIP
* 84% of ops passing test
* tests passing 100%
* Cleanup, refactor
* Shave off some lines
* Work on dtypes
* TestOps at 100% again
* Efficient net shaders compile in browser webgl2
* Compile all efficientnet shaders in browser
* Create empty textures for tensor buffers
* Run program. Up next weight loading
* Exported WebGL model working
* Add tests, refactor
* Explicit cast alu for GLSL
* Fix CI tests
* WebGL efficientnet demo
* Compile and run yolov8 in browser
* Fix imports
* Simplify yolo compile
* Fix bool*bool and cast cmplt to float
* More tests
* Do std tests pass on CI?
* Skip std tests on CI
* Remove explicit_cast_alu hack, and solve it in code_for_op
* Move to new dtype-less alloc api
* Remove local size hack: optimize local_size only if device has local
* Remove glsl.py, and move content to cstyle
* dont_use_locals in opts
* Fix dtype tests
* type_map in CStyleLanguage
* Make core changes smaller, cleaner, refactor export_model and demo
* Skip pad_slice
* Simplify: render_const, render_conditional
* solve bool alu for other binops, cleaner ops_webgl
* Fix noopt hack
* Remove some skipIfs
* WebGL image hack
* type_names is a better name
* global_max
* Fix dtype import
* Fix type_names -> type_map
* Fix lint
* Remove webgpu, back to 5k lines (#3040)
* remove webgpu
* max 5000 lines
* revert those to master
* retain that cstyle
---------
Co-authored-by: Ahmed Harmouche <ahmedharmouche92@gmail.com>
the compiler error was due to `error: call to 'max' is ambiguous` when we have max(int, float) in kernel.
it was first fixed in 4380ccb1 the non fp32 math PR, and further solidified with dtype refactor
* lazy rewrite, try 2
* min fix tests
* pass contig test
* put broken pads back
* move that to realize
* no contig child fixes array packing
* so wrong
* now that's correct
* base children
* fix bind issues
* disable to_image_idx
* fix tests
* that failure shouldn't break other tests
* more fixes
* fix torch
* skip failing tests in CI
* 1e-7
* half is broken
* 1e-6 margin of error
* validate stable diffusion for seed 0
the closest false positive i can get is with the setup and one less step. dist = 0.0036
same setup with fp16 has dist=5e-6.
so setting validation threshold to 1e-4 should be good
* run with --seed 0