* make Embedding device aware for multigpu
* split line instead of igore because that's cheating
* add test incomplete
* add test complete
* remove comment
* fix white space
* remove nn.Embedding
* WebGL WIP
* 84% of ops passing test
* tests passing 100%
* Cleanup, refactor
* Shave off some lines
* Work on dtypes
* TestOps at 100% again
* Efficient net shaders compile in browser webgl2
* Compile all efficientnet shaders in browser
* Create empty textures for tensor buffers
* Run program. Up next weight loading
* Exported WebGL model working
* Add tests, refactor
* Explicit cast alu for GLSL
* Fix CI tests
* WebGL efficientnet demo
* Compile and run yolov8 in browser
* Fix imports
* Simplify yolo compile
* Fix bool*bool and cast cmplt to float
* More tests
* Do std tests pass on CI?
* Skip std tests on CI
* Remove explicit_cast_alu hack, and solve it in code_for_op
* Move to new dtype-less alloc api
* Remove local size hack: optimize local_size only if device has local
* Remove glsl.py, and move content to cstyle
* dont_use_locals in opts
* Fix dtype tests
* type_map in CStyleLanguage
* Make core changes smaller, cleaner, refactor export_model and demo
* Skip pad_slice
* Simplify: render_const, render_conditional
* solve bool alu for other binops, cleaner ops_webgl
* Fix noopt hack
* Remove some skipIfs
* WebGL image hack
* type_names is a better name
* global_max
* Fix dtype import
* Fix type_names -> type_map
* Fix lint
* Remove webgpu, back to 5k lines (#3040)
* remove webgpu
* max 5000 lines
* revert those to master
* retain that cstyle
---------
Co-authored-by: Ahmed Harmouche <ahmedharmouche92@gmail.com>
* add a failing test for LR scheduler when using multigpu
* fix calculation order and unnecessary tensor created for float
* min_lr is no longer tensor
we previously only upcast uint and int, and half was using half for acc.
change to acc in float for precision. but cast the result back to half to match torch/jax output dtype
* updated most dtype hacks in onnx_ops
* temporarily revert dequantizelinear change
* I think this is right...
* MORE FIXES WOOOO NEW DTYPE IS AWESOME
* ok
* oops missed a print
* half -> float32 for CI
* is npdtype
* some more
* fix if ordering
* more clean ups
* final cleanups
* casting to half not allowed
* k nvm
* revert ArgMax change
* only GPU
* llvm begone
* teeny tiny change
* fix: attempt to add cast tests
* try this
* fix dequantizelinear
* revert some stuff
* tests pass pls
* less lines in onnx_tests
* oops missed string tensor tests
* clean up
* try: revert default behavior changes
* fix: disabled Cast and Castlike tests
* docs: small changes
* fix: fixed isNaN op and enabled associated tests
* fix: forgot about float16
* done
* update disabled test
* gah missed another float16
* disable rest of failing tests
* rm extra line
* try...
---------
Co-authored-by: chenyu <chenyu@fastmail.com>
* remove AndNode.__floordiv__
AndNode produces a Node that min/max is bounded by [0, 1] so `//` on top of that is almost always 0.
we don't really use that either
* keep the test
* simple multitensor API
* test multitensor
* mt work
* new api
* copies
* all but data parallel
* allreduce there
* works, but axis sharded
* fix all mt tests
* features/multi
* work
* backprop
* fix tests
* tests passing
* mt progress
* cleanups
* less lines
* tensor cleanup
* save more lines
* mypy passes
* fix tests
* skip for cuda too
* bump download cache
* add Tensor.split (#2677)
* fix mypy errors
* add list support for Tensor.split
* fix ruff comments
* match tensor.split api
* simplify split and test_split
---------
Co-authored-by: George Hotz <72895+geohot@users.noreply.github.com>