Files
tinygrad/test/testextra/test_tk.py
2025-11-17 11:46:32 -08:00

444 lines
15 KiB
Python

import unittest, math
from tinygrad import Tensor, Device, dtypes, Context
from tinygrad.engine.realize import ExecItem, get_runner
from tinygrad.helpers import CI
from tinygrad.renderer.ptx import PTXRenderer
import numpy as np
from extra.thunder.tiny.tk import WARP_THREADS
from extra.thunder.tiny.tk.kernel import Kernel
@unittest.skipIf(CI and Device.DEFAULT not in ["CUDA", "NV"], "only cuda")
@unittest.skipIf(isinstance(Device[Device.DEFAULT].renderer, PTXRenderer), "no ptx")
class TestTK(unittest.TestCase):
@unittest.skipIf(CI, "no wmma in ci")
def test_simple_matmul(self):
N = 32
BLOCK_SIZE = 16
with Kernel((N // BLOCK_SIZE, N // BLOCK_SIZE, 1), WARP_THREADS) as ker:
warp = ker.warp
c = ker.gl((1, 1, N, N), dtypes.float32)
a = ker.gl((1, 1, N, N), dtypes.bfloat16)
b = ker.gl((1, 1, N, N), dtypes.bfloat16)
a_smem = ker.st((BLOCK_SIZE, BLOCK_SIZE), dtypes.bfloat16)
b_smem = ker.st((BLOCK_SIZE, BLOCK_SIZE), dtypes.bfloat16)
c_smem = ker.st((BLOCK_SIZE, BLOCK_SIZE), dtypes.float32)
a_reg = ker.rt((BLOCK_SIZE, BLOCK_SIZE), dtypes.bfloat16)
b_reg = ker.rt((BLOCK_SIZE, BLOCK_SIZE), dtypes.bfloat16)
c_reg = ker.rt((BLOCK_SIZE, BLOCK_SIZE), dtypes.float32)
col, row = ker.blockIdx_x, ker.blockIdx_y
c_reg = warp.zero(c_reg)
for tile in ker.range(N // BLOCK_SIZE):
a_smem = warp.load(a_smem, a, (), (0, 0, row, tile), axis=2)
b_smem = warp.load(b_smem, b, (), (0, 0, tile, col), axis=2)
a_reg = warp.load(a_reg, a_smem)
b_reg = warp.load(b_reg, b_smem, transpose=True)
c_reg = warp.mma_AB(c_reg, a_reg, b_reg)
c_reg = ker.endrange()
c_smem = warp.store(c_smem, c_reg)
c = warp.store(c, c_smem, (0, 0, row, col), (), axis=2)
sink = ker.finish()
with Context(DEBUG=0):
a = Tensor.rand(1, 1, N, N, dtype="bfloat16").contiguous()
b = Tensor.rand(1, 1, N, N, dtype="bfloat16").contiguous()
c = Tensor.empty(1, 1, N, N, dtype="float32")
Tensor.realize(a, b, c)
ei = ExecItem(get_runner(Device.DEFAULT, sink), [t.uop.buffer for t in (c, a, b)])
for _ in range(5): ei.run(wait=True)
c = c.float()
ref = a.matmul(b, dtype=dtypes.float32).float()
np.testing.assert_allclose(c.numpy(), ref.numpy())
@unittest.skipIf(CI, "no wmma in ci")
def test_simple_matmul_transposed(self):
N = 32
BLOCK_SIZE = 16
with Kernel((N // BLOCK_SIZE, N // BLOCK_SIZE, 1), WARP_THREADS) as ker:
warp = ker.warp
c = ker.gl((1, 1, N, N), dtypes.float32)
a = ker.gl((1, 1, N, N), dtypes.bfloat16)
b = ker.gl((1, 1, N, N), dtypes.bfloat16)
a_smem = ker.st((BLOCK_SIZE, BLOCK_SIZE), dtypes.bfloat16)
b_smem = ker.st((BLOCK_SIZE, BLOCK_SIZE), dtypes.bfloat16)
c_smem = ker.st((BLOCK_SIZE, BLOCK_SIZE), dtypes.float32)
a_reg = ker.rt((BLOCK_SIZE, BLOCK_SIZE), dtypes.bfloat16)
b_reg = ker.rt((BLOCK_SIZE, BLOCK_SIZE), dtypes.bfloat16)
c_reg = ker.rt((BLOCK_SIZE, BLOCK_SIZE), dtypes.float32)
col, row = ker.blockIdx_x, ker.blockIdx_y
c_reg = warp.zero(c_reg)
for tile in ker.range(N // BLOCK_SIZE):
a_smem = warp.load(a_smem, a, (), (0, 0, row, tile), axis=2)
b_smem = warp.load(b_smem, b, (), (0, 0, col, tile), axis=2)
a_reg = warp.load(a_reg, a_smem)
b_reg = warp.load(b_reg, b_smem)
c_reg = warp.mma_ABt(c_reg, a_reg, b_reg)
c_reg = ker.endrange()
c_smem = warp.store(c_smem, c_reg)
c = warp.store(c, c_smem, (0, 0, row, col), (), axis=2)
sink = ker.finish()
with Context(DEBUG=0):
a = Tensor.rand(1, 1, N, N, dtype="bfloat16").contiguous()
b = Tensor.rand(1, 1, N, N, dtype="bfloat16").contiguous()
c = Tensor.empty(1, 1, N, N, dtype="float32")
Tensor.realize(a, b, c)
ei = ExecItem(get_runner(Device.DEFAULT, sink), [t.uop.buffer for t in (c, a, b)])
for _ in range(5): ei.run(wait=True)
c = c.float()
ref = a.matmul(b.transpose(2, 3), dtype=dtypes.float32).float()
np.testing.assert_allclose(c.numpy(), ref.numpy())
def test_load_store(self):
N = 32
BLOCK_SIZE = 16
with Kernel((N // BLOCK_SIZE, N // BLOCK_SIZE, 1), WARP_THREADS) as ker:
warp = ker.warp
b = ker.gl((1, 1, N, N), dtypes.float32)
a = ker.gl((1, 1, N, N), dtypes.float32)
a_smem = ker.st((BLOCK_SIZE, BLOCK_SIZE), dtypes.float32)
b_smem = ker.st((BLOCK_SIZE, BLOCK_SIZE), dtypes.float32)
a_reg = ker.rt((BLOCK_SIZE, BLOCK_SIZE), dtypes.float32)
b_reg = ker.rt((BLOCK_SIZE, BLOCK_SIZE), dtypes.float32)
col, row = ker.blockIdx_x, ker.blockIdx_y
a_smem = warp.load(a_smem, a, (), (0, 0, row, col), axis=2)
a_reg = warp.load(a_reg, a_smem)
b_reg = warp.copy(b_reg, a_reg)
b_smem = warp.store(b_smem, b_reg)
b = warp.store(b, b_smem, (0, 0, row, col), (), axis=2)
sink = ker.finish()
with Context(DEBUG=0):
a = Tensor.rand(1, 1, N, N, dtype="float32").contiguous()
b = Tensor.empty(1, 1, N, N, dtype="float32")
Tensor.realize(a, b)
ei = ExecItem(get_runner(Device.DEFAULT, sink), [t.uop.buffer for t in (b, a)])
for _ in range(5): ei.run(wait=True)
b = b.float()
ref = a.float()
np.testing.assert_allclose(b.numpy(), ref.numpy())
def test_add(self):
N = 32
BLOCK_SIZE = 16
with Kernel((1, 1, 1), WARP_THREADS) as ker:
warp = ker.warp
b = ker.gl((1, 1, N, N), dtypes.float32)
a = ker.gl((1, 1, N, N), dtypes.float32)
a_smem = ker.st((BLOCK_SIZE, BLOCK_SIZE), dtypes.float32)
a_reg = ker.rt((BLOCK_SIZE, BLOCK_SIZE), dtypes.float32)
for tile_row in ker.range(N // BLOCK_SIZE):
for tile_col in ker.range(N // BLOCK_SIZE):
a_smem = warp.load(a_smem, a, (), (0, 0, tile_row, tile_col), axis=2)
a_reg = warp.load(a_reg, a_smem)
a_reg += 1
a_smem = warp.store(a_smem, a_reg)
b = warp.store(b, a_smem, (0, 0, tile_row, tile_col), (), axis=2)
sink = ker.finish()
with Context(DEBUG=0):
a = Tensor.rand(1, 1, N, N, dtype="float32").contiguous()
b = Tensor.empty(1, 1, N, N, dtype="float32")
Tensor.realize(a, b)
ei = ExecItem(get_runner(Device.DEFAULT, sink), [t.uop.buffer for t in (b, a)])
for _ in range(5): ei.run(wait=True)
b = b.float()
ref = a.float() + 1
np.testing.assert_allclose(b.numpy(), ref.numpy())
def test_max(self):
N = 16
BLOCK_SIZE = 16
with Kernel((1, 1, 1), WARP_THREADS) as ker:
warp = ker.warp
b = ker.gl((1, 1, N, N), dtypes.float32)
a = ker.gl((1, 1, N, N), dtypes.float32)
a_smem = ker.st((BLOCK_SIZE, BLOCK_SIZE), dtypes.float32)
b_smem = ker.st((BLOCK_SIZE, BLOCK_SIZE), dtypes.float32)
a_reg = ker.rt((BLOCK_SIZE, BLOCK_SIZE), dtypes.float32)
b_reg = ker.rt((BLOCK_SIZE, BLOCK_SIZE), dtypes.float32)
max_reg = ker.rv(BLOCK_SIZE, dtypes.float32, "ortho")
for tile_row in ker.range(N // BLOCK_SIZE):
max_reg = warp.neg_inf(max_reg.after(tile_row))
for tile_col in ker.range(N // BLOCK_SIZE):
a_smem = warp.load(a_smem, a, (), (0, 0, tile_row, tile_col), axis=2)
a_reg = warp.load(a_reg, a_smem)
max_reg = warp.row_reduce(max_reg, a_reg, lambda a, b: a.maximum(b))
max_reg = ker.endrange()
b_reg = warp.map(b_reg, lambda _, idx: max_reg[idx[0], 0, (idx[2]%4)//2])
b_smem = warp.store(b_smem, b_reg)
for tile_col in ker.range(N // BLOCK_SIZE):
b = warp.store(b, b_smem, (0, 0, tile_row, tile_col), (), axis=2)
sink = ker.finish()
with Context(DEBUG=0):
a = Tensor.rand(1, 1, N, N, dtype="float32").contiguous()
b = Tensor.empty(1, 1, N, N, dtype="float32")
Tensor.realize(a, b)
ei = ExecItem(get_runner(Device.DEFAULT, sink), [t.uop.buffer for t in (b, a)])
for _ in range(5): ei.run(wait=True)
b = b.float()
ref = a.float().max(axis=3, keepdim=True).expand(a.shape)
np.testing.assert_allclose(b.numpy(), ref.numpy())
def test_max_nonsquare(self):
N, M = 16, 64
BLOCK_N, BLOCK_M = 16, 64
with Kernel((1, 1, 1), WARP_THREADS) as ker:
warp = ker.warp
b = ker.gl((1, 1, N, M), dtypes.float32)
a = ker.gl((1, 1, N, M), dtypes.float32)
a_smem = ker.st((BLOCK_N, BLOCK_M), dtypes.float32)
b_smem = ker.st((BLOCK_N, BLOCK_M), dtypes.float32)
a_reg = ker.rt((BLOCK_N, BLOCK_M), dtypes.float32)
b_reg = ker.rt((BLOCK_N, BLOCK_M), dtypes.float32)
max_reg = ker.rv(BLOCK_N, dtypes.float32, "ortho")
for tile_row in ker.range(N // BLOCK_N):
max_reg = warp.neg_inf(max_reg.after(tile_row))
for tile_col in ker.range(M // BLOCK_M):
a_smem = warp.load(a_smem, a, (), (0, 0, tile_row, tile_col), axis=2)
a_reg = warp.load(a_reg, a_smem)
max_reg = warp.row_reduce(max_reg, a_reg, lambda a, b: a.maximum(b))
max_reg = ker.endrange()
b_reg = warp.map(b_reg, lambda _, idx: max_reg[idx[0], 0, (idx[2]%4)//2])
b_smem = warp.store(b_smem, b_reg)
for tile_col in ker.range(M // BLOCK_M):
b = warp.store(b, b_smem, (0, 0, tile_row, tile_col), (), axis=2)
sink = ker.finish()
with Context(DEBUG=0):
a = Tensor.rand(1, 1, N, M, dtype="float32").contiguous()
b = Tensor.empty(1, 1, N, M, dtype="float32")
Tensor.realize(a, b)
ei = ExecItem(get_runner(Device.DEFAULT, sink), [t.uop.buffer for t in (b, a)])
for _ in range(5): ei.run(wait=True)
b = b.float()
ref = a.float().max(axis=3, keepdim=True).expand(a.shape)
np.testing.assert_allclose(b.numpy(), ref.numpy())
def test_sum(self):
N = 32
BLOCK_SIZE = 16
with Kernel((1, 1, 1), WARP_THREADS) as ker:
warp = ker.warp
b = ker.gl((1, 1, N, N), dtypes.float32)
a = ker.gl((1, 1, N, N), dtypes.float32)
a_smem = ker.st((BLOCK_SIZE, BLOCK_SIZE), dtypes.float32)
b_smem = ker.st((BLOCK_SIZE, BLOCK_SIZE), dtypes.float32)
a_reg = ker.rt((BLOCK_SIZE, BLOCK_SIZE), dtypes.float32)
b_reg = ker.rt((BLOCK_SIZE, BLOCK_SIZE), dtypes.float32)
sum_reg = ker.rv(BLOCK_SIZE, dtypes.float32, "ortho")
for tile_row in ker.range(N // BLOCK_SIZE):
sum_reg = warp.zero(sum_reg.after(tile_row))
for tile_col in ker.range(N // BLOCK_SIZE):
a_smem = warp.load(a_smem, a, (), (0, 0, tile_row, tile_col), axis=2)
a_reg = warp.load(a_reg, a_smem)
sum_reg = warp.row_reduce(sum_reg, a_reg, lambda a, b: a + b)
sum_reg = ker.endrange()
b_reg = warp.map(b_reg, lambda _, idx: sum_reg[idx[0], 0, (idx[2]%4)//2])
b_smem = warp.store(b_smem, b_reg)
for tile_col in ker.range(N // BLOCK_SIZE):
b = warp.store(b, b_smem, (0, 0, tile_row, tile_col), (), axis=2)
sink = ker.finish()
with Context(DEBUG=0):
a = Tensor.rand(1, 1, N, N, dtype="float32").contiguous()
b = Tensor.empty(1, 1, N, N, dtype="float32")
Tensor.realize(a, b)
ei = ExecItem(get_runner(Device.DEFAULT, sink), [t.uop.buffer for t in (b, a)])
for _ in range(5): ei.run(wait=True)
b = b.float()
ref = a.float().sum(axis=3, keepdim=True).expand(a.shape)
np.testing.assert_allclose(b.numpy(), ref.numpy(), atol=1e-5, rtol=1e-5)
def test_sum_nonsquare(self):
N, M = 16, 64
BLOCK_N, BLOCK_M = 16, 64
with Kernel((1, 1, 1), WARP_THREADS) as ker:
warp = ker.warp
b = ker.gl((1, 1, N, M), dtypes.float32)
a = ker.gl((1, 1, N, M), dtypes.float32)
a_smem = ker.st((BLOCK_N, BLOCK_M), dtypes.float32)
b_smem = ker.st((BLOCK_N, BLOCK_M), dtypes.float32)
a_reg = ker.rt((BLOCK_N, BLOCK_M), dtypes.float32)
b_reg = ker.rt((BLOCK_N, BLOCK_M), dtypes.float32)
sum_reg = ker.rv(BLOCK_N, dtypes.float32, "ortho")
for tile_row in ker.range(N // BLOCK_N):
sum_reg = warp.zero(sum_reg.after(tile_row))
for tile_col in ker.range(M // BLOCK_M):
a_smem = warp.load(a_smem, a, (), (0, 0, tile_row, tile_col), axis=2)
a_reg = warp.load(a_reg, a_smem)
sum_reg = warp.row_reduce(sum_reg, a_reg, lambda a, b: a + b)
sum_reg = ker.endrange()
b_reg = warp.map(b_reg, lambda _, idx: sum_reg[idx[0], 0, (idx[2]%4)//2])
b_smem = warp.store(b_smem, b_reg)
for tile_col in ker.range(M // BLOCK_M):
b = warp.store(b, b_smem, (0, 0, tile_row, tile_col), (), axis=2)
sink = ker.finish()
with Context(DEBUG=0):
a = Tensor.rand(1, 1, N, M, dtype="float32").contiguous()
b = Tensor.empty(1, 1, N, M, dtype="float32")
Tensor.realize(a, b)
ei = ExecItem(get_runner(Device.DEFAULT, sink), [t.uop.buffer for t in (b, a)])
for _ in range(5): ei.run(wait=True)
b = b.float()
ref = a.float().sum(axis=3, keepdim=True).expand(a.shape)
np.testing.assert_allclose(b.numpy(), ref.numpy(), atol=1e-5, rtol=1e-5)
@unittest.skip("fake range not ended")
def test_softmax(self):
N = 32
BLOCK_SIZE = 16
with Kernel((1, 1, 1), WARP_THREADS) as ker:
warp = ker.warp
b = ker.gl((1, 1, BLOCK_SIZE, N), dtypes.float32)
a = ker.gl((1, 1, BLOCK_SIZE, N), dtypes.float32)
a_smem = ker.st((BLOCK_SIZE, BLOCK_SIZE), dtypes.float32)
a_reg = ker.rt((BLOCK_SIZE, BLOCK_SIZE), dtypes.float32)
max_vec_last = ker.rv(BLOCK_SIZE, dtypes.float32, "ortho")
max_vec = ker.rv(BLOCK_SIZE, dtypes.float32, "ortho")
norm_vec = ker.rv(BLOCK_SIZE, dtypes.float32, "ortho")
max_vec = warp.neg_inf(max_vec)
norm_vec = warp.zero(norm_vec)
for tile_col in ker.range(N // BLOCK_SIZE):
a_smem = warp.load(a_smem, a, (), (0, 0, 0, tile_col), axis=2)
a_reg = warp.load(a_reg, a_smem)
a_reg *= 1.0 / math.log(2)
max_vec_last = warp.copy(max_vec_last.after(tile_col), max_vec)
max_vec = warp.row_reduce(max_vec, a_reg, lambda a, b: a.maximum(b))
a_reg = (a_reg - max_vec).exp2()
max_vec_last = (max_vec_last - max_vec).exp2()
norm_vec *= max_vec_last
norm_vec = warp.row_reduce(norm_vec, a_reg, lambda a, b: a + b)
norm_vec = ker.endrange()
for tile_col in ker.range(N // BLOCK_SIZE):
a_smem = warp.load(a_smem, a, (), (0, 0, 0, tile_col), axis=2)
a_reg = warp.load(a_reg, a_smem)
a_reg *= 1.0 / math.log(2)
a_reg = (a_reg - max_vec).exp2()
a_reg /= norm_vec
a_smem = warp.store(a_smem, a_reg)
b = warp.store(b, a_smem, (0, 0, 0, tile_col), (), axis=2)
sink = ker.finish()
with Context(DEBUG=0):
a = Tensor.rand(1, 1, BLOCK_SIZE, N, dtype="float32")
b = Tensor.empty(1, 1, BLOCK_SIZE, N, dtype="float32")
Tensor.realize(a, b)
ei = ExecItem(get_runner(Device.DEFAULT, sink), [t.uop.buffer for t in (b, a)])
for _ in range(5): ei.run(wait=True)
b = b.float()
ref = a.float().softmax(axis=3)
np.testing.assert_allclose(b.numpy(), ref.numpy(), atol=1e-5, rtol=1e-5)
if __name__ == "__main__":
unittest.main()