mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-01-10 23:48:01 -05:00
* counteracted bias initialization * test new adam * add optimizer tests * rename helper function names to fix the test * remove redundant import
54 lines
1.5 KiB
Python
54 lines
1.5 KiB
Python
# sorted in order of increasing complexity
|
|
|
|
import numpy as np
|
|
|
|
class Optimizer:
|
|
def __init__(self, params):
|
|
self.params = params
|
|
|
|
class SGD(Optimizer):
|
|
def __init__(self, params, lr=0.001):
|
|
super(SGD, self).__init__(params)
|
|
self.lr = lr
|
|
|
|
def step(self):
|
|
for t in self.params:
|
|
t.data -= self.lr * t.grad
|
|
|
|
class RMSprop(Optimizer):
|
|
def __init__(self, params, lr=0.001, decay=0.9, eps=1e-8):
|
|
super(RMSprop, self).__init__(params)
|
|
self.lr = lr
|
|
self.decay = decay
|
|
self.eps = eps
|
|
|
|
self.v = [np.zeros_like(t.data) for t in self.params]
|
|
|
|
def step(self):
|
|
for i, t in enumerate(self.params):
|
|
self.v[i] = self.decay * self.v[i] + (1 - self.decay) * np.square(t.grad)
|
|
t.data -= self.lr / (np.sqrt(self.v[i]) + self.eps) * t.grad
|
|
|
|
class Adam(Optimizer):
|
|
def __init__(self, params, lr=0.001, b1=0.9, b2=0.999, eps=1e-8):
|
|
super(Adam, self).__init__(params)
|
|
self.lr = lr
|
|
self.b1 = b1
|
|
self.b2 = b2
|
|
self.eps = eps
|
|
self.t = 0
|
|
|
|
self.m = [np.zeros_like(t.data) for t in self.params]
|
|
self.v = [np.zeros_like(t.data) for t in self.params]
|
|
|
|
def step(self):
|
|
self.t += 1
|
|
a = self.lr * (
|
|
np.sqrt(1 - np.power(self.b2, self.t)) /
|
|
(1 - np.power(self.b1, self.t)))
|
|
for i,t in enumerate(self.params):
|
|
self.m[i] = self.b1 * self.m[i] + (1 - self.b1) * t.grad
|
|
self.v[i] = self.b2 * self.v[i] + (1 - self.b2) * np.square(t.grad)
|
|
t.data -= a * self.m[i] / (np.sqrt(self.v[i]) + self.eps)
|
|
|