Liam 4a663d31da less than 1000 lines (#24)
* Actions sloccount check for < 1000 lines (tests and source)

* Sudo lol

* Test sloccount in actions ci

* More tests for the expression

* apt install test to do validation in cli

* fuck test

* try something that probably won't work

* ofcourse not

* test that test fails if lines greater than 1000

* more than 1000 results in 1,000 not 1000. Delete

* remove test lines. Should pass now

* Untouch file

Untouched a file that was changed in testing
2020-10-27 08:07:15 -07:00
2020-10-26 18:12:49 +01:00
2020-10-26 08:54:43 -07:00
2020-10-26 09:19:20 -07:00
2020-10-18 11:27:37 -07:00
2020-10-26 18:12:49 +01:00
2020-10-24 09:01:15 -05:00
2020-10-26 09:19:20 -07:00


Unit Tests

For something in between a pytorch and a karpathy/micrograd

pip3 install tinygrad

This may not be the best deep learning framework, but it is a deep learning framework.

The Tensor class is a wrapper around a numpy array, except it does Tensor things.

Example

from tinygrad.tensor import Tensor

x = Tensor.eye(3)
y = Tensor([[2.0,0,-2.0]])
z = y.dot(x).sum()
z.backward()

print(x.grad)  # dz/dx
print(y.grad)  # dz/dy

Same example in torch

import torch

x = torch.eye(3, requires_grad=True)
y = torch.tensor([[2.0,0,-2.0]], requires_grad=True)
z = y.matmul(x).sum()
z.backward()

print(x.grad)  # dz/dx
print(y.grad)  # dz/dy

Neural networks?

It turns out, a decent autograd tensor library is 90% of what you need for neural networks. Add an optimizer (SGD, RMSprop, and Adam implemented) from tinygrad.optim, write some boilerplate minibatching code, and you have all you need.

Neural network example (from test/test_mnist.py)

from tinygrad.tensor import Tensor
import tinygrad.optim as optim
from tinygrad.utils import layer_init_uniform

class TinyBobNet:
  def __init__(self):
    self.l1 = Tensor(layer_init_uniform(784, 128))
    self.l2 = Tensor(layer_init_uniform(128, 10))

  def forward(self, x):
    return x.dot(self.l1).relu().dot(self.l2).logsoftmax()

model = TinyBobNet()
optim = optim.SGD([model.l1, model.l2], lr=0.001)

# ... and complete like pytorch, with (x,y) data

out = model.forward(x)
loss = out.mul(y).mean()
loss.backward()
optim.step()

The promise of small

tinygrad, with tests, will always be below 1000 lines. If it isn't, we will revert commits until tinygrad becomes smaller.

TODO

  • Reduce code
  • Increase speed
  • Add features
  • In that order
Description
No description provided
Readme MIT 267 MiB
Languages
Python 67.6%
C 19.3%
Cuda 5.3%
Assembly 2.7%
Metal 2.3%
Other 2.7%