Files
tinygrad/examples/handcode_bert_opt.py
2024-07-08 09:07:44 -04:00

99 lines
3.9 KiB
Python

from typing import List
from examples.mlperf.helpers import get_mlperf_bert_model
from tinygrad import Tensor, Device, dtypes, nn
from tinygrad.codegen.linearizer import Linearizer
from tinygrad.device import Compiled
from tinygrad.engine.graph import print_tree
from tinygrad.engine.schedule import create_schedule
from tinygrad.engine.search import time_linearizer, beam_search, bufs_from_lin
from tinygrad.helpers import DEBUG, ansilen, getenv
from tinygrad.ops import LoadOps, get_lazyop_info
from tinygrad.shape.symbolic import sym_infer
if __name__ == "__main__":
if getenv("HALF", 1):
dtypes.default_float = dtypes.half
mdl = get_mlperf_bert_model()
seen = set()
# the device we are optimizing for
device: Compiled = Device[Device.DEFAULT]
if getenv("BACKWARD"):
Tensor.training = True
optim = (nn.optim.LAMB if getenv("LAMB") else nn.optim.SGD)(nn.state.get_parameters(mdl))
print(f"optimizing for {Device.DEFAULT}")
# fake data
BS = getenv("BS", 2)
input_ids = Tensor.empty((BS, 512), dtype=dtypes.float32)
segment_ids = Tensor.empty((BS, 512), dtype=dtypes.float32)
attention_mask = Tensor.empty((BS, 512), dtype=dtypes.default_float)
masked_positions = Tensor.empty((BS, 76), dtype=dtypes.float32)
masked_lm_ids = Tensor.empty((BS, 76), dtype=dtypes.float32)
masked_lm_weights = Tensor.empty((BS, 76), dtype=dtypes.float32)
next_sentence_labels = Tensor.empty((BS, 1), dtype=dtypes.float32)
# run model twice to get only what changes, these are the kernels of the model
for i in range(2):
lm_logits, seq_relationship_logits = mdl(input_ids, attention_mask, masked_positions, segment_ids)
targets = [lm_logits.lazydata, seq_relationship_logits.lazydata]
if getenv("BACKWARD"):
optim.zero_grad()
loss = mdl.loss(lm_logits, seq_relationship_logits, masked_lm_ids, masked_lm_weights, next_sentence_labels)
# ignore grad norm and loss scaler for now
loss.backward()
targets += [x.lazydata for x in optim.schedule_step()]
sched = create_schedule(targets, seen)
print(f"schedule length {len(sched)}")
sched = [x for x in sched if x.ast[0].op not in LoadOps]
# focus on one kernel
if getenv("KERNEL", -1) >= 0: sched = sched[getenv("KERNEL", -1):getenv("KERNEL", -1)+1]
# work with the schedule
total_tm = 0
running_gflops = 0
for i,si in enumerate(sched):
ops = sum(get_lazyop_info(ast).flops for ast in si.ast)
if DEBUG >= 2:
for ast in si.ast: print_tree(ast)
rawbufs = bufs_from_lin(Linearizer(*si.ast))
# "linearize" the op into uops in different ways
lins:List[Linearizer] = []
# always try hand coded opt
lin = Linearizer(*si.ast, opts=device.renderer)
lin.hand_coded_optimizations()
lins.append(lin)
# maybe try tensor cores
lin = Linearizer(*si.ast, opts=device.renderer)
if lin.apply_tensor_cores():
lins.append(lin)
# try a beam search
if beam:=getenv("BEAM"):
lin = Linearizer(*si.ast, opts=device.renderer)
lin = beam_search(lin, rawbufs, beam, bool(getenv("BEAM_ESTIMATE", 1)))
lins.append(lin)
# benchmark the programs
choices = []
for lin in lins:
tm = time_linearizer(lin, rawbufs, allow_test_size=False, cnt=10)
gflops = sym_infer(ops, {k:k.min for k in lin.ast[0].vars()})*1e-9/tm
choices.append((tm, gflops, lin.linearize()))
# print all kernels
if DEBUG >= 1: print(f" kernel {i:2d} {lin.name+' '*(37-ansilen(lin.name))} {str(lin.global_size):18s} {str(lin.local_size):12s} takes {tm*1000:7.2f} ms, {gflops:6.0f} GFLOPS")
tm, gflops, lin = sorted(choices, key=lambda x: x[0])[0]
total_tm += tm
running_gflops += gflops * tm
print(f"*** {total_tm*1000:7.2f} ms : kernel {i:2d} {lin.name+' '*(37-ansilen(lin.name))} {str(lin.global_size):18s} {str(lin.local_size):12s} takes {tm*1000:7.2f} ms, {gflops:6.0f} GFLOPS")
print(f"******* total {total_tm*1000:.2f} ms, {running_gflops/total_tm:6.0f} GFLOPS")