Files
tinygrad/examples
Francis Lata b7ce9a1530 UNet3D MLPerf (#3470)
* add training set transforms

* add DICE cross entropy loss

* convert pred and label to Tensor when calculating DICE score

* cleanups and allow train dataset batching

* fix DICE CE loss calculation

* jitted training step

* clean up DICE CE loss calculation

* initial support for sharding

* Revert "initial support for sharding"

This reverts commit e3670813b8.

* minor updates

* cleanup imports

* add support for sharding

* apply temp patch to try to avoid OOM

* revert cstyle changes

* add gradient acc

* hotfix

* add FP16 support

* add ability to train on smaller image sizes

* add support for saving and loading checkpoints + cleanup some various modes

* fix issue with using smaller patch size + update W&B logging

* disable LR_WARMUP_EPOCHS

* updates

* minor cleanups

* cleanup

* update order of transformations

* more cleanups

* realize loss

* cleanup

* more cleanup

* some cleanups

* add RAM usage

* minor cleanups

* add support for gradient accumulation

* cleanup imports

* minor updates to not use GA_STEPS

* remove FP16 option since it's available now globally

* update multi-GPU setup

* add timing logs for training loop

* go back to using existing dataloader and add ability to preprocess data to save time

* clean up optimization and re-enable JIT and multi-GPU support for training and evaluation

* free train and eval steps memory

* cleanups and scale batch size based on the number of GPUs

* fix GlobalCounters import

* fix seed

* fix W&B setup

* update batch size default size

* add back metric divergence check

* put back JIT on UNet3d eval

* move dataset preprocessing inside training code

* add test for dice_loss

* add config logging support to W&B and other cleanups

* change how default float is getting retrieved

* remove TinyJit import duplicate

* update config logging to W&B and remove JIT on eval_step

* no need for caching preprocessed data anymore

* fix how evaluation is ran and how often

* add support for LR scaling

* fix issue with gaussian being moved to scipy.signal.windows

* remove DICE loss unit test

* fix issue where loss isn't compatible with multiGPU

* add individual BEAM control for train and eval steps

* fix ndimage scipy import

* add BENCHMARK

* cleanups on BENCHMARK + fix on rand_flip augmentation during training

* cleanup train and eval BEAM envs

* add checkpointing support after every eval

* cleanup model_eval

* disable grad during eval

* use new preprocessing dataset mechanism

* remove unused import

* use training and inference_mode contexts

* start eval after benchmarking

* add data fetching time

* cleanup decorators

* more cleanups on training script

* add message during benchmarking mode

* realize when reassigning LR on scheduler and update default number of epochs

* add JIT on eval step

* remove JIT on eval_step

* add train dataloader for unet3d

* move checkpointing to be done after every epoch

* revert removal of JIT on unet3d inference

* save checkpoint if metric is not successful

* Revert "add train dataloader for unet3d"

This reverts commit c166d129df.

* Revert "Revert "add train dataloader for unet3d""

This reverts commit 36366c65d2.

* hotfix: seed was defaulting to a value of 0

* fix SEED value

* remove the usage of context managers for setting BEAM and going from training to inference

* support new stack API for calculating eval loss and metric

* Revert "remove the usage of context managers for setting BEAM and going from training to inference"

This reverts commit 2c0ba8d322.

* check training and test preprocessed folders separately

* clean up imports and log FUSE_CONV_BW

* use train and val preprocessing constants

* add kits19 dataset setup script

* update to use the new test decorator for disabling grad

* update kits19 dataset setup script

* add docs on how to train the model

* set default value for BASEDIR

* add detailed instruction about BASEDIR usage

---------

Co-authored-by: chenyu <chenyu@fastmail.com>
2024-09-10 04:37:28 -04:00
..
2024-09-10 04:37:28 -04:00
2024-08-16 18:17:57 -04:00
2024-07-14 11:09:58 -07:00
2023-03-11 16:28:10 -08:00
2024-08-18 00:19:28 -07:00
2023-10-30 18:42:26 -07:00
2024-08-08 19:16:26 -07:00
2024-07-30 20:29:54 -07:00
2024-07-03 09:06:01 -07:00
2024-07-02 21:39:01 -04:00
2024-07-03 22:47:10 -04:00
2024-08-28 07:44:58 -04:00
2024-05-22 20:43:21 -04:00
2023-11-28 17:36:55 -08:00
2024-09-09 21:03:59 -04:00
2023-12-08 12:59:38 -08:00
2024-06-16 20:47:29 -04:00