Files
tinygrad/test/external/process_replay/process_replay.py
qazal 5ad2f95d01 process replay diff stats (#6736)
* process replay diff stats

* fix tuples
2024-09-25 15:19:56 +08:00

148 lines
5.8 KiB
Python
Executable File

#!/usr/bin/env python3
# compare kernels created by HEAD against master
import os, multiprocessing, logging, pickle, sqlite3, difflib
from typing import Callable, List, Tuple, Union, cast
from tinygrad.helpers import VERSION, Context, ContextVar, db_connection, getenv, tqdm
from tinygrad.codegen.kernel import Kernel
from test.external.process_replay.helpers import print_diff
# *** process replay settings
# internal
PAGE_SIZE = 100
REF = os.getenv("GITHUB_REF_NAME", "")
MAX_DIFF_PCT = getenv("PROCESS_REPLAY_MAX_DIFF_PCT", 20)
TABLE_NAME = f"process_replay_{VERSION}"
os.environ["RUN_PROCESS_REPLAY"] = "0"
early_stop = multiprocessing.Event()
logging.basicConfig(level=logging.INFO, format="%(message)s")
# user config
ASSERT_DIFF = getenv("ASSERT_PROCESS_REPLAY", int((k:="[run_process_replay]") in os.getenv("COMMIT_MESSAGE", k) or k in os.getenv("PR_TITLE", k)))
SKIP_PROCESS_REPLAY = (k:="[skip_process_replay]") in os.getenv("COMMIT_MESSAGE", "") or k in os.getenv("PR_TITLE", "")
COMPARE_SCHEDULE = getenv("COMPARE_SCHEDULE", 1)
if REF == "master": SKIP_PROCESS_REPLAY = True
# *** differs
def diff_schedule(offset:int) -> bool:
conn = db_connection()
cur = conn.cursor()
cur.execute(f"SELECT val FROM 'schedule_diff_{VERSION}' LIMIT ? OFFSET ?", (PAGE_SIZE, offset))
changed = 0
for row in cur.fetchall():
changed += 1
buf, asts = pickle.loads(row[0])
if len(asts) == 1:
logging.info(f"{buf} was folded")
logging.info(asts[0])
else: print_diff(asts[0], asts[1])
return bool(changed)
def diff_kernel(offset:int) -> Union[Tuple[int, int], bool]:
if early_stop.is_set(): return True
conn = db_connection()
cur = conn.cursor()
cur.execute(f"SELECT val FROM 'kernel_{TABLE_NAME}' LIMIT ? OFFSET ?", (PAGE_SIZE, offset))
additions, deletions, changed = 0, 0, 0
for row in cur.fetchall():
# try unpickle
try: ast, opts, applied_opts, name, compare_src, ctx = pickle.loads(row[0])
except Exception as e:
logging.warning(f"FAILED TO UNPICKLE OBJECTS {e}")
if ASSERT_DIFF: return True
continue
# try linearize
try:
with Context(**{k:v for k,v in ctx.ctx_vars.items() if k in ContextVar._cache and k != "DEBUG"}):
k = Kernel(ast, opts=opts)
for opt in applied_opts: k.apply_opt(opt)
# NOTE: replay with the captured renderer, not the one in master
good_src = k.opts.render(name, cast(List,k.to_program().uops))
except Exception as e:
logging.warning(f"FAILED TO RECREATE KERNEL {e}")
logging.info(ast)
logging.info(applied_opts)
if ASSERT_DIFF: return True
continue
# diff kernels
try: assert compare_src == good_src
except AssertionError:
logging.info("PROCESS REPLAY DETECTED CHANGE")
logging.info(ast)
logging.info(applied_opts)
logging.info(ctx.loc)
print_diff(good_src, compare_src)
changes = list(difflib.unified_diff(str(good_src).splitlines(), str(compare_src).splitlines()))
additions += len([x for x in changes if x.startswith("+")])
deletions += len([x for x in changes if x.startswith("-")])
if ASSERT_DIFF: return additions, deletions
if changed > MAX_DIFF_PCT:
logging.warning(f"detected changes in over {MAX_DIFF_PCT}% of kernels. skipping further diff generation.")
early_stop.set()
break
conn.commit()
cur.close()
return additions, deletions
# *** generic runner for executing fxn across all rows of a table in parallel
def _pmap(row_count:int, fxn:Callable[[int], Union[bool, Tuple[int, int]]], maxtasksperchild:int=16) -> None:
with multiprocessing.get_context("spawn").Pool(multiprocessing.cpu_count(), maxtasksperchild=maxtasksperchild) as pool:
inputs = list(range(0, row_count, PAGE_SIZE))
ret: List[Union[bool, Tuple[int, int]]] = list(tqdm(pool.imap_unordered(fxn, inputs), total=len(inputs)))
pool.close()
pool.join()
pool.terminate()
changed = [bool(x[0] or x[1]) if isinstance(x, tuple) else x for x in ret]
insertion, deletions = [x[0] for x in ret if isinstance(x, tuple)], [x[1] for x in ret if isinstance(x, tuple)]
logging.info(f"{sum(changed)} kernels changed{f', {sum(insertion)} insertions(+), {sum(deletions)} deletions(-)' if len(insertion) != 0 else ''}")
if any(changed) and ASSERT_DIFF: raise AssertionError("process replay detected changes")
# *** process replay parallel differ runners
def process_replay_schedule() -> None:
conn = db_connection()
cur = conn.cursor()
try: has_diff = cur.execute(f"select name from sqlite_master where type='table' and name='schedule_diff_{VERSION}'").fetchone()
except sqlite3.OperationalError:
logging.warning(f"schedule_diff_{VERSION} isn't accessible in master, did DB_VERSION change?")
return
if has_diff:
row_count = cur.execute(f"select count(*) from 'schedule_diff_{VERSION}'").fetchone()[0]
if row_count != 0: logging.info("***** schedule diff")
conn.commit()
cur.close()
_pmap(row_count, diff_schedule)
def process_replay_kernel() -> None:
conn = db_connection()
cur = conn.cursor()
try: row_count = cur.execute(f"select count(*) from 'kernel_{TABLE_NAME}'").fetchone()[0]
except sqlite3.OperationalError:
logging.warning(f"kernel_{TABLE_NAME} isn't accessible in master, did DB_VERSION change?")
return None
conn.commit()
cur.close()
_pmap(row_count, diff_kernel)
# *** main loop
if __name__ == "__main__":
if SKIP_PROCESS_REPLAY:
logging.info("skipping process replay.")
exit(0)
if COMPARE_SCHEDULE:
logging.info("***** schedule diff")
try: process_replay_schedule()
except Exception as e:
if ASSERT_DIFF: raise e
logging.error(f"schedule diff err {e}")
logging.info("***** kernel diff")
try: process_replay_kernel()
except Exception as e:
if ASSERT_DIFF: raise e
logging.error(f"kernel diff err {e}")