1 Commits

Author SHA1 Message Date
decanus
8c55a36a91 implemented 2019-09-24 20:33:00 +02:00
409 changed files with 238815 additions and 2 deletions

1
go.mod
View File

@@ -6,6 +6,7 @@ require (
github.com/golang-migrate/migrate v3.5.4+incompatible // indirect
github.com/golang-migrate/migrate/v4 v4.5.0 // indirect
github.com/golang/protobuf v1.3.2
github.com/multiformats/go-multihash v0.0.8
github.com/mutecomm/go-sqlcipher v0.0.0-20190227152316-55dbde17881f // indirect
github.com/pkg/errors v0.8.1
github.com/status-im/migrate/v4 v4.0.0-20190821140204-a9d340ec8fb76af4afda06acf01740d45d2661ed

13
go.sum
View File

@@ -104,7 +104,15 @@ github.com/lib/pq v1.0.0/go.mod h1:5WUZQaWbwv1U+lTReE5YruASi9Al49XbQIvNi/34Woo=
github.com/mattn/go-sqlite3 v1.10.0 h1:jbhqpg7tQe4SupckyijYiy0mJJ/pRyHvXf7JdWK860o=
github.com/mattn/go-sqlite3 v1.10.0/go.mod h1:FPy6KqzDD04eiIsT53CuJW3U88zkxoIYsOqkbpncsNc=
github.com/matttproud/golang_protobuf_extensions v1.0.1/go.mod h1:D8He9yQNgCq6Z5Ld7szi9bcBfOoFv/3dc6xSMkL2PC0=
github.com/minio/blake2b-simd v0.0.0-20160723061019-3f5f724cb5b1 h1:lYpkrQH5ajf0OXOcUbGjvZxxijuBwbbmlSxLiuofa+g=
github.com/minio/blake2b-simd v0.0.0-20160723061019-3f5f724cb5b1/go.mod h1:pD8RvIylQ358TN4wwqatJ8rNavkEINozVn9DtGI3dfQ=
github.com/minio/sha256-simd v0.1.1-0.20190913151208-6de447530771 h1:MHkK1uRtFbVqvAgvWxafZe54+5uBxLluGylDiKgdhwo=
github.com/minio/sha256-simd v0.1.1-0.20190913151208-6de447530771/go.mod h1:B5e1o+1/KgNmWrSQK08Y6Z1Vb5pwIktudl0J58iy0KM=
github.com/mongodb/mongo-go-driver v0.3.0/go.mod h1:NK/HWDIIZkaYsnYa0hmtP443T5ELr0KDecmIioVuuyU=
github.com/mr-tron/base58 v1.1.2 h1:ZEw4I2EgPKDJ2iEw0cNmLB3ROrEmkOtXIkaG7wZg+78=
github.com/mr-tron/base58 v1.1.2/go.mod h1:BinMc/sQntlIE1frQmRFPUoPA1Zkr8VRgBdjWI2mNwc=
github.com/multiformats/go-multihash v0.0.8 h1:wrYcW5yxSi3dU07n5jnuS5PrNwyHy0zRHGVoUugWvXg=
github.com/multiformats/go-multihash v0.0.8/go.mod h1:YSLudS+Pi8NHE7o6tb3D8vrpKa63epEDmG8nTduyAew=
github.com/mutecomm/go-sqlcipher v0.0.0-20190227152316-55dbde17881f h1:hd3r+uv9DNLScbOrnlj82rBldHQf3XWmCeXAWbw8euQ=
github.com/mutecomm/go-sqlcipher v0.0.0-20190227152316-55dbde17881f/go.mod h1:MyUWrZlB1aI5bs7j9/pJ8ckLLZ4QcCYcNiSbsAW32D4=
github.com/mwitkow/go-conntrack v0.0.0-20161129095857-cc309e4a2223/go.mod h1:qRWi+5nqEBWmkhHvq77mSJWrCKwh8bxhgT7d/eI7P4U=
@@ -133,6 +141,8 @@ github.com/satori/go.uuid v1.2.0/go.mod h1:dA0hQrYB0VpLJoorglMZABFdXlWrHn1NEOzdh
github.com/shopspring/decimal v0.0.0-20180709203117-cd690d0c9e24/go.mod h1:M+9NzErvs504Cn4c5DxATwIqPbtswREoFCre64PpcG4=
github.com/sirupsen/logrus v1.2.0/go.mod h1:LxeOpSwHxABJmUn/MG1IvRgCAasNZTLOkJPxbbu5VWo=
github.com/sirupsen/logrus v1.4.1/go.mod h1:ni0Sbl8bgC9z8RoU9G6nDWqqs/fq4eDPysMBDgk/93Q=
github.com/spaolacci/murmur3 v1.1.0 h1:7c1g84S4BPRrfL5Xrdp6fOJ206sU9y293DDHaoy0bLI=
github.com/spaolacci/murmur3 v1.1.0/go.mod h1:JwIasOWyU6f++ZhiEuf87xNszmSA2myDM2Kzu9HwQUA=
github.com/status-im/migrate/v4 v4.0.0-20190821140204-a9d340ec8fb76af4afda06acf01740d45d2661ed h1:K2iga8l8OQIHnk2bBq2QsZTO2Q38YWy04xIspdITCdM=
github.com/status-im/migrate/v4 v4.0.0-20190821140204-a9d340ec8fb76af4afda06acf01740d45d2661ed/go.mod h1:r8HggRBZ/k7TRwByq/Hp3P/ubFppIna0nvyavVK0pjA=
github.com/stretchr/objx v0.1.0/go.mod h1:HFkY916IF+rwdDfMAkV7OtwuqBVzrE8GR6GFx+wExME=
@@ -160,6 +170,8 @@ golang.org/x/crypto v0.0.0-20180904163835-0709b304e793/go.mod h1:6SG95UA2DQfeDnf
golang.org/x/crypto v0.0.0-20190308221718-c2843e01d9a2/go.mod h1:djNgcEr1/C05ACkg1iLfiJU5Ep61QUkGW8qpdssI0+w=
golang.org/x/crypto v0.0.0-20190325154230-a5d413f7728c/go.mod h1:djNgcEr1/C05ACkg1iLfiJU5Ep61QUkGW8qpdssI0+w=
golang.org/x/crypto v0.0.0-20190426145343-a29dc8fdc734/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
golang.org/x/crypto v0.0.0-20190611184440-5c40567a22f8 h1:1wopBVtVdWnn03fZelqdXTqk7U7zPQCb+T4rbU9ZEoU=
golang.org/x/crypto v0.0.0-20190611184440-5c40567a22f8/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
golang.org/x/exp v0.0.0-20190121172915-509febef88a4/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
golang.org/x/lint v0.0.0-20181026193005-c67002cb31c3/go.mod h1:UVdnD1Gm6xHRNCYTkRU2/jEulfH38KcIWyp/GAMgvoE=
golang.org/x/lint v0.0.0-20190227174305-5b3e6a55c961/go.mod h1:wehouNa3lNwaWXcvxsM5YxQ5yQlVC4a0KAMCusXpPoU=
@@ -196,6 +208,7 @@ golang.org/x/sys v0.0.0-20181122145206-62eef0e2fa9b/go.mod h1:STP8DvDyc/dI5b8T5h
golang.org/x/sys v0.0.0-20190102155601-82a175fd1598/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190412213103-97732733099d/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20190426135247-a129542de9ae h1:mQLHiymj/JXKnnjc62tb7nD5pZLs940/sXJu+Xp3DBA=
golang.org/x/sys v0.0.0-20190426135247-a129542de9ae/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
golang.org/x/text v0.3.1-0.20180807135948-17ff2d5776d2/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=

View File

@@ -4,6 +4,7 @@ import (
"crypto/sha256"
"encoding/binary"
"github.com/multiformats/go-multihash"
"github.com/vacp2p/mvds/state"
)
@@ -16,5 +17,11 @@ func (m Message) ID() state.MessageID {
b = append(b, t...)
b = append(b, m.Body...)
return sha256.Sum256(b)
hash := sha256.Sum256(b)
id, _ := multihash.Encode(hash[:], multihash.SHA2_256)
mid := state.MessageID{}
copy(id[:], id)
return mid
}

View File

@@ -1,4 +1,4 @@
package state
type MessageID [32]byte
type MessageID [34]byte
type GroupID [32]byte

1
vendor/github.com/minio/blake2b-simd/.gitignore generated vendored Normal file
View File

@@ -0,0 +1 @@
*.test

21
vendor/github.com/minio/blake2b-simd/.travis.yml generated vendored Normal file
View File

@@ -0,0 +1,21 @@
sudo: required
dist: trusty
language: go
os:
- linux
- osx
osx_image: xcode7.2
go:
- 1.6
- 1.5
env:
- ARCH=x86_64
- ARCH=i686
script:
- diff -au <(gofmt -d .) <(printf "")
- go test -race -v ./...

202
vendor/github.com/minio/blake2b-simd/LICENSE generated vendored Normal file
View File

@@ -0,0 +1,202 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

144
vendor/github.com/minio/blake2b-simd/README.md generated vendored Normal file
View File

@@ -0,0 +1,144 @@
BLAKE2b-SIMD
============
Pure Go implementation of BLAKE2b using SIMD optimizations.
Introduction
------------
This package was initially based on the pure go [BLAKE2b](https://github.com/dchest/blake2b) implementation of Dmitry Chestnykh and merged with the (`cgo` dependent) AVX optimized [BLAKE2](https://github.com/codahale/blake2) implementation (which in turn is based on the [official implementation](https://github.com/BLAKE2/BLAKE2). It does so by using [Go's Assembler](https://golang.org/doc/asm) for amd64 architectures with a golang only fallback for other architectures.
In addition to AVX there is also support for AVX2 as well as SSE. Best performance is obtained with AVX2 which gives roughly a **4X** performance increase approaching hashing speeds of **1GB/sec** on a single core.
Benchmarks
----------
This is a summary of the performance improvements. Full details are shown below.
| Technology | 128K |
| ---------- |:-----:|
| AVX2 | 3.94x |
| AVX | 3.28x |
| SSE | 2.85x |
asm2plan9s
----------
In order to be able to work more easily with AVX2/AVX instructions, a separate tool was developed to convert AVX2/AVX instructions into the corresponding BYTE sequence as accepted by Go assembly. See [asm2plan9s](https://github.com/minio/asm2plan9s) for more information.
bt2sum
------
[bt2sum](https://github.com/s3git/bt2sum) is a utility that takes advantages of the BLAKE2b SIMD optimizations to compute check sums using the BLAKE2 Tree hashing mode in so called 'unlimited fanout' mode.
Technical details
-----------------
BLAKE2b is a hashing algorithm that operates on 64-bit integer values. The AVX2 version uses the 256-bit wide YMM registers in order to essentially process four operations in parallel. AVX and SSE operate on 128-bit values simultaneously (two operations in parallel). Below are excerpts from `compressAvx2_amd64.s`, `compressAvx_amd64.s`, and `compress_generic.go` respectively.
```
VPADDQ YMM0,YMM0,YMM1 /* v0 += v4, v1 += v5, v2 += v6, v3 += v7 */
```
```
VPADDQ XMM0,XMM0,XMM2 /* v0 += v4, v1 += v5 */
VPADDQ XMM1,XMM1,XMM3 /* v2 += v6, v3 += v7 */
```
```
v0 += v4
v1 += v5
v2 += v6
v3 += v7
```
Detailed benchmarks
-------------------
Example performance metrics were generated on Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz - 6 physical cores, 12 logical cores running Ubuntu GNU/Linux with kernel version 4.4.0-24-generic (vanilla with no optimizations).
### AVX2
```
$ benchcmp go.txt avx2.txt
benchmark old ns/op new ns/op delta
BenchmarkHash64-12 1481 849 -42.67%
BenchmarkHash128-12 1428 746 -47.76%
BenchmarkHash1K-12 6379 2227 -65.09%
BenchmarkHash8K-12 37219 11714 -68.53%
BenchmarkHash32K-12 140716 35935 -74.46%
BenchmarkHash128K-12 561656 142634 -74.60%
benchmark old MB/s new MB/s speedup
BenchmarkHash64-12 43.20 75.37 1.74x
BenchmarkHash128-12 89.64 171.35 1.91x
BenchmarkHash1K-12 160.52 459.69 2.86x
BenchmarkHash8K-12 220.10 699.32 3.18x
BenchmarkHash32K-12 232.87 911.85 3.92x
BenchmarkHash128K-12 233.37 918.93 3.94x
```
### AVX2: Comparison to other hashing techniques
```
$ go test -bench=Comparison
BenchmarkComparisonMD5-12 1000 1726121 ns/op 607.48 MB/s
BenchmarkComparisonSHA1-12 500 2005164 ns/op 522.94 MB/s
BenchmarkComparisonSHA256-12 300 5531036 ns/op 189.58 MB/s
BenchmarkComparisonSHA512-12 500 3423030 ns/op 306.33 MB/s
BenchmarkComparisonBlake2B-12 1000 1232690 ns/op 850.64 MB/s
```
Benchmarks below were generated on a MacBook Pro with a 2.7 GHz Intel Core i7.
### AVX
```
$ benchcmp go.txt avx.txt
benchmark old ns/op new ns/op delta
BenchmarkHash64-8 813 458 -43.67%
BenchmarkHash128-8 766 401 -47.65%
BenchmarkHash1K-8 4881 1763 -63.88%
BenchmarkHash8K-8 36127 12273 -66.03%
BenchmarkHash32K-8 140582 43155 -69.30%
BenchmarkHash128K-8 567850 173246 -69.49%
benchmark old MB/s new MB/s speedup
BenchmarkHash64-8 78.63 139.57 1.78x
BenchmarkHash128-8 166.98 318.73 1.91x
BenchmarkHash1K-8 209.76 580.68 2.77x
BenchmarkHash8K-8 226.76 667.46 2.94x
BenchmarkHash32K-8 233.09 759.29 3.26x
BenchmarkHash128K-8 230.82 756.56 3.28x
```
### SSE
```
$ benchcmp go.txt sse.txt
benchmark old ns/op new ns/op delta
BenchmarkHash64-8 813 478 -41.21%
BenchmarkHash128-8 766 411 -46.34%
BenchmarkHash1K-8 4881 1870 -61.69%
BenchmarkHash8K-8 36127 12427 -65.60%
BenchmarkHash32K-8 140582 49512 -64.78%
BenchmarkHash128K-8 567850 199040 -64.95%
benchmark old MB/s new MB/s speedup
BenchmarkHash64-8 78.63 133.78 1.70x
BenchmarkHash128-8 166.98 311.23 1.86x
BenchmarkHash1K-8 209.76 547.37 2.61x
BenchmarkHash8K-8 226.76 659.20 2.91x
BenchmarkHash32K-8 233.09 661.81 2.84x
BenchmarkHash128K-8 230.82 658.52 2.85x
```
License
-------
Released under the Apache License v2.0. You can find the complete text in the file LICENSE.
Contributing
------------
Contributions are welcome, please send PRs for any enhancements.

32
vendor/github.com/minio/blake2b-simd/appveyor.yml generated vendored Normal file
View File

@@ -0,0 +1,32 @@
# version format
version: "{build}"
# Operating system (build VM template)
os: Windows Server 2012 R2
# Platform.
platform: x64
clone_folder: c:\gopath\src\github.com\minio\blake2b-simd
# environment variables
environment:
GOPATH: c:\gopath
GO15VENDOREXPERIMENT: 1
# scripts that run after cloning repository
install:
- set PATH=%GOPATH%\bin;c:\go\bin;%PATH%
- go version
- go env
# to run your custom scripts instead of automatic MSBuild
build_script:
- go test .
- go test -race .
# to disable automatic tests
test: off
# to disable deployment
deploy: off

301
vendor/github.com/minio/blake2b-simd/blake2b.go generated vendored Normal file
View File

@@ -0,0 +1,301 @@
// Written in 2012 by Dmitry Chestnykh.
//
// To the extent possible under law, the author have dedicated all copyright
// and related and neighboring rights to this software to the public domain
// worldwide. This software is distributed without any warranty.
// http://creativecommons.org/publicdomain/zero/1.0/
// Package blake2b implements BLAKE2b cryptographic hash function.
package blake2b
import (
"encoding/binary"
"errors"
"hash"
)
const (
BlockSize = 128 // block size of algorithm
Size = 64 // maximum digest size
SaltSize = 16 // maximum salt size
PersonSize = 16 // maximum personalization string size
KeySize = 64 // maximum size of key
)
type digest struct {
h [8]uint64 // current chain value
t [2]uint64 // message bytes counter
f [2]uint64 // finalization flags
x [BlockSize]byte // buffer for data not yet compressed
nx int // number of bytes in buffer
ih [8]uint64 // initial chain value (after config)
paddedKey [BlockSize]byte // copy of key, padded with zeros
isKeyed bool // indicates whether hash was keyed
size uint8 // digest size in bytes
isLastNode bool // indicates processing of the last node in tree hashing
}
// Initialization values.
var iv = [8]uint64{
0x6a09e667f3bcc908, 0xbb67ae8584caa73b,
0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1,
0x510e527fade682d1, 0x9b05688c2b3e6c1f,
0x1f83d9abfb41bd6b, 0x5be0cd19137e2179,
}
// Config is used to configure hash function parameters and keying.
// All parameters are optional.
type Config struct {
Size uint8 // digest size (if zero, default size of 64 bytes is used)
Key []byte // key for prefix-MAC
Salt []byte // salt (if < 16 bytes, padded with zeros)
Person []byte // personalization (if < 16 bytes, padded with zeros)
Tree *Tree // parameters for tree hashing
}
// Tree represents parameters for tree hashing.
type Tree struct {
Fanout uint8 // fanout
MaxDepth uint8 // maximal depth
LeafSize uint32 // leaf maximal byte length (0 for unlimited)
NodeOffset uint64 // node offset (0 for first, leftmost or leaf)
NodeDepth uint8 // node depth (0 for leaves)
InnerHashSize uint8 // inner hash byte length
IsLastNode bool // indicates processing of the last node of layer
}
var (
defaultConfig = &Config{Size: Size}
config256 = &Config{Size: 32}
)
func verifyConfig(c *Config) error {
if c.Size > Size {
return errors.New("digest size is too large")
}
if len(c.Key) > KeySize {
return errors.New("key is too large")
}
if len(c.Salt) > SaltSize {
// Smaller salt is okay: it will be padded with zeros.
return errors.New("salt is too large")
}
if len(c.Person) > PersonSize {
// Smaller personalization is okay: it will be padded with zeros.
return errors.New("personalization is too large")
}
if c.Tree != nil {
if c.Tree.Fanout == 1 {
return errors.New("fanout of 1 is not allowed in tree mode")
}
if c.Tree.MaxDepth < 2 {
return errors.New("incorrect tree depth")
}
if c.Tree.InnerHashSize < 1 || c.Tree.InnerHashSize > Size {
return errors.New("incorrect tree inner hash size")
}
}
return nil
}
// New returns a new hash.Hash configured with the given Config.
// Config can be nil, in which case the default one is used, calculating 64-byte digest.
// Returns non-nil error if Config contains invalid parameters.
func New(c *Config) (hash.Hash, error) {
if c == nil {
c = defaultConfig
} else {
if c.Size == 0 {
// Set default size if it's zero.
c.Size = Size
}
if err := verifyConfig(c); err != nil {
return nil, err
}
}
d := new(digest)
d.initialize(c)
return d, nil
}
// initialize initializes digest with the given
// config, which must be non-nil and verified.
func (d *digest) initialize(c *Config) {
// Create parameter block.
var p [BlockSize]byte
p[0] = c.Size
p[1] = uint8(len(c.Key))
if c.Salt != nil {
copy(p[32:], c.Salt)
}
if c.Person != nil {
copy(p[48:], c.Person)
}
if c.Tree != nil {
p[2] = c.Tree.Fanout
p[3] = c.Tree.MaxDepth
binary.LittleEndian.PutUint32(p[4:], c.Tree.LeafSize)
binary.LittleEndian.PutUint64(p[8:], c.Tree.NodeOffset)
p[16] = c.Tree.NodeDepth
p[17] = c.Tree.InnerHashSize
} else {
p[2] = 1
p[3] = 1
}
// Initialize.
d.size = c.Size
for i := 0; i < 8; i++ {
d.h[i] = iv[i] ^ binary.LittleEndian.Uint64(p[i*8:])
}
if c.Tree != nil && c.Tree.IsLastNode {
d.isLastNode = true
}
// Process key.
if c.Key != nil {
copy(d.paddedKey[:], c.Key)
d.Write(d.paddedKey[:])
d.isKeyed = true
}
// Save a copy of initialized state.
copy(d.ih[:], d.h[:])
}
// New512 returns a new hash.Hash computing the BLAKE2b 64-byte checksum.
func New512() hash.Hash {
d := new(digest)
d.initialize(defaultConfig)
return d
}
// New256 returns a new hash.Hash computing the BLAKE2b 32-byte checksum.
func New256() hash.Hash {
d := new(digest)
d.initialize(config256)
return d
}
// NewMAC returns a new hash.Hash computing BLAKE2b prefix-
// Message Authentication Code of the given size in bytes
// (up to 64) with the given key (up to 64 bytes in length).
func NewMAC(outBytes uint8, key []byte) hash.Hash {
d, err := New(&Config{Size: outBytes, Key: key})
if err != nil {
panic(err.Error())
}
return d
}
// Reset resets the state of digest to the initial state
// after configuration and keying.
func (d *digest) Reset() {
copy(d.h[:], d.ih[:])
d.t[0] = 0
d.t[1] = 0
d.f[0] = 0
d.f[1] = 0
d.nx = 0
if d.isKeyed {
d.Write(d.paddedKey[:])
}
}
// Size returns the digest size in bytes.
func (d *digest) Size() int { return int(d.size) }
// BlockSize returns the algorithm block size in bytes.
func (d *digest) BlockSize() int { return BlockSize }
func (d *digest) Write(p []byte) (nn int, err error) {
nn = len(p)
left := BlockSize - d.nx
if len(p) > left {
// Process buffer.
copy(d.x[d.nx:], p[:left])
p = p[left:]
compress(d, d.x[:])
d.nx = 0
}
// Process full blocks except for the last one.
if len(p) > BlockSize {
n := len(p) &^ (BlockSize - 1)
if n == len(p) {
n -= BlockSize
}
compress(d, p[:n])
p = p[n:]
}
// Fill buffer.
d.nx += copy(d.x[d.nx:], p)
return
}
// Sum returns the calculated checksum.
func (d *digest) Sum(in []byte) []byte {
// Make a copy of d so that caller can keep writing and summing.
d0 := *d
hash := d0.checkSum()
return append(in, hash[:d0.size]...)
}
func (d *digest) checkSum() [Size]byte {
// Do not create unnecessary copies of the key.
if d.isKeyed {
for i := 0; i < len(d.paddedKey); i++ {
d.paddedKey[i] = 0
}
}
dec := BlockSize - uint64(d.nx)
if d.t[0] < dec {
d.t[1]--
}
d.t[0] -= dec
// Pad buffer with zeros.
for i := d.nx; i < len(d.x); i++ {
d.x[i] = 0
}
// Set last block flag.
d.f[0] = 0xffffffffffffffff
if d.isLastNode {
d.f[1] = 0xffffffffffffffff
}
// Compress last block.
compress(d, d.x[:])
var out [Size]byte
j := 0
for _, s := range d.h[:(d.size-1)/8+1] {
out[j+0] = byte(s >> 0)
out[j+1] = byte(s >> 8)
out[j+2] = byte(s >> 16)
out[j+3] = byte(s >> 24)
out[j+4] = byte(s >> 32)
out[j+5] = byte(s >> 40)
out[j+6] = byte(s >> 48)
out[j+7] = byte(s >> 56)
j += 8
}
return out
}
// Sum512 returns a 64-byte BLAKE2b hash of data.
func Sum512(data []byte) [64]byte {
var d digest
d.initialize(defaultConfig)
d.Write(data)
return d.checkSum()
}
// Sum256 returns a 32-byte BLAKE2b hash of data.
func Sum256(data []byte) (out [32]byte) {
var d digest
d.initialize(config256)
d.Write(data)
sum := d.checkSum()
copy(out[:], sum[:32])
return
}

View File

@@ -0,0 +1,47 @@
//+build !noasm
//+build !appengine
/*
* Minio Cloud Storage, (C) 2016 Minio, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package blake2b
//go:noescape
func compressAVX2Loop(p []uint8, in, iv, t, f, shffle, out []uint64)
func compressAVX2(d *digest, p []uint8) {
var (
in [8]uint64
out [8]uint64
shffle [8]uint64
)
// vector for PSHUFB instruction
shffle[0] = 0x0201000706050403
shffle[1] = 0x0a09080f0e0d0c0b
shffle[2] = 0x0201000706050403
shffle[3] = 0x0a09080f0e0d0c0b
shffle[4] = 0x0100070605040302
shffle[5] = 0x09080f0e0d0c0b0a
shffle[6] = 0x0100070605040302
shffle[7] = 0x09080f0e0d0c0b0a
in[0], in[1], in[2], in[3], in[4], in[5], in[6], in[7] = d.h[0], d.h[1], d.h[2], d.h[3], d.h[4], d.h[5], d.h[6], d.h[7]
compressAVX2Loop(p, in[:], iv[:], d.t[:], d.f[:], shffle[:], out[:])
d.h[0], d.h[1], d.h[2], d.h[3], d.h[4], d.h[5], d.h[6], d.h[7] = out[0], out[1], out[2], out[3], out[4], out[5], out[6], out[7]
}

View File

@@ -0,0 +1,671 @@
//+build !noasm !appengine
//
// Minio Cloud Storage, (C) 2016 Minio, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
//
// Based on AVX2 implementation from https://github.com/sneves/blake2-avx2/blob/master/blake2b-common.h
//
// Use github.com/fwessels/asm2plan9s on this file to assemble instructions to their Plan9 equivalent
//
// Assembly code below essentially follows the ROUND macro (see blake2b-round.h) which is defined as:
// #define ROUND(r) \
// LOAD_MSG_ ##r ##_1(b0, b1); \
// G1(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h,b0,b1); \
// LOAD_MSG_ ##r ##_2(b0, b1); \
// G2(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h,b0,b1); \
// DIAGONALIZE(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h); \
// LOAD_MSG_ ##r ##_3(b0, b1); \
// G1(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h,b0,b1); \
// LOAD_MSG_ ##r ##_4(b0, b1); \
// G2(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h,b0,b1); \
// UNDIAGONALIZE(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h);
//
// as well as the go equivalent in https://github.com/dchest/blake2b/blob/master/block.go
//
// As in the macro, G1/G2 in the 1st and 2nd half are identical (so literal copy of assembly)
//
// Rounds are also the same, except for the loading of the message (and rounds 1 & 11 and
// rounds 2 & 12 are identical)
//
#define G1 \
\ // G1(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h,b0,b1);
BYTE $0xc5; BYTE $0xfd; BYTE $0xd4; BYTE $0xc4 \ // VPADDQ YMM0,YMM0,YMM4 /* v0 += m[0], v1 += m[2], v2 += m[4], v3 += m[6] */
BYTE $0xc5; BYTE $0xfd; BYTE $0xd4; BYTE $0xc1 \ // VPADDQ YMM0,YMM0,YMM1 /* v0 += v4, v1 += v5, v2 += v6, v3 += v7 */
BYTE $0xc5; BYTE $0xe5; BYTE $0xef; BYTE $0xd8 \ // VPXOR YMM3,YMM3,YMM0 /* v12 ^= v0, v13 ^= v1, v14 ^= v2, v15 ^= v3 */
BYTE $0xc5; BYTE $0xfd; BYTE $0x70; BYTE $0xdb; BYTE $0xb1 \ // VPSHUFD YMM3,YMM3,0xb1 /* v12 = v12<<(64-32) | v12>>32, v13 = */
BYTE $0xc5; BYTE $0xed; BYTE $0xd4; BYTE $0xd3 \ // VPADDQ YMM2,YMM2,YMM3 /* v8 += v12, v9 += v13, v10 += v14, v11 += v15 */
BYTE $0xc5; BYTE $0xf5; BYTE $0xef; BYTE $0xca \ // VPXOR YMM1,YMM1,YMM2 /* v4 ^= v8, v5 ^= v9, v6 ^= v10, v7 ^= v11 */
BYTE $0xc4; BYTE $0xe2; BYTE $0x75; BYTE $0x00; BYTE $0xce // VPSHUFB YMM1,YMM1,YMM6 /* v4 = v4<<(64-24) | v4>>24, ..., ..., v7 = v7<<(64-24) | v7>>24 */
#define G2 \
BYTE $0xc5; BYTE $0xfd; BYTE $0xd4; BYTE $0xc5 \ // VPADDQ YMM0,YMM0,YMM5 /* v0 += m[1], v1 += m[3], v2 += m[5], v3 += m[7] */
BYTE $0xc5; BYTE $0xfd; BYTE $0xd4; BYTE $0xc1 \ // VPADDQ YMM0,YMM0,YMM1 /* v0 += v4, v1 += v5, v2 += v6, v3 += v7 */
BYTE $0xc5; BYTE $0xe5; BYTE $0xef; BYTE $0xd8 \ // VPXOR YMM3,YMM3,YMM0 /* v12 ^= v0, v13 ^= v1, v14 ^= v2, v15 ^= v3 */
BYTE $0xc4; BYTE $0xe2; BYTE $0x65; BYTE $0x00; BYTE $0xdf \ // VPSHUFB YMM3,YMM3,YMM7 /* v12 = v12<<(64-16) | v12>>16, ..., ..., v15 = v15<<(64-16) | v15>>16 */
BYTE $0xc5; BYTE $0xed; BYTE $0xd4; BYTE $0xd3 \ // VPADDQ YMM2,YMM2,YMM3 /* v8 += v12, v9 += v13, v10 += v14, v11 += v15 */
BYTE $0xc5; BYTE $0xf5; BYTE $0xef; BYTE $0xca \ // VPXOR YMM1,YMM1,YMM2 /* v4 ^= v8, v5 ^= v9, v6 ^= v10, v7 ^= v11 */
BYTE $0xc5; BYTE $0x75; BYTE $0xd4; BYTE $0xf9 \ // VPADDQ YMM15,YMM1,YMM1 /* temp reg = reg*2 */
BYTE $0xc5; BYTE $0xf5; BYTE $0x73; BYTE $0xd1; BYTE $0x3f \ // VPSRLQ YMM1,YMM1,0x3f /* reg = reg>>63 */
BYTE $0xc4; BYTE $0xc1; BYTE $0x75; BYTE $0xef; BYTE $0xcf // VPXOR YMM1,YMM1,YMM15 /* ORed together: v4 = v4<<(64-63) | v4>>63, v5 = v5<<(64-63) | v5>>63 */
#define DIAGONALIZE \
BYTE $0xc4; BYTE $0xe3; BYTE $0xfd; BYTE $0x00; BYTE $0xdb \ // VPERMQ YMM3, YMM3, 0x93
BYTE $0x93 \
BYTE $0xc4; BYTE $0xe3; BYTE $0xfd; BYTE $0x00; BYTE $0xd2 \ // VPERMQ YMM2, YMM2, 0x4e
BYTE $0x4e \
BYTE $0xc4; BYTE $0xe3; BYTE $0xfd; BYTE $0x00; BYTE $0xc9 \ // VPERMQ YMM1, YMM1, 0x39
BYTE $0x39 \
// DO NOT DELETE -- macro delimiter (previous line extended)
#define UNDIAGONALIZE \
BYTE $0xc4; BYTE $0xe3; BYTE $0xfd; BYTE $0x00; BYTE $0xdb \ // VPERMQ YMM3, YMM3, 0x39
BYTE $0x39 \
BYTE $0xc4; BYTE $0xe3; BYTE $0xfd; BYTE $0x00; BYTE $0xd2 \ // VPERMQ YMM2, YMM2, 0x4e
BYTE $0x4e \
BYTE $0xc4; BYTE $0xe3; BYTE $0xfd; BYTE $0x00; BYTE $0xc9 \ // VPERMQ YMM1, YMM1, 0x93
BYTE $0x93 \
// DO NOT DELETE -- macro delimiter (previous line extended)
#define LOAD_SHUFFLE \
MOVQ shffle+120(FP), SI \ // SI: &shuffle
BYTE $0xc5; BYTE $0xfe; BYTE $0x6f; BYTE $0x36 \ // VMOVDQU YMM6, [rsi]
BYTE $0xc5; BYTE $0xfe; BYTE $0x6f; BYTE $0x7e; BYTE $0x20 // VMOVDQU YMM7, 32[rsi]
// func compressAVX2Loop(compressSSE(p []uint8, in, iv, t, f, shffle, out []uint64)
TEXT ·compressAVX2Loop(SB), 7, $0
// REGISTER USE
// Y0 - Y3: v0 - v15
// Y4 - Y5: m[0] - m[7]
// Y6 - Y7: shuffle value
// Y8 - Y9: temp registers
// Y10 -Y13: copy of full message
// Y15: temp register
// Load digest
MOVQ in+24(FP), SI // SI: &in
BYTE $0xc5; BYTE $0xfe; BYTE $0x6f; BYTE $0x06 // VMOVDQU YMM0, [rsi]
BYTE $0xc5; BYTE $0xfe; BYTE $0x6f; BYTE $0x4e; BYTE $0x20 // VMOVDQU YMM1, 32[rsi]
// Already store digest into &out (so we can reload it later generically)
MOVQ out+144(FP), SI // SI: &out
BYTE $0xc5; BYTE $0xfe; BYTE $0x7f; BYTE $0x06 // VMOVDQU [rsi], YMM0
BYTE $0xc5; BYTE $0xfe; BYTE $0x7f; BYTE $0x4e; BYTE $0x20 // VMOVDQU 32[rsi], YMM1
// Initialize message pointer and loop counter
MOVQ message+0(FP), DX // DX: &p (message)
MOVQ message_len+8(FP), R8 // R8: len(message)
SHRQ $7, R8 // len(message) / 128
CMPQ R8, $0
JEQ complete
loop:
// Increment counter
MOVQ t+72(FP), SI // SI: &t
MOVQ 0(SI), R9 //
ADDQ $128, R9 // /* d.t[0] += BlockSize */
MOVQ R9, 0(SI) //
CMPQ R9, $128 // /* if d.t[0] < BlockSize { */
JGE noincr //
MOVQ 8(SI), R9 //
ADDQ $1, R9 // /* d.t[1]++ */
MOVQ R9, 8(SI) //
noincr: // /* } */
// Load initialization vector
MOVQ iv+48(FP), SI // SI: &iv
BYTE $0xc5; BYTE $0xfe; BYTE $0x6f; BYTE $0x16 // VMOVDQU YMM2, [rsi]
BYTE $0xc5; BYTE $0xfe; BYTE $0x6f; BYTE $0x5e; BYTE $0x20 // VMOVDQU YMM3, 32[rsi]
MOVQ t+72(FP), SI // SI: &t
BYTE $0xc4; BYTE $0x63; BYTE $0x3d; BYTE $0x38; BYTE $0x06 // VINSERTI128 YMM8, YMM8, [rsi], 0 /* Y8 = t[0]+t[1] */
BYTE $0x00
MOVQ t+96(FP), SI // SI: &f
BYTE $0xc4; BYTE $0x63; BYTE $0x3d; BYTE $0x38; BYTE $0x06 // VINSERTI128 YMM8, YMM8, [rsi], 1 /* Y8 = t[0]+t[1]+f[0]+f[1] */
BYTE $0x01
BYTE $0xc4; BYTE $0xc1; BYTE $0x65; BYTE $0xef; BYTE $0xd8 // VPXOR YMM3,YMM3,YMM8 /* Y3 = Y3 ^ Y8 */
BYTE $0xc5; BYTE $0x7e; BYTE $0x6f; BYTE $0x12 // VMOVDQU YMM10, [rdx] /* Y10 = m[0]+ m[1]+ m[2]+ m[3] */
BYTE $0xc5; BYTE $0x7e; BYTE $0x6f; BYTE $0x5a; BYTE $0x20 // VMOVDQU YMM11, 32[rdx] /* Y11 = m[4]+ m[5]+ m[6]+ m[7] */
BYTE $0xc5; BYTE $0x7e; BYTE $0x6f; BYTE $0x62; BYTE $0x40 // VMOVDQU YMM12, 64[rdx] /* Y12 = m[8]+ m[9]+m[10]+m[11] */
BYTE $0xc5; BYTE $0x7e; BYTE $0x6f; BYTE $0x6a; BYTE $0x60 // VMOVDQU YMM13, 96[rdx] /* Y13 = m[12]+m[13]+m[14]+m[15] */
LOAD_SHUFFLE
///////////////////////////////////////////////////////////////////////////
// R O U N D 1
///////////////////////////////////////////////////////////////////////////
BYTE $0xc4; BYTE $0xc1; BYTE $0x2d; BYTE $0x6c; BYTE $0xe3 // VPUNPCKLQDQ YMM4, YMM10, YMM11 /* m[0], m[4], m[2], m[6] */
BYTE $0xc4; BYTE $0xc1; BYTE $0x2d; BYTE $0x6d; BYTE $0xeb // VPUNPCKHQDQ YMM5, YMM10, YMM11 /* m[1], m[5], m[3], m[7] */
BYTE $0xc4; BYTE $0xe3; BYTE $0xfd; BYTE $0x00; BYTE $0xe4 // VPERMQ YMM4, YMM4, 0xd8 /* 0x1101 1000 = 0xd8 */
BYTE $0xd8
BYTE $0xc4; BYTE $0xe3; BYTE $0xfd; BYTE $0x00; BYTE $0xed // VPERMQ YMM5, YMM5, 0xd8 /* 0x1101 1000 = 0xd8 */
BYTE $0xd8
G1
G2
DIAGONALIZE
BYTE $0xc4; BYTE $0xc1; BYTE $0x1d; BYTE $0x6c; BYTE $0xe5 // VPUNPCKLQDQ YMM4, YMM12, YMM13 /* m[8], m[12], m[10], m[14] */
BYTE $0xc4; BYTE $0xc1; BYTE $0x1d; BYTE $0x6d; BYTE $0xed // VPUNPCKHQDQ YMM5, YMM12, YMM13 /* m[9], m[13], m[11], m[15] */
BYTE $0xc4; BYTE $0xe3; BYTE $0xfd; BYTE $0x00; BYTE $0xe4 // VPERMQ YMM4, YMM4, 0xd8 /* 0x1101 1000 = 0xd8 */
BYTE $0xd8
BYTE $0xc4; BYTE $0xe3; BYTE $0xfd; BYTE $0x00; BYTE $0xed // VPERMQ YMM5, YMM5, 0xd8 /* 0x1101 1000 = 0xd8 */
BYTE $0xd8
G1
G2
UNDIAGONALIZE
///////////////////////////////////////////////////////////////////////////
// R O U N D 2
///////////////////////////////////////////////////////////////////////////
BYTE $0xc4; BYTE $0x41; BYTE $0x25; BYTE $0x6c; BYTE $0xc5 // VPUNPCKLQDQ YMM8, YMM11, YMM13 /* m[4], ____, ____, m[14] */
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc0 // VPERMQ YMM8, YMM8, 0x03 /* m[14], m[4], ____, ____ */ /* xxxx 0011 = 0x03 */
BYTE $0x03
BYTE $0xc4; BYTE $0x41; BYTE $0x1d; BYTE $0x6d; BYTE $0xcd // VPUNPCKHQDQ YMM9, YMM12, YMM13 /* m[9], m[13], ____, ____ */
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe1 // VPERM2I128 YMM4, YMM8, YMM9, 0x20 /* m[9], m[13], ____, ____ */ /* 0010 0000 = 0x20 */
BYTE $0x20
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc4 // VPERMQ YMM8, YMM12, 0x02 /* m[10], m[8], ____, ____ */ /* xxxx 0010 = 0x02 */
BYTE $0x02
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xcd // VPERMQ YMM9, YMM13, 0x30 /* ____, ____, m[15], ____ */ /* xx11 xxxx = 0x30 */
BYTE $0x30
BYTE $0xc4; BYTE $0x41; BYTE $0x35; BYTE $0x6c; BYTE $0xcb // VPUNPCKLQDQ YMM9, YMM9, YMM11 /* ____, ____, m[15], m[6] */
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe9 // VPERM2I128 YMM5, YMM8, YMM9, 0x30 /* m[9], m[13], m[15], m[6] */ /* 0011 0000 = 0x30 */
BYTE $0x30
G1
G2
DIAGONALIZE
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc2 // VPERMQ YMM8, YMM10, 0x01 /* m[1], m[0], ____, ____ */ /* xxxx 0001 = 0x01 */
BYTE $0x01
BYTE $0xc4; BYTE $0x41; BYTE $0x25; BYTE $0x6d; BYTE $0xcc // VPUNPCKHQDQ YMM9, YMM11, YMM12 /* m[5], ____, ____, m[11] */
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc9 // VPERMQ YMM9, YMM9, 0x03 /* m[11], m[5], ____, ____ */ /* xxxx 0011 = 0x03 */
BYTE $0x03
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe1 // VPERM2I128 YMM4, YMM8, YMM9, 0x20 /* m[1], m[0], m[11], m[5] */ /* 0010 0000 = 0x20 */
BYTE $0x20
BYTE $0xc4; BYTE $0x41; BYTE $0x2d; BYTE $0x6c; BYTE $0xc5 // VPUNPCKLQDQ YMM8, YMM10, YMM13 /* ___, m[12], m[2], ____ */
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc0 // VPERMQ YMM8, YMM8, 0x09 /* m[12], m[2], ____, ____ */ /* xxxx 1001 = 0x09 */
BYTE $0x09
BYTE $0xc4; BYTE $0x41; BYTE $0x25; BYTE $0x6d; BYTE $0xca // VPUNPCKHQDQ YMM9, YMM11, YMM10 /* ____, ____, m[7], m[3] */
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe9 // VPERM2I128 YMM5, YMM8, YMM9, 0x30 /* m[9], m[13], m[15], m[6] */ /* 0011 0000 = 0x30 */
BYTE $0x30
G1
G2
UNDIAGONALIZE
///////////////////////////////////////////////////////////////////////////
// R O U N D 3
///////////////////////////////////////////////////////////////////////////
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc5 // VPERMQ YMM8, YMM13, 0x00
BYTE $0x00
BYTE $0xc4; BYTE $0x41; BYTE $0x1d; BYTE $0x6d; BYTE $0xc0 // VPUNPCKHQDQ YMM8, YMM12, YMM8
BYTE $0xc4; BYTE $0x41; BYTE $0x25; BYTE $0x6d; BYTE $0xcd // VPUNPCKHQDQ YMM9, YMM11, YMM13
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc9 // VPERMQ YMM9, YMM9, 0x0c
BYTE $0x0c
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe1 // VPERM2I128 YMM4, YMM8, YMM9, 0x21
BYTE $0x21
BYTE $0xc4; BYTE $0x41; BYTE $0x1d; BYTE $0x6c; BYTE $0xc2 // VPUNPCKLQDQ YMM8, YMM12, YMM10
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xcd // VPERMQ YMM9, YMM13, 0x55
BYTE $0x55
BYTE $0xc4; BYTE $0x41; BYTE $0x2d; BYTE $0x6c; BYTE $0xc9 // VPUNPCKLQDQ YMM9, YMM10, YMM9
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe9 // VPERM2I128 YMM5, YMM8, YMM9, 0x30
BYTE $0x30
G1
G2
DIAGONALIZE
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc2 // VPERMQ YMM8, YMM10, 0xff
BYTE $0xff
BYTE $0xc4; BYTE $0x41; BYTE $0x1d; BYTE $0x6c; BYTE $0xc0 // VPUNPCKLQDQ YMM8, YMM12, YMM8
BYTE $0xc4; BYTE $0x41; BYTE $0x25; BYTE $0x6d; BYTE $0xcc // VPUNPCKHQDQ YMM9, YMM11, YMM12
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc9 // VPERMQ YMM9, YMM9, 0x60
BYTE $0x60
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe1 // VPERM2I128 YMM4, YMM8, YMM9, 0x31
BYTE $0x31
BYTE $0xc4; BYTE $0x41; BYTE $0x15; BYTE $0x6c; BYTE $0xc3 // VPUNPCKLQDQ YMM8, YMM13, YMM11
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xcb // VPERMQ YMM9, YMM11, 0x00
BYTE $0x00
BYTE $0xc4; BYTE $0x41; BYTE $0x2d; BYTE $0x6d; BYTE $0xc9 // VPUNPCKHQDQ YMM9, YMM10, YMM9
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe9 // VPERM2I128 YMM5, YMM8, YMM9, 0x21
BYTE $0x21
G1
G2
UNDIAGONALIZE
///////////////////////////////////////////////////////////////////////////
// R O U N D 4
///////////////////////////////////////////////////////////////////////////
BYTE $0xc4; BYTE $0x41; BYTE $0x25; BYTE $0x6d; BYTE $0xc2 // VPUNPCKHQDQ YMM8, YMM11, YMM10
BYTE $0xc4; BYTE $0x41; BYTE $0x15; BYTE $0x6d; BYTE $0xcc // VPUNPCKHQDQ YMM9, YMM13, YMM12
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc9 // VPERMQ YMM9, YMM9, 0x0c
BYTE $0x0c
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe1 // VPERM2I128 YMM4, YMM8, YMM9, 0x21
BYTE $0x21
BYTE $0xc4; BYTE $0x41; BYTE $0x1d; BYTE $0x6d; BYTE $0xc2 // VPUNPCKHQDQ YMM8, YMM12, YMM10
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xcd // VPERMQ YMM9, YMM13, 0x08
BYTE $0x08
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe9 // VPERM2I128 YMM5, YMM8, YMM9, 0x20
BYTE $0x20
G1
G2
DIAGONALIZE
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc3 // VPERMQ YMM8, YMM11, 0x55
BYTE $0x55
BYTE $0xc4; BYTE $0x41; BYTE $0x2d; BYTE $0x6c; BYTE $0xc0 // VPUNPCKLQDQ YMM8, YMM10, YMM8
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xcd // VPERMQ YMM9, YMM13, 0xff
BYTE $0xff
BYTE $0xc4; BYTE $0x41; BYTE $0x25; BYTE $0x6c; BYTE $0xc9 // VPUNPCKLQDQ YMM9, YMM11, YMM9
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe1 // VPERM2I128 YMM4, YMM8, YMM9, 0x21
BYTE $0x21
BYTE $0xc4; BYTE $0x41; BYTE $0x25; BYTE $0x6c; BYTE $0xc4 // VPUNPCKLQDQ YMM8, YMM11, YMM12
BYTE $0xc4; BYTE $0x41; BYTE $0x2d; BYTE $0x6c; BYTE $0xcc // VPUNPCKLQDQ YMM9, YMM10, YMM12
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe9 // VPERM2I128 YMM5, YMM8, YMM9, 0x21
BYTE $0x21
G1
G2
UNDIAGONALIZE
///////////////////////////////////////////////////////////////////////////
// R O U N D 5
///////////////////////////////////////////////////////////////////////////
BYTE $0xc4; BYTE $0x41; BYTE $0x1d; BYTE $0x6d; BYTE $0xc3 // VPUNPCKHQDQ YMM8, YMM12, YMM11
BYTE $0xc4; BYTE $0x41; BYTE $0x2d; BYTE $0x6c; BYTE $0xcc // VPUNPCKLQDQ YMM9, YMM10, YMM12
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe1 // VPERM2I128 YMM4, YMM8, YMM9, 0x30
BYTE $0x30
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc3 // VPERMQ YMM8, YMM11, 0xff
BYTE $0xff
BYTE $0xc4; BYTE $0x41; BYTE $0x2d; BYTE $0x6c; BYTE $0xc0 // VPUNPCKLQDQ YMM8, YMM10, YMM8
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xcd // VPERMQ YMM9, YMM13, 0xff
BYTE $0xff
BYTE $0xc4; BYTE $0x41; BYTE $0x25; BYTE $0x6c; BYTE $0xc9 // VPUNPCKLQDQ YMM9, YMM11, YMM9
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe9 // VPERM2I128 YMM5, YMM8, YMM9, 0x20
BYTE $0x20
G1
G2
DIAGONALIZE
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc4 // VPERMQ YMM8, YMM12, 0xff
BYTE $0xff
BYTE $0xc4; BYTE $0x41; BYTE $0x15; BYTE $0x6c; BYTE $0xc0 // VPUNPCKLQDQ YMM8, YMM13, YMM8
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xca // VPERMQ YMM9, YMM10, 0xff
BYTE $0xff
BYTE $0xc4; BYTE $0x41; BYTE $0x25; BYTE $0x6c; BYTE $0xc9 // VPUNPCKLQDQ YMM9, YMM11, YMM9
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe1 // VPERM2I128 YMM4, YMM8, YMM9, 0x31
BYTE $0x31
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc5 // VPERMQ YMM8, YMM13, 0x00
BYTE $0x00
BYTE $0xc4; BYTE $0x41; BYTE $0x2d; BYTE $0x6d; BYTE $0xc0 // VPUNPCKHQDQ YMM8, YMM10, YMM8
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xcd // VPERMQ YMM9, YMM13, 0x55
BYTE $0x55
BYTE $0xc4; BYTE $0x41; BYTE $0x1d; BYTE $0x6c; BYTE $0xc9 // VPUNPCKLQDQ YMM9, YMM12, YMM9
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe9 // VPERM2I128 YMM5, YMM8, YMM9, 0x20
BYTE $0x20
G1
G2
UNDIAGONALIZE
///////////////////////////////////////////////////////////////////////////
// R O U N D 6
///////////////////////////////////////////////////////////////////////////
BYTE $0xc4; BYTE $0x41; BYTE $0x2d; BYTE $0x6c; BYTE $0xc3 // VPUNPCKLQDQ YMM8, YMM10, YMM11
BYTE $0xc4; BYTE $0x41; BYTE $0x2d; BYTE $0x6c; BYTE $0xcc // VPUNPCKLQDQ YMM9, YMM10, YMM12
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe1 // VPERM2I128 YMM4, YMM8, YMM9, 0x21
BYTE $0x21
BYTE $0xc4; BYTE $0x41; BYTE $0x15; BYTE $0x6c; BYTE $0xc4 // VPUNPCKLQDQ YMM8, YMM13, YMM12
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc0 // VPERMQ YMM8, YMM8, 0x0c
BYTE $0x0c
BYTE $0xc4; BYTE $0x41; BYTE $0x1d; BYTE $0x6d; BYTE $0xca // VPUNPCKHQDQ YMM9, YMM12, YMM10
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe9 // VPERM2I128 YMM5, YMM8, YMM9, 0x30
BYTE $0x30
G1
G2
DIAGONALIZE
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc3 // VPERMQ YMM8, YMM11, 0x0c
BYTE $0x0c
BYTE $0xc4; BYTE $0x41; BYTE $0x15; BYTE $0x6d; BYTE $0xca // VPUNPCKHQDQ YMM9, YMM13, YMM10
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc9 // VPERMQ YMM9, YMM9, 0x60
BYTE $0x60
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe1 // VPERM2I128 YMM4, YMM8, YMM9, 0x30
BYTE $0x30
BYTE $0xc4; BYTE $0x41; BYTE $0x15; BYTE $0x6d; BYTE $0xc3 // VPUNPCKHQDQ YMM8, YMM13, YMM11
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xcc // VPERMQ YMM9, YMM12, 0x55
BYTE $0x55
BYTE $0xc4; BYTE $0x41; BYTE $0x15; BYTE $0x6c; BYTE $0xc9 // VPUNPCKLQDQ YMM9, YMM13, YMM9
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe9 // VPERM2I128 YMM5, YMM8, YMM9, 0x30
BYTE $0x30
G1
G2
UNDIAGONALIZE
///////////////////////////////////////////////////////////////////////////
// R O U N D 7
///////////////////////////////////////////////////////////////////////////
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc2 // VPERMQ YMM8, YMM10, 0x55
BYTE $0x55
BYTE $0xc4; BYTE $0x41; BYTE $0x15; BYTE $0x6c; BYTE $0xc0 // VPUNPCKLQDQ YMM8, YMM13, YMM8
BYTE $0xc4; BYTE $0x41; BYTE $0x15; BYTE $0x6c; BYTE $0xcb // VPUNPCKLQDQ YMM9, YMM13, YMM11
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc9 // VPERMQ YMM9, YMM9, 0x60
BYTE $0x60
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe1 // VPERM2I128 YMM4, YMM8, YMM9, 0x30
BYTE $0x30
BYTE $0xc4; BYTE $0x41; BYTE $0x25; BYTE $0x6d; BYTE $0xc5 // VPUNPCKHQDQ YMM8, YMM11, YMM13
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc0 // VPERMQ YMM8, YMM8, 0x0c
BYTE $0x0c
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xcc // VPERMQ YMM9, YMM12, 0xaa
BYTE $0xaa
BYTE $0xc4; BYTE $0x41; BYTE $0x15; BYTE $0x6d; BYTE $0xc9 // VPUNPCKHQDQ YMM9, YMM13, YMM9
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe9 // VPERM2I128 YMM5, YMM8, YMM9, 0x20
BYTE $0x20
G1
G2
DIAGONALIZE
BYTE $0xc4; BYTE $0x41; BYTE $0x2d; BYTE $0x6c; BYTE $0xc3 // VPUNPCKLQDQ YMM8, YMM10, YMM11
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc0 // VPERMQ YMM8, YMM8, 0x0c
BYTE $0x0c
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xcc // VPERMQ YMM9, YMM12, 0x01
BYTE $0x01
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe1 // VPERM2I128 YMM4, YMM8, YMM9, 0x20
BYTE $0x20
BYTE $0xc4; BYTE $0x41; BYTE $0x25; BYTE $0x6d; BYTE $0xc2 // VPUNPCKHQDQ YMM8, YMM11, YMM10
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xcc // VPERMQ YMM9, YMM12, 0xff
BYTE $0xff
BYTE $0xc4; BYTE $0x41; BYTE $0x2d; BYTE $0x6c; BYTE $0xc9 // VPUNPCKLQDQ YMM9, YMM10, YMM9
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe9 // VPERM2I128 YMM5, YMM8, YMM9, 0x31
BYTE $0x31
G1
G2
UNDIAGONALIZE
///////////////////////////////////////////////////////////////////////////
// R O U N D 8
///////////////////////////////////////////////////////////////////////////
BYTE $0xc4; BYTE $0x41; BYTE $0x15; BYTE $0x6d; BYTE $0xc3 // VPUNPCKHQDQ YMM8, YMM13, YMM11
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc0 // VPERMQ YMM8, YMM8, 0x0c
BYTE $0x0c
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xca // VPERMQ YMM9, YMM10, 0xff
BYTE $0xff
BYTE $0xc4; BYTE $0x41; BYTE $0x15; BYTE $0x6c; BYTE $0xc9 // VPUNPCKLQDQ YMM9, YMM13, YMM9
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe1 // VPERM2I128 YMM4, YMM8, YMM9, 0x20
BYTE $0x20
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc5 // VPERMQ YMM8, YMM13, 0xaa
BYTE $0xaa
BYTE $0xc4; BYTE $0x41; BYTE $0x1d; BYTE $0x6d; BYTE $0xc0 // VPUNPCKHQDQ YMM8, YMM12, YMM8
BYTE $0xc4; BYTE $0x41; BYTE $0x2d; BYTE $0x6d; BYTE $0xcc // VPUNPCKHQDQ YMM9, YMM10, YMM12
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe9 // VPERM2I128 YMM5, YMM8, YMM9, 0x21
BYTE $0x21
G1
G2
DIAGONALIZE
BYTE $0xc4; BYTE $0x41; BYTE $0x25; BYTE $0x6d; BYTE $0xc5 // VPUNPCKHQDQ YMM8, YMM11, YMM13
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc0 // VPERMQ YMM8, YMM8, 0x0c
BYTE $0x0c
BYTE $0xc4; BYTE $0x41; BYTE $0x1d; BYTE $0x6c; BYTE $0xca // VPUNPCKLQDQ YMM9, YMM12, YMM10
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc9 // VPERMQ YMM9, YMM9, 0x0c
BYTE $0x0c
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe1 // VPERM2I128 YMM4, YMM8, YMM9, 0x20
BYTE $0x20
BYTE $0xc4; BYTE $0x41; BYTE $0x2d; BYTE $0x6c; BYTE $0xc3 // VPUNPCKLQDQ YMM8, YMM10, YMM11
BYTE $0xc4; BYTE $0x41; BYTE $0x25; BYTE $0x6c; BYTE $0xcc // VPUNPCKLQDQ YMM9, YMM11, YMM12
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe9 // VPERM2I128 YMM5, YMM8, YMM9, 0x30
BYTE $0x30
G1
G2
UNDIAGONALIZE
///////////////////////////////////////////////////////////////////////////
// R O U N D 9
///////////////////////////////////////////////////////////////////////////
BYTE $0xc4; BYTE $0x41; BYTE $0x25; BYTE $0x6c; BYTE $0xc5 // VPUNPCKLQDQ YMM8, YMM11, YMM13
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xca // VPERMQ YMM9, YMM10, 0x00
BYTE $0x00
BYTE $0xc4; BYTE $0x41; BYTE $0x1d; BYTE $0x6d; BYTE $0xc9 // VPUNPCKHQDQ YMM9, YMM12, YMM9
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe1 // VPERM2I128 YMM4, YMM8, YMM9, 0x31
BYTE $0x31
BYTE $0xc4; BYTE $0x41; BYTE $0x15; BYTE $0x6d; BYTE $0xc4 // VPUNPCKHQDQ YMM8, YMM13, YMM12
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc0 // VPERMQ YMM8, YMM8, 0x60
BYTE $0x60
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xcc // VPERMQ YMM9, YMM12, 0x00
BYTE $0x00
BYTE $0xc4; BYTE $0x41; BYTE $0x2d; BYTE $0x6d; BYTE $0xc9 // VPUNPCKHQDQ YMM9, YMM10, YMM9
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe9 // VPERM2I128 YMM5, YMM8, YMM9, 0x31
BYTE $0x31
G1
G2
DIAGONALIZE
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xcc // VPERMQ YMM9, YMM12, 0xaa
BYTE $0xaa
BYTE $0xc4; BYTE $0x41; BYTE $0x2d; BYTE $0x6d; BYTE $0xc9 // VPUNPCKHQDQ YMM9, YMM10, YMM9
BYTE $0xc4; BYTE $0xc3; BYTE $0x15; BYTE $0x46; BYTE $0xe1 // VPERM2I128 YMM4, YMM13, YMM9, 0x20
BYTE $0x20
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc3 // VPERMQ YMM8, YMM11, 0xff
BYTE $0xff
BYTE $0xc4; BYTE $0x41; BYTE $0x2d; BYTE $0x6c; BYTE $0xc0 // VPUNPCKLQDQ YMM8, YMM10, YMM8
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xcb // VPERMQ YMM9, YMM11, 0x04
BYTE $0x04
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe9 // VPERM2I128 YMM5, YMM8, YMM9, 0x21
BYTE $0x21
G1
G2
UNDIAGONALIZE
///////////////////////////////////////////////////////////////////////////
// R O U N D 10
///////////////////////////////////////////////////////////////////////////
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc4 // VPERMQ YMM8, YMM12, 0x20
BYTE $0x20
BYTE $0xc4; BYTE $0x41; BYTE $0x25; BYTE $0x6d; BYTE $0xca // VPUNPCKHQDQ YMM9, YMM11, YMM10
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc9 // VPERMQ YMM9, YMM9, 0x60
BYTE $0x60
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe1 // VPERM2I128 YMM4, YMM8, YMM9, 0x31
BYTE $0x31
BYTE $0xc4; BYTE $0x41; BYTE $0x2d; BYTE $0x6c; BYTE $0xc3 // VPUNPCKLQDQ YMM8, YMM10, YMM11
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc0 // VPERMQ YMM8, YMM8, 0x60
BYTE $0x60
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xcb // VPERMQ YMM9, YMM11, 0x60
BYTE $0x60
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe9 // VPERM2I128 YMM5, YMM8, YMM9, 0x31
BYTE $0x31
G1
G2
DIAGONALIZE
BYTE $0xc4; BYTE $0x41; BYTE $0x15; BYTE $0x6d; BYTE $0xc4 // VPUNPCKHQDQ YMM8, YMM13, YMM12
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc0 // VPERMQ YMM8, YMM8, 0x60
BYTE $0x60
BYTE $0xc4; BYTE $0x41; BYTE $0x2d; BYTE $0x6d; BYTE $0xcd // VPUNPCKHQDQ YMM9, YMM10, YMM13
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc9 // VPERMQ YMM9, YMM9, 0x60
BYTE $0x60
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe1 // VPERM2I128 YMM4, YMM8, YMM9, 0x31
BYTE $0x31
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc5 // VPERMQ YMM8, YMM13, 0xaa
BYTE $0xaa
BYTE $0xc4; BYTE $0x41; BYTE $0x1d; BYTE $0x6d; BYTE $0xc0 // VPUNPCKHQDQ YMM8, YMM12, YMM8
BYTE $0xc4; BYTE $0x41; BYTE $0x15; BYTE $0x6c; BYTE $0xca // VPUNPCKLQDQ YMM9, YMM13, YMM10
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe9 // VPERM2I128 YMM5, YMM8, YMM9, 0x21
BYTE $0x21
G1
G2
UNDIAGONALIZE
///////////////////////////////////////////////////////////////////////////
// R O U N D 1 1
///////////////////////////////////////////////////////////////////////////
BYTE $0xc4; BYTE $0xc1; BYTE $0x2d; BYTE $0x6c; BYTE $0xe3 // VPUNPCKLQDQ YMM4, YMM10, YMM11 /* m[0], m[4], m[2], m[6] */
BYTE $0xc4; BYTE $0xc1; BYTE $0x2d; BYTE $0x6d; BYTE $0xeb // VPUNPCKHQDQ YMM5, YMM10, YMM11 /* m[1], m[5], m[3], m[7] */
BYTE $0xc4; BYTE $0xe3; BYTE $0xfd; BYTE $0x00; BYTE $0xe4 // VPERMQ YMM4, YMM4, 0xd8 /* 0x1101 1000 = 0xd8 */
BYTE $0xd8
BYTE $0xc4; BYTE $0xe3; BYTE $0xfd; BYTE $0x00; BYTE $0xed // VPERMQ YMM5, YMM5, 0xd8 /* 0x1101 1000 = 0xd8 */
BYTE $0xd8
G1
G2
DIAGONALIZE
BYTE $0xc4; BYTE $0xc1; BYTE $0x1d; BYTE $0x6c; BYTE $0xe5 // VPUNPCKLQDQ YMM4, YMM12, YMM13 /* m[8], m[12], m[10], m[14] */
BYTE $0xc4; BYTE $0xc1; BYTE $0x1d; BYTE $0x6d; BYTE $0xed // VPUNPCKHQDQ YMM5, YMM12, YMM13 /* m[9], m[13], m[11], m[15] */
BYTE $0xc4; BYTE $0xe3; BYTE $0xfd; BYTE $0x00; BYTE $0xe4 // VPERMQ YMM4, YMM4, 0xd8 /* 0x1101 1000 = 0xd8 */
BYTE $0xd8
BYTE $0xc4; BYTE $0xe3; BYTE $0xfd; BYTE $0x00; BYTE $0xed // VPERMQ YMM5, YMM5, 0xd8 /* 0x1101 1000 = 0xd8 */
BYTE $0xd8
G1
G2
UNDIAGONALIZE
///////////////////////////////////////////////////////////////////////////
// R O U N D 1 2
///////////////////////////////////////////////////////////////////////////
BYTE $0xc4; BYTE $0x41; BYTE $0x25; BYTE $0x6c; BYTE $0xc5 // VPUNPCKLQDQ YMM8, YMM11, YMM13 /* m[4], ____, ____, m[14] */
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc0 // VPERMQ YMM8, YMM8, 0x03 /* m[14], m[4], ____, ____ */ /* xxxx 0011 = 0x03 */
BYTE $0x03
BYTE $0xc4; BYTE $0x41; BYTE $0x1d; BYTE $0x6d; BYTE $0xcd // VPUNPCKHQDQ YMM9, YMM12, YMM13 /* m[9], m[13], ____, ____ */
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe1 // VPERM2I128 YMM4, YMM8, YMM9, 0x20 /* m[9], m[13], ____, ____ */ /* 0010 0000 = 0x20 */
BYTE $0x20
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc4 // VPERMQ YMM8, YMM12, 0x02 /* m[10], m[8], ____, ____ */ /* xxxx 0010 = 0x02 */
BYTE $0x02
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xcd // VPERMQ YMM9, YMM13, 0x30 /* ____, ____, m[15], ____ */ /* xx11 xxxx = 0x30 */
BYTE $0x30
BYTE $0xc4; BYTE $0x41; BYTE $0x35; BYTE $0x6c; BYTE $0xcb // VPUNPCKLQDQ YMM9, YMM9, YMM11 /* ____, ____, m[15], m[6] */
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe9 // VPERM2I128 YMM5, YMM8, YMM9, 0x30 /* m[9], m[13], m[15], m[6] */ /* 0011 0000 = 0x30 */
BYTE $0x30
G1
G2
DIAGONALIZE
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc2 // VPERMQ YMM8, YMM10, 0x01 /* m[1], m[0], ____, ____ */ /* xxxx 0001 = 0x01 */
BYTE $0x01
BYTE $0xc4; BYTE $0x41; BYTE $0x25; BYTE $0x6d; BYTE $0xcc // VPUNPCKHQDQ YMM9, YMM11, YMM12 /* m[5], ____, ____, m[11] */
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc9 // VPERMQ YMM9, YMM9, 0x03 /* m[11], m[5], ____, ____ */ /* xxxx 0011 = 0x03 */
BYTE $0x03
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe1 // VPERM2I128 YMM4, YMM8, YMM9, 0x20 /* m[1], m[0], m[11], m[5] */ /* 0010 0000 = 0x20 */
BYTE $0x20
BYTE $0xc4; BYTE $0x41; BYTE $0x2d; BYTE $0x6c; BYTE $0xc5 // VPUNPCKLQDQ YMM8, YMM10, YMM13 /* ___, m[12], m[2], ____ */
BYTE $0xc4; BYTE $0x43; BYTE $0xfd; BYTE $0x00; BYTE $0xc0 // VPERMQ YMM8, YMM8, 0x09 /* m[12], m[2], ____, ____ */ /* xxxx 1001 = 0x09 */
BYTE $0x09
BYTE $0xc4; BYTE $0x41; BYTE $0x25; BYTE $0x6d; BYTE $0xca // VPUNPCKHQDQ YMM9, YMM11, YMM10 /* ____, ____, m[7], m[3] */
BYTE $0xc4; BYTE $0xc3; BYTE $0x3d; BYTE $0x46; BYTE $0xe9 // VPERM2I128 YMM5, YMM8, YMM9, 0x30 /* m[9], m[13], m[15], m[6] */ /* 0011 0000 = 0x30 */
BYTE $0x30
G1
G2
UNDIAGONALIZE
// Reload digest (most current value store in &out)
MOVQ out+144(FP), SI // SI: &in
BYTE $0xc5; BYTE $0x7e; BYTE $0x6f; BYTE $0x26 // VMOVDQU YMM12, [rsi]
BYTE $0xc5; BYTE $0x7e; BYTE $0x6f; BYTE $0x6e; BYTE $0x20 // VMOVDQU YMM13, 32[rsi]
BYTE $0xc5; BYTE $0xfd; BYTE $0xef; BYTE $0xc2 // VPXOR YMM0,YMM0,YMM2 /* X0 = X0 ^ X4, X1 = X1 ^ X5 */
BYTE $0xc4; BYTE $0xc1; BYTE $0x7d; BYTE $0xef; BYTE $0xc4 // VPXOR YMM0,YMM0,YMM12 /* X0 = X0 ^ X12, X1 = X1 ^ X13 */
BYTE $0xc5; BYTE $0xf5; BYTE $0xef; BYTE $0xcb // VPXOR YMM1,YMM1,YMM3 /* X2 = X2 ^ X6, X3 = X3 ^ X7 */
BYTE $0xc4; BYTE $0xc1; BYTE $0x75; BYTE $0xef; BYTE $0xcd // VPXOR YMM1,YMM1,YMM13 /* X2 = X2 ^ X14, X3 = X3 ^ X15 */
// Store digest into &out
MOVQ out+144(FP), SI // SI: &out
BYTE $0xc5; BYTE $0xfe; BYTE $0x7f; BYTE $0x06 // VMOVDQU [rsi], YMM0
BYTE $0xc5; BYTE $0xfe; BYTE $0x7f; BYTE $0x4e; BYTE $0x20 // VMOVDQU 32[rsi], YMM1
// Increment message pointer and check if there's more to do
ADDQ $128, DX // message += 128
SUBQ $1, R8
JNZ loop
complete:
BYTE $0xc5; BYTE $0xf8; BYTE $0x77 // VZEROUPPER /* Prevent further context switches */
RET

View File

@@ -0,0 +1,41 @@
//+build !noasm
//+build !appengine
/*
* Minio Cloud Storage, (C) 2016 Minio, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package blake2b
//go:noescape
func blockAVXLoop(p []uint8, in, iv, t, f, shffle, out []uint64)
func compressAVX(d *digest, p []uint8) {
var (
in [8]uint64
out [8]uint64
shffle [2]uint64
)
// vector for PSHUFB instruction
shffle[0] = 0x0201000706050403
shffle[1] = 0x0a09080f0e0d0c0b
in[0], in[1], in[2], in[3], in[4], in[5], in[6], in[7] = d.h[0], d.h[1], d.h[2], d.h[3], d.h[4], d.h[5], d.h[6], d.h[7]
blockAVXLoop(p, in[:], iv[:], d.t[:], d.f[:], shffle[:], out[:])
d.h[0], d.h[1], d.h[2], d.h[3], d.h[4], d.h[5], d.h[6], d.h[7] = out[0], out[1], out[2], out[3], out[4], out[5], out[6], out[7]
}

View File

@@ -0,0 +1,682 @@
//+build !noasm !appengine
//
// Minio Cloud Storage, (C) 2016 Minio, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
//
// Based on SSE implementation from https://github.com/BLAKE2/BLAKE2/blob/master/sse/blake2b.c
//
// Use github.com/fwessels/asm2plan9s on this file to assemble instructions to their Plan9 equivalent
//
// Assembly code below essentially follows the ROUND macro (see blake2b-round.h) which is defined as:
// #define ROUND(r) \
// LOAD_MSG_ ##r ##_1(b0, b1); \
// G1(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h,b0,b1); \
// LOAD_MSG_ ##r ##_2(b0, b1); \
// G2(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h,b0,b1); \
// DIAGONALIZE(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h); \
// LOAD_MSG_ ##r ##_3(b0, b1); \
// G1(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h,b0,b1); \
// LOAD_MSG_ ##r ##_4(b0, b1); \
// G2(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h,b0,b1); \
// UNDIAGONALIZE(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h);
//
// as well as the go equivalent in https://github.com/dchest/blake2b/blob/master/block.go
//
// As in the macro, G1/G2 in the 1st and 2nd half are identical (so literal copy of assembly)
//
// Rounds are also the same, except for the loading of the message (and rounds 1 & 11 and
// rounds 2 & 12 are identical)
//
#define G1 \
\ // G1(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h,b0,b1);
LONG $0xd479c1c4; BYTE $0xc0 \ // VPADDQ XMM0,XMM0,XMM8 /* v0 += m[0], v1 += m[2] */
LONG $0xd471c1c4; BYTE $0xc9 \ // VPADDQ XMM1,XMM1,XMM9 /* v2 += m[4], v3 += m[6] */
LONG $0xc2d4f9c5 \ // VPADDQ XMM0,XMM0,XMM2 /* v0 += v4, v1 += v5 */
LONG $0xcbd4f1c5 \ // VPADDQ XMM1,XMM1,XMM3 /* v2 += v6, v3 += v7 */
LONG $0xf0efc9c5 \ // VPXOR XMM6,XMM6,XMM0 /* v12 ^= v0, v13 ^= v1 */
LONG $0xf9efc1c5 \ // VPXOR XMM7,XMM7,XMM1 /* v14 ^= v2, v15 ^= v3 */
LONG $0xf670f9c5; BYTE $0xb1 \ // VPSHUFD XMM6,XMM6,0xb1 /* v12 = v12<<(64-32) | v12>>32, v13 = v13<<(64-32) | v13>>32 */
LONG $0xff70f9c5; BYTE $0xb1 \ // VPSHUFD XMM7,XMM7,0xb1 /* v14 = v14<<(64-32) | v14>>32, v15 = v15<<(64-32) | v15>>32 */
LONG $0xe6d4d9c5 \ // VPADDQ XMM4,XMM4,XMM6 /* v8 += v12, v9 += v13 */
LONG $0xefd4d1c5 \ // VPADDQ XMM5,XMM5,XMM7 /* v10 += v14, v11 += v15 */
LONG $0xd4efe9c5 \ // VPXOR XMM2,XMM2,XMM4 /* v4 ^= v8, v5 ^= v9 */
LONG $0xddefe1c5 \ // VPXOR XMM3,XMM3,XMM5 /* v6 ^= v10, v7 ^= v11 */
LONG $0x0069c2c4; BYTE $0xd4 \ // VPSHUFB XMM2,XMM2,XMM12 /* v4 = v4<<(64-24) | v4>>24, v5 = v5<<(64-24) | v5>>24 */
LONG $0x0061c2c4; BYTE $0xdc // VPSHUFB XMM3,XMM3,XMM12 /* v6 = v6<<(64-24) | v6>>24, v7 = v7<<(64-24) | v7>>24 */
#define G2 \
\ // G2(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h,b0,b1);
LONG $0xd479c1c4; BYTE $0xc2 \ // VPADDQ XMM0,XMM0,XMM10 /* v0 += m[1], v1 += m[3] */
LONG $0xd471c1c4; BYTE $0xcb \ // VPADDQ XMM1,XMM1,XMM11 /* v2 += m[5], v3 += m[7] */
LONG $0xc2d4f9c5 \ // VPADDQ XMM0,XMM0,XMM2 /* v0 += v4, v1 += v5 */
LONG $0xcbd4f1c5 \ // VPADDQ XMM1,XMM1,XMM3 /* v2 += v6, v3 += v7 */
LONG $0xf0efc9c5 \ // VPXOR XMM6,XMM6,XMM0 /* v12 ^= v0, v13 ^= v1 */
LONG $0xf9efc1c5 \ // VPXOR XMM7,XMM7,XMM1 /* v14 ^= v2, v15 ^= v3 */
LONG $0xf670fbc5; BYTE $0x39 \ // VPSHUFLW XMM6,XMM6,0x39 /* combined with next ... */
LONG $0xf670fac5; BYTE $0x39 \ // VPSHUFHW XMM6,XMM6,0x39 /* v12 = v12<<(64-16) | v12>>16, v13 = v13<<(64-16) | v13>>16 */
LONG $0xff70fbc5; BYTE $0x39 \ // VPSHUFLW XMM7,XMM7,0x39 /* combined with next ... */
LONG $0xff70fac5; BYTE $0x39 \ // VPSHUFHW XMM7,XMM7,0x39 /* v14 = v14<<(64-16) | v14>>16, v15 = v15<<(64-16) | v15>>16 */
LONG $0xe6d4d9c5 \ // VPADDQ XMM4,XMM4,XMM6 /* v8 += v12, v9 += v13 */
LONG $0xefd4d1c5 \ // VPADDQ XMM5,XMM5,XMM7 /* v10 += v14, v11 += v15 */
LONG $0xd4efe9c5 \ // VPXOR XMM2,XMM2,XMM4 /* v4 ^= v8, v5 ^= v9 */
LONG $0xddefe1c5 \ // VPXOR XMM3,XMM3,XMM5 /* v6 ^= v10, v7 ^= v11 */
LONG $0xfad469c5 \ // VPADDQ XMM15,XMM2,XMM2 /* temp reg = reg*2 */
LONG $0xd273e9c5; BYTE $0x3f \ // VPSRLQ XMM2,XMM2,0x3f /* reg = reg>>63 */
LONG $0xef69c1c4; BYTE $0xd7 \ // VPXOR XMM2,XMM2,XMM15 /* ORed together: v4 = v4<<(64-63) | v4>>63, v5 = v5<<(64-63) | v5>>63 */
LONG $0xfbd461c5 \ // VPADDQ XMM15,XMM3,XMM3 /* temp reg = reg*2 */
LONG $0xd373e1c5; BYTE $0x3f \ // VPSRLQ XMM3,XMM3,0x3f /* reg = reg>>63 */
LONG $0xef61c1c4; BYTE $0xdf // VPXOR XMM3,XMM3,XMM15 /* ORed together: v6 = v6<<(64-63) | v6>>63, v7 = v7<<(64-63) | v7>>63 */
#define DIAGONALIZE \
\ // DIAGONALIZE(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h);
MOVOU X6, X13 \ /* t0 = row4l;\ */
MOVOU X2, X14 \ /* t1 = row2l;\ */
MOVOU X4, X6 \ /* row4l = row3l;\ */
MOVOU X5, X4 \ /* row3l = row3h;\ */
MOVOU X6, X5 \ /* row3h = row4l;\ */
LONG $0x6c1141c4; BYTE $0xfd \ // VPUNPCKLQDQ XMM15, XMM13, XMM13 /* _mm_unpacklo_epi64(t0, t0) */
LONG $0x6d41c1c4; BYTE $0xf7 \ // VPUNPCKHQDQ XMM6, XMM7, XMM15 /* row4l = _mm_unpackhi_epi64(row4h, ); \ */
LONG $0xff6c41c5 \ // VPUNPCKLQDQ XMM15, XMM7, XMM7 /* _mm_unpacklo_epi64(row4h, row4h) */
LONG $0x6d11c1c4; BYTE $0xff \ // VPUNPCKHQDQ XMM7, XMM13, XMM15 /* row4h = _mm_unpackhi_epi64(t0, ); \ */
LONG $0xfb6c61c5 \ // VPUNPCKLQDQ XMM15, XMM3, XMM3 /* _mm_unpacklo_epi64(row2h, row2h) */
LONG $0x6d69c1c4; BYTE $0xd7 \ // VPUNPCKHQDQ XMM2, XMM2, XMM15 /* row2l = _mm_unpackhi_epi64(row2l, ); \ */
LONG $0x6c0941c4; BYTE $0xfe \ // VPUNPCKLQDQ XMM15, XMM14, XMM14 /* _mm_unpacklo_epi64(t1, t1) */
LONG $0x6d61c1c4; BYTE $0xdf // VPUNPCKHQDQ XMM3, XMM3, XMM15 /* row2h = _mm_unpackhi_epi64(row2h, ) */
#define UNDIAGONALIZE \
\ // UNDIAGONALIZE(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h);
MOVOU X4, X13 \ /* t0 = row3l;\ */
MOVOU X5, X4 \ /* row3l = row3h;\ */
MOVOU X13, X5 \ /* row3h = t0;\ */
MOVOU X2, X13 \ /* t0 = row2l;\ */
MOVOU X6, X14 \ /* t1 = row4l;\ */
LONG $0xfa6c69c5 \ // VPUNPCKLQDQ XMM15, XMM2, XMM2 /* _mm_unpacklo_epi64(row2l, row2l) */
LONG $0x6d61c1c4; BYTE $0xd7 \ // VPUNPCKHQDQ XMM2, XMM3, XMM15 /* row2l = _mm_unpackhi_epi64(row2h, ); \ */
LONG $0xfb6c61c5 \ // VPUNPCKLQDQ XMM15, XMM3, XMM3 /* _mm_unpacklo_epi64(row2h, row2h) */
LONG $0x6d11c1c4; BYTE $0xdf \ // VPUNPCKHQDQ XMM3, XMM13, XMM15 /* row2h = _mm_unpackhi_epi64(t0, ); \ */
LONG $0xff6c41c5 \ // VPUNPCKLQDQ XMM15, XMM7, XMM7 /* _mm_unpacklo_epi64(row4h, row4h) */
LONG $0x6d49c1c4; BYTE $0xf7 \ // VPUNPCKHQDQ XMM6, XMM6, XMM15 /* row4l = _mm_unpackhi_epi64(row4l, ); \ */
LONG $0x6c0941c4; BYTE $0xfe \ // VPUNPCKLQDQ XMM15, XMM14, XMM14 /* _mm_unpacklo_epi64(t1, t1) */
LONG $0x6d41c1c4; BYTE $0xff // VPUNPCKHQDQ XMM7, XMM7, XMM15 /* row4h = _mm_unpackhi_epi64(row4h, ) */
#define LOAD_SHUFFLE \
\ // Load shuffle value
MOVQ shffle+120(FP), SI \ // SI: &shuffle
MOVOU 0(SI), X12 // X12 = 03040506 07000102 0b0c0d0e 0f08090a
// func blockAVXLoop(p []uint8, in, iv, t, f, shffle, out []uint64)
TEXT ·blockAVXLoop(SB), 7, $0
// REGISTER USE
// R8: loop counter
// DX: message pointer
// SI: temp pointer for loading
// X0 - X7: v0 - v15
// X8 - X11: m[0] - m[7]
// X12: shuffle value
// X13 - X15: temp registers
// Load digest
MOVQ in+24(FP), SI // SI: &in
MOVOU 0(SI), X0 // X0 = in[0]+in[1] /* row1l = LOAD( &S->h[0] ); */
MOVOU 16(SI), X1 // X1 = in[2]+in[3] /* row1h = LOAD( &S->h[2] ); */
MOVOU 32(SI), X2 // X2 = in[4]+in[5] /* row2l = LOAD( &S->h[4] ); */
MOVOU 48(SI), X3 // X3 = in[6]+in[7] /* row2h = LOAD( &S->h[6] ); */
// Already store digest into &out (so we can reload it later generically)
MOVQ out+144(FP), SI // SI: &out
MOVOU X0, 0(SI) // out[0]+out[1] = X0
MOVOU X1, 16(SI) // out[2]+out[3] = X1
MOVOU X2, 32(SI) // out[4]+out[5] = X2
MOVOU X3, 48(SI) // out[6]+out[7] = X3
// Initialize message pointer and loop counter
MOVQ message+0(FP), DX // DX: &p (message)
MOVQ message_len+8(FP), R8 // R8: len(message)
SHRQ $7, R8 // len(message) / 128
CMPQ R8, $0
JEQ complete
loop:
// Increment counter
MOVQ t+72(FP), SI // SI: &t
MOVQ 0(SI), R9
ADDQ $128, R9 // /* d.t[0] += BlockSize */
MOVQ R9, 0(SI)
CMPQ R9, $128 // /* if d.t[0] < BlockSize { */
JGE noincr
MOVQ 8(SI), R9
ADDQ $1, R9 // /* d.t[1]++ */
MOVQ R9, 8(SI)
noincr: // /* } */
// Load initialization vector
MOVQ iv+48(FP), SI // SI: &iv
MOVOU 0(SI), X4 // X4 = iv[0]+iv[1] /* row3l = LOAD( &blake2b_IV[0] ); */
MOVOU 16(SI), X5 // X5 = iv[2]+iv[3] /* row3h = LOAD( &blake2b_IV[2] ); */
MOVOU 32(SI), X6 // X6 = iv[4]+iv[5] /* LOAD( &blake2b_IV[4] ) */
MOVOU 48(SI), X7 // X7 = iv[6]+iv[7] /* LOAD( &blake2b_IV[6] ) */
MOVQ t+72(FP), SI // SI: &t
MOVOU 0(SI), X8 // X8 = t[0]+t[1] /* LOAD( &S->t[0] ) */
PXOR X8, X6 // X6 = X6 ^ X8 /* row4l = _mm_xor_si128( , ); */
MOVQ t+96(FP), SI // SI: &f
MOVOU 0(SI), X8 // X8 = f[0]+f[1] /* LOAD( &S->f[0] ) */
PXOR X8, X7 // X7 = X7 ^ X8 /* row4h = _mm_xor_si128( , ); */
///////////////////////////////////////////////////////////////////////////
// R O U N D 1
///////////////////////////////////////////////////////////////////////////
// LOAD_MSG_ ##r ##_1 / ##_2(b0, b1); (X12 is temp register)
MOVOU 0(DX), X12 // X12 = m[0]+m[1]
MOVOU 16(DX), X13 // X13 = m[2]+m[3]
MOVOU 32(DX), X14 // X14 = m[4]+m[5]
MOVOU 48(DX), X15 // X15 = m[6]+m[7]
LONG $0x6c1941c4; BYTE $0xc5 // VPUNPCKLQDQ XMM8, XMM12, XMM13 /* m[0], m[2] */
LONG $0x6c0941c4; BYTE $0xcf // VPUNPCKLQDQ XMM9, XMM14, XMM15 /* m[4], m[6] */
LONG $0x6d1941c4; BYTE $0xd5 // VPUNPCKHQDQ XMM10, XMM12, XMM13 /* m[1], m[3] */
LONG $0x6d0941c4; BYTE $0xdf // VPUNPCKHQDQ XMM11, XMM14, XMM15 /* m[5], m[7] */
LOAD_SHUFFLE
G1
G2
DIAGONALIZE
// LOAD_MSG_ ##r ##_3 / ##_4(b0, b1); (X12 is temp register)
MOVOU 64(DX), X12 // X12 = m[8]+ m[9]
MOVOU 80(DX), X13 // X13 = m[10]+m[11]
MOVOU 96(DX), X14 // X14 = m[12]+m[13]
MOVOU 112(DX), X15 // X15 = m[14]+m[15]
LONG $0x6c1941c4; BYTE $0xc5 // VPUNPCKLQDQ XMM8, XMM12, XMM13 /* m[8],m[10] */
LONG $0x6c0941c4; BYTE $0xcf // VPUNPCKLQDQ XMM9, XMM14, XMM15 /* m[12],m[14] */
LONG $0x6d1941c4; BYTE $0xd5 // VPUNPCKHQDQ XMM10, XMM12, XMM13 /* m[9],m[11] */
LONG $0x6d0941c4; BYTE $0xdf // VPUNPCKHQDQ XMM11, XMM14, XMM15 /* m[13],m[15] */
LOAD_SHUFFLE
G1
G2
UNDIAGONALIZE
///////////////////////////////////////////////////////////////////////////
// R O U N D 2
///////////////////////////////////////////////////////////////////////////
// LOAD_MSG_ ##r ##_1 / ##_2(b0, b1); (X12 is temp register)
MOVOU 112(DX), X12 // X12 = m[14]+m[15]
MOVOU 32(DX), X13 // X13 = m[4]+ m[5]
MOVOU 64(DX), X14 // X14 = m[8]+ m[9]
MOVOU 96(DX), X15 // X15 = m[12]+m[13]
LONG $0x6c1941c4; BYTE $0xc5 // VPUNPCKLQDQ XMM8, XMM12, XMM13 /* m[14], m[4] */
LONG $0x6d0941c4; BYTE $0xcf // VPUNPCKHQDQ XMM9, XMM14, XMM15 /* m[9], m[13] */
MOVOU 80(DX), X13 // X13 = m[10]+m[11]
MOVOU 48(DX), X15 // X15 = m[6]+ m[7]
LONG $0x6c1141c4; BYTE $0xd6 // VPUNPCKLQDQ XMM10, XMM13, XMM14 /* m[10], m[8] */
LONG $0x0f0143c4; WORD $0x08dc // VPALIGNR XMM11, XMM15, XMM12, 0x8 /* m[15], m[6] */
LOAD_SHUFFLE
G1
G2
DIAGONALIZE
// LOAD_MSG_ ##r ##_3 / ##_4(b0, b1); (X12 is temp register)
MOVOU 0(DX), X12 // X12 = m[0]+ m[1]
MOVOU 32(DX), X13 // X13 = m[4]+ m[5]
MOVOU 80(DX), X14 // X14 = m[10]+m[11]
LONG $0x0f1943c4; WORD $0x08c4 // VPALIGNR XMM8, XMM12, XMM12, 0x8 /* m[1], m[0] */
LONG $0x6d0941c4; BYTE $0xcd // VPUNPCKHQDQ XMM9, XMM14, XMM13 /* m[11], m[5] */
MOVOU 16(DX), X12 // X12 = m[2]+ m[3]
MOVOU 48(DX), X13 // X13 = m[6]+ m[7]
MOVOU 96(DX), X14 // X14 = m[12]+m[13]
LONG $0x6c0941c4; BYTE $0xd4 // VPUNPCKLQDQ XMM10, XMM14, XMM12 /* m[12], m[2] */
LONG $0x6d1141c4; BYTE $0xdc // VPUNPCKHQDQ XMM11, XMM13, XMM12 /* m[7], m[3] */
LOAD_SHUFFLE
G1
G2
UNDIAGONALIZE
///////////////////////////////////////////////////////////////////////////
// R O U N D 3
///////////////////////////////////////////////////////////////////////////
// LOAD_MSG_ ##r ##_1 / ##_2(b0, b1); (X12 is temp register)
MOVOU 32(DX), X12 // X12 = m[4]+ m[5]
MOVOU 80(DX), X13 // X13 = m[10]+m[11]
MOVOU 96(DX), X14 // X14 = m[12]+m[13]
MOVOU 112(DX), X15 // X15 = m[14]+m[15]
LONG $0x0f0943c4; WORD $0x08c5 // VPALIGNR XMM8, XMM14, XMM13, 0x8 /* m[11], m[12] */
LONG $0x6d1941c4; BYTE $0xcf // VPUNPCKHQDQ XMM9, XMM12, XMM15 /* m[5], m[15] */
MOVOU 0(DX), X12 // X12 = m[0]+ m[1]
MOVOU 16(DX), X13 // X13 = m[2]+ m[3]
MOVOU 64(DX), X15 // X15 = m[8]+ m[9]
LONG $0x6c0141c4; BYTE $0xd4 // VPUNPCKLQDQ XMM10, XMM15, XMM12 /* m[8], m[0] */
LONG $0x6d0941c4; BYTE $0xde // VPUNPCKHQDQ XMM11, XMM14, XMM14 /* ___, m[13] */
LONG $0x6c1141c4; BYTE $0xdb // VPUNPCKLQDQ XMM11, XMM13, XMM11 /* m[2], ___ */
LOAD_SHUFFLE
G1
G2
DIAGONALIZE
// LOAD_MSG_ ##r ##_3 / ##_4(b0, b1); (X12 is temp register)
MOVOU 16(DX), X12 // X12 = m[2]+ m[3]
MOVOU 48(DX), X13 // X13 = m[6]+ m[7]
MOVOU 64(DX), X14 // X14 = m[8]+ m[9]
MOVOU 80(DX), X15 // X15 = m[10]+m[11]
LONG $0x6d1941c4; BYTE $0xc4 // VPUNPCKHQDQ XMM8, XMM12, XMM12 /* ___, m[3] */
LONG $0x6c0141c4; BYTE $0xc0 // VPUNPCKLQDQ XMM8, XMM15, XMM8 /* m[10], ___ */
LONG $0x6d1141c4; BYTE $0xce // VPUNPCKHQDQ XMM9, XMM13, XMM14 /* m[7], m[9] */
MOVOU 0(DX), X12 // X12 = m[0]+ m[1]
MOVOU 32(DX), X14 // X14 = m[4]+ m[5]
MOVOU 112(DX), X15 // X15 = m[14]+m[15]
LONG $0x6c0141c4; BYTE $0xd5 // VPUNPCKLQDQ XMM10, XMM15, XMM13 /* m[14], m[6] */
LONG $0x0f0943c4; WORD $0x08dc // VPALIGNR XMM11, XMM14, XMM12, 0x8 /* m[1], m[4] */
LOAD_SHUFFLE
G1
G2
UNDIAGONALIZE
///////////////////////////////////////////////////////////////////////////
// R O U N D 4
///////////////////////////////////////////////////////////////////////////
// LOAD_MSG_ ##r ##_1 / ##_2(b0, b1); (X12 is temp register)
MOVOU 16(DX), X12 // X12 = m[2]+ m[3]
MOVOU 48(DX), X13 // X13 = m[6]+ m[7]
MOVOU 80(DX), X14 // X14 = m[10]+m[11]
MOVOU 96(DX), X15 // X15 = m[12]+m[13]
LONG $0x6d1141c4; BYTE $0xc4 // VPUNPCKHQDQ XMM8, XMM13, XMM12 /* m[7], m[3] */
LONG $0x6d0141c4; BYTE $0xce // VPUNPCKHQDQ XMM9, XMM15, XMM14 /* m[13], m[11] */
MOVOU 0(DX), X12 // X12 = m[0]+ m[1]
MOVOU 64(DX), X13 // X13 = m[8]+ m[9]
MOVOU 112(DX), X14 // X14 = m[14]+m[15]
LONG $0x6d1141c4; BYTE $0xd4 // VPUNPCKHQDQ XMM10, XMM13, XMM12 /* m[9], m[1] */
LONG $0x6c0141c4; BYTE $0xde // VPUNPCKLQDQ XMM11, XMM15, XMM14 /* m[12], m[14] */
LOAD_SHUFFLE
G1
G2
DIAGONALIZE
// LOAD_MSG_ ##r ##_3 / ##_4(b0, b1); (X12 is temp register)
MOVOU 16(DX), X12 // X12 = m[2]+ m[3]
MOVOU 32(DX), X13 // X13 = m[4]+ m[5]
MOVOU 80(DX), X14 // X14 = m[10]+m[11]
MOVOU 112(DX), X15 // X15 = m[14]+m[15]
LONG $0x6d1141c4; BYTE $0xc5 // VPUNPCKHQDQ XMM8, XMM13, XMM13 /* ___, m[5] */
LONG $0x6c1941c4; BYTE $0xc0 // VPUNPCKLQDQ XMM8, XMM12, XMM8 /* m[2], ____ */
LONG $0x6d0141c4; BYTE $0xcf // VPUNPCKHQDQ XMM9, XMM15, XMM15 /* ___, m[15] */
LONG $0x6c1141c4; BYTE $0xc9 // VPUNPCKLQDQ XMM9, XMM13, XMM9 /* m[4], ____ */
MOVOU 0(DX), X12 // X12 = m[0]+ m[1]
MOVOU 48(DX), X13 // X13 = m[6]+ m[7]
MOVOU 64(DX), X15 // X15 = m[8]+ m[9]
LONG $0x6c1141c4; BYTE $0xd6 // VPUNPCKLQDQ XMM10, XMM13, XMM14 /* m[6], m[10] */
LONG $0x6c1941c4; BYTE $0xdf // VPUNPCKLQDQ XMM11, XMM12, XMM15 /* m[0], m[8] */
LOAD_SHUFFLE
G1
G2
UNDIAGONALIZE
///////////////////////////////////////////////////////////////////////////
// R O U N D 5
///////////////////////////////////////////////////////////////////////////
// LOAD_MSG_ ##r ##_1 / ##_2(b0, b1); (X12 is temp register)
MOVOU 16(DX), X12 // X12 = m[2]+ m[3]
MOVOU 32(DX), X13 // X13 = m[4]+ m[5]
MOVOU 64(DX), X14 // X14 = m[8]+ m[9]
MOVOU 80(DX), X15 // X15 = m[10]+m[11]
LONG $0x6d0941c4; BYTE $0xc5 // VPUNPCKHQDQ XMM8, XMM14, XMM13 /* m[9], m[5] */
LONG $0x6c1941c4; BYTE $0xcf // VPUNPCKLQDQ XMM9, XMM12, XMM15 /* m[2], m[10] */
MOVOU 0(DX), X12 // X12 = m[0]+ m[1]
MOVOU 48(DX), X14 // X14 = m[6]+ m[7]
MOVOU 112(DX), X15 // X15 = m[14]+m[15]
LONG $0x6d0941c4; BYTE $0xd6 // VPUNPCKHQDQ XMM10, XMM14, XMM14 /* ___, m[7] */
LONG $0x6c1941c4; BYTE $0xd2 // VPUNPCKLQDQ XMM10, XMM12, XMM10 /* m[0], ____ */
LONG $0x6d0141c4; BYTE $0xdf // VPUNPCKHQDQ XMM11, XMM15, XMM15 /* ___, m[15] */
LONG $0x6c1141c4; BYTE $0xdb // VPUNPCKLQDQ XMM11, XMM13, XMM11 /* m[4], ____ */
LOAD_SHUFFLE
G1
G2
DIAGONALIZE
// LOAD_MSG_ ##r ##_3 / ##_4(b0, b1); (X12 is temp register)
MOVOU 16(DX), X12 // X12 = m[2]+ m[3]
MOVOU 48(DX), X13 // X13 = m[6]+ m[7]
MOVOU 80(DX), X14 // X14 = m[10]+m[11]
MOVOU 112(DX), X15 // X15 = m[14]+m[15]
LONG $0x6d0941c4; BYTE $0xc6 // VPUNPCKHQDQ XMM8, XMM14, XMM14 /* ___, m[11] */
LONG $0x6c0141c4; BYTE $0xc0 // VPUNPCKLQDQ XMM8, XMM15, XMM8 /* m[14], ____ */
LONG $0x6d1941c4; BYTE $0xcc // VPUNPCKHQDQ XMM9, XMM12, XMM12 /* ___, m[3] */
LONG $0x6c1141c4; BYTE $0xc9 // VPUNPCKLQDQ XMM9, XMM13, XMM9 /* m[6], ____ */
MOVOU 0(DX), X12 // X12 = m[0]+ m[1]
MOVOU 64(DX), X13 // X13 = m[8]+ m[9]
MOVOU 96(DX), X14 // X14 = m[12]+m[13]
LONG $0x0f0943c4; WORD $0x08d4 // VPALIGNR XMM10, XMM14, XMM12, 0x8 /* m[1], m[12] */
LONG $0x6d0941c4; BYTE $0xde // VPUNPCKHQDQ XMM11, XMM14, XMM14 /* ___, m[13] */
LONG $0x6c1141c4; BYTE $0xdb // VPUNPCKLQDQ XMM11, XMM13, XMM11 /* m[8], ____ */
LOAD_SHUFFLE
G1
G2
UNDIAGONALIZE
///////////////////////////////////////////////////////////////////////////
// R O U N D 6
///////////////////////////////////////////////////////////////////////////
// LOAD_MSG_ ##r ##_1 / ##_2(b0, b1); (X12 is temp register)
MOVOU 0(DX), X12 // X12 = m[0]+ m[1]
MOVOU 16(DX), X13 // X13 = m[2]+ m[3]
MOVOU 48(DX), X14 // X14 = m[6]+ m[7]
MOVOU 64(DX), X15 // X15 = m[8]+ m[9]
LONG $0x6c1141c4; BYTE $0xc6 // VPUNPCKLQDQ XMM8, XMM13, XMM14 /* m[2], m[6] */
LONG $0x6c1941c4; BYTE $0xcf // VPUNPCKLQDQ XMM9, XMM12, XMM15 /* m[0], m[8] */
MOVOU 80(DX), X12 // X12 = m[10]+m[11]
MOVOU 96(DX), X14 // X14 = m[12]+m[13]
LONG $0x6c0941c4; BYTE $0xd4 // VPUNPCKLQDQ XMM10, XMM14, XMM12 /* m[12], m[10] */
LONG $0x6d1941c4; BYTE $0xdd // VPUNPCKHQDQ XMM11, XMM12, XMM13 /* m[11], m[3] */
LOAD_SHUFFLE
G1
G2
DIAGONALIZE
// LOAD_MSG_ ##r ##_3 / ##_4(b0, b1); (X12 is temp register)
MOVOU 0(DX), X12 // X12 = m[0]+ m[1]
MOVOU 32(DX), X13 // X13 = m[4]+ m[5]
MOVOU 48(DX), X14 // X14 = m[6]+ m[7]
MOVOU 112(DX), X15 // X15 = m[14]+m[15]
LONG $0x6d0941c4; BYTE $0xc6 // VPUNPCKHQDQ XMM8, XMM14, XMM14 /* ___, m[7] */
LONG $0x6c1141c4; BYTE $0xc0 // VPUNPCKLQDQ XMM8, XMM13, XMM8 /* m[4], ____ */
LONG $0x6d0141c4; BYTE $0xcc // VPUNPCKHQDQ XMM9, XMM15, XMM12 /* m[15], m[1] */
MOVOU 64(DX), X12 // X12 = m[8]+ m[9]
MOVOU 96(DX), X14 // X14 = m[12]+m[13]
LONG $0x6d0941c4; BYTE $0xd5 // VPUNPCKHQDQ XMM10, XMM14, XMM13 /* m[13], m[5] */
LONG $0x6d1941c4; BYTE $0xdc // VPUNPCKHQDQ XMM11, XMM12, XMM12 /* ___, m[9] */
LONG $0x6c0141c4; BYTE $0xdb // VPUNPCKLQDQ XMM11, XMM15, XMM11 /* m[14], ____ */
LOAD_SHUFFLE
G1
G2
UNDIAGONALIZE
///////////////////////////////////////////////////////////////////////////
// R O U N D 7
///////////////////////////////////////////////////////////////////////////
// LOAD_MSG_ ##r ##_1 / ##_2(b0, b1); (X12 is temp register)
MOVOU 0(DX), X12 // X12 = m[0]+ m[1]
MOVOU 32(DX), X13 // X13 = m[4]+ m[5]
MOVOU 96(DX), X14 // X14 = m[12]+m[13]
MOVOU 112(DX), X15 // X15 = m[14]+m[15]
LONG $0x6d1941c4; BYTE $0xc4 // VPUNPCKHQDQ XMM8, XMM12, XMM12 /* ___, m[1] */
LONG $0x6c0941c4; BYTE $0xc0 // VPUNPCKLQDQ XMM8, XMM14, XMM8 /* m[12], ____ */
LONG $0x6c0141c4; BYTE $0xcd // VPUNPCKLQDQ XMM9, XMM15, XMM13 /* m[14], m[4] */
MOVOU 80(DX), X12 // X12 = m[10]+m[11]
LONG $0x6d1141c4; BYTE $0xd7 // VPUNPCKHQDQ XMM10, XMM13, XMM15 /* m[5], m[15] */
LONG $0x0f1943c4; WORD $0x08de // VPALIGNR XMM11, XMM12, XMM14, 0x8 /* m[13], m[10] */
LOAD_SHUFFLE
G1
G2
DIAGONALIZE
// LOAD_MSG_ ##r ##_3 / ##_4(b0, b1); (X12 is temp register)
MOVOU 0(DX), X12 // X12 = m[0]+ m[1]
MOVOU 48(DX), X13 // X13 = m[6]+ m[7]
MOVOU 64(DX), X14 // X14 = m[8]+ m[9]
MOVOU 80(DX), X15 // X15 = m[10]+m[11]
LONG $0x6c1941c4; BYTE $0xc5 // VPUNPCKLQDQ XMM8, XMM12, XMM13 /* m[0], m[6] */
LONG $0x0f0943c4; WORD $0x08ce // VPALIGNR XMM9, XMM14, XMM14, 0x8 /* m[9], m[8] */
MOVOU 16(DX), X14 // X14 = m[2]+ m[3]
LONG $0x6d1141c4; BYTE $0xd6 // VPUNPCKHQDQ XMM10, XMM13, XMM14 /* m[7], m[3] */
LONG $0x6d0141c4; BYTE $0xdf // VPUNPCKHQDQ XMM11, XMM15, XMM15 /* ___, m[11] */
LONG $0x6c0941c4; BYTE $0xdb // VPUNPCKLQDQ XMM11, XMM14, XMM11 /* m[2], ____ */
LOAD_SHUFFLE
G1
G2
UNDIAGONALIZE
///////////////////////////////////////////////////////////////////////////
// R O U N D 8
///////////////////////////////////////////////////////////////////////////
// LOAD_MSG_ ##r ##_1 / ##_2(b0, b1); (X12 is temp register)
MOVOU 16(DX), X12 // X12 = m[2]+ m[3]
MOVOU 48(DX), X13 // X13 = m[6]+ m[7]
MOVOU 96(DX), X14 // X14 = m[12]+m[13]
MOVOU 112(DX), X15 // X15 = m[14]+m[15]
LONG $0x6d0941c4; BYTE $0xc5 // VPUNPCKHQDQ XMM8, XMM14, XMM13 /* m[13], m[7] */
LONG $0x6d1941c4; BYTE $0xcc // VPUNPCKHQDQ XMM9, XMM12, XMM12 /* ___, m[3] */
LONG $0x6c0941c4; BYTE $0xc9 // VPUNPCKLQDQ XMM9, XMM14, XMM9 /* m[12], ____ */
MOVOU 0(DX), X12 // X12 = m[0]+ m[1]
MOVOU 64(DX), X13 // X13 = m[8]+ m[9]
MOVOU 80(DX), X14 // X14 = m[10]+m[11]
LONG $0x0f0143c4; WORD $0x08d6 // VPALIGNR XMM10, XMM15, XMM14, 0x8 /* m[11], m[14] */
LONG $0x6d1941c4; BYTE $0xdd // VPUNPCKHQDQ XMM11, XMM12, XMM13 /* m[1], m[9] */
LOAD_SHUFFLE
G1
G2
DIAGONALIZE
// LOAD_MSG_ ##r ##_3 / ##_4(b0, b1); (X12 is temp register)
MOVOU 16(DX), X12 // X12 = m[2]+ m[3]
MOVOU 32(DX), X13 // X13 = m[4]+ m[5]
MOVOU 64(DX), X14 // X14 = m[8]+ m[9]
MOVOU 112(DX), X15 // X15 = m[14]+m[15]
LONG $0x6d1141c4; BYTE $0xc7 // VPUNPCKHQDQ XMM8, XMM13, XMM15 /* m[5], m[15] */
LONG $0x6c0941c4; BYTE $0xcc // VPUNPCKLQDQ XMM9, XMM14, XMM12 /* m[8], m[2] */
MOVOU 0(DX), X12 // X12 = m[0]+ m[1]
MOVOU 48(DX), X14 // X14 = m[6]+ m[7]
MOVOU 80(DX), X15 // X15 = m[10]+m[11]
LONG $0x6c1941c4; BYTE $0xd5 // VPUNPCKLQDQ XMM10, XMM12, XMM13 /* m[0], m[4] */
LONG $0x6c0941c4; BYTE $0xdf // VPUNPCKLQDQ XMM11, XMM14, XMM15 /* m[6], m[10] */
LOAD_SHUFFLE
G1
G2
UNDIAGONALIZE
///////////////////////////////////////////////////////////////////////////
// R O U N D 9
///////////////////////////////////////////////////////////////////////////
// LOAD_MSG_ ##r ##_1 / ##_2(b0, b1); (X12 is temp register)
MOVOU 0(DX), X12 // X12 = m[0]+ m[1]
MOVOU 48(DX), X13 // X13 = m[6]+ m[7]
MOVOU 80(DX), X14 // X14 = m[10]+m[11]
MOVOU 112(DX), X15 // X15 = m[14]+m[15]
LONG $0x6c1141c4; BYTE $0xc7 // VPUNPCKLQDQ XMM8, XMM13, XMM15 /* m[6], m[14] */
LONG $0x0f1943c4; WORD $0x08ce // VPALIGNR XMM9, XMM12, XMM14, 0x8 /* m[11], m[0] */
MOVOU 16(DX), X13 // X13 = m[2]+ m[3]
MOVOU 64(DX), X14 // X14 = m[8]+ m[9]
LONG $0x6d0141c4; BYTE $0xd6 // VPUNPCKHQDQ XMM10, XMM15, XMM14 /* m[15], m[9] */
LONG $0x0f0943c4; WORD $0x08dd // VPALIGNR XMM11, XMM14, XMM13, 0x8 /* m[3], m[8] */
LOAD_SHUFFLE
G1
G2
DIAGONALIZE
// LOAD_MSG_ ##r ##_3 / ##_4(b0, b1); (X12 is temp register)
MOVOU 0(DX), X12 // X12 = m[0]+ m[1]
MOVOU 16(DX), X13 // X13 = m[2]+ m[3]
MOVOU 80(DX), X14 // X14 = m[10]+m[11]
MOVOU 96(DX), X15 // X15 = m[12]+m[13]
LONG $0x6d0141c4; BYTE $0xc7 // VPUNPCKHQDQ XMM8, XMM15, XMM15 /* ___, m[13] */
LONG $0x6c0141c4; BYTE $0xc0 // VPUNPCKLQDQ XMM8, XMM15, XMM8 /* m[12], ____ */
LONG $0x0f0943c4; WORD $0x08cc // VPALIGNR XMM9, XMM14, XMM12, 0x8 /* m[1], m[10] */
MOVOU 32(DX), X12 // X12 = m[4]+ m[5]
MOVOU 48(DX), X15 // X15 = m[6]+ m[7]
LONG $0x6d0141c4; BYTE $0xd7 // VPUNPCKHQDQ XMM10, XMM15, XMM15 /* ___, m[7] */
LONG $0x6c1141c4; BYTE $0xd2 // VPUNPCKLQDQ XMM10, XMM13, XMM10 /* m[2], ____ */
LONG $0x6d1941c4; BYTE $0xdc // VPUNPCKHQDQ XMM11, XMM12, XMM12 /* ___, m[5] */
LONG $0x6c1941c4; BYTE $0xdb // VPUNPCKLQDQ XMM11, XMM12, XMM11 /* m[4], ____ */
LOAD_SHUFFLE
G1
G2
UNDIAGONALIZE
///////////////////////////////////////////////////////////////////////////
// R O U N D 1 0
///////////////////////////////////////////////////////////////////////////
// LOAD_MSG_ ##r ##_1 / ##_2(b0, b1); (X12 is temp register)
MOVOU 0(DX), X12 // X12 = m[0]+ m[1]
MOVOU 48(DX), X13 // X13 = m[6]+ m[7]
MOVOU 64(DX), X14 // X14 = m[8]+ m[9]
MOVOU 80(DX), X15 // X15 = m[10]+m[11]
LONG $0x6c0141c4; BYTE $0xc6 // VPUNPCKLQDQ XMM8, XMM15, XMM14 /* m[10], m[8] */
LONG $0x6d1141c4; BYTE $0xcc // VPUNPCKHQDQ XMM9, XMM13, XMM12 /* m[7], m[1] */
MOVOU 16(DX), X12 // X12 = m[2]+ m[3]
MOVOU 32(DX), X14 // X14 = m[4]+ m[5]
LONG $0x6c1941c4; BYTE $0xd6 // VPUNPCKLQDQ XMM10, XMM12, XMM14 /* m[2], m[4] */
LONG $0x6d0941c4; BYTE $0xde // VPUNPCKHQDQ XMM11, XMM14, XMM14 /* ___, m[5] */
LONG $0x6c1141c4; BYTE $0xdb // VPUNPCKLQDQ XMM11, XMM13, XMM11 /* m[6], ____ */
LOAD_SHUFFLE
G1
G2
DIAGONALIZE
// LOAD_MSG_ ##r ##_3 / ##_4(b0, b1); (X12 is temp register)
MOVOU 16(DX), X12 // X12 = m[2]+ m[3]
MOVOU 64(DX), X13 // X13 = m[8]+ m[9]
MOVOU 96(DX), X14 // X14 = m[12]+m[13]
MOVOU 112(DX), X15 // X15 = m[14]+m[15]
LONG $0x6d0141c4; BYTE $0xc5 // VPUNPCKHQDQ XMM8, XMM15, XMM13 /* m[15], m[9] */
LONG $0x6d1941c4; BYTE $0xce // VPUNPCKHQDQ XMM9, XMM12, XMM14 /* m[3], m[13] */
MOVOU 0(DX), X12 // X12 = m[0]+ m[1]
MOVOU 80(DX), X13 // X13 = m[10]+m[11]
LONG $0x0f0143c4; WORD $0x08d5 // VPALIGNR XMM10, XMM15, XMM13, 0x8 /* m[11], m[14] */
LONG $0x6c0941c4; BYTE $0xdc // VPUNPCKLQDQ XMM11, XMM14, XMM12 /* m[12], m[0] */
LOAD_SHUFFLE
G1
G2
UNDIAGONALIZE
///////////////////////////////////////////////////////////////////////////
// R O U N D 1 1
///////////////////////////////////////////////////////////////////////////
// LOAD_MSG_ ##r ##_1 / ##_2(b0, b1); (X12 is temp register)
MOVOU 0(DX), X12 // X12 = m[0]+m[1]
MOVOU 16(DX), X13 // X13 = m[2]+m[3]
MOVOU 32(DX), X14 // X14 = m[4]+m[5]
MOVOU 48(DX), X15 // X15 = m[6]+m[7]
LONG $0x6c1941c4; BYTE $0xc5 // VPUNPCKLQDQ XMM8, XMM12, XMM13 /* m[0], m[2] */
LONG $0x6c0941c4; BYTE $0xcf // VPUNPCKLQDQ XMM9, XMM14, XMM15 /* m[4], m[6] */
LONG $0x6d1941c4; BYTE $0xd5 // VPUNPCKHQDQ XMM10, XMM12, XMM13 /* m[1], m[3] */
LONG $0x6d0941c4; BYTE $0xdf // VPUNPCKHQDQ XMM11, XMM14, XMM15 /* m[5], m[7] */
LOAD_SHUFFLE
G1
G2
DIAGONALIZE
// LOAD_MSG_ ##r ##_3 / ##_4(b0, b1); (X12 is temp register)
MOVOU 64(DX), X12 // X12 = m[8]+ m[9]
MOVOU 80(DX), X13 // X13 = m[10]+m[11]
MOVOU 96(DX), X14 // X14 = m[12]+m[13]
MOVOU 112(DX), X15 // X15 = m[14]+m[15]
LONG $0x6c1941c4; BYTE $0xc5 // VPUNPCKLQDQ XMM8, XMM12, XMM13 /* m[8],m[10] */
LONG $0x6c0941c4; BYTE $0xcf // VPUNPCKLQDQ XMM9, XMM14, XMM15 /* m[12],m[14] */
LONG $0x6d1941c4; BYTE $0xd5 // VPUNPCKHQDQ XMM10, XMM12, XMM13 /* m[9],m[11] */
LONG $0x6d0941c4; BYTE $0xdf // VPUNPCKHQDQ XMM11, XMM14, XMM15 /* m[13],m[15] */
LOAD_SHUFFLE
G1
G2
UNDIAGONALIZE
///////////////////////////////////////////////////////////////////////////
// R O U N D 1 2
///////////////////////////////////////////////////////////////////////////
// LOAD_MSG_ ##r ##_1 / ##_2(b0, b1); (X12 is temp register)
MOVOU 112(DX), X12 // X12 = m[14]+m[15]
MOVOU 32(DX), X13 // X13 = m[4]+ m[5]
MOVOU 64(DX), X14 // X14 = m[8]+ m[9]
MOVOU 96(DX), X15 // X15 = m[12]+m[13]
LONG $0x6c1941c4; BYTE $0xc5 // VPUNPCKLQDQ XMM8, XMM12, XMM13 /* m[14], m[4] */
LONG $0x6d0941c4; BYTE $0xcf // VPUNPCKHQDQ XMM9, XMM14, XMM15 /* m[9], m[13] */
MOVOU 80(DX), X13 // X13 = m[10]+m[11]
MOVOU 48(DX), X15 // X15 = m[6]+ m[7]
LONG $0x6c1141c4; BYTE $0xd6 // VPUNPCKLQDQ XMM10, XMM13, XMM14 /* m[10], m[8] */
LONG $0x0f0143c4; WORD $0x08dc // VPALIGNR XMM11, XMM15, XMM12, 0x8 /* m[15], m[6] */
LOAD_SHUFFLE
G1
G2
DIAGONALIZE
// LOAD_MSG_ ##r ##_3 / ##_4(b0, b1); (X12 is temp register)
MOVOU 0(DX), X12 // X12 = m[0]+ m[1]
MOVOU 32(DX), X13 // X13 = m[4]+ m[5]
MOVOU 80(DX), X14 // X14 = m[10]+m[11]
LONG $0x0f1943c4; WORD $0x08c4 // VPALIGNR XMM8, XMM12, XMM12, 0x8 /* m[1], m[0] */
LONG $0x6d0941c4; BYTE $0xcd // VPUNPCKHQDQ XMM9, XMM14, XMM13 /* m[11], m[5] */
MOVOU 16(DX), X12 // X12 = m[2]+ m[3]
MOVOU 48(DX), X13 // X13 = m[6]+ m[7]
MOVOU 96(DX), X14 // X14 = m[12]+m[13]
LONG $0x6c0941c4; BYTE $0xd4 // VPUNPCKLQDQ XMM10, XMM14, XMM12 /* m[12], m[2] */
LONG $0x6d1141c4; BYTE $0xdc // VPUNPCKHQDQ XMM11, XMM13, XMM12 /* m[7], m[3] */
LOAD_SHUFFLE
G1
G2
UNDIAGONALIZE
// Reload digest (most current value store in &out)
MOVQ out+144(FP), SI // SI: &in
MOVOU 0(SI), X12 // X12 = in[0]+in[1] /* row1l = LOAD( &S->h[0] ); */
MOVOU 16(SI), X13 // X13 = in[2]+in[3] /* row1h = LOAD( &S->h[2] ); */
MOVOU 32(SI), X14 // X14 = in[4]+in[5] /* row2l = LOAD( &S->h[4] ); */
MOVOU 48(SI), X15 // X15 = in[6]+in[7] /* row2h = LOAD( &S->h[6] ); */
// Final computations and prepare for storing
PXOR X4, X0 // X0 = X0 ^ X4 /* row1l = _mm_xor_si128( row3l, row1l ); */
PXOR X5, X1 // X1 = X1 ^ X5 /* row1h = _mm_xor_si128( row3h, row1h ); */
PXOR X12, X0 // X0 = X0 ^ X12 /* STORE( &S->h[0], _mm_xor_si128( LOAD( &S->h[0] ), row1l ) ); */
PXOR X13, X1 // X1 = X1 ^ X13 /* STORE( &S->h[2], _mm_xor_si128( LOAD( &S->h[2] ), row1h ) ); */
PXOR X6, X2 // X2 = X2 ^ X6 /* row2l = _mm_xor_si128( row4l, row2l ); */
PXOR X7, X3 // X3 = X3 ^ X7 /* row2h = _mm_xor_si128( row4h, row2h ); */
PXOR X14, X2 // X2 = X2 ^ X14 /* STORE( &S->h[4], _mm_xor_si128( LOAD( &S->h[4] ), row2l ) ); */
PXOR X15, X3 // X3 = X3 ^ X15 /* STORE( &S->h[6], _mm_xor_si128( LOAD( &S->h[6] ), row2h ) ); */
// Store digest into &out
MOVQ out+144(FP), SI // SI: &out
MOVOU X0, 0(SI) // out[0]+out[1] = X0
MOVOU X1, 16(SI) // out[2]+out[3] = X1
MOVOU X2, 32(SI) // out[4]+out[5] = X2
MOVOU X3, 48(SI) // out[6]+out[7] = X3
// Increment message pointer and check if there's more to do
ADDQ $128, DX // message += 128
SUBQ $1, R8
JNZ loop
complete:
RET

View File

@@ -0,0 +1,41 @@
//+build !noasm
//+build !appengine
/*
* Minio Cloud Storage, (C) 2016 Minio, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package blake2b
//go:noescape
func blockSSELoop(p []uint8, in, iv, t, f, shffle, out []uint64)
func compressSSE(d *digest, p []uint8) {
var (
in [8]uint64
out [8]uint64
shffle [2]uint64
)
// vector for PSHUFB instruction
shffle[0] = 0x0201000706050403
shffle[1] = 0x0a09080f0e0d0c0b
in[0], in[1], in[2], in[3], in[4], in[5], in[6], in[7] = d.h[0], d.h[1], d.h[2], d.h[3], d.h[4], d.h[5], d.h[6], d.h[7]
blockSSELoop(p, in[:], iv[:], d.t[:], d.f[:], shffle[:], out[:])
d.h[0], d.h[1], d.h[2], d.h[3], d.h[4], d.h[5], d.h[6], d.h[7] = out[0], out[1], out[2], out[3], out[4], out[5], out[6], out[7]
}

View File

@@ -0,0 +1,770 @@
//+build !noasm !appengine
//
// Minio Cloud Storage, (C) 2016 Minio, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
//
// Based on SSE implementation from https://github.com/BLAKE2/BLAKE2/blob/master/sse/blake2b.c
//
// Use github.com/fwessels/asm2plan9s on this file to assemble instructions to their Plan9 equivalent
//
// Assembly code below essentially follows the ROUND macro (see blake2b-round.h) which is defined as:
// #define ROUND(r) \
// LOAD_MSG_ ##r ##_1(b0, b1); \
// G1(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h,b0,b1); \
// LOAD_MSG_ ##r ##_2(b0, b1); \
// G2(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h,b0,b1); \
// DIAGONALIZE(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h); \
// LOAD_MSG_ ##r ##_3(b0, b1); \
// G1(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h,b0,b1); \
// LOAD_MSG_ ##r ##_4(b0, b1); \
// G2(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h,b0,b1); \
// UNDIAGONALIZE(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h);
//
// as well as the go equivalent in https://github.com/dchest/blake2b/blob/master/block.go
//
// As in the macro, G1/G2 in the 1st and 2nd half are identical (so literal copy of assembly)
//
// Rounds are also the same, except for the loading of the message (and rounds 1 & 11 and
// rounds 2 & 12 are identical)
//
#define G1 \
\ // G1(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h,b0,b1);
LONG $0xd40f4166; BYTE $0xc0 \ // PADDQ XMM0,XMM8 /* v0 += m[0], v1 += m[2] */
LONG $0xd40f4166; BYTE $0xc9 \ // PADDQ XMM1,XMM9 /* v2 += m[4], v3 += m[6] */
LONG $0xc2d40f66 \ // PADDQ XMM0,XMM2 /* v0 += v4, v1 += v5 */
LONG $0xcbd40f66 \ // PADDQ XMM1,XMM3 /* v2 += v6, v3 += v7 */
LONG $0xf0ef0f66 \ // PXOR XMM6,XMM0 /* v12 ^= v0, v13 ^= v1 */
LONG $0xf9ef0f66 \ // PXOR XMM7,XMM1 /* v14 ^= v2, v15 ^= v3 */
LONG $0xf6700f66; BYTE $0xb1 \ // PSHUFD XMM6,XMM6,0xb1 /* v12 = v12<<(64-32) | v12>>32, v13 = v13<<(64-32) | v13>>32 */
LONG $0xff700f66; BYTE $0xb1 \ // PSHUFD XMM7,XMM7,0xb1 /* v14 = v14<<(64-32) | v14>>32, v15 = v15<<(64-32) | v15>>32 */
LONG $0xe6d40f66 \ // PADDQ XMM4,XMM6 /* v8 += v12, v9 += v13 */
LONG $0xefd40f66 \ // PADDQ XMM5,XMM7 /* v10 += v14, v11 += v15 */
LONG $0xd4ef0f66 \ // PXOR XMM2,XMM4 /* v4 ^= v8, v5 ^= v9 */
LONG $0xddef0f66 \ // PXOR XMM3,XMM5 /* v6 ^= v10, v7 ^= v11 */
LONG $0x380f4166; WORD $0xd400 \ // PSHUFB XMM2,XMM12 /* v4 = v4<<(64-24) | v4>>24, v5 = v5<<(64-24) | v5>>24 */
LONG $0x380f4166; WORD $0xdc00 // PSHUFB XMM3,XMM12 /* v6 = v6<<(64-24) | v6>>24, v7 = v7<<(64-24) | v7>>24 */
#define G2 \
\ // G2(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h,b0,b1);
LONG $0xd40f4166; BYTE $0xc2 \ // PADDQ XMM0,XMM10 /* v0 += m[1], v1 += m[3] */
LONG $0xd40f4166; BYTE $0xcb \ // PADDQ XMM1,XMM11 /* v2 += m[5], v3 += m[7] */
LONG $0xc2d40f66 \ // PADDQ XMM0,XMM2 /* v0 += v4, v1 += v5 */
LONG $0xcbd40f66 \ // PADDQ XMM1,XMM3 /* v2 += v6, v3 += v7 */
LONG $0xf0ef0f66 \ // PXOR XMM6,XMM0 /* v12 ^= v0, v13 ^= v1 */
LONG $0xf9ef0f66 \ // PXOR XMM7,XMM1 /* v14 ^= v2, v15 ^= v3 */
LONG $0xf6700ff2; BYTE $0x39 \ // PSHUFLW XMM6,XMM6,0x39 /* combined with next ... */
LONG $0xf6700ff3; BYTE $0x39 \ // PSHUFHW XMM6,XMM6,0x39 /* v12 = v12<<(64-16) | v12>>16, v13 = v13<<(64-16) | v13>>16 */
LONG $0xff700ff2; BYTE $0x39 \ // PSHUFLW XMM7,XMM7,0x39 /* combined with next ... */
LONG $0xff700ff3; BYTE $0x39 \ // PSHUFHW XMM7,XMM7,0x39 /* v14 = v14<<(64-16) | v14>>16, v15 = v15<<(64-16) | v15>>16 */
LONG $0xe6d40f66 \ // PADDQ XMM4,XMM6 /* v8 += v12, v9 += v13 */
LONG $0xefd40f66 \ // PADDQ XMM5,XMM7 /* v10 += v14, v11 += v15 */
LONG $0xd4ef0f66 \ // PXOR XMM2,XMM4 /* v4 ^= v8, v5 ^= v9 */
LONG $0xddef0f66 \ // PXOR XMM3,XMM5 /* v6 ^= v10, v7 ^= v11 */
MOVOU X2, X15 \
LONG $0xd40f4466; BYTE $0xfa \ // PADDQ XMM15,XMM2 /* temp reg = reg*2 */
LONG $0xd2730f66; BYTE $0x3f \ // PSRLQ XMM2,0x3f /* reg = reg>>63 */
LONG $0xef0f4166; BYTE $0xd7 \ // PXOR XMM2,XMM15 /* ORed together: v4 = v4<<(64-63) | v4>>63, v5 = v5<<(64-63) | v5>>63 */
MOVOU X3, X15 \
LONG $0xd40f4466; BYTE $0xfb \ // PADDQ XMM15,XMM3 /* temp reg = reg*2 */
LONG $0xd3730f66; BYTE $0x3f \ // PSRLQ XMM3,0x3f /* reg = reg>>63 */
LONG $0xef0f4166; BYTE $0xdf // PXOR XMM3,XMM15 /* ORed together: v6 = v6<<(64-63) | v6>>63, v7 = v7<<(64-63) | v7>>63 */
#define DIAGONALIZE \
\ // DIAGONALIZE(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h);
MOVOU X6, X13 \ /* t0 = row4l;\ */
MOVOU X2, X14 \ /* t1 = row2l;\ */
MOVOU X4, X6 \ /* row4l = row3l;\ */
MOVOU X5, X4 \ /* row3l = row3h;\ */
MOVOU X6, X5 \ /* row3h = row4l;\ */
LONG $0x6c0f4566; BYTE $0xfd \ // PUNPCKLQDQ XMM15, XMM13 /* _mm_unpacklo_epi64(t0, t0) */
MOVOU X7, X6 \
LONG $0x6d0f4166; BYTE $0xf7 \ // PUNPCKHQDQ XMM6, XMM15 /* row4l = _mm_unpackhi_epi64(row4h, ); \ */
LONG $0x6c0f4466; BYTE $0xff \ // PUNPCKLQDQ XMM15, XMM7 /* _mm_unpacklo_epi64(row4h, row4h) */
MOVOU X13, X7 \
LONG $0x6d0f4166; BYTE $0xff \ // PUNPCKHQDQ XMM7, XMM15 /* row4h = _mm_unpackhi_epi64(t0, ); \ */
LONG $0x6c0f4466; BYTE $0xfb \ // PUNPCKLQDQ XMM15, XMM3 /* _mm_unpacklo_epi64(row2h, row2h) */
LONG $0x6d0f4166; BYTE $0xd7 \ // PUNPCKHQDQ XMM2, XMM15 /* row2l = _mm_unpackhi_epi64(row2l, ); \ */
LONG $0x6c0f4566; BYTE $0xfe \ // PUNPCKLQDQ XMM15, XMM14 /* _mm_unpacklo_epi64(t1, t1) */
LONG $0x6d0f4166; BYTE $0xdf // PUNPCKHQDQ XMM3, XMM15 /* row2h = _mm_unpackhi_epi64(row2h, ) */
#define UNDIAGONALIZE \
\ // UNDIAGONALIZE(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h);
MOVOU X4, X13 \ /* t0 = row3l;\ */
MOVOU X5, X4 \ /* row3l = row3h;\ */
MOVOU X13, X5 \ /* row3h = t0;\ */
MOVOU X2, X13 \ /* t0 = row2l;\ */
MOVOU X6, X14 \ /* t1 = row4l;\ */
LONG $0x6c0f4466; BYTE $0xfa \ // PUNPCKLQDQ XMM15, XMM2 /* _mm_unpacklo_epi64(row2l, row2l) */
MOVOU X3, X2 \
LONG $0x6d0f4166; BYTE $0xd7 \ // PUNPCKHQDQ XMM2, XMM15 /* row2l = _mm_unpackhi_epi64(row2h, ); \ */
LONG $0x6c0f4466; BYTE $0xfb \ // PUNPCKLQDQ XMM15, XMM3 /* _mm_unpacklo_epi64(row2h, row2h) */
MOVOU X13, X3 \
LONG $0x6d0f4166; BYTE $0xdf \ // PUNPCKHQDQ XMM3, XMM15 /* row2h = _mm_unpackhi_epi64(t0, ); \ */
LONG $0x6c0f4466; BYTE $0xff \ // PUNPCKLQDQ XMM15, XMM7 /* _mm_unpacklo_epi64(row4h, row4h) */
LONG $0x6d0f4166; BYTE $0xf7 \ // PUNPCKHQDQ XMM6, XMM15 /* row4l = _mm_unpackhi_epi64(row4l, ); \ */
LONG $0x6c0f4566; BYTE $0xfe \ // PUNPCKLQDQ XMM15, XMM14 /* _mm_unpacklo_epi64(t1, t1) */
LONG $0x6d0f4166; BYTE $0xff // PUNPCKHQDQ XMM7, XMM15 /* row4h = _mm_unpackhi_epi64(row4h, ) */
#define LOAD_SHUFFLE \
\ // Load shuffle value
MOVQ shffle+120(FP), SI \ // SI: &shuffle
MOVOU 0(SI), X12 // X12 = 03040506 07000102 0b0c0d0e 0f08090a
// func blockSSELoop(p []uint8, in, iv, t, f, shffle, out []uint64)
TEXT ·blockSSELoop(SB), 7, $0
// REGISTER USE
// R8: loop counter
// DX: message pointer
// SI: temp pointer for loading
// X0 - X7: v0 - v15
// X8 - X11: m[0] - m[7]
// X12: shuffle value
// X13 - X15: temp registers
// Load digest
MOVQ in+24(FP), SI // SI: &in
MOVOU 0(SI), X0 // X0 = in[0]+in[1] /* row1l = LOAD( &S->h[0] ); */
MOVOU 16(SI), X1 // X1 = in[2]+in[3] /* row1h = LOAD( &S->h[2] ); */
MOVOU 32(SI), X2 // X2 = in[4]+in[5] /* row2l = LOAD( &S->h[4] ); */
MOVOU 48(SI), X3 // X3 = in[6]+in[7] /* row2h = LOAD( &S->h[6] ); */
// Already store digest into &out (so we can reload it later generically)
MOVQ out+144(FP), SI // SI: &out
MOVOU X0, 0(SI) // out[0]+out[1] = X0
MOVOU X1, 16(SI) // out[2]+out[3] = X1
MOVOU X2, 32(SI) // out[4]+out[5] = X2
MOVOU X3, 48(SI) // out[6]+out[7] = X3
// Initialize message pointer and loop counter
MOVQ message+0(FP), DX // DX: &p (message)
MOVQ message_len+8(FP), R8 // R8: len(message)
SHRQ $7, R8 // len(message) / 128
CMPQ R8, $0
JEQ complete
loop:
// Increment counter
MOVQ t+72(FP), SI // SI: &t
MOVQ 0(SI), R9
ADDQ $128, R9 // /* d.t[0] += BlockSize */
MOVQ R9, 0(SI)
CMPQ R9, $128 // /* if d.t[0] < BlockSize { */
JGE noincr
MOVQ 8(SI), R9
ADDQ $1, R9 // /* d.t[1]++ */
MOVQ R9, 8(SI)
noincr: // /* } */
// Load initialization vector
MOVQ iv+48(FP), SI // SI: &iv
MOVOU 0(SI), X4 // X4 = iv[0]+iv[1] /* row3l = LOAD( &blake2b_IV[0] ); */
MOVOU 16(SI), X5 // X5 = iv[2]+iv[3] /* row3h = LOAD( &blake2b_IV[2] ); */
MOVOU 32(SI), X6 // X6 = iv[4]+iv[5] /* LOAD( &blake2b_IV[4] ) */
MOVOU 48(SI), X7 // X7 = iv[6]+iv[7] /* LOAD( &blake2b_IV[6] ) */
MOVQ t+72(FP), SI // SI: &t
MOVOU 0(SI), X8 // X8 = t[0]+t[1] /* LOAD( &S->t[0] ) */
PXOR X8, X6 // X6 = X6 ^ X8 /* row4l = _mm_xor_si128( , ); */
MOVQ t+96(FP), SI // SI: &f
MOVOU 0(SI), X8 // X8 = f[0]+f[1] /* LOAD( &S->f[0] ) */
PXOR X8, X7 // X7 = X7 ^ X8 /* row4h = _mm_xor_si128( , ); */
///////////////////////////////////////////////////////////////////////////
// R O U N D 1
///////////////////////////////////////////////////////////////////////////
// LOAD_MSG_ ##r ##_1 / ##_2(b0, b1); (X12 is temp register)
MOVOU 0(DX), X12 // X12 = m[0]+m[1]
MOVOU 16(DX), X13 // X13 = m[2]+m[3]
MOVOU 32(DX), X14 // X14 = m[4]+m[5]
MOVOU 48(DX), X15 // X15 = m[6]+m[7]
MOVOU X12, X8
LONG $0x6c0f4566; BYTE $0xc5 // PUNPCKLQDQ XMM8, XMM13 /* m[0], m[2] */
MOVOU X14, X9
LONG $0x6c0f4566; BYTE $0xcf // PUNPCKLQDQ XMM9, XMM15 /* m[4], m[6] */
MOVOU X12, X10
LONG $0x6d0f4566; BYTE $0xd5 // PUNPCKHQDQ XMM10, XMM13 /* m[1], m[3] */
MOVOU X14, X11
LONG $0x6d0f4566; BYTE $0xdf // PUNPCKHQDQ XMM11, XMM15 /* m[5], m[7] */
LOAD_SHUFFLE
G1
G2
DIAGONALIZE
// LOAD_MSG_ ##r ##_3 / ##_4(b0, b1); (X12 is temp register)
MOVOU 64(DX), X12 // X12 = m[8]+ m[9]
MOVOU 80(DX), X13 // X13 = m[10]+m[11]
MOVOU 96(DX), X14 // X14 = m[12]+m[13]
MOVOU 112(DX), X15 // X15 = m[14]+m[15]
MOVOU X12, X8
LONG $0x6c0f4566; BYTE $0xc5 // PUNPCKLQDQ XMM8, XMM13 /* m[8],m[10] */
MOVOU X14, X9
LONG $0x6c0f4566; BYTE $0xcf // PUNPCKLQDQ XMM9, XMM15 /* m[12],m[14] */
MOVOU X12, X10
LONG $0x6d0f4566; BYTE $0xd5 // PUNPCKHQDQ XMM10, XMM13 /* m[9],m[11] */
MOVOU X14, X11
LONG $0x6d0f4566; BYTE $0xdf // PUNPCKHQDQ XMM11, XMM15 /* m[13],m[15] */
LOAD_SHUFFLE
G1
G2
UNDIAGONALIZE
///////////////////////////////////////////////////////////////////////////
// R O U N D 2
///////////////////////////////////////////////////////////////////////////
// LOAD_MSG_ ##r ##_1 / ##_2(b0, b1); (X12 is temp register)
MOVOU 112(DX), X12 // X12 = m[14]+m[15]
MOVOU 32(DX), X13 // X13 = m[4]+ m[5]
MOVOU 64(DX), X14 // X14 = m[8]+ m[9]
MOVOU 96(DX), X15 // X15 = m[12]+m[13]
MOVOU X12, X8
LONG $0x6c0f4566; BYTE $0xc5 // PUNPCKLQDQ XMM8, XMM13 /* m[14], m[4] */
MOVOU X14, X9
LONG $0x6d0f4566; BYTE $0xcf // PUNPCKHQDQ XMM9, XMM15 /* m[9], m[13] */
MOVOU 80(DX), X10 // X10 = m[10]+m[11]
MOVOU 48(DX), X11 // X11 = m[6]+ m[7]
LONG $0x6c0f4566; BYTE $0xd6 // PUNPCKLQDQ XMM10, XMM14 /* m[10], m[8] */
LONG $0x3a0f4566; WORD $0xdc0f; BYTE $0x08 // PALIGNR XMM11, XMM12, 0x8 /* m[15], m[6] */; ; ; ; ;
LOAD_SHUFFLE
G1
G2
DIAGONALIZE
// LOAD_MSG_ ##r ##_3 / ##_4(b0, b1); (X12 is temp register)
MOVOU 0(DX), X12 // X12 = m[0]+ m[1]
MOVOU 32(DX), X13 // X13 = m[4]+ m[5]
MOVOU 80(DX), X14 // X14 = m[10]+m[11]
MOVOU X12, X8
LONG $0x3a0f4566; WORD $0xc40f; BYTE $0x08 // PALIGNR XMM8, XMM12, 0x8 /* m[1], m[0] */
MOVOU X14, X9
LONG $0x6d0f4566; BYTE $0xcd // PUNPCKHQDQ XMM9, XMM13 /* m[11], m[5] */
MOVOU 16(DX), X12 // X12 = m[2]+ m[3]
MOVOU 48(DX), X11 // X11 = m[6]+ m[7]
MOVOU 96(DX), X10 // X10 = m[12]+m[13]
LONG $0x6c0f4566; BYTE $0xd4 // PUNPCKLQDQ XMM10, XMM12 /* m[12], m[2] */
LONG $0x6d0f4566; BYTE $0xdc // PUNPCKHQDQ XMM11, XMM12 /* m[7], m[3] */
LOAD_SHUFFLE
G1
G2
UNDIAGONALIZE
///////////////////////////////////////////////////////////////////////////
// R O U N D 3
///////////////////////////////////////////////////////////////////////////
// LOAD_MSG_ ##r ##_1 / ##_2(b0, b1); (X12 is temp register)
MOVOU 32(DX), X12 // X12 = m[4]+ m[5]
MOVOU 80(DX), X13 // X13 = m[10]+m[11]
MOVOU 96(DX), X14 // X14 = m[12]+m[13]
MOVOU 112(DX), X15 // X15 = m[14]+m[15]
MOVOU X14, X8
LONG $0x3a0f4566; WORD $0xc50f; BYTE $0x08 // PALIGNR XMM8, XMM13, 0x8 /* m[11], m[12] */
MOVOU X12, X9
LONG $0x6d0f4566; BYTE $0xcf // PUNPCKHQDQ XMM9, XMM15 /* m[5], m[15] */
MOVOU 0(DX), X12 // X12 = m[0]+ m[1]
MOVOU 16(DX), X13 // X13 = m[2]+ m[3]
MOVOU 64(DX), X10 // X10 = m[8]+ m[9]
LONG $0x6c0f4566; BYTE $0xd4 // PUNPCKLQDQ XMM10, XMM12 /* m[8], m[0] */
LONG $0x6d0f4566; BYTE $0xf6 // PUNPCKHQDQ XMM14, XMM14 /* ___, m[13] */
MOVOU X13, X11
LONG $0x6c0f4566; BYTE $0xde // PUNPCKLQDQ XMM11, XMM14 /* m[2], ___ */
LOAD_SHUFFLE
G1
G2
DIAGONALIZE
// LOAD_MSG_ ##r ##_3 / ##_4(b0, b1); (X12 is temp register)
MOVOU 16(DX), X12 // X12 = m[2]+ m[3]
MOVOU 48(DX), X13 // X13 = m[6]+ m[7]
MOVOU 64(DX), X14 // X14 = m[8]+ m[9]
MOVOU 80(DX), X15 // X15 = m[10]+m[11]
MOVOU X12, X9
LONG $0x6d0f4566; BYTE $0xcc // PUNPCKHQDQ XMM9, XMM12 /* ___, m[3] */
MOVOU X15, X8
LONG $0x6c0f4566; BYTE $0xc1 // PUNPCKLQDQ XMM8, XMM9 /* m[10], ___ */
MOVOU X13, X9
LONG $0x6d0f4566; BYTE $0xce // PUNPCKHQDQ XMM9, XMM14 /* m[7], m[9] */
MOVOU 0(DX), X12 // X12 = m[0]+ m[1]
MOVOU 32(DX), X11 // X11 = m[4]+ m[5]
MOVOU 112(DX), X10 // X10 = m[14]+m[15]
LONG $0x6c0f4566; BYTE $0xd5 // PUNPCKLQDQ XMM10, XMM13 /* m[14], m[6] */
LONG $0x3a0f4566; WORD $0xdc0f; BYTE $0x08 // PALIGNR XMM11, XMM12, 0x8 /* m[1], m[4] */
LOAD_SHUFFLE
G1
G2
UNDIAGONALIZE
///////////////////////////////////////////////////////////////////////////
// R O U N D 4
///////////////////////////////////////////////////////////////////////////
// LOAD_MSG_ ##r ##_1 / ##_2(b0, b1); (X12 is temp register)
MOVOU 16(DX), X12 // X12 = m[2]+ m[3]
MOVOU 48(DX), X13 // X13 = m[6]+ m[7]
MOVOU 80(DX), X14 // X14 = m[10]+m[11]
MOVOU 96(DX), X15 // X15 = m[12]+m[13]
MOVOU X13, X8
LONG $0x6d0f4566; BYTE $0xc4 // PUNPCKHQDQ XMM8, XMM12 /* m[7], m[3] */
MOVOU X15, X9
LONG $0x6d0f4566; BYTE $0xce // PUNPCKHQDQ XMM9, XMM14 /* m[13], m[11] */
MOVOU 0(DX), X12 // X12 = m[0]+ m[1]
MOVOU 64(DX), X10 // X10 = m[8]+ m[9]
MOVOU 112(DX), X14 // X14 = m[14]+m[15]
LONG $0x6d0f4566; BYTE $0xd4 // PUNPCKHQDQ XMM10, XMM12 /* m[9], m[1] */
MOVOU X15, X11
LONG $0x6c0f4566; BYTE $0xde // PUNPCKLQDQ XMM11, XMM14 /* m[12], m[14] */
LOAD_SHUFFLE
G1
G2
DIAGONALIZE
// LOAD_MSG_ ##r ##_3 / ##_4(b0, b1); (X12 is temp register)
MOVOU 16(DX), X12 // X12 = m[2]+ m[3]
MOVOU 32(DX), X13 // X13 = m[4]+ m[5]
MOVOU 80(DX), X14 // X14 = m[10]+m[11]
MOVOU 112(DX), X15 // X15 = m[14]+m[15]
MOVOU X13, X9
LONG $0x6d0f4566; BYTE $0xcd // PUNPCKHQDQ XMM9, XMM13 /* ___, m[5] */
MOVOU X12, X8
LONG $0x6c0f4566; BYTE $0xc1 // PUNPCKLQDQ XMM8, XMM9 /* m[2], ____ */
MOVOU X15, X10
LONG $0x6d0f4566; BYTE $0xd7 // PUNPCKHQDQ XMM10, XMM15 /* ___, m[15] */
MOVOU X13, X9
LONG $0x6c0f4566; BYTE $0xca // PUNPCKLQDQ XMM9, XMM10 /* m[4], ____ */
MOVOU 0(DX), X11 // X11 = m[0]+ m[1]
MOVOU 48(DX), X10 // X10 = m[6]+ m[7]
MOVOU 64(DX), X15 // X15 = m[8]+ m[9]
LONG $0x6c0f4566; BYTE $0xd6 // PUNPCKLQDQ XMM10, XMM14 /* m[6], m[10] */
LONG $0x6c0f4566; BYTE $0xdf // PUNPCKLQDQ XMM11, XMM15 /* m[0], m[8] */
LOAD_SHUFFLE
G1
G2
UNDIAGONALIZE
///////////////////////////////////////////////////////////////////////////
// R O U N D 5
///////////////////////////////////////////////////////////////////////////
// LOAD_MSG_ ##r ##_1 / ##_2(b0, b1); (X12 is temp register)
MOVOU 16(DX), X12 // X12 = m[2]+ m[3]
MOVOU 32(DX), X13 // X13 = m[4]+ m[5]
MOVOU 64(DX), X14 // X14 = m[8]+ m[9]
MOVOU 80(DX), X15 // X15 = m[10]+m[11]
MOVOU X14, X8
LONG $0x6d0f4566; BYTE $0xc5 // PUNPCKHQDQ XMM8, XMM13 /* m[9], m[5] */
MOVOU X12, X9
LONG $0x6c0f4566; BYTE $0xcf // PUNPCKLQDQ XMM9, XMM15 /* m[2], m[10] */
MOVOU 0(DX), X10 // X10 = m[0]+ m[1]
MOVOU 48(DX), X14 // X14 = m[6]+ m[7]
MOVOU 112(DX), X15 // X15 = m[14]+m[15]
LONG $0x6d0f4566; BYTE $0xf6 // PUNPCKHQDQ XMM14, XMM14 /* ___, m[7] */
LONG $0x6c0f4566; BYTE $0xd6 // PUNPCKLQDQ XMM10, XMM14 /* m[0], ____ */
LONG $0x6d0f4566; BYTE $0xff // PUNPCKHQDQ XMM15, XMM15 /* ___, m[15] */
MOVOU X13, X11
LONG $0x6c0f4566; BYTE $0xdf // PUNPCKLQDQ XMM11, XMM15 /* m[4], ____ */
LOAD_SHUFFLE
G1
G2
DIAGONALIZE
// LOAD_MSG_ ##r ##_3 / ##_4(b0, b1); (X12 is temp register)
MOVOU 16(DX), X12 // X12 = m[2]+ m[3]
MOVOU 48(DX), X13 // X13 = m[6]+ m[7]
MOVOU 80(DX), X14 // X14 = m[10]+m[11]
MOVOU 112(DX), X15 // X15 = m[14]+m[15]
LONG $0x6d0f4566; BYTE $0xf6 // PUNPCKHQDQ XMM14, XMM14 /* ___, m[11] */
MOVOU X15, X8
LONG $0x6c0f4566; BYTE $0xc6 // PUNPCKLQDQ XMM8, XMM14 /* m[14], ____ */
LONG $0x6d0f4566; BYTE $0xe4 // PUNPCKHQDQ XMM12, XMM12 /* ___, m[3] */
MOVOU X13, X9
LONG $0x6c0f4566; BYTE $0xcc // PUNPCKLQDQ XMM9, XMM12 /* m[6], ____ */
MOVOU 0(DX), X12 // X12 = m[0]+ m[1]
MOVOU 64(DX), X11 // X11 = m[8]+ m[9]
MOVOU 96(DX), X14 // X14 = m[12]+m[13]
MOVOU X14, X10
LONG $0x3a0f4566; WORD $0xd40f; BYTE $0x08 // PALIGNR XMM10, XMM12, 0x8 /* m[1], m[12] */
LONG $0x6d0f4566; BYTE $0xf6 // PUNPCKHQDQ XMM14, XMM14 /* ___, m[13] */
LONG $0x6c0f4566; BYTE $0xde // PUNPCKLQDQ XMM11, XMM14 /* m[8], ____ */
LOAD_SHUFFLE
G1
G2
UNDIAGONALIZE
///////////////////////////////////////////////////////////////////////////
// R O U N D 6
///////////////////////////////////////////////////////////////////////////
// LOAD_MSG_ ##r ##_1 / ##_2(b0, b1); (X12 is temp register)
MOVOU 0(DX), X12 // X12 = m[0]+ m[1]
MOVOU 16(DX), X13 // X13 = m[2]+ m[3]
MOVOU 48(DX), X14 // X14 = m[6]+ m[7]
MOVOU 64(DX), X15 // X15 = m[8]+ m[9]
MOVOU X13, X8
LONG $0x6c0f4566; BYTE $0xc6 // PUNPCKLQDQ XMM8, XMM14 /* m[2], m[6] */
MOVOU X12, X9
LONG $0x6c0f4566; BYTE $0xcf // PUNPCKLQDQ XMM9, XMM15 /* m[0], m[8] */
MOVOU 80(DX), X12 // X12 = m[10]+m[11]
MOVOU 96(DX), X10 // X10 = m[12]+m[13]
LONG $0x6c0f4566; BYTE $0xd4 // PUNPCKLQDQ XMM10, XMM12 /* m[12], m[10] */
MOVOU X12, X11
LONG $0x6d0f4566; BYTE $0xdd // PUNPCKHQDQ XMM11, XMM13 /* m[11], m[3] */
LOAD_SHUFFLE
G1
G2
DIAGONALIZE
// LOAD_MSG_ ##r ##_3 / ##_4(b0, b1); (X12 is temp register)
MOVOU 0(DX), X12 // X12 = m[0]+ m[1]
MOVOU 32(DX), X13 // X13 = m[4]+ m[5]
MOVOU 48(DX), X14 // X14 = m[6]+ m[7]
MOVOU 112(DX), X15 // X15 = m[14]+m[15]
MOVOU X14, X9
LONG $0x6d0f4566; BYTE $0xce // PUNPCKHQDQ XMM9, XMM14 /* ___, m[7] */
MOVOU X13, X8
LONG $0x6c0f4566; BYTE $0xc1 // PUNPCKLQDQ XMM8, XMM9 /* m[4], ____ */
MOVOU X15, X9
LONG $0x6d0f4566; BYTE $0xcc // PUNPCKHQDQ XMM9, XMM12 /* m[15], m[1] */
MOVOU 64(DX), X12 // X12 = m[8]+ m[9]
MOVOU 96(DX), X10 // X10 = m[12]+m[13]
LONG $0x6d0f4566; BYTE $0xd5 // PUNPCKHQDQ XMM10, XMM13 /* m[13], m[5] */
LONG $0x6d0f4566; BYTE $0xe4 // PUNPCKHQDQ XMM12, XMM12 /* ___, m[9] */
MOVOU X15, X11
LONG $0x6c0f4566; BYTE $0xdc // PUNPCKLQDQ XMM11, XMM12 /* m[14], ____ */
LOAD_SHUFFLE
G1
G2
UNDIAGONALIZE
///////////////////////////////////////////////////////////////////////////
// R O U N D 7
///////////////////////////////////////////////////////////////////////////
// LOAD_MSG_ ##r ##_1 / ##_2(b0, b1); (X12 is temp register)
MOVOU 0(DX), X12 // X12 = m[0]+ m[1]
MOVOU 32(DX), X13 // X13 = m[4]+ m[5]
MOVOU 96(DX), X14 // X14 = m[12]+m[13]
MOVOU 112(DX), X15 // X15 = m[14]+m[15]
MOVOU X12, X9
LONG $0x6d0f4566; BYTE $0xcc // PUNPCKHQDQ XMM9, XMM12 /* ___, m[1] */
MOVOU X14, X8
LONG $0x6c0f4566; BYTE $0xc1 // PUNPCKLQDQ XMM8, XMM9 /* m[12], ____ */
MOVOU X15, X9
LONG $0x6c0f4566; BYTE $0xcd // PUNPCKLQDQ XMM9, XMM13 /* m[14], m[4] */
MOVOU 80(DX), X11 // X11 = m[10]+m[11]
MOVOU X13, X10
LONG $0x6d0f4566; BYTE $0xd7 // PUNPCKHQDQ XMM10, XMM15 /* m[5], m[15] */
LONG $0x3a0f4566; WORD $0xde0f; BYTE $0x08 // PALIGNR XMM11, XMM14, 0x8 /* m[13], m[10] */
LOAD_SHUFFLE
G1
G2
DIAGONALIZE
// LOAD_MSG_ ##r ##_3 / ##_4(b0, b1); (X12 is temp register)
MOVOU 0(DX), X12 // X12 = m[0]+ m[1]
MOVOU 48(DX), X13 // X13 = m[6]+ m[7]
MOVOU 64(DX), X14 // X14 = m[8]+ m[9]
MOVOU 80(DX), X15 // X15 = m[10]+m[11]
MOVOU X12, X8
LONG $0x6c0f4566; BYTE $0xc5 // PUNPCKLQDQ XMM8, XMM13 /* m[0], m[6] */
MOVOU X14, X9
LONG $0x3a0f4566; WORD $0xce0f; BYTE $0x08 // PALIGNR XMM9, XMM14, 0x8 /* m[9], m[8] */
MOVOU 16(DX), X11 // X14 = m[2]+ m[3]
MOVOU X13, X10
LONG $0x6d0f4566; BYTE $0xd3 // PUNPCKHQDQ XMM10, XMM11 /* m[7], m[3] */
LONG $0x6d0f4566; BYTE $0xff // PUNPCKHQDQ XMM15, XMM15 /* ___, m[11] */
LONG $0x6c0f4566; BYTE $0xdf // PUNPCKLQDQ XMM11, XMM15 /* m[2], ____ */
LOAD_SHUFFLE
G1
G2
UNDIAGONALIZE
///////////////////////////////////////////////////////////////////////////
// R O U N D 8
///////////////////////////////////////////////////////////////////////////
// LOAD_MSG_ ##r ##_1 / ##_2(b0, b1); (X12 is temp register)
MOVOU 16(DX), X12 // X12 = m[2]+ m[3]
MOVOU 48(DX), X13 // X13 = m[6]+ m[7]
MOVOU 96(DX), X14 // X14 = m[12]+m[13]
MOVOU 112(DX), X15 // X15 = m[14]+m[15]
MOVOU X14, X8
LONG $0x6d0f4566; BYTE $0xc5 // PUNPCKHQDQ XMM8, XMM13 /* m[13], m[7] */
MOVOU X12, X10
LONG $0x6d0f4566; BYTE $0xd4 // PUNPCKHQDQ XMM10, XMM12 /* ___, m[3] */
MOVOU X14, X9
LONG $0x6c0f4566; BYTE $0xca // PUNPCKLQDQ XMM9, XMM10 /* m[12], ____ */
MOVOU 0(DX), X11 // X11 = m[0]+ m[1]
MOVOU 64(DX), X13 // X13 = m[8]+ m[9]
MOVOU 80(DX), X14 // X14 = m[10]+m[11]
MOVOU X15, X10
LONG $0x3a0f4566; WORD $0xd60f; BYTE $0x08 // PALIGNR XMM10, XMM14, 0x8 /* m[11], m[14] */
LONG $0x6d0f4566; BYTE $0xdd // PUNPCKHQDQ XMM11, XMM13 /* m[1], m[9] */
LOAD_SHUFFLE
G1
G2
DIAGONALIZE
// LOAD_MSG_ ##r ##_3 / ##_4(b0, b1); (X12 is temp register)
MOVOU 16(DX), X12 // X12 = m[2]+ m[3]
MOVOU 32(DX), X13 // X13 = m[4]+ m[5]
MOVOU 64(DX), X14 // X14 = m[8]+ m[9]
MOVOU 112(DX), X15 // X15 = m[14]+m[15]
MOVOU X13, X8
LONG $0x6d0f4566; BYTE $0xc7 // PUNPCKHQDQ XMM8, XMM15 /* m[5], m[15] */
MOVOU X14, X9
LONG $0x6c0f4566; BYTE $0xcc // PUNPCKLQDQ XMM9, XMM12 /* m[8], m[2] */
MOVOU 0(DX), X10 // X10 = m[0]+ m[1]
MOVOU 48(DX), X11 // X11 = m[6]+ m[7]
MOVOU 80(DX), X15 // X15 = m[10]+m[11]
LONG $0x6c0f4566; BYTE $0xd5 // PUNPCKLQDQ XMM10, XMM13 /* m[0], m[4] */
LONG $0x6c0f4566; BYTE $0xdf // PUNPCKLQDQ XMM11, XMM15 /* m[6], m[10] */
LOAD_SHUFFLE
G1
G2
UNDIAGONALIZE
///////////////////////////////////////////////////////////////////////////
// R O U N D 9
///////////////////////////////////////////////////////////////////////////
// LOAD_MSG_ ##r ##_1 / ##_2(b0, b1); (X12 is temp register)
MOVOU 0(DX), X12 // X12 = m[0]+ m[1]
MOVOU 48(DX), X13 // X13 = m[6]+ m[7]
MOVOU 80(DX), X14 // X14 = m[10]+m[11]
MOVOU 112(DX), X15 // X15 = m[14]+m[15]
MOVOU X13, X8
LONG $0x6c0f4566; BYTE $0xc7 // PUNPCKLQDQ XMM8, XMM15 /* m[6], m[14] */
MOVOU X12, X9
LONG $0x3a0f4566; WORD $0xce0f; BYTE $0x08 // PALIGNR XMM9, XMM14, 0x8 /* m[11], m[0] */
MOVOU 16(DX), X13 // X13 = m[2]+ m[3]
MOVOU 64(DX), X11 // X11 = m[8]+ m[9]
MOVOU X15, X10
LONG $0x6d0f4566; BYTE $0xd3 // PUNPCKHQDQ XMM10, XMM11 /* m[15], m[9] */
LONG $0x3a0f4566; WORD $0xdd0f; BYTE $0x08 // PALIGNR XMM11, XMM13, 0x8 /* m[3], m[8] */
LOAD_SHUFFLE
G1
G2
DIAGONALIZE
// LOAD_MSG_ ##r ##_3 / ##_4(b0, b1); (X12 is temp register)
MOVOU 0(DX), X12 // X12 = m[0]+ m[1]
MOVOU 16(DX), X13 // X13 = m[2]+ m[3]
MOVOU 80(DX), X14 // X14 = m[10]+m[11]
MOVOU 96(DX), X15 // X15 = m[12]+m[13]
MOVOU X15, X9
LONG $0x6d0f4566; BYTE $0xcf // PUNPCKHQDQ XMM9, XMM15 /* ___, m[13] */
MOVOU X15, X8
LONG $0x6c0f4566; BYTE $0xc1 // PUNPCKLQDQ XMM8, XMM9 /* m[12], ____ */
MOVOU X14, X9
LONG $0x3a0f4566; WORD $0xcc0f; BYTE $0x08 // PALIGNR XMM9, XMM12, 0x8 /* m[1], m[10] */
MOVOU 32(DX), X12 // X12 = m[4]+ m[5]
MOVOU 48(DX), X15 // X15 = m[6]+ m[7]
MOVOU X15, X11
LONG $0x6d0f4566; BYTE $0xdf // PUNPCKHQDQ XMM11, XMM15 /* ___, m[7] */
MOVOU X13, X10
LONG $0x6c0f4566; BYTE $0xd3 // PUNPCKLQDQ XMM10, XMM11 /* m[2], ____ */
MOVOU X12, X15
LONG $0x6d0f4566; BYTE $0xfc // PUNPCKHQDQ XMM15, XMM12 /* ___, m[5] */
MOVOU X12, X11
LONG $0x6c0f4566; BYTE $0xdf // PUNPCKLQDQ XMM11, XMM15 /* m[4], ____ */
LOAD_SHUFFLE
G1
G2
UNDIAGONALIZE
///////////////////////////////////////////////////////////////////////////
// R O U N D 1 0
///////////////////////////////////////////////////////////////////////////
// LOAD_MSG_ ##r ##_1 / ##_2(b0, b1); (X12 is temp register)
MOVOU 0(DX), X12 // X12 = m[0]+ m[1]
MOVOU 48(DX), X13 // X13 = m[6]+ m[7]
MOVOU 64(DX), X14 // X14 = m[8]+ m[9]
MOVOU 80(DX), X15 // X15 = m[10]+m[11]
MOVOU X15, X8
LONG $0x6c0f4566; BYTE $0xc6 // PUNPCKLQDQ XMM8, XMM14 /* m[10], m[8] */
MOVOU X13, X9
LONG $0x6d0f4566; BYTE $0xcc // PUNPCKHQDQ XMM9, XMM12 /* m[7], m[1] */
MOVOU 16(DX), X10 // X10 = m[2]+ m[3]
MOVOU 32(DX), X14 // X14 = m[4]+ m[5]
LONG $0x6c0f4566; BYTE $0xd6 // PUNPCKLQDQ XMM10, XMM14 /* m[2], m[4] */
MOVOU X14, X15
LONG $0x6d0f4566; BYTE $0xfe // PUNPCKHQDQ XMM15, XMM14 /* ___, m[5] */
MOVOU X13, X11
LONG $0x6c0f4566; BYTE $0xdf // PUNPCKLQDQ XMM11, XMM15 /* m[6], ____ */
LOAD_SHUFFLE
G1
G2
DIAGONALIZE
// LOAD_MSG_ ##r ##_3 / ##_4(b0, b1); (X12 is temp register)
MOVOU 16(DX), X12 // X12 = m[2]+ m[3]
MOVOU 64(DX), X13 // X13 = m[8]+ m[9]
MOVOU 96(DX), X14 // X14 = m[12]+m[13]
MOVOU 112(DX), X15 // X15 = m[14]+m[15]
MOVOU X15, X8
LONG $0x6d0f4566; BYTE $0xc5 // PUNPCKHQDQ XMM8, XMM13 /* m[15], m[9] */
MOVOU X12, X9
LONG $0x6d0f4566; BYTE $0xce // PUNPCKHQDQ XMM9, XMM14 /* m[3], m[13] */
MOVOU 0(DX), X12 // X12 = m[0]+ m[1]
MOVOU 80(DX), X13 // X13 = m[10]+m[11]
MOVOU X15, X10
LONG $0x3a0f4566; WORD $0xd50f; BYTE $0x08 // PALIGNR XMM10, XMM13, 0x8 /* m[11], m[14] */
MOVOU X14, X11
LONG $0x6c0f4566; BYTE $0xdc // PUNPCKLQDQ XMM11, XMM12 /* m[12], m[0] */
LOAD_SHUFFLE
G1
G2
UNDIAGONALIZE
///////////////////////////////////////////////////////////////////////////
// R O U N D 1 1
///////////////////////////////////////////////////////////////////////////
// LOAD_MSG_ ##r ##_1 / ##_2(b0, b1); (X12 is temp register)
MOVOU 0(DX), X12 // X12 = m[0]+m[1]
MOVOU 16(DX), X13 // X13 = m[2]+m[3]
MOVOU 32(DX), X14 // X14 = m[4]+m[5]
MOVOU 48(DX), X15 // X15 = m[6]+m[7]
MOVOU X12, X8
LONG $0x6c0f4566; BYTE $0xc5 // PUNPCKLQDQ XMM8, XMM13 /* m[0], m[2] */
MOVOU X14, X9
LONG $0x6c0f4566; BYTE $0xcf // PUNPCKLQDQ XMM9, XMM15 /* m[4], m[6] */
MOVOU X12, X10
LONG $0x6d0f4566; BYTE $0xd5 // PUNPCKHQDQ XMM10, XMM13 /* m[1], m[3] */
MOVOU X14, X11
LONG $0x6d0f4566; BYTE $0xdf // PUNPCKHQDQ XMM11, XMM15 /* m[5], m[7] */
LOAD_SHUFFLE
G1
G2
DIAGONALIZE
// LOAD_MSG_ ##r ##_3 / ##_4(b0, b1); (X12 is temp register)
MOVOU 64(DX), X12 // X12 = m[8]+ m[9]
MOVOU 80(DX), X13 // X13 = m[10]+m[11]
MOVOU 96(DX), X14 // X14 = m[12]+m[13]
MOVOU 112(DX), X15 // X15 = m[14]+m[15]
MOVOU X12, X8
LONG $0x6c0f4566; BYTE $0xc5 // PUNPCKLQDQ XMM8, XMM13 /* m[8],m[10] */
MOVOU X14, X9
LONG $0x6c0f4566; BYTE $0xcf // PUNPCKLQDQ XMM9, XMM15 /* m[12],m[14] */
MOVOU X12, X10
LONG $0x6d0f4566; BYTE $0xd5 // PUNPCKHQDQ XMM10, XMM13 /* m[9],m[11] */
MOVOU X14, X11
LONG $0x6d0f4566; BYTE $0xdf // PUNPCKHQDQ XMM11, XMM15 /* m[13],m[15] */
LOAD_SHUFFLE
G1
G2
UNDIAGONALIZE
///////////////////////////////////////////////////////////////////////////
// R O U N D 1 2
///////////////////////////////////////////////////////////////////////////
// LOAD_MSG_ ##r ##_1 / ##_2(b0, b1); (X12 is temp register)
MOVOU 112(DX), X12 // X12 = m[14]+m[15]
MOVOU 32(DX), X13 // X13 = m[4]+ m[5]
MOVOU 64(DX), X14 // X14 = m[8]+ m[9]
MOVOU 96(DX), X15 // X15 = m[12]+m[13]
MOVOU X12, X8
LONG $0x6c0f4566; BYTE $0xc5 // PUNPCKLQDQ XMM8, XMM13 /* m[14], m[4] */
MOVOU X14, X9
LONG $0x6d0f4566; BYTE $0xcf // PUNPCKHQDQ XMM9, XMM15 /* m[9], m[13] */
MOVOU 80(DX), X10 // X10 = m[10]+m[11]
MOVOU 48(DX), X11 // X11 = m[6]+ m[7]
LONG $0x6c0f4566; BYTE $0xd6 // PUNPCKLQDQ XMM10, XMM14 /* m[10], m[8] */
LONG $0x3a0f4566; WORD $0xdc0f; BYTE $0x08 // PALIGNR XMM11, XMM12, 0x8 /* m[15], m[6] */; ; ; ; ;
LOAD_SHUFFLE
G1
G2
DIAGONALIZE
// LOAD_MSG_ ##r ##_3 / ##_4(b0, b1); (X12 is temp register)
MOVOU 0(DX), X12 // X12 = m[0]+ m[1]
MOVOU 32(DX), X13 // X13 = m[4]+ m[5]
MOVOU 80(DX), X14 // X14 = m[10]+m[11]
MOVOU X12, X8
LONG $0x3a0f4566; WORD $0xc40f; BYTE $0x08 // PALIGNR XMM8, XMM12, 0x8 /* m[1], m[0] */
MOVOU X14, X9
LONG $0x6d0f4566; BYTE $0xcd // PUNPCKHQDQ XMM9, XMM13 /* m[11], m[5] */
MOVOU 16(DX), X12 // X12 = m[2]+ m[3]
MOVOU 48(DX), X11 // X11 = m[6]+ m[7]
MOVOU 96(DX), X10 // X10 = m[12]+m[13]
LONG $0x6c0f4566; BYTE $0xd4 // PUNPCKLQDQ XMM10, XMM12 /* m[12], m[2] */
LONG $0x6d0f4566; BYTE $0xdc // PUNPCKHQDQ XMM11, XMM12 /* m[7], m[3] */
LOAD_SHUFFLE
G1
G2
UNDIAGONALIZE
// Reload digest (most current value store in &out)
MOVQ out+144(FP), SI // SI: &in
MOVOU 0(SI), X12 // X12 = in[0]+in[1] /* row1l = LOAD( &S->h[0] ); */
MOVOU 16(SI), X13 // X13 = in[2]+in[3] /* row1h = LOAD( &S->h[2] ); */
MOVOU 32(SI), X14 // X14 = in[4]+in[5] /* row2l = LOAD( &S->h[4] ); */
MOVOU 48(SI), X15 // X15 = in[6]+in[7] /* row2h = LOAD( &S->h[6] ); */
// Final computations and prepare for storing
PXOR X4, X0 // X0 = X0 ^ X4 /* row1l = _mm_xor_si128( row3l, row1l ); */
PXOR X5, X1 // X1 = X1 ^ X5 /* row1h = _mm_xor_si128( row3h, row1h ); */
PXOR X12, X0 // X0 = X0 ^ X12 /* STORE( &S->h[0], _mm_xor_si128( LOAD( &S->h[0] ), row1l ) ); */
PXOR X13, X1 // X1 = X1 ^ X13 /* STORE( &S->h[2], _mm_xor_si128( LOAD( &S->h[2] ), row1h ) ); */
PXOR X6, X2 // X2 = X2 ^ X6 /* row2l = _mm_xor_si128( row4l, row2l ); */
PXOR X7, X3 // X3 = X3 ^ X7 /* row2h = _mm_xor_si128( row4h, row2h ); */
PXOR X14, X2 // X2 = X2 ^ X14 /* STORE( &S->h[4], _mm_xor_si128( LOAD( &S->h[4] ), row2l ) ); */
PXOR X15, X3 // X3 = X3 ^ X15 /* STORE( &S->h[6], _mm_xor_si128( LOAD( &S->h[6] ), row2h ) ); */
// Store digest into &out
MOVQ out+144(FP), SI // SI: &out
MOVOU X0, 0(SI) // out[0]+out[1] = X0
MOVOU X1, 16(SI) // out[2]+out[3] = X1
MOVOU X2, 32(SI) // out[4]+out[5] = X2
MOVOU X3, 48(SI) // out[6]+out[7] = X3
// Increment message pointer and check if there's more to do
ADDQ $128, DX // message += 128
SUBQ $1, R8
JNZ loop
complete:
RET

30
vendor/github.com/minio/blake2b-simd/compress_amd64.go generated vendored Normal file
View File

@@ -0,0 +1,30 @@
/*
* Minio Cloud Storage, (C) 2016 Minio, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package blake2b
func compress(d *digest, p []uint8) {
// Verifies if AVX2 or AVX is available, use optimized code path.
if avx2 {
compressAVX2(d, p)
} else if avx {
compressAVX(d, p)
} else if ssse3 {
compressSSE(d, p)
} else {
compressGeneric(d, p)
}
}

1419
vendor/github.com/minio/blake2b-simd/compress_generic.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

23
vendor/github.com/minio/blake2b-simd/compress_noasm.go generated vendored Normal file
View File

@@ -0,0 +1,23 @@
//+build !amd64 noasm appengine
/*
* Minio Cloud Storage, (C) 2016 Minio, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package blake2b
func compress(d *digest, p []uint8) {
compressGeneric(d, p)
}

60
vendor/github.com/minio/blake2b-simd/cpuid.go generated vendored Normal file
View File

@@ -0,0 +1,60 @@
// +build 386,!gccgo amd64,!gccgo
// Copyright 2016 Frank Wessels <fwessels@xs4all.nl>
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
package blake2b
func cpuid(op uint32) (eax, ebx, ecx, edx uint32)
func cpuidex(op, op2 uint32) (eax, ebx, ecx, edx uint32)
func xgetbv(index uint32) (eax, edx uint32)
// True when SIMD instructions are available.
var avx2 = haveAVX2()
var avx = haveAVX()
var ssse3 = haveSSSE3()
// haveAVX returns true when there is AVX support
func haveAVX() bool {
_, _, c, _ := cpuid(1)
// Check XGETBV, OXSAVE and AVX bits
if c&(1<<26) != 0 && c&(1<<27) != 0 && c&(1<<28) != 0 {
// Check for OS support
eax, _ := xgetbv(0)
return (eax & 0x6) == 0x6
}
return false
}
// haveAVX2 returns true when there is AVX2 support
func haveAVX2() bool {
mfi, _, _, _ := cpuid(0)
// Check AVX2, AVX2 requires OS support, but BMI1/2 don't.
if mfi >= 7 && haveAVX() {
_, ebx, _, _ := cpuidex(7, 0)
return (ebx & 0x00000020) != 0
}
return false
}
// haveSSSE3 returns true when there is SSSE3 support
func haveSSSE3() bool {
_, _, c, _ := cpuid(1)
return (c & 0x00000200) != 0
}

33
vendor/github.com/minio/blake2b-simd/cpuid_386.s generated vendored Normal file
View File

@@ -0,0 +1,33 @@
// Copyright (c) 2015 Klaus Post, released under MIT License. See LICENSE file.
// +build 386,!gccgo
// func cpuid(op uint32) (eax, ebx, ecx, edx uint32)
TEXT ·cpuid(SB), 7, $0
XORL CX, CX
MOVL op+0(FP), AX
CPUID
MOVL AX, eax+4(FP)
MOVL BX, ebx+8(FP)
MOVL CX, ecx+12(FP)
MOVL DX, edx+16(FP)
RET
// func cpuidex(op, op2 uint32) (eax, ebx, ecx, edx uint32)
TEXT ·cpuidex(SB), 7, $0
MOVL op+0(FP), AX
MOVL op2+4(FP), CX
CPUID
MOVL AX, eax+8(FP)
MOVL BX, ebx+12(FP)
MOVL CX, ecx+16(FP)
MOVL DX, edx+20(FP)
RET
// func xgetbv(index uint32) (eax, edx uint32)
TEXT ·xgetbv(SB), 7, $0
MOVL index+0(FP), CX
BYTE $0x0f; BYTE $0x01; BYTE $0xd0 // XGETBV
MOVL AX, eax+4(FP)
MOVL DX, edx+8(FP)
RET

34
vendor/github.com/minio/blake2b-simd/cpuid_amd64.s generated vendored Normal file
View File

@@ -0,0 +1,34 @@
// Copyright (c) 2015 Klaus Post, released under MIT License. See LICENSE file.
// +build amd64,!gccgo
// func cpuid(op uint32) (eax, ebx, ecx, edx uint32)
TEXT ·cpuid(SB), 7, $0
XORQ CX, CX
MOVL op+0(FP), AX
CPUID
MOVL AX, eax+8(FP)
MOVL BX, ebx+12(FP)
MOVL CX, ecx+16(FP)
MOVL DX, edx+20(FP)
RET
// func cpuidex(op, op2 uint32) (eax, ebx, ecx, edx uint32)
TEXT ·cpuidex(SB), 7, $0
MOVL op+0(FP), AX
MOVL op2+4(FP), CX
CPUID
MOVL AX, eax+8(FP)
MOVL BX, ebx+12(FP)
MOVL CX, ecx+16(FP)
MOVL DX, edx+20(FP)
RET
// func xgetbv(index uint32) (eax, edx uint32)
TEXT ·xgetbv(SB), 7, $0
MOVL index+0(FP), CX
BYTE $0x0f; BYTE $0x01; BYTE $0xd0 // XGETBV
MOVL AX, eax+8(FP)
MOVL DX, edx+12(FP)
RET

1
vendor/github.com/minio/sha256-simd/.gitignore generated vendored Normal file
View File

@@ -0,0 +1 @@
*.test

25
vendor/github.com/minio/sha256-simd/.travis.yml generated vendored Normal file
View File

@@ -0,0 +1,25 @@
sudo: required
dist: trusty
language: go
os:
- linux
go:
- tip
- 1.12.x
env:
- ARCH=x86_64
- ARCH=i686
matrix:
fast_finish: true
allow_failures:
- go: tip
script:
- diff -au <(gofmt -d .) <(printf "")
- go test -race -v ./...
- go vet -asmdecl .
- ./test-architectures.sh

202
vendor/github.com/minio/sha256-simd/LICENSE generated vendored Normal file
View File

@@ -0,0 +1,202 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

133
vendor/github.com/minio/sha256-simd/README.md generated vendored Normal file
View File

@@ -0,0 +1,133 @@
# sha256-simd
Accelerate SHA256 computations in pure Go using AVX512, SHA Extensions and AVX2 for Intel and ARM64 for ARM. On AVX512 it provides an up to 8x improvement (over 3 GB/s per core) in comparison to AVX2. SHA Extensions give a performance boost of close to 4x over AVX2.
## Introduction
This package is designed as a replacement for `crypto/sha256`. For Intel CPUs it has two flavors for AVX512 and AVX2 (AVX/SSE are also supported). For ARM CPUs with the Cryptography Extensions, advantage is taken of the SHA2 instructions resulting in a massive performance improvement.
This package uses Golang assembly. The AVX512 version is based on the Intel's "multi-buffer crypto library for IPSec" whereas the other Intel implementations are described in "Fast SHA-256 Implementations on Intel Architecture Processors" by J. Guilford et al.
## New: Support for Intel SHA Extensions
Support for the Intel SHA Extensions has been added by Kristofer Peterson (@svenski123), originally developed for spacemeshos [here](https://github.com/spacemeshos/POET/issues/23). On CPUs that support it (known thus far Intel Celeron J3455 and AMD Ryzen) it gives a significant boost in performance (with thanks to @AudriusButkevicius for reporting the results; full results [here](https://github.com/minio/sha256-simd/pull/37#issuecomment-451607827)).
```
$ benchcmp avx2.txt sha-ext.txt
benchmark AVX2 MB/s SHA Ext MB/s speedup
BenchmarkHash5M 514.40 1975.17 3.84x
```
Thanks to Kristofer Peterson, we also added additional performance changes such as optimized padding, endian conversions which sped up all implementations i.e. Intel SHA alone while doubled performance for small sizes, the other changes increased everything roughly 50%.
## Support for AVX512
We have added support for AVX512 which results in an up to 8x performance improvement over AVX2 (3.0 GHz Xeon Platinum 8124M CPU):
```
$ benchcmp avx2.txt avx512.txt
benchmark AVX2 MB/s AVX512 MB/s speedup
BenchmarkHash5M 448.62 3498.20 7.80x
```
The original code was developed by Intel as part of the [multi-buffer crypto library](https://github.com/intel/intel-ipsec-mb) for IPSec or more specifically this [AVX512](https://github.com/intel/intel-ipsec-mb/blob/master/avx512/sha256_x16_avx512.asm) implementation. The key idea behind it is to process a total of 16 checksums in parallel by “transposing” 16 (independent) messages of 64 bytes between a total of 16 ZMM registers (each 64 bytes wide).
Transposing the input messages means that in order to take full advantage of the speedup you need to have a (server) workload where multiple threads are doing SHA256 calculations in parallel. Unfortunately for this algorithm it is not possible for two message blocks processed in parallel to be dependent on one anotherbecause then the (interim) result of the first part of the message has to be an input into the processing of the second part of the message.
Whereas the original Intel C implementation requires some sort of explicit scheduling of messages to be processed in parallel, for Golang it makes sense to take advantage of channels in order to group messages together and use channels as well for sending back the results (thereby effectively decoupling the calculations). We have implemented a fairly simple scheduling mechanism that seems to work well in practice.
Due to this different way of scheduling, we decided to use an explicit method to instantiate the AVX512 version. Essentially one or more AVX512 processing servers ([`Avx512Server`](https://github.com/minio/sha256-simd/blob/master/sha256blockAvx512_amd64.go#L294)) have to be created whereby each server can hash over 3 GB/s on a single core. An `hash.Hash` object ([`Avx512Digest`](https://github.com/minio/sha256-simd/blob/master/sha256blockAvx512_amd64.go#L45)) is then instantiated using one of these servers and used in the regular fashion:
```go
import "github.com/minio/sha256-simd"
func main() {
server := sha256.NewAvx512Server()
h512 := sha256.NewAvx512(server)
h512.Write(fileBlock)
digest := h512.Sum([]byte{})
}
```
Note that, because of the scheduling overhead, for small messages (< 1 MB) you will be better off using the regular SHA256 hashing (but those are typically not performance critical anyway). Some other tips to get the best performance:
* Have many go routines doing SHA256 calculations in parallel.
* Try to Write() messages in multiples of 64 bytes.
* Try to keep the overall length of messages to a roughly similar size ie. 5 MB (this way all 16 lanes in the AVX512 computations are contributing as much as possible).
More detailed information can be found in this [blog](https://blog.minio.io/accelerate-sha256-up-to-8x-over-3-gb-s-per-core-with-avx512-a0b1d64f78f) post including scaling across cores.
## Drop-In Replacement
The following code snippet shows how you can use `github.com/minio/sha256-simd`. This will automatically select the fastest method for the architecture on which it will be executed.
```go
import "github.com/minio/sha256-simd"
func main() {
...
shaWriter := sha256.New()
io.Copy(shaWriter, file)
...
}
```
## Performance
Below is the speed in MB/s for a single core (ranked fast to slow) for blocks larger than 1 MB.
| Processor | SIMD | Speed (MB/s) |
| --------------------------------- | ------- | ------------:|
| 3.0 GHz Intel Xeon Platinum 8124M | AVX512 | 3498 |
| 3.7 GHz AMD Ryzen 7 2700X | SHA Ext | 1979 |
| 1.2 GHz ARM Cortex-A53 | ARM64 | 638 |
| 3.0 GHz Intel Xeon Platinum 8124M | AVX2 | 449 |
| 3.1 GHz Intel Core i7 | AVX | 362 |
| 3.1 GHz Intel Core i7 | SSE | 299 |
## asm2plan9s
In order to be able to work more easily with AVX512/AVX2 instructions, a separate tool was developed to convert SIMD instructions into the corresponding BYTE sequence as accepted by Go assembly. See [asm2plan9s](https://github.com/minio/asm2plan9s) for more information.
## Why and benefits
One of the most performance sensitive parts of the [Minio](https://github.com/minio/minio) object storage server is related to SHA256 hash sums calculations. For instance during multi part uploads each part that is uploaded needs to be verified for data integrity by the server.
Other applications that can benefit from enhanced SHA256 performance are deduplication in storage systems, intrusion detection, version control systems, integrity checking, etc.
## ARM SHA Extensions
The 64-bit ARMv8 core has introduced new instructions for SHA1 and SHA2 acceleration as part of the [Cryptography Extensions](http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0501f/CHDFJBCJ.html). Below you can see a small excerpt highlighting one of the rounds as is done for the SHA256 calculation process (for full code see [sha256block_arm64.s](https://github.com/minio/sha256-simd/blob/master/sha256block_arm64.s)).
```
sha256h q2, q3, v9.4s
sha256h2 q3, q4, v9.4s
sha256su0 v5.4s, v6.4s
rev32 v8.16b, v8.16b
add v9.4s, v7.4s, v18.4s
mov v4.16b, v2.16b
sha256h q2, q3, v10.4s
sha256h2 q3, q4, v10.4s
sha256su0 v6.4s, v7.4s
sha256su1 v5.4s, v7.4s, v8.4s
```
### Detailed benchmarks
Benchmarks generated on a 1.2 Ghz Quad-Core ARM Cortex A53 equipped [Pine64](https://www.pine64.com/).
```
minio@minio-arm:$ benchcmp golang.txt arm64.txt
benchmark golang arm64 speedup
BenchmarkHash8Bytes-4 0.68 MB/s 5.70 MB/s 8.38x
BenchmarkHash1K-4 5.65 MB/s 326.30 MB/s 57.75x
BenchmarkHash8K-4 6.00 MB/s 570.63 MB/s 95.11x
BenchmarkHash1M-4 6.05 MB/s 638.23 MB/s 105.49x
```
## License
Released under the Apache License v2.0. You can find the complete text in the file LICENSE.
## Contributing
Contributions are welcome, please send PRs for any enhancements.

32
vendor/github.com/minio/sha256-simd/appveyor.yml generated vendored Normal file
View File

@@ -0,0 +1,32 @@
# version format
version: "{build}"
# Operating system (build VM template)
os: Windows Server 2012 R2
# Platform.
platform: x64
clone_folder: c:\gopath\src\github.com\minio\sha256-simd
# environment variables
environment:
GOPATH: c:\gopath
GO15VENDOREXPERIMENT: 1
# scripts that run after cloning repository
install:
- set PATH=%GOPATH%\bin;c:\go\bin;%PATH%
- go version
- go env
# to run your custom scripts instead of automatic MSBuild
build_script:
- go test .
- go test -race .
# to disable automatic tests
test: off
# to disable deployment
deploy: off

119
vendor/github.com/minio/sha256-simd/cpuid.go generated vendored Normal file
View File

@@ -0,0 +1,119 @@
// Minio Cloud Storage, (C) 2016 Minio, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
package sha256
// True when SIMD instructions are available.
var avx512 bool
var avx2 bool
var avx bool
var sse bool
var sse2 bool
var sse3 bool
var ssse3 bool
var sse41 bool
var sse42 bool
var popcnt bool
var sha bool
var armSha = haveArmSha()
func init() {
var _xsave bool
var _osxsave bool
var _avx bool
var _avx2 bool
var _avx512f bool
var _avx512dq bool
// var _avx512pf bool
// var _avx512er bool
// var _avx512cd bool
var _avx512bw bool
var _avx512vl bool
var _sseState bool
var _avxState bool
var _opmaskState bool
var _zmmHI256State bool
var _hi16ZmmState bool
mfi, _, _, _ := cpuid(0)
if mfi >= 1 {
_, _, c, d := cpuid(1)
sse = (d & (1 << 25)) != 0
sse2 = (d & (1 << 26)) != 0
sse3 = (c & (1 << 0)) != 0
ssse3 = (c & (1 << 9)) != 0
sse41 = (c & (1 << 19)) != 0
sse42 = (c & (1 << 20)) != 0
popcnt = (c & (1 << 23)) != 0
_xsave = (c & (1 << 26)) != 0
_osxsave = (c & (1 << 27)) != 0
_avx = (c & (1 << 28)) != 0
}
if mfi >= 7 {
_, b, _, _ := cpuid(7)
_avx2 = (b & (1 << 5)) != 0
_avx512f = (b & (1 << 16)) != 0
_avx512dq = (b & (1 << 17)) != 0
// _avx512pf = (b & (1 << 26)) != 0
// _avx512er = (b & (1 << 27)) != 0
// _avx512cd = (b & (1 << 28)) != 0
_avx512bw = (b & (1 << 30)) != 0
_avx512vl = (b & (1 << 31)) != 0
sha = (b & (1 << 29)) != 0
}
// Stop here if XSAVE unsupported or not enabled
if !_xsave || !_osxsave {
return
}
if _xsave && _osxsave {
a, _ := xgetbv(0)
_sseState = (a & (1 << 1)) != 0
_avxState = (a & (1 << 2)) != 0
_opmaskState = (a & (1 << 5)) != 0
_zmmHI256State = (a & (1 << 6)) != 0
_hi16ZmmState = (a & (1 << 7)) != 0
} else {
_sseState = true
}
// Very unlikely that OS would enable XSAVE and then disable SSE
if !_sseState {
sse = false
sse2 = false
sse3 = false
ssse3 = false
sse41 = false
sse42 = false
}
if _avxState {
avx = _avx
avx2 = _avx2
}
if _opmaskState && _zmmHI256State && _hi16ZmmState {
avx512 = (_avx512f &&
_avx512dq &&
_avx512bw &&
_avx512vl)
}
}

24
vendor/github.com/minio/sha256-simd/cpuid_386.go generated vendored Normal file
View File

@@ -0,0 +1,24 @@
// Minio Cloud Storage, (C) 2016 Minio, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
package sha256
func cpuid(op uint32) (eax, ebx, ecx, edx uint32)
func cpuidex(op, op2 uint32) (eax, ebx, ecx, edx uint32)
func xgetbv(index uint32) (eax, edx uint32)
func haveArmSha() bool {
return false
}

53
vendor/github.com/minio/sha256-simd/cpuid_386.s generated vendored Normal file
View File

@@ -0,0 +1,53 @@
// The MIT License (MIT)
//
// Copyright (c) 2015 Klaus Post
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
// +build 386,!gccgo
// func cpuid(op uint32) (eax, ebx, ecx, edx uint32)
TEXT ·cpuid(SB), 7, $0
XORL CX, CX
MOVL op+0(FP), AX
CPUID
MOVL AX, eax+4(FP)
MOVL BX, ebx+8(FP)
MOVL CX, ecx+12(FP)
MOVL DX, edx+16(FP)
RET
// func cpuidex(op, op2 uint32) (eax, ebx, ecx, edx uint32)
TEXT ·cpuidex(SB), 7, $0
MOVL op+0(FP), AX
MOVL op2+4(FP), CX
CPUID
MOVL AX, eax+8(FP)
MOVL BX, ebx+12(FP)
MOVL CX, ecx+16(FP)
MOVL DX, edx+20(FP)
RET
// func xgetbv(index uint32) (eax, edx uint32)
TEXT ·xgetbv(SB), 7, $0
MOVL index+0(FP), CX
BYTE $0x0f; BYTE $0x01; BYTE $0xd0 // XGETBV
MOVL AX, eax+4(FP)
MOVL DX, edx+8(FP)
RET

24
vendor/github.com/minio/sha256-simd/cpuid_amd64.go generated vendored Normal file
View File

@@ -0,0 +1,24 @@
// Minio Cloud Storage, (C) 2016 Minio, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
package sha256
func cpuid(op uint32) (eax, ebx, ecx, edx uint32)
func cpuidex(op, op2 uint32) (eax, ebx, ecx, edx uint32)
func xgetbv(index uint32) (eax, edx uint32)
func haveArmSha() bool {
return false
}

53
vendor/github.com/minio/sha256-simd/cpuid_amd64.s generated vendored Normal file
View File

@@ -0,0 +1,53 @@
// The MIT License (MIT)
//
// Copyright (c) 2015 Klaus Post
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
// +build amd64,!gccgo
// func cpuid(op uint32) (eax, ebx, ecx, edx uint32)
TEXT ·cpuid(SB), 7, $0
XORQ CX, CX
MOVL op+0(FP), AX
CPUID
MOVL AX, eax+8(FP)
MOVL BX, ebx+12(FP)
MOVL CX, ecx+16(FP)
MOVL DX, edx+20(FP)
RET
// func cpuidex(op, op2 uint32) (eax, ebx, ecx, edx uint32)
TEXT ·cpuidex(SB), 7, $0
MOVL op+0(FP), AX
MOVL op2+4(FP), CX
CPUID
MOVL AX, eax+8(FP)
MOVL BX, ebx+12(FP)
MOVL CX, ecx+16(FP)
MOVL DX, edx+20(FP)
RET
// func xgetbv(index uint32) (eax, edx uint32)
TEXT ·xgetbv(SB), 7, $0
MOVL index+0(FP), CX
BYTE $0x0f; BYTE $0x01; BYTE $0xd0 // XGETBV
MOVL AX, eax+8(FP)
MOVL DX, edx+12(FP)
RET

32
vendor/github.com/minio/sha256-simd/cpuid_arm.go generated vendored Normal file
View File

@@ -0,0 +1,32 @@
// Minio Cloud Storage, (C) 2016 Minio, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
package sha256
func cpuid(op uint32) (eax, ebx, ecx, edx uint32) {
return 0, 0, 0, 0
}
func cpuidex(op, op2 uint32) (eax, ebx, ecx, edx uint32) {
return 0, 0, 0, 0
}
func xgetbv(index uint32) (eax, edx uint32) {
return 0, 0
}
func haveArmSha() bool {
return false
}

View File

@@ -0,0 +1,49 @@
// +build arm64,linux
// Minio Cloud Storage, (C) 2016 Minio, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
package sha256
import (
"bytes"
"io/ioutil"
)
func cpuid(op uint32) (eax, ebx, ecx, edx uint32) {
return 0, 0, 0, 0
}
func cpuidex(op, op2 uint32) (eax, ebx, ecx, edx uint32) {
return 0, 0, 0, 0
}
func xgetbv(index uint32) (eax, edx uint32) {
return 0, 0
}
// File to check for cpu capabilities.
const procCPUInfo = "/proc/cpuinfo"
// Feature to check for.
const sha256Feature = "sha2"
func haveArmSha() bool {
cpuInfo, err := ioutil.ReadFile(procCPUInfo)
if err != nil {
return false
}
return bytes.Contains(cpuInfo, []byte(sha256Feature))
}

34
vendor/github.com/minio/sha256-simd/cpuid_other.go generated vendored Normal file
View File

@@ -0,0 +1,34 @@
// Minio Cloud Storage, (C) 2016 Minio, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// +build !386,!amd64,!arm,!arm64 arm64,!linux
package sha256
func cpuid(op uint32) (eax, ebx, ecx, edx uint32) {
return 0, 0, 0, 0
}
func cpuidex(op, op2 uint32) (eax, ebx, ecx, edx uint32) {
return 0, 0, 0, 0
}
func xgetbv(index uint32) (eax, edx uint32) {
return 0, 0
}
func haveArmSha() bool {
return false
}

3
vendor/github.com/minio/sha256-simd/go.mod generated vendored Normal file
View File

@@ -0,0 +1,3 @@
module github.com/minio/sha256-simd
go 1.12

409
vendor/github.com/minio/sha256-simd/sha256.go generated vendored Normal file
View File

@@ -0,0 +1,409 @@
/*
* Minio Cloud Storage, (C) 2016 Minio, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package sha256
import (
"crypto/sha256"
"encoding/binary"
"hash"
"runtime"
)
// Size - The size of a SHA256 checksum in bytes.
const Size = 32
// BlockSize - The blocksize of SHA256 in bytes.
const BlockSize = 64
const (
chunk = BlockSize
init0 = 0x6A09E667
init1 = 0xBB67AE85
init2 = 0x3C6EF372
init3 = 0xA54FF53A
init4 = 0x510E527F
init5 = 0x9B05688C
init6 = 0x1F83D9AB
init7 = 0x5BE0CD19
)
// digest represents the partial evaluation of a checksum.
type digest struct {
h [8]uint32
x [chunk]byte
nx int
len uint64
}
// Reset digest back to default
func (d *digest) Reset() {
d.h[0] = init0
d.h[1] = init1
d.h[2] = init2
d.h[3] = init3
d.h[4] = init4
d.h[5] = init5
d.h[6] = init6
d.h[7] = init7
d.nx = 0
d.len = 0
}
type blockfuncType int
const (
blockfuncGeneric blockfuncType = iota
blockfuncAvx512 blockfuncType = iota
blockfuncAvx2 blockfuncType = iota
blockfuncAvx blockfuncType = iota
blockfuncSsse blockfuncType = iota
blockfuncSha blockfuncType = iota
blockfuncArm blockfuncType = iota
)
var blockfunc blockfuncType
func init() {
is386bit := runtime.GOARCH == "386"
isARM := runtime.GOARCH == "arm"
switch {
case is386bit || isARM:
blockfunc = blockfuncGeneric
case sha && ssse3 && sse41:
blockfunc = blockfuncSha
case avx2:
blockfunc = blockfuncAvx2
case avx:
blockfunc = blockfuncAvx
case ssse3:
blockfunc = blockfuncSsse
case armSha:
blockfunc = blockfuncArm
default:
blockfunc = blockfuncGeneric
}
}
// New returns a new hash.Hash computing the SHA256 checksum.
func New() hash.Hash {
if blockfunc != blockfuncGeneric {
d := new(digest)
d.Reset()
return d
}
// Fallback to the standard golang implementation
// if no features were found.
return sha256.New()
}
// Sum256 - single caller sha256 helper
func Sum256(data []byte) (result [Size]byte) {
var d digest
d.Reset()
d.Write(data)
result = d.checkSum()
return
}
// Return size of checksum
func (d *digest) Size() int { return Size }
// Return blocksize of checksum
func (d *digest) BlockSize() int { return BlockSize }
// Write to digest
func (d *digest) Write(p []byte) (nn int, err error) {
nn = len(p)
d.len += uint64(nn)
if d.nx > 0 {
n := copy(d.x[d.nx:], p)
d.nx += n
if d.nx == chunk {
block(d, d.x[:])
d.nx = 0
}
p = p[n:]
}
if len(p) >= chunk {
n := len(p) &^ (chunk - 1)
block(d, p[:n])
p = p[n:]
}
if len(p) > 0 {
d.nx = copy(d.x[:], p)
}
return
}
// Return sha256 sum in bytes
func (d *digest) Sum(in []byte) []byte {
// Make a copy of d0 so that caller can keep writing and summing.
d0 := *d
hash := d0.checkSum()
return append(in, hash[:]...)
}
// Intermediate checksum function
func (d *digest) checkSum() (digest [Size]byte) {
n := d.nx
var k [64]byte
copy(k[:], d.x[:n])
k[n] = 0x80
if n >= 56 {
block(d, k[:])
// clear block buffer - go compiles this to optimal 1x xorps + 4x movups
// unfortunately expressing this more succinctly results in much worse code
k[0] = 0
k[1] = 0
k[2] = 0
k[3] = 0
k[4] = 0
k[5] = 0
k[6] = 0
k[7] = 0
k[8] = 0
k[9] = 0
k[10] = 0
k[11] = 0
k[12] = 0
k[13] = 0
k[14] = 0
k[15] = 0
k[16] = 0
k[17] = 0
k[18] = 0
k[19] = 0
k[20] = 0
k[21] = 0
k[22] = 0
k[23] = 0
k[24] = 0
k[25] = 0
k[26] = 0
k[27] = 0
k[28] = 0
k[29] = 0
k[30] = 0
k[31] = 0
k[32] = 0
k[33] = 0
k[34] = 0
k[35] = 0
k[36] = 0
k[37] = 0
k[38] = 0
k[39] = 0
k[40] = 0
k[41] = 0
k[42] = 0
k[43] = 0
k[44] = 0
k[45] = 0
k[46] = 0
k[47] = 0
k[48] = 0
k[49] = 0
k[50] = 0
k[51] = 0
k[52] = 0
k[53] = 0
k[54] = 0
k[55] = 0
k[56] = 0
k[57] = 0
k[58] = 0
k[59] = 0
k[60] = 0
k[61] = 0
k[62] = 0
k[63] = 0
}
binary.BigEndian.PutUint64(k[56:64], uint64(d.len)<<3)
block(d, k[:])
{
const i = 0
binary.BigEndian.PutUint32(digest[i*4:i*4+4], d.h[i])
}
{
const i = 1
binary.BigEndian.PutUint32(digest[i*4:i*4+4], d.h[i])
}
{
const i = 2
binary.BigEndian.PutUint32(digest[i*4:i*4+4], d.h[i])
}
{
const i = 3
binary.BigEndian.PutUint32(digest[i*4:i*4+4], d.h[i])
}
{
const i = 4
binary.BigEndian.PutUint32(digest[i*4:i*4+4], d.h[i])
}
{
const i = 5
binary.BigEndian.PutUint32(digest[i*4:i*4+4], d.h[i])
}
{
const i = 6
binary.BigEndian.PutUint32(digest[i*4:i*4+4], d.h[i])
}
{
const i = 7
binary.BigEndian.PutUint32(digest[i*4:i*4+4], d.h[i])
}
return
}
func block(dig *digest, p []byte) {
if blockfunc == blockfuncSha {
blockShaGo(dig, p)
} else if blockfunc == blockfuncAvx2 {
blockAvx2Go(dig, p)
} else if blockfunc == blockfuncAvx {
blockAvxGo(dig, p)
} else if blockfunc == blockfuncSsse {
blockSsseGo(dig, p)
} else if blockfunc == blockfuncArm {
blockArmGo(dig, p)
} else if blockfunc == blockfuncGeneric {
blockGeneric(dig, p)
}
}
func blockGeneric(dig *digest, p []byte) {
var w [64]uint32
h0, h1, h2, h3, h4, h5, h6, h7 := dig.h[0], dig.h[1], dig.h[2], dig.h[3], dig.h[4], dig.h[5], dig.h[6], dig.h[7]
for len(p) >= chunk {
// Can interlace the computation of w with the
// rounds below if needed for speed.
for i := 0; i < 16; i++ {
j := i * 4
w[i] = uint32(p[j])<<24 | uint32(p[j+1])<<16 | uint32(p[j+2])<<8 | uint32(p[j+3])
}
for i := 16; i < 64; i++ {
v1 := w[i-2]
t1 := (v1>>17 | v1<<(32-17)) ^ (v1>>19 | v1<<(32-19)) ^ (v1 >> 10)
v2 := w[i-15]
t2 := (v2>>7 | v2<<(32-7)) ^ (v2>>18 | v2<<(32-18)) ^ (v2 >> 3)
w[i] = t1 + w[i-7] + t2 + w[i-16]
}
a, b, c, d, e, f, g, h := h0, h1, h2, h3, h4, h5, h6, h7
for i := 0; i < 64; i++ {
t1 := h + ((e>>6 | e<<(32-6)) ^ (e>>11 | e<<(32-11)) ^ (e>>25 | e<<(32-25))) + ((e & f) ^ (^e & g)) + _K[i] + w[i]
t2 := ((a>>2 | a<<(32-2)) ^ (a>>13 | a<<(32-13)) ^ (a>>22 | a<<(32-22))) + ((a & b) ^ (a & c) ^ (b & c))
h = g
g = f
f = e
e = d + t1
d = c
c = b
b = a
a = t1 + t2
}
h0 += a
h1 += b
h2 += c
h3 += d
h4 += e
h5 += f
h6 += g
h7 += h
p = p[chunk:]
}
dig.h[0], dig.h[1], dig.h[2], dig.h[3], dig.h[4], dig.h[5], dig.h[6], dig.h[7] = h0, h1, h2, h3, h4, h5, h6, h7
}
var _K = []uint32{
0x428a2f98,
0x71374491,
0xb5c0fbcf,
0xe9b5dba5,
0x3956c25b,
0x59f111f1,
0x923f82a4,
0xab1c5ed5,
0xd807aa98,
0x12835b01,
0x243185be,
0x550c7dc3,
0x72be5d74,
0x80deb1fe,
0x9bdc06a7,
0xc19bf174,
0xe49b69c1,
0xefbe4786,
0x0fc19dc6,
0x240ca1cc,
0x2de92c6f,
0x4a7484aa,
0x5cb0a9dc,
0x76f988da,
0x983e5152,
0xa831c66d,
0xb00327c8,
0xbf597fc7,
0xc6e00bf3,
0xd5a79147,
0x06ca6351,
0x14292967,
0x27b70a85,
0x2e1b2138,
0x4d2c6dfc,
0x53380d13,
0x650a7354,
0x766a0abb,
0x81c2c92e,
0x92722c85,
0xa2bfe8a1,
0xa81a664b,
0xc24b8b70,
0xc76c51a3,
0xd192e819,
0xd6990624,
0xf40e3585,
0x106aa070,
0x19a4c116,
0x1e376c08,
0x2748774c,
0x34b0bcb5,
0x391c0cb3,
0x4ed8aa4a,
0x5b9cca4f,
0x682e6ff3,
0x748f82ee,
0x78a5636f,
0x84c87814,
0x8cc70208,
0x90befffa,
0xa4506ceb,
0xbef9a3f7,
0xc67178f2,
}

View File

@@ -0,0 +1,22 @@
//+build !noasm,!appengine
/*
* Minio Cloud Storage, (C) 2016 Minio, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package sha256
//go:noescape
func blockAvx2(h []uint32, message []uint8)

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,686 @@
// 16x Parallel implementation of SHA256 for AVX512
//
// Minio Cloud Storage, (C) 2017 Minio, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// This code is based on the Intel Multi-Buffer Crypto for IPSec library
// and more specifically the following implementation:
// https://github.com/intel/intel-ipsec-mb/blob/master/avx512/sha256_x16_avx512.asm
//
// For Golang it has been converted into Plan 9 assembly with the help of
// github.com/minio/asm2plan9s to assemble the AVX512 instructions
//
// Copyright (c) 2017, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of Intel Corporation nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#define SHA256_DIGEST_ROW_SIZE 64
// arg1
#define STATE rdi
#define STATE_P9 DI
// arg2
#define INP_SIZE rsi
#define INP_SIZE_P9 SI
#define IDX rcx
#define TBL rdx
#define TBL_P9 DX
#define INPUT rax
#define INPUT_P9 AX
#define inp0 r9
#define SCRATCH_P9 R12
#define SCRATCH r12
#define maskp r13
#define MASKP_P9 R13
#define mask r14
#define MASK_P9 R14
#define A zmm0
#define B zmm1
#define C zmm2
#define D zmm3
#define E zmm4
#define F zmm5
#define G zmm6
#define H zmm7
#define T1 zmm8
#define TMP0 zmm9
#define TMP1 zmm10
#define TMP2 zmm11
#define TMP3 zmm12
#define TMP4 zmm13
#define TMP5 zmm14
#define TMP6 zmm15
#define W0 zmm16
#define W1 zmm17
#define W2 zmm18
#define W3 zmm19
#define W4 zmm20
#define W5 zmm21
#define W6 zmm22
#define W7 zmm23
#define W8 zmm24
#define W9 zmm25
#define W10 zmm26
#define W11 zmm27
#define W12 zmm28
#define W13 zmm29
#define W14 zmm30
#define W15 zmm31
#define TRANSPOSE16(_r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7, _r8, _r9, _r10, _r11, _r12, _r13, _r14, _r15, _t0, _t1) \
\
\ // input r0 = {a15 a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0}
\ // r1 = {b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0}
\ // r2 = {c15 c14 c13 c12 c11 c10 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0}
\ // r3 = {d15 d14 d13 d12 d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0}
\ // r4 = {e15 e14 e13 e12 e11 e10 e9 e8 e7 e6 e5 e4 e3 e2 e1 e0}
\ // r5 = {f15 f14 f13 f12 f11 f10 f9 f8 f7 f6 f5 f4 f3 f2 f1 f0}
\ // r6 = {g15 g14 g13 g12 g11 g10 g9 g8 g7 g6 g5 g4 g3 g2 g1 g0}
\ // r7 = {h15 h14 h13 h12 h11 h10 h9 h8 h7 h6 h5 h4 h3 h2 h1 h0}
\ // r8 = {i15 i14 i13 i12 i11 i10 i9 i8 i7 i6 i5 i4 i3 i2 i1 i0}
\ // r9 = {j15 j14 j13 j12 j11 j10 j9 j8 j7 j6 j5 j4 j3 j2 j1 j0}
\ // r10 = {k15 k14 k13 k12 k11 k10 k9 k8 k7 k6 k5 k4 k3 k2 k1 k0}
\ // r11 = {l15 l14 l13 l12 l11 l10 l9 l8 l7 l6 l5 l4 l3 l2 l1 l0}
\ // r12 = {m15 m14 m13 m12 m11 m10 m9 m8 m7 m6 m5 m4 m3 m2 m1 m0}
\ // r13 = {n15 n14 n13 n12 n11 n10 n9 n8 n7 n6 n5 n4 n3 n2 n1 n0}
\ // r14 = {o15 o14 o13 o12 o11 o10 o9 o8 o7 o6 o5 o4 o3 o2 o1 o0}
\ // r15 = {p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0}
\
\ // output r0 = { p0 o0 n0 m0 l0 k0 j0 i0 h0 g0 f0 e0 d0 c0 b0 a0}
\ // r1 = { p1 o1 n1 m1 l1 k1 j1 i1 h1 g1 f1 e1 d1 c1 b1 a1}
\ // r2 = { p2 o2 n2 m2 l2 k2 j2 i2 h2 g2 f2 e2 d2 c2 b2 a2}
\ // r3 = { p3 o3 n3 m3 l3 k3 j3 i3 h3 g3 f3 e3 d3 c3 b3 a3}
\ // r4 = { p4 o4 n4 m4 l4 k4 j4 i4 h4 g4 f4 e4 d4 c4 b4 a4}
\ // r5 = { p5 o5 n5 m5 l5 k5 j5 i5 h5 g5 f5 e5 d5 c5 b5 a5}
\ // r6 = { p6 o6 n6 m6 l6 k6 j6 i6 h6 g6 f6 e6 d6 c6 b6 a6}
\ // r7 = { p7 o7 n7 m7 l7 k7 j7 i7 h7 g7 f7 e7 d7 c7 b7 a7}
\ // r8 = { p8 o8 n8 m8 l8 k8 j8 i8 h8 g8 f8 e8 d8 c8 b8 a8}
\ // r9 = { p9 o9 n9 m9 l9 k9 j9 i9 h9 g9 f9 e9 d9 c9 b9 a9}
\ // r10 = {p10 o10 n10 m10 l10 k10 j10 i10 h10 g10 f10 e10 d10 c10 b10 a10}
\ // r11 = {p11 o11 n11 m11 l11 k11 j11 i11 h11 g11 f11 e11 d11 c11 b11 a11}
\ // r12 = {p12 o12 n12 m12 l12 k12 j12 i12 h12 g12 f12 e12 d12 c12 b12 a12}
\ // r13 = {p13 o13 n13 m13 l13 k13 j13 i13 h13 g13 f13 e13 d13 c13 b13 a13}
\ // r14 = {p14 o14 n14 m14 l14 k14 j14 i14 h14 g14 f14 e14 d14 c14 b14 a14}
\ // r15 = {p15 o15 n15 m15 l15 k15 j15 i15 h15 g15 f15 e15 d15 c15 b15 a15}
\
\ // process top half
vshufps _t0, _r0, _r1, 0x44 \ // t0 = {b13 b12 a13 a12 b9 b8 a9 a8 b5 b4 a5 a4 b1 b0 a1 a0}
vshufps _r0, _r0, _r1, 0xEE \ // r0 = {b15 b14 a15 a14 b11 b10 a11 a10 b7 b6 a7 a6 b3 b2 a3 a2}
vshufps _t1, _r2, _r3, 0x44 \ // t1 = {d13 d12 c13 c12 d9 d8 c9 c8 d5 d4 c5 c4 d1 d0 c1 c0}
vshufps _r2, _r2, _r3, 0xEE \ // r2 = {d15 d14 c15 c14 d11 d10 c11 c10 d7 d6 c7 c6 d3 d2 c3 c2}
\
vshufps _r3, _t0, _t1, 0xDD \ // r3 = {d13 c13 b13 a13 d9 c9 b9 a9 d5 c5 b5 a5 d1 c1 b1 a1}
vshufps _r1, _r0, _r2, 0x88 \ // r1 = {d14 c14 b14 a14 d10 c10 b10 a10 d6 c6 b6 a6 d2 c2 b2 a2}
vshufps _r0, _r0, _r2, 0xDD \ // r0 = {d15 c15 b15 a15 d11 c11 b11 a11 d7 c7 b7 a7 d3 c3 b3 a3}
vshufps _t0, _t0, _t1, 0x88 \ // t0 = {d12 c12 b12 a12 d8 c8 b8 a8 d4 c4 b4 a4 d0 c0 b0 a0}
\
\ // use r2 in place of t0
vshufps _r2, _r4, _r5, 0x44 \ // r2 = {f13 f12 e13 e12 f9 f8 e9 e8 f5 f4 e5 e4 f1 f0 e1 e0}
vshufps _r4, _r4, _r5, 0xEE \ // r4 = {f15 f14 e15 e14 f11 f10 e11 e10 f7 f6 e7 e6 f3 f2 e3 e2}
vshufps _t1, _r6, _r7, 0x44 \ // t1 = {h13 h12 g13 g12 h9 h8 g9 g8 h5 h4 g5 g4 h1 h0 g1 g0}
vshufps _r6, _r6, _r7, 0xEE \ // r6 = {h15 h14 g15 g14 h11 h10 g11 g10 h7 h6 g7 g6 h3 h2 g3 g2}
\
vshufps _r7, _r2, _t1, 0xDD \ // r7 = {h13 g13 f13 e13 h9 g9 f9 e9 h5 g5 f5 e5 h1 g1 f1 e1}
vshufps _r5, _r4, _r6, 0x88 \ // r5 = {h14 g14 f14 e14 h10 g10 f10 e10 h6 g6 f6 e6 h2 g2 f2 e2}
vshufps _r4, _r4, _r6, 0xDD \ // r4 = {h15 g15 f15 e15 h11 g11 f11 e11 h7 g7 f7 e7 h3 g3 f3 e3}
vshufps _r2, _r2, _t1, 0x88 \ // r2 = {h12 g12 f12 e12 h8 g8 f8 e8 h4 g4 f4 e4 h0 g0 f0 e0}
\
\ // use r6 in place of t0
vshufps _r6, _r8, _r9, 0x44 \ // r6 = {j13 j12 i13 i12 j9 j8 i9 i8 j5 j4 i5 i4 j1 j0 i1 i0}
vshufps _r8, _r8, _r9, 0xEE \ // r8 = {j15 j14 i15 i14 j11 j10 i11 i10 j7 j6 i7 i6 j3 j2 i3 i2}
vshufps _t1, _r10, _r11, 0x44 \ // t1 = {l13 l12 k13 k12 l9 l8 k9 k8 l5 l4 k5 k4 l1 l0 k1 k0}
vshufps _r10, _r10, _r11, 0xEE \ // r10 = {l15 l14 k15 k14 l11 l10 k11 k10 l7 l6 k7 k6 l3 l2 k3 k2}
\
vshufps _r11, _r6, _t1, 0xDD \ // r11 = {l13 k13 j13 113 l9 k9 j9 i9 l5 k5 j5 i5 l1 k1 j1 i1}
vshufps _r9, _r8, _r10, 0x88 \ // r9 = {l14 k14 j14 114 l10 k10 j10 i10 l6 k6 j6 i6 l2 k2 j2 i2}
vshufps _r8, _r8, _r10, 0xDD \ // r8 = {l15 k15 j15 115 l11 k11 j11 i11 l7 k7 j7 i7 l3 k3 j3 i3}
vshufps _r6, _r6, _t1, 0x88 \ // r6 = {l12 k12 j12 112 l8 k8 j8 i8 l4 k4 j4 i4 l0 k0 j0 i0}
\
\ // use r10 in place of t0
vshufps _r10, _r12, _r13, 0x44 \ // r10 = {n13 n12 m13 m12 n9 n8 m9 m8 n5 n4 m5 m4 n1 n0 a1 m0}
vshufps _r12, _r12, _r13, 0xEE \ // r12 = {n15 n14 m15 m14 n11 n10 m11 m10 n7 n6 m7 m6 n3 n2 a3 m2}
vshufps _t1, _r14, _r15, 0x44 \ // t1 = {p13 p12 013 012 p9 p8 09 08 p5 p4 05 04 p1 p0 01 00}
vshufps _r14, _r14, _r15, 0xEE \ // r14 = {p15 p14 015 014 p11 p10 011 010 p7 p6 07 06 p3 p2 03 02}
\
vshufps _r15, _r10, _t1, 0xDD \ // r15 = {p13 013 n13 m13 p9 09 n9 m9 p5 05 n5 m5 p1 01 n1 m1}
vshufps _r13, _r12, _r14, 0x88 \ // r13 = {p14 014 n14 m14 p10 010 n10 m10 p6 06 n6 m6 p2 02 n2 m2}
vshufps _r12, _r12, _r14, 0xDD \ // r12 = {p15 015 n15 m15 p11 011 n11 m11 p7 07 n7 m7 p3 03 n3 m3}
vshufps _r10, _r10, _t1, 0x88 \ // r10 = {p12 012 n12 m12 p8 08 n8 m8 p4 04 n4 m4 p0 00 n0 m0}
\
\ // At this point, the registers that contain interesting data are:
\ // t0, r3, r1, r0, r2, r7, r5, r4, r6, r11, r9, r8, r10, r15, r13, r12
\ // Can use t1 and r14 as scratch registers
LEAQ PSHUFFLE_TRANSPOSE16_MASK1<>(SB), BX \
LEAQ PSHUFFLE_TRANSPOSE16_MASK2<>(SB), R8 \
\
vmovdqu32 _r14, [rbx] \
vpermi2q _r14, _t0, _r2 \ // r14 = {h8 g8 f8 e8 d8 c8 b8 a8 h0 g0 f0 e0 d0 c0 b0 a0}
vmovdqu32 _t1, [r8] \
vpermi2q _t1, _t0, _r2 \ // t1 = {h12 g12 f12 e12 d12 c12 b12 a12 h4 g4 f4 e4 d4 c4 b4 a4}
\
vmovdqu32 _r2, [rbx] \
vpermi2q _r2, _r3, _r7 \ // r2 = {h9 g9 f9 e9 d9 c9 b9 a9 h1 g1 f1 e1 d1 c1 b1 a1}
vmovdqu32 _t0, [r8] \
vpermi2q _t0, _r3, _r7 \ // t0 = {h13 g13 f13 e13 d13 c13 b13 a13 h5 g5 f5 e5 d5 c5 b5 a5}
\
vmovdqu32 _r3, [rbx] \
vpermi2q _r3, _r1, _r5 \ // r3 = {h10 g10 f10 e10 d10 c10 b10 a10 h2 g2 f2 e2 d2 c2 b2 a2}
vmovdqu32 _r7, [r8] \
vpermi2q _r7, _r1, _r5 \ // r7 = {h14 g14 f14 e14 d14 c14 b14 a14 h6 g6 f6 e6 d6 c6 b6 a6}
\
vmovdqu32 _r1, [rbx] \
vpermi2q _r1, _r0, _r4 \ // r1 = {h11 g11 f11 e11 d11 c11 b11 a11 h3 g3 f3 e3 d3 c3 b3 a3}
vmovdqu32 _r5, [r8] \
vpermi2q _r5, _r0, _r4 \ // r5 = {h15 g15 f15 e15 d15 c15 b15 a15 h7 g7 f7 e7 d7 c7 b7 a7}
\
vmovdqu32 _r0, [rbx] \
vpermi2q _r0, _r6, _r10 \ // r0 = {p8 o8 n8 m8 l8 k8 j8 i8 p0 o0 n0 m0 l0 k0 j0 i0}
vmovdqu32 _r4, [r8] \
vpermi2q _r4, _r6, _r10 \ // r4 = {p12 o12 n12 m12 l12 k12 j12 i12 p4 o4 n4 m4 l4 k4 j4 i4}
\
vmovdqu32 _r6, [rbx] \
vpermi2q _r6, _r11, _r15 \ // r6 = {p9 o9 n9 m9 l9 k9 j9 i9 p1 o1 n1 m1 l1 k1 j1 i1}
vmovdqu32 _r10, [r8] \
vpermi2q _r10, _r11, _r15 \ // r10 = {p13 o13 n13 m13 l13 k13 j13 i13 p5 o5 n5 m5 l5 k5 j5 i5}
\
vmovdqu32 _r11, [rbx] \
vpermi2q _r11, _r9, _r13 \ // r11 = {p10 o10 n10 m10 l10 k10 j10 i10 p2 o2 n2 m2 l2 k2 j2 i2}
vmovdqu32 _r15, [r8] \
vpermi2q _r15, _r9, _r13 \ // r15 = {p14 o14 n14 m14 l14 k14 j14 i14 p6 o6 n6 m6 l6 k6 j6 i6}
\
vmovdqu32 _r9, [rbx] \
vpermi2q _r9, _r8, _r12 \ // r9 = {p11 o11 n11 m11 l11 k11 j11 i11 p3 o3 n3 m3 l3 k3 j3 i3}
vmovdqu32 _r13, [r8] \
vpermi2q _r13, _r8, _r12 \ // r13 = {p15 o15 n15 m15 l15 k15 j15 i15 p7 o7 n7 m7 l7 k7 j7 i7}
\
\ // At this point r8 and r12 can be used as scratch registers
vshuff64x2 _r8, _r14, _r0, 0xEE \ // r8 = {p8 o8 n8 m8 l8 k8 j8 i8 h8 g8 f8 e8 d8 c8 b8 a8}
vshuff64x2 _r0, _r14, _r0, 0x44 \ // r0 = {p0 o0 n0 m0 l0 k0 j0 i0 h0 g0 f0 e0 d0 c0 b0 a0}
\
vshuff64x2 _r12, _t1, _r4, 0xEE \ // r12 = {p12 o12 n12 m12 l12 k12 j12 i12 h12 g12 f12 e12 d12 c12 b12 a12}
vshuff64x2 _r4, _t1, _r4, 0x44 \ // r4 = {p4 o4 n4 m4 l4 k4 j4 i4 h4 g4 f4 e4 d4 c4 b4 a4}
\
vshuff64x2 _r14, _r7, _r15, 0xEE \ // r14 = {p14 o14 n14 m14 l14 k14 j14 i14 h14 g14 f14 e14 d14 c14 b14 a14}
vshuff64x2 _t1, _r7, _r15, 0x44 \ // t1 = {p6 o6 n6 m6 l6 k6 j6 i6 h6 g6 f6 e6 d6 c6 b6 a6}
\
vshuff64x2 _r15, _r5, _r13, 0xEE \ // r15 = {p15 o15 n15 m15 l15 k15 j15 i15 h15 g15 f15 e15 d15 c15 b15 a15}
vshuff64x2 _r7, _r5, _r13, 0x44 \ // r7 = {p7 o7 n7 m7 l7 k7 j7 i7 h7 g7 f7 e7 d7 c7 b7 a7}
\
vshuff64x2 _r13, _t0, _r10, 0xEE \ // r13 = {p13 o13 n13 m13 l13 k13 j13 i13 h13 g13 f13 e13 d13 c13 b13 a13}
vshuff64x2 _r5, _t0, _r10, 0x44 \ // r5 = {p5 o5 n5 m5 l5 k5 j5 i5 h5 g5 f5 e5 d5 c5 b5 a5}
\
vshuff64x2 _r10, _r3, _r11, 0xEE \ // r10 = {p10 o10 n10 m10 l10 k10 j10 i10 h10 g10 f10 e10 d10 c10 b10 a10}
vshuff64x2 _t0, _r3, _r11, 0x44 \ // t0 = {p2 o2 n2 m2 l2 k2 j2 i2 h2 g2 f2 e2 d2 c2 b2 a2}
\
vshuff64x2 _r11, _r1, _r9, 0xEE \ // r11 = {p11 o11 n11 m11 l11 k11 j11 i11 h11 g11 f11 e11 d11 c11 b11 a11}
vshuff64x2 _r3, _r1, _r9, 0x44 \ // r3 = {p3 o3 n3 m3 l3 k3 j3 i3 h3 g3 f3 e3 d3 c3 b3 a3}
\
vshuff64x2 _r9, _r2, _r6, 0xEE \ // r9 = {p9 o9 n9 m9 l9 k9 j9 i9 h9 g9 f9 e9 d9 c9 b9 a9}
vshuff64x2 _r1, _r2, _r6, 0x44 \ // r1 = {p1 o1 n1 m1 l1 k1 j1 i1 h1 g1 f1 e1 d1 c1 b1 a1}
\
vmovdqu32 _r2, _t0 \ // r2 = {p2 o2 n2 m2 l2 k2 j2 i2 h2 g2 f2 e2 d2 c2 b2 a2}
vmovdqu32 _r6, _t1 \ // r6 = {p6 o6 n6 m6 l6 k6 j6 i6 h6 g6 f6 e6 d6 c6 b6 a6}
// CH(A, B, C) = (A&B) ^ (~A&C)
// MAJ(E, F, G) = (E&F) ^ (E&G) ^ (F&G)
// SIGMA0 = ROR_2 ^ ROR_13 ^ ROR_22
// SIGMA1 = ROR_6 ^ ROR_11 ^ ROR_25
// sigma0 = ROR_7 ^ ROR_18 ^ SHR_3
// sigma1 = ROR_17 ^ ROR_19 ^ SHR_10
// Main processing loop per round
#define PROCESS_LOOP(_WT, _ROUND, _A, _B, _C, _D, _E, _F, _G, _H) \
\ // T1 = H + SIGMA1(E) + CH(E, F, G) + Kt + Wt
\ // T2 = SIGMA0(A) + MAJ(A, B, C)
\ // H=G, G=F, F=E, E=D+T1, D=C, C=B, B=A, A=T1+T2
\
\ // H becomes T2, then add T1 for A
\ // D becomes D + T1 for E
\
vpaddd T1, _H, TMP3 \ // T1 = H + Kt
vmovdqu32 TMP0, _E \
vprord TMP1, _E, 6 \ // ROR_6(E)
vprord TMP2, _E, 11 \ // ROR_11(E)
vprord TMP3, _E, 25 \ // ROR_25(E)
vpternlogd TMP0, _F, _G, 0xCA \ // TMP0 = CH(E,F,G)
vpaddd T1, T1, _WT \ // T1 = T1 + Wt
vpternlogd TMP1, TMP2, TMP3, 0x96 \ // TMP1 = SIGMA1(E)
vpaddd T1, T1, TMP0 \ // T1 = T1 + CH(E,F,G)
vpaddd T1, T1, TMP1 \ // T1 = T1 + SIGMA1(E)
vpaddd _D, _D, T1 \ // D = D + T1
\
vprord _H, _A, 2 \ // ROR_2(A)
vprord TMP2, _A, 13 \ // ROR_13(A)
vprord TMP3, _A, 22 \ // ROR_22(A)
vmovdqu32 TMP0, _A \
vpternlogd TMP0, _B, _C, 0xE8 \ // TMP0 = MAJ(A,B,C)
vpternlogd _H, TMP2, TMP3, 0x96 \ // H(T2) = SIGMA0(A)
vpaddd _H, _H, TMP0 \ // H(T2) = SIGMA0(A) + MAJ(A,B,C)
vpaddd _H, _H, T1 \ // H(A) = H(T2) + T1
\
vmovdqu32 TMP3, [TBL + ((_ROUND+1)*64)] \ // Next Kt
#define MSG_SCHED_ROUND_16_63(_WT, _WTp1, _WTp9, _WTp14) \
vprord TMP4, _WTp14, 17 \ // ROR_17(Wt-2)
vprord TMP5, _WTp14, 19 \ // ROR_19(Wt-2)
vpsrld TMP6, _WTp14, 10 \ // SHR_10(Wt-2)
vpternlogd TMP4, TMP5, TMP6, 0x96 \ // TMP4 = sigma1(Wt-2)
\
vpaddd _WT, _WT, TMP4 \ // Wt = Wt-16 + sigma1(Wt-2)
vpaddd _WT, _WT, _WTp9 \ // Wt = Wt-16 + sigma1(Wt-2) + Wt-7
\
vprord TMP4, _WTp1, 7 \ // ROR_7(Wt-15)
vprord TMP5, _WTp1, 18 \ // ROR_18(Wt-15)
vpsrld TMP6, _WTp1, 3 \ // SHR_3(Wt-15)
vpternlogd TMP4, TMP5, TMP6, 0x96 \ // TMP4 = sigma0(Wt-15)
\
vpaddd _WT, _WT, TMP4 \ // Wt = Wt-16 + sigma1(Wt-2) +
\ // Wt-7 + sigma0(Wt-15) +
// Note this is reading in a block of data for one lane
// When all 16 are read, the data must be transposed to build msg schedule
#define MSG_SCHED_ROUND_00_15(_WT, OFFSET, LABEL) \
TESTQ $(1<<OFFSET), MASK_P9 \
JE LABEL \
MOVQ OFFSET*24(INPUT_P9), R9 \
vmovups _WT, [inp0+IDX] \
LABEL: \
#define MASKED_LOAD(_WT, OFFSET, LABEL) \
TESTQ $(1<<OFFSET), MASK_P9 \
JE LABEL \
MOVQ OFFSET*24(INPUT_P9), R9 \
vmovups _WT,[inp0+IDX] \
LABEL: \
TEXT ·sha256_x16_avx512(SB), 7, $0
MOVQ digests+0(FP), STATE_P9 //
MOVQ scratch+8(FP), SCRATCH_P9
MOVQ mask_len+32(FP), INP_SIZE_P9 // number of blocks to process
MOVQ mask+24(FP), MASKP_P9
MOVQ (MASKP_P9), MASK_P9
kmovq k1, mask
LEAQ inputs+48(FP), INPUT_P9
// Initialize digests
vmovdqu32 A, [STATE + 0*SHA256_DIGEST_ROW_SIZE]
vmovdqu32 B, [STATE + 1*SHA256_DIGEST_ROW_SIZE]
vmovdqu32 C, [STATE + 2*SHA256_DIGEST_ROW_SIZE]
vmovdqu32 D, [STATE + 3*SHA256_DIGEST_ROW_SIZE]
vmovdqu32 E, [STATE + 4*SHA256_DIGEST_ROW_SIZE]
vmovdqu32 F, [STATE + 5*SHA256_DIGEST_ROW_SIZE]
vmovdqu32 G, [STATE + 6*SHA256_DIGEST_ROW_SIZE]
vmovdqu32 H, [STATE + 7*SHA256_DIGEST_ROW_SIZE]
MOVQ table+16(FP), TBL_P9
xor IDX, IDX
// Read in first block of input data
MASKED_LOAD( W0, 0, skipInput0)
MASKED_LOAD( W1, 1, skipInput1)
MASKED_LOAD( W2, 2, skipInput2)
MASKED_LOAD( W3, 3, skipInput3)
MASKED_LOAD( W4, 4, skipInput4)
MASKED_LOAD( W5, 5, skipInput5)
MASKED_LOAD( W6, 6, skipInput6)
MASKED_LOAD( W7, 7, skipInput7)
MASKED_LOAD( W8, 8, skipInput8)
MASKED_LOAD( W9, 9, skipInput9)
MASKED_LOAD(W10, 10, skipInput10)
MASKED_LOAD(W11, 11, skipInput11)
MASKED_LOAD(W12, 12, skipInput12)
MASKED_LOAD(W13, 13, skipInput13)
MASKED_LOAD(W14, 14, skipInput14)
MASKED_LOAD(W15, 15, skipInput15)
lloop:
LEAQ PSHUFFLE_BYTE_FLIP_MASK<>(SB), TBL_P9
vmovdqu32 TMP2, [TBL]
// Get first K from table
MOVQ table+16(FP), TBL_P9
vmovdqu32 TMP3, [TBL]
// Save digests for later addition
vmovdqu32 [SCRATCH + 64*0], A
vmovdqu32 [SCRATCH + 64*1], B
vmovdqu32 [SCRATCH + 64*2], C
vmovdqu32 [SCRATCH + 64*3], D
vmovdqu32 [SCRATCH + 64*4], E
vmovdqu32 [SCRATCH + 64*5], F
vmovdqu32 [SCRATCH + 64*6], G
vmovdqu32 [SCRATCH + 64*7], H
add IDX, 64
// Transpose input data
TRANSPOSE16(W0, W1, W2, W3, W4, W5, W6, W7, W8, W9, W10, W11, W12, W13, W14, W15, TMP0, TMP1)
vpshufb W0, W0, TMP2
vpshufb W1, W1, TMP2
vpshufb W2, W2, TMP2
vpshufb W3, W3, TMP2
vpshufb W4, W4, TMP2
vpshufb W5, W5, TMP2
vpshufb W6, W6, TMP2
vpshufb W7, W7, TMP2
vpshufb W8, W8, TMP2
vpshufb W9, W9, TMP2
vpshufb W10, W10, TMP2
vpshufb W11, W11, TMP2
vpshufb W12, W12, TMP2
vpshufb W13, W13, TMP2
vpshufb W14, W14, TMP2
vpshufb W15, W15, TMP2
// MSG Schedule for W0-W15 is now complete in registers
// Process first 48 rounds
// Calculate next Wt+16 after processing is complete and Wt is unneeded
PROCESS_LOOP( W0, 0, A, B, C, D, E, F, G, H)
MSG_SCHED_ROUND_16_63( W0, W1, W9, W14)
PROCESS_LOOP( W1, 1, H, A, B, C, D, E, F, G)
MSG_SCHED_ROUND_16_63( W1, W2, W10, W15)
PROCESS_LOOP( W2, 2, G, H, A, B, C, D, E, F)
MSG_SCHED_ROUND_16_63( W2, W3, W11, W0)
PROCESS_LOOP( W3, 3, F, G, H, A, B, C, D, E)
MSG_SCHED_ROUND_16_63( W3, W4, W12, W1)
PROCESS_LOOP( W4, 4, E, F, G, H, A, B, C, D)
MSG_SCHED_ROUND_16_63( W4, W5, W13, W2)
PROCESS_LOOP( W5, 5, D, E, F, G, H, A, B, C)
MSG_SCHED_ROUND_16_63( W5, W6, W14, W3)
PROCESS_LOOP( W6, 6, C, D, E, F, G, H, A, B)
MSG_SCHED_ROUND_16_63( W6, W7, W15, W4)
PROCESS_LOOP( W7, 7, B, C, D, E, F, G, H, A)
MSG_SCHED_ROUND_16_63( W7, W8, W0, W5)
PROCESS_LOOP( W8, 8, A, B, C, D, E, F, G, H)
MSG_SCHED_ROUND_16_63( W8, W9, W1, W6)
PROCESS_LOOP( W9, 9, H, A, B, C, D, E, F, G)
MSG_SCHED_ROUND_16_63( W9, W10, W2, W7)
PROCESS_LOOP(W10, 10, G, H, A, B, C, D, E, F)
MSG_SCHED_ROUND_16_63(W10, W11, W3, W8)
PROCESS_LOOP(W11, 11, F, G, H, A, B, C, D, E)
MSG_SCHED_ROUND_16_63(W11, W12, W4, W9)
PROCESS_LOOP(W12, 12, E, F, G, H, A, B, C, D)
MSG_SCHED_ROUND_16_63(W12, W13, W5, W10)
PROCESS_LOOP(W13, 13, D, E, F, G, H, A, B, C)
MSG_SCHED_ROUND_16_63(W13, W14, W6, W11)
PROCESS_LOOP(W14, 14, C, D, E, F, G, H, A, B)
MSG_SCHED_ROUND_16_63(W14, W15, W7, W12)
PROCESS_LOOP(W15, 15, B, C, D, E, F, G, H, A)
MSG_SCHED_ROUND_16_63(W15, W0, W8, W13)
PROCESS_LOOP( W0, 16, A, B, C, D, E, F, G, H)
MSG_SCHED_ROUND_16_63( W0, W1, W9, W14)
PROCESS_LOOP( W1, 17, H, A, B, C, D, E, F, G)
MSG_SCHED_ROUND_16_63( W1, W2, W10, W15)
PROCESS_LOOP( W2, 18, G, H, A, B, C, D, E, F)
MSG_SCHED_ROUND_16_63( W2, W3, W11, W0)
PROCESS_LOOP( W3, 19, F, G, H, A, B, C, D, E)
MSG_SCHED_ROUND_16_63( W3, W4, W12, W1)
PROCESS_LOOP( W4, 20, E, F, G, H, A, B, C, D)
MSG_SCHED_ROUND_16_63( W4, W5, W13, W2)
PROCESS_LOOP( W5, 21, D, E, F, G, H, A, B, C)
MSG_SCHED_ROUND_16_63( W5, W6, W14, W3)
PROCESS_LOOP( W6, 22, C, D, E, F, G, H, A, B)
MSG_SCHED_ROUND_16_63( W6, W7, W15, W4)
PROCESS_LOOP( W7, 23, B, C, D, E, F, G, H, A)
MSG_SCHED_ROUND_16_63( W7, W8, W0, W5)
PROCESS_LOOP( W8, 24, A, B, C, D, E, F, G, H)
MSG_SCHED_ROUND_16_63( W8, W9, W1, W6)
PROCESS_LOOP( W9, 25, H, A, B, C, D, E, F, G)
MSG_SCHED_ROUND_16_63( W9, W10, W2, W7)
PROCESS_LOOP(W10, 26, G, H, A, B, C, D, E, F)
MSG_SCHED_ROUND_16_63(W10, W11, W3, W8)
PROCESS_LOOP(W11, 27, F, G, H, A, B, C, D, E)
MSG_SCHED_ROUND_16_63(W11, W12, W4, W9)
PROCESS_LOOP(W12, 28, E, F, G, H, A, B, C, D)
MSG_SCHED_ROUND_16_63(W12, W13, W5, W10)
PROCESS_LOOP(W13, 29, D, E, F, G, H, A, B, C)
MSG_SCHED_ROUND_16_63(W13, W14, W6, W11)
PROCESS_LOOP(W14, 30, C, D, E, F, G, H, A, B)
MSG_SCHED_ROUND_16_63(W14, W15, W7, W12)
PROCESS_LOOP(W15, 31, B, C, D, E, F, G, H, A)
MSG_SCHED_ROUND_16_63(W15, W0, W8, W13)
PROCESS_LOOP( W0, 32, A, B, C, D, E, F, G, H)
MSG_SCHED_ROUND_16_63( W0, W1, W9, W14)
PROCESS_LOOP( W1, 33, H, A, B, C, D, E, F, G)
MSG_SCHED_ROUND_16_63( W1, W2, W10, W15)
PROCESS_LOOP( W2, 34, G, H, A, B, C, D, E, F)
MSG_SCHED_ROUND_16_63( W2, W3, W11, W0)
PROCESS_LOOP( W3, 35, F, G, H, A, B, C, D, E)
MSG_SCHED_ROUND_16_63( W3, W4, W12, W1)
PROCESS_LOOP( W4, 36, E, F, G, H, A, B, C, D)
MSG_SCHED_ROUND_16_63( W4, W5, W13, W2)
PROCESS_LOOP( W5, 37, D, E, F, G, H, A, B, C)
MSG_SCHED_ROUND_16_63( W5, W6, W14, W3)
PROCESS_LOOP( W6, 38, C, D, E, F, G, H, A, B)
MSG_SCHED_ROUND_16_63( W6, W7, W15, W4)
PROCESS_LOOP( W7, 39, B, C, D, E, F, G, H, A)
MSG_SCHED_ROUND_16_63( W7, W8, W0, W5)
PROCESS_LOOP( W8, 40, A, B, C, D, E, F, G, H)
MSG_SCHED_ROUND_16_63( W8, W9, W1, W6)
PROCESS_LOOP( W9, 41, H, A, B, C, D, E, F, G)
MSG_SCHED_ROUND_16_63( W9, W10, W2, W7)
PROCESS_LOOP(W10, 42, G, H, A, B, C, D, E, F)
MSG_SCHED_ROUND_16_63(W10, W11, W3, W8)
PROCESS_LOOP(W11, 43, F, G, H, A, B, C, D, E)
MSG_SCHED_ROUND_16_63(W11, W12, W4, W9)
PROCESS_LOOP(W12, 44, E, F, G, H, A, B, C, D)
MSG_SCHED_ROUND_16_63(W12, W13, W5, W10)
PROCESS_LOOP(W13, 45, D, E, F, G, H, A, B, C)
MSG_SCHED_ROUND_16_63(W13, W14, W6, W11)
PROCESS_LOOP(W14, 46, C, D, E, F, G, H, A, B)
MSG_SCHED_ROUND_16_63(W14, W15, W7, W12)
PROCESS_LOOP(W15, 47, B, C, D, E, F, G, H, A)
MSG_SCHED_ROUND_16_63(W15, W0, W8, W13)
// Check if this is the last block
sub INP_SIZE, 1
JE lastLoop
// Load next mask for inputs
ADDQ $8, MASKP_P9
MOVQ (MASKP_P9), MASK_P9
// Process last 16 rounds
// Read in next block msg data for use in first 16 words of msg sched
PROCESS_LOOP( W0, 48, A, B, C, D, E, F, G, H)
MSG_SCHED_ROUND_00_15( W0, 0, skipNext0)
PROCESS_LOOP( W1, 49, H, A, B, C, D, E, F, G)
MSG_SCHED_ROUND_00_15( W1, 1, skipNext1)
PROCESS_LOOP( W2, 50, G, H, A, B, C, D, E, F)
MSG_SCHED_ROUND_00_15( W2, 2, skipNext2)
PROCESS_LOOP( W3, 51, F, G, H, A, B, C, D, E)
MSG_SCHED_ROUND_00_15( W3, 3, skipNext3)
PROCESS_LOOP( W4, 52, E, F, G, H, A, B, C, D)
MSG_SCHED_ROUND_00_15( W4, 4, skipNext4)
PROCESS_LOOP( W5, 53, D, E, F, G, H, A, B, C)
MSG_SCHED_ROUND_00_15( W5, 5, skipNext5)
PROCESS_LOOP( W6, 54, C, D, E, F, G, H, A, B)
MSG_SCHED_ROUND_00_15( W6, 6, skipNext6)
PROCESS_LOOP( W7, 55, B, C, D, E, F, G, H, A)
MSG_SCHED_ROUND_00_15( W7, 7, skipNext7)
PROCESS_LOOP( W8, 56, A, B, C, D, E, F, G, H)
MSG_SCHED_ROUND_00_15( W8, 8, skipNext8)
PROCESS_LOOP( W9, 57, H, A, B, C, D, E, F, G)
MSG_SCHED_ROUND_00_15( W9, 9, skipNext9)
PROCESS_LOOP(W10, 58, G, H, A, B, C, D, E, F)
MSG_SCHED_ROUND_00_15(W10, 10, skipNext10)
PROCESS_LOOP(W11, 59, F, G, H, A, B, C, D, E)
MSG_SCHED_ROUND_00_15(W11, 11, skipNext11)
PROCESS_LOOP(W12, 60, E, F, G, H, A, B, C, D)
MSG_SCHED_ROUND_00_15(W12, 12, skipNext12)
PROCESS_LOOP(W13, 61, D, E, F, G, H, A, B, C)
MSG_SCHED_ROUND_00_15(W13, 13, skipNext13)
PROCESS_LOOP(W14, 62, C, D, E, F, G, H, A, B)
MSG_SCHED_ROUND_00_15(W14, 14, skipNext14)
PROCESS_LOOP(W15, 63, B, C, D, E, F, G, H, A)
MSG_SCHED_ROUND_00_15(W15, 15, skipNext15)
// Add old digest
vmovdqu32 TMP2, A
vmovdqu32 A, [SCRATCH + 64*0]
vpaddd A{k1}, A, TMP2
vmovdqu32 TMP2, B
vmovdqu32 B, [SCRATCH + 64*1]
vpaddd B{k1}, B, TMP2
vmovdqu32 TMP2, C
vmovdqu32 C, [SCRATCH + 64*2]
vpaddd C{k1}, C, TMP2
vmovdqu32 TMP2, D
vmovdqu32 D, [SCRATCH + 64*3]
vpaddd D{k1}, D, TMP2
vmovdqu32 TMP2, E
vmovdqu32 E, [SCRATCH + 64*4]
vpaddd E{k1}, E, TMP2
vmovdqu32 TMP2, F
vmovdqu32 F, [SCRATCH + 64*5]
vpaddd F{k1}, F, TMP2
vmovdqu32 TMP2, G
vmovdqu32 G, [SCRATCH + 64*6]
vpaddd G{k1}, G, TMP2
vmovdqu32 TMP2, H
vmovdqu32 H, [SCRATCH + 64*7]
vpaddd H{k1}, H, TMP2
kmovq k1, mask
JMP lloop
lastLoop:
// Process last 16 rounds
PROCESS_LOOP( W0, 48, A, B, C, D, E, F, G, H)
PROCESS_LOOP( W1, 49, H, A, B, C, D, E, F, G)
PROCESS_LOOP( W2, 50, G, H, A, B, C, D, E, F)
PROCESS_LOOP( W3, 51, F, G, H, A, B, C, D, E)
PROCESS_LOOP( W4, 52, E, F, G, H, A, B, C, D)
PROCESS_LOOP( W5, 53, D, E, F, G, H, A, B, C)
PROCESS_LOOP( W6, 54, C, D, E, F, G, H, A, B)
PROCESS_LOOP( W7, 55, B, C, D, E, F, G, H, A)
PROCESS_LOOP( W8, 56, A, B, C, D, E, F, G, H)
PROCESS_LOOP( W9, 57, H, A, B, C, D, E, F, G)
PROCESS_LOOP(W10, 58, G, H, A, B, C, D, E, F)
PROCESS_LOOP(W11, 59, F, G, H, A, B, C, D, E)
PROCESS_LOOP(W12, 60, E, F, G, H, A, B, C, D)
PROCESS_LOOP(W13, 61, D, E, F, G, H, A, B, C)
PROCESS_LOOP(W14, 62, C, D, E, F, G, H, A, B)
PROCESS_LOOP(W15, 63, B, C, D, E, F, G, H, A)
// Add old digest
vmovdqu32 TMP2, A
vmovdqu32 A, [SCRATCH + 64*0]
vpaddd A{k1}, A, TMP2
vmovdqu32 TMP2, B
vmovdqu32 B, [SCRATCH + 64*1]
vpaddd B{k1}, B, TMP2
vmovdqu32 TMP2, C
vmovdqu32 C, [SCRATCH + 64*2]
vpaddd C{k1}, C, TMP2
vmovdqu32 TMP2, D
vmovdqu32 D, [SCRATCH + 64*3]
vpaddd D{k1}, D, TMP2
vmovdqu32 TMP2, E
vmovdqu32 E, [SCRATCH + 64*4]
vpaddd E{k1}, E, TMP2
vmovdqu32 TMP2, F
vmovdqu32 F, [SCRATCH + 64*5]
vpaddd F{k1}, F, TMP2
vmovdqu32 TMP2, G
vmovdqu32 G, [SCRATCH + 64*6]
vpaddd G{k1}, G, TMP2
vmovdqu32 TMP2, H
vmovdqu32 H, [SCRATCH + 64*7]
vpaddd H{k1}, H, TMP2
// Write out digest
vmovdqu32 [STATE + 0*SHA256_DIGEST_ROW_SIZE], A
vmovdqu32 [STATE + 1*SHA256_DIGEST_ROW_SIZE], B
vmovdqu32 [STATE + 2*SHA256_DIGEST_ROW_SIZE], C
vmovdqu32 [STATE + 3*SHA256_DIGEST_ROW_SIZE], D
vmovdqu32 [STATE + 4*SHA256_DIGEST_ROW_SIZE], E
vmovdqu32 [STATE + 5*SHA256_DIGEST_ROW_SIZE], F
vmovdqu32 [STATE + 6*SHA256_DIGEST_ROW_SIZE], G
vmovdqu32 [STATE + 7*SHA256_DIGEST_ROW_SIZE], H
VZEROUPPER
RET
//
// Tables
//
DATA PSHUFFLE_BYTE_FLIP_MASK<>+0x000(SB)/8, $0x0405060700010203
DATA PSHUFFLE_BYTE_FLIP_MASK<>+0x008(SB)/8, $0x0c0d0e0f08090a0b
DATA PSHUFFLE_BYTE_FLIP_MASK<>+0x010(SB)/8, $0x0405060700010203
DATA PSHUFFLE_BYTE_FLIP_MASK<>+0x018(SB)/8, $0x0c0d0e0f08090a0b
DATA PSHUFFLE_BYTE_FLIP_MASK<>+0x020(SB)/8, $0x0405060700010203
DATA PSHUFFLE_BYTE_FLIP_MASK<>+0x028(SB)/8, $0x0c0d0e0f08090a0b
DATA PSHUFFLE_BYTE_FLIP_MASK<>+0x030(SB)/8, $0x0405060700010203
DATA PSHUFFLE_BYTE_FLIP_MASK<>+0x038(SB)/8, $0x0c0d0e0f08090a0b
GLOBL PSHUFFLE_BYTE_FLIP_MASK<>(SB), 8, $64
DATA PSHUFFLE_TRANSPOSE16_MASK1<>+0x000(SB)/8, $0x0000000000000000
DATA PSHUFFLE_TRANSPOSE16_MASK1<>+0x008(SB)/8, $0x0000000000000001
DATA PSHUFFLE_TRANSPOSE16_MASK1<>+0x010(SB)/8, $0x0000000000000008
DATA PSHUFFLE_TRANSPOSE16_MASK1<>+0x018(SB)/8, $0x0000000000000009
DATA PSHUFFLE_TRANSPOSE16_MASK1<>+0x020(SB)/8, $0x0000000000000004
DATA PSHUFFLE_TRANSPOSE16_MASK1<>+0x028(SB)/8, $0x0000000000000005
DATA PSHUFFLE_TRANSPOSE16_MASK1<>+0x030(SB)/8, $0x000000000000000C
DATA PSHUFFLE_TRANSPOSE16_MASK1<>+0x038(SB)/8, $0x000000000000000D
GLOBL PSHUFFLE_TRANSPOSE16_MASK1<>(SB), 8, $64
DATA PSHUFFLE_TRANSPOSE16_MASK2<>+0x000(SB)/8, $0x0000000000000002
DATA PSHUFFLE_TRANSPOSE16_MASK2<>+0x008(SB)/8, $0x0000000000000003
DATA PSHUFFLE_TRANSPOSE16_MASK2<>+0x010(SB)/8, $0x000000000000000A
DATA PSHUFFLE_TRANSPOSE16_MASK2<>+0x018(SB)/8, $0x000000000000000B
DATA PSHUFFLE_TRANSPOSE16_MASK2<>+0x020(SB)/8, $0x0000000000000006
DATA PSHUFFLE_TRANSPOSE16_MASK2<>+0x028(SB)/8, $0x0000000000000007
DATA PSHUFFLE_TRANSPOSE16_MASK2<>+0x030(SB)/8, $0x000000000000000E
DATA PSHUFFLE_TRANSPOSE16_MASK2<>+0x038(SB)/8, $0x000000000000000F
GLOBL PSHUFFLE_TRANSPOSE16_MASK2<>(SB), 8, $64

View File

@@ -0,0 +1,500 @@
//+build !noasm,!appengine
/*
* Minio Cloud Storage, (C) 2017 Minio, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package sha256
import (
"encoding/binary"
"errors"
"hash"
"sort"
"sync/atomic"
"time"
)
//go:noescape
func sha256X16Avx512(digests *[512]byte, scratch *[512]byte, table *[512]uint64, mask []uint64, inputs [16][]byte)
// Avx512ServerUID - Do not start at 0 but next multiple of 16 so as to be able to
// differentiate with default initialiation value of 0
const Avx512ServerUID = 16
var uidCounter uint64
// NewAvx512 - initialize sha256 Avx512 implementation.
func NewAvx512(a512srv *Avx512Server) hash.Hash {
uid := atomic.AddUint64(&uidCounter, 1)
return &Avx512Digest{uid: uid, a512srv: a512srv}
}
// Avx512Digest - Type for computing SHA256 using Avx512
type Avx512Digest struct {
uid uint64
a512srv *Avx512Server
x [chunk]byte
nx int
len uint64
final bool
result [Size]byte
}
// Size - Return size of checksum
func (d *Avx512Digest) Size() int { return Size }
// BlockSize - Return blocksize of checksum
func (d Avx512Digest) BlockSize() int { return BlockSize }
// Reset - reset sha digest to its initial values
func (d *Avx512Digest) Reset() {
d.a512srv.blocksCh <- blockInput{uid: d.uid, reset: true}
d.nx = 0
d.len = 0
d.final = false
}
// Write to digest
func (d *Avx512Digest) Write(p []byte) (nn int, err error) {
if d.final {
return 0, errors.New("Avx512Digest already finalized. Reset first before writing again")
}
nn = len(p)
d.len += uint64(nn)
if d.nx > 0 {
n := copy(d.x[d.nx:], p)
d.nx += n
if d.nx == chunk {
d.a512srv.blocksCh <- blockInput{uid: d.uid, msg: d.x[:]}
d.nx = 0
}
p = p[n:]
}
if len(p) >= chunk {
n := len(p) &^ (chunk - 1)
d.a512srv.blocksCh <- blockInput{uid: d.uid, msg: p[:n]}
p = p[n:]
}
if len(p) > 0 {
d.nx = copy(d.x[:], p)
}
return
}
// Sum - Return sha256 sum in bytes
func (d *Avx512Digest) Sum(in []byte) (result []byte) {
if d.final {
return append(in, d.result[:]...)
}
trail := make([]byte, 0, 128)
trail = append(trail, d.x[:d.nx]...)
len := d.len
// Padding. Add a 1 bit and 0 bits until 56 bytes mod 64.
var tmp [64]byte
tmp[0] = 0x80
if len%64 < 56 {
trail = append(trail, tmp[0:56-len%64]...)
} else {
trail = append(trail, tmp[0:64+56-len%64]...)
}
d.nx = 0
// Length in bits.
len <<= 3
for i := uint(0); i < 8; i++ {
tmp[i] = byte(len >> (56 - 8*i))
}
trail = append(trail, tmp[0:8]...)
sumCh := make(chan [Size]byte)
d.a512srv.blocksCh <- blockInput{uid: d.uid, msg: trail, final: true, sumCh: sumCh}
d.result = <-sumCh
d.final = true
return append(in, d.result[:]...)
}
var table = [512]uint64{
0x428a2f98428a2f98, 0x428a2f98428a2f98, 0x428a2f98428a2f98, 0x428a2f98428a2f98,
0x428a2f98428a2f98, 0x428a2f98428a2f98, 0x428a2f98428a2f98, 0x428a2f98428a2f98,
0x7137449171374491, 0x7137449171374491, 0x7137449171374491, 0x7137449171374491,
0x7137449171374491, 0x7137449171374491, 0x7137449171374491, 0x7137449171374491,
0xb5c0fbcfb5c0fbcf, 0xb5c0fbcfb5c0fbcf, 0xb5c0fbcfb5c0fbcf, 0xb5c0fbcfb5c0fbcf,
0xb5c0fbcfb5c0fbcf, 0xb5c0fbcfb5c0fbcf, 0xb5c0fbcfb5c0fbcf, 0xb5c0fbcfb5c0fbcf,
0xe9b5dba5e9b5dba5, 0xe9b5dba5e9b5dba5, 0xe9b5dba5e9b5dba5, 0xe9b5dba5e9b5dba5,
0xe9b5dba5e9b5dba5, 0xe9b5dba5e9b5dba5, 0xe9b5dba5e9b5dba5, 0xe9b5dba5e9b5dba5,
0x3956c25b3956c25b, 0x3956c25b3956c25b, 0x3956c25b3956c25b, 0x3956c25b3956c25b,
0x3956c25b3956c25b, 0x3956c25b3956c25b, 0x3956c25b3956c25b, 0x3956c25b3956c25b,
0x59f111f159f111f1, 0x59f111f159f111f1, 0x59f111f159f111f1, 0x59f111f159f111f1,
0x59f111f159f111f1, 0x59f111f159f111f1, 0x59f111f159f111f1, 0x59f111f159f111f1,
0x923f82a4923f82a4, 0x923f82a4923f82a4, 0x923f82a4923f82a4, 0x923f82a4923f82a4,
0x923f82a4923f82a4, 0x923f82a4923f82a4, 0x923f82a4923f82a4, 0x923f82a4923f82a4,
0xab1c5ed5ab1c5ed5, 0xab1c5ed5ab1c5ed5, 0xab1c5ed5ab1c5ed5, 0xab1c5ed5ab1c5ed5,
0xab1c5ed5ab1c5ed5, 0xab1c5ed5ab1c5ed5, 0xab1c5ed5ab1c5ed5, 0xab1c5ed5ab1c5ed5,
0xd807aa98d807aa98, 0xd807aa98d807aa98, 0xd807aa98d807aa98, 0xd807aa98d807aa98,
0xd807aa98d807aa98, 0xd807aa98d807aa98, 0xd807aa98d807aa98, 0xd807aa98d807aa98,
0x12835b0112835b01, 0x12835b0112835b01, 0x12835b0112835b01, 0x12835b0112835b01,
0x12835b0112835b01, 0x12835b0112835b01, 0x12835b0112835b01, 0x12835b0112835b01,
0x243185be243185be, 0x243185be243185be, 0x243185be243185be, 0x243185be243185be,
0x243185be243185be, 0x243185be243185be, 0x243185be243185be, 0x243185be243185be,
0x550c7dc3550c7dc3, 0x550c7dc3550c7dc3, 0x550c7dc3550c7dc3, 0x550c7dc3550c7dc3,
0x550c7dc3550c7dc3, 0x550c7dc3550c7dc3, 0x550c7dc3550c7dc3, 0x550c7dc3550c7dc3,
0x72be5d7472be5d74, 0x72be5d7472be5d74, 0x72be5d7472be5d74, 0x72be5d7472be5d74,
0x72be5d7472be5d74, 0x72be5d7472be5d74, 0x72be5d7472be5d74, 0x72be5d7472be5d74,
0x80deb1fe80deb1fe, 0x80deb1fe80deb1fe, 0x80deb1fe80deb1fe, 0x80deb1fe80deb1fe,
0x80deb1fe80deb1fe, 0x80deb1fe80deb1fe, 0x80deb1fe80deb1fe, 0x80deb1fe80deb1fe,
0x9bdc06a79bdc06a7, 0x9bdc06a79bdc06a7, 0x9bdc06a79bdc06a7, 0x9bdc06a79bdc06a7,
0x9bdc06a79bdc06a7, 0x9bdc06a79bdc06a7, 0x9bdc06a79bdc06a7, 0x9bdc06a79bdc06a7,
0xc19bf174c19bf174, 0xc19bf174c19bf174, 0xc19bf174c19bf174, 0xc19bf174c19bf174,
0xc19bf174c19bf174, 0xc19bf174c19bf174, 0xc19bf174c19bf174, 0xc19bf174c19bf174,
0xe49b69c1e49b69c1, 0xe49b69c1e49b69c1, 0xe49b69c1e49b69c1, 0xe49b69c1e49b69c1,
0xe49b69c1e49b69c1, 0xe49b69c1e49b69c1, 0xe49b69c1e49b69c1, 0xe49b69c1e49b69c1,
0xefbe4786efbe4786, 0xefbe4786efbe4786, 0xefbe4786efbe4786, 0xefbe4786efbe4786,
0xefbe4786efbe4786, 0xefbe4786efbe4786, 0xefbe4786efbe4786, 0xefbe4786efbe4786,
0x0fc19dc60fc19dc6, 0x0fc19dc60fc19dc6, 0x0fc19dc60fc19dc6, 0x0fc19dc60fc19dc6,
0x0fc19dc60fc19dc6, 0x0fc19dc60fc19dc6, 0x0fc19dc60fc19dc6, 0x0fc19dc60fc19dc6,
0x240ca1cc240ca1cc, 0x240ca1cc240ca1cc, 0x240ca1cc240ca1cc, 0x240ca1cc240ca1cc,
0x240ca1cc240ca1cc, 0x240ca1cc240ca1cc, 0x240ca1cc240ca1cc, 0x240ca1cc240ca1cc,
0x2de92c6f2de92c6f, 0x2de92c6f2de92c6f, 0x2de92c6f2de92c6f, 0x2de92c6f2de92c6f,
0x2de92c6f2de92c6f, 0x2de92c6f2de92c6f, 0x2de92c6f2de92c6f, 0x2de92c6f2de92c6f,
0x4a7484aa4a7484aa, 0x4a7484aa4a7484aa, 0x4a7484aa4a7484aa, 0x4a7484aa4a7484aa,
0x4a7484aa4a7484aa, 0x4a7484aa4a7484aa, 0x4a7484aa4a7484aa, 0x4a7484aa4a7484aa,
0x5cb0a9dc5cb0a9dc, 0x5cb0a9dc5cb0a9dc, 0x5cb0a9dc5cb0a9dc, 0x5cb0a9dc5cb0a9dc,
0x5cb0a9dc5cb0a9dc, 0x5cb0a9dc5cb0a9dc, 0x5cb0a9dc5cb0a9dc, 0x5cb0a9dc5cb0a9dc,
0x76f988da76f988da, 0x76f988da76f988da, 0x76f988da76f988da, 0x76f988da76f988da,
0x76f988da76f988da, 0x76f988da76f988da, 0x76f988da76f988da, 0x76f988da76f988da,
0x983e5152983e5152, 0x983e5152983e5152, 0x983e5152983e5152, 0x983e5152983e5152,
0x983e5152983e5152, 0x983e5152983e5152, 0x983e5152983e5152, 0x983e5152983e5152,
0xa831c66da831c66d, 0xa831c66da831c66d, 0xa831c66da831c66d, 0xa831c66da831c66d,
0xa831c66da831c66d, 0xa831c66da831c66d, 0xa831c66da831c66d, 0xa831c66da831c66d,
0xb00327c8b00327c8, 0xb00327c8b00327c8, 0xb00327c8b00327c8, 0xb00327c8b00327c8,
0xb00327c8b00327c8, 0xb00327c8b00327c8, 0xb00327c8b00327c8, 0xb00327c8b00327c8,
0xbf597fc7bf597fc7, 0xbf597fc7bf597fc7, 0xbf597fc7bf597fc7, 0xbf597fc7bf597fc7,
0xbf597fc7bf597fc7, 0xbf597fc7bf597fc7, 0xbf597fc7bf597fc7, 0xbf597fc7bf597fc7,
0xc6e00bf3c6e00bf3, 0xc6e00bf3c6e00bf3, 0xc6e00bf3c6e00bf3, 0xc6e00bf3c6e00bf3,
0xc6e00bf3c6e00bf3, 0xc6e00bf3c6e00bf3, 0xc6e00bf3c6e00bf3, 0xc6e00bf3c6e00bf3,
0xd5a79147d5a79147, 0xd5a79147d5a79147, 0xd5a79147d5a79147, 0xd5a79147d5a79147,
0xd5a79147d5a79147, 0xd5a79147d5a79147, 0xd5a79147d5a79147, 0xd5a79147d5a79147,
0x06ca635106ca6351, 0x06ca635106ca6351, 0x06ca635106ca6351, 0x06ca635106ca6351,
0x06ca635106ca6351, 0x06ca635106ca6351, 0x06ca635106ca6351, 0x06ca635106ca6351,
0x1429296714292967, 0x1429296714292967, 0x1429296714292967, 0x1429296714292967,
0x1429296714292967, 0x1429296714292967, 0x1429296714292967, 0x1429296714292967,
0x27b70a8527b70a85, 0x27b70a8527b70a85, 0x27b70a8527b70a85, 0x27b70a8527b70a85,
0x27b70a8527b70a85, 0x27b70a8527b70a85, 0x27b70a8527b70a85, 0x27b70a8527b70a85,
0x2e1b21382e1b2138, 0x2e1b21382e1b2138, 0x2e1b21382e1b2138, 0x2e1b21382e1b2138,
0x2e1b21382e1b2138, 0x2e1b21382e1b2138, 0x2e1b21382e1b2138, 0x2e1b21382e1b2138,
0x4d2c6dfc4d2c6dfc, 0x4d2c6dfc4d2c6dfc, 0x4d2c6dfc4d2c6dfc, 0x4d2c6dfc4d2c6dfc,
0x4d2c6dfc4d2c6dfc, 0x4d2c6dfc4d2c6dfc, 0x4d2c6dfc4d2c6dfc, 0x4d2c6dfc4d2c6dfc,
0x53380d1353380d13, 0x53380d1353380d13, 0x53380d1353380d13, 0x53380d1353380d13,
0x53380d1353380d13, 0x53380d1353380d13, 0x53380d1353380d13, 0x53380d1353380d13,
0x650a7354650a7354, 0x650a7354650a7354, 0x650a7354650a7354, 0x650a7354650a7354,
0x650a7354650a7354, 0x650a7354650a7354, 0x650a7354650a7354, 0x650a7354650a7354,
0x766a0abb766a0abb, 0x766a0abb766a0abb, 0x766a0abb766a0abb, 0x766a0abb766a0abb,
0x766a0abb766a0abb, 0x766a0abb766a0abb, 0x766a0abb766a0abb, 0x766a0abb766a0abb,
0x81c2c92e81c2c92e, 0x81c2c92e81c2c92e, 0x81c2c92e81c2c92e, 0x81c2c92e81c2c92e,
0x81c2c92e81c2c92e, 0x81c2c92e81c2c92e, 0x81c2c92e81c2c92e, 0x81c2c92e81c2c92e,
0x92722c8592722c85, 0x92722c8592722c85, 0x92722c8592722c85, 0x92722c8592722c85,
0x92722c8592722c85, 0x92722c8592722c85, 0x92722c8592722c85, 0x92722c8592722c85,
0xa2bfe8a1a2bfe8a1, 0xa2bfe8a1a2bfe8a1, 0xa2bfe8a1a2bfe8a1, 0xa2bfe8a1a2bfe8a1,
0xa2bfe8a1a2bfe8a1, 0xa2bfe8a1a2bfe8a1, 0xa2bfe8a1a2bfe8a1, 0xa2bfe8a1a2bfe8a1,
0xa81a664ba81a664b, 0xa81a664ba81a664b, 0xa81a664ba81a664b, 0xa81a664ba81a664b,
0xa81a664ba81a664b, 0xa81a664ba81a664b, 0xa81a664ba81a664b, 0xa81a664ba81a664b,
0xc24b8b70c24b8b70, 0xc24b8b70c24b8b70, 0xc24b8b70c24b8b70, 0xc24b8b70c24b8b70,
0xc24b8b70c24b8b70, 0xc24b8b70c24b8b70, 0xc24b8b70c24b8b70, 0xc24b8b70c24b8b70,
0xc76c51a3c76c51a3, 0xc76c51a3c76c51a3, 0xc76c51a3c76c51a3, 0xc76c51a3c76c51a3,
0xc76c51a3c76c51a3, 0xc76c51a3c76c51a3, 0xc76c51a3c76c51a3, 0xc76c51a3c76c51a3,
0xd192e819d192e819, 0xd192e819d192e819, 0xd192e819d192e819, 0xd192e819d192e819,
0xd192e819d192e819, 0xd192e819d192e819, 0xd192e819d192e819, 0xd192e819d192e819,
0xd6990624d6990624, 0xd6990624d6990624, 0xd6990624d6990624, 0xd6990624d6990624,
0xd6990624d6990624, 0xd6990624d6990624, 0xd6990624d6990624, 0xd6990624d6990624,
0xf40e3585f40e3585, 0xf40e3585f40e3585, 0xf40e3585f40e3585, 0xf40e3585f40e3585,
0xf40e3585f40e3585, 0xf40e3585f40e3585, 0xf40e3585f40e3585, 0xf40e3585f40e3585,
0x106aa070106aa070, 0x106aa070106aa070, 0x106aa070106aa070, 0x106aa070106aa070,
0x106aa070106aa070, 0x106aa070106aa070, 0x106aa070106aa070, 0x106aa070106aa070,
0x19a4c11619a4c116, 0x19a4c11619a4c116, 0x19a4c11619a4c116, 0x19a4c11619a4c116,
0x19a4c11619a4c116, 0x19a4c11619a4c116, 0x19a4c11619a4c116, 0x19a4c11619a4c116,
0x1e376c081e376c08, 0x1e376c081e376c08, 0x1e376c081e376c08, 0x1e376c081e376c08,
0x1e376c081e376c08, 0x1e376c081e376c08, 0x1e376c081e376c08, 0x1e376c081e376c08,
0x2748774c2748774c, 0x2748774c2748774c, 0x2748774c2748774c, 0x2748774c2748774c,
0x2748774c2748774c, 0x2748774c2748774c, 0x2748774c2748774c, 0x2748774c2748774c,
0x34b0bcb534b0bcb5, 0x34b0bcb534b0bcb5, 0x34b0bcb534b0bcb5, 0x34b0bcb534b0bcb5,
0x34b0bcb534b0bcb5, 0x34b0bcb534b0bcb5, 0x34b0bcb534b0bcb5, 0x34b0bcb534b0bcb5,
0x391c0cb3391c0cb3, 0x391c0cb3391c0cb3, 0x391c0cb3391c0cb3, 0x391c0cb3391c0cb3,
0x391c0cb3391c0cb3, 0x391c0cb3391c0cb3, 0x391c0cb3391c0cb3, 0x391c0cb3391c0cb3,
0x4ed8aa4a4ed8aa4a, 0x4ed8aa4a4ed8aa4a, 0x4ed8aa4a4ed8aa4a, 0x4ed8aa4a4ed8aa4a,
0x4ed8aa4a4ed8aa4a, 0x4ed8aa4a4ed8aa4a, 0x4ed8aa4a4ed8aa4a, 0x4ed8aa4a4ed8aa4a,
0x5b9cca4f5b9cca4f, 0x5b9cca4f5b9cca4f, 0x5b9cca4f5b9cca4f, 0x5b9cca4f5b9cca4f,
0x5b9cca4f5b9cca4f, 0x5b9cca4f5b9cca4f, 0x5b9cca4f5b9cca4f, 0x5b9cca4f5b9cca4f,
0x682e6ff3682e6ff3, 0x682e6ff3682e6ff3, 0x682e6ff3682e6ff3, 0x682e6ff3682e6ff3,
0x682e6ff3682e6ff3, 0x682e6ff3682e6ff3, 0x682e6ff3682e6ff3, 0x682e6ff3682e6ff3,
0x748f82ee748f82ee, 0x748f82ee748f82ee, 0x748f82ee748f82ee, 0x748f82ee748f82ee,
0x748f82ee748f82ee, 0x748f82ee748f82ee, 0x748f82ee748f82ee, 0x748f82ee748f82ee,
0x78a5636f78a5636f, 0x78a5636f78a5636f, 0x78a5636f78a5636f, 0x78a5636f78a5636f,
0x78a5636f78a5636f, 0x78a5636f78a5636f, 0x78a5636f78a5636f, 0x78a5636f78a5636f,
0x84c8781484c87814, 0x84c8781484c87814, 0x84c8781484c87814, 0x84c8781484c87814,
0x84c8781484c87814, 0x84c8781484c87814, 0x84c8781484c87814, 0x84c8781484c87814,
0x8cc702088cc70208, 0x8cc702088cc70208, 0x8cc702088cc70208, 0x8cc702088cc70208,
0x8cc702088cc70208, 0x8cc702088cc70208, 0x8cc702088cc70208, 0x8cc702088cc70208,
0x90befffa90befffa, 0x90befffa90befffa, 0x90befffa90befffa, 0x90befffa90befffa,
0x90befffa90befffa, 0x90befffa90befffa, 0x90befffa90befffa, 0x90befffa90befffa,
0xa4506ceba4506ceb, 0xa4506ceba4506ceb, 0xa4506ceba4506ceb, 0xa4506ceba4506ceb,
0xa4506ceba4506ceb, 0xa4506ceba4506ceb, 0xa4506ceba4506ceb, 0xa4506ceba4506ceb,
0xbef9a3f7bef9a3f7, 0xbef9a3f7bef9a3f7, 0xbef9a3f7bef9a3f7, 0xbef9a3f7bef9a3f7,
0xbef9a3f7bef9a3f7, 0xbef9a3f7bef9a3f7, 0xbef9a3f7bef9a3f7, 0xbef9a3f7bef9a3f7,
0xc67178f2c67178f2, 0xc67178f2c67178f2, 0xc67178f2c67178f2, 0xc67178f2c67178f2,
0xc67178f2c67178f2, 0xc67178f2c67178f2, 0xc67178f2c67178f2, 0xc67178f2c67178f2}
// Interface function to assembly ode
func blockAvx512(digests *[512]byte, input [16][]byte, mask []uint64) [16][Size]byte {
scratch := [512]byte{}
sha256X16Avx512(digests, &scratch, &table, mask, input)
output := [16][Size]byte{}
for i := 0; i < 16; i++ {
output[i] = getDigest(i, digests[:])
}
return output
}
func getDigest(index int, state []byte) (sum [Size]byte) {
for j := 0; j < 16; j += 2 {
for i := index*4 + j*Size; i < index*4+(j+1)*Size; i += Size {
binary.BigEndian.PutUint32(sum[j*2:], binary.LittleEndian.Uint32(state[i:i+4]))
}
}
return
}
// Message to send across input channel
type blockInput struct {
uid uint64
msg []byte
reset bool
final bool
sumCh chan [Size]byte
}
// Avx512Server - Type to implement 16x parallel handling of SHA256 invocations
type Avx512Server struct {
blocksCh chan blockInput // Input channel
totalIn int // Total number of inputs waiting to be processed
lanes [16]Avx512LaneInfo // Array with info per lane (out of 16)
digests map[uint64][Size]byte // Map of uids to (interim) digest results
}
// Avx512LaneInfo - Info for each lane
type Avx512LaneInfo struct {
uid uint64 // unique identification for this SHA processing
block []byte // input block to be processed
outputCh chan [Size]byte // channel for output result
}
// NewAvx512Server - Create new object for parallel processing handling
func NewAvx512Server() *Avx512Server {
a512srv := &Avx512Server{}
a512srv.digests = make(map[uint64][Size]byte)
a512srv.blocksCh = make(chan blockInput)
// Start a single thread for reading from the input channel
go a512srv.Process()
return a512srv
}
// Process - Sole handler for reading from the input channel
func (a512srv *Avx512Server) Process() {
for {
select {
case block := <-a512srv.blocksCh:
if block.reset {
a512srv.reset(block.uid)
continue
}
index := block.uid & 0xf
// fmt.Println("Adding message:", block.uid, index)
if a512srv.lanes[index].block != nil { // If slot is already filled, process all inputs
//fmt.Println("Invoking Blocks()")
a512srv.blocks()
}
a512srv.totalIn++
a512srv.lanes[index] = Avx512LaneInfo{uid: block.uid, block: block.msg}
if block.final {
a512srv.lanes[index].outputCh = block.sumCh
}
if a512srv.totalIn == len(a512srv.lanes) {
// fmt.Println("Invoking Blocks() while FULL: ")
a512srv.blocks()
}
// TODO: test with larger timeout
case <-time.After(1 * time.Microsecond):
for _, lane := range a512srv.lanes {
if lane.block != nil { // check if there is any input to process
// fmt.Println("Invoking Blocks() on TIMEOUT: ")
a512srv.blocks()
break // we are done
}
}
}
}
}
// Do a reset for this calculation
func (a512srv *Avx512Server) reset(uid uint64) {
// Check if there is a message still waiting to be processed (and remove if so)
for i, lane := range a512srv.lanes {
if lane.uid == uid {
if lane.block != nil {
a512srv.lanes[i] = Avx512LaneInfo{} // clear message
a512srv.totalIn--
}
}
}
// Delete entry from hash map
delete(a512srv.digests, uid)
}
// Invoke assembly and send results back
func (a512srv *Avx512Server) blocks() {
inputs := [16][]byte{}
for i := range inputs {
inputs[i] = a512srv.lanes[i].block
}
mask := expandMask(genMask(inputs))
outputs := blockAvx512(a512srv.getDigests(), inputs, mask)
a512srv.totalIn = 0
for i := 0; i < len(outputs); i++ {
uid, outputCh := a512srv.lanes[i].uid, a512srv.lanes[i].outputCh
a512srv.digests[uid] = outputs[i]
a512srv.lanes[i] = Avx512LaneInfo{}
if outputCh != nil {
// Send back result
outputCh <- outputs[i]
delete(a512srv.digests, uid) // Delete entry from hashmap
}
}
}
func (a512srv *Avx512Server) Write(uid uint64, p []byte) (nn int, err error) {
a512srv.blocksCh <- blockInput{uid: uid, msg: p}
return len(p), nil
}
// Sum - return sha256 sum in bytes for a given sum id.
func (a512srv *Avx512Server) Sum(uid uint64, p []byte) [32]byte {
sumCh := make(chan [32]byte)
a512srv.blocksCh <- blockInput{uid: uid, msg: p, final: true, sumCh: sumCh}
return <-sumCh
}
func (a512srv *Avx512Server) getDigests() *[512]byte {
digests := [512]byte{}
for i, lane := range a512srv.lanes {
a, ok := a512srv.digests[lane.uid]
if ok {
binary.BigEndian.PutUint32(digests[(i+0*16)*4:], binary.LittleEndian.Uint32(a[0:4]))
binary.BigEndian.PutUint32(digests[(i+1*16)*4:], binary.LittleEndian.Uint32(a[4:8]))
binary.BigEndian.PutUint32(digests[(i+2*16)*4:], binary.LittleEndian.Uint32(a[8:12]))
binary.BigEndian.PutUint32(digests[(i+3*16)*4:], binary.LittleEndian.Uint32(a[12:16]))
binary.BigEndian.PutUint32(digests[(i+4*16)*4:], binary.LittleEndian.Uint32(a[16:20]))
binary.BigEndian.PutUint32(digests[(i+5*16)*4:], binary.LittleEndian.Uint32(a[20:24]))
binary.BigEndian.PutUint32(digests[(i+6*16)*4:], binary.LittleEndian.Uint32(a[24:28]))
binary.BigEndian.PutUint32(digests[(i+7*16)*4:], binary.LittleEndian.Uint32(a[28:32]))
} else {
binary.LittleEndian.PutUint32(digests[(i+0*16)*4:], init0)
binary.LittleEndian.PutUint32(digests[(i+1*16)*4:], init1)
binary.LittleEndian.PutUint32(digests[(i+2*16)*4:], init2)
binary.LittleEndian.PutUint32(digests[(i+3*16)*4:], init3)
binary.LittleEndian.PutUint32(digests[(i+4*16)*4:], init4)
binary.LittleEndian.PutUint32(digests[(i+5*16)*4:], init5)
binary.LittleEndian.PutUint32(digests[(i+6*16)*4:], init6)
binary.LittleEndian.PutUint32(digests[(i+7*16)*4:], init7)
}
}
return &digests
}
// Helper struct for sorting blocks based on length
type lane struct {
len uint
pos uint
}
type lanes []lane
func (lns lanes) Len() int { return len(lns) }
func (lns lanes) Swap(i, j int) { lns[i], lns[j] = lns[j], lns[i] }
func (lns lanes) Less(i, j int) bool { return lns[i].len < lns[j].len }
// Helper struct for
type maskRounds struct {
mask uint64
rounds uint64
}
func genMask(input [16][]byte) [16]maskRounds {
// Sort on blocks length small to large
var sorted [16]lane
for c, inpt := range input {
sorted[c] = lane{uint(len(inpt)), uint(c)}
}
sort.Sort(lanes(sorted[:]))
// Create mask array including 'rounds' between masks
m, round, index := uint64(0xffff), uint64(0), 0
var mr [16]maskRounds
for _, s := range sorted {
if s.len > 0 {
if uint64(s.len)>>6 > round {
mr[index] = maskRounds{m, (uint64(s.len) >> 6) - round}
index++
}
round = uint64(s.len) >> 6
}
m = m & ^(1 << uint(s.pos))
}
return mr
}
// TODO: remove function
func expandMask(mr [16]maskRounds) []uint64 {
size := uint64(0)
for _, r := range mr {
size += r.rounds
}
result, index := make([]uint64, size), 0
for _, r := range mr {
for j := uint64(0); j < r.rounds; j++ {
result[index] = r.mask
index++
}
}
return result
}

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,22 @@
//+build !noasm,!appengine
/*
* Minio Cloud Storage, (C) 2016 Minio, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package sha256
//go:noescape
func blockAvx(h []uint32, message []uint8, reserved0, reserved1, reserved2, reserved3 uint64)

View File

@@ -0,0 +1,408 @@
//+build !noasm,!appengine
// SHA256 implementation for AVX
//
// Minio Cloud Storage, (C) 2016 Minio, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
//
// This code is based on an Intel White-Paper:
// "Fast SHA-256 Implementations on Intel Architecture Processors"
//
// together with the reference implementation from the following authors:
// James Guilford <james.guilford@intel.com>
// Kirk Yap <kirk.s.yap@intel.com>
// Tim Chen <tim.c.chen@linux.intel.com>
//
// For Golang it has been converted to Plan 9 assembly with the help of
// github.com/minio/asm2plan9s to assemble Intel instructions to their Plan9
// equivalents
//
#include "textflag.h"
#define ROTATE_XS \
MOVOU X4, X15 \
MOVOU X5, X4 \
MOVOU X6, X5 \
MOVOU X7, X6 \
MOVOU X15, X7
// compute s0 four at a time and s1 two at a time
// compute W[-16] + W[-7] 4 at a time
#define FOUR_ROUNDS_AND_SCHED(a, b, c, d, e, f, g, h) \
MOVL e, R13 \ // y0 = e
ROLL $18, R13 \ // y0 = e >> (25-11)
MOVL a, R14 \ // y1 = a
LONG $0x0f41e3c4; WORD $0x04c6 \ // VPALIGNR XMM0,XMM7,XMM6,0x4 /* XTMP0 = W[-7] */
ROLL $23, R14 \ // y1 = a >> (22-13)
XORL e, R13 \ // y0 = e ^ (e >> (25-11))
MOVL f, R15 \ // y2 = f
ROLL $27, R13 \ // y0 = (e >> (11-6)) ^ (e >> (25-6))
XORL a, R14 \ // y1 = a ^ (a >> (22-13)
XORL g, R15 \ // y2 = f^g
LONG $0xc4fef9c5 \ // VPADDD XMM0,XMM0,XMM4 /* XTMP0 = W[-7] + W[-16] */
XORL e, R13 \ // y0 = e ^ (e >> (11-6)) ^ (e >> (25-6) )
ANDL e, R15 \ // y2 = (f^g)&e
ROLL $21, R14 \ // y1 = (a >> (13-2)) ^ (a >> (22-2))
\
\ // compute s0
\
LONG $0x0f51e3c4; WORD $0x04cc \ // VPALIGNR XMM1,XMM5,XMM4,0x4 /* XTMP1 = W[-15] */
XORL a, R14 \ // y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
ROLL $26, R13 \ // y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
XORL g, R15 \ // y2 = CH = ((f^g)&e)^g
ROLL $30, R14 \ // y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
ADDL R13, R15 \ // y2 = S1 + CH
ADDL _xfer+48(FP), R15 \ // y2 = k + w + S1 + CH
MOVL a, R13 \ // y0 = a
ADDL R15, h \ // h = h + S1 + CH + k + w
\ // ROTATE_ARGS
MOVL a, R15 \ // y2 = a
LONG $0xd172e9c5; BYTE $0x07 \ // VPSRLD XMM2,XMM1,0x7 /* */
ORL c, R13 \ // y0 = a|c
ADDL h, d \ // d = d + h + S1 + CH + k + w
ANDL c, R15 \ // y2 = a&c
LONG $0xf172e1c5; BYTE $0x19 \ // VPSLLD XMM3,XMM1,0x19 /* */
ANDL b, R13 \ // y0 = (a|c)&b
ADDL R14, h \ // h = h + S1 + CH + k + w + S0
LONG $0xdaebe1c5 \ // VPOR XMM3,XMM3,XMM2 /* XTMP1 = W[-15] MY_ROR 7 */
ORL R15, R13 \ // y0 = MAJ = (a|c)&b)|(a&c)
ADDL R13, h \ // h = h + S1 + CH + k + w + S0 + MAJ
\ // ROTATE_ARGS
MOVL d, R13 \ // y0 = e
MOVL h, R14 \ // y1 = a
ROLL $18, R13 \ // y0 = e >> (25-11)
XORL d, R13 \ // y0 = e ^ (e >> (25-11))
MOVL e, R15 \ // y2 = f
ROLL $23, R14 \ // y1 = a >> (22-13)
LONG $0xd172e9c5; BYTE $0x12 \ // VPSRLD XMM2,XMM1,0x12 /* */
XORL h, R14 \ // y1 = a ^ (a >> (22-13)
ROLL $27, R13 \ // y0 = (e >> (11-6)) ^ (e >> (25-6))
XORL f, R15 \ // y2 = f^g
LONG $0xd172b9c5; BYTE $0x03 \ // VPSRLD XMM8,XMM1,0x3 /* XTMP4 = W[-15] >> 3 */
ROLL $21, R14 \ // y1 = (a >> (13-2)) ^ (a >> (22-2))
XORL d, R13 \ // y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
ANDL d, R15 \ // y2 = (f^g)&e
ROLL $26, R13 \ // y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
LONG $0xf172f1c5; BYTE $0x0e \ // VPSLLD XMM1,XMM1,0xe /* */
XORL h, R14 \ // y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
XORL f, R15 \ // y2 = CH = ((f^g)&e)^g
LONG $0xd9efe1c5 \ // VPXOR XMM3,XMM3,XMM1 /* */
ADDL R13, R15 \ // y2 = S1 + CH
ADDL _xfer+52(FP), R15 \ // y2 = k + w + S1 + CH
ROLL $30, R14 \ // y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
LONG $0xdaefe1c5 \ // VPXOR XMM3,XMM3,XMM2 /* XTMP1 = W[-15] MY_ROR 7 ^ W[-15] MY_ROR */
MOVL h, R13 \ // y0 = a
ADDL R15, g \ // h = h + S1 + CH + k + w
MOVL h, R15 \ // y2 = a
LONG $0xef61c1c4; BYTE $0xc8 \ // VPXOR XMM1,XMM3,XMM8 /* XTMP1 = s0 */
ORL b, R13 \ // y0 = a|c
ADDL g, c \ // d = d + h + S1 + CH + k + w
ANDL b, R15 \ // y2 = a&c
\
\ // compute low s1
\
LONG $0xd770f9c5; BYTE $0xfa \ // VPSHUFD XMM2,XMM7,0xfa /* XTMP2 = W[-2] {BBAA} */
ANDL a, R13 \ // y0 = (a|c)&b
ADDL R14, g \ // h = h + S1 + CH + k + w + S0
LONG $0xc1fef9c5 \ // VPADDD XMM0,XMM0,XMM1 /* XTMP0 = W[-16] + W[-7] + s0 */
ORL R15, R13 \ // y0 = MAJ = (a|c)&b)|(a&c)
ADDL R13, g \ // h = h + S1 + CH + k + w + S0 + MAJ
\ // ROTATE_ARGS
MOVL c, R13 \ // y0 = e
MOVL g, R14 \ // y1 = a
ROLL $18, R13 \ // y0 = e >> (25-11)
XORL c, R13 \ // y0 = e ^ (e >> (25-11))
ROLL $23, R14 \ // y1 = a >> (22-13)
MOVL d, R15 \ // y2 = f
XORL g, R14 \ // y1 = a ^ (a >> (22-13)
ROLL $27, R13 \ // y0 = (e >> (11-6)) ^ (e >> (25-6))
LONG $0xd272b9c5; BYTE $0x0a \ // VPSRLD XMM8,XMM2,0xa /* XTMP4 = W[-2] >> 10 {BBAA} */
XORL e, R15 \ // y2 = f^g
LONG $0xd273e1c5; BYTE $0x13 \ // VPSRLQ XMM3,XMM2,0x13 /* XTMP3 = W[-2] MY_ROR 19 {xBxA} */
XORL c, R13 \ // y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
ANDL c, R15 \ // y2 = (f^g)&e
LONG $0xd273e9c5; BYTE $0x11 \ // VPSRLQ XMM2,XMM2,0x11 /* XTMP2 = W[-2] MY_ROR 17 {xBxA} */
ROLL $21, R14 \ // y1 = (a >> (13-2)) ^ (a >> (22-2))
XORL g, R14 \ // y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
XORL e, R15 \ // y2 = CH = ((f^g)&e)^g
ROLL $26, R13 \ // y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
LONG $0xd3efe9c5 \ // VPXOR XMM2,XMM2,XMM3 /* */
ADDL R13, R15 \ // y2 = S1 + CH
ROLL $30, R14 \ // y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
ADDL _xfer+56(FP), R15 \ // y2 = k + w + S1 + CH
LONG $0xc2ef39c5 \ // VPXOR XMM8,XMM8,XMM2 /* XTMP4 = s1 {xBxA} */
MOVL g, R13 \ // y0 = a
ADDL R15, f \ // h = h + S1 + CH + k + w
MOVL g, R15 \ // y2 = a
LONG $0x003942c4; BYTE $0xc2 \ // VPSHUFB XMM8,XMM8,XMM10 /* XTMP4 = s1 {00BA} */
ORL a, R13 \ // y0 = a|c
ADDL f, b \ // d = d + h + S1 + CH + k + w
ANDL a, R15 \ // y2 = a&c
LONG $0xfe79c1c4; BYTE $0xc0 \ // VPADDD XMM0,XMM0,XMM8 /* XTMP0 = {..., ..., W[1], W[0]} */
ANDL h, R13 \ // y0 = (a|c)&b
ADDL R14, f \ // h = h + S1 + CH + k + w + S0
\
\ // compute high s1
\
LONG $0xd070f9c5; BYTE $0x50 \ // VPSHUFD XMM2,XMM0,0x50 /* XTMP2 = W[-2] {DDCC} */
ORL R15, R13 \ // y0 = MAJ = (a|c)&b)|(a&c)
ADDL R13, f \ // h = h + S1 + CH + k + w + S0 + MAJ
\ // ROTATE_ARGS
MOVL b, R13 \ // y0 = e
ROLL $18, R13 \ // y0 = e >> (25-11)
MOVL f, R14 \ // y1 = a
ROLL $23, R14 \ // y1 = a >> (22-13)
XORL b, R13 \ // y0 = e ^ (e >> (25-11))
MOVL c, R15 \ // y2 = f
ROLL $27, R13 \ // y0 = (e >> (11-6)) ^ (e >> (25-6))
LONG $0xd272a1c5; BYTE $0x0a \ // VPSRLD XMM11,XMM2,0xa /* XTMP5 = W[-2] >> 10 {DDCC} */
XORL f, R14 \ // y1 = a ^ (a >> (22-13)
XORL d, R15 \ // y2 = f^g
LONG $0xd273e1c5; BYTE $0x13 \ // VPSRLQ XMM3,XMM2,0x13 /* XTMP3 = W[-2] MY_ROR 19 {xDxC} */
XORL b, R13 \ // y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
ANDL b, R15 \ // y2 = (f^g)&e
ROLL $21, R14 \ // y1 = (a >> (13-2)) ^ (a >> (22-2))
LONG $0xd273e9c5; BYTE $0x11 \ // VPSRLQ XMM2,XMM2,0x11 /* XTMP2 = W[-2] MY_ROR 17 {xDxC} */
XORL f, R14 \ // y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
ROLL $26, R13 \ // y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
XORL d, R15 \ // y2 = CH = ((f^g)&e)^g
LONG $0xd3efe9c5 \ // VPXOR XMM2,XMM2,XMM3 /* */
ROLL $30, R14 \ // y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
ADDL R13, R15 \ // y2 = S1 + CH
ADDL _xfer+60(FP), R15 \ // y2 = k + w + S1 + CH
LONG $0xdaef21c5 \ // VPXOR XMM11,XMM11,XMM2 /* XTMP5 = s1 {xDxC} */
MOVL f, R13 \ // y0 = a
ADDL R15, e \ // h = h + S1 + CH + k + w
MOVL f, R15 \ // y2 = a
LONG $0x002142c4; BYTE $0xdc \ // VPSHUFB XMM11,XMM11,XMM12 /* XTMP5 = s1 {DC00} */
ORL h, R13 \ // y0 = a|c
ADDL e, a \ // d = d + h + S1 + CH + k + w
ANDL h, R15 \ // y2 = a&c
LONG $0xe0fea1c5 \ // VPADDD XMM4,XMM11,XMM0 /* X0 = {W[3], W[2], W[1], W[0]} */
ANDL g, R13 \ // y0 = (a|c)&b
ADDL R14, e \ // h = h + S1 + CH + k + w + S0
ORL R15, R13 \ // y0 = MAJ = (a|c)&b)|(a&c)
ADDL R13, e \ // h = h + S1 + CH + k + w + S0 + MAJ
\ // ROTATE_ARGS
ROTATE_XS
#define DO_ROUND(a, b, c, d, e, f, g, h, offset) \
MOVL e, R13 \ // y0 = e
ROLL $18, R13 \ // y0 = e >> (25-11)
MOVL a, R14 \ // y1 = a
XORL e, R13 \ // y0 = e ^ (e >> (25-11))
ROLL $23, R14 \ // y1 = a >> (22-13)
MOVL f, R15 \ // y2 = f
XORL a, R14 \ // y1 = a ^ (a >> (22-13)
ROLL $27, R13 \ // y0 = (e >> (11-6)) ^ (e >> (25-6))
XORL g, R15 \ // y2 = f^g
XORL e, R13 \ // y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
ROLL $21, R14 \ // y1 = (a >> (13-2)) ^ (a >> (22-2))
ANDL e, R15 \ // y2 = (f^g)&e
XORL a, R14 \ // y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
ROLL $26, R13 \ // y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
XORL g, R15 \ // y2 = CH = ((f^g)&e)^g
ADDL R13, R15 \ // y2 = S1 + CH
ROLL $30, R14 \ // y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
ADDL _xfer+offset(FP), R15 \ // y2 = k + w + S1 + CH
MOVL a, R13 \ // y0 = a
ADDL R15, h \ // h = h + S1 + CH + k + w
MOVL a, R15 \ // y2 = a
ORL c, R13 \ // y0 = a|c
ADDL h, d \ // d = d + h + S1 + CH + k + w
ANDL c, R15 \ // y2 = a&c
ANDL b, R13 \ // y0 = (a|c)&b
ADDL R14, h \ // h = h + S1 + CH + k + w + S0
ORL R15, R13 \ // y0 = MAJ = (a|c)&b)|(a&c)
ADDL R13, h // h = h + S1 + CH + k + w + S0 + MAJ
// func blockAvx(h []uint32, message []uint8, reserved0, reserved1, reserved2, reserved3 uint64)
TEXT ·blockAvx(SB), 7, $0-80
MOVQ h+0(FP), SI // SI: &h
MOVQ message_base+24(FP), R8 // &message
MOVQ message_len+32(FP), R9 // length of message
CMPQ R9, $0
JEQ done_hash
ADDQ R8, R9
MOVQ R9, reserved2+64(FP) // store end of message
// Register definition
// a --> eax
// b --> ebx
// c --> ecx
// d --> r8d
// e --> edx
// f --> r9d
// g --> r10d
// h --> r11d
//
// y0 --> r13d
// y1 --> r14d
// y2 --> r15d
MOVL (0*4)(SI), AX // a = H0
MOVL (1*4)(SI), BX // b = H1
MOVL (2*4)(SI), CX // c = H2
MOVL (3*4)(SI), R8 // d = H3
MOVL (4*4)(SI), DX // e = H4
MOVL (5*4)(SI), R9 // f = H5
MOVL (6*4)(SI), R10 // g = H6
MOVL (7*4)(SI), R11 // h = H7
MOVOU bflipMask<>(SB), X13
MOVOU shuf00BA<>(SB), X10 // shuffle xBxA -> 00BA
MOVOU shufDC00<>(SB), X12 // shuffle xDxC -> DC00
MOVQ message_base+24(FP), SI // SI: &message
loop0:
LEAQ constants<>(SB), BP
// byte swap first 16 dwords
MOVOU 0*16(SI), X4
LONG $0x0059c2c4; BYTE $0xe5 // VPSHUFB XMM4, XMM4, XMM13
MOVOU 1*16(SI), X5
LONG $0x0051c2c4; BYTE $0xed // VPSHUFB XMM5, XMM5, XMM13
MOVOU 2*16(SI), X6
LONG $0x0049c2c4; BYTE $0xf5 // VPSHUFB XMM6, XMM6, XMM13
MOVOU 3*16(SI), X7
LONG $0x0041c2c4; BYTE $0xfd // VPSHUFB XMM7, XMM7, XMM13
MOVQ SI, reserved3+72(FP)
MOVD $0x3, DI
// schedule 48 input dwords, by doing 3 rounds of 16 each
loop1:
LONG $0x4dfe59c5; BYTE $0x00 // VPADDD XMM9, XMM4, 0[RBP] /* Add 1st constant to first part of message */
MOVOU X9, reserved0+48(FP)
FOUR_ROUNDS_AND_SCHED(AX, BX, CX, R8, DX, R9, R10, R11)
LONG $0x4dfe59c5; BYTE $0x10 // VPADDD XMM9, XMM4, 16[RBP] /* Add 2nd constant to message */
MOVOU X9, reserved0+48(FP)
FOUR_ROUNDS_AND_SCHED(DX, R9, R10, R11, AX, BX, CX, R8)
LONG $0x4dfe59c5; BYTE $0x20 // VPADDD XMM9, XMM4, 32[RBP] /* Add 3rd constant to message */
MOVOU X9, reserved0+48(FP)
FOUR_ROUNDS_AND_SCHED(AX, BX, CX, R8, DX, R9, R10, R11)
LONG $0x4dfe59c5; BYTE $0x30 // VPADDD XMM9, XMM4, 48[RBP] /* Add 4th constant to message */
MOVOU X9, reserved0+48(FP)
ADDQ $64, BP
FOUR_ROUNDS_AND_SCHED(DX, R9, R10, R11, AX, BX, CX, R8)
SUBQ $1, DI
JNE loop1
MOVD $0x2, DI
loop2:
LONG $0x4dfe59c5; BYTE $0x00 // VPADDD XMM9, XMM4, 0[RBP] /* Add 1st constant to first part of message */
MOVOU X9, reserved0+48(FP)
DO_ROUND( AX, BX, CX, R8, DX, R9, R10, R11, 48)
DO_ROUND(R11, AX, BX, CX, R8, DX, R9, R10, 52)
DO_ROUND(R10, R11, AX, BX, CX, R8, DX, R9, 56)
DO_ROUND( R9, R10, R11, AX, BX, CX, R8, DX, 60)
LONG $0x4dfe51c5; BYTE $0x10 // VPADDD XMM9, XMM5, 16[RBP] /* Add 2nd constant to message */
MOVOU X9, reserved0+48(FP)
ADDQ $32, BP
DO_ROUND( DX, R9, R10, R11, AX, BX, CX, R8, 48)
DO_ROUND( R8, DX, R9, R10, R11, AX, BX, CX, 52)
DO_ROUND( CX, R8, DX, R9, R10, R11, AX, BX, 56)
DO_ROUND( BX, CX, R8, DX, R9, R10, R11, AX, 60)
MOVOU X6, X4
MOVOU X7, X5
SUBQ $1, DI
JNE loop2
MOVQ h+0(FP), SI // SI: &h
ADDL (0*4)(SI), AX // H0 = a + H0
MOVL AX, (0*4)(SI)
ADDL (1*4)(SI), BX // H1 = b + H1
MOVL BX, (1*4)(SI)
ADDL (2*4)(SI), CX // H2 = c + H2
MOVL CX, (2*4)(SI)
ADDL (3*4)(SI), R8 // H3 = d + H3
MOVL R8, (3*4)(SI)
ADDL (4*4)(SI), DX // H4 = e + H4
MOVL DX, (4*4)(SI)
ADDL (5*4)(SI), R9 // H5 = f + H5
MOVL R9, (5*4)(SI)
ADDL (6*4)(SI), R10 // H6 = g + H6
MOVL R10, (6*4)(SI)
ADDL (7*4)(SI), R11 // H7 = h + H7
MOVL R11, (7*4)(SI)
MOVQ reserved3+72(FP), SI
ADDQ $64, SI
CMPQ reserved2+64(FP), SI
JNE loop0
done_hash:
RET
// Constants table
DATA constants<>+0x0(SB)/8, $0x71374491428a2f98
DATA constants<>+0x8(SB)/8, $0xe9b5dba5b5c0fbcf
DATA constants<>+0x10(SB)/8, $0x59f111f13956c25b
DATA constants<>+0x18(SB)/8, $0xab1c5ed5923f82a4
DATA constants<>+0x20(SB)/8, $0x12835b01d807aa98
DATA constants<>+0x28(SB)/8, $0x550c7dc3243185be
DATA constants<>+0x30(SB)/8, $0x80deb1fe72be5d74
DATA constants<>+0x38(SB)/8, $0xc19bf1749bdc06a7
DATA constants<>+0x40(SB)/8, $0xefbe4786e49b69c1
DATA constants<>+0x48(SB)/8, $0x240ca1cc0fc19dc6
DATA constants<>+0x50(SB)/8, $0x4a7484aa2de92c6f
DATA constants<>+0x58(SB)/8, $0x76f988da5cb0a9dc
DATA constants<>+0x60(SB)/8, $0xa831c66d983e5152
DATA constants<>+0x68(SB)/8, $0xbf597fc7b00327c8
DATA constants<>+0x70(SB)/8, $0xd5a79147c6e00bf3
DATA constants<>+0x78(SB)/8, $0x1429296706ca6351
DATA constants<>+0x80(SB)/8, $0x2e1b213827b70a85
DATA constants<>+0x88(SB)/8, $0x53380d134d2c6dfc
DATA constants<>+0x90(SB)/8, $0x766a0abb650a7354
DATA constants<>+0x98(SB)/8, $0x92722c8581c2c92e
DATA constants<>+0xa0(SB)/8, $0xa81a664ba2bfe8a1
DATA constants<>+0xa8(SB)/8, $0xc76c51a3c24b8b70
DATA constants<>+0xb0(SB)/8, $0xd6990624d192e819
DATA constants<>+0xb8(SB)/8, $0x106aa070f40e3585
DATA constants<>+0xc0(SB)/8, $0x1e376c0819a4c116
DATA constants<>+0xc8(SB)/8, $0x34b0bcb52748774c
DATA constants<>+0xd0(SB)/8, $0x4ed8aa4a391c0cb3
DATA constants<>+0xd8(SB)/8, $0x682e6ff35b9cca4f
DATA constants<>+0xe0(SB)/8, $0x78a5636f748f82ee
DATA constants<>+0xe8(SB)/8, $0x8cc7020884c87814
DATA constants<>+0xf0(SB)/8, $0xa4506ceb90befffa
DATA constants<>+0xf8(SB)/8, $0xc67178f2bef9a3f7
DATA bflipMask<>+0x00(SB)/8, $0x0405060700010203
DATA bflipMask<>+0x08(SB)/8, $0x0c0d0e0f08090a0b
DATA shuf00BA<>+0x00(SB)/8, $0x0b0a090803020100
DATA shuf00BA<>+0x08(SB)/8, $0xFFFFFFFFFFFFFFFF
DATA shufDC00<>+0x00(SB)/8, $0xFFFFFFFFFFFFFFFF
DATA shufDC00<>+0x08(SB)/8, $0x0b0a090803020100
GLOBL constants<>(SB), 8, $256
GLOBL bflipMask<>(SB), (NOPTR+RODATA), $16
GLOBL shuf00BA<>(SB), (NOPTR+RODATA), $16
GLOBL shufDC00<>(SB), (NOPTR+RODATA), $16

View File

@@ -0,0 +1,6 @@
//+build !noasm,!appengine
package sha256
//go:noescape
func blockSha(h *[8]uint32, message []uint8)

View File

@@ -0,0 +1,266 @@
//+build !noasm,!appengine
// SHA intrinsic version of SHA256
// Kristofer Peterson, (C) 2018.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "textflag.h"
DATA K<>+0x00(SB)/4, $0x428a2f98
DATA K<>+0x04(SB)/4, $0x71374491
DATA K<>+0x08(SB)/4, $0xb5c0fbcf
DATA K<>+0x0c(SB)/4, $0xe9b5dba5
DATA K<>+0x10(SB)/4, $0x3956c25b
DATA K<>+0x14(SB)/4, $0x59f111f1
DATA K<>+0x18(SB)/4, $0x923f82a4
DATA K<>+0x1c(SB)/4, $0xab1c5ed5
DATA K<>+0x20(SB)/4, $0xd807aa98
DATA K<>+0x24(SB)/4, $0x12835b01
DATA K<>+0x28(SB)/4, $0x243185be
DATA K<>+0x2c(SB)/4, $0x550c7dc3
DATA K<>+0x30(SB)/4, $0x72be5d74
DATA K<>+0x34(SB)/4, $0x80deb1fe
DATA K<>+0x38(SB)/4, $0x9bdc06a7
DATA K<>+0x3c(SB)/4, $0xc19bf174
DATA K<>+0x40(SB)/4, $0xe49b69c1
DATA K<>+0x44(SB)/4, $0xefbe4786
DATA K<>+0x48(SB)/4, $0x0fc19dc6
DATA K<>+0x4c(SB)/4, $0x240ca1cc
DATA K<>+0x50(SB)/4, $0x2de92c6f
DATA K<>+0x54(SB)/4, $0x4a7484aa
DATA K<>+0x58(SB)/4, $0x5cb0a9dc
DATA K<>+0x5c(SB)/4, $0x76f988da
DATA K<>+0x60(SB)/4, $0x983e5152
DATA K<>+0x64(SB)/4, $0xa831c66d
DATA K<>+0x68(SB)/4, $0xb00327c8
DATA K<>+0x6c(SB)/4, $0xbf597fc7
DATA K<>+0x70(SB)/4, $0xc6e00bf3
DATA K<>+0x74(SB)/4, $0xd5a79147
DATA K<>+0x78(SB)/4, $0x06ca6351
DATA K<>+0x7c(SB)/4, $0x14292967
DATA K<>+0x80(SB)/4, $0x27b70a85
DATA K<>+0x84(SB)/4, $0x2e1b2138
DATA K<>+0x88(SB)/4, $0x4d2c6dfc
DATA K<>+0x8c(SB)/4, $0x53380d13
DATA K<>+0x90(SB)/4, $0x650a7354
DATA K<>+0x94(SB)/4, $0x766a0abb
DATA K<>+0x98(SB)/4, $0x81c2c92e
DATA K<>+0x9c(SB)/4, $0x92722c85
DATA K<>+0xa0(SB)/4, $0xa2bfe8a1
DATA K<>+0xa4(SB)/4, $0xa81a664b
DATA K<>+0xa8(SB)/4, $0xc24b8b70
DATA K<>+0xac(SB)/4, $0xc76c51a3
DATA K<>+0xb0(SB)/4, $0xd192e819
DATA K<>+0xb4(SB)/4, $0xd6990624
DATA K<>+0xb8(SB)/4, $0xf40e3585
DATA K<>+0xbc(SB)/4, $0x106aa070
DATA K<>+0xc0(SB)/4, $0x19a4c116
DATA K<>+0xc4(SB)/4, $0x1e376c08
DATA K<>+0xc8(SB)/4, $0x2748774c
DATA K<>+0xcc(SB)/4, $0x34b0bcb5
DATA K<>+0xd0(SB)/4, $0x391c0cb3
DATA K<>+0xd4(SB)/4, $0x4ed8aa4a
DATA K<>+0xd8(SB)/4, $0x5b9cca4f
DATA K<>+0xdc(SB)/4, $0x682e6ff3
DATA K<>+0xe0(SB)/4, $0x748f82ee
DATA K<>+0xe4(SB)/4, $0x78a5636f
DATA K<>+0xe8(SB)/4, $0x84c87814
DATA K<>+0xec(SB)/4, $0x8cc70208
DATA K<>+0xf0(SB)/4, $0x90befffa
DATA K<>+0xf4(SB)/4, $0xa4506ceb
DATA K<>+0xf8(SB)/4, $0xbef9a3f7
DATA K<>+0xfc(SB)/4, $0xc67178f2
GLOBL K<>(SB), RODATA|NOPTR, $256
DATA SHUF_MASK<>+0x00(SB)/8, $0x0405060700010203
DATA SHUF_MASK<>+0x08(SB)/8, $0x0c0d0e0f08090a0b
GLOBL SHUF_MASK<>(SB), RODATA|NOPTR, $16
// Register Usage
// BX base address of constant table (constant)
// DX hash_state (constant)
// SI hash_data.data
// DI hash_data.data + hash_data.length - 64 (constant)
// X0 scratch
// X1 scratch
// X2 working hash state // ABEF
// X3 working hash state // CDGH
// X4 first 16 bytes of block
// X5 second 16 bytes of block
// X6 third 16 bytes of block
// X7 fourth 16 bytes of block
// X12 saved hash state // ABEF
// X13 saved hash state // CDGH
// X15 data shuffle mask (constant)
TEXT ·blockSha(SB), NOSPLIT, $0-32
MOVQ h+0(FP), DX
MOVQ message_base+8(FP), SI
MOVQ message_len+16(FP), DI
LEAQ -64(SI)(DI*1), DI
MOVOU (DX), X2
MOVOU 16(DX), X1
MOVO X2, X3
PUNPCKLLQ X1, X2
PUNPCKHLQ X1, X3
PSHUFD $0x27, X2, X2
PSHUFD $0x27, X3, X3
MOVO SHUF_MASK<>(SB), X15
LEAQ K<>(SB), BX
JMP TEST
LOOP:
MOVO X2, X12
MOVO X3, X13
// load block and shuffle
MOVOU (SI), X4
MOVOU 16(SI), X5
MOVOU 32(SI), X6
MOVOU 48(SI), X7
PSHUFB X15, X4
PSHUFB X15, X5
PSHUFB X15, X6
PSHUFB X15, X7
#define ROUND456 \
PADDL X5, X0 \
LONG $0xdacb380f \ // SHA256RNDS2 XMM3, XMM2
MOVO X5, X1 \
LONG $0x0f3a0f66; WORD $0x04cc \ // PALIGNR XMM1, XMM4, 4
PADDL X1, X6 \
LONG $0xf5cd380f \ // SHA256MSG2 XMM6, XMM5
PSHUFD $0x4e, X0, X0 \
LONG $0xd3cb380f \ // SHA256RNDS2 XMM2, XMM3
LONG $0xe5cc380f // SHA256MSG1 XMM4, XMM5
#define ROUND567 \
PADDL X6, X0 \
LONG $0xdacb380f \ // SHA256RNDS2 XMM3, XMM2
MOVO X6, X1 \
LONG $0x0f3a0f66; WORD $0x04cd \ // PALIGNR XMM1, XMM5, 4
PADDL X1, X7 \
LONG $0xfecd380f \ // SHA256MSG2 XMM7, XMM6
PSHUFD $0x4e, X0, X0 \
LONG $0xd3cb380f \ // SHA256RNDS2 XMM2, XMM3
LONG $0xeecc380f // SHA256MSG1 XMM5, XMM6
#define ROUND674 \
PADDL X7, X0 \
LONG $0xdacb380f \ // SHA256RNDS2 XMM3, XMM2
MOVO X7, X1 \
LONG $0x0f3a0f66; WORD $0x04ce \ // PALIGNR XMM1, XMM6, 4
PADDL X1, X4 \
LONG $0xe7cd380f \ // SHA256MSG2 XMM4, XMM7
PSHUFD $0x4e, X0, X0 \
LONG $0xd3cb380f \ // SHA256RNDS2 XMM2, XMM3
LONG $0xf7cc380f // SHA256MSG1 XMM6, XMM7
#define ROUND745 \
PADDL X4, X0 \
LONG $0xdacb380f \ // SHA256RNDS2 XMM3, XMM2
MOVO X4, X1 \
LONG $0x0f3a0f66; WORD $0x04cf \ // PALIGNR XMM1, XMM7, 4
PADDL X1, X5 \
LONG $0xeccd380f \ // SHA256MSG2 XMM5, XMM4
PSHUFD $0x4e, X0, X0 \
LONG $0xd3cb380f \ // SHA256RNDS2 XMM2, XMM3
LONG $0xfccc380f // SHA256MSG1 XMM7, XMM4
// rounds 0-3
MOVO (BX), X0
PADDL X4, X0
LONG $0xdacb380f // SHA256RNDS2 XMM3, XMM2
PSHUFD $0x4e, X0, X0
LONG $0xd3cb380f // SHA256RNDS2 XMM2, XMM3
// rounds 4-7
MOVO 1*16(BX), X0
PADDL X5, X0
LONG $0xdacb380f // SHA256RNDS2 XMM3, XMM2
PSHUFD $0x4e, X0, X0
LONG $0xd3cb380f // SHA256RNDS2 XMM2, XMM3
LONG $0xe5cc380f // SHA256MSG1 XMM4, XMM5
// rounds 8-11
MOVO 2*16(BX), X0
PADDL X6, X0
LONG $0xdacb380f // SHA256RNDS2 XMM3, XMM2
PSHUFD $0x4e, X0, X0
LONG $0xd3cb380f // SHA256RNDS2 XMM2, XMM3
LONG $0xeecc380f // SHA256MSG1 XMM5, XMM6
MOVO 3*16(BX), X0; ROUND674 // rounds 12-15
MOVO 4*16(BX), X0; ROUND745 // rounds 16-19
MOVO 5*16(BX), X0; ROUND456 // rounds 20-23
MOVO 6*16(BX), X0; ROUND567 // rounds 24-27
MOVO 7*16(BX), X0; ROUND674 // rounds 28-31
MOVO 8*16(BX), X0; ROUND745 // rounds 32-35
MOVO 9*16(BX), X0; ROUND456 // rounds 36-39
MOVO 10*16(BX), X0; ROUND567 // rounds 40-43
MOVO 11*16(BX), X0; ROUND674 // rounds 44-47
MOVO 12*16(BX), X0; ROUND745 // rounds 48-51
// rounds 52-55
MOVO 13*16(BX), X0
PADDL X5, X0
LONG $0xdacb380f // SHA256RNDS2 XMM3, XMM2
MOVO X5, X1
LONG $0x0f3a0f66; WORD $0x04cc // PALIGNR XMM1, XMM4, 4
PADDL X1, X6
LONG $0xf5cd380f // SHA256MSG2 XMM6, XMM5
PSHUFD $0x4e, X0, X0
LONG $0xd3cb380f // SHA256RNDS2 XMM2, XMM3
// rounds 56-59
MOVO 14*16(BX), X0
PADDL X6, X0
LONG $0xdacb380f // SHA256RNDS2 XMM3, XMM2
MOVO X6, X1
LONG $0x0f3a0f66; WORD $0x04cd // PALIGNR XMM1, XMM5, 4
PADDL X1, X7
LONG $0xfecd380f // SHA256MSG2 XMM7, XMM6
PSHUFD $0x4e, X0, X0
LONG $0xd3cb380f // SHA256RNDS2 XMM2, XMM3
// rounds 60-63
MOVO 15*16(BX), X0
PADDL X7, X0
LONG $0xdacb380f // SHA256RNDS2 XMM3, XMM2
PSHUFD $0x4e, X0, X0
LONG $0xd3cb380f // SHA256RNDS2 XMM2, XMM3
PADDL X12, X2
PADDL X13, X3
ADDQ $64, SI
TEST:
CMPQ SI, DI
JBE LOOP
PSHUFD $0x4e, X3, X0
LONG $0x0e3a0f66; WORD $0xf0c2 // PBLENDW XMM0, XMM2, 0xf0
PSHUFD $0x4e, X2, X1
LONG $0x0e3a0f66; WORD $0x0fcb // PBLENDW XMM1, XMM3, 0x0f
PSHUFD $0x1b, X0, X0
PSHUFD $0x1b, X1, X1
MOVOU X0, (DX)
MOVOU X1, 16(DX)
RET

View File

@@ -0,0 +1,22 @@
//+build !noasm,!appengine
/*
* Minio Cloud Storage, (C) 2016 Minio, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package sha256
//go:noescape
func blockSsse(h []uint32, message []uint8, reserved0, reserved1, reserved2, reserved3 uint64)

View File

@@ -0,0 +1,429 @@
//+build !noasm,!appengine
// SHA256 implementation for SSSE3
//
// Minio Cloud Storage, (C) 2016 Minio, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
//
// This code is based on an Intel White-Paper:
// "Fast SHA-256 Implementations on Intel Architecture Processors"
//
// together with the reference implementation from the following authors:
// James Guilford <james.guilford@intel.com>
// Kirk Yap <kirk.s.yap@intel.com>
// Tim Chen <tim.c.chen@linux.intel.com>
//
// For Golang it has been converted to Plan 9 assembly with the help of
// github.com/minio/asm2plan9s to assemble Intel instructions to their Plan9
// equivalents
//
#include "textflag.h"
#define ROTATE_XS \
MOVOU X4, X15 \
MOVOU X5, X4 \
MOVOU X6, X5 \
MOVOU X7, X6 \
MOVOU X15, X7
// compute s0 four at a time and s1 two at a time
// compute W[-16] + W[-7] 4 at a time
#define FOUR_ROUNDS_AND_SCHED(a, b, c, d, e, f, g, h) \
MOVL e, R13 \ // y0 = e
ROLL $18, R13 \ // y0 = e >> (25-11)
MOVL a, R14 \ // y1 = a
MOVOU X7, X0 \
LONG $0x0f3a0f66; WORD $0x04c6 \ // PALIGNR XMM0,XMM6,0x4 /* XTMP0 = W[-7] */
ROLL $23, R14 \ // y1 = a >> (22-13)
XORL e, R13 \ // y0 = e ^ (e >> (25-11))
MOVL f, R15 \ // y2 = f
ROLL $27, R13 \ // y0 = (e >> (11-6)) ^ (e >> (25-6))
XORL a, R14 \ // y1 = a ^ (a >> (22-13)
XORL g, R15 \ // y2 = f^g
LONG $0xc4fe0f66 \ // PADDD XMM0,XMM4 /* XTMP0 = W[-7] + W[-16] */
XORL e, R13 \ // y0 = e ^ (e >> (11-6)) ^ (e >> (25-6) )
ANDL e, R15 \ // y2 = (f^g)&e
ROLL $21, R14 \ // y1 = (a >> (13-2)) ^ (a >> (22-2))
\
\ // compute s0
\
MOVOU X5, X1 \
LONG $0x0f3a0f66; WORD $0x04cc \ // PALIGNR XMM1,XMM4,0x4 /* XTMP1 = W[-15] */
XORL a, R14 \ // y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
ROLL $26, R13 \ // y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
XORL g, R15 \ // y2 = CH = ((f^g)&e)^g
ROLL $30, R14 \ // y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
ADDL R13, R15 \ // y2 = S1 + CH
ADDL _xfer+48(FP), R15 \ // y2 = k + w + S1 + CH
MOVL a, R13 \ // y0 = a
ADDL R15, h \ // h = h + S1 + CH + k + w
\ // ROTATE_ARGS
MOVL a, R15 \ // y2 = a
MOVOU X1, X2 \
LONG $0xd2720f66; BYTE $0x07 \ // PSRLD XMM2,0x7 /* */
ORL c, R13 \ // y0 = a|c
ADDL h, d \ // d = d + h + S1 + CH + k + w
ANDL c, R15 \ // y2 = a&c
MOVOU X1, X3 \
LONG $0xf3720f66; BYTE $0x19 \ // PSLLD XMM3,0x19 /* */
ANDL b, R13 \ // y0 = (a|c)&b
ADDL R14, h \ // h = h + S1 + CH + k + w + S0
LONG $0xdaeb0f66 \ // POR XMM3,XMM2 /* XTMP1 = W[-15] MY_ROR 7 */
ORL R15, R13 \ // y0 = MAJ = (a|c)&b)|(a&c)
ADDL R13, h \ // h = h + S1 + CH + k + w + S0 + MAJ
\ // ROTATE_ARGS
MOVL d, R13 \ // y0 = e
MOVL h, R14 \ // y1 = a
ROLL $18, R13 \ // y0 = e >> (25-11)
XORL d, R13 \ // y0 = e ^ (e >> (25-11))
MOVL e, R15 \ // y2 = f
ROLL $23, R14 \ // y1 = a >> (22-13)
MOVOU X1, X2 \
LONG $0xd2720f66; BYTE $0x12 \ // PSRLD XMM2,0x12 /* */
XORL h, R14 \ // y1 = a ^ (a >> (22-13)
ROLL $27, R13 \ // y0 = (e >> (11-6)) ^ (e >> (25-6))
XORL f, R15 \ // y2 = f^g
MOVOU X1, X8 \
LONG $0x720f4166; WORD $0x03d0 \ // PSRLD XMM8,0x3 /* XTMP4 = W[-15] >> 3 */
ROLL $21, R14 \ // y1 = (a >> (13-2)) ^ (a >> (22-2))
XORL d, R13 \ // y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
ANDL d, R15 \ // y2 = (f^g)&e
ROLL $26, R13 \ // y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
LONG $0xf1720f66; BYTE $0x0e \ // PSLLD XMM1,0xe /* */
XORL h, R14 \ // y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
XORL f, R15 \ // y2 = CH = ((f^g)&e)^g
LONG $0xd9ef0f66 \ // PXOR XMM3,XMM1 /* */
ADDL R13, R15 \ // y2 = S1 + CH
ADDL _xfer+52(FP), R15 \ // y2 = k + w + S1 + CH
ROLL $30, R14 \ // y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
LONG $0xdaef0f66 \ // PXOR XMM3,XMM2 /* XTMP1 = W[-15] MY_ROR 7 ^ W[-15] MY_ROR */
MOVL h, R13 \ // y0 = a
ADDL R15, g \ // h = h + S1 + CH + k + w
MOVL h, R15 \ // y2 = a
MOVOU X3, X1 \
LONG $0xef0f4166; BYTE $0xc8 \ // PXOR XMM1,XMM8 /* XTMP1 = s0 */
ORL b, R13 \ // y0 = a|c
ADDL g, c \ // d = d + h + S1 + CH + k + w
ANDL b, R15 \ // y2 = a&c
\
\ // compute low s1
\
LONG $0xd7700f66; BYTE $0xfa \ // PSHUFD XMM2,XMM7,0xfa /* XTMP2 = W[-2] {BBAA} */
ANDL a, R13 \ // y0 = (a|c)&b
ADDL R14, g \ // h = h + S1 + CH + k + w + S0
LONG $0xc1fe0f66 \ // PADDD XMM0,XMM1 /* XTMP0 = W[-16] + W[-7] + s0 */
ORL R15, R13 \ // y0 = MAJ = (a|c)&b)|(a&c)
ADDL R13, g \ // h = h + S1 + CH + k + w + S0 + MAJ
\ // ROTATE_ARGS
MOVL c, R13 \ // y0 = e
MOVL g, R14 \ // y1 = a
ROLL $18, R13 \ // y0 = e >> (25-11)
XORL c, R13 \ // y0 = e ^ (e >> (25-11))
ROLL $23, R14 \ // y1 = a >> (22-13)
MOVL d, R15 \ // y2 = f
XORL g, R14 \ // y1 = a ^ (a >> (22-13)
ROLL $27, R13 \ // y0 = (e >> (11-6)) ^ (e >> (25-6))
MOVOU X2, X8 \
LONG $0x720f4166; WORD $0x0ad0 \ // PSRLD XMM8,0xa /* XTMP4 = W[-2] >> 10 {BBAA} */
XORL e, R15 \ // y2 = f^g
MOVOU X2, X3 \
LONG $0xd3730f66; BYTE $0x13 \ // PSRLQ XMM3,0x13 /* XTMP3 = W[-2] MY_ROR 19 {xBxA} */
XORL c, R13 \ // y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
ANDL c, R15 \ // y2 = (f^g)&e
LONG $0xd2730f66; BYTE $0x11 \ // PSRLQ XMM2,0x11 /* XTMP2 = W[-2] MY_ROR 17 {xBxA} */
ROLL $21, R14 \ // y1 = (a >> (13-2)) ^ (a >> (22-2))
XORL g, R14 \ // y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
XORL e, R15 \ // y2 = CH = ((f^g)&e)^g
ROLL $26, R13 \ // y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
LONG $0xd3ef0f66 \ // PXOR XMM2,XMM3 /* */
ADDL R13, R15 \ // y2 = S1 + CH
ROLL $30, R14 \ // y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
ADDL _xfer+56(FP), R15 \ // y2 = k + w + S1 + CH
LONG $0xef0f4466; BYTE $0xc2 \ // PXOR XMM8,XMM2 /* XTMP4 = s1 {xBxA} */
MOVL g, R13 \ // y0 = a
ADDL R15, f \ // h = h + S1 + CH + k + w
MOVL g, R15 \ // y2 = a
LONG $0x380f4566; WORD $0xc200 \ // PSHUFB XMM8,XMM10 /* XTMP4 = s1 {00BA} */
ORL a, R13 \ // y0 = a|c
ADDL f, b \ // d = d + h + S1 + CH + k + w
ANDL a, R15 \ // y2 = a&c
LONG $0xfe0f4166; BYTE $0xc0 \ // PADDD XMM0,XMM8 /* XTMP0 = {..., ..., W[1], W[0]} */
ANDL h, R13 \ // y0 = (a|c)&b
ADDL R14, f \ // h = h + S1 + CH + k + w + S0
\
\ // compute high s1
\
LONG $0xd0700f66; BYTE $0x50 \ // PSHUFD XMM2,XMM0,0x50 /* XTMP2 = W[-2] {DDCC} */
ORL R15, R13 \ // y0 = MAJ = (a|c)&b)|(a&c)
ADDL R13, f \ // h = h + S1 + CH + k + w + S0 + MAJ
\ // ROTATE_ARGS
MOVL b, R13 \ // y0 = e
ROLL $18, R13 \ // y0 = e >> (25-11)
MOVL f, R14 \ // y1 = a
ROLL $23, R14 \ // y1 = a >> (22-13)
XORL b, R13 \ // y0 = e ^ (e >> (25-11))
MOVL c, R15 \ // y2 = f
ROLL $27, R13 \ // y0 = (e >> (11-6)) ^ (e >> (25-6))
MOVOU X2, X11 \
LONG $0x720f4166; WORD $0x0ad3 \ // PSRLD XMM11,0xa /* XTMP5 = W[-2] >> 10 {DDCC} */
XORL f, R14 \ // y1 = a ^ (a >> (22-13)
XORL d, R15 \ // y2 = f^g
MOVOU X2, X3 \
LONG $0xd3730f66; BYTE $0x13 \ // PSRLQ XMM3,0x13 /* XTMP3 = W[-2] MY_ROR 19 {xDxC} */
XORL b, R13 \ // y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
ANDL b, R15 \ // y2 = (f^g)&e
ROLL $21, R14 \ // y1 = (a >> (13-2)) ^ (a >> (22-2))
LONG $0xd2730f66; BYTE $0x11 \ // PSRLQ XMM2,0x11 /* XTMP2 = W[-2] MY_ROR 17 {xDxC} */
XORL f, R14 \ // y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
ROLL $26, R13 \ // y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
XORL d, R15 \ // y2 = CH = ((f^g)&e)^g
LONG $0xd3ef0f66 \ // PXOR XMM2,XMM3 /* */
ROLL $30, R14 \ // y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
ADDL R13, R15 \ // y2 = S1 + CH
ADDL _xfer+60(FP), R15 \ // y2 = k + w + S1 + CH
LONG $0xef0f4466; BYTE $0xda \ // PXOR XMM11,XMM2 /* XTMP5 = s1 {xDxC} */
MOVL f, R13 \ // y0 = a
ADDL R15, e \ // h = h + S1 + CH + k + w
MOVL f, R15 \ // y2 = a
LONG $0x380f4566; WORD $0xdc00 \ // PSHUFB XMM11,XMM12 /* XTMP5 = s1 {DC00} */
ORL h, R13 \ // y0 = a|c
ADDL e, a \ // d = d + h + S1 + CH + k + w
ANDL h, R15 \ // y2 = a&c
MOVOU X11, X4 \
LONG $0xe0fe0f66 \ // PADDD XMM4,XMM0 /* X0 = {W[3], W[2], W[1], W[0]} */
ANDL g, R13 \ // y0 = (a|c)&b
ADDL R14, e \ // h = h + S1 + CH + k + w + S0
ORL R15, R13 \ // y0 = MAJ = (a|c)&b)|(a&c)
ADDL R13, e \ // h = h + S1 + CH + k + w + S0 + MAJ
\ // ROTATE_ARGS
ROTATE_XS
#define DO_ROUND(a, b, c, d, e, f, g, h, offset) \
MOVL e, R13 \ // y0 = e
ROLL $18, R13 \ // y0 = e >> (25-11)
MOVL a, R14 \ // y1 = a
XORL e, R13 \ // y0 = e ^ (e >> (25-11))
ROLL $23, R14 \ // y1 = a >> (22-13)
MOVL f, R15 \ // y2 = f
XORL a, R14 \ // y1 = a ^ (a >> (22-13)
ROLL $27, R13 \ // y0 = (e >> (11-6)) ^ (e >> (25-6))
XORL g, R15 \ // y2 = f^g
XORL e, R13 \ // y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
ROLL $21, R14 \ // y1 = (a >> (13-2)) ^ (a >> (22-2))
ANDL e, R15 \ // y2 = (f^g)&e
XORL a, R14 \ // y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
ROLL $26, R13 \ // y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
XORL g, R15 \ // y2 = CH = ((f^g)&e)^g
ADDL R13, R15 \ // y2 = S1 + CH
ROLL $30, R14 \ // y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
ADDL _xfer+offset(FP), R15 \ // y2 = k + w + S1 + CH
MOVL a, R13 \ // y0 = a
ADDL R15, h \ // h = h + S1 + CH + k + w
MOVL a, R15 \ // y2 = a
ORL c, R13 \ // y0 = a|c
ADDL h, d \ // d = d + h + S1 + CH + k + w
ANDL c, R15 \ // y2 = a&c
ANDL b, R13 \ // y0 = (a|c)&b
ADDL R14, h \ // h = h + S1 + CH + k + w + S0
ORL R15, R13 \ // y0 = MAJ = (a|c)&b)|(a&c)
ADDL R13, h // h = h + S1 + CH + k + w + S0 + MAJ
// func blockSsse(h []uint32, message []uint8, reserved0, reserved1, reserved2, reserved3 uint64)
TEXT ·blockSsse(SB), 7, $0-80
MOVQ h+0(FP), SI // SI: &h
MOVQ message_base+24(FP), R8 // &message
MOVQ message_len+32(FP), R9 // length of message
CMPQ R9, $0
JEQ done_hash
ADDQ R8, R9
MOVQ R9, reserved2+64(FP) // store end of message
// Register definition
// a --> eax
// b --> ebx
// c --> ecx
// d --> r8d
// e --> edx
// f --> r9d
// g --> r10d
// h --> r11d
//
// y0 --> r13d
// y1 --> r14d
// y2 --> r15d
MOVL (0*4)(SI), AX // a = H0
MOVL (1*4)(SI), BX // b = H1
MOVL (2*4)(SI), CX // c = H2
MOVL (3*4)(SI), R8 // d = H3
MOVL (4*4)(SI), DX // e = H4
MOVL (5*4)(SI), R9 // f = H5
MOVL (6*4)(SI), R10 // g = H6
MOVL (7*4)(SI), R11 // h = H7
MOVOU bflipMask<>(SB), X13
MOVOU shuf00BA<>(SB), X10 // shuffle xBxA -> 00BA
MOVOU shufDC00<>(SB), X12 // shuffle xDxC -> DC00
MOVQ message_base+24(FP), SI // SI: &message
loop0:
LEAQ constants<>(SB), BP
// byte swap first 16 dwords
MOVOU 0*16(SI), X4
LONG $0x380f4166; WORD $0xe500 // PSHUFB XMM4, XMM13
MOVOU 1*16(SI), X5
LONG $0x380f4166; WORD $0xed00 // PSHUFB XMM5, XMM13
MOVOU 2*16(SI), X6
LONG $0x380f4166; WORD $0xf500 // PSHUFB XMM6, XMM13
MOVOU 3*16(SI), X7
LONG $0x380f4166; WORD $0xfd00 // PSHUFB XMM7, XMM13
MOVQ SI, reserved3+72(FP)
MOVD $0x3, DI
// Align
// nop WORD PTR [rax+rax*1+0x0]
// schedule 48 input dwords, by doing 3 rounds of 16 each
loop1:
MOVOU X4, X9
LONG $0xfe0f4466; WORD $0x004d // PADDD XMM9, 0[RBP] /* Add 1st constant to first part of message */
MOVOU X9, reserved0+48(FP)
FOUR_ROUNDS_AND_SCHED(AX, BX, CX, R8, DX, R9, R10, R11)
MOVOU X4, X9
LONG $0xfe0f4466; WORD $0x104d // PADDD XMM9, 16[RBP] /* Add 2nd constant to message */
MOVOU X9, reserved0+48(FP)
FOUR_ROUNDS_AND_SCHED(DX, R9, R10, R11, AX, BX, CX, R8)
MOVOU X4, X9
LONG $0xfe0f4466; WORD $0x204d // PADDD XMM9, 32[RBP] /* Add 3rd constant to message */
MOVOU X9, reserved0+48(FP)
FOUR_ROUNDS_AND_SCHED(AX, BX, CX, R8, DX, R9, R10, R11)
MOVOU X4, X9
LONG $0xfe0f4466; WORD $0x304d // PADDD XMM9, 48[RBP] /* Add 4th constant to message */
MOVOU X9, reserved0+48(FP)
ADDQ $64, BP
FOUR_ROUNDS_AND_SCHED(DX, R9, R10, R11, AX, BX, CX, R8)
SUBQ $1, DI
JNE loop1
MOVD $0x2, DI
loop2:
MOVOU X4, X9
LONG $0xfe0f4466; WORD $0x004d // PADDD XMM9, 0[RBP] /* Add 1st constant to first part of message */
MOVOU X9, reserved0+48(FP)
DO_ROUND( AX, BX, CX, R8, DX, R9, R10, R11, 48)
DO_ROUND(R11, AX, BX, CX, R8, DX, R9, R10, 52)
DO_ROUND(R10, R11, AX, BX, CX, R8, DX, R9, 56)
DO_ROUND( R9, R10, R11, AX, BX, CX, R8, DX, 60)
MOVOU X5, X9
LONG $0xfe0f4466; WORD $0x104d // PADDD XMM9, 16[RBP] /* Add 2nd constant to message */
MOVOU X9, reserved0+48(FP)
ADDQ $32, BP
DO_ROUND( DX, R9, R10, R11, AX, BX, CX, R8, 48)
DO_ROUND( R8, DX, R9, R10, R11, AX, BX, CX, 52)
DO_ROUND( CX, R8, DX, R9, R10, R11, AX, BX, 56)
DO_ROUND( BX, CX, R8, DX, R9, R10, R11, AX, 60)
MOVOU X6, X4
MOVOU X7, X5
SUBQ $1, DI
JNE loop2
MOVQ h+0(FP), SI // SI: &h
ADDL (0*4)(SI), AX // H0 = a + H0
MOVL AX, (0*4)(SI)
ADDL (1*4)(SI), BX // H1 = b + H1
MOVL BX, (1*4)(SI)
ADDL (2*4)(SI), CX // H2 = c + H2
MOVL CX, (2*4)(SI)
ADDL (3*4)(SI), R8 // H3 = d + H3
MOVL R8, (3*4)(SI)
ADDL (4*4)(SI), DX // H4 = e + H4
MOVL DX, (4*4)(SI)
ADDL (5*4)(SI), R9 // H5 = f + H5
MOVL R9, (5*4)(SI)
ADDL (6*4)(SI), R10 // H6 = g + H6
MOVL R10, (6*4)(SI)
ADDL (7*4)(SI), R11 // H7 = h + H7
MOVL R11, (7*4)(SI)
MOVQ reserved3+72(FP), SI
ADDQ $64, SI
CMPQ reserved2+64(FP), SI
JNE loop0
done_hash:
RET
// Constants table
DATA constants<>+0x0(SB)/8, $0x71374491428a2f98
DATA constants<>+0x8(SB)/8, $0xe9b5dba5b5c0fbcf
DATA constants<>+0x10(SB)/8, $0x59f111f13956c25b
DATA constants<>+0x18(SB)/8, $0xab1c5ed5923f82a4
DATA constants<>+0x20(SB)/8, $0x12835b01d807aa98
DATA constants<>+0x28(SB)/8, $0x550c7dc3243185be
DATA constants<>+0x30(SB)/8, $0x80deb1fe72be5d74
DATA constants<>+0x38(SB)/8, $0xc19bf1749bdc06a7
DATA constants<>+0x40(SB)/8, $0xefbe4786e49b69c1
DATA constants<>+0x48(SB)/8, $0x240ca1cc0fc19dc6
DATA constants<>+0x50(SB)/8, $0x4a7484aa2de92c6f
DATA constants<>+0x58(SB)/8, $0x76f988da5cb0a9dc
DATA constants<>+0x60(SB)/8, $0xa831c66d983e5152
DATA constants<>+0x68(SB)/8, $0xbf597fc7b00327c8
DATA constants<>+0x70(SB)/8, $0xd5a79147c6e00bf3
DATA constants<>+0x78(SB)/8, $0x1429296706ca6351
DATA constants<>+0x80(SB)/8, $0x2e1b213827b70a85
DATA constants<>+0x88(SB)/8, $0x53380d134d2c6dfc
DATA constants<>+0x90(SB)/8, $0x766a0abb650a7354
DATA constants<>+0x98(SB)/8, $0x92722c8581c2c92e
DATA constants<>+0xa0(SB)/8, $0xa81a664ba2bfe8a1
DATA constants<>+0xa8(SB)/8, $0xc76c51a3c24b8b70
DATA constants<>+0xb0(SB)/8, $0xd6990624d192e819
DATA constants<>+0xb8(SB)/8, $0x106aa070f40e3585
DATA constants<>+0xc0(SB)/8, $0x1e376c0819a4c116
DATA constants<>+0xc8(SB)/8, $0x34b0bcb52748774c
DATA constants<>+0xd0(SB)/8, $0x4ed8aa4a391c0cb3
DATA constants<>+0xd8(SB)/8, $0x682e6ff35b9cca4f
DATA constants<>+0xe0(SB)/8, $0x78a5636f748f82ee
DATA constants<>+0xe8(SB)/8, $0x8cc7020884c87814
DATA constants<>+0xf0(SB)/8, $0xa4506ceb90befffa
DATA constants<>+0xf8(SB)/8, $0xc67178f2bef9a3f7
DATA bflipMask<>+0x00(SB)/8, $0x0405060700010203
DATA bflipMask<>+0x08(SB)/8, $0x0c0d0e0f08090a0b
DATA shuf00BA<>+0x00(SB)/8, $0x0b0a090803020100
DATA shuf00BA<>+0x08(SB)/8, $0xFFFFFFFFFFFFFFFF
DATA shufDC00<>+0x00(SB)/8, $0xFFFFFFFFFFFFFFFF
DATA shufDC00<>+0x08(SB)/8, $0x0b0a090803020100
GLOBL constants<>(SB), 8, $256
GLOBL bflipMask<>(SB), (NOPTR+RODATA), $16
GLOBL shuf00BA<>(SB), (NOPTR+RODATA), $16
GLOBL shufDC00<>(SB), (NOPTR+RODATA), $16

View File

@@ -0,0 +1,53 @@
//+build !noasm,!appengine
/*
* Minio Cloud Storage, (C) 2016 Minio, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package sha256
func blockArmGo(dig *digest, p []byte) {}
func blockAvxGo(dig *digest, p []byte) {
h := []uint32{dig.h[0], dig.h[1], dig.h[2], dig.h[3], dig.h[4], dig.h[5], dig.h[6], dig.h[7]}
blockAvx(h[:], p[:], 0, 0, 0, 0)
dig.h[0], dig.h[1], dig.h[2], dig.h[3], dig.h[4], dig.h[5], dig.h[6], dig.h[7] = h[0], h[1], h[2], h[3], h[4], h[5], h[6], h[7]
}
func blockAvx2Go(dig *digest, p []byte) {
h := []uint32{dig.h[0], dig.h[1], dig.h[2], dig.h[3], dig.h[4], dig.h[5], dig.h[6], dig.h[7]}
blockAvx2(h[:], p[:])
dig.h[0], dig.h[1], dig.h[2], dig.h[3], dig.h[4], dig.h[5], dig.h[6], dig.h[7] = h[0], h[1], h[2], h[3], h[4], h[5], h[6], h[7]
}
func blockSsseGo(dig *digest, p []byte) {
h := []uint32{dig.h[0], dig.h[1], dig.h[2], dig.h[3], dig.h[4], dig.h[5], dig.h[6], dig.h[7]}
blockSsse(h[:], p[:], 0, 0, 0, 0)
dig.h[0], dig.h[1], dig.h[2], dig.h[3], dig.h[4], dig.h[5], dig.h[6], dig.h[7] = h[0], h[1], h[2], h[3], h[4], h[5], h[6], h[7]
}
func blockShaGo(dig *digest, p []byte) {
blockSha(&dig.h, p)
}

View File

@@ -0,0 +1,37 @@
//+build !noasm,!appengine
/*
* Minio Cloud Storage, (C) 2016 Minio, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package sha256
func blockAvx2Go(dig *digest, p []byte) {}
func blockAvxGo(dig *digest, p []byte) {}
func blockSsseGo(dig *digest, p []byte) {}
func blockShaGo(dig *digest, p []byte) {}
//go:noescape
func blockArm(h []uint32, message []uint8)
func blockArmGo(dig *digest, p []byte) {
h := []uint32{dig.h[0], dig.h[1], dig.h[2], dig.h[3], dig.h[4], dig.h[5], dig.h[6], dig.h[7]}
blockArm(h[:], p[:])
dig.h[0], dig.h[1], dig.h[2], dig.h[3], dig.h[4], dig.h[5], dig.h[6], dig.h[7] = h[0], h[1], h[2], h[3], h[4],
h[5], h[6], h[7]
}

192
vendor/github.com/minio/sha256-simd/sha256block_arm64.s generated vendored Normal file
View File

@@ -0,0 +1,192 @@
//+build !noasm,!appengine
// ARM64 version of SHA256
//
// Minio Cloud Storage, (C) 2016 Minio, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
//
// Based on implementation as found in https://github.com/jocover/sha256-armv8
//
// Use github.com/minio/asm2plan9s on this file to assemble ARM instructions to
// their Plan9 equivalents
//
TEXT ·blockArm(SB), 7, $0
MOVD h+0(FP), R0
MOVD message+24(FP), R1
MOVD message_len+32(FP), R2 // length of message
SUBS $64, R2
BMI complete
// Load constants table pointer
MOVD $·constants(SB), R3
// Cache constants table in registers v16 - v31
WORD $0x4cdf2870 // ld1 {v16.4s-v19.4s}, [x3], #64
WORD $0x4cdf7800 // ld1 {v0.4s}, [x0], #16
WORD $0x4cdf2874 // ld1 {v20.4s-v23.4s}, [x3], #64
WORD $0x4c407801 // ld1 {v1.4s}, [x0]
WORD $0x4cdf2878 // ld1 {v24.4s-v27.4s}, [x3], #64
WORD $0xd1004000 // sub x0, x0, #0x10
WORD $0x4cdf287c // ld1 {v28.4s-v31.4s}, [x3], #64
loop:
// Main loop
WORD $0x4cdf2025 // ld1 {v5.16b-v8.16b}, [x1], #64
WORD $0x4ea01c02 // mov v2.16b, v0.16b
WORD $0x4ea11c23 // mov v3.16b, v1.16b
WORD $0x6e2008a5 // rev32 v5.16b, v5.16b
WORD $0x6e2008c6 // rev32 v6.16b, v6.16b
WORD $0x4eb084a9 // add v9.4s, v5.4s, v16.4s
WORD $0x6e2008e7 // rev32 v7.16b, v7.16b
WORD $0x4eb184ca // add v10.4s, v6.4s, v17.4s
WORD $0x4ea21c44 // mov v4.16b, v2.16b
WORD $0x5e094062 // sha256h q2, q3, v9.4s
WORD $0x5e095083 // sha256h2 q3, q4, v9.4s
WORD $0x5e2828c5 // sha256su0 v5.4s, v6.4s
WORD $0x6e200908 // rev32 v8.16b, v8.16b
WORD $0x4eb284e9 // add v9.4s, v7.4s, v18.4s
WORD $0x4ea21c44 // mov v4.16b, v2.16b
WORD $0x5e0a4062 // sha256h q2, q3, v10.4s
WORD $0x5e0a5083 // sha256h2 q3, q4, v10.4s
WORD $0x5e2828e6 // sha256su0 v6.4s, v7.4s
WORD $0x5e0860e5 // sha256su1 v5.4s, v7.4s, v8.4s
WORD $0x4eb3850a // add v10.4s, v8.4s, v19.4s
WORD $0x4ea21c44 // mov v4.16b, v2.16b
WORD $0x5e094062 // sha256h q2, q3, v9.4s
WORD $0x5e095083 // sha256h2 q3, q4, v9.4s
WORD $0x5e282907 // sha256su0 v7.4s, v8.4s
WORD $0x5e056106 // sha256su1 v6.4s, v8.4s, v5.4s
WORD $0x4eb484a9 // add v9.4s, v5.4s, v20.4s
WORD $0x4ea21c44 // mov v4.16b, v2.16b
WORD $0x5e0a4062 // sha256h q2, q3, v10.4s
WORD $0x5e0a5083 // sha256h2 q3, q4, v10.4s
WORD $0x5e2828a8 // sha256su0 v8.4s, v5.4s
WORD $0x5e0660a7 // sha256su1 v7.4s, v5.4s, v6.4s
WORD $0x4eb584ca // add v10.4s, v6.4s, v21.4s
WORD $0x4ea21c44 // mov v4.16b, v2.16b
WORD $0x5e094062 // sha256h q2, q3, v9.4s
WORD $0x5e095083 // sha256h2 q3, q4, v9.4s
WORD $0x5e2828c5 // sha256su0 v5.4s, v6.4s
WORD $0x5e0760c8 // sha256su1 v8.4s, v6.4s, v7.4s
WORD $0x4eb684e9 // add v9.4s, v7.4s, v22.4s
WORD $0x4ea21c44 // mov v4.16b, v2.16b
WORD $0x5e0a4062 // sha256h q2, q3, v10.4s
WORD $0x5e0a5083 // sha256h2 q3, q4, v10.4s
WORD $0x5e2828e6 // sha256su0 v6.4s, v7.4s
WORD $0x5e0860e5 // sha256su1 v5.4s, v7.4s, v8.4s
WORD $0x4eb7850a // add v10.4s, v8.4s, v23.4s
WORD $0x4ea21c44 // mov v4.16b, v2.16b
WORD $0x5e094062 // sha256h q2, q3, v9.4s
WORD $0x5e095083 // sha256h2 q3, q4, v9.4s
WORD $0x5e282907 // sha256su0 v7.4s, v8.4s
WORD $0x5e056106 // sha256su1 v6.4s, v8.4s, v5.4s
WORD $0x4eb884a9 // add v9.4s, v5.4s, v24.4s
WORD $0x4ea21c44 // mov v4.16b, v2.16b
WORD $0x5e0a4062 // sha256h q2, q3, v10.4s
WORD $0x5e0a5083 // sha256h2 q3, q4, v10.4s
WORD $0x5e2828a8 // sha256su0 v8.4s, v5.4s
WORD $0x5e0660a7 // sha256su1 v7.4s, v5.4s, v6.4s
WORD $0x4eb984ca // add v10.4s, v6.4s, v25.4s
WORD $0x4ea21c44 // mov v4.16b, v2.16b
WORD $0x5e094062 // sha256h q2, q3, v9.4s
WORD $0x5e095083 // sha256h2 q3, q4, v9.4s
WORD $0x5e2828c5 // sha256su0 v5.4s, v6.4s
WORD $0x5e0760c8 // sha256su1 v8.4s, v6.4s, v7.4s
WORD $0x4eba84e9 // add v9.4s, v7.4s, v26.4s
WORD $0x4ea21c44 // mov v4.16b, v2.16b
WORD $0x5e0a4062 // sha256h q2, q3, v10.4s
WORD $0x5e0a5083 // sha256h2 q3, q4, v10.4s
WORD $0x5e2828e6 // sha256su0 v6.4s, v7.4s
WORD $0x5e0860e5 // sha256su1 v5.4s, v7.4s, v8.4s
WORD $0x4ebb850a // add v10.4s, v8.4s, v27.4s
WORD $0x4ea21c44 // mov v4.16b, v2.16b
WORD $0x5e094062 // sha256h q2, q3, v9.4s
WORD $0x5e095083 // sha256h2 q3, q4, v9.4s
WORD $0x5e282907 // sha256su0 v7.4s, v8.4s
WORD $0x5e056106 // sha256su1 v6.4s, v8.4s, v5.4s
WORD $0x4ebc84a9 // add v9.4s, v5.4s, v28.4s
WORD $0x4ea21c44 // mov v4.16b, v2.16b
WORD $0x5e0a4062 // sha256h q2, q3, v10.4s
WORD $0x5e0a5083 // sha256h2 q3, q4, v10.4s
WORD $0x5e2828a8 // sha256su0 v8.4s, v5.4s
WORD $0x5e0660a7 // sha256su1 v7.4s, v5.4s, v6.4s
WORD $0x4ebd84ca // add v10.4s, v6.4s, v29.4s
WORD $0x4ea21c44 // mov v4.16b, v2.16b
WORD $0x5e094062 // sha256h q2, q3, v9.4s
WORD $0x5e095083 // sha256h2 q3, q4, v9.4s
WORD $0x5e0760c8 // sha256su1 v8.4s, v6.4s, v7.4s
WORD $0x4ebe84e9 // add v9.4s, v7.4s, v30.4s
WORD $0x4ea21c44 // mov v4.16b, v2.16b
WORD $0x5e0a4062 // sha256h q2, q3, v10.4s
WORD $0x5e0a5083 // sha256h2 q3, q4, v10.4s
WORD $0x4ebf850a // add v10.4s, v8.4s, v31.4s
WORD $0x4ea21c44 // mov v4.16b, v2.16b
WORD $0x5e094062 // sha256h q2, q3, v9.4s
WORD $0x5e095083 // sha256h2 q3, q4, v9.4s
WORD $0x4ea21c44 // mov v4.16b, v2.16b
WORD $0x5e0a4062 // sha256h q2, q3, v10.4s
WORD $0x5e0a5083 // sha256h2 q3, q4, v10.4s
WORD $0x4ea38421 // add v1.4s, v1.4s, v3.4s
WORD $0x4ea28400 // add v0.4s, v0.4s, v2.4s
SUBS $64, R2
BPL loop
// Store result
WORD $0x4c00a800 // st1 {v0.4s, v1.4s}, [x0]
complete:
RET
// Constants table
DATA ·constants+0x0(SB)/8, $0x71374491428a2f98
DATA ·constants+0x8(SB)/8, $0xe9b5dba5b5c0fbcf
DATA ·constants+0x10(SB)/8, $0x59f111f13956c25b
DATA ·constants+0x18(SB)/8, $0xab1c5ed5923f82a4
DATA ·constants+0x20(SB)/8, $0x12835b01d807aa98
DATA ·constants+0x28(SB)/8, $0x550c7dc3243185be
DATA ·constants+0x30(SB)/8, $0x80deb1fe72be5d74
DATA ·constants+0x38(SB)/8, $0xc19bf1749bdc06a7
DATA ·constants+0x40(SB)/8, $0xefbe4786e49b69c1
DATA ·constants+0x48(SB)/8, $0x240ca1cc0fc19dc6
DATA ·constants+0x50(SB)/8, $0x4a7484aa2de92c6f
DATA ·constants+0x58(SB)/8, $0x76f988da5cb0a9dc
DATA ·constants+0x60(SB)/8, $0xa831c66d983e5152
DATA ·constants+0x68(SB)/8, $0xbf597fc7b00327c8
DATA ·constants+0x70(SB)/8, $0xd5a79147c6e00bf3
DATA ·constants+0x78(SB)/8, $0x1429296706ca6351
DATA ·constants+0x80(SB)/8, $0x2e1b213827b70a85
DATA ·constants+0x88(SB)/8, $0x53380d134d2c6dfc
DATA ·constants+0x90(SB)/8, $0x766a0abb650a7354
DATA ·constants+0x98(SB)/8, $0x92722c8581c2c92e
DATA ·constants+0xa0(SB)/8, $0xa81a664ba2bfe8a1
DATA ·constants+0xa8(SB)/8, $0xc76c51a3c24b8b70
DATA ·constants+0xb0(SB)/8, $0xd6990624d192e819
DATA ·constants+0xb8(SB)/8, $0x106aa070f40e3585
DATA ·constants+0xc0(SB)/8, $0x1e376c0819a4c116
DATA ·constants+0xc8(SB)/8, $0x34b0bcb52748774c
DATA ·constants+0xd0(SB)/8, $0x4ed8aa4a391c0cb3
DATA ·constants+0xd8(SB)/8, $0x682e6ff35b9cca4f
DATA ·constants+0xe0(SB)/8, $0x78a5636f748f82ee
DATA ·constants+0xe8(SB)/8, $0x8cc7020884c87814
DATA ·constants+0xf0(SB)/8, $0xa4506ceb90befffa
DATA ·constants+0xf8(SB)/8, $0xc67178f2bef9a3f7
GLOBL ·constants(SB), 8, $256

View File

@@ -0,0 +1,25 @@
//+build appengine noasm !amd64,!arm64
/*
* Minio Cloud Storage, (C) 2019 Minio, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package sha256
func blockAvx2Go(dig *digest, p []byte) {}
func blockAvxGo(dig *digest, p []byte) {}
func blockSsseGo(dig *digest, p []byte) {}
func blockShaGo(dig *digest, p []byte) {}
func blockArmGo(dig *digest, p []byte) {}

View File

@@ -0,0 +1,15 @@
#!/bin/sh
set -e
go tool dist list | while IFS=/ read os arch; do
echo "Checking $os/$arch..."
echo " normal"
GOARCH=$arch GOOS=$os go build -o /dev/null ./...
echo " noasm"
GOARCH=$arch GOOS=$os go build -tags noasm -o /dev/null ./...
echo " appengine"
GOARCH=$arch GOOS=$os go build -tags appengine -o /dev/null ./...
echo " noasm,appengine"
GOARCH=$arch GOOS=$os go build -tags 'appengine noasm' -o /dev/null ./...
done

23
vendor/github.com/mr-tron/base58/LICENSE generated vendored Normal file
View File

@@ -0,0 +1,23 @@
MIT License
Copyright (c) 2017 Denis Subbotin
Copyright (c) 2017 Nika Jones
Copyright (c) 2017 Philip Schlump
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -0,0 +1,4 @@
Files from this directory was copied to level up directory
==========================================================
Now all development will be on top level

31
vendor/github.com/mr-tron/base58/base58/alphabet.go generated vendored Normal file
View File

@@ -0,0 +1,31 @@
package base58
// Alphabet is a a b58 alphabet.
type Alphabet struct {
decode [128]int8
encode [58]byte
}
// NewAlphabet creates a new alphabet from the passed string.
//
// It panics if the passed string is not 58 bytes long or isn't valid ASCII.
func NewAlphabet(s string) *Alphabet {
if len(s) != 58 {
panic("base58 alphabets must be 58 bytes long")
}
ret := new(Alphabet)
copy(ret.encode[:], s)
for i := range ret.decode {
ret.decode[i] = -1
}
for i, b := range ret.encode {
ret.decode[b] = int8(i)
}
return ret
}
// BTCAlphabet is the bitcoin base58 alphabet.
var BTCAlphabet = NewAlphabet("123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz")
// FlickrAlphabet is the flickr base58 alphabet.
var FlickrAlphabet = NewAlphabet("123456789abcdefghijkmnopqrstuvwxyzABCDEFGHJKLMNPQRSTUVWXYZ")

261
vendor/github.com/mr-tron/base58/base58/base58.go generated vendored Normal file
View File

@@ -0,0 +1,261 @@
package base58
import (
"fmt"
"math/big"
)
var (
bn0 = big.NewInt(0)
bn58 = big.NewInt(58)
)
// Encode encodes the passed bytes into a base58 encoded string.
func Encode(bin []byte) string {
return FastBase58Encoding(bin)
}
// EncodeAlphabet encodes the passed bytes into a base58 encoded string with the
// passed alphabet.
func EncodeAlphabet(bin []byte, alphabet *Alphabet) string {
return FastBase58EncodingAlphabet(bin, alphabet)
}
// FastBase58Encoding encodes the passed bytes into a base58 encoded string.
func FastBase58Encoding(bin []byte) string {
return FastBase58EncodingAlphabet(bin, BTCAlphabet)
}
// FastBase58EncodingAlphabet encodes the passed bytes into a base58 encoded
// string with the passed alphabet.
func FastBase58EncodingAlphabet(bin []byte, alphabet *Alphabet) string {
zero := alphabet.encode[0]
binsz := len(bin)
var i, j, zcount, high int
var carry uint32
for zcount < binsz && bin[zcount] == 0 {
zcount++
}
size := ((binsz-zcount)*138/100 + 1)
// allocate one big buffer up front
buf := make([]byte, size*2+zcount)
// use the second half for the temporary buffer
tmp := buf[size+zcount:]
high = size - 1
for i = zcount; i < binsz; i++ {
j = size - 1
for carry = uint32(bin[i]); j > high || carry != 0; j-- {
carry = carry + 256*uint32(tmp[j])
tmp[j] = byte(carry % 58)
carry /= 58
}
high = j
}
for j = 0; j < size && tmp[j] == 0; j++ {
}
// Use the first half for the result
b58 := buf[:size-j+zcount]
if zcount != 0 {
for i = 0; i < zcount; i++ {
b58[i] = zero
}
}
for i = zcount; j < size; i++ {
b58[i] = alphabet.encode[tmp[j]]
j++
}
return string(b58)
}
// TrivialBase58Encoding encodes the passed bytes into a base58 encoded string
// (inefficiently).
func TrivialBase58Encoding(a []byte) string {
return TrivialBase58EncodingAlphabet(a, BTCAlphabet)
}
// TrivialBase58EncodingAlphabet encodes the passed bytes into a base58 encoded
// string (inefficiently) with the passed alphabet.
func TrivialBase58EncodingAlphabet(a []byte, alphabet *Alphabet) string {
zero := alphabet.encode[0]
idx := len(a)*138/100 + 1
buf := make([]byte, idx)
bn := new(big.Int).SetBytes(a)
var mo *big.Int
for bn.Cmp(bn0) != 0 {
bn, mo = bn.DivMod(bn, bn58, new(big.Int))
idx--
buf[idx] = alphabet.encode[mo.Int64()]
}
for i := range a {
if a[i] != 0 {
break
}
idx--
buf[idx] = zero
}
return string(buf[idx:])
}
// Decode decodes the base58 encoded bytes.
func Decode(str string) ([]byte, error) {
return FastBase58Decoding(str)
}
// DecodeAlphabet decodes the base58 encoded bytes using the given b58 alphabet.
func DecodeAlphabet(str string, alphabet *Alphabet) ([]byte, error) {
return FastBase58DecodingAlphabet(str, alphabet)
}
// FastBase58Decoding decodes the base58 encoded bytes.
func FastBase58Decoding(str string) ([]byte, error) {
return FastBase58DecodingAlphabet(str, BTCAlphabet)
}
// FastBase58DecodingAlphabet decodes the base58 encoded bytes using the given
// b58 alphabet.
func FastBase58DecodingAlphabet(str string, alphabet *Alphabet) ([]byte, error) {
if len(str) == 0 {
return nil, fmt.Errorf("zero length string")
}
var (
t uint64
zmask, c uint32
zcount int
b58u = []rune(str)
b58sz = len(b58u)
outisz = (b58sz + 3) / 4 // check to see if we need to change this buffer size to optimize
binu = make([]byte, (b58sz+3)*3)
bytesleft = b58sz % 4
zero = rune(alphabet.encode[0])
)
if bytesleft > 0 {
zmask = (0xffffffff << uint32(bytesleft*8))
} else {
bytesleft = 4
}
var outi = make([]uint32, outisz)
for i := 0; i < b58sz && b58u[i] == zero; i++ {
zcount++
}
for _, r := range b58u {
if r > 127 {
return nil, fmt.Errorf("High-bit set on invalid digit")
}
if alphabet.decode[r] == -1 {
return nil, fmt.Errorf("Invalid base58 digit (%q)", r)
}
c = uint32(alphabet.decode[r])
for j := (outisz - 1); j >= 0; j-- {
t = uint64(outi[j])*58 + uint64(c)
c = uint32(t>>32) & 0x3f
outi[j] = uint32(t & 0xffffffff)
}
if c > 0 {
return nil, fmt.Errorf("Output number too big (carry to the next int32)")
}
if outi[0]&zmask != 0 {
return nil, fmt.Errorf("Output number too big (last int32 filled too far)")
}
}
// the nested for-loop below is the same as the original code:
// switch (bytesleft) {
// case 3:
// *(binu++) = (outi[0] & 0xff0000) >> 16;
// //-fallthrough
// case 2:
// *(binu++) = (outi[0] & 0xff00) >> 8;
// //-fallthrough
// case 1:
// *(binu++) = (outi[0] & 0xff);
// ++j;
// //-fallthrough
// default:
// break;
// }
//
// for (; j < outisz; ++j)
// {
// *(binu++) = (outi[j] >> 0x18) & 0xff;
// *(binu++) = (outi[j] >> 0x10) & 0xff;
// *(binu++) = (outi[j] >> 8) & 0xff;
// *(binu++) = (outi[j] >> 0) & 0xff;
// }
var j, cnt int
for j, cnt = 0, 0; j < outisz; j++ {
for mask := byte(bytesleft-1) * 8; mask <= 0x18; mask, cnt = mask-8, cnt+1 {
binu[cnt] = byte(outi[j] >> mask)
}
if j == 0 {
bytesleft = 4 // because it could be less than 4 the first time through
}
}
for n, v := range binu {
if v > 0 {
start := n - zcount
if start < 0 {
start = 0
}
return binu[start:cnt], nil
}
}
return binu[:cnt], nil
}
// TrivialBase58Decoding decodes the base58 encoded bytes (inefficiently).
func TrivialBase58Decoding(str string) ([]byte, error) {
return TrivialBase58DecodingAlphabet(str, BTCAlphabet)
}
// TrivialBase58DecodingAlphabet decodes the base58 encoded bytes
// (inefficiently) using the given b58 alphabet.
func TrivialBase58DecodingAlphabet(str string, alphabet *Alphabet) ([]byte, error) {
zero := alphabet.encode[0]
var zcount int
for i := 0; i < len(str) && str[i] == zero; i++ {
zcount++
}
leading := make([]byte, zcount)
var padChar rune = -1
src := []byte(str)
j := 0
for ; j < len(src) && src[j] == byte(padChar); j++ {
}
n := new(big.Int)
for i := range src[j:] {
c := alphabet.decode[src[i]]
if c == -1 {
return nil, fmt.Errorf("illegal base58 data at input index: %d", i)
}
n.Mul(n, bn58)
n.Add(n, big.NewInt(int64(c)))
}
return append(leading, n.Bytes()...), nil
}

View File

@@ -0,0 +1 @@
.vscode/

View File

@@ -0,0 +1,6 @@
[submodule "spec/multicodec"]
path = spec/multicodec
url = https://github.com/multiformats/multicodec.git
[submodule "spec/multihash"]
path = spec/multihash
url = https://github.com/multiformats/multihash.git

View File

@@ -0,0 +1,30 @@
os:
- linux
language: go
go:
- 1.11.x
env:
global:
- GOTFLAGS="-race"
matrix:
- BUILD_DEPTYPE=gomod
# disable travis install
install:
- true
script:
- bash <(curl -s https://raw.githubusercontent.com/ipfs/ci-helpers/master/travis-ci/run-standard-tests.sh)
cache:
directories:
- $GOPATH/pkg/mod
- /home/travis/.cache/go-build
notifications:
email: false

21
vendor/github.com/multiformats/go-multihash/LICENSE generated vendored Normal file
View File

@@ -0,0 +1,21 @@
The MIT License (MIT)
Copyright (c) 2014 Juan Batiz-Benet
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

11
vendor/github.com/multiformats/go-multihash/Makefile generated vendored Normal file
View File

@@ -0,0 +1,11 @@
gx:
go get github.com/whyrusleeping/gx
go get github.com/whyrusleeping/gx-go
deps: gx
gx --verbose install --global
gx-go rewrite
publish:
gx-go rewrite --undo

90
vendor/github.com/multiformats/go-multihash/README.md generated vendored Normal file
View File

@@ -0,0 +1,90 @@
# go-multihash
[![](https://img.shields.io/badge/made%20by-Protocol%20Labs-blue.svg?style=flat-square)](http://ipn.io)
[![](https://img.shields.io/badge/project-multiformats-blue.svg?style=flat-square)](https://github.com/multiformats/multiformats)
[![](https://img.shields.io/badge/freenode-%23ipfs-blue.svg?style=flat-square)](https://webchat.freenode.net/?channels=%23ipfs)
[![](https://img.shields.io/badge/readme%20style-standard-brightgreen.svg?style=flat-square)](https://github.com/RichardLitt/standard-readme)
[![GoDoc](https://godoc.org/github.com/multiformats/go-multihash?status.svg)](https://godoc.org/github.com/multiformats/go-multihash)
[![Travis CI](https://img.shields.io/travis/multiformats/go-multihash.svg?style=flat-square&branch=master)](https://travis-ci.org/multiformats/go-multihash)
[![codecov.io](https://img.shields.io/codecov/c/github/multiformats/go-multihash.svg?style=flat-square&branch=master)](https://codecov.io/github/multiformats/go-multihash?branch=master)
> [multihash](https://github.com/multiformats/multihash) implementation in Go
## Table of Contents
- [Install](#install)
- [Usage](#usage)
- [Maintainers](#maintainers)
- [Contribute](#contribute)
- [License](#license)
## Install
`go-multihash` is a standard Go module which can be installed with:
```sh
go get github.com/multiformats/go-multihash
```
## Usage
### Example
This example takes a standard hex-encoded data and uses `EncodeName` to calculate the SHA1 multihash value for the buffer.
The resulting hex-encoded data corresponds to: `<hash function code><digest size><hash function output>`, which could be re-parsed
with `Multihash.FromHexString()`.
```go
package main
import (
"encoding/hex"
"fmt"
"github.com/multiformats/go-multihash"
)
func main() {
// ignores errors for simplicity.
// don't do that at home.
// Decode a SHA1 hash to a binary buffer
buf, _ := hex.DecodeString("0beec7b5ea3f0fdbc95d0dd47f3c5bc275da8a33")
// Create a new multihash with it.
mHashBuf, _ := multihash.EncodeName(buf, "sha1")
// Print the multihash as hex string
fmt.Printf("hex: %s\n", hex.EncodeToString(mHashBuf))
// Parse the binary multihash to a DecodedMultihash
mHash, _ := multihash.Decode(mHashBuf)
// Convert the sha1 value to hex string
sha1hex := hex.EncodeToString(mHash.Digest)
// Print all the information in the multihash
fmt.Printf("obj: %v 0x%x %d %s\n", mHash.Name, mHash.Code, mHash.Length, sha1hex)
}
```
To run, copy to [example/foo.go](example/foo.go) and:
```
> cd example/
> go build
> ./example
hex: 11140beec7b5ea3f0fdbc95d0dd47f3c5bc275da8a33
obj: sha1 0x11 20 0beec7b5ea3f0fdbc95d0dd47f3c5bc275da8a33
```
## Contribute
Contributions welcome. Please check out [the issues](https://github.com/multiformats/go-multihash/issues).
Check out our [contributing document](https://github.com/multiformats/multiformats/blob/master/contributing.md) for more information on how we work, and about contributing in general. Please be aware that all interactions related to multiformats are subject to the IPFS [Code of Conduct](https://github.com/ipfs/community/blob/master/code-of-conduct.md).
Small note: If editing the README, please conform to the [standard-readme](https://github.com/RichardLitt/standard-readme) specification.
## License
[MIT](LICENSE) © 2014 Juan Batiz-Benet

View File

@@ -0,0 +1,3 @@
coverage:
range: "50...100"
comment: off

11
vendor/github.com/multiformats/go-multihash/go.mod generated vendored Normal file
View File

@@ -0,0 +1,11 @@
module github.com/multiformats/go-multihash
require (
github.com/minio/blake2b-simd v0.0.0-20160723061019-3f5f724cb5b1
github.com/minio/sha256-simd v0.1.1-0.20190913151208-6de447530771
github.com/mr-tron/base58 v1.1.2
github.com/spaolacci/murmur3 v1.1.0
golang.org/x/crypto v0.0.0-20190611184440-5c40567a22f8
)
go 1.13

16
vendor/github.com/multiformats/go-multihash/go.sum generated vendored Normal file
View File

@@ -0,0 +1,16 @@
github.com/minio/blake2b-simd v0.0.0-20160723061019-3f5f724cb5b1 h1:lYpkrQH5ajf0OXOcUbGjvZxxijuBwbbmlSxLiuofa+g=
github.com/minio/blake2b-simd v0.0.0-20160723061019-3f5f724cb5b1/go.mod h1:pD8RvIylQ358TN4wwqatJ8rNavkEINozVn9DtGI3dfQ=
github.com/minio/sha256-simd v0.1.1-0.20190913151208-6de447530771 h1:MHkK1uRtFbVqvAgvWxafZe54+5uBxLluGylDiKgdhwo=
github.com/minio/sha256-simd v0.1.1-0.20190913151208-6de447530771/go.mod h1:B5e1o+1/KgNmWrSQK08Y6Z1Vb5pwIktudl0J58iy0KM=
github.com/mr-tron/base58 v1.1.2 h1:ZEw4I2EgPKDJ2iEw0cNmLB3ROrEmkOtXIkaG7wZg+78=
github.com/mr-tron/base58 v1.1.2/go.mod h1:BinMc/sQntlIE1frQmRFPUoPA1Zkr8VRgBdjWI2mNwc=
github.com/spaolacci/murmur3 v1.1.0 h1:7c1g84S4BPRrfL5Xrdp6fOJ206sU9y293DDHaoy0bLI=
github.com/spaolacci/murmur3 v1.1.0/go.mod h1:JwIasOWyU6f++ZhiEuf87xNszmSA2myDM2Kzu9HwQUA=
golang.org/x/crypto v0.0.0-20190308221718-c2843e01d9a2/go.mod h1:djNgcEr1/C05ACkg1iLfiJU5Ep61QUkGW8qpdssI0+w=
golang.org/x/crypto v0.0.0-20190611184440-5c40567a22f8 h1:1wopBVtVdWnn03fZelqdXTqk7U7zPQCb+T4rbU9ZEoU=
golang.org/x/crypto v0.0.0-20190611184440-5c40567a22f8/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
golang.org/x/net v0.0.0-20190404232315-eb5bcb51f2a3/go.mod h1:t9HGtf8HONx5eT2rtn7q6eTqICYqUVnKs3thJo3Qplg=
golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190412213103-97732733099d h1:+R4KGOnez64A81RvjARKc4UT5/tI9ujCIVX+P5KiHuI=
golang.org/x/sys v0.0.0-20190412213103-97732733099d/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=

103
vendor/github.com/multiformats/go-multihash/io.go generated vendored Normal file
View File

@@ -0,0 +1,103 @@
package multihash
import (
"encoding/binary"
"errors"
"io"
"math"
)
// Reader is an io.Reader wrapper that exposes a function
// to read a whole multihash, parse it, and return it.
type Reader interface {
io.Reader
ReadMultihash() (Multihash, error)
}
// Writer is an io.Writer wrapper that exposes a function
// to write a whole multihash.
type Writer interface {
io.Writer
WriteMultihash(Multihash) error
}
// NewReader wraps an io.Reader with a multihash.Reader
func NewReader(r io.Reader) Reader {
return &mhReader{r}
}
// NewWriter wraps an io.Writer with a multihash.Writer
func NewWriter(w io.Writer) Writer {
return &mhWriter{w}
}
type mhReader struct {
r io.Reader
}
func (r *mhReader) Read(buf []byte) (n int, err error) {
return r.r.Read(buf)
}
func (r *mhReader) ReadByte() (byte, error) {
if br, ok := r.r.(io.ByteReader); ok {
return br.ReadByte()
}
var b [1]byte
n, err := r.r.Read(b[:])
if n == 1 {
return b[0], nil
}
if err == nil {
if n != 0 {
panic("reader returned an invalid length")
}
err = io.ErrNoProgress
}
return 0, err
}
func (r *mhReader) ReadMultihash() (Multihash, error) {
code, err := binary.ReadUvarint(r)
if err != nil {
return nil, err
}
length, err := binary.ReadUvarint(r)
if err != nil {
return nil, err
}
if length > math.MaxInt32 {
return nil, errors.New("digest too long, supporting only <= 2^31-1")
}
pre := make([]byte, 2*binary.MaxVarintLen64)
spot := pre
n := binary.PutUvarint(spot, code)
spot = pre[n:]
n += binary.PutUvarint(spot, length)
buf := make([]byte, int(length)+n)
copy(buf, pre[:n])
if _, err := io.ReadFull(r.r, buf[n:]); err != nil {
return nil, err
}
return Cast(buf)
}
type mhWriter struct {
w io.Writer
}
func (w *mhWriter) Write(buf []byte) (n int, err error) {
return w.w.Write(buf)
}
func (w *mhWriter) WriteMultihash(m Multihash) error {
_, err := w.w.Write([]byte(m))
return err
}

View File

@@ -0,0 +1,302 @@
// Package multihash is the Go implementation of
// https://github.com/multiformats/multihash, or self-describing
// hashes.
package multihash
import (
"encoding/binary"
"encoding/hex"
"errors"
"fmt"
"math"
b58 "github.com/mr-tron/base58/base58"
)
// errors
var (
ErrUnknownCode = errors.New("unknown multihash code")
ErrTooShort = errors.New("multihash too short. must be >= 2 bytes")
ErrTooLong = errors.New("multihash too long. must be < 129 bytes")
ErrLenNotSupported = errors.New("multihash does not yet support digests longer than 127 bytes")
ErrInvalidMultihash = errors.New("input isn't valid multihash")
ErrVarintBufferShort = errors.New("uvarint: buffer too small")
ErrVarintTooLong = errors.New("uvarint: varint too big (max 64bit)")
)
// ErrInconsistentLen is returned when a decoded multihash has an inconsistent length
type ErrInconsistentLen struct {
dm *DecodedMultihash
}
func (e ErrInconsistentLen) Error() string {
return fmt.Sprintf("multihash length inconsistent: expected %d, got %d", e.dm.Length, len(e.dm.Digest))
}
// constants
const (
IDENTITY = 0x00
// Deprecated: use IDENTITY
ID = IDENTITY
SHA1 = 0x11
SHA2_256 = 0x12
SHA2_512 = 0x13
SHA3_224 = 0x17
SHA3_256 = 0x16
SHA3_384 = 0x15
SHA3_512 = 0x14
SHA3 = SHA3_512
KECCAK_224 = 0x1A
KECCAK_256 = 0x1B
KECCAK_384 = 0x1C
KECCAK_512 = 0x1D
SHAKE_128 = 0x18
SHAKE_256 = 0x19
BLAKE2B_MIN = 0xb201
BLAKE2B_MAX = 0xb240
BLAKE2S_MIN = 0xb241
BLAKE2S_MAX = 0xb260
MD5 = 0xd5
DBL_SHA2_256 = 0x56
MURMUR3_128 = 0x22
// Deprecated: use MURMUR3_128
MURMUR3 = MURMUR3_128
X11 = 0x1100
)
func init() {
// Add blake2b (64 codes)
for c := uint64(BLAKE2B_MIN); c <= BLAKE2B_MAX; c++ {
n := c - BLAKE2B_MIN + 1
name := fmt.Sprintf("blake2b-%d", n*8)
Names[name] = c
Codes[c] = name
DefaultLengths[c] = int(n)
}
// Add blake2s (32 codes)
for c := uint64(BLAKE2S_MIN); c <= BLAKE2S_MAX; c++ {
n := c - BLAKE2S_MIN + 1
name := fmt.Sprintf("blake2s-%d", n*8)
Names[name] = c
Codes[c] = name
DefaultLengths[c] = int(n)
}
}
// Names maps the name of a hash to the code
var Names = map[string]uint64{
"identity": IDENTITY,
"sha1": SHA1,
"sha2-256": SHA2_256,
"sha2-512": SHA2_512,
"sha3": SHA3_512,
"sha3-224": SHA3_224,
"sha3-256": SHA3_256,
"sha3-384": SHA3_384,
"sha3-512": SHA3_512,
"dbl-sha2-256": DBL_SHA2_256,
"murmur3-128": MURMUR3_128,
"keccak-224": KECCAK_224,
"keccak-256": KECCAK_256,
"keccak-384": KECCAK_384,
"keccak-512": KECCAK_512,
"shake-128": SHAKE_128,
"shake-256": SHAKE_256,
"x11": X11,
"md5": MD5,
}
// Codes maps a hash code to it's name
var Codes = map[uint64]string{
IDENTITY: "identity",
SHA1: "sha1",
SHA2_256: "sha2-256",
SHA2_512: "sha2-512",
SHA3_224: "sha3-224",
SHA3_256: "sha3-256",
SHA3_384: "sha3-384",
SHA3_512: "sha3-512",
DBL_SHA2_256: "dbl-sha2-256",
MURMUR3_128: "murmur3-128",
KECCAK_224: "keccak-224",
KECCAK_256: "keccak-256",
KECCAK_384: "keccak-384",
KECCAK_512: "keccak-512",
SHAKE_128: "shake-128",
SHAKE_256: "shake-256",
X11: "x11",
MD5: "md5",
}
// DefaultLengths maps a hash code to it's default length
var DefaultLengths = map[uint64]int{
IDENTITY: -1,
SHA1: 20,
SHA2_256: 32,
SHA2_512: 64,
SHA3_224: 28,
SHA3_256: 32,
SHA3_384: 48,
SHA3_512: 64,
DBL_SHA2_256: 32,
KECCAK_224: 28,
KECCAK_256: 32,
MURMUR3_128: 4,
KECCAK_384: 48,
KECCAK_512: 64,
SHAKE_128: 32,
SHAKE_256: 64,
X11: 64,
MD5: 16,
}
func uvarint(buf []byte) (uint64, []byte, error) {
n, c := binary.Uvarint(buf)
if c == 0 {
return n, buf, ErrVarintBufferShort
} else if c < 0 {
return n, buf[-c:], ErrVarintTooLong
} else {
return n, buf[c:], nil
}
}
// DecodedMultihash represents a parsed multihash and allows
// easy access to the different parts of a multihash.
type DecodedMultihash struct {
Code uint64
Name string
Length int // Length is just int as it is type of len() opearator
Digest []byte // Digest holds the raw multihash bytes
}
// Multihash is byte slice with the following form:
// <hash function code><digest size><hash function output>.
// See the spec for more information.
type Multihash []byte
// HexString returns the hex-encoded representation of a multihash.
func (m *Multihash) HexString() string {
return hex.EncodeToString([]byte(*m))
}
// String is an alias to HexString().
func (m *Multihash) String() string {
return m.HexString()
}
// FromHexString parses a hex-encoded multihash.
func FromHexString(s string) (Multihash, error) {
b, err := hex.DecodeString(s)
if err != nil {
return Multihash{}, err
}
return Cast(b)
}
// B58String returns the B58-encoded representation of a multihash.
func (m Multihash) B58String() string {
return b58.Encode([]byte(m))
}
// FromB58String parses a B58-encoded multihash.
func FromB58String(s string) (m Multihash, err error) {
b, err := b58.Decode(s)
if err != nil {
return Multihash{}, ErrInvalidMultihash
}
return Cast(b)
}
// Cast casts a buffer onto a multihash, and returns an error
// if it does not work.
func Cast(buf []byte) (Multihash, error) {
dm, err := Decode(buf)
if err != nil {
return Multihash{}, err
}
if !ValidCode(dm.Code) {
return Multihash{}, ErrUnknownCode
}
return Multihash(buf), nil
}
// Decode parses multihash bytes into a DecodedMultihash.
func Decode(buf []byte) (*DecodedMultihash, error) {
if len(buf) < 2 {
return nil, ErrTooShort
}
var err error
var code, length uint64
code, buf, err = uvarint(buf)
if err != nil {
return nil, err
}
length, buf, err = uvarint(buf)
if err != nil {
return nil, err
}
if length > math.MaxInt32 {
return nil, errors.New("digest too long, supporting only <= 2^31-1")
}
dm := &DecodedMultihash{
Code: code,
Name: Codes[code],
Length: int(length),
Digest: buf,
}
if len(dm.Digest) != dm.Length {
return nil, ErrInconsistentLen{dm}
}
return dm, nil
}
// Encode a hash digest along with the specified function code.
// Note: the length is derived from the length of the digest itself.
func Encode(buf []byte, code uint64) ([]byte, error) {
if !ValidCode(code) {
return nil, ErrUnknownCode
}
start := make([]byte, 2*binary.MaxVarintLen64, 2*binary.MaxVarintLen64+len(buf))
spot := start
n := binary.PutUvarint(spot, code)
spot = start[n:]
n += binary.PutUvarint(spot, uint64(len(buf)))
return append(start[:n], buf...), nil
}
// EncodeName is like Encode() but providing a string name
// instead of a numeric code. See Names for allowed values.
func EncodeName(buf []byte, name string) ([]byte, error) {
return Encode(buf, Names[name])
}
// ValidCode checks whether a multihash code is valid.
func ValidCode(code uint64) bool {
_, ok := Codes[code]
return ok
}

230
vendor/github.com/multiformats/go-multihash/sum.go generated vendored Normal file
View File

@@ -0,0 +1,230 @@
package multihash
import (
"crypto/md5"
"crypto/sha1"
"crypto/sha512"
"errors"
"fmt"
blake2b "github.com/minio/blake2b-simd"
sha256 "github.com/minio/sha256-simd"
murmur3 "github.com/spaolacci/murmur3"
blake2s "golang.org/x/crypto/blake2s"
sha3 "golang.org/x/crypto/sha3"
)
// ErrSumNotSupported is returned when the Sum function code is not implemented
var ErrSumNotSupported = errors.New("Function not implemented. Complain to lib maintainer.")
// HashFunc is a hash function that hashes data into digest.
//
// The length is the size the digest will be truncated to. While the hash
// function isn't responsible for truncating the digest, it may want to error if
// the length is invalid for the hash function (e.g., truncation would make the
// hash useless).
type HashFunc func(data []byte, length int) (digest []byte, err error)
// funcTable maps multicodec values to hash functions.
var funcTable = make(map[uint64]HashFunc)
// Sum obtains the cryptographic sum of a given buffer. The length parameter
// indicates the length of the resulting digest and passing a negative value
// use default length values for the selected hash function.
func Sum(data []byte, code uint64, length int) (Multihash, error) {
if !ValidCode(code) {
return nil, fmt.Errorf("invalid multihash code %d", code)
}
if length < 0 {
var ok bool
length, ok = DefaultLengths[code]
if !ok {
return nil, fmt.Errorf("no default length for code %d", code)
}
}
hashFunc, ok := funcTable[code]
if !ok {
return nil, ErrSumNotSupported
}
d, err := hashFunc(data, length)
if err != nil {
return nil, err
}
if length >= 0 {
d = d[:length]
}
return Encode(d, code)
}
func sumBlake2s(data []byte, size int) ([]byte, error) {
if size != 32 {
return nil, fmt.Errorf("unsupported length for blake2s: %d", size)
}
d := blake2s.Sum256(data)
return d[:], nil
}
func sumBlake2b(data []byte, size int) ([]byte, error) {
hasher, err := blake2b.New(&blake2b.Config{Size: uint8(size)})
if err != nil {
return nil, err
}
if _, err := hasher.Write(data); err != nil {
return nil, err
}
return hasher.Sum(nil)[:], nil
}
func sumID(data []byte, length int) ([]byte, error) {
if length >= 0 && length != len(data) {
return nil, fmt.Errorf("the length of the identity hash (%d) must be equal to the length of the data (%d)",
length, len(data))
}
return data, nil
}
func sumSHA1(data []byte, length int) ([]byte, error) {
a := sha1.Sum(data)
return a[0:20], nil
}
func sumSHA256(data []byte, length int) ([]byte, error) {
a := sha256.Sum256(data)
return a[0:32], nil
}
func sumMD5(data []byte, length int) ([]byte, error) {
a := md5.Sum(data)
return a[0:md5.Size], nil
}
func sumDoubleSHA256(data []byte, length int) ([]byte, error) {
val, _ := sumSHA256(data, len(data))
return sumSHA256(val, len(val))
}
func sumSHA512(data []byte, length int) ([]byte, error) {
a := sha512.Sum512(data)
return a[0:64], nil
}
func sumKeccak256(data []byte, length int) ([]byte, error) {
h := sha3.NewLegacyKeccak256()
h.Write(data)
return h.Sum(nil), nil
}
func sumKeccak512(data []byte, length int) ([]byte, error) {
h := sha3.NewLegacyKeccak512()
h.Write(data)
return h.Sum(nil), nil
}
func sumSHA3_512(data []byte, length int) ([]byte, error) {
a := sha3.Sum512(data)
return a[:], nil
}
func sumMURMUR3(data []byte, length int) ([]byte, error) {
number := murmur3.Sum32(data)
bytes := make([]byte, 4)
for i := range bytes {
bytes[i] = byte(number & 0xff)
number >>= 8
}
return bytes, nil
}
func sumSHAKE128(data []byte, length int) ([]byte, error) {
bytes := make([]byte, 32)
sha3.ShakeSum128(bytes, data)
return bytes, nil
}
func sumSHAKE256(data []byte, length int) ([]byte, error) {
bytes := make([]byte, 64)
sha3.ShakeSum256(bytes, data)
return bytes, nil
}
func sumSHA3_384(data []byte, length int) ([]byte, error) {
a := sha3.Sum384(data)
return a[:], nil
}
func sumSHA3_256(data []byte, length int) ([]byte, error) {
a := sha3.Sum256(data)
return a[:], nil
}
func sumSHA3_224(data []byte, length int) ([]byte, error) {
a := sha3.Sum224(data)
return a[:], nil
}
func registerStdlibHashFuncs() {
RegisterHashFunc(IDENTITY, sumID)
RegisterHashFunc(SHA1, sumSHA1)
RegisterHashFunc(SHA2_512, sumSHA512)
RegisterHashFunc(MD5, sumMD5)
}
func registerNonStdlibHashFuncs() {
RegisterHashFunc(SHA2_256, sumSHA256)
RegisterHashFunc(DBL_SHA2_256, sumDoubleSHA256)
RegisterHashFunc(KECCAK_256, sumKeccak256)
RegisterHashFunc(KECCAK_512, sumKeccak512)
RegisterHashFunc(SHA3_224, sumSHA3_224)
RegisterHashFunc(SHA3_256, sumSHA3_256)
RegisterHashFunc(SHA3_384, sumSHA3_384)
RegisterHashFunc(SHA3_512, sumSHA3_512)
RegisterHashFunc(MURMUR3_128, sumMURMUR3)
RegisterHashFunc(SHAKE_128, sumSHAKE128)
RegisterHashFunc(SHAKE_256, sumSHAKE256)
// Blake family of hash functions
// BLAKE2S
for c := uint64(BLAKE2S_MIN); c <= BLAKE2S_MAX; c++ {
size := int(c - BLAKE2S_MIN + 1)
RegisterHashFunc(c, func(buf []byte, _ int) ([]byte, error) {
return sumBlake2s(buf, size)
})
}
// BLAKE2B
for c := uint64(BLAKE2B_MIN); c <= BLAKE2B_MAX; c++ {
size := int(c - BLAKE2B_MIN + 1)
RegisterHashFunc(c, func(buf []byte, _ int) ([]byte, error) {
return sumBlake2b(buf, size)
})
}
}
func init() {
registerStdlibHashFuncs()
registerNonStdlibHashFuncs()
}
// RegisterHashFunc adds an entry to the package-level code -> hash func map.
// The hash function must return at least the requested number of bytes. If it
// returns more, the hash will be truncated.
func RegisterHashFunc(code uint64, hashFunc HashFunc) error {
if !ValidCode(code) {
return fmt.Errorf("code %v not valid", code)
}
_, ok := funcTable[code]
if ok {
return fmt.Errorf("hash func for code %v already registered", code)
}
funcTable[code] = hashFunc
return nil
}

22
vendor/github.com/spaolacci/murmur3/.gitignore generated vendored Normal file
View File

@@ -0,0 +1,22 @@
# Compiled Object files, Static and Dynamic libs (Shared Objects)
*.o
*.a
*.so
# Folders
_obj
_test
# Architecture specific extensions/prefixes
*.[568vq]
[568vq].out
*.cgo1.go
*.cgo2.c
_cgo_defun.c
_cgo_gotypes.go
_cgo_export.*
_testmain.go
*.exe

7
vendor/github.com/spaolacci/murmur3/.travis.yml generated vendored Normal file
View File

@@ -0,0 +1,7 @@
language: go
go:
- 1.x
- master
script: go test

24
vendor/github.com/spaolacci/murmur3/LICENSE generated vendored Normal file
View File

@@ -0,0 +1,24 @@
Copyright 2013, Sébastien Paolacci.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the library nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

86
vendor/github.com/spaolacci/murmur3/README.md generated vendored Normal file
View File

@@ -0,0 +1,86 @@
murmur3
=======
[![Build Status](https://travis-ci.org/spaolacci/murmur3.svg?branch=master)](https://travis-ci.org/spaolacci/murmur3)
Native Go implementation of Austin Appleby's third MurmurHash revision (aka
MurmurHash3).
Reference algorithm has been slightly hacked as to support the streaming mode
required by Go's standard [Hash interface](http://golang.org/pkg/hash/#Hash).
Benchmarks
----------
Go tip as of 2014-06-12 (i.e almost go1.3), core i7 @ 3.4 Ghz. All runs
include hasher instantiation and sequence finalization.
<pre>
Benchmark32_1 500000000 7.69 ns/op 130.00 MB/s
Benchmark32_2 200000000 8.83 ns/op 226.42 MB/s
Benchmark32_4 500000000 7.99 ns/op 500.39 MB/s
Benchmark32_8 200000000 9.47 ns/op 844.69 MB/s
Benchmark32_16 100000000 12.1 ns/op 1321.61 MB/s
Benchmark32_32 100000000 18.3 ns/op 1743.93 MB/s
Benchmark32_64 50000000 30.9 ns/op 2071.64 MB/s
Benchmark32_128 50000000 57.6 ns/op 2222.96 MB/s
Benchmark32_256 20000000 116 ns/op 2188.60 MB/s
Benchmark32_512 10000000 226 ns/op 2260.59 MB/s
Benchmark32_1024 5000000 452 ns/op 2263.73 MB/s
Benchmark32_2048 2000000 891 ns/op 2296.02 MB/s
Benchmark32_4096 1000000 1787 ns/op 2290.92 MB/s
Benchmark32_8192 500000 3593 ns/op 2279.68 MB/s
Benchmark128_1 100000000 26.1 ns/op 38.33 MB/s
Benchmark128_2 100000000 29.0 ns/op 69.07 MB/s
Benchmark128_4 50000000 29.8 ns/op 134.17 MB/s
Benchmark128_8 50000000 31.6 ns/op 252.86 MB/s
Benchmark128_16 100000000 26.5 ns/op 603.42 MB/s
Benchmark128_32 100000000 28.6 ns/op 1117.15 MB/s
Benchmark128_64 50000000 35.5 ns/op 1800.97 MB/s
Benchmark128_128 50000000 50.9 ns/op 2515.50 MB/s
Benchmark128_256 20000000 76.9 ns/op 3330.11 MB/s
Benchmark128_512 20000000 135 ns/op 3769.09 MB/s
Benchmark128_1024 10000000 250 ns/op 4094.38 MB/s
Benchmark128_2048 5000000 477 ns/op 4290.75 MB/s
Benchmark128_4096 2000000 940 ns/op 4353.29 MB/s
Benchmark128_8192 1000000 1838 ns/op 4455.47 MB/s
</pre>
<pre>
benchmark Go1.0 MB/s Go1.1 MB/s speedup Go1.2 MB/s speedup Go1.3 MB/s speedup
Benchmark32_1 98.90 118.59 1.20x 114.79 0.97x 130.00 1.13x
Benchmark32_2 168.04 213.31 1.27x 210.65 0.99x 226.42 1.07x
Benchmark32_4 414.01 494.19 1.19x 490.29 0.99x 500.39 1.02x
Benchmark32_8 662.19 836.09 1.26x 836.46 1.00x 844.69 1.01x
Benchmark32_16 917.46 1304.62 1.42x 1297.63 0.99x 1321.61 1.02x
Benchmark32_32 1141.93 1737.54 1.52x 1728.24 0.99x 1743.93 1.01x
Benchmark32_64 1289.47 2039.51 1.58x 2038.20 1.00x 2071.64 1.02x
Benchmark32_128 1299.23 2097.63 1.61x 2177.13 1.04x 2222.96 1.02x
Benchmark32_256 1369.90 2202.34 1.61x 2213.15 1.00x 2188.60 0.99x
Benchmark32_512 1399.56 2255.72 1.61x 2264.49 1.00x 2260.59 1.00x
Benchmark32_1024 1410.90 2285.82 1.62x 2270.99 0.99x 2263.73 1.00x
Benchmark32_2048 1422.14 2297.62 1.62x 2269.59 0.99x 2296.02 1.01x
Benchmark32_4096 1420.53 2307.81 1.62x 2273.43 0.99x 2290.92 1.01x
Benchmark32_8192 1424.79 2312.87 1.62x 2286.07 0.99x 2279.68 1.00x
Benchmark128_1 8.32 30.15 3.62x 30.84 1.02x 38.33 1.24x
Benchmark128_2 16.38 59.72 3.65x 59.37 0.99x 69.07 1.16x
Benchmark128_4 32.26 112.96 3.50x 114.24 1.01x 134.17 1.17x
Benchmark128_8 62.68 217.88 3.48x 218.18 1.00x 252.86 1.16x
Benchmark128_16 128.47 451.57 3.51x 474.65 1.05x 603.42 1.27x
Benchmark128_32 246.18 910.42 3.70x 871.06 0.96x 1117.15 1.28x
Benchmark128_64 449.05 1477.64 3.29x 1449.24 0.98x 1800.97 1.24x
Benchmark128_128 762.61 2222.42 2.91x 2217.30 1.00x 2515.50 1.13x
Benchmark128_256 1179.92 3005.46 2.55x 2931.55 0.98x 3330.11 1.14x
Benchmark128_512 1616.51 3590.75 2.22x 3592.08 1.00x 3769.09 1.05x
Benchmark128_1024 1964.36 3979.67 2.03x 4034.01 1.01x 4094.38 1.01x
Benchmark128_2048 2225.07 4156.93 1.87x 4244.17 1.02x 4290.75 1.01x
Benchmark128_4096 2360.15 4299.09 1.82x 4392.35 1.02x 4353.29 0.99x
Benchmark128_8192 2411.50 4356.84 1.81x 4480.68 1.03x 4455.47 0.99x
</pre>

64
vendor/github.com/spaolacci/murmur3/murmur.go generated vendored Normal file
View File

@@ -0,0 +1,64 @@
// Copyright 2013, Sébastien Paolacci. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
Package murmur3 implements Austin Appleby's non-cryptographic MurmurHash3.
Reference implementation:
http://code.google.com/p/smhasher/wiki/MurmurHash3
History, characteristics and (legacy) perfs:
https://sites.google.com/site/murmurhash/
https://sites.google.com/site/murmurhash/statistics
*/
package murmur3
type bmixer interface {
bmix(p []byte) (tail []byte)
Size() (n int)
reset()
}
type digest struct {
clen int // Digested input cumulative length.
tail []byte // 0 to Size()-1 bytes view of `buf'.
buf [16]byte // Expected (but not required) to be Size() large.
seed uint32 // Seed for initializing the hash.
bmixer
}
func (d *digest) BlockSize() int { return 1 }
func (d *digest) Write(p []byte) (n int, err error) {
n = len(p)
d.clen += n
if len(d.tail) > 0 {
// Stick back pending bytes.
nfree := d.Size() - len(d.tail) // nfree ∈ [1, d.Size()-1].
if nfree < len(p) {
// One full block can be formed.
block := append(d.tail, p[:nfree]...)
p = p[nfree:]
_ = d.bmix(block) // No tail.
} else {
// Tail's buf is large enough to prevent reallocs.
p = append(d.tail, p...)
}
}
d.tail = d.bmix(p)
// Keep own copy of the 0 to Size()-1 pending bytes.
nn := copy(d.buf[:], d.tail)
d.tail = d.buf[:nn]
return n, nil
}
func (d *digest) Reset() {
d.clen = 0
d.tail = nil
d.bmixer.reset()
}

203
vendor/github.com/spaolacci/murmur3/murmur128.go generated vendored Normal file
View File

@@ -0,0 +1,203 @@
package murmur3
import (
//"encoding/binary"
"hash"
"unsafe"
)
const (
c1_128 = 0x87c37b91114253d5
c2_128 = 0x4cf5ad432745937f
)
// Make sure interfaces are correctly implemented.
var (
_ hash.Hash = new(digest128)
_ Hash128 = new(digest128)
_ bmixer = new(digest128)
)
// Hash128 represents a 128-bit hasher
// Hack: the standard api doesn't define any Hash128 interface.
type Hash128 interface {
hash.Hash
Sum128() (uint64, uint64)
}
// digest128 represents a partial evaluation of a 128 bites hash.
type digest128 struct {
digest
h1 uint64 // Unfinalized running hash part 1.
h2 uint64 // Unfinalized running hash part 2.
}
// New128 returns a 128-bit hasher
func New128() Hash128 { return New128WithSeed(0) }
// New128WithSeed returns a 128-bit hasher set with explicit seed value
func New128WithSeed(seed uint32) Hash128 {
d := new(digest128)
d.seed = seed
d.bmixer = d
d.Reset()
return d
}
func (d *digest128) Size() int { return 16 }
func (d *digest128) reset() { d.h1, d.h2 = uint64(d.seed), uint64(d.seed) }
func (d *digest128) Sum(b []byte) []byte {
h1, h2 := d.Sum128()
return append(b,
byte(h1>>56), byte(h1>>48), byte(h1>>40), byte(h1>>32),
byte(h1>>24), byte(h1>>16), byte(h1>>8), byte(h1),
byte(h2>>56), byte(h2>>48), byte(h2>>40), byte(h2>>32),
byte(h2>>24), byte(h2>>16), byte(h2>>8), byte(h2),
)
}
func (d *digest128) bmix(p []byte) (tail []byte) {
h1, h2 := d.h1, d.h2
nblocks := len(p) / 16
for i := 0; i < nblocks; i++ {
t := (*[2]uint64)(unsafe.Pointer(&p[i*16]))
k1, k2 := t[0], t[1]
k1 *= c1_128
k1 = (k1 << 31) | (k1 >> 33) // rotl64(k1, 31)
k1 *= c2_128
h1 ^= k1
h1 = (h1 << 27) | (h1 >> 37) // rotl64(h1, 27)
h1 += h2
h1 = h1*5 + 0x52dce729
k2 *= c2_128
k2 = (k2 << 33) | (k2 >> 31) // rotl64(k2, 33)
k2 *= c1_128
h2 ^= k2
h2 = (h2 << 31) | (h2 >> 33) // rotl64(h2, 31)
h2 += h1
h2 = h2*5 + 0x38495ab5
}
d.h1, d.h2 = h1, h2
return p[nblocks*d.Size():]
}
func (d *digest128) Sum128() (h1, h2 uint64) {
h1, h2 = d.h1, d.h2
var k1, k2 uint64
switch len(d.tail) & 15 {
case 15:
k2 ^= uint64(d.tail[14]) << 48
fallthrough
case 14:
k2 ^= uint64(d.tail[13]) << 40
fallthrough
case 13:
k2 ^= uint64(d.tail[12]) << 32
fallthrough
case 12:
k2 ^= uint64(d.tail[11]) << 24
fallthrough
case 11:
k2 ^= uint64(d.tail[10]) << 16
fallthrough
case 10:
k2 ^= uint64(d.tail[9]) << 8
fallthrough
case 9:
k2 ^= uint64(d.tail[8]) << 0
k2 *= c2_128
k2 = (k2 << 33) | (k2 >> 31) // rotl64(k2, 33)
k2 *= c1_128
h2 ^= k2
fallthrough
case 8:
k1 ^= uint64(d.tail[7]) << 56
fallthrough
case 7:
k1 ^= uint64(d.tail[6]) << 48
fallthrough
case 6:
k1 ^= uint64(d.tail[5]) << 40
fallthrough
case 5:
k1 ^= uint64(d.tail[4]) << 32
fallthrough
case 4:
k1 ^= uint64(d.tail[3]) << 24
fallthrough
case 3:
k1 ^= uint64(d.tail[2]) << 16
fallthrough
case 2:
k1 ^= uint64(d.tail[1]) << 8
fallthrough
case 1:
k1 ^= uint64(d.tail[0]) << 0
k1 *= c1_128
k1 = (k1 << 31) | (k1 >> 33) // rotl64(k1, 31)
k1 *= c2_128
h1 ^= k1
}
h1 ^= uint64(d.clen)
h2 ^= uint64(d.clen)
h1 += h2
h2 += h1
h1 = fmix64(h1)
h2 = fmix64(h2)
h1 += h2
h2 += h1
return h1, h2
}
func fmix64(k uint64) uint64 {
k ^= k >> 33
k *= 0xff51afd7ed558ccd
k ^= k >> 33
k *= 0xc4ceb9fe1a85ec53
k ^= k >> 33
return k
}
/*
func rotl64(x uint64, r byte) uint64 {
return (x << r) | (x >> (64 - r))
}
*/
// Sum128 returns the MurmurHash3 sum of data. It is equivalent to the
// following sequence (without the extra burden and the extra allocation):
// hasher := New128()
// hasher.Write(data)
// return hasher.Sum128()
func Sum128(data []byte) (h1 uint64, h2 uint64) { return Sum128WithSeed(data, 0) }
// Sum128WithSeed returns the MurmurHash3 sum of data. It is equivalent to the
// following sequence (without the extra burden and the extra allocation):
// hasher := New128WithSeed(seed)
// hasher.Write(data)
// return hasher.Sum128()
func Sum128WithSeed(data []byte, seed uint32) (h1 uint64, h2 uint64) {
d := &digest128{h1: uint64(seed), h2: uint64(seed)}
d.seed = seed
d.tail = d.bmix(data)
d.clen = len(data)
return d.Sum128()
}

167
vendor/github.com/spaolacci/murmur3/murmur32.go generated vendored Normal file
View File

@@ -0,0 +1,167 @@
package murmur3
// http://code.google.com/p/guava-libraries/source/browse/guava/src/com/google/common/hash/Murmur3_32HashFunction.java
import (
"hash"
"unsafe"
)
// Make sure interfaces are correctly implemented.
var (
_ hash.Hash = new(digest32)
_ hash.Hash32 = new(digest32)
_ bmixer = new(digest32)
)
const (
c1_32 uint32 = 0xcc9e2d51
c2_32 uint32 = 0x1b873593
)
// digest32 represents a partial evaluation of a 32 bites hash.
type digest32 struct {
digest
h1 uint32 // Unfinalized running hash.
}
// New32 returns new 32-bit hasher
func New32() hash.Hash32 { return New32WithSeed(0) }
// New32WithSeed returns new 32-bit hasher set with explicit seed value
func New32WithSeed(seed uint32) hash.Hash32 {
d := new(digest32)
d.seed = seed
d.bmixer = d
d.Reset()
return d
}
func (d *digest32) Size() int { return 4 }
func (d *digest32) reset() { d.h1 = d.seed }
func (d *digest32) Sum(b []byte) []byte {
h := d.Sum32()
return append(b, byte(h>>24), byte(h>>16), byte(h>>8), byte(h))
}
// Digest as many blocks as possible.
func (d *digest32) bmix(p []byte) (tail []byte) {
h1 := d.h1
nblocks := len(p) / 4
for i := 0; i < nblocks; i++ {
k1 := *(*uint32)(unsafe.Pointer(&p[i*4]))
k1 *= c1_32
k1 = (k1 << 15) | (k1 >> 17) // rotl32(k1, 15)
k1 *= c2_32
h1 ^= k1
h1 = (h1 << 13) | (h1 >> 19) // rotl32(h1, 13)
h1 = h1*4 + h1 + 0xe6546b64
}
d.h1 = h1
return p[nblocks*d.Size():]
}
func (d *digest32) Sum32() (h1 uint32) {
h1 = d.h1
var k1 uint32
switch len(d.tail) & 3 {
case 3:
k1 ^= uint32(d.tail[2]) << 16
fallthrough
case 2:
k1 ^= uint32(d.tail[1]) << 8
fallthrough
case 1:
k1 ^= uint32(d.tail[0])
k1 *= c1_32
k1 = (k1 << 15) | (k1 >> 17) // rotl32(k1, 15)
k1 *= c2_32
h1 ^= k1
}
h1 ^= uint32(d.clen)
h1 ^= h1 >> 16
h1 *= 0x85ebca6b
h1 ^= h1 >> 13
h1 *= 0xc2b2ae35
h1 ^= h1 >> 16
return h1
}
/*
func rotl32(x uint32, r byte) uint32 {
return (x << r) | (x >> (32 - r))
}
*/
// Sum32 returns the MurmurHash3 sum of data. It is equivalent to the
// following sequence (without the extra burden and the extra allocation):
// hasher := New32()
// hasher.Write(data)
// return hasher.Sum32()
func Sum32(data []byte) uint32 { return Sum32WithSeed(data, 0) }
// Sum32WithSeed returns the MurmurHash3 sum of data. It is equivalent to the
// following sequence (without the extra burden and the extra allocation):
// hasher := New32WithSeed(seed)
// hasher.Write(data)
// return hasher.Sum32()
func Sum32WithSeed(data []byte, seed uint32) uint32 {
h1 := seed
nblocks := len(data) / 4
var p uintptr
if len(data) > 0 {
p = uintptr(unsafe.Pointer(&data[0]))
}
p1 := p + uintptr(4*nblocks)
for ; p < p1; p += 4 {
k1 := *(*uint32)(unsafe.Pointer(p))
k1 *= c1_32
k1 = (k1 << 15) | (k1 >> 17) // rotl32(k1, 15)
k1 *= c2_32
h1 ^= k1
h1 = (h1 << 13) | (h1 >> 19) // rotl32(h1, 13)
h1 = h1*4 + h1 + 0xe6546b64
}
tail := data[nblocks*4:]
var k1 uint32
switch len(tail) & 3 {
case 3:
k1 ^= uint32(tail[2]) << 16
fallthrough
case 2:
k1 ^= uint32(tail[1]) << 8
fallthrough
case 1:
k1 ^= uint32(tail[0])
k1 *= c1_32
k1 = (k1 << 15) | (k1 >> 17) // rotl32(k1, 15)
k1 *= c2_32
h1 ^= k1
}
h1 ^= uint32(len(data))
h1 ^= h1 >> 16
h1 *= 0x85ebca6b
h1 ^= h1 >> 13
h1 *= 0xc2b2ae35
h1 ^= h1 >> 16
return h1
}

57
vendor/github.com/spaolacci/murmur3/murmur64.go generated vendored Normal file
View File

@@ -0,0 +1,57 @@
package murmur3
import (
"hash"
)
// Make sure interfaces are correctly implemented.
var (
_ hash.Hash = new(digest64)
_ hash.Hash64 = new(digest64)
_ bmixer = new(digest64)
)
// digest64 is half a digest128.
type digest64 digest128
// New64 returns a 64-bit hasher
func New64() hash.Hash64 { return New64WithSeed(0) }
// New64WithSeed returns a 64-bit hasher set with explicit seed value
func New64WithSeed(seed uint32) hash.Hash64 {
d := (*digest64)(New128WithSeed(seed).(*digest128))
return d
}
func (d *digest64) Sum(b []byte) []byte {
h1 := d.Sum64()
return append(b,
byte(h1>>56), byte(h1>>48), byte(h1>>40), byte(h1>>32),
byte(h1>>24), byte(h1>>16), byte(h1>>8), byte(h1))
}
func (d *digest64) Sum64() uint64 {
h1, _ := (*digest128)(d).Sum128()
return h1
}
// Sum64 returns the MurmurHash3 sum of data. It is equivalent to the
// following sequence (without the extra burden and the extra allocation):
// hasher := New64()
// hasher.Write(data)
// return hasher.Sum64()
func Sum64(data []byte) uint64 { return Sum64WithSeed(data, 0) }
// Sum64WithSeed returns the MurmurHash3 sum of data. It is equivalent to the
// following sequence (without the extra burden and the extra allocation):
// hasher := New64WithSeed(seed)
// hasher.Write(data)
// return hasher.Sum64()
func Sum64WithSeed(data []byte, seed uint32) uint64 {
d := &digest128{h1: uint64(seed), h2: uint64(seed)}
d.seed = seed
d.tail = d.bmix(data)
d.clen = len(data)
h1, _ := d.Sum128()
return h1
}

3
vendor/golang.org/x/crypto/AUTHORS generated vendored Normal file
View File

@@ -0,0 +1,3 @@
# This source code refers to The Go Authors for copyright purposes.
# The master list of authors is in the main Go distribution,
# visible at https://tip.golang.org/AUTHORS.

3
vendor/golang.org/x/crypto/CONTRIBUTORS generated vendored Normal file
View File

@@ -0,0 +1,3 @@
# This source code was written by the Go contributors.
# The master list of contributors is in the main Go distribution,
# visible at https://tip.golang.org/CONTRIBUTORS.

27
vendor/golang.org/x/crypto/LICENSE generated vendored Normal file
View File

@@ -0,0 +1,27 @@
Copyright (c) 2009 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

22
vendor/golang.org/x/crypto/PATENTS generated vendored Normal file
View File

@@ -0,0 +1,22 @@
Additional IP Rights Grant (Patents)
"This implementation" means the copyrightable works distributed by
Google as part of the Go project.
Google hereby grants to You a perpetual, worldwide, non-exclusive,
no-charge, royalty-free, irrevocable (except as stated in this section)
patent license to make, have made, use, offer to sell, sell, import,
transfer and otherwise run, modify and propagate the contents of this
implementation of Go, where such license applies only to those patent
claims, both currently owned or controlled by Google and acquired in
the future, licensable by Google that are necessarily infringed by this
implementation of Go. This grant does not include claims that would be
infringed only as a consequence of further modification of this
implementation. If you or your agent or exclusive licensee institute or
order or agree to the institution of patent litigation against any
entity (including a cross-claim or counterclaim in a lawsuit) alleging
that this implementation of Go or any code incorporated within this
implementation of Go constitutes direct or contributory patent
infringement, or inducement of patent infringement, then any patent
rights granted to you under this License for this implementation of Go
shall terminate as of the date such litigation is filed.

244
vendor/golang.org/x/crypto/blake2s/blake2s.go generated vendored Normal file
View File

@@ -0,0 +1,244 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package blake2s implements the BLAKE2s hash algorithm defined by RFC 7693
// and the extendable output function (XOF) BLAKE2Xs.
//
// For a detailed specification of BLAKE2s see https://blake2.net/blake2.pdf
// and for BLAKE2Xs see https://blake2.net/blake2x.pdf
//
// If you aren't sure which function you need, use BLAKE2s (Sum256 or New256).
// If you need a secret-key MAC (message authentication code), use the New256
// function with a non-nil key.
//
// BLAKE2X is a construction to compute hash values larger than 32 bytes. It
// can produce hash values between 0 and 65535 bytes.
package blake2s // import "golang.org/x/crypto/blake2s"
import (
"encoding/binary"
"errors"
"hash"
)
const (
// The blocksize of BLAKE2s in bytes.
BlockSize = 64
// The hash size of BLAKE2s-256 in bytes.
Size = 32
// The hash size of BLAKE2s-128 in bytes.
Size128 = 16
)
var errKeySize = errors.New("blake2s: invalid key size")
var iv = [8]uint32{
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19,
}
// Sum256 returns the BLAKE2s-256 checksum of the data.
func Sum256(data []byte) [Size]byte {
var sum [Size]byte
checkSum(&sum, Size, data)
return sum
}
// New256 returns a new hash.Hash computing the BLAKE2s-256 checksum. A non-nil
// key turns the hash into a MAC. The key must between zero and 32 bytes long.
// When the key is nil, the returned hash.Hash implements BinaryMarshaler
// and BinaryUnmarshaler for state (de)serialization as documented by hash.Hash.
func New256(key []byte) (hash.Hash, error) { return newDigest(Size, key) }
// New128 returns a new hash.Hash computing the BLAKE2s-128 checksum given a
// non-empty key. Note that a 128-bit digest is too small to be secure as a
// cryptographic hash and should only be used as a MAC, thus the key argument
// is not optional.
func New128(key []byte) (hash.Hash, error) {
if len(key) == 0 {
return nil, errors.New("blake2s: a key is required for a 128-bit hash")
}
return newDigest(Size128, key)
}
func newDigest(hashSize int, key []byte) (*digest, error) {
if len(key) > Size {
return nil, errKeySize
}
d := &digest{
size: hashSize,
keyLen: len(key),
}
copy(d.key[:], key)
d.Reset()
return d, nil
}
func checkSum(sum *[Size]byte, hashSize int, data []byte) {
var (
h [8]uint32
c [2]uint32
)
h = iv
h[0] ^= uint32(hashSize) | (1 << 16) | (1 << 24)
if length := len(data); length > BlockSize {
n := length &^ (BlockSize - 1)
if length == n {
n -= BlockSize
}
hashBlocks(&h, &c, 0, data[:n])
data = data[n:]
}
var block [BlockSize]byte
offset := copy(block[:], data)
remaining := uint32(BlockSize - offset)
if c[0] < remaining {
c[1]--
}
c[0] -= remaining
hashBlocks(&h, &c, 0xFFFFFFFF, block[:])
for i, v := range h {
binary.LittleEndian.PutUint32(sum[4*i:], v)
}
}
type digest struct {
h [8]uint32
c [2]uint32
size int
block [BlockSize]byte
offset int
key [BlockSize]byte
keyLen int
}
const (
magic = "b2s"
marshaledSize = len(magic) + 8*4 + 2*4 + 1 + BlockSize + 1
)
func (d *digest) MarshalBinary() ([]byte, error) {
if d.keyLen != 0 {
return nil, errors.New("crypto/blake2s: cannot marshal MACs")
}
b := make([]byte, 0, marshaledSize)
b = append(b, magic...)
for i := 0; i < 8; i++ {
b = appendUint32(b, d.h[i])
}
b = appendUint32(b, d.c[0])
b = appendUint32(b, d.c[1])
// Maximum value for size is 32
b = append(b, byte(d.size))
b = append(b, d.block[:]...)
b = append(b, byte(d.offset))
return b, nil
}
func (d *digest) UnmarshalBinary(b []byte) error {
if len(b) < len(magic) || string(b[:len(magic)]) != magic {
return errors.New("crypto/blake2s: invalid hash state identifier")
}
if len(b) != marshaledSize {
return errors.New("crypto/blake2s: invalid hash state size")
}
b = b[len(magic):]
for i := 0; i < 8; i++ {
b, d.h[i] = consumeUint32(b)
}
b, d.c[0] = consumeUint32(b)
b, d.c[1] = consumeUint32(b)
d.size = int(b[0])
b = b[1:]
copy(d.block[:], b[:BlockSize])
b = b[BlockSize:]
d.offset = int(b[0])
return nil
}
func (d *digest) BlockSize() int { return BlockSize }
func (d *digest) Size() int { return d.size }
func (d *digest) Reset() {
d.h = iv
d.h[0] ^= uint32(d.size) | (uint32(d.keyLen) << 8) | (1 << 16) | (1 << 24)
d.offset, d.c[0], d.c[1] = 0, 0, 0
if d.keyLen > 0 {
d.block = d.key
d.offset = BlockSize
}
}
func (d *digest) Write(p []byte) (n int, err error) {
n = len(p)
if d.offset > 0 {
remaining := BlockSize - d.offset
if n <= remaining {
d.offset += copy(d.block[d.offset:], p)
return
}
copy(d.block[d.offset:], p[:remaining])
hashBlocks(&d.h, &d.c, 0, d.block[:])
d.offset = 0
p = p[remaining:]
}
if length := len(p); length > BlockSize {
nn := length &^ (BlockSize - 1)
if length == nn {
nn -= BlockSize
}
hashBlocks(&d.h, &d.c, 0, p[:nn])
p = p[nn:]
}
d.offset += copy(d.block[:], p)
return
}
func (d *digest) Sum(sum []byte) []byte {
var hash [Size]byte
d.finalize(&hash)
return append(sum, hash[:d.size]...)
}
func (d *digest) finalize(hash *[Size]byte) {
var block [BlockSize]byte
h := d.h
c := d.c
copy(block[:], d.block[:d.offset])
remaining := uint32(BlockSize - d.offset)
if c[0] < remaining {
c[1]--
}
c[0] -= remaining
hashBlocks(&h, &c, 0xFFFFFFFF, block[:])
for i, v := range h {
binary.LittleEndian.PutUint32(hash[4*i:], v)
}
}
func appendUint32(b []byte, x uint32) []byte {
var a [4]byte
binary.BigEndian.PutUint32(a[:], x)
return append(b, a[:]...)
}
func consumeUint32(b []byte) ([]byte, uint32) {
x := binary.BigEndian.Uint32(b)
return b[4:], x
}

32
vendor/golang.org/x/crypto/blake2s/blake2s_386.go generated vendored Normal file
View File

@@ -0,0 +1,32 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build 386,!gccgo,!appengine
package blake2s
import "golang.org/x/sys/cpu"
var (
useSSE4 = false
useSSSE3 = cpu.X86.HasSSSE3
useSSE2 = cpu.X86.HasSSE2
)
//go:noescape
func hashBlocksSSE2(h *[8]uint32, c *[2]uint32, flag uint32, blocks []byte)
//go:noescape
func hashBlocksSSSE3(h *[8]uint32, c *[2]uint32, flag uint32, blocks []byte)
func hashBlocks(h *[8]uint32, c *[2]uint32, flag uint32, blocks []byte) {
switch {
case useSSSE3:
hashBlocksSSSE3(h, c, flag, blocks)
case useSSE2:
hashBlocksSSE2(h, c, flag, blocks)
default:
hashBlocksGeneric(h, c, flag, blocks)
}
}

435
vendor/golang.org/x/crypto/blake2s/blake2s_386.s generated vendored Normal file
View File

@@ -0,0 +1,435 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build 386,!gccgo,!appengine
#include "textflag.h"
DATA iv0<>+0x00(SB)/4, $0x6a09e667
DATA iv0<>+0x04(SB)/4, $0xbb67ae85
DATA iv0<>+0x08(SB)/4, $0x3c6ef372
DATA iv0<>+0x0c(SB)/4, $0xa54ff53a
GLOBL iv0<>(SB), (NOPTR+RODATA), $16
DATA iv1<>+0x00(SB)/4, $0x510e527f
DATA iv1<>+0x04(SB)/4, $0x9b05688c
DATA iv1<>+0x08(SB)/4, $0x1f83d9ab
DATA iv1<>+0x0c(SB)/4, $0x5be0cd19
GLOBL iv1<>(SB), (NOPTR+RODATA), $16
DATA rol16<>+0x00(SB)/8, $0x0504070601000302
DATA rol16<>+0x08(SB)/8, $0x0D0C0F0E09080B0A
GLOBL rol16<>(SB), (NOPTR+RODATA), $16
DATA rol8<>+0x00(SB)/8, $0x0407060500030201
DATA rol8<>+0x08(SB)/8, $0x0C0F0E0D080B0A09
GLOBL rol8<>(SB), (NOPTR+RODATA), $16
DATA counter<>+0x00(SB)/8, $0x40
DATA counter<>+0x08(SB)/8, $0x0
GLOBL counter<>(SB), (NOPTR+RODATA), $16
#define ROTL_SSE2(n, t, v) \
MOVO v, t; \
PSLLL $n, t; \
PSRLL $(32-n), v; \
PXOR t, v
#define ROTL_SSSE3(c, v) \
PSHUFB c, v
#define ROUND_SSE2(v0, v1, v2, v3, m0, m1, m2, m3, t) \
PADDL m0, v0; \
PADDL v1, v0; \
PXOR v0, v3; \
ROTL_SSE2(16, t, v3); \
PADDL v3, v2; \
PXOR v2, v1; \
ROTL_SSE2(20, t, v1); \
PADDL m1, v0; \
PADDL v1, v0; \
PXOR v0, v3; \
ROTL_SSE2(24, t, v3); \
PADDL v3, v2; \
PXOR v2, v1; \
ROTL_SSE2(25, t, v1); \
PSHUFL $0x39, v1, v1; \
PSHUFL $0x4E, v2, v2; \
PSHUFL $0x93, v3, v3; \
PADDL m2, v0; \
PADDL v1, v0; \
PXOR v0, v3; \
ROTL_SSE2(16, t, v3); \
PADDL v3, v2; \
PXOR v2, v1; \
ROTL_SSE2(20, t, v1); \
PADDL m3, v0; \
PADDL v1, v0; \
PXOR v0, v3; \
ROTL_SSE2(24, t, v3); \
PADDL v3, v2; \
PXOR v2, v1; \
ROTL_SSE2(25, t, v1); \
PSHUFL $0x39, v3, v3; \
PSHUFL $0x4E, v2, v2; \
PSHUFL $0x93, v1, v1
#define ROUND_SSSE3(v0, v1, v2, v3, m0, m1, m2, m3, t, c16, c8) \
PADDL m0, v0; \
PADDL v1, v0; \
PXOR v0, v3; \
ROTL_SSSE3(c16, v3); \
PADDL v3, v2; \
PXOR v2, v1; \
ROTL_SSE2(20, t, v1); \
PADDL m1, v0; \
PADDL v1, v0; \
PXOR v0, v3; \
ROTL_SSSE3(c8, v3); \
PADDL v3, v2; \
PXOR v2, v1; \
ROTL_SSE2(25, t, v1); \
PSHUFL $0x39, v1, v1; \
PSHUFL $0x4E, v2, v2; \
PSHUFL $0x93, v3, v3; \
PADDL m2, v0; \
PADDL v1, v0; \
PXOR v0, v3; \
ROTL_SSSE3(c16, v3); \
PADDL v3, v2; \
PXOR v2, v1; \
ROTL_SSE2(20, t, v1); \
PADDL m3, v0; \
PADDL v1, v0; \
PXOR v0, v3; \
ROTL_SSSE3(c8, v3); \
PADDL v3, v2; \
PXOR v2, v1; \
ROTL_SSE2(25, t, v1); \
PSHUFL $0x39, v3, v3; \
PSHUFL $0x4E, v2, v2; \
PSHUFL $0x93, v1, v1
#define PRECOMPUTE(dst, off, src, t) \
MOVL 0*4(src), t; \
MOVL t, 0*4+off+0(dst); \
MOVL t, 9*4+off+64(dst); \
MOVL t, 5*4+off+128(dst); \
MOVL t, 14*4+off+192(dst); \
MOVL t, 4*4+off+256(dst); \
MOVL t, 2*4+off+320(dst); \
MOVL t, 8*4+off+384(dst); \
MOVL t, 12*4+off+448(dst); \
MOVL t, 3*4+off+512(dst); \
MOVL t, 15*4+off+576(dst); \
MOVL 1*4(src), t; \
MOVL t, 4*4+off+0(dst); \
MOVL t, 8*4+off+64(dst); \
MOVL t, 14*4+off+128(dst); \
MOVL t, 5*4+off+192(dst); \
MOVL t, 12*4+off+256(dst); \
MOVL t, 11*4+off+320(dst); \
MOVL t, 1*4+off+384(dst); \
MOVL t, 6*4+off+448(dst); \
MOVL t, 10*4+off+512(dst); \
MOVL t, 3*4+off+576(dst); \
MOVL 2*4(src), t; \
MOVL t, 1*4+off+0(dst); \
MOVL t, 13*4+off+64(dst); \
MOVL t, 6*4+off+128(dst); \
MOVL t, 8*4+off+192(dst); \
MOVL t, 2*4+off+256(dst); \
MOVL t, 0*4+off+320(dst); \
MOVL t, 14*4+off+384(dst); \
MOVL t, 11*4+off+448(dst); \
MOVL t, 12*4+off+512(dst); \
MOVL t, 4*4+off+576(dst); \
MOVL 3*4(src), t; \
MOVL t, 5*4+off+0(dst); \
MOVL t, 15*4+off+64(dst); \
MOVL t, 9*4+off+128(dst); \
MOVL t, 1*4+off+192(dst); \
MOVL t, 11*4+off+256(dst); \
MOVL t, 7*4+off+320(dst); \
MOVL t, 13*4+off+384(dst); \
MOVL t, 3*4+off+448(dst); \
MOVL t, 6*4+off+512(dst); \
MOVL t, 10*4+off+576(dst); \
MOVL 4*4(src), t; \
MOVL t, 2*4+off+0(dst); \
MOVL t, 1*4+off+64(dst); \
MOVL t, 15*4+off+128(dst); \
MOVL t, 10*4+off+192(dst); \
MOVL t, 6*4+off+256(dst); \
MOVL t, 8*4+off+320(dst); \
MOVL t, 3*4+off+384(dst); \
MOVL t, 13*4+off+448(dst); \
MOVL t, 14*4+off+512(dst); \
MOVL t, 5*4+off+576(dst); \
MOVL 5*4(src), t; \
MOVL t, 6*4+off+0(dst); \
MOVL t, 11*4+off+64(dst); \
MOVL t, 2*4+off+128(dst); \
MOVL t, 9*4+off+192(dst); \
MOVL t, 1*4+off+256(dst); \
MOVL t, 13*4+off+320(dst); \
MOVL t, 4*4+off+384(dst); \
MOVL t, 8*4+off+448(dst); \
MOVL t, 15*4+off+512(dst); \
MOVL t, 7*4+off+576(dst); \
MOVL 6*4(src), t; \
MOVL t, 3*4+off+0(dst); \
MOVL t, 7*4+off+64(dst); \
MOVL t, 13*4+off+128(dst); \
MOVL t, 12*4+off+192(dst); \
MOVL t, 10*4+off+256(dst); \
MOVL t, 1*4+off+320(dst); \
MOVL t, 9*4+off+384(dst); \
MOVL t, 14*4+off+448(dst); \
MOVL t, 0*4+off+512(dst); \
MOVL t, 6*4+off+576(dst); \
MOVL 7*4(src), t; \
MOVL t, 7*4+off+0(dst); \
MOVL t, 14*4+off+64(dst); \
MOVL t, 10*4+off+128(dst); \
MOVL t, 0*4+off+192(dst); \
MOVL t, 5*4+off+256(dst); \
MOVL t, 9*4+off+320(dst); \
MOVL t, 12*4+off+384(dst); \
MOVL t, 1*4+off+448(dst); \
MOVL t, 13*4+off+512(dst); \
MOVL t, 2*4+off+576(dst); \
MOVL 8*4(src), t; \
MOVL t, 8*4+off+0(dst); \
MOVL t, 5*4+off+64(dst); \
MOVL t, 4*4+off+128(dst); \
MOVL t, 15*4+off+192(dst); \
MOVL t, 14*4+off+256(dst); \
MOVL t, 3*4+off+320(dst); \
MOVL t, 11*4+off+384(dst); \
MOVL t, 10*4+off+448(dst); \
MOVL t, 7*4+off+512(dst); \
MOVL t, 1*4+off+576(dst); \
MOVL 9*4(src), t; \
MOVL t, 12*4+off+0(dst); \
MOVL t, 2*4+off+64(dst); \
MOVL t, 11*4+off+128(dst); \
MOVL t, 4*4+off+192(dst); \
MOVL t, 0*4+off+256(dst); \
MOVL t, 15*4+off+320(dst); \
MOVL t, 10*4+off+384(dst); \
MOVL t, 7*4+off+448(dst); \
MOVL t, 5*4+off+512(dst); \
MOVL t, 9*4+off+576(dst); \
MOVL 10*4(src), t; \
MOVL t, 9*4+off+0(dst); \
MOVL t, 4*4+off+64(dst); \
MOVL t, 8*4+off+128(dst); \
MOVL t, 13*4+off+192(dst); \
MOVL t, 3*4+off+256(dst); \
MOVL t, 5*4+off+320(dst); \
MOVL t, 7*4+off+384(dst); \
MOVL t, 15*4+off+448(dst); \
MOVL t, 11*4+off+512(dst); \
MOVL t, 0*4+off+576(dst); \
MOVL 11*4(src), t; \
MOVL t, 13*4+off+0(dst); \
MOVL t, 10*4+off+64(dst); \
MOVL t, 0*4+off+128(dst); \
MOVL t, 3*4+off+192(dst); \
MOVL t, 9*4+off+256(dst); \
MOVL t, 6*4+off+320(dst); \
MOVL t, 15*4+off+384(dst); \
MOVL t, 4*4+off+448(dst); \
MOVL t, 2*4+off+512(dst); \
MOVL t, 12*4+off+576(dst); \
MOVL 12*4(src), t; \
MOVL t, 10*4+off+0(dst); \
MOVL t, 12*4+off+64(dst); \
MOVL t, 1*4+off+128(dst); \
MOVL t, 6*4+off+192(dst); \
MOVL t, 13*4+off+256(dst); \
MOVL t, 4*4+off+320(dst); \
MOVL t, 0*4+off+384(dst); \
MOVL t, 2*4+off+448(dst); \
MOVL t, 8*4+off+512(dst); \
MOVL t, 14*4+off+576(dst); \
MOVL 13*4(src), t; \
MOVL t, 14*4+off+0(dst); \
MOVL t, 3*4+off+64(dst); \
MOVL t, 7*4+off+128(dst); \
MOVL t, 2*4+off+192(dst); \
MOVL t, 15*4+off+256(dst); \
MOVL t, 12*4+off+320(dst); \
MOVL t, 6*4+off+384(dst); \
MOVL t, 0*4+off+448(dst); \
MOVL t, 9*4+off+512(dst); \
MOVL t, 11*4+off+576(dst); \
MOVL 14*4(src), t; \
MOVL t, 11*4+off+0(dst); \
MOVL t, 0*4+off+64(dst); \
MOVL t, 12*4+off+128(dst); \
MOVL t, 7*4+off+192(dst); \
MOVL t, 8*4+off+256(dst); \
MOVL t, 14*4+off+320(dst); \
MOVL t, 2*4+off+384(dst); \
MOVL t, 5*4+off+448(dst); \
MOVL t, 1*4+off+512(dst); \
MOVL t, 13*4+off+576(dst); \
MOVL 15*4(src), t; \
MOVL t, 15*4+off+0(dst); \
MOVL t, 6*4+off+64(dst); \
MOVL t, 3*4+off+128(dst); \
MOVL t, 11*4+off+192(dst); \
MOVL t, 7*4+off+256(dst); \
MOVL t, 10*4+off+320(dst); \
MOVL t, 5*4+off+384(dst); \
MOVL t, 9*4+off+448(dst); \
MOVL t, 4*4+off+512(dst); \
MOVL t, 8*4+off+576(dst)
// func hashBlocksSSE2(h *[8]uint32, c *[2]uint32, flag uint32, blocks []byte)
TEXT ·hashBlocksSSE2(SB), 0, $672-24 // frame = 656 + 16 byte alignment
MOVL h+0(FP), AX
MOVL c+4(FP), BX
MOVL flag+8(FP), CX
MOVL blocks_base+12(FP), SI
MOVL blocks_len+16(FP), DX
MOVL SP, BP
MOVL SP, DI
ADDL $15, DI
ANDL $~15, DI
MOVL DI, SP
MOVL CX, 8(SP)
MOVL 0(BX), CX
MOVL CX, 0(SP)
MOVL 4(BX), CX
MOVL CX, 4(SP)
XORL CX, CX
MOVL CX, 12(SP)
MOVOU 0(AX), X0
MOVOU 16(AX), X1
MOVOU counter<>(SB), X2
loop:
MOVO X0, X4
MOVO X1, X5
MOVOU iv0<>(SB), X6
MOVOU iv1<>(SB), X7
MOVO 0(SP), X3
PADDQ X2, X3
PXOR X3, X7
MOVO X3, 0(SP)
PRECOMPUTE(SP, 16, SI, CX)
ROUND_SSE2(X4, X5, X6, X7, 16(SP), 32(SP), 48(SP), 64(SP), X3)
ROUND_SSE2(X4, X5, X6, X7, 16+64(SP), 32+64(SP), 48+64(SP), 64+64(SP), X3)
ROUND_SSE2(X4, X5, X6, X7, 16+128(SP), 32+128(SP), 48+128(SP), 64+128(SP), X3)
ROUND_SSE2(X4, X5, X6, X7, 16+192(SP), 32+192(SP), 48+192(SP), 64+192(SP), X3)
ROUND_SSE2(X4, X5, X6, X7, 16+256(SP), 32+256(SP), 48+256(SP), 64+256(SP), X3)
ROUND_SSE2(X4, X5, X6, X7, 16+320(SP), 32+320(SP), 48+320(SP), 64+320(SP), X3)
ROUND_SSE2(X4, X5, X6, X7, 16+384(SP), 32+384(SP), 48+384(SP), 64+384(SP), X3)
ROUND_SSE2(X4, X5, X6, X7, 16+448(SP), 32+448(SP), 48+448(SP), 64+448(SP), X3)
ROUND_SSE2(X4, X5, X6, X7, 16+512(SP), 32+512(SP), 48+512(SP), 64+512(SP), X3)
ROUND_SSE2(X4, X5, X6, X7, 16+576(SP), 32+576(SP), 48+576(SP), 64+576(SP), X3)
PXOR X4, X0
PXOR X5, X1
PXOR X6, X0
PXOR X7, X1
LEAL 64(SI), SI
SUBL $64, DX
JNE loop
MOVL 0(SP), CX
MOVL CX, 0(BX)
MOVL 4(SP), CX
MOVL CX, 4(BX)
MOVOU X0, 0(AX)
MOVOU X1, 16(AX)
MOVL BP, SP
RET
// func hashBlocksSSSE3(h *[8]uint32, c *[2]uint32, flag uint32, blocks []byte)
TEXT ·hashBlocksSSSE3(SB), 0, $704-24 // frame = 688 + 16 byte alignment
MOVL h+0(FP), AX
MOVL c+4(FP), BX
MOVL flag+8(FP), CX
MOVL blocks_base+12(FP), SI
MOVL blocks_len+16(FP), DX
MOVL SP, BP
MOVL SP, DI
ADDL $15, DI
ANDL $~15, DI
MOVL DI, SP
MOVL CX, 8(SP)
MOVL 0(BX), CX
MOVL CX, 0(SP)
MOVL 4(BX), CX
MOVL CX, 4(SP)
XORL CX, CX
MOVL CX, 12(SP)
MOVOU 0(AX), X0
MOVOU 16(AX), X1
MOVOU counter<>(SB), X2
loop:
MOVO X0, 656(SP)
MOVO X1, 672(SP)
MOVO X0, X4
MOVO X1, X5
MOVOU iv0<>(SB), X6
MOVOU iv1<>(SB), X7
MOVO 0(SP), X3
PADDQ X2, X3
PXOR X3, X7
MOVO X3, 0(SP)
MOVOU rol16<>(SB), X0
MOVOU rol8<>(SB), X1
PRECOMPUTE(SP, 16, SI, CX)
ROUND_SSSE3(X4, X5, X6, X7, 16(SP), 32(SP), 48(SP), 64(SP), X3, X0, X1)
ROUND_SSSE3(X4, X5, X6, X7, 16+64(SP), 32+64(SP), 48+64(SP), 64+64(SP), X3, X0, X1)
ROUND_SSSE3(X4, X5, X6, X7, 16+128(SP), 32+128(SP), 48+128(SP), 64+128(SP), X3, X0, X1)
ROUND_SSSE3(X4, X5, X6, X7, 16+192(SP), 32+192(SP), 48+192(SP), 64+192(SP), X3, X0, X1)
ROUND_SSSE3(X4, X5, X6, X7, 16+256(SP), 32+256(SP), 48+256(SP), 64+256(SP), X3, X0, X1)
ROUND_SSSE3(X4, X5, X6, X7, 16+320(SP), 32+320(SP), 48+320(SP), 64+320(SP), X3, X0, X1)
ROUND_SSSE3(X4, X5, X6, X7, 16+384(SP), 32+384(SP), 48+384(SP), 64+384(SP), X3, X0, X1)
ROUND_SSSE3(X4, X5, X6, X7, 16+448(SP), 32+448(SP), 48+448(SP), 64+448(SP), X3, X0, X1)
ROUND_SSSE3(X4, X5, X6, X7, 16+512(SP), 32+512(SP), 48+512(SP), 64+512(SP), X3, X0, X1)
ROUND_SSSE3(X4, X5, X6, X7, 16+576(SP), 32+576(SP), 48+576(SP), 64+576(SP), X3, X0, X1)
MOVO 656(SP), X0
MOVO 672(SP), X1
PXOR X4, X0
PXOR X5, X1
PXOR X6, X0
PXOR X7, X1
LEAL 64(SI), SI
SUBL $64, DX
JNE loop
MOVL 0(SP), CX
MOVL CX, 0(BX)
MOVL 4(SP), CX
MOVL CX, 4(BX)
MOVOU X0, 0(AX)
MOVOU X1, 16(AX)
MOVL BP, SP
RET

37
vendor/golang.org/x/crypto/blake2s/blake2s_amd64.go generated vendored Normal file
View File

@@ -0,0 +1,37 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build amd64,!gccgo,!appengine
package blake2s
import "golang.org/x/sys/cpu"
var (
useSSE4 = cpu.X86.HasSSE41
useSSSE3 = cpu.X86.HasSSSE3
useSSE2 = cpu.X86.HasSSE2
)
//go:noescape
func hashBlocksSSE2(h *[8]uint32, c *[2]uint32, flag uint32, blocks []byte)
//go:noescape
func hashBlocksSSSE3(h *[8]uint32, c *[2]uint32, flag uint32, blocks []byte)
//go:noescape
func hashBlocksSSE4(h *[8]uint32, c *[2]uint32, flag uint32, blocks []byte)
func hashBlocks(h *[8]uint32, c *[2]uint32, flag uint32, blocks []byte) {
switch {
case useSSE4:
hashBlocksSSE4(h, c, flag, blocks)
case useSSSE3:
hashBlocksSSSE3(h, c, flag, blocks)
case useSSE2:
hashBlocksSSE2(h, c, flag, blocks)
default:
hashBlocksGeneric(h, c, flag, blocks)
}
}

438
vendor/golang.org/x/crypto/blake2s/blake2s_amd64.s generated vendored Normal file
View File

@@ -0,0 +1,438 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build amd64,!gccgo,!appengine
#include "textflag.h"
DATA iv0<>+0x00(SB)/4, $0x6a09e667
DATA iv0<>+0x04(SB)/4, $0xbb67ae85
DATA iv0<>+0x08(SB)/4, $0x3c6ef372
DATA iv0<>+0x0c(SB)/4, $0xa54ff53a
GLOBL iv0<>(SB), (NOPTR+RODATA), $16
DATA iv1<>+0x00(SB)/4, $0x510e527f
DATA iv1<>+0x04(SB)/4, $0x9b05688c
DATA iv1<>+0x08(SB)/4, $0x1f83d9ab
DATA iv1<>+0x0c(SB)/4, $0x5be0cd19
GLOBL iv1<>(SB), (NOPTR+RODATA), $16
DATA rol16<>+0x00(SB)/8, $0x0504070601000302
DATA rol16<>+0x08(SB)/8, $0x0D0C0F0E09080B0A
GLOBL rol16<>(SB), (NOPTR+RODATA), $16
DATA rol8<>+0x00(SB)/8, $0x0407060500030201
DATA rol8<>+0x08(SB)/8, $0x0C0F0E0D080B0A09
GLOBL rol8<>(SB), (NOPTR+RODATA), $16
DATA counter<>+0x00(SB)/8, $0x40
DATA counter<>+0x08(SB)/8, $0x0
GLOBL counter<>(SB), (NOPTR+RODATA), $16
#define ROTL_SSE2(n, t, v) \
MOVO v, t; \
PSLLL $n, t; \
PSRLL $(32-n), v; \
PXOR t, v
#define ROTL_SSSE3(c, v) \
PSHUFB c, v
#define ROUND_SSE2(v0, v1, v2, v3, m0, m1, m2, m3, t) \
PADDL m0, v0; \
PADDL v1, v0; \
PXOR v0, v3; \
ROTL_SSE2(16, t, v3); \
PADDL v3, v2; \
PXOR v2, v1; \
ROTL_SSE2(20, t, v1); \
PADDL m1, v0; \
PADDL v1, v0; \
PXOR v0, v3; \
ROTL_SSE2(24, t, v3); \
PADDL v3, v2; \
PXOR v2, v1; \
ROTL_SSE2(25, t, v1); \
PSHUFL $0x39, v1, v1; \
PSHUFL $0x4E, v2, v2; \
PSHUFL $0x93, v3, v3; \
PADDL m2, v0; \
PADDL v1, v0; \
PXOR v0, v3; \
ROTL_SSE2(16, t, v3); \
PADDL v3, v2; \
PXOR v2, v1; \
ROTL_SSE2(20, t, v1); \
PADDL m3, v0; \
PADDL v1, v0; \
PXOR v0, v3; \
ROTL_SSE2(24, t, v3); \
PADDL v3, v2; \
PXOR v2, v1; \
ROTL_SSE2(25, t, v1); \
PSHUFL $0x39, v3, v3; \
PSHUFL $0x4E, v2, v2; \
PSHUFL $0x93, v1, v1
#define ROUND_SSSE3(v0, v1, v2, v3, m0, m1, m2, m3, t, c16, c8) \
PADDL m0, v0; \
PADDL v1, v0; \
PXOR v0, v3; \
ROTL_SSSE3(c16, v3); \
PADDL v3, v2; \
PXOR v2, v1; \
ROTL_SSE2(20, t, v1); \
PADDL m1, v0; \
PADDL v1, v0; \
PXOR v0, v3; \
ROTL_SSSE3(c8, v3); \
PADDL v3, v2; \
PXOR v2, v1; \
ROTL_SSE2(25, t, v1); \
PSHUFL $0x39, v1, v1; \
PSHUFL $0x4E, v2, v2; \
PSHUFL $0x93, v3, v3; \
PADDL m2, v0; \
PADDL v1, v0; \
PXOR v0, v3; \
ROTL_SSSE3(c16, v3); \
PADDL v3, v2; \
PXOR v2, v1; \
ROTL_SSE2(20, t, v1); \
PADDL m3, v0; \
PADDL v1, v0; \
PXOR v0, v3; \
ROTL_SSSE3(c8, v3); \
PADDL v3, v2; \
PXOR v2, v1; \
ROTL_SSE2(25, t, v1); \
PSHUFL $0x39, v3, v3; \
PSHUFL $0x4E, v2, v2; \
PSHUFL $0x93, v1, v1
#define LOAD_MSG_SSE4(m0, m1, m2, m3, src, i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13, i14, i15) \
MOVL i0*4(src), m0; \
PINSRD $1, i1*4(src), m0; \
PINSRD $2, i2*4(src), m0; \
PINSRD $3, i3*4(src), m0; \
MOVL i4*4(src), m1; \
PINSRD $1, i5*4(src), m1; \
PINSRD $2, i6*4(src), m1; \
PINSRD $3, i7*4(src), m1; \
MOVL i8*4(src), m2; \
PINSRD $1, i9*4(src), m2; \
PINSRD $2, i10*4(src), m2; \
PINSRD $3, i11*4(src), m2; \
MOVL i12*4(src), m3; \
PINSRD $1, i13*4(src), m3; \
PINSRD $2, i14*4(src), m3; \
PINSRD $3, i15*4(src), m3
#define PRECOMPUTE_MSG(dst, off, src, R8, R9, R10, R11, R12, R13, R14, R15) \
MOVQ 0*4(src), R8; \
MOVQ 2*4(src), R9; \
MOVQ 4*4(src), R10; \
MOVQ 6*4(src), R11; \
MOVQ 8*4(src), R12; \
MOVQ 10*4(src), R13; \
MOVQ 12*4(src), R14; \
MOVQ 14*4(src), R15; \
\
MOVL R8, 0*4+off+0(dst); \
MOVL R8, 9*4+off+64(dst); \
MOVL R8, 5*4+off+128(dst); \
MOVL R8, 14*4+off+192(dst); \
MOVL R8, 4*4+off+256(dst); \
MOVL R8, 2*4+off+320(dst); \
MOVL R8, 8*4+off+384(dst); \
MOVL R8, 12*4+off+448(dst); \
MOVL R8, 3*4+off+512(dst); \
MOVL R8, 15*4+off+576(dst); \
SHRQ $32, R8; \
MOVL R8, 4*4+off+0(dst); \
MOVL R8, 8*4+off+64(dst); \
MOVL R8, 14*4+off+128(dst); \
MOVL R8, 5*4+off+192(dst); \
MOVL R8, 12*4+off+256(dst); \
MOVL R8, 11*4+off+320(dst); \
MOVL R8, 1*4+off+384(dst); \
MOVL R8, 6*4+off+448(dst); \
MOVL R8, 10*4+off+512(dst); \
MOVL R8, 3*4+off+576(dst); \
\
MOVL R9, 1*4+off+0(dst); \
MOVL R9, 13*4+off+64(dst); \
MOVL R9, 6*4+off+128(dst); \
MOVL R9, 8*4+off+192(dst); \
MOVL R9, 2*4+off+256(dst); \
MOVL R9, 0*4+off+320(dst); \
MOVL R9, 14*4+off+384(dst); \
MOVL R9, 11*4+off+448(dst); \
MOVL R9, 12*4+off+512(dst); \
MOVL R9, 4*4+off+576(dst); \
SHRQ $32, R9; \
MOVL R9, 5*4+off+0(dst); \
MOVL R9, 15*4+off+64(dst); \
MOVL R9, 9*4+off+128(dst); \
MOVL R9, 1*4+off+192(dst); \
MOVL R9, 11*4+off+256(dst); \
MOVL R9, 7*4+off+320(dst); \
MOVL R9, 13*4+off+384(dst); \
MOVL R9, 3*4+off+448(dst); \
MOVL R9, 6*4+off+512(dst); \
MOVL R9, 10*4+off+576(dst); \
\
MOVL R10, 2*4+off+0(dst); \
MOVL R10, 1*4+off+64(dst); \
MOVL R10, 15*4+off+128(dst); \
MOVL R10, 10*4+off+192(dst); \
MOVL R10, 6*4+off+256(dst); \
MOVL R10, 8*4+off+320(dst); \
MOVL R10, 3*4+off+384(dst); \
MOVL R10, 13*4+off+448(dst); \
MOVL R10, 14*4+off+512(dst); \
MOVL R10, 5*4+off+576(dst); \
SHRQ $32, R10; \
MOVL R10, 6*4+off+0(dst); \
MOVL R10, 11*4+off+64(dst); \
MOVL R10, 2*4+off+128(dst); \
MOVL R10, 9*4+off+192(dst); \
MOVL R10, 1*4+off+256(dst); \
MOVL R10, 13*4+off+320(dst); \
MOVL R10, 4*4+off+384(dst); \
MOVL R10, 8*4+off+448(dst); \
MOVL R10, 15*4+off+512(dst); \
MOVL R10, 7*4+off+576(dst); \
\
MOVL R11, 3*4+off+0(dst); \
MOVL R11, 7*4+off+64(dst); \
MOVL R11, 13*4+off+128(dst); \
MOVL R11, 12*4+off+192(dst); \
MOVL R11, 10*4+off+256(dst); \
MOVL R11, 1*4+off+320(dst); \
MOVL R11, 9*4+off+384(dst); \
MOVL R11, 14*4+off+448(dst); \
MOVL R11, 0*4+off+512(dst); \
MOVL R11, 6*4+off+576(dst); \
SHRQ $32, R11; \
MOVL R11, 7*4+off+0(dst); \
MOVL R11, 14*4+off+64(dst); \
MOVL R11, 10*4+off+128(dst); \
MOVL R11, 0*4+off+192(dst); \
MOVL R11, 5*4+off+256(dst); \
MOVL R11, 9*4+off+320(dst); \
MOVL R11, 12*4+off+384(dst); \
MOVL R11, 1*4+off+448(dst); \
MOVL R11, 13*4+off+512(dst); \
MOVL R11, 2*4+off+576(dst); \
\
MOVL R12, 8*4+off+0(dst); \
MOVL R12, 5*4+off+64(dst); \
MOVL R12, 4*4+off+128(dst); \
MOVL R12, 15*4+off+192(dst); \
MOVL R12, 14*4+off+256(dst); \
MOVL R12, 3*4+off+320(dst); \
MOVL R12, 11*4+off+384(dst); \
MOVL R12, 10*4+off+448(dst); \
MOVL R12, 7*4+off+512(dst); \
MOVL R12, 1*4+off+576(dst); \
SHRQ $32, R12; \
MOVL R12, 12*4+off+0(dst); \
MOVL R12, 2*4+off+64(dst); \
MOVL R12, 11*4+off+128(dst); \
MOVL R12, 4*4+off+192(dst); \
MOVL R12, 0*4+off+256(dst); \
MOVL R12, 15*4+off+320(dst); \
MOVL R12, 10*4+off+384(dst); \
MOVL R12, 7*4+off+448(dst); \
MOVL R12, 5*4+off+512(dst); \
MOVL R12, 9*4+off+576(dst); \
\
MOVL R13, 9*4+off+0(dst); \
MOVL R13, 4*4+off+64(dst); \
MOVL R13, 8*4+off+128(dst); \
MOVL R13, 13*4+off+192(dst); \
MOVL R13, 3*4+off+256(dst); \
MOVL R13, 5*4+off+320(dst); \
MOVL R13, 7*4+off+384(dst); \
MOVL R13, 15*4+off+448(dst); \
MOVL R13, 11*4+off+512(dst); \
MOVL R13, 0*4+off+576(dst); \
SHRQ $32, R13; \
MOVL R13, 13*4+off+0(dst); \
MOVL R13, 10*4+off+64(dst); \
MOVL R13, 0*4+off+128(dst); \
MOVL R13, 3*4+off+192(dst); \
MOVL R13, 9*4+off+256(dst); \
MOVL R13, 6*4+off+320(dst); \
MOVL R13, 15*4+off+384(dst); \
MOVL R13, 4*4+off+448(dst); \
MOVL R13, 2*4+off+512(dst); \
MOVL R13, 12*4+off+576(dst); \
\
MOVL R14, 10*4+off+0(dst); \
MOVL R14, 12*4+off+64(dst); \
MOVL R14, 1*4+off+128(dst); \
MOVL R14, 6*4+off+192(dst); \
MOVL R14, 13*4+off+256(dst); \
MOVL R14, 4*4+off+320(dst); \
MOVL R14, 0*4+off+384(dst); \
MOVL R14, 2*4+off+448(dst); \
MOVL R14, 8*4+off+512(dst); \
MOVL R14, 14*4+off+576(dst); \
SHRQ $32, R14; \
MOVL R14, 14*4+off+0(dst); \
MOVL R14, 3*4+off+64(dst); \
MOVL R14, 7*4+off+128(dst); \
MOVL R14, 2*4+off+192(dst); \
MOVL R14, 15*4+off+256(dst); \
MOVL R14, 12*4+off+320(dst); \
MOVL R14, 6*4+off+384(dst); \
MOVL R14, 0*4+off+448(dst); \
MOVL R14, 9*4+off+512(dst); \
MOVL R14, 11*4+off+576(dst); \
\
MOVL R15, 11*4+off+0(dst); \
MOVL R15, 0*4+off+64(dst); \
MOVL R15, 12*4+off+128(dst); \
MOVL R15, 7*4+off+192(dst); \
MOVL R15, 8*4+off+256(dst); \
MOVL R15, 14*4+off+320(dst); \
MOVL R15, 2*4+off+384(dst); \
MOVL R15, 5*4+off+448(dst); \
MOVL R15, 1*4+off+512(dst); \
MOVL R15, 13*4+off+576(dst); \
SHRQ $32, R15; \
MOVL R15, 15*4+off+0(dst); \
MOVL R15, 6*4+off+64(dst); \
MOVL R15, 3*4+off+128(dst); \
MOVL R15, 11*4+off+192(dst); \
MOVL R15, 7*4+off+256(dst); \
MOVL R15, 10*4+off+320(dst); \
MOVL R15, 5*4+off+384(dst); \
MOVL R15, 9*4+off+448(dst); \
MOVL R15, 4*4+off+512(dst); \
MOVL R15, 8*4+off+576(dst)
#define BLAKE2s_SSE2() \
PRECOMPUTE_MSG(SP, 16, SI, R8, R9, R10, R11, R12, R13, R14, R15); \
ROUND_SSE2(X4, X5, X6, X7, 16(SP), 32(SP), 48(SP), 64(SP), X8); \
ROUND_SSE2(X4, X5, X6, X7, 16+64(SP), 32+64(SP), 48+64(SP), 64+64(SP), X8); \
ROUND_SSE2(X4, X5, X6, X7, 16+128(SP), 32+128(SP), 48+128(SP), 64+128(SP), X8); \
ROUND_SSE2(X4, X5, X6, X7, 16+192(SP), 32+192(SP), 48+192(SP), 64+192(SP), X8); \
ROUND_SSE2(X4, X5, X6, X7, 16+256(SP), 32+256(SP), 48+256(SP), 64+256(SP), X8); \
ROUND_SSE2(X4, X5, X6, X7, 16+320(SP), 32+320(SP), 48+320(SP), 64+320(SP), X8); \
ROUND_SSE2(X4, X5, X6, X7, 16+384(SP), 32+384(SP), 48+384(SP), 64+384(SP), X8); \
ROUND_SSE2(X4, X5, X6, X7, 16+448(SP), 32+448(SP), 48+448(SP), 64+448(SP), X8); \
ROUND_SSE2(X4, X5, X6, X7, 16+512(SP), 32+512(SP), 48+512(SP), 64+512(SP), X8); \
ROUND_SSE2(X4, X5, X6, X7, 16+576(SP), 32+576(SP), 48+576(SP), 64+576(SP), X8)
#define BLAKE2s_SSSE3() \
PRECOMPUTE_MSG(SP, 16, SI, R8, R9, R10, R11, R12, R13, R14, R15); \
ROUND_SSSE3(X4, X5, X6, X7, 16(SP), 32(SP), 48(SP), 64(SP), X8, X13, X14); \
ROUND_SSSE3(X4, X5, X6, X7, 16+64(SP), 32+64(SP), 48+64(SP), 64+64(SP), X8, X13, X14); \
ROUND_SSSE3(X4, X5, X6, X7, 16+128(SP), 32+128(SP), 48+128(SP), 64+128(SP), X8, X13, X14); \
ROUND_SSSE3(X4, X5, X6, X7, 16+192(SP), 32+192(SP), 48+192(SP), 64+192(SP), X8, X13, X14); \
ROUND_SSSE3(X4, X5, X6, X7, 16+256(SP), 32+256(SP), 48+256(SP), 64+256(SP), X8, X13, X14); \
ROUND_SSSE3(X4, X5, X6, X7, 16+320(SP), 32+320(SP), 48+320(SP), 64+320(SP), X8, X13, X14); \
ROUND_SSSE3(X4, X5, X6, X7, 16+384(SP), 32+384(SP), 48+384(SP), 64+384(SP), X8, X13, X14); \
ROUND_SSSE3(X4, X5, X6, X7, 16+448(SP), 32+448(SP), 48+448(SP), 64+448(SP), X8, X13, X14); \
ROUND_SSSE3(X4, X5, X6, X7, 16+512(SP), 32+512(SP), 48+512(SP), 64+512(SP), X8, X13, X14); \
ROUND_SSSE3(X4, X5, X6, X7, 16+576(SP), 32+576(SP), 48+576(SP), 64+576(SP), X8, X13, X14)
#define BLAKE2s_SSE4() \
LOAD_MSG_SSE4(X8, X9, X10, X11, SI, 0, 2, 4, 6, 1, 3, 5, 7, 8, 10, 12, 14, 9, 11, 13, 15); \
ROUND_SSSE3(X4, X5, X6, X7, X8, X9, X10, X11, X8, X13, X14); \
LOAD_MSG_SSE4(X8, X9, X10, X11, SI, 14, 4, 9, 13, 10, 8, 15, 6, 1, 0, 11, 5, 12, 2, 7, 3); \
ROUND_SSSE3(X4, X5, X6, X7, X8, X9, X10, X11, X8, X13, X14); \
LOAD_MSG_SSE4(X8, X9, X10, X11, SI, 11, 12, 5, 15, 8, 0, 2, 13, 10, 3, 7, 9, 14, 6, 1, 4); \
ROUND_SSSE3(X4, X5, X6, X7, X8, X9, X10, X11, X8, X13, X14); \
LOAD_MSG_SSE4(X8, X9, X10, X11, SI, 7, 3, 13, 11, 9, 1, 12, 14, 2, 5, 4, 15, 6, 10, 0, 8); \
ROUND_SSSE3(X4, X5, X6, X7, X8, X9, X10, X11, X8, X13, X14); \
LOAD_MSG_SSE4(X8, X9, X10, X11, SI, 9, 5, 2, 10, 0, 7, 4, 15, 14, 11, 6, 3, 1, 12, 8, 13); \
ROUND_SSSE3(X4, X5, X6, X7, X8, X9, X10, X11, X8, X13, X14); \
LOAD_MSG_SSE4(X8, X9, X10, X11, SI, 2, 6, 0, 8, 12, 10, 11, 3, 4, 7, 15, 1, 13, 5, 14, 9); \
ROUND_SSSE3(X4, X5, X6, X7, X8, X9, X10, X11, X8, X13, X14); \
LOAD_MSG_SSE4(X8, X9, X10, X11, SI, 12, 1, 14, 4, 5, 15, 13, 10, 0, 6, 9, 8, 7, 3, 2, 11); \
ROUND_SSSE3(X4, X5, X6, X7, X8, X9, X10, X11, X8, X13, X14); \
LOAD_MSG_SSE4(X8, X9, X10, X11, SI, 13, 7, 12, 3, 11, 14, 1, 9, 5, 15, 8, 2, 0, 4, 6, 10); \
ROUND_SSSE3(X4, X5, X6, X7, X8, X9, X10, X11, X8, X13, X14); \
LOAD_MSG_SSE4(X8, X9, X10, X11, SI, 6, 14, 11, 0, 15, 9, 3, 8, 12, 13, 1, 10, 2, 7, 4, 5); \
ROUND_SSSE3(X4, X5, X6, X7, X8, X9, X10, X11, X8, X13, X14); \
LOAD_MSG_SSE4(X8, X9, X10, X11, SI, 10, 8, 7, 1, 2, 4, 6, 5, 15, 9, 3, 13, 11, 14, 12, 0); \
ROUND_SSSE3(X4, X5, X6, X7, X8, X9, X10, X11, X8, X13, X14)
#define HASH_BLOCKS(h, c, flag, blocks_base, blocks_len, BLAKE2s_FUNC) \
MOVQ h, AX; \
MOVQ c, BX; \
MOVL flag, CX; \
MOVQ blocks_base, SI; \
MOVQ blocks_len, DX; \
\
MOVQ SP, BP; \
MOVQ SP, R9; \
ADDQ $15, R9; \
ANDQ $~15, R9; \
MOVQ R9, SP; \
\
MOVQ 0(BX), R9; \
MOVQ R9, 0(SP); \
XORQ R9, R9; \
MOVQ R9, 8(SP); \
MOVL CX, 8(SP); \
\
MOVOU 0(AX), X0; \
MOVOU 16(AX), X1; \
MOVOU iv0<>(SB), X2; \
MOVOU iv1<>(SB), X3 \
\
MOVOU counter<>(SB), X12; \
MOVOU rol16<>(SB), X13; \
MOVOU rol8<>(SB), X14; \
MOVO 0(SP), X15; \
\
loop: \
MOVO X0, X4; \
MOVO X1, X5; \
MOVO X2, X6; \
MOVO X3, X7; \
\
PADDQ X12, X15; \
PXOR X15, X7; \
\
BLAKE2s_FUNC(); \
\
PXOR X4, X0; \
PXOR X5, X1; \
PXOR X6, X0; \
PXOR X7, X1; \
\
LEAQ 64(SI), SI; \
SUBQ $64, DX; \
JNE loop; \
\
MOVO X15, 0(SP); \
MOVQ 0(SP), R9; \
MOVQ R9, 0(BX); \
\
MOVOU X0, 0(AX); \
MOVOU X1, 16(AX); \
\
MOVQ BP, SP
// func hashBlocksSSE2(h *[8]uint32, c *[2]uint32, flag uint32, blocks []byte)
TEXT ·hashBlocksSSE2(SB), 0, $672-48 // frame = 656 + 16 byte alignment
HASH_BLOCKS(h+0(FP), c+8(FP), flag+16(FP), blocks_base+24(FP), blocks_len+32(FP), BLAKE2s_SSE2)
RET
// func hashBlocksSSSE3(h *[8]uint32, c *[2]uint32, flag uint32, blocks []byte)
TEXT ·hashBlocksSSSE3(SB), 0, $672-48 // frame = 656 + 16 byte alignment
HASH_BLOCKS(h+0(FP), c+8(FP), flag+16(FP), blocks_base+24(FP), blocks_len+32(FP), BLAKE2s_SSSE3)
RET
// func hashBlocksSSE4(h *[8]uint32, c *[2]uint32, flag uint32, blocks []byte)
TEXT ·hashBlocksSSE4(SB), 0, $32-48 // frame = 16 + 16 byte alignment
HASH_BLOCKS(h+0(FP), c+8(FP), flag+16(FP), blocks_base+24(FP), blocks_len+32(FP), BLAKE2s_SSE4)
RET

178
vendor/golang.org/x/crypto/blake2s/blake2s_generic.go generated vendored Normal file
View File

@@ -0,0 +1,178 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package blake2s
import (
"math/bits"
)
// the precomputed values for BLAKE2s
// there are 10 16-byte arrays - one for each round
// the entries are calculated from the sigma constants.
var precomputed = [10][16]byte{
{0, 2, 4, 6, 1, 3, 5, 7, 8, 10, 12, 14, 9, 11, 13, 15},
{14, 4, 9, 13, 10, 8, 15, 6, 1, 0, 11, 5, 12, 2, 7, 3},
{11, 12, 5, 15, 8, 0, 2, 13, 10, 3, 7, 9, 14, 6, 1, 4},
{7, 3, 13, 11, 9, 1, 12, 14, 2, 5, 4, 15, 6, 10, 0, 8},
{9, 5, 2, 10, 0, 7, 4, 15, 14, 11, 6, 3, 1, 12, 8, 13},
{2, 6, 0, 8, 12, 10, 11, 3, 4, 7, 15, 1, 13, 5, 14, 9},
{12, 1, 14, 4, 5, 15, 13, 10, 0, 6, 9, 8, 7, 3, 2, 11},
{13, 7, 12, 3, 11, 14, 1, 9, 5, 15, 8, 2, 0, 4, 6, 10},
{6, 14, 11, 0, 15, 9, 3, 8, 12, 13, 1, 10, 2, 7, 4, 5},
{10, 8, 7, 1, 2, 4, 6, 5, 15, 9, 3, 13, 11, 14, 12, 0},
}
func hashBlocksGeneric(h *[8]uint32, c *[2]uint32, flag uint32, blocks []byte) {
var m [16]uint32
c0, c1 := c[0], c[1]
for i := 0; i < len(blocks); {
c0 += BlockSize
if c0 < BlockSize {
c1++
}
v0, v1, v2, v3, v4, v5, v6, v7 := h[0], h[1], h[2], h[3], h[4], h[5], h[6], h[7]
v8, v9, v10, v11, v12, v13, v14, v15 := iv[0], iv[1], iv[2], iv[3], iv[4], iv[5], iv[6], iv[7]
v12 ^= c0
v13 ^= c1
v14 ^= flag
for j := range m {
m[j] = uint32(blocks[i]) | uint32(blocks[i+1])<<8 | uint32(blocks[i+2])<<16 | uint32(blocks[i+3])<<24
i += 4
}
for k := range precomputed {
s := &(precomputed[k])
v0 += m[s[0]]
v0 += v4
v12 ^= v0
v12 = bits.RotateLeft32(v12, -16)
v8 += v12
v4 ^= v8
v4 = bits.RotateLeft32(v4, -12)
v1 += m[s[1]]
v1 += v5
v13 ^= v1
v13 = bits.RotateLeft32(v13, -16)
v9 += v13
v5 ^= v9
v5 = bits.RotateLeft32(v5, -12)
v2 += m[s[2]]
v2 += v6
v14 ^= v2
v14 = bits.RotateLeft32(v14, -16)
v10 += v14
v6 ^= v10
v6 = bits.RotateLeft32(v6, -12)
v3 += m[s[3]]
v3 += v7
v15 ^= v3
v15 = bits.RotateLeft32(v15, -16)
v11 += v15
v7 ^= v11
v7 = bits.RotateLeft32(v7, -12)
v0 += m[s[4]]
v0 += v4
v12 ^= v0
v12 = bits.RotateLeft32(v12, -8)
v8 += v12
v4 ^= v8
v4 = bits.RotateLeft32(v4, -7)
v1 += m[s[5]]
v1 += v5
v13 ^= v1
v13 = bits.RotateLeft32(v13, -8)
v9 += v13
v5 ^= v9
v5 = bits.RotateLeft32(v5, -7)
v2 += m[s[6]]
v2 += v6
v14 ^= v2
v14 = bits.RotateLeft32(v14, -8)
v10 += v14
v6 ^= v10
v6 = bits.RotateLeft32(v6, -7)
v3 += m[s[7]]
v3 += v7
v15 ^= v3
v15 = bits.RotateLeft32(v15, -8)
v11 += v15
v7 ^= v11
v7 = bits.RotateLeft32(v7, -7)
v0 += m[s[8]]
v0 += v5
v15 ^= v0
v15 = bits.RotateLeft32(v15, -16)
v10 += v15
v5 ^= v10
v5 = bits.RotateLeft32(v5, -12)
v1 += m[s[9]]
v1 += v6
v12 ^= v1
v12 = bits.RotateLeft32(v12, -16)
v11 += v12
v6 ^= v11
v6 = bits.RotateLeft32(v6, -12)
v2 += m[s[10]]
v2 += v7
v13 ^= v2
v13 = bits.RotateLeft32(v13, -16)
v8 += v13
v7 ^= v8
v7 = bits.RotateLeft32(v7, -12)
v3 += m[s[11]]
v3 += v4
v14 ^= v3
v14 = bits.RotateLeft32(v14, -16)
v9 += v14
v4 ^= v9
v4 = bits.RotateLeft32(v4, -12)
v0 += m[s[12]]
v0 += v5
v15 ^= v0
v15 = bits.RotateLeft32(v15, -8)
v10 += v15
v5 ^= v10
v5 = bits.RotateLeft32(v5, -7)
v1 += m[s[13]]
v1 += v6
v12 ^= v1
v12 = bits.RotateLeft32(v12, -8)
v11 += v12
v6 ^= v11
v6 = bits.RotateLeft32(v6, -7)
v2 += m[s[14]]
v2 += v7
v13 ^= v2
v13 = bits.RotateLeft32(v13, -8)
v8 += v13
v7 ^= v8
v7 = bits.RotateLeft32(v7, -7)
v3 += m[s[15]]
v3 += v4
v14 ^= v3
v14 = bits.RotateLeft32(v14, -8)
v9 += v14
v4 ^= v9
v4 = bits.RotateLeft32(v4, -7)
}
h[0] ^= v0 ^ v8
h[1] ^= v1 ^ v9
h[2] ^= v2 ^ v10
h[3] ^= v3 ^ v11
h[4] ^= v4 ^ v12
h[5] ^= v5 ^ v13
h[6] ^= v6 ^ v14
h[7] ^= v7 ^ v15
}
c[0], c[1] = c0, c1
}

17
vendor/golang.org/x/crypto/blake2s/blake2s_ref.go generated vendored Normal file
View File

@@ -0,0 +1,17 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !amd64,!386 gccgo appengine
package blake2s
var (
useSSE4 = false
useSSSE3 = false
useSSE2 = false
)
func hashBlocks(h *[8]uint32, c *[2]uint32, flag uint32, blocks []byte) {
hashBlocksGeneric(h, c, flag, blocks)
}

178
vendor/golang.org/x/crypto/blake2s/blake2x.go generated vendored Normal file
View File

@@ -0,0 +1,178 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package blake2s
import (
"encoding/binary"
"errors"
"io"
)
// XOF defines the interface to hash functions that
// support arbitrary-length output.
type XOF interface {
// Write absorbs more data into the hash's state. It panics if called
// after Read.
io.Writer
// Read reads more output from the hash. It returns io.EOF if the limit
// has been reached.
io.Reader
// Clone returns a copy of the XOF in its current state.
Clone() XOF
// Reset resets the XOF to its initial state.
Reset()
}
// OutputLengthUnknown can be used as the size argument to NewXOF to indicate
// the length of the output is not known in advance.
const OutputLengthUnknown = 0
// magicUnknownOutputLength is a magic value for the output size that indicates
// an unknown number of output bytes.
const magicUnknownOutputLength = 65535
// maxOutputLength is the absolute maximum number of bytes to produce when the
// number of output bytes is unknown.
const maxOutputLength = (1 << 32) * 32
// NewXOF creates a new variable-output-length hash. The hash either produce a
// known number of bytes (1 <= size < 65535), or an unknown number of bytes
// (size == OutputLengthUnknown). In the latter case, an absolute limit of
// 128GiB applies.
//
// A non-nil key turns the hash into a MAC. The key must between
// zero and 32 bytes long.
func NewXOF(size uint16, key []byte) (XOF, error) {
if len(key) > Size {
return nil, errKeySize
}
if size == magicUnknownOutputLength {
// 2^16-1 indicates an unknown number of bytes and thus isn't a
// valid length.
return nil, errors.New("blake2s: XOF length too large")
}
if size == OutputLengthUnknown {
size = magicUnknownOutputLength
}
x := &xof{
d: digest{
size: Size,
keyLen: len(key),
},
length: size,
}
copy(x.d.key[:], key)
x.Reset()
return x, nil
}
type xof struct {
d digest
length uint16
remaining uint64
cfg, root, block [Size]byte
offset int
nodeOffset uint32
readMode bool
}
func (x *xof) Write(p []byte) (n int, err error) {
if x.readMode {
panic("blake2s: write to XOF after read")
}
return x.d.Write(p)
}
func (x *xof) Clone() XOF {
clone := *x
return &clone
}
func (x *xof) Reset() {
x.cfg[0] = byte(Size)
binary.LittleEndian.PutUint32(x.cfg[4:], uint32(Size)) // leaf length
binary.LittleEndian.PutUint16(x.cfg[12:], x.length) // XOF length
x.cfg[15] = byte(Size) // inner hash size
x.d.Reset()
x.d.h[3] ^= uint32(x.length)
x.remaining = uint64(x.length)
if x.remaining == magicUnknownOutputLength {
x.remaining = maxOutputLength
}
x.offset, x.nodeOffset = 0, 0
x.readMode = false
}
func (x *xof) Read(p []byte) (n int, err error) {
if !x.readMode {
x.d.finalize(&x.root)
x.readMode = true
}
if x.remaining == 0 {
return 0, io.EOF
}
n = len(p)
if uint64(n) > x.remaining {
n = int(x.remaining)
p = p[:n]
}
if x.offset > 0 {
blockRemaining := Size - x.offset
if n < blockRemaining {
x.offset += copy(p, x.block[x.offset:])
x.remaining -= uint64(n)
return
}
copy(p, x.block[x.offset:])
p = p[blockRemaining:]
x.offset = 0
x.remaining -= uint64(blockRemaining)
}
for len(p) >= Size {
binary.LittleEndian.PutUint32(x.cfg[8:], x.nodeOffset)
x.nodeOffset++
x.d.initConfig(&x.cfg)
x.d.Write(x.root[:])
x.d.finalize(&x.block)
copy(p, x.block[:])
p = p[Size:]
x.remaining -= uint64(Size)
}
if todo := len(p); todo > 0 {
if x.remaining < uint64(Size) {
x.cfg[0] = byte(x.remaining)
}
binary.LittleEndian.PutUint32(x.cfg[8:], x.nodeOffset)
x.nodeOffset++
x.d.initConfig(&x.cfg)
x.d.Write(x.root[:])
x.d.finalize(&x.block)
x.offset = copy(p, x.block[:todo])
x.remaining -= uint64(todo)
}
return
}
func (d *digest) initConfig(cfg *[Size]byte) {
d.offset, d.c[0], d.c[1] = 0, 0, 0
for i := range d.h {
d.h[i] = iv[i] ^ binary.LittleEndian.Uint32(cfg[i*4:])
}
}

21
vendor/golang.org/x/crypto/blake2s/register.go generated vendored Normal file
View File

@@ -0,0 +1,21 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.9
package blake2s
import (
"crypto"
"hash"
)
func init() {
newHash256 := func() hash.Hash {
h, _ := New256(nil)
return h
}
crypto.RegisterHash(crypto.BLAKE2s_256, newHash256)
}

66
vendor/golang.org/x/crypto/sha3/doc.go generated vendored Normal file
View File

@@ -0,0 +1,66 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package sha3 implements the SHA-3 fixed-output-length hash functions and
// the SHAKE variable-output-length hash functions defined by FIPS-202.
//
// Both types of hash function use the "sponge" construction and the Keccak
// permutation. For a detailed specification see http://keccak.noekeon.org/
//
//
// Guidance
//
// If you aren't sure what function you need, use SHAKE256 with at least 64
// bytes of output. The SHAKE instances are faster than the SHA3 instances;
// the latter have to allocate memory to conform to the hash.Hash interface.
//
// If you need a secret-key MAC (message authentication code), prepend the
// secret key to the input, hash with SHAKE256 and read at least 32 bytes of
// output.
//
//
// Security strengths
//
// The SHA3-x (x equals 224, 256, 384, or 512) functions have a security
// strength against preimage attacks of x bits. Since they only produce "x"
// bits of output, their collision-resistance is only "x/2" bits.
//
// The SHAKE-256 and -128 functions have a generic security strength of 256 and
// 128 bits against all attacks, provided that at least 2x bits of their output
// is used. Requesting more than 64 or 32 bytes of output, respectively, does
// not increase the collision-resistance of the SHAKE functions.
//
//
// The sponge construction
//
// A sponge builds a pseudo-random function from a public pseudo-random
// permutation, by applying the permutation to a state of "rate + capacity"
// bytes, but hiding "capacity" of the bytes.
//
// A sponge starts out with a zero state. To hash an input using a sponge, up
// to "rate" bytes of the input are XORed into the sponge's state. The sponge
// is then "full" and the permutation is applied to "empty" it. This process is
// repeated until all the input has been "absorbed". The input is then padded.
// The digest is "squeezed" from the sponge in the same way, except that output
// is copied out instead of input being XORed in.
//
// A sponge is parameterized by its generic security strength, which is equal
// to half its capacity; capacity + rate is equal to the permutation's width.
// Since the KeccakF-1600 permutation is 1600 bits (200 bytes) wide, this means
// that the security strength of a sponge instance is equal to (1600 - bitrate) / 2.
//
//
// Recommendations
//
// The SHAKE functions are recommended for most new uses. They can produce
// output of arbitrary length. SHAKE256, with an output length of at least
// 64 bytes, provides 256-bit security against all attacks. The Keccak team
// recommends it for most applications upgrading from SHA2-512. (NIST chose a
// much stronger, but much slower, sponge instance for SHA3-512.)
//
// The SHA-3 functions are "drop-in" replacements for the SHA-2 functions.
// They produce output of the same length, with the same security strengths
// against all attacks. This means, in particular, that SHA3-256 only has
// 128-bit collision resistance, because its output length is 32 bytes.
package sha3 // import "golang.org/x/crypto/sha3"

97
vendor/golang.org/x/crypto/sha3/hashes.go generated vendored Normal file
View File

@@ -0,0 +1,97 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sha3
// This file provides functions for creating instances of the SHA-3
// and SHAKE hash functions, as well as utility functions for hashing
// bytes.
import (
"hash"
)
// New224 creates a new SHA3-224 hash.
// Its generic security strength is 224 bits against preimage attacks,
// and 112 bits against collision attacks.
func New224() hash.Hash {
if h := new224Asm(); h != nil {
return h
}
return &state{rate: 144, outputLen: 28, dsbyte: 0x06}
}
// New256 creates a new SHA3-256 hash.
// Its generic security strength is 256 bits against preimage attacks,
// and 128 bits against collision attacks.
func New256() hash.Hash {
if h := new256Asm(); h != nil {
return h
}
return &state{rate: 136, outputLen: 32, dsbyte: 0x06}
}
// New384 creates a new SHA3-384 hash.
// Its generic security strength is 384 bits against preimage attacks,
// and 192 bits against collision attacks.
func New384() hash.Hash {
if h := new384Asm(); h != nil {
return h
}
return &state{rate: 104, outputLen: 48, dsbyte: 0x06}
}
// New512 creates a new SHA3-512 hash.
// Its generic security strength is 512 bits against preimage attacks,
// and 256 bits against collision attacks.
func New512() hash.Hash {
if h := new512Asm(); h != nil {
return h
}
return &state{rate: 72, outputLen: 64, dsbyte: 0x06}
}
// NewLegacyKeccak256 creates a new Keccak-256 hash.
//
// Only use this function if you require compatibility with an existing cryptosystem
// that uses non-standard padding. All other users should use New256 instead.
func NewLegacyKeccak256() hash.Hash { return &state{rate: 136, outputLen: 32, dsbyte: 0x01} }
// NewLegacyKeccak512 creates a new Keccak-512 hash.
//
// Only use this function if you require compatibility with an existing cryptosystem
// that uses non-standard padding. All other users should use New512 instead.
func NewLegacyKeccak512() hash.Hash { return &state{rate: 72, outputLen: 64, dsbyte: 0x01} }
// Sum224 returns the SHA3-224 digest of the data.
func Sum224(data []byte) (digest [28]byte) {
h := New224()
h.Write(data)
h.Sum(digest[:0])
return
}
// Sum256 returns the SHA3-256 digest of the data.
func Sum256(data []byte) (digest [32]byte) {
h := New256()
h.Write(data)
h.Sum(digest[:0])
return
}
// Sum384 returns the SHA3-384 digest of the data.
func Sum384(data []byte) (digest [48]byte) {
h := New384()
h.Write(data)
h.Sum(digest[:0])
return
}
// Sum512 returns the SHA3-512 digest of the data.
func Sum512(data []byte) (digest [64]byte) {
h := New512()
h.Write(data)
h.Sum(digest[:0])
return
}

27
vendor/golang.org/x/crypto/sha3/hashes_generic.go generated vendored Normal file
View File

@@ -0,0 +1,27 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//+build gccgo appengine !s390x
package sha3
import (
"hash"
)
// new224Asm returns an assembly implementation of SHA3-224 if available,
// otherwise it returns nil.
func new224Asm() hash.Hash { return nil }
// new256Asm returns an assembly implementation of SHA3-256 if available,
// otherwise it returns nil.
func new256Asm() hash.Hash { return nil }
// new384Asm returns an assembly implementation of SHA3-384 if available,
// otherwise it returns nil.
func new384Asm() hash.Hash { return nil }
// new512Asm returns an assembly implementation of SHA3-512 if available,
// otherwise it returns nil.
func new512Asm() hash.Hash { return nil }

412
vendor/golang.org/x/crypto/sha3/keccakf.go generated vendored Normal file
View File

@@ -0,0 +1,412 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !amd64 appengine gccgo
package sha3
// rc stores the round constants for use in the ι step.
var rc = [24]uint64{
0x0000000000000001,
0x0000000000008082,
0x800000000000808A,
0x8000000080008000,
0x000000000000808B,
0x0000000080000001,
0x8000000080008081,
0x8000000000008009,
0x000000000000008A,
0x0000000000000088,
0x0000000080008009,
0x000000008000000A,
0x000000008000808B,
0x800000000000008B,
0x8000000000008089,
0x8000000000008003,
0x8000000000008002,
0x8000000000000080,
0x000000000000800A,
0x800000008000000A,
0x8000000080008081,
0x8000000000008080,
0x0000000080000001,
0x8000000080008008,
}
// keccakF1600 applies the Keccak permutation to a 1600b-wide
// state represented as a slice of 25 uint64s.
func keccakF1600(a *[25]uint64) {
// Implementation translated from Keccak-inplace.c
// in the keccak reference code.
var t, bc0, bc1, bc2, bc3, bc4, d0, d1, d2, d3, d4 uint64
for i := 0; i < 24; i += 4 {
// Combines the 5 steps in each round into 2 steps.
// Unrolls 4 rounds per loop and spreads some steps across rounds.
// Round 1
bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20]
bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21]
bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22]
bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23]
bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24]
d0 = bc4 ^ (bc1<<1 | bc1>>63)
d1 = bc0 ^ (bc2<<1 | bc2>>63)
d2 = bc1 ^ (bc3<<1 | bc3>>63)
d3 = bc2 ^ (bc4<<1 | bc4>>63)
d4 = bc3 ^ (bc0<<1 | bc0>>63)
bc0 = a[0] ^ d0
t = a[6] ^ d1
bc1 = t<<44 | t>>(64-44)
t = a[12] ^ d2
bc2 = t<<43 | t>>(64-43)
t = a[18] ^ d3
bc3 = t<<21 | t>>(64-21)
t = a[24] ^ d4
bc4 = t<<14 | t>>(64-14)
a[0] = bc0 ^ (bc2 &^ bc1) ^ rc[i]
a[6] = bc1 ^ (bc3 &^ bc2)
a[12] = bc2 ^ (bc4 &^ bc3)
a[18] = bc3 ^ (bc0 &^ bc4)
a[24] = bc4 ^ (bc1 &^ bc0)
t = a[10] ^ d0
bc2 = t<<3 | t>>(64-3)
t = a[16] ^ d1
bc3 = t<<45 | t>>(64-45)
t = a[22] ^ d2
bc4 = t<<61 | t>>(64-61)
t = a[3] ^ d3
bc0 = t<<28 | t>>(64-28)
t = a[9] ^ d4
bc1 = t<<20 | t>>(64-20)
a[10] = bc0 ^ (bc2 &^ bc1)
a[16] = bc1 ^ (bc3 &^ bc2)
a[22] = bc2 ^ (bc4 &^ bc3)
a[3] = bc3 ^ (bc0 &^ bc4)
a[9] = bc4 ^ (bc1 &^ bc0)
t = a[20] ^ d0
bc4 = t<<18 | t>>(64-18)
t = a[1] ^ d1
bc0 = t<<1 | t>>(64-1)
t = a[7] ^ d2
bc1 = t<<6 | t>>(64-6)
t = a[13] ^ d3
bc2 = t<<25 | t>>(64-25)
t = a[19] ^ d4
bc3 = t<<8 | t>>(64-8)
a[20] = bc0 ^ (bc2 &^ bc1)
a[1] = bc1 ^ (bc3 &^ bc2)
a[7] = bc2 ^ (bc4 &^ bc3)
a[13] = bc3 ^ (bc0 &^ bc4)
a[19] = bc4 ^ (bc1 &^ bc0)
t = a[5] ^ d0
bc1 = t<<36 | t>>(64-36)
t = a[11] ^ d1
bc2 = t<<10 | t>>(64-10)
t = a[17] ^ d2
bc3 = t<<15 | t>>(64-15)
t = a[23] ^ d3
bc4 = t<<56 | t>>(64-56)
t = a[4] ^ d4
bc0 = t<<27 | t>>(64-27)
a[5] = bc0 ^ (bc2 &^ bc1)
a[11] = bc1 ^ (bc3 &^ bc2)
a[17] = bc2 ^ (bc4 &^ bc3)
a[23] = bc3 ^ (bc0 &^ bc4)
a[4] = bc4 ^ (bc1 &^ bc0)
t = a[15] ^ d0
bc3 = t<<41 | t>>(64-41)
t = a[21] ^ d1
bc4 = t<<2 | t>>(64-2)
t = a[2] ^ d2
bc0 = t<<62 | t>>(64-62)
t = a[8] ^ d3
bc1 = t<<55 | t>>(64-55)
t = a[14] ^ d4
bc2 = t<<39 | t>>(64-39)
a[15] = bc0 ^ (bc2 &^ bc1)
a[21] = bc1 ^ (bc3 &^ bc2)
a[2] = bc2 ^ (bc4 &^ bc3)
a[8] = bc3 ^ (bc0 &^ bc4)
a[14] = bc4 ^ (bc1 &^ bc0)
// Round 2
bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20]
bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21]
bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22]
bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23]
bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24]
d0 = bc4 ^ (bc1<<1 | bc1>>63)
d1 = bc0 ^ (bc2<<1 | bc2>>63)
d2 = bc1 ^ (bc3<<1 | bc3>>63)
d3 = bc2 ^ (bc4<<1 | bc4>>63)
d4 = bc3 ^ (bc0<<1 | bc0>>63)
bc0 = a[0] ^ d0
t = a[16] ^ d1
bc1 = t<<44 | t>>(64-44)
t = a[7] ^ d2
bc2 = t<<43 | t>>(64-43)
t = a[23] ^ d3
bc3 = t<<21 | t>>(64-21)
t = a[14] ^ d4
bc4 = t<<14 | t>>(64-14)
a[0] = bc0 ^ (bc2 &^ bc1) ^ rc[i+1]
a[16] = bc1 ^ (bc3 &^ bc2)
a[7] = bc2 ^ (bc4 &^ bc3)
a[23] = bc3 ^ (bc0 &^ bc4)
a[14] = bc4 ^ (bc1 &^ bc0)
t = a[20] ^ d0
bc2 = t<<3 | t>>(64-3)
t = a[11] ^ d1
bc3 = t<<45 | t>>(64-45)
t = a[2] ^ d2
bc4 = t<<61 | t>>(64-61)
t = a[18] ^ d3
bc0 = t<<28 | t>>(64-28)
t = a[9] ^ d4
bc1 = t<<20 | t>>(64-20)
a[20] = bc0 ^ (bc2 &^ bc1)
a[11] = bc1 ^ (bc3 &^ bc2)
a[2] = bc2 ^ (bc4 &^ bc3)
a[18] = bc3 ^ (bc0 &^ bc4)
a[9] = bc4 ^ (bc1 &^ bc0)
t = a[15] ^ d0
bc4 = t<<18 | t>>(64-18)
t = a[6] ^ d1
bc0 = t<<1 | t>>(64-1)
t = a[22] ^ d2
bc1 = t<<6 | t>>(64-6)
t = a[13] ^ d3
bc2 = t<<25 | t>>(64-25)
t = a[4] ^ d4
bc3 = t<<8 | t>>(64-8)
a[15] = bc0 ^ (bc2 &^ bc1)
a[6] = bc1 ^ (bc3 &^ bc2)
a[22] = bc2 ^ (bc4 &^ bc3)
a[13] = bc3 ^ (bc0 &^ bc4)
a[4] = bc4 ^ (bc1 &^ bc0)
t = a[10] ^ d0
bc1 = t<<36 | t>>(64-36)
t = a[1] ^ d1
bc2 = t<<10 | t>>(64-10)
t = a[17] ^ d2
bc3 = t<<15 | t>>(64-15)
t = a[8] ^ d3
bc4 = t<<56 | t>>(64-56)
t = a[24] ^ d4
bc0 = t<<27 | t>>(64-27)
a[10] = bc0 ^ (bc2 &^ bc1)
a[1] = bc1 ^ (bc3 &^ bc2)
a[17] = bc2 ^ (bc4 &^ bc3)
a[8] = bc3 ^ (bc0 &^ bc4)
a[24] = bc4 ^ (bc1 &^ bc0)
t = a[5] ^ d0
bc3 = t<<41 | t>>(64-41)
t = a[21] ^ d1
bc4 = t<<2 | t>>(64-2)
t = a[12] ^ d2
bc0 = t<<62 | t>>(64-62)
t = a[3] ^ d3
bc1 = t<<55 | t>>(64-55)
t = a[19] ^ d4
bc2 = t<<39 | t>>(64-39)
a[5] = bc0 ^ (bc2 &^ bc1)
a[21] = bc1 ^ (bc3 &^ bc2)
a[12] = bc2 ^ (bc4 &^ bc3)
a[3] = bc3 ^ (bc0 &^ bc4)
a[19] = bc4 ^ (bc1 &^ bc0)
// Round 3
bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20]
bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21]
bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22]
bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23]
bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24]
d0 = bc4 ^ (bc1<<1 | bc1>>63)
d1 = bc0 ^ (bc2<<1 | bc2>>63)
d2 = bc1 ^ (bc3<<1 | bc3>>63)
d3 = bc2 ^ (bc4<<1 | bc4>>63)
d4 = bc3 ^ (bc0<<1 | bc0>>63)
bc0 = a[0] ^ d0
t = a[11] ^ d1
bc1 = t<<44 | t>>(64-44)
t = a[22] ^ d2
bc2 = t<<43 | t>>(64-43)
t = a[8] ^ d3
bc3 = t<<21 | t>>(64-21)
t = a[19] ^ d4
bc4 = t<<14 | t>>(64-14)
a[0] = bc0 ^ (bc2 &^ bc1) ^ rc[i+2]
a[11] = bc1 ^ (bc3 &^ bc2)
a[22] = bc2 ^ (bc4 &^ bc3)
a[8] = bc3 ^ (bc0 &^ bc4)
a[19] = bc4 ^ (bc1 &^ bc0)
t = a[15] ^ d0
bc2 = t<<3 | t>>(64-3)
t = a[1] ^ d1
bc3 = t<<45 | t>>(64-45)
t = a[12] ^ d2
bc4 = t<<61 | t>>(64-61)
t = a[23] ^ d3
bc0 = t<<28 | t>>(64-28)
t = a[9] ^ d4
bc1 = t<<20 | t>>(64-20)
a[15] = bc0 ^ (bc2 &^ bc1)
a[1] = bc1 ^ (bc3 &^ bc2)
a[12] = bc2 ^ (bc4 &^ bc3)
a[23] = bc3 ^ (bc0 &^ bc4)
a[9] = bc4 ^ (bc1 &^ bc0)
t = a[5] ^ d0
bc4 = t<<18 | t>>(64-18)
t = a[16] ^ d1
bc0 = t<<1 | t>>(64-1)
t = a[2] ^ d2
bc1 = t<<6 | t>>(64-6)
t = a[13] ^ d3
bc2 = t<<25 | t>>(64-25)
t = a[24] ^ d4
bc3 = t<<8 | t>>(64-8)
a[5] = bc0 ^ (bc2 &^ bc1)
a[16] = bc1 ^ (bc3 &^ bc2)
a[2] = bc2 ^ (bc4 &^ bc3)
a[13] = bc3 ^ (bc0 &^ bc4)
a[24] = bc4 ^ (bc1 &^ bc0)
t = a[20] ^ d0
bc1 = t<<36 | t>>(64-36)
t = a[6] ^ d1
bc2 = t<<10 | t>>(64-10)
t = a[17] ^ d2
bc3 = t<<15 | t>>(64-15)
t = a[3] ^ d3
bc4 = t<<56 | t>>(64-56)
t = a[14] ^ d4
bc0 = t<<27 | t>>(64-27)
a[20] = bc0 ^ (bc2 &^ bc1)
a[6] = bc1 ^ (bc3 &^ bc2)
a[17] = bc2 ^ (bc4 &^ bc3)
a[3] = bc3 ^ (bc0 &^ bc4)
a[14] = bc4 ^ (bc1 &^ bc0)
t = a[10] ^ d0
bc3 = t<<41 | t>>(64-41)
t = a[21] ^ d1
bc4 = t<<2 | t>>(64-2)
t = a[7] ^ d2
bc0 = t<<62 | t>>(64-62)
t = a[18] ^ d3
bc1 = t<<55 | t>>(64-55)
t = a[4] ^ d4
bc2 = t<<39 | t>>(64-39)
a[10] = bc0 ^ (bc2 &^ bc1)
a[21] = bc1 ^ (bc3 &^ bc2)
a[7] = bc2 ^ (bc4 &^ bc3)
a[18] = bc3 ^ (bc0 &^ bc4)
a[4] = bc4 ^ (bc1 &^ bc0)
// Round 4
bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20]
bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21]
bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22]
bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23]
bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24]
d0 = bc4 ^ (bc1<<1 | bc1>>63)
d1 = bc0 ^ (bc2<<1 | bc2>>63)
d2 = bc1 ^ (bc3<<1 | bc3>>63)
d3 = bc2 ^ (bc4<<1 | bc4>>63)
d4 = bc3 ^ (bc0<<1 | bc0>>63)
bc0 = a[0] ^ d0
t = a[1] ^ d1
bc1 = t<<44 | t>>(64-44)
t = a[2] ^ d2
bc2 = t<<43 | t>>(64-43)
t = a[3] ^ d3
bc3 = t<<21 | t>>(64-21)
t = a[4] ^ d4
bc4 = t<<14 | t>>(64-14)
a[0] = bc0 ^ (bc2 &^ bc1) ^ rc[i+3]
a[1] = bc1 ^ (bc3 &^ bc2)
a[2] = bc2 ^ (bc4 &^ bc3)
a[3] = bc3 ^ (bc0 &^ bc4)
a[4] = bc4 ^ (bc1 &^ bc0)
t = a[5] ^ d0
bc2 = t<<3 | t>>(64-3)
t = a[6] ^ d1
bc3 = t<<45 | t>>(64-45)
t = a[7] ^ d2
bc4 = t<<61 | t>>(64-61)
t = a[8] ^ d3
bc0 = t<<28 | t>>(64-28)
t = a[9] ^ d4
bc1 = t<<20 | t>>(64-20)
a[5] = bc0 ^ (bc2 &^ bc1)
a[6] = bc1 ^ (bc3 &^ bc2)
a[7] = bc2 ^ (bc4 &^ bc3)
a[8] = bc3 ^ (bc0 &^ bc4)
a[9] = bc4 ^ (bc1 &^ bc0)
t = a[10] ^ d0
bc4 = t<<18 | t>>(64-18)
t = a[11] ^ d1
bc0 = t<<1 | t>>(64-1)
t = a[12] ^ d2
bc1 = t<<6 | t>>(64-6)
t = a[13] ^ d3
bc2 = t<<25 | t>>(64-25)
t = a[14] ^ d4
bc3 = t<<8 | t>>(64-8)
a[10] = bc0 ^ (bc2 &^ bc1)
a[11] = bc1 ^ (bc3 &^ bc2)
a[12] = bc2 ^ (bc4 &^ bc3)
a[13] = bc3 ^ (bc0 &^ bc4)
a[14] = bc4 ^ (bc1 &^ bc0)
t = a[15] ^ d0
bc1 = t<<36 | t>>(64-36)
t = a[16] ^ d1
bc2 = t<<10 | t>>(64-10)
t = a[17] ^ d2
bc3 = t<<15 | t>>(64-15)
t = a[18] ^ d3
bc4 = t<<56 | t>>(64-56)
t = a[19] ^ d4
bc0 = t<<27 | t>>(64-27)
a[15] = bc0 ^ (bc2 &^ bc1)
a[16] = bc1 ^ (bc3 &^ bc2)
a[17] = bc2 ^ (bc4 &^ bc3)
a[18] = bc3 ^ (bc0 &^ bc4)
a[19] = bc4 ^ (bc1 &^ bc0)
t = a[20] ^ d0
bc3 = t<<41 | t>>(64-41)
t = a[21] ^ d1
bc4 = t<<2 | t>>(64-2)
t = a[22] ^ d2
bc0 = t<<62 | t>>(64-62)
t = a[23] ^ d3
bc1 = t<<55 | t>>(64-55)
t = a[24] ^ d4
bc2 = t<<39 | t>>(64-39)
a[20] = bc0 ^ (bc2 &^ bc1)
a[21] = bc1 ^ (bc3 &^ bc2)
a[22] = bc2 ^ (bc4 &^ bc3)
a[23] = bc3 ^ (bc0 &^ bc4)
a[24] = bc4 ^ (bc1 &^ bc0)
}
}

13
vendor/golang.org/x/crypto/sha3/keccakf_amd64.go generated vendored Normal file
View File

@@ -0,0 +1,13 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build amd64,!appengine,!gccgo
package sha3
// This function is implemented in keccakf_amd64.s.
//go:noescape
func keccakF1600(a *[25]uint64)

390
vendor/golang.org/x/crypto/sha3/keccakf_amd64.s generated vendored Normal file
View File

@@ -0,0 +1,390 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build amd64,!appengine,!gccgo
// This code was translated into a form compatible with 6a from the public
// domain sources at https://github.com/gvanas/KeccakCodePackage
// Offsets in state
#define _ba (0*8)
#define _be (1*8)
#define _bi (2*8)
#define _bo (3*8)
#define _bu (4*8)
#define _ga (5*8)
#define _ge (6*8)
#define _gi (7*8)
#define _go (8*8)
#define _gu (9*8)
#define _ka (10*8)
#define _ke (11*8)
#define _ki (12*8)
#define _ko (13*8)
#define _ku (14*8)
#define _ma (15*8)
#define _me (16*8)
#define _mi (17*8)
#define _mo (18*8)
#define _mu (19*8)
#define _sa (20*8)
#define _se (21*8)
#define _si (22*8)
#define _so (23*8)
#define _su (24*8)
// Temporary registers
#define rT1 AX
// Round vars
#define rpState DI
#define rpStack SP
#define rDa BX
#define rDe CX
#define rDi DX
#define rDo R8
#define rDu R9
#define rBa R10
#define rBe R11
#define rBi R12
#define rBo R13
#define rBu R14
#define rCa SI
#define rCe BP
#define rCi rBi
#define rCo rBo
#define rCu R15
#define MOVQ_RBI_RCE MOVQ rBi, rCe
#define XORQ_RT1_RCA XORQ rT1, rCa
#define XORQ_RT1_RCE XORQ rT1, rCe
#define XORQ_RBA_RCU XORQ rBa, rCu
#define XORQ_RBE_RCU XORQ rBe, rCu
#define XORQ_RDU_RCU XORQ rDu, rCu
#define XORQ_RDA_RCA XORQ rDa, rCa
#define XORQ_RDE_RCE XORQ rDe, rCe
#define mKeccakRound(iState, oState, rc, B_RBI_RCE, G_RT1_RCA, G_RT1_RCE, G_RBA_RCU, K_RT1_RCA, K_RT1_RCE, K_RBA_RCU, M_RT1_RCA, M_RT1_RCE, M_RBE_RCU, S_RDU_RCU, S_RDA_RCA, S_RDE_RCE) \
/* Prepare round */ \
MOVQ rCe, rDa; \
ROLQ $1, rDa; \
\
MOVQ _bi(iState), rCi; \
XORQ _gi(iState), rDi; \
XORQ rCu, rDa; \
XORQ _ki(iState), rCi; \
XORQ _mi(iState), rDi; \
XORQ rDi, rCi; \
\
MOVQ rCi, rDe; \
ROLQ $1, rDe; \
\
MOVQ _bo(iState), rCo; \
XORQ _go(iState), rDo; \
XORQ rCa, rDe; \
XORQ _ko(iState), rCo; \
XORQ _mo(iState), rDo; \
XORQ rDo, rCo; \
\
MOVQ rCo, rDi; \
ROLQ $1, rDi; \
\
MOVQ rCu, rDo; \
XORQ rCe, rDi; \
ROLQ $1, rDo; \
\
MOVQ rCa, rDu; \
XORQ rCi, rDo; \
ROLQ $1, rDu; \
\
/* Result b */ \
MOVQ _ba(iState), rBa; \
MOVQ _ge(iState), rBe; \
XORQ rCo, rDu; \
MOVQ _ki(iState), rBi; \
MOVQ _mo(iState), rBo; \
MOVQ _su(iState), rBu; \
XORQ rDe, rBe; \
ROLQ $44, rBe; \
XORQ rDi, rBi; \
XORQ rDa, rBa; \
ROLQ $43, rBi; \
\
MOVQ rBe, rCa; \
MOVQ rc, rT1; \
ORQ rBi, rCa; \
XORQ rBa, rT1; \
XORQ rT1, rCa; \
MOVQ rCa, _ba(oState); \
\
XORQ rDu, rBu; \
ROLQ $14, rBu; \
MOVQ rBa, rCu; \
ANDQ rBe, rCu; \
XORQ rBu, rCu; \
MOVQ rCu, _bu(oState); \
\
XORQ rDo, rBo; \
ROLQ $21, rBo; \
MOVQ rBo, rT1; \
ANDQ rBu, rT1; \
XORQ rBi, rT1; \
MOVQ rT1, _bi(oState); \
\
NOTQ rBi; \
ORQ rBa, rBu; \
ORQ rBo, rBi; \
XORQ rBo, rBu; \
XORQ rBe, rBi; \
MOVQ rBu, _bo(oState); \
MOVQ rBi, _be(oState); \
B_RBI_RCE; \
\
/* Result g */ \
MOVQ _gu(iState), rBe; \
XORQ rDu, rBe; \
MOVQ _ka(iState), rBi; \
ROLQ $20, rBe; \
XORQ rDa, rBi; \
ROLQ $3, rBi; \
MOVQ _bo(iState), rBa; \
MOVQ rBe, rT1; \
ORQ rBi, rT1; \
XORQ rDo, rBa; \
MOVQ _me(iState), rBo; \
MOVQ _si(iState), rBu; \
ROLQ $28, rBa; \
XORQ rBa, rT1; \
MOVQ rT1, _ga(oState); \
G_RT1_RCA; \
\
XORQ rDe, rBo; \
ROLQ $45, rBo; \
MOVQ rBi, rT1; \
ANDQ rBo, rT1; \
XORQ rBe, rT1; \
MOVQ rT1, _ge(oState); \
G_RT1_RCE; \
\
XORQ rDi, rBu; \
ROLQ $61, rBu; \
MOVQ rBu, rT1; \
ORQ rBa, rT1; \
XORQ rBo, rT1; \
MOVQ rT1, _go(oState); \
\
ANDQ rBe, rBa; \
XORQ rBu, rBa; \
MOVQ rBa, _gu(oState); \
NOTQ rBu; \
G_RBA_RCU; \
\
ORQ rBu, rBo; \
XORQ rBi, rBo; \
MOVQ rBo, _gi(oState); \
\
/* Result k */ \
MOVQ _be(iState), rBa; \
MOVQ _gi(iState), rBe; \
MOVQ _ko(iState), rBi; \
MOVQ _mu(iState), rBo; \
MOVQ _sa(iState), rBu; \
XORQ rDi, rBe; \
ROLQ $6, rBe; \
XORQ rDo, rBi; \
ROLQ $25, rBi; \
MOVQ rBe, rT1; \
ORQ rBi, rT1; \
XORQ rDe, rBa; \
ROLQ $1, rBa; \
XORQ rBa, rT1; \
MOVQ rT1, _ka(oState); \
K_RT1_RCA; \
\
XORQ rDu, rBo; \
ROLQ $8, rBo; \
MOVQ rBi, rT1; \
ANDQ rBo, rT1; \
XORQ rBe, rT1; \
MOVQ rT1, _ke(oState); \
K_RT1_RCE; \
\
XORQ rDa, rBu; \
ROLQ $18, rBu; \
NOTQ rBo; \
MOVQ rBo, rT1; \
ANDQ rBu, rT1; \
XORQ rBi, rT1; \
MOVQ rT1, _ki(oState); \
\
MOVQ rBu, rT1; \
ORQ rBa, rT1; \
XORQ rBo, rT1; \
MOVQ rT1, _ko(oState); \
\
ANDQ rBe, rBa; \
XORQ rBu, rBa; \
MOVQ rBa, _ku(oState); \
K_RBA_RCU; \
\
/* Result m */ \
MOVQ _ga(iState), rBe; \
XORQ rDa, rBe; \
MOVQ _ke(iState), rBi; \
ROLQ $36, rBe; \
XORQ rDe, rBi; \
MOVQ _bu(iState), rBa; \
ROLQ $10, rBi; \
MOVQ rBe, rT1; \
MOVQ _mi(iState), rBo; \
ANDQ rBi, rT1; \
XORQ rDu, rBa; \
MOVQ _so(iState), rBu; \
ROLQ $27, rBa; \
XORQ rBa, rT1; \
MOVQ rT1, _ma(oState); \
M_RT1_RCA; \
\
XORQ rDi, rBo; \
ROLQ $15, rBo; \
MOVQ rBi, rT1; \
ORQ rBo, rT1; \
XORQ rBe, rT1; \
MOVQ rT1, _me(oState); \
M_RT1_RCE; \
\
XORQ rDo, rBu; \
ROLQ $56, rBu; \
NOTQ rBo; \
MOVQ rBo, rT1; \
ORQ rBu, rT1; \
XORQ rBi, rT1; \
MOVQ rT1, _mi(oState); \
\
ORQ rBa, rBe; \
XORQ rBu, rBe; \
MOVQ rBe, _mu(oState); \
\
ANDQ rBa, rBu; \
XORQ rBo, rBu; \
MOVQ rBu, _mo(oState); \
M_RBE_RCU; \
\
/* Result s */ \
MOVQ _bi(iState), rBa; \
MOVQ _go(iState), rBe; \
MOVQ _ku(iState), rBi; \
XORQ rDi, rBa; \
MOVQ _ma(iState), rBo; \
ROLQ $62, rBa; \
XORQ rDo, rBe; \
MOVQ _se(iState), rBu; \
ROLQ $55, rBe; \
\
XORQ rDu, rBi; \
MOVQ rBa, rDu; \
XORQ rDe, rBu; \
ROLQ $2, rBu; \
ANDQ rBe, rDu; \
XORQ rBu, rDu; \
MOVQ rDu, _su(oState); \
\
ROLQ $39, rBi; \
S_RDU_RCU; \
NOTQ rBe; \
XORQ rDa, rBo; \
MOVQ rBe, rDa; \
ANDQ rBi, rDa; \
XORQ rBa, rDa; \
MOVQ rDa, _sa(oState); \
S_RDA_RCA; \
\
ROLQ $41, rBo; \
MOVQ rBi, rDe; \
ORQ rBo, rDe; \
XORQ rBe, rDe; \
MOVQ rDe, _se(oState); \
S_RDE_RCE; \
\
MOVQ rBo, rDi; \
MOVQ rBu, rDo; \
ANDQ rBu, rDi; \
ORQ rBa, rDo; \
XORQ rBi, rDi; \
XORQ rBo, rDo; \
MOVQ rDi, _si(oState); \
MOVQ rDo, _so(oState) \
// func keccakF1600(state *[25]uint64)
TEXT ·keccakF1600(SB), 0, $200-8
MOVQ state+0(FP), rpState
// Convert the user state into an internal state
NOTQ _be(rpState)
NOTQ _bi(rpState)
NOTQ _go(rpState)
NOTQ _ki(rpState)
NOTQ _mi(rpState)
NOTQ _sa(rpState)
// Execute the KeccakF permutation
MOVQ _ba(rpState), rCa
MOVQ _be(rpState), rCe
MOVQ _bu(rpState), rCu
XORQ _ga(rpState), rCa
XORQ _ge(rpState), rCe
XORQ _gu(rpState), rCu
XORQ _ka(rpState), rCa
XORQ _ke(rpState), rCe
XORQ _ku(rpState), rCu
XORQ _ma(rpState), rCa
XORQ _me(rpState), rCe
XORQ _mu(rpState), rCu
XORQ _sa(rpState), rCa
XORQ _se(rpState), rCe
MOVQ _si(rpState), rDi
MOVQ _so(rpState), rDo
XORQ _su(rpState), rCu
mKeccakRound(rpState, rpStack, $0x0000000000000001, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpStack, rpState, $0x0000000000008082, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpState, rpStack, $0x800000000000808a, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpStack, rpState, $0x8000000080008000, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpState, rpStack, $0x000000000000808b, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpStack, rpState, $0x0000000080000001, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpState, rpStack, $0x8000000080008081, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpStack, rpState, $0x8000000000008009, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpState, rpStack, $0x000000000000008a, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpStack, rpState, $0x0000000000000088, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpState, rpStack, $0x0000000080008009, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpStack, rpState, $0x000000008000000a, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpState, rpStack, $0x000000008000808b, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpStack, rpState, $0x800000000000008b, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpState, rpStack, $0x8000000000008089, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpStack, rpState, $0x8000000000008003, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpState, rpStack, $0x8000000000008002, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpStack, rpState, $0x8000000000000080, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpState, rpStack, $0x000000000000800a, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpStack, rpState, $0x800000008000000a, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpState, rpStack, $0x8000000080008081, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpStack, rpState, $0x8000000000008080, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpState, rpStack, $0x0000000080000001, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
mKeccakRound(rpStack, rpState, $0x8000000080008008, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP)
// Revert the internal state to the user state
NOTQ _be(rpState)
NOTQ _bi(rpState)
NOTQ _go(rpState)
NOTQ _ki(rpState)
NOTQ _mi(rpState)
NOTQ _sa(rpState)
RET

18
vendor/golang.org/x/crypto/sha3/register.go generated vendored Normal file
View File

@@ -0,0 +1,18 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.4
package sha3
import (
"crypto"
)
func init() {
crypto.RegisterHash(crypto.SHA3_224, New224)
crypto.RegisterHash(crypto.SHA3_256, New256)
crypto.RegisterHash(crypto.SHA3_384, New384)
crypto.RegisterHash(crypto.SHA3_512, New512)
}

192
vendor/golang.org/x/crypto/sha3/sha3.go generated vendored Normal file
View File

@@ -0,0 +1,192 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sha3
// spongeDirection indicates the direction bytes are flowing through the sponge.
type spongeDirection int
const (
// spongeAbsorbing indicates that the sponge is absorbing input.
spongeAbsorbing spongeDirection = iota
// spongeSqueezing indicates that the sponge is being squeezed.
spongeSqueezing
)
const (
// maxRate is the maximum size of the internal buffer. SHAKE-256
// currently needs the largest buffer.
maxRate = 168
)
type state struct {
// Generic sponge components.
a [25]uint64 // main state of the hash
buf []byte // points into storage
rate int // the number of bytes of state to use
// dsbyte contains the "domain separation" bits and the first bit of
// the padding. Sections 6.1 and 6.2 of [1] separate the outputs of the
// SHA-3 and SHAKE functions by appending bitstrings to the message.
// Using a little-endian bit-ordering convention, these are "01" for SHA-3
// and "1111" for SHAKE, or 00000010b and 00001111b, respectively. Then the
// padding rule from section 5.1 is applied to pad the message to a multiple
// of the rate, which involves adding a "1" bit, zero or more "0" bits, and
// a final "1" bit. We merge the first "1" bit from the padding into dsbyte,
// giving 00000110b (0x06) and 00011111b (0x1f).
// [1] http://csrc.nist.gov/publications/drafts/fips-202/fips_202_draft.pdf
// "Draft FIPS 202: SHA-3 Standard: Permutation-Based Hash and
// Extendable-Output Functions (May 2014)"
dsbyte byte
storage [maxRate]byte
// Specific to SHA-3 and SHAKE.
outputLen int // the default output size in bytes
state spongeDirection // whether the sponge is absorbing or squeezing
}
// BlockSize returns the rate of sponge underlying this hash function.
func (d *state) BlockSize() int { return d.rate }
// Size returns the output size of the hash function in bytes.
func (d *state) Size() int { return d.outputLen }
// Reset clears the internal state by zeroing the sponge state and
// the byte buffer, and setting Sponge.state to absorbing.
func (d *state) Reset() {
// Zero the permutation's state.
for i := range d.a {
d.a[i] = 0
}
d.state = spongeAbsorbing
d.buf = d.storage[:0]
}
func (d *state) clone() *state {
ret := *d
if ret.state == spongeAbsorbing {
ret.buf = ret.storage[:len(ret.buf)]
} else {
ret.buf = ret.storage[d.rate-cap(d.buf) : d.rate]
}
return &ret
}
// permute applies the KeccakF-1600 permutation. It handles
// any input-output buffering.
func (d *state) permute() {
switch d.state {
case spongeAbsorbing:
// If we're absorbing, we need to xor the input into the state
// before applying the permutation.
xorIn(d, d.buf)
d.buf = d.storage[:0]
keccakF1600(&d.a)
case spongeSqueezing:
// If we're squeezing, we need to apply the permutatin before
// copying more output.
keccakF1600(&d.a)
d.buf = d.storage[:d.rate]
copyOut(d, d.buf)
}
}
// pads appends the domain separation bits in dsbyte, applies
// the multi-bitrate 10..1 padding rule, and permutes the state.
func (d *state) padAndPermute(dsbyte byte) {
if d.buf == nil {
d.buf = d.storage[:0]
}
// Pad with this instance's domain-separator bits. We know that there's
// at least one byte of space in d.buf because, if it were full,
// permute would have been called to empty it. dsbyte also contains the
// first one bit for the padding. See the comment in the state struct.
d.buf = append(d.buf, dsbyte)
zerosStart := len(d.buf)
d.buf = d.storage[:d.rate]
for i := zerosStart; i < d.rate; i++ {
d.buf[i] = 0
}
// This adds the final one bit for the padding. Because of the way that
// bits are numbered from the LSB upwards, the final bit is the MSB of
// the last byte.
d.buf[d.rate-1] ^= 0x80
// Apply the permutation
d.permute()
d.state = spongeSqueezing
d.buf = d.storage[:d.rate]
copyOut(d, d.buf)
}
// Write absorbs more data into the hash's state. It produces an error
// if more data is written to the ShakeHash after writing
func (d *state) Write(p []byte) (written int, err error) {
if d.state != spongeAbsorbing {
panic("sha3: write to sponge after read")
}
if d.buf == nil {
d.buf = d.storage[:0]
}
written = len(p)
for len(p) > 0 {
if len(d.buf) == 0 && len(p) >= d.rate {
// The fast path; absorb a full "rate" bytes of input and apply the permutation.
xorIn(d, p[:d.rate])
p = p[d.rate:]
keccakF1600(&d.a)
} else {
// The slow path; buffer the input until we can fill the sponge, and then xor it in.
todo := d.rate - len(d.buf)
if todo > len(p) {
todo = len(p)
}
d.buf = append(d.buf, p[:todo]...)
p = p[todo:]
// If the sponge is full, apply the permutation.
if len(d.buf) == d.rate {
d.permute()
}
}
}
return
}
// Read squeezes an arbitrary number of bytes from the sponge.
func (d *state) Read(out []byte) (n int, err error) {
// If we're still absorbing, pad and apply the permutation.
if d.state == spongeAbsorbing {
d.padAndPermute(d.dsbyte)
}
n = len(out)
// Now, do the squeezing.
for len(out) > 0 {
n := copy(out, d.buf)
d.buf = d.buf[n:]
out = out[n:]
// Apply the permutation if we've squeezed the sponge dry.
if len(d.buf) == 0 {
d.permute()
}
}
return
}
// Sum applies padding to the hash state and then squeezes out the desired
// number of output bytes.
func (d *state) Sum(in []byte) []byte {
// Make a copy of the original hash so that caller can keep writing
// and summing.
dup := d.clone()
hash := make([]byte, dup.outputLen)
dup.Read(hash)
return append(in, hash...)
}

284
vendor/golang.org/x/crypto/sha3/sha3_s390x.go generated vendored Normal file
View File

@@ -0,0 +1,284 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//+build !gccgo,!appengine
package sha3
// This file contains code for using the 'compute intermediate
// message digest' (KIMD) and 'compute last message digest' (KLMD)
// instructions to compute SHA-3 and SHAKE hashes on IBM Z.
import (
"hash"
"golang.org/x/sys/cpu"
)
// codes represent 7-bit KIMD/KLMD function codes as defined in
// the Principles of Operation.
type code uint64
const (
// function codes for KIMD/KLMD
sha3_224 code = 32
sha3_256 = 33
sha3_384 = 34
sha3_512 = 35
shake_128 = 36
shake_256 = 37
nopad = 0x100
)
// kimd is a wrapper for the 'compute intermediate message digest' instruction.
// src must be a multiple of the rate for the given function code.
//go:noescape
func kimd(function code, chain *[200]byte, src []byte)
// klmd is a wrapper for the 'compute last message digest' instruction.
// src padding is handled by the instruction.
//go:noescape
func klmd(function code, chain *[200]byte, dst, src []byte)
type asmState struct {
a [200]byte // 1600 bit state
buf []byte // care must be taken to ensure cap(buf) is a multiple of rate
rate int // equivalent to block size
storage [3072]byte // underlying storage for buf
outputLen int // output length if fixed, 0 if not
function code // KIMD/KLMD function code
state spongeDirection // whether the sponge is absorbing or squeezing
}
func newAsmState(function code) *asmState {
var s asmState
s.function = function
switch function {
case sha3_224:
s.rate = 144
s.outputLen = 28
case sha3_256:
s.rate = 136
s.outputLen = 32
case sha3_384:
s.rate = 104
s.outputLen = 48
case sha3_512:
s.rate = 72
s.outputLen = 64
case shake_128:
s.rate = 168
case shake_256:
s.rate = 136
default:
panic("sha3: unrecognized function code")
}
// limit s.buf size to a multiple of s.rate
s.resetBuf()
return &s
}
func (s *asmState) clone() *asmState {
c := *s
c.buf = c.storage[:len(s.buf):cap(s.buf)]
return &c
}
// copyIntoBuf copies b into buf. It will panic if there is not enough space to
// store all of b.
func (s *asmState) copyIntoBuf(b []byte) {
bufLen := len(s.buf)
s.buf = s.buf[:len(s.buf)+len(b)]
copy(s.buf[bufLen:], b)
}
// resetBuf points buf at storage, sets the length to 0 and sets cap to be a
// multiple of the rate.
func (s *asmState) resetBuf() {
max := (cap(s.storage) / s.rate) * s.rate
s.buf = s.storage[:0:max]
}
// Write (via the embedded io.Writer interface) adds more data to the running hash.
// It never returns an error.
func (s *asmState) Write(b []byte) (int, error) {
if s.state != spongeAbsorbing {
panic("sha3: write to sponge after read")
}
length := len(b)
for len(b) > 0 {
if len(s.buf) == 0 && len(b) >= cap(s.buf) {
// Hash the data directly and push any remaining bytes
// into the buffer.
remainder := len(s.buf) % s.rate
kimd(s.function, &s.a, b[:len(b)-remainder])
if remainder != 0 {
s.copyIntoBuf(b[len(b)-remainder:])
}
return length, nil
}
if len(s.buf) == cap(s.buf) {
// flush the buffer
kimd(s.function, &s.a, s.buf)
s.buf = s.buf[:0]
}
// copy as much as we can into the buffer
n := len(b)
if len(b) > cap(s.buf)-len(s.buf) {
n = cap(s.buf) - len(s.buf)
}
s.copyIntoBuf(b[:n])
b = b[n:]
}
return length, nil
}
// Read squeezes an arbitrary number of bytes from the sponge.
func (s *asmState) Read(out []byte) (n int, err error) {
n = len(out)
// need to pad if we were absorbing
if s.state == spongeAbsorbing {
s.state = spongeSqueezing
// write hash directly into out if possible
if len(out)%s.rate == 0 {
klmd(s.function, &s.a, out, s.buf) // len(out) may be 0
s.buf = s.buf[:0]
return
}
// write hash into buffer
max := cap(s.buf)
if max > len(out) {
max = (len(out)/s.rate)*s.rate + s.rate
}
klmd(s.function, &s.a, s.buf[:max], s.buf)
s.buf = s.buf[:max]
}
for len(out) > 0 {
// flush the buffer
if len(s.buf) != 0 {
c := copy(out, s.buf)
out = out[c:]
s.buf = s.buf[c:]
continue
}
// write hash directly into out if possible
if len(out)%s.rate == 0 {
klmd(s.function|nopad, &s.a, out, nil)
return
}
// write hash into buffer
s.resetBuf()
if cap(s.buf) > len(out) {
s.buf = s.buf[:(len(out)/s.rate)*s.rate+s.rate]
}
klmd(s.function|nopad, &s.a, s.buf, nil)
}
return
}
// Sum appends the current hash to b and returns the resulting slice.
// It does not change the underlying hash state.
func (s *asmState) Sum(b []byte) []byte {
if s.outputLen == 0 {
panic("sha3: cannot call Sum on SHAKE functions")
}
// Copy the state to preserve the original.
a := s.a
// Hash the buffer. Note that we don't clear it because we
// aren't updating the state.
klmd(s.function, &a, nil, s.buf)
return append(b, a[:s.outputLen]...)
}
// Reset resets the Hash to its initial state.
func (s *asmState) Reset() {
for i := range s.a {
s.a[i] = 0
}
s.resetBuf()
s.state = spongeAbsorbing
}
// Size returns the number of bytes Sum will return.
func (s *asmState) Size() int {
return s.outputLen
}
// BlockSize returns the hash's underlying block size.
// The Write method must be able to accept any amount
// of data, but it may operate more efficiently if all writes
// are a multiple of the block size.
func (s *asmState) BlockSize() int {
return s.rate
}
// Clone returns a copy of the ShakeHash in its current state.
func (s *asmState) Clone() ShakeHash {
return s.clone()
}
// new224Asm returns an assembly implementation of SHA3-224 if available,
// otherwise it returns nil.
func new224Asm() hash.Hash {
if cpu.S390X.HasSHA3 {
return newAsmState(sha3_224)
}
return nil
}
// new256Asm returns an assembly implementation of SHA3-256 if available,
// otherwise it returns nil.
func new256Asm() hash.Hash {
if cpu.S390X.HasSHA3 {
return newAsmState(sha3_256)
}
return nil
}
// new384Asm returns an assembly implementation of SHA3-384 if available,
// otherwise it returns nil.
func new384Asm() hash.Hash {
if cpu.S390X.HasSHA3 {
return newAsmState(sha3_384)
}
return nil
}
// new512Asm returns an assembly implementation of SHA3-512 if available,
// otherwise it returns nil.
func new512Asm() hash.Hash {
if cpu.S390X.HasSHA3 {
return newAsmState(sha3_512)
}
return nil
}
// newShake128Asm returns an assembly implementation of SHAKE-128 if available,
// otherwise it returns nil.
func newShake128Asm() ShakeHash {
if cpu.S390X.HasSHA3 {
return newAsmState(shake_128)
}
return nil
}
// newShake256Asm returns an assembly implementation of SHAKE-256 if available,
// otherwise it returns nil.
func newShake256Asm() ShakeHash {
if cpu.S390X.HasSHA3 {
return newAsmState(shake_256)
}
return nil
}

33
vendor/golang.org/x/crypto/sha3/sha3_s390x.s generated vendored Normal file
View File

@@ -0,0 +1,33 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//+build !gccgo,!appengine
#include "textflag.h"
// func kimd(function code, chain *[200]byte, src []byte)
TEXT ·kimd(SB), NOFRAME|NOSPLIT, $0-40
MOVD function+0(FP), R0
MOVD chain+8(FP), R1
LMG src+16(FP), R2, R3 // R2=base, R3=len
continue:
WORD $0xB93E0002 // KIMD --, R2
BVS continue // continue if interrupted
MOVD $0, R0 // reset R0 for pre-go1.8 compilers
RET
// func klmd(function code, chain *[200]byte, dst, src []byte)
TEXT ·klmd(SB), NOFRAME|NOSPLIT, $0-64
// TODO: SHAKE support
MOVD function+0(FP), R0
MOVD chain+8(FP), R1
LMG dst+16(FP), R2, R3 // R2=base, R3=len
LMG src+40(FP), R4, R5 // R4=base, R5=len
continue:
WORD $0xB93F0024 // KLMD R2, R4
BVS continue // continue if interrupted
MOVD $0, R0 // reset R0 for pre-go1.8 compilers
RET

Some files were not shown because too many files have changed in this diff Show More