Compare commits

..

8 Commits

Author SHA1 Message Date
rymnc
0ad1ed296d fix: missing submodule 2024-04-09 01:43:09 +03:00
rymnc
9708e925b8 chore: Release 2024-04-09 01:35:17 +03:00
rymnc
c5884ec830 chore: sunset deprecated crates for rln-v1 branch 2024-04-09 01:19:25 +03:00
rymnc
7dd019b0a5 chore: Release 2024-03-07 01:41:06 +05:30
Aaryamann Challani
78bec51fba feat(rln-v1): return empty metadata if it doesnt exist (#231) 2024-03-07 01:37:01 +05:30
rymnc
b0be32943e chore: Release 2024-01-23 09:30:38 -04:00
Richard Ramos
09da5304c1 fix: add support to aarch64-linux-android 2024-01-23 09:30:38 -04:00
Alvaro Revuelta
d5e09524d7 Expose generate proof with witness ffi (#227)
* Expose generate proof with witness ffi

* Force run CI

* Update ci.yml

* Fix wasm with_witness

* Remove forced CI run
2024-01-23 16:49:54 +05:30
82 changed files with 5887 additions and 9747 deletions

5
.github/labels.yml vendored
View File

@@ -90,6 +90,11 @@
description: go-waku-productionization track (Waku Product)
color: 9DEA79
# Tracks within zk-WASM project
- name: track:kickoff
description: Kickoff track (zk-WASM)
color: 06B6C8
# Tracks within RAD project
- name: track:waku-specs
description: Waku specs track (RAD)

View File

@@ -21,11 +21,11 @@ on:
name: Tests
jobs:
utils-test:
test:
strategy:
matrix:
platform: [ ubuntu-latest, macos-latest ]
crate: [ utils ]
platform: [ubuntu-latest, macos-latest]
crate: [rln, utils]
runs-on: ${{ matrix.platform }}
timeout-minutes: 60
@@ -47,46 +47,14 @@ jobs:
cargo make test --release
working-directory: ${{ matrix.crate }}
rln-test:
strategy:
matrix:
platform: [ ubuntu-latest, macos-latest ]
crate: [ rln ]
feature: [ "default", "arkzkey", "stateless" ]
runs-on: ${{ matrix.platform }}
timeout-minutes: 60
name: test - ${{ matrix.crate }} - ${{ matrix.platform }} - ${{ matrix.feature }}
steps:
- name: Checkout sources
uses: actions/checkout@v3
- name: Install stable toolchain
uses: actions-rs/toolchain@v1
with:
profile: minimal
toolchain: stable
override: true
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: make installdeps
- name: cargo-make test
run: |
if [ ${{ matrix.feature }} == default ]; then
cargo make test --release
else
cargo make test_${{ matrix.feature }} --release
fi
working-directory: ${{ matrix.crate }}
rln-wasm:
strategy:
matrix:
platform: [ ubuntu-latest, macos-latest ]
feature: [ "default", "arkzkey" ]
platform: [ubuntu-latest, macos-latest]
runs-on: ${{ matrix.platform }}
timeout-minutes: 60
name: test - rln-wasm - ${{ matrix.platform }} - ${{ matrix.feature }}
name: test - rln-wasm - ${{ matrix.platform }}
steps:
- uses: actions/checkout@v3
- name: Install stable toolchain
@@ -98,29 +66,19 @@ jobs:
- uses: Swatinem/rust-cache@v2
- name: Install Dependencies
run: make installdeps
- name: cargo-make build
run: |
if [ ${{ matrix.feature }} == default ]; then
cargo make build
else
cargo make build_${{ matrix.feature }}
fi
- name: Install wasm-pack
uses: jetli/wasm-pack-action@v0.3.0
- run: cargo make build
working-directory: rln-wasm
- name: cargo-make test
run: |
if [ ${{ matrix.feature }} == default ]; then
cargo make test --release
else
cargo make test_${{ matrix.feature }} --release
fi
- run: cargo make test --release
working-directory: rln-wasm
lint:
strategy:
matrix:
# we run lint tests only on ubuntu
platform: [ ubuntu-latest ]
crate: [ rln, rln-wasm, utils ]
platform: [ubuntu-latest]
crate: [rln, utils]
runs-on: ${{ matrix.platform }}
timeout-minutes: 60
@@ -145,17 +103,19 @@ jobs:
- name: cargo clippy
if: success() || failure()
run: |
cargo clippy --release
cargo clippy --release -- -D warnings
working-directory: ${{ matrix.crate }}
benchmark-utils:
# We skip clippy on rln-wasm, since wasm target is managed by cargo make
# Currently not treating warnings as error, too noisy
# -- -D warnings
benchmark:
# run only in pull requests
if: github.event_name == 'pull_request'
strategy:
matrix:
# we run benchmark tests only on ubuntu
platform: [ ubuntu-latest ]
crate: [ utils ]
platform: [ubuntu-latest]
crate: [rln, utils]
runs-on: ${{ matrix.platform }}
timeout-minutes: 60
@@ -168,26 +128,3 @@ jobs:
with:
branchName: ${{ github.base_ref }}
cwd: ${{ matrix.crate }}
benchmark-rln:
# run only in pull requests
if: github.event_name == 'pull_request'
strategy:
matrix:
# we run benchmark tests only on ubuntu
platform: [ ubuntu-latest ]
crate: [ rln ]
feature: [ "default", "arkzkey" ]
runs-on: ${{ matrix.platform }}
timeout-minutes: 60
name: benchmark - ${{ matrix.platform }} - ${{ matrix.crate }} - ${{ matrix.feature }}
steps:
- name: Checkout sources
uses: actions/checkout@v3
- uses: Swatinem/rust-cache@v2
- uses: boa-dev/criterion-compare-action@v3
with:
branchName: ${{ github.base_ref }}
cwd: ${{ matrix.crate }}
features: ${{ matrix.feature }}

View File

@@ -8,14 +8,10 @@ jobs:
linux:
strategy:
matrix:
feature: [ "default", "arkzkey", "stateless" ]
target:
target:
- x86_64-unknown-linux-gnu
- aarch64-unknown-linux-gnu
# - i686-unknown-linux-gnu
include:
- feature: stateless
cargo_args: --exclude rln-cli
- i686-unknown-linux-gnu
name: Linux build
runs-on: ubuntu-latest
steps:
@@ -33,16 +29,16 @@ jobs:
run: make installdeps
- name: cross build
run: |
cross build --release --target ${{ matrix.target }} --features ${{ matrix.feature }} --workspace ${{ matrix.cargo_args }}
cross build --release --target ${{ matrix.target }} --workspace --exclude rln-wasm
mkdir release
cp target/${{ matrix.target }}/release/librln* release/
tar -czvf ${{ matrix.target }}-${{ matrix.feature }}-rln.tar.gz release/
tar -czvf ${{ matrix.target }}-rln.tar.gz release/
- name: Upload archive artifact
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v2
with:
name: ${{ matrix.target }}-${{ matrix.feature }}-archive
path: ${{ matrix.target }}-${{ matrix.feature }}-rln.tar.gz
name: ${{ matrix.target }}-archive
path: ${{ matrix.target }}-rln.tar.gz
retention-days: 2
macos:
@@ -50,13 +46,9 @@ jobs:
runs-on: macos-latest
strategy:
matrix:
feature: [ "default", "arkzkey", "stateless" ]
target:
target:
- x86_64-apple-darwin
- aarch64-apple-darwin
include:
- feature: stateless
cargo_args: --exclude rln-cli
steps:
- name: Checkout sources
uses: actions/checkout@v3
@@ -72,18 +64,18 @@ jobs:
run: make installdeps
- name: cross build
run: |
cross build --release --target ${{ matrix.target }} --features ${{ matrix.feature }} --workspace ${{ matrix.cargo_args }}
cross build --release --target ${{ matrix.target }} --workspace --exclude rln-wasm
mkdir release
cp target/${{ matrix.target }}/release/librln* release/
tar -czvf ${{ matrix.target }}-${{ matrix.feature }}-rln.tar.gz release/
tar -czvf ${{ matrix.target }}-rln.tar.gz release/
- name: Upload archive artifact
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v2
with:
name: ${{ matrix.target }}-${{ matrix.feature }}-archive
path: ${{ matrix.target }}-${{ matrix.feature }}-rln.tar.gz
name: ${{ matrix.target }}-archive
path: ${{ matrix.target }}-rln.tar.gz
retention-days: 2
browser-rln-wasm:
name: Browser build (RLN WASM)
runs-on: ubuntu-latest
@@ -99,6 +91,8 @@ jobs:
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: make installdeps
- name: Install wasm-pack
uses: jetli/wasm-pack-action@v0.3.0
- name: cross make build
run: |
cross make build
@@ -108,15 +102,16 @@ jobs:
working-directory: rln-wasm
- name: Upload archive artifact
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v2
with:
name: browser-rln-wasm-archive
path: rln-wasm/browser-rln-wasm.tar.gz
retention-days: 2
prepare-prerelease:
name: Prepare pre-release
needs: [ linux, macos, browser-rln-wasm ]
needs: [linux, macos, browser-rln-wasm]
runs-on: ubuntu-latest
steps:
- name: Checkout code
@@ -124,8 +119,8 @@ jobs:
with:
ref: master
- name: Download artifacts
uses: actions/download-artifact@v4
uses: actions/download-artifact@v2
- name: Delete tag
uses: dev-drprasad/delete-tag-and-release@v0.2.1
with:
@@ -147,7 +142,7 @@ jobs:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
- name: Delete artifacts
uses: geekyeggo/delete-artifact@v5
uses: geekyeggo/delete-artifact@v1
with:
failOnError: false
name: |

5
.gitignore vendored
View File

@@ -3,15 +3,12 @@
*.log
tmp/
rln/pmtree_db
rln-cli/database
# Generated by Cargo
# will have compiled files and executables
debug/
target/
# Generated by Nix
result/
wabt/
# These are backup files generated by rustfmt
**/*.rs.bk

4
.gitmodules vendored Normal file
View File

@@ -0,0 +1,4 @@
[submodule "rln/vendor/rln"]
path = rln/vendor/rln
ignore = dirty
url = https://github.com/Rate-Limiting-Nullifier/rln_circuits.git

View File

@@ -1,5 +1,3 @@
# CHANGE LOG
## 2023-02-28 v0.2
This release contains:
@@ -12,6 +10,7 @@ This release contains:
- Dual License under Apache 2.0 and MIT
- RLN compiles as a static library, which can be consumed through a C FFI
## 2022-09-19 v0.1
Initial beta release.

2541
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,6 +1,5 @@
[workspace]
members = ["rln", "rln-cli", "rln-wasm", "utils"]
default-members = ["rln", "rln-cli", "rln-wasm", "utils"]
resolver = "2"
# Compilation profile for any non-workspace member.
@@ -8,3 +7,7 @@ resolver = "2"
# while having neglible impact on incremental build times.
[profile.dev.package."*"]
opt-level = 3
[profile.release.package."rln-wasm"]
# Tell `rustc` to optimize for small code size.
opt-level = "s"

View File

@@ -1,4 +1,4 @@
.PHONY: all installdeps build test bench clean
.PHONY: all installdeps build test clean
all: .pre-build build
@@ -13,21 +13,15 @@ endif
installdeps: .pre-build
ifeq ($(shell uname),Darwin)
@brew update
# commented due to https://github.com/orgs/Homebrew/discussions/4612
# @brew update
@brew install cmake ninja
else ifeq ($(shell uname),Linux)
@sudo apt-get update
@sudo apt-get install -y cmake ninja-build
endif
@if [ ! -d "$$HOME/.nvm" ]; then \
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.40.2/install.sh | bash; \
fi
@bash -c 'export NVM_DIR="$$HOME/.nvm" && \
[ -s "$$NVM_DIR/nvm.sh" ] && \. "$$NVM_DIR/nvm.sh" && \
nvm install 22.14.0 && \
nvm use 22.14.0'
@curl https://rustwasm.github.io/wasm-pack/installer/init.sh -sSf | sh
@echo "\033[1;32m>>> Now run this command to activate Node.js 22.14.0: \033[1;33msource $$HOME/.nvm/nvm.sh && nvm use 22.14.0\033[0m"
@git clone --recursive https://github.com/WebAssembly/wabt.git
@cd wabt && mkdir build && cd build && cmake .. -GNinja && ninja && sudo ninja install
build: .pre-build
@cargo make build
@@ -35,8 +29,5 @@ build: .pre-build
test: .pre-build
@cargo make test
bench: .pre-build
@cargo make bench
clean:
@cargo clean
@cargo clean

View File

@@ -1,81 +1,35 @@
# Zerokit
[![Crates.io](https://img.shields.io/crates/v/rln.svg)](https://crates.io/crates/rln)
[![GitHub Workflow Status](https://img.shields.io/github/actions/workflow/status/vacp2p/zerokit/ci.yml?branch=master&label=CI)](https://github.com/vacp2p/zerokit/actions)
[![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[![License: Apache 2.0](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
A set of Zero Knowledge modules, written in Rust and designed to be used in other system programming environments.
A collection of Zero Knowledge modules written in Rust and designed to be used in other system programming environments.
## Initial scope
## Overview
Focus on RLN and being able to use [Circom](https://iden3.io/circom) based
version through ark-circom, as opposed to the native one that currently exists
in Rust.
Zerokit provides zero-knowledge cryptographic primitives with a focus on performance, security, and usability.
The current focus is on Rate-Limiting Nullifier [RLN](https://github.com/Rate-Limiting-Nullifier) implementation.
## Acknowledgements
Current implementation is based on the following [specification](https://github.com/vacp2p/rfc-index/blob/main/vac/raw/rln-v2.md)
and focused on RLNv2 which allows to set a rate limit for the number of messages that can be sent by a user.
- Uses [ark-circom](https://github.com/gakonst/ark-circom), Rust wrapper around Circom.
## Features
- Inspired by Applied ZKP group work, e.g. [zk-kit](https://github.com/appliedzkp/zk-kit).
- **RLN Implementation**: Efficient Rate-Limiting Nullifier using zkSNARKs
- **Circom Compatibility**: Uses Circom-based circuits for RLN
- **Cross-Platform**: Support for multiple architectures (see compatibility note below)
- **FFI-Friendly**: Easy to integrate with other languages
- [RLN library](https://github.com/kilic/rln) written in Rust based on Bellman.
## Architecture
Zerokit currently focuses on RLN (Rate-Limiting Nullifier) implementation using [Circom](https://iden3.io/circom) circuits through ark-circom, providing an alternative to existing native Rust implementations.
- [semaphore-rs](https://github.com/worldcoin/semaphore-rs) written in Rust based on ark-circom.
## Build and Test
> [!IMPORTANT]
> For WASM support or x32 architecture builds, use version `0.6.1`. The current version has dependency issues for these platforms. WASM support will return in a future release.
### Install Dependencies
To install missing dependencies, run the following commands from the root folder
```bash
make installdeps
```
### Build and Test All Crates
To build and test all crates, run the following commands from the root folder
```bash
make build
make test
```
## Release Assets
## Release assets
We use [`cross-rs`](https://github.com/cross-rs/cross) to cross-compile and generate release assets:
```bash
# Example: Build for specific target
cross build --target x86_64-unknown-linux-gnu --release -p rln
```
## Used By
Zerokit powers zero-knowledge functionality in:
- [**nwaku**](https://github.com/waku-org/nwaku) - Nim implementation of the Waku v2 protocol
- [**js-rln**](https://github.com/waku-org/js-rln) - JavaScript bindings for RLN
## Acknowledgements
- Inspired by [Applied ZKP](https://zkp.science/) group work, including [zk-kit](https://github.com/appliedzkp/zk-kit)
- Uses [ark-circom](https://github.com/gakonst/ark-circom) for zkey and Groth16 proof generation
- Witness calculation based on [circom-witnesscalc](https://github.com/iden3/circom-witnesscalc) by iden3.
The execution graph file used by this code has been generated by means of the same iden3 software.
> [!IMPORTANT]
> The circom-witnesscalc code fragments have been borrowed instead of depending on this crate,
because its types of input and output data were incompatible with the corresponding zerokit code fragments,
and circom-witnesscalc has some dependencies, which are redundant for our purpose.
## Documentation
For detailed documentation on each module:
```bash
cargo doc --open
```
We use [`cross-rs`](https://github.com/cross-rs/cross) to cross-compile and generate release assets for rln.

27
flake.lock generated
View File

@@ -1,27 +0,0 @@
{
"nodes": {
"nixpkgs": {
"locked": {
"lastModified": 1740603184,
"narHash": "sha256-t+VaahjQAWyA+Ctn2idyo1yxRIYpaDxMgHkgCNiMJa4=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "f44bd8ca21e026135061a0a57dcf3d0775b67a49",
"type": "github"
},
"original": {
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "f44bd8ca21e026135061a0a57dcf3d0775b67a49",
"type": "github"
}
},
"root": {
"inputs": {
"nixpkgs": "nixpkgs"
}
}
},
"root": "root",
"version": 7
}

View File

@@ -1,38 +0,0 @@
{
description = "A flake for building zerokit";
inputs = {
# Version 24.11
nixpkgs.url = "github:NixOS/nixpkgs?rev=f44bd8ca21e026135061a0a57dcf3d0775b67a49";
};
outputs = { self, nixpkgs }:
let
stableSystems = [
"x86_64-linux" "aarch64-linux"
"x86_64-darwin" "aarch64-darwin"
"x86_64-windows" "i686-linux"
"i686-windows"
];
forAllSystems = nixpkgs.lib.genAttrs stableSystems;
pkgsFor = forAllSystems (system: import nixpkgs { inherit system; });
in rec
{
packages = forAllSystems (system: let
pkgs = pkgsFor.${system};
in rec {
zerokit-android-arm64 = pkgs.callPackage ./nix/default.nix { target-platform="aarch64-android-prebuilt"; rust-target= "aarch64-linux-android"; };
default = zerokit-android-arm64;
});
devShells = forAllSystems (system: let
pkgs = pkgsFor.${system};
in {
default = pkgs.mkShell {
inputsFrom = [
packages.${system}.default
];
};
});
};
}

View File

@@ -1,35 +0,0 @@
{
pkgs,
target-platform ? "aarch64-android-prebuilt",
rust-target ? "aarch64-linux-android",
}:
pkgs.pkgsCross.${target-platform}.rustPlatform.buildRustPackage {
pname = "zerokit";
version = "nightly";
src = ../.;
cargoLock = {
lockFile = ../Cargo.lock;
allowBuiltinFetchGit = true;
};
CARGO_HOME = "/tmp";
buildPhase = ''
pushd rln
cargo rustc --crate-type=cdylib --release --lib --target=${rust-target}
popd
'';
installPhase = ''
mkdir -p $out/
cp ./target/${rust-target}/release/librln.so $out/
'';
meta = with pkgs.lib; {
description = "Zerokit";
license = licenses.mit;
};
}

View File

@@ -1,27 +1,13 @@
[package]
name = "rln-cli"
version = "0.4.0"
version = "0.3.0"
edition = "2021"
[[example]]
name = "relay"
path = "src/examples/relay.rs"
[[example]]
name = "stateless"
path = "src/examples/stateless.rs"
required-features = ["stateless"]
[dependencies]
rln = { path = "../rln", default-features = false }
zerokit_utils = { path = "../utils" }
clap = { version = "4.5.35", features = ["cargo", "derive", "env"] }
clap_derive = { version = "4.5.32" }
color-eyre = "0.6.3"
serde_json = "1.0"
serde = { version = "1.0", features = ["derive"] }
[features]
default = []
arkzkey = ["rln/arkzkey"]
stateless = ["rln/stateless"]
rln = { path = "../rln" }
clap = { version = "4.2.7", features = ["cargo", "derive", "env"]}
clap_derive = { version = "=4.2.0" }
color-eyre = "=0.6.2"
# serialization
serde_json = "1.0.48"
serde = { version = "1.0.130", features = ["derive"] }

View File

@@ -1,9 +0,0 @@
[tasks.build]
command = "cargo"
args = ["build"]
[tasks.test]
disabled = true
[tasks.bench]
disabled = true

View File

@@ -1,170 +0,0 @@
# Zerokit RLN-CLI
The Zerokit RLN-CLI provides a command-line interface for interacting with the public API of the [Zerokit RLN Module](../rln/README.md).
It also contain:
+ [Relay Example](#relay-example) to demonstrate the use of the RLN module for spam prevention.
+ [Stateless Example](#stateless-example) to demonstrate the use of the RLN module for stateless features.
## Configuration
The CLI can be configured using a JSON configuration file (see the [example](example.config.json)).
You can specify the configuration file path using the `RLN_CONFIG_PATH` environment variable:
```bash
export RLN_CONFIG_PATH=example.config.json
```
Alternatively, you can provide the configuration file path as an argument for each command:
```bash
RLN_CONFIG_PATH=example.config.json cargo run -- <SUBCOMMAND> [OPTIONS]
```
If the configuration file is empty, default settings will be used, but the tree data folder will be temporary and not saved to the preconfigured path.
We recommend using the example config, as all commands (except `new` and `create-with-params`) require an initialized RLN instance.
## Feature Flags
The CLI supports optional features. To enable the **arkzkey** feature, run:
```bash
cargo run --features arkzkey -- <SUBCOMMAND> [OPTIONS]
```
For more details, refer to the [Zerokit RLN Module](../rln/README.md) documentation.
## Relay Example
The following [Example](src/examples/relay.rs) demonstrates how RLN enables spam prevention in anonymous environments for multple users.
You can run the example using the following command:
```bash
cargo run --example relay
```
or with the **arkzkey** feature flag:
```bash
cargo run --example relay --features arkzkey
```
You can also change **MESSAGE_LIMIT** and **TREEE_HEIGHT** in the [relay.rs](src/examples/relay.rs) file to see how the RLN instance behaves with different parameters.
The customize **TREEE_HEIGHT** constant differs from the default value of `20` should follow [Custom Circuit Compilation](../rln/README.md#advanced-custom-circuit-compilation) instructions.
## Stateless Example
The following [Example](src/examples/stateless.rs) demonstrates how RLN can be used for stateless features by creating the Merkle tree outside of RLN instance.
This example function similarly to the [Relay Example](#relay-example) but uses a stateless RLN and seperate Merkle tree.
You can run the example using the following command:
```bash
cargo run --example stateless --features stateless
```
or with the **arkzkey** feature flag:
```bash
cargo run --example stateless --features stateless,arkzkey
```
## CLI Commands
### Instance Management
To initialize a new RLN instance:
```bash
cargo run new --tree-height <HEIGHT>
```
To initialize an RLN instance with custom parameters:
```bash
cargo run new-with-params --resources-path <PATH> --tree-height <HEIGHT>
```
To update the Merkle tree height:
```bash
cargo run set-tree --tree-height <HEIGHT>
```
### Leaf Operations
To set a single leaf:
```bash
cargo run set-leaf --index <INDEX> --input <INPUT_PATH>
```
To set multiple leaves:
```bash
cargo run set-multiple-leaves --index <START_INDEX> --input <INPUT_PATH>
```
To reset multiple leaves:
```bash
cargo run reset-multiple-leaves --input <INPUT_PATH>
```
To set the next available leaf:
```bash
cargo run set-next-leaf --input <INPUT_PATH>
```
To delete a specific leaf:
```bash
cargo run delete-leaf --index <INDEX>
```
### Proof Operations
To generate a proof:
```bash
cargo run prove --input <INPUT_PATH>
```
To generate an RLN proof:
```bash
cargo run generate-proof --input <INPUT_PATH>
```
To verify a proof:
```bash
cargo run verify --input <PROOF_PATH>
```
To verify a proof with multiple Merkle roots:
```bash
cargo run verify-with-roots --input <INPUT_PATH> --roots <ROOTS_PATH>
```
### Tree Information
To retrieve the current Merkle root:
```bash
cargo run get-root
```
To obtain a Merkle proof for a specific index:
```bash
cargo run get-proof --index <INDEX>
```

View File

@@ -1,11 +0,0 @@
{
"tree_config": {
"path": "database",
"temporary": false,
"cache_capacity": 150000,
"flush_every_ms": 12000,
"mode": "HighThroughput",
"use_compression": false
},
"tree_height": 20
}

View File

@@ -1,51 +1,49 @@
use std::path::PathBuf;
use clap::Subcommand;
use rln::circuit::TEST_TREE_HEIGHT;
#[derive(Subcommand)]
pub(crate) enum Commands {
New {
#[arg(short, long, default_value_t = TEST_TREE_HEIGHT)]
tree_height: usize,
/// Sets a custom config file
#[arg(short, long)]
config: PathBuf,
},
NewWithParams {
#[arg(short, long, default_value_t = TEST_TREE_HEIGHT)]
tree_height: usize,
#[arg(short, long, default_value = "../rln/resources/tree_height_20")]
resources_path: PathBuf,
/// Sets a custom config file
#[arg(short, long)]
config: PathBuf,
#[arg(short, long)]
tree_config_input: PathBuf,
},
SetTree {
#[arg(short, long, default_value_t = TEST_TREE_HEIGHT)]
tree_height: usize,
},
SetLeaf {
#[arg(short, long)]
index: usize,
#[arg(short, long)]
input: PathBuf,
file: PathBuf,
},
SetMultipleLeaves {
#[arg(short, long)]
index: usize,
#[arg(short, long)]
input: PathBuf,
file: PathBuf,
},
ResetMultipleLeaves {
#[arg(short, long)]
input: PathBuf,
file: PathBuf,
},
SetNextLeaf {
#[arg(short, long)]
input: PathBuf,
file: PathBuf,
},
DeleteLeaf {
#[arg(short, long)]
index: usize,
},
GetRoot,
GetProof {
#[arg(short, long)]
index: usize,
},
Prove {
@@ -54,7 +52,7 @@ pub(crate) enum Commands {
},
Verify {
#[arg(short, long)]
input: PathBuf,
file: PathBuf,
},
GenerateProof {
#[arg(short, long)]

View File

@@ -1,10 +1,8 @@
use std::{fs::File, io::Read, path::PathBuf};
use color_eyre::Result;
use serde::{Deserialize, Serialize};
use serde_json::Value;
use std::{fs::File, io::Read, path::PathBuf};
pub const RLN_CONFIG_PATH: &str = "RLN_CONFIG_PATH";
pub const RLN_STATE_PATH: &str = "RLN_STATE_PATH";
#[derive(Default, Serialize, Deserialize)]
pub(crate) struct Config {
@@ -13,26 +11,19 @@ pub(crate) struct Config {
#[derive(Default, Serialize, Deserialize)]
pub(crate) struct InnerConfig {
pub file: PathBuf,
pub tree_height: usize,
pub tree_config: Value,
}
impl Config {
pub(crate) fn load_config() -> Result<Config> {
match std::env::var(RLN_CONFIG_PATH) {
Ok(env) => {
let path = PathBuf::from(env);
let mut file = File::open(path)?;
let mut contents = String::new();
file.read_to_string(&mut contents)?;
let inner: InnerConfig = serde_json::from_str(&contents)?;
Ok(Config { inner: Some(inner) })
}
Err(_) => Ok(Config::default()),
}
}
let path = PathBuf::from(std::env::var(RLN_STATE_PATH)?);
pub(crate) fn as_bytes(&self) -> Vec<u8> {
serde_json::to_string(&self.inner).unwrap().into_bytes()
let mut file = File::open(path)?;
let mut contents = String::new();
file.read_to_string(&mut contents)?;
let state: Config = serde_json::from_str(&contents)?;
Ok(state)
}
}

View File

@@ -1,317 +0,0 @@
use std::{
collections::HashMap,
fs::File,
io::{stdin, stdout, Cursor, Read, Write},
path::{Path, PathBuf},
};
use clap::{Parser, Subcommand};
use color_eyre::{eyre::eyre, Result};
use rln::{
circuit::Fr,
hashers::{hash_to_field, poseidon_hash},
protocol::{keygen, prepare_prove_input, prepare_verify_input},
public::RLN,
utils::{bytes_le_to_fr, fr_to_bytes_le, generate_input_buffer},
};
const MESSAGE_LIMIT: u32 = 1;
const TREEE_HEIGHT: usize = 20;
#[derive(Parser)]
#[command(author, version, about, long_about = None)]
struct Cli {
#[command(subcommand)]
command: Commands,
}
#[derive(Subcommand)]
enum Commands {
List,
Register,
Send {
#[arg(short, long)]
user_index: usize,
#[arg(short, long)]
message_id: u32,
#[arg(short, long)]
signal: String,
},
Clear,
Exit,
}
#[derive(Debug, Clone)]
struct Identity {
identity_secret_hash: Fr,
id_commitment: Fr,
}
impl Identity {
fn new() -> Self {
let (identity_secret_hash, id_commitment) = keygen();
Identity {
identity_secret_hash,
id_commitment,
}
}
}
struct RLNSystem {
rln: RLN,
used_nullifiers: HashMap<[u8; 32], Vec<u8>>,
local_identities: HashMap<usize, Identity>,
}
impl RLNSystem {
fn new() -> Result<Self> {
let mut resources: Vec<Vec<u8>> = Vec::new();
let resources_path: PathBuf = format!("../rln/resources/tree_height_{TREEE_HEIGHT}").into();
#[cfg(feature = "arkzkey")]
let filenames = ["rln_final.arkzkey", "graph.bin"];
#[cfg(not(feature = "arkzkey"))]
let filenames = ["rln_final.zkey", "graph.bin"];
for filename in filenames {
let fullpath = resources_path.join(Path::new(filename));
let mut file = File::open(&fullpath)?;
let metadata = std::fs::metadata(&fullpath)?;
let mut output_buffer = vec![0; metadata.len() as usize];
file.read_exact(&mut output_buffer)?;
resources.push(output_buffer);
}
let rln = RLN::new_with_params(
TREEE_HEIGHT,
resources[0].clone(),
resources[1].clone(),
generate_input_buffer(),
)?;
println!("RLN instance initialized successfully");
Ok(RLNSystem {
rln,
used_nullifiers: HashMap::new(),
local_identities: HashMap::new(),
})
}
fn list_users(&self) {
if self.local_identities.is_empty() {
println!("No users registered yet.");
return;
}
println!("Registered users:");
for (index, identity) in &self.local_identities {
println!("User Index: {index}");
println!("+ Identity Secret Hash: {}", identity.identity_secret_hash);
println!("+ Identity Commitment: {}", identity.id_commitment);
println!();
}
}
fn register_user(&mut self) -> Result<usize> {
let index = self.rln.leaves_set();
let identity = Identity::new();
let rate_commitment = poseidon_hash(&[identity.id_commitment, Fr::from(MESSAGE_LIMIT)]);
let mut buffer = Cursor::new(fr_to_bytes_le(&rate_commitment));
match self.rln.set_next_leaf(&mut buffer) {
Ok(_) => {
println!("Registered User Index: {index}");
println!("+ Identity secret hash: {}", identity.identity_secret_hash);
println!("+ Identity commitment: {},", identity.id_commitment);
self.local_identities.insert(index, identity);
}
Err(_) => {
println!("Maximum user limit reached: 2^{TREEE_HEIGHT}");
}
};
Ok(index)
}
fn generate_proof(
&mut self,
user_index: usize,
message_id: u32,
signal: &str,
external_nullifier: Fr,
) -> Result<Vec<u8>> {
let identity = match self.local_identities.get(&user_index) {
Some(identity) => identity,
None => return Err(eyre!("user index {user_index} not found")),
};
let serialized = prepare_prove_input(
identity.identity_secret_hash,
user_index,
Fr::from(MESSAGE_LIMIT),
Fr::from(message_id),
external_nullifier,
signal.as_bytes(),
);
let mut input_buffer = Cursor::new(serialized);
let mut output_buffer = Cursor::new(Vec::new());
self.rln
.generate_rln_proof(&mut input_buffer, &mut output_buffer)?;
println!("Proof generated successfully:");
println!("+ User Index: {user_index}");
println!("+ Message ID: {message_id}");
println!("+ Signal: {signal}");
Ok(output_buffer.into_inner())
}
fn verify_proof(&mut self, proof_data: Vec<u8>, signal: &str) -> Result<()> {
let proof_with_signal = prepare_verify_input(proof_data.clone(), signal.as_bytes());
let mut input_buffer = Cursor::new(proof_with_signal);
match self.rln.verify_rln_proof(&mut input_buffer) {
Ok(true) => {
let nullifier = &proof_data[256..288];
let nullifier_key: [u8; 32] = nullifier.try_into()?;
if let Some(previous_proof) = self.used_nullifiers.get(&nullifier_key) {
self.handle_duplicate_message_id(previous_proof.clone(), proof_data)?;
return Ok(());
}
self.used_nullifiers.insert(nullifier_key, proof_data);
println!("Message verified and accepted");
}
Ok(false) => {
println!("Verification failed: message_id must be unique within the epoch and satisfy 0 <= message_id < MESSAGE_LIMIT: {MESSAGE_LIMIT}");
}
Err(err) => return Err(err),
}
Ok(())
}
fn handle_duplicate_message_id(
&mut self,
previous_proof: Vec<u8>,
current_proof: Vec<u8>,
) -> Result<()> {
let x = &current_proof[192..224];
let y = &current_proof[224..256];
let prev_x = &previous_proof[192..224];
let prev_y = &previous_proof[224..256];
if x == prev_x && y == prev_y {
return Err(eyre!("this exact message and signal has already been sent"));
}
let mut proof1 = Cursor::new(previous_proof);
let mut proof2 = Cursor::new(current_proof);
let mut output = Cursor::new(Vec::new());
match self
.rln
.recover_id_secret(&mut proof1, &mut proof2, &mut output)
{
Ok(_) => {
let output_data = output.into_inner();
let (leaked_identity_secret_hash, _) = bytes_le_to_fr(&output_data);
if let Some((user_index, identity)) = self
.local_identities
.iter()
.find(|(_, identity)| {
identity.identity_secret_hash == leaked_identity_secret_hash
})
.map(|(index, identity)| (*index, identity))
{
let real_identity_secret_hash = identity.identity_secret_hash;
if leaked_identity_secret_hash != real_identity_secret_hash {
Err(eyre!("identity secret hash mismatch {leaked_identity_secret_hash} != {real_identity_secret_hash}"))
} else {
println!("DUPLICATE message ID detected! Reveal identity secret hash: {leaked_identity_secret_hash}");
self.local_identities.remove(&user_index);
self.rln.delete_leaf(user_index)?;
println!("User index {user_index} has been SLASHED");
Ok(())
}
} else {
Err(eyre!(
"user identity secret hash {leaked_identity_secret_hash} not found"
))
}
}
Err(err) => Err(eyre!("Failed to recover identity secret: {err}")),
}
}
}
fn main() -> Result<()> {
println!("Initializing RLN instance...");
print!("\x1B[2J\x1B[1;1H");
let mut rln_system = RLNSystem::new()?;
let rln_epoch = hash_to_field(b"epoch");
let rln_identifier = hash_to_field(b"rln-identifier");
let external_nullifier = poseidon_hash(&[rln_epoch, rln_identifier]);
println!("RLN Relay Example:");
println!("Message Limit: {MESSAGE_LIMIT}");
println!("----------------------------------");
println!();
show_commands();
loop {
print!("\n> ");
stdout().flush()?;
let mut input = String::new();
stdin().read_line(&mut input)?;
let trimmed = input.trim();
let args = std::iter::once("").chain(trimmed.split_whitespace());
match Cli::try_parse_from(args) {
Ok(cli) => match cli.command {
Commands::List => {
rln_system.list_users();
}
Commands::Register => {
rln_system.register_user()?;
}
Commands::Send {
user_index,
message_id,
signal,
} => {
match rln_system.generate_proof(
user_index,
message_id,
&signal,
external_nullifier,
) {
Ok(proof) => {
if let Err(err) = rln_system.verify_proof(proof, &signal) {
println!("Verification error: {err}");
};
}
Err(err) => {
println!("Proof generation error: {err}");
}
}
}
Commands::Clear => {
print!("\x1B[2J\x1B[1;1H");
show_commands();
}
Commands::Exit => {
break;
}
},
Err(err) => {
eprintln!("Command error: {err}");
}
}
}
Ok(())
}
fn show_commands() {
println!("Available commands:");
println!(" list - List registered users");
println!(" register - Register a new user index");
println!(" send -u <index> -m <message_id> -s <signal> - Send a message with proof");
println!(" clear - Clear the screen");
println!(" exit - Exit the program");
}

View File

@@ -1,314 +0,0 @@
#![cfg(feature = "stateless")]
use std::{
collections::HashMap,
io::{stdin, stdout, Cursor, Write},
};
use clap::{Parser, Subcommand};
use color_eyre::{eyre::eyre, Result};
use rln::{
circuit::{Fr, TEST_TREE_HEIGHT},
hashers::{hash_to_field, poseidon_hash},
poseidon_tree::PoseidonTree,
protocol::{keygen, prepare_verify_input, rln_witness_from_values, serialize_witness},
public::RLN,
utils::{bytes_le_to_fr, fr_to_bytes_le},
};
use zerokit_utils::ZerokitMerkleTree;
const MESSAGE_LIMIT: u32 = 1;
type ConfigOf<T> = <T as ZerokitMerkleTree>::Config;
#[derive(Parser)]
#[command(author, version, about, long_about = None)]
struct Cli {
#[command(subcommand)]
command: Commands,
}
#[derive(Subcommand)]
enum Commands {
List,
Register,
Send {
#[arg(short, long)]
user_index: usize,
#[arg(short, long)]
message_id: u32,
#[arg(short, long)]
signal: String,
},
Clear,
Exit,
}
#[derive(Debug, Clone)]
struct Identity {
identity_secret_hash: Fr,
id_commitment: Fr,
}
impl Identity {
fn new() -> Self {
let (identity_secret_hash, id_commitment) = keygen();
Identity {
identity_secret_hash,
id_commitment,
}
}
}
struct RLNSystem {
rln: RLN,
tree: PoseidonTree,
used_nullifiers: HashMap<[u8; 32], Vec<u8>>,
local_identities: HashMap<usize, Identity>,
}
impl RLNSystem {
fn new() -> Result<Self> {
let rln = RLN::new()?;
let default_leaf = Fr::from(0);
let tree = PoseidonTree::new(
TEST_TREE_HEIGHT,
default_leaf,
ConfigOf::<PoseidonTree>::default(),
)?;
Ok(RLNSystem {
rln,
tree,
used_nullifiers: HashMap::new(),
local_identities: HashMap::new(),
})
}
fn list_users(&self) {
if self.local_identities.is_empty() {
println!("No users registered yet.");
return;
}
println!("Registered users:");
for (index, identity) in &self.local_identities {
println!("User Index: {index}");
println!("+ Identity Secret Hash: {}", identity.identity_secret_hash);
println!("+ Identity Commitment: {}", identity.id_commitment);
println!();
}
}
fn register_user(&mut self) -> Result<usize> {
let index = self.tree.leaves_set();
let identity = Identity::new();
let rate_commitment = poseidon_hash(&[identity.id_commitment, Fr::from(MESSAGE_LIMIT)]);
self.tree.update_next(rate_commitment)?;
println!("Registered User Index: {index}");
println!("+ Identity secret hash: {}", identity.identity_secret_hash);
println!("+ Identity commitment: {}", identity.id_commitment);
self.local_identities.insert(index, identity);
Ok(index)
}
fn generate_proof(
&mut self,
user_index: usize,
message_id: u32,
signal: &str,
external_nullifier: Fr,
) -> Result<Vec<u8>> {
let identity = match self.local_identities.get(&user_index) {
Some(identity) => identity,
None => return Err(eyre!("user index {user_index} not found")),
};
let merkle_proof = self.tree.proof(user_index)?;
let x = hash_to_field(signal.as_bytes());
let rln_witness = rln_witness_from_values(
identity.identity_secret_hash,
&merkle_proof,
x,
external_nullifier,
Fr::from(MESSAGE_LIMIT),
Fr::from(message_id),
)?;
let serialized = serialize_witness(&rln_witness)?;
let mut input_buffer = Cursor::new(serialized);
let mut output_buffer = Cursor::new(Vec::new());
self.rln
.generate_rln_proof_with_witness(&mut input_buffer, &mut output_buffer)?;
println!("Proof generated successfully:");
println!("+ User Index: {user_index}");
println!("+ Message ID: {message_id}");
println!("+ Signal: {signal}");
Ok(output_buffer.into_inner())
}
fn verify_proof(&mut self, proof_data: Vec<u8>, signal: &str) -> Result<()> {
let proof_with_signal = prepare_verify_input(proof_data.clone(), signal.as_bytes());
let mut input_buffer = Cursor::new(proof_with_signal);
let root = self.tree.root();
let roots_serialized = fr_to_bytes_le(&root);
let mut roots_buffer = Cursor::new(roots_serialized);
match self
.rln
.verify_with_roots(&mut input_buffer, &mut roots_buffer)
{
Ok(true) => {
let nullifier = &proof_data[256..288];
let nullifier_key: [u8; 32] = nullifier.try_into()?;
if let Some(previous_proof) = self.used_nullifiers.get(&nullifier_key) {
self.handle_duplicate_message_id(previous_proof.clone(), proof_data)?;
return Ok(());
}
self.used_nullifiers.insert(nullifier_key, proof_data);
println!("Message verified and accepted");
}
Ok(false) => {
println!("Verification failed: message_id must be unique within the epoch and satisfy 0 <= message_id < MESSAGE_LIMIT: {MESSAGE_LIMIT}");
}
Err(err) => return Err(err.into()),
}
Ok(())
}
fn handle_duplicate_message_id(
&mut self,
previous_proof: Vec<u8>,
current_proof: Vec<u8>,
) -> Result<()> {
let x = &current_proof[192..224];
let y = &current_proof[224..256];
let prev_x = &previous_proof[192..224];
let prev_y = &previous_proof[224..256];
if x == prev_x && y == prev_y {
return Err(eyre!("this exact message and signal has already been sent"));
}
let mut proof1 = Cursor::new(previous_proof);
let mut proof2 = Cursor::new(current_proof);
let mut output = Cursor::new(Vec::new());
match self
.rln
.recover_id_secret(&mut proof1, &mut proof2, &mut output)
{
Ok(_) => {
let output_data = output.into_inner();
let (leaked_identity_secret_hash, _) = bytes_le_to_fr(&output_data);
if let Some((user_index, identity)) = self
.local_identities
.iter()
.find(|(_, identity)| {
identity.identity_secret_hash == leaked_identity_secret_hash
})
.map(|(index, identity)| (*index, identity))
{
let real_identity_secret_hash = identity.identity_secret_hash;
if leaked_identity_secret_hash != real_identity_secret_hash {
Err(eyre!("identity secret hash mismatch {leaked_identity_secret_hash} != {real_identity_secret_hash}"))
} else {
println!("DUPLICATE message ID detected! Reveal identity secret hash: {leaked_identity_secret_hash}");
self.local_identities.remove(&user_index);
println!("User index {user_index} has been SLASHED");
Ok(())
}
} else {
Err(eyre!(
"user identity secret hash {leaked_identity_secret_hash} not found"
))
}
}
Err(err) => Err(eyre!("Failed to recover identity secret: {err}")),
}
}
}
fn main() -> Result<()> {
println!("Initializing RLN instance...");
print!("\x1B[2J\x1B[1;1H");
let mut rln_system = RLNSystem::new()?;
let rln_epoch = hash_to_field(b"epoch");
let rln_identifier = hash_to_field(b"rln-identifier");
let external_nullifier = poseidon_hash(&[rln_epoch, rln_identifier]);
println!("RLN Stateless Relay Example:");
println!("Message Limit: {MESSAGE_LIMIT}");
println!("----------------------------------");
println!();
show_commands();
loop {
print!("\n> ");
stdout().flush()?;
let mut input = String::new();
stdin().read_line(&mut input)?;
let trimmed = input.trim();
let args = std::iter::once("").chain(trimmed.split_whitespace());
match Cli::try_parse_from(args) {
Ok(cli) => match cli.command {
Commands::List => {
rln_system.list_users();
}
Commands::Register => {
rln_system.register_user()?;
}
Commands::Send {
user_index,
message_id,
signal,
} => {
match rln_system.generate_proof(
user_index,
message_id,
&signal,
external_nullifier,
) {
Ok(proof) => {
if let Err(err) = rln_system.verify_proof(proof, &signal) {
println!("Verification error: {err}");
};
}
Err(err) => {
println!("Proof generation error: {err}");
}
}
}
Commands::Clear => {
print!("\x1B[2J\x1B[1;1H");
show_commands();
}
Commands::Exit => {
break;
}
},
Err(err) => {
eprintln!("Command error: {err}");
}
}
}
Ok(())
}
fn show_commands() {
println!("Available commands:");
println!(" list - List registered users");
println!(" register - Register a new user index");
println!(" send -u <index> -m <message_id> -s <signal> - Send a message with proof");
println!(" clear - Clear the screen");
println!(" exit - Exit the program");
}

View File

@@ -1,18 +1,9 @@
use std::{
fs::File,
io::{Cursor, Read},
path::Path,
};
use std::{fs::File, io::Read, path::Path};
use clap::Parser;
use color_eyre::{eyre::Report, Result};
use color_eyre::{Report, Result};
use commands::Commands;
use config::{Config, InnerConfig};
use rln::{
public::RLN,
utils::{bytes_le_to_fr, bytes_le_to_vec_fr},
};
use serde_json::json;
use rln::public::RLN;
use state::State;
mod commands;
@@ -29,97 +20,74 @@ struct Cli {
fn main() -> Result<()> {
let cli = Cli::parse();
let mut state = match &cli.command {
Some(Commands::New { .. }) | Some(Commands::NewWithParams { .. }) => State::default(),
_ => State::load_state()?,
};
let mut state = State::load_state()?;
match cli.command {
Some(Commands::New { tree_height }) => {
let config = Config::load_config()?;
state.rln = if let Some(InnerConfig { tree_height, .. }) = config.inner {
println!("Initializing RLN with custom config");
Some(RLN::new(tree_height, Cursor::new(config.as_bytes()))?)
} else {
println!("Initializing RLN with default config");
Some(RLN::new(tree_height, Cursor::new(json!({}).to_string()))?)
};
match &cli.command {
Some(Commands::New {
tree_height,
config,
}) => {
let resources = File::open(&config)?;
state.rln = Some(RLN::new(*tree_height, resources)?);
Ok(())
}
Some(Commands::NewWithParams {
tree_height,
resources_path,
config,
tree_config_input,
}) => {
let mut resources: Vec<Vec<u8>> = Vec::new();
#[cfg(feature = "arkzkey")]
let filenames = ["rln_final.arkzkey", "graph.bin"];
#[cfg(not(feature = "arkzkey"))]
let filenames = ["rln_final.zkey", "graph.bin"];
for filename in filenames {
let fullpath = resources_path.join(Path::new(filename));
for filename in ["rln.wasm", "rln_final.zkey", "verification_key.json"] {
let fullpath = config.join(Path::new(filename));
let mut file = File::open(&fullpath)?;
let metadata = std::fs::metadata(&fullpath)?;
let mut output_buffer = vec![0; metadata.len() as usize];
file.read_exact(&mut output_buffer)?;
resources.push(output_buffer);
let mut buffer = vec![0; metadata.len() as usize];
file.read_exact(&mut buffer)?;
resources.push(buffer);
}
let config = Config::load_config()?;
if let Some(InnerConfig {
tree_height,
tree_config,
}) = config.inner
{
println!("Initializing RLN with custom config");
state.rln = Some(RLN::new_with_params(
tree_height,
resources[0].clone(),
resources[1].clone(),
Cursor::new(tree_config.to_string().as_bytes()),
)?)
} else {
println!("Initializing RLN with default config");
state.rln = Some(RLN::new_with_params(
tree_height,
resources[0].clone(),
resources[1].clone(),
Cursor::new(json!({}).to_string()),
)?)
};
let tree_config_input_file = File::open(&tree_config_input)?;
state.rln = Some(RLN::new_with_params(
*tree_height,
resources[0].clone(),
resources[1].clone(),
resources[2].clone(),
tree_config_input_file,
)?);
Ok(())
}
Some(Commands::SetTree { tree_height }) => {
state
.rln
.ok_or(Report::msg("no RLN instance initialized"))?
.set_tree(tree_height)?;
.set_tree(*tree_height)?;
Ok(())
}
Some(Commands::SetLeaf { index, input }) => {
let input_data = File::open(input)?;
Some(Commands::SetLeaf { index, file }) => {
let input_data = File::open(&file)?;
state
.rln
.ok_or(Report::msg("no RLN instance initialized"))?
.set_leaf(index, input_data)?;
.set_leaf(*index, input_data)?;
Ok(())
}
Some(Commands::SetMultipleLeaves { index, input }) => {
let input_data = File::open(input)?;
Some(Commands::SetMultipleLeaves { index, file }) => {
let input_data = File::open(&file)?;
state
.rln
.ok_or(Report::msg("no RLN instance initialized"))?
.set_leaves_from(index, input_data)?;
.set_leaves_from(*index, input_data)?;
Ok(())
}
Some(Commands::ResetMultipleLeaves { input }) => {
let input_data = File::open(input)?;
Some(Commands::ResetMultipleLeaves { file }) => {
let input_data = File::open(&file)?;
state
.rln
.ok_or(Report::msg("no RLN instance initialized"))?
.init_tree_with_leaves(input_data)?;
Ok(())
}
Some(Commands::SetNextLeaf { input }) => {
let input_data = File::open(input)?;
Some(Commands::SetNextLeaf { file }) => {
let input_data = File::open(&file)?;
state
.rln
.ok_or(Report::msg("no RLN instance initialized"))?
@@ -130,73 +98,60 @@ fn main() -> Result<()> {
state
.rln
.ok_or(Report::msg("no RLN instance initialized"))?
.delete_leaf(index)?;
.delete_leaf(*index)?;
Ok(())
}
Some(Commands::GetRoot) => {
let writer = std::io::stdout();
state
.rln
.ok_or(Report::msg("no RLN instance initialized"))?
.get_root(writer)?;
Ok(())
}
Some(Commands::GetProof { index }) => {
let writer = std::io::stdout();
state
.rln
.ok_or(Report::msg("no RLN instance initialized"))?
.get_proof(*index, writer)?;
Ok(())
}
Some(Commands::Prove { input }) => {
let input_data = File::open(input)?;
let mut output_buffer = Cursor::new(Vec::<u8>::new());
let input_data = File::open(&input)?;
let writer = std::io::stdout();
state
.rln
.ok_or(Report::msg("no RLN instance initialized"))?
.prove(input_data, &mut output_buffer)?;
let proof = output_buffer.into_inner();
println!("proof: {:?}", proof);
.prove(input_data, writer)?;
Ok(())
}
Some(Commands::Verify { input }) => {
let input_data = File::open(input)?;
let verified = state
Some(Commands::Verify { file }) => {
let input_data = File::open(&file)?;
state
.rln
.ok_or(Report::msg("no RLN instance initialized"))?
.verify(input_data)?;
println!("verified: {:?}", verified);
Ok(())
}
Some(Commands::GenerateProof { input }) => {
let input_data = File::open(input)?;
let mut output_buffer = Cursor::new(Vec::<u8>::new());
let input_data = File::open(&input)?;
let writer = std::io::stdout();
state
.rln
.ok_or(Report::msg("no RLN instance initialized"))?
.generate_rln_proof(input_data, &mut output_buffer)?;
let proof = output_buffer.into_inner();
println!("proof: {:?}", proof);
.generate_rln_proof(input_data, writer)?;
Ok(())
}
Some(Commands::VerifyWithRoots { input, roots }) => {
let input_data = File::open(input)?;
let roots_data = File::open(roots)?;
let input_data = File::open(&input)?;
let roots_data = File::open(&roots)?;
state
.rln
.ok_or(Report::msg("no RLN instance initialized"))?
.verify_with_roots(input_data, roots_data)?;
Ok(())
}
Some(Commands::GetRoot) => {
let mut output_buffer = Cursor::new(Vec::<u8>::new());
state
.rln
.ok_or(Report::msg("no RLN instance initialized"))?
.get_root(&mut output_buffer)
.unwrap();
let (root, _) = bytes_le_to_fr(&output_buffer.into_inner());
println!("root: {root}");
Ok(())
}
Some(Commands::GetProof { index }) => {
let mut output_buffer = Cursor::new(Vec::<u8>::new());
state
.rln
.ok_or(Report::msg("no RLN instance initialized"))?
.get_proof(index, &mut output_buffer)?;
let output_buffer_inner = output_buffer.into_inner();
let (path_elements, _) = bytes_le_to_vec_fr(&output_buffer_inner)?;
for (index, element) in path_elements.iter().enumerate() {
println!("path element {}: {}", index, element);
}
Ok(())
}
None => Ok(()),
}
}

View File

@@ -1,20 +1,20 @@
use std::io::Cursor;
use color_eyre::Result;
use rln::public::RLN;
use std::fs::File;
use crate::config::{Config, InnerConfig};
#[derive(Default)]
pub(crate) struct State {
pub rln: Option<RLN>,
pub(crate) struct State<'a> {
pub rln: Option<RLN<'a>>,
}
impl State {
pub(crate) fn load_state() -> Result<State> {
impl<'a> State<'a> {
pub(crate) fn load_state() -> Result<State<'a>> {
let config = Config::load_config()?;
let rln = if let Some(InnerConfig { tree_height, .. }) = config.inner {
Some(RLN::new(tree_height, Cursor::new(config.as_bytes()))?)
let rln = if let Some(InnerConfig { file, tree_height }) = config.inner {
let resources = File::open(&file)?;
Some(RLN::new(tree_height, resources)?)
} else {
None
};

View File

@@ -1,39 +1,33 @@
[package]
name = "rln-wasm"
version = "0.1.0"
version = "0.0.9"
edition = "2021"
license = "MIT or Apache2"
[lib]
crate-type = ["cdylib", "rlib"]
required-features = ["stateless"]
[features]
default = ["console_error_panic_hook"]
[dependencies]
rln = { path = "../rln", default-features = false }
num-bigint = { version = "0.4.6", default-features = false, features = [
"rand",
"serde",
] }
wasm-bindgen = "0.2.100"
serde-wasm-bindgen = "0.6.5"
js-sys = "0.3.77"
serde_json = "1.0"
rln = { path = "../rln", default-features = false, features = ["wasm"] }
num-bigint = { version = "0.4", default-features = false, features = ["rand", "serde"] }
wasmer = { version = "2.3", default-features = false, features = ["js", "std"] }
web-sys = {version = "0.3", features=["console"]}
getrandom = { version = "0.2.7", default-features = false, features = ["js"] }
wasm-bindgen = "0.2.63"
serde-wasm-bindgen = "0.4"
js-sys = "0.3.59"
serde_json = "1.0.85"
# The `console_error_panic_xhook` crate provides better debugging of panics by
# The `console_error_panic_hook` crate provides better debugging of panics by
# logging them with `console.error`. This is great for development, but requires
# all the `std::fmt` and `std::panicking` infrastructure, so isn't great for
# code size when deploying.
console_error_panic_hook = { version = "0.1.7", optional = true }
zerokit_utils = { path = "../utils" }
[target.'cfg(target_arch = "wasm32")'.dependencies]
getrandom = { version = "0.2.15", features = ["js"] }
[dev-dependencies]
wasm-bindgen-test = "0.3.50"
wasm-bindgen-futures = "0.4.50"
wasm-bindgen-test = "0.3.13"
wasm-bindgen-futures = "0.4.33"
[features]
default = ["console_error_panic_hook"]
stateless = ["rln/stateless"]
arkzkey = ["rln/arkzkey"]

View File

@@ -1,53 +1,26 @@
[tasks.pack-build]
command = "wasm-pack"
args = ["build", "--release", "--target", "web", "--scope", "waku"]
[tasks.pack-rename]
script = "sed -i.bak 's/rln-wasm/zerokit-rln-wasm/g' pkg/package.json && rm pkg/package.json.bak"
[tasks.build]
clear = true
dependencies = ["pack_build", "pack_rename"]
dependencies = [
"pack-build",
"pack-rename",
"post-build"
]
[tasks.build_arkzkey]
clear = true
dependencies = ["pack_build_arkzkey", "pack_rename"]
[tasks.pack_build]
command = "wasm-pack"
args = ["build", "--release", "--target", "web", "--scope", "waku"]
env = { "RUSTFLAGS" = "--cfg feature=\"stateless\"" }
[tasks.pack_build_arkzkey]
command = "wasm-pack"
args = ["build", "--release", "--target", "web", "--scope", "waku"]
env = { "RUSTFLAGS" = "--cfg feature=\"stateless\" --cfg feature=\"arkzkey\"" }
[tasks.pack_rename]
script = "sed -i.bak 's/rln-wasm/zerokit-rln-wasm/g' pkg/package.json && rm pkg/package.json.bak"
[tasks.post-build]
command = "wasm-strip"
args = ["./pkg/rln_wasm_bg.wasm"]
[tasks.test]
command = "wasm-pack"
args = [
"test",
"--release",
"--node",
"--target",
"wasm32-unknown-unknown",
"--",
"--nocapture",
]
env = { "RUSTFLAGS" = "--cfg feature=\"stateless\"" }
[tasks.test_arkzkey]
command = "wasm-pack"
args = [
"test",
"--release",
"--node",
"--target",
"wasm32-unknown-unknown",
"--",
"--nocapture",
]
env = { "RUSTFLAGS" = "--cfg feature=\"stateless\" --cfg feature=\"arkzkey\"" }
dependencies = ["build_arkzkey"]
[tasks.bench]
disabled = true
args = ["test", "--release", "--node"]
dependencies = ["build"]
[tasks.login]
command = "wasm-pack"

View File

@@ -1,55 +1,41 @@
# RLN for WASM
This library is used in [waku-org/js-rln](https://github.com/waku-org/js-rln/)
> **Note**: This project requires `wasm-pack` for compiling Rust to WebAssembly and `cargo-make` for running the build commands. Make sure both are installed before proceeding.
Install `wasm-pack`:
```bash
## Building the library
1. Install `wasm-pack`
```
curl https://rustwasm.github.io/wasm-pack/installer/init.sh -sSf | sh
```
Install `cargo-make`
```bash
2. Install `cargo-make`
```
cargo install cargo-make
```
Or install everything needed for `zerokit` at the root of the repository:
OR
```bash
```
make installdeps
```
## Building the library
First, navigate to the rln-wasm directory:
```bash
cd rln-wasm
3. Compile zerokit for `wasm32-unknown-unknown`:
```
Compile zerokit for `wasm32-unknown-unknown`:
```bash
cd rln-wasm
cargo make build
```
Or compile with the **arkzkey** feature enabled
```bash
cargo make build_arkzkey
4. Compile a slimmer version of zerokit for `wasm32-unknown-unknown`:
```
cd rln-wasm
cargo make post-build
```
## Running tests and benchmarks
```bash
## Running tests
```
cd rln-wasm
cargo make test
```
Or test with the **arkzkey** feature enabled
```bash
cargo make test_arkzkey
## Publishing a npm package
```
cd rln-wasm
cargo make login
cargo make publish
```

View File

@@ -1,324 +1,331 @@
module.exports = async function builder(code, options) {
options = options || {};
let wasmModule;
try {
wasmModule = await WebAssembly.compile(code);
} catch (err) {
console.log(err);
console.log(
"\nTry to run circom --c in order to generate c++ code instead\n"
);
throw new Error(err);
}
options = options || {};
let wc;
let wasmModule;
try {
wasmModule = await WebAssembly.compile(code);
} catch (err) {
console.log(err);
console.log("\nTry to run circom --c in order to generate c++ code instead\n");
throw new Error(err);
}
let errStr = "";
let msgStr = "";
let wc;
let errStr = "";
let msgStr = "";
const instance = await WebAssembly.instantiate(wasmModule, {
runtime: {
exceptionHandler : function(code) {
let err;
if (code == 1) {
err = "Signal not found.\n";
} else if (code == 2) {
err = "Too many signals set.\n";
} else if (code == 3) {
err = "Signal already set.\n";
} else if (code == 4) {
err = "Assert Failed.\n";
} else if (code == 5) {
err = "Not enough memory.\n";
} else if (code == 6) {
err = "Input signal array access exceeds the size.\n";
} else {
err = "Unknown error.\n";
}
throw new Error(err + errStr);
},
printErrorMessage : function() {
errStr += getMessage() + "\n";
// console.error(getMessage());
},
writeBufferMessage : function() {
const msg = getMessage();
// Any calls to `log()` will always end with a `\n`, so that's when we print and reset
if (msg === "\n") {
console.log(msgStr);
msgStr = "";
} else {
// If we've buffered other content, put a space in between the items
if (msgStr !== "") {
msgStr += " "
}
// Then append the message to the message we are creating
msgStr += msg;
}
},
showSharedRWMemory : function() {
printSharedRWMemory ();
}
const instance = await WebAssembly.instantiate(wasmModule, {
runtime: {
exceptionHandler: function (code) {
let err;
if (code == 1) {
err = "Signal not found.\n";
} else if (code == 2) {
err = "Too many signals set.\n";
} else if (code == 3) {
err = "Signal already set.\n";
} else if (code == 4) {
err = "Assert Failed.\n";
} else if (code == 5) {
err = "Not enough memory.\n";
} else if (code == 6) {
err = "Input signal array access exceeds the size.\n";
} else {
err = "Unknown error.\n";
}
throw new Error(err + errStr);
},
printErrorMessage: function () {
errStr += getMessage() + "\n";
// console.error(getMessage());
},
writeBufferMessage: function () {
const msg = getMessage();
// Any calls to `log()` will always end with a `\n`, so that's when we print and reset
if (msg === "\n") {
console.log(msgStr);
msgStr = "";
} else {
// If we've buffered other content, put a space in between the items
if (msgStr !== "") {
msgStr += " ";
}
// Then append the message to the message we are creating
msgStr += msg;
}
},
showSharedRWMemory: function () {
printSharedRWMemory();
},
},
});
});
const sanityCheck = options;
// options &&
// (
// options.sanityCheck ||
// options.logGetSignal ||
// options.logSetSignal ||
// options.logStartComponent ||
// options.logFinishComponent
// );
const sanityCheck =
options
// options &&
// (
// options.sanityCheck ||
// options.logGetSignal ||
// options.logSetSignal ||
// options.logStartComponent ||
// options.logFinishComponent
// );
wc = new WitnessCalculator(instance, sanityCheck);
return wc;
wc = new WitnessCalculator(instance, sanityCheck);
return wc;
function getMessage() {
var message = "";
var c = instance.exports.getMessageChar();
while (c != 0) {
message += String.fromCharCode(c);
c = instance.exports.getMessageChar();
function getMessage() {
var message = "";
var c = instance.exports.getMessageChar();
while ( c != 0 ) {
message += String.fromCharCode(c);
c = instance.exports.getMessageChar();
}
return message;
}
return message;
}
function printSharedRWMemory () {
const shared_rw_memory_size = instance.exports.getFieldNumLen32();
const arr = new Uint32Array(shared_rw_memory_size);
for (let j=0; j<shared_rw_memory_size; j++) {
arr[shared_rw_memory_size-1-j] = instance.exports.readSharedRWMemory(j);
}
function printSharedRWMemory() {
const shared_rw_memory_size = instance.exports.getFieldNumLen32();
const arr = new Uint32Array(shared_rw_memory_size);
for (let j = 0; j < shared_rw_memory_size; j++) {
arr[shared_rw_memory_size - 1 - j] =
instance.exports.readSharedRWMemory(j);
}
// If we've buffered other content, put a space in between the items
if (msgStr !== "") {
msgStr += " "
}
// Then append the value to the message we are creating
msgStr += (fromArray32(arr).toString());
}
// If we've buffered other content, put a space in between the items
if (msgStr !== "") {
msgStr += " ";
}
// Then append the value to the message we are creating
msgStr += fromArray32(arr).toString();
}
};
class WitnessCalculator {
constructor(instance, sanityCheck) {
this.instance = instance;
constructor(instance, sanityCheck) {
this.instance = instance;
this.version = this.instance.exports.getVersion();
this.n32 = this.instance.exports.getFieldNumLen32();
this.version = this.instance.exports.getVersion();
this.n32 = this.instance.exports.getFieldNumLen32();
this.instance.exports.getRawPrime();
const arr = new Uint32Array(this.n32);
for (let i = 0; i < this.n32; i++) {
arr[this.n32 - 1 - i] = this.instance.exports.readSharedRWMemory(i);
}
this.prime = fromArray32(arr);
this.witnessSize = this.instance.exports.getWitnessSize();
this.sanityCheck = sanityCheck;
}
circom_version() {
return this.instance.exports.getVersion();
}
async _doCalculateWitness(input, sanityCheck) {
//input is assumed to be a map from signals to arrays of bigints
this.instance.exports.init(this.sanityCheck || sanityCheck ? 1 : 0);
const keys = Object.keys(input);
var input_counter = 0;
keys.forEach((k) => {
const h = fnvHash(k);
const hMSB = parseInt(h.slice(0, 8), 16);
const hLSB = parseInt(h.slice(8, 16), 16);
const fArr = flatArray(input[k]);
let signalSize = this.instance.exports.getInputSignalSize(hMSB, hLSB);
if (signalSize < 0) {
throw new Error(`Signal ${k} not found\n`);
}
if (fArr.length < signalSize) {
throw new Error(`Not enough values for input signal ${k}\n`);
}
if (fArr.length > signalSize) {
throw new Error(`Too many values for input signal ${k}\n`);
}
for (let i = 0; i < fArr.length; i++) {
const arrFr = toArray32(BigInt(fArr[i]) % this.prime, this.n32);
for (let j = 0; j < this.n32; j++) {
this.instance.exports.writeSharedRWMemory(j, arrFr[this.n32 - 1 - j]);
this.instance.exports.getRawPrime();
const arr = new Uint32Array(this.n32);
for (let i=0; i<this.n32; i++) {
arr[this.n32-1-i] = this.instance.exports.readSharedRWMemory(i);
}
try {
this.instance.exports.setInputSignal(hMSB, hLSB, i);
input_counter++;
} catch (err) {
// console.log(`After adding signal ${i} of ${k}`)
throw new Error(err);
this.prime = fromArray32(arr);
this.witnessSize = this.instance.exports.getWitnessSize();
this.sanityCheck = sanityCheck;
}
circom_version() {
return this.instance.exports.getVersion();
}
async _doCalculateWitness(input, sanityCheck) {
//input is assumed to be a map from signals to arrays of bigints
this.instance.exports.init((this.sanityCheck || sanityCheck) ? 1 : 0);
const keys = Object.keys(input);
var input_counter = 0;
keys.forEach( (k) => {
const h = fnvHash(k);
const hMSB = parseInt(h.slice(0,8), 16);
const hLSB = parseInt(h.slice(8,16), 16);
const fArr = flatArray(input[k]);
let signalSize = this.instance.exports.getInputSignalSize(hMSB, hLSB);
if (signalSize < 0){
throw new Error(`Signal ${k} not found\n`);
}
if (fArr.length < signalSize) {
throw new Error(`Not enough values for input signal ${k}\n`);
}
if (fArr.length > signalSize) {
throw new Error(`Too many values for input signal ${k}\n`);
}
for (let i=0; i<fArr.length; i++) {
const arrFr = toArray32(BigInt(fArr[i])%this.prime,this.n32)
for (let j=0; j<this.n32; j++) {
this.instance.exports.writeSharedRWMemory(j,arrFr[this.n32-1-j]);
}
try {
this.instance.exports.setInputSignal(hMSB, hLSB,i);
input_counter++;
} catch (err) {
// console.log(`After adding signal ${i} of ${k}`)
throw new Error(err);
}
}
});
if (input_counter < this.instance.exports.getInputSize()) {
throw new Error(`Not all inputs have been set. Only ${input_counter} out of ${this.instance.exports.getInputSize()}`);
}
}
async calculateWitness(input, sanityCheck) {
const w = [];
await this._doCalculateWitness(input, sanityCheck);
for (let i=0; i<this.witnessSize; i++) {
this.instance.exports.getWitness(i);
const arr = new Uint32Array(this.n32);
for (let j=0; j<this.n32; j++) {
arr[this.n32-1-j] = this.instance.exports.readSharedRWMemory(j);
}
w.push(fromArray32(arr));
}
}
});
if (input_counter < this.instance.exports.getInputSize()) {
throw new Error(
`Not all inputs have been set. Only ${input_counter} out of ${this.instance.exports.getInputSize()}`
);
return w;
}
}
async calculateWitness(input, sanityCheck) {
const w = [];
async calculateBinWitness(input, sanityCheck) {
await this._doCalculateWitness(input, sanityCheck);
const buff32 = new Uint32Array(this.witnessSize*this.n32);
const buff = new Uint8Array( buff32.buffer);
await this._doCalculateWitness(input, sanityCheck);
for (let i = 0; i < this.witnessSize; i++) {
this.instance.exports.getWitness(i);
const arr = new Uint32Array(this.n32);
for (let j = 0; j < this.n32; j++) {
arr[this.n32 - 1 - j] = this.instance.exports.readSharedRWMemory(j);
}
w.push(fromArray32(arr));
for (let i=0; i<this.witnessSize; i++) {
this.instance.exports.getWitness(i);
const pos = i*this.n32;
for (let j=0; j<this.n32; j++) {
buff32[pos+j] = this.instance.exports.readSharedRWMemory(j);
}
}
return buff;
}
async calculateWTNSBin(input, sanityCheck) {
const buff32 = new Uint32Array(this.witnessSize*this.n32+this.n32+11);
const buff = new Uint8Array( buff32.buffer);
await this._doCalculateWitness(input, sanityCheck);
//"wtns"
buff[0] = "w".charCodeAt(0)
buff[1] = "t".charCodeAt(0)
buff[2] = "n".charCodeAt(0)
buff[3] = "s".charCodeAt(0)
//version 2
buff32[1] = 2;
//number of sections: 2
buff32[2] = 2;
//id section 1
buff32[3] = 1;
const n8 = this.n32*4;
//id section 1 length in 64bytes
const idSection1length = 8 + n8;
const idSection1lengthHex = idSection1length.toString(16);
buff32[4] = parseInt(idSection1lengthHex.slice(0,8), 16);
buff32[5] = parseInt(idSection1lengthHex.slice(8,16), 16);
//this.n32
buff32[6] = n8;
//prime number
this.instance.exports.getRawPrime();
var pos = 7;
for (let j=0; j<this.n32; j++) {
buff32[pos+j] = this.instance.exports.readSharedRWMemory(j);
}
pos += this.n32;
// witness size
buff32[pos] = this.witnessSize;
pos++;
//id section 2
buff32[pos] = 2;
pos++;
// section 2 length
const idSection2length = n8*this.witnessSize;
const idSection2lengthHex = idSection2length.toString(16);
buff32[pos] = parseInt(idSection2lengthHex.slice(0,8), 16);
buff32[pos+1] = parseInt(idSection2lengthHex.slice(8,16), 16);
pos += 2;
for (let i=0; i<this.witnessSize; i++) {
this.instance.exports.getWitness(i);
for (let j=0; j<this.n32; j++) {
buff32[pos+j] = this.instance.exports.readSharedRWMemory(j);
}
pos += this.n32;
}
return buff;
}
return w;
}
async calculateBinWitness(input, sanityCheck) {
const buff32 = new Uint32Array(this.witnessSize * this.n32);
const buff = new Uint8Array(buff32.buffer);
await this._doCalculateWitness(input, sanityCheck);
for (let i = 0; i < this.witnessSize; i++) {
this.instance.exports.getWitness(i);
const pos = i * this.n32;
for (let j = 0; j < this.n32; j++) {
buff32[pos + j] = this.instance.exports.readSharedRWMemory(j);
}
}
return buff;
}
async calculateWTNSBin(input, sanityCheck) {
const buff32 = new Uint32Array(this.witnessSize * this.n32 + this.n32 + 11);
const buff = new Uint8Array(buff32.buffer);
await this._doCalculateWitness(input, sanityCheck);
//"wtns"
buff[0] = "w".charCodeAt(0);
buff[1] = "t".charCodeAt(0);
buff[2] = "n".charCodeAt(0);
buff[3] = "s".charCodeAt(0);
//version 2
buff32[1] = 2;
//number of sections: 2
buff32[2] = 2;
//id section 1
buff32[3] = 1;
const n8 = this.n32 * 4;
//id section 1 length in 64bytes
const idSection1length = 8 + n8;
const idSection1lengthHex = idSection1length.toString(16);
buff32[4] = parseInt(idSection1lengthHex.slice(0, 8), 16);
buff32[5] = parseInt(idSection1lengthHex.slice(8, 16), 16);
//this.n32
buff32[6] = n8;
//prime number
this.instance.exports.getRawPrime();
var pos = 7;
for (let j = 0; j < this.n32; j++) {
buff32[pos + j] = this.instance.exports.readSharedRWMemory(j);
}
pos += this.n32;
// witness size
buff32[pos] = this.witnessSize;
pos++;
//id section 2
buff32[pos] = 2;
pos++;
// section 2 length
const idSection2length = n8 * this.witnessSize;
const idSection2lengthHex = idSection2length.toString(16);
buff32[pos] = parseInt(idSection2lengthHex.slice(0, 8), 16);
buff32[pos + 1] = parseInt(idSection2lengthHex.slice(8, 16), 16);
pos += 2;
for (let i = 0; i < this.witnessSize; i++) {
this.instance.exports.getWitness(i);
for (let j = 0; j < this.n32; j++) {
buff32[pos + j] = this.instance.exports.readSharedRWMemory(j);
}
pos += this.n32;
}
return buff;
}
}
function toArray32(rem, size) {
const res = []; //new Uint32Array(size); //has no unshift
const radix = BigInt(0x100000000);
while (rem) {
res.unshift(Number(rem % radix));
rem = rem / radix;
}
if (size) {
var i = size - res.length;
while (i > 0) {
res.unshift(0);
i--;
function toArray32(rem,size) {
const res = []; //new Uint32Array(size); //has no unshift
const radix = BigInt(0x100000000);
while (rem) {
res.unshift( Number(rem % radix));
rem = rem / radix;
}
}
return res;
if (size) {
var i = size - res.length;
while (i>0) {
res.unshift(0);
i--;
}
}
return res;
}
function fromArray32(arr) {
//returns a BigInt
var res = BigInt(0);
const radix = BigInt(0x100000000);
for (let i = 0; i < arr.length; i++) {
res = res * radix + BigInt(arr[i]);
}
return res;
function fromArray32(arr) { //returns a BigInt
var res = BigInt(0);
const radix = BigInt(0x100000000);
for (let i = 0; i<arr.length; i++) {
res = res*radix + BigInt(arr[i]);
}
return res;
}
function flatArray(a) {
var res = [];
fillArray(res, a);
return res;
var res = [];
fillArray(res, a);
return res;
function fillArray(res, a) {
if (Array.isArray(a)) {
for (let i = 0; i < a.length; i++) {
fillArray(res, a[i]);
}
} else {
res.push(a);
function fillArray(res, a) {
if (Array.isArray(a)) {
for (let i=0; i<a.length; i++) {
fillArray(res, a[i]);
}
} else {
res.push(a);
}
}
}
}
function fnvHash(str) {
const uint64_max = BigInt(2) ** BigInt(64);
let hash = BigInt("0xCBF29CE484222325");
for (var i = 0; i < str.length; i++) {
hash ^= BigInt(str[i].charCodeAt());
hash *= BigInt(0x100000001b3);
hash %= uint64_max;
}
let shash = hash.toString(16);
let n = 16 - shash.length;
shash = "0".repeat(n).concat(shash);
return shash;
const uint64_max = BigInt(2) ** BigInt(64);
let hash = BigInt("0xCBF29CE484222325");
for (var i = 0; i < str.length; i++) {
hash ^= BigInt(str[i].charCodeAt());
hash *= BigInt(0x100000001B3);
hash %= uint64_max;
}
let shash = hash.toString(16);
let n = 16 - shash.length;
shash = '0'.repeat(n).concat(shash);
return shash;
}

View File

@@ -1,12 +1,16 @@
#![cfg(target_arch = "wasm32")]
extern crate wasm_bindgen;
extern crate web_sys;
use std::vec::Vec;
use js_sys::{BigInt as JsBigInt, Object, Uint8Array};
use num_bigint::BigInt;
use rln::public::{hash, poseidon_hash, RLN};
use std::vec::Vec;
use wasm_bindgen::prelude::*;
#[wasm_bindgen(js_name = initPanicHook)]
#[wasm_bindgen]
pub fn init_panic_hook() {
console_error_panic_hook::set_once();
}
@@ -15,7 +19,7 @@ pub fn init_panic_hook() {
pub struct RLNWrapper {
// The purpose of this wrapper is to hold a RLN instance with the 'static lifetime
// because wasm_bindgen does not allow returning elements with lifetimes
instance: RLN,
instance: RLN<'static>,
}
// Macro to call methods with arbitrary amount of arguments,
@@ -57,6 +61,24 @@ macro_rules! call_with_output_and_error_msg {
};
}
// Macro to call_with_error_msg methods with arbitrary amount of arguments,
// First argument to the macro is context,
// second is the actual method on `RLNWrapper`
// rest are all other arguments to the method
macro_rules! call_with_error_msg {
($instance:expr, $method:ident, $error_msg:expr $(, $arg:expr)*) => {
{
let new_instance: &mut RLNWrapper = $instance.process();
if let Err(err) = new_instance.instance.$method($($arg.process()),*) {
Err(format!("Msg: {:#?}, Error: {:#?}", $error_msg, err))
} else {
Ok(())
}
}
}
}
macro_rules! call {
($instance:expr, $method:ident $(, $arg:expr)*) => {
{
@@ -128,8 +150,8 @@ impl<T> ProcessArg for Vec<T> {
}
}
impl ProcessArg for *const RLN {
type ReturnType = &'static RLN;
impl<'a> ProcessArg for *const RLN<'a> {
type ReturnType = &'a RLN<'a>;
fn process(self) -> Self::ReturnType {
unsafe { &*self }
}
@@ -159,31 +181,104 @@ impl<'a> ProcessArg for &'a [u8] {
#[allow(clippy::not_unsafe_ptr_arg_deref)]
#[wasm_bindgen(js_name = newRLN)]
pub fn wasm_new(zkey: Uint8Array) -> Result<*mut RLNWrapper, String> {
let instance = RLN::new_with_params(zkey.to_vec()).map_err(|err| format!("{:#?}", err))?;
pub fn wasm_new(
tree_height: usize,
zkey: Uint8Array,
vk: Uint8Array,
) -> Result<*mut RLNWrapper, String> {
let instance = RLN::new_with_params(tree_height, zkey.to_vec(), vk.to_vec())
.map_err(|err| format!("{:#?}", err))?;
let wrapper = RLNWrapper { instance };
Ok(Box::into_raw(Box::new(wrapper)))
}
#[allow(clippy::not_unsafe_ptr_arg_deref)]
#[wasm_bindgen(js_name = rlnWitnessToJson)]
pub fn wasm_rln_witness_to_json(
#[wasm_bindgen(js_name = getSerializedRLNWitness)]
pub fn wasm_get_serialized_rln_witness(
ctx: *mut RLNWrapper,
input: Uint8Array,
) -> Result<Uint8Array, String> {
let rln_witness = call!(ctx, get_serialized_rln_witness, &input.to_vec()[..])
.map_err(|err| format!("{:#?}", err))?;
Ok(Uint8Array::from(&rln_witness[..]))
}
#[allow(clippy::not_unsafe_ptr_arg_deref)]
#[wasm_bindgen(js_name = insertMember)]
pub fn wasm_set_next_leaf(ctx: *mut RLNWrapper, input: Uint8Array) -> Result<(), String> {
call_with_error_msg!(
ctx,
set_next_leaf,
"could not insert member into merkle tree".to_string(),
&input.to_vec()[..]
)
}
#[allow(clippy::not_unsafe_ptr_arg_deref)]
#[wasm_bindgen(js_name = setLeavesFrom)]
pub fn wasm_set_leaves_from(
ctx: *mut RLNWrapper,
index: usize,
input: Uint8Array,
) -> Result<(), String> {
call_with_error_msg!(
ctx,
set_leaves_from,
"could not set multiple leaves".to_string(),
index,
&*input.to_vec()
)
}
#[allow(clippy::not_unsafe_ptr_arg_deref)]
#[wasm_bindgen(js_name = deleteLeaf)]
pub fn wasm_delete_leaf(ctx: *mut RLNWrapper, index: usize) -> Result<(), String> {
call_with_error_msg!(ctx, delete_leaf, "could not delete leaf".to_string(), index)
}
#[allow(clippy::not_unsafe_ptr_arg_deref)]
#[wasm_bindgen(js_name = setMetadata)]
pub fn wasm_set_metadata(ctx: *mut RLNWrapper, input: Uint8Array) -> Result<(), String> {
call_with_error_msg!(
ctx,
set_metadata,
"could not set metadata".to_string(),
&*input.to_vec()
)
}
#[allow(clippy::not_unsafe_ptr_arg_deref)]
#[wasm_bindgen(js_name = getMetadata)]
pub fn wasm_get_metadata(ctx: *mut RLNWrapper) -> Result<Uint8Array, String> {
call_with_output_and_error_msg!(ctx, get_metadata, "could not get metadata".to_string())
}
#[allow(clippy::not_unsafe_ptr_arg_deref)]
#[wasm_bindgen(js_name = initTreeWithLeaves)]
pub fn wasm_init_tree_with_leaves(ctx: *mut RLNWrapper, input: Uint8Array) -> Result<(), String> {
call_with_error_msg!(
ctx,
init_tree_with_leaves,
"could not init merkle tree".to_string(),
&*input.to_vec()
)
}
#[allow(clippy::not_unsafe_ptr_arg_deref)]
#[wasm_bindgen(js_name = RLNWitnessToJson)]
pub fn rln_witness_to_json(
ctx: *mut RLNWrapper,
serialized_witness: Uint8Array,
) -> Result<Object, String> {
let inputs = call!(
ctx,
get_rln_witness_bigint_json,
&serialized_witness.to_vec()[..]
)
.map_err(|err| err.to_string())?;
let inputs = call!(ctx, get_rln_witness_json, &serialized_witness.to_vec()[..])
.map_err(|err| err.to_string())?;
let js_value = serde_wasm_bindgen::to_value(&inputs).map_err(|err| err.to_string())?;
Object::from_entries(&js_value).map_err(|err| format!("{:#?}", err))
}
#[allow(clippy::not_unsafe_ptr_arg_deref)]
#[wasm_bindgen(js_name = generateRLNProofWithWitness)]
pub fn wasm_generate_rln_proof_with_witness(
#[wasm_bindgen]
pub fn generate_rln_proof_with_witness(
ctx: *mut RLNWrapper,
calculated_witness: Vec<JsBigInt>,
serialized_witness: Uint8Array,
@@ -263,6 +358,17 @@ pub fn wasm_recover_id_secret(
)
}
#[allow(clippy::not_unsafe_ptr_arg_deref)]
#[wasm_bindgen(js_name = verifyRLNProof)]
pub fn wasm_verify_rln_proof(ctx: *const RLNWrapper, proof: Uint8Array) -> Result<bool, String> {
call_bool_method_with_error_msg!(
ctx,
verify_rln_proof,
"error while verifying rln proof".to_string(),
&proof.to_vec()[..]
)
}
#[allow(clippy::not_unsafe_ptr_arg_deref)]
#[wasm_bindgen(js_name = verifyWithRoots)]
pub fn wasm_verify_with_roots(
@@ -279,6 +385,12 @@ pub fn wasm_verify_with_roots(
)
}
#[allow(clippy::not_unsafe_ptr_arg_deref)]
#[wasm_bindgen(js_name = getRoot)]
pub fn wasm_get_root(ctx: *const RLNWrapper) -> Result<Uint8Array, String> {
call_with_output_and_error_msg!(ctx, get_root, "could not obtain root")
}
#[wasm_bindgen(js_name = hash)]
pub fn wasm_hash(input: Uint8Array) -> Result<Uint8Array, String> {
fn_call_with_output_and_error_msg!(hash, "could not generate hash", &input.to_vec()[..])

View File

@@ -3,24 +3,16 @@ const fs = require("fs");
// Utils functions for loading circom witness calculator and reading files from test
module.exports = {
read_file: function (path) {
return fs.readFileSync(path);
},
read_file: function (path) {
return fs.readFileSync(path);
},
calculateWitness: async function (circom_path, inputs) {
const wc = require("../resources/witness_calculator.js");
const wasmFile = fs.readFileSync(circom_path);
const wasmFileBuffer = wasmFile.slice(
wasmFile.byteOffset,
wasmFile.byteOffset + wasmFile.byteLength
);
const witnessCalculator = await wc(wasmFileBuffer);
const calculatedWitness = await witnessCalculator.calculateWitness(
inputs,
false
);
return JSON.stringify(calculatedWitness, (key, value) =>
typeof value === "bigint" ? value.toString() : value
);
},
};
calculateWitness: async function(circom_path, inputs){
const wc = require("resources/witness_calculator.js");
const wasmFile = fs.readFileSync(circom_path);
const wasmFileBuffer = wasmFile.slice(wasmFile.byteOffset, wasmFile.byteOffset + wasmFile.byteLength);
const witnessCalculator = await wc(wasmFileBuffer);
const calculatedWitness = await witnessCalculator.calculateWitness(inputs, false);
return JSON.stringify(calculatedWitness, (key, value) => typeof value === "bigint" ? value.toString() : value);
}
}

View File

@@ -2,16 +2,12 @@
#[cfg(test)]
mod tests {
use js_sys::{BigInt as JsBigInt, Date, Object, Uint8Array};
use rln::circuit::{Fr, TEST_TREE_HEIGHT};
use rln::hashers::{hash_to_field, poseidon_hash};
use rln::poseidon_tree::PoseidonTree;
use rln::protocol::{prepare_verify_input, rln_witness_from_values, serialize_witness};
use rln::utils::{bytes_le_to_fr, fr_to_bytes_le};
use js_sys::{BigInt as JsBigInt, Object, Uint8Array};
use rln::circuit::TEST_TREE_HEIGHT;
use rln::utils::normalize_usize;
use rln_wasm::*;
use wasm_bindgen::{prelude::*, JsValue};
use wasm_bindgen_test::wasm_bindgen_test;
use zerokit_utils::merkle_tree::merkle_tree::ZerokitMerkleTree;
#[wasm_bindgen(module = "src/utils.js")]
extern "C" {
@@ -22,268 +18,118 @@ mod tests {
async fn calculateWitness(circom_path: &str, input: Object) -> Result<JsValue, JsValue>;
}
#[cfg(feature = "arkzkey")]
const ZKEY_PATH: &str = "../rln/resources/tree_height_20/rln_final.arkzkey";
#[cfg(not(feature = "arkzkey"))]
const ZKEY_PATH: &str = "../rln/resources/tree_height_20/rln_final.zkey";
const CIRCOM_PATH: &str = "../rln/resources/tree_height_20/rln.wasm";
#[wasm_bindgen_test]
pub async fn rln_wasm_benchmark() {
let mut results = String::from("\nbenchmarks:\n");
let iterations = 10;
pub async fn test_basic_flow() {
let tree_height = TEST_TREE_HEIGHT;
let circom_path = format!("../rln/resources/tree_height_{TEST_TREE_HEIGHT}/rln.wasm");
let zkey_path = format!("../rln/resources/tree_height_{TEST_TREE_HEIGHT}/rln_final.zkey");
let vk_path =
format!("../rln/resources/tree_height_{TEST_TREE_HEIGHT}/verification_key.json");
let zkey = read_file(&zkey_path).unwrap();
let vk = read_file(&vk_path).unwrap();
let zkey = read_file(&ZKEY_PATH).expect("Failed to read zkey file");
// Creating an instance of RLN
let rln_instance = wasm_new(tree_height, zkey, vk).unwrap();
// Benchmark wasm_new
let start_wasm_new = Date::now();
for _ in 0..iterations {
let _ = wasm_new(zkey.clone()).expect("Failed to create RLN instance");
}
let wasm_new_result = Date::now() - start_wasm_new;
// Creating membership key
let mem_keys = wasm_key_gen(rln_instance).unwrap();
let idkey = mem_keys.subarray(0, 32);
let idcommitment = mem_keys.subarray(32, 64);
// Create RLN instance for other benchmarks
let rln_instance = wasm_new(zkey).expect("Failed to create RLN instance");
let mut tree = PoseidonTree::default(TEST_TREE_HEIGHT).expect("Failed to create tree");
// Insert PK
wasm_set_next_leaf(rln_instance, idcommitment).unwrap();
// Benchmark wasm_key_gen
let start_wasm_key_gen = Date::now();
for _ in 0..iterations {
let _ = wasm_key_gen(rln_instance).expect("Failed to generate keys");
}
let wasm_key_gen_result = Date::now() - start_wasm_key_gen;
// Prepare the message
let signal = "Hello World".as_bytes();
// Generate identity pair for other benchmarks
let mem_keys = wasm_key_gen(rln_instance).expect("Failed to generate keys");
let id_key = mem_keys.subarray(0, 32);
let (identity_secret_hash, _) = bytes_le_to_fr(&id_key.to_vec());
let (id_commitment, _) = bytes_le_to_fr(&mem_keys.subarray(32, 64).to_vec());
// Setting up the epoch (With 0s for the test)
let epoch = Uint8Array::new_with_length(32);
epoch.fill(0, 0, 32);
let epoch = hash_to_field(b"test-epoch");
let rln_identifier = hash_to_field(b"test-rln-identifier");
let external_nullifier = poseidon_hash(&[epoch, rln_identifier]);
let identity_index: usize = 0;
let identity_index = tree.leaves_set();
// Serializing the message
let mut serialized_vec: Vec<u8> = Vec::new();
serialized_vec.append(&mut idkey.to_vec());
serialized_vec.append(&mut normalize_usize(identity_index));
serialized_vec.append(&mut epoch.to_vec());
serialized_vec.append(&mut normalize_usize(signal.len()));
serialized_vec.append(&mut signal.to_vec());
let serialized_message = Uint8Array::from(&serialized_vec[..]);
let user_message_limit = Fr::from(100);
let rate_commitment = poseidon_hash(&[id_commitment, user_message_limit]);
tree.update_next(rate_commitment)
.expect("Failed to update tree");
let message_id = Fr::from(0);
let signal: [u8; 32] = [0; 32];
let x = hash_to_field(&signal);
let merkle_proof = tree
.proof(identity_index)
.expect("Failed to generate merkle proof");
let rln_witness = rln_witness_from_values(
identity_secret_hash,
&merkle_proof,
x,
external_nullifier,
user_message_limit,
message_id,
)
.expect("Failed to create RLN witness");
let serialized_witness =
serialize_witness(&rln_witness).expect("Failed to serialize witness");
let witness_buffer = Uint8Array::from(&serialized_witness[..]);
let json_inputs = wasm_rln_witness_to_json(rln_instance, witness_buffer.clone())
.expect("Failed to convert witness to JSON");
// Benchmark calculateWitness
let start_calculate_witness = Date::now();
for _ in 0..iterations {
let _ = calculateWitness(&CIRCOM_PATH, json_inputs.clone())
.await
.expect("Failed to calculate witness");
}
let calculate_witness_result = Date::now() - start_calculate_witness;
// Calculate witness for other benchmarks
let calculated_witness_json = calculateWitness(&CIRCOM_PATH, json_inputs)
.await
.expect("Failed to calculate witness")
.as_string()
.expect("Failed to convert calculated witness to string");
let calculated_witness_vec_str: Vec<String> =
serde_json::from_str(&calculated_witness_json).expect("Failed to parse JSON");
let calculated_witness: Vec<JsBigInt> = calculated_witness_vec_str
.iter()
.map(|x| JsBigInt::new(&x.into()).expect("Failed to create JsBigInt"))
.collect();
// Benchmark wasm_generate_rln_proof_with_witness
let start_wasm_generate_rln_proof_with_witness = Date::now();
for _ in 0..iterations {
let _ = wasm_generate_rln_proof_with_witness(
rln_instance,
calculated_witness.clone(),
witness_buffer.clone(),
)
.expect("Failed to generate proof");
}
let wasm_generate_rln_proof_with_witness_result =
Date::now() - start_wasm_generate_rln_proof_with_witness;
// Generate a proof for other benchmarks
let proof =
wasm_generate_rln_proof_with_witness(rln_instance, calculated_witness, witness_buffer)
.expect("Failed to generate proof");
let proof_data = proof.to_vec();
let verify_input = prepare_verify_input(proof_data, &signal);
let input_buffer = Uint8Array::from(&verify_input[..]);
let root = tree.root();
let roots_serialized = fr_to_bytes_le(&root);
let roots_buffer = Uint8Array::from(&roots_serialized[..]);
// Benchmark wasm_verify_with_roots
let start_wasm_verify_with_roots = Date::now();
for _ in 0..iterations {
let _ =
wasm_verify_with_roots(rln_instance, input_buffer.clone(), roots_buffer.clone())
.expect("Failed to verify proof");
}
let wasm_verify_with_roots_result = Date::now() - start_wasm_verify_with_roots;
// Verify the proof with the root
let is_proof_valid = wasm_verify_with_roots(rln_instance, input_buffer, roots_buffer)
.expect("Failed to verify proof");
assert!(is_proof_valid, "verification failed");
// Format and display results
let format_duration = |duration_ms: f64| -> String {
let avg_ms = duration_ms / (iterations as f64);
if avg_ms >= 1000.0 {
format!("{:.3} s", avg_ms / 1000.0)
} else {
format!("{:.3} ms", avg_ms)
}
};
results.push_str(&format!("wasm_new: {}\n", format_duration(wasm_new_result)));
results.push_str(&format!(
"wasm_key_gen: {}\n",
format_duration(wasm_key_gen_result)
));
results.push_str(&format!(
"calculateWitness: {}\n",
format_duration(calculate_witness_result)
));
results.push_str(&format!(
"wasm_generate_rln_proof_with_witness: {}\n",
format_duration(wasm_generate_rln_proof_with_witness_result)
));
results.push_str(&format!(
"wasm_verify_with_roots: {}\n",
format_duration(wasm_verify_with_roots_result)
));
// Log the results
wasm_bindgen_test::console_log!("{results}");
}
#[wasm_bindgen_test]
pub async fn rln_wasm_test() {
// Read the zkey file
let zkey = read_file(&ZKEY_PATH).expect("Failed to read zkey file");
// Create RLN instance and separated tree
let rln_instance = wasm_new(zkey).expect("Failed to create RLN instance");
let mut tree = PoseidonTree::default(TEST_TREE_HEIGHT).expect("Failed to create tree");
// Setting up the epoch and rln_identifier
let epoch = hash_to_field(b"test-epoch");
let rln_identifier = hash_to_field(b"test-rln-identifier");
let external_nullifier = poseidon_hash(&[epoch, rln_identifier]);
// Generate identity pair
let mem_keys = wasm_key_gen(rln_instance).expect("Failed to generate keys");
let (identity_secret_hash, _) = bytes_le_to_fr(&mem_keys.subarray(0, 32).to_vec());
let (id_commitment, _) = bytes_le_to_fr(&mem_keys.subarray(32, 64).to_vec());
// Get index of the identity
let identity_index = tree.leaves_set();
// Setting up the user message limit
let user_message_limit = Fr::from(100);
// Updating the tree with the rate commitment
let rate_commitment = poseidon_hash(&[id_commitment, user_message_limit]);
tree.update_next(rate_commitment)
.expect("Failed to update tree");
// Generate merkle proof
let merkle_proof = tree
.proof(identity_index)
.expect("Failed to generate merkle proof");
// Create message id and signal
let message_id = Fr::from(0);
let signal: [u8; 32] = [0; 32];
let x = hash_to_field(&signal);
// Prepare input for witness calculation
let rln_witness = rln_witness_from_values(
identity_secret_hash,
&merkle_proof,
x,
external_nullifier,
user_message_limit,
message_id,
)
.expect("Failed to create RLN witness");
// Serialize the rln witness
let serialized_witness =
serialize_witness(&rln_witness).expect("Failed to serialize witness");
// Convert the serialized witness to a Uint8Array
let witness_buffer = Uint8Array::from(&serialized_witness[..]);
let serialized_rln_witness =
wasm_get_serialized_rln_witness(rln_instance, serialized_message).unwrap();
// Obtaining inputs that should be sent to circom witness calculator
let json_inputs = wasm_rln_witness_to_json(rln_instance, witness_buffer.clone())
.expect("Failed to convert witness to JSON");
let json_inputs =
rln_witness_to_json(rln_instance, serialized_rln_witness.clone()).unwrap();
// Calculating witness with JS
// (Using a JSON since wasm_bindgen does not like Result<Vec<JsBigInt>,JsValue>)
let calculated_witness_json = calculateWitness(&CIRCOM_PATH, json_inputs)
let calculated_witness_json = calculateWitness(&circom_path, json_inputs)
.await
.expect("Failed to calculate witness")
.unwrap()
.as_string()
.expect("Failed to convert calculated witness to string");
.unwrap();
let calculated_witness_vec_str: Vec<String> =
serde_json::from_str(&calculated_witness_json).expect("Failed to parse JSON");
serde_json::from_str(&calculated_witness_json).unwrap();
let calculated_witness: Vec<JsBigInt> = calculated_witness_vec_str
.iter()
.map(|x| JsBigInt::new(&x.into()).expect("Failed to create JsBigInt"))
.map(|x| JsBigInt::new(&x.into()).unwrap())
.collect();
// Generate a proof from the calculated witness
let proof =
wasm_generate_rln_proof_with_witness(rln_instance, calculated_witness, witness_buffer)
.expect("Failed to generate proof");
// Generating proof
let proof = generate_rln_proof_with_witness(
rln_instance,
calculated_witness.into(),
serialized_rln_witness,
)
.unwrap();
// Prepare the root for verification
let root = tree.root();
let roots_serialized = fr_to_bytes_le(&root);
let roots_buffer = Uint8Array::from(&roots_serialized[..]);
// Add signal_len | signal
let mut proof_bytes = proof.to_vec();
proof_bytes.append(&mut normalize_usize(signal.len()));
proof_bytes.append(&mut signal.to_vec());
let proof_with_signal = Uint8Array::from(&proof_bytes[..]);
// Prepare input for proof verification
let proof_data = proof.to_vec();
let verify_input = prepare_verify_input(proof_data, &signal);
let input_buffer = Uint8Array::from(&verify_input[..]);
// Validate Proof
let is_proof_valid = wasm_verify_rln_proof(rln_instance, proof_with_signal);
// Verify the proof with the root
let is_proof_valid = wasm_verify_with_roots(rln_instance, input_buffer, roots_buffer)
.expect("Failed to verify proof");
assert!(is_proof_valid, "verification failed");
assert!(
is_proof_valid.unwrap(),
"validating proof generated with wasm failed"
);
// Validating Proof with Roots
let root = wasm_get_root(rln_instance).unwrap();
let roots = Uint8Array::from(&root.to_vec()[..]);
let proof_with_signal = Uint8Array::from(&proof_bytes[..]);
let is_proof_valid = wasm_verify_with_roots(rln_instance, proof_with_signal, roots);
assert!(is_proof_valid.unwrap(), "verifying proof with roots failed");
}
#[wasm_bindgen_test]
fn test_metadata() {
let tree_height = TEST_TREE_HEIGHT;
let circom_path = format!("../rln/resources/tree_height_{TEST_TREE_HEIGHT}/rln.wasm");
let zkey_path = format!("../rln/resources/tree_height_{TEST_TREE_HEIGHT}/rln_final.zkey");
let vk_path =
format!("../rln/resources/tree_height_{TEST_TREE_HEIGHT}/verification_key.json");
let zkey = read_file(&zkey_path).unwrap();
let vk = read_file(&vk_path).unwrap();
// Creating an instance of RLN
let rln_instance = wasm_new(tree_height, zkey, vk).unwrap();
let test_metadata = Uint8Array::new(&JsValue::from_str("test"));
// Inserting random metadata
wasm_set_metadata(rln_instance, test_metadata.clone()).unwrap();
// Getting metadata
let metadata = wasm_get_metadata(rln_instance).unwrap();
assert_eq!(metadata.to_vec(), test_metadata.to_vec());
}
}

View File

@@ -1,6 +1,6 @@
[package]
name = "rln"
version = "0.7.0"
version = "0.3.7"
edition = "2021"
license = "MIT OR Apache-2.0"
description = "APIs to manage, compute and verify zkSNARK proofs and RLN primitives"
@@ -15,86 +15,68 @@ bench = false
# This flag disable cargo doctests, i.e. testing example code-snippets in documentation
doctest = false
[dependencies]
# ZKP Generation
ark-bn254 = { version = "0.5.0", features = ["std"] }
ark-relations = { version = "0.5.1", features = ["std"] }
ark-ff = { version = "0.5.0", default-features = false, features = [
ark-ec = { version = "=0.4.1", default-features = false }
ark-ff = { version = "=0.4.1", default-features = false, features = ["asm"] }
ark-std = { version = "=0.4.0", default-features = false }
ark-bn254 = { version = "=0.4.0" }
ark-groth16 = { version = "=0.4.0", features = [
"parallel",
] }
ark-ec = { version = "0.5.0", default-features = false, features = [
"parallel",
] }
ark-std = { version = "0.5.0", default-features = false, features = [
"parallel",
] }
ark-poly = { version = "0.5.0", default-features = false, features = [
"parallel",
] }
ark-groth16 = { version = "0.5.0", default-features = false, features = [
"parallel",
] }
ark-serialize = { version = "0.5.0", default-features = false, features = [
"parallel",
] }
# error handling
color-eyre = "0.6.3"
thiserror = "2.0.12"
# utilities
byteorder = "1.5.0"
cfg-if = "1.0"
num-bigint = { version = "0.4.6", default-features = false, features = [
"rand",
], default-features = false }
ark-relations = { version = "=0.4.0", default-features = false, features = [
"std",
] }
num-traits = "0.2.19"
once_cell = "1.21.3"
lazy_static = "1.5.0"
rand = "0.8.5"
rand_chacha = "0.3.1"
ruint = { version = "1.14.0", features = ["rand", "serde", "ark-ff-04"] }
tiny-keccak = { version = "2.0.2", features = ["keccak"] }
utils = { package = "zerokit_utils", version = "0.5.2", path = "../utils", default-features = false }
ark-serialize = { version = "=0.4.1", default-features = false }
ark-circom = { version = "=0.1.0", default-features = false, features = [
"circom-2",
] }
# WASM
wasmer = { version = "=2.3.0", default-features = false }
# error handling
color-eyre = "=0.6.2"
thiserror = "=1.0.39"
# utilities
cfg-if = "=1.0"
num-bigint = { version = "=0.4.3", default-features = false, features = [
"rand",
] }
num-traits = "=0.2.15"
once_cell = "=1.17.1"
rand = "=0.8.5"
rand_chacha = "=0.3.1"
tiny-keccak = { version = "=2.0.2", features = ["keccak"] }
utils = { package = "zerokit_utils", version = "=0.3.3", path = "../utils/", default-features = false }
# serialization
prost = "0.13.5"
serde_json = "1.0"
serde = { version = "1.0", features = ["derive"] }
serde_json = "=1.0.96"
serde = { version = "=1.0.163", features = ["derive"] }
document-features = { version = "0.2.11", optional = true }
include_dir = "=0.7.3"
[dev-dependencies]
sled = "0.34.7"
criterion = { version = "0.4.0", features = ["html_reports"] }
sled = "=0.34.7"
criterion = { version = "=0.4.0", features = ["html_reports"] }
[features]
default = ["pmtree-ft"]
default = ["parallel", "wasmer/sys-default", "pmtree-ft"]
parallel = [
"ark-ec/parallel",
"ark-ff/parallel",
"ark-std/parallel",
"ark-groth16/parallel",
"utils/parallel",
]
wasm = ["wasmer/js", "wasmer/std"]
fullmerkletree = ["default"]
stateless = []
arkzkey = []
# Note: pmtree feature is still experimental
pmtree-ft = ["utils/pmtree-ft"]
[[bench]]
name = "circuit_loading_arkzkey_benchmark"
harness = false
required-features = ["arkzkey"]
[[bench]]
name = "circuit_loading_benchmark"
harness = false
[[bench]]
name = "pmtree_benchmark"
harness = false
[[bench]]
name = "poseidon_tree_benchmark"
harness = false
[package.metadata.docs.rs]
all-features = true

View File

@@ -4,15 +4,7 @@ args = ["build", "--release"]
[tasks.test]
command = "cargo"
args = ["test", "--release", "--", "--nocapture"]
[tasks.test_stateless]
command = "cargo"
args = ["test", "--release", "--features", "stateless"]
[tasks.test_arkzkey]
command = "cargo"
args = ["test", "--release", "--features", "arkzkey"]
args = ["test", "--release"]
[tasks.bench]
command = "cargo"

View File

@@ -1,17 +1,64 @@
# Zerokit RLN Module
[![Crates.io](https://img.shields.io/crates/v/rln.svg)](https://crates.io/crates/rln)
This module provides APIs to manage, compute and verify [RLN](https://rfc.vac.dev/spec/32/) zkSNARK proofs and RLN primitives.
The Zerokit RLN Module provides a Rust implementation for working with Rate-Limiting Nullifier [RLN](https://rfc.vac.dev/spec/32/) zkSNARK proofs and primitives. This module allows you to:
## Pre-requisites
### Install dependencies and clone repo
- Generate and verify RLN proofs
- Work with Merkle trees for commitment storage
- Implement rate-limiting mechanisms for distributed systems
```sh
make installdeps
git clone https://github.com/vacp2p/zerokit.git
cd zerokit/rln
```
## Quick Start
### Build and Test
> [!IMPORTANT]
> Version 0.6.1 is required for WASM support or x32 architecture. Current version doesn't support these platforms due to dependency issues. WASM support will return in a future release.
To build and test, run the following commands within the module folder
```bash
cargo make build
cargo make test
```
### Compile ZK circuits
The `rln` (https://github.com/privacy-scaling-explorations/rln) repository, which contains the RLN circuit implementation is a submodule of zerokit RLN.
To compile the RLN circuit
``` sh
# Update submodules
git submodule update --init --recursive
# Install rln dependencies
cd vendor/rln/ && npm install
# Build circuits
./scripts/build-circuits.sh rln
# Copy over assets
cp build/zkeyFiles/rln-final.zkey ../../resources/tree_height_15
cp build/zkeyFiles/rln.wasm ../../resources/tree_height_15
```
Note that the above code snippet will compile a RLN circuit with a Merkle tree of height equal `15` based on the default value set in `vendor/rln/circuit/rln.circom`.
In order to compile a RLN circuit with Merkle tree height `N`, it suffices to change `vendor/rln/circuit/rln.circom` to
```
pragma circom 2.0.0;
include "./rln-base.circom";
component main {public [x, epoch, rln_identifier ]} = RLN(N);
```
However, if `N` is too big, this might require a bigger Powers of Tau ceremony than the one hardcoded in `./scripts/build-circuits.sh`, which is `2^14`.
In such case we refer to the official [Circom documentation](https://docs.circom.io/getting-started/proving-circuits/#powers-of-tau) for instructions on how to run an appropriate Powers of Tau ceremony and Phase 2 in order to compile the desired circuit.
Currently, the `rln` module comes with three [pre-compiled](https://github.com/vacp2p/zerokit/tree/master/rln/resources) RLN circuits having Merkle tree of height `15`, `19` and `20`, respectively.
## Getting started
### Add RLN as dependency
@@ -22,263 +69,128 @@ We start by adding zerokit RLN to our `Cargo.toml`
rln = { git = "https://github.com/vacp2p/zerokit" }
```
## Basic Usage Example
### Create a RLN object
Note that we need to pass to RLN object constructor the path where the graph file (`graph.bin`, built for the input tree size), the corresponding proving key (`rln_final.zkey`) or (`rln_final_uncompr.arkzkey`) and verification key (`verification_key.arkvkey`, optional) are found.
First, we need to create a RLN object for a chosen input Merkle tree size.
Note that we need to pass to RLN object constructor the path where the circuit (`rln.wasm`, built for the input tree size), the corresponding proving key (`rln_final.zkey`) and verification key (`verification_key.json`, optional) are found.
In the following we will use [cursors](https://doc.rust-lang.org/std/io/struct.Cursor.html) as readers/writers for interfacing with RLN public APIs.
```rust
use rln::protocol::*;
use rln::public::*;
use std::io::Cursor;
use rln::{
circuit::Fr,
hashers::{hash_to_field, poseidon_hash},
protocol::{keygen, prepare_prove_input, prepare_verify_input},
public::RLN,
utils::fr_to_bytes_le,
};
use serde_json::json;
// We set the RLN parameters:
// - the tree height;
// - the circuit resource folder (requires a trailing "/").
let tree_height = 20;
let resources = Cursor::new("../zerokit/rln/resources/tree_height_20/");
fn main() {
// 1. Initialize RLN with parameters:
// - the tree height;
// - the tree config, if it is not defined, the default value will be set
let tree_height = 20;
let input = Cursor::new(json!({}).to_string());
let mut rln = RLN::new(tree_height, input).unwrap();
// 2. Generate an identity keypair
let (identity_secret_hash, id_commitment) = keygen();
// 3. Add a rate commitment to the Merkle tree
let id_index = 10;
let user_message_limit = Fr::from(10);
let rate_commitment = poseidon_hash(&[id_commitment, user_message_limit]);
let mut buffer = Cursor::new(fr_to_bytes_le(&rate_commitment));
rln.set_leaf(id_index, &mut buffer).unwrap();
// 4. Set up external nullifier (epoch + app identifier)
// We generate epoch from a date seed and we ensure is
// mapped to a field element by hashing-to-field its content
let epoch = hash_to_field(b"Today at noon, this year");
// We generate rln_identifier from a date seed and we ensure is
// mapped to a field element by hashing-to-field its content
let rln_identifier = hash_to_field(b"test-rln-identifier");
// We generate a external nullifier
let external_nullifier = poseidon_hash(&[epoch, rln_identifier]);
// We choose a message_id satisfy 0 <= message_id < user_message_limit
let message_id = Fr::from(1);
// 5. Generate and verify a proof for a message
let signal = b"RLN is awesome";
// 6. Prepare input for generate_rln_proof API
// input_data is [ identity_secret<32> | id_index<8> | external_nullifier<32> | user_message_limit<32> | message_id<32> | signal_len<8> | signal<var> ]
let prove_input = prepare_prove_input(
identity_secret_hash,
id_index,
user_message_limit,
message_id,
external_nullifier,
signal,
);
// 7. Generate a RLN proof
// We generate a RLN proof for proof_input
let mut input_buffer = Cursor::new(prove_input);
let mut output_buffer = Cursor::new(Vec::<u8>::new());
rln.generate_rln_proof(&mut input_buffer, &mut output_buffer)
.unwrap();
// We get the public outputs returned by the circuit evaluation
// The byte vector `proof_data` is serialized as `[ zk-proof | tree_root | external_nullifier | share_x | share_y | nullifier ]`.
let proof_data = output_buffer.into_inner();
// 8. Verify a RLN proof
// Input buffer is serialized as `[proof_data | signal_len | signal ]`, where `proof_data` is (computed as) the output obtained by `generate_rln_proof`.
let verify_data = prepare_verify_input(proof_data, signal);
// We verify the zk-proof against the provided proof values
let mut input_buffer = Cursor::new(verify_data);
let verified = rln.verify_rln_proof(&mut input_buffer).unwrap();
// We ensure the proof is valid
assert!(verified);
}
// We create a new RLN instance
let mut rln = RLN::new(tree_height, resources);
```
### Comments for the code above for point 4
### Generate an identity keypair
The `external nullifier` includes two parameters.
We generate an identity keypair
The first one is `epoch` and it's used to identify messages received in a certain time frame.
It usually corresponds to the current UNIX time but can also be set to a random value or generated by a seed, provided that it corresponds to a field element.
```rust
// We generate an identity pair
let mut buffer = Cursor::new(Vec::<u8>::new());
rln.key_gen(&mut buffer).unwrap();
The second one is `rln_identifier` and it's used to prevent a RLN ZK proof generated for one application to be re-used in another one.
### Features
- **Multiple Backend Support**: Choose between different zkey formats with feature flags
- `arkzkey`: Use the optimized Arkworks-compatible zkey format (faster loading)
- `stateless`: For stateless proof verification
- **Pre-compiled Circuits**: Ready-to-use circuits with Merkle tree height of 20
## Building and Testing
### Prerequisites
```sh
git clone https://github.com/vacp2p/zerokit.git
make installdeps
cd zerokit/rln
// We deserialize the keygen output to obtain
// the identiy_secret and id_commitment
let (identity_secret_hash, id_commitment) = deserialize_identity_pair(buffer.into_inner());
```
### Build Commands
### Add ID commitment to the RLN Merkle tree
```sh
# Build with default features
cargo make build
```rust
// We define the tree index where id_commitment will be added
let id_index = 10;
# Test with default features
cargo make test
# Test with specific features
cargo make test_arkzkey # For arkzkey feature
cargo make test_stateless # For stateless feature
// We serialize id_commitment and pass it to set_leaf
let mut buffer = Cursor::new(serialize_field_element(id_commitment));
rln.set_leaf(id_index, &mut buffer).unwrap();
```
## Advanced: Custom Circuit Compilation
Note that when tree leaves are not explicitly set by the user (in this example, all those with index less and greater than `10`), their values is set to an hardcoded default (all-`0` bytes in current implementation).
The `rln` (<https://github.com/rate-limiting-nullifier/circom-rln>) repository, which contains the RLN circuit implementation is using for pre-compiled RLN circuit for zerokit RLN.
If you want to compile your own RLN circuit, you can follow the instructions below.
### Set epoch
### 1. Compile ZK Circuits for getting the zkey and verification key files
The epoch, sometimes referred to as _external nullifier_, is used to identify messages received in a certain time frame. It usually corresponds to the current UNIX time but can also be set to a random value or generated by a seed, provided that it corresponds to a field element.
This script actually generates not only the zkey and verification key files for the RLN circuit, but also the execution wasm file used for witness calculation.
However, the wasm file is not needed for the `rln` module, because current implementation uses the iden3 graph file for witness calculation.
This graph file is generated by the `circom-witnesscalc` tool in [step 2](#2-generate-witness-calculation-graph).
```rust
// We generate epoch from a date seed and we ensure is
// mapped to a field element by hashing-to-field its content
let epoch = hash_to_field(b"Today at noon, this year");
```
### Set signal
To customize the circuit parameters, modify `circom-rln/circuits/rln.circom`:
The signal is the message for which we are computing a RLN proof.
```circom
pragma circom 2.1.0;
include "./rln.circom";
component main { public [x, externalNullifier] } = RLN(N, M);
```rust
// We set our signal
let signal = b"RLN is awesome";
```
Where:
### Generate a RLN proof
- `N`: Merkle tree height, determining the maximum membership capacity (2^N members).
We prepare the input to the proof generation routine.
- `M`: Bit size for range checks, setting an upper bound for the number of messages per epoch (2^M messages).
Input buffer is serialized as `[ identity_key | id_index | epoch | signal_len | signal ]`.
> [!NOTE]
> However, if `N` is too big, this might require a larger Powers of Tau ceremony than the one hardcoded in `./scripts/build-circuits.sh`, which is `2^14`. \
> In such case, we refer to the official [Circom documentation](https://docs.circom.io/getting-started/proving-circuits/#powers-of-tau) for instructions on how to run an appropriate Powers of Tau ceremony and Phase 2 in order to compile the desired circuit. \
> Additionally, while `M` sets an upper bound on the number of messages per epoch (`2^M`), you can configure lower message limit for your use case, as long as it satisfies `user_message_limit ≤ 2^M`. \
> Currently, the `rln` module comes with a [pre-compiled](https://github.com/vacp2p/zerokit/tree/master/rln/resources) RLN circuit with a Merkle tree of height `20` and a bit size of `16`, allowing up to `2^20` registered members and a `2^16` message limit per epoch.
#### Install circom compiler
You can follow the instructions below or refer to the [installing Circom](https://docs.circom.io/getting-started/installation/#installing-circom) guide for more details, but make sure to use the specific version `v2.1.0`.
```sh
# Clone the circom repository
git clone https://github.com/iden3/circom.git
# Checkout the specific version
cd circom && git checkout v2.1.0
# Build the circom compiler
cargo build --release
# Install the circom binary globally
cargo install --path circom
# Check the circom version to ensure it's v2.1.0
circom --version
```rust
// We prepare input to the proof generation routine
let proof_input = prepare_prove_input(identity_secret_hash, id_index, epoch, signal);
```
#### Generate the zkey and verification key files example
We are now ready to generate a RLN ZK proof along with the _public outputs_ of the ZK circuit evaluation.
```sh
# Clone the circom-rln repository
git clone https://github.com/rate-limiting-nullifier/circom-rln
```rust
# Install dependencies
cd circom-rln && npm install
// We generate a RLN proof for proof_input
let mut in_buffer = Cursor::new(proof_input);
let mut out_buffer = Cursor::new(Vec::<u8>::new());
rln.generate_rln_proof(&mut in_buffer, &mut out_buffer)
.unwrap();
# Build circuits
./scripts/build-circuits.sh rln
# Use the generated zkey file in subsequent steps
cp zkeyFiles/rln/final.zkey <path_to_rln_final.zkey>
// We get the public outputs returned by the circuit evaluation
let proof_data = out_buffer.into_inner();
```
### 2. Generate Witness Calculation Graph
The byte vector `proof_data` is serialized as `[ zk-proof | tree_root | epoch | share_x | share_y | nullifier | rln_identifier ]`.
The execution graph file used for witness calculation can be compiled following instructions in the [circom-witnesscalc](https://github.com/iden3/circom-witnesscalc) repository.
As mentioned in step 1, we should use `rln.circom` file from `circom-rln` repository.
```sh
# Clone the circom-witnesscalc repository
git clone https://github.com/iden3/circom-witnesscalc
### Verify a RLN proof
# Load the submodules
cd circom-witnesscalc && git submodule update --init --recursive
We prepare the input to the proof verification routine.
# Build the circom-witnesscalc tool
cargo build
Input buffer is serialized as `[proof_data | signal_len | signal ]`, where `proof_data` is (computed as) the output obtained by `generate_rln_proof`.
# Generate the witness calculation graph
cargo run --package circom_witnesscalc --bin build-circuit ../circom-rln/circuits/rln.circom <path_to_graph.bin>
```rust
// We prepare input to the proof verification routine
let verify_data = prepare_verify_input(proof_data, signal);
// We verify the zk-proof against the provided proof values
let mut in_buffer = Cursor::new(verify_data);
let verified = rln.verify(&mut in_buffer).unwrap();
```
The `rln` module comes with [pre-compiled](https://github.com/vacp2p/zerokit/tree/master/rln/resources) execution graph files for the RLN circuit.
### 3. Generate Arkzkey Representation for zkey and verification key files
For faster loading, compile the zkey file into the arkzkey format using [ark-zkey](https://github.com/seemenkina/ark-zkey). This is fork of the [original](https://github.com/zkmopro/ark-zkey) repository with the uncompressed zkey support.
```sh
# Clone the ark-zkey repository
git clone https://github.com/seemenkina/ark-zkey.git
# Build the ark-zkey tool
cd ark-zkey && cargo build
# Generate the arkzkey representation for the zkey file
cargo run --bin arkzkey-util <path_to_rln_final.zkey>
We check if the proof verification was successful:
```rust
// We ensure the proof is valid
assert!(verified);
```
Currently, the `rln` module comes with [pre-compiled](https://github.com/vacp2p/zerokit/tree/master/rln/resources) arkzkey keys for the RLN circuit.
## Get involved
## Get involved!
Zerokit RLN public and FFI APIs allow interaction with many more features than what briefly showcased above.
We invite you to check our API documentation by running
```rust
cargo doc --no-deps
```
and look at unit tests to have an hint on how to interface and use them.
## Detailed Protocol Flow
1. **Identity Creation**: Generate a secret key and commitment
2. **Rate Commitment**: Add commitment to a Merkle tree
3. **External Nullifier Setup**: Combine epoch and application identifier
4. **Proof Generation**: Create a zkSNARK proof that:
- Proves membership in the Merkle tree
- Ensures rate-limiting constraints are satisfied
- Generates a nullifier to prevent double-usage
5. **Proof Verification**: Verify the proof without revealing the prover's identity
## Getting Involved
- Check the [unit tests](https://github.com/vacp2p/zerokit/tree/master/rln/tests) for more usage examples
- [RFC specification](https://rfc.vac.dev/spec/32/) for the Rate-Limiting Nullifier protocol
- [GitHub repository](https://github.com/vacp2p/zerokit) for the latest updates
and look at unit tests to have an hint on how to interface and use them.

View File

@@ -1,25 +0,0 @@
use criterion::{criterion_group, criterion_main, Criterion};
use rln::circuit::{read_arkzkey_from_bytes_uncompressed, ARKZKEY_BYTES};
pub fn uncompressed_bench(c: &mut Criterion) {
let arkzkey = ARKZKEY_BYTES.to_vec();
let size = arkzkey.len() as f32;
println!(
"Size of uncompressed arkzkey: {:.2?} MB",
size / 1024.0 / 1024.0
);
c.bench_function("arkzkey::arkzkey_from_raw_uncompressed", |b| {
b.iter(|| {
let r = read_arkzkey_from_bytes_uncompressed(&arkzkey);
assert_eq!(r.is_ok(), true);
})
});
}
criterion_group! {
name = benches;
config = Criterion::default().sample_size(10);
targets = uncompressed_bench
}
criterion_main!(benches);

View File

@@ -1,24 +0,0 @@
use criterion::{criterion_group, criterion_main, Criterion};
use rln::circuit::zkey::read_zkey;
use std::io::Cursor;
pub fn zkey_load_benchmark(c: &mut Criterion) {
let zkey = rln::circuit::ZKEY_BYTES.to_vec();
let size = zkey.len() as f32;
println!("Size of zkey: {:.2?} MB", size / 1024.0 / 1024.0);
c.bench_function("zkey::zkey_from_raw", |b| {
b.iter(|| {
let mut reader = Cursor::new(zkey.clone());
let r = read_zkey(&mut reader);
assert_eq!(r.is_ok(), true);
})
});
}
criterion_group! {
name = benches;
config = Criterion::default().sample_size(10);
targets = zkey_load_benchmark
}
criterion_main!(benches);

View File

@@ -1,7 +1,8 @@
use criterion::{criterion_group, criterion_main, Criterion};
use rln::{circuit::Fr, pm_tree_adapter::PmTree};
use utils::ZerokitMerkleTree;
use rln::{circuit::Fr, pm_tree_adapter::PmTree};
pub fn pmtree_benchmark(c: &mut Criterion) {
let mut tree = PmTree::default(2).unwrap();
@@ -21,7 +22,7 @@ pub fn pmtree_benchmark(c: &mut Criterion) {
c.bench_function("Pmtree::override_range", |b| {
b.iter(|| {
tree.override_range(0, leaves.clone().into_iter(), [0, 1, 2, 3].into_iter())
tree.override_range(0, leaves.clone(), [0, 1, 2, 3])
.unwrap();
})
});
@@ -37,19 +38,6 @@ pub fn pmtree_benchmark(c: &mut Criterion) {
tree.get(0).unwrap();
})
});
// check intermediate node getter which required additional computation of sub root index
c.bench_function("Pmtree::get_subtree_root", |b| {
b.iter(|| {
tree.get_subtree_root(1, 0).unwrap();
})
});
c.bench_function("Pmtree::get_empty_leaves_indices", |b| {
b.iter(|| {
tree.get_empty_leaves_indices();
})
});
}
criterion_group!(benches, pmtree_benchmark);

View File

@@ -1,79 +0,0 @@
use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion};
use rln::{
circuit::{Fr, TEST_TREE_HEIGHT},
hashers::PoseidonHash,
};
use utils::{FullMerkleTree, OptimalMerkleTree, ZerokitMerkleTree};
pub fn get_leaves(n: u32) -> Vec<Fr> {
(0..n).map(|s| Fr::from(s)).collect()
}
pub fn optimal_merkle_tree_poseidon_benchmark(c: &mut Criterion) {
c.bench_function("OptimalMerkleTree::<Poseidon>::full_height_gen", |b| {
b.iter(|| {
OptimalMerkleTree::<PoseidonHash>::default(TEST_TREE_HEIGHT).unwrap();
})
});
let mut group = c.benchmark_group("Set");
for &n in [1u32, 10, 100].iter() {
let leaves = get_leaves(n);
let mut tree = OptimalMerkleTree::<PoseidonHash>::default(TEST_TREE_HEIGHT).unwrap();
group.bench_function(
BenchmarkId::new("OptimalMerkleTree::<Poseidon>::set", n),
|b| {
b.iter(|| {
for (i, l) in leaves.iter().enumerate() {
let _ = tree.set(i, *l);
}
})
},
);
group.bench_function(
BenchmarkId::new("OptimalMerkleTree::<Poseidon>::set_range", n),
|b| b.iter(|| tree.set_range(0, leaves.iter().cloned())),
);
}
group.finish();
}
pub fn full_merkle_tree_poseidon_benchmark(c: &mut Criterion) {
c.bench_function("FullMerkleTree::<Poseidon>::full_height_gen", |b| {
b.iter(|| {
FullMerkleTree::<PoseidonHash>::default(TEST_TREE_HEIGHT).unwrap();
})
});
let mut group = c.benchmark_group("Set");
for &n in [1u32, 10, 100].iter() {
let leaves = get_leaves(n);
let mut tree = FullMerkleTree::<PoseidonHash>::default(TEST_TREE_HEIGHT).unwrap();
group.bench_function(
BenchmarkId::new("FullMerkleTree::<Poseidon>::set", n),
|b| {
b.iter(|| {
for (i, l) in leaves.iter().enumerate() {
let _ = tree.set(i, *l);
}
})
},
);
group.bench_function(
BenchmarkId::new("FullMerkleTree::<Poseidon>::set_range", n),
|b| b.iter(|| tree.set_range(0, leaves.iter().cloned())),
);
}
group.finish();
}
criterion_group!(
benches,
optimal_merkle_tree_poseidon_benchmark,
full_merkle_tree_poseidon_benchmark
);
criterion_main!(benches);

Binary file not shown.

Binary file not shown.

View File

@@ -0,0 +1,119 @@
{
"protocol": "groth16",
"curve": "bn128",
"nPublic": 6,
"vk_alpha_1": [
"20124996762962216725442980738609010303800849578410091356605067053491763969391",
"9118593021526896828671519912099489027245924097793322973632351264852174143923",
"1"
],
"vk_beta_2": [
[
"4693952934005375501364248788849686435240706020501681709396105298107971354382",
"14346958885444710485362620645446987998958218205939139994511461437152241966681"
],
[
"16851772916911573982706166384196538392731905827088356034885868448550849804972",
"823612331030938060799959717749043047845343400798220427319188951998582076532"
],
[
"1",
"0"
]
],
"vk_gamma_2": [
[
"10857046999023057135944570762232829481370756359578518086990519993285655852781",
"11559732032986387107991004021392285783925812861821192530917403151452391805634"
],
[
"8495653923123431417604973247489272438418190587263600148770280649306958101930",
"4082367875863433681332203403145435568316851327593401208105741076214120093531"
],
[
"1",
"0"
]
],
"vk_delta_2": [
[
"1361919643088555407518565462732544232965454074504004321739078395285189557133",
"20823246840633598579879223919854294301857184404415306521912631074982696570306"
],
[
"7088590198103342249937795923142619828109070290720888704402714617857746884833",
"8191367139632195506244169264298620546181137131063303219908889318280111188437"
],
[
"1",
"0"
]
],
"vk_alphabeta_12": [
[
[
"12608968655665301215455851857466367636344427685631271961542642719683786103711",
"9849575605876329747382930567422916152871921500826003490242628251047652318086"
],
[
"6322029441245076030714726551623552073612922718416871603535535085523083939021",
"8700115492541474338049149013125102281865518624059015445617546140629435818912"
],
[
"10674973475340072635573101639867487770811074181475255667220644196793546640210",
"2926286967251299230490668407790788696102889214647256022788211245826267484824"
]
],
[
[
"9660441540778523475944706619139394922744328902833875392144658911530830074820",
"19548113127774514328631808547691096362144426239827206966690021428110281506546"
],
[
"1870837942477655969123169532603615788122896469891695773961478956740992497097",
"12536105729661705698805725105036536744930776470051238187456307227425796690780"
],
[
"21811903352654147452884857281720047789720483752548991551595462057142824037334",
"19021616763967199151052893283384285352200445499680068407023236283004353578353"
]
]
],
"IC": [
[
"17643142412395322664866141827318671249236739056291610144830020671604112279111",
"13273439661778801509295280274403992505521239023074387826870538372514206268318",
"1"
],
[
"12325966053136615826793633393742326952102053533176311103856731330114882211366",
"6439956820140153832120005353467272867287237423425778281905068783317736451260",
"1"
],
[
"20405310272367450124741832665322768131899487413829191383721623069139009993137",
"21336772016824870564600007750206596010566056069977718959140462128560786193566",
"1"
],
[
"4007669092231576644992949839487535590075070172447826102934640178940614212519",
"7597503385395289202372182678960254605827199004598882158153019657732525465207",
"1"
],
[
"4545695279389338758267531646940033299700127241196839077811942492841603458462",
"6635771967009274882904456432128877995932122611166121203658485990305433499873",
"1"
],
[
"7876954805169515500747828488548350352651069599547377092970620945851311591012",
"7571431725691513008054581132582771105743462534789373657638701712901679323321",
"1"
],
[
"5563973122249220346301217166900152021860462617567141574881706390202619333219",
"5147729144109676590873823097632042430451708874867871369293332620382492068692",
"1"
]
]
}

Binary file not shown.

Binary file not shown.

View File

@@ -0,0 +1,119 @@
{
"protocol": "groth16",
"curve": "bn128",
"nPublic": 6,
"vk_alpha_1": [
"20124996762962216725442980738609010303800849578410091356605067053491763969391",
"9118593021526896828671519912099489027245924097793322973632351264852174143923",
"1"
],
"vk_beta_2": [
[
"4693952934005375501364248788849686435240706020501681709396105298107971354382",
"14346958885444710485362620645446987998958218205939139994511461437152241966681"
],
[
"16851772916911573982706166384196538392731905827088356034885868448550849804972",
"823612331030938060799959717749043047845343400798220427319188951998582076532"
],
[
"1",
"0"
]
],
"vk_gamma_2": [
[
"10857046999023057135944570762232829481370756359578518086990519993285655852781",
"11559732032986387107991004021392285783925812861821192530917403151452391805634"
],
[
"8495653923123431417604973247489272438418190587263600148770280649306958101930",
"4082367875863433681332203403145435568316851327593401208105741076214120093531"
],
[
"1",
"0"
]
],
"vk_delta_2": [
[
"16125279975606773676640811113051624654121459921695914044301154938920321009721",
"14844345250267029614093295465313288254479124604567709177260777529651293576873"
],
[
"20349277326920398483890518242229158117668855310237215044647746783223259766294",
"19338776107510040969200058390413661029003750817172740054990168933780935479540"
],
[
"1",
"0"
]
],
"vk_alphabeta_12": [
[
[
"12608968655665301215455851857466367636344427685631271961542642719683786103711",
"9849575605876329747382930567422916152871921500826003490242628251047652318086"
],
[
"6322029441245076030714726551623552073612922718416871603535535085523083939021",
"8700115492541474338049149013125102281865518624059015445617546140629435818912"
],
[
"10674973475340072635573101639867487770811074181475255667220644196793546640210",
"2926286967251299230490668407790788696102889214647256022788211245826267484824"
]
],
[
[
"9660441540778523475944706619139394922744328902833875392144658911530830074820",
"19548113127774514328631808547691096362144426239827206966690021428110281506546"
],
[
"1870837942477655969123169532603615788122896469891695773961478956740992497097",
"12536105729661705698805725105036536744930776470051238187456307227425796690780"
],
[
"21811903352654147452884857281720047789720483752548991551595462057142824037334",
"19021616763967199151052893283384285352200445499680068407023236283004353578353"
]
]
],
"IC": [
[
"5645604624116784480262312750033349186912223090668673154853165165224747369512",
"5656337658385597582701340925622307146226708710361427687425735166776477641124",
"1"
],
[
"8216930132302312821663833393171053651364962198587857550991047765311607638330",
"19934865864074163318938688021560358348660709566570123384268356491416384822148",
"1"
],
[
"11046959016591768534564223076484566731774575511709349452804727872479525392631",
"9401797690410912638766111919371607085248054251975419812613989999345815833269",
"1"
],
[
"13216594148914395028254776738842380005944817065680915990743659996725367876414",
"11541283802841111343960351782994043892623551381569479006737253908665900144087",
"1"
],
[
"6957074593219251760608960101283708711892008557897337713430173510328411964571",
"21673833055087220750009279957462375662312260098732685145862504142183400549467",
"1"
],
[
"20795071270535109448604057031148356571036039566776607847840379441839742201050",
"21654952744643117202636583766828639581880877547772465264383291983528268115687",
"1"
],
[
"19143058772755719660075704757531991493801758701561469885274062297246796623789",
"3996020163280925980543600106196205910576345230982361007978823537163123181007",
"1"
]
]
}

View File

@@ -0,0 +1,119 @@
{
"protocol": "groth16",
"curve": "bn128",
"nPublic": 6,
"vk_alpha_1": [
"20124996762962216725442980738609010303800849578410091356605067053491763969391",
"9118593021526896828671519912099489027245924097793322973632351264852174143923",
"1"
],
"vk_beta_2": [
[
"4693952934005375501364248788849686435240706020501681709396105298107971354382",
"14346958885444710485362620645446987998958218205939139994511461437152241966681"
],
[
"16851772916911573982706166384196538392731905827088356034885868448550849804972",
"823612331030938060799959717749043047845343400798220427319188951998582076532"
],
[
"1",
"0"
]
],
"vk_gamma_2": [
[
"10857046999023057135944570762232829481370756359578518086990519993285655852781",
"11559732032986387107991004021392285783925812861821192530917403151452391805634"
],
[
"8495653923123431417604973247489272438418190587263600148770280649306958101930",
"4082367875863433681332203403145435568316851327593401208105741076214120093531"
],
[
"1",
"0"
]
],
"vk_delta_2": [
[
"8353516066399360694538747105302262515182301251524941126222712285088022964076",
"9329524012539638256356482961742014315122377605267454801030953882967973561832"
],
[
"16805391589556134376869247619848130874761233086443465978238468412168162326401",
"10111259694977636294287802909665108497237922060047080343914303287629927847739"
],
[
"1",
"0"
]
],
"vk_alphabeta_12": [
[
[
"12608968655665301215455851857466367636344427685631271961542642719683786103711",
"9849575605876329747382930567422916152871921500826003490242628251047652318086"
],
[
"6322029441245076030714726551623552073612922718416871603535535085523083939021",
"8700115492541474338049149013125102281865518624059015445617546140629435818912"
],
[
"10674973475340072635573101639867487770811074181475255667220644196793546640210",
"2926286967251299230490668407790788696102889214647256022788211245826267484824"
]
],
[
[
"9660441540778523475944706619139394922744328902833875392144658911530830074820",
"19548113127774514328631808547691096362144426239827206966690021428110281506546"
],
[
"1870837942477655969123169532603615788122896469891695773961478956740992497097",
"12536105729661705698805725105036536744930776470051238187456307227425796690780"
],
[
"21811903352654147452884857281720047789720483752548991551595462057142824037334",
"19021616763967199151052893283384285352200445499680068407023236283004353578353"
]
]
],
"IC": [
[
"11992897507809711711025355300535923222599547639134311050809253678876341466909",
"17181525095924075896332561978747020491074338784673526378866503154966799128110",
"1"
],
[
"17018665030246167677911144513385572506766200776123272044534328594850561667818",
"18601114175490465275436712413925513066546725461375425769709566180981674884464",
"1"
],
[
"18799470100699658367834559797874857804183288553462108031963980039244731716542",
"13064227487174191981628537974951887429496059857753101852163607049188825592007",
"1"
],
[
"17432501889058124609368103715904104425610382063762621017593209214189134571156",
"13406815149699834788256141097399354592751313348962590382887503595131085938635",
"1"
],
[
"10320964835612716439094703312987075811498239445882526576970512041988148264481",
"9024164961646353611176283204118089412001502110138072989569118393359029324867",
"1"
],
[
"718355081067365548229685160476620267257521491773976402837645005858953849298",
"14635482993933988261008156660773180150752190597753512086153001683711587601974",
"1"
],
[
"11777720285956632126519898515392071627539405001940313098390150593689568177535",
"8483603647274280691250972408211651407952870456587066148445913156086740744515",
"1"
]
]
}

268
rln/src/circuit.rs Normal file
View File

@@ -0,0 +1,268 @@
// This crate provides interfaces for the zero-knowledge circuit and keys
use ark_bn254::{
Bn254, Fq as ArkFq, Fq2 as ArkFq2, Fr as ArkFr, G1Affine as ArkG1Affine,
G1Projective as ArkG1Projective, G2Affine as ArkG2Affine, G2Projective as ArkG2Projective,
};
use ark_circom::read_zkey;
use ark_groth16::{ProvingKey, VerifyingKey};
use ark_relations::r1cs::ConstraintMatrices;
use cfg_if::cfg_if;
use color_eyre::{Report, Result};
use num_bigint::BigUint;
use serde_json::Value;
use std::io::Cursor;
use std::str::FromStr;
cfg_if! {
if #[cfg(not(target_arch = "wasm32"))] {
use ark_circom::{WitnessCalculator};
use once_cell::sync::OnceCell;
use std::sync::Mutex;
use wasmer::{Module, Store};
use include_dir::{include_dir, Dir};
use std::path::Path;
}
}
const ZKEY_FILENAME: &str = "rln_final.zkey";
const VK_FILENAME: &str = "verification_key.json";
const WASM_FILENAME: &str = "rln.wasm";
// These parameters are used for tests
// Note that the circuit and keys in TEST_RESOURCES_FOLDER are compiled for Merkle trees of height 15, 19 and 20
// Changing these parameters to other values than these defaults will cause zkSNARK proof verification to fail
pub const TEST_PARAMETERS_INDEX: usize = 2;
pub const TEST_TREE_HEIGHT: usize = [15, 19, 20][TEST_PARAMETERS_INDEX];
pub const TEST_RESOURCES_FOLDER: &str =
["tree_height_15", "tree_height_19", "tree_height_20"][TEST_PARAMETERS_INDEX];
#[cfg(not(target_arch = "wasm32"))]
static RESOURCES_DIR: Dir<'_> = include_dir!("$CARGO_MANIFEST_DIR/resources");
// The following types define the pairing friendly elliptic curve, the underlying finite fields and groups default to this module
// Note that proofs are serialized assuming Fr to be 4x8 = 32 bytes in size. Hence, changing to a curve with different encoding will make proof verification to fail
pub type Curve = Bn254;
pub type Fr = ArkFr;
pub type Fq = ArkFq;
pub type Fq2 = ArkFq2;
pub type G1Affine = ArkG1Affine;
pub type G1Projective = ArkG1Projective;
pub type G2Affine = ArkG2Affine;
pub type G2Projective = ArkG2Projective;
// Loads the proving key using a bytes vector
pub fn zkey_from_raw(zkey_data: &Vec<u8>) -> Result<(ProvingKey<Curve>, ConstraintMatrices<Fr>)> {
if !zkey_data.is_empty() {
let mut c = Cursor::new(zkey_data);
let proving_key_and_matrices = read_zkey(&mut c)?;
Ok(proving_key_and_matrices)
} else {
Err(Report::msg("No proving key found!"))
}
}
// Loads the proving key
#[cfg(not(target_arch = "wasm32"))]
pub fn zkey_from_folder(
resources_folder: &str,
) -> Result<(ProvingKey<Curve>, ConstraintMatrices<Fr>)> {
let zkey = RESOURCES_DIR.get_file(Path::new(resources_folder).join(ZKEY_FILENAME));
if let Some(zkey) = zkey {
let mut c = Cursor::new(zkey.contents());
let proving_key_and_matrices = read_zkey(&mut c)?;
Ok(proving_key_and_matrices)
} else {
Err(Report::msg("No proving key found!"))
}
}
// Loads the verification key from a bytes vector
pub fn vk_from_raw(vk_data: &Vec<u8>, zkey_data: &Vec<u8>) -> Result<VerifyingKey<Curve>> {
let verifying_key: VerifyingKey<Curve>;
if !vk_data.is_empty() {
verifying_key = vk_from_vector(vk_data)?;
Ok(verifying_key)
} else if !zkey_data.is_empty() {
let (proving_key, _matrices) = zkey_from_raw(zkey_data)?;
verifying_key = proving_key.vk;
Ok(verifying_key)
} else {
Err(Report::msg("No proving/verification key found!"))
}
}
// Loads the verification key
#[cfg(not(target_arch = "wasm32"))]
pub fn vk_from_folder(resources_folder: &str) -> Result<VerifyingKey<Curve>> {
let vk = RESOURCES_DIR.get_file(Path::new(resources_folder).join(VK_FILENAME));
let zkey = RESOURCES_DIR.get_file(Path::new(resources_folder).join(ZKEY_FILENAME));
let verifying_key: VerifyingKey<Curve>;
if let Some(vk) = vk {
verifying_key = vk_from_json(vk.contents_utf8().ok_or(Report::msg(
"Could not read verification key from JSON file!",
))?)?;
Ok(verifying_key)
} else if let Some(_zkey) = zkey {
let (proving_key, _matrices) = zkey_from_folder(resources_folder)?;
verifying_key = proving_key.vk;
Ok(verifying_key)
} else {
Err(Report::msg("No proving/verification key found!"))
}
}
#[cfg(not(target_arch = "wasm32"))]
static WITNESS_CALCULATOR: OnceCell<Mutex<WitnessCalculator>> = OnceCell::new();
// Initializes the witness calculator using a bytes vector
#[cfg(not(target_arch = "wasm32"))]
pub fn circom_from_raw(wasm_buffer: Vec<u8>) -> Result<&'static Mutex<WitnessCalculator>> {
WITNESS_CALCULATOR.get_or_try_init(|| {
let store = Store::default();
let module = Module::new(&store, wasm_buffer)?;
let result = WitnessCalculator::from_module(module)?;
Ok::<Mutex<WitnessCalculator>, Report>(Mutex::new(result))
})
}
// Initializes the witness calculator
#[cfg(not(target_arch = "wasm32"))]
pub fn circom_from_folder(resources_folder: &str) -> Result<&'static Mutex<WitnessCalculator>> {
// We read the wasm file
let wasm = RESOURCES_DIR.get_file(Path::new(resources_folder).join(WASM_FILENAME));
if let Some(wasm) = wasm {
let wasm_buffer = wasm.contents();
circom_from_raw(wasm_buffer.to_vec())
} else {
Err(Report::msg("No wasm file found!"))
}
}
// The following function implementations are taken/adapted from https://github.com/gakonst/ark-circom/blob/1732e15d6313fe176b0b1abb858ac9e095d0dbd7/src/zkey.rs
// Utilities to convert a json verification key in a groth16::VerificationKey
fn fq_from_str(s: &str) -> Result<Fq> {
Ok(Fq::try_from(BigUint::from_str(s)?)?)
}
// Extracts the element in G1 corresponding to its JSON serialization
fn json_to_g1(json: &Value, key: &str) -> Result<G1Affine> {
let els: Vec<String> = json
.get(key)
.ok_or(Report::msg("no json value"))?
.as_array()
.ok_or(Report::msg("value not an array"))?
.iter()
.map(|i| i.as_str().ok_or(Report::msg("element is not a string")))
.map(|x| x.map(|v| v.to_owned()))
.collect::<Result<Vec<String>>>()?;
Ok(G1Affine::from(G1Projective::new(
fq_from_str(&els[0])?,
fq_from_str(&els[1])?,
fq_from_str(&els[2])?,
)))
}
// Extracts the vector of G1 elements corresponding to its JSON serialization
fn json_to_g1_vec(json: &Value, key: &str) -> Result<Vec<G1Affine>> {
let els: Vec<Vec<String>> = json
.get(key)
.ok_or(Report::msg("no json value"))?
.as_array()
.ok_or(Report::msg("value not an array"))?
.iter()
.map(|i| {
i.as_array()
.ok_or(Report::msg("element is not an array"))
.and_then(|array| {
array
.iter()
.map(|x| x.as_str().ok_or(Report::msg("element is not a string")))
.map(|x| x.map(|v| v.to_owned()))
.collect::<Result<Vec<String>>>()
})
})
.collect::<Result<Vec<Vec<String>>>>()?;
let mut res = vec![];
for coords in els {
res.push(G1Affine::from(G1Projective::new(
fq_from_str(&coords[0])?,
fq_from_str(&coords[1])?,
fq_from_str(&coords[2])?,
)))
}
Ok(res)
}
// Extracts the element in G2 corresponding to its JSON serialization
fn json_to_g2(json: &Value, key: &str) -> Result<G2Affine> {
let els: Vec<Vec<String>> = json
.get(key)
.ok_or(Report::msg("no json value"))?
.as_array()
.ok_or(Report::msg("value not an array"))?
.iter()
.map(|i| {
i.as_array()
.ok_or(Report::msg("element is not an array"))
.and_then(|array| {
array
.iter()
.map(|x| x.as_str().ok_or(Report::msg("element is not a string")))
.map(|x| x.map(|v| v.to_owned()))
.collect::<Result<Vec<String>>>()
})
})
.collect::<Result<Vec<Vec<String>>>>()?;
let x = Fq2::new(fq_from_str(&els[0][0])?, fq_from_str(&els[0][1])?);
let y = Fq2::new(fq_from_str(&els[1][0])?, fq_from_str(&els[1][1])?);
let z = Fq2::new(fq_from_str(&els[2][0])?, fq_from_str(&els[2][1])?);
Ok(G2Affine::from(G2Projective::new(x, y, z)))
}
// Converts JSON to a VerifyingKey
fn to_verifying_key(json: serde_json::Value) -> Result<VerifyingKey<Curve>> {
Ok(VerifyingKey {
alpha_g1: json_to_g1(&json, "vk_alpha_1")?,
beta_g2: json_to_g2(&json, "vk_beta_2")?,
gamma_g2: json_to_g2(&json, "vk_gamma_2")?,
delta_g2: json_to_g2(&json, "vk_delta_2")?,
gamma_abc_g1: json_to_g1_vec(&json, "IC")?,
})
}
// Computes the verification key from its JSON serialization
fn vk_from_json(vk: &str) -> Result<VerifyingKey<Curve>> {
let json: Value = serde_json::from_str(vk)?;
to_verifying_key(json)
}
// Computes the verification key from a bytes vector containing its JSON serialization
fn vk_from_vector(vk: &[u8]) -> Result<VerifyingKey<Curve>> {
let json = String::from_utf8(vk.to_vec())?;
let json: Value = serde_json::from_str(&json)?;
to_verifying_key(json)
}
// Checks verification key to be correct with respect to proving key
#[cfg(not(target_arch = "wasm32"))]
pub fn check_vk_from_zkey(
resources_folder: &str,
verifying_key: VerifyingKey<Curve>,
) -> Result<()> {
let (proving_key, _matrices) = zkey_from_folder(resources_folder)?;
if proving_key.vk == verifying_key {
Ok(())
} else {
Err(Report::msg("verifying_keys are not equal"))
}
}

View File

@@ -1,73 +0,0 @@
// This file is based on the code by iden3. Its preimage can be found here:
// https://github.com/iden3/circom-witnesscalc/blob/5cb365b6e4d9052ecc69d4567fcf5bc061c20e94/src/lib.rs
pub mod graph;
pub mod proto;
pub mod storage;
use ruint::aliases::U256;
use std::collections::HashMap;
use storage::deserialize_witnesscalc_graph;
use crate::circuit::Fr;
use graph::{fr_to_u256, Node};
pub type InputSignalsInfo = HashMap<String, (usize, usize)>;
pub fn calc_witness<I: IntoIterator<Item = (String, Vec<Fr>)>>(
inputs: I,
graph_data: &[u8],
) -> Vec<Fr> {
let inputs: HashMap<String, Vec<U256>> = inputs
.into_iter()
.map(|(key, value)| (key, value.iter().map(fr_to_u256).collect()))
.collect();
let (nodes, signals, input_mapping): (Vec<Node>, Vec<usize>, InputSignalsInfo) =
deserialize_witnesscalc_graph(std::io::Cursor::new(graph_data)).unwrap();
let mut inputs_buffer = get_inputs_buffer(get_inputs_size(&nodes));
populate_inputs(&inputs, &input_mapping, &mut inputs_buffer);
graph::evaluate(&nodes, inputs_buffer.as_slice(), &signals)
}
fn get_inputs_size(nodes: &[Node]) -> usize {
let mut start = false;
let mut max_index = 0usize;
for &node in nodes.iter() {
if let Node::Input(i) = node {
if i > max_index {
max_index = i;
}
start = true
} else if start {
break;
}
}
max_index + 1
}
fn populate_inputs(
input_list: &HashMap<String, Vec<U256>>,
inputs_info: &InputSignalsInfo,
input_buffer: &mut [U256],
) {
for (key, value) in input_list {
let (offset, len) = inputs_info[key];
if len != value.len() {
panic!("Invalid input length for {}", key);
}
for (i, v) in value.iter().enumerate() {
input_buffer[offset + i] = *v;
}
}
}
/// Allocates inputs vec with position 0 set to 1
fn get_inputs_buffer(size: usize) -> Vec<U256> {
let mut inputs = vec![U256::ZERO; size];
inputs[0] = U256::from(1);
inputs
}

View File

@@ -1,957 +0,0 @@
// This file is based on the code by iden3. Its preimage can be found here:
// https://github.com/iden3/circom-witnesscalc/blob/5cb365b6e4d9052ecc69d4567fcf5bc061c20e94/src/graph.rs
use ark_ff::{BigInt, BigInteger, One, PrimeField, Zero};
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize, Compress, Validate};
use rand::Rng;
use ruint::{aliases::U256, uint};
use serde::{Deserialize, Serialize};
use std::{
cmp::Ordering,
collections::HashMap,
error::Error,
ops::{BitAnd, BitOr, BitXor, Deref, Shl, Shr},
};
use crate::circuit::iden3calc::proto;
use crate::circuit::Fr;
pub const M: U256 =
uint!(21888242871839275222246405745257275088548364400416034343698204186575808495617_U256);
fn ark_se<S, A: CanonicalSerialize>(a: &A, s: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
let mut bytes = vec![];
a.serialize_with_mode(&mut bytes, Compress::Yes)
.map_err(serde::ser::Error::custom)?;
s.serialize_bytes(&bytes)
}
fn ark_de<'de, D, A: CanonicalDeserialize>(data: D) -> Result<A, D::Error>
where
D: serde::de::Deserializer<'de>,
{
let s: Vec<u8> = serde::de::Deserialize::deserialize(data)?;
let a = A::deserialize_with_mode(s.as_slice(), Compress::Yes, Validate::Yes);
a.map_err(serde::de::Error::custom)
}
#[inline(always)]
pub fn fr_to_u256(x: &Fr) -> U256 {
U256::from_limbs(x.into_bigint().0)
}
#[inline(always)]
pub fn u256_to_fr(x: &U256) -> Fr {
Fr::from_bigint(BigInt::new(x.into_limbs())).expect("Failed to convert U256 to Fr")
}
#[derive(Hash, PartialEq, Eq, Debug, Clone, Copy, Serialize, Deserialize)]
pub enum Operation {
Mul,
Div,
Add,
Sub,
Pow,
Idiv,
Mod,
Eq,
Neq,
Lt,
Gt,
Leq,
Geq,
Land,
Lor,
Shl,
Shr,
Bor,
Band,
Bxor,
}
impl Operation {
// TODO: rewrite to &U256 type
pub fn eval(&self, a: U256, b: U256) -> U256 {
use Operation::*;
match self {
Mul => a.mul_mod(b, M),
Div => {
if b == U256::ZERO {
// as we are simulating a circuit execution with signals
// values all equal to 0, just return 0 here in case of
// division by zero
U256::ZERO
} else {
a.mul_mod(b.inv_mod(M).unwrap(), M)
}
}
Add => a.add_mod(b, M),
Sub => a.add_mod(M - b, M),
Pow => a.pow_mod(b, M),
Mod => a.div_rem(b).1,
Eq => U256::from(a == b),
Neq => U256::from(a != b),
Lt => u_lt(&a, &b),
Gt => u_gt(&a, &b),
Leq => u_lte(&a, &b),
Geq => u_gte(&a, &b),
Land => U256::from(a != U256::ZERO && b != U256::ZERO),
Lor => U256::from(a != U256::ZERO || b != U256::ZERO),
Shl => compute_shl_uint(a, b),
Shr => compute_shr_uint(a, b),
// TODO test with conner case when it is possible to get the number
// bigger then modulus
Bor => a.bitor(b),
Band => a.bitand(b),
// TODO test with conner case when it is possible to get the number
// bigger then modulus
Bxor => a.bitxor(b),
Idiv => a / b,
}
}
pub fn eval_fr(&self, a: Fr, b: Fr) -> Fr {
use Operation::*;
match self {
Mul => a * b,
// We always should return something on the circuit execution.
// So in case of division by 0 we would return 0. And the proof
// should be invalid in the end.
Div => {
if b.is_zero() {
Fr::zero()
} else {
a / b
}
}
Add => a + b,
Sub => a - b,
Idiv => {
if b.is_zero() {
Fr::zero()
} else {
let a_u256 = fr_to_u256(&a);
let b_u256 = fr_to_u256(&b);
u256_to_fr(&(a_u256 / b_u256))
}
}
Mod => {
if b.is_zero() {
Fr::zero()
} else {
let a_u256 = fr_to_u256(&a);
let b_u256 = fr_to_u256(&b);
u256_to_fr(&(a_u256 % b_u256))
}
}
Eq => match a.cmp(&b) {
Ordering::Equal => Fr::one(),
_ => Fr::zero(),
},
Neq => match a.cmp(&b) {
Ordering::Equal => Fr::zero(),
_ => Fr::one(),
},
Lt => u256_to_fr(&u_lt(&fr_to_u256(&a), &fr_to_u256(&b))),
Gt => u256_to_fr(&u_gt(&fr_to_u256(&a), &fr_to_u256(&b))),
Leq => u256_to_fr(&u_lte(&fr_to_u256(&a), &fr_to_u256(&b))),
Geq => u256_to_fr(&u_gte(&fr_to_u256(&a), &fr_to_u256(&b))),
Land => {
if a.is_zero() || b.is_zero() {
Fr::zero()
} else {
Fr::one()
}
}
Lor => {
if a.is_zero() && b.is_zero() {
Fr::zero()
} else {
Fr::one()
}
}
Shl => shl(a, b),
Shr => shr(a, b),
Bor => bit_or(a, b),
Band => bit_and(a, b),
Bxor => bit_xor(a, b),
// TODO implement other operators
_ => unimplemented!("operator {:?} not implemented for Montgomery", self),
}
}
}
impl From<&Operation> for proto::DuoOp {
fn from(v: &Operation) -> Self {
match v {
Operation::Mul => proto::DuoOp::Mul,
Operation::Div => proto::DuoOp::Div,
Operation::Add => proto::DuoOp::Add,
Operation::Sub => proto::DuoOp::Sub,
Operation::Pow => proto::DuoOp::Pow,
Operation::Idiv => proto::DuoOp::Idiv,
Operation::Mod => proto::DuoOp::Mod,
Operation::Eq => proto::DuoOp::Eq,
Operation::Neq => proto::DuoOp::Neq,
Operation::Lt => proto::DuoOp::Lt,
Operation::Gt => proto::DuoOp::Gt,
Operation::Leq => proto::DuoOp::Leq,
Operation::Geq => proto::DuoOp::Geq,
Operation::Land => proto::DuoOp::Land,
Operation::Lor => proto::DuoOp::Lor,
Operation::Shl => proto::DuoOp::Shl,
Operation::Shr => proto::DuoOp::Shr,
Operation::Bor => proto::DuoOp::Bor,
Operation::Band => proto::DuoOp::Band,
Operation::Bxor => proto::DuoOp::Bxor,
}
}
}
#[derive(Hash, PartialEq, Eq, Debug, Clone, Copy, Serialize, Deserialize)]
pub enum UnoOperation {
Neg,
Id, // identity - just return self
}
impl UnoOperation {
pub fn eval(&self, a: U256) -> U256 {
match self {
UnoOperation::Neg => {
if a == U256::ZERO {
U256::ZERO
} else {
M - a
}
}
UnoOperation::Id => a,
}
}
pub fn eval_fr(&self, a: Fr) -> Fr {
match self {
UnoOperation::Neg => {
if a.is_zero() {
Fr::zero()
} else {
let mut x = Fr::MODULUS;
x.sub_with_borrow(&a.into_bigint());
Fr::from_bigint(x).unwrap()
}
}
_ => unimplemented!("uno operator {:?} not implemented for Montgomery", self),
}
}
}
impl From<&UnoOperation> for proto::UnoOp {
fn from(v: &UnoOperation) -> Self {
match v {
UnoOperation::Neg => proto::UnoOp::Neg,
UnoOperation::Id => proto::UnoOp::Id,
}
}
}
#[derive(Hash, PartialEq, Eq, Debug, Clone, Copy, Serialize, Deserialize)]
pub enum TresOperation {
TernCond,
}
impl TresOperation {
pub fn eval(&self, a: U256, b: U256, c: U256) -> U256 {
match self {
TresOperation::TernCond => {
if a == U256::ZERO {
c
} else {
b
}
}
}
}
pub fn eval_fr(&self, a: Fr, b: Fr, c: Fr) -> Fr {
match self {
TresOperation::TernCond => {
if a.is_zero() {
c
} else {
b
}
}
}
}
}
impl From<&TresOperation> for proto::TresOp {
fn from(v: &TresOperation) -> Self {
match v {
TresOperation::TernCond => proto::TresOp::TernCond,
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
pub enum Node {
Input(usize),
Constant(U256),
#[serde(serialize_with = "ark_se", deserialize_with = "ark_de")]
MontConstant(Fr),
UnoOp(UnoOperation, usize),
Op(Operation, usize, usize),
TresOp(TresOperation, usize, usize, usize),
}
// TODO remove pub from Vec<Node>
#[derive(Default)]
pub struct Nodes(pub Vec<Node>);
impl Nodes {
pub fn new() -> Self {
Nodes(Vec::new())
}
pub fn to_const(&self, idx: NodeIdx) -> Result<U256, NodeConstErr> {
let me = self.0.get(idx.0).ok_or(NodeConstErr::EmptyNode(idx))?;
match me {
Node::Constant(v) => Ok(*v),
Node::UnoOp(op, a) => Ok(op.eval(self.to_const(NodeIdx(*a))?)),
Node::Op(op, a, b) => {
Ok(op.eval(self.to_const(NodeIdx(*a))?, self.to_const(NodeIdx(*b))?))
}
Node::TresOp(op, a, b, c) => Ok(op.eval(
self.to_const(NodeIdx(*a))?,
self.to_const(NodeIdx(*b))?,
self.to_const(NodeIdx(*c))?,
)),
Node::Input(_) => Err(NodeConstErr::InputSignal),
Node::MontConstant(_) => {
panic!("MontConstant should not be used here")
}
}
}
pub fn push(&mut self, n: Node) -> NodeIdx {
self.0.push(n);
NodeIdx(self.0.len() - 1)
}
pub fn get(&self, idx: NodeIdx) -> Option<&Node> {
self.0.get(idx.0)
}
}
impl Deref for Nodes {
type Target = Vec<Node>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
#[derive(Debug, Copy, Clone)]
pub struct NodeIdx(pub usize);
impl From<usize> for NodeIdx {
fn from(v: usize) -> Self {
NodeIdx(v)
}
}
#[derive(Debug)]
pub enum NodeConstErr {
EmptyNode(NodeIdx),
InputSignal,
}
impl std::fmt::Display for NodeConstErr {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
NodeConstErr::EmptyNode(idx) => {
write!(f, "empty node at index {}", idx.0)
}
NodeConstErr::InputSignal => {
write!(f, "input signal is not a constant")
}
}
}
}
impl Error for NodeConstErr {}
fn compute_shl_uint(a: U256, b: U256) -> U256 {
debug_assert!(b.lt(&U256::from(256)));
let ls_limb = b.as_limbs()[0];
a.shl(ls_limb as usize)
}
fn compute_shr_uint(a: U256, b: U256) -> U256 {
debug_assert!(b.lt(&U256::from(256)));
let ls_limb = b.as_limbs()[0];
a.shr(ls_limb as usize)
}
/// All references must be backwards.
fn assert_valid(nodes: &[Node]) {
for (i, &node) in nodes.iter().enumerate() {
if let Node::Op(_, a, b) = node {
assert!(a < i);
assert!(b < i);
} else if let Node::UnoOp(_, a) = node {
assert!(a < i);
} else if let Node::TresOp(_, a, b, c) = node {
assert!(a < i);
assert!(b < i);
assert!(c < i);
}
}
}
pub fn optimize(nodes: &mut Vec<Node>, outputs: &mut [usize]) {
tree_shake(nodes, outputs);
propagate(nodes);
value_numbering(nodes, outputs);
constants(nodes);
tree_shake(nodes, outputs);
montgomery_form(nodes);
}
pub fn evaluate(nodes: &[Node], inputs: &[U256], outputs: &[usize]) -> Vec<Fr> {
// assert_valid(nodes);
// Evaluate the graph.
let mut values = Vec::with_capacity(nodes.len());
for &node in nodes.iter() {
let value = match node {
Node::Constant(c) => u256_to_fr(&c),
Node::MontConstant(c) => c,
Node::Input(i) => u256_to_fr(&inputs[i]),
Node::Op(op, a, b) => op.eval_fr(values[a], values[b]),
Node::UnoOp(op, a) => op.eval_fr(values[a]),
Node::TresOp(op, a, b, c) => op.eval_fr(values[a], values[b], values[c]),
};
values.push(value);
}
// Convert from Montgomery form and return the outputs.
let mut out = vec![Fr::from(0); outputs.len()];
for i in 0..outputs.len() {
out[i] = values[outputs[i]];
}
out
}
/// Constant propagation
pub fn propagate(nodes: &mut [Node]) {
assert_valid(nodes);
for i in 0..nodes.len() {
if let Node::Op(op, a, b) = nodes[i] {
if let (Node::Constant(va), Node::Constant(vb)) = (nodes[a], nodes[b]) {
nodes[i] = Node::Constant(op.eval(va, vb));
} else if a == b {
// Not constant but equal
use Operation::*;
if let Some(c) = match op {
Eq | Leq | Geq => Some(true),
Neq | Lt | Gt => Some(false),
_ => None,
} {
nodes[i] = Node::Constant(U256::from(c));
}
}
} else if let Node::UnoOp(op, a) = nodes[i] {
if let Node::Constant(va) = nodes[a] {
nodes[i] = Node::Constant(op.eval(va));
}
} else if let Node::TresOp(op, a, b, c) = nodes[i] {
if let (Node::Constant(va), Node::Constant(vb), Node::Constant(vc)) =
(nodes[a], nodes[b], nodes[c])
{
nodes[i] = Node::Constant(op.eval(va, vb, vc));
}
}
}
}
/// Remove unused nodes
pub fn tree_shake(nodes: &mut Vec<Node>, outputs: &mut [usize]) {
assert_valid(nodes);
// Mark all nodes that are used.
let mut used = vec![false; nodes.len()];
for &i in outputs.iter() {
used[i] = true;
}
// Work backwards from end as all references are backwards.
for i in (0..nodes.len()).rev() {
if used[i] {
if let Node::Op(_, a, b) = nodes[i] {
used[a] = true;
used[b] = true;
}
if let Node::UnoOp(_, a) = nodes[i] {
used[a] = true;
}
if let Node::TresOp(_, a, b, c) = nodes[i] {
used[a] = true;
used[b] = true;
used[c] = true;
}
}
}
// Remove unused nodes
let n = nodes.len();
let mut retain = used.iter();
nodes.retain(|_| *retain.next().unwrap());
// Renumber references.
let mut renumber = vec![None; n];
let mut index = 0;
for (i, &used) in used.iter().enumerate() {
if used {
renumber[i] = Some(index);
index += 1;
}
}
assert_eq!(index, nodes.len());
for (&used, renumber) in used.iter().zip(renumber.iter()) {
assert_eq!(used, renumber.is_some());
}
// Renumber references.
for node in nodes.iter_mut() {
if let Node::Op(_, a, b) = node {
*a = renumber[*a].unwrap();
*b = renumber[*b].unwrap();
}
if let Node::UnoOp(_, a) = node {
*a = renumber[*a].unwrap();
}
if let Node::TresOp(_, a, b, c) = node {
*a = renumber[*a].unwrap();
*b = renumber[*b].unwrap();
*c = renumber[*c].unwrap();
}
}
for output in outputs.iter_mut() {
*output = renumber[*output].unwrap();
}
}
/// Randomly evaluate the graph
fn random_eval(nodes: &mut [Node]) -> Vec<U256> {
let mut rng = rand::thread_rng();
let mut values = Vec::with_capacity(nodes.len());
let mut inputs = HashMap::new();
let mut prfs = HashMap::new();
let mut prfs_uno = HashMap::new();
let mut prfs_tres = HashMap::new();
for node in nodes.iter() {
use Operation::*;
let value = match node {
// Constants evaluate to themselves
Node::Constant(c) => *c,
Node::MontConstant(_) => unimplemented!("should not be used"),
// Algebraic Ops are evaluated directly
// Since the field is large, by Swartz-Zippel if
// two values are the same then they are likely algebraically equal.
Node::Op(op @ (Add | Sub | Mul), a, b) => op.eval(values[*a], values[*b]),
// Input and non-algebraic ops are random functions
// TODO: https://github.com/recmo/uint/issues/95 and use .gen_range(..M)
Node::Input(i) => *inputs.entry(*i).or_insert_with(|| rng.gen::<U256>() % M),
Node::Op(op, a, b) => *prfs
.entry((*op, values[*a], values[*b]))
.or_insert_with(|| rng.gen::<U256>() % M),
Node::UnoOp(op, a) => *prfs_uno
.entry((*op, values[*a]))
.or_insert_with(|| rng.gen::<U256>() % M),
Node::TresOp(op, a, b, c) => *prfs_tres
.entry((*op, values[*a], values[*b], values[*c]))
.or_insert_with(|| rng.gen::<U256>() % M),
};
values.push(value);
}
values
}
/// Value numbering
pub fn value_numbering(nodes: &mut [Node], outputs: &mut [usize]) {
assert_valid(nodes);
// Evaluate the graph in random field elements.
let values = random_eval(nodes);
// Find all nodes with the same value.
let mut value_map = HashMap::new();
for (i, &value) in values.iter().enumerate() {
value_map.entry(value).or_insert_with(Vec::new).push(i);
}
// For nodes that are the same, pick the first index.
let renumber: Vec<_> = values.into_iter().map(|v| value_map[&v][0]).collect();
// Renumber references.
for node in nodes.iter_mut() {
if let Node::Op(_, a, b) = node {
*a = renumber[*a];
*b = renumber[*b];
}
if let Node::UnoOp(_, a) = node {
*a = renumber[*a];
}
if let Node::TresOp(_, a, b, c) = node {
*a = renumber[*a];
*b = renumber[*b];
*c = renumber[*c];
}
}
for output in outputs.iter_mut() {
*output = renumber[*output];
}
}
/// Probabilistic constant determination
pub fn constants(nodes: &mut [Node]) {
assert_valid(nodes);
// Evaluate the graph in random field elements.
let values_a = random_eval(nodes);
let values_b = random_eval(nodes);
// Find all nodes with the same value.
for i in 0..nodes.len() {
if let Node::Constant(_) = nodes[i] {
continue;
}
if values_a[i] == values_b[i] {
nodes[i] = Node::Constant(values_a[i]);
}
}
}
/// Convert to Montgomery form
pub fn montgomery_form(nodes: &mut [Node]) {
for node in nodes.iter_mut() {
use Node::*;
use Operation::*;
match node {
Constant(c) => *node = MontConstant(u256_to_fr(c)),
MontConstant(..) => (),
Input(..) => (),
Op(
Mul | Div | Add | Sub | Idiv | Mod | Eq | Neq | Lt | Gt | Leq | Geq | Land | Lor
| Shl | Shr | Bor | Band | Bxor,
..,
) => (),
Op(op @ Pow, ..) => unimplemented!("Operators Montgomery form: {:?}", op),
UnoOp(UnoOperation::Neg, ..) => (),
UnoOp(op, ..) => unimplemented!("Uno Operators Montgomery form: {:?}", op),
TresOp(TresOperation::TernCond, ..) => (),
}
}
}
fn shl(a: Fr, b: Fr) -> Fr {
if b.is_zero() {
return a;
}
if b.cmp(&Fr::from(Fr::MODULUS_BIT_SIZE)).is_ge() {
return Fr::zero();
}
let n = b.into_bigint().0[0] as u32;
let a = a.into_bigint();
Fr::from_bigint(a << n).unwrap()
}
fn shr(a: Fr, b: Fr) -> Fr {
if b.is_zero() {
return a;
}
match b.cmp(&Fr::from(254u64)) {
Ordering::Equal => return Fr::zero(),
Ordering::Greater => return Fr::zero(),
_ => (),
};
let mut n = b.into_bigint().to_bytes_le()[0];
let mut result = a.into_bigint();
let c = result.as_mut();
while n >= 64 {
for i in 0..3 {
c[i as usize] = c[(i + 1) as usize];
}
c[3] = 0;
n -= 64;
}
if n == 0 {
return Fr::from_bigint(result).unwrap();
}
let mask: u64 = (1 << n) - 1;
let mut carrier: u64 = c[3] & mask;
c[3] >>= n;
for i in (0..3).rev() {
let new_carrier = c[i] & mask;
c[i] = (c[i] >> n) | (carrier << (64 - n));
carrier = new_carrier;
}
Fr::from_bigint(result).unwrap()
}
fn bit_and(a: Fr, b: Fr) -> Fr {
let a = a.into_bigint();
let b = b.into_bigint();
let c: [u64; 4] = [
a.0[0] & b.0[0],
a.0[1] & b.0[1],
a.0[2] & b.0[2],
a.0[3] & b.0[3],
];
let mut d: BigInt<4> = BigInt::new(c);
if d > Fr::MODULUS {
d.sub_with_borrow(&Fr::MODULUS);
}
Fr::from_bigint(d).unwrap()
}
fn bit_or(a: Fr, b: Fr) -> Fr {
let a = a.into_bigint();
let b = b.into_bigint();
let c: [u64; 4] = [
a.0[0] | b.0[0],
a.0[1] | b.0[1],
a.0[2] | b.0[2],
a.0[3] | b.0[3],
];
let mut d: BigInt<4> = BigInt::new(c);
if d > Fr::MODULUS {
d.sub_with_borrow(&Fr::MODULUS);
}
Fr::from_bigint(d).unwrap()
}
fn bit_xor(a: Fr, b: Fr) -> Fr {
let a = a.into_bigint();
let b = b.into_bigint();
let c: [u64; 4] = [
a.0[0] ^ b.0[0],
a.0[1] ^ b.0[1],
a.0[2] ^ b.0[2],
a.0[3] ^ b.0[3],
];
let mut d: BigInt<4> = BigInt::new(c);
if d > Fr::MODULUS {
d.sub_with_borrow(&Fr::MODULUS);
}
Fr::from_bigint(d).unwrap()
}
// M / 2
const HALF_M: U256 =
uint!(10944121435919637611123202872628637544274182200208017171849102093287904247808_U256);
fn u_gte(a: &U256, b: &U256) -> U256 {
let a_neg = &HALF_M < a;
let b_neg = &HALF_M < b;
match (a_neg, b_neg) {
(false, false) => U256::from(a >= b),
(true, false) => uint!(0_U256),
(false, true) => uint!(1_U256),
(true, true) => U256::from(a >= b),
}
}
fn u_lte(a: &U256, b: &U256) -> U256 {
let a_neg = &HALF_M < a;
let b_neg = &HALF_M < b;
match (a_neg, b_neg) {
(false, false) => U256::from(a <= b),
(true, false) => uint!(1_U256),
(false, true) => uint!(0_U256),
(true, true) => U256::from(a <= b),
}
}
fn u_gt(a: &U256, b: &U256) -> U256 {
let a_neg = &HALF_M < a;
let b_neg = &HALF_M < b;
match (a_neg, b_neg) {
(false, false) => U256::from(a > b),
(true, false) => uint!(0_U256),
(false, true) => uint!(1_U256),
(true, true) => U256::from(a > b),
}
}
fn u_lt(a: &U256, b: &U256) -> U256 {
let a_neg = &HALF_M < a;
let b_neg = &HALF_M < b;
match (a_neg, b_neg) {
(false, false) => U256::from(a < b),
(true, false) => uint!(1_U256),
(false, true) => uint!(0_U256),
(true, true) => U256::from(a < b),
}
}
#[cfg(test)]
mod tests {
use super::*;
use ruint::uint;
use std::ops::Div;
use std::str::FromStr;
#[test]
fn test_ok() {
let a = Fr::from(4u64);
let b = Fr::from(2u64);
let c = shl(a, b);
assert_eq!(c.cmp(&Fr::from(16u64)), Ordering::Equal)
}
#[test]
fn test_div() {
assert_eq!(
Operation::Div.eval_fr(Fr::from(2u64), Fr::from(3u64)),
Fr::from_str(
"7296080957279758407415468581752425029516121466805344781232734728858602831873"
)
.unwrap()
);
assert_eq!(
Operation::Div.eval_fr(Fr::from(6u64), Fr::from(2u64)),
Fr::from_str("3").unwrap()
);
assert_eq!(
Operation::Div.eval_fr(Fr::from(7u64), Fr::from(2u64)),
Fr::from_str(
"10944121435919637611123202872628637544274182200208017171849102093287904247812"
)
.unwrap()
);
}
#[test]
fn test_idiv() {
assert_eq!(
Operation::Idiv.eval_fr(Fr::from(2u64), Fr::from(3u64)),
Fr::from_str("0").unwrap()
);
assert_eq!(
Operation::Idiv.eval_fr(Fr::from(6u64), Fr::from(2u64)),
Fr::from_str("3").unwrap()
);
assert_eq!(
Operation::Idiv.eval_fr(Fr::from(7u64), Fr::from(2u64)),
Fr::from_str("3").unwrap()
);
}
#[test]
fn test_fr_mod() {
assert_eq!(
Operation::Mod.eval_fr(Fr::from(7u64), Fr::from(2u64)),
Fr::from_str("1").unwrap()
);
assert_eq!(
Operation::Mod.eval_fr(Fr::from(7u64), Fr::from(9u64)),
Fr::from_str("7").unwrap()
);
}
#[test]
fn test_u_gte() {
let result = u_gte(&uint!(10_U256), &uint!(3_U256));
assert_eq!(result, uint!(1_U256));
let result = u_gte(&uint!(3_U256), &uint!(3_U256));
assert_eq!(result, uint!(1_U256));
let result = u_gte(&uint!(2_U256), &uint!(3_U256));
assert_eq!(result, uint!(0_U256));
// -1 >= 3 => 0
let result = u_gte(
&uint!(
21888242871839275222246405745257275088548364400416034343698204186575808495616_U256
),
&uint!(3_U256),
);
assert_eq!(result, uint!(0_U256));
// -1 >= -2 => 1
let result = u_gte(
&uint!(
21888242871839275222246405745257275088548364400416034343698204186575808495616_U256
),
&uint!(
21888242871839275222246405745257275088548364400416034343698204186575808495615_U256
),
);
assert_eq!(result, uint!(1_U256));
// -2 >= -1 => 0
let result = u_gte(
&uint!(
21888242871839275222246405745257275088548364400416034343698204186575808495615_U256
),
&uint!(
21888242871839275222246405745257275088548364400416034343698204186575808495616_U256
),
);
assert_eq!(result, uint!(0_U256));
// -2 == -2 => 1
let result = u_gte(
&uint!(
21888242871839275222246405745257275088548364400416034343698204186575808495615_U256
),
&uint!(
21888242871839275222246405745257275088548364400416034343698204186575808495615_U256
),
);
assert_eq!(result, uint!(1_U256));
}
#[test]
fn test_x() {
let x = M.div(uint!(2_U256));
println!("x: {:?}", x.as_limbs());
println!("x: {}", M);
}
#[test]
fn test_2() {
let nodes: Vec<Node> = vec![];
// let node = nodes[0];
let node = nodes.get(0);
println!("{:?}", node);
}
}

View File

@@ -1,117 +0,0 @@
// This file has been generated by prost-build during compilation of the code by iden3
// and modified manually. The *.proto file used to generate this on can be found here:
// https://github.com/iden3/circom-witnesscalc/blob/5cb365b6e4d9052ecc69d4567fcf5bc061c20e94/protos/messages.proto
use std::collections::HashMap;
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct BigUInt {
#[prost(bytes = "vec", tag = "1")]
pub value_le: Vec<u8>,
}
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct InputNode {
#[prost(uint32, tag = "1")]
pub idx: u32,
}
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ConstantNode {
#[prost(message, optional, tag = "1")]
pub value: Option<BigUInt>,
}
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct UnoOpNode {
#[prost(enumeration = "UnoOp", tag = "1")]
pub op: i32,
#[prost(uint32, tag = "2")]
pub a_idx: u32,
}
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct DuoOpNode {
#[prost(enumeration = "DuoOp", tag = "1")]
pub op: i32,
#[prost(uint32, tag = "2")]
pub a_idx: u32,
#[prost(uint32, tag = "3")]
pub b_idx: u32,
}
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct TresOpNode {
#[prost(enumeration = "TresOp", tag = "1")]
pub op: i32,
#[prost(uint32, tag = "2")]
pub a_idx: u32,
#[prost(uint32, tag = "3")]
pub b_idx: u32,
#[prost(uint32, tag = "4")]
pub c_idx: u32,
}
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct Node {
#[prost(oneof = "node::Node", tags = "1, 2, 3, 4, 5")]
pub node: Option<node::Node>,
}
/// Nested message and enum types in `Node`.
pub mod node {
#[derive(Clone, PartialEq, ::prost::Oneof)]
pub enum Node {
#[prost(message, tag = "1")]
Input(super::InputNode),
#[prost(message, tag = "2")]
Constant(super::ConstantNode),
#[prost(message, tag = "3")]
UnoOp(super::UnoOpNode),
#[prost(message, tag = "4")]
DuoOp(super::DuoOpNode),
#[prost(message, tag = "5")]
TresOp(super::TresOpNode),
}
}
#[derive(Clone, Copy, PartialEq, ::prost::Message)]
pub struct SignalDescription {
#[prost(uint32, tag = "1")]
pub offset: u32,
#[prost(uint32, tag = "2")]
pub len: u32,
}
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct GraphMetadata {
#[prost(uint32, repeated, tag = "1")]
pub witness_signals: Vec<u32>,
#[prost(map = "string, message", tag = "2")]
pub inputs: HashMap<String, SignalDescription>,
}
#[derive(Clone, Copy, Debug, PartialEq, ::prost::Enumeration)]
pub enum DuoOp {
Mul = 0,
Div = 1,
Add = 2,
Sub = 3,
Pow = 4,
Idiv = 5,
Mod = 6,
Eq = 7,
Neq = 8,
Lt = 9,
Gt = 10,
Leq = 11,
Geq = 12,
Land = 13,
Lor = 14,
Shl = 15,
Shr = 16,
Bor = 17,
Band = 18,
Bxor = 19,
}
#[derive(Clone, Copy, Debug, PartialEq, ::prost::Enumeration)]
pub enum UnoOp {
Neg = 0,
Id = 1,
}
#[derive(Clone, Copy, Debug, PartialEq, ::prost::Enumeration)]
pub enum TresOp {
TernCond = 0,
}

View File

@@ -1,497 +0,0 @@
// This file is based on the code by iden3. Its preimage can be found here:
// https://github.com/iden3/circom-witnesscalc/blob/5cb365b6e4d9052ecc69d4567fcf5bc061c20e94/src/storage.rs
use ark_bn254::Fr;
use ark_ff::PrimeField;
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
use prost::Message;
use std::io::{Read, Write};
use crate::circuit::iden3calc::{
graph,
graph::{Operation, TresOperation, UnoOperation},
proto, InputSignalsInfo,
};
// format of the wtns.graph file:
// + magic line: wtns.graph.001
// + 4 bytes unsigned LE 32-bit integer: number of nodes
// + series of protobuf serialized nodes. Each node prefixed by varint length
// + protobuf serialized GraphMetadata
// + 8 bytes unsigned LE 64-bit integer: offset of GraphMetadata message
const WITNESSCALC_GRAPH_MAGIC: &[u8] = b"wtns.graph.001";
const MAX_VARINT_LENGTH: usize = 10;
impl From<proto::Node> for graph::Node {
fn from(value: proto::Node) -> Self {
match value.node.unwrap() {
proto::node::Node::Input(input_node) => graph::Node::Input(input_node.idx as usize),
proto::node::Node::Constant(constant_node) => {
let i = constant_node.value.unwrap();
graph::Node::MontConstant(Fr::from_le_bytes_mod_order(i.value_le.as_slice()))
}
proto::node::Node::UnoOp(uno_op_node) => {
let op = proto::UnoOp::try_from(uno_op_node.op).unwrap();
graph::Node::UnoOp(op.into(), uno_op_node.a_idx as usize)
}
proto::node::Node::DuoOp(duo_op_node) => {
let op = proto::DuoOp::try_from(duo_op_node.op).unwrap();
graph::Node::Op(
op.into(),
duo_op_node.a_idx as usize,
duo_op_node.b_idx as usize,
)
}
proto::node::Node::TresOp(tres_op_node) => {
let op = proto::TresOp::try_from(tres_op_node.op).unwrap();
graph::Node::TresOp(
op.into(),
tres_op_node.a_idx as usize,
tres_op_node.b_idx as usize,
tres_op_node.c_idx as usize,
)
}
}
}
}
impl From<&graph::Node> for proto::node::Node {
fn from(node: &graph::Node) -> Self {
match node {
graph::Node::Input(i) => proto::node::Node::Input(proto::InputNode { idx: *i as u32 }),
graph::Node::Constant(_) => {
panic!("We are not supposed to write Constant to the witnesscalc graph. All Constant should be converted to MontConstant.");
}
graph::Node::UnoOp(op, a) => {
let op = proto::UnoOp::from(op);
proto::node::Node::UnoOp(proto::UnoOpNode {
op: op as i32,
a_idx: *a as u32,
})
}
graph::Node::Op(op, a, b) => proto::node::Node::DuoOp(proto::DuoOpNode {
op: proto::DuoOp::from(op) as i32,
a_idx: *a as u32,
b_idx: *b as u32,
}),
graph::Node::TresOp(op, a, b, c) => proto::node::Node::TresOp(proto::TresOpNode {
op: proto::TresOp::from(op) as i32,
a_idx: *a as u32,
b_idx: *b as u32,
c_idx: *c as u32,
}),
graph::Node::MontConstant(c) => {
let bi = Into::<num_bigint::BigUint>::into(*c);
let i = proto::BigUInt {
value_le: bi.to_bytes_le(),
};
proto::node::Node::Constant(proto::ConstantNode { value: Some(i) })
}
}
}
}
impl From<proto::UnoOp> for UnoOperation {
fn from(value: proto::UnoOp) -> Self {
match value {
proto::UnoOp::Neg => UnoOperation::Neg,
proto::UnoOp::Id => UnoOperation::Id,
}
}
}
impl From<proto::DuoOp> for Operation {
fn from(value: proto::DuoOp) -> Self {
match value {
proto::DuoOp::Mul => Operation::Mul,
proto::DuoOp::Div => Operation::Div,
proto::DuoOp::Add => Operation::Add,
proto::DuoOp::Sub => Operation::Sub,
proto::DuoOp::Pow => Operation::Pow,
proto::DuoOp::Idiv => Operation::Idiv,
proto::DuoOp::Mod => Operation::Mod,
proto::DuoOp::Eq => Operation::Eq,
proto::DuoOp::Neq => Operation::Neq,
proto::DuoOp::Lt => Operation::Lt,
proto::DuoOp::Gt => Operation::Gt,
proto::DuoOp::Leq => Operation::Leq,
proto::DuoOp::Geq => Operation::Geq,
proto::DuoOp::Land => Operation::Land,
proto::DuoOp::Lor => Operation::Lor,
proto::DuoOp::Shl => Operation::Shl,
proto::DuoOp::Shr => Operation::Shr,
proto::DuoOp::Bor => Operation::Bor,
proto::DuoOp::Band => Operation::Band,
proto::DuoOp::Bxor => Operation::Bxor,
}
}
}
impl From<proto::TresOp> for graph::TresOperation {
fn from(value: proto::TresOp) -> Self {
match value {
proto::TresOp::TernCond => TresOperation::TernCond,
}
}
}
pub fn serialize_witnesscalc_graph<T: Write>(
mut w: T,
nodes: &Vec<graph::Node>,
witness_signals: &[usize],
input_signals: &InputSignalsInfo,
) -> std::io::Result<()> {
let mut ptr = 0usize;
w.write_all(WITNESSCALC_GRAPH_MAGIC).unwrap();
ptr += WITNESSCALC_GRAPH_MAGIC.len();
w.write_u64::<LittleEndian>(nodes.len() as u64)?;
ptr += 8;
let metadata = proto::GraphMetadata {
witness_signals: witness_signals
.iter()
.map(|x| *x as u32)
.collect::<Vec<u32>>(),
inputs: input_signals
.iter()
.map(|(k, v)| {
let sig = proto::SignalDescription {
offset: v.0 as u32,
len: v.1 as u32,
};
(k.clone(), sig)
})
.collect(),
};
// capacity of buf should be enough to hold the largest message + 10 bytes
// of varint length
let mut buf = Vec::with_capacity(metadata.encoded_len() + MAX_VARINT_LENGTH);
for node in nodes {
let node_pb = proto::Node {
node: Some(proto::node::Node::from(node)),
};
assert_eq!(buf.len(), 0);
node_pb.encode_length_delimited(&mut buf)?;
ptr += buf.len();
w.write_all(&buf)?;
buf.clear();
}
metadata.encode_length_delimited(&mut buf)?;
w.write_all(&buf)?;
buf.clear();
w.write_u64::<LittleEndian>(ptr as u64)?;
Ok(())
}
fn read_message_length<R: Read>(rw: &mut WriteBackReader<R>) -> std::io::Result<usize> {
let mut buf = [0u8; MAX_VARINT_LENGTH];
let bytes_read = rw.read(&mut buf)?;
if bytes_read == 0 {
return Err(std::io::Error::new(
std::io::ErrorKind::UnexpectedEof,
"Unexpected EOF",
));
}
let len_delimiter = prost::decode_length_delimiter(buf.as_ref())?;
let lnln = prost::length_delimiter_len(len_delimiter);
if lnln < bytes_read {
rw.write_all(&buf[lnln..bytes_read])?;
}
Ok(len_delimiter)
}
fn read_message<R: Read, M: Message + std::default::Default>(
rw: &mut WriteBackReader<R>,
) -> std::io::Result<M> {
let ln = read_message_length(rw)?;
let mut buf = vec![0u8; ln];
let bytes_read = rw.read(&mut buf)?;
if bytes_read != ln {
return Err(std::io::Error::new(
std::io::ErrorKind::UnexpectedEof,
"Unexpected EOF",
));
}
let msg = prost::Message::decode(&buf[..])?;
Ok(msg)
}
pub fn deserialize_witnesscalc_graph(
r: impl Read,
) -> std::io::Result<(Vec<graph::Node>, Vec<usize>, InputSignalsInfo)> {
let mut br = WriteBackReader::new(r);
let mut magic = [0u8; WITNESSCALC_GRAPH_MAGIC.len()];
br.read_exact(&mut magic)?;
if !magic.eq(WITNESSCALC_GRAPH_MAGIC) {
return Err(std::io::Error::new(
std::io::ErrorKind::InvalidData,
"Invalid magic",
));
}
let nodes_num = br.read_u64::<LittleEndian>()?;
let mut nodes = Vec::with_capacity(nodes_num as usize);
for _ in 0..nodes_num {
let n: proto::Node = read_message(&mut br)?;
let n2: graph::Node = n.into();
nodes.push(n2);
}
let md: proto::GraphMetadata = read_message(&mut br)?;
let witness_signals = md
.witness_signals
.iter()
.map(|x| *x as usize)
.collect::<Vec<usize>>();
let input_signals = md
.inputs
.iter()
.map(|(k, v)| (k.clone(), (v.offset as usize, v.len as usize)))
.collect::<InputSignalsInfo>();
Ok((nodes, witness_signals, input_signals))
}
struct WriteBackReader<R: Read> {
reader: R,
buffer: Vec<u8>,
}
impl<R: Read> WriteBackReader<R> {
fn new(reader: R) -> Self {
WriteBackReader {
reader,
buffer: Vec::new(),
}
}
}
impl<R: Read> Read for WriteBackReader<R> {
fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
if buf.is_empty() {
return Ok(0);
}
let mut n = 0usize;
if !self.buffer.is_empty() {
n = std::cmp::min(buf.len(), self.buffer.len());
self.buffer[self.buffer.len() - n..]
.iter()
.rev()
.enumerate()
.for_each(|(i, x)| {
buf[i] = *x;
});
self.buffer.truncate(self.buffer.len() - n);
}
while n < buf.len() {
let m = self.reader.read(&mut buf[n..])?;
if m == 0 {
break;
}
n += m;
}
Ok(n)
}
}
impl<R: Read> Write for WriteBackReader<R> {
fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
self.buffer.reserve(buf.len());
self.buffer.extend(buf.iter().rev());
Ok(buf.len())
}
fn flush(&mut self) -> std::io::Result<()> {
Ok(())
}
}
#[cfg(test)]
mod tests {
use super::*;
use byteorder::ByteOrder;
use core::str::FromStr;
use graph::{Operation, TresOperation, UnoOperation};
use std::collections::HashMap;
#[test]
fn test_read_message() {
let mut buf = Vec::new();
let n1 = proto::Node {
node: Some(proto::node::Node::Input(proto::InputNode { idx: 1 })),
};
n1.encode_length_delimited(&mut buf).unwrap();
let n2 = proto::Node {
node: Some(proto::node::Node::Input(proto::InputNode { idx: 2 })),
};
n2.encode_length_delimited(&mut buf).unwrap();
let mut reader = std::io::Cursor::new(&buf);
let mut rw = WriteBackReader::new(&mut reader);
let got_n1: proto::Node = read_message(&mut rw).unwrap();
assert!(n1.eq(&got_n1));
let got_n2: proto::Node = read_message(&mut rw).unwrap();
assert!(n2.eq(&got_n2));
assert_eq!(reader.position(), buf.len() as u64);
}
#[test]
fn test_read_message_variant() {
let nodes = vec![
proto::Node {
node: Some(proto::node::Node::from(&graph::Node::Input(0))),
},
proto::Node {
node: Some(proto::node::Node::from(&graph::Node::MontConstant(
Fr::from_str("1").unwrap(),
))),
},
proto::Node {
node: Some(proto::node::Node::from(&graph::Node::UnoOp(
UnoOperation::Id,
4,
))),
},
proto::Node {
node: Some(proto::node::Node::from(&graph::Node::Op(
Operation::Mul,
5,
6,
))),
},
proto::Node {
node: Some(proto::node::Node::from(&graph::Node::TresOp(
TresOperation::TernCond,
7,
8,
9,
))),
},
];
let mut buf = Vec::new();
for n in &nodes {
n.encode_length_delimited(&mut buf).unwrap();
}
let mut nodes_got: Vec<proto::Node> = Vec::new();
let mut reader = std::io::Cursor::new(&buf);
let mut rw = WriteBackReader::new(&mut reader);
for _ in 0..nodes.len() {
nodes_got.push(read_message(&mut rw).unwrap());
}
assert_eq!(nodes, nodes_got);
}
#[test]
fn test_write_back_reader() {
let data = [1u8, 2, 3, 4, 5, 6];
let mut r = WriteBackReader::new(std::io::Cursor::new(&data));
let buf = &mut [0u8; 5];
r.read(buf).unwrap();
assert_eq!(buf, &[1, 2, 3, 4, 5]);
// return [4, 5] to reader
r.write(&buf[3..]).unwrap();
// return [2, 3] to reader
r.write(&buf[1..3]).unwrap();
buf.fill(0);
// read 3 bytes, expect [2, 3, 4] after returns
let mut n = r.read(&mut buf[..3]).unwrap();
assert_eq!(n, 3);
assert_eq!(buf, &[2, 3, 4, 0, 0]);
buf.fill(0);
// read everything left in reader
n = r.read(buf).unwrap();
assert_eq!(n, 2);
assert_eq!(buf, &[5, 6, 0, 0, 0]);
}
#[test]
fn test_deserialize_inputs() {
let nodes = vec![
graph::Node::Input(0),
graph::Node::MontConstant(Fr::from_str("1").unwrap()),
graph::Node::UnoOp(UnoOperation::Id, 4),
graph::Node::Op(Operation::Mul, 5, 6),
graph::Node::TresOp(TresOperation::TernCond, 7, 8, 9),
];
let witness_signals = vec![4, 1];
let mut input_signals: InputSignalsInfo = HashMap::new();
input_signals.insert("sig1".to_string(), (1, 3));
input_signals.insert("sig2".to_string(), (5, 1));
let mut tmp = Vec::new();
serialize_witnesscalc_graph(&mut tmp, &nodes, &witness_signals, &input_signals).unwrap();
let mut reader = std::io::Cursor::new(&tmp);
let (nodes_res, witness_signals_res, input_signals_res) =
deserialize_witnesscalc_graph(&mut reader).unwrap();
assert_eq!(nodes, nodes_res);
assert_eq!(input_signals, input_signals_res);
assert_eq!(witness_signals, witness_signals_res);
let metadata_start = LittleEndian::read_u64(&tmp[tmp.len() - 8..]);
let mt_reader = std::io::Cursor::new(&tmp[metadata_start as usize..]);
let mut rw = WriteBackReader::new(mt_reader);
let metadata: proto::GraphMetadata = read_message(&mut rw).unwrap();
let metadata_want = proto::GraphMetadata {
witness_signals: vec![4, 1],
inputs: input_signals
.iter()
.map(|(k, v)| {
(
k.clone(),
proto::SignalDescription {
offset: v.0 as u32,
len: v.1 as u32,
},
)
})
.collect(),
};
assert_eq!(metadata, metadata_want);
}
}

View File

@@ -1,161 +0,0 @@
// This crate provides interfaces for the zero-knowledge circuit and keys
pub mod iden3calc;
pub mod qap;
pub mod zkey;
use ::lazy_static::lazy_static;
use ark_bn254::{
Bn254, Fq as ArkFq, Fq2 as ArkFq2, Fr as ArkFr, G1Affine as ArkG1Affine,
G1Projective as ArkG1Projective, G2Affine as ArkG2Affine, G2Projective as ArkG2Projective,
};
use ark_groth16::ProvingKey;
use ark_relations::r1cs::ConstraintMatrices;
use cfg_if::cfg_if;
use color_eyre::{Report, Result};
use crate::circuit::iden3calc::calc_witness;
#[cfg(feature = "arkzkey")]
use {
ark_ff::Field, ark_serialize::CanonicalDeserialize, ark_serialize::CanonicalSerialize,
color_eyre::eyre::WrapErr,
};
#[cfg(not(feature = "arkzkey"))]
use {crate::circuit::zkey::read_zkey, std::io::Cursor};
#[cfg(feature = "arkzkey")]
pub const ARKZKEY_BYTES: &[u8] = include_bytes!("../../resources/tree_height_20/rln_final.arkzkey");
pub const ZKEY_BYTES: &[u8] = include_bytes!("../../resources/tree_height_20/rln_final.zkey");
#[cfg(not(target_arch = "wasm32"))]
const GRAPH_BYTES: &[u8] = include_bytes!("../../resources/tree_height_20/graph.bin");
lazy_static! {
static ref ZKEY: (ProvingKey<Curve>, ConstraintMatrices<Fr>) = {
cfg_if! {
if #[cfg(feature = "arkzkey")] {
read_arkzkey_from_bytes_uncompressed(ARKZKEY_BYTES).expect("Failed to read arkzkey")
} else {
let mut reader = Cursor::new(ZKEY_BYTES);
read_zkey(&mut reader).expect("Failed to read zkey")
}
}
};
}
pub const TEST_TREE_HEIGHT: usize = 20;
// The following types define the pairing friendly elliptic curve, the underlying finite fields and groups default to this module
// Note that proofs are serialized assuming Fr to be 4x8 = 32 bytes in size. Hence, changing to a curve with different encoding will make proof verification to fail
pub type Curve = Bn254;
pub type Fr = ArkFr;
pub type Fq = ArkFq;
pub type Fq2 = ArkFq2;
pub type G1Affine = ArkG1Affine;
pub type G1Projective = ArkG1Projective;
pub type G2Affine = ArkG2Affine;
pub type G2Projective = ArkG2Projective;
// Loads the proving key using a bytes vector
pub fn zkey_from_raw(zkey_data: &[u8]) -> Result<(ProvingKey<Curve>, ConstraintMatrices<Fr>)> {
if zkey_data.is_empty() {
return Err(Report::msg("No proving key found!"));
}
let proving_key_and_matrices = match () {
#[cfg(feature = "arkzkey")]
() => read_arkzkey_from_bytes_uncompressed(zkey_data)?,
#[cfg(not(feature = "arkzkey"))]
() => {
let mut reader = Cursor::new(zkey_data);
read_zkey(&mut reader)?
}
};
Ok(proving_key_and_matrices)
}
// Loads the proving key
#[cfg(not(target_arch = "wasm32"))]
pub fn zkey_from_folder() -> &'static (ProvingKey<Curve>, ConstraintMatrices<Fr>) {
&ZKEY
}
pub fn calculate_rln_witness<I: IntoIterator<Item = (String, Vec<Fr>)>>(
inputs: I,
graph_data: &[u8],
) -> Vec<Fr> {
calc_witness(inputs, graph_data)
}
#[cfg(not(target_arch = "wasm32"))]
pub fn graph_from_folder() -> &'static [u8] {
GRAPH_BYTES
}
////////////////////////////////////////////////////////
// Functions and structs from [arkz-key](https://github.com/zkmopro/ark-zkey/blob/main/src/lib.rs#L106)
// without print and allow to choose between compressed and uncompressed arkzkey
////////////////////////////////////////////////////////
#[cfg(feature = "arkzkey")]
#[derive(CanonicalSerialize, CanonicalDeserialize, Clone, Debug, PartialEq)]
pub struct SerializableProvingKey(pub ProvingKey<Bn254>);
#[cfg(feature = "arkzkey")]
#[derive(CanonicalSerialize, CanonicalDeserialize, Clone, Debug, PartialEq)]
pub struct SerializableConstraintMatrices<F: Field> {
pub num_instance_variables: usize,
pub num_witness_variables: usize,
pub num_constraints: usize,
pub a_num_non_zero: usize,
pub b_num_non_zero: usize,
pub c_num_non_zero: usize,
pub a: SerializableMatrix<F>,
pub b: SerializableMatrix<F>,
pub c: SerializableMatrix<F>,
}
#[cfg(feature = "arkzkey")]
#[derive(CanonicalSerialize, CanonicalDeserialize, Clone, Debug, PartialEq)]
pub struct SerializableMatrix<F: Field> {
pub data: Vec<Vec<(F, usize)>>,
}
#[cfg(feature = "arkzkey")]
pub fn read_arkzkey_from_bytes_uncompressed(
arkzkey_data: &[u8],
) -> Result<(ProvingKey<Curve>, ConstraintMatrices<Fr>)> {
if arkzkey_data.is_empty() {
return Err(Report::msg("No proving key found!"));
}
let mut cursor = std::io::Cursor::new(arkzkey_data);
let serialized_proving_key =
SerializableProvingKey::deserialize_uncompressed_unchecked(&mut cursor)
.wrap_err("Failed to deserialize proving key")?;
let serialized_constraint_matrices =
SerializableConstraintMatrices::deserialize_uncompressed_unchecked(&mut cursor)
.wrap_err("Failed to deserialize constraint matrices")?;
// Get on right form for API
let proving_key: ProvingKey<Bn254> = serialized_proving_key.0;
let constraint_matrices: ConstraintMatrices<ark_bn254::Fr> = ConstraintMatrices {
num_instance_variables: serialized_constraint_matrices.num_instance_variables,
num_witness_variables: serialized_constraint_matrices.num_witness_variables,
num_constraints: serialized_constraint_matrices.num_constraints,
a_num_non_zero: serialized_constraint_matrices.a_num_non_zero,
b_num_non_zero: serialized_constraint_matrices.b_num_non_zero,
c_num_non_zero: serialized_constraint_matrices.c_num_non_zero,
a: serialized_constraint_matrices.a.data,
b: serialized_constraint_matrices.b.data,
c: serialized_constraint_matrices.c.data,
};
Ok((proving_key, constraint_matrices))
}

View File

@@ -1,114 +0,0 @@
// This file is based on the code by arkworks. Its preimage can be found here:
// https://github.com/arkworks-rs/circom-compat/blob/3c95ed98e23a408b4d99a53e483a9bba39685a4e/src/circom/qap.rs
use ark_ff::PrimeField;
use ark_groth16::r1cs_to_qap::{evaluate_constraint, LibsnarkReduction, R1CSToQAP};
use ark_poly::EvaluationDomain;
use ark_relations::r1cs::{ConstraintMatrices, ConstraintSystemRef, SynthesisError};
use ark_std::{cfg_into_iter, cfg_iter, cfg_iter_mut, vec};
/// Implements the witness map used by snarkjs. The arkworks witness map calculates the
/// coefficients of H through computing (AB-C)/Z in the evaluation domain and going back to the
/// coefficients domain. snarkjs instead precomputes the Lagrange form of the powers of tau bases
/// in a domain twice as large and the witness map is computed as the odd coefficients of (AB-C)
/// in that domain. This serves as HZ when computing the C proof element.
pub struct CircomReduction;
impl R1CSToQAP for CircomReduction {
#[allow(clippy::type_complexity)]
fn instance_map_with_evaluation<F: PrimeField, D: EvaluationDomain<F>>(
cs: ConstraintSystemRef<F>,
t: &F,
) -> Result<(Vec<F>, Vec<F>, Vec<F>, F, usize, usize), SynthesisError> {
LibsnarkReduction::instance_map_with_evaluation::<F, D>(cs, t)
}
fn witness_map_from_matrices<F: PrimeField, D: EvaluationDomain<F>>(
matrices: &ConstraintMatrices<F>,
num_inputs: usize,
num_constraints: usize,
full_assignment: &[F],
) -> Result<Vec<F>, SynthesisError> {
let zero = F::zero();
let domain =
D::new(num_constraints + num_inputs).ok_or(SynthesisError::PolynomialDegreeTooLarge)?;
let domain_size = domain.size();
let mut a = vec![zero; domain_size];
let mut b = vec![zero; domain_size];
#[allow(unexpected_cfgs)]
cfg_iter_mut!(a[..num_constraints])
.zip(cfg_iter_mut!(b[..num_constraints]))
.zip(cfg_iter!(&matrices.a))
.zip(cfg_iter!(&matrices.b))
.for_each(|(((a, b), at_i), bt_i)| {
*a = evaluate_constraint(at_i, full_assignment);
*b = evaluate_constraint(bt_i, full_assignment);
});
{
let start = num_constraints;
let end = start + num_inputs;
a[start..end].clone_from_slice(&full_assignment[..num_inputs]);
}
let mut c = vec![zero; domain_size];
#[allow(unexpected_cfgs)]
cfg_iter_mut!(c[..num_constraints])
.zip(&a)
.zip(&b)
.for_each(|((c_i, &a), &b)| {
*c_i = a * b;
});
domain.ifft_in_place(&mut a);
domain.ifft_in_place(&mut b);
let root_of_unity = {
let domain_size_double = 2 * domain_size;
let domain_double =
D::new(domain_size_double).ok_or(SynthesisError::PolynomialDegreeTooLarge)?;
domain_double.element(1)
};
D::distribute_powers_and_mul_by_const(&mut a, root_of_unity, F::one());
D::distribute_powers_and_mul_by_const(&mut b, root_of_unity, F::one());
domain.fft_in_place(&mut a);
domain.fft_in_place(&mut b);
let mut ab = domain.mul_polynomials_in_evaluation_domain(&a, &b);
drop(a);
drop(b);
domain.ifft_in_place(&mut c);
D::distribute_powers_and_mul_by_const(&mut c, root_of_unity, F::one());
domain.fft_in_place(&mut c);
#[allow(unexpected_cfgs)]
cfg_iter_mut!(ab)
.zip(c)
.for_each(|(ab_i, c_i)| *ab_i -= &c_i);
Ok(ab)
}
fn h_query_scalars<F: PrimeField, D: EvaluationDomain<F>>(
max_power: usize,
t: F,
_: F,
delta_inverse: F,
) -> Result<Vec<F>, SynthesisError> {
// the usual H query has domain-1 powers. Z has domain powers. So HZ has 2*domain-1 powers.
#[allow(unexpected_cfgs)]
let mut scalars = cfg_into_iter!(0..2 * max_power + 1)
.map(|i| delta_inverse * t.pow([i as u64]))
.collect::<Vec<_>>();
let domain_size = scalars.len();
let domain = D::new(domain_size).ok_or(SynthesisError::PolynomialDegreeTooLarge)?;
// generate the lagrange coefficients
domain.ifft_in_place(&mut scalars);
#[allow(unexpected_cfgs)]
Ok(cfg_into_iter!(scalars).skip(1).step_by(2).collect())
}
}

View File

@@ -1,371 +0,0 @@
// This file is based on the code by arkworks. Its preimage can be found here:
// https://github.com/arkworks-rs/circom-compat/blob/3c95ed98e23a408b4d99a53e483a9bba39685a4e/src/zkey.rs
//! ZKey Parsing
//!
//! Each ZKey file is broken into sections:
//! Header(1)
//! Prover Type 1 Groth
//! HeaderGroth(2)
//! n8q
//! q
//! n8r
//! r
//! NVars
//! NPub
//! DomainSize (multiple of 2
//! alpha1
//! beta1
//! delta1
//! beta2
//! gamma2
//! delta2
//! IC(3)
//! Coefs(4)
//! PointsA(5)
//! PointsB1(6)
//! PointsB2(7)
//! PointsC(8)
//! PointsH(9)
//! Contributions(10)
use ark_ff::{BigInteger256, PrimeField};
use ark_relations::r1cs::ConstraintMatrices;
use ark_serialize::{CanonicalDeserialize, SerializationError};
use ark_std::log2;
use byteorder::{LittleEndian, ReadBytesExt};
use std::{
collections::HashMap,
io::{Read, Seek, SeekFrom},
};
use ark_bn254::{Bn254, Fq, Fq2, Fr, G1Affine, G2Affine};
use ark_groth16::{ProvingKey, VerifyingKey};
use num_traits::Zero;
type IoResult<T> = Result<T, SerializationError>;
#[derive(Clone, Debug)]
struct Section {
position: u64,
#[allow(dead_code)]
size: usize,
}
/// Reads a SnarkJS ZKey file into an Arkworks ProvingKey.
pub fn read_zkey<R: Read + Seek>(
reader: &mut R,
) -> IoResult<(ProvingKey<Bn254>, ConstraintMatrices<Fr>)> {
let mut binfile = BinFile::new(reader)?;
let proving_key = binfile.proving_key()?;
let matrices = binfile.matrices()?;
Ok((proving_key, matrices))
}
#[derive(Debug)]
struct BinFile<'a, R> {
#[allow(dead_code)]
ftype: String,
#[allow(dead_code)]
version: u32,
sections: HashMap<u32, Vec<Section>>,
reader: &'a mut R,
}
impl<'a, R: Read + Seek> BinFile<'a, R> {
fn new(reader: &'a mut R) -> IoResult<Self> {
let mut magic = [0u8; 4];
reader.read_exact(&mut magic)?;
let version = reader.read_u32::<LittleEndian>()?;
let num_sections = reader.read_u32::<LittleEndian>()?;
let mut sections = HashMap::new();
for _ in 0..num_sections {
let section_id = reader.read_u32::<LittleEndian>()?;
let section_length = reader.read_u64::<LittleEndian>()?;
let section = sections.entry(section_id).or_insert_with(Vec::new);
section.push(Section {
position: reader.stream_position()?,
size: section_length as usize,
});
reader.seek(SeekFrom::Current(section_length as i64))?;
}
Ok(Self {
ftype: std::str::from_utf8(&magic[..]).unwrap().to_string(),
version,
sections,
reader,
})
}
fn proving_key(&mut self) -> IoResult<ProvingKey<Bn254>> {
let header = self.groth_header()?;
let ic = self.ic(header.n_public)?;
let a_query = self.a_query(header.n_vars)?;
let b_g1_query = self.b_g1_query(header.n_vars)?;
let b_g2_query = self.b_g2_query(header.n_vars)?;
let l_query = self.l_query(header.n_vars - header.n_public - 1)?;
let h_query = self.h_query(header.domain_size as usize)?;
let vk = VerifyingKey::<Bn254> {
alpha_g1: header.verifying_key.alpha_g1,
beta_g2: header.verifying_key.beta_g2,
gamma_g2: header.verifying_key.gamma_g2,
delta_g2: header.verifying_key.delta_g2,
gamma_abc_g1: ic,
};
let pk = ProvingKey::<Bn254> {
vk,
beta_g1: header.verifying_key.beta_g1,
delta_g1: header.verifying_key.delta_g1,
a_query,
b_g1_query,
b_g2_query,
h_query,
l_query,
};
Ok(pk)
}
fn get_section(&self, id: u32) -> Section {
self.sections.get(&id).unwrap()[0].clone()
}
fn groth_header(&mut self) -> IoResult<HeaderGroth> {
let section = self.get_section(2);
let header = HeaderGroth::new(&mut self.reader, &section)?;
Ok(header)
}
fn ic(&mut self, n_public: usize) -> IoResult<Vec<G1Affine>> {
// the range is non-inclusive so we do +1 to get all inputs
self.g1_section(n_public + 1, 3)
}
/// Returns the [`ConstraintMatrices`] corresponding to the zkey
pub fn matrices(&mut self) -> IoResult<ConstraintMatrices<Fr>> {
let header = self.groth_header()?;
let section = self.get_section(4);
self.reader.seek(SeekFrom::Start(section.position))?;
let num_coeffs: u32 = self.reader.read_u32::<LittleEndian>()?;
// insantiate AB
let mut matrices = vec![vec![vec![]; header.domain_size as usize]; 2];
let mut max_constraint_index = 0;
for _ in 0..num_coeffs {
let matrix: u32 = self.reader.read_u32::<LittleEndian>()?;
let constraint: u32 = self.reader.read_u32::<LittleEndian>()?;
let signal: u32 = self.reader.read_u32::<LittleEndian>()?;
let value: Fr = deserialize_field_fr(&mut self.reader)?;
max_constraint_index = std::cmp::max(max_constraint_index, constraint);
matrices[matrix as usize][constraint as usize].push((value, signal as usize));
}
let num_constraints = max_constraint_index as usize - header.n_public;
// Remove the public input constraints, Arkworks adds them later
matrices.iter_mut().for_each(|m| {
m.truncate(num_constraints);
});
// This is taken from Arkworks' to_matrices() function
let a = matrices[0].clone();
let b = matrices[1].clone();
let a_num_non_zero: usize = a.iter().map(|lc| lc.len()).sum();
let b_num_non_zero: usize = b.iter().map(|lc| lc.len()).sum();
let matrices = ConstraintMatrices {
num_instance_variables: header.n_public + 1,
num_witness_variables: header.n_vars - header.n_public,
num_constraints,
a_num_non_zero,
b_num_non_zero,
c_num_non_zero: 0,
a,
b,
c: vec![],
};
Ok(matrices)
}
fn a_query(&mut self, n_vars: usize) -> IoResult<Vec<G1Affine>> {
self.g1_section(n_vars, 5)
}
fn b_g1_query(&mut self, n_vars: usize) -> IoResult<Vec<G1Affine>> {
self.g1_section(n_vars, 6)
}
fn b_g2_query(&mut self, n_vars: usize) -> IoResult<Vec<G2Affine>> {
self.g2_section(n_vars, 7)
}
fn l_query(&mut self, n_vars: usize) -> IoResult<Vec<G1Affine>> {
self.g1_section(n_vars, 8)
}
fn h_query(&mut self, n_vars: usize) -> IoResult<Vec<G1Affine>> {
self.g1_section(n_vars, 9)
}
fn g1_section(&mut self, num: usize, section_id: usize) -> IoResult<Vec<G1Affine>> {
let section = self.get_section(section_id as u32);
self.reader.seek(SeekFrom::Start(section.position))?;
deserialize_g1_vec(self.reader, num as u32)
}
fn g2_section(&mut self, num: usize, section_id: usize) -> IoResult<Vec<G2Affine>> {
let section = self.get_section(section_id as u32);
self.reader.seek(SeekFrom::Start(section.position))?;
deserialize_g2_vec(self.reader, num as u32)
}
}
#[derive(Default, Clone, Debug, CanonicalDeserialize)]
pub struct ZVerifyingKey {
alpha_g1: G1Affine,
beta_g1: G1Affine,
beta_g2: G2Affine,
gamma_g2: G2Affine,
delta_g1: G1Affine,
delta_g2: G2Affine,
}
impl ZVerifyingKey {
fn new<R: Read>(reader: &mut R) -> IoResult<Self> {
let alpha_g1 = deserialize_g1(reader)?;
let beta_g1 = deserialize_g1(reader)?;
let beta_g2 = deserialize_g2(reader)?;
let gamma_g2 = deserialize_g2(reader)?;
let delta_g1 = deserialize_g1(reader)?;
let delta_g2 = deserialize_g2(reader)?;
Ok(Self {
alpha_g1,
beta_g1,
beta_g2,
gamma_g2,
delta_g1,
delta_g2,
})
}
}
#[derive(Clone, Debug)]
struct HeaderGroth {
#[allow(dead_code)]
n8q: u32,
#[allow(dead_code)]
q: BigInteger256,
#[allow(dead_code)]
n8r: u32,
#[allow(dead_code)]
r: BigInteger256,
n_vars: usize,
n_public: usize,
domain_size: u32,
#[allow(dead_code)]
power: u32,
verifying_key: ZVerifyingKey,
}
impl HeaderGroth {
fn new<R: Read + Seek>(reader: &mut R, section: &Section) -> IoResult<Self> {
reader.seek(SeekFrom::Start(section.position))?;
Self::read(reader)
}
fn read<R: Read>(mut reader: &mut R) -> IoResult<Self> {
// TODO: Impl From<u32> in Arkworks
let n8q: u32 = u32::deserialize_uncompressed(&mut reader)?;
// group order r of Bn254
let q = BigInteger256::deserialize_uncompressed(&mut reader)?;
let n8r: u32 = u32::deserialize_uncompressed(&mut reader)?;
// Prime field modulus
let r = BigInteger256::deserialize_uncompressed(&mut reader)?;
let n_vars = u32::deserialize_uncompressed(&mut reader)? as usize;
let n_public = u32::deserialize_uncompressed(&mut reader)? as usize;
let domain_size: u32 = u32::deserialize_uncompressed(&mut reader)?;
let power = log2(domain_size as usize);
let verifying_key = ZVerifyingKey::new(&mut reader)?;
Ok(Self {
n8q,
q,
n8r,
r,
n_vars,
n_public,
domain_size,
power,
verifying_key,
})
}
}
// need to divide by R, since snarkjs outputs the zkey with coefficients
// multiplieid by R^2
fn deserialize_field_fr<R: Read>(reader: &mut R) -> IoResult<Fr> {
let bigint = BigInteger256::deserialize_uncompressed(reader)?;
Ok(Fr::new_unchecked(Fr::new_unchecked(bigint).into_bigint()))
}
// skips the multiplication by R because Circom points are already in Montgomery form
fn deserialize_field<R: Read>(reader: &mut R) -> IoResult<Fq> {
let bigint = BigInteger256::deserialize_uncompressed(reader)?;
// if you use Fq::new it multiplies by R
Ok(Fq::new_unchecked(bigint))
}
pub fn deserialize_field2<R: Read>(reader: &mut R) -> IoResult<Fq2> {
let c0 = deserialize_field(reader)?;
let c1 = deserialize_field(reader)?;
Ok(Fq2::new(c0, c1))
}
fn deserialize_g1<R: Read>(reader: &mut R) -> IoResult<G1Affine> {
let x = deserialize_field(reader)?;
let y = deserialize_field(reader)?;
let infinity = x.is_zero() && y.is_zero();
if infinity {
Ok(G1Affine::identity())
} else {
Ok(G1Affine::new(x, y))
}
}
fn deserialize_g2<R: Read>(reader: &mut R) -> IoResult<G2Affine> {
let f1 = deserialize_field2(reader)?;
let f2 = deserialize_field2(reader)?;
let infinity = f1.is_zero() && f2.is_zero();
if infinity {
Ok(G2Affine::identity())
} else {
Ok(G2Affine::new(f1, f2))
}
}
fn deserialize_g1_vec<R: Read>(reader: &mut R, n_vars: u32) -> IoResult<Vec<G1Affine>> {
(0..n_vars).map(|_| deserialize_g1(reader)).collect()
}
fn deserialize_g2_vec<R: Read>(reader: &mut R, n_vars: u32) -> IoResult<Vec<G2Affine>> {
(0..n_vars).map(|_| deserialize_g2(reader)).collect()
}

View File

@@ -8,7 +8,6 @@ use crate::public::{hash as public_hash, poseidon_hash as public_poseidon_hash,
// First argument to the macro is context,
// second is the actual method on `RLN`
// rest are all other arguments to the method
#[cfg(not(feature = "stateless"))]
macro_rules! call {
($instance:expr, $method:ident $(, $arg:expr)*) => {
{
@@ -144,24 +143,24 @@ impl ProcessArg for *const Buffer {
}
}
impl ProcessArg for *const RLN {
type ReturnType = &'static RLN;
impl<'a> ProcessArg for *const RLN<'a> {
type ReturnType = &'a RLN<'a>;
fn process(self) -> Self::ReturnType {
unsafe { &*self }
}
}
impl ProcessArg for *mut RLN {
type ReturnType = &'static mut RLN;
impl<'a> ProcessArg for *mut RLN<'a> {
type ReturnType = &'a mut RLN<'a>;
fn process(self) -> Self::ReturnType {
unsafe { &mut *self }
}
}
///// Buffer struct is taken from
///// <https://github.com/celo-org/celo-threshold-bls-rs/blob/master/crates/threshold-bls-ffi/src/ffi.rs>
/////
///// Also heavily inspired by <https://github.com/kilic/rln/blob/master/src/ffi.rs>
/// Buffer struct is taken from
/// <https://github.com/celo-org/celo-threshold-bls-rs/blob/master/crates/threshold-bls-ffi/src/ffi.rs>
///
/// Also heavily inspired by <https://github.com/kilic/rln/blob/master/src/ffi.rs>
#[repr(C)]
#[derive(Clone, Debug, PartialEq)]
@@ -193,7 +192,6 @@ impl<'a> From<&Buffer> for &'a [u8] {
////////////////////////////////////////////////////////
#[allow(clippy::not_unsafe_ptr_arg_deref)]
#[cfg(not(feature = "stateless"))]
#[no_mangle]
pub extern "C" fn new(tree_height: usize, input_buffer: *const Buffer, ctx: *mut *mut RLN) -> bool {
match RLN::new(tree_height, input_buffer.process()) {
@@ -209,35 +207,20 @@ pub extern "C" fn new(tree_height: usize, input_buffer: *const Buffer, ctx: *mut
}
#[allow(clippy::not_unsafe_ptr_arg_deref)]
#[cfg(feature = "stateless")]
#[no_mangle]
pub extern "C" fn new(ctx: *mut *mut RLN) -> bool {
match RLN::new() {
Ok(rln) => {
unsafe { *ctx = Box::into_raw(Box::new(rln)) };
true
}
Err(err) => {
eprintln!("could not instantiate rln: {err}");
false
}
}
}
#[allow(clippy::not_unsafe_ptr_arg_deref)]
#[cfg(not(feature = "stateless"))]
#[no_mangle]
pub extern "C" fn new_with_params(
tree_height: usize,
circom_buffer: *const Buffer,
zkey_buffer: *const Buffer,
graph_data: *const Buffer,
vk_buffer: *const Buffer,
tree_config: *const Buffer,
ctx: *mut *mut RLN,
) -> bool {
match RLN::new_with_params(
tree_height,
circom_buffer.process().to_vec(),
zkey_buffer.process().to_vec(),
graph_data.process().to_vec(),
vk_buffer.process().to_vec(),
tree_config.process(),
) {
Ok(rln) => {
@@ -251,77 +234,47 @@ pub extern "C" fn new_with_params(
}
}
#[allow(clippy::not_unsafe_ptr_arg_deref)]
#[cfg(feature = "stateless")]
#[no_mangle]
pub extern "C" fn new_with_params(
zkey_buffer: *const Buffer,
graph_buffer: *const Buffer,
ctx: *mut *mut RLN,
) -> bool {
match RLN::new_with_params(
zkey_buffer.process().to_vec(),
graph_buffer.process().to_vec(),
) {
Ok(rln) => {
unsafe { *ctx = Box::into_raw(Box::new(rln)) };
true
}
Err(err) => {
eprintln!("could not instantiate rln: {err}");
false
}
}
}
////////////////////////////////////////////////////////
// Merkle tree APIs
////////////////////////////////////////////////////////
#[allow(clippy::not_unsafe_ptr_arg_deref)]
#[no_mangle]
#[cfg(not(feature = "stateless"))]
pub extern "C" fn set_tree(ctx: *mut RLN, tree_height: usize) -> bool {
call!(ctx, set_tree, tree_height)
}
#[allow(clippy::not_unsafe_ptr_arg_deref)]
#[no_mangle]
#[cfg(not(feature = "stateless"))]
pub extern "C" fn delete_leaf(ctx: *mut RLN, index: usize) -> bool {
call!(ctx, delete_leaf, index)
}
#[allow(clippy::not_unsafe_ptr_arg_deref)]
#[no_mangle]
#[cfg(not(feature = "stateless"))]
pub extern "C" fn set_leaf(ctx: *mut RLN, index: usize, input_buffer: *const Buffer) -> bool {
call!(ctx, set_leaf, index, input_buffer)
}
#[allow(clippy::not_unsafe_ptr_arg_deref)]
#[no_mangle]
#[cfg(not(feature = "stateless"))]
pub extern "C" fn get_leaf(ctx: *mut RLN, index: usize, output_buffer: *mut Buffer) -> bool {
call_with_output_arg!(ctx, get_leaf, output_buffer, index)
}
#[allow(clippy::not_unsafe_ptr_arg_deref)]
#[no_mangle]
#[cfg(not(feature = "stateless"))]
pub extern "C" fn leaves_set(ctx: *mut RLN) -> usize {
ctx.process().leaves_set()
}
#[allow(clippy::not_unsafe_ptr_arg_deref)]
#[no_mangle]
#[cfg(not(feature = "stateless"))]
pub extern "C" fn set_next_leaf(ctx: *mut RLN, input_buffer: *const Buffer) -> bool {
call!(ctx, set_next_leaf, input_buffer)
}
#[allow(clippy::not_unsafe_ptr_arg_deref)]
#[no_mangle]
#[cfg(not(feature = "stateless"))]
pub extern "C" fn set_leaves_from(
ctx: *mut RLN,
index: usize,
@@ -332,14 +285,12 @@ pub extern "C" fn set_leaves_from(
#[allow(clippy::not_unsafe_ptr_arg_deref)]
#[no_mangle]
#[cfg(not(feature = "stateless"))]
pub extern "C" fn init_tree_with_leaves(ctx: *mut RLN, input_buffer: *const Buffer) -> bool {
call!(ctx, init_tree_with_leaves, input_buffer)
}
#[allow(clippy::not_unsafe_ptr_arg_deref)]
#[no_mangle]
#[cfg(not(feature = "stateless"))]
pub extern "C" fn atomic_operation(
ctx: *mut RLN,
index: usize,
@@ -351,7 +302,6 @@ pub extern "C" fn atomic_operation(
#[allow(clippy::not_unsafe_ptr_arg_deref)]
#[no_mangle]
#[cfg(not(feature = "stateless"))]
pub extern "C" fn seq_atomic_operation(
ctx: *mut RLN,
leaves_buffer: *const Buffer,
@@ -368,14 +318,12 @@ pub extern "C" fn seq_atomic_operation(
#[allow(clippy::not_unsafe_ptr_arg_deref)]
#[no_mangle]
#[cfg(not(feature = "stateless"))]
pub extern "C" fn get_root(ctx: *const RLN, output_buffer: *mut Buffer) -> bool {
call_with_output_arg!(ctx, get_root, output_buffer)
}
#[allow(clippy::not_unsafe_ptr_arg_deref)]
#[no_mangle]
#[cfg(not(feature = "stateless"))]
pub extern "C" fn get_proof(ctx: *const RLN, index: usize, output_buffer: *mut Buffer) -> bool {
call_with_output_arg!(ctx, get_proof, output_buffer, index)
}
@@ -405,7 +353,6 @@ pub extern "C" fn verify(
#[allow(clippy::not_unsafe_ptr_arg_deref)]
#[no_mangle]
#[cfg(not(feature = "stateless"))]
pub extern "C" fn generate_rln_proof(
ctx: *mut RLN,
input_buffer: *const Buffer,
@@ -431,7 +378,6 @@ pub extern "C" fn generate_rln_proof_with_witness(
#[allow(clippy::not_unsafe_ptr_arg_deref)]
#[no_mangle]
#[cfg(not(feature = "stateless"))]
pub extern "C" fn verify_rln_proof(
ctx: *const RLN,
proof_buffer: *const Buffer,
@@ -515,21 +461,18 @@ pub extern "C" fn recover_id_secret(
#[allow(clippy::not_unsafe_ptr_arg_deref)]
#[no_mangle]
#[cfg(not(feature = "stateless"))]
pub extern "C" fn set_metadata(ctx: *mut RLN, input_buffer: *const Buffer) -> bool {
call!(ctx, set_metadata, input_buffer)
}
#[allow(clippy::not_unsafe_ptr_arg_deref)]
#[no_mangle]
#[cfg(not(feature = "stateless"))]
pub extern "C" fn get_metadata(ctx: *const RLN, output_buffer: *mut Buffer) -> bool {
call_with_output_arg!(ctx, get_metadata, output_buffer)
}
#[allow(clippy::not_unsafe_ptr_arg_deref)]
#[no_mangle]
#[cfg(not(feature = "stateless"))]
pub extern "C" fn flush(ctx: *mut RLN) -> bool {
call!(ctx, flush)
}

View File

@@ -23,7 +23,7 @@ static POSEIDON: Lazy<Poseidon<Fr>> = Lazy::new(|| Poseidon::<Fr>::from(&ROUND_P
pub fn poseidon_hash(input: &[Fr]) -> Fr {
POSEIDON
.hash(input)
.hash(input.to_vec())
.expect("hash with fixed input size can't fail")
}

View File

@@ -1,12 +1,13 @@
#![allow(dead_code)]
pub mod circuit;
#[cfg(not(target_arch = "wasm32"))]
pub mod ffi;
pub mod hashers;
#[cfg(feature = "pmtree-ft")]
pub mod pm_tree_adapter;
pub mod poseidon_tree;
pub mod protocol;
pub mod public;
#[cfg(test)]
pub mod public_api_tests;
pub mod utils;
#[cfg(not(target_arch = "wasm32"))]
pub mod ffi;

View File

@@ -5,7 +5,6 @@ use std::str::FromStr;
use color_eyre::{Report, Result};
use serde_json::Value;
use utils::pmtree::tree::Key;
use utils::pmtree::{Database, Hasher};
use utils::*;
@@ -17,9 +16,6 @@ const METADATA_KEY: [u8; 8] = *b"metadata";
pub struct PmTree {
tree: pmtree::MerkleTree<SledDB, PoseidonHash>,
/// The indices of leaves which are set into zero upto next_index.
/// Set to 0 if the leaf is empty and set to 1 in otherwise.
cached_leaves_indices: Vec<u8>,
// metadata that an application may use to store additional information
metadata: Vec<u8>,
}
@@ -147,7 +143,6 @@ impl ZerokitMerkleTree for PmTree {
Ok(PmTree {
tree,
cached_leaves_indices: vec![0; 1 << depth],
metadata: Vec::new(),
})
}
@@ -160,7 +155,7 @@ impl ZerokitMerkleTree for PmTree {
self.tree.capacity()
}
fn leaves_set(&self) -> usize {
fn leaves_set(&mut self) -> usize {
self.tree.leaves_set()
}
@@ -175,9 +170,7 @@ impl ZerokitMerkleTree for PmTree {
fn set(&mut self, index: usize, leaf: FrOf<Self::Hasher>) -> Result<()> {
self.tree
.set(index, leaf)
.map_err(|e| Report::msg(e.to_string()))?;
self.cached_leaves_indices[index] = 1;
Ok(())
.map_err(|e| Report::msg(e.to_string()))
}
fn set_range<I: IntoIterator<Item = FrOf<Self::Hasher>>>(
@@ -185,51 +178,15 @@ impl ZerokitMerkleTree for PmTree {
start: usize,
values: I,
) -> Result<()> {
let v = values.into_iter().collect::<Vec<_>>();
self.tree
.set_range(start, v.clone().into_iter())
.map_err(|e| Report::msg(e.to_string()))?;
for i in start..v.len() {
self.cached_leaves_indices[i] = 1
}
Ok(())
.set_range(start, values)
.map_err(|e| Report::msg(e.to_string()))
}
fn get(&self, index: usize) -> Result<FrOf<Self::Hasher>> {
self.tree.get(index).map_err(|e| Report::msg(e.to_string()))
}
fn get_subtree_root(&self, n: usize, index: usize) -> Result<FrOf<Self::Hasher>> {
if n > self.depth() {
return Err(Report::msg("level exceeds depth size"));
}
if index >= self.capacity() {
return Err(Report::msg("index exceeds set size"));
}
if n == 0 {
Ok(self.root())
} else if n == self.depth() {
self.get(index)
} else {
let node = self
.tree
.get_elem(Key::new(n, index >> (self.depth() - n)))
.unwrap();
Ok(node)
}
}
fn get_empty_leaves_indices(&self) -> Vec<usize> {
let next_idx = self.leaves_set();
self.cached_leaves_indices
.iter()
.take(next_idx)
.enumerate()
.filter(|&(_, &v)| v == 0u8)
.map(|(idx, _)| idx)
.collect()
}
fn override_range<I: IntoIterator<Item = FrOf<Self::Hasher>>, J: IntoIterator<Item = usize>>(
&mut self,
start: usize,
@@ -244,7 +201,7 @@ impl ZerokitMerkleTree for PmTree {
(0, 0) => Err(Report::msg("no leaves or indices to be removed")),
(1, 0) => self.set(start, leaves[0]),
(0, 1) => self.delete(indices[0]),
(_, 0) => self.set_range(start, leaves.into_iter()),
(_, 0) => self.set_range_with_leaves(start, leaves),
(0, _) => self.remove_indices(&indices),
(_, _) => self.remove_indices_and_set_leaves(start, leaves, &indices),
}
@@ -259,9 +216,7 @@ impl ZerokitMerkleTree for PmTree {
fn delete(&mut self, index: usize) -> Result<()> {
self.tree
.delete(index)
.map_err(|e| Report::msg(e.to_string()))?;
self.cached_leaves_indices[index] = 0;
Ok(())
.map_err(|e| Report::msg(e.to_string()))
}
fn proof(&self, index: usize) -> Result<Self::Proof> {
@@ -306,6 +261,12 @@ type PmTreeHasher = <PmTree as ZerokitMerkleTree>::Hasher;
type FrOfPmTreeHasher = FrOf<PmTreeHasher>;
impl PmTree {
fn set_range_with_leaves(&mut self, start: usize, leaves: Vec<FrOfPmTreeHasher>) -> Result<()> {
self.tree
.set_range(start, leaves)
.map_err(|e| Report::msg(e.to_string()))
}
fn remove_indices(&mut self, indices: &[usize]) -> Result<()> {
let start = indices[0];
let end = indices.last().unwrap() + 1;
@@ -314,12 +275,7 @@ impl PmTree {
self.tree
.set_range(start, new_leaves)
.map_err(|e| Report::msg(e.to_string()))?;
for i in start..end {
self.cached_leaves_indices[i] = 0
}
Ok(())
.map_err(|e| Report::msg(e.to_string()))
}
fn remove_indices_and_set_leaves(
@@ -345,17 +301,8 @@ impl PmTree {
}
self.tree
.set_range(start, set_values)
.map_err(|e| Report::msg(e.to_string()))?;
for i in indices {
self.cached_leaves_indices[*i] = 0;
}
for i in start..(max_index - min_index) {
self.cached_leaves_indices[i] = 1
}
Ok(())
.set_range(min_index, set_values)
.map_err(|e| Report::msg(e.to_string()))
}
}

View File

@@ -1,46 +1,42 @@
// This crate collects all the underlying primitives used to implement RLN
use ark_bn254::Fr;
use ark_circom::{CircomReduction, WitnessCalculator};
use ark_groth16::{prepare_verifying_key, Groth16, Proof as ArkProof, ProvingKey, VerifyingKey};
use ark_relations::r1cs::{ConstraintMatrices, SynthesisError};
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
use ark_relations::r1cs::ConstraintMatrices;
use ark_relations::r1cs::SynthesisError;
use ark_std::{rand::thread_rng, UniformRand};
use color_eyre::{Report, Result};
use num_bigint::BigInt;
use rand::{Rng, SeedableRng};
use rand_chacha::ChaCha20Rng;
use serde::{Deserialize, Serialize};
#[cfg(test)]
#[cfg(not(target_arch = "wasm32"))]
use std::sync::Mutex;
#[cfg(debug_assertions)]
use std::time::Instant;
use thiserror::Error;
use tiny_keccak::{Hasher as _, Keccak};
use crate::circuit::{calculate_rln_witness, qap::CircomReduction, Curve};
use crate::hashers::{hash_to_field, poseidon_hash};
use crate::circuit::{Curve, Fr};
use crate::hashers::hash_to_field;
use crate::hashers::poseidon_hash;
use crate::poseidon_tree::*;
use crate::public::RLN_IDENTIFIER;
use crate::utils::*;
use cfg_if::cfg_if;
use utils::{ZerokitMerkleProof, ZerokitMerkleTree};
///////////////////////////////////////////////////////
// RLN Witness data structure and utility functions
///////////////////////////////////////////////////////
#[derive(Debug, PartialEq, Serialize, Deserialize)]
#[derive(Debug, PartialEq)]
pub struct RLNWitnessInput {
#[serde(serialize_with = "ark_se", deserialize_with = "ark_de")]
identity_secret: Fr,
#[serde(serialize_with = "ark_se", deserialize_with = "ark_de")]
user_message_limit: Fr,
#[serde(serialize_with = "ark_se", deserialize_with = "ark_de")]
message_id: Fr,
#[serde(serialize_with = "ark_se", deserialize_with = "ark_de")]
path_elements: Vec<Fr>,
identity_path_index: Vec<u8>,
#[serde(serialize_with = "ark_se", deserialize_with = "ark_de")]
x: Fr,
#[serde(serialize_with = "ark_se", deserialize_with = "ark_de")]
external_nullifier: Fr,
epoch: Fr,
rln_identifier: Fr,
}
#[derive(Debug, PartialEq)]
@@ -51,7 +47,8 @@ pub struct RLNProofValues {
pub root: Fr,
// Public Inputs:
pub x: Fr,
pub external_nullifier: Fr,
pub epoch: Fr,
pub rln_identifier: Fr,
}
pub fn serialize_field_element(element: Fr) -> Vec<u8> {
@@ -93,54 +90,25 @@ pub fn deserialize_identity_tuple(serialized: Vec<u8>) -> (Fr, Fr, Fr, Fr) {
)
}
/// Serializes witness
///
/// # Errors
///
/// Returns an error if `rln_witness.message_id` is not within `rln_witness.user_message_limit`.
/// input data is [ identity_secret<32> | user_message_limit<32> | message_id<32> | path_elements[<32>] | identity_path_index<8> | x<32> | external_nullifier<32> ]
pub fn serialize_witness(rln_witness: &RLNWitnessInput) -> Result<Vec<u8>> {
// Check if message_id is within user_message_limit
message_id_range_check(&rln_witness.message_id, &rln_witness.user_message_limit)?;
let mut serialized: Vec<u8> = Vec::new();
// Calculate capacity for Vec:
// - 5 fixed field elements: identity_secret, user_message_limit, message_id, x, external_nullifier
// - variable number of path elements
// - identity_path_index (variable size)
let mut serialized: Vec<u8> = Vec::with_capacity(
fr_byte_size() * (5 + rln_witness.path_elements.len())
+ rln_witness.identity_path_index.len(),
);
serialized.extend_from_slice(&fr_to_bytes_le(&rln_witness.identity_secret));
serialized.extend_from_slice(&fr_to_bytes_le(&rln_witness.user_message_limit));
serialized.extend_from_slice(&fr_to_bytes_le(&rln_witness.message_id));
serialized.extend_from_slice(&vec_fr_to_bytes_le(&rln_witness.path_elements)?);
serialized.extend_from_slice(&vec_u8_to_bytes_le(&rln_witness.identity_path_index)?);
serialized.extend_from_slice(&fr_to_bytes_le(&rln_witness.x));
serialized.extend_from_slice(&fr_to_bytes_le(&rln_witness.external_nullifier));
serialized.append(&mut fr_to_bytes_le(&rln_witness.identity_secret));
serialized.append(&mut vec_fr_to_bytes_le(&rln_witness.path_elements)?);
serialized.append(&mut vec_u8_to_bytes_le(&rln_witness.identity_path_index)?);
serialized.append(&mut fr_to_bytes_le(&rln_witness.x));
serialized.append(&mut fr_to_bytes_le(&rln_witness.epoch));
serialized.append(&mut fr_to_bytes_le(&rln_witness.rln_identifier));
Ok(serialized)
}
/// Deserializes witness
///
/// # Errors
///
/// Returns an error if `message_id` is not within `user_message_limit`.
pub fn deserialize_witness(serialized: &[u8]) -> Result<(RLNWitnessInput, usize)> {
let mut all_read: usize = 0;
let (identity_secret, read) = bytes_le_to_fr(&serialized[all_read..]);
all_read += read;
let (user_message_limit, read) = bytes_le_to_fr(&serialized[all_read..]);
all_read += read;
let (message_id, read) = bytes_le_to_fr(&serialized[all_read..]);
all_read += read;
message_id_range_check(&message_id, &user_message_limit)?;
let (path_elements, read) = bytes_le_to_vec_fr(&serialized[all_read..])?;
all_read += read;
@@ -150,9 +118,13 @@ pub fn deserialize_witness(serialized: &[u8]) -> Result<(RLNWitnessInput, usize)
let (x, read) = bytes_le_to_fr(&serialized[all_read..]);
all_read += read;
let (external_nullifier, read) = bytes_le_to_fr(&serialized[all_read..]);
let (epoch, read) = bytes_le_to_fr(&serialized[all_read..]);
all_read += read;
let (rln_identifier, read) = bytes_le_to_fr(&serialized[all_read..]);
all_read += read;
// TODO: check rln_identifier against public::RLN_IDENTIFIER
if serialized.len() != all_read {
return Err(Report::msg("serialized length is not equal to all_read"));
}
@@ -163,9 +135,8 @@ pub fn deserialize_witness(serialized: &[u8]) -> Result<(RLNWitnessInput, usize)
path_elements,
identity_path_index,
x,
external_nullifier,
user_message_limit,
message_id,
epoch,
rln_identifier,
},
all_read,
))
@@ -173,7 +144,7 @@ pub fn deserialize_witness(serialized: &[u8]) -> Result<(RLNWitnessInput, usize)
// This function deserializes input for kilic's rln generate_proof public API
// https://github.com/kilic/rln/blob/7ac74183f8b69b399e3bc96c1ae8ab61c026dc43/src/public.rs#L148
// input_data is [ identity_secret<32> | id_index<8> | user_message_limit<32> | message_id<32> | external_nullifier<32> | signal_len<8> | signal<var> ]
// input_data is [ identity_secret<32> | id_index<8> | epoch<32> | signal_len<8> | signal<var> ]
// return value is a rln witness populated according to this information
pub fn proof_inputs_to_rln_witness(
tree: &mut PoseidonTree,
@@ -189,13 +160,7 @@ pub fn proof_inputs_to_rln_witness(
))?;
all_read += 8;
let (user_message_limit, read) = bytes_le_to_fr(&serialized[all_read..]);
all_read += read;
let (message_id, read) = bytes_le_to_fr(&serialized[all_read..]);
all_read += read;
let (external_nullifier, read) = bytes_le_to_fr(&serialized[all_read..]);
let (epoch, read) = bytes_le_to_fr(&serialized[all_read..]);
all_read += read;
let signal_len = usize::try_from(u64::from_le_bytes(
@@ -211,49 +176,83 @@ pub fn proof_inputs_to_rln_witness(
let x = hash_to_field(&signal);
let rln_identifier = hash_to_field(RLN_IDENTIFIER);
Ok((
RLNWitnessInput {
identity_secret,
path_elements,
identity_path_index,
user_message_limit,
message_id,
x,
external_nullifier,
epoch,
rln_identifier,
},
all_read,
))
}
/// Creates [`RLNWitnessInput`] from it's fields.
///
/// # Errors
///
/// Returns an error if `message_id` is not within `user_message_limit`.
pub fn rln_witness_from_values(
identity_secret: Fr,
merkle_proof: &MerkleProof,
x: Fr,
external_nullifier: Fr,
user_message_limit: Fr,
message_id: Fr,
) -> Result<RLNWitnessInput> {
message_id_range_check(&message_id, &user_message_limit)?;
pub fn rln_witness_from_json(input_json_str: &str) -> Result<RLNWitnessInput> {
let input_json: serde_json::Value =
serde_json::from_str(input_json_str).expect("JSON was not well-formatted");
let path_elements = merkle_proof.get_path_elements();
let identity_path_index = merkle_proof.get_path_index();
let identity_secret = str_to_fr(&input_json["identity_secret"].to_string(), 10)?;
let path_elements = input_json["path_elements"]
.as_array()
.ok_or(Report::msg("not an array"))?
.iter()
.map(|v| str_to_fr(&v.to_string(), 10))
.collect::<Result<_>>()?;
let identity_path_index_array = input_json["identity_path_index"]
.as_array()
.ok_or(Report::msg("not an arrray"))?;
let mut identity_path_index: Vec<u8> = vec![];
for v in identity_path_index_array {
identity_path_index.push(v.as_u64().ok_or(Report::msg("not a u64 value"))? as u8);
}
let x = str_to_fr(&input_json["x"].to_string(), 10)?;
let epoch = str_to_fr(&input_json["epoch"].to_string(), 16)?;
let rln_identifier = str_to_fr(&input_json["rln_identifier"].to_string(), 10)?;
// TODO: check rln_identifier against public::RLN_IDENTIFIER
Ok(RLNWitnessInput {
identity_secret,
path_elements,
identity_path_index,
x,
external_nullifier,
user_message_limit,
message_id,
epoch,
rln_identifier,
})
}
pub fn rln_witness_from_values(
identity_secret: Fr,
merkle_proof: &MerkleProof,
x: Fr,
epoch: Fr,
//rln_identifier: Fr,
) -> RLNWitnessInput {
let path_elements = merkle_proof.get_path_elements();
let identity_path_index = merkle_proof.get_path_index();
let rln_identifier = hash_to_field(RLN_IDENTIFIER);
RLNWitnessInput {
identity_secret,
path_elements,
identity_path_index,
x,
epoch,
rln_identifier,
}
}
pub fn random_rln_witness(tree_height: usize) -> RLNWitnessInput {
let mut rng = thread_rng();
@@ -270,26 +269,21 @@ pub fn random_rln_witness(tree_height: usize) -> RLNWitnessInput {
identity_path_index.push(rng.gen_range(0..2) as u8);
}
let user_message_limit = Fr::from(100);
let message_id = Fr::from(1);
RLNWitnessInput {
identity_secret,
path_elements,
identity_path_index,
x,
external_nullifier: poseidon_hash(&[epoch, rln_identifier]),
user_message_limit,
message_id,
epoch,
rln_identifier,
}
}
pub fn proof_values_from_witness(rln_witness: &RLNWitnessInput) -> Result<RLNProofValues> {
message_id_range_check(&rln_witness.message_id, &rln_witness.user_message_limit)?;
pub fn proof_values_from_witness(rln_witness: &RLNWitnessInput) -> RLNProofValues {
// y share
let external_nullifier = poseidon_hash(&[rln_witness.epoch, rln_witness.rln_identifier]);
let a_0 = rln_witness.identity_secret;
let a_1 = poseidon_hash(&[a_0, rln_witness.external_nullifier, rln_witness.message_id]);
let a_1 = poseidon_hash(&[a_0, external_nullifier]);
let y = a_0 + rln_witness.x * a_1;
// Nullifier
@@ -298,31 +292,30 @@ pub fn proof_values_from_witness(rln_witness: &RLNWitnessInput) -> Result<RLNPro
// Merkle tree root computations
let root = compute_tree_root(
&rln_witness.identity_secret,
&rln_witness.user_message_limit,
&rln_witness.path_elements,
&rln_witness.identity_path_index,
true,
);
Ok(RLNProofValues {
RLNProofValues {
y,
nullifier,
root,
x: rln_witness.x,
external_nullifier: rln_witness.external_nullifier,
})
epoch: rln_witness.epoch,
rln_identifier: rln_witness.rln_identifier,
}
}
/// input_data is [ root<32> | external_nullifier<32> | x<32> | y<32> | nullifier<32> ]
pub fn serialize_proof_values(rln_proof_values: &RLNProofValues) -> Vec<u8> {
// Calculate capacity for Vec:
// 5 field elements: root, external_nullifier, x, y, nullifier
let mut serialized = Vec::with_capacity(fr_byte_size() * 5);
let mut serialized: Vec<u8> = Vec::new();
serialized.extend_from_slice(&fr_to_bytes_le(&rln_proof_values.root));
serialized.extend_from_slice(&fr_to_bytes_le(&rln_proof_values.external_nullifier));
serialized.extend_from_slice(&fr_to_bytes_le(&rln_proof_values.x));
serialized.extend_from_slice(&fr_to_bytes_le(&rln_proof_values.y));
serialized.extend_from_slice(&fr_to_bytes_le(&rln_proof_values.nullifier));
serialized.append(&mut fr_to_bytes_le(&rln_proof_values.root));
serialized.append(&mut fr_to_bytes_le(&rln_proof_values.epoch));
serialized.append(&mut fr_to_bytes_le(&rln_proof_values.x));
serialized.append(&mut fr_to_bytes_le(&rln_proof_values.y));
serialized.append(&mut fr_to_bytes_le(&rln_proof_values.nullifier));
serialized.append(&mut fr_to_bytes_le(&rln_proof_values.rln_identifier));
serialized
}
@@ -335,7 +328,7 @@ pub fn deserialize_proof_values(serialized: &[u8]) -> (RLNProofValues, usize) {
let (root, read) = bytes_le_to_fr(&serialized[all_read..]);
all_read += read;
let (external_nullifier, read) = bytes_le_to_fr(&serialized[all_read..]);
let (epoch, read) = bytes_le_to_fr(&serialized[all_read..]);
all_read += read;
let (x, read) = bytes_le_to_fr(&serialized[all_read..]);
@@ -347,55 +340,46 @@ pub fn deserialize_proof_values(serialized: &[u8]) -> (RLNProofValues, usize) {
let (nullifier, read) = bytes_le_to_fr(&serialized[all_read..]);
all_read += read;
let (rln_identifier, read) = bytes_le_to_fr(&serialized[all_read..]);
all_read += read;
(
RLNProofValues {
y,
nullifier,
root,
x,
external_nullifier,
epoch,
rln_identifier,
},
all_read,
)
}
// input_data is [ identity_secret<32> | id_index<8> | user_message_limit<32> | message_id<32> | external_nullifier<32> | signal_len<8> | signal<var> ]
pub fn prepare_prove_input(
identity_secret: Fr,
id_index: usize,
user_message_limit: Fr,
message_id: Fr,
external_nullifier: Fr,
epoch: Fr,
signal: &[u8],
) -> Vec<u8> {
// Calculate capacity for Vec:
// - 4 field elements: identity_secret, user_message_limit, message_id, external_nullifier
// - 16 bytes for two normalized usize values (id_index<8> + signal_len<8>)
// - variable length signal data
let mut serialized = Vec::with_capacity(fr_byte_size() * 4 + 16 + signal.len()); // length of 4 fr elements + 16 bytes (id_index + len) + signal length
let mut serialized: Vec<u8> = Vec::new();
serialized.extend_from_slice(&fr_to_bytes_le(&identity_secret));
serialized.extend_from_slice(&normalize_usize(id_index));
serialized.extend_from_slice(&fr_to_bytes_le(&user_message_limit));
serialized.extend_from_slice(&fr_to_bytes_le(&message_id));
serialized.extend_from_slice(&fr_to_bytes_le(&external_nullifier));
serialized.extend_from_slice(&normalize_usize(signal.len()));
serialized.extend_from_slice(signal);
serialized.append(&mut fr_to_bytes_le(&identity_secret));
serialized.append(&mut normalize_usize(id_index));
serialized.append(&mut fr_to_bytes_le(&epoch));
serialized.append(&mut normalize_usize(signal.len()));
serialized.append(&mut signal.to_vec());
serialized
}
// input_data is [ proof<128> | root<32> | external_nullifier<32> | x<32> | y<32> | nullifier<32> | signal_len<8> | signal<var> ]
#[allow(clippy::redundant_clone)]
pub fn prepare_verify_input(proof_data: Vec<u8>, signal: &[u8]) -> Vec<u8> {
// Calculate capacity for Vec:
// - proof_data contains the proof and proof values (proof<128> + root<32> + external_nullifier<32> + x<32> + y<32> + nullifier<32>)
// - 8 bytes for normalized signal length value (signal_len<8>)
// - variable length signal data
let mut serialized = Vec::with_capacity(proof_data.len() + 8 + signal.len());
let mut serialized: Vec<u8> = Vec::new();
serialized.extend(proof_data);
serialized.extend_from_slice(&normalize_usize(signal.len()));
serialized.extend_from_slice(signal);
serialized.append(&mut proof_data.clone());
serialized.append(&mut normalize_usize(signal.len()));
serialized.append(&mut signal.to_vec());
serialized
}
@@ -405,13 +389,15 @@ pub fn prepare_verify_input(proof_data: Vec<u8>, signal: &[u8]) -> Vec<u8> {
///////////////////////////////////////////////////////
pub fn compute_tree_root(
identity_secret: &Fr,
user_message_limit: &Fr,
leaf: &Fr,
path_elements: &[Fr],
identity_path_index: &[u8],
hash_leaf: bool,
) -> Fr {
let id_commitment = poseidon_hash(&[*identity_secret]);
let mut root = poseidon_hash(&[id_commitment, *user_message_limit]);
let mut root = *leaf;
if hash_leaf {
root = poseidon_hash(&[root]);
}
for i in 0..identity_path_index.len() {
if identity_path_index[i] == 0 {
@@ -502,7 +488,11 @@ pub fn extended_seeded_keygen(signal: &[u8]) -> (Fr, Fr, Fr, Fr) {
)
}
pub fn compute_id_secret(share1: (Fr, Fr), share2: (Fr, Fr)) -> Result<Fr, String> {
pub fn compute_id_secret(
share1: (Fr, Fr),
share2: (Fr, Fr),
external_nullifier: Fr,
) -> Result<Fr, String> {
// Assuming a0 is the identity secret and a1 = poseidonHash([a0, external_nullifier]),
// a (x,y) share satisfies the following relation
// y = a_0 + x * a_1
@@ -516,7 +506,14 @@ pub fn compute_id_secret(share1: (Fr, Fr), share2: (Fr, Fr)) -> Result<Fr, Strin
let a_0 = y1 - x1 * a_1;
// If shares come from the same polynomial, a0 is correctly recovered and a1 = poseidonHash([a0, external_nullifier])
Ok(a_0)
let computed_a_1 = poseidon_hash(&[a_0, external_nullifier]);
if a_1 == computed_a_1 {
// We successfully recovered the identity secret
Ok(a_0)
} else {
Err("Cannot recover identity_secret_hash from provided shares".into())
}
}
///////////////////////////////////////////////////////
@@ -563,13 +560,13 @@ pub fn generate_proof_with_witness(
proving_key: &(ProvingKey<Curve>, ConstraintMatrices<Fr>),
) -> Result<ArkProof<Curve>, ProofError> {
// If in debug mode, we measure and later print time take to compute witness
#[cfg(test)]
#[cfg(debug_assertions)]
let now = Instant::now();
let full_assignment =
calculate_witness_element::<Curve>(witness).map_err(ProofError::WitnessError)?;
#[cfg(test)]
#[cfg(debug_assertions)]
println!("witness generation took: {:.2?}", now.elapsed());
// Random Values
@@ -578,7 +575,7 @@ pub fn generate_proof_with_witness(
let s = Fr::rand(&mut rng);
// If in debug mode, we measure and later print time take to compute proof
#[cfg(test)]
#[cfg(debug_assertions)]
let now = Instant::now();
let proof = Groth16::<_, CircomReduction>::create_proof_with_reduction_and_matrices(
@@ -591,36 +588,42 @@ pub fn generate_proof_with_witness(
full_assignment.as_slice(),
)?;
#[cfg(test)]
#[cfg(debug_assertions)]
println!("proof generation took: {:.2?}", now.elapsed());
Ok(proof)
}
/// Formats inputs for witness calculation
///
/// # Errors
///
/// Returns an error if `rln_witness.message_id` is not within `rln_witness.user_message_limit`.
pub fn inputs_for_witness_calculation(
rln_witness: &RLNWitnessInput,
) -> Result<[(&str, Vec<Fr>); 7]> {
message_id_range_check(&rln_witness.message_id, &rln_witness.user_message_limit)?;
) -> Result<[(&str, Vec<BigInt>); 6]> {
// We confert the path indexes to field elements
// TODO: check if necessary
let mut path_elements = Vec::new();
let mut identity_path_index = Vec::with_capacity(rln_witness.identity_path_index.len());
for v in rln_witness.path_elements.iter() {
path_elements.push(to_bigint(v)?);
}
let mut identity_path_index = Vec::new();
rln_witness
.identity_path_index
.iter()
.for_each(|v| identity_path_index.push(Fr::from(*v)));
.for_each(|v| identity_path_index.push(BigInt::from(*v)));
Ok([
("identitySecret", vec![rln_witness.identity_secret]),
("userMessageLimit", vec![rln_witness.user_message_limit]),
("messageId", vec![rln_witness.message_id]),
("pathElements", rln_witness.path_elements.clone()),
("identityPathIndex", identity_path_index),
("x", vec![rln_witness.x]),
("externalNullifier", vec![rln_witness.external_nullifier]),
(
"identity_secret",
vec![to_bigint(&rln_witness.identity_secret)?],
),
("path_elements", path_elements),
("identity_path_index", identity_path_index),
("x", vec![to_bigint(&rln_witness.x)?]),
("epoch", vec![to_bigint(&rln_witness.epoch)?]),
(
"rln_identifier",
vec![to_bigint(&rln_witness.rln_identifier)?],
),
])
}
@@ -630,20 +633,34 @@ pub fn inputs_for_witness_calculation(
///
/// Returns a [`ProofError`] if proving fails.
pub fn generate_proof(
#[cfg(not(target_arch = "wasm32"))] witness_calculator: &Mutex<WitnessCalculator>,
#[cfg(target_arch = "wasm32")] witness_calculator: &mut WitnessCalculator,
proving_key: &(ProvingKey<Curve>, ConstraintMatrices<Fr>),
rln_witness: &RLNWitnessInput,
graph_data: &[u8],
) -> Result<ArkProof<Curve>, ProofError> {
let inputs = inputs_for_witness_calculation(rln_witness)?
.into_iter()
.map(|(name, values)| (name.to_string(), values));
// If in debug mode, we measure and later print time take to compute witness
#[cfg(test)]
#[cfg(debug_assertions)]
let now = Instant::now();
let full_assignment = calculate_rln_witness(inputs, graph_data);
#[cfg(test)]
cfg_if! {
if #[cfg(target_arch = "wasm32")] {
let full_assignment = witness_calculator
.calculate_witness_element::<Curve, _>(inputs, false)
.map_err(ProofError::WitnessError)?;
} else {
let full_assignment = witness_calculator
.lock()
.expect("witness_calculator mutex should not get poisoned")
.calculate_witness_element::<Curve, _>(inputs, false)
.map_err(ProofError::WitnessError)?;
}
}
#[cfg(debug_assertions)]
println!("witness generation took: {:.2?}", now.elapsed());
// Random Values
@@ -652,8 +669,9 @@ pub fn generate_proof(
let s = Fr::rand(&mut rng);
// If in debug mode, we measure and later print time take to compute proof
#[cfg(test)]
#[cfg(debug_assertions)]
let now = Instant::now();
let proof = Groth16::<_, CircomReduction>::create_proof_with_reduction_and_matrices(
&proving_key.0,
r,
@@ -664,7 +682,7 @@ pub fn generate_proof(
full_assignment.as_slice(),
)?;
#[cfg(test)]
#[cfg(debug_assertions)]
println!("proof generation took: {:.2?}", now.elapsed());
Ok(proof)
@@ -687,7 +705,8 @@ pub fn verify_proof(
proof_values.root,
proof_values.nullifier,
proof_values.x,
proof_values.external_nullifier,
proof_values.epoch,
proof_values.rln_identifier,
];
// Check that the proof is valid
@@ -695,71 +714,22 @@ pub fn verify_proof(
//let pr: ArkProof<Curve> = (*proof).into();
// If in debug mode, we measure and later print time take to verify proof
#[cfg(test)]
#[cfg(debug_assertions)]
let now = Instant::now();
let verified = Groth16::<_, CircomReduction>::verify_proof(&pvk, proof, &inputs)?;
#[cfg(test)]
#[cfg(debug_assertions)]
println!("verify took: {:.2?}", now.elapsed());
Ok(verified)
}
// auxiliary function for serialisation Fr to json using ark serilize
fn ark_se<S, A: CanonicalSerialize>(a: &A, s: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
let mut bytes = vec![];
a.serialize_compressed(&mut bytes)
.map_err(serde::ser::Error::custom)?;
s.serialize_bytes(&bytes)
}
// auxiliary function for deserialisation Fr to json using ark serilize
fn ark_de<'de, D, A: CanonicalDeserialize>(data: D) -> Result<A, D::Error>
where
D: serde::de::Deserializer<'de>,
{
let s: Vec<u8> = serde::de::Deserialize::deserialize(data)?;
let a = A::deserialize_compressed_unchecked(s.as_slice());
a.map_err(serde::de::Error::custom)
}
/// Converts a JSON value into [`RLNWitnessInput`] object.
/// Get CIRCOM JSON inputs
///
/// # Errors
///
/// Returns an error if `rln_witness.message_id` is not within `rln_witness.user_message_limit`.
pub fn rln_witness_from_json(input_json: serde_json::Value) -> Result<RLNWitnessInput> {
let rln_witness: RLNWitnessInput = serde_json::from_value(input_json).unwrap();
message_id_range_check(&rln_witness.message_id, &rln_witness.user_message_limit)?;
Ok(rln_witness)
}
/// Converts a [`RLNWitnessInput`] object to the corresponding JSON serialization.
///
/// # Errors
///
/// Returns an error if `message_id` is not within `user_message_limit`.
pub fn rln_witness_to_json(rln_witness: &RLNWitnessInput) -> Result<serde_json::Value> {
message_id_range_check(&rln_witness.message_id, &rln_witness.user_message_limit)?;
let rln_witness_json = serde_json::to_value(rln_witness)?;
Ok(rln_witness_json)
}
/// Converts a [`RLNWitnessInput`] object to the corresponding JSON serialization.
/// Before serialisation the data should be translated into big int for further calculation in the witness calculator.
///
/// # Errors
///
/// Returns an error if `message_id` is not within `user_message_limit`.
pub fn rln_witness_to_bigint_json(rln_witness: &RLNWitnessInput) -> Result<serde_json::Value> {
message_id_range_check(&rln_witness.message_id, &rln_witness.user_message_limit)?;
/// Returns a JSON object containing the inputs necessary to calculate
/// the witness with CIRCOM on javascript
pub fn get_json_inputs(rln_witness: &RLNWitnessInput) -> Result<serde_json::Value> {
let mut path_elements = Vec::new();
for v in rln_witness.path_elements.iter() {
@@ -773,23 +743,13 @@ pub fn rln_witness_to_bigint_json(rln_witness: &RLNWitnessInput) -> Result<serde
.for_each(|v| identity_path_index.push(BigInt::from(*v).to_str_radix(10)));
let inputs = serde_json::json!({
"identitySecret": to_bigint(&rln_witness.identity_secret)?.to_str_radix(10),
"userMessageLimit": to_bigint(&rln_witness.user_message_limit)?.to_str_radix(10),
"messageId": to_bigint(&rln_witness.message_id)?.to_str_radix(10),
"pathElements": path_elements,
"identityPathIndex": identity_path_index,
"identity_secret": to_bigint(&rln_witness.identity_secret)?.to_str_radix(10),
"path_elements": path_elements,
"identity_path_index": identity_path_index,
"x": to_bigint(&rln_witness.x)?.to_str_radix(10),
"externalNullifier": to_bigint(&rln_witness.external_nullifier)?.to_str_radix(10),
"epoch": format!("0x{:064x}", to_bigint(&rln_witness.epoch)?),
"rln_identifier": to_bigint(&rln_witness.rln_identifier)?.to_str_radix(10),
});
Ok(inputs)
}
pub fn message_id_range_check(message_id: &Fr, user_message_limit: &Fr) -> Result<()> {
if message_id > user_message_limit {
return Err(color_eyre::Report::msg(
"message_id is not within user_message_limit",
));
}
Ok(())
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,26 +1,22 @@
// This crate provides cross-module useful utilities (mainly type conversions) not necessarily specific to RLN
use crate::circuit::Fr;
use ark_ff::PrimeField;
use color_eyre::{Report, Result};
use num_bigint::{BigInt, BigUint};
use num_traits::Num;
use serde_json::json;
use std::io::Cursor;
use std::iter::Extend;
use crate::circuit::Fr;
#[inline(always)]
pub fn to_bigint(el: &Fr) -> Result<BigInt> {
Ok(BigUint::from(*el).into())
let res: BigUint = (*el).try_into()?;
Ok(res.into())
}
#[inline(always)]
pub fn fr_byte_size() -> usize {
let mbs = <Fr as PrimeField>::MODULUS_BIT_SIZE;
((mbs + 64 - (mbs % 64)) / 8) as usize
}
#[inline(always)]
pub fn str_to_fr(input: &str, radix: u32) -> Result<Fr> {
if !(radix == 10 || radix == 16) {
return Err(Report::msg("wrong radix"));
@@ -32,14 +28,13 @@ pub fn str_to_fr(input: &str, radix: u32) -> Result<Fr> {
input_clean = input_clean.trim().to_string();
if radix == 10 {
Ok(BigUint::from_str_radix(&input_clean, radix)?.into())
Ok(BigUint::from_str_radix(&input_clean, radix)?.try_into()?)
} else {
input_clean = input_clean.replace("0x", "");
Ok(BigUint::from_str_radix(&input_clean, radix)?.into())
Ok(BigUint::from_str_radix(&input_clean, radix)?.try_into()?)
}
}
#[inline(always)]
pub fn bytes_le_to_fr(input: &[u8]) -> (Fr, usize) {
let el_size = fr_byte_size();
(
@@ -48,50 +43,77 @@ pub fn bytes_le_to_fr(input: &[u8]) -> (Fr, usize) {
)
}
#[inline(always)]
pub fn bytes_be_to_fr(input: &[u8]) -> (Fr, usize) {
let el_size = fr_byte_size();
(
Fr::from(BigUint::from_bytes_be(&input[0..el_size])),
el_size,
)
}
pub fn fr_to_bytes_le(input: &Fr) -> Vec<u8> {
let input_biguint: BigUint = (*input).into();
let mut res = input_biguint.to_bytes_le();
//BigUint conversion ignores most significant zero bytes. We restore them otherwise serialization will fail (length % 8 != 0)
res.resize(fr_byte_size(), 0);
while res.len() != fr_byte_size() {
res.push(0);
}
res
}
#[inline(always)]
pub fn vec_fr_to_bytes_le(input: &[Fr]) -> Result<Vec<u8>> {
// Calculate capacity for Vec:
// - 8 bytes for normalized vector length (usize)
// - each Fr element requires fr_byte_size() bytes (typically 32 bytes)
let mut bytes = Vec::with_capacity(8 + input.len() * fr_byte_size());
pub fn fr_to_bytes_be(input: &Fr) -> Vec<u8> {
let input_biguint: BigUint = (*input).into();
let mut res = input_biguint.to_bytes_be();
// BigUint conversion ignores most significant zero bytes. We restore them otherwise serialization might fail
// Fr elements are stored using 64 bits nimbs
while res.len() != fr_byte_size() {
res.insert(0, 0);
}
res
}
// We store the vector length
bytes.extend_from_slice(&normalize_usize(input.len()));
pub fn vec_fr_to_bytes_le(input: &[Fr]) -> Result<Vec<u8>> {
let mut bytes: Vec<u8> = Vec::new();
//We store the vector length
bytes.extend(u64::try_from(input.len())?.to_le_bytes().to_vec());
// We store each element
for el in input {
bytes.extend_from_slice(&fr_to_bytes_le(el));
}
input.iter().for_each(|el| bytes.extend(fr_to_bytes_le(el)));
Ok(bytes)
}
pub fn vec_fr_to_bytes_be(input: &[Fr]) -> Result<Vec<u8>> {
let mut bytes: Vec<u8> = Vec::new();
//We store the vector length
bytes.extend(u64::try_from(input.len())?.to_be_bytes().to_vec());
// We store each element
input.iter().for_each(|el| bytes.extend(fr_to_bytes_be(el)));
Ok(bytes)
}
#[inline(always)]
pub fn vec_u8_to_bytes_le(input: &[u8]) -> Result<Vec<u8>> {
// Calculate capacity for Vec:
// - 8 bytes for normalized vector length (usize)
// - variable length input data
let mut bytes = Vec::with_capacity(8 + input.len());
let mut bytes: Vec<u8> = Vec::new();
//We store the vector length
bytes.extend(u64::try_from(input.len())?.to_le_bytes().to_vec());
// We store the vector length
bytes.extend_from_slice(&normalize_usize(input.len()));
// We store the input
bytes.extend_from_slice(input);
bytes.extend(input);
Ok(bytes)
}
pub fn vec_u8_to_bytes_be(input: Vec<u8>) -> Result<Vec<u8>> {
let mut bytes: Vec<u8> = Vec::new();
//We store the vector length
bytes.extend(u64::try_from(input.len())?.to_be_bytes().to_vec());
bytes.extend(input);
Ok(bytes)
}
#[inline(always)]
pub fn bytes_le_to_vec_u8(input: &[u8]) -> Result<(Vec<u8>, usize)> {
let mut read: usize = 0;
@@ -104,7 +126,19 @@ pub fn bytes_le_to_vec_u8(input: &[u8]) -> Result<(Vec<u8>, usize)> {
Ok((res, read))
}
#[inline(always)]
pub fn bytes_be_to_vec_u8(input: &[u8]) -> Result<(Vec<u8>, usize)> {
let mut read: usize = 0;
let len = usize::try_from(u64::from_be_bytes(input[0..8].try_into()?))?;
read += 8;
let res = input[8..8 + len].to_vec();
read += res.len();
Ok((res, read))
}
pub fn bytes_le_to_vec_fr(input: &[u8]) -> Result<(Vec<Fr>, usize)> {
let mut read: usize = 0;
let mut res: Vec<Fr> = Vec::new();
@@ -122,32 +156,159 @@ pub fn bytes_le_to_vec_fr(input: &[u8]) -> Result<(Vec<Fr>, usize)> {
Ok((res, read))
}
#[inline(always)]
pub fn bytes_le_to_vec_usize(input: &[u8]) -> Result<Vec<usize>> {
let nof_elem = usize::try_from(u64::from_le_bytes(input[0..8].try_into()?))?;
if nof_elem == 0 {
Ok(vec![])
pub fn bytes_be_to_vec_fr(input: &[u8]) -> Result<(Vec<Fr>, usize)> {
let mut read: usize = 0;
let mut res: Vec<Fr> = Vec::new();
let len = usize::try_from(u64::from_be_bytes(input[0..8].try_into()?))?;
read += 8;
let el_size = fr_byte_size();
for i in 0..len {
let (curr_el, _) = bytes_be_to_fr(&input[8 + el_size * i..8 + el_size * (i + 1)]);
res.push(curr_el);
read += el_size;
}
Ok((res, read))
}
pub fn normalize_usize(input: usize) -> Vec<u8> {
let mut normalized_usize = input.to_le_bytes().to_vec();
normalized_usize.resize(8, 0);
normalized_usize
}
/* Old conversion utilities between different libraries data types
// Conversion Utilities between poseidon-rs Field and arkworks Fr (in order to call directly poseidon-rs' poseidon_hash)
use ff::{PrimeField as _, PrimeFieldRepr as _};
use poseidon_rs::Fr as PosFr;
pub fn fr_to_posfr(value: Fr) -> PosFr {
let mut bytes = [0_u8; 32];
let byte_vec = value.into_repr().to_bytes_be();
bytes.copy_from_slice(&byte_vec[..]);
let mut repr = <PosFr as ff::PrimeField>::Repr::default();
repr.read_be(&bytes[..])
.expect("read from correctly sized slice always succeeds");
PosFr::from_repr(repr).expect("value is always in range")
}
pub fn posfr_to_fr(value: PosFr) -> Fr {
let mut bytes = [0u8; 32];
value
.into_repr()
.write_be(&mut bytes[..])
.expect("write to correctly sized slice always succeeds");
Fr::from_be_bytes_mod_order(&bytes)
}
// Conversion Utilities between semaphore-rs Field and arkworks Fr
use semaphore::Field;
pub fn to_fr(el: &Field) -> Fr {
Fr::try_from(*el).unwrap()
}
pub fn to_field(el: &Fr) -> Field {
(*el).try_into().unwrap()
}
pub fn vec_to_fr(v: &[Field]) -> Vec<Fr> {
v.iter().map(|el| to_fr(el)).collect()
}
pub fn vec_to_field(v: &[Fr]) -> Vec<Field> {
v.iter().map(|el| to_field(el)).collect()
}
pub fn vec_fr_to_field(input: &[Fr]) -> Vec<Field> {
input.iter().map(|el| to_field(el)).collect()
}
pub fn vec_field_to_fr(input: &[Field]) -> Vec<Fr> {
input.iter().map(|el| to_fr(el)).collect()
}
pub fn str_to_field(input: String, radix: i32) -> Field {
assert!((radix == 10) || (radix == 16));
// We remove any quote present and we trim
let single_quote: char = '\"';
let input_clean = input.replace(single_quote, "");
let input_clean = input_clean.trim();
if radix == 10 {
Field::from_str(&format!(
"{:01$x}",
BigUint::from_str(input_clean).unwrap(),
64
))
.unwrap()
} else {
let elements: Vec<usize> = input[8..]
.chunks(8)
.map(|ch| usize::from_le_bytes(ch[0..8].try_into().unwrap()))
.collect();
Ok(elements)
let input_clean = input_clean.replace("0x", "");
Field::from_str(&format!("{:0>64}", &input_clean)).unwrap()
}
}
/// Normalizes a `usize` into an 8-byte array, ensuring consistency across architectures.
/// On 32-bit systems, the result is zero-padded to 8 bytes.
/// On 64-bit systems, it directly represents the `usize` value.
#[inline(always)]
pub fn normalize_usize(input: usize) -> [u8; 8] {
let mut bytes = [0u8; 8];
let input_bytes = input.to_le_bytes();
bytes[..input_bytes.len()].copy_from_slice(&input_bytes);
bytes
pub fn bytes_le_to_field(input: &[u8]) -> (Field, usize) {
let (fr_el, read) = bytes_le_to_fr(input);
(to_field(&fr_el), read)
}
#[inline(always)] // using for test
pub fn generate_input_buffer() -> Cursor<String> {
Cursor::new(json!({}).to_string())
pub fn bytes_be_to_field(input: &[u8]) -> (Field, usize) {
let (fr_el, read) = bytes_be_to_fr(input);
(to_field(&fr_el), read)
}
pub fn field_to_bytes_le(input: &Field) -> Vec<u8> {
fr_to_bytes_le(&to_fr(input))
}
pub fn field_to_bytes_be(input: &Field) -> Vec<u8> {
fr_to_bytes_be(&to_fr(input))
}
pub fn vec_field_to_bytes_le(input: &[Field]) -> Vec<u8> {
vec_fr_to_bytes_le(&vec_field_to_fr(input))
}
pub fn vec_field_to_bytes_be(input: &[Field]) -> Vec<u8> {
vec_fr_to_bytes_be(&vec_field_to_fr(input))
}
pub fn bytes_le_to_vec_field(input: &[u8]) -> (Vec<Field>, usize) {
let (vec_fr, read) = bytes_le_to_vec_fr(input);
(vec_fr_to_field(&vec_fr), read)
}
pub fn bytes_be_to_vec_field(input: &[u8]) -> (Vec<Field>, usize) {
let (vec_fr, read) = bytes_be_to_vec_fr(input);
(vec_fr_to_field(&vec_fr), read)
}
// Arithmetic over Field elements (wrapped over arkworks algebra crate)
pub fn add(a: &Field, b: &Field) -> Field {
to_field(&(to_fr(a) + to_fr(b)))
}
pub fn mul(a: &Field, b: &Field) -> Field {
to_field(&(to_fr(a) * to_fr(b)))
}
pub fn div(a: &Field, b: &Field) -> Field {
to_field(&(to_fr(a) / to_fr(b)))
}
pub fn inv(a: &Field) -> Field {
to_field(&(Fr::from(1) / to_fr(a)))
}
*/

File diff suppressed because it is too large Load Diff

View File

@@ -4,26 +4,48 @@
#[cfg(test)]
mod test {
use rln::hashers::{poseidon_hash, PoseidonHash};
use rln::{circuit::*, poseidon_tree::PoseidonTree};
use rln::circuit::*;
use rln::hashers::PoseidonHash;
use utils::{FullMerkleTree, OptimalMerkleTree, ZerokitMerkleProof, ZerokitMerkleTree};
#[test]
// The test is checked correctness for `FullMerkleTree` and `OptimalMerkleTree` with Poseidon hash
fn test_zerokit_merkle_implementations() {
/// A basic performance comparison between the two supported Merkle Tree implementations
fn test_zerokit_merkle_implementations_performances() {
use std::time::{Duration, Instant};
let tree_height = 20;
let sample_size = 100;
let leaves: Vec<Fr> = (0..sample_size).map(|s| Fr::from(s)).collect();
let mut tree_full = FullMerkleTree::<PoseidonHash>::default(TEST_TREE_HEIGHT).unwrap();
let mut tree_opt = OptimalMerkleTree::<PoseidonHash>::default(TEST_TREE_HEIGHT).unwrap();
let mut gen_time_full: u128 = 0;
let mut upd_time_full: u128 = 0;
let mut gen_time_opt: u128 = 0;
let mut upd_time_opt: u128 = 0;
for _ in 0..sample_size.try_into().unwrap() {
let now = Instant::now();
FullMerkleTree::<PoseidonHash>::default(tree_height).unwrap();
gen_time_full += now.elapsed().as_nanos();
let now = Instant::now();
OptimalMerkleTree::<PoseidonHash>::default(tree_height).unwrap();
gen_time_opt += now.elapsed().as_nanos();
}
let mut tree_full = FullMerkleTree::<PoseidonHash>::default(tree_height).unwrap();
let mut tree_opt = OptimalMerkleTree::<PoseidonHash>::default(tree_height).unwrap();
for i in 0..sample_size.try_into().unwrap() {
let now = Instant::now();
tree_full.set(i, leaves[i]).unwrap();
upd_time_full += now.elapsed().as_nanos();
let proof = tree_full.proof(i).expect("index should be set");
assert_eq!(proof.leaf_index(), i);
let now = Instant::now();
tree_opt.set(i, leaves[i]).unwrap();
assert_eq!(tree_opt.root(), tree_full.root());
upd_time_opt += now.elapsed().as_nanos();
let proof = tree_opt.proof(i).expect("index should be set");
assert_eq!(proof.leaf_index(), i);
}
@@ -33,110 +55,26 @@ mod test {
let tree_opt_root = tree_opt.root();
assert_eq!(tree_full_root, tree_opt_root);
}
#[test]
fn test_subtree_root() {
const DEPTH: usize = 3;
const LEAVES_LEN: usize = 8;
let mut tree = PoseidonTree::default(DEPTH).unwrap();
let leaves: Vec<Fr> = (0..LEAVES_LEN).map(|s| Fr::from(s as i32)).collect();
let _ = tree.set_range(0, leaves.into_iter());
for i in 0..LEAVES_LEN {
// check leaves
assert_eq!(
tree.get(i).unwrap(),
tree.get_subtree_root(DEPTH, i).unwrap()
);
// check root
assert_eq!(tree.root(), tree.get_subtree_root(0, i).unwrap());
}
// check intermediate nodes
for n in (1..=DEPTH).rev() {
for i in (0..(1 << n)).step_by(2) {
let idx_l = i * (1 << (DEPTH - n));
let idx_r = (i + 1) * (1 << (DEPTH - n));
let idx_sr = idx_l;
let prev_l = tree.get_subtree_root(n, idx_l).unwrap();
let prev_r = tree.get_subtree_root(n, idx_r).unwrap();
let subroot = tree.get_subtree_root(n - 1, idx_sr).unwrap();
assert_eq!(poseidon_hash(&[prev_l, prev_r]), subroot);
}
}
}
#[test]
fn test_get_empty_leaves_indices() {
let depth = 4;
let nof_leaves: usize = 1 << (depth - 1);
let mut tree = PoseidonTree::default(depth).unwrap();
let leaves: Vec<Fr> = (0..nof_leaves).map(|s| Fr::from(s as i32)).collect();
// check set_range
let _ = tree.set_range(0, leaves.clone().into_iter());
assert!(tree.get_empty_leaves_indices().is_empty());
let mut vec_idxs = Vec::new();
// check delete function
for i in 0..nof_leaves {
vec_idxs.push(i);
let _ = tree.delete(i);
assert_eq!(tree.get_empty_leaves_indices(), vec_idxs);
}
// check set function
for i in (0..nof_leaves).rev() {
vec_idxs.pop();
let _ = tree.set(i, leaves[i]);
assert_eq!(tree.get_empty_leaves_indices(), vec_idxs);
}
// check remove_indices_and_set_leaves inside override_range function
assert!(tree.get_empty_leaves_indices().is_empty());
let leaves_2: Vec<Fr> = (0..2).map(|s| Fr::from(s as i32)).collect();
tree.override_range(0, leaves_2.clone().into_iter(), [0, 1, 2, 3].into_iter())
.unwrap();
assert_eq!(tree.get_empty_leaves_indices(), vec![2, 3]);
// check remove_indices inside override_range function
tree.override_range(0, [].into_iter(), [0, 1].into_iter())
.unwrap();
assert_eq!(tree.get_empty_leaves_indices(), vec![0, 1, 2, 3]);
// check set_range inside override_range function
tree.override_range(0, leaves_2.clone().into_iter(), [].into_iter())
.unwrap();
assert_eq!(tree.get_empty_leaves_indices(), vec![2, 3]);
let leaves_4: Vec<Fr> = (0..4).map(|s| Fr::from(s as i32)).collect();
// check if the indexes for write and delete are the same
tree.override_range(0, leaves_4.clone().into_iter(), [0, 1, 2, 3].into_iter())
.unwrap();
assert!(tree.get_empty_leaves_indices().is_empty());
// check if indexes for deletion are before indexes for overwriting
tree.override_range(4, leaves_4.clone().into_iter(), [0, 1, 2, 3].into_iter())
.unwrap();
// The result will be like this, because in the set_range function in pmtree
// the next_index value is increased not by the number of elements to insert,
// but by the union of indices for deleting and inserting.
assert_eq!(
tree.get_empty_leaves_indices(),
vec![0, 1, 2, 3, 8, 9, 10, 11]
println!(" Average tree generation time:");
println!(
" - Full Merkle Tree: {:?}",
Duration::from_nanos((gen_time_full / sample_size).try_into().unwrap())
);
println!(
" - Optimal Merkle Tree: {:?}",
Duration::from_nanos((gen_time_opt / sample_size).try_into().unwrap())
);
// check if the indices for write and delete do not overlap completely
tree.override_range(2, leaves_4.clone().into_iter(), [0, 1, 2, 3].into_iter())
.unwrap();
// The result will be like this, because in the set_range function in pmtree
// the next_index value is increased not by the number of elements to insert,
// but by the union of indices for deleting and inserting.
// + we've already set to 6 and 7 in previous test
assert_eq!(tree.get_empty_leaves_indices(), vec![0, 1, 8, 9, 10, 11]);
println!(" Average update_next execution time:");
println!(
" - Full Merkle Tree: {:?}",
Duration::from_nanos((upd_time_full / sample_size).try_into().unwrap())
);
println!(
" - Optimal Merkle Tree: {:?}",
Duration::from_nanos((upd_time_opt / sample_size).try_into().unwrap())
);
}
}

View File

@@ -1,8 +1,9 @@
#[cfg(test)]
mod test {
use ark_ff::BigInt;
use rln::circuit::{graph_from_folder, zkey_from_folder};
use rln::circuit::{Fr, TEST_TREE_HEIGHT};
use rln::circuit::{
circom_from_folder, vk_from_folder, zkey_from_folder, Fr, TEST_RESOURCES_FOLDER,
TEST_TREE_HEIGHT,
};
use rln::hashers::{hash_to_field, poseidon_hash};
use rln::poseidon_tree::PoseidonTree;
use rln::protocol::*;
@@ -11,134 +12,365 @@ mod test {
type ConfigOf<T> = <T as ZerokitMerkleTree>::Config;
// Input generated with https://github.com/oskarth/zk-kit/commit/b6a872f7160c7c14e10a0ea40acab99cbb23c9a8
const WITNESS_JSON_15: &str = r#"
{
"identity_secret": "12825549237505733615964533204745049909430608936689388901883576945030025938736",
"path_elements": [
"18622655742232062119094611065896226799484910997537830749762961454045300666333",
"20590447254980891299813706518821659736846425329007960381537122689749540452732",
"7423237065226347324353380772367382631490014989348495481811164164159255474657",
"11286972368698509976183087595462810875513684078608517520839298933882497716792",
"3607627140608796879659380071776844901612302623152076817094415224584923813162",
"19712377064642672829441595136074946683621277828620209496774504837737984048981",
"20775607673010627194014556968476266066927294572720319469184847051418138353016",
"3396914609616007258851405644437304192397291162432396347162513310381425243293",
"21551820661461729022865262380882070649935529853313286572328683688269863701601",
"6573136701248752079028194407151022595060682063033565181951145966236778420039",
"12413880268183407374852357075976609371175688755676981206018884971008854919922",
"14271763308400718165336499097156975241954733520325982997864342600795471836726",
"20066985985293572387227381049700832219069292839614107140851619262827735677018",
"9394776414966240069580838672673694685292165040808226440647796406499139370960",
"11331146992410411304059858900317123658895005918277453009197229807340014528524"
],
"identity_path_index": [
1,
1,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0
],
"x": "8143228284048792769012135629627737459844825626241842423967352803501040982",
"epoch": "0x0000005b612540fc986b42322f8cb91c2273afad58ed006fdba0c97b4b16b12f",
"rln_identifier": "11412926387081627876309792396682864042420635853496105400039841573530884328439"
}
"#;
// Input generated with protocol::random_rln_witness
const WITNESS_JSON_19: &str = r#"
{
"identity_secret": "922538810348594125658702672067738675294669207539999802857585668079702330450",
"path_elements": [
"16059714054680148404543504061485737353203416489071538960876865983954285286166",
"3041470753871943901334053763207316028823782848445723460227667780327106380356",
"2557297527793326315072058421057853700096944625924483912548759909801348042183",
"6677578602456189582427063963562590713054668181987223110955234085327917303436",
"2250827150965576973906150764756422151438812678308727218463995574869267980301",
"1895457427602709606993445561553433669787657053834360973759981803464906070980",
"11033689991077061346803816826729204895841441316315304395980565540264104346466",
"18588752216879570844240300406954267039026327526134910835334500497981810174976",
"19346480964028499661277403659363466542857230928032088490855656809181891953123",
"21460193770370072688835316363068413651465631481105148051902686770759127189327",
"20906347653364838502964722817589315918082261023317339146393355650507243340078",
"13466599592974387800162739317046838825289754472645703919149409009404541432954",
"9617165663598957201253074168824246164494443748556931540348223968573884172285",
"6936463137584425684797785981770877165377386163416057257854261010817156666898",
"369902028235468424790098825415813437044876310542601948037281422841675126849",
"13510969869821080499683463562609720931680005714401083864659516045615497273644",
"2567921390740781421487331055530491683313154421589525170472201828596388395736",
"14360870889466292805403568662660511177232987619663547772298178013674025998478",
"4735344599616284973799984501493858013178071155960162022656706545116168334293"
],
"identity_path_index": [
1,
0,
1,
0,
1,
1,
0,
0,
1,
1,
1,
0,
0,
0,
1,
0,
1,
1,
0
],
"x": "6427050788896290028100534859169645070970780055911091444144195464808120686416",
"epoch": "0x2bd155d9f85c741044da6909d144f9cc5ce8e0d545a9ed4921b156e8b8569bab",
"rln_identifier": "2193983000213424579594329476781986065965849144986973472766961413131458022566"
}
"#;
const WITNESS_JSON_20: &str = r#"
{
"identity_secret": "13732353453861280511150022598793312186188599006979552959297495195757997428306",
"path_elements": [
"20463525608687844300981085488128968694844212760055234622292326942405619575964",
"8040856403709217901175408904825741112286158901303127670929462145501210871313",
"3776499751255585163563840252112871568402966629435152937692711318702338789837",
"19415813252626942110541463414404411443562242499365750694284604341271149125679",
"19414720788761208006634240390286942738242262010168559813148115573784354129237",
"17680594732844291740094158892269696200077963275550625226493856898849422516043",
"16009199741350632715210088346611798597033333293348807000623441780059543674510",
"18743496911007535170857676824393811326863602477260615792503039058813338644738",
"1029572792321380246989475723806770724699749375691788486434716005338938722216",
"21713138150151063186050010182615713685603650963220209951496401043119768920892",
"6713732504049401389983008178456811894856018247924860823028704114266363984580",
"2746686888799473963221285145390361693256731812094259845879519459924507786594",
"18620748467731297359505500266677881218553438497271819903304075323783392031715",
"2446201221122671119406471414204229600430018713181038717206670749886932158104",
"12037171942017611311954851302868199608036334625783560875426350283156617524597",
"21798743392351780927808323348278035105395367759688979232116905142049921734349",
"17450230289417496971557215666910229260621413088991137405744457922069827319039",
"20936854099128086256353520300046664152516566958630447858438908748907198510485",
"13513344965831154386658059617477268600255664386844920822248038939666265737046",
"15546319496880899251450021422131511560001766832580480193115646510655765306630"
],
"identity_path_index": [
0,
1,
0,
0,
1,
1,
0,
0,
1,
1,
0,
0,
0,
1,
0,
1,
1,
0,
0,
0
],
"x": "18073935665561339809445069958310044423750771681863480888589546877024349720547",
"epoch": "0x147e4c23a43a1ddca78d94bcd28147f62ca74b3dc7e56bb0a314a954b9f0e567",
"rln_identifier": "2193983000213424579594329476781986065965849144986973472766961413131458022566"
}
"#;
#[test]
// We test Merkle tree generation, proofs and verification
fn test_merkle_proof() {
let tree_height = TEST_TREE_HEIGHT;
let leaf_index = 3;
// generate identity
let identity_secret_hash = hash_to_field(b"test-merkle-proof");
let id_commitment = poseidon_hash(&[identity_secret_hash]);
let rate_commitment = poseidon_hash(&[id_commitment, 100.into()]);
let id_commitment = poseidon_hash(&vec![identity_secret_hash]);
// generate merkle tree
let default_leaf = Fr::from(0);
let mut tree = PoseidonTree::new(
TEST_TREE_HEIGHT,
tree_height,
default_leaf,
ConfigOf::<PoseidonTree>::default(),
)
.unwrap();
tree.set(leaf_index, rate_commitment.into()).unwrap();
tree.set(leaf_index, id_commitment.into()).unwrap();
// We check correct computation of the root
let root = tree.root();
assert_eq!(
root,
BigInt([
4939322235247991215,
5110804094006647505,
4427606543677101242,
910933464535675827
])
.into()
);
if TEST_TREE_HEIGHT == 15 {
assert_eq!(
root,
str_to_fr(
"0x1984f2e01184aef5cb974640898a5f5c25556554e2b06d99d4841badb8b198cd",
16
)
.unwrap()
);
} else if TEST_TREE_HEIGHT == 19 {
assert_eq!(
root,
str_to_fr(
"0x219ceb53f2b1b7a6cf74e80d50d44d68ecb4a53c6cc65b25593c8d56343fb1fe",
16
)
.unwrap()
);
} else if TEST_TREE_HEIGHT == 20 {
assert_eq!(
root,
str_to_fr(
"0x21947ffd0bce0c385f876e7c97d6a42eec5b1fe935aab2f01c1f8a8cbcc356d2",
16
)
.unwrap()
);
}
let merkle_proof = tree.proof(leaf_index).expect("proof should exist");
let path_elements = merkle_proof.get_path_elements();
let identity_path_index = merkle_proof.get_path_index();
// We check correct computation of the path and indexes
let expected_path_elements: Vec<Fr> = [
"0x0000000000000000000000000000000000000000000000000000000000000000",
"0x2098f5fb9e239eab3ceac3f27b81e481dc3124d55ffed523a839ee8446b64864",
"0x1069673dcdb12263df301a6ff584a7ec261a44cb9dc68df067a4774460b1f1e1",
"0x18f43331537ee2af2e3d758d50f72106467c6eea50371dd528d57eb2b856d238",
"0x07f9d837cb17b0d36320ffe93ba52345f1b728571a568265caac97559dbc952a",
"0x2b94cf5e8746b3f5c9631f4c5df32907a699c58c94b2ad4d7b5cec1639183f55",
"0x2dee93c5a666459646ea7d22cca9e1bcfed71e6951b953611d11dda32ea09d78",
"0x078295e5a22b84e982cf601eb639597b8b0515a88cb5ac7fa8a4aabe3c87349d",
"0x2fa5e5f18f6027a6501bec864564472a616b2e274a41211a444cbe3a99f3cc61",
"0x0e884376d0d8fd21ecb780389e941f66e45e7acce3e228ab3e2156a614fcd747",
"0x1b7201da72494f1e28717ad1a52eb469f95892f957713533de6175e5da190af2",
"0x1f8d8822725e36385200c0b201249819a6e6e1e4650808b5bebc6bface7d7636",
"0x2c5d82f66c914bafb9701589ba8cfcfb6162b0a12acf88a8d0879a0471b5f85a",
"0x14c54148a0940bb820957f5adf3fa1134ef5c4aaa113f4646458f270e0bfbfd0",
"0x190d33b12f986f961e10c0ee44d8b9af11be25588cad89d416118e4bf4ebe80c",
"0x22f98aa9ce704152ac17354914ad73ed1167ae6596af510aa5b3649325e06c92",
"0x2a7c7c9b6ce5880b9f6f228d72bf6a575a526f29c66ecceef8b753d38bba7323",
"0x2e8186e558698ec1c67af9c14d463ffc470043c9c2988b954d75dd643f36b992",
"0x0f57c5571e9a4eab49e2c8cf050dae948aef6ead647392273546249d1c1ff10f",
"0x1830ee67b5fb554ad5f63d4388800e1cfe78e310697d46e43c9ce36134f72cca",
]
.map(|e| str_to_fr(e, 16).unwrap())
.to_vec();
// These values refers to TEST_TREE_HEIGHT == 16
let mut expected_path_elements = vec![
str_to_fr(
"0x0000000000000000000000000000000000000000000000000000000000000000",
16,
)
.unwrap(),
str_to_fr(
"0x2098f5fb9e239eab3ceac3f27b81e481dc3124d55ffed523a839ee8446b64864",
16,
)
.unwrap(),
str_to_fr(
"0x1069673dcdb12263df301a6ff584a7ec261a44cb9dc68df067a4774460b1f1e1",
16,
)
.unwrap(),
str_to_fr(
"0x18f43331537ee2af2e3d758d50f72106467c6eea50371dd528d57eb2b856d238",
16,
)
.unwrap(),
str_to_fr(
"0x07f9d837cb17b0d36320ffe93ba52345f1b728571a568265caac97559dbc952a",
16,
)
.unwrap(),
str_to_fr(
"0x2b94cf5e8746b3f5c9631f4c5df32907a699c58c94b2ad4d7b5cec1639183f55",
16,
)
.unwrap(),
str_to_fr(
"0x2dee93c5a666459646ea7d22cca9e1bcfed71e6951b953611d11dda32ea09d78",
16,
)
.unwrap(),
str_to_fr(
"0x078295e5a22b84e982cf601eb639597b8b0515a88cb5ac7fa8a4aabe3c87349d",
16,
)
.unwrap(),
str_to_fr(
"0x2fa5e5f18f6027a6501bec864564472a616b2e274a41211a444cbe3a99f3cc61",
16,
)
.unwrap(),
str_to_fr(
"0x0e884376d0d8fd21ecb780389e941f66e45e7acce3e228ab3e2156a614fcd747",
16,
)
.unwrap(),
str_to_fr(
"0x1b7201da72494f1e28717ad1a52eb469f95892f957713533de6175e5da190af2",
16,
)
.unwrap(),
str_to_fr(
"0x1f8d8822725e36385200c0b201249819a6e6e1e4650808b5bebc6bface7d7636",
16,
)
.unwrap(),
str_to_fr(
"0x2c5d82f66c914bafb9701589ba8cfcfb6162b0a12acf88a8d0879a0471b5f85a",
16,
)
.unwrap(),
str_to_fr(
"0x14c54148a0940bb820957f5adf3fa1134ef5c4aaa113f4646458f270e0bfbfd0",
16,
)
.unwrap(),
str_to_fr(
"0x190d33b12f986f961e10c0ee44d8b9af11be25588cad89d416118e4bf4ebe80c",
16,
)
.unwrap(),
];
let expected_identity_path_index: Vec<u8> =
vec![1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
let mut expected_identity_path_index: Vec<u8> =
vec![1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
// We add the remaining elements for the case TEST_TREE_HEIGHT = 20
if TEST_TREE_HEIGHT == 19 || TEST_TREE_HEIGHT == 20 {
expected_path_elements.append(&mut vec![
str_to_fr(
"0x22f98aa9ce704152ac17354914ad73ed1167ae6596af510aa5b3649325e06c92",
16,
)
.unwrap(),
str_to_fr(
"0x2a7c7c9b6ce5880b9f6f228d72bf6a575a526f29c66ecceef8b753d38bba7323",
16,
)
.unwrap(),
str_to_fr(
"0x2e8186e558698ec1c67af9c14d463ffc470043c9c2988b954d75dd643f36b992",
16,
)
.unwrap(),
str_to_fr(
"0x0f57c5571e9a4eab49e2c8cf050dae948aef6ead647392273546249d1c1ff10f",
16,
)
.unwrap(),
]);
expected_identity_path_index.append(&mut vec![0, 0, 0, 0]);
}
if TEST_TREE_HEIGHT == 20 {
expected_path_elements.append(&mut vec![str_to_fr(
"0x1830ee67b5fb554ad5f63d4388800e1cfe78e310697d46e43c9ce36134f72cca",
16,
)
.unwrap()]);
expected_identity_path_index.append(&mut vec![0]);
}
assert_eq!(path_elements, expected_path_elements);
assert_eq!(identity_path_index, expected_identity_path_index);
// We check correct verification of the proof
assert!(tree.verify(&rate_commitment, &merkle_proof).unwrap());
}
fn get_test_witness() -> RLNWitnessInput {
let leaf_index = 3;
// Generate identity pair
let (identity_secret_hash, id_commitment) = keygen();
let user_message_limit = Fr::from(100);
let rate_commitment = poseidon_hash(&[id_commitment, user_message_limit]);
//// generate merkle tree
let default_leaf = Fr::from(0);
let mut tree = PoseidonTree::new(
TEST_TREE_HEIGHT,
default_leaf,
ConfigOf::<PoseidonTree>::default(),
)
.unwrap();
tree.set(leaf_index, rate_commitment.into()).unwrap();
let merkle_proof = tree.proof(leaf_index).expect("proof should exist");
let signal = b"hey hey";
let x = hash_to_field(signal);
// We set the remaining values to random ones
let epoch = hash_to_field(b"test-epoch");
let rln_identifier = hash_to_field(b"test-rln-identifier");
let external_nullifier = poseidon_hash(&[epoch, rln_identifier]);
rln_witness_from_values(
identity_secret_hash,
&merkle_proof,
x,
external_nullifier,
user_message_limit,
Fr::from(1),
)
.unwrap()
assert!(tree.verify(&id_commitment, &merkle_proof).unwrap());
}
#[test]
// We test a RLN proof generation and verification
fn test_witness_from_json() {
// We generate all relevant keys
let proving_key = zkey_from_folder();
let verification_key = &proving_key.0.vk;
let graph_data = graph_from_folder();
// We compute witness from the json input
let rln_witness = get_test_witness();
let rln_witness_json = rln_witness_to_json(&rln_witness).unwrap();
let rln_witness_deser = rln_witness_from_json(rln_witness_json).unwrap();
assert_eq!(rln_witness_deser, rln_witness);
let proving_key = zkey_from_folder(TEST_RESOURCES_FOLDER).unwrap();
let verification_key = vk_from_folder(TEST_RESOURCES_FOLDER).unwrap();
let builder = circom_from_folder(TEST_RESOURCES_FOLDER).unwrap();
// We compute witness from the json input example
let mut witness_json: &str = "";
if TEST_TREE_HEIGHT == 15 {
witness_json = WITNESS_JSON_15;
} else if TEST_TREE_HEIGHT == 19 {
witness_json = WITNESS_JSON_19;
} else if TEST_TREE_HEIGHT == 20 {
witness_json = WITNESS_JSON_20;
}
let rln_witness = rln_witness_from_json(witness_json);
let rln_witness_unwrapped = rln_witness.unwrap();
// Let's generate a zkSNARK proof
let proof = generate_proof(&proving_key, &rln_witness_deser, &graph_data).unwrap();
let proof_values = proof_values_from_witness(&rln_witness_deser).unwrap();
let proof = generate_proof(builder, &proving_key, &rln_witness_unwrapped).unwrap();
let proof_values = proof_values_from_witness(&rln_witness_unwrapped);
// Let's verify the proof
let verified = verify_proof(&verification_key, &proof, &proof_values);
@@ -149,20 +381,47 @@ mod test {
#[test]
// We test a RLN proof generation and verification
fn test_end_to_end() {
let rln_witness = get_test_witness();
let rln_witness_json = rln_witness_to_json(&rln_witness).unwrap();
let rln_witness_deser = rln_witness_from_json(rln_witness_json).unwrap();
assert_eq!(rln_witness_deser, rln_witness);
let tree_height = TEST_TREE_HEIGHT;
let leaf_index = 3;
// Generate identity pair
let (identity_secret_hash, id_commitment) = keygen();
//// generate merkle tree
let default_leaf = Fr::from(0);
let mut tree = PoseidonTree::new(
tree_height,
default_leaf,
ConfigOf::<PoseidonTree>::default(),
)
.unwrap();
tree.set(leaf_index, id_commitment.into()).unwrap();
let merkle_proof = tree.proof(leaf_index).expect("proof should exist");
let signal = b"hey hey";
let x = hash_to_field(signal);
// We set the remaining values to random ones
let epoch = hash_to_field(b"test-epoch");
//let rln_identifier = hash_to_field(b"test-rln-identifier");
let rln_witness: RLNWitnessInput = rln_witness_from_values(
identity_secret_hash,
&merkle_proof,
x,
epoch, /*, rln_identifier*/
);
// We generate all relevant keys
let proving_key = zkey_from_folder();
let verification_key = &proving_key.0.vk;
let graph_data = graph_from_folder();
let proving_key = zkey_from_folder(TEST_RESOURCES_FOLDER).unwrap();
let verification_key = vk_from_folder(TEST_RESOURCES_FOLDER).unwrap();
let builder = circom_from_folder(TEST_RESOURCES_FOLDER).unwrap();
// Let's generate a zkSNARK proof
let proof = generate_proof(&proving_key, &rln_witness_deser, &graph_data).unwrap();
let proof = generate_proof(builder, &proving_key, &rln_witness).unwrap();
let proof_values = proof_values_from_witness(&rln_witness_deser).unwrap();
let proof_values = proof_values_from_witness(&rln_witness);
// Let's verify the proof
let success = verify_proof(&verification_key, &proof, &proof_values).unwrap();
@@ -172,19 +431,25 @@ mod test {
#[test]
fn test_witness_serialization() {
// We test witness JSON serialization
let rln_witness = get_test_witness();
let rln_witness_json = rln_witness_to_json(&rln_witness).unwrap();
let rln_witness_deser = rln_witness_from_json(rln_witness_json).unwrap();
assert_eq!(rln_witness_deser, rln_witness);
// We test witness serialization
let mut witness_json: &str = "";
if TEST_TREE_HEIGHT == 15 {
witness_json = WITNESS_JSON_15;
} else if TEST_TREE_HEIGHT == 19 {
witness_json = WITNESS_JSON_19;
} else if TEST_TREE_HEIGHT == 20 {
witness_json = WITNESS_JSON_20;
}
let rln_witness = rln_witness_from_json(witness_json).unwrap();
let ser = serialize_witness(&rln_witness).unwrap();
let (deser, _) = deserialize_witness(&ser).unwrap();
assert_eq!(rln_witness, deser);
// We test Proof values serialization
let proof_values = proof_values_from_witness(&rln_witness).unwrap();
let proof_values = proof_values_from_witness(&rln_witness);
let ser = serialize_proof_values(&proof_values);
let (deser, _) = deserialize_proof_values(&ser);
assert_eq!(proof_values, deser);

View File

@@ -1,64 +1,66 @@
#[cfg(test)]
mod test {
#[cfg(not(feature = "stateless"))]
use {
ark_ff::BigInt,
rln::{circuit::TEST_TREE_HEIGHT, protocol::compute_tree_root},
};
use ark_std::{rand::thread_rng, UniformRand};
use rand::Rng;
use rln::circuit::Fr;
use rln::circuit::{Fr, TEST_RESOURCES_FOLDER, TEST_TREE_HEIGHT};
use rln::hashers::{hash_to_field, poseidon_hash as utils_poseidon_hash, ROUND_PARAMS};
use rln::protocol::deserialize_identity_tuple;
use rln::protocol::{compute_tree_root, deserialize_identity_tuple};
use rln::public::{hash as public_hash, poseidon_hash as public_poseidon_hash, RLN};
use rln::utils::*;
use serde_json::json;
use std::io::Cursor;
#[test]
// This test is similar to the one in lib, but uses only public API
#[cfg(not(feature = "stateless"))]
fn test_merkle_proof() {
let tree_height = TEST_TREE_HEIGHT;
let leaf_index = 3;
let user_message_limit = 1;
let mut rln = RLN::new(TEST_TREE_HEIGHT, generate_input_buffer()).unwrap();
let input_buffer =
Cursor::new(json!({ "resources_folder": TEST_RESOURCES_FOLDER }).to_string());
let mut rln = RLN::new(tree_height, input_buffer).unwrap();
// generate identity
let identity_secret_hash = hash_to_field(b"test-merkle-proof");
let id_commitment = utils_poseidon_hash(&vec![identity_secret_hash]);
let rate_commitment = utils_poseidon_hash(&[id_commitment, user_message_limit.into()]);
// check that leaves indices is empty
let mut buffer = Cursor::new(Vec::<u8>::new());
rln.get_empty_leaves_indices(&mut buffer).unwrap();
let idxs = bytes_le_to_vec_usize(&buffer.into_inner()).unwrap();
assert!(idxs.is_empty());
// We pass rate_commitment as Read buffer to RLN's set_leaf
let mut buffer = Cursor::new(fr_to_bytes_le(&rate_commitment));
// We pass id_commitment as Read buffer to RLN's set_leaf
let mut buffer = Cursor::new(fr_to_bytes_le(&id_commitment));
rln.set_leaf(leaf_index, &mut buffer).unwrap();
// check that leaves before leaf_index is set to zero
let mut buffer = Cursor::new(Vec::<u8>::new());
rln.get_empty_leaves_indices(&mut buffer).unwrap();
let idxs = bytes_le_to_vec_usize(&buffer.into_inner()).unwrap();
assert_eq!(idxs, [0, 1, 2]);
// We check correct computation of the root
let mut buffer = Cursor::new(Vec::<u8>::new());
rln.get_root(&mut buffer).unwrap();
let (root, _) = bytes_le_to_fr(&buffer.into_inner());
assert_eq!(
root,
Fr::from(BigInt([
17110646155607829651,
5040045984242729823,
6965416728592533086,
2328960363755461975
]))
);
if TEST_TREE_HEIGHT == 15 {
assert_eq!(
root,
str_to_fr(
"0x1984f2e01184aef5cb974640898a5f5c25556554e2b06d99d4841badb8b198cd",
16
)
.unwrap()
);
} else if TEST_TREE_HEIGHT == 19 {
assert_eq!(
root,
str_to_fr(
"0x219ceb53f2b1b7a6cf74e80d50d44d68ecb4a53c6cc65b25593c8d56343fb1fe",
16
)
.unwrap()
);
} else if TEST_TREE_HEIGHT == 20 {
assert_eq!(
root,
str_to_fr(
"0x21947ffd0bce0c385f876e7c97d6a42eec5b1fe935aab2f01c1f8a8cbcc356d2",
16
)
.unwrap()
);
}
// We check correct computation of merkle proof
let mut buffer = Cursor::new(Vec::<u8>::new());
@@ -69,67 +71,129 @@ mod test {
let (identity_path_index, _) = bytes_le_to_vec_u8(&buffer_inner[read..].to_vec()).unwrap();
// We check correct computation of the path and indexes
let expected_path_elements: Vec<Fr> = [
"0x0000000000000000000000000000000000000000000000000000000000000000",
"0x2098f5fb9e239eab3ceac3f27b81e481dc3124d55ffed523a839ee8446b64864",
"0x1069673dcdb12263df301a6ff584a7ec261a44cb9dc68df067a4774460b1f1e1",
"0x18f43331537ee2af2e3d758d50f72106467c6eea50371dd528d57eb2b856d238",
"0x07f9d837cb17b0d36320ffe93ba52345f1b728571a568265caac97559dbc952a",
"0x2b94cf5e8746b3f5c9631f4c5df32907a699c58c94b2ad4d7b5cec1639183f55",
"0x2dee93c5a666459646ea7d22cca9e1bcfed71e6951b953611d11dda32ea09d78",
"0x078295e5a22b84e982cf601eb639597b8b0515a88cb5ac7fa8a4aabe3c87349d",
"0x2fa5e5f18f6027a6501bec864564472a616b2e274a41211a444cbe3a99f3cc61",
"0x0e884376d0d8fd21ecb780389e941f66e45e7acce3e228ab3e2156a614fcd747",
"0x1b7201da72494f1e28717ad1a52eb469f95892f957713533de6175e5da190af2",
"0x1f8d8822725e36385200c0b201249819a6e6e1e4650808b5bebc6bface7d7636",
"0x2c5d82f66c914bafb9701589ba8cfcfb6162b0a12acf88a8d0879a0471b5f85a",
"0x14c54148a0940bb820957f5adf3fa1134ef5c4aaa113f4646458f270e0bfbfd0",
"0x190d33b12f986f961e10c0ee44d8b9af11be25588cad89d416118e4bf4ebe80c",
"0x22f98aa9ce704152ac17354914ad73ed1167ae6596af510aa5b3649325e06c92",
"0x2a7c7c9b6ce5880b9f6f228d72bf6a575a526f29c66ecceef8b753d38bba7323",
"0x2e8186e558698ec1c67af9c14d463ffc470043c9c2988b954d75dd643f36b992",
"0x0f57c5571e9a4eab49e2c8cf050dae948aef6ead647392273546249d1c1ff10f",
"0x1830ee67b5fb554ad5f63d4388800e1cfe78e310697d46e43c9ce36134f72cca",
]
.map(|e| str_to_fr(e, 16).unwrap())
.to_vec();
let mut expected_path_elements = vec![
str_to_fr(
"0x0000000000000000000000000000000000000000000000000000000000000000",
16,
)
.unwrap(),
str_to_fr(
"0x2098f5fb9e239eab3ceac3f27b81e481dc3124d55ffed523a839ee8446b64864",
16,
)
.unwrap(),
str_to_fr(
"0x1069673dcdb12263df301a6ff584a7ec261a44cb9dc68df067a4774460b1f1e1",
16,
)
.unwrap(),
str_to_fr(
"0x18f43331537ee2af2e3d758d50f72106467c6eea50371dd528d57eb2b856d238",
16,
)
.unwrap(),
str_to_fr(
"0x07f9d837cb17b0d36320ffe93ba52345f1b728571a568265caac97559dbc952a",
16,
)
.unwrap(),
str_to_fr(
"0x2b94cf5e8746b3f5c9631f4c5df32907a699c58c94b2ad4d7b5cec1639183f55",
16,
)
.unwrap(),
str_to_fr(
"0x2dee93c5a666459646ea7d22cca9e1bcfed71e6951b953611d11dda32ea09d78",
16,
)
.unwrap(),
str_to_fr(
"0x078295e5a22b84e982cf601eb639597b8b0515a88cb5ac7fa8a4aabe3c87349d",
16,
)
.unwrap(),
str_to_fr(
"0x2fa5e5f18f6027a6501bec864564472a616b2e274a41211a444cbe3a99f3cc61",
16,
)
.unwrap(),
str_to_fr(
"0x0e884376d0d8fd21ecb780389e941f66e45e7acce3e228ab3e2156a614fcd747",
16,
)
.unwrap(),
str_to_fr(
"0x1b7201da72494f1e28717ad1a52eb469f95892f957713533de6175e5da190af2",
16,
)
.unwrap(),
str_to_fr(
"0x1f8d8822725e36385200c0b201249819a6e6e1e4650808b5bebc6bface7d7636",
16,
)
.unwrap(),
str_to_fr(
"0x2c5d82f66c914bafb9701589ba8cfcfb6162b0a12acf88a8d0879a0471b5f85a",
16,
)
.unwrap(),
str_to_fr(
"0x14c54148a0940bb820957f5adf3fa1134ef5c4aaa113f4646458f270e0bfbfd0",
16,
)
.unwrap(),
str_to_fr(
"0x190d33b12f986f961e10c0ee44d8b9af11be25588cad89d416118e4bf4ebe80c",
16,
)
.unwrap(),
];
let expected_identity_path_index: Vec<u8> =
vec![1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
let mut expected_identity_path_index: Vec<u8> =
vec![1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
// We add the remaining elements for the case TEST_TREE_HEIGHT = 20
if TEST_TREE_HEIGHT == 19 || TEST_TREE_HEIGHT == 20 {
expected_path_elements.append(&mut vec![
str_to_fr(
"0x22f98aa9ce704152ac17354914ad73ed1167ae6596af510aa5b3649325e06c92",
16,
)
.unwrap(),
str_to_fr(
"0x2a7c7c9b6ce5880b9f6f228d72bf6a575a526f29c66ecceef8b753d38bba7323",
16,
)
.unwrap(),
str_to_fr(
"0x2e8186e558698ec1c67af9c14d463ffc470043c9c2988b954d75dd643f36b992",
16,
)
.unwrap(),
str_to_fr(
"0x0f57c5571e9a4eab49e2c8cf050dae948aef6ead647392273546249d1c1ff10f",
16,
)
.unwrap(),
]);
expected_identity_path_index.append(&mut vec![0, 0, 0, 0]);
}
if TEST_TREE_HEIGHT == 20 {
expected_path_elements.append(&mut vec![str_to_fr(
"0x1830ee67b5fb554ad5f63d4388800e1cfe78e310697d46e43c9ce36134f72cca",
16,
)
.unwrap()]);
expected_identity_path_index.append(&mut vec![0]);
}
assert_eq!(path_elements, expected_path_elements);
assert_eq!(identity_path_index, expected_identity_path_index);
// check subtree root computation for leaf 0 for all corresponding node until the root
let l_idx = 0;
for n in (1..=TEST_TREE_HEIGHT).rev() {
let idx_l = l_idx * (1 << (TEST_TREE_HEIGHT - n));
let idx_r = (l_idx + 1) * (1 << (TEST_TREE_HEIGHT - n));
let idx_sr = idx_l;
let mut buffer = Cursor::new(Vec::<u8>::new());
rln.get_subtree_root(n, idx_l, &mut buffer).unwrap();
let (prev_l, _) = bytes_le_to_fr(&buffer.into_inner());
let mut buffer = Cursor::new(Vec::<u8>::new());
rln.get_subtree_root(n, idx_r, &mut buffer).unwrap();
let (prev_r, _) = bytes_le_to_fr(&buffer.into_inner());
let mut buffer = Cursor::new(Vec::<u8>::new());
rln.get_subtree_root(n - 1, idx_sr, &mut buffer).unwrap();
let (subroot, _) = bytes_le_to_fr(&buffer.into_inner());
let res = utils_poseidon_hash(&[prev_l, prev_r]);
assert_eq!(res, subroot);
}
// We double check that the proof computed from public API is correct
let root_from_proof = compute_tree_root(
&identity_secret_hash,
&user_message_limit.into(),
&path_elements,
&identity_path_index,
);
let root_from_proof =
compute_tree_root(&id_commitment, &path_elements, &identity_path_index, false);
assert_eq!(root, root_from_proof);
}

1
rln/vendor/rln vendored Submodule

Submodule rln/vendor/rln added at fc86ad156a

View File

@@ -1,6 +1,6 @@
[package]
name = "zerokit_utils"
version = "0.5.2"
version = "0.3.3"
edition = "2021"
license = "MIT OR Apache-2.0"
description = "Various utilities for Zerokit"
@@ -12,34 +12,27 @@ repository = "https://github.com/vacp2p/zerokit"
bench = false
[dependencies]
ark-ff = { version = "0.5.0", default-features = false, features = [
"parallel",
] }
num-bigint = { version = "0.4.6", default-features = false, features = [
ark-ff = { version = "=0.4.1", default-features = false, features = ["asm"] }
num-bigint = { version = "=0.4.3", default-features = false, features = [
"rand",
] }
color-eyre = "0.6.3"
pmtree = { package = "vacp2p_pmtree", version = "2.0.2", optional = true }
sled = "0.34.7"
serde = "1.0"
lazy_static = "1.5.0"
hex = "0.4"
color-eyre = "=0.6.2"
pmtree = { package = "pmtree", version = "=2.0.0", optional = true }
sled = "=0.34.7"
serde = "=1.0.163"
[dev-dependencies]
ark-bn254 = { version = "0.5.0", features = ["std"] }
num-traits = "0.2.19"
hex-literal = "1.0.0"
tiny-keccak = { version = "2.0.2", features = ["keccak"] }
criterion = { version = "0.4.0", features = ["html_reports"] }
ark-bn254 = "=0.4.0"
num-traits = "=0.2.15"
hex-literal = "=0.3.4"
tiny-keccak = { version = "=2.0.2", features = ["keccak"] }
criterion = { version = "=0.4.0", features = ["html_reports"] }
[features]
default = []
default = ["parallel"]
parallel = ["ark-ff/parallel"]
pmtree-ft = ["pmtree"]
[[bench]]
name = "merkle_tree_benchmark"
harness = false
[[bench]]
name = "poseidon_benchmark"
harness = false

View File

@@ -8,4 +8,4 @@ args = ["test", "--release"]
[tasks.bench]
command = "cargo"
args = ["bench"]
args = ["bench"]

View File

@@ -1,111 +1,15 @@
# Zerokit Utils Crate
# Utils crate
[![Crates.io](https://img.shields.io/crates/v/zerokit_utils.svg)](https://crates.io/crates/zerokit_utils)
## Building
Cryptographic primitives for zero-knowledge applications, featuring efficient Merkle tree implementations and a Poseidon hash function.
1. `cargo build`
## Overview
## Testing
This crate provides core cryptographic components optimized for zero-knowledge proof systems:
1. `cargo test`
1. Multiple Merkle tree implementations with different space/time tradeoffs
2. A Poseidon hash implementation
## Benchmarking
## Merkle Tree Implementations
1. `cargo bench`
The crate supports two interchangeable Merkle tree implementations:
- **FullMerkleTree**
- Stores each tree node in memory
- **OptimalMerkleTree**
- Only stores nodes used to prove accumulation of set leaves
### Implementation notes
Glossary:
* depth: level of leaves if we count from levels from 0
* number of levels: depth + 1
* capacity (== number of leaves) -- 1 << depth
* total number of nodes: 1 << (depth + 1)) - 1
So for instance:
* depth: 3
* number of levels: 4
* capacity (number of leaves): 8
* total number of nodes: 15
```mermaid
flowchart TD
A[Root] --> N1
A[Root] --> N2
N1 --> N3
N1 --> N4
N2 --> N5
N2 --> N6
N3 -->|Leaf| L1
N3 -->|Leaf| L2
N4 -->|Leaf| L3
N4 -->|Leaf| L4
N5 -->|Leaf| L5
N5 -->|Leaf| L6
N6 -->|Leaf| L7
N6 -->|Leaf| L8
```
## Poseidon Hash Implementation
This crate provides an implementation to compute the Poseidon hash round constants and MDS matrices:
- **Customizable parameters**: Supports different security levels and input sizes
- **Arkworks-friendly**: Adapted to work over arkworks field traits and custom data structures
### Security Note
The MDS matrices are generated iteratively using the Grain LFSR until certain criteria are met.
According to the paper, such matrices must respect specific conditions which are checked by 3 different algorithms in the reference implementation.
These validation algorithms are not currently implemented in this crate.
For the hardcoded parameters, the first random matrix generated satisfies these conditions.
If using different parameters, you should check against the reference implementation how many matrices are generated before outputting the correct one,
and pass this number to the `skip_matrices` parameter of the `find_poseidon_ark_and_mds` function.
## Installation
Add Zerokit Utils to your Rust project:
```toml
[dependencies]
zerokit-utils = "0.5.1"
```
## Performance Considerations
- **FullMerkleTree**: Use when memory is abundant and operation speed is critical
- **OptimalMerkleTree**: Use when memory efficiency is more important than raw speed
- **Poseidon**: Offers a good balance between security and performance for ZK applications
## Building and Testing
```bash
# Build the crate
cargo make build
# Run tests
cargo make test
# Run benchmarks
cargo make bench
```
To view the results of the benchmark, open the `target/criterion/report/index.html` file generated after the bench
## Acknowledgements
- The Merkle tree implementations are adapted from:
- [kilic/rln](https://github.com/kilic/rln/blob/master/src/merkle.rs)
- [worldcoin/semaphore-rs](https://github.com/worldcoin/semaphore-rs/blob/d462a4372f1fd9c27610f2acfe4841fab1d396aa/src/merkle_tree.rs)
- The Poseidon implementation references:
- [Poseidon reference implementation](https://extgit.iaik.tugraz.at/krypto/hadeshash/-/blob/master/code/generate_parameters_grain.sage)
To view the results of the benchmark, open the `target/criterion/report/index.html` file generated after the bench

View File

@@ -1,7 +1,5 @@
use criterion::{criterion_group, criterion_main, Criterion};
use hex_literal::hex;
use lazy_static::lazy_static;
use std::{fmt::Display, str::FromStr};
use tiny_keccak::{Hasher as _, Keccak};
use zerokit_utils::{
FullMerkleConfig, FullMerkleTree, Hasher, OptimalMerkleConfig, OptimalMerkleTree,
@@ -11,59 +9,38 @@ use zerokit_utils::{
#[derive(Clone, Copy, Eq, PartialEq)]
struct Keccak256;
#[derive(Clone, Copy, Eq, PartialEq, Debug, Default)]
struct TestFr([u8; 32]);
impl Hasher for Keccak256 {
type Fr = TestFr;
type Fr = [u8; 32];
fn default_leaf() -> Self::Fr {
TestFr([0; 32])
[0; 32]
}
fn hash(inputs: &[Self::Fr]) -> Self::Fr {
let mut output = [0; 32];
let mut hasher = Keccak::v256();
for element in inputs {
hasher.update(element.0.as_slice());
hasher.update(element);
}
hasher.finalize(&mut output);
TestFr(output)
output
}
}
impl Display for TestFr {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", String::from_utf8_lossy(self.0.as_slice()))
}
}
impl FromStr for TestFr {
type Err = std::string::FromUtf8Error;
fn from_str(s: &str) -> Result<Self, Self::Err> {
Ok(TestFr(s.as_bytes().try_into().unwrap()))
}
}
lazy_static! {
static ref LEAVES: [TestFr; 4] = [
hex!("0000000000000000000000000000000000000000000000000000000000000001"),
hex!("0000000000000000000000000000000000000000000000000000000000000002"),
hex!("0000000000000000000000000000000000000000000000000000000000000003"),
hex!("0000000000000000000000000000000000000000000000000000000000000004"),
]
.map(TestFr);
}
pub fn optimal_merkle_tree_benchmark(c: &mut Criterion) {
let mut tree =
OptimalMerkleTree::<Keccak256>::new(2, TestFr([0; 32]), OptimalMerkleConfig::default())
.unwrap();
OptimalMerkleTree::<Keccak256>::new(2, [0; 32], OptimalMerkleConfig::default()).unwrap();
let leaves = [
hex!("0000000000000000000000000000000000000000000000000000000000000001"),
hex!("0000000000000000000000000000000000000000000000000000000000000002"),
hex!("0000000000000000000000000000000000000000000000000000000000000003"),
hex!("0000000000000000000000000000000000000000000000000000000000000004"),
];
c.bench_function("OptimalMerkleTree::set", |b| {
b.iter(|| {
tree.set(0, LEAVES[0]).unwrap();
tree.set(0, leaves[0]).unwrap();
})
});
@@ -75,8 +52,7 @@ pub fn optimal_merkle_tree_benchmark(c: &mut Criterion) {
c.bench_function("OptimalMerkleTree::override_range", |b| {
b.iter(|| {
tree.override_range(0, LEAVES.into_iter(), [0, 1, 2, 3].into_iter())
.unwrap();
tree.override_range(0, leaves, [0, 1, 2, 3]).unwrap();
})
});
@@ -91,28 +67,22 @@ pub fn optimal_merkle_tree_benchmark(c: &mut Criterion) {
tree.get(0).unwrap();
})
});
// check intermediate node getter which required additional computation of sub root index
c.bench_function("OptimalMerkleTree::get_subtree_root", |b| {
b.iter(|| {
tree.get_subtree_root(1, 0).unwrap();
})
});
c.bench_function("OptimalMerkleTree::get_empty_leaves_indices", |b| {
b.iter(|| {
tree.get_empty_leaves_indices();
})
});
}
pub fn full_merkle_tree_benchmark(c: &mut Criterion) {
let mut tree =
FullMerkleTree::<Keccak256>::new(2, TestFr([0; 32]), FullMerkleConfig::default()).unwrap();
FullMerkleTree::<Keccak256>::new(2, [0; 32], FullMerkleConfig::default()).unwrap();
let leaves = [
hex!("0000000000000000000000000000000000000000000000000000000000000001"),
hex!("0000000000000000000000000000000000000000000000000000000000000002"),
hex!("0000000000000000000000000000000000000000000000000000000000000003"),
hex!("0000000000000000000000000000000000000000000000000000000000000004"),
];
c.bench_function("FullMerkleTree::set", |b| {
b.iter(|| {
tree.set(0, LEAVES[0]).unwrap();
tree.set(0, leaves[0]).unwrap();
})
});
@@ -124,8 +94,7 @@ pub fn full_merkle_tree_benchmark(c: &mut Criterion) {
c.bench_function("FullMerkleTree::override_range", |b| {
b.iter(|| {
tree.override_range(0, LEAVES.into_iter(), [0, 1, 2, 3].into_iter())
.unwrap();
tree.override_range(0, leaves, [0, 1, 2, 3]).unwrap();
})
});
@@ -140,19 +109,6 @@ pub fn full_merkle_tree_benchmark(c: &mut Criterion) {
tree.get(0).unwrap();
})
});
// check intermediate node getter which required additional computation of sub root index
c.bench_function("FullMerkleTree::get_subtree_root", |b| {
b.iter(|| {
tree.get_subtree_root(1, 0).unwrap();
})
});
c.bench_function("FullMerkleTree::get_empty_leaves_indices", |b| {
b.iter(|| {
tree.get_empty_leaves_indices();
})
});
}
criterion_group!(

View File

@@ -1,65 +0,0 @@
use ark_bn254::Fr;
use criterion::{
black_box, criterion_group, criterion_main, BatchSize, BenchmarkId, Criterion, Throughput,
};
use zerokit_utils::Poseidon;
const ROUND_PARAMS: [(usize, usize, usize, usize); 8] = [
(2, 8, 56, 0),
(3, 8, 57, 0),
(4, 8, 56, 0),
(5, 8, 60, 0),
(6, 8, 60, 0),
(7, 8, 63, 0),
(8, 8, 64, 0),
(9, 8, 63, 0),
];
pub fn poseidon_benchmark(c: &mut Criterion) {
let hasher = Poseidon::<Fr>::from(&ROUND_PARAMS);
let mut group = c.benchmark_group("poseidon Fr");
for size in [10u32, 100, 1000].iter() {
group.throughput(Throughput::Elements(*size as u64));
group.bench_with_input(BenchmarkId::new("Array hash", size), size, |b, &size| {
b.iter_batched(
// Setup: create values for each benchmark iteration
|| {
let mut values = Vec::with_capacity(size as usize);
for i in 0..size {
values.push([Fr::from(i)]);
}
values
},
// Actual benchmark
|values| {
for v in values.iter() {
let _ = hasher.hash(black_box(&v[..]));
}
},
BatchSize::SmallInput,
)
});
}
// Benchmark single hash operation separately
group.bench_function("Single hash", |b| {
let input = [Fr::from(u64::MAX)];
b.iter(|| {
let _ = hasher.hash(black_box(&input[..]));
})
});
group.finish();
}
criterion_group! {
name = benches;
config = Criterion::default()
.warm_up_time(std::time::Duration::from_millis(500))
.measurement_time(std::time::Duration::from_secs(4))
.sample_size(20);
targets = poseidon_benchmark
}
criterion_main!(benches);

View File

@@ -3,12 +3,12 @@ use color_eyre::{Report, Result};
use std::{
cmp::max,
fmt::Debug,
iter::{once, repeat_n, successors},
iter::{once, repeat, successors},
str::FromStr,
};
////////////////////////////////////////////////////////////
///// Full Merkle Tree Implementation
/// Full Merkle Tree Implementation
////////////////////////////////////////////////////////////
/// Merkle tree with all leaf and intermediate hashes stored
@@ -26,10 +26,6 @@ pub struct FullMerkleTree<H: Hasher> {
/// The tree nodes
nodes: Vec<H::Fr>,
/// The indices of leaves which are set into zero upto next_index.
/// Set to 0 if the leaf is empty and set to 1 in otherwise.
cached_leaves_indices: Vec<u8>,
// The next available (i.e., never used) tree index. Equivalently, the number of leaves added to the tree
// (deletions leave next_index unchanged)
next_index: usize,
@@ -89,7 +85,7 @@ where
.iter()
.rev()
.enumerate()
.flat_map(|(levels, hash)| repeat_n(hash, 1 << levels))
.flat_map(|(levels, hash)| repeat(hash).take(1 << levels))
.cloned()
.collect::<Vec<_>>();
debug_assert!(nodes.len() == (1 << (depth + 1)) - 1);
@@ -100,7 +96,6 @@ where
depth,
cached_nodes,
nodes,
cached_leaves_indices: vec![0; 1 << depth],
next_index,
metadata: Vec::new(),
})
@@ -121,10 +116,11 @@ where
}
// Returns the total number of leaves set
fn leaves_set(&self) -> usize {
fn leaves_set(&mut self) -> usize {
self.next_index
}
#[must_use]
// Returns the root of the tree
fn root(&self) -> FrOf<Self::Hasher> {
self.nodes[0]
@@ -145,42 +141,6 @@ where
Ok(self.nodes[self.capacity() + leaf - 1])
}
fn get_subtree_root(&self, n: usize, index: usize) -> Result<H::Fr> {
if n > self.depth() {
return Err(Report::msg("level exceeds depth size"));
}
if index >= self.capacity() {
return Err(Report::msg("index exceeds set size"));
}
if n == 0 {
Ok(self.root())
} else if n == self.depth {
self.get(index)
} else {
let mut idx = self.capacity() + index - 1;
let mut nd = self.depth;
loop {
let parent = self.parent(idx).unwrap();
nd -= 1;
if nd == n {
return Ok(self.nodes[parent]);
} else {
idx = parent;
continue;
}
}
}
}
fn get_empty_leaves_indices(&self) -> Vec<usize> {
self.cached_leaves_indices
.iter()
.take(self.next_index)
.enumerate()
.filter(|&(_, &v)| v == 0u8)
.map(|(idx, _)| idx)
.collect()
}
// Sets tree nodes, starting from start index
// Function proper of FullMerkleTree implementation
fn set_range<I: IntoIterator<Item = FrOf<Self::Hasher>>>(
@@ -198,7 +158,6 @@ where
}
hashes.into_iter().for_each(|hash| {
self.nodes[index + count] = hash;
self.cached_leaves_indices[start + count] = 1;
count += 1;
});
if count != 0 {
@@ -208,36 +167,37 @@ where
Ok(())
}
fn override_range<I, J>(&mut self, start: usize, leaves: I, indices: J) -> Result<()>
fn override_range<I, J>(&mut self, start: usize, leaves: I, to_remove_indices: J) -> Result<()>
where
I: IntoIterator<Item = FrOf<Self::Hasher>>,
J: IntoIterator<Item = usize>,
{
let indices = indices.into_iter().collect::<Vec<_>>();
let min_index = *indices.first().unwrap();
let leaves_vec = leaves.into_iter().collect::<Vec<_>>();
let max_index = start + leaves_vec.len();
let mut set_values = vec![Self::Hasher::default_leaf(); max_index - min_index];
for i in min_index..start {
if !indices.contains(&i) {
let value = self.get(i)?;
set_values[i - min_index] = value;
}
let index = self.capacity() + start - 1;
let mut count = 0;
let leaves = leaves.into_iter().collect::<Vec<_>>();
let to_remove_indices = to_remove_indices.into_iter().collect::<Vec<_>>();
// first count number of hashes, and check that they fit in the tree
// then insert into the tree
if leaves.len() + start - to_remove_indices.len() > self.capacity() {
return Err(Report::msg("provided hashes do not fit in the tree"));
}
for i in 0..leaves_vec.len() {
set_values[start - min_index + i] = leaves_vec[i];
// remove leaves
for i in &to_remove_indices {
self.delete(*i)?;
}
for i in indices {
self.cached_leaves_indices[i] = 0;
// insert new leaves
for hash in leaves {
self.nodes[index + count] = hash;
count += 1;
}
self.set_range(start, set_values.into_iter())
.map_err(|e| Report::msg(e.to_string()))
if count != 0 {
self.update_nodes(index, index + (count - 1))?;
self.next_index = max(self.next_index, start + count - to_remove_indices.len());
}
Ok(())
}
// Sets a leaf at the next available index
@@ -251,12 +211,11 @@ where
// We reset the leaf only if we previously set a leaf at that index
if index < self.next_index {
self.set(index, H::default_leaf())?;
self.cached_leaves_indices[index] = 0;
}
Ok(())
}
// Computes a merkle proof the leaf at the specified index
// Computes a merkle proof the the leaf at the specified index
fn proof(&self, leaf: usize) -> Result<FullMerkleProof<H>> {
if leaf >= self.capacity() {
return Err(Report::msg("index exceeds set size"));
@@ -340,12 +299,14 @@ impl<H: Hasher> ZerokitMerkleProof for FullMerkleProof<H> {
type Index = u8;
type Hasher = H;
#[must_use]
// Returns the length of a Merkle proof
fn length(&self) -> usize {
self.0.len()
}
/// Computes the leaf index corresponding to a Merkle proof
#[must_use]
fn leaf_index(&self) -> usize {
self.0.iter().rev().fold(0, |index, branch| match branch {
FullMerkleBranch::Left(_) => index << 1,
@@ -353,6 +314,7 @@ impl<H: Hasher> ZerokitMerkleProof for FullMerkleProof<H> {
})
}
#[must_use]
/// Returns the path elements forming a Merkle proof
fn get_path_elements(&self) -> Vec<FrOf<Self::Hasher>> {
self.0
@@ -364,6 +326,7 @@ impl<H: Hasher> ZerokitMerkleProof for FullMerkleProof<H> {
}
/// Returns the path indexes forming a Merkle proof
#[must_use]
fn get_path_index(&self) -> Vec<Self::Index> {
self.0
.iter()
@@ -375,6 +338,7 @@ impl<H: Hasher> ZerokitMerkleProof for FullMerkleProof<H> {
}
/// Computes the Merkle root corresponding by iteratively hashing a Merkle proof with a given input leaf
#[must_use]
fn compute_root_from(&self, hash: &FrOf<Self::Hasher>) -> FrOf<Self::Hasher> {
self.0.iter().fold(*hash, |hash, branch| match branch {
FullMerkleBranch::Left(sibling) => H::hash(&[hash, *sibling]),

View File

@@ -21,7 +21,7 @@ use color_eyre::Result;
/// and the hash function used to initialize a Merkle Tree implementation
pub trait Hasher {
/// Type of the leaf and tree node
type Fr: Clone + Copy + Eq + Default + std::fmt::Debug + std::fmt::Display + FromStr;
type Fr: Clone + Copy + Eq;
/// Returns the default tree leaf
fn default_leaf() -> Self::Fr;
@@ -47,20 +47,18 @@ pub trait ZerokitMerkleTree {
Self: Sized;
fn depth(&self) -> usize;
fn capacity(&self) -> usize;
fn leaves_set(&self) -> usize;
fn leaves_set(&mut self) -> usize;
fn root(&self) -> FrOf<Self::Hasher>;
fn compute_root(&mut self) -> Result<FrOf<Self::Hasher>>;
fn get_subtree_root(&self, n: usize, index: usize) -> Result<FrOf<Self::Hasher>>;
fn set(&mut self, index: usize, leaf: FrOf<Self::Hasher>) -> Result<()>;
fn set_range<I>(&mut self, start: usize, leaves: I) -> Result<()>
where
I: ExactSizeIterator<Item = FrOf<Self::Hasher>>;
I: IntoIterator<Item = FrOf<Self::Hasher>>;
fn get(&self, index: usize) -> Result<FrOf<Self::Hasher>>;
fn get_empty_leaves_indices(&self) -> Vec<usize>;
fn override_range<I, J>(&mut self, start: usize, leaves: I, to_remove_indices: J) -> Result<()>
where
I: ExactSizeIterator<Item = FrOf<Self::Hasher>>,
J: ExactSizeIterator<Item = usize>;
I: IntoIterator<Item = FrOf<Self::Hasher>>,
J: IntoIterator<Item = usize>;
fn update_next(&mut self, leaf: FrOf<Self::Hasher>) -> Result<()>;
fn delete(&mut self, index: usize) -> Result<()>;
fn proof(&self, index: usize) -> Result<Self::Proof>;

View File

@@ -1,12 +1,12 @@
use crate::merkle_tree::{Hasher, ZerokitMerkleProof, ZerokitMerkleTree};
use crate::FrOf;
use color_eyre::{Report, Result};
use std::cmp::min;
use std::collections::HashMap;
use std::str::FromStr;
use std::{cmp::max, fmt::Debug};
////////////////////////////////////////////////////////////
///// Optimal Merkle Tree Implementation
/// Optimal Merkle Tree Implementation
////////////////////////////////////////////////////////////
/// The Merkle tree structure
@@ -27,10 +27,6 @@ where
/// The tree nodes
nodes: HashMap<(usize, usize), H::Fr>,
/// The indices of leaves which are set into zero upto next_index.
/// Set to 0 if the leaf is empty and set to 1 in otherwise.
cached_leaves_indices: Vec<u8>,
// The next available (i.e., never used) tree index. Equivalently, the number of leaves added to the tree
// (deletions leave next_index unchanged)
next_index: usize,
@@ -55,9 +51,7 @@ impl FromStr for OptimalMerkleConfig {
}
}
////////////////////////////////////////////////////////////
///// Implementations
////////////////////////////////////////////////////////////
/// Implementations
impl<H: Hasher> ZerokitMerkleTree for OptimalMerkleTree<H>
where
@@ -81,10 +75,9 @@ where
}
cached_nodes.reverse();
Ok(OptimalMerkleTree {
cached_nodes,
cached_nodes: cached_nodes.clone(),
depth,
nodes: HashMap::with_capacity(1 << depth),
cached_leaves_indices: vec![0; 1 << depth],
nodes: HashMap::new(),
next_index: 0,
metadata: Vec::new(),
})
@@ -105,40 +98,24 @@ where
}
// Returns the total number of leaves set
fn leaves_set(&self) -> usize {
fn leaves_set(&mut self) -> usize {
self.next_index
}
#[must_use]
// Returns the root of the tree
fn root(&self) -> H::Fr {
self.get_node(0, 0)
}
fn get_subtree_root(&self, n: usize, index: usize) -> Result<H::Fr> {
if n > self.depth() {
return Err(Report::msg("level exceeds depth size"));
}
if index >= self.capacity() {
return Err(Report::msg("index exceeds set size"));
}
if n == 0 {
Ok(self.root())
} else if n == self.depth {
self.get(index)
} else {
Ok(self.get_node(n, index >> (self.depth - n)))
}
}
// Sets a leaf at the specified tree index
fn set(&mut self, index: usize, leaf: H::Fr) -> Result<()> {
if index >= self.capacity() {
return Err(Report::msg("index exceeds set size"));
}
self.nodes.insert((self.depth, index), leaf);
self.update_hashes(index, 1)?;
self.recalculate_from(index)?;
self.next_index = max(self.next_index, index + 1);
self.cached_leaves_indices[index] = 1;
Ok(())
}
@@ -150,66 +127,49 @@ where
Ok(self.get_node(self.depth, index))
}
fn get_empty_leaves_indices(&self) -> Vec<usize> {
self.cached_leaves_indices
.iter()
.take(self.next_index)
.enumerate()
.filter(|&(_, &v)| v == 0u8)
.map(|(idx, _)| idx)
.collect()
}
// Sets multiple leaves from the specified tree index
fn set_range<I: ExactSizeIterator<Item = H::Fr>>(
&mut self,
start: usize,
leaves: I,
) -> Result<()> {
fn set_range<I: IntoIterator<Item = H::Fr>>(&mut self, start: usize, leaves: I) -> Result<()> {
let leaves = leaves.into_iter().collect::<Vec<_>>();
// check if the range is valid
let leaves_len = leaves.len();
if start + leaves_len > self.capacity() {
if start + leaves.len() > self.capacity() {
return Err(Report::msg("provided range exceeds set size"));
}
for (i, leaf) in leaves.enumerate() {
self.nodes.insert((self.depth, start + i), leaf);
self.cached_leaves_indices[start + i] = 1;
for (i, leaf) in leaves.iter().enumerate() {
self.nodes.insert((self.depth, start + i), *leaf);
self.recalculate_from(start + i)?;
}
self.update_hashes(start, leaves_len)?;
self.next_index = max(self.next_index, start + leaves_len);
self.next_index = max(self.next_index, start + leaves.len());
Ok(())
}
fn override_range<I, J>(&mut self, start: usize, leaves: I, indices: J) -> Result<()>
fn override_range<I, J>(&mut self, start: usize, leaves: I, to_remove_indices: J) -> Result<()>
where
I: ExactSizeIterator<Item = FrOf<Self::Hasher>>,
J: ExactSizeIterator<Item = usize>,
I: IntoIterator<Item = FrOf<Self::Hasher>>,
J: IntoIterator<Item = usize>,
{
let indices = indices.into_iter().collect::<Vec<_>>();
let min_index = *indices.first().unwrap();
let leaves_vec = leaves.into_iter().collect::<Vec<_>>();
let max_index = start + leaves_vec.len();
let mut set_values = vec![Self::Hasher::default_leaf(); max_index - min_index];
for i in min_index..start {
if !indices.contains(&i) {
let value = self.get_leaf(i);
set_values[i - min_index] = value;
}
let leaves = leaves.into_iter().collect::<Vec<_>>();
let to_remove_indices = to_remove_indices.into_iter().collect::<Vec<_>>();
// check if the range is valid
if leaves.len() + start - to_remove_indices.len() > self.capacity() {
return Err(Report::msg("provided range exceeds set size"));
}
for i in 0..leaves_vec.len() {
set_values[start - min_index + i] = leaves_vec[i];
// remove leaves
for i in &to_remove_indices {
self.delete(*i)?;
}
for i in indices {
self.cached_leaves_indices[i] = 0;
// add leaves
for (i, leaf) in leaves.iter().enumerate() {
self.nodes.insert((self.depth, start + i), *leaf);
self.recalculate_from(start + i)?;
}
self.set_range(start, set_values.into_iter())
.map_err(|e| Report::msg(e.to_string()))
self.next_index = max(
self.next_index,
start + leaves.len() - to_remove_indices.len(),
);
Ok(())
}
// Sets a leaf at the next available index
@@ -223,12 +183,11 @@ where
// We reset the leaf only if we previously set a leaf at that index
if index < self.next_index {
self.set(index, H::default_leaf())?;
self.cached_leaves_indices[index] = 0;
}
Ok(())
}
// Computes a merkle proof the leaf at the specified index
// Computes a merkle proof the the leaf at the specified index
fn proof(&self, index: usize) -> Result<Self::Proof> {
if index >= self.capacity() {
return Err(Report::msg("index exceeds set size"));
@@ -307,7 +266,6 @@ where
i >>= 1;
depth -= 1;
self.nodes.insert((depth, i), h);
self.cached_leaves_indices[index] = 1;
if depth == 0 {
break;
}
@@ -320,60 +278,6 @@ where
}
Ok(())
}
/// Update hashes after some leaves have been set or updated
/// index - first leaf index (which has been set or updated)
/// length - number of elements set or updated
fn update_hashes(&mut self, index: usize, length: usize) -> Result<()> {
// parent depth & index (used to store in the tree)
let mut parent_depth = self.depth - 1; // tree depth (or leaves depth) - 1
let mut parent_index = index >> 1;
let mut parent_index_bak = parent_index;
// maximum index at this depth
let parent_max_index_0 = (1 << parent_depth) / 2;
// Based on given length (number of elements we will update)
// we could restrict the parent_max_index
let current_index_max = if (index + length) % 2 == 0 {
index + length + 2
} else {
index + length + 1
};
let mut parent_max_index = min(current_index_max >> 1, parent_max_index_0);
// current depth & index (used to compute the hash)
// current depth initially == tree depth (or leaves depth)
let mut current_depth = self.depth;
let mut current_index = if index % 2 == 0 { index } else { index - 1 };
let mut current_index_bak = current_index;
loop {
// Hash 2 values at (current depth, current_index) & (current_depth, current_index + 1)
let n_hash = self.hash_couple(current_depth, current_index);
// Insert this hash at (parent_depth, parent_index)
self.nodes.insert((parent_depth, parent_index), n_hash);
if parent_depth == 0 {
// We just set the root hash of the tree - nothing to do anymore
break;
}
// Incr parent index
parent_index += 1;
// Incr current index (+2 because we've just hashed current index & current_index + 1)
current_index += 2;
if parent_index >= parent_max_index {
// reset (aka decr depth & reset indexes)
parent_depth -= 1;
parent_index = parent_index_bak >> 1;
parent_index_bak = parent_index;
parent_max_index >>= 1;
current_depth -= 1;
current_index = current_index_bak >> 1;
current_index_bak = current_index;
}
}
Ok(())
}
}
impl<H: Hasher> ZerokitMerkleProof for OptimalMerkleProof<H>
@@ -383,12 +287,14 @@ where
type Index = u8;
type Hasher = H;
#[must_use]
// Returns the length of a Merkle proof
fn length(&self) -> usize {
self.0.len()
}
/// Computes the leaf index corresponding to a Merkle proof
#[must_use]
fn leaf_index(&self) -> usize {
// In current implementation the path indexes in a proof correspond to the binary representation of the leaf index
let mut binary_repr = self.get_path_index();
@@ -398,16 +304,19 @@ where
.fold(0, |acc, digit| (acc << 1) + usize::from(digit))
}
#[must_use]
/// Returns the path elements forming a Merkle proof
fn get_path_elements(&self) -> Vec<H::Fr> {
self.0.iter().map(|x| x.0).collect()
}
/// Returns the path indexes forming a Merkle proof
#[must_use]
fn get_path_index(&self) -> Vec<u8> {
self.0.iter().map(|x| x.1).collect()
}
#[must_use]
/// Computes the Merkle root corresponding by iteratively hashing a Merkle proof with a given input leaf
fn compute_root_from(&self, leaf: &H::Fr) -> H::Fr {
let mut acc: H::Fr = *leaf;

View File

@@ -9,6 +9,8 @@
// The following implementation was adapted from https://github.com/arkworks-rs/sponge/blob/7d9b3a474c9ddb62890014aeaefcb142ac2b3776/src/poseidon/grain_lfsr.rs
#![allow(dead_code)]
use ark_ff::PrimeField;
use num_bigint::BigUint;
@@ -18,6 +20,7 @@ pub struct PoseidonGrainLFSR {
pub head: usize,
}
#[allow(unused_variables)]
impl PoseidonGrainLFSR {
pub fn new(
is_field: u64,

View File

@@ -7,7 +7,7 @@ use crate::poseidon_constants::find_poseidon_ark_and_mds;
use ark_ff::PrimeField;
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct RoundParameters<F: PrimeField> {
pub struct RoundParamenters<F: PrimeField> {
pub t: usize,
pub n_rounds_f: usize,
pub n_rounds_p: usize,
@@ -17,16 +17,16 @@ pub struct RoundParameters<F: PrimeField> {
}
pub struct Poseidon<F: PrimeField> {
round_params: Vec<RoundParameters<F>>,
round_params: Vec<RoundParamenters<F>>,
}
impl<F: PrimeField> Poseidon<F> {
// Loads round parameters and generates round constants
// poseidon_params is a vector containing tuples (t, RF, RP, skip_matrices)
// where: t is the rate (input length + 1), RF is the number of full rounds, RP is the number of partial rounds
// where: t is the rate (input lenght + 1), RF is the number of full rounds, RP is the number of partial rounds
// and skip_matrices is a (temporary) parameter used to generate secure MDS matrices (see comments in the description of find_poseidon_ark_and_mds)
// TODO: implement automatic generation of round parameters
pub fn from(poseidon_params: &[(usize, usize, usize, usize)]) -> Self {
let mut read_params = Vec::<RoundParameters<F>>::with_capacity(poseidon_params.len());
let mut read_params = Vec::<RoundParamenters<F>>::new();
for &(t, n_rounds_f, n_rounds_p, skip_matrices) in poseidon_params {
let (ark, mds) = find_poseidon_ark_and_mds::<F>(
@@ -38,7 +38,7 @@ impl<F: PrimeField> Poseidon<F> {
n_rounds_p as u64,
skip_matrices,
);
let rp = RoundParameters {
let rp = RoundParamenters {
t,
n_rounds_p,
n_rounds_f,
@@ -54,24 +54,24 @@ impl<F: PrimeField> Poseidon<F> {
}
}
pub fn get_parameters(&self) -> &Vec<RoundParameters<F>> {
&self.round_params
pub fn get_parameters(&self) -> Vec<RoundParamenters<F>> {
self.round_params.clone()
}
pub fn ark(&self, state: &mut [F], c: &[F], it: usize) {
state.iter_mut().enumerate().for_each(|(i, elem)| {
*elem += c[it + i];
});
for i in 0..state.len() {
state[i] += c[it + i];
}
}
pub fn sbox(&self, n_rounds_f: usize, n_rounds_p: usize, state: &mut [F], i: usize) {
if (i < n_rounds_f / 2) || (i >= n_rounds_f / 2 + n_rounds_p) {
state.iter_mut().for_each(|current_state| {
for current_state in &mut state.iter_mut() {
let aux = *current_state;
*current_state *= *current_state;
*current_state *= *current_state;
*current_state *= aux;
})
}
} else {
let aux = state[0];
state[0] *= state[0];
@@ -80,20 +80,21 @@ impl<F: PrimeField> Poseidon<F> {
}
}
pub fn mix_2(&self, state: &[F], m: &[Vec<F>], state_2: &mut [F]) {
pub fn mix(&self, state: &[F], m: &[Vec<F>]) -> Vec<F> {
let mut new_state: Vec<F> = Vec::new();
for i in 0..state.len() {
// Cache the row reference
let row = &m[i];
let mut acc = F::ZERO;
for j in 0..state.len() {
acc += row[j] * state[j];
new_state.push(F::zero());
for (j, state_item) in state.iter().enumerate() {
let mut mij = m[i][j];
mij *= state_item;
new_state[i] += mij;
}
state_2[i] = acc;
}
new_state.clone()
}
pub fn hash(&self, inp: &[F]) -> Result<F, String> {
// Note that the rate t becomes input length + 1; hence for length N we pick parameters with T = N + 1
pub fn hash(&self, inp: Vec<F>) -> Result<F, String> {
// Note that the rate t becomes input lenght + 1, hence for lenght N we pick parameters with T = N + 1
let t = inp.len() + 1;
// We seek the index (Poseidon's round_params is an ordered vector) for the parameters corresponding to t
@@ -105,9 +106,8 @@ impl<F: PrimeField> Poseidon<F> {
let param_index = param_index.unwrap();
let mut state = vec![F::ZERO; t];
let mut state_2 = state.clone();
state[1..].clone_from_slice(inp);
let mut state = vec![F::zero(); t];
state[1..].clone_from_slice(&inp);
for i in 0..(self.round_params[param_index].n_rounds_f
+ self.round_params[param_index].n_rounds_p)
@@ -123,8 +123,7 @@ impl<F: PrimeField> Poseidon<F> {
&mut state,
i,
);
self.mix_2(&state, &self.round_params[param_index].m, &mut state_2);
std::mem::swap(&mut state, &mut state_2);
state = self.mix(&state, &self.round_params[param_index].m);
}
Ok(state[0])

View File

@@ -1,8 +1,7 @@
// Tests adapted from https://github.com/worldcoin/semaphore-rs/blob/d462a4372f1fd9c27610f2acfe4841fab1d396aa/src/merkle_tree.rs
#[cfg(test)]
pub mod test {
mod test {
use hex_literal::hex;
use std::{fmt::Display, str::FromStr};
use tiny_keccak::{Hasher as _, Keccak};
use zerokit_utils::{
FullMerkleConfig, FullMerkleTree, Hasher, OptimalMerkleConfig, OptimalMerkleTree,
@@ -11,257 +10,74 @@ pub mod test {
#[derive(Clone, Copy, Eq, PartialEq)]
struct Keccak256;
#[derive(Clone, Copy, Eq, PartialEq, Debug, Default)]
struct TestFr([u8; 32]);
impl Hasher for Keccak256 {
type Fr = TestFr;
type Fr = [u8; 32];
fn default_leaf() -> Self::Fr {
TestFr([0; 32])
[0; 32]
}
fn hash(inputs: &[Self::Fr]) -> Self::Fr {
let mut output = [0; 32];
let mut hasher = Keccak::v256();
for element in inputs {
hasher.update(element.0.as_slice());
hasher.update(element);
}
hasher.finalize(&mut output);
TestFr(output)
output
}
}
impl Display for TestFr {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", hex::encode(self.0.as_slice()))
}
}
impl FromStr for TestFr {
type Err = std::string::FromUtf8Error;
fn from_str(s: &str) -> Result<Self, Self::Err> {
Ok(TestFr(s.as_bytes().try_into().unwrap()))
}
}
impl From<u32> for TestFr {
fn from(value: u32) -> Self {
let mut bytes: Vec<u8> = vec![0; 28];
bytes.extend_from_slice(&value.to_be_bytes());
TestFr(bytes.as_slice().try_into().unwrap())
}
}
const DEFAULT_DEPTH: usize = 2;
fn default_full_merkle_tree(depth: usize) -> FullMerkleTree<Keccak256> {
FullMerkleTree::<Keccak256>::new(depth, TestFr([0; 32]), FullMerkleConfig::default())
.unwrap()
}
fn default_optimal_merkle_tree(depth: usize) -> OptimalMerkleTree<Keccak256> {
OptimalMerkleTree::<Keccak256>::new(depth, TestFr([0; 32]), OptimalMerkleConfig::default())
.unwrap()
}
#[test]
fn test_root() {
let default_tree_root = TestFr(hex!(
"b4c11951957c6f8f642c4af61cd6b24640fec6dc7fc607ee8206a99e92410d30"
));
let leaves = [
hex!("0000000000000000000000000000000000000000000000000000000000000001"),
hex!("0000000000000000000000000000000000000000000000000000000000000002"),
hex!("0000000000000000000000000000000000000000000000000000000000000003"),
hex!("0000000000000000000000000000000000000000000000000000000000000004"),
];
let default_tree_root =
hex!("b4c11951957c6f8f642c4af61cd6b24640fec6dc7fc607ee8206a99e92410d30");
let roots = [
hex!("c1ba1812ff680ce84c1d5b4f1087eeb08147a4d510f3496b2849df3a73f5af95"),
hex!("893760ec5b5bee236f29e85aef64f17139c3c1b7ff24ce64eb6315fca0f2485b"),
hex!("222ff5e0b5877792c2bc1670e2ccd0c2c97cd7bb1672a57d598db05092d3d72c"),
hex!("a9bb8c3f1f12e9aa903a50c47f314b57610a3ab32f2d463293f58836def38d36"),
]
.map(TestFr);
];
let nof_leaves = 4;
let leaves: Vec<TestFr> = (1..=nof_leaves as u32).map(TestFr::from).collect();
let mut tree = default_full_merkle_tree(DEFAULT_DEPTH);
let mut tree =
FullMerkleTree::<Keccak256>::new(2, [0; 32], FullMerkleConfig::default()).unwrap();
assert_eq!(tree.root(), default_tree_root);
for i in 0..nof_leaves {
for i in 0..leaves.len() {
tree.set(i, leaves[i]).unwrap();
assert_eq!(tree.root(), roots[i]);
}
let mut tree = default_optimal_merkle_tree(DEFAULT_DEPTH);
let mut tree =
OptimalMerkleTree::<Keccak256>::new(2, [0; 32], OptimalMerkleConfig::default())
.unwrap();
assert_eq!(tree.root(), default_tree_root);
for i in 0..nof_leaves {
for i in 0..leaves.len() {
tree.set(i, leaves[i]).unwrap();
assert_eq!(tree.root(), roots[i]);
}
}
#[test]
fn test_get_empty_leaves_indices() {
let depth = 4;
let nof_leaves: usize = 1 << (depth - 1);
let leaves: Vec<TestFr> = (0..nof_leaves as u32).map(TestFr::from).collect();
let leaves_2: Vec<TestFr> = (0u32..2).map(TestFr::from).collect();
let leaves_4: Vec<TestFr> = (0u32..4).map(TestFr::from).collect();
let mut tree_full = default_full_merkle_tree(depth);
let _ = tree_full.set_range(0, leaves.clone().into_iter());
assert!(tree_full.get_empty_leaves_indices().is_empty());
let mut vec_idxs = Vec::new();
for i in 0..nof_leaves {
vec_idxs.push(i);
let _ = tree_full.delete(i);
assert_eq!(tree_full.get_empty_leaves_indices(), vec_idxs);
}
for i in (0..nof_leaves).rev() {
vec_idxs.pop();
let _ = tree_full.set(i, leaves[i]);
assert_eq!(tree_full.get_empty_leaves_indices(), vec_idxs);
}
// Check situation when the number of items to insert is less than the number of items to delete
tree_full
.override_range(0, leaves_2.clone().into_iter(), [0, 1, 2, 3].into_iter())
.unwrap();
// check if the indexes for write and delete are the same
tree_full
.override_range(0, leaves_4.clone().into_iter(), [0, 1, 2, 3].into_iter())
.unwrap();
assert_eq!(tree_full.get_empty_leaves_indices(), vec![]);
// check if indexes for deletion are before indexes for overwriting
tree_full
.override_range(4, leaves_4.clone().into_iter(), [0, 1, 2, 3].into_iter())
.unwrap();
assert_eq!(tree_full.get_empty_leaves_indices(), vec![0, 1, 2, 3]);
// check if the indices for write and delete do not overlap completely
tree_full
.override_range(2, leaves_4.clone().into_iter(), [0, 1, 2, 3].into_iter())
.unwrap();
assert_eq!(tree_full.get_empty_leaves_indices(), vec![0, 1]);
//// Optimal Merkle Tree Trest
let mut tree_opt = default_optimal_merkle_tree(depth);
let _ = tree_opt.set_range(0, leaves.clone().into_iter());
assert!(tree_opt.get_empty_leaves_indices().is_empty());
let mut vec_idxs = Vec::new();
for i in 0..nof_leaves {
vec_idxs.push(i);
let _ = tree_opt.delete(i);
assert_eq!(tree_opt.get_empty_leaves_indices(), vec_idxs);
}
for i in (0..nof_leaves).rev() {
vec_idxs.pop();
let _ = tree_opt.set(i, leaves[i]);
assert_eq!(tree_opt.get_empty_leaves_indices(), vec_idxs);
}
// Check situation when the number of items to insert is less than the number of items to delete
tree_opt
.override_range(0, leaves_2.clone().into_iter(), [0, 1, 2, 3].into_iter())
.unwrap();
// check if the indexes for write and delete are the same
tree_opt
.override_range(0, leaves_4.clone().into_iter(), [0, 1, 2, 3].into_iter())
.unwrap();
assert_eq!(tree_opt.get_empty_leaves_indices(), vec![]);
// check if indexes for deletion are before indexes for overwriting
tree_opt
.override_range(4, leaves_4.clone().into_iter(), [0, 1, 2, 3].into_iter())
.unwrap();
assert_eq!(tree_opt.get_empty_leaves_indices(), vec![0, 1, 2, 3]);
// check if the indices for write and delete do not overlap completely
tree_opt
.override_range(2, leaves_4.clone().into_iter(), [0, 1, 2, 3].into_iter())
.unwrap();
assert_eq!(tree_opt.get_empty_leaves_indices(), vec![0, 1]);
}
#[test]
fn test_subtree_root() {
let depth = 3;
let nof_leaves: usize = 4;
let leaves: Vec<TestFr> = (0..nof_leaves as u32).map(TestFr::from).collect();
let mut tree_full = default_optimal_merkle_tree(depth);
let _ = tree_full.set_range(0, leaves.iter().cloned());
for i in 0..nof_leaves {
// check leaves
assert_eq!(
tree_full.get(i).unwrap(),
tree_full.get_subtree_root(depth, i).unwrap()
);
// check root
assert_eq!(tree_full.root(), tree_full.get_subtree_root(0, i).unwrap());
}
// check intermediate nodes
for n in (1..=depth).rev() {
for i in (0..(1 << n)).step_by(2) {
let idx_l = i * (1 << (depth - n));
let idx_r = (i + 1) * (1 << (depth - n));
let idx_sr = idx_l;
let prev_l = tree_full.get_subtree_root(n, idx_l).unwrap();
let prev_r = tree_full.get_subtree_root(n, idx_r).unwrap();
let subroot = tree_full.get_subtree_root(n - 1, idx_sr).unwrap();
// check intermediate nodes
assert_eq!(Keccak256::hash(&[prev_l, prev_r]), subroot);
}
}
let mut tree_opt = default_full_merkle_tree(depth);
let _ = tree_opt.set_range(0, leaves.iter().cloned());
for i in 0..nof_leaves {
// check leaves
assert_eq!(
tree_opt.get(i).unwrap(),
tree_opt.get_subtree_root(depth, i).unwrap()
);
// check root
assert_eq!(tree_opt.root(), tree_opt.get_subtree_root(0, i).unwrap());
}
// check intermediate nodes
for n in (1..=depth).rev() {
for i in (0..(1 << n)).step_by(2) {
let idx_l = i * (1 << (depth - n));
let idx_r = (i + 1) * (1 << (depth - n));
let idx_sr = idx_l;
let prev_l = tree_opt.get_subtree_root(n, idx_l).unwrap();
let prev_r = tree_opt.get_subtree_root(n, idx_r).unwrap();
let subroot = tree_opt.get_subtree_root(n - 1, idx_sr).unwrap();
// check intermediate nodes
assert_eq!(Keccak256::hash(&[prev_l, prev_r]), subroot);
}
}
}
#[test]
fn test_proof() {
let nof_leaves = 4;
let leaves: Vec<TestFr> = (0..nof_leaves as u32).map(TestFr::from).collect();
let leaves = [
hex!("0000000000000000000000000000000000000000000000000000000000000001"),
hex!("0000000000000000000000000000000000000000000000000000000000000002"),
hex!("0000000000000000000000000000000000000000000000000000000000000003"),
hex!("0000000000000000000000000000000000000000000000000000000000000004"),
];
// We thest the FullMerkleTree implementation
let mut tree = default_full_merkle_tree(DEFAULT_DEPTH);
for i in 0..nof_leaves {
let mut tree =
FullMerkleTree::<Keccak256>::new(2, [0; 32], FullMerkleConfig::default()).unwrap();
for i in 0..leaves.len() {
// We set the leaves
tree.set(i, leaves[i]).unwrap();
@@ -278,12 +94,16 @@ pub mod test {
assert_eq!(proof.compute_root_from(&leaves[i]), tree.root());
// We check that the proof is not valid for another leaf
assert!(!tree.verify(&leaves[(i + 1) % nof_leaves], &proof).unwrap());
assert!(!tree
.verify(&leaves[(i + 1) % leaves.len()], &proof)
.unwrap());
}
// We test the OptimalMerkleTree implementation
let mut tree = default_optimal_merkle_tree(DEFAULT_DEPTH);
for i in 0..nof_leaves {
let mut tree =
OptimalMerkleTree::<Keccak256>::new(2, [0; 32], OptimalMerkleConfig::default())
.unwrap();
for i in 0..leaves.len() {
// We set the leaves
tree.set(i, leaves[i]).unwrap();
@@ -300,25 +120,32 @@ pub mod test {
assert_eq!(proof.compute_root_from(&leaves[i]), tree.root());
// We check that the proof is not valid for another leaf
assert!(!tree.verify(&leaves[(i + 1) % nof_leaves], &proof).unwrap());
assert!(!tree
.verify(&leaves[(i + 1) % leaves.len()], &proof)
.unwrap());
}
}
#[test]
fn test_override_range() {
let nof_leaves = 4;
let leaves: Vec<TestFr> = (0..nof_leaves as u32).map(TestFr::from).collect();
let initial_leaves = [
hex!("0000000000000000000000000000000000000000000000000000000000000001"),
hex!("0000000000000000000000000000000000000000000000000000000000000002"),
hex!("0000000000000000000000000000000000000000000000000000000000000003"),
hex!("0000000000000000000000000000000000000000000000000000000000000004"),
];
let mut tree = default_optimal_merkle_tree(DEFAULT_DEPTH);
let mut tree =
OptimalMerkleTree::<Keccak256>::new(2, [0; 32], OptimalMerkleConfig::default())
.unwrap();
// We set the leaves
tree.set_range(0, leaves.iter().cloned()).unwrap();
tree.set_range(0, initial_leaves.iter().cloned()).unwrap();
let new_leaves = [
hex!("0000000000000000000000000000000000000000000000000000000000000005"),
hex!("0000000000000000000000000000000000000000000000000000000000000006"),
]
.map(TestFr);
];
let to_delete_indices: [usize; 2] = [0, 1];
@@ -331,8 +158,8 @@ pub mod test {
.unwrap();
// ensure that the leaves are set correctly
for (i, &new_leaf) in new_leaves.iter().enumerate() {
assert_eq!(tree.get_leaf(i), new_leaf);
for i in 0..new_leaves.len() {
assert_eq!(tree.get_leaf(i), new_leaves[i]);
}
}
}

View File

@@ -25,10 +25,16 @@ mod test {
input_clean = input_clean.trim().to_string();
if radix == 10 {
BigUint::from_str_radix(&input_clean, radix).unwrap().into()
BigUint::from_str_radix(&input_clean, radix)
.unwrap()
.try_into()
.unwrap()
} else {
input_clean = input_clean.replace("0x", "");
BigUint::from_str_radix(&input_clean, radix).unwrap().into()
BigUint::from_str_radix(&input_clean, radix)
.unwrap()
.try_into()
.unwrap()
}
}
// The following constants were taken from https://github.com/arnaucube/poseidon-rs/blob/233027d6075a637c29ad84a8a44f5653b81f0410/src/constants.rs
@@ -3494,21 +3500,21 @@ mod test {
fn load_constants() -> (Vec<Vec<Fr>>, Vec<Vec<Vec<Fr>>>) {
let (c_str, m_str) = constants();
let mut c: Vec<Vec<Fr>> = Vec::new();
for c_i in c_str {
let mut ci: Vec<Fr> = Vec::new();
for c_i_j in c_i {
let b: Fr = str_to_fr(c_i_j, 10);
ci.push(b);
for i in 0..c_str.len() {
let mut cci: Vec<Fr> = Vec::new();
for j in 0..c_str[i].len() {
let b: Fr = str_to_fr(c_str[i][j], 10);
cci.push(b);
}
c.push(ci);
c.push(cci);
}
let mut m: Vec<Vec<Vec<Fr>>> = Vec::new();
for m_i in m_str {
for i in 0..m_str.len() {
let mut mi: Vec<Vec<Fr>> = Vec::new();
for m_i_j in m_i {
for j in 0..m_str[i].len() {
let mut mij: Vec<Fr> = Vec::new();
for m_i_j_k in m_i_j {
let b: Fr = str_to_fr(m_i_j_k, 10);
for k in 0..m_str[i][j].len() {
let b: Fr = str_to_fr(m_str[i][j][k], 10);
mij.push(b);
}
mi.push(mij);
@@ -3530,14 +3536,13 @@ mod test {
{
// We check if the round constants and matrices correspond to the one generated when instantiating Poseidon with ROUND_PARAMS
let (loaded_c, loaded_m) = load_constants();
let poseidon_hasher = Poseidon::<Fr>::from(&ROUND_PARAMS);
let poseidon_parameters = poseidon_hasher.get_parameters();
let poseidon_parameters = Poseidon::<Fr>::from(&ROUND_PARAMS).get_parameters();
for i in 0..poseidon_parameters.len() {
assert_eq!(loaded_c[i], poseidon_parameters[i].c);
assert_eq!(loaded_m[i], poseidon_parameters[i].m);
}
} else {
unreachable!();
assert!(false);
}
}
}

View File

@@ -1,131 +0,0 @@
#[cfg(test)]
mod test {
use ark_bn254::Fr;
use ark_ff::{AdditiveGroup, Field};
use std::collections::HashMap;
use std::str::FromStr;
use zerokit_utils::poseidon_hash::Poseidon;
const ROUND_PARAMS: [(usize, usize, usize, usize); 8] = [
(2, 8, 56, 0),
(3, 8, 57, 0),
(4, 8, 56, 0),
(5, 8, 60, 0),
(6, 8, 60, 0),
(7, 8, 63, 0),
(8, 8, 64, 0),
(9, 8, 63, 0),
];
#[test]
fn test_poseidon_hash_basic() {
let map = HashMap::from([
(
Fr::ZERO,
Fr::from_str(
"19014214495641488759237505126948346942972912379615652741039992445865937985820",
)
.unwrap(),
),
(
Fr::ONE,
Fr::from_str(
"18586133768512220936620570745912940619677854269274689475585506675881198879027",
)
.unwrap(),
),
(
Fr::from(255),
Fr::from_str(
"20026131459732984724454933360292530547665726761019872861025481903072111625788",
)
.unwrap(),
),
(
Fr::from(u16::MAX),
Fr::from_str(
"12358868638722666642632413418981275677998688723398440898957566982787708451243",
)
.unwrap(),
),
(
Fr::from(u64::MAX),
Fr::from_str(
"17449307747295017006142981453320720946812828330895590310359634430146721583189",
)
.unwrap(),
),
]);
// map (key: what to hash, value: expected value)
for (k, v) in map.into_iter() {
let hasher = Poseidon::<Fr>::from(&ROUND_PARAMS);
let h = hasher.hash(&[k]);
assert_eq!(h.unwrap(), v);
}
}
#[test]
fn test_poseidon_hash_multi() {
// All hashes done in a merkle tree (with leaves: [0, 1, 2, 3, 4, 5, 6, 7])
// ~ leaves
let fr_0 = Fr::ZERO;
let fr_1 = Fr::ONE;
let fr_2 = Fr::from(2);
let fr_3 = Fr::from(3);
let fr_4 = Fr::from(4);
let fr_5 = Fr::from(5);
let fr_6 = Fr::from(6);
let fr_7 = Fr::from(7);
let fr_0_1 = Fr::from_str(
"12583541437132735734108669866114103169564651237895298778035846191048104863326",
)
.unwrap();
let fr_2_3 = Fr::from_str(
"17197790661637433027297685226742709599380837544520340689137581733613433332983",
)
.unwrap();
let fr_4_5 = Fr::from_str(
"756592041685769348226045093946546956867261766023639881791475046640232555043",
)
.unwrap();
let fr_6_7 = Fr::from_str(
"5558359459771725727593826278265342308584225092343962757289948761260561575479",
)
.unwrap();
let fr_0_3 = Fr::from_str(
"3720616653028013822312861221679392249031832781774563366107458835261883914924",
)
.unwrap();
let fr_4_7 = Fr::from_str(
"7960741062684589801276390367952372418815534638314682948141519164356522829957",
)
.unwrap();
// ~ root
let fr_0_7 = Fr::from_str(
"11780650233517635876913804110234352847867393797952240856403268682492028497284",
)
.unwrap();
// map (key: what to hash, value: expected value)
let map = HashMap::from([
((fr_0, fr_1), fr_0_1),
((fr_2, fr_3), fr_2_3),
((fr_4, fr_5), fr_4_5),
((fr_6, fr_7), fr_6_7),
((fr_0_1, fr_2_3), fr_0_3),
((fr_4_5, fr_6_7), fr_4_7),
((fr_0_3, fr_4_7), fr_0_7),
]);
for (k, v) in map.into_iter() {
let hasher = Poseidon::<Fr>::from(&ROUND_PARAMS);
let h = hasher.hash(&[k.0, k.1]);
assert_eq!(h.unwrap(), v);
}
}
}