mirror of
https://github.com/vacp2p/rfc-index.git
synced 2026-01-07 23:04:09 -05:00
Fix mathematical variable definitions consistency
Standardize LaTeX notation for subscripts and superscripts:
- Use consistent braces for subscripts: K^{n}_{i} instead of K^{n}_i
- Fix malformed proof notation: pi^{K^{n}_{i}}_{Q}
- Use braces around mathbf arguments: \mathbf{K} instead of \mathbf K
- Add missing semicolons before "it also contains"
This commit is contained in:
@@ -90,16 +90,16 @@ class PublicHeader:
|
||||
**Fields:**
|
||||
|
||||
- version=0x01 is version of the protocol.
|
||||
- public_key is $K^{n}_i$,
|
||||
a public key from the set $\mathbf K^n_h$
|
||||
- public_key is $K^{n}_{i}$,
|
||||
a public key from the set $\mathbf{K}^{n}_{h}$
|
||||
as defined in the Message Encapsulation spec.
|
||||
- proof_of_quota is $\pi^{K^{n}i}{Q}$,
|
||||
a corresponding proof of quota for the key $K^{n}_i$ from the $\mathbf K^n_h$
|
||||
- proof_of_quota is $\pi^{K^{n}_{i}}_{Q}$,
|
||||
a corresponding proof of quota for the key $K^{n}_{i}$ from the $\mathbf{K}^{n}_{h}$;
|
||||
it also contains the key nullifier.
|
||||
- signature is $\sigma_{K^{n}_{i}}(\mathbf {h|P}i)$,
|
||||
- signature is $\sigma_{K^{n}_{i}}(\mathbf{h|P}_{i})$,
|
||||
a signature of the concatenation of the $i$-th encapsulation
|
||||
of the payload $\mathbf P$ and the private header $\mathbf h$,
|
||||
that can be verified by the public key $K^{n}{i}$.
|
||||
of the payload $\mathbf{P}$ and the private header $\mathbf{h}$,
|
||||
that can be verified by the public key $K^{n}_{i}$.
|
||||
|
||||
#### Private Header
|
||||
|
||||
@@ -107,7 +107,7 @@ The private_header must be generated as the outcome of
|
||||
the Message Encapsulation Mechanism.
|
||||
|
||||
The private header contains a set of encrypted blending headers
|
||||
$\mathbf h = (\mathbf b_1,...,\mathbf b_{h_{max}})$.
|
||||
$\mathbf{h} = (\mathbf{b}_{1},...,\mathbf{b}_{h_{max}})$.
|
||||
|
||||
```python
|
||||
private_header: list[BlendingHeader]
|
||||
@@ -118,7 +118,7 @@ as defined in the Global Parameters.
|
||||
|
||||
**Blending Header:**
|
||||
|
||||
The BlendingHeader ($\mathbf b_l$) is defined as follows:
|
||||
The BlendingHeader ($\mathbf{b}_{l}$) is defined as follows:
|
||||
|
||||
```python
|
||||
class BlendingHeader:
|
||||
@@ -132,17 +132,17 @@ class BlendingHeader:
|
||||
**Fields:**
|
||||
|
||||
- public_key is $K^{n}_{l}$,
|
||||
a public key from the set $\mathbf K^n_h$.
|
||||
- proof_of_quota is $\pi^{K^{n}l}{Q}$,
|
||||
a corresponding proof of quota for the key $K^{n}_l$ from the $\mathbf K^n_h$
|
||||
a public key from the set $\mathbf{K}^{n}_{h}$.
|
||||
- proof_of_quota is $\pi^{K^{n}_{l}}_{Q}$,
|
||||
a corresponding proof of quota for the key $K^{n}_{l}$ from the $\mathbf{K}^{n}_{h}$;
|
||||
it also contains the key nullifier.
|
||||
- signature is $\sigma_{K^{n}_{l}}(\mathbf {h|P}l)$,
|
||||
- signature is $\sigma_{K^{n}_{l}}(\mathbf{h|P}_{l})$,
|
||||
a signature of the concatenation of $l$-th encapsulation
|
||||
of the payload $\mathbf P$ and the private header $\mathbf h$,
|
||||
that can be verified by public key $K^{n}{l}$.
|
||||
- proof_of_selection is $\pi^{K^{n}{l+1},m{l+1}}{S}$,
|
||||
a proof of selection of the node index $m{l+1}$
|
||||
assuming valid proof of quota $\pi^{K^{n}{l}}{Q}$.
|
||||
of the payload $\mathbf{P}$ and the private header $\mathbf{h}$,
|
||||
that can be verified by public key $K^{n}_{l}$.
|
||||
- proof_of_selection is $\pi^{K^{n}_{l+1},m_{l+1}}_{S}$,
|
||||
a proof of selection of the node index $m_{l+1}$
|
||||
assuming valid proof of quota $\pi^{K^{n}_{l}}_{Q}$.
|
||||
- is_last is $\Omega$,
|
||||
a flag that indicates that this is the last encapsulation.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user