Merge branch 'dev' into toran/open-2856-handle-failed-replicate-predictions-with-retries-in-all

This commit is contained in:
Toran Bruce Richards
2025-12-18 18:51:38 +00:00
committed by GitHub
279 changed files with 55314 additions and 4102 deletions

View File

@@ -12,6 +12,10 @@ on:
- "autogpt_platform/frontend/**"
merge_group:
concurrency:
group: ${{ github.workflow }}-${{ github.event_name == 'merge_group' && format('merge-queue-{0}', github.ref) || format('{0}-{1}', github.ref, github.event.pull_request.number || github.sha) }}
cancel-in-progress: ${{ github.event_name == 'pull_request' }}
defaults:
run:
shell: bash

View File

@@ -12,6 +12,10 @@ on:
- "autogpt_platform/**"
merge_group:
concurrency:
group: ${{ github.workflow }}-${{ github.event_name == 'merge_group' && format('merge-queue-{0}', github.ref) || github.head_ref && format('pr-{0}', github.event.pull_request.number) || github.sha }}
cancel-in-progress: ${{ github.event_name == 'pull_request' }}
defaults:
run:
shell: bash

View File

@@ -11,7 +11,7 @@ jobs:
stale:
runs-on: ubuntu-latest
steps:
- uses: actions/stale@v9
- uses: actions/stale@v10
with:
# operations-per-run: 5000
stale-issue-message: >

View File

@@ -61,6 +61,6 @@ jobs:
pull-requests: write
runs-on: ubuntu-latest
steps:
- uses: actions/labeler@v5
- uses: actions/labeler@v6
with:
sync-labels: true

View File

@@ -1,4 +1,4 @@
.PHONY: start-core stop-core logs-core format lint migrate run-backend run-frontend
.PHONY: start-core stop-core logs-core format lint migrate run-backend run-frontend load-store-agents
# Run just Supabase + Redis + RabbitMQ
start-core:
@@ -42,7 +42,10 @@ run-frontend:
test-data:
cd backend && poetry run python test/test_data_creator.py
load-store-agents:
cd backend && poetry run load-store-agents
help:
@echo "Usage: make <target>"
@echo "Targets:"
@@ -54,4 +57,5 @@ help:
@echo " migrate - Run backend database migrations"
@echo " run-backend - Run the backend FastAPI server"
@echo " run-frontend - Run the frontend Next.js development server"
@echo " test-data - Run the test data creator"
@echo " test-data - Run the test data creator"
@echo " load-store-agents - Load store agents from agents/ folder into test database"

View File

@@ -0,0 +1,242 @@
listing_id,storeListingVersionId,slug,agent_name,agent_video,agent_image,featured,sub_heading,description,categories,useForOnboarding,is_available
6e60a900-9d7d-490e-9af2-a194827ed632,d85882b8-633f-44ce-a315-c20a8c123d19,flux-ai-image-generator,Flux AI Image Generator,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/ca154dd1-140e-454c-91bd-2d8a00de3f08.jpg"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/577d995d-bc38-40a9-a23f-1f30f5774bdb.jpg"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/415db1b7-115c-43ab-bd6c-4e9f7ef95be1.jpg""]",false,Transform ideas into breathtaking images,"Transform ideas into breathtaking images with this AI-powered Image Generator. Using cutting-edge Flux AI technology, the tool crafts highly detailed, photorealistic visuals from simple text prompts. Perfect for artists, marketers, and content creators, this generator produces unique images tailored to user specifications. From fantastical scenes to lifelike portraits, users can unleash creativity with professional-quality results in seconds. Easy to use and endlessly versatile, bring imagination to life with the AI Image Generator today!","[""creative""]",false,true
f11fc6e9-6166-4676-ac5d-f07127b270c1,c775f60d-b99f-418b-8fe0-53172258c3ce,youtube-transcription-scraper,YouTube Transcription Scraper,https://youtu.be/H8S3pU68lGE,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/65bce54b-0124-4b0d-9e3e-f9b89d0dc99e.jpg""]",false,Fetch the transcriptions from the most popular YouTube videos in your chosen topic,"Effortlessly gather transcriptions from multiple YouTube videos with this agent. It scrapes and compiles video transcripts into a clean, organized list, making it easy to extract insights, quotes, or content from various sources in one go. Ideal for researchers, content creators, and marketers looking to quickly analyze or repurpose video content.","[""writing""]",false,true
17908889-b599-4010-8e4f-bed19b8f3446,6e16e65a-ad34-4108-b4fd-4a23fced5ea2,business-ownerceo-finder,Decision Maker Lead Finder,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/1020d94e-b6a2-4fa7-bbdf-2c218b0de563.jpg""]",false,Contact CEOs today,"Find the key decision-makers you need, fast.
This agent identifies business owners or CEOs of local companies in any area you choose. Simply enter what kind of businesses youre looking for and where, and it will:
* Search the area and gather public information
* Return names, roles, and contact details when available
* Provide smart Google search suggestions if details arent found
Perfect for:
* B2B sales teams seeking verified leads
* Recruiters sourcing local talent
* Researchers looking to connect with business leaders
Save hours of manual searching and get straight to the people who matter most.","[""business""]",true,true
72beca1d-45ea-4403-a7ce-e2af168ee428,415b7352-0dc6-4214-9d87-0ad3751b711d,smart-meeting-brief,Smart Meeting Prep,https://youtu.be/9ydZR2hkxaY,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/2f116ce1-63ae-4d39-a5cd-f514defc2b97.png"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/0a71a60a-2263-4f12-9836-9c76ab49f155.png"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/95327695-9184-403c-907a-a9d3bdafa6a5.png"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/2bc77788-790b-47d4-8a61-ce97b695e9f5.png""]",true,Business meeting briefings delivered daily,"Never walk into a meeting unprepared again. Every day at 4 pm, the Smart Meeting Prep Agent scans your calendar for tomorrow's external meetings. It reviews your past email exchanges, researches each participant's background and role, and compiles the insights into a concise briefing, so you can close your workday ready for tomorrow's calls.
How It Works
1. At 4 pm, the agent scans your calendar and identifies external meetings scheduled for the next day.
2. It reviews recent email threads with each participant to surface key relationship history and communication context.
3. It conducts online research to gather publicly available information on roles, company backgrounds, and relevant professional data.
4. It produces a unified briefing for each participant, including past exchange highlights, profile notes, and strategic conversation points.","[""personal""]",true,true
9fa5697a-617b-4fae-aea0-7dbbed279976,b8ceb480-a7a2-4c90-8513-181a49f7071f,automated-support-ai,Automated Support Agent,https://youtu.be/nBMfu_5sgDA,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/ed56febc-2205-4179-9e7e-505d8500b66c.png""]",true,Automate up to 80 percent of inbound support emails,"Overview:
Support teams spend countless hours on basic tickets. This agent automates repetitive customer support tasks. It reads incoming requests, researches your knowledge base, and responds automatically when confident. When unsure, it escalates to a human for final resolution.
How it Works:
New support emails are routed to the agent.
The agent checks internal documentation for answers.
It measures confidence in the answer found and either replies directly or escalates to a human.
Business Value:
Automating the easy 80 percent of support tickets allows your team to focus on high-value, complex customer issues, improving efficiency and response times.","[""business""]",false,true
2bdac92b-a12c-4131-bb46-0e3b89f61413,31daf49d-31d3-476b-aa4c-099abc59b458,unspirational-poster-maker,Unspirational Poster Maker,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/6a490dac-27e5-405f-a4c4-8d1c55b85060.jpg"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/d343fbb5-478c-4e38-94df-4337293b61f1.jpg""]",false,Because adulting is hard,"This witty AI agent generates hilariously relatable ""motivational"" posters that tackle the everyday struggles of procrastination, overthinking, and workplace chaos with a blend of absurdity and sarcasm. From goldfish facing impossible tasks to cats in existential crises, The Unspirational Poster Maker designs tongue-in-cheek graphics and captions that mock productivity clichés and embrace our collective struggles to ""get it together."" Perfect for adding a touch of humour to the workday, these posters remind us that sometimes, all we can do is laugh at the chaos.","[""creative""]",false,true
9adf005e-2854-4cc7-98cf-f7103b92a7b7,a03b0d8c-4751-43d6-a54e-c3b7856ba4e3,ai-shortform-video-generator-create-viral-ready-content,AI Video Generator,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/8d2670b9-fea5-4966-a597-0a4511bffdc3.png"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/aabe8aec-0110-4ce7-a259-4f86fe8fe07d.png""]",false,Create Viral-Ready Shorts Content in Seconds,"OVERVIEW
Transform any trending headline or broad topic into a polished, vertical short-form video in a single run.
The agent automates research, scriptwriting, metadata creation, and Revid.ai rendering, returning one ready-to-publish MP4 plus its title, script and hashtags.
HOW IT WORKS
1. Input a topic or an exact news headline.
2. The agent fetches live search results and selects the most engaging related story.
3. Key facts are summarised into concise research notes.
4. Claude writes a 3035 second script with visual cues, a three-second hook, tension loops, and a call-to-action.
5. GPT-4o generates an eye-catching title and one or two discoverability hashtags.
6. The script is sent to a state-of-the-art AI video generator to render a single 9:16 MP4 (default: 720 p, 30 fps, voice “Brian”, style “movingImage”, music “Bladerunner 2049”).
All voice, style and resolution settings can be adjusted in the Builder before you press ""Run"".
7. Output delivered: Title, Script, Hashtags, Video URL.
KEY USE CASES
- Broad-topic explainers (e.g. “Artificial Intelligence” or “Climate Tech”).
- Real-time newsjacking with a specific breaking headline.
- Product-launch spotlights and quick event recaps while interest is high.
BUSINESS VALUE
- One-click speed: from idea to finished video in minutes.
- Consistent brand look: Revid presets keep voice, style and aspect ratio on spec.
- No-code workflow: marketers create social video without design or development queues.
- Cloud convenience: Auto-GPT Cloud users are pre-configured with all required keys.
Self-hosted users simply add OpenAI, Anthropic, Perplexity (OpenRouter/Jina) and Revid keys once.
IMPORTANT NOTES
- The agent outputs exactly one video per execution. Run it again for additional shorts.
- Video rendering time varies; AI-generated footage may take several minutes.","[""writing""]",false,true
864e48ef-fee5-42c1-b6a4-2ae139db9fc1,55d40473-0f31-4ada-9e40-d3a7139fcbd4,automated-blog-writer,Automated SEO Blog Writer,https://youtu.be/nKcDCbDVobs,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/2dd5f95b-5b30-4bf8-a11b-bac776c5141a.jpg""]",true,"Automate research, writing, and publishing for high-ranking blog posts","Scale your blog with a fully automated content engine. The Automated SEO Blog Writer learns your brand voice, finds high-demand keywords, and creates SEO-optimized articles that attract organic traffic and boost visibility.
How it works:
1. Share your pitch, website, and values.
2. The agent studies your site and uncovers proven SEO opportunities.
3. It spends two hours researching and drafting each post.
4. You set the cadence—publishing runs on autopilot.
Business value: Consistently publish research-backed, optimized posts that build domain authority, rankings, and thought leadership while you focus on what matters most.
Use cases:
• Founders: Keep your blog active with no time drain.
• Agencies: Deliver scalable SEO content for clients.
• Strategists: Automate execution, focus on strategy.
• Marketers: Drive steady organic growth.
• Local businesses: Capture nearby search traffic.","[""writing""]",false,true
6046f42e-eb84-406f-bae0-8e052064a4fa,a548e507-09a7-4b30-909c-f63fcda10fff,lead-finder-local-businesses,Lead Finder,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/abd6605f-d5f8-426b-af36-052e8ba5044f.webp""]",false,Auto-Prospect Like a Pro,"Turbo-charge your local lead generation with the AutoGPT Marketplaces top Google Maps prospecting agent. “Lead Finder: Local Businesses” delivers verified, ready-to-contact prospects in any niche and city—so you can focus on closing, not searching.
**WHAT IT DOES**
• Searches Google Maps via the official API (no scraping)
• Prompts like “dentists in Chicago” or “coffee shops near me”
• Returns: Name, Website, Rating, Reviews, **Phone & Address**
• Exports instantly to your CRM, sheet, or outreach workflow
**WHY YOULL LOVE IT**
✓ Hyper-targeted leads in minutes
✓ Unlimited searches & locations
✓ Zero CAPTCHAs or IP blocks
✓ Works on AutoGPT Cloud or self-hosted (with your API key)
✓ Cut prospecting time by 90%
**PERFECT FOR**
— Marketers & PPC agencies
— SEO consultants & designers
— SaaS founders & sales teams
Stop scrolling directories—start filling your pipeline. Start now and let AI prospect while you profit.
→ Click *Add to Library* and own your market today.","[""business""]",true,true
f623c862-24e9-44fc-8ce8-d8282bb51ad2,eafa21d3-bf14-4f63-a97f-a5ee41df83b3,linkedin-post-generator,LinkedIn Post Generator,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/297f6a8e-81a8-43e2-b106-c7ad4a5662df.png"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/fceebdc1-aef6-4000-97fc-4ef587f56bda.png""]",false,Autocraft LinkedIn gold,"Create researchdriven, highimpact LinkedIn posts in minutes. This agent searches YouTube for the best videos on your chosen topic, pulls their transcripts, and distils the most valuable insights into a polished post ready for your company page or personal feed.
FEATURES
• Automated YouTube research discovers and analyses topranked videos so you dont have to
• AIcurated synthesis combines multiple transcripts into one authoritative narrative
• Full creative control adjust style, tone, objective, opinion, clarity, target word count and number of videos
• LinkedInoptimised output hook, 23 key points, CTA, strategic line breaks, 35 hashtags, no markdown
• Oneclick publish returns a readytopost text block (≤1 300 characters)
HOW IT WORKS
1. Enter a topic and your preferred writing parameters.
2. The agent builds a YouTube search, fetches the page, and extracts the top N video URLs.
3. It pulls each transcript, then feeds them—plus your settings—into Claude 3.5 Sonnet.
4. The model writes a concise, engaging post designed for maximum LinkedIn engagement.
USE CASES
• Thoughtleadership updates backed by fresh video research
• Rapid industry summaries after major events, webinars, or conferences
• Consistent LinkedIn content for busy founders, marketers, and creators
WHY YOULL LOVE IT
Save hours of manual research, avoid surfacelevel hottakes, and publish posts that showcase real expertise—without the heavy lift.","[""writing""]",true,true
7d4120ad-b6b3-4419-8bdb-7dd7d350ef32,e7bb29a1-23c7-4fee-aa3b-5426174b8c52,youtube-to-linkedin-post-converter,YouTube to LinkedIn Post Converter,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/f084b326-a708-4396-be51-7ba59ad2ef32.png""]",false,Transform Your YouTube Videos into Engaging LinkedIn Posts with AI,"WHAT IT DOES:
This agent converts YouTube video content into a LinkedIn post by analyzing the video's transcript. It provides you with a tailored post that reflects the core ideas, key takeaways, and tone of the original video, optimizing it for engagement on LinkedIn.
HOW IT WORKS:
- You provide the URL to the YouTube video (required)
- You can choose the structure for the LinkedIn post (e.g., Personal Achievement Story, Lesson Learned, Thought Leadership, etc.)
- You can also select the tone (e.g., Inspirational, Analytical, Conversational, etc.)
- The transcript of the video is analyzed by the GPT-4 model and the Claude 3.5 Sonnet model
- The models extract key insights, memorable quotes, and the main points from the video
- Youll receive a LinkedIn post, formatted according to your chosen structure and tone, optimized for professional engagement
INPUTS:
- Source YouTube Video Provide the URL to the YouTube video
- Structure Choose the post format (e.g., Personal Achievement Story, Thought Leadership, etc.)
- Content Specify the main message or idea of the post (e.g., Hot Take, Key Takeaways, etc.)
- Tone Select the tone for the post (e.g., Conversational, Inspirational, etc.)
OUTPUT:
- LinkedIn Post A well-crafted, AI-generated LinkedIn post with a professional tone, based on the video content and your specified preferences
Perfect for content creators, marketers, and professionals who want to repurpose YouTube videos for LinkedIn and boost their professional branding.","[""writing""]",false,true
c61d6a83-ea48-4df8-b447-3da2d9fe5814,00fdd42c-a14c-4d19-a567-65374ea0e87f,personalized-morning-coffee-newsletter,Personal Newsletter,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/f4b38e4c-8166-4caf-9411-96c9c4c82d4c.png""]",false,Start your day with personalized AI newsletters that deliver credibility and context for every interest or mood.,"This Personal Newsletter Agent provides a bespoke daily digest on your favorite topics and tone. Whether you prefer industry insights, lighthearted reads, or breaking news, this agent crafts your own unique newsletter to keep you informed and entertained.
How It Works
1. Enter your favorite topics, industries, or areas of interest.
2. Choose your tone—professional, casual, or humorous.
3. Set your preferred delivery cadence: daily or weekly.
4. The agent scans top sources and compiles 35 engaging stories, insights, and fun facts into a conversational newsletter.
Skip the morning scroll and enjoy a thoughtfully curated newsletter designed just for you. Stay ahead of trends, spark creative ideas, and enjoy an effortless, informed start to your day.
Use Cases
• Executives: Get a daily digest of market updates and leadership insights.
• Marketers: Receive curated creative trends and campaign inspiration.
• Entrepreneurs: Stay updated on your industry without information overload.","[""research""]",true,true
e2e49cfc-4a39-4d62-a6b3-c095f6d025ff,fc2c9976-0962-4625-a27b-d316573a9e7f,email-address-finder,Email Scout - Contact Finder Assistant,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/da8a690a-7a8b-4c1d-b6f8-e2f840c0205d.jpg"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/6a2ac25c-1609-4881-8140-e6da2421afb3.jpg"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/26179263-fe06-45bd-b6a0-0754660a0a46.jpg""]",false,Find contact details from name and location using AI search,"Finding someone's professional email address can be time-consuming and frustrating. Manual searching across multiple websites, social profiles, and business directories often leads to dead ends or outdated information.
Email Scout automates this process by intelligently searching across publicly available sources when you provide a person's name and location. Simply input basic information like ""Tim Cook, USA"" or ""Sarah Smith, London"" and let the AI assistant do the work of finding potential contact details.
Key Features:
- Quick search from just name and location
- Scans multiple public sources
- Automated AI-powered search process
- Easy to use with simple inputs
Perfect for recruiters, business development professionals, researchers, and anyone needing to establish professional contact.
Note: This tool searches only publicly available information. Search results depend on what contact information people have made public. Some searches may not yield results if the information isn't publicly accessible.","[""""]",false,true
81bcc372-0922-4a36-bc35-f7b1e51d6939,e437cc95-e671-489d-b915-76561fba8c7f,ai-youtube-to-blog-converter,YouTube Video to SEO Blog Writer,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/239e5a41-2515-4e1c-96ef-31d0d37ecbeb.webp"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/c7d96966-786f-4be6-ad7d-3a51c84efc0e.png"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/0275a74c-e2c2-4e29-a6e4-3a616c3c35dd.png""]",false,One link. One click. One powerful blog post.,"Effortlessly transform your YouTube videos into high-quality, SEO-optimized blog posts.
Your videos deserve a second life—in writing.
Make your content work twice as hard by repurposing it into engaging, searchable articles.
Perfect for content creators, marketers, and bloggers, this tool analyzes video content and generates well-structured blog posts tailored to your tone, audience, and word count. Just paste a YouTube URL and let the AI handle the rest.
FEATURES
• CONTENT ANALYSIS
Extracts key points from the video while preserving your message and intent.
• CUSTOMIZABLE OUTPUT
Select a tone that fits your audience: casual, professional, educational, or formal.
• SEO OPTIMIZATION
Automatically creates engaging titles and structured subheadings for better search visibility.
• USER-FRIENDLY
Repurpose your videos into written content to expand your reach and improve accessibility.
Whether you're looking to grow your blog, boost SEO, or simply get more out of your content, the AI YouTube-to-Blog Converter makes it effortless.
","[""writing""]",true,true
5c3510d2-fc8b-4053-8e19-67f53c86eb1a,f2cc74bb-f43f-4395-9c35-ecb30b5b4fc9,ai-webpage-copy-improver,AI Webpage Copy Improver,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/d562d26f-5891-4b09-8859-fbb205972313.jpg""]",false,Boost Your Website's Search Engine Performance,"Elevate your web content with this powerful AI Webpage Copy Improver. Designed for marketers, SEO specialists, and web developers, this tool analyses and enhances website copy for maximum impact. Using advanced language models, it optimizes text for better clarity, SEO performance, and increased conversion rates. The AI examines your existing content, identifies areas for improvement, and generates refined copy that maintains your brand voice while boosting engagement. From homepage headlines to product descriptions, transform your web presence with AI-driven insights. Improve readability, incorporate targeted keywords, and craft compelling calls-to-action - all with the click of a button. Take your digital marketing to the next level with the AI Webpage Copy Improver.","[""marketing""]",true,true
94d03bd3-7d44-4d47-b60c-edb2f89508d6,b6f6f0d3-49f4-4e3b-8155-ffe9141b32c0,domain-name-finder,Domain Name Finder,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/28545e09-b2b8-4916-b4c6-67f982510a78.jpeg""]",false,Instantly generate brand-ready domain names that are actually available,"Overview:
Finding a domain name that fits your brand shouldnt take hours of searching and failed checks. The Domain Name Finder Agent turns your pitch into hundreds of creative, brand-ready domain ideas—filtered by live availability so every result is actionable.
How It Works
1. Input your product pitch, company name, or core keywords.
2. The agent analyzes brand tone, audience, and industry context.
3. It generates a list of unique, memorable domains that match your criteria.
4. All names are pre-filtered for real-time availability, so you can register immediately.
Business Value
Save hours of guesswork and eliminate dead ends. Accelerate brand launches, startup naming, and campaign creation with ready-to-claim domains.
Key Use Cases
• Startup Founders: Quickly find brand-ready domains for MVP launches or rebrands.
• Marketers: Test name options across campaigns with instant availability data.
• Entrepreneurs: Validate ideas faster with instant domain options.","[""business""]",false,true
7a831906-daab-426f-9d66-bcf98d869426,516d813b-d1bc-470f-add7-c63a4b2c2bad,ai-function,AI Function,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/620e8117-2ee1-4384-89e6-c2ef4ec3d9c9.webp"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/476259e2-5a79-4a7b-8e70-deeebfca70d7.png""]",false,Never Code Again,"AI FUNCTION MAGIC
Your AIpowered assistant for turning plainEnglish descriptions into working Python functions.
HOW IT WORKS
1. Describe what the function should do.
2. Specify the inputs it needs.
3. Receive the generated Python code.
FEATURES
- Effortless Function Generation: convert naturallanguage specs into complete functions.
- Customizable Inputs: define the parameters that matter to you.
- Versatile Use Cases: simulate data, automate tasks, prototype ideas.
- Seamless Integration: add the generated function directly to your codebase.
EXAMPLE
Request: “Create a function that generates 20 examples of fake people, each with a name, date of birth, job title, and age.”
Input parameter: number_of_people (default 20)
Result: a list of dictionaries such as
[
{ ""name"": ""Emma Martinez"", ""date_of_birth"": ""19921103"", ""job_title"": ""Data Analyst"", ""age"": 32 },
{ ""name"": ""Liam OConnor"", ""date_of_birth"": ""19850719"", ""job_title"": ""Marketing Manager"", ""age"": 39 },
…18 more entries…
]","[""development""]",false,true
1 listing_id storeListingVersionId slug agent_name agent_video agent_image featured sub_heading description categories useForOnboarding is_available
2 6e60a900-9d7d-490e-9af2-a194827ed632 d85882b8-633f-44ce-a315-c20a8c123d19 flux-ai-image-generator Flux AI Image Generator ["https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/ca154dd1-140e-454c-91bd-2d8a00de3f08.jpg","https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/577d995d-bc38-40a9-a23f-1f30f5774bdb.jpg","https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/415db1b7-115c-43ab-bd6c-4e9f7ef95be1.jpg"] false Transform ideas into breathtaking images Transform ideas into breathtaking images with this AI-powered Image Generator. Using cutting-edge Flux AI technology, the tool crafts highly detailed, photorealistic visuals from simple text prompts. Perfect for artists, marketers, and content creators, this generator produces unique images tailored to user specifications. From fantastical scenes to lifelike portraits, users can unleash creativity with professional-quality results in seconds. Easy to use and endlessly versatile, bring imagination to life with the AI Image Generator today! ["creative"] false true
3 f11fc6e9-6166-4676-ac5d-f07127b270c1 c775f60d-b99f-418b-8fe0-53172258c3ce youtube-transcription-scraper YouTube Transcription Scraper https://youtu.be/H8S3pU68lGE ["https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/65bce54b-0124-4b0d-9e3e-f9b89d0dc99e.jpg"] false Fetch the transcriptions from the most popular YouTube videos in your chosen topic Effortlessly gather transcriptions from multiple YouTube videos with this agent. It scrapes and compiles video transcripts into a clean, organized list, making it easy to extract insights, quotes, or content from various sources in one go. Ideal for researchers, content creators, and marketers looking to quickly analyze or repurpose video content. ["writing"] false true
4 17908889-b599-4010-8e4f-bed19b8f3446 6e16e65a-ad34-4108-b4fd-4a23fced5ea2 business-ownerceo-finder Decision Maker Lead Finder ["https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/1020d94e-b6a2-4fa7-bbdf-2c218b0de563.jpg"] false Contact CEOs today Find the key decision-makers you need, fast. This agent identifies business owners or CEOs of local companies in any area you choose. Simply enter what kind of businesses you’re looking for and where, and it will: * Search the area and gather public information * Return names, roles, and contact details when available * Provide smart Google search suggestions if details aren’t found Perfect for: * B2B sales teams seeking verified leads * Recruiters sourcing local talent * Researchers looking to connect with business leaders Save hours of manual searching and get straight to the people who matter most. ["business"] true true
5 72beca1d-45ea-4403-a7ce-e2af168ee428 415b7352-0dc6-4214-9d87-0ad3751b711d smart-meeting-brief Smart Meeting Prep https://youtu.be/9ydZR2hkxaY ["https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/2f116ce1-63ae-4d39-a5cd-f514defc2b97.png","https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/0a71a60a-2263-4f12-9836-9c76ab49f155.png","https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/95327695-9184-403c-907a-a9d3bdafa6a5.png","https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/2bc77788-790b-47d4-8a61-ce97b695e9f5.png"] true Business meeting briefings delivered daily Never walk into a meeting unprepared again. Every day at 4 pm, the Smart Meeting Prep Agent scans your calendar for tomorrow's external meetings. It reviews your past email exchanges, researches each participant's background and role, and compiles the insights into a concise briefing, so you can close your workday ready for tomorrow's calls. How It Works 1. At 4 pm, the agent scans your calendar and identifies external meetings scheduled for the next day. 2. It reviews recent email threads with each participant to surface key relationship history and communication context. 3. It conducts online research to gather publicly available information on roles, company backgrounds, and relevant professional data. 4. It produces a unified briefing for each participant, including past exchange highlights, profile notes, and strategic conversation points. ["personal"] true true
6 9fa5697a-617b-4fae-aea0-7dbbed279976 b8ceb480-a7a2-4c90-8513-181a49f7071f automated-support-ai Automated Support Agent https://youtu.be/nBMfu_5sgDA ["https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/ed56febc-2205-4179-9e7e-505d8500b66c.png"] true Automate up to 80 percent of inbound support emails Overview: Support teams spend countless hours on basic tickets. This agent automates repetitive customer support tasks. It reads incoming requests, researches your knowledge base, and responds automatically when confident. When unsure, it escalates to a human for final resolution. How it Works: New support emails are routed to the agent. The agent checks internal documentation for answers. It measures confidence in the answer found and either replies directly or escalates to a human. Business Value: Automating the easy 80 percent of support tickets allows your team to focus on high-value, complex customer issues, improving efficiency and response times. ["business"] false true
7 2bdac92b-a12c-4131-bb46-0e3b89f61413 31daf49d-31d3-476b-aa4c-099abc59b458 unspirational-poster-maker Unspirational Poster Maker ["https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/6a490dac-27e5-405f-a4c4-8d1c55b85060.jpg","https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/d343fbb5-478c-4e38-94df-4337293b61f1.jpg"] false Because adulting is hard This witty AI agent generates hilariously relatable "motivational" posters that tackle the everyday struggles of procrastination, overthinking, and workplace chaos with a blend of absurdity and sarcasm. From goldfish facing impossible tasks to cats in existential crises, The Unspirational Poster Maker designs tongue-in-cheek graphics and captions that mock productivity clichés and embrace our collective struggles to "get it together." Perfect for adding a touch of humour to the workday, these posters remind us that sometimes, all we can do is laugh at the chaos. ["creative"] false true
8 9adf005e-2854-4cc7-98cf-f7103b92a7b7 a03b0d8c-4751-43d6-a54e-c3b7856ba4e3 ai-shortform-video-generator-create-viral-ready-content AI Video Generator ["https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/8d2670b9-fea5-4966-a597-0a4511bffdc3.png","https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/aabe8aec-0110-4ce7-a259-4f86fe8fe07d.png"] false Create Viral-Ready Shorts Content in Seconds OVERVIEW Transform any trending headline or broad topic into a polished, vertical short-form video in a single run. The agent automates research, scriptwriting, metadata creation, and Revid.ai rendering, returning one ready-to-publish MP4 plus its title, script and hashtags. HOW IT WORKS 1. Input a topic or an exact news headline. 2. The agent fetches live search results and selects the most engaging related story. 3. Key facts are summarised into concise research notes. 4. Claude writes a 30–35 second script with visual cues, a three-second hook, tension loops, and a call-to-action. 5. GPT-4o generates an eye-catching title and one or two discoverability hashtags. 6. The script is sent to a state-of-the-art AI video generator to render a single 9:16 MP4 (default: 720 p, 30 fps, voice “Brian”, style “movingImage”, music “Bladerunner 2049”). – All voice, style and resolution settings can be adjusted in the Builder before you press "Run". 7. Output delivered: Title, Script, Hashtags, Video URL. KEY USE CASES - Broad-topic explainers (e.g. “Artificial Intelligence” or “Climate Tech”). - Real-time newsjacking with a specific breaking headline. - Product-launch spotlights and quick event recaps while interest is high. BUSINESS VALUE - One-click speed: from idea to finished video in minutes. - Consistent brand look: Revid presets keep voice, style and aspect ratio on spec. - No-code workflow: marketers create social video without design or development queues. - Cloud convenience: Auto-GPT Cloud users are pre-configured with all required keys. Self-hosted users simply add OpenAI, Anthropic, Perplexity (OpenRouter/Jina) and Revid keys once. IMPORTANT NOTES - The agent outputs exactly one video per execution. Run it again for additional shorts. - Video rendering time varies; AI-generated footage may take several minutes. ["writing"] false true
9 864e48ef-fee5-42c1-b6a4-2ae139db9fc1 55d40473-0f31-4ada-9e40-d3a7139fcbd4 automated-blog-writer Automated SEO Blog Writer https://youtu.be/nKcDCbDVobs ["https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/2dd5f95b-5b30-4bf8-a11b-bac776c5141a.jpg"] true Automate research, writing, and publishing for high-ranking blog posts Scale your blog with a fully automated content engine. The Automated SEO Blog Writer learns your brand voice, finds high-demand keywords, and creates SEO-optimized articles that attract organic traffic and boost visibility. How it works: 1. Share your pitch, website, and values. 2. The agent studies your site and uncovers proven SEO opportunities. 3. It spends two hours researching and drafting each post. 4. You set the cadence—publishing runs on autopilot. Business value: Consistently publish research-backed, optimized posts that build domain authority, rankings, and thought leadership while you focus on what matters most. Use cases: • Founders: Keep your blog active with no time drain. • Agencies: Deliver scalable SEO content for clients. • Strategists: Automate execution, focus on strategy. • Marketers: Drive steady organic growth. • Local businesses: Capture nearby search traffic. ["writing"] false true
10 6046f42e-eb84-406f-bae0-8e052064a4fa a548e507-09a7-4b30-909c-f63fcda10fff lead-finder-local-businesses Lead Finder ["https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/abd6605f-d5f8-426b-af36-052e8ba5044f.webp"] false Auto-Prospect Like a Pro Turbo-charge your local lead generation with the AutoGPT Marketplace’s top Google Maps prospecting agent. “Lead Finder: Local Businesses” delivers verified, ready-to-contact prospects in any niche and city—so you can focus on closing, not searching. **WHAT IT DOES** • Searches Google Maps via the official API (no scraping) • Prompts like “dentists in Chicago” or “coffee shops near me” • Returns: Name, Website, Rating, Reviews, **Phone & Address** • Exports instantly to your CRM, sheet, or outreach workflow **WHY YOU’LL LOVE IT** ✓ Hyper-targeted leads in minutes ✓ Unlimited searches & locations ✓ Zero CAPTCHAs or IP blocks ✓ Works on AutoGPT Cloud or self-hosted (with your API key) ✓ Cut prospecting time by 90% **PERFECT FOR** — Marketers & PPC agencies — SEO consultants & designers — SaaS founders & sales teams Stop scrolling directories—start filling your pipeline. Start now and let AI prospect while you profit. → Click *Add to Library* and own your market today. ["business"] true true
11 f623c862-24e9-44fc-8ce8-d8282bb51ad2 eafa21d3-bf14-4f63-a97f-a5ee41df83b3 linkedin-post-generator LinkedIn Post Generator ["https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/297f6a8e-81a8-43e2-b106-c7ad4a5662df.png","https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/fceebdc1-aef6-4000-97fc-4ef587f56bda.png"] false Auto‑craft LinkedIn gold Create research‑driven, high‑impact LinkedIn posts in minutes. This agent searches YouTube for the best videos on your chosen topic, pulls their transcripts, and distils the most valuable insights into a polished post ready for your company page or personal feed. FEATURES • Automated YouTube research – discovers and analyses top‑ranked videos so you don’t have to • AI‑curated synthesis – combines multiple transcripts into one authoritative narrative • Full creative control – adjust style, tone, objective, opinion, clarity, target word count and number of videos • LinkedIn‑optimised output – hook, 2‑3 key points, CTA, strategic line breaks, 3‑5 hashtags, no markdown • One‑click publish – returns a ready‑to‑post text block (≤1 300 characters) HOW IT WORKS 1. Enter a topic and your preferred writing parameters. 2. The agent builds a YouTube search, fetches the page, and extracts the top N video URLs. 3. It pulls each transcript, then feeds them—plus your settings—into Claude 3.5 Sonnet. 4. The model writes a concise, engaging post designed for maximum LinkedIn engagement. USE CASES • Thought‑leadership updates backed by fresh video research • Rapid industry summaries after major events, webinars, or conferences • Consistent LinkedIn content for busy founders, marketers, and creators WHY YOU’LL LOVE IT Save hours of manual research, avoid surface‑level hot‑takes, and publish posts that showcase real expertise—without the heavy lift. ["writing"] true true
12 7d4120ad-b6b3-4419-8bdb-7dd7d350ef32 e7bb29a1-23c7-4fee-aa3b-5426174b8c52 youtube-to-linkedin-post-converter YouTube to LinkedIn Post Converter ["https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/f084b326-a708-4396-be51-7ba59ad2ef32.png"] false Transform Your YouTube Videos into Engaging LinkedIn Posts with AI WHAT IT DOES: This agent converts YouTube video content into a LinkedIn post by analyzing the video's transcript. It provides you with a tailored post that reflects the core ideas, key takeaways, and tone of the original video, optimizing it for engagement on LinkedIn. HOW IT WORKS: - You provide the URL to the YouTube video (required) - You can choose the structure for the LinkedIn post (e.g., Personal Achievement Story, Lesson Learned, Thought Leadership, etc.) - You can also select the tone (e.g., Inspirational, Analytical, Conversational, etc.) - The transcript of the video is analyzed by the GPT-4 model and the Claude 3.5 Sonnet model - The models extract key insights, memorable quotes, and the main points from the video - You’ll receive a LinkedIn post, formatted according to your chosen structure and tone, optimized for professional engagement INPUTS: - Source YouTube Video – Provide the URL to the YouTube video - Structure – Choose the post format (e.g., Personal Achievement Story, Thought Leadership, etc.) - Content – Specify the main message or idea of the post (e.g., Hot Take, Key Takeaways, etc.) - Tone – Select the tone for the post (e.g., Conversational, Inspirational, etc.) OUTPUT: - LinkedIn Post – A well-crafted, AI-generated LinkedIn post with a professional tone, based on the video content and your specified preferences Perfect for content creators, marketers, and professionals who want to repurpose YouTube videos for LinkedIn and boost their professional branding. ["writing"] false true
13 c61d6a83-ea48-4df8-b447-3da2d9fe5814 00fdd42c-a14c-4d19-a567-65374ea0e87f personalized-morning-coffee-newsletter Personal Newsletter ["https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/f4b38e4c-8166-4caf-9411-96c9c4c82d4c.png"] false Start your day with personalized AI newsletters that deliver credibility and context for every interest or mood. This Personal Newsletter Agent provides a bespoke daily digest on your favorite topics and tone. Whether you prefer industry insights, lighthearted reads, or breaking news, this agent crafts your own unique newsletter to keep you informed and entertained. How It Works 1. Enter your favorite topics, industries, or areas of interest. 2. Choose your tone—professional, casual, or humorous. 3. Set your preferred delivery cadence: daily or weekly. 4. The agent scans top sources and compiles 3–5 engaging stories, insights, and fun facts into a conversational newsletter. Skip the morning scroll and enjoy a thoughtfully curated newsletter designed just for you. Stay ahead of trends, spark creative ideas, and enjoy an effortless, informed start to your day. Use Cases • Executives: Get a daily digest of market updates and leadership insights. • Marketers: Receive curated creative trends and campaign inspiration. • Entrepreneurs: Stay updated on your industry without information overload. ["research"] true true
14 e2e49cfc-4a39-4d62-a6b3-c095f6d025ff fc2c9976-0962-4625-a27b-d316573a9e7f email-address-finder Email Scout - Contact Finder Assistant ["https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/da8a690a-7a8b-4c1d-b6f8-e2f840c0205d.jpg","https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/6a2ac25c-1609-4881-8140-e6da2421afb3.jpg","https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/26179263-fe06-45bd-b6a0-0754660a0a46.jpg"] false Find contact details from name and location using AI search Finding someone's professional email address can be time-consuming and frustrating. Manual searching across multiple websites, social profiles, and business directories often leads to dead ends or outdated information. Email Scout automates this process by intelligently searching across publicly available sources when you provide a person's name and location. Simply input basic information like "Tim Cook, USA" or "Sarah Smith, London" and let the AI assistant do the work of finding potential contact details. Key Features: - Quick search from just name and location - Scans multiple public sources - Automated AI-powered search process - Easy to use with simple inputs Perfect for recruiters, business development professionals, researchers, and anyone needing to establish professional contact. Note: This tool searches only publicly available information. Search results depend on what contact information people have made public. Some searches may not yield results if the information isn't publicly accessible. [""] false true
15 81bcc372-0922-4a36-bc35-f7b1e51d6939 e437cc95-e671-489d-b915-76561fba8c7f ai-youtube-to-blog-converter YouTube Video to SEO Blog Writer ["https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/239e5a41-2515-4e1c-96ef-31d0d37ecbeb.webp","https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/c7d96966-786f-4be6-ad7d-3a51c84efc0e.png","https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/0275a74c-e2c2-4e29-a6e4-3a616c3c35dd.png"] false One link. One click. One powerful blog post. Effortlessly transform your YouTube videos into high-quality, SEO-optimized blog posts. Your videos deserve a second life—in writing. Make your content work twice as hard by repurposing it into engaging, searchable articles. Perfect for content creators, marketers, and bloggers, this tool analyzes video content and generates well-structured blog posts tailored to your tone, audience, and word count. Just paste a YouTube URL and let the AI handle the rest. FEATURES • CONTENT ANALYSIS Extracts key points from the video while preserving your message and intent. • CUSTOMIZABLE OUTPUT Select a tone that fits your audience: casual, professional, educational, or formal. • SEO OPTIMIZATION Automatically creates engaging titles and structured subheadings for better search visibility. • USER-FRIENDLY Repurpose your videos into written content to expand your reach and improve accessibility. Whether you're looking to grow your blog, boost SEO, or simply get more out of your content, the AI YouTube-to-Blog Converter makes it effortless. ["writing"] true true
16 5c3510d2-fc8b-4053-8e19-67f53c86eb1a f2cc74bb-f43f-4395-9c35-ecb30b5b4fc9 ai-webpage-copy-improver AI Webpage Copy Improver ["https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/d562d26f-5891-4b09-8859-fbb205972313.jpg"] false Boost Your Website's Search Engine Performance Elevate your web content with this powerful AI Webpage Copy Improver. Designed for marketers, SEO specialists, and web developers, this tool analyses and enhances website copy for maximum impact. Using advanced language models, it optimizes text for better clarity, SEO performance, and increased conversion rates. The AI examines your existing content, identifies areas for improvement, and generates refined copy that maintains your brand voice while boosting engagement. From homepage headlines to product descriptions, transform your web presence with AI-driven insights. Improve readability, incorporate targeted keywords, and craft compelling calls-to-action - all with the click of a button. Take your digital marketing to the next level with the AI Webpage Copy Improver. ["marketing"] true true
17 94d03bd3-7d44-4d47-b60c-edb2f89508d6 b6f6f0d3-49f4-4e3b-8155-ffe9141b32c0 domain-name-finder Domain Name Finder ["https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/28545e09-b2b8-4916-b4c6-67f982510a78.jpeg"] false Instantly generate brand-ready domain names that are actually available Overview: Finding a domain name that fits your brand shouldn’t take hours of searching and failed checks. The Domain Name Finder Agent turns your pitch into hundreds of creative, brand-ready domain ideas—filtered by live availability so every result is actionable. How It Works 1. Input your product pitch, company name, or core keywords. 2. The agent analyzes brand tone, audience, and industry context. 3. It generates a list of unique, memorable domains that match your criteria. 4. All names are pre-filtered for real-time availability, so you can register immediately. Business Value Save hours of guesswork and eliminate dead ends. Accelerate brand launches, startup naming, and campaign creation with ready-to-claim domains. Key Use Cases • Startup Founders: Quickly find brand-ready domains for MVP launches or rebrands. • Marketers: Test name options across campaigns with instant availability data. • Entrepreneurs: Validate ideas faster with instant domain options. ["business"] false true
18 7a831906-daab-426f-9d66-bcf98d869426 516d813b-d1bc-470f-add7-c63a4b2c2bad ai-function AI Function ["https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/620e8117-2ee1-4384-89e6-c2ef4ec3d9c9.webp","https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/476259e2-5a79-4a7b-8e70-deeebfca70d7.png"] false Never Code Again AI FUNCTION MAGIC Your AI‑powered assistant for turning plain‑English descriptions into working Python functions. HOW IT WORKS 1. Describe what the function should do. 2. Specify the inputs it needs. 3. Receive the generated Python code. FEATURES - Effortless Function Generation: convert natural‑language specs into complete functions. - Customizable Inputs: define the parameters that matter to you. - Versatile Use Cases: simulate data, automate tasks, prototype ideas. - Seamless Integration: add the generated function directly to your codebase. EXAMPLE Request: “Create a function that generates 20 examples of fake people, each with a name, date of birth, job title, and age.” Input parameter: number_of_people (default 20) Result: a list of dictionaries such as [ { "name": "Emma Martinez", "date_of_birth": "1992‑11‑03", "job_title": "Data Analyst", "age": 32 }, { "name": "Liam O’Connor", "date_of_birth": "1985‑07‑19", "job_title": "Marketing Manager", "age": 39 }, …18 more entries… ] ["development"] false true

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,590 @@
{
"id": "7b2e2095-782a-4f8d-adda-e62b661bccf5",
"version": 29,
"is_active": false,
"name": "Unspirational Poster Maker",
"description": "This witty AI agent generates hilariously relatable \"motivational\" posters that tackle the everyday struggles of procrastination, overthinking, and workplace chaos with a blend of absurdity and sarcasm. From goldfish facing impossible tasks to cats in existential crises, The Unspirational Poster Maker designs tongue-in-cheek graphics and captions that mock productivity clich\u00e9s and embrace our collective struggles to \"get it together.\" Perfect for adding a touch of humour to the workday, these posters remind us that sometimes, all we can do is laugh at the chaos.",
"instructions": null,
"recommended_schedule_cron": null,
"nodes": [
{
"id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
"block_id": "363ae599-353e-4804-937e-b2ee3cef3da4",
"input_default": {
"name": "Generated Image",
"description": "The resulting generated image ready for you to review and post."
},
"metadata": {
"position": {
"x": 2329.937006807125,
"y": 80.49068076698347
}
},
"input_links": [
{
"id": "c6c511e8-e6a4-4969-9bc8-f67d60c1e229",
"source_id": "86665e90-ffbf-48fb-ad3f-e5d31fd50c51",
"sink_id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
"source_name": "result",
"sink_name": "value",
"is_static": false
},
{
"id": "20845dda-91de-4508-8077-0504b1a5ae03",
"source_id": "28bda769-b88b-44c9-be5c-52c2667f137e",
"sink_id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
"source_name": "result",
"sink_name": "value",
"is_static": false
},
{
"id": "6524c611-774b-45e9-899d-9a6aa80c549c",
"source_id": "e7cdc1a2-4427-4a8a-a31b-63c8e74842f8",
"sink_id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
"source_name": "result",
"sink_name": "value",
"is_static": false
},
{
"id": "714a0821-e5ba-4af7-9432-50491adda7b1",
"source_id": "576c5677-9050-4d1c-aad4-36b820c04fef",
"sink_id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
"source_name": "result",
"sink_name": "value",
"is_static": false
}
],
"output_links": [],
"graph_id": "7b2e2095-782a-4f8d-adda-e62b661bccf5",
"graph_version": 29,
"webhook_id": null,
"webhook": null
},
{
"id": "7e026d19-f9a6-412f-8082-610f9ba0c410",
"block_id": "c0a8e994-ebf1-4a9c-a4d8-89d09c86741b",
"input_default": {
"name": "Theme",
"value": "Cooking"
},
"metadata": {
"position": {
"x": -1219.5966324967521,
"y": 80.50339731789956
}
},
"input_links": [],
"output_links": [
{
"id": "8c2bd1f7-b17b-4835-81b6-bb336097aa7a",
"source_id": "7e026d19-f9a6-412f-8082-610f9ba0c410",
"sink_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
"source_name": "result",
"sink_name": "prompt_values_#_THEME",
"is_static": true
}
],
"graph_id": "7b2e2095-782a-4f8d-adda-e62b661bccf5",
"graph_version": 29,
"webhook_id": null,
"webhook": null
},
{
"id": "28bda769-b88b-44c9-be5c-52c2667f137e",
"block_id": "6ab085e2-20b3-4055-bc3e-08036e01eca6",
"input_default": {
"upscale": "No Upscale"
},
"metadata": {
"position": {
"x": 1132.373897280427,
"y": 88.44610377514573
}
},
"input_links": [
{
"id": "54588c74-e090-4e49-89e4-844b9952a585",
"source_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
"sink_id": "28bda769-b88b-44c9-be5c-52c2667f137e",
"source_name": "response",
"sink_name": "prompt",
"is_static": false
}
],
"output_links": [
{
"id": "20845dda-91de-4508-8077-0504b1a5ae03",
"source_id": "28bda769-b88b-44c9-be5c-52c2667f137e",
"sink_id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
"source_name": "result",
"sink_name": "value",
"is_static": false
}
],
"graph_id": "7b2e2095-782a-4f8d-adda-e62b661bccf5",
"graph_version": 29,
"webhook_id": null,
"webhook": null
},
{
"id": "e7cdc1a2-4427-4a8a-a31b-63c8e74842f8",
"block_id": "6ab085e2-20b3-4055-bc3e-08036e01eca6",
"input_default": {
"upscale": "No Upscale"
},
"metadata": {
"position": {
"x": 590.7543882245375,
"y": 85.69546832466654
}
},
"input_links": [
{
"id": "66646786-3006-4417-a6b7-0158f2603d1d",
"source_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
"sink_id": "e7cdc1a2-4427-4a8a-a31b-63c8e74842f8",
"source_name": "response",
"sink_name": "prompt",
"is_static": false
}
],
"output_links": [
{
"id": "6524c611-774b-45e9-899d-9a6aa80c549c",
"source_id": "e7cdc1a2-4427-4a8a-a31b-63c8e74842f8",
"sink_id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
"source_name": "result",
"sink_name": "value",
"is_static": false
}
],
"graph_id": "7b2e2095-782a-4f8d-adda-e62b661bccf5",
"graph_version": 29,
"webhook_id": null,
"webhook": null
},
{
"id": "576c5677-9050-4d1c-aad4-36b820c04fef",
"block_id": "6ab085e2-20b3-4055-bc3e-08036e01eca6",
"input_default": {
"upscale": "No Upscale"
},
"metadata": {
"position": {
"x": 60.48904654237981,
"y": 86.06183359510214
}
},
"input_links": [
{
"id": "201d3e03-bc06-4cee-846d-4c3c804d8857",
"source_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
"sink_id": "576c5677-9050-4d1c-aad4-36b820c04fef",
"source_name": "response",
"sink_name": "prompt",
"is_static": false
}
],
"output_links": [
{
"id": "714a0821-e5ba-4af7-9432-50491adda7b1",
"source_id": "576c5677-9050-4d1c-aad4-36b820c04fef",
"sink_id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
"source_name": "result",
"sink_name": "value",
"is_static": false
}
],
"graph_id": "7b2e2095-782a-4f8d-adda-e62b661bccf5",
"graph_version": 29,
"webhook_id": null,
"webhook": null
},
{
"id": "86665e90-ffbf-48fb-ad3f-e5d31fd50c51",
"block_id": "6ab085e2-20b3-4055-bc3e-08036e01eca6",
"input_default": {
"prompt": "A cat sprawled dramatically across an important-looking document during a work-from-home meeting, making direct eye contact with the camera while knocking over a coffee mug in slow motion. Text Overlay: \"Chaos is a career path. Be the obstacle everyone has to work around.\"",
"upscale": "No Upscale"
},
"metadata": {
"position": {
"x": 1668.3572666956795,
"y": 89.69665262457966
}
},
"input_links": [
{
"id": "509b7587-1940-4a06-808d-edde9a74f400",
"source_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
"sink_id": "86665e90-ffbf-48fb-ad3f-e5d31fd50c51",
"source_name": "response",
"sink_name": "prompt",
"is_static": false
}
],
"output_links": [
{
"id": "c6c511e8-e6a4-4969-9bc8-f67d60c1e229",
"source_id": "86665e90-ffbf-48fb-ad3f-e5d31fd50c51",
"sink_id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
"source_name": "result",
"sink_name": "value",
"is_static": false
}
],
"graph_id": "7b2e2095-782a-4f8d-adda-e62b661bccf5",
"graph_version": 29,
"webhook_id": null,
"webhook": null
},
{
"id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
"block_id": "1f292d4a-41a4-4977-9684-7c8d560b9f91",
"input_default": {
"model": "gpt-4o",
"prompt": "<example_output>\nA photo of a sloth lounging on a desk, with its head resting on a keyboard. The keyboard is on top of a laptop with a blank spreadsheet open. A to-do list is placed beside the laptop, with the top item written as \"Do literally anything\". There is a text overlay that says \"If you can't outwork them, outnap them.\".\n</example_output>\n\nCreate a relatable satirical, snarky, user-deprecating motivational style image based on the theme: \"{{THEME}}\".\n\nOutput only the image description and caption, without any additional commentary or formatting.",
"prompt_values": {}
},
"metadata": {
"position": {
"x": -561.1139207164056,
"y": 78.60434452403524
}
},
"input_links": [
{
"id": "8c2bd1f7-b17b-4835-81b6-bb336097aa7a",
"source_id": "7e026d19-f9a6-412f-8082-610f9ba0c410",
"sink_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
"source_name": "result",
"sink_name": "prompt_values_#_THEME",
"is_static": true
}
],
"output_links": [
{
"id": "54588c74-e090-4e49-89e4-844b9952a585",
"source_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
"sink_id": "28bda769-b88b-44c9-be5c-52c2667f137e",
"source_name": "response",
"sink_name": "prompt",
"is_static": false
},
{
"id": "201d3e03-bc06-4cee-846d-4c3c804d8857",
"source_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
"sink_id": "576c5677-9050-4d1c-aad4-36b820c04fef",
"source_name": "response",
"sink_name": "prompt",
"is_static": false
},
{
"id": "509b7587-1940-4a06-808d-edde9a74f400",
"source_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
"sink_id": "86665e90-ffbf-48fb-ad3f-e5d31fd50c51",
"source_name": "response",
"sink_name": "prompt",
"is_static": false
},
{
"id": "66646786-3006-4417-a6b7-0158f2603d1d",
"source_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
"sink_id": "e7cdc1a2-4427-4a8a-a31b-63c8e74842f8",
"source_name": "response",
"sink_name": "prompt",
"is_static": false
}
],
"graph_id": "7b2e2095-782a-4f8d-adda-e62b661bccf5",
"graph_version": 29,
"webhook_id": null,
"webhook": null
}
],
"links": [
{
"id": "66646786-3006-4417-a6b7-0158f2603d1d",
"source_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
"sink_id": "e7cdc1a2-4427-4a8a-a31b-63c8e74842f8",
"source_name": "response",
"sink_name": "prompt",
"is_static": false
},
{
"id": "c6c511e8-e6a4-4969-9bc8-f67d60c1e229",
"source_id": "86665e90-ffbf-48fb-ad3f-e5d31fd50c51",
"sink_id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
"source_name": "result",
"sink_name": "value",
"is_static": false
},
{
"id": "6524c611-774b-45e9-899d-9a6aa80c549c",
"source_id": "e7cdc1a2-4427-4a8a-a31b-63c8e74842f8",
"sink_id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
"source_name": "result",
"sink_name": "value",
"is_static": false
},
{
"id": "20845dda-91de-4508-8077-0504b1a5ae03",
"source_id": "28bda769-b88b-44c9-be5c-52c2667f137e",
"sink_id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
"source_name": "result",
"sink_name": "value",
"is_static": false
},
{
"id": "8c2bd1f7-b17b-4835-81b6-bb336097aa7a",
"source_id": "7e026d19-f9a6-412f-8082-610f9ba0c410",
"sink_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
"source_name": "result",
"sink_name": "prompt_values_#_THEME",
"is_static": true
},
{
"id": "201d3e03-bc06-4cee-846d-4c3c804d8857",
"source_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
"sink_id": "576c5677-9050-4d1c-aad4-36b820c04fef",
"source_name": "response",
"sink_name": "prompt",
"is_static": false
},
{
"id": "714a0821-e5ba-4af7-9432-50491adda7b1",
"source_id": "576c5677-9050-4d1c-aad4-36b820c04fef",
"sink_id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
"source_name": "result",
"sink_name": "value",
"is_static": false
},
{
"id": "54588c74-e090-4e49-89e4-844b9952a585",
"source_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
"sink_id": "28bda769-b88b-44c9-be5c-52c2667f137e",
"source_name": "response",
"sink_name": "prompt",
"is_static": false
},
{
"id": "509b7587-1940-4a06-808d-edde9a74f400",
"source_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
"sink_id": "86665e90-ffbf-48fb-ad3f-e5d31fd50c51",
"source_name": "response",
"sink_name": "prompt",
"is_static": false
}
],
"forked_from_id": null,
"forked_from_version": null,
"sub_graphs": [],
"user_id": "",
"created_at": "2024-12-20T19:58:34.390Z",
"input_schema": {
"type": "object",
"properties": {
"Theme": {
"advanced": false,
"secret": false,
"title": "Theme",
"default": "Cooking"
}
},
"required": []
},
"output_schema": {
"type": "object",
"properties": {
"Generated Image": {
"advanced": false,
"secret": false,
"title": "Generated Image",
"description": "The resulting generated image ready for you to review and post."
}
},
"required": [
"Generated Image"
]
},
"has_external_trigger": false,
"has_human_in_the_loop": false,
"trigger_setup_info": null,
"credentials_input_schema": {
"properties": {
"ideogram_api_key_credentials": {
"credentials_provider": [
"ideogram"
],
"credentials_types": [
"api_key"
],
"properties": {
"id": {
"title": "Id",
"type": "string"
},
"title": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"title": "Title"
},
"provider": {
"const": "ideogram",
"title": "Provider",
"type": "string"
},
"type": {
"const": "api_key",
"title": "Type",
"type": "string"
}
},
"required": [
"id",
"provider",
"type"
],
"title": "CredentialsMetaInput[Literal[<ProviderName.IDEOGRAM: 'ideogram'>], Literal['api_key']]",
"type": "object",
"discriminator_values": []
},
"openai_api_key_credentials": {
"credentials_provider": [
"openai"
],
"credentials_types": [
"api_key"
],
"properties": {
"id": {
"title": "Id",
"type": "string"
},
"title": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"title": "Title"
},
"provider": {
"const": "openai",
"title": "Provider",
"type": "string"
},
"type": {
"const": "api_key",
"title": "Type",
"type": "string"
}
},
"required": [
"id",
"provider",
"type"
],
"title": "CredentialsMetaInput[Literal[<ProviderName.OPENAI: 'openai'>], Literal['api_key']]",
"type": "object",
"discriminator": "model",
"discriminator_mapping": {
"Llama-3.3-70B-Instruct": "llama_api",
"Llama-3.3-8B-Instruct": "llama_api",
"Llama-4-Maverick-17B-128E-Instruct-FP8": "llama_api",
"Llama-4-Scout-17B-16E-Instruct-FP8": "llama_api",
"Qwen/Qwen2.5-72B-Instruct-Turbo": "aiml_api",
"amazon/nova-lite-v1": "open_router",
"amazon/nova-micro-v1": "open_router",
"amazon/nova-pro-v1": "open_router",
"claude-3-7-sonnet-20250219": "anthropic",
"claude-3-haiku-20240307": "anthropic",
"claude-haiku-4-5-20251001": "anthropic",
"claude-opus-4-1-20250805": "anthropic",
"claude-opus-4-20250514": "anthropic",
"claude-opus-4-5-20251101": "anthropic",
"claude-sonnet-4-20250514": "anthropic",
"claude-sonnet-4-5-20250929": "anthropic",
"cohere/command-r-08-2024": "open_router",
"cohere/command-r-plus-08-2024": "open_router",
"deepseek/deepseek-chat": "open_router",
"deepseek/deepseek-r1-0528": "open_router",
"dolphin-mistral:latest": "ollama",
"google/gemini-2.0-flash-001": "open_router",
"google/gemini-2.0-flash-lite-001": "open_router",
"google/gemini-2.5-flash": "open_router",
"google/gemini-2.5-flash-lite-preview-06-17": "open_router",
"google/gemini-2.5-pro-preview-03-25": "open_router",
"google/gemini-3-pro-preview": "open_router",
"gpt-3.5-turbo": "openai",
"gpt-4-turbo": "openai",
"gpt-4.1-2025-04-14": "openai",
"gpt-4.1-mini-2025-04-14": "openai",
"gpt-4o": "openai",
"gpt-4o-mini": "openai",
"gpt-5-2025-08-07": "openai",
"gpt-5-chat-latest": "openai",
"gpt-5-mini-2025-08-07": "openai",
"gpt-5-nano-2025-08-07": "openai",
"gpt-5.1-2025-11-13": "openai",
"gryphe/mythomax-l2-13b": "open_router",
"llama-3.1-8b-instant": "groq",
"llama-3.3-70b-versatile": "groq",
"llama3": "ollama",
"llama3.1:405b": "ollama",
"llama3.2": "ollama",
"llama3.3": "ollama",
"meta-llama/Llama-3.2-3B-Instruct-Turbo": "aiml_api",
"meta-llama/Llama-3.3-70B-Instruct-Turbo": "aiml_api",
"meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo": "aiml_api",
"meta-llama/llama-4-maverick": "open_router",
"meta-llama/llama-4-scout": "open_router",
"microsoft/wizardlm-2-8x22b": "open_router",
"mistralai/mistral-nemo": "open_router",
"moonshotai/kimi-k2": "open_router",
"nousresearch/hermes-3-llama-3.1-405b": "open_router",
"nousresearch/hermes-3-llama-3.1-70b": "open_router",
"nvidia/llama-3.1-nemotron-70b-instruct": "aiml_api",
"o1": "openai",
"o1-mini": "openai",
"o3-2025-04-16": "openai",
"o3-mini": "openai",
"openai/gpt-oss-120b": "open_router",
"openai/gpt-oss-20b": "open_router",
"perplexity/sonar": "open_router",
"perplexity/sonar-deep-research": "open_router",
"perplexity/sonar-pro": "open_router",
"qwen/qwen3-235b-a22b-thinking-2507": "open_router",
"qwen/qwen3-coder": "open_router",
"v0-1.0-md": "v0",
"v0-1.5-lg": "v0",
"v0-1.5-md": "v0",
"x-ai/grok-4": "open_router",
"x-ai/grok-4-fast": "open_router",
"x-ai/grok-4.1-fast": "open_router",
"x-ai/grok-code-fast-1": "open_router"
},
"discriminator_values": [
"gpt-4o"
]
}
},
"required": [
"ideogram_api_key_credentials",
"openai_api_key_credentials"
],
"title": "UnspirationalPosterMakerCredentialsInputSchema",
"type": "object"
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,447 @@
{
"id": "622849a7-5848-4838-894d-01f8f07e3fad",
"version": 18,
"is_active": true,
"name": "AI Function",
"description": "## AI-Powered Function Magic: Never code again!\nProvide a description of a python function and your inputs and AI will provide the results.",
"instructions": null,
"recommended_schedule_cron": null,
"nodes": [
{
"id": "26ff2973-3f9a-451d-b902-d45e5da0a7fe",
"block_id": "363ae599-353e-4804-937e-b2ee3cef3da4",
"input_default": {
"name": "return",
"title": null,
"value": null,
"format": "",
"secret": false,
"advanced": false,
"description": "The value returned by the function"
},
"metadata": {
"position": {
"x": 1598.8622921127233,
"y": 291.59140862204725
}
},
"input_links": [
{
"id": "caecc1de-fdbc-4fd9-9570-074057bb15f9",
"source_id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
"sink_id": "26ff2973-3f9a-451d-b902-d45e5da0a7fe",
"source_name": "response",
"sink_name": "value",
"is_static": false
}
],
"output_links": [],
"graph_id": "622849a7-5848-4838-894d-01f8f07e3fad",
"graph_version": 18,
"webhook_id": null,
"webhook": null
},
{
"id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
"block_id": "1f292d4a-41a4-4977-9684-7c8d560b9f91",
"input_default": {
"model": "o3-mini",
"retry": 3,
"prompt": "{{ARGS}}",
"sys_prompt": "You are now the following python function:\n\n```\n# {{DESCRIPTION}}\n{{FUNCTION}}\n```\n\nThe user will provide your input arguments.\nOnly respond with your `return` value.\nDo not include any commentary or additional text in your response. \nDo not include ``` backticks or any other decorators.",
"ollama_host": "localhost:11434",
"prompt_values": {}
},
"metadata": {
"position": {
"x": 995,
"y": 290.50000000000006
}
},
"input_links": [
{
"id": "dc7cb15f-76cc-4533-b96c-dd9e3f7f75ed",
"source_id": "4eab3a55-20f2-4c1d-804c-7377ba8202d2",
"sink_id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
"source_name": "result",
"sink_name": "prompt_values_#_FUNCTION",
"is_static": true
},
{
"id": "093bdca5-9f44-42f9-8e1c-276dd2971675",
"source_id": "844530de-2354-46d8-b748-67306b7bbca1",
"sink_id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
"source_name": "result",
"sink_name": "prompt_values_#_ARGS",
"is_static": true
},
{
"id": "6c63d8ee-b63d-4ff6-bae0-7db8f99bb7af",
"source_id": "0fd6ef54-c1cd-478d-b764-17e40f882b99",
"sink_id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
"source_name": "result",
"sink_name": "prompt_values_#_DESCRIPTION",
"is_static": true
}
],
"output_links": [
{
"id": "caecc1de-fdbc-4fd9-9570-074057bb15f9",
"source_id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
"sink_id": "26ff2973-3f9a-451d-b902-d45e5da0a7fe",
"source_name": "response",
"sink_name": "value",
"is_static": false
}
],
"graph_id": "622849a7-5848-4838-894d-01f8f07e3fad",
"graph_version": 18,
"webhook_id": null,
"webhook": null
},
{
"id": "4eab3a55-20f2-4c1d-804c-7377ba8202d2",
"block_id": "7fcd3bcb-8e1b-4e69-903d-32d3d4a92158",
"input_default": {
"name": "Function Definition",
"title": null,
"value": "def fake_people(n: int) -> list[dict]:",
"secret": false,
"advanced": false,
"description": "The function definition (text). This is what you would type on the first line of the function when programming.\n\ne.g \"def fake_people(n: int) -> list[dict]:\"",
"placeholder_values": []
},
"metadata": {
"position": {
"x": -672.6908629664215,
"y": 302.42044359789116
}
},
"input_links": [],
"output_links": [
{
"id": "dc7cb15f-76cc-4533-b96c-dd9e3f7f75ed",
"source_id": "4eab3a55-20f2-4c1d-804c-7377ba8202d2",
"sink_id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
"source_name": "result",
"sink_name": "prompt_values_#_FUNCTION",
"is_static": true
}
],
"graph_id": "622849a7-5848-4838-894d-01f8f07e3fad",
"graph_version": 18,
"webhook_id": null,
"webhook": null
},
{
"id": "844530de-2354-46d8-b748-67306b7bbca1",
"block_id": "7fcd3bcb-8e1b-4e69-903d-32d3d4a92158",
"input_default": {
"name": "Arguments",
"title": null,
"value": "20",
"secret": false,
"advanced": false,
"description": "The function's inputs\n\ne.g \"20\"",
"placeholder_values": []
},
"metadata": {
"position": {
"x": -158.1623599617334,
"y": 295.410856928333
}
},
"input_links": [],
"output_links": [
{
"id": "093bdca5-9f44-42f9-8e1c-276dd2971675",
"source_id": "844530de-2354-46d8-b748-67306b7bbca1",
"sink_id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
"source_name": "result",
"sink_name": "prompt_values_#_ARGS",
"is_static": true
}
],
"graph_id": "622849a7-5848-4838-894d-01f8f07e3fad",
"graph_version": 18,
"webhook_id": null,
"webhook": null
},
{
"id": "0fd6ef54-c1cd-478d-b764-17e40f882b99",
"block_id": "90a56ffb-7024-4b2b-ab50-e26c5e5ab8ba",
"input_default": {
"name": "Description",
"title": null,
"value": "Generates n examples of fake data representing people, each with a name, DoB, Job title, and an age.",
"secret": false,
"advanced": false,
"description": "Describe what the function does.\n\ne.g \"Generates n examples of fake data representing people, each with a name, DoB, Job title, and an age.\"",
"placeholder_values": []
},
"metadata": {
"position": {
"x": 374.4548658057796,
"y": 290.3779121974126
}
},
"input_links": [],
"output_links": [
{
"id": "6c63d8ee-b63d-4ff6-bae0-7db8f99bb7af",
"source_id": "0fd6ef54-c1cd-478d-b764-17e40f882b99",
"sink_id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
"source_name": "result",
"sink_name": "prompt_values_#_DESCRIPTION",
"is_static": true
}
],
"graph_id": "622849a7-5848-4838-894d-01f8f07e3fad",
"graph_version": 18,
"webhook_id": null,
"webhook": null
}
],
"links": [
{
"id": "caecc1de-fdbc-4fd9-9570-074057bb15f9",
"source_id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
"sink_id": "26ff2973-3f9a-451d-b902-d45e5da0a7fe",
"source_name": "response",
"sink_name": "value",
"is_static": false
},
{
"id": "6c63d8ee-b63d-4ff6-bae0-7db8f99bb7af",
"source_id": "0fd6ef54-c1cd-478d-b764-17e40f882b99",
"sink_id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
"source_name": "result",
"sink_name": "prompt_values_#_DESCRIPTION",
"is_static": true
},
{
"id": "093bdca5-9f44-42f9-8e1c-276dd2971675",
"source_id": "844530de-2354-46d8-b748-67306b7bbca1",
"sink_id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
"source_name": "result",
"sink_name": "prompt_values_#_ARGS",
"is_static": true
},
{
"id": "dc7cb15f-76cc-4533-b96c-dd9e3f7f75ed",
"source_id": "4eab3a55-20f2-4c1d-804c-7377ba8202d2",
"sink_id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
"source_name": "result",
"sink_name": "prompt_values_#_FUNCTION",
"is_static": true
}
],
"forked_from_id": null,
"forked_from_version": null,
"sub_graphs": [],
"user_id": "",
"created_at": "2025-04-19T17:10:48.857Z",
"input_schema": {
"type": "object",
"properties": {
"Function Definition": {
"advanced": false,
"anyOf": [
{
"format": "short-text",
"type": "string"
},
{
"type": "null"
}
],
"secret": false,
"title": "Function Definition",
"description": "The function definition (text). This is what you would type on the first line of the function when programming.\n\ne.g \"def fake_people(n: int) -> list[dict]:\"",
"default": "def fake_people(n: int) -> list[dict]:"
},
"Arguments": {
"advanced": false,
"anyOf": [
{
"format": "short-text",
"type": "string"
},
{
"type": "null"
}
],
"secret": false,
"title": "Arguments",
"description": "The function's inputs\n\ne.g \"20\"",
"default": "20"
},
"Description": {
"advanced": false,
"anyOf": [
{
"format": "long-text",
"type": "string"
},
{
"type": "null"
}
],
"secret": false,
"title": "Description",
"description": "Describe what the function does.\n\ne.g \"Generates n examples of fake data representing people, each with a name, DoB, Job title, and an age.\"",
"default": "Generates n examples of fake data representing people, each with a name, DoB, Job title, and an age."
}
},
"required": []
},
"output_schema": {
"type": "object",
"properties": {
"return": {
"advanced": false,
"secret": false,
"title": "return",
"description": "The value returned by the function"
}
},
"required": [
"return"
]
},
"has_external_trigger": false,
"has_human_in_the_loop": false,
"trigger_setup_info": null,
"credentials_input_schema": {
"properties": {
"openai_api_key_credentials": {
"credentials_provider": [
"openai"
],
"credentials_types": [
"api_key"
],
"properties": {
"id": {
"title": "Id",
"type": "string"
},
"title": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"title": "Title"
},
"provider": {
"const": "openai",
"title": "Provider",
"type": "string"
},
"type": {
"const": "api_key",
"title": "Type",
"type": "string"
}
},
"required": [
"id",
"provider",
"type"
],
"title": "CredentialsMetaInput[Literal[<ProviderName.OPENAI: 'openai'>], Literal['api_key']]",
"type": "object",
"discriminator": "model",
"discriminator_mapping": {
"Llama-3.3-70B-Instruct": "llama_api",
"Llama-3.3-8B-Instruct": "llama_api",
"Llama-4-Maverick-17B-128E-Instruct-FP8": "llama_api",
"Llama-4-Scout-17B-16E-Instruct-FP8": "llama_api",
"Qwen/Qwen2.5-72B-Instruct-Turbo": "aiml_api",
"amazon/nova-lite-v1": "open_router",
"amazon/nova-micro-v1": "open_router",
"amazon/nova-pro-v1": "open_router",
"claude-3-7-sonnet-20250219": "anthropic",
"claude-3-haiku-20240307": "anthropic",
"claude-haiku-4-5-20251001": "anthropic",
"claude-opus-4-1-20250805": "anthropic",
"claude-opus-4-20250514": "anthropic",
"claude-opus-4-5-20251101": "anthropic",
"claude-sonnet-4-20250514": "anthropic",
"claude-sonnet-4-5-20250929": "anthropic",
"cohere/command-r-08-2024": "open_router",
"cohere/command-r-plus-08-2024": "open_router",
"deepseek/deepseek-chat": "open_router",
"deepseek/deepseek-r1-0528": "open_router",
"dolphin-mistral:latest": "ollama",
"google/gemini-2.0-flash-001": "open_router",
"google/gemini-2.0-flash-lite-001": "open_router",
"google/gemini-2.5-flash": "open_router",
"google/gemini-2.5-flash-lite-preview-06-17": "open_router",
"google/gemini-2.5-pro-preview-03-25": "open_router",
"google/gemini-3-pro-preview": "open_router",
"gpt-3.5-turbo": "openai",
"gpt-4-turbo": "openai",
"gpt-4.1-2025-04-14": "openai",
"gpt-4.1-mini-2025-04-14": "openai",
"gpt-4o": "openai",
"gpt-4o-mini": "openai",
"gpt-5-2025-08-07": "openai",
"gpt-5-chat-latest": "openai",
"gpt-5-mini-2025-08-07": "openai",
"gpt-5-nano-2025-08-07": "openai",
"gpt-5.1-2025-11-13": "openai",
"gryphe/mythomax-l2-13b": "open_router",
"llama-3.1-8b-instant": "groq",
"llama-3.3-70b-versatile": "groq",
"llama3": "ollama",
"llama3.1:405b": "ollama",
"llama3.2": "ollama",
"llama3.3": "ollama",
"meta-llama/Llama-3.2-3B-Instruct-Turbo": "aiml_api",
"meta-llama/Llama-3.3-70B-Instruct-Turbo": "aiml_api",
"meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo": "aiml_api",
"meta-llama/llama-4-maverick": "open_router",
"meta-llama/llama-4-scout": "open_router",
"microsoft/wizardlm-2-8x22b": "open_router",
"mistralai/mistral-nemo": "open_router",
"moonshotai/kimi-k2": "open_router",
"nousresearch/hermes-3-llama-3.1-405b": "open_router",
"nousresearch/hermes-3-llama-3.1-70b": "open_router",
"nvidia/llama-3.1-nemotron-70b-instruct": "aiml_api",
"o1": "openai",
"o1-mini": "openai",
"o3-2025-04-16": "openai",
"o3-mini": "openai",
"openai/gpt-oss-120b": "open_router",
"openai/gpt-oss-20b": "open_router",
"perplexity/sonar": "open_router",
"perplexity/sonar-deep-research": "open_router",
"perplexity/sonar-pro": "open_router",
"qwen/qwen3-235b-a22b-thinking-2507": "open_router",
"qwen/qwen3-coder": "open_router",
"v0-1.0-md": "v0",
"v0-1.5-lg": "v0",
"v0-1.5-md": "v0",
"x-ai/grok-4": "open_router",
"x-ai/grok-4-fast": "open_router",
"x-ai/grok-4.1-fast": "open_router",
"x-ai/grok-code-fast-1": "open_router"
},
"discriminator_values": [
"o3-mini"
]
}
},
"required": [
"openai_api_key_credentials"
],
"title": "AIFunctionCredentialsInputSchema",
"type": "object"
}
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,403 @@
{
"id": "ed2091cf-5b27-45a9-b3ea-42396f95b256",
"version": 12,
"is_active": true,
"name": "Flux AI Image Generator",
"description": "Transform ideas into breathtaking images with this AI-powered Image Generator. Using cutting-edge Flux AI technology, the tool crafts highly detailed, photorealistic visuals from simple text prompts. Perfect for artists, marketers, and content creators, this generator produces unique images tailored to user specifications. From fantastical scenes to lifelike portraits, users can unleash creativity with professional-quality results in seconds. Easy to use and endlessly versatile, bring imagination to life with the AI Image Generator today!",
"instructions": null,
"recommended_schedule_cron": null,
"nodes": [
{
"id": "7482c59d-725f-4686-82b9-0dfdc4e92316",
"block_id": "cc10ff7b-7753-4ff2-9af6-9399b1a7eddc",
"input_default": {
"text": "Press the \"Advanced\" toggle and input your replicate API key.\n\nYou can get one here:\nhttps://replicate.com/account/api-tokens\n"
},
"metadata": {
"position": {
"x": 872.8268131538296,
"y": 614.9436919065381
}
},
"input_links": [],
"output_links": [],
"graph_id": "ed2091cf-5b27-45a9-b3ea-42396f95b256",
"graph_version": 12,
"webhook_id": null,
"webhook": null
},
{
"id": "0d1dec1a-e4ee-4349-9673-449a01bbf14e",
"block_id": "363ae599-353e-4804-937e-b2ee3cef3da4",
"input_default": {
"name": "Generated Image"
},
"metadata": {
"position": {
"x": 1453.6844137728922,
"y": 963.2466395125115
}
},
"input_links": [
{
"id": "06665d23-2f3d-4445-8f22-573446fcff5b",
"source_id": "50bc23e9-f2b7-4959-8710-99679ed9eeea",
"sink_id": "0d1dec1a-e4ee-4349-9673-449a01bbf14e",
"source_name": "result",
"sink_name": "value",
"is_static": false
}
],
"output_links": [],
"graph_id": "ed2091cf-5b27-45a9-b3ea-42396f95b256",
"graph_version": 12,
"webhook_id": null,
"webhook": null
},
{
"id": "6f24c45f-1548-4eda-9784-da06ce0abef8",
"block_id": "c0a8e994-ebf1-4a9c-a4d8-89d09c86741b",
"input_default": {
"name": "Image Subject",
"value": "Otto the friendly, purple \"Chief Automation Octopus\" helping people automate their tedious tasks.",
"description": "The subject of the image"
},
"metadata": {
"position": {
"x": -314.43009631839783,
"y": 962.935949165938
}
},
"input_links": [],
"output_links": [
{
"id": "1077c61a-a32a-4ed7-becf-11bcf835b914",
"source_id": "6f24c45f-1548-4eda-9784-da06ce0abef8",
"sink_id": "0d1bca9a-d9b8-4bfd-a19c-fe50b54f4b12",
"source_name": "result",
"sink_name": "prompt_values_#_TOPIC",
"is_static": true
}
],
"graph_id": "ed2091cf-5b27-45a9-b3ea-42396f95b256",
"graph_version": 12,
"webhook_id": null,
"webhook": null
},
{
"id": "50bc23e9-f2b7-4959-8710-99679ed9eeea",
"block_id": "90f8c45e-e983-4644-aa0b-b4ebe2f531bc",
"input_default": {
"prompt": "dog",
"output_format": "png",
"replicate_model_name": "Flux Pro 1.1"
},
"metadata": {
"position": {
"x": 873.0119949791526,
"y": 966.1604399052493
}
},
"input_links": [
{
"id": "a17ec505-9377-4700-8fe0-124ca81d43a9",
"source_id": "0d1bca9a-d9b8-4bfd-a19c-fe50b54f4b12",
"sink_id": "50bc23e9-f2b7-4959-8710-99679ed9eeea",
"source_name": "response",
"sink_name": "prompt",
"is_static": false
}
],
"output_links": [
{
"id": "06665d23-2f3d-4445-8f22-573446fcff5b",
"source_id": "50bc23e9-f2b7-4959-8710-99679ed9eeea",
"sink_id": "0d1dec1a-e4ee-4349-9673-449a01bbf14e",
"source_name": "result",
"sink_name": "value",
"is_static": false
}
],
"graph_id": "ed2091cf-5b27-45a9-b3ea-42396f95b256",
"graph_version": 12,
"webhook_id": null,
"webhook": null
},
{
"id": "0d1bca9a-d9b8-4bfd-a19c-fe50b54f4b12",
"block_id": "1f292d4a-41a4-4977-9684-7c8d560b9f91",
"input_default": {
"model": "gpt-4o-mini",
"prompt": "Generate an incredibly detailed, photorealistic image prompt about {{TOPIC}}, describing the camera it's taken with and prompting the diffusion model to use all the best quality techniques.\n\nOutput only the prompt with no additional commentary.",
"prompt_values": {}
},
"metadata": {
"position": {
"x": 277.3057034159709,
"y": 962.8382498113764
}
},
"input_links": [
{
"id": "1077c61a-a32a-4ed7-becf-11bcf835b914",
"source_id": "6f24c45f-1548-4eda-9784-da06ce0abef8",
"sink_id": "0d1bca9a-d9b8-4bfd-a19c-fe50b54f4b12",
"source_name": "result",
"sink_name": "prompt_values_#_TOPIC",
"is_static": true
}
],
"output_links": [
{
"id": "a17ec505-9377-4700-8fe0-124ca81d43a9",
"source_id": "0d1bca9a-d9b8-4bfd-a19c-fe50b54f4b12",
"sink_id": "50bc23e9-f2b7-4959-8710-99679ed9eeea",
"source_name": "response",
"sink_name": "prompt",
"is_static": false
}
],
"graph_id": "ed2091cf-5b27-45a9-b3ea-42396f95b256",
"graph_version": 12,
"webhook_id": null,
"webhook": null
}
],
"links": [
{
"id": "1077c61a-a32a-4ed7-becf-11bcf835b914",
"source_id": "6f24c45f-1548-4eda-9784-da06ce0abef8",
"sink_id": "0d1bca9a-d9b8-4bfd-a19c-fe50b54f4b12",
"source_name": "result",
"sink_name": "prompt_values_#_TOPIC",
"is_static": true
},
{
"id": "06665d23-2f3d-4445-8f22-573446fcff5b",
"source_id": "50bc23e9-f2b7-4959-8710-99679ed9eeea",
"sink_id": "0d1dec1a-e4ee-4349-9673-449a01bbf14e",
"source_name": "result",
"sink_name": "value",
"is_static": false
},
{
"id": "a17ec505-9377-4700-8fe0-124ca81d43a9",
"source_id": "0d1bca9a-d9b8-4bfd-a19c-fe50b54f4b12",
"sink_id": "50bc23e9-f2b7-4959-8710-99679ed9eeea",
"source_name": "response",
"sink_name": "prompt",
"is_static": false
}
],
"forked_from_id": null,
"forked_from_version": null,
"sub_graphs": [],
"user_id": "",
"created_at": "2024-12-20T18:46:11.492Z",
"input_schema": {
"type": "object",
"properties": {
"Image Subject": {
"advanced": false,
"secret": false,
"title": "Image Subject",
"description": "The subject of the image",
"default": "Otto the friendly, purple \"Chief Automation Octopus\" helping people automate their tedious tasks."
}
},
"required": []
},
"output_schema": {
"type": "object",
"properties": {
"Generated Image": {
"advanced": false,
"secret": false,
"title": "Generated Image"
}
},
"required": [
"Generated Image"
]
},
"has_external_trigger": false,
"has_human_in_the_loop": false,
"trigger_setup_info": null,
"credentials_input_schema": {
"properties": {
"replicate_api_key_credentials": {
"credentials_provider": [
"replicate"
],
"credentials_types": [
"api_key"
],
"properties": {
"id": {
"title": "Id",
"type": "string"
},
"title": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"title": "Title"
},
"provider": {
"const": "replicate",
"title": "Provider",
"type": "string"
},
"type": {
"const": "api_key",
"title": "Type",
"type": "string"
}
},
"required": [
"id",
"provider",
"type"
],
"title": "CredentialsMetaInput[Literal[<ProviderName.REPLICATE: 'replicate'>], Literal['api_key']]",
"type": "object",
"discriminator_values": []
},
"openai_api_key_credentials": {
"credentials_provider": [
"openai"
],
"credentials_types": [
"api_key"
],
"properties": {
"id": {
"title": "Id",
"type": "string"
},
"title": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"title": "Title"
},
"provider": {
"const": "openai",
"title": "Provider",
"type": "string"
},
"type": {
"const": "api_key",
"title": "Type",
"type": "string"
}
},
"required": [
"id",
"provider",
"type"
],
"title": "CredentialsMetaInput[Literal[<ProviderName.OPENAI: 'openai'>], Literal['api_key']]",
"type": "object",
"discriminator": "model",
"discriminator_mapping": {
"Llama-3.3-70B-Instruct": "llama_api",
"Llama-3.3-8B-Instruct": "llama_api",
"Llama-4-Maverick-17B-128E-Instruct-FP8": "llama_api",
"Llama-4-Scout-17B-16E-Instruct-FP8": "llama_api",
"Qwen/Qwen2.5-72B-Instruct-Turbo": "aiml_api",
"amazon/nova-lite-v1": "open_router",
"amazon/nova-micro-v1": "open_router",
"amazon/nova-pro-v1": "open_router",
"claude-3-7-sonnet-20250219": "anthropic",
"claude-3-haiku-20240307": "anthropic",
"claude-haiku-4-5-20251001": "anthropic",
"claude-opus-4-1-20250805": "anthropic",
"claude-opus-4-20250514": "anthropic",
"claude-opus-4-5-20251101": "anthropic",
"claude-sonnet-4-20250514": "anthropic",
"claude-sonnet-4-5-20250929": "anthropic",
"cohere/command-r-08-2024": "open_router",
"cohere/command-r-plus-08-2024": "open_router",
"deepseek/deepseek-chat": "open_router",
"deepseek/deepseek-r1-0528": "open_router",
"dolphin-mistral:latest": "ollama",
"google/gemini-2.0-flash-001": "open_router",
"google/gemini-2.0-flash-lite-001": "open_router",
"google/gemini-2.5-flash": "open_router",
"google/gemini-2.5-flash-lite-preview-06-17": "open_router",
"google/gemini-2.5-pro-preview-03-25": "open_router",
"google/gemini-3-pro-preview": "open_router",
"gpt-3.5-turbo": "openai",
"gpt-4-turbo": "openai",
"gpt-4.1-2025-04-14": "openai",
"gpt-4.1-mini-2025-04-14": "openai",
"gpt-4o": "openai",
"gpt-4o-mini": "openai",
"gpt-5-2025-08-07": "openai",
"gpt-5-chat-latest": "openai",
"gpt-5-mini-2025-08-07": "openai",
"gpt-5-nano-2025-08-07": "openai",
"gpt-5.1-2025-11-13": "openai",
"gryphe/mythomax-l2-13b": "open_router",
"llama-3.1-8b-instant": "groq",
"llama-3.3-70b-versatile": "groq",
"llama3": "ollama",
"llama3.1:405b": "ollama",
"llama3.2": "ollama",
"llama3.3": "ollama",
"meta-llama/Llama-3.2-3B-Instruct-Turbo": "aiml_api",
"meta-llama/Llama-3.3-70B-Instruct-Turbo": "aiml_api",
"meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo": "aiml_api",
"meta-llama/llama-4-maverick": "open_router",
"meta-llama/llama-4-scout": "open_router",
"microsoft/wizardlm-2-8x22b": "open_router",
"mistralai/mistral-nemo": "open_router",
"moonshotai/kimi-k2": "open_router",
"nousresearch/hermes-3-llama-3.1-405b": "open_router",
"nousresearch/hermes-3-llama-3.1-70b": "open_router",
"nvidia/llama-3.1-nemotron-70b-instruct": "aiml_api",
"o1": "openai",
"o1-mini": "openai",
"o3-2025-04-16": "openai",
"o3-mini": "openai",
"openai/gpt-oss-120b": "open_router",
"openai/gpt-oss-20b": "open_router",
"perplexity/sonar": "open_router",
"perplexity/sonar-deep-research": "open_router",
"perplexity/sonar-pro": "open_router",
"qwen/qwen3-235b-a22b-thinking-2507": "open_router",
"qwen/qwen3-coder": "open_router",
"v0-1.0-md": "v0",
"v0-1.5-lg": "v0",
"v0-1.5-md": "v0",
"x-ai/grok-4": "open_router",
"x-ai/grok-4-fast": "open_router",
"x-ai/grok-4.1-fast": "open_router",
"x-ai/grok-code-fast-1": "open_router"
},
"discriminator_values": [
"gpt-4o-mini"
]
}
},
"required": [
"replicate_api_key_credentials",
"openai_api_key_credentials"
],
"title": "FluxAIImageGeneratorCredentialsInputSchema",
"type": "object"
}
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,505 @@
{
"id": "0d440799-44ba-4d6c-85b3-b3739f1e1287",
"version": 12,
"is_active": true,
"name": "AI Webpage Copy Improver",
"description": "Elevate your web content with this powerful AI Webpage Copy Improver. Designed for marketers, SEO specialists, and web developers, this tool analyses and enhances website copy for maximum impact. Using advanced language models, it optimizes text for better clarity, SEO performance, and increased conversion rates. The AI examines your existing content, identifies areas for improvement, and generates refined copy that maintains your brand voice while boosting engagement. From homepage headlines to product descriptions, transform your web presence with AI-driven insights. Improve readability, incorporate targeted keywords, and craft compelling calls-to-action - all with the click of a button. Take your digital marketing to the next level with the AI Webpage Copy Improver.",
"instructions": null,
"recommended_schedule_cron": null,
"nodes": [
{
"id": "130ec496-f75d-4fe2-9cd6-8c00d08ea4a7",
"block_id": "363ae599-353e-4804-937e-b2ee3cef3da4",
"input_default": {
"name": "Improved Webpage Copy"
},
"metadata": {
"position": {
"x": 1039.5884372540172,
"y": -0.8359099621230968
}
},
"input_links": [
{
"id": "d4334477-3616-454f-a430-614ca27f5b36",
"source_id": "c9924577-70d8-4ccb-9106-6f796df09ef9",
"sink_id": "130ec496-f75d-4fe2-9cd6-8c00d08ea4a7",
"source_name": "response",
"sink_name": "value",
"is_static": false
}
],
"output_links": [],
"graph_id": "0d440799-44ba-4d6c-85b3-b3739f1e1287",
"graph_version": 12,
"webhook_id": null,
"webhook": null
},
{
"id": "cefccd07-fe70-4feb-bf76-46b20aaa5d35",
"block_id": "363ae599-353e-4804-937e-b2ee3cef3da4",
"input_default": {
"name": "Original Page Analysis",
"description": "Analysis of the webpage as it currently stands."
},
"metadata": {
"position": {
"x": 1037.7724103954706,
"y": -606.5934325506903
}
},
"input_links": [
{
"id": "f979ab78-0903-4f19-a7c2-a419d5d81aef",
"source_id": "08612ce2-625b-4c17-accd-3acace7b6477",
"sink_id": "cefccd07-fe70-4feb-bf76-46b20aaa5d35",
"source_name": "response",
"sink_name": "value",
"is_static": false
}
],
"output_links": [],
"graph_id": "0d440799-44ba-4d6c-85b3-b3739f1e1287",
"graph_version": 12,
"webhook_id": null,
"webhook": null
},
{
"id": "375f8bc3-afd9-4025-ad8e-9aeb329af7ce",
"block_id": "c0a8e994-ebf1-4a9c-a4d8-89d09c86741b",
"input_default": {
"name": "Homepage URL",
"value": "https://agpt.co",
"description": "Enter the URL of the homepage you want to improve"
},
"metadata": {
"position": {
"x": -1195.1455674454749,
"y": 0
}
},
"input_links": [],
"output_links": [
{
"id": "cbb12335-fefd-4560-9fff-98675130fbad",
"source_id": "375f8bc3-afd9-4025-ad8e-9aeb329af7ce",
"sink_id": "b40595c6-dba3-4779-a129-cd4f01fff103",
"source_name": "result",
"sink_name": "url",
"is_static": true
}
],
"graph_id": "0d440799-44ba-4d6c-85b3-b3739f1e1287",
"graph_version": 12,
"webhook_id": null,
"webhook": null
},
{
"id": "b40595c6-dba3-4779-a129-cd4f01fff103",
"block_id": "436c3984-57fd-4b85-8e9a-459b356883bd",
"input_default": {
"raw_content": false
},
"metadata": {
"position": {
"x": -631.7330786555249,
"y": 1.9638396496230826
}
},
"input_links": [
{
"id": "cbb12335-fefd-4560-9fff-98675130fbad",
"source_id": "375f8bc3-afd9-4025-ad8e-9aeb329af7ce",
"sink_id": "b40595c6-dba3-4779-a129-cd4f01fff103",
"source_name": "result",
"sink_name": "url",
"is_static": true
}
],
"output_links": [
{
"id": "adfa6113-77b3-4e32-b136-3e694b87553e",
"source_id": "b40595c6-dba3-4779-a129-cd4f01fff103",
"sink_id": "c9924577-70d8-4ccb-9106-6f796df09ef9",
"source_name": "content",
"sink_name": "prompt_values_#_CONTENT",
"is_static": false
},
{
"id": "5d5656fd-4208-4296-bc70-e39cc31caada",
"source_id": "b40595c6-dba3-4779-a129-cd4f01fff103",
"sink_id": "08612ce2-625b-4c17-accd-3acace7b6477",
"source_name": "content",
"sink_name": "prompt_values_#_CONTENT",
"is_static": false
}
],
"graph_id": "0d440799-44ba-4d6c-85b3-b3739f1e1287",
"graph_version": 12,
"webhook_id": null,
"webhook": null
},
{
"id": "c9924577-70d8-4ccb-9106-6f796df09ef9",
"block_id": "1f292d4a-41a4-4977-9684-7c8d560b9f91",
"input_default": {
"model": "gpt-4o",
"prompt": "Current Webpage Content:\n```\n{{CONTENT}}\n```\n\nBased on the following analysis of the webpage content:\n\n```\n{{ANALYSIS}}\n```\n\nRewrite and improve the content to address the identified issues. Focus on:\n1. Enhancing clarity and readability\n2. Optimizing for SEO (suggest and incorporate relevant keywords)\n3. Improving calls-to-action for better conversion rates\n4. Refining the structure and organization\n5. Maintaining brand consistency while improving the overall tone\n\nProvide the improved content in HTML format inside a code-block with \"```\" backticks, preserving the original structure where appropriate. Also, include a brief summary of the changes made and their potential impact.",
"prompt_values": {}
},
"metadata": {
"position": {
"x": 488.37278423303917,
"y": 0
}
},
"input_links": [
{
"id": "adfa6113-77b3-4e32-b136-3e694b87553e",
"source_id": "b40595c6-dba3-4779-a129-cd4f01fff103",
"sink_id": "c9924577-70d8-4ccb-9106-6f796df09ef9",
"source_name": "content",
"sink_name": "prompt_values_#_CONTENT",
"is_static": false
},
{
"id": "6bcca45d-c9d5-439e-ac43-e4a1264d8f57",
"source_id": "08612ce2-625b-4c17-accd-3acace7b6477",
"sink_id": "c9924577-70d8-4ccb-9106-6f796df09ef9",
"source_name": "response",
"sink_name": "prompt_values_#_ANALYSIS",
"is_static": false
}
],
"output_links": [
{
"id": "d4334477-3616-454f-a430-614ca27f5b36",
"source_id": "c9924577-70d8-4ccb-9106-6f796df09ef9",
"sink_id": "130ec496-f75d-4fe2-9cd6-8c00d08ea4a7",
"source_name": "response",
"sink_name": "value",
"is_static": false
}
],
"graph_id": "0d440799-44ba-4d6c-85b3-b3739f1e1287",
"graph_version": 12,
"webhook_id": null,
"webhook": null
},
{
"id": "08612ce2-625b-4c17-accd-3acace7b6477",
"block_id": "1f292d4a-41a4-4977-9684-7c8d560b9f91",
"input_default": {
"model": "gpt-4o",
"prompt": "Analyze the following webpage content and provide a detailed report on its current state, including strengths and weaknesses in terms of clarity, SEO optimization, and potential for conversion:\n\n{{CONTENT}}\n\nInclude observations on:\n1. Overall readability and clarity\n2. Use of keywords and SEO-friendly language\n3. Effectiveness of calls-to-action\n4. Structure and organization of content\n5. Tone and brand consistency",
"prompt_values": {}
},
"metadata": {
"position": {
"x": -72.66206703605442,
"y": -0.58403945075381
}
},
"input_links": [
{
"id": "5d5656fd-4208-4296-bc70-e39cc31caada",
"source_id": "b40595c6-dba3-4779-a129-cd4f01fff103",
"sink_id": "08612ce2-625b-4c17-accd-3acace7b6477",
"source_name": "content",
"sink_name": "prompt_values_#_CONTENT",
"is_static": false
}
],
"output_links": [
{
"id": "f979ab78-0903-4f19-a7c2-a419d5d81aef",
"source_id": "08612ce2-625b-4c17-accd-3acace7b6477",
"sink_id": "cefccd07-fe70-4feb-bf76-46b20aaa5d35",
"source_name": "response",
"sink_name": "value",
"is_static": false
},
{
"id": "6bcca45d-c9d5-439e-ac43-e4a1264d8f57",
"source_id": "08612ce2-625b-4c17-accd-3acace7b6477",
"sink_id": "c9924577-70d8-4ccb-9106-6f796df09ef9",
"source_name": "response",
"sink_name": "prompt_values_#_ANALYSIS",
"is_static": false
}
],
"graph_id": "0d440799-44ba-4d6c-85b3-b3739f1e1287",
"graph_version": 12,
"webhook_id": null,
"webhook": null
}
],
"links": [
{
"id": "adfa6113-77b3-4e32-b136-3e694b87553e",
"source_id": "b40595c6-dba3-4779-a129-cd4f01fff103",
"sink_id": "c9924577-70d8-4ccb-9106-6f796df09ef9",
"source_name": "content",
"sink_name": "prompt_values_#_CONTENT",
"is_static": false
},
{
"id": "d4334477-3616-454f-a430-614ca27f5b36",
"source_id": "c9924577-70d8-4ccb-9106-6f796df09ef9",
"sink_id": "130ec496-f75d-4fe2-9cd6-8c00d08ea4a7",
"source_name": "response",
"sink_name": "value",
"is_static": false
},
{
"id": "5d5656fd-4208-4296-bc70-e39cc31caada",
"source_id": "b40595c6-dba3-4779-a129-cd4f01fff103",
"sink_id": "08612ce2-625b-4c17-accd-3acace7b6477",
"source_name": "content",
"sink_name": "prompt_values_#_CONTENT",
"is_static": false
},
{
"id": "f979ab78-0903-4f19-a7c2-a419d5d81aef",
"source_id": "08612ce2-625b-4c17-accd-3acace7b6477",
"sink_id": "cefccd07-fe70-4feb-bf76-46b20aaa5d35",
"source_name": "response",
"sink_name": "value",
"is_static": false
},
{
"id": "6bcca45d-c9d5-439e-ac43-e4a1264d8f57",
"source_id": "08612ce2-625b-4c17-accd-3acace7b6477",
"sink_id": "c9924577-70d8-4ccb-9106-6f796df09ef9",
"source_name": "response",
"sink_name": "prompt_values_#_ANALYSIS",
"is_static": false
},
{
"id": "cbb12335-fefd-4560-9fff-98675130fbad",
"source_id": "375f8bc3-afd9-4025-ad8e-9aeb329af7ce",
"sink_id": "b40595c6-dba3-4779-a129-cd4f01fff103",
"source_name": "result",
"sink_name": "url",
"is_static": true
}
],
"forked_from_id": null,
"forked_from_version": null,
"sub_graphs": [],
"user_id": "",
"created_at": "2024-12-20T19:47:22.036Z",
"input_schema": {
"type": "object",
"properties": {
"Homepage URL": {
"advanced": false,
"secret": false,
"title": "Homepage URL",
"description": "Enter the URL of the homepage you want to improve",
"default": "https://agpt.co"
}
},
"required": []
},
"output_schema": {
"type": "object",
"properties": {
"Improved Webpage Copy": {
"advanced": false,
"secret": false,
"title": "Improved Webpage Copy"
},
"Original Page Analysis": {
"advanced": false,
"secret": false,
"title": "Original Page Analysis",
"description": "Analysis of the webpage as it currently stands."
}
},
"required": [
"Improved Webpage Copy",
"Original Page Analysis"
]
},
"has_external_trigger": false,
"has_human_in_the_loop": false,
"trigger_setup_info": null,
"credentials_input_schema": {
"properties": {
"jina_api_key_credentials": {
"credentials_provider": [
"jina"
],
"credentials_types": [
"api_key"
],
"properties": {
"id": {
"title": "Id",
"type": "string"
},
"title": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"title": "Title"
},
"provider": {
"const": "jina",
"title": "Provider",
"type": "string"
},
"type": {
"const": "api_key",
"title": "Type",
"type": "string"
}
},
"required": [
"id",
"provider",
"type"
],
"title": "CredentialsMetaInput[Literal[<ProviderName.JINA: 'jina'>], Literal['api_key']]",
"type": "object",
"discriminator_values": []
},
"openai_api_key_credentials": {
"credentials_provider": [
"openai"
],
"credentials_types": [
"api_key"
],
"properties": {
"id": {
"title": "Id",
"type": "string"
},
"title": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"title": "Title"
},
"provider": {
"const": "openai",
"title": "Provider",
"type": "string"
},
"type": {
"const": "api_key",
"title": "Type",
"type": "string"
}
},
"required": [
"id",
"provider",
"type"
],
"title": "CredentialsMetaInput[Literal[<ProviderName.OPENAI: 'openai'>], Literal['api_key']]",
"type": "object",
"discriminator": "model",
"discriminator_mapping": {
"Llama-3.3-70B-Instruct": "llama_api",
"Llama-3.3-8B-Instruct": "llama_api",
"Llama-4-Maverick-17B-128E-Instruct-FP8": "llama_api",
"Llama-4-Scout-17B-16E-Instruct-FP8": "llama_api",
"Qwen/Qwen2.5-72B-Instruct-Turbo": "aiml_api",
"amazon/nova-lite-v1": "open_router",
"amazon/nova-micro-v1": "open_router",
"amazon/nova-pro-v1": "open_router",
"claude-3-7-sonnet-20250219": "anthropic",
"claude-3-haiku-20240307": "anthropic",
"claude-haiku-4-5-20251001": "anthropic",
"claude-opus-4-1-20250805": "anthropic",
"claude-opus-4-20250514": "anthropic",
"claude-opus-4-5-20251101": "anthropic",
"claude-sonnet-4-20250514": "anthropic",
"claude-sonnet-4-5-20250929": "anthropic",
"cohere/command-r-08-2024": "open_router",
"cohere/command-r-plus-08-2024": "open_router",
"deepseek/deepseek-chat": "open_router",
"deepseek/deepseek-r1-0528": "open_router",
"dolphin-mistral:latest": "ollama",
"google/gemini-2.0-flash-001": "open_router",
"google/gemini-2.0-flash-lite-001": "open_router",
"google/gemini-2.5-flash": "open_router",
"google/gemini-2.5-flash-lite-preview-06-17": "open_router",
"google/gemini-2.5-pro-preview-03-25": "open_router",
"google/gemini-3-pro-preview": "open_router",
"gpt-3.5-turbo": "openai",
"gpt-4-turbo": "openai",
"gpt-4.1-2025-04-14": "openai",
"gpt-4.1-mini-2025-04-14": "openai",
"gpt-4o": "openai",
"gpt-4o-mini": "openai",
"gpt-5-2025-08-07": "openai",
"gpt-5-chat-latest": "openai",
"gpt-5-mini-2025-08-07": "openai",
"gpt-5-nano-2025-08-07": "openai",
"gpt-5.1-2025-11-13": "openai",
"gryphe/mythomax-l2-13b": "open_router",
"llama-3.1-8b-instant": "groq",
"llama-3.3-70b-versatile": "groq",
"llama3": "ollama",
"llama3.1:405b": "ollama",
"llama3.2": "ollama",
"llama3.3": "ollama",
"meta-llama/Llama-3.2-3B-Instruct-Turbo": "aiml_api",
"meta-llama/Llama-3.3-70B-Instruct-Turbo": "aiml_api",
"meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo": "aiml_api",
"meta-llama/llama-4-maverick": "open_router",
"meta-llama/llama-4-scout": "open_router",
"microsoft/wizardlm-2-8x22b": "open_router",
"mistralai/mistral-nemo": "open_router",
"moonshotai/kimi-k2": "open_router",
"nousresearch/hermes-3-llama-3.1-405b": "open_router",
"nousresearch/hermes-3-llama-3.1-70b": "open_router",
"nvidia/llama-3.1-nemotron-70b-instruct": "aiml_api",
"o1": "openai",
"o1-mini": "openai",
"o3-2025-04-16": "openai",
"o3-mini": "openai",
"openai/gpt-oss-120b": "open_router",
"openai/gpt-oss-20b": "open_router",
"perplexity/sonar": "open_router",
"perplexity/sonar-deep-research": "open_router",
"perplexity/sonar-pro": "open_router",
"qwen/qwen3-235b-a22b-thinking-2507": "open_router",
"qwen/qwen3-coder": "open_router",
"v0-1.0-md": "v0",
"v0-1.5-lg": "v0",
"v0-1.5-md": "v0",
"x-ai/grok-4": "open_router",
"x-ai/grok-4-fast": "open_router",
"x-ai/grok-4.1-fast": "open_router",
"x-ai/grok-code-fast-1": "open_router"
},
"discriminator_values": [
"gpt-4o"
]
}
},
"required": [
"jina_api_key_credentials",
"openai_api_key_credentials"
],
"title": "AIWebpageCopyImproverCredentialsInputSchema",
"type": "object"
}
}

View File

@@ -0,0 +1,615 @@
{
"id": "4c6b68cb-bb75-4044-b1cb-2cee3fd39b26",
"version": 29,
"is_active": true,
"name": "Email Address Finder",
"description": "Input information of a business and find their email address",
"instructions": null,
"recommended_schedule_cron": null,
"nodes": [
{
"id": "04cad535-9f1a-4876-8b07-af5897d8c282",
"block_id": "c0a8e994-ebf1-4a9c-a4d8-89d09c86741b",
"input_default": {
"name": "Address",
"value": "USA"
},
"metadata": {
"position": {
"x": 1047.9357219838776,
"y": 1067.9123910370954
}
},
"input_links": [],
"output_links": [
{
"id": "aac29f7b-3cd1-4c91-9a2a-72a8301c0957",
"source_id": "04cad535-9f1a-4876-8b07-af5897d8c282",
"sink_id": "28b5ddcc-dc20-41cc-ad21-c54ff459f694",
"source_name": "result",
"sink_name": "values_#_ADDRESS",
"is_static": true
}
],
"graph_id": "4c6b68cb-bb75-4044-b1cb-2cee3fd39b26",
"graph_version": 29,
"webhook_id": null,
"webhook": null
},
{
"id": "a6e7355e-5bf8-4b09-b11c-a5e140389981",
"block_id": "3146e4fe-2cdd-4f29-bd12-0c9d5bb4deb0",
"input_default": {
"group": 1,
"pattern": "<email>(.*?)<\\/email>"
},
"metadata": {
"position": {
"x": 3381.2821481740634,
"y": 246.091098184158
}
},
"input_links": [
{
"id": "9f8188ce-1f3d-46fb-acda-b2a57c0e5da6",
"source_id": "510937b3-0134-4e45-b2ba-05a447bbaf50",
"sink_id": "a6e7355e-5bf8-4b09-b11c-a5e140389981",
"source_name": "response",
"sink_name": "text",
"is_static": false
}
],
"output_links": [
{
"id": "b15b5143-27b7-486e-a166-4095e72e5235",
"source_id": "a6e7355e-5bf8-4b09-b11c-a5e140389981",
"sink_id": "266b7255-11c4-4b88-99e2-85db31a2e865",
"source_name": "negative",
"sink_name": "values_#_Result",
"is_static": false
},
{
"id": "23591872-3c6b-4562-87d3-5b6ade698e48",
"source_id": "a6e7355e-5bf8-4b09-b11c-a5e140389981",
"sink_id": "310c8fab-2ae6-4158-bd48-01dbdc434130",
"source_name": "positive",
"sink_name": "value",
"is_static": false
}
],
"graph_id": "4c6b68cb-bb75-4044-b1cb-2cee3fd39b26",
"graph_version": 29,
"webhook_id": null,
"webhook": null
},
{
"id": "310c8fab-2ae6-4158-bd48-01dbdc434130",
"block_id": "363ae599-353e-4804-937e-b2ee3cef3da4",
"input_default": {
"name": "Email"
},
"metadata": {
"position": {
"x": 4525.4246310882,
"y": 246.36913665010354
}
},
"input_links": [
{
"id": "d87b07ea-dcec-4d38-a644-2c1d741ea3cb",
"source_id": "266b7255-11c4-4b88-99e2-85db31a2e865",
"sink_id": "310c8fab-2ae6-4158-bd48-01dbdc434130",
"source_name": "output",
"sink_name": "value",
"is_static": false
},
{
"id": "23591872-3c6b-4562-87d3-5b6ade698e48",
"source_id": "a6e7355e-5bf8-4b09-b11c-a5e140389981",
"sink_id": "310c8fab-2ae6-4158-bd48-01dbdc434130",
"source_name": "positive",
"sink_name": "value",
"is_static": false
}
],
"output_links": [],
"graph_id": "4c6b68cb-bb75-4044-b1cb-2cee3fd39b26",
"graph_version": 29,
"webhook_id": null,
"webhook": null
},
{
"id": "4a41df99-ffe2-4c12-b528-632979c9c030",
"block_id": "87840993-2053-44b7-8da4-187ad4ee518c",
"input_default": {},
"metadata": {
"position": {
"x": 2182.7499999999995,
"y": 242.00001144409185
}
},
"input_links": [
{
"id": "2e411d3d-79ba-4958-9c1c-b76a45a2e649",
"source_id": "28b5ddcc-dc20-41cc-ad21-c54ff459f694",
"sink_id": "4a41df99-ffe2-4c12-b528-632979c9c030",
"source_name": "output",
"sink_name": "query",
"is_static": false
}
],
"output_links": [
{
"id": "899cc7d8-a96b-4107-b3c6-4c78edcf0c6b",
"source_id": "4a41df99-ffe2-4c12-b528-632979c9c030",
"sink_id": "510937b3-0134-4e45-b2ba-05a447bbaf50",
"source_name": "results",
"sink_name": "prompt_values_#_WEBSITE_CONTENT",
"is_static": false
}
],
"graph_id": "4c6b68cb-bb75-4044-b1cb-2cee3fd39b26",
"graph_version": 29,
"webhook_id": null,
"webhook": null
},
{
"id": "9708a10a-8be0-4c44-abb3-bd0f7c594794",
"block_id": "c0a8e994-ebf1-4a9c-a4d8-89d09c86741b",
"input_default": {
"name": "Business Name",
"value": "Tim Cook"
},
"metadata": {
"position": {
"x": 1049.9704155272595,
"y": 244.49931152418344
}
},
"input_links": [],
"output_links": [
{
"id": "946b522c-365f-4ee0-96f9-28863d9882ea",
"source_id": "9708a10a-8be0-4c44-abb3-bd0f7c594794",
"sink_id": "28b5ddcc-dc20-41cc-ad21-c54ff459f694",
"source_name": "result",
"sink_name": "values_#_NAME",
"is_static": true
},
{
"id": "43e920a7-0bb4-4fae-9a22-91df95c7342a",
"source_id": "9708a10a-8be0-4c44-abb3-bd0f7c594794",
"sink_id": "510937b3-0134-4e45-b2ba-05a447bbaf50",
"source_name": "result",
"sink_name": "prompt_values_#_BUSINESS_NAME",
"is_static": true
}
],
"graph_id": "4c6b68cb-bb75-4044-b1cb-2cee3fd39b26",
"graph_version": 29,
"webhook_id": null,
"webhook": null
},
{
"id": "28b5ddcc-dc20-41cc-ad21-c54ff459f694",
"block_id": "db7d8f02-2f44-4c55-ab7a-eae0941f0c30",
"input_default": {
"format": "Email Address of {{NAME}}, {{ADDRESS}}",
"values": {}
},
"metadata": {
"position": {
"x": 1625.25,
"y": 243.25001144409185
}
},
"input_links": [
{
"id": "946b522c-365f-4ee0-96f9-28863d9882ea",
"source_id": "9708a10a-8be0-4c44-abb3-bd0f7c594794",
"sink_id": "28b5ddcc-dc20-41cc-ad21-c54ff459f694",
"source_name": "result",
"sink_name": "values_#_NAME",
"is_static": true
},
{
"id": "aac29f7b-3cd1-4c91-9a2a-72a8301c0957",
"source_id": "04cad535-9f1a-4876-8b07-af5897d8c282",
"sink_id": "28b5ddcc-dc20-41cc-ad21-c54ff459f694",
"source_name": "result",
"sink_name": "values_#_ADDRESS",
"is_static": true
}
],
"output_links": [
{
"id": "2e411d3d-79ba-4958-9c1c-b76a45a2e649",
"source_id": "28b5ddcc-dc20-41cc-ad21-c54ff459f694",
"sink_id": "4a41df99-ffe2-4c12-b528-632979c9c030",
"source_name": "output",
"sink_name": "query",
"is_static": false
}
],
"graph_id": "4c6b68cb-bb75-4044-b1cb-2cee3fd39b26",
"graph_version": 29,
"webhook_id": null,
"webhook": null
},
{
"id": "266b7255-11c4-4b88-99e2-85db31a2e865",
"block_id": "db7d8f02-2f44-4c55-ab7a-eae0941f0c30",
"input_default": {
"format": "Failed to find email. \nResult:\n{{RESULT}}",
"values": {}
},
"metadata": {
"position": {
"x": 3949.7493830805934,
"y": 705.209819698647
}
},
"input_links": [
{
"id": "b15b5143-27b7-486e-a166-4095e72e5235",
"source_id": "a6e7355e-5bf8-4b09-b11c-a5e140389981",
"sink_id": "266b7255-11c4-4b88-99e2-85db31a2e865",
"source_name": "negative",
"sink_name": "values_#_Result",
"is_static": false
}
],
"output_links": [
{
"id": "d87b07ea-dcec-4d38-a644-2c1d741ea3cb",
"source_id": "266b7255-11c4-4b88-99e2-85db31a2e865",
"sink_id": "310c8fab-2ae6-4158-bd48-01dbdc434130",
"source_name": "output",
"sink_name": "value",
"is_static": false
}
],
"graph_id": "4c6b68cb-bb75-4044-b1cb-2cee3fd39b26",
"graph_version": 29,
"webhook_id": null,
"webhook": null
},
{
"id": "510937b3-0134-4e45-b2ba-05a447bbaf50",
"block_id": "1f292d4a-41a4-4977-9684-7c8d560b9f91",
"input_default": {
"model": "claude-sonnet-4-5-20250929",
"prompt": "<business_website>\n{{WEBSITE_CONTENT}}\n</business_website>\n\nExtract the Contact Email of {{BUSINESS_NAME}}.\n\nIf no email that can be used to contact {{BUSINESS_NAME}} is present, output `N/A`.\nDo not share any emails other than the email for this specific entity.\n\nIf multiple present pick the likely best one.\n\nRespond with the email (or N/A) inside <email></email> tags.\n\nExample Response:\n\n<thoughts_or_comments>\nThere were many emails present, but luckily one was for {{BUSINESS_NAME}} which I have included below.\n</thoughts_or_comments>\n<email>\nexample@email.com\n</email>",
"prompt_values": {}
},
"metadata": {
"position": {
"x": 2774.879259081777,
"y": 243.3102035752969
}
},
"input_links": [
{
"id": "43e920a7-0bb4-4fae-9a22-91df95c7342a",
"source_id": "9708a10a-8be0-4c44-abb3-bd0f7c594794",
"sink_id": "510937b3-0134-4e45-b2ba-05a447bbaf50",
"source_name": "result",
"sink_name": "prompt_values_#_BUSINESS_NAME",
"is_static": true
},
{
"id": "899cc7d8-a96b-4107-b3c6-4c78edcf0c6b",
"source_id": "4a41df99-ffe2-4c12-b528-632979c9c030",
"sink_id": "510937b3-0134-4e45-b2ba-05a447bbaf50",
"source_name": "results",
"sink_name": "prompt_values_#_WEBSITE_CONTENT",
"is_static": false
}
],
"output_links": [
{
"id": "9f8188ce-1f3d-46fb-acda-b2a57c0e5da6",
"source_id": "510937b3-0134-4e45-b2ba-05a447bbaf50",
"sink_id": "a6e7355e-5bf8-4b09-b11c-a5e140389981",
"source_name": "response",
"sink_name": "text",
"is_static": false
}
],
"graph_id": "4c6b68cb-bb75-4044-b1cb-2cee3fd39b26",
"graph_version": 29,
"webhook_id": null,
"webhook": null
}
],
"links": [
{
"id": "9f8188ce-1f3d-46fb-acda-b2a57c0e5da6",
"source_id": "510937b3-0134-4e45-b2ba-05a447bbaf50",
"sink_id": "a6e7355e-5bf8-4b09-b11c-a5e140389981",
"source_name": "response",
"sink_name": "text",
"is_static": false
},
{
"id": "b15b5143-27b7-486e-a166-4095e72e5235",
"source_id": "a6e7355e-5bf8-4b09-b11c-a5e140389981",
"sink_id": "266b7255-11c4-4b88-99e2-85db31a2e865",
"source_name": "negative",
"sink_name": "values_#_Result",
"is_static": false
},
{
"id": "d87b07ea-dcec-4d38-a644-2c1d741ea3cb",
"source_id": "266b7255-11c4-4b88-99e2-85db31a2e865",
"sink_id": "310c8fab-2ae6-4158-bd48-01dbdc434130",
"source_name": "output",
"sink_name": "value",
"is_static": false
},
{
"id": "946b522c-365f-4ee0-96f9-28863d9882ea",
"source_id": "9708a10a-8be0-4c44-abb3-bd0f7c594794",
"sink_id": "28b5ddcc-dc20-41cc-ad21-c54ff459f694",
"source_name": "result",
"sink_name": "values_#_NAME",
"is_static": true
},
{
"id": "23591872-3c6b-4562-87d3-5b6ade698e48",
"source_id": "a6e7355e-5bf8-4b09-b11c-a5e140389981",
"sink_id": "310c8fab-2ae6-4158-bd48-01dbdc434130",
"source_name": "positive",
"sink_name": "value",
"is_static": false
},
{
"id": "43e920a7-0bb4-4fae-9a22-91df95c7342a",
"source_id": "9708a10a-8be0-4c44-abb3-bd0f7c594794",
"sink_id": "510937b3-0134-4e45-b2ba-05a447bbaf50",
"source_name": "result",
"sink_name": "prompt_values_#_BUSINESS_NAME",
"is_static": true
},
{
"id": "2e411d3d-79ba-4958-9c1c-b76a45a2e649",
"source_id": "28b5ddcc-dc20-41cc-ad21-c54ff459f694",
"sink_id": "4a41df99-ffe2-4c12-b528-632979c9c030",
"source_name": "output",
"sink_name": "query",
"is_static": false
},
{
"id": "aac29f7b-3cd1-4c91-9a2a-72a8301c0957",
"source_id": "04cad535-9f1a-4876-8b07-af5897d8c282",
"sink_id": "28b5ddcc-dc20-41cc-ad21-c54ff459f694",
"source_name": "result",
"sink_name": "values_#_ADDRESS",
"is_static": true
},
{
"id": "899cc7d8-a96b-4107-b3c6-4c78edcf0c6b",
"source_id": "4a41df99-ffe2-4c12-b528-632979c9c030",
"sink_id": "510937b3-0134-4e45-b2ba-05a447bbaf50",
"source_name": "results",
"sink_name": "prompt_values_#_WEBSITE_CONTENT",
"is_static": false
}
],
"forked_from_id": null,
"forked_from_version": null,
"sub_graphs": [],
"user_id": "",
"created_at": "2025-01-03T00:46:30.244Z",
"input_schema": {
"type": "object",
"properties": {
"Address": {
"advanced": false,
"secret": false,
"title": "Address",
"default": "USA"
},
"Business Name": {
"advanced": false,
"secret": false,
"title": "Business Name",
"default": "Tim Cook"
}
},
"required": []
},
"output_schema": {
"type": "object",
"properties": {
"Email": {
"advanced": false,
"secret": false,
"title": "Email"
}
},
"required": [
"Email"
]
},
"has_external_trigger": false,
"has_human_in_the_loop": false,
"trigger_setup_info": null,
"credentials_input_schema": {
"properties": {
"jina_api_key_credentials": {
"credentials_provider": [
"jina"
],
"credentials_types": [
"api_key"
],
"properties": {
"id": {
"title": "Id",
"type": "string"
},
"title": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"title": "Title"
},
"provider": {
"const": "jina",
"title": "Provider",
"type": "string"
},
"type": {
"const": "api_key",
"title": "Type",
"type": "string"
}
},
"required": [
"id",
"provider",
"type"
],
"title": "CredentialsMetaInput[Literal[<ProviderName.JINA: 'jina'>], Literal['api_key']]",
"type": "object",
"discriminator_values": []
},
"anthropic_api_key_credentials": {
"credentials_provider": [
"anthropic"
],
"credentials_types": [
"api_key"
],
"properties": {
"id": {
"title": "Id",
"type": "string"
},
"title": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"title": "Title"
},
"provider": {
"const": "anthropic",
"title": "Provider",
"type": "string"
},
"type": {
"const": "api_key",
"title": "Type",
"type": "string"
}
},
"required": [
"id",
"provider",
"type"
],
"title": "CredentialsMetaInput[Literal[<ProviderName.ANTHROPIC: 'anthropic'>], Literal['api_key']]",
"type": "object",
"discriminator": "model",
"discriminator_mapping": {
"Llama-3.3-70B-Instruct": "llama_api",
"Llama-3.3-8B-Instruct": "llama_api",
"Llama-4-Maverick-17B-128E-Instruct-FP8": "llama_api",
"Llama-4-Scout-17B-16E-Instruct-FP8": "llama_api",
"Qwen/Qwen2.5-72B-Instruct-Turbo": "aiml_api",
"amazon/nova-lite-v1": "open_router",
"amazon/nova-micro-v1": "open_router",
"amazon/nova-pro-v1": "open_router",
"claude-3-7-sonnet-20250219": "anthropic",
"claude-3-haiku-20240307": "anthropic",
"claude-haiku-4-5-20251001": "anthropic",
"claude-opus-4-1-20250805": "anthropic",
"claude-opus-4-20250514": "anthropic",
"claude-opus-4-5-20251101": "anthropic",
"claude-sonnet-4-20250514": "anthropic",
"claude-sonnet-4-5-20250929": "anthropic",
"cohere/command-r-08-2024": "open_router",
"cohere/command-r-plus-08-2024": "open_router",
"deepseek/deepseek-chat": "open_router",
"deepseek/deepseek-r1-0528": "open_router",
"dolphin-mistral:latest": "ollama",
"google/gemini-2.0-flash-001": "open_router",
"google/gemini-2.0-flash-lite-001": "open_router",
"google/gemini-2.5-flash": "open_router",
"google/gemini-2.5-flash-lite-preview-06-17": "open_router",
"google/gemini-2.5-pro-preview-03-25": "open_router",
"google/gemini-3-pro-preview": "open_router",
"gpt-3.5-turbo": "openai",
"gpt-4-turbo": "openai",
"gpt-4.1-2025-04-14": "openai",
"gpt-4.1-mini-2025-04-14": "openai",
"gpt-4o": "openai",
"gpt-4o-mini": "openai",
"gpt-5-2025-08-07": "openai",
"gpt-5-chat-latest": "openai",
"gpt-5-mini-2025-08-07": "openai",
"gpt-5-nano-2025-08-07": "openai",
"gpt-5.1-2025-11-13": "openai",
"gryphe/mythomax-l2-13b": "open_router",
"llama-3.1-8b-instant": "groq",
"llama-3.3-70b-versatile": "groq",
"llama3": "ollama",
"llama3.1:405b": "ollama",
"llama3.2": "ollama",
"llama3.3": "ollama",
"meta-llama/Llama-3.2-3B-Instruct-Turbo": "aiml_api",
"meta-llama/Llama-3.3-70B-Instruct-Turbo": "aiml_api",
"meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo": "aiml_api",
"meta-llama/llama-4-maverick": "open_router",
"meta-llama/llama-4-scout": "open_router",
"microsoft/wizardlm-2-8x22b": "open_router",
"mistralai/mistral-nemo": "open_router",
"moonshotai/kimi-k2": "open_router",
"nousresearch/hermes-3-llama-3.1-405b": "open_router",
"nousresearch/hermes-3-llama-3.1-70b": "open_router",
"nvidia/llama-3.1-nemotron-70b-instruct": "aiml_api",
"o1": "openai",
"o1-mini": "openai",
"o3-2025-04-16": "openai",
"o3-mini": "openai",
"openai/gpt-oss-120b": "open_router",
"openai/gpt-oss-20b": "open_router",
"perplexity/sonar": "open_router",
"perplexity/sonar-deep-research": "open_router",
"perplexity/sonar-pro": "open_router",
"qwen/qwen3-235b-a22b-thinking-2507": "open_router",
"qwen/qwen3-coder": "open_router",
"v0-1.0-md": "v0",
"v0-1.5-lg": "v0",
"v0-1.5-md": "v0",
"x-ai/grok-4": "open_router",
"x-ai/grok-4-fast": "open_router",
"x-ai/grok-4.1-fast": "open_router",
"x-ai/grok-code-fast-1": "open_router"
},
"discriminator_values": [
"claude-sonnet-4-5-20250929"
]
}
},
"required": [
"jina_api_key_credentials",
"anthropic_api_key_credentials"
],
"title": "EmailAddressFinderCredentialsInputSchema",
"type": "object"
}
}

View File

@@ -1371,7 +1371,7 @@ async def create_base(
if tables:
params["tables"] = tables
print(params)
logger.debug(f"Creating Airtable base with params: {params}")
response = await Requests().post(
"https://api.airtable.com/v0/meta/bases",

View File

@@ -0,0 +1,108 @@
{
"action": "created",
"discussion": {
"repository_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT",
"category": {
"id": 12345678,
"node_id": "DIC_kwDOJKSTjM4CXXXX",
"repository_id": 614765452,
"emoji": ":pray:",
"name": "Q&A",
"description": "Ask the community for help",
"created_at": "2023-03-16T09:21:07Z",
"updated_at": "2023-03-16T09:21:07Z",
"slug": "q-a",
"is_answerable": true
},
"answer_html_url": null,
"answer_chosen_at": null,
"answer_chosen_by": null,
"html_url": "https://github.com/Significant-Gravitas/AutoGPT/discussions/9999",
"id": 5000000001,
"node_id": "D_kwDOJKSTjM4AYYYY",
"number": 9999,
"title": "How do I configure custom blocks?",
"user": {
"login": "curious-user",
"id": 22222222,
"node_id": "MDQ6VXNlcjIyMjIyMjIy",
"avatar_url": "https://avatars.githubusercontent.com/u/22222222?v=4",
"url": "https://api.github.com/users/curious-user",
"html_url": "https://github.com/curious-user",
"type": "User",
"site_admin": false
},
"state": "open",
"state_reason": null,
"locked": false,
"comments": 0,
"created_at": "2024-12-01T17:00:00Z",
"updated_at": "2024-12-01T17:00:00Z",
"author_association": "NONE",
"active_lock_reason": null,
"body": "## Question\n\nI'm trying to create a custom block for my specific use case. I've read the documentation but I'm not sure how to:\n\n1. Define the input/output schema\n2. Handle authentication\n3. Test my block locally\n\nCan someone point me to examples or provide guidance?\n\n## Environment\n\n- AutoGPT Platform version: latest\n- Python: 3.11",
"reactions": {
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/discussions/9999/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
},
"timeline_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/discussions/9999/timeline"
},
"repository": {
"id": 614765452,
"node_id": "R_kgDOJKSTjA",
"name": "AutoGPT",
"full_name": "Significant-Gravitas/AutoGPT",
"private": false,
"owner": {
"login": "Significant-Gravitas",
"id": 130738209,
"node_id": "O_kgDOB8roIQ",
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
"url": "https://api.github.com/users/Significant-Gravitas",
"html_url": "https://github.com/Significant-Gravitas",
"type": "Organization",
"site_admin": false
},
"html_url": "https://github.com/Significant-Gravitas/AutoGPT",
"description": "AutoGPT is the vision of accessible AI for everyone, to use and to build on.",
"fork": false,
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT",
"created_at": "2023-03-16T09:21:07Z",
"updated_at": "2024-12-01T17:00:00Z",
"pushed_at": "2024-12-01T12:00:00Z",
"stargazers_count": 170000,
"watchers_count": 170000,
"language": "Python",
"has_discussions": true,
"forks_count": 45000,
"visibility": "public",
"default_branch": "master"
},
"organization": {
"login": "Significant-Gravitas",
"id": 130738209,
"node_id": "O_kgDOB8roIQ",
"url": "https://api.github.com/orgs/Significant-Gravitas",
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
"description": ""
},
"sender": {
"login": "curious-user",
"id": 22222222,
"node_id": "MDQ6VXNlcjIyMjIyMjIy",
"avatar_url": "https://avatars.githubusercontent.com/u/22222222?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/curious-user",
"html_url": "https://github.com/curious-user",
"type": "User",
"site_admin": false
}
}

View File

@@ -0,0 +1,112 @@
{
"action": "opened",
"issue": {
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/issues/12345",
"repository_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT",
"labels_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/issues/12345/labels{/name}",
"comments_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/issues/12345/comments",
"events_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/issues/12345/events",
"html_url": "https://github.com/Significant-Gravitas/AutoGPT/issues/12345",
"id": 2000000001,
"node_id": "I_kwDOJKSTjM5wXXXX",
"number": 12345,
"title": "Bug: Application crashes when processing large files",
"user": {
"login": "bug-reporter",
"id": 11111111,
"node_id": "MDQ6VXNlcjExMTExMTEx",
"avatar_url": "https://avatars.githubusercontent.com/u/11111111?v=4",
"url": "https://api.github.com/users/bug-reporter",
"html_url": "https://github.com/bug-reporter",
"type": "User",
"site_admin": false
},
"labels": [
{
"id": 5272676214,
"node_id": "LA_kwDOJKSTjM8AAAABOkandg",
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
}
],
"state": "open",
"locked": false,
"assignee": null,
"assignees": [],
"milestone": null,
"comments": 0,
"created_at": "2024-12-01T16:00:00Z",
"updated_at": "2024-12-01T16:00:00Z",
"closed_at": null,
"author_association": "NONE",
"active_lock_reason": null,
"body": "## Description\n\nWhen I try to process a file larger than 100MB, the application crashes with an out of memory error.\n\n## Steps to Reproduce\n\n1. Open the application\n2. Select a file larger than 100MB\n3. Click 'Process'\n4. Application crashes\n\n## Expected Behavior\n\nThe application should handle large files gracefully.\n\n## Environment\n\n- OS: Ubuntu 22.04\n- Python: 3.11\n- AutoGPT Version: 1.0.0",
"reactions": {
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/issues/12345/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
},
"timeline_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/issues/12345/timeline",
"state_reason": null
},
"repository": {
"id": 614765452,
"node_id": "R_kgDOJKSTjA",
"name": "AutoGPT",
"full_name": "Significant-Gravitas/AutoGPT",
"private": false,
"owner": {
"login": "Significant-Gravitas",
"id": 130738209,
"node_id": "O_kgDOB8roIQ",
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
"url": "https://api.github.com/users/Significant-Gravitas",
"html_url": "https://github.com/Significant-Gravitas",
"type": "Organization",
"site_admin": false
},
"html_url": "https://github.com/Significant-Gravitas/AutoGPT",
"description": "AutoGPT is the vision of accessible AI for everyone, to use and to build on.",
"fork": false,
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT",
"created_at": "2023-03-16T09:21:07Z",
"updated_at": "2024-12-01T16:00:00Z",
"pushed_at": "2024-12-01T12:00:00Z",
"stargazers_count": 170000,
"watchers_count": 170000,
"language": "Python",
"forks_count": 45000,
"open_issues_count": 190,
"visibility": "public",
"default_branch": "master"
},
"organization": {
"login": "Significant-Gravitas",
"id": 130738209,
"node_id": "O_kgDOB8roIQ",
"url": "https://api.github.com/orgs/Significant-Gravitas",
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
"description": ""
},
"sender": {
"login": "bug-reporter",
"id": 11111111,
"node_id": "MDQ6VXNlcjExMTExMTEx",
"avatar_url": "https://avatars.githubusercontent.com/u/11111111?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/bug-reporter",
"html_url": "https://github.com/bug-reporter",
"type": "User",
"site_admin": false
}
}

View File

@@ -0,0 +1,97 @@
{
"action": "published",
"release": {
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/releases/123456789",
"assets_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/releases/123456789/assets",
"upload_url": "https://uploads.github.com/repos/Significant-Gravitas/AutoGPT/releases/123456789/assets{?name,label}",
"html_url": "https://github.com/Significant-Gravitas/AutoGPT/releases/tag/v1.0.0",
"id": 123456789,
"author": {
"login": "ntindle",
"id": 12345678,
"node_id": "MDQ6VXNlcjEyMzQ1Njc4",
"avatar_url": "https://avatars.githubusercontent.com/u/12345678?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ntindle",
"html_url": "https://github.com/ntindle",
"type": "User",
"site_admin": false
},
"node_id": "RE_kwDOJKSTjM4HWwAA",
"tag_name": "v1.0.0",
"target_commitish": "master",
"name": "AutoGPT Platform v1.0.0",
"draft": false,
"prerelease": false,
"created_at": "2024-12-01T10:00:00Z",
"published_at": "2024-12-01T12:00:00Z",
"assets": [
{
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/releases/assets/987654321",
"id": 987654321,
"node_id": "RA_kwDOJKSTjM4HWwBB",
"name": "autogpt-v1.0.0.zip",
"label": "Release Package",
"content_type": "application/zip",
"state": "uploaded",
"size": 52428800,
"download_count": 0,
"created_at": "2024-12-01T11:30:00Z",
"updated_at": "2024-12-01T11:35:00Z",
"browser_download_url": "https://github.com/Significant-Gravitas/AutoGPT/releases/download/v1.0.0/autogpt-v1.0.0.zip"
}
],
"tarball_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/tarball/v1.0.0",
"zipball_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/zipball/v1.0.0",
"body": "## What's New\n\n- Feature 1: Amazing new capability\n- Feature 2: Performance improvements\n- Bug fixes and stability improvements\n\n## Breaking Changes\n\nNone\n\n## Contributors\n\nThanks to all our contributors!"
},
"repository": {
"id": 614765452,
"node_id": "R_kgDOJKSTjA",
"name": "AutoGPT",
"full_name": "Significant-Gravitas/AutoGPT",
"private": false,
"owner": {
"login": "Significant-Gravitas",
"id": 130738209,
"node_id": "O_kgDOB8roIQ",
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
"url": "https://api.github.com/users/Significant-Gravitas",
"html_url": "https://github.com/Significant-Gravitas",
"type": "Organization",
"site_admin": false
},
"html_url": "https://github.com/Significant-Gravitas/AutoGPT",
"description": "AutoGPT is the vision of accessible AI for everyone, to use and to build on.",
"fork": false,
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT",
"created_at": "2023-03-16T09:21:07Z",
"updated_at": "2024-12-01T12:00:00Z",
"pushed_at": "2024-12-01T12:00:00Z",
"stargazers_count": 170000,
"watchers_count": 170000,
"language": "Python",
"forks_count": 45000,
"visibility": "public",
"default_branch": "master"
},
"organization": {
"login": "Significant-Gravitas",
"id": 130738209,
"node_id": "O_kgDOB8roIQ",
"url": "https://api.github.com/orgs/Significant-Gravitas",
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
"description": ""
},
"sender": {
"login": "ntindle",
"id": 12345678,
"node_id": "MDQ6VXNlcjEyMzQ1Njc4",
"avatar_url": "https://avatars.githubusercontent.com/u/12345678?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ntindle",
"html_url": "https://github.com/ntindle",
"type": "User",
"site_admin": false
}
}

View File

@@ -0,0 +1,53 @@
{
"action": "created",
"starred_at": "2024-12-01T15:30:00Z",
"repository": {
"id": 614765452,
"node_id": "R_kgDOJKSTjA",
"name": "AutoGPT",
"full_name": "Significant-Gravitas/AutoGPT",
"private": false,
"owner": {
"login": "Significant-Gravitas",
"id": 130738209,
"node_id": "O_kgDOB8roIQ",
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
"url": "https://api.github.com/users/Significant-Gravitas",
"html_url": "https://github.com/Significant-Gravitas",
"type": "Organization",
"site_admin": false
},
"html_url": "https://github.com/Significant-Gravitas/AutoGPT",
"description": "AutoGPT is the vision of accessible AI for everyone, to use and to build on.",
"fork": false,
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT",
"created_at": "2023-03-16T09:21:07Z",
"updated_at": "2024-12-01T15:30:00Z",
"pushed_at": "2024-12-01T12:00:00Z",
"stargazers_count": 170001,
"watchers_count": 170001,
"language": "Python",
"forks_count": 45000,
"visibility": "public",
"default_branch": "master"
},
"organization": {
"login": "Significant-Gravitas",
"id": 130738209,
"node_id": "O_kgDOB8roIQ",
"url": "https://api.github.com/orgs/Significant-Gravitas",
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
"description": ""
},
"sender": {
"login": "awesome-contributor",
"id": 98765432,
"node_id": "MDQ6VXNlcjk4NzY1NDMy",
"avatar_url": "https://avatars.githubusercontent.com/u/98765432?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/awesome-contributor",
"html_url": "https://github.com/awesome-contributor",
"type": "User",
"site_admin": false
}
}

View File

@@ -159,3 +159,391 @@ class GithubPullRequestTriggerBlock(GitHubTriggerBase, Block):
# --8<-- [end:GithubTriggerExample]
class GithubStarTriggerBlock(GitHubTriggerBase, Block):
"""Trigger block for GitHub star events - useful for milestone celebrations."""
EXAMPLE_PAYLOAD_FILE = (
Path(__file__).parent / "example_payloads" / "star.created.json"
)
class Input(GitHubTriggerBase.Input):
class EventsFilter(BaseModel):
"""
https://docs.github.com/en/webhooks/webhook-events-and-payloads#star
"""
created: bool = False
deleted: bool = False
events: EventsFilter = SchemaField(
title="Events", description="The star events to subscribe to"
)
class Output(GitHubTriggerBase.Output):
event: str = SchemaField(
description="The star event that triggered the webhook ('created' or 'deleted')"
)
starred_at: str = SchemaField(
description="ISO timestamp when the repo was starred (empty if deleted)"
)
stargazers_count: int = SchemaField(
description="Current number of stars on the repository"
)
repository_name: str = SchemaField(
description="Full name of the repository (owner/repo)"
)
repository_url: str = SchemaField(description="URL to the repository")
def __init__(self):
from backend.integrations.webhooks.github import GithubWebhookType
example_payload = json.loads(
self.EXAMPLE_PAYLOAD_FILE.read_text(encoding="utf-8")
)
super().__init__(
id="551e0a35-100b-49b7-89b8-3031322239b6",
description="This block triggers on GitHub star events. "
"Useful for celebrating milestones (e.g., 1k, 10k stars) or tracking engagement.",
categories={BlockCategory.DEVELOPER_TOOLS, BlockCategory.INPUT},
input_schema=GithubStarTriggerBlock.Input,
output_schema=GithubStarTriggerBlock.Output,
webhook_config=BlockWebhookConfig(
provider=ProviderName.GITHUB,
webhook_type=GithubWebhookType.REPO,
resource_format="{repo}",
event_filter_input="events",
event_format="star.{event}",
),
test_input={
"repo": "Significant-Gravitas/AutoGPT",
"events": {"created": True},
"credentials": TEST_CREDENTIALS_INPUT,
"payload": example_payload,
},
test_credentials=TEST_CREDENTIALS,
test_output=[
("payload", example_payload),
("triggered_by_user", example_payload["sender"]),
("event", example_payload["action"]),
("starred_at", example_payload.get("starred_at", "")),
("stargazers_count", example_payload["repository"]["stargazers_count"]),
("repository_name", example_payload["repository"]["full_name"]),
("repository_url", example_payload["repository"]["html_url"]),
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput: # type: ignore
async for name, value in super().run(input_data, **kwargs):
yield name, value
yield "event", input_data.payload["action"]
yield "starred_at", input_data.payload.get("starred_at", "")
yield "stargazers_count", input_data.payload["repository"]["stargazers_count"]
yield "repository_name", input_data.payload["repository"]["full_name"]
yield "repository_url", input_data.payload["repository"]["html_url"]
class GithubReleaseTriggerBlock(GitHubTriggerBase, Block):
"""Trigger block for GitHub release events - ideal for announcing new versions."""
EXAMPLE_PAYLOAD_FILE = (
Path(__file__).parent / "example_payloads" / "release.published.json"
)
class Input(GitHubTriggerBase.Input):
class EventsFilter(BaseModel):
"""
https://docs.github.com/en/webhooks/webhook-events-and-payloads#release
"""
published: bool = False
unpublished: bool = False
created: bool = False
edited: bool = False
deleted: bool = False
prereleased: bool = False
released: bool = False
events: EventsFilter = SchemaField(
title="Events", description="The release events to subscribe to"
)
class Output(GitHubTriggerBase.Output):
event: str = SchemaField(
description="The release event that triggered the webhook (e.g., 'published')"
)
release: dict = SchemaField(description="The full release object")
release_url: str = SchemaField(description="URL to the release page")
tag_name: str = SchemaField(description="The release tag name (e.g., 'v1.0.0')")
release_name: str = SchemaField(description="Human-readable release name")
body: str = SchemaField(description="Release notes/description")
prerelease: bool = SchemaField(description="Whether this is a prerelease")
draft: bool = SchemaField(description="Whether this is a draft release")
assets: list = SchemaField(description="List of release assets/files")
def __init__(self):
from backend.integrations.webhooks.github import GithubWebhookType
example_payload = json.loads(
self.EXAMPLE_PAYLOAD_FILE.read_text(encoding="utf-8")
)
super().__init__(
id="2052dd1b-74e1-46ac-9c87-c7a0e057b60b",
description="This block triggers on GitHub release events. "
"Perfect for automating announcements to Discord, Twitter, or other platforms.",
categories={BlockCategory.DEVELOPER_TOOLS, BlockCategory.INPUT},
input_schema=GithubReleaseTriggerBlock.Input,
output_schema=GithubReleaseTriggerBlock.Output,
webhook_config=BlockWebhookConfig(
provider=ProviderName.GITHUB,
webhook_type=GithubWebhookType.REPO,
resource_format="{repo}",
event_filter_input="events",
event_format="release.{event}",
),
test_input={
"repo": "Significant-Gravitas/AutoGPT",
"events": {"published": True},
"credentials": TEST_CREDENTIALS_INPUT,
"payload": example_payload,
},
test_credentials=TEST_CREDENTIALS,
test_output=[
("payload", example_payload),
("triggered_by_user", example_payload["sender"]),
("event", example_payload["action"]),
("release", example_payload["release"]),
("release_url", example_payload["release"]["html_url"]),
("tag_name", example_payload["release"]["tag_name"]),
("release_name", example_payload["release"]["name"]),
("body", example_payload["release"]["body"]),
("prerelease", example_payload["release"]["prerelease"]),
("draft", example_payload["release"]["draft"]),
("assets", example_payload["release"]["assets"]),
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput: # type: ignore
async for name, value in super().run(input_data, **kwargs):
yield name, value
release = input_data.payload["release"]
yield "event", input_data.payload["action"]
yield "release", release
yield "release_url", release["html_url"]
yield "tag_name", release["tag_name"]
yield "release_name", release.get("name", "")
yield "body", release.get("body", "")
yield "prerelease", release["prerelease"]
yield "draft", release["draft"]
yield "assets", release["assets"]
class GithubIssuesTriggerBlock(GitHubTriggerBase, Block):
"""Trigger block for GitHub issues events - great for triage and notifications."""
EXAMPLE_PAYLOAD_FILE = (
Path(__file__).parent / "example_payloads" / "issues.opened.json"
)
class Input(GitHubTriggerBase.Input):
class EventsFilter(BaseModel):
"""
https://docs.github.com/en/webhooks/webhook-events-and-payloads#issues
"""
opened: bool = False
edited: bool = False
deleted: bool = False
closed: bool = False
reopened: bool = False
assigned: bool = False
unassigned: bool = False
labeled: bool = False
unlabeled: bool = False
locked: bool = False
unlocked: bool = False
transferred: bool = False
milestoned: bool = False
demilestoned: bool = False
pinned: bool = False
unpinned: bool = False
events: EventsFilter = SchemaField(
title="Events", description="The issue events to subscribe to"
)
class Output(GitHubTriggerBase.Output):
event: str = SchemaField(
description="The issue event that triggered the webhook (e.g., 'opened')"
)
number: int = SchemaField(description="The issue number")
issue: dict = SchemaField(description="The full issue object")
issue_url: str = SchemaField(description="URL to the issue")
issue_title: str = SchemaField(description="The issue title")
issue_body: str = SchemaField(description="The issue body/description")
labels: list = SchemaField(description="List of labels on the issue")
assignees: list = SchemaField(description="List of assignees")
state: str = SchemaField(description="Issue state ('open' or 'closed')")
def __init__(self):
from backend.integrations.webhooks.github import GithubWebhookType
example_payload = json.loads(
self.EXAMPLE_PAYLOAD_FILE.read_text(encoding="utf-8")
)
super().__init__(
id="b2605464-e486-4bf4-aad3-d8a213c8a48a",
description="This block triggers on GitHub issues events. "
"Useful for automated triage, notifications, and welcoming first-time contributors.",
categories={BlockCategory.DEVELOPER_TOOLS, BlockCategory.INPUT},
input_schema=GithubIssuesTriggerBlock.Input,
output_schema=GithubIssuesTriggerBlock.Output,
webhook_config=BlockWebhookConfig(
provider=ProviderName.GITHUB,
webhook_type=GithubWebhookType.REPO,
resource_format="{repo}",
event_filter_input="events",
event_format="issues.{event}",
),
test_input={
"repo": "Significant-Gravitas/AutoGPT",
"events": {"opened": True},
"credentials": TEST_CREDENTIALS_INPUT,
"payload": example_payload,
},
test_credentials=TEST_CREDENTIALS,
test_output=[
("payload", example_payload),
("triggered_by_user", example_payload["sender"]),
("event", example_payload["action"]),
("number", example_payload["issue"]["number"]),
("issue", example_payload["issue"]),
("issue_url", example_payload["issue"]["html_url"]),
("issue_title", example_payload["issue"]["title"]),
("issue_body", example_payload["issue"]["body"]),
("labels", example_payload["issue"]["labels"]),
("assignees", example_payload["issue"]["assignees"]),
("state", example_payload["issue"]["state"]),
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput: # type: ignore
async for name, value in super().run(input_data, **kwargs):
yield name, value
issue = input_data.payload["issue"]
yield "event", input_data.payload["action"]
yield "number", issue["number"]
yield "issue", issue
yield "issue_url", issue["html_url"]
yield "issue_title", issue["title"]
yield "issue_body", issue.get("body") or ""
yield "labels", issue["labels"]
yield "assignees", issue["assignees"]
yield "state", issue["state"]
class GithubDiscussionTriggerBlock(GitHubTriggerBase, Block):
"""Trigger block for GitHub discussion events - perfect for community Q&A sync."""
EXAMPLE_PAYLOAD_FILE = (
Path(__file__).parent / "example_payloads" / "discussion.created.json"
)
class Input(GitHubTriggerBase.Input):
class EventsFilter(BaseModel):
"""
https://docs.github.com/en/webhooks/webhook-events-and-payloads#discussion
"""
created: bool = False
edited: bool = False
deleted: bool = False
answered: bool = False
unanswered: bool = False
labeled: bool = False
unlabeled: bool = False
locked: bool = False
unlocked: bool = False
category_changed: bool = False
transferred: bool = False
pinned: bool = False
unpinned: bool = False
events: EventsFilter = SchemaField(
title="Events", description="The discussion events to subscribe to"
)
class Output(GitHubTriggerBase.Output):
event: str = SchemaField(
description="The discussion event that triggered the webhook"
)
number: int = SchemaField(description="The discussion number")
discussion: dict = SchemaField(description="The full discussion object")
discussion_url: str = SchemaField(description="URL to the discussion")
title: str = SchemaField(description="The discussion title")
body: str = SchemaField(description="The discussion body")
category: dict = SchemaField(description="The discussion category object")
category_name: str = SchemaField(description="Name of the category")
state: str = SchemaField(description="Discussion state")
def __init__(self):
from backend.integrations.webhooks.github import GithubWebhookType
example_payload = json.loads(
self.EXAMPLE_PAYLOAD_FILE.read_text(encoding="utf-8")
)
super().__init__(
id="87f847b3-d81a-424e-8e89-acadb5c9d52b",
description="This block triggers on GitHub Discussions events. "
"Great for syncing Q&A to Discord or auto-responding to common questions. "
"Note: Discussions must be enabled on the repository.",
categories={BlockCategory.DEVELOPER_TOOLS, BlockCategory.INPUT},
input_schema=GithubDiscussionTriggerBlock.Input,
output_schema=GithubDiscussionTriggerBlock.Output,
webhook_config=BlockWebhookConfig(
provider=ProviderName.GITHUB,
webhook_type=GithubWebhookType.REPO,
resource_format="{repo}",
event_filter_input="events",
event_format="discussion.{event}",
),
test_input={
"repo": "Significant-Gravitas/AutoGPT",
"events": {"created": True},
"credentials": TEST_CREDENTIALS_INPUT,
"payload": example_payload,
},
test_credentials=TEST_CREDENTIALS,
test_output=[
("payload", example_payload),
("triggered_by_user", example_payload["sender"]),
("event", example_payload["action"]),
("number", example_payload["discussion"]["number"]),
("discussion", example_payload["discussion"]),
("discussion_url", example_payload["discussion"]["html_url"]),
("title", example_payload["discussion"]["title"]),
("body", example_payload["discussion"]["body"]),
("category", example_payload["discussion"]["category"]),
("category_name", example_payload["discussion"]["category"]["name"]),
("state", example_payload["discussion"]["state"]),
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput: # type: ignore
async for name, value in super().run(input_data, **kwargs):
yield name, value
discussion = input_data.payload["discussion"]
yield "event", input_data.payload["action"]
yield "number", discussion["number"]
yield "discussion", discussion
yield "discussion_url", discussion["html_url"]
yield "title", discussion["title"]
yield "body", discussion.get("body") or ""
yield "category", discussion["category"]
yield "category_name", discussion["category"]["name"]
yield "state", discussion["state"]

View File

@@ -1,16 +1,8 @@
import asyncio
import mimetypes
import uuid
from pathlib import Path
from typing import Any, Literal, Optional
from pydantic import BaseModel, ConfigDict, Field
from backend.data.model import SchemaField
from backend.util.file import get_exec_file_path
from backend.util.request import Requests
from backend.util.type import MediaFileType
from backend.util.virus_scanner import scan_content_safe
AttachmentView = Literal[
"DOCS",
@@ -30,8 +22,8 @@ ATTACHMENT_VIEWS: tuple[AttachmentView, ...] = (
)
class GoogleDriveFile(BaseModel):
"""Represents a single file/folder picked from Google Drive"""
class _GoogleDriveFileBase(BaseModel):
"""Internal base class for Google Drive file representation."""
model_config = ConfigDict(populate_by_name=True)
@@ -49,144 +41,115 @@ class GoogleDriveFile(BaseModel):
)
def GoogleDrivePickerField(
multiselect: bool = False,
allow_folder_selection: bool = False,
allowed_views: Optional[list[AttachmentView]] = None,
allowed_mime_types: Optional[list[str]] = None,
scopes: Optional[list[str]] = None,
title: Optional[str] = None,
description: Optional[str] = None,
placeholder: Optional[str] = None,
**kwargs,
class GoogleDriveFile(_GoogleDriveFileBase):
"""
Represents a Google Drive file/folder with optional credentials for chaining.
Used for both inputs and outputs in Google Drive blocks. The `_credentials_id`
field enables chaining between blocks - when one block outputs a file, the
next block can use the same credentials to access it.
When used with GoogleDriveFileField(), the frontend renders a combined
auth + file picker UI that automatically populates `_credentials_id`.
"""
# Hidden field for credential ID - populated by frontend, preserved in outputs
credentials_id: Optional[str] = Field(
None,
alias="_credentials_id",
description="Internal: credential ID for authentication",
)
def GoogleDriveFileField(
*,
title: str,
description: str | None = None,
credentials_kwarg: str = "credentials",
credentials_scopes: list[str] | None = None,
allowed_views: list[AttachmentView] | None = None,
allowed_mime_types: list[str] | None = None,
placeholder: str | None = None,
**kwargs: Any,
) -> Any:
"""
Creates a Google Drive Picker input field.
Creates a Google Drive file input field with auto-generated credentials.
This field type produces a single UI element that handles both:
1. Google OAuth authentication
2. File selection via Google Drive Picker
The system automatically generates a credentials field, and the credentials
are passed to the run() method using the specified kwarg name.
Args:
multiselect: Allow selecting multiple files/folders (default: False)
allow_folder_selection: Allow selecting folders (default: False)
allowed_views: List of view types to show in picker (default: ["DOCS"])
allowed_mime_types: Filter by MIME types (e.g., ["application/pdf"])
title: Field title shown in UI
description: Field description/help text
credentials_kwarg: Name of the kwarg that will receive GoogleCredentials
in the run() method (default: "credentials")
credentials_scopes: OAuth scopes required (default: drive.file)
allowed_views: List of view types to show in picker (default: ["DOCS"])
allowed_mime_types: Filter by MIME types
placeholder: Placeholder text for the button
**kwargs: Additional SchemaField arguments (advanced, hidden, etc.)
**kwargs: Additional SchemaField arguments
Returns:
Field definition that produces:
- Single GoogleDriveFile when multiselect=False
- list[GoogleDriveFile] when multiselect=True
Field definition that produces GoogleDriveFile
Example:
>>> class MyBlock(Block):
... class Input(BlockSchema):
... document: GoogleDriveFile = GoogleDrivePickerField(
... title="Select Document",
... allowed_views=["DOCUMENTS"],
... class Input(BlockSchemaInput):
... spreadsheet: GoogleDriveFile = GoogleDriveFileField(
... title="Select Spreadsheet",
... credentials_kwarg="creds",
... allowed_views=["SPREADSHEETS"],
... )
...
... files: list[GoogleDriveFile] = GoogleDrivePickerField(
... title="Select Multiple Files",
... multiselect=True,
... allow_folder_selection=True,
... )
... async def run(
... self, input_data: Input, *, creds: GoogleCredentials, **kwargs
... ):
... # creds is automatically populated
... file = input_data.spreadsheet
"""
# Build configuration that will be sent to frontend
# Determine scopes - drive.file is sufficient for picker-selected files
scopes = credentials_scopes or ["https://www.googleapis.com/auth/drive.file"]
# Build picker configuration with auto_credentials embedded
picker_config = {
"multiselect": multiselect,
"allow_folder_selection": allow_folder_selection,
"multiselect": False,
"allow_folder_selection": False,
"allowed_views": list(allowed_views) if allowed_views else ["DOCS"],
"scopes": scopes,
# Auto-credentials config tells frontend to include _credentials_id in output
"auto_credentials": {
"provider": "google",
"type": "oauth2",
"scopes": scopes,
"kwarg_name": credentials_kwarg,
},
}
# Add optional configurations
if allowed_mime_types:
picker_config["allowed_mime_types"] = list(allowed_mime_types)
# Determine required scopes based on config
base_scopes = scopes if scopes is not None else []
picker_scopes: set[str] = set(base_scopes)
if allow_folder_selection:
picker_scopes.add("https://www.googleapis.com/auth/drive")
else:
# Use drive.file for minimal scope - only access files selected by user in picker
picker_scopes.add("https://www.googleapis.com/auth/drive.file")
picker_config["scopes"] = sorted(picker_scopes)
# Set appropriate default value
default_value = [] if multiselect else None
# Use SchemaField to handle format properly
return SchemaField(
default=default_value,
default=None,
title=title,
description=description,
placeholder=placeholder or "Choose from Google Drive",
placeholder=placeholder or "Select from Google Drive",
# Use google-drive-picker format so frontend renders existing component
format="google-drive-picker",
advanced=False,
json_schema_extra={
"google_drive_picker_config": picker_config,
# Also keep auto_credentials at top level for backend detection
"auto_credentials": {
"provider": "google",
"type": "oauth2",
"scopes": scopes,
"kwarg_name": credentials_kwarg,
},
**kwargs,
},
)
DRIVE_API_URL = "https://www.googleapis.com/drive/v3/files"
_requests = Requests(trusted_origins=["https://www.googleapis.com"])
def GoogleDriveAttachmentField(
*,
title: str,
description: str | None = None,
placeholder: str | None = None,
multiselect: bool = True,
allowed_mime_types: list[str] | None = None,
**extra: Any,
) -> Any:
return GoogleDrivePickerField(
multiselect=multiselect,
allowed_views=list(ATTACHMENT_VIEWS),
allowed_mime_types=allowed_mime_types,
title=title,
description=description,
placeholder=placeholder or "Choose files from Google Drive",
**extra,
)
async def drive_file_to_media_file(
drive_file: GoogleDriveFile, *, graph_exec_id: str, access_token: str
) -> MediaFileType:
if drive_file.is_folder:
raise ValueError("Google Drive selection must be a file.")
if not access_token:
raise ValueError("Google Drive access token is required for file download.")
url = f"{DRIVE_API_URL}/{drive_file.id}?alt=media"
response = await _requests.get(
url, headers={"Authorization": f"Bearer {access_token}"}
)
mime_type = drive_file.mime_type or response.headers.get(
"content-type", "application/octet-stream"
)
MAX_FILE_SIZE = 100 * 1024 * 1024
if len(response.content) > MAX_FILE_SIZE:
raise ValueError(
f"File too large: {len(response.content)} bytes > {MAX_FILE_SIZE} bytes"
)
base_path = Path(get_exec_file_path(graph_exec_id, ""))
base_path.mkdir(parents=True, exist_ok=True)
extension = mimetypes.guess_extension(mime_type, strict=False) or ".bin"
filename = f"{uuid.uuid4()}{extension}"
target_path = base_path / filename
await scan_content_safe(response.content, filename=filename)
await asyncio.to_thread(target_path.write_bytes, response.content)
return MediaFileType(str(target_path.relative_to(base_path)))

File diff suppressed because it is too large Load Diff

View File

@@ -184,7 +184,13 @@ class SendWebRequestBlock(Block):
)
# ─── Execute request ─────────────────────────────────────────
response = await Requests().request(
# Use raise_for_status=False so HTTP errors (4xx, 5xx) are returned
# as response objects instead of raising exceptions, allowing proper
# handling via client_error and server_error outputs
response = await Requests(
raise_for_status=False,
retry_max_attempts=1, # allow callers to handle HTTP errors immediately
).request(
input_data.method.value,
input_data.url,
headers=input_data.headers,

View File

@@ -1,5 +1,5 @@
import logging
from typing import Any, Literal
from typing import Any
from prisma.enums import ReviewStatus
@@ -45,11 +45,11 @@ class HumanInTheLoopBlock(Block):
)
class Output(BlockSchemaOutput):
reviewed_data: Any = SchemaField(
description="The data after human review (may be modified)"
approved_data: Any = SchemaField(
description="The data when approved (may be modified by reviewer)"
)
status: Literal["approved", "rejected"] = SchemaField(
description="Status of the review: 'approved' or 'rejected'"
rejected_data: Any = SchemaField(
description="The data when rejected (may be modified by reviewer)"
)
review_message: str = SchemaField(
description="Any message provided by the reviewer", default=""
@@ -69,8 +69,7 @@ class HumanInTheLoopBlock(Block):
"editable": True,
},
test_output=[
("status", "approved"),
("reviewed_data", {"name": "John Doe", "age": 30}),
("approved_data", {"name": "John Doe", "age": 30}),
],
test_mock={
"get_or_create_human_review": lambda *_args, **_kwargs: ReviewResult(
@@ -116,8 +115,7 @@ class HumanInTheLoopBlock(Block):
logger.info(
f"HITL block skipping review for node {node_exec_id} - safe mode disabled"
)
yield "status", "approved"
yield "reviewed_data", input_data.data
yield "approved_data", input_data.data
yield "review_message", "Auto-approved (safe mode disabled)"
return
@@ -158,12 +156,11 @@ class HumanInTheLoopBlock(Block):
)
if result.status == ReviewStatus.APPROVED:
yield "status", "approved"
yield "reviewed_data", result.data
yield "approved_data", result.data
if result.message:
yield "review_message", result.message
elif result.status == ReviewStatus.REJECTED:
yield "status", "rejected"
yield "rejected_data", result.data
if result.message:
yield "review_message", result.message

View File

@@ -2,6 +2,8 @@ import copy
from datetime import date, time
from typing import Any, Optional
# Import for Google Drive file input block
from backend.blocks.google._drive import AttachmentView, GoogleDriveFile
from backend.data.block import (
Block,
BlockCategory,
@@ -646,6 +648,119 @@ class AgentTableInputBlock(AgentInputBlock):
yield "result", input_data.value if input_data.value is not None else []
class AgentGoogleDriveFileInputBlock(AgentInputBlock):
"""
This block allows users to select a file from Google Drive.
It provides a Google Drive file picker UI that handles both authentication
and file selection. The selected file information (ID, name, URL, etc.)
is output for use by other blocks like Google Sheets Read.
"""
class Input(AgentInputBlock.Input):
value: Optional[GoogleDriveFile] = SchemaField(
description="The selected Google Drive file.",
default=None,
advanced=False,
title="Selected File",
)
allowed_views: list[AttachmentView] = SchemaField(
description="Which views to show in the file picker (DOCS, SPREADSHEETS, PRESENTATIONS, etc.).",
default_factory=lambda: ["DOCS", "SPREADSHEETS", "PRESENTATIONS"],
advanced=False,
title="Allowed Views",
)
allow_folder_selection: bool = SchemaField(
description="Whether to allow selecting folders.",
default=False,
advanced=True,
title="Allow Folder Selection",
)
def generate_schema(self):
"""Generate schema for the value field with Google Drive picker format."""
schema = super().generate_schema()
# Default scopes for drive.file access
scopes = ["https://www.googleapis.com/auth/drive.file"]
# Build picker configuration
picker_config = {
"multiselect": False, # Single file selection only for now
"allow_folder_selection": self.allow_folder_selection,
"allowed_views": (
list(self.allowed_views) if self.allowed_views else ["DOCS"]
),
"scopes": scopes,
# Auto-credentials config tells frontend to include _credentials_id in output
"auto_credentials": {
"provider": "google",
"type": "oauth2",
"scopes": scopes,
"kwarg_name": "credentials",
},
}
# Set format and config for frontend to render Google Drive picker
schema["format"] = "google-drive-picker"
schema["google_drive_picker_config"] = picker_config
# Also keep auto_credentials at top level for backend detection
schema["auto_credentials"] = {
"provider": "google",
"type": "oauth2",
"scopes": scopes,
"kwarg_name": "credentials",
}
if self.value is not None:
schema["default"] = self.value.model_dump()
return schema
class Output(AgentInputBlock.Output):
result: GoogleDriveFile = SchemaField(
description="The selected Google Drive file with ID, name, URL, and other metadata."
)
def __init__(self):
test_file = GoogleDriveFile.model_validate(
{
"id": "test-file-id",
"name": "Test Spreadsheet",
"mimeType": "application/vnd.google-apps.spreadsheet",
"url": "https://docs.google.com/spreadsheets/d/test-file-id",
}
)
super().__init__(
id="d3b32f15-6fd7-40e3-be52-e083f51b19a2",
description="Block for selecting a file from Google Drive.",
disabled=not config.enable_agent_input_subtype_blocks,
input_schema=AgentGoogleDriveFileInputBlock.Input,
output_schema=AgentGoogleDriveFileInputBlock.Output,
test_input=[
{
"name": "spreadsheet_input",
"description": "Select a spreadsheet from Google Drive",
"allowed_views": ["SPREADSHEETS"],
"value": {
"id": "test-file-id",
"name": "Test Spreadsheet",
"mimeType": "application/vnd.google-apps.spreadsheet",
"url": "https://docs.google.com/spreadsheets/d/test-file-id",
},
}
],
test_output=[("result", test_file)],
)
async def run(self, input_data: Input, *args, **kwargs) -> BlockOutput:
"""
Yields the selected Google Drive file.
"""
if input_data.value is not None:
yield "result", input_data.value
IO_BLOCK_IDs = [
AgentInputBlock().id,
AgentOutputBlock().id,
@@ -658,4 +773,5 @@ IO_BLOCK_IDs = [
AgentDropdownInputBlock().id,
AgentToggleInputBlock().id,
AgentTableInputBlock().id,
AgentGoogleDriveFileInputBlock().id,
]

View File

@@ -1,3 +1,4 @@
import logging
from datetime import datetime, timezone
from typing import Iterator, Literal
@@ -64,6 +65,7 @@ class RedditComment(BaseModel):
settings = Settings()
logger = logging.getLogger(__name__)
def get_praw(creds: RedditCredentials) -> praw.Reddit:
@@ -77,7 +79,7 @@ def get_praw(creds: RedditCredentials) -> praw.Reddit:
me = client.user.me()
if not me:
raise ValueError("Invalid Reddit credentials.")
print(f"Logged in as Reddit user: {me.name}")
logger.info(f"Logged in as Reddit user: {me.name}")
return client

View File

@@ -1,8 +1,11 @@
import logging
import re
from collections import Counter
from concurrent.futures import Future
from typing import TYPE_CHECKING, Any
from pydantic import BaseModel
import backend.blocks.llm as llm
from backend.blocks.agent import AgentExecutorBlock
from backend.data.block import (
@@ -20,16 +23,41 @@ from backend.data.dynamic_fields import (
is_dynamic_field,
is_tool_pin,
)
from backend.data.execution import ExecutionContext
from backend.data.model import NodeExecutionStats, SchemaField
from backend.util import json
from backend.util.clients import get_database_manager_async_client
from backend.util.prompt import MAIN_OBJECTIVE_PREFIX
if TYPE_CHECKING:
from backend.data.graph import Link, Node
from backend.executor.manager import ExecutionProcessor
logger = logging.getLogger(__name__)
class ToolInfo(BaseModel):
"""Processed tool call information."""
tool_call: Any # The original tool call object from LLM response
tool_name: str # The function name
tool_def: dict[str, Any] # The tool definition from tool_functions
input_data: dict[str, Any] # Processed input data ready for tool execution
field_mapping: dict[str, str] # Field name mapping for the tool
class ExecutionParams(BaseModel):
"""Tool execution parameters."""
user_id: str
graph_id: str
node_id: str
graph_version: int
graph_exec_id: str
node_exec_id: str
execution_context: "ExecutionContext"
def _get_tool_requests(entry: dict[str, Any]) -> list[str]:
"""
Return a list of tool_call_ids if the entry is a tool request.
@@ -105,6 +133,50 @@ def _create_tool_response(call_id: str, output: Any) -> dict[str, Any]:
return {"role": "tool", "tool_call_id": call_id, "content": content}
def _combine_tool_responses(tool_outputs: list[dict[str, Any]]) -> list[dict[str, Any]]:
"""
Combine multiple Anthropic tool responses into a single user message.
For non-Anthropic formats, returns the original list unchanged.
"""
if len(tool_outputs) <= 1:
return tool_outputs
# Anthropic responses have role="user", type="message", and content is a list with tool_result items
anthropic_responses = [
output
for output in tool_outputs
if (
output.get("role") == "user"
and output.get("type") == "message"
and isinstance(output.get("content"), list)
and any(
item.get("type") == "tool_result"
for item in output.get("content", [])
if isinstance(item, dict)
)
)
]
if len(anthropic_responses) > 1:
combined_content = [
item for response in anthropic_responses for item in response["content"]
]
combined_response = {
"role": "user",
"type": "message",
"content": combined_content,
}
non_anthropic_responses = [
output for output in tool_outputs if output not in anthropic_responses
]
return [combined_response] + non_anthropic_responses
return tool_outputs
def _convert_raw_response_to_dict(raw_response: Any) -> dict[str, Any]:
"""
Safely convert raw_response to dictionary format for conversation history.
@@ -204,6 +276,17 @@ class SmartDecisionMakerBlock(Block):
default="localhost:11434",
description="Ollama host for local models",
)
agent_mode_max_iterations: int = SchemaField(
title="Agent Mode Max Iterations",
description="Maximum iterations for agent mode. 0 = traditional mode (single LLM call, yield tool calls for external execution), -1 = infinite agent mode (loop until finished), 1+ = agent mode with max iterations limit.",
advanced=True,
default=0,
)
conversation_compaction: bool = SchemaField(
default=True,
title="Context window auto-compaction",
description="Automatically compact the context window once it hits the limit",
)
@classmethod
def get_missing_links(cls, data: BlockInput, links: list["Link"]) -> set[str]:
@@ -506,6 +589,7 @@ class SmartDecisionMakerBlock(Block):
Returns the response if successful, raises ValueError if validation fails.
"""
resp = await llm.llm_call(
compress_prompt_to_fit=input_data.conversation_compaction,
credentials=credentials,
llm_model=input_data.model,
prompt=current_prompt,
@@ -593,6 +677,291 @@ class SmartDecisionMakerBlock(Block):
return resp
def _process_tool_calls(
self, response, tool_functions: list[dict[str, Any]]
) -> list[ToolInfo]:
"""Process tool calls and extract tool definitions, arguments, and input data.
Returns a list of tool info dicts with:
- tool_call: The original tool call object
- tool_name: The function name
- tool_def: The tool definition from tool_functions
- input_data: Processed input data dict (includes None values)
- field_mapping: Field name mapping for the tool
"""
if not response.tool_calls:
return []
processed_tools = []
for tool_call in response.tool_calls:
tool_name = tool_call.function.name
tool_args = json.loads(tool_call.function.arguments)
tool_def = next(
(
tool
for tool in tool_functions
if tool["function"]["name"] == tool_name
),
None,
)
if not tool_def:
if len(tool_functions) == 1:
tool_def = tool_functions[0]
else:
continue
# Build input data for the tool
input_data = {}
field_mapping = tool_def["function"].get("_field_mapping", {})
if "function" in tool_def and "parameters" in tool_def["function"]:
expected_args = tool_def["function"]["parameters"].get("properties", {})
for clean_arg_name in expected_args:
original_field_name = field_mapping.get(
clean_arg_name, clean_arg_name
)
arg_value = tool_args.get(clean_arg_name)
# Include all expected parameters, even if None (for backward compatibility with tests)
input_data[original_field_name] = arg_value
processed_tools.append(
ToolInfo(
tool_call=tool_call,
tool_name=tool_name,
tool_def=tool_def,
input_data=input_data,
field_mapping=field_mapping,
)
)
return processed_tools
def _update_conversation(
self, prompt: list[dict], response, tool_outputs: list | None = None
):
"""Update conversation history with response and tool outputs."""
# Don't add separate reasoning message with tool calls (breaks Anthropic's tool_use->tool_result pairing)
assistant_message = _convert_raw_response_to_dict(response.raw_response)
has_tool_calls = isinstance(assistant_message.get("content"), list) and any(
item.get("type") == "tool_use"
for item in assistant_message.get("content", [])
)
if response.reasoning and not has_tool_calls:
prompt.append(
{"role": "assistant", "content": f"[Reasoning]: {response.reasoning}"}
)
prompt.append(assistant_message)
if tool_outputs:
prompt.extend(tool_outputs)
async def _execute_single_tool_with_manager(
self,
tool_info: ToolInfo,
execution_params: ExecutionParams,
execution_processor: "ExecutionProcessor",
) -> dict:
"""Execute a single tool using the execution manager for proper integration."""
# Lazy imports to avoid circular dependencies
from backend.data.execution import NodeExecutionEntry
tool_call = tool_info.tool_call
tool_def = tool_info.tool_def
raw_input_data = tool_info.input_data
# Get sink node and field mapping
sink_node_id = tool_def["function"]["_sink_node_id"]
# Use proper database operations for tool execution
db_client = get_database_manager_async_client()
# Get target node
target_node = await db_client.get_node(sink_node_id)
if not target_node:
raise ValueError(f"Target node {sink_node_id} not found")
# Create proper node execution using upsert_execution_input
node_exec_result = None
final_input_data = None
# Add all inputs to the execution
if not raw_input_data:
raise ValueError(f"Tool call has no input data: {tool_call}")
for input_name, input_value in raw_input_data.items():
node_exec_result, final_input_data = await db_client.upsert_execution_input(
node_id=sink_node_id,
graph_exec_id=execution_params.graph_exec_id,
input_name=input_name,
input_data=input_value,
)
assert node_exec_result is not None, "node_exec_result should not be None"
# Create NodeExecutionEntry for execution manager
node_exec_entry = NodeExecutionEntry(
user_id=execution_params.user_id,
graph_exec_id=execution_params.graph_exec_id,
graph_id=execution_params.graph_id,
graph_version=execution_params.graph_version,
node_exec_id=node_exec_result.node_exec_id,
node_id=sink_node_id,
block_id=target_node.block_id,
inputs=final_input_data or {},
execution_context=execution_params.execution_context,
)
# Use the execution manager to execute the tool node
try:
# Get NodeExecutionProgress from the execution manager's running nodes
node_exec_progress = execution_processor.running_node_execution[
sink_node_id
]
# Use the execution manager's own graph stats
graph_stats_pair = (
execution_processor.execution_stats,
execution_processor.execution_stats_lock,
)
# Create a completed future for the task tracking system
node_exec_future = Future()
node_exec_progress.add_task(
node_exec_id=node_exec_result.node_exec_id,
task=node_exec_future,
)
# Execute the node directly since we're in the SmartDecisionMaker context
node_exec_future.set_result(
await execution_processor.on_node_execution(
node_exec=node_exec_entry,
node_exec_progress=node_exec_progress,
nodes_input_masks=None,
graph_stats_pair=graph_stats_pair,
)
)
# Get outputs from database after execution completes using database manager client
node_outputs = await db_client.get_execution_outputs_by_node_exec_id(
node_exec_result.node_exec_id
)
# Create tool response
tool_response_content = (
json.dumps(node_outputs)
if node_outputs
else "Tool executed successfully"
)
return _create_tool_response(tool_call.id, tool_response_content)
except Exception as e:
logger.error(f"Tool execution with manager failed: {e}")
# Return error response
return _create_tool_response(
tool_call.id, f"Tool execution failed: {str(e)}"
)
async def _execute_tools_agent_mode(
self,
input_data,
credentials,
tool_functions: list[dict[str, Any]],
prompt: list[dict],
graph_exec_id: str,
node_id: str,
node_exec_id: str,
user_id: str,
graph_id: str,
graph_version: int,
execution_context: ExecutionContext,
execution_processor: "ExecutionProcessor",
):
"""Execute tools in agent mode with a loop until finished."""
max_iterations = input_data.agent_mode_max_iterations
iteration = 0
# Execution parameters for tool execution
execution_params = ExecutionParams(
user_id=user_id,
graph_id=graph_id,
node_id=node_id,
graph_version=graph_version,
graph_exec_id=graph_exec_id,
node_exec_id=node_exec_id,
execution_context=execution_context,
)
current_prompt = list(prompt)
while max_iterations < 0 or iteration < max_iterations:
iteration += 1
logger.debug(f"Agent mode iteration {iteration}")
# Prepare prompt for this iteration
iteration_prompt = list(current_prompt)
# On the last iteration, add a special system message to encourage completion
if max_iterations > 0 and iteration == max_iterations:
last_iteration_message = {
"role": "system",
"content": f"{MAIN_OBJECTIVE_PREFIX}This is your last iteration ({iteration}/{max_iterations}). "
"Try to complete the task with the information you have. If you cannot fully complete it, "
"provide a summary of what you've accomplished and what remains to be done. "
"Prefer finishing with a clear response rather than making additional tool calls.",
}
iteration_prompt.append(last_iteration_message)
# Get LLM response
try:
response = await self._attempt_llm_call_with_validation(
credentials, input_data, iteration_prompt, tool_functions
)
except Exception as e:
yield "error", f"LLM call failed in agent mode iteration {iteration}: {str(e)}"
return
# Process tool calls
processed_tools = self._process_tool_calls(response, tool_functions)
# If no tool calls, we're done
if not processed_tools:
yield "finished", response.response
self._update_conversation(current_prompt, response)
yield "conversations", current_prompt
return
# Execute tools and collect responses
tool_outputs = []
for tool_info in processed_tools:
try:
tool_response = await self._execute_single_tool_with_manager(
tool_info, execution_params, execution_processor
)
tool_outputs.append(tool_response)
except Exception as e:
logger.error(f"Tool execution failed: {e}")
# Create error response for the tool
error_response = _create_tool_response(
tool_info.tool_call.id, f"Error: {str(e)}"
)
tool_outputs.append(error_response)
tool_outputs = _combine_tool_responses(tool_outputs)
self._update_conversation(current_prompt, response, tool_outputs)
# Yield intermediate conversation state
yield "conversations", current_prompt
# If we reach max iterations, yield the current state
if max_iterations < 0:
yield "finished", f"Agent mode completed after {iteration} iterations"
else:
yield "finished", f"Agent mode completed after {max_iterations} iterations (limit reached)"
yield "conversations", current_prompt
async def run(
self,
input_data: Input,
@@ -603,8 +972,12 @@ class SmartDecisionMakerBlock(Block):
graph_exec_id: str,
node_exec_id: str,
user_id: str,
graph_version: int,
execution_context: ExecutionContext,
execution_processor: "ExecutionProcessor",
**kwargs,
) -> BlockOutput:
tool_functions = await self._create_tool_node_signatures(node_id)
yield "tool_functions", json.dumps(tool_functions)
@@ -648,24 +1021,52 @@ class SmartDecisionMakerBlock(Block):
input_data.prompt = llm.fmt.format_string(input_data.prompt, values)
input_data.sys_prompt = llm.fmt.format_string(input_data.sys_prompt, values)
prefix = "[Main Objective Prompt]: "
if input_data.sys_prompt and not any(
p["role"] == "system" and p["content"].startswith(prefix) for p in prompt
p["role"] == "system" and p["content"].startswith(MAIN_OBJECTIVE_PREFIX)
for p in prompt
):
prompt.append({"role": "system", "content": prefix + input_data.sys_prompt})
prompt.append(
{
"role": "system",
"content": MAIN_OBJECTIVE_PREFIX + input_data.sys_prompt,
}
)
if input_data.prompt and not any(
p["role"] == "user" and p["content"].startswith(prefix) for p in prompt
p["role"] == "user" and p["content"].startswith(MAIN_OBJECTIVE_PREFIX)
for p in prompt
):
prompt.append({"role": "user", "content": prefix + input_data.prompt})
prompt.append(
{"role": "user", "content": MAIN_OBJECTIVE_PREFIX + input_data.prompt}
)
# Execute tools based on the selected mode
if input_data.agent_mode_max_iterations != 0:
# In agent mode, execute tools directly in a loop until finished
async for result in self._execute_tools_agent_mode(
input_data=input_data,
credentials=credentials,
tool_functions=tool_functions,
prompt=prompt,
graph_exec_id=graph_exec_id,
node_id=node_id,
node_exec_id=node_exec_id,
user_id=user_id,
graph_id=graph_id,
graph_version=graph_version,
execution_context=execution_context,
execution_processor=execution_processor,
):
yield result
return
# One-off mode: single LLM call and yield tool calls for external execution
current_prompt = list(prompt)
max_attempts = max(1, int(input_data.retry))
response = None
last_error = None
for attempt in range(max_attempts):
for _ in range(max_attempts):
try:
response = await self._attempt_llm_call_with_validation(
credentials, input_data, current_prompt, tool_functions

View File

@@ -1,8 +1,9 @@
from typing import Type
from typing import Any, Type
import pytest
from backend.data.block import Block, get_blocks
from backend.data.block import Block, BlockSchemaInput, get_blocks
from backend.data.model import SchemaField
from backend.util.test import execute_block_test
SKIP_BLOCK_TESTS = {
@@ -132,3 +133,148 @@ async def test_block_ids_valid(block: Type[Block]):
), f"Block {block.name} ID is UUID version {parsed_uuid.version}, expected version 4"
except ValueError:
pytest.fail(f"Block {block.name} has invalid UUID format: {block_instance.id}")
class TestAutoCredentialsFieldsValidation:
"""Tests for auto_credentials field validation in BlockSchema."""
def test_duplicate_auto_credentials_kwarg_name_raises_error(self):
"""Test that duplicate kwarg_name in auto_credentials raises ValueError."""
class DuplicateKwargSchema(BlockSchemaInput):
"""Schema with duplicate auto_credentials kwarg_name."""
# Both fields explicitly use the same kwarg_name "credentials"
file1: dict[str, Any] | None = SchemaField(
description="First file input",
default=None,
json_schema_extra={
"auto_credentials": {
"provider": "google",
"type": "oauth2",
"scopes": ["https://www.googleapis.com/auth/drive.file"],
"kwarg_name": "credentials",
}
},
)
file2: dict[str, Any] | None = SchemaField(
description="Second file input",
default=None,
json_schema_extra={
"auto_credentials": {
"provider": "google",
"type": "oauth2",
"scopes": ["https://www.googleapis.com/auth/drive.file"],
"kwarg_name": "credentials", # Duplicate kwarg_name!
}
},
)
with pytest.raises(ValueError) as exc_info:
DuplicateKwargSchema.get_auto_credentials_fields()
error_message = str(exc_info.value)
assert "Duplicate auto_credentials kwarg_name 'credentials'" in error_message
assert "file1" in error_message
assert "file2" in error_message
def test_unique_auto_credentials_kwarg_names_succeed(self):
"""Test that unique kwarg_name values work correctly."""
class UniqueKwargSchema(BlockSchemaInput):
"""Schema with unique auto_credentials kwarg_name values."""
file1: dict[str, Any] | None = SchemaField(
description="First file input",
default=None,
json_schema_extra={
"auto_credentials": {
"provider": "google",
"type": "oauth2",
"scopes": ["https://www.googleapis.com/auth/drive.file"],
"kwarg_name": "file1_credentials",
}
},
)
file2: dict[str, Any] | None = SchemaField(
description="Second file input",
default=None,
json_schema_extra={
"auto_credentials": {
"provider": "google",
"type": "oauth2",
"scopes": ["https://www.googleapis.com/auth/drive.file"],
"kwarg_name": "file2_credentials", # Different kwarg_name
}
},
)
# Should not raise
result = UniqueKwargSchema.get_auto_credentials_fields()
assert "file1_credentials" in result
assert "file2_credentials" in result
assert result["file1_credentials"]["field_name"] == "file1"
assert result["file2_credentials"]["field_name"] == "file2"
def test_default_kwarg_name_is_credentials(self):
"""Test that missing kwarg_name defaults to 'credentials'."""
class DefaultKwargSchema(BlockSchemaInput):
"""Schema with auto_credentials missing kwarg_name."""
file: dict[str, Any] | None = SchemaField(
description="File input",
default=None,
json_schema_extra={
"auto_credentials": {
"provider": "google",
"type": "oauth2",
"scopes": ["https://www.googleapis.com/auth/drive.file"],
# No kwarg_name specified - should default to "credentials"
}
},
)
result = DefaultKwargSchema.get_auto_credentials_fields()
assert "credentials" in result
assert result["credentials"]["field_name"] == "file"
def test_duplicate_default_kwarg_name_raises_error(self):
"""Test that two fields with default kwarg_name raises ValueError."""
class DefaultDuplicateSchema(BlockSchemaInput):
"""Schema where both fields omit kwarg_name, defaulting to 'credentials'."""
file1: dict[str, Any] | None = SchemaField(
description="First file input",
default=None,
json_schema_extra={
"auto_credentials": {
"provider": "google",
"type": "oauth2",
"scopes": ["https://www.googleapis.com/auth/drive.file"],
# No kwarg_name - defaults to "credentials"
}
},
)
file2: dict[str, Any] | None = SchemaField(
description="Second file input",
default=None,
json_schema_extra={
"auto_credentials": {
"provider": "google",
"type": "oauth2",
"scopes": ["https://www.googleapis.com/auth/drive.file"],
# No kwarg_name - also defaults to "credentials"
}
},
)
with pytest.raises(ValueError) as exc_info:
DefaultDuplicateSchema.get_auto_credentials_fields()
assert "Duplicate auto_credentials kwarg_name 'credentials'" in str(
exc_info.value
)

View File

@@ -1,7 +1,11 @@
import logging
import threading
from collections import defaultdict
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from backend.data.execution import ExecutionContext
from backend.data.model import ProviderName, User
from backend.server.model import CreateGraph
from backend.server.rest_api import AgentServer
@@ -17,10 +21,10 @@ async def create_graph(s: SpinTestServer, g, u: User):
async def create_credentials(s: SpinTestServer, u: User):
import backend.blocks.llm as llm
import backend.blocks.llm as llm_module
provider = ProviderName.OPENAI
credentials = llm.TEST_CREDENTIALS
credentials = llm_module.TEST_CREDENTIALS
return await s.agent_server.test_create_credentials(u.id, provider, credentials)
@@ -196,8 +200,6 @@ async def test_smart_decision_maker_function_signature(server: SpinTestServer):
@pytest.mark.asyncio
async def test_smart_decision_maker_tracks_llm_stats():
"""Test that SmartDecisionMakerBlock correctly tracks LLM usage stats."""
from unittest.mock import MagicMock, patch
import backend.blocks.llm as llm_module
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
@@ -216,7 +218,6 @@ async def test_smart_decision_maker_tracks_llm_stats():
}
# Mock the _create_tool_node_signatures method to avoid database calls
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
@@ -234,10 +235,19 @@ async def test_smart_decision_maker_tracks_llm_stats():
prompt="Should I continue with this task?",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=0,
)
# Execute the block
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
mock_execution_processor = MagicMock()
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
@@ -246,6 +256,9 @@ async def test_smart_decision_maker_tracks_llm_stats():
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
@@ -263,8 +276,6 @@ async def test_smart_decision_maker_tracks_llm_stats():
@pytest.mark.asyncio
async def test_smart_decision_maker_parameter_validation():
"""Test that SmartDecisionMakerBlock correctly validates tool call parameters."""
from unittest.mock import MagicMock, patch
import backend.blocks.llm as llm_module
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
@@ -311,8 +322,6 @@ async def test_smart_decision_maker_parameter_validation():
mock_response_with_typo.reasoning = None
mock_response_with_typo.raw_response = {"role": "assistant", "content": None}
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
@@ -329,8 +338,17 @@ async def test_smart_decision_maker_parameter_validation():
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
retry=2, # Set retry to 2 for testing
agent_mode_max_iterations=0,
)
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
mock_execution_processor = MagicMock()
# Should raise ValueError after retries due to typo'd parameter name
with pytest.raises(ValueError) as exc_info:
outputs = {}
@@ -342,6 +360,9 @@ async def test_smart_decision_maker_parameter_validation():
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
@@ -368,8 +389,6 @@ async def test_smart_decision_maker_parameter_validation():
mock_response_missing_required.reasoning = None
mock_response_missing_required.raw_response = {"role": "assistant", "content": None}
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
@@ -385,8 +404,17 @@ async def test_smart_decision_maker_parameter_validation():
prompt="Search for keywords",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=0,
)
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
mock_execution_processor = MagicMock()
# Should raise ValueError due to missing required parameter
with pytest.raises(ValueError) as exc_info:
outputs = {}
@@ -398,6 +426,9 @@ async def test_smart_decision_maker_parameter_validation():
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
@@ -418,8 +449,6 @@ async def test_smart_decision_maker_parameter_validation():
mock_response_valid.reasoning = None
mock_response_valid.raw_response = {"role": "assistant", "content": None}
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
@@ -435,10 +464,19 @@ async def test_smart_decision_maker_parameter_validation():
prompt="Search for keywords",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=0,
)
# Should succeed - optional parameter missing is OK
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
mock_execution_processor = MagicMock()
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
@@ -447,6 +485,9 @@ async def test_smart_decision_maker_parameter_validation():
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
@@ -472,8 +513,6 @@ async def test_smart_decision_maker_parameter_validation():
mock_response_all_params.reasoning = None
mock_response_all_params.raw_response = {"role": "assistant", "content": None}
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
@@ -489,10 +528,19 @@ async def test_smart_decision_maker_parameter_validation():
prompt="Search for keywords",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=0,
)
# Should succeed with all parameters
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
mock_execution_processor = MagicMock()
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
@@ -501,6 +549,9 @@ async def test_smart_decision_maker_parameter_validation():
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
@@ -513,8 +564,6 @@ async def test_smart_decision_maker_parameter_validation():
@pytest.mark.asyncio
async def test_smart_decision_maker_raw_response_conversion():
"""Test that SmartDecisionMaker correctly handles different raw_response types with retry mechanism."""
from unittest.mock import MagicMock, patch
import backend.blocks.llm as llm_module
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
@@ -584,7 +633,6 @@ async def test_smart_decision_maker_raw_response_conversion():
)
# Mock llm_call to return different responses on different calls
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call", new_callable=AsyncMock
@@ -603,10 +651,19 @@ async def test_smart_decision_maker_raw_response_conversion():
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
retry=2,
agent_mode_max_iterations=0,
)
# Should succeed after retry, demonstrating our helper function works
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
mock_execution_processor = MagicMock()
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
@@ -615,6 +672,9 @@ async def test_smart_decision_maker_raw_response_conversion():
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
@@ -650,8 +710,6 @@ async def test_smart_decision_maker_raw_response_conversion():
"I'll help you with that." # Ollama returns string
)
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
@@ -666,9 +724,18 @@ async def test_smart_decision_maker_raw_response_conversion():
prompt="Simple prompt",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=0,
)
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
mock_execution_processor = MagicMock()
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
@@ -677,6 +744,9 @@ async def test_smart_decision_maker_raw_response_conversion():
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
@@ -696,8 +766,6 @@ async def test_smart_decision_maker_raw_response_conversion():
"content": "Test response",
} # Dict format
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
@@ -712,6 +780,160 @@ async def test_smart_decision_maker_raw_response_conversion():
prompt="Another test",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=0,
)
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
mock_execution_processor = MagicMock()
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
graph_id="test-graph-id",
node_id="test-node-id",
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
assert "finished" in outputs
assert outputs["finished"] == "Test response"
@pytest.mark.asyncio
async def test_smart_decision_maker_agent_mode():
"""Test that agent mode executes tools directly and loops until finished."""
import backend.blocks.llm as llm_module
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
block = SmartDecisionMakerBlock()
# Mock tool call that requires multiple iterations
mock_tool_call_1 = MagicMock()
mock_tool_call_1.id = "call_1"
mock_tool_call_1.function.name = "search_keywords"
mock_tool_call_1.function.arguments = (
'{"query": "test", "max_keyword_difficulty": 50}'
)
mock_response_1 = MagicMock()
mock_response_1.response = None
mock_response_1.tool_calls = [mock_tool_call_1]
mock_response_1.prompt_tokens = 50
mock_response_1.completion_tokens = 25
mock_response_1.reasoning = "Using search tool"
mock_response_1.raw_response = {
"role": "assistant",
"content": None,
"tool_calls": [{"id": "call_1", "type": "function"}],
}
# Final response with no tool calls (finished)
mock_response_2 = MagicMock()
mock_response_2.response = "Task completed successfully"
mock_response_2.tool_calls = []
mock_response_2.prompt_tokens = 30
mock_response_2.completion_tokens = 15
mock_response_2.reasoning = None
mock_response_2.raw_response = {
"role": "assistant",
"content": "Task completed successfully",
}
# Mock the LLM call to return different responses on each iteration
llm_call_mock = AsyncMock()
llm_call_mock.side_effect = [mock_response_1, mock_response_2]
# Mock tool node signatures
mock_tool_signatures = [
{
"type": "function",
"function": {
"name": "search_keywords",
"_sink_node_id": "test-sink-node-id",
"_field_mapping": {},
"parameters": {
"properties": {
"query": {"type": "string"},
"max_keyword_difficulty": {"type": "integer"},
},
"required": ["query", "max_keyword_difficulty"],
},
},
}
]
# Mock database and execution components
mock_db_client = AsyncMock()
mock_node = MagicMock()
mock_node.block_id = "test-block-id"
mock_db_client.get_node.return_value = mock_node
# Mock upsert_execution_input to return proper NodeExecutionResult and input data
mock_node_exec_result = MagicMock()
mock_node_exec_result.node_exec_id = "test-tool-exec-id"
mock_input_data = {"query": "test", "max_keyword_difficulty": 50}
mock_db_client.upsert_execution_input.return_value = (
mock_node_exec_result,
mock_input_data,
)
# No longer need mock_execute_node since we use execution_processor.on_node_execution
with patch("backend.blocks.llm.llm_call", llm_call_mock), patch.object(
block, "_create_tool_node_signatures", return_value=mock_tool_signatures
), patch(
"backend.blocks.smart_decision_maker.get_database_manager_async_client",
return_value=mock_db_client,
), patch(
"backend.executor.manager.async_update_node_execution_status",
new_callable=AsyncMock,
), patch(
"backend.integrations.creds_manager.IntegrationCredentialsManager"
):
# Create a mock execution context
mock_execution_context = ExecutionContext(
safe_mode=False,
)
# Create a mock execution processor for agent mode tests
mock_execution_processor = AsyncMock()
# Configure the execution processor mock with required attributes
mock_execution_processor.running_node_execution = defaultdict(MagicMock)
mock_execution_processor.execution_stats = MagicMock()
mock_execution_processor.execution_stats_lock = threading.Lock()
# Mock the on_node_execution method to return successful stats
mock_node_stats = MagicMock()
mock_node_stats.error = None # No error
mock_execution_processor.on_node_execution = AsyncMock(
return_value=mock_node_stats
)
# Mock the get_execution_outputs_by_node_exec_id method
mock_db_client.get_execution_outputs_by_node_exec_id.return_value = {
"result": {"status": "success", "data": "search completed"}
}
# Test agent mode with max_iterations = 3
input_data = SmartDecisionMakerBlock.Input(
prompt="Complete this task using tools",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=3, # Enable agent mode with 3 max iterations
)
outputs = {}
@@ -723,8 +945,115 @@ async def test_smart_decision_maker_raw_response_conversion():
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
# Verify agent mode behavior
assert "tool_functions" in outputs # tool_functions is yielded in both modes
assert "finished" in outputs
assert outputs["finished"] == "Test response"
assert outputs["finished"] == "Task completed successfully"
assert "conversations" in outputs
# Verify the conversation includes tool responses
conversations = outputs["conversations"]
assert len(conversations) > 2 # Should have multiple conversation entries
# Verify LLM was called twice (once for tool call, once for finish)
assert llm_call_mock.call_count == 2
# Verify tool was executed via execution processor
assert mock_execution_processor.on_node_execution.call_count == 1
@pytest.mark.asyncio
async def test_smart_decision_maker_traditional_mode_default():
"""Test that default behavior (agent_mode_max_iterations=0) works as traditional mode."""
import backend.blocks.llm as llm_module
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
block = SmartDecisionMakerBlock()
# Mock tool call
mock_tool_call = MagicMock()
mock_tool_call.function.name = "search_keywords"
mock_tool_call.function.arguments = (
'{"query": "test", "max_keyword_difficulty": 50}'
)
mock_response = MagicMock()
mock_response.response = None
mock_response.tool_calls = [mock_tool_call]
mock_response.prompt_tokens = 50
mock_response.completion_tokens = 25
mock_response.reasoning = None
mock_response.raw_response = {"role": "assistant", "content": None}
mock_tool_signatures = [
{
"type": "function",
"function": {
"name": "search_keywords",
"_sink_node_id": "test-sink-node-id",
"_field_mapping": {},
"parameters": {
"properties": {
"query": {"type": "string"},
"max_keyword_difficulty": {"type": "integer"},
},
"required": ["query", "max_keyword_difficulty"],
},
},
}
]
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
return_value=mock_response,
), patch.object(
block, "_create_tool_node_signatures", return_value=mock_tool_signatures
):
# Test default behavior (traditional mode)
input_data = SmartDecisionMakerBlock.Input(
prompt="Test prompt",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=0, # Traditional mode
)
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
mock_execution_processor = MagicMock()
outputs = {}
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
graph_id="test-graph-id",
node_id="test-node-id",
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
# Verify traditional mode behavior
assert (
"tool_functions" in outputs
) # Should yield tool_functions in traditional mode
assert (
"tools_^_test-sink-node-id_~_query" in outputs
) # Should yield individual tool parameters
assert "tools_^_test-sink-node-id_~_max_keyword_difficulty" in outputs
assert "conversations" in outputs

View File

@@ -1,7 +1,7 @@
"""Comprehensive tests for SmartDecisionMakerBlock dynamic field handling."""
import json
from unittest.mock import AsyncMock, Mock, patch
from unittest.mock import AsyncMock, MagicMock, Mock, patch
import pytest
@@ -308,10 +308,47 @@ async def test_output_yielding_with_dynamic_fields():
) as mock_llm:
mock_llm.return_value = mock_response
# Mock the function signature creation
with patch.object(
# Mock the database manager to avoid HTTP calls during tool execution
with patch(
"backend.blocks.smart_decision_maker.get_database_manager_async_client"
) as mock_db_manager, patch.object(
block, "_create_tool_node_signatures", new_callable=AsyncMock
) as mock_sig:
# Set up the mock database manager
mock_db_client = AsyncMock()
mock_db_manager.return_value = mock_db_client
# Mock the node retrieval
mock_target_node = Mock()
mock_target_node.id = "test-sink-node-id"
mock_target_node.block_id = "CreateDictionaryBlock"
mock_target_node.block = Mock()
mock_target_node.block.name = "Create Dictionary"
mock_db_client.get_node.return_value = mock_target_node
# Mock the execution result creation
mock_node_exec_result = Mock()
mock_node_exec_result.node_exec_id = "mock-node-exec-id"
mock_final_input_data = {
"values_#_name": "Alice",
"values_#_age": 30,
"values_#_email": "alice@example.com",
}
mock_db_client.upsert_execution_input.return_value = (
mock_node_exec_result,
mock_final_input_data,
)
# Mock the output retrieval
mock_outputs = {
"values_#_name": "Alice",
"values_#_age": 30,
"values_#_email": "alice@example.com",
}
mock_db_client.get_execution_outputs_by_node_exec_id.return_value = (
mock_outputs
)
mock_sig.return_value = [
{
"type": "function",
@@ -337,10 +374,16 @@ async def test_output_yielding_with_dynamic_fields():
prompt="Create a user dictionary",
credentials=llm.TEST_CREDENTIALS_INPUT,
model=llm.LlmModel.GPT4O,
agent_mode_max_iterations=0, # Use traditional mode to test output yielding
)
# Run the block
outputs = {}
from backend.data.execution import ExecutionContext
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_processor = MagicMock()
async for output_name, output_value in block.run(
input_data,
credentials=llm.TEST_CREDENTIALS,
@@ -349,6 +392,9 @@ async def test_output_yielding_with_dynamic_fields():
graph_exec_id="test_exec",
node_exec_id="test_node_exec",
user_id="test_user",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_value
@@ -511,45 +557,108 @@ async def test_validation_errors_dont_pollute_conversation():
}
]
# Create input data
from backend.blocks import llm
# Mock the database manager to avoid HTTP calls during tool execution
with patch(
"backend.blocks.smart_decision_maker.get_database_manager_async_client"
) as mock_db_manager:
# Set up the mock database manager for agent mode
mock_db_client = AsyncMock()
mock_db_manager.return_value = mock_db_client
input_data = block.input_schema(
prompt="Test prompt",
credentials=llm.TEST_CREDENTIALS_INPUT,
model=llm.LlmModel.GPT4O,
retry=3, # Allow retries
)
# Mock the node retrieval
mock_target_node = Mock()
mock_target_node.id = "test-sink-node-id"
mock_target_node.block_id = "TestBlock"
mock_target_node.block = Mock()
mock_target_node.block.name = "Test Block"
mock_db_client.get_node.return_value = mock_target_node
# Run the block
outputs = {}
async for output_name, output_value in block.run(
input_data,
credentials=llm.TEST_CREDENTIALS,
graph_id="test_graph",
node_id="test_node",
graph_exec_id="test_exec",
node_exec_id="test_node_exec",
user_id="test_user",
):
outputs[output_name] = output_value
# Mock the execution result creation
mock_node_exec_result = Mock()
mock_node_exec_result.node_exec_id = "mock-node-exec-id"
mock_final_input_data = {"correct_param": "value"}
mock_db_client.upsert_execution_input.return_value = (
mock_node_exec_result,
mock_final_input_data,
)
# Verify we had 2 LLM calls (initial + retry)
assert call_count == 2
# Mock the output retrieval
mock_outputs = {"correct_param": "value"}
mock_db_client.get_execution_outputs_by_node_exec_id.return_value = (
mock_outputs
)
# Check the final conversation output
final_conversation = outputs.get("conversations", [])
# Create input data
from backend.blocks import llm
# The final conversation should NOT contain the validation error message
error_messages = [
msg
for msg in final_conversation
if msg.get("role") == "user"
and "parameter errors" in msg.get("content", "")
]
assert (
len(error_messages) == 0
), "Validation error leaked into final conversation"
input_data = block.input_schema(
prompt="Test prompt",
credentials=llm.TEST_CREDENTIALS_INPUT,
model=llm.LlmModel.GPT4O,
retry=3, # Allow retries
agent_mode_max_iterations=1,
)
# The final conversation should only have the successful response
assert final_conversation[-1]["content"] == "valid"
# Run the block
outputs = {}
from backend.data.execution import ExecutionContext
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a proper mock execution processor for agent mode
from collections import defaultdict
mock_execution_processor = AsyncMock()
mock_execution_processor.execution_stats = MagicMock()
mock_execution_processor.execution_stats_lock = MagicMock()
# Create a mock NodeExecutionProgress for the sink node
mock_node_exec_progress = MagicMock()
mock_node_exec_progress.add_task = MagicMock()
mock_node_exec_progress.pop_output = MagicMock(
return_value=None
) # No outputs to process
# Set up running_node_execution as a defaultdict that returns our mock for any key
mock_execution_processor.running_node_execution = defaultdict(
lambda: mock_node_exec_progress
)
# Mock the on_node_execution method that gets called during tool execution
mock_node_stats = MagicMock()
mock_node_stats.error = None
mock_execution_processor.on_node_execution.return_value = (
mock_node_stats
)
async for output_name, output_value in block.run(
input_data,
credentials=llm.TEST_CREDENTIALS,
graph_id="test_graph",
node_id="test_node",
graph_exec_id="test_exec",
node_exec_id="test_node_exec",
user_id="test_user",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_value
# Verify we had at least 1 LLM call
assert call_count >= 1
# Check the final conversation output
final_conversation = outputs.get("conversations", [])
# The final conversation should NOT contain validation error messages
# Even if retries don't happen in agent mode, we should not leak errors
error_messages = [
msg
for msg in final_conversation
if msg.get("role") == "user"
and "parameter errors" in msg.get("content", "")
]
assert (
len(error_messages) == 0
), "Validation error leaked into final conversation"

View File

@@ -1,12 +1,45 @@
import logging
from datetime import datetime, timedelta, timezone
from typing import Optional
import prisma.types
from pydantic import BaseModel
from backend.data.db import query_raw_with_schema
from backend.util.json import SafeJson
logger = logging.getLogger(__name__)
class AccuracyAlertData(BaseModel):
"""Alert data when accuracy drops significantly."""
graph_id: str
user_id: Optional[str]
drop_percent: float
three_day_avg: float
seven_day_avg: float
detected_at: datetime
class AccuracyLatestData(BaseModel):
"""Latest execution accuracy data point."""
date: datetime
daily_score: Optional[float]
three_day_avg: Optional[float]
seven_day_avg: Optional[float]
fourteen_day_avg: Optional[float]
class AccuracyTrendsResponse(BaseModel):
"""Response model for accuracy trends and alerts."""
latest_data: AccuracyLatestData
alert: Optional[AccuracyAlertData]
historical_data: Optional[list[AccuracyLatestData]] = None
async def log_raw_analytics(
user_id: str,
type: str,
@@ -43,3 +76,217 @@ async def log_raw_metric(
)
return result
async def get_accuracy_trends_and_alerts(
graph_id: str,
days_back: int = 30,
user_id: Optional[str] = None,
drop_threshold: float = 10.0,
include_historical: bool = False,
) -> AccuracyTrendsResponse:
"""Get accuracy trends and detect alerts for a specific graph."""
query_template = """
WITH daily_scores AS (
SELECT
DATE(e."createdAt") as execution_date,
AVG(CASE
WHEN e.stats IS NOT NULL
AND e.stats::json->>'correctness_score' IS NOT NULL
AND e.stats::json->>'correctness_score' != 'null'
THEN (e.stats::json->>'correctness_score')::float * 100
ELSE NULL
END) as daily_score
FROM {schema_prefix}"AgentGraphExecution" e
WHERE e."agentGraphId" = $1::text
AND e."isDeleted" = false
AND e."createdAt" >= $2::timestamp
AND e."executionStatus" IN ('COMPLETED', 'FAILED', 'TERMINATED')
{user_filter}
GROUP BY DATE(e."createdAt")
HAVING COUNT(*) >= 3 -- Need at least 3 executions per day
),
trends AS (
SELECT
execution_date,
daily_score,
AVG(daily_score) OVER (
ORDER BY execution_date
ROWS BETWEEN 2 PRECEDING AND CURRENT ROW
) as three_day_avg,
AVG(daily_score) OVER (
ORDER BY execution_date
ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
) as seven_day_avg,
AVG(daily_score) OVER (
ORDER BY execution_date
ROWS BETWEEN 13 PRECEDING AND CURRENT ROW
) as fourteen_day_avg
FROM daily_scores
)
SELECT *,
CASE
WHEN three_day_avg IS NOT NULL AND seven_day_avg IS NOT NULL AND seven_day_avg > 0
THEN ((seven_day_avg - three_day_avg) / seven_day_avg * 100)
ELSE NULL
END as drop_percent
FROM trends
ORDER BY execution_date DESC
{limit_clause}
"""
start_date = datetime.now(timezone.utc) - timedelta(days=days_back)
params = [graph_id, start_date]
user_filter = ""
if user_id:
user_filter = 'AND e."userId" = $3::text'
params.append(user_id)
# Determine limit clause
limit_clause = "" if include_historical else "LIMIT 1"
final_query = query_template.format(
schema_prefix="{schema_prefix}",
user_filter=user_filter,
limit_clause=limit_clause,
)
result = await query_raw_with_schema(final_query, *params)
if not result:
return AccuracyTrendsResponse(
latest_data=AccuracyLatestData(
date=datetime.now(timezone.utc),
daily_score=None,
three_day_avg=None,
seven_day_avg=None,
fourteen_day_avg=None,
),
alert=None,
)
latest = result[0]
alert = None
if (
latest["drop_percent"] is not None
and latest["drop_percent"] >= drop_threshold
and latest["three_day_avg"] is not None
and latest["seven_day_avg"] is not None
):
alert = AccuracyAlertData(
graph_id=graph_id,
user_id=user_id,
drop_percent=float(latest["drop_percent"]),
three_day_avg=float(latest["three_day_avg"]),
seven_day_avg=float(latest["seven_day_avg"]),
detected_at=datetime.now(timezone.utc),
)
# Prepare historical data if requested
historical_data = None
if include_historical:
historical_data = []
for row in result:
historical_data.append(
AccuracyLatestData(
date=row["execution_date"],
daily_score=(
float(row["daily_score"])
if row["daily_score"] is not None
else None
),
three_day_avg=(
float(row["three_day_avg"])
if row["three_day_avg"] is not None
else None
),
seven_day_avg=(
float(row["seven_day_avg"])
if row["seven_day_avg"] is not None
else None
),
fourteen_day_avg=(
float(row["fourteen_day_avg"])
if row["fourteen_day_avg"] is not None
else None
),
)
)
return AccuracyTrendsResponse(
latest_data=AccuracyLatestData(
date=latest["execution_date"],
daily_score=(
float(latest["daily_score"])
if latest["daily_score"] is not None
else None
),
three_day_avg=(
float(latest["three_day_avg"])
if latest["three_day_avg"] is not None
else None
),
seven_day_avg=(
float(latest["seven_day_avg"])
if latest["seven_day_avg"] is not None
else None
),
fourteen_day_avg=(
float(latest["fourteen_day_avg"])
if latest["fourteen_day_avg"] is not None
else None
),
),
alert=alert,
historical_data=historical_data,
)
class MarketplaceGraphData(BaseModel):
"""Data structure for marketplace graph monitoring."""
graph_id: str
user_id: Optional[str]
execution_count: int
async def get_marketplace_graphs_for_monitoring(
days_back: int = 30,
min_executions: int = 10,
) -> list[MarketplaceGraphData]:
"""Get published marketplace graphs with recent executions for monitoring."""
query_template = """
WITH marketplace_graphs AS (
SELECT DISTINCT
slv."agentGraphId" as graph_id,
slv."agentGraphVersion" as graph_version
FROM {schema_prefix}"StoreListing" sl
JOIN {schema_prefix}"StoreListingVersion" slv ON sl."activeVersionId" = slv."id"
WHERE sl."hasApprovedVersion" = true
AND sl."isDeleted" = false
)
SELECT DISTINCT
mg.graph_id,
NULL as user_id, -- Marketplace graphs don't have a specific user_id for monitoring
COUNT(*) as execution_count
FROM marketplace_graphs mg
JOIN {schema_prefix}"AgentGraphExecution" e ON e."agentGraphId" = mg.graph_id
WHERE e."createdAt" >= $1::timestamp
AND e."isDeleted" = false
AND e."executionStatus" IN ('COMPLETED', 'FAILED', 'TERMINATED')
GROUP BY mg.graph_id
HAVING COUNT(*) >= $2
ORDER BY execution_count DESC
"""
start_date = datetime.now(timezone.utc) - timedelta(days=days_back)
result = await query_raw_with_schema(query_template, start_date, min_executions)
return [
MarketplaceGraphData(
graph_id=row["graph_id"],
user_id=row["user_id"],
execution_count=int(row["execution_count"]),
)
for row in result
]

View File

@@ -266,14 +266,61 @@ class BlockSchema(BaseModel):
)
}
@classmethod
def get_auto_credentials_fields(cls) -> dict[str, dict[str, Any]]:
"""
Get fields that have auto_credentials metadata (e.g., GoogleDriveFileInput).
Returns a dict mapping kwarg_name -> {field_name, auto_credentials_config}
Raises:
ValueError: If multiple fields have the same kwarg_name, as this would
cause silent overwriting and only the last field would be processed.
"""
result: dict[str, dict[str, Any]] = {}
schema = cls.jsonschema()
properties = schema.get("properties", {})
for field_name, field_schema in properties.items():
auto_creds = field_schema.get("auto_credentials")
if auto_creds:
kwarg_name = auto_creds.get("kwarg_name", "credentials")
if kwarg_name in result:
raise ValueError(
f"Duplicate auto_credentials kwarg_name '{kwarg_name}' "
f"in fields '{result[kwarg_name]['field_name']}' and "
f"'{field_name}' on {cls.__qualname__}"
)
result[kwarg_name] = {
"field_name": field_name,
"config": auto_creds,
}
return result
@classmethod
def get_credentials_fields_info(cls) -> dict[str, CredentialsFieldInfo]:
return {
field_name: CredentialsFieldInfo.model_validate(
result = {}
# Regular credentials fields
for field_name in cls.get_credentials_fields().keys():
result[field_name] = CredentialsFieldInfo.model_validate(
cls.get_field_schema(field_name), by_alias=True
)
for field_name in cls.get_credentials_fields().keys()
}
# Auto-generated credentials fields (from GoogleDriveFileInput etc.)
for kwarg_name, info in cls.get_auto_credentials_fields().items():
config = info["config"]
# Build a schema-like dict that CredentialsFieldInfo can parse
auto_schema = {
"credentials_provider": [config.get("provider", "google")],
"credentials_types": [config.get("type", "oauth2")],
"credentials_scopes": config.get("scopes"),
}
result[kwarg_name] = CredentialsFieldInfo.model_validate(
auto_schema, by_alias=True
)
return result
@classmethod
def get_input_defaults(cls, data: BlockInput) -> BlockInput:
@@ -554,14 +601,18 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
async for output_name, output_data in self._execute(input_data, **kwargs):
yield output_name, output_data
except Exception as ex:
if not isinstance(ex, BlockError):
raise BlockUnknownError(
if isinstance(ex, BlockError):
raise ex
else:
raise (
BlockExecutionError
if isinstance(ex, ValueError)
else BlockUnknownError
)(
message=str(ex),
block_name=self.name,
block_id=self.id,
) from ex
else:
raise ex
async def _execute(self, input_data: BlockInput, **kwargs) -> BlockOutput:
if error := self.input_schema.validate_data(input_data):

View File

@@ -5,6 +5,7 @@ from enum import Enum
from multiprocessing import Manager
from queue import Empty
from typing import (
TYPE_CHECKING,
Annotated,
Any,
AsyncGenerator,
@@ -65,6 +66,9 @@ from .includes import (
)
from .model import CredentialsMetaInput, GraphExecutionStats, NodeExecutionStats
if TYPE_CHECKING:
pass
T = TypeVar("T")
logger = logging.getLogger(__name__)
@@ -836,6 +840,30 @@ async def upsert_execution_output(
await AgentNodeExecutionInputOutput.prisma().create(data=data)
async def get_execution_outputs_by_node_exec_id(
node_exec_id: str,
) -> dict[str, Any]:
"""
Get all execution outputs for a specific node execution ID.
Args:
node_exec_id: The node execution ID to get outputs for
Returns:
Dictionary mapping output names to their data values
"""
outputs = await AgentNodeExecutionInputOutput.prisma().find_many(
where={"referencedByOutputExecId": node_exec_id}
)
result = {}
for output in outputs:
if output.data is not None:
result[output.name] = type_utils.convert(output.data, JsonValue)
return result
async def update_graph_execution_start_time(
graph_exec_id: str,
) -> GraphExecution | None:
@@ -1465,3 +1493,35 @@ async def get_graph_execution_by_share_token(
created_at=execution.createdAt,
outputs=outputs,
)
async def get_frequently_executed_graphs(
days_back: int = 30,
min_executions: int = 10,
) -> list[dict]:
"""Get graphs that have been frequently executed for monitoring."""
query_template = """
SELECT DISTINCT
e."agentGraphId" as graph_id,
e."userId" as user_id,
COUNT(*) as execution_count
FROM {schema_prefix}"AgentGraphExecution" e
WHERE e."createdAt" >= $1::timestamp
AND e."isDeleted" = false
AND e."executionStatus" IN ('COMPLETED', 'FAILED', 'TERMINATED')
GROUP BY e."agentGraphId", e."userId"
HAVING COUNT(*) >= $2
ORDER BY execution_count DESC
"""
start_date = datetime.now(timezone.utc) - timedelta(days=days_back)
result = await query_raw_with_schema(query_template, start_date, min_executions)
return [
{
"graph_id": row["graph_id"],
"user_id": row["user_id"],
"execution_count": int(row["execution_count"]),
}
for row in result
]

View File

@@ -100,7 +100,7 @@ async def get_or_create_human_review(
return None
else:
return ReviewResult(
data=review.payload if review.status == ReviewStatus.APPROVED else None,
data=review.payload,
status=review.status,
message=review.reviewMessage or "",
processed=review.processed,

View File

@@ -22,7 +22,7 @@ from typing import (
from urllib.parse import urlparse
from uuid import uuid4
from prisma.enums import CreditTransactionType
from prisma.enums import CreditTransactionType, OnboardingStep
from pydantic import (
BaseModel,
ConfigDict,
@@ -868,3 +868,20 @@ class UserExecutionSummaryStats(BaseModel):
total_execution_time: float = Field(default=0)
average_execution_time: float = Field(default=0)
cost_breakdown: dict[str, float] = Field(default_factory=dict)
class UserOnboarding(BaseModel):
userId: str
completedSteps: list[OnboardingStep]
walletShown: bool
notified: list[OnboardingStep]
rewardedFor: list[OnboardingStep]
usageReason: Optional[str]
integrations: list[str]
otherIntegrations: Optional[str]
selectedStoreListingVersionId: Optional[str]
agentInput: Optional[dict[str, Any]]
onboardingAgentExecutionId: Optional[str]
agentRuns: int
lastRunAt: Optional[datetime]
consecutiveRunDays: int

View File

@@ -2,7 +2,7 @@ from __future__ import annotations
from typing import AsyncGenerator
from pydantic import BaseModel
from pydantic import BaseModel, field_serializer
from backend.data.event_bus import AsyncRedisEventBus
from backend.server.model import NotificationPayload
@@ -15,6 +15,11 @@ class NotificationEvent(BaseModel):
user_id: str
payload: NotificationPayload
@field_serializer("payload")
def serialize_payload(self, payload: NotificationPayload):
"""Ensure extra fields survive Redis serialization."""
return payload.model_dump()
class AsyncRedisNotificationEventBus(AsyncRedisEventBus[NotificationEvent]):
Model = NotificationEvent # type: ignore

View File

@@ -1,6 +1,7 @@
import re
from datetime import datetime
from typing import Any, Optional
from datetime import datetime, timedelta, timezone
from typing import Any, Literal, Optional
from zoneinfo import ZoneInfo
import prisma
import pydantic
@@ -8,17 +9,18 @@ from prisma.enums import OnboardingStep
from prisma.models import UserOnboarding
from prisma.types import UserOnboardingCreateInput, UserOnboardingUpdateInput
from backend.data.block import get_blocks
from backend.data import execution as execution_db
from backend.data.credit import get_user_credit_model
from backend.data.model import CredentialsMetaInput
from backend.data.notification_bus import (
AsyncRedisNotificationEventBus,
NotificationEvent,
)
from backend.data.user import get_user_by_id
from backend.server.model import OnboardingNotificationPayload
from backend.server.v2.store.model import StoreAgentDetails
from backend.util.cache import cached
from backend.util.json import SafeJson
from backend.util.timezone_utils import get_user_timezone_or_utc
# Mapping from user reason id to categories to search for when choosing agent to show
REASON_MAPPING: dict[str, list[str]] = {
@@ -31,9 +33,20 @@ REASON_MAPPING: dict[str, list[str]] = {
POINTS_AGENT_COUNT = 50 # Number of agents to calculate points for
MIN_AGENT_COUNT = 2 # Minimum number of marketplace agents to enable onboarding
FrontendOnboardingStep = Literal[
OnboardingStep.WELCOME,
OnboardingStep.USAGE_REASON,
OnboardingStep.INTEGRATIONS,
OnboardingStep.AGENT_CHOICE,
OnboardingStep.AGENT_NEW_RUN,
OnboardingStep.AGENT_INPUT,
OnboardingStep.CONGRATS,
OnboardingStep.MARKETPLACE_VISIT,
OnboardingStep.BUILDER_OPEN,
]
class UserOnboardingUpdate(pydantic.BaseModel):
completedSteps: Optional[list[OnboardingStep]] = None
walletShown: Optional[bool] = None
notified: Optional[list[OnboardingStep]] = None
usageReason: Optional[str] = None
@@ -42,9 +55,6 @@ class UserOnboardingUpdate(pydantic.BaseModel):
selectedStoreListingVersionId: Optional[str] = None
agentInput: Optional[dict[str, Any]] = None
onboardingAgentExecutionId: Optional[str] = None
agentRuns: Optional[int] = None
lastRunAt: Optional[datetime] = None
consecutiveRunDays: Optional[int] = None
async def get_user_onboarding(user_id: str):
@@ -83,14 +93,6 @@ async def reset_user_onboarding(user_id: str):
async def update_user_onboarding(user_id: str, data: UserOnboardingUpdate):
update: UserOnboardingUpdateInput = {}
onboarding = await get_user_onboarding(user_id)
if data.completedSteps is not None:
update["completedSteps"] = list(
set(data.completedSteps + onboarding.completedSteps)
)
for step in data.completedSteps:
if step not in onboarding.completedSteps:
await _reward_user(user_id, onboarding, step)
await _send_onboarding_notification(user_id, step)
if data.walletShown:
update["walletShown"] = data.walletShown
if data.notified is not None:
@@ -107,12 +109,6 @@ async def update_user_onboarding(user_id: str, data: UserOnboardingUpdate):
update["agentInput"] = SafeJson(data.agentInput)
if data.onboardingAgentExecutionId is not None:
update["onboardingAgentExecutionId"] = data.onboardingAgentExecutionId
if data.agentRuns is not None and data.agentRuns > onboarding.agentRuns:
update["agentRuns"] = data.agentRuns
if data.lastRunAt is not None:
update["lastRunAt"] = data.lastRunAt
if data.consecutiveRunDays is not None:
update["consecutiveRunDays"] = data.consecutiveRunDays
return await UserOnboarding.prisma().upsert(
where={"userId": user_id},
@@ -161,14 +157,12 @@ async def _reward_user(user_id: str, onboarding: UserOnboarding, step: Onboardin
if step in onboarding.rewardedFor:
return
onboarding.rewardedFor.append(step)
user_credit_model = await get_user_credit_model(user_id)
await user_credit_model.onboarding_reward(user_id, reward, step)
await UserOnboarding.prisma().update(
where={"userId": user_id},
data={
"completedSteps": list(set(onboarding.completedSteps + [step])),
"rewardedFor": onboarding.rewardedFor,
"rewardedFor": list(set(onboarding.rewardedFor + [step])),
},
)
@@ -177,31 +171,52 @@ async def complete_onboarding_step(user_id: str, step: OnboardingStep):
"""
Completes the specified onboarding step for the user if not already completed.
"""
onboarding = await get_user_onboarding(user_id)
if step not in onboarding.completedSteps:
await update_user_onboarding(
user_id,
UserOnboardingUpdate(completedSteps=onboarding.completedSteps + [step]),
await UserOnboarding.prisma().update(
where={"userId": user_id},
data={
"completedSteps": list(set(onboarding.completedSteps + [step])),
},
)
await _reward_user(user_id, onboarding, step)
await _send_onboarding_notification(user_id, step)
async def _send_onboarding_notification(user_id: str, step: OnboardingStep):
async def _send_onboarding_notification(
user_id: str, step: OnboardingStep | None, event: str = "step_completed"
):
"""
Sends an onboarding notification to the user for the specified step.
Sends an onboarding notification to the user.
"""
payload = OnboardingNotificationPayload(
type="onboarding",
event="step_completed",
step=step.value,
event=event,
step=step,
)
await AsyncRedisNotificationEventBus().publish(
NotificationEvent(user_id=user_id, payload=payload)
)
def clean_and_split(text: str) -> list[str]:
async def complete_re_run_agent(user_id: str, graph_id: str) -> None:
"""
Complete RE_RUN_AGENT step when a user runs a graph they've run before.
Keeps overhead low by only counting executions if the step is still pending.
"""
onboarding = await get_user_onboarding(user_id)
if OnboardingStep.RE_RUN_AGENT in onboarding.completedSteps:
return
# Includes current execution, so count > 1 means there was at least one prior run.
previous_exec_count = await execution_db.get_graph_executions_count(
user_id=user_id, graph_id=graph_id
)
if previous_exec_count > 1:
await complete_onboarding_step(user_id, OnboardingStep.RE_RUN_AGENT)
def _clean_and_split(text: str) -> list[str]:
"""
Removes all special characters from a string, truncates it to 100 characters,
and splits it by whitespace and commas.
@@ -224,7 +239,7 @@ def clean_and_split(text: str) -> list[str]:
return words
def calculate_points(
def _calculate_points(
agent, categories: list[str], custom: list[str], integrations: list[str]
) -> int:
"""
@@ -268,18 +283,85 @@ def calculate_points(
return int(points)
def get_credentials_blocks() -> dict[str, str]:
# Returns a dictionary of block id to credentials field name
creds: dict[str, str] = {}
blocks = get_blocks()
for id, block in blocks.items():
for field_name, field_info in block().input_schema.model_fields.items():
if field_info.annotation == CredentialsMetaInput:
creds[id] = field_name
return creds
def _normalize_datetime(value: datetime | None) -> datetime | None:
if value is None:
return None
if value.tzinfo is None:
return value.replace(tzinfo=timezone.utc)
return value.astimezone(timezone.utc)
CREDENTIALS_FIELDS: dict[str, str] = get_credentials_blocks()
def _calculate_consecutive_run_days(
last_run_at: datetime | None, current_consecutive_days: int, user_timezone: str
) -> tuple[datetime, int]:
tz = ZoneInfo(user_timezone)
local_now = datetime.now(tz)
normalized_last_run = _normalize_datetime(last_run_at)
if normalized_last_run is None:
return local_now.astimezone(timezone.utc), 1
last_run_local = normalized_last_run.astimezone(tz)
last_run_date = last_run_local.date()
today = local_now.date()
if last_run_date == today:
return local_now.astimezone(timezone.utc), current_consecutive_days
if last_run_date == today - timedelta(days=1):
return local_now.astimezone(timezone.utc), current_consecutive_days + 1
return local_now.astimezone(timezone.utc), 1
def _get_run_milestone_steps(
new_run_count: int, consecutive_days: int
) -> list[OnboardingStep]:
milestones: list[OnboardingStep] = []
if new_run_count >= 10:
milestones.append(OnboardingStep.RUN_AGENTS)
if new_run_count >= 100:
milestones.append(OnboardingStep.RUN_AGENTS_100)
if consecutive_days >= 3:
milestones.append(OnboardingStep.RUN_3_DAYS)
if consecutive_days >= 14:
milestones.append(OnboardingStep.RUN_14_DAYS)
return milestones
async def _get_user_timezone(user_id: str) -> str:
user = await get_user_by_id(user_id)
return get_user_timezone_or_utc(user.timezone if user else None)
async def increment_runs(user_id: str):
"""
Increment a user's run counters and trigger any onboarding milestones.
"""
user_timezone = await _get_user_timezone(user_id)
onboarding = await get_user_onboarding(user_id)
new_run_count = onboarding.agentRuns + 1
last_run_at, consecutive_run_days = _calculate_consecutive_run_days(
onboarding.lastRunAt, onboarding.consecutiveRunDays, user_timezone
)
await UserOnboarding.prisma().update(
where={"userId": user_id},
data={
"agentRuns": {"increment": 1},
"lastRunAt": last_run_at,
"consecutiveRunDays": consecutive_run_days,
},
)
milestones = _get_run_milestone_steps(new_run_count, consecutive_run_days)
new_steps = [step for step in milestones if step not in onboarding.completedSteps]
for step in new_steps:
await complete_onboarding_step(user_id, step)
# Send progress notification if no steps were completed, so client refetches onboarding state
if not new_steps:
await _send_onboarding_notification(user_id, None, event="increment_runs")
async def get_recommended_agents(user_id: str) -> list[StoreAgentDetails]:
@@ -288,7 +370,7 @@ async def get_recommended_agents(user_id: str) -> list[StoreAgentDetails]:
where_clause: dict[str, Any] = {}
custom = clean_and_split((user_onboarding.usageReason or "").lower())
custom = _clean_and_split((user_onboarding.usageReason or "").lower())
if categories:
where_clause["OR"] = [
@@ -336,7 +418,7 @@ async def get_recommended_agents(user_id: str) -> list[StoreAgentDetails]:
# Calculate points for the first X agents and choose the top 2
agent_points = []
for agent in storeAgents[:POINTS_AGENT_COUNT]:
points = calculate_points(
points = _calculate_points(
agent, categories, custom, user_onboarding.integrations
)
agent_points.append((agent, points))
@@ -350,6 +432,7 @@ async def get_recommended_agents(user_id: str) -> list[StoreAgentDetails]:
slug=agent.slug,
agent_name=agent.agent_name,
agent_video=agent.agent_video or "",
agent_output_demo=agent.agent_output_demo or "",
agent_image=agent.agent_image,
creator=agent.creator_username,
creator_avatar=agent.creator_avatar,

View File

@@ -3,12 +3,18 @@ from contextlib import asynccontextmanager
from typing import TYPE_CHECKING, Callable, Concatenate, ParamSpec, TypeVar, cast
from backend.data import db
from backend.data.analytics import (
get_accuracy_trends_and_alerts,
get_marketplace_graphs_for_monitoring,
)
from backend.data.credit import UsageTransactionMetadata, get_user_credit_model
from backend.data.execution import (
create_graph_execution,
get_block_error_stats,
get_child_graph_executions,
get_execution_kv_data,
get_execution_outputs_by_node_exec_id,
get_frequently_executed_graphs,
get_graph_execution_meta,
get_graph_executions,
get_graph_executions_count,
@@ -142,9 +148,13 @@ class DatabaseManager(AppService):
update_graph_execution_stats = _(update_graph_execution_stats)
upsert_execution_input = _(upsert_execution_input)
upsert_execution_output = _(upsert_execution_output)
get_execution_outputs_by_node_exec_id = _(get_execution_outputs_by_node_exec_id)
get_execution_kv_data = _(get_execution_kv_data)
set_execution_kv_data = _(set_execution_kv_data)
get_block_error_stats = _(get_block_error_stats)
get_accuracy_trends_and_alerts = _(get_accuracy_trends_and_alerts)
get_frequently_executed_graphs = _(get_frequently_executed_graphs)
get_marketplace_graphs_for_monitoring = _(get_marketplace_graphs_for_monitoring)
# Graphs
get_node = _(get_node)
@@ -226,6 +236,10 @@ class DatabaseManagerClient(AppServiceClient):
# Block error monitoring
get_block_error_stats = _(d.get_block_error_stats)
# Execution accuracy monitoring
get_accuracy_trends_and_alerts = _(d.get_accuracy_trends_and_alerts)
get_frequently_executed_graphs = _(d.get_frequently_executed_graphs)
get_marketplace_graphs_for_monitoring = _(d.get_marketplace_graphs_for_monitoring)
# Human In The Loop
has_pending_reviews_for_graph_exec = _(d.has_pending_reviews_for_graph_exec)
@@ -265,6 +279,7 @@ class DatabaseManagerAsyncClient(AppServiceClient):
get_user_integrations = d.get_user_integrations
upsert_execution_input = d.upsert_execution_input
upsert_execution_output = d.upsert_execution_output
get_execution_outputs_by_node_exec_id = d.get_execution_outputs_by_node_exec_id
update_graph_execution_stats = d.update_graph_execution_stats
update_node_execution_status = d.update_node_execution_status
update_node_execution_status_batch = d.update_node_execution_status_batch

View File

@@ -133,9 +133,8 @@ def execute_graph(
cluster_lock: ClusterLock,
):
"""Execute graph using thread-local ExecutionProcessor instance"""
return _tls.processor.on_graph_execution(
graph_exec_entry, cancel_event, cluster_lock
)
processor: ExecutionProcessor = _tls.processor
return processor.on_graph_execution(graph_exec_entry, cancel_event, cluster_lock)
T = TypeVar("T")
@@ -143,8 +142,8 @@ T = TypeVar("T")
async def execute_node(
node: Node,
creds_manager: IntegrationCredentialsManager,
data: NodeExecutionEntry,
execution_processor: "ExecutionProcessor",
execution_stats: NodeExecutionStats | None = None,
nodes_input_masks: Optional[NodesInputMasks] = None,
) -> BlockOutput:
@@ -169,6 +168,7 @@ async def execute_node(
node_id = data.node_id
node_block = node.block
execution_context = data.execution_context
creds_manager = execution_processor.creds_manager
log_metadata = LogMetadata(
logger=_logger,
@@ -212,21 +212,60 @@ async def execute_node(
"node_exec_id": node_exec_id,
"user_id": user_id,
"execution_context": execution_context,
"execution_processor": execution_processor,
}
# Last-minute fetch credentials + acquire a system-wide read-write lock to prevent
# changes during execution. ⚠️ This means a set of credentials can only be used by
# one (running) block at a time; simultaneous execution of blocks using same
# credentials is not supported.
creds_lock = None
creds_locks: list[AsyncRedisLock] = []
input_model = cast(type[BlockSchema], node_block.input_schema)
# Handle regular credentials fields
for field_name, input_type in input_model.get_credentials_fields().items():
credentials_meta = input_type(**input_data[field_name])
credentials, creds_lock = await creds_manager.acquire(
user_id, credentials_meta.id
)
credentials, lock = await creds_manager.acquire(user_id, credentials_meta.id)
creds_locks.append(lock)
extra_exec_kwargs[field_name] = credentials
# Handle auto-generated credentials (e.g., from GoogleDriveFileInput)
for kwarg_name, info in input_model.get_auto_credentials_fields().items():
field_name = info["field_name"]
field_data = input_data.get(field_name)
if field_data and isinstance(field_data, dict):
# Check if _credentials_id key exists in the field data
if "_credentials_id" in field_data:
cred_id = field_data["_credentials_id"]
if cred_id:
# Credential ID provided - acquire credentials
provider = info.get("config", {}).get(
"provider", "external service"
)
file_name = field_data.get("name", "selected file")
try:
credentials, lock = await creds_manager.acquire(
user_id, cred_id
)
creds_locks.append(lock)
extra_exec_kwargs[kwarg_name] = credentials
except ValueError:
# Credential was deleted or doesn't exist
raise ValueError(
f"Authentication expired for '{file_name}' in field '{field_name}'. "
f"The saved {provider.capitalize()} credentials no longer exist. "
f"Please re-select the file to re-authenticate."
)
# else: _credentials_id is explicitly None, skip credentials (for chained data)
else:
# _credentials_id key missing entirely - this is an error
provider = info.get("config", {}).get("provider", "external service")
file_name = field_data.get("name", "selected file")
raise ValueError(
f"Authentication missing for '{file_name}' in field '{field_name}'. "
f"Please re-select the file to authenticate with {provider.capitalize()}."
)
output_size = 0
# sentry tracking nonsense to get user counts for blocks because isolation scopes don't work :(
@@ -260,12 +299,17 @@ async def execute_node(
# Re-raise to maintain normal error flow
raise
finally:
# Ensure credentials are released even if execution fails
if creds_lock and (await creds_lock.locked()) and (await creds_lock.owned()):
try:
await creds_lock.release()
except Exception as e:
log_metadata.error(f"Failed to release credentials lock: {e}")
# Ensure all credentials are released even if execution fails
for creds_lock in creds_locks:
if (
creds_lock
and (await creds_lock.locked())
and (await creds_lock.owned())
):
try:
await creds_lock.release()
except Exception as e:
log_metadata.error(f"Failed to release credentials lock: {e}")
# Update execution stats
if execution_stats is not None:
@@ -565,8 +609,8 @@ class ExecutionProcessor:
async for output_name, output_data in execute_node(
node=node,
creds_manager=self.creds_manager,
data=node_exec,
execution_processor=self,
execution_stats=stats,
nodes_input_masks=nodes_input_masks,
):
@@ -817,12 +861,17 @@ class ExecutionProcessor:
execution_stats_lock = threading.Lock()
# State holders ----------------------------------------------------
running_node_execution: dict[str, NodeExecutionProgress] = defaultdict(
self.running_node_execution: dict[str, NodeExecutionProgress] = defaultdict(
NodeExecutionProgress
)
running_node_evaluation: dict[str, Future] = {}
self.running_node_evaluation: dict[str, Future] = {}
self.execution_stats = execution_stats
self.execution_stats_lock = execution_stats_lock
execution_queue = ExecutionQueue[NodeExecutionEntry]()
running_node_execution = self.running_node_execution
running_node_evaluation = self.running_node_evaluation
try:
if db_client.get_credits(graph_exec.user_id) <= 0:
raise InsufficientBalanceError(

View File

@@ -26,12 +26,14 @@ from sqlalchemy import MetaData, create_engine
from backend.data.block import BlockInput
from backend.data.execution import GraphExecutionWithNodes
from backend.data.model import CredentialsMetaInput
from backend.data.onboarding import increment_runs
from backend.executor import utils as execution_utils
from backend.monitoring import (
NotificationJobArgs,
process_existing_batches,
process_weekly_summary,
report_block_error_rates,
report_execution_accuracy_alerts,
report_late_executions,
)
from backend.util.clients import get_scheduler_client
@@ -153,6 +155,7 @@ async def _execute_graph(**kwargs):
inputs=args.input_data,
graph_credentials_inputs=args.input_credentials,
)
await increment_runs(args.user_id)
elapsed = asyncio.get_event_loop().time() - start_time
logger.info(
f"Graph execution started with ID {graph_exec.id} for graph {args.graph_id} "
@@ -239,6 +242,11 @@ def cleanup_expired_files():
run_async(cleanup_expired_files_async())
def execution_accuracy_alerts():
"""Check execution accuracy and send alerts if drops are detected."""
return report_execution_accuracy_alerts()
# Monitoring functions are now imported from monitoring module
@@ -438,6 +446,17 @@ class Scheduler(AppService):
jobstore=Jobstores.EXECUTION.value,
)
# Execution Accuracy Monitoring - configurable interval
self.scheduler.add_job(
execution_accuracy_alerts,
id="report_execution_accuracy_alerts",
trigger="interval",
replace_existing=True,
seconds=config.execution_accuracy_check_interval_hours
* 3600, # Convert hours to seconds
jobstore=Jobstores.EXECUTION.value,
)
self.scheduler.add_listener(job_listener, EVENT_JOB_EXECUTED | EVENT_JOB_ERROR)
self.scheduler.add_listener(job_missed_listener, EVENT_JOB_MISSED)
self.scheduler.add_listener(job_max_instances_listener, EVENT_JOB_MAX_INSTANCES)
@@ -585,6 +604,11 @@ class Scheduler(AppService):
"""Manually trigger cleanup of expired cloud storage files."""
return cleanup_expired_files()
@expose
def execute_report_execution_accuracy_alerts(self):
"""Manually trigger execution accuracy alert checking."""
return execution_accuracy_alerts()
class SchedulerClient(AppServiceClient):
@classmethod

View File

@@ -18,7 +18,9 @@ class ManualWebhookManagerBase(BaseWebhooksManager[WT]):
ingress_url: str,
secret: str,
) -> tuple[str, dict]:
print(ingress_url) # FIXME: pass URL to user in front end
# TODO: pass ingress_url to user in frontend
# See: https://github.com/Significant-Gravitas/AutoGPT/issues/8537
logger.debug(f"Manual webhook registered with ingress URL: {ingress_url}")
return "", {}

View File

@@ -1,5 +1,6 @@
"""Monitoring module for platform health and alerting."""
from .accuracy_monitor import AccuracyMonitor, report_execution_accuracy_alerts
from .block_error_monitor import BlockErrorMonitor, report_block_error_rates
from .late_execution_monitor import (
LateExecutionException,
@@ -13,10 +14,12 @@ from .notification_monitor import (
)
__all__ = [
"AccuracyMonitor",
"BlockErrorMonitor",
"LateExecutionMonitor",
"LateExecutionException",
"NotificationJobArgs",
"report_execution_accuracy_alerts",
"report_block_error_rates",
"report_late_executions",
"process_existing_batches",

View File

@@ -0,0 +1,107 @@
"""Execution accuracy monitoring module."""
import logging
from backend.util.clients import (
get_database_manager_client,
get_notification_manager_client,
)
from backend.util.metrics import DiscordChannel, sentry_capture_error
from backend.util.settings import Config
logger = logging.getLogger(__name__)
config = Config()
class AccuracyMonitor:
"""Monitor execution accuracy trends and send alerts for drops."""
def __init__(self, drop_threshold: float = 10.0):
self.config = config
self.notification_client = get_notification_manager_client()
self.database_client = get_database_manager_client()
self.drop_threshold = drop_threshold
def check_execution_accuracy_alerts(self) -> str:
"""Check marketplace agents for accuracy drops and send alerts."""
try:
logger.info("Checking execution accuracy for marketplace agents")
# Get marketplace graphs using database client
graphs = self.database_client.get_marketplace_graphs_for_monitoring(
days_back=30, min_executions=10
)
alerts_found = 0
for graph_data in graphs:
result = self.database_client.get_accuracy_trends_and_alerts(
graph_id=graph_data.graph_id,
user_id=graph_data.user_id,
days_back=21, # 3 weeks
drop_threshold=self.drop_threshold,
)
if result.alert:
alert = result.alert
# Get graph details for better alert info
try:
graph_info = self.database_client.get_graph_metadata(
graph_id=alert.graph_id
)
graph_name = graph_info.name if graph_info else "Unknown Agent"
except Exception:
graph_name = "Unknown Agent"
# Create detailed alert message
alert_msg = (
f"🚨 **AGENT ACCURACY DROP DETECTED**\n\n"
f"**Agent:** {graph_name}\n"
f"**Graph ID:** `{alert.graph_id}`\n"
f"**Accuracy Drop:** {alert.drop_percent:.1f}%\n"
f"**Recent Performance:**\n"
f" • 3-day average: {alert.three_day_avg:.1f}%\n"
f" • 7-day average: {alert.seven_day_avg:.1f}%\n"
)
if alert.user_id:
alert_msg += f"**Owner:** {alert.user_id}\n"
# Send individual alert for each agent (not batched)
self.notification_client.discord_system_alert(
alert_msg, DiscordChannel.PRODUCT
)
alerts_found += 1
logger.warning(
f"Sent accuracy alert for agent: {graph_name} ({alert.graph_id})"
)
if alerts_found > 0:
return f"Alert sent for {alerts_found} agents with accuracy drops"
logger.info("No execution accuracy alerts detected")
return "No accuracy alerts detected"
except Exception as e:
logger.exception(f"Error checking execution accuracy alerts: {e}")
error = Exception(f"Error checking execution accuracy alerts: {e}")
msg = str(error)
sentry_capture_error(error)
self.notification_client.discord_system_alert(msg, DiscordChannel.PRODUCT)
return msg
def report_execution_accuracy_alerts(drop_threshold: float = 10.0) -> str:
"""
Check execution accuracy and send alerts if drops are detected.
Args:
drop_threshold: Percentage drop threshold to trigger alerts (default 10.0%)
Returns:
Status message indicating results of the check
"""
monitor = AccuracyMonitor(drop_threshold=drop_threshold)
return monitor.check_execution_accuracy_alerts()

View File

@@ -143,6 +143,9 @@ def instrument_fastapi(
)
# Create instrumentator with default metrics
# Use service-specific inprogress_name to avoid duplicate registration
# when multiple FastAPI apps are instrumented in the same process
service_subsystem = service_name.replace("-", "_")
instrumentator = Instrumentator(
should_group_status_codes=True,
should_ignore_untemplated=True,
@@ -150,7 +153,7 @@ def instrument_fastapi(
should_instrument_requests_inprogress=True,
excluded_handlers=excluded_handlers or ["/health", "/readiness"],
env_var_name="ENABLE_METRICS",
inprogress_name="autogpt_http_requests_inprogress",
inprogress_name=f"autogpt_{service_subsystem}_http_requests_inprogress",
inprogress_labels=True,
)

View File

@@ -273,6 +273,8 @@ async def list_providers(
except Exception as e:
logger.warning(f"Failed to load blocks: {e}")
from backend.sdk.registry import AutoRegistry
providers = []
for name in get_all_provider_names():
supports_oauth = name in HANDLERS_BY_NAME
@@ -281,13 +283,27 @@ async def list_providers(
getattr(handler_class, "DEFAULT_SCOPES", []) if handler_class else []
)
# Check if provider has specific auth types from SDK registration
sdk_provider = AutoRegistry.get_provider(name)
if sdk_provider and sdk_provider.supported_auth_types:
supports_api_key = "api_key" in sdk_provider.supported_auth_types
supports_user_password = (
"user_password" in sdk_provider.supported_auth_types
)
supports_host_scoped = "host_scoped" in sdk_provider.supported_auth_types
else:
# Fallback for legacy providers
supports_api_key = True # All providers can accept API keys
supports_user_password = name in ("smtp",)
supports_host_scoped = name == "http"
providers.append(
ProviderInfo(
name=name,
supports_oauth=supports_oauth,
supports_api_key=True, # All providers can accept API keys
supports_user_password=name in ("smtp",), # SMTP uses user/password
supports_host_scoped=name == "http", # HTTP block uses host-scoped
supports_api_key=supports_api_key,
supports_user_password=supports_user_password,
supports_host_scoped=supports_host_scoped,
default_scopes=default_scopes,
)
)

View File

@@ -33,7 +33,11 @@ from backend.data.model import (
OAuth2Credentials,
UserIntegrations,
)
from backend.data.onboarding import OnboardingStep, complete_onboarding_step
from backend.data.onboarding import (
OnboardingStep,
complete_onboarding_step,
increment_runs,
)
from backend.data.user import get_user_integrations
from backend.executor.utils import add_graph_execution
from backend.integrations.ayrshare import AyrshareClient, SocialPlatform
@@ -377,6 +381,7 @@ async def webhook_ingress_generic(
return
await complete_onboarding_step(user_id, OnboardingStep.TRIGGER_WEBHOOK)
await increment_runs(user_id)
# Execute all triggers concurrently for better performance
tasks = []

View File

@@ -1,7 +1,8 @@
import enum
from typing import Any, Optional
from typing import Any, Literal, Optional
import pydantic
from prisma.enums import OnboardingStep
from backend.data.api_key import APIKeyInfo, APIKeyPermission
from backend.data.graph import Graph
@@ -35,8 +36,13 @@ class WSSubscribeGraphExecutionsRequest(pydantic.BaseModel):
graph_id: str
GraphCreationSource = Literal["builder", "upload"]
GraphExecutionSource = Literal["builder", "library", "onboarding"]
class CreateGraph(pydantic.BaseModel):
graph: Graph
source: GraphCreationSource | None = None
class CreateAPIKeyRequest(pydantic.BaseModel):
@@ -83,6 +89,8 @@ class NotificationPayload(pydantic.BaseModel):
type: str
event: str
model_config = pydantic.ConfigDict(extra="allow")
class OnboardingNotificationPayload(NotificationPayload):
step: str
step: OnboardingStep | None

View File

@@ -5,7 +5,7 @@ import time
import uuid
from collections import defaultdict
from datetime import datetime, timezone
from typing import Annotated, Any, Sequence
from typing import Annotated, Any, Sequence, get_args
import pydantic
import stripe
@@ -45,12 +45,17 @@ from backend.data.credit import (
set_auto_top_up,
)
from backend.data.graph import GraphSettings
from backend.data.model import CredentialsMetaInput
from backend.data.model import CredentialsMetaInput, UserOnboarding
from backend.data.notifications import NotificationPreference, NotificationPreferenceDTO
from backend.data.onboarding import (
FrontendOnboardingStep,
OnboardingStep,
UserOnboardingUpdate,
complete_onboarding_step,
complete_re_run_agent,
get_recommended_agents,
get_user_onboarding,
increment_runs,
onboarding_enabled,
reset_user_onboarding,
update_user_onboarding,
@@ -78,6 +83,7 @@ from backend.server.model import (
CreateAPIKeyRequest,
CreateAPIKeyResponse,
CreateGraph,
GraphExecutionSource,
RequestTopUp,
SetGraphActiveVersion,
TimezoneResponse,
@@ -85,6 +91,7 @@ from backend.server.model import (
UpdateTimezoneRequest,
UploadFileResponse,
)
from backend.server.v2.store.model import StoreAgentDetails
from backend.util.cache import cached
from backend.util.clients import get_scheduler_client
from backend.util.cloud_storage import get_cloud_storage_handler
@@ -274,9 +281,10 @@ async def update_preferences(
@v1_router.get(
"/onboarding",
summary="Get onboarding status",
summary="Onboarding state",
tags=["onboarding"],
dependencies=[Security(requires_user)],
response_model=UserOnboarding,
)
async def get_onboarding(user_id: Annotated[str, Security(get_user_id)]):
return await get_user_onboarding(user_id)
@@ -284,9 +292,10 @@ async def get_onboarding(user_id: Annotated[str, Security(get_user_id)]):
@v1_router.patch(
"/onboarding",
summary="Update onboarding progress",
summary="Update onboarding state",
tags=["onboarding"],
dependencies=[Security(requires_user)],
response_model=UserOnboarding,
)
async def update_onboarding(
user_id: Annotated[str, Security(get_user_id)], data: UserOnboardingUpdate
@@ -294,25 +303,39 @@ async def update_onboarding(
return await update_user_onboarding(user_id, data)
@v1_router.post(
"/onboarding/step",
summary="Complete onboarding step",
tags=["onboarding"],
dependencies=[Security(requires_user)],
)
async def onboarding_complete_step(
user_id: Annotated[str, Security(get_user_id)], step: FrontendOnboardingStep
):
if step not in get_args(FrontendOnboardingStep):
raise HTTPException(status_code=400, detail="Invalid onboarding step")
return await complete_onboarding_step(user_id, step)
@v1_router.get(
"/onboarding/agents",
summary="Get recommended agents",
summary="Recommended onboarding agents",
tags=["onboarding"],
dependencies=[Security(requires_user)],
)
async def get_onboarding_agents(
user_id: Annotated[str, Security(get_user_id)],
):
) -> list[StoreAgentDetails]:
return await get_recommended_agents(user_id)
@v1_router.get(
"/onboarding/enabled",
summary="Check onboarding enabled",
summary="Is onboarding enabled",
tags=["onboarding", "public"],
dependencies=[Security(requires_user)],
)
async def is_onboarding_enabled():
async def is_onboarding_enabled() -> bool:
return await onboarding_enabled()
@@ -321,6 +344,7 @@ async def is_onboarding_enabled():
summary="Reset onboarding progress",
tags=["onboarding"],
dependencies=[Security(requires_user)],
response_model=UserOnboarding,
)
async def reset_onboarding(user_id: Annotated[str, Security(get_user_id)]):
return await reset_user_onboarding(user_id)
@@ -809,7 +833,12 @@ async def create_new_graph(
# as the graph already valid and no sub-graphs are returned back.
await graph_db.create_graph(graph, user_id=user_id)
await library_db.create_library_agent(graph, user_id=user_id)
return await on_graph_activate(graph, user_id=user_id)
activated_graph = await on_graph_activate(graph, user_id=user_id)
if create_graph.source == "builder":
await complete_onboarding_step(user_id, OnboardingStep.BUILDER_SAVE_AGENT)
return activated_graph
@v1_router.delete(
@@ -967,6 +996,7 @@ async def execute_graph(
credentials_inputs: Annotated[
dict[str, CredentialsMetaInput], Body(..., embed=True, default_factory=dict)
],
source: Annotated[GraphExecutionSource | None, Body(embed=True)] = None,
graph_version: Optional[int] = None,
preset_id: Optional[str] = None,
) -> execution_db.GraphExecutionMeta:
@@ -990,6 +1020,14 @@ async def execute_graph(
# Record successful graph execution
record_graph_execution(graph_id=graph_id, status="success", user_id=user_id)
record_graph_operation(operation="execute", status="success")
await increment_runs(user_id)
await complete_re_run_agent(user_id, graph_id)
if source == "library":
await complete_onboarding_step(
user_id, OnboardingStep.MARKETPLACE_RUN_AGENT
)
elif source == "builder":
await complete_onboarding_step(user_id, OnboardingStep.BUILDER_RUN_AGENT)
return result
except GraphValidationError as e:
# Record failed graph execution
@@ -1103,6 +1141,15 @@ async def list_graph_executions(
filtered_executions = await hide_activity_summaries_if_disabled(
paginated_result.executions, user_id
)
onboarding = await get_user_onboarding(user_id)
if (
onboarding.onboardingAgentExecutionId
and onboarding.onboardingAgentExecutionId
in [exec.id for exec in filtered_executions]
and OnboardingStep.GET_RESULTS not in onboarding.completedSteps
):
await complete_onboarding_step(user_id, OnboardingStep.GET_RESULTS)
return execution_db.GraphExecutionsPaginated(
executions=filtered_executions, pagination=paginated_result.pagination
)
@@ -1140,6 +1187,12 @@ async def get_graph_execution(
# Apply feature flags to filter out disabled features
result = await hide_activity_summary_if_disabled(result, user_id)
onboarding = await get_user_onboarding(user_id)
if (
onboarding.onboardingAgentExecutionId == graph_exec_id
and OnboardingStep.GET_RESULTS not in onboarding.completedSteps
):
await complete_onboarding_step(user_id, OnboardingStep.GET_RESULTS)
return result
@@ -1316,6 +1369,8 @@ async def create_graph_execution_schedule(
result.next_run_time, user_timezone
)
await complete_onboarding_step(user_id, OnboardingStep.SCHEDULE_AGENT)
return result

View File

@@ -8,6 +8,10 @@ from fastapi import APIRouter, HTTPException, Security
from pydantic import BaseModel, Field
from backend.blocks.llm import LlmModel
from backend.data.analytics import (
AccuracyTrendsResponse,
get_accuracy_trends_and_alerts,
)
from backend.data.execution import (
ExecutionStatus,
GraphExecutionMeta,
@@ -83,6 +87,18 @@ class ExecutionAnalyticsConfig(BaseModel):
recommended_model: str
class AccuracyTrendsRequest(BaseModel):
graph_id: str = Field(..., description="Graph ID to analyze", min_length=1)
user_id: Optional[str] = Field(None, description="Optional user ID filter")
days_back: int = Field(30, description="Number of days to look back", ge=7, le=90)
drop_threshold: float = Field(
10.0, description="Alert threshold percentage", ge=1.0, le=50.0
)
include_historical: bool = Field(
False, description="Include historical data for charts"
)
router = APIRouter(
prefix="/admin",
tags=["admin", "execution_analytics"],
@@ -419,3 +435,40 @@ async def _process_batch(
return await asyncio.gather(
*[process_single_execution(execution) for execution in executions]
)
@router.get(
"/execution_accuracy_trends",
response_model=AccuracyTrendsResponse,
summary="Get Execution Accuracy Trends and Alerts",
)
async def get_execution_accuracy_trends(
graph_id: str,
user_id: Optional[str] = None,
days_back: int = 30,
drop_threshold: float = 10.0,
include_historical: bool = False,
admin_user_id: str = Security(get_user_id),
) -> AccuracyTrendsResponse:
"""
Get execution accuracy trends with moving averages and alert detection.
Simple single-query approach.
"""
logger.info(
f"Admin user {admin_user_id} requesting accuracy trends for graph {graph_id}"
)
try:
result = await get_accuracy_trends_and_alerts(
graph_id=graph_id,
days_back=days_back,
user_id=user_id,
drop_threshold=drop_threshold,
include_historical=include_historical,
)
return result
except Exception as e:
logger.exception(f"Error getting accuracy trends for graph {graph_id}: {e}")
raise HTTPException(status_code=500, detail=str(e))

View File

@@ -1,9 +1,16 @@
import logging
from dataclasses import dataclass
from datetime import datetime, timedelta, timezone
from difflib import SequenceMatcher
from typing import Sequence
import prisma
import backend.data.block
import backend.server.v2.library.db as library_db
import backend.server.v2.library.model as library_model
import backend.server.v2.store.db as store_db
import backend.server.v2.store.model as store_model
from backend.blocks import load_all_blocks
from backend.blocks.llm import LlmModel
from backend.data.block import AnyBlockSchema, BlockCategory, BlockInfo, BlockSchema
@@ -14,17 +21,36 @@ from backend.server.v2.builder.model import (
BlockResponse,
BlockType,
CountResponse,
FilterType,
Provider,
ProviderResponse,
SearchBlocksResponse,
SearchEntry,
)
from backend.util.cache import cached
from backend.util.models import Pagination
logger = logging.getLogger(__name__)
llm_models = [name.name.lower().replace("_", " ") for name in LlmModel]
_static_counts_cache: dict | None = None
_suggested_blocks: list[BlockInfo] | None = None
MAX_LIBRARY_AGENT_RESULTS = 100
MAX_MARKETPLACE_AGENT_RESULTS = 100
MIN_SCORE_FOR_FILTERED_RESULTS = 10.0
SearchResultItem = BlockInfo | library_model.LibraryAgent | store_model.StoreAgent
@dataclass
class _ScoredItem:
item: SearchResultItem
filter_type: FilterType
score: float
sort_key: str
@dataclass
class _SearchCacheEntry:
items: list[SearchResultItem]
total_items: dict[FilterType, int]
def get_block_categories(category_blocks: int = 3) -> list[BlockCategoryResponse]:
@@ -130,71 +156,244 @@ def get_block_by_id(block_id: str) -> BlockInfo | None:
return None
def search_blocks(
include_blocks: bool = True,
include_integrations: bool = True,
query: str = "",
page: int = 1,
page_size: int = 50,
) -> SearchBlocksResponse:
async def update_search(user_id: str, search: SearchEntry) -> str:
"""
Get blocks based on the filter and query.
`providers` only applies for `integrations` filter.
Upsert a search request for the user and return the search ID.
"""
blocks: list[AnyBlockSchema] = []
query = query.lower()
if search.search_id:
# Update existing search
await prisma.models.BuilderSearchHistory.prisma().update(
where={
"id": search.search_id,
},
data={
"searchQuery": search.search_query or "",
"filter": search.filter or [], # type: ignore
"byCreator": search.by_creator or [],
},
)
return search.search_id
else:
# Create new search
new_search = await prisma.models.BuilderSearchHistory.prisma().create(
data={
"userId": user_id,
"searchQuery": search.search_query or "",
"filter": search.filter or [], # type: ignore
"byCreator": search.by_creator or [],
}
)
return new_search.id
total = 0
skip = (page - 1) * page_size
take = page_size
async def get_recent_searches(user_id: str, limit: int = 5) -> list[SearchEntry]:
"""
Get the user's most recent search requests.
"""
searches = await prisma.models.BuilderSearchHistory.prisma().find_many(
where={
"userId": user_id,
},
order={
"updatedAt": "desc",
},
take=limit,
)
return [
SearchEntry(
search_query=s.searchQuery,
filter=s.filter, # type: ignore
by_creator=s.byCreator,
search_id=s.id,
)
for s in searches
]
async def get_sorted_search_results(
*,
user_id: str,
search_query: str | None,
filters: Sequence[FilterType],
by_creator: Sequence[str] | None = None,
) -> _SearchCacheEntry:
normalized_filters: tuple[FilterType, ...] = tuple(sorted(set(filters or [])))
normalized_creators: tuple[str, ...] = tuple(sorted(set(by_creator or [])))
return await _build_cached_search_results(
user_id=user_id,
search_query=search_query or "",
filters=normalized_filters,
by_creator=normalized_creators,
)
@cached(ttl_seconds=300, shared_cache=True)
async def _build_cached_search_results(
user_id: str,
search_query: str,
filters: tuple[FilterType, ...],
by_creator: tuple[str, ...],
) -> _SearchCacheEntry:
normalized_query = (search_query or "").strip().lower()
include_blocks = "blocks" in filters
include_integrations = "integrations" in filters
include_library_agents = "my_agents" in filters
include_marketplace_agents = "marketplace_agents" in filters
scored_items: list[_ScoredItem] = []
total_items: dict[FilterType, int] = {
"blocks": 0,
"integrations": 0,
"marketplace_agents": 0,
"my_agents": 0,
}
block_results, block_total, integration_total = _collect_block_results(
normalized_query=normalized_query,
include_blocks=include_blocks,
include_integrations=include_integrations,
)
scored_items.extend(block_results)
total_items["blocks"] = block_total
total_items["integrations"] = integration_total
if include_library_agents:
library_response = await library_db.list_library_agents(
user_id=user_id,
search_term=search_query or None,
page=1,
page_size=MAX_LIBRARY_AGENT_RESULTS,
)
total_items["my_agents"] = library_response.pagination.total_items
scored_items.extend(
_build_library_items(
agents=library_response.agents,
normalized_query=normalized_query,
)
)
if include_marketplace_agents:
marketplace_response = await store_db.get_store_agents(
creators=list(by_creator) or None,
search_query=search_query or None,
page=1,
page_size=MAX_MARKETPLACE_AGENT_RESULTS,
)
total_items["marketplace_agents"] = marketplace_response.pagination.total_items
scored_items.extend(
_build_marketplace_items(
agents=marketplace_response.agents,
normalized_query=normalized_query,
)
)
sorted_items = sorted(
scored_items,
key=lambda entry: (-entry.score, entry.sort_key, entry.filter_type),
)
return _SearchCacheEntry(
items=[entry.item for entry in sorted_items],
total_items=total_items,
)
def _collect_block_results(
*,
normalized_query: str,
include_blocks: bool,
include_integrations: bool,
) -> tuple[list[_ScoredItem], int, int]:
results: list[_ScoredItem] = []
block_count = 0
integration_count = 0
if not include_blocks and not include_integrations:
return results, block_count, integration_count
for block_type in load_all_blocks().values():
block: AnyBlockSchema = block_type()
# Skip disabled blocks
if block.disabled:
continue
# Skip blocks that don't match the query
if (
query not in block.name.lower()
and query not in block.description.lower()
and not _matches_llm_model(block.input_schema, query)
):
continue
keep = False
block_info = block.get_info()
credentials = list(block.input_schema.get_credentials_fields().values())
if include_integrations and len(credentials) > 0:
keep = True
is_integration = len(credentials) > 0
if is_integration and not include_integrations:
continue
if not is_integration and not include_blocks:
continue
score = _score_block(block, block_info, normalized_query)
if not _should_include_item(score, normalized_query):
continue
filter_type: FilterType = "integrations" if is_integration else "blocks"
if is_integration:
integration_count += 1
if include_blocks and len(credentials) == 0:
keep = True
else:
block_count += 1
if not keep:
results.append(
_ScoredItem(
item=block_info,
filter_type=filter_type,
score=score,
sort_key=_get_item_name(block_info),
)
)
return results, block_count, integration_count
def _build_library_items(
*,
agents: list[library_model.LibraryAgent],
normalized_query: str,
) -> list[_ScoredItem]:
results: list[_ScoredItem] = []
for agent in agents:
score = _score_library_agent(agent, normalized_query)
if not _should_include_item(score, normalized_query):
continue
total += 1
if skip > 0:
skip -= 1
continue
if take > 0:
take -= 1
blocks.append(block)
results.append(
_ScoredItem(
item=agent,
filter_type="my_agents",
score=score,
sort_key=_get_item_name(agent),
)
)
return SearchBlocksResponse(
blocks=BlockResponse(
blocks=[b.get_info() for b in blocks],
pagination=Pagination(
total_items=total,
total_pages=(total + page_size - 1) // page_size,
current_page=page,
page_size=page_size,
),
),
total_block_count=block_count,
total_integration_count=integration_count,
)
return results
def _build_marketplace_items(
*,
agents: list[store_model.StoreAgent],
normalized_query: str,
) -> list[_ScoredItem]:
results: list[_ScoredItem] = []
for agent in agents:
score = _score_store_agent(agent, normalized_query)
if not _should_include_item(score, normalized_query):
continue
results.append(
_ScoredItem(
item=agent,
filter_type="marketplace_agents",
score=score,
sort_key=_get_item_name(agent),
)
)
return results
def get_providers(
@@ -251,16 +450,12 @@ async def get_counts(user_id: str) -> CountResponse:
)
@cached(ttl_seconds=3600)
async def _get_static_counts():
"""
Get counts of blocks, integrations, and marketplace agents.
This is cached to avoid unnecessary database queries and calculations.
Can't use functools.cache here because the function is async.
"""
global _static_counts_cache
if _static_counts_cache is not None:
return _static_counts_cache
all_blocks = 0
input_blocks = 0
action_blocks = 0
@@ -287,7 +482,7 @@ async def _get_static_counts():
marketplace_agents = await prisma.models.StoreAgent.prisma().count()
_static_counts_cache = {
return {
"all_blocks": all_blocks,
"input_blocks": input_blocks,
"action_blocks": action_blocks,
@@ -296,8 +491,6 @@ async def _get_static_counts():
"marketplace_agents": marketplace_agents,
}
return _static_counts_cache
def _matches_llm_model(schema_cls: type[BlockSchema], query: str) -> bool:
for field in schema_cls.model_fields.values():
@@ -308,6 +501,123 @@ def _matches_llm_model(schema_cls: type[BlockSchema], query: str) -> bool:
return False
def _score_block(
block: AnyBlockSchema,
block_info: BlockInfo,
normalized_query: str,
) -> float:
if not normalized_query:
return 0.0
name = block_info.name.lower()
description = block_info.description.lower()
score = _score_primary_fields(name, description, normalized_query)
category_text = " ".join(
category.get("category", "").lower() for category in block_info.categories
)
score += _score_additional_field(category_text, normalized_query, 12, 6)
credentials_info = block.input_schema.get_credentials_fields_info().values()
provider_names = [
provider.value.lower()
for info in credentials_info
for provider in info.provider
]
provider_text = " ".join(provider_names)
score += _score_additional_field(provider_text, normalized_query, 15, 6)
if _matches_llm_model(block.input_schema, normalized_query):
score += 20
return score
def _score_library_agent(
agent: library_model.LibraryAgent,
normalized_query: str,
) -> float:
if not normalized_query:
return 0.0
name = agent.name.lower()
description = (agent.description or "").lower()
instructions = (agent.instructions or "").lower()
score = _score_primary_fields(name, description, normalized_query)
score += _score_additional_field(instructions, normalized_query, 15, 6)
score += _score_additional_field(
agent.creator_name.lower(), normalized_query, 10, 5
)
return score
def _score_store_agent(
agent: store_model.StoreAgent,
normalized_query: str,
) -> float:
if not normalized_query:
return 0.0
name = agent.agent_name.lower()
description = agent.description.lower()
sub_heading = agent.sub_heading.lower()
score = _score_primary_fields(name, description, normalized_query)
score += _score_additional_field(sub_heading, normalized_query, 12, 6)
score += _score_additional_field(agent.creator.lower(), normalized_query, 10, 5)
return score
def _score_primary_fields(name: str, description: str, query: str) -> float:
score = 0.0
if name == query:
score += 120
elif name.startswith(query):
score += 90
elif query in name:
score += 60
score += SequenceMatcher(None, name, query).ratio() * 50
if description:
if query in description:
score += 30
score += SequenceMatcher(None, description, query).ratio() * 25
return score
def _score_additional_field(
value: str,
query: str,
contains_weight: float,
similarity_weight: float,
) -> float:
if not value or not query:
return 0.0
score = 0.0
if query in value:
score += contains_weight
score += SequenceMatcher(None, value, query).ratio() * similarity_weight
return score
def _should_include_item(score: float, normalized_query: str) -> bool:
if not normalized_query:
return True
return score >= MIN_SCORE_FOR_FILTERED_RESULTS
def _get_item_name(item: SearchResultItem) -> str:
if isinstance(item, BlockInfo):
return item.name.lower()
if isinstance(item, library_model.LibraryAgent):
return item.name.lower()
return item.agent_name.lower()
@cached(ttl_seconds=3600)
def _get_all_providers() -> dict[ProviderName, Provider]:
providers: dict[ProviderName, Provider] = {}
@@ -329,13 +639,9 @@ def _get_all_providers() -> dict[ProviderName, Provider]:
return providers
@cached(ttl_seconds=3600)
async def get_suggested_blocks(count: int = 5) -> list[BlockInfo]:
global _suggested_blocks
if _suggested_blocks is not None and len(_suggested_blocks) >= count:
return _suggested_blocks[:count]
_suggested_blocks = []
suggested_blocks = []
# Sum the number of executions for each block type
# Prisma cannot group by nested relations, so we do a raw query
# Calculate the cutoff timestamp
@@ -376,7 +682,7 @@ async def get_suggested_blocks(count: int = 5) -> list[BlockInfo]:
# Sort blocks by execution count
blocks.sort(key=lambda x: x[1], reverse=True)
_suggested_blocks = [block[0] for block in blocks]
suggested_blocks = [block[0] for block in blocks]
# Return the top blocks
return _suggested_blocks[:count]
return suggested_blocks[:count]

View File

@@ -18,10 +18,17 @@ FilterType = Literal[
BlockType = Literal["all", "input", "action", "output"]
class SearchEntry(BaseModel):
search_query: str | None = None
filter: list[FilterType] | None = None
by_creator: list[str] | None = None
search_id: str | None = None
# Suggestions
class SuggestionsResponse(BaseModel):
otto_suggestions: list[str]
recent_searches: list[str]
recent_searches: list[SearchEntry]
providers: list[ProviderName]
top_blocks: list[BlockInfo]
@@ -32,7 +39,7 @@ class BlockCategoryResponse(BaseModel):
total_blocks: int
blocks: list[BlockInfo]
model_config = {"use_enum_values": False} # <== use enum names like "AI"
model_config = {"use_enum_values": False} # Use enum names like "AI"
# Input/Action/Output and see all for block categories
@@ -53,17 +60,11 @@ class ProviderResponse(BaseModel):
pagination: Pagination
class SearchBlocksResponse(BaseModel):
blocks: BlockResponse
total_block_count: int
total_integration_count: int
class SearchResponse(BaseModel):
items: list[BlockInfo | library_model.LibraryAgent | store_model.StoreAgent]
search_id: str
total_items: dict[FilterType, int]
page: int
more_pages: bool
pagination: Pagination
class CountResponse(BaseModel):

View File

@@ -6,10 +6,6 @@ from autogpt_libs.auth.dependencies import get_user_id, requires_user
import backend.server.v2.builder.db as builder_db
import backend.server.v2.builder.model as builder_model
import backend.server.v2.library.db as library_db
import backend.server.v2.library.model as library_model
import backend.server.v2.store.db as store_db
import backend.server.v2.store.model as store_model
from backend.integrations.providers import ProviderName
from backend.util.models import Pagination
@@ -45,7 +41,9 @@ def sanitize_query(query: str | None) -> str | None:
summary="Get Builder suggestions",
response_model=builder_model.SuggestionsResponse,
)
async def get_suggestions() -> builder_model.SuggestionsResponse:
async def get_suggestions(
user_id: Annotated[str, fastapi.Security(get_user_id)],
) -> builder_model.SuggestionsResponse:
"""
Get all suggestions for the Blocks Menu.
"""
@@ -55,11 +53,7 @@ async def get_suggestions() -> builder_model.SuggestionsResponse:
"Help me create a list",
"Help me feed my data to Google Maps",
],
recent_searches=[
"image generation",
"deepfake",
"competitor analysis",
],
recent_searches=await builder_db.get_recent_searches(user_id),
providers=[
ProviderName.TWITTER,
ProviderName.GITHUB,
@@ -147,7 +141,6 @@ async def get_providers(
)
# Not using post method because on frontend, orval doesn't support Infinite Query with POST method.
@router.get(
"/search",
summary="Builder search",
@@ -157,7 +150,7 @@ async def get_providers(
async def search(
user_id: Annotated[str, fastapi.Security(get_user_id)],
search_query: Annotated[str | None, fastapi.Query()] = None,
filter: Annotated[list[str] | None, fastapi.Query()] = None,
filter: Annotated[list[builder_model.FilterType] | None, fastapi.Query()] = None,
search_id: Annotated[str | None, fastapi.Query()] = None,
by_creator: Annotated[list[str] | None, fastapi.Query()] = None,
page: Annotated[int, fastapi.Query()] = 1,
@@ -176,69 +169,43 @@ async def search(
]
search_query = sanitize_query(search_query)
# Blocks&Integrations
blocks = builder_model.SearchBlocksResponse(
blocks=builder_model.BlockResponse(
blocks=[],
pagination=Pagination.empty(),
),
total_block_count=0,
total_integration_count=0,
# Get all possible results
cached_results = await builder_db.get_sorted_search_results(
user_id=user_id,
search_query=search_query,
filters=filter,
by_creator=by_creator,
)
if "blocks" in filter or "integrations" in filter:
blocks = builder_db.search_blocks(
include_blocks="blocks" in filter,
include_integrations="integrations" in filter,
query=search_query or "",
page=page,
page_size=page_size,
)
# Library Agents
my_agents = library_model.LibraryAgentResponse(
agents=[],
pagination=Pagination.empty(),
# Paginate results
total_combined_items = len(cached_results.items)
pagination = Pagination(
total_items=total_combined_items,
total_pages=(total_combined_items + page_size - 1) // page_size,
current_page=page,
page_size=page_size,
)
if "my_agents" in filter:
my_agents = await library_db.list_library_agents(
user_id=user_id,
search_term=search_query,
page=page,
page_size=page_size,
)
# Marketplace Agents
marketplace_agents = store_model.StoreAgentsResponse(
agents=[],
pagination=Pagination.empty(),
)
if "marketplace_agents" in filter:
marketplace_agents = await store_db.get_store_agents(
creators=by_creator,
start_idx = (page - 1) * page_size
end_idx = start_idx + page_size
paginated_items = cached_results.items[start_idx:end_idx]
# Update the search entry by id
search_id = await builder_db.update_search(
user_id,
builder_model.SearchEntry(
search_query=search_query,
page=page,
page_size=page_size,
)
more_pages = False
if (
blocks.blocks.pagination.current_page < blocks.blocks.pagination.total_pages
or my_agents.pagination.current_page < my_agents.pagination.total_pages
or marketplace_agents.pagination.current_page
< marketplace_agents.pagination.total_pages
):
more_pages = True
filter=filter,
by_creator=by_creator,
search_id=search_id,
),
)
return builder_model.SearchResponse(
items=blocks.blocks.blocks + my_agents.agents + marketplace_agents.agents,
total_items={
"blocks": blocks.total_block_count,
"integrations": blocks.total_integration_count,
"marketplace_agents": marketplace_agents.pagination.total_items,
"my_agents": my_agents.pagination.total_items,
},
page=page,
more_pages=more_pages,
items=paginated_items,
search_id=search_id,
total_items=cached_results.total_items,
pagination=pagination,
)

View File

@@ -23,7 +23,7 @@ logger = logging.getLogger(__name__)
router = APIRouter(
tags=["executions", "review", "private"],
tags=["v2", "executions", "review"],
dependencies=[Security(autogpt_auth_lib.requires_user)],
)
@@ -134,18 +134,14 @@ async def process_review_action(
# Build review decisions map
review_decisions = {}
for review in request.reviews:
if review.approved:
review_decisions[review.node_exec_id] = (
ReviewStatus.APPROVED,
review.reviewed_data,
review.message,
)
else:
review_decisions[review.node_exec_id] = (
ReviewStatus.REJECTED,
None,
review.message,
)
review_status = (
ReviewStatus.APPROVED if review.approved else ReviewStatus.REJECTED
)
review_decisions[review.node_exec_id] = (
review_status,
review.reviewed_data,
review.message,
)
# Process all reviews
updated_reviews = await process_all_reviews_for_execution(

View File

@@ -1,13 +1,15 @@
import logging
from typing import Optional
from typing import Literal, Optional
import autogpt_libs.auth as autogpt_auth_lib
from fastapi import APIRouter, Body, HTTPException, Query, Security, status
from fastapi.responses import Response
from prisma.enums import OnboardingStep
import backend.server.v2.library.db as library_db
import backend.server.v2.library.model as library_model
import backend.server.v2.store.exceptions as store_exceptions
from backend.data.onboarding import complete_onboarding_step
from backend.util.exceptions import DatabaseError, NotFoundError
logger = logging.getLogger(__name__)
@@ -200,6 +202,9 @@ async def get_library_agent_by_store_listing_version_id(
)
async def add_marketplace_agent_to_library(
store_listing_version_id: str = Body(embed=True),
source: Literal["onboarding", "marketplace"] = Body(
default="marketplace", embed=True
),
user_id: str = Security(autogpt_auth_lib.get_user_id),
) -> library_model.LibraryAgent:
"""
@@ -217,10 +222,15 @@ async def add_marketplace_agent_to_library(
HTTPException(500): If a server/database error occurs.
"""
try:
return await library_db.add_store_agent_to_library(
agent = await library_db.add_store_agent_to_library(
store_listing_version_id=store_listing_version_id,
user_id=user_id,
)
if source != "onboarding":
await complete_onboarding_step(
user_id, OnboardingStep.MARKETPLACE_ADD_AGENT
)
return agent
except store_exceptions.AgentNotFoundError as e:
logger.warning(

View File

@@ -10,6 +10,7 @@ from backend.data.execution import GraphExecutionMeta
from backend.data.graph import get_graph
from backend.data.integrations import get_webhook
from backend.data.model import CredentialsMetaInput
from backend.data.onboarding import increment_runs
from backend.executor.utils import add_graph_execution, make_node_credentials_input_map
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.integrations.webhooks import get_webhook_manager
@@ -401,6 +402,8 @@ async def execute_preset(
merged_node_input = preset.inputs | inputs
merged_credential_inputs = preset.credentials | credential_inputs
await increment_runs(user_id)
return await add_graph_execution(
user_id=user_id,
graph_id=preset.graph_id,

View File

@@ -1,5 +1,6 @@
import datetime
import json
from unittest.mock import AsyncMock
import fastapi.testclient
import pytest
@@ -225,6 +226,10 @@ def test_add_agent_to_library_success(
"backend.server.v2.library.db.add_store_agent_to_library"
)
mock_db_call.return_value = mock_library_agent
mock_complete_onboarding = mocker.patch(
"backend.server.v2.library.routes.agents.complete_onboarding_step",
new_callable=AsyncMock,
)
response = client.post(
"/agents", json={"store_listing_version_id": "test-version-id"}
@@ -239,6 +244,7 @@ def test_add_agent_to_library_success(
mock_db_call.assert_called_once_with(
store_listing_version_id="test-version-id", user_id=test_user_id
)
mock_complete_onboarding.assert_awaited_once()
def test_add_agent_to_library_error(mocker: pytest_mock.MockFixture, test_user_id: str):

View File

@@ -327,6 +327,7 @@ async def get_store_agent_details(
slug=agent.slug,
agent_name=agent.agent_name,
agent_video=agent.agent_video or "",
agent_output_demo=agent.agent_output_demo or "",
agent_image=agent.agent_image,
creator=agent.creator_username or "",
creator_avatar=agent.creator_avatar or "",
@@ -397,6 +398,7 @@ async def get_store_agent_by_version_id(
slug=agent.slug,
agent_name=agent.agent_name,
agent_video=agent.agent_video or "",
agent_output_demo=agent.agent_output_demo or "",
agent_image=agent.agent_image,
creator=agent.creator_username or "",
creator_avatar=agent.creator_avatar or "",
@@ -683,6 +685,7 @@ async def create_store_submission(
slug: str,
name: str,
video_url: str | None = None,
agent_output_demo_url: str | None = None,
image_urls: list[str] = [],
description: str = "",
instructions: str | None = None,
@@ -777,6 +780,7 @@ async def create_store_submission(
agentGraphVersion=agent_version,
name=name,
videoUrl=video_url,
agentOutputDemoUrl=agent_output_demo_url,
imageUrls=image_urls,
description=description,
instructions=instructions,
@@ -849,6 +853,7 @@ async def edit_store_submission(
store_listing_version_id: str,
name: str,
video_url: str | None = None,
agent_output_demo_url: str | None = None,
image_urls: list[str] = [],
description: str = "",
sub_heading: str = "",
@@ -930,6 +935,7 @@ async def edit_store_submission(
store_listing_id=current_version.storeListingId,
name=name,
video_url=video_url,
agent_output_demo_url=agent_output_demo_url,
image_urls=image_urls,
description=description,
sub_heading=sub_heading,
@@ -947,6 +953,7 @@ async def edit_store_submission(
data=prisma.types.StoreListingVersionUpdateInput(
name=name,
videoUrl=video_url,
agentOutputDemoUrl=agent_output_demo_url,
imageUrls=image_urls,
description=description,
categories=categories,
@@ -1008,6 +1015,7 @@ async def create_store_version(
store_listing_id: str,
name: str,
video_url: str | None = None,
agent_output_demo_url: str | None = None,
image_urls: list[str] = [],
description: str = "",
instructions: str | None = None,
@@ -1077,6 +1085,7 @@ async def create_store_version(
agentGraphVersion=agent_version,
name=name,
videoUrl=video_url,
agentOutputDemoUrl=agent_output_demo_url,
imageUrls=image_urls,
description=description,
instructions=instructions,

View File

@@ -44,6 +44,7 @@ class StoreAgentDetails(pydantic.BaseModel):
slug: str
agent_name: str
agent_video: str
agent_output_demo: str
agent_image: list[str]
creator: str
creator_avatar: str
@@ -121,6 +122,7 @@ class StoreSubmission(pydantic.BaseModel):
# Additional fields for editing
video_url: str | None = None
agent_output_demo_url: str | None = None
categories: list[str] = []
@@ -157,6 +159,7 @@ class StoreSubmissionRequest(pydantic.BaseModel):
name: str
sub_heading: str
video_url: str | None = None
agent_output_demo_url: str | None = None
image_urls: list[str] = []
description: str = ""
instructions: str | None = None
@@ -169,6 +172,7 @@ class StoreSubmissionEditRequest(pydantic.BaseModel):
name: str
sub_heading: str
video_url: str | None = None
agent_output_demo_url: str | None = None
image_urls: list[str] = []
description: str = ""
instructions: str | None = None

View File

@@ -62,6 +62,7 @@ def test_store_agent_details():
slug="test-agent",
agent_name="Test Agent",
agent_video="video.mp4",
agent_output_demo="demo.mp4",
agent_image=["image1.jpg", "image2.jpg"],
creator="creator1",
creator_avatar="avatar.jpg",

View File

@@ -438,6 +438,7 @@ async def create_submission(
slug=submission_request.slug,
name=submission_request.name,
video_url=submission_request.video_url,
agent_output_demo_url=submission_request.agent_output_demo_url,
image_urls=submission_request.image_urls,
description=submission_request.description,
instructions=submission_request.instructions,
@@ -481,6 +482,7 @@ async def edit_submission(
store_listing_version_id=store_listing_version_id,
name=submission_request.name,
video_url=submission_request.video_url,
agent_output_demo_url=submission_request.agent_output_demo_url,
image_urls=submission_request.image_urls,
description=submission_request.description,
instructions=submission_request.instructions,

View File

@@ -378,6 +378,7 @@ def test_get_agent_details(
slug="test-agent",
agent_name="Test Agent",
agent_video="video.mp4",
agent_output_demo="demo.mp4",
agent_image=["image1.jpg", "image2.jpg"],
creator="creator1",
creator_avatar="avatar1.jpg",

View File

@@ -5,6 +5,13 @@ from tiktoken import encoding_for_model
from backend.util import json
# ---------------------------------------------------------------------------#
# CONSTANTS #
# ---------------------------------------------------------------------------#
# Message prefixes for important system messages that should be protected during compression
MAIN_OBJECTIVE_PREFIX = "[Main Objective Prompt]: "
# ---------------------------------------------------------------------------#
# INTERNAL UTILITIES #
# ---------------------------------------------------------------------------#
@@ -63,6 +70,55 @@ def _msg_tokens(msg: dict, enc) -> int:
return WRAPPER + content_tokens + tool_call_tokens
def _is_tool_message(msg: dict) -> bool:
"""Check if a message contains tool calls or results that should be protected."""
content = msg.get("content")
# Check for Anthropic-style tool messages
if isinstance(content, list) and any(
isinstance(item, dict) and item.get("type") in ("tool_use", "tool_result")
for item in content
):
return True
# Check for OpenAI-style tool calls in the message
if "tool_calls" in msg or msg.get("role") == "tool":
return True
return False
def _is_objective_message(msg: dict) -> bool:
"""Check if a message contains objective/system prompts that should be absolutely protected."""
content = msg.get("content", "")
if isinstance(content, str):
# Protect any message with the main objective prefix
return content.startswith(MAIN_OBJECTIVE_PREFIX)
return False
def _truncate_tool_message_content(msg: dict, enc, max_tokens: int) -> None:
"""
Carefully truncate tool message content while preserving tool structure.
Only truncates tool_result content, leaves tool_use intact.
"""
content = msg.get("content")
if not isinstance(content, list):
return
for item in content:
# Only process tool_result items, leave tool_use blocks completely intact
if not (isinstance(item, dict) and item.get("type") == "tool_result"):
continue
result_content = item.get("content", "")
if (
isinstance(result_content, str)
and _tok_len(result_content, enc) > max_tokens
):
item["content"] = _truncate_middle_tokens(result_content, enc, max_tokens)
def _truncate_middle_tokens(text: str, enc, max_tok: int) -> str:
"""
Return *text* shortened to ≈max_tok tokens by keeping the head & tail
@@ -140,13 +196,21 @@ def compress_prompt(
return sum(_msg_tokens(m, enc) for m in msgs)
original_token_count = total_tokens()
if original_token_count + reserve <= target_tokens:
return msgs
# ---- STEP 0 : normalise content --------------------------------------
# Convert non-string payloads to strings so token counting is coherent.
for m in msgs[1:-1]: # keep the first & last intact
for i, m in enumerate(msgs):
if not isinstance(m.get("content"), str) and m.get("content") is not None:
if _is_tool_message(m):
continue
# Keep first and last messages intact (unless they're tool messages)
if i == 0 or i == len(msgs) - 1:
continue
# Reasonable 20k-char ceiling prevents pathological blobs
content_str = json.dumps(m["content"], separators=(",", ":"))
if len(content_str) > 20_000:
@@ -157,34 +221,45 @@ def compress_prompt(
cap = start_cap
while total_tokens() + reserve > target_tokens and cap >= floor_cap:
for m in msgs[1:-1]: # keep first & last intact
if _tok_len(m.get("content") or "", enc) > cap:
m["content"] = _truncate_middle_tokens(m["content"], enc, cap)
if _is_tool_message(m):
# For tool messages, only truncate tool result content, preserve structure
_truncate_tool_message_content(m, enc, cap)
continue
if _is_objective_message(m):
# Never truncate objective messages - they contain the core task
continue
content = m.get("content") or ""
if _tok_len(content, enc) > cap:
m["content"] = _truncate_middle_tokens(content, enc, cap)
cap //= 2 # tighten the screw
# ---- STEP 2 : middle-out deletion -----------------------------------
while total_tokens() + reserve > target_tokens and len(msgs) > 2:
# Identify all deletable messages (not first/last, not tool messages, not objective messages)
deletable_indices = []
for i in range(1, len(msgs) - 1): # Skip first and last
if not _is_tool_message(msgs[i]) and not _is_objective_message(msgs[i]):
deletable_indices.append(i)
if not deletable_indices:
break # nothing more we can drop
# Delete from center outward - find the index closest to center
centre = len(msgs) // 2
# Build a symmetrical centre-out index walk: centre, centre+1, centre-1, ...
order = [centre] + [
i
for pair in zip(range(centre + 1, len(msgs) - 1), range(centre - 1, 0, -1))
for i in pair
]
removed = False
for i in order:
msg = msgs[i]
if "tool_calls" in msg or msg.get("role") == "tool":
continue # protect tool shells
del msgs[i]
removed = True
break
if not removed: # nothing more we can drop
break
to_delete = min(deletable_indices, key=lambda i: abs(i - centre))
del msgs[to_delete]
# ---- STEP 3 : final safety-net trim on first & last ------------------
cap = start_cap
while total_tokens() + reserve > target_tokens and cap >= floor_cap:
for idx in (0, -1): # first and last
if _is_tool_message(msgs[idx]):
# For tool messages at first/last position, truncate tool result content only
_truncate_tool_message_content(msgs[idx], enc, cap)
continue
text = msgs[idx].get("content") or ""
if _tok_len(text, enc) > cap:
msgs[idx]["content"] = _truncate_middle_tokens(text, enc, cap)

View File

@@ -11,7 +11,13 @@ from urllib.parse import quote, urljoin, urlparse
import aiohttp
import idna
from aiohttp import FormData, abc
from tenacity import retry, retry_if_result, wait_exponential_jitter
from tenacity import (
RetryCallState,
retry,
retry_if_result,
stop_after_attempt,
wait_exponential_jitter,
)
from backend.util.json import loads
@@ -285,6 +291,20 @@ class Response:
return 200 <= self.status < 300
def _return_last_result(retry_state: RetryCallState) -> "Response":
"""
Ensure the final attempt's response is returned when retrying stops.
"""
if retry_state.outcome is None:
raise RuntimeError("Retry state is missing an outcome.")
exception = retry_state.outcome.exception()
if exception is not None:
raise exception
return retry_state.outcome.result()
class Requests:
"""
A wrapper around an aiohttp ClientSession that validates URLs before
@@ -299,6 +319,7 @@ class Requests:
extra_url_validator: Callable[[URL], URL] | None = None,
extra_headers: dict[str, str] | None = None,
retry_max_wait: float = 300.0,
retry_max_attempts: int | None = None,
):
self.trusted_origins = []
for url in trusted_origins or []:
@@ -311,6 +332,9 @@ class Requests:
self.extra_url_validator = extra_url_validator
self.extra_headers = extra_headers
self.retry_max_wait = retry_max_wait
if retry_max_attempts is not None and retry_max_attempts < 1:
raise ValueError("retry_max_attempts must be None or >= 1")
self.retry_max_attempts = retry_max_attempts
async def request(
self,
@@ -325,11 +349,17 @@ class Requests:
max_redirects: int = 10,
**kwargs,
) -> Response:
@retry(
wait=wait_exponential_jitter(max=self.retry_max_wait),
retry=retry_if_result(lambda r: r.status in THROTTLE_RETRY_STATUS_CODES),
reraise=True,
)
retry_kwargs: dict[str, Any] = {
"wait": wait_exponential_jitter(max=self.retry_max_wait),
"retry": retry_if_result(lambda r: r.status in THROTTLE_RETRY_STATUS_CODES),
"reraise": True,
}
if self.retry_max_attempts is not None:
retry_kwargs["stop"] = stop_after_attempt(self.retry_max_attempts)
retry_kwargs["retry_error_callback"] = _return_last_result
@retry(**retry_kwargs)
async def _make_request() -> Response:
return await self._request(
method=method,

View File

@@ -185,6 +185,12 @@ class Config(UpdateTrackingModel["Config"], BaseSettings):
description="Number of top blocks with most errors to show when no blocks exceed threshold (0 to disable).",
)
# Execution Accuracy Monitoring
execution_accuracy_check_interval_hours: int = Field(
default=24,
description="Interval in hours between execution accuracy alert checks.",
)
model_config = SettingsConfigDict(
env_file=".env",
extra="allow",

View File

@@ -144,6 +144,8 @@ async def execute_block_test(block: Block):
"execution_context": ExecutionContext(),
}
input_model = cast(type[BlockSchema], block.input_schema)
# Handle regular credentials fields
credentials_input_fields = input_model.get_credentials_fields()
if len(credentials_input_fields) == 1 and isinstance(
block.test_credentials, _BaseCredentials
@@ -158,6 +160,18 @@ async def execute_block_test(block: Block):
if field_name in block.test_credentials:
extra_exec_kwargs[field_name] = block.test_credentials[field_name]
# Handle auto-generated credentials (e.g., from GoogleDriveFileInput)
auto_creds_fields = input_model.get_auto_credentials_fields()
if auto_creds_fields and block.test_credentials:
if isinstance(block.test_credentials, _BaseCredentials):
# Single credentials object - use for all auto_credentials kwargs
for kwarg_name in auto_creds_fields.keys():
extra_exec_kwargs[kwarg_name] = block.test_credentials
elif isinstance(block.test_credentials, dict):
for kwarg_name in auto_creds_fields.keys():
if kwarg_name in block.test_credentials:
extra_exec_kwargs[kwarg_name] = block.test_credentials[kwarg_name]
for input_data in block.test_input:
log.info(f"{prefix} in: {input_data}")

View File

@@ -0,0 +1,64 @@
-- AlterTable
ALTER TABLE "StoreListingVersion" ADD COLUMN "agentOutputDemoUrl" TEXT;
-- Drop and recreate the StoreAgent view with agentOutputDemoUrl field
DROP VIEW IF EXISTS "StoreAgent";
CREATE OR REPLACE VIEW "StoreAgent" AS
WITH latest_versions AS (
SELECT
"storeListingId",
MAX(version) AS max_version
FROM "StoreListingVersion"
WHERE "submissionStatus" = 'APPROVED'
GROUP BY "storeListingId"
),
agent_versions AS (
SELECT
"storeListingId",
array_agg(DISTINCT version::text ORDER BY version::text) AS versions
FROM "StoreListingVersion"
WHERE "submissionStatus" = 'APPROVED'
GROUP BY "storeListingId"
)
SELECT
sl.id AS listing_id,
slv.id AS "storeListingVersionId",
slv."createdAt" AS updated_at,
sl.slug,
COALESCE(slv.name, '') AS agent_name,
slv."videoUrl" AS agent_video,
slv."agentOutputDemoUrl" AS agent_output_demo,
COALESCE(slv."imageUrls", ARRAY[]::text[]) AS agent_image,
slv."isFeatured" AS featured,
p.username AS creator_username, -- Allow NULL for malformed sub-agents
p."avatarUrl" AS creator_avatar, -- Allow NULL for malformed sub-agents
slv."subHeading" AS sub_heading,
slv.description,
slv.categories,
slv.search,
COALESCE(ar.run_count, 0::bigint) AS runs,
COALESCE(rs.avg_rating, 0.0)::double precision AS rating,
COALESCE(av.versions, ARRAY[slv.version::text]) AS versions,
slv."isAvailable" AS is_available,
COALESCE(sl."useForOnboarding", false) AS "useForOnboarding"
FROM "StoreListing" sl
JOIN latest_versions lv
ON sl.id = lv."storeListingId"
JOIN "StoreListingVersion" slv
ON slv."storeListingId" = lv."storeListingId"
AND slv.version = lv.max_version
AND slv."submissionStatus" = 'APPROVED'
JOIN "AgentGraph" a
ON slv."agentGraphId" = a.id
AND slv."agentGraphVersion" = a.version
LEFT JOIN "Profile" p
ON sl."owningUserId" = p."userId"
LEFT JOIN "mv_review_stats" rs
ON sl.id = rs."storeListingId"
LEFT JOIN "mv_agent_run_counts" ar
ON a.id = ar."agentGraphId"
LEFT JOIN agent_versions av
ON sl.id = av."storeListingId"
WHERE sl."isDeleted" = false
AND sl."hasApprovedVersion" = true;

View File

@@ -0,0 +1,15 @@
-- Create BuilderSearchHistory table
CREATE TABLE "BuilderSearchHistory" (
"id" TEXT NOT NULL,
"userId" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"searchQuery" TEXT NOT NULL,
"filter" TEXT[] DEFAULT ARRAY[]::TEXT[],
"byCreator" TEXT[] DEFAULT ARRAY[]::TEXT[],
CONSTRAINT "BuilderSearchHistory_pkey" PRIMARY KEY ("id")
);
-- Define User foreign relation
ALTER TABLE "BuilderSearchHistory" ADD CONSTRAINT "BuilderSearchHistory_userId_fkey" FOREIGN KEY ("userId") REFERENCES "User"("id") ON DELETE CASCADE ON UPDATE CASCADE;

View File

@@ -114,6 +114,7 @@ cli = "backend.cli:main"
format = "linter:format"
lint = "linter:lint"
test = "run_tests:test"
load-store-agents = "test.load_store_agents:run"
[tool.isort]
profile = "black"

View File

@@ -53,6 +53,7 @@ model User {
Profile Profile[]
UserOnboarding UserOnboarding?
BuilderSearchHistory BuilderSearchHistory[]
StoreListings StoreListing[]
StoreListingReviews StoreListingReview[]
StoreVersionsReviewed StoreListingVersion[]
@@ -114,6 +115,19 @@ model UserOnboarding {
User User @relation(fields: [userId], references: [id], onDelete: Cascade)
}
model BuilderSearchHistory {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @default(now()) @updatedAt
searchQuery String
filter String[] @default([])
byCreator String[] @default([])
userId String
User User @relation(fields: [userId], references: [id], onDelete: Cascade)
}
// This model describes the Agent Graph/Flow (Multi Agent System).
model AgentGraph {
id String @default(uuid())
@@ -701,10 +715,11 @@ view StoreAgent {
storeListingVersionId String
updated_at DateTime
slug String
agent_name String
agent_video String?
agent_image String[]
slug String
agent_name String
agent_video String?
agent_output_demo String?
agent_image String[]
featured Boolean @default(false)
creator_username String?
@@ -833,13 +848,14 @@ model StoreListingVersion {
AgentGraph AgentGraph @relation(fields: [agentGraphId, agentGraphVersion], references: [id, version])
// Content fields
name String
subHeading String
videoUrl String?
imageUrls String[]
description String
instructions String?
categories String[]
name String
subHeading String
videoUrl String?
agentOutputDemoUrl String?
imageUrls String[]
description String
instructions String?
categories String[]
isFeatured Boolean @default(false)

View File

@@ -3,6 +3,7 @@
"slug": "test-agent",
"agent_name": "Test Agent",
"agent_video": "video.mp4",
"agent_output_demo": "demo.mp4",
"agent_image": [
"image1.jpg",
"image2.jpg"

View File

@@ -23,6 +23,7 @@
"reviewed_at": null,
"changes_summary": null,
"video_url": "test.mp4",
"agent_output_demo_url": null,
"categories": [
"test-category"
]

View File

@@ -0,0 +1,455 @@
"""
Load Store Agents Script
This script loads the exported store agents from the agents/ folder into the test database.
It creates:
- A user and profile for the 'autogpt' creator
- AgentGraph records from JSON files
- StoreListing and StoreListingVersion records from CSV metadata
- Approves agents that have is_available=true in the CSV
Usage:
cd backend
poetry run load-store-agents
"""
import asyncio
import csv
import json
import re
from datetime import datetime
from pathlib import Path
import prisma.enums
from prisma import Json, Prisma
from prisma.types import (
AgentBlockCreateInput,
AgentGraphCreateInput,
AgentNodeCreateInput,
AgentNodeLinkCreateInput,
ProfileCreateInput,
StoreListingCreateInput,
StoreListingVersionCreateInput,
UserCreateInput,
)
# Path to agents folder (relative to backend directory)
AGENTS_DIR = Path(__file__).parent.parent / "agents"
CSV_FILE = AGENTS_DIR / "StoreAgent_rows.csv"
# User constants for the autogpt creator (test data, not production)
# Fixed uuid4 for idempotency - same user is reused across script runs
AUTOGPT_USER_ID = "79d96c73-e6f5-4656-a83a-185b41ee0d06"
AUTOGPT_EMAIL = "autogpt-test@agpt.co"
AUTOGPT_USERNAME = "autogpt"
async def initialize_blocks(db: Prisma) -> set[str]:
"""Initialize agent blocks in the database from the registered blocks.
Returns a set of block IDs that exist in the database.
"""
from backend.data.block import get_blocks
print(" Initializing agent blocks...")
blocks = get_blocks()
created_count = 0
block_ids = set()
for block_cls in blocks.values():
block = block_cls()
block_ids.add(block.id)
existing_block = await db.agentblock.find_first(
where={"OR": [{"id": block.id}, {"name": block.name}]}
)
if not existing_block:
await db.agentblock.create(
data=AgentBlockCreateInput(
id=block.id,
name=block.name,
inputSchema=json.dumps(block.input_schema.jsonschema()),
outputSchema=json.dumps(block.output_schema.jsonschema()),
)
)
created_count += 1
elif block.id != existing_block.id or block.name != existing_block.name:
await db.agentblock.update(
where={"id": existing_block.id},
data={
"id": block.id,
"name": block.name,
"inputSchema": json.dumps(block.input_schema.jsonschema()),
"outputSchema": json.dumps(block.output_schema.jsonschema()),
},
)
print(f" Initialized {len(blocks)} blocks ({created_count} new)")
return block_ids
async def ensure_block_exists(
db: Prisma, block_id: str, known_blocks: set[str]
) -> bool:
"""Ensure a block exists in the database, create a placeholder if needed.
Returns True if the block exists (or was created), False otherwise.
"""
if block_id in known_blocks:
return True
# Check if it already exists in the database
existing = await db.agentblock.find_unique(where={"id": block_id})
if existing:
known_blocks.add(block_id)
return True
# Create a placeholder block
print(f" Creating placeholder block: {block_id}")
try:
await db.agentblock.create(
data=AgentBlockCreateInput(
id=block_id,
name=f"Placeholder_{block_id[:8]}",
inputSchema="{}",
outputSchema="{}",
)
)
known_blocks.add(block_id)
return True
except Exception as e:
print(f" Warning: Could not create placeholder block {block_id}: {e}")
return False
def parse_image_urls(image_str: str) -> list[str]:
"""Parse the image URLs from CSV format like ["url1","url2"]."""
if not image_str or image_str == "[]":
return []
try:
return json.loads(image_str)
except json.JSONDecodeError:
return []
def parse_categories(categories_str: str) -> list[str]:
"""Parse categories from CSV format like ["cat1","cat2"]."""
if not categories_str or categories_str == "[]":
return []
try:
return json.loads(categories_str)
except json.JSONDecodeError:
return []
def sanitize_slug(slug: str) -> str:
"""Ensure slug only contains valid characters."""
return re.sub(r"[^a-z0-9-]", "", slug.lower())
async def create_user_and_profile(db: Prisma) -> None:
"""Create the autogpt user and profile if they don't exist."""
# Check if user exists
existing_user = await db.user.find_unique(where={"id": AUTOGPT_USER_ID})
if existing_user:
print(f"User {AUTOGPT_USER_ID} already exists, skipping user creation")
else:
print(f"Creating user {AUTOGPT_USER_ID}")
await db.user.create(
data=UserCreateInput(
id=AUTOGPT_USER_ID,
email=AUTOGPT_EMAIL,
name="AutoGPT",
metadata=Json({}),
integrations="",
)
)
# Check if profile exists
existing_profile = await db.profile.find_first(where={"userId": AUTOGPT_USER_ID})
if existing_profile:
print(
f"Profile for user {AUTOGPT_USER_ID} already exists, skipping profile creation"
)
else:
print(f"Creating profile for user {AUTOGPT_USER_ID}")
await db.profile.create(
data=ProfileCreateInput(
userId=AUTOGPT_USER_ID,
name="AutoGPT",
username=AUTOGPT_USERNAME,
description="Official AutoGPT agents and templates",
links=["https://agpt.co"],
avatarUrl="https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/4b5781a6-49e1-433c-9a75-65af1be5c02d.png",
)
)
async def load_csv_metadata() -> dict[str, dict]:
"""Load CSV metadata and return a dict keyed by storeListingVersionId."""
metadata = {}
with open(CSV_FILE, "r", encoding="utf-8") as f:
reader = csv.DictReader(f)
for row in reader:
version_id = row["storeListingVersionId"]
metadata[version_id] = {
"listing_id": row["listing_id"],
"store_listing_version_id": version_id,
"slug": sanitize_slug(row["slug"]),
"agent_name": row["agent_name"],
"agent_video": row["agent_video"] if row["agent_video"] else None,
"agent_image": parse_image_urls(row["agent_image"]),
"featured": row["featured"].lower() == "true",
"sub_heading": row["sub_heading"],
"description": row["description"],
"categories": parse_categories(row["categories"]),
"use_for_onboarding": row["useForOnboarding"].lower() == "true",
"is_available": row["is_available"].lower() == "true",
}
return metadata
async def load_agent_json(json_path: Path) -> dict:
"""Load and parse an agent JSON file."""
with open(json_path, "r", encoding="utf-8") as f:
return json.load(f)
async def create_agent_graph(
db: Prisma, agent_data: dict, known_blocks: set[str]
) -> tuple[str, int]:
"""Create an AgentGraph and its nodes/links from JSON data."""
graph_id = agent_data["id"]
version = agent_data.get("version", 1)
# Check if graph already exists
existing_graph = await db.agentgraph.find_unique(
where={"graphVersionId": {"id": graph_id, "version": version}}
)
if existing_graph:
print(f" Graph {graph_id} v{version} already exists, skipping")
return graph_id, version
print(
f" Creating graph {graph_id} v{version}: {agent_data.get('name', 'Unnamed')}"
)
# Create the main graph
await db.agentgraph.create(
data=AgentGraphCreateInput(
id=graph_id,
version=version,
name=agent_data.get("name"),
description=agent_data.get("description"),
instructions=agent_data.get("instructions"),
recommendedScheduleCron=agent_data.get("recommended_schedule_cron"),
isActive=agent_data.get("is_active", True),
userId=AUTOGPT_USER_ID,
forkedFromId=agent_data.get("forked_from_id"),
forkedFromVersion=agent_data.get("forked_from_version"),
)
)
# Create nodes
nodes = agent_data.get("nodes", [])
for node in nodes:
block_id = node["block_id"]
# Ensure the block exists (create placeholder if needed)
block_exists = await ensure_block_exists(db, block_id, known_blocks)
if not block_exists:
print(
f" Skipping node {node['id']} - block {block_id} could not be created"
)
continue
await db.agentnode.create(
data=AgentNodeCreateInput(
id=node["id"],
agentBlockId=block_id,
agentGraphId=graph_id,
agentGraphVersion=version,
constantInput=Json(node.get("input_default", {})),
metadata=Json(node.get("metadata", {})),
)
)
# Create links
links = agent_data.get("links", [])
for link in links:
await db.agentnodelink.create(
data=AgentNodeLinkCreateInput(
id=link["id"],
agentNodeSourceId=link["source_id"],
agentNodeSinkId=link["sink_id"],
sourceName=link["source_name"],
sinkName=link["sink_name"],
isStatic=link.get("is_static", False),
)
)
# Handle sub_graphs recursively
sub_graphs = agent_data.get("sub_graphs", [])
for sub_graph in sub_graphs:
await create_agent_graph(db, sub_graph, known_blocks)
return graph_id, version
async def create_store_listing(
db: Prisma,
graph_id: str,
graph_version: int,
metadata: dict,
) -> None:
"""Create StoreListing and StoreListingVersion for an agent."""
listing_id = metadata["listing_id"]
version_id = metadata["store_listing_version_id"]
# Check if listing already exists
existing_listing = await db.storelisting.find_unique(where={"id": listing_id})
if existing_listing:
print(f" Store listing {listing_id} already exists, skipping")
return
print(f" Creating store listing: {metadata['agent_name']}")
# Determine if this should be approved
is_approved = metadata["is_available"]
submission_status = (
prisma.enums.SubmissionStatus.APPROVED
if is_approved
else prisma.enums.SubmissionStatus.PENDING
)
# Create the store listing first (without activeVersionId - will update after)
await db.storelisting.create(
data=StoreListingCreateInput(
id=listing_id,
slug=metadata["slug"],
agentGraphId=graph_id,
agentGraphVersion=graph_version,
owningUserId=AUTOGPT_USER_ID,
hasApprovedVersion=is_approved,
useForOnboarding=metadata["use_for_onboarding"],
)
)
# Create the store listing version
await db.storelistingversion.create(
data=StoreListingVersionCreateInput(
id=version_id,
version=1,
agentGraphId=graph_id,
agentGraphVersion=graph_version,
name=metadata["agent_name"],
subHeading=metadata["sub_heading"],
videoUrl=metadata["agent_video"],
imageUrls=metadata["agent_image"],
description=metadata["description"],
categories=metadata["categories"],
isFeatured=metadata["featured"],
isAvailable=metadata["is_available"],
submissionStatus=submission_status,
submittedAt=datetime.now() if is_approved else None,
reviewedAt=datetime.now() if is_approved else None,
storeListingId=listing_id,
)
)
# Update the store listing with the active version if approved
if is_approved:
await db.storelisting.update(
where={"id": listing_id},
data={"ActiveVersion": {"connect": {"id": version_id}}},
)
async def main():
"""Main function to load all store agents."""
print("=" * 60)
print("Loading Store Agents into Test Database")
print("=" * 60)
db = Prisma()
await db.connect()
try:
# Step 0: Initialize agent blocks
print("\n[Step 0] Initializing agent blocks...")
known_blocks = await initialize_blocks(db)
# Step 1: Create user and profile
print("\n[Step 1] Creating user and profile...")
await create_user_and_profile(db)
# Step 2: Load CSV metadata
print("\n[Step 2] Loading CSV metadata...")
csv_metadata = await load_csv_metadata()
print(f" Found {len(csv_metadata)} store listing entries in CSV")
# Step 3: Find all JSON files and match with CSV
print("\n[Step 3] Processing agent JSON files...")
json_files = list(AGENTS_DIR.glob("agent_*.json"))
print(f" Found {len(json_files)} agent JSON files")
# Build mapping from version_id to json file
loaded_graphs = {} # graph_id -> (graph_id, version)
failed_agents = []
for json_file in json_files:
# Extract the version ID from filename (agent_<version_id>.json)
version_id = json_file.stem.replace("agent_", "")
if version_id not in csv_metadata:
print(
f" Warning: {json_file.name} not found in CSV metadata, skipping"
)
continue
metadata = csv_metadata[version_id]
agent_name = metadata["agent_name"]
print(f"\nProcessing: {agent_name}")
# Use a transaction per agent to prevent dangling resources
try:
async with db.tx() as tx:
# Load and create the agent graph
agent_data = await load_agent_json(json_file)
graph_id, graph_version = await create_agent_graph(
tx, agent_data, known_blocks
)
loaded_graphs[graph_id] = (graph_id, graph_version)
# Create store listing
await create_store_listing(tx, graph_id, graph_version, metadata)
except Exception as e:
print(f" Error loading agent '{agent_name}': {e}")
failed_agents.append(agent_name)
continue
# Step 4: Refresh materialized views
print("\n[Step 4] Refreshing materialized views...")
try:
await db.execute_raw("SELECT refresh_store_materialized_views();")
print(" Materialized views refreshed successfully")
except Exception as e:
print(f" Warning: Could not refresh materialized views: {e}")
print("\n" + "=" * 60)
print(f"Successfully loaded {len(loaded_graphs)} agents")
if failed_agents:
print(
f"Failed to load {len(failed_agents)} agents: {', '.join(failed_agents)}"
)
print("=" * 60)
finally:
await db.disconnect()
def run():
"""Entry point for poetry script."""
asyncio.run(main())
if __name__ == "__main__":
run()

View File

@@ -3,6 +3,14 @@ import { withSentryConfig } from "@sentry/nextjs";
/** @type {import('next').NextConfig} */
const nextConfig = {
productionBrowserSourceMaps: true,
experimental: {
serverActions: {
bodySizeLimit: "256mb",
},
// Increase body size limit for API routes (file uploads) - 256MB to match backend limit
proxyClientMaxBodySize: "256mb",
middlewareClientMaxBodySize: "256mb",
},
images: {
domains: [
// We dont need to maintain alphabetical order here

View File

@@ -72,6 +72,7 @@
"dotenv": "17.2.3",
"elliptic": "6.6.1",
"embla-carousel-react": "8.6.0",
"flatbush": "4.5.0",
"framer-motion": "12.23.24",
"geist": "1.5.1",
"highlight.js": "11.11.1",
@@ -81,7 +82,7 @@
"lodash": "4.17.21",
"lucide-react": "0.552.0",
"moment": "2.30.1",
"next": "15.4.7",
"next": "15.4.10",
"next-themes": "0.4.6",
"nuqs": "2.7.2",
"party-js": "2.2.0",
@@ -136,9 +137,8 @@
"concurrently": "9.2.1",
"cross-env": "10.1.0",
"eslint": "8.57.1",
"eslint-config-next": "15.5.2",
"eslint-config-next": "15.5.7",
"eslint-plugin-storybook": "9.1.5",
"import-in-the-middle": "1.14.2",
"msw": "2.11.6",
"msw-storybook-addon": "2.0.6",
"orval": "7.13.0",

View File

@@ -16,7 +16,7 @@ importers:
version: 5.2.2(react-hook-form@7.66.0(react@18.3.1))
'@next/third-parties':
specifier: 15.4.6
version: 15.4.6(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)
version: 15.4.6(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)
'@phosphor-icons/react':
specifier: 2.1.10
version: 2.1.10(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
@@ -88,7 +88,7 @@ importers:
version: 5.24.13(@rjsf/utils@5.24.13(react@18.3.1))
'@sentry/nextjs':
specifier: 10.27.0
version: 10.27.0(@opentelemetry/context-async-hooks@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/core@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/sdk-trace-base@2.2.0(@opentelemetry/api@1.9.0))(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)(webpack@5.101.3(esbuild@0.25.9))
version: 10.27.0(@opentelemetry/context-async-hooks@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/core@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/sdk-trace-base@2.2.0(@opentelemetry/api@1.9.0))(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)(webpack@5.101.3(esbuild@0.25.9))
'@supabase/ssr':
specifier: 0.7.0
version: 0.7.0(@supabase/supabase-js@2.78.0)
@@ -106,10 +106,10 @@ importers:
version: 0.2.4
'@vercel/analytics':
specifier: 1.5.0
version: 1.5.0(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)
version: 1.5.0(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)
'@vercel/speed-insights':
specifier: 1.2.0
version: 1.2.0(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)
version: 1.2.0(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)
'@xyflow/react':
specifier: 12.9.2
version: 12.9.2(@types/react@18.3.17)(immer@10.1.3)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
@@ -140,12 +140,15 @@ importers:
embla-carousel-react:
specifier: 8.6.0
version: 8.6.0(react@18.3.1)
flatbush:
specifier: 4.5.0
version: 4.5.0
framer-motion:
specifier: 12.23.24
version: 12.23.24(@emotion/is-prop-valid@1.2.2)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
geist:
specifier: 1.5.1
version: 1.5.1(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))
version: 1.5.1(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))
highlight.js:
specifier: 11.11.1
version: 11.11.1
@@ -168,14 +171,14 @@ importers:
specifier: 2.30.1
version: 2.30.1
next:
specifier: 15.4.7
version: 15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
specifier: 15.4.10
version: 15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
next-themes:
specifier: 0.4.6
version: 0.4.6(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
nuqs:
specifier: 2.7.2
version: 2.7.2(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)
version: 2.7.2(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)
party-js:
specifier: 2.2.0
version: 2.2.0
@@ -281,7 +284,7 @@ importers:
version: 9.1.5(storybook@9.1.5(@testing-library/dom@10.4.1)(msw@2.11.6(@types/node@24.10.0)(typescript@5.9.3))(prettier@3.6.2))
'@storybook/nextjs':
specifier: 9.1.5
version: 9.1.5(esbuild@0.25.9)(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react-dom@18.3.1(react@18.3.1))(react@18.3.1)(storybook@9.1.5(@testing-library/dom@10.4.1)(msw@2.11.6(@types/node@24.10.0)(typescript@5.9.3))(prettier@3.6.2))(type-fest@4.41.0)(typescript@5.9.3)(webpack-hot-middleware@2.26.1)(webpack@5.101.3(esbuild@0.25.9))
version: 9.1.5(esbuild@0.25.9)(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react-dom@18.3.1(react@18.3.1))(react@18.3.1)(storybook@9.1.5(@testing-library/dom@10.4.1)(msw@2.11.6(@types/node@24.10.0)(typescript@5.9.3))(prettier@3.6.2))(type-fest@4.41.0)(typescript@5.9.3)(webpack-hot-middleware@2.26.1)(webpack@5.101.3(esbuild@0.25.9))
'@tanstack/eslint-plugin-query':
specifier: 5.91.2
version: 5.91.2(eslint@8.57.1)(typescript@5.9.3)
@@ -328,14 +331,11 @@ importers:
specifier: 8.57.1
version: 8.57.1
eslint-config-next:
specifier: 15.5.2
version: 15.5.2(eslint@8.57.1)(typescript@5.9.3)
specifier: 15.5.7
version: 15.5.7(eslint@8.57.1)(typescript@5.9.3)
eslint-plugin-storybook:
specifier: 9.1.5
version: 9.1.5(eslint@8.57.1)(storybook@9.1.5(@testing-library/dom@10.4.1)(msw@2.11.6(@types/node@24.10.0)(typescript@5.9.3))(prettier@3.6.2))(typescript@5.9.3)
import-in-the-middle:
specifier: 1.14.2
version: 1.14.2
msw:
specifier: 2.11.6
version: 2.11.6(@types/node@24.10.0)(typescript@5.9.3)
@@ -983,12 +983,15 @@ packages:
'@date-fns/tz@1.4.1':
resolution: {integrity: sha512-P5LUNhtbj6YfI3iJjw5EL9eUAG6OitD0W3fWQcpQjDRc/QIsL0tRNuO1PcDvPccWL1fSTXXdE1ds+l95DV/OFA==}
'@emnapi/core@1.5.0':
resolution: {integrity: sha512-sbP8GzB1WDzacS8fgNPpHlp6C9VZe+SJP3F90W9rLemaQj2PzIuTEl1qDOYQf58YIpyjViI24y9aPWCjEzY2cg==}
'@emnapi/core@1.7.1':
resolution: {integrity: sha512-o1uhUASyo921r2XtHYOHy7gdkGLge8ghBEQHMWmyJFoXlpU58kIrhhN3w26lpQb6dspetweapMn2CSNwQ8I4wg==}
'@emnapi/runtime@1.5.0':
resolution: {integrity: sha512-97/BJ3iXHww3djw6hYIfErCZFee7qCtrneuLa20UXFCOTCfBM2cvQHjWJ2EG0s0MtdNwInarqCTz35i4wWXHsQ==}
'@emnapi/runtime@1.7.1':
resolution: {integrity: sha512-PVtJr5CmLwYAU9PZDMITZoR5iAOShYREoR45EyyLrbntV50mdePTgUn4AmOw90Ifcj+x2kRjdzr1HP3RrNiHGA==}
'@emnapi/wasi-threads@1.1.0':
resolution: {integrity: sha512-WI0DdZ8xFSbgMjR1sFsKABJ/C5OnRrjT06JXbZKexJGrDuPTzZdDYfFlsgcCXCyf+suG5QU2e/y1Wo2V/OapLQ==}
@@ -1326,6 +1329,10 @@ packages:
resolution: {integrity: sha512-CCZCDJuduB9OUkFkY2IgppNZMi2lBQgD2qzwXkEia16cge2pijY/aXi96CJMquDMn3nJdlPV1A5KrJEXwfLNzQ==}
engines: {node: ^12.0.0 || ^14.0.0 || >=16.0.0}
'@eslint-community/regexpp@4.12.2':
resolution: {integrity: sha512-EriSTlt5OC9/7SXkRSCAhfSxxoSUgBm33OH+IkwbdpgoqsSsUg7y3uh+IICI/Qg4BBWr3U2i39RpmycbxMq4ew==}
engines: {node: ^12.0.0 || ^14.0.0 || >=16.0.0}
'@eslint/eslintrc@2.1.4':
resolution: {integrity: sha512-269Z39MS6wVJtsoUl10L60WdkhJVdPG24Q4eZTH3nnF6lpvSShEK3wQjDX9JRWAUPvPh7COouPpU9IrqaZFvtQ==}
engines: {node: ^12.22.0 || ^14.17.0 || >=16.0.0}
@@ -1599,56 +1606,56 @@ packages:
'@neoconfetti/react@1.0.0':
resolution: {integrity: sha512-klcSooChXXOzIm+SE5IISIAn3bYzYfPjbX7D7HoqZL84oAfgREeSg5vSIaSFH+DaGzzvImTyWe1OyrJ67vik4A==}
'@next/env@15.4.7':
resolution: {integrity: sha512-PrBIpO8oljZGTOe9HH0miix1w5MUiGJ/q83Jge03mHEE0E3pyqzAy2+l5G6aJDbXoobmxPJTVhbCuwlLtjSHwg==}
'@next/env@15.4.10':
resolution: {integrity: sha512-knhmoJ0Vv7VRf6pZEPSnciUG1S4bIhWx+qTYBW/AjxEtlzsiNORPk8sFDCEvqLfmKuey56UB9FL1UdHEV3uBrg==}
'@next/eslint-plugin-next@15.5.2':
resolution: {integrity: sha512-lkLrRVxcftuOsJNhWatf1P2hNVfh98k/omQHrCEPPriUypR6RcS13IvLdIrEvkm9AH2Nu2YpR5vLqBuy6twH3Q==}
'@next/eslint-plugin-next@15.5.7':
resolution: {integrity: sha512-DtRU2N7BkGr8r+pExfuWHwMEPX5SD57FeA6pxdgCHODo+b/UgIgjE+rgWKtJAbEbGhVZ2jtHn4g3wNhWFoNBQQ==}
'@next/swc-darwin-arm64@15.4.7':
resolution: {integrity: sha512-2Dkb+VUTp9kHHkSqtws4fDl2Oxms29HcZBwFIda1X7Ztudzy7M6XF9HDS2dq85TmdN47VpuhjE+i6wgnIboVzQ==}
'@next/swc-darwin-arm64@15.4.8':
resolution: {integrity: sha512-Pf6zXp7yyQEn7sqMxur6+kYcywx5up1J849psyET7/8pG2gQTVMjU3NzgIt8SeEP5to3If/SaWmaA6H6ysBr1A==}
engines: {node: '>= 10'}
cpu: [arm64]
os: [darwin]
'@next/swc-darwin-x64@15.4.7':
resolution: {integrity: sha512-qaMnEozKdWezlmh1OGDVFueFv2z9lWTcLvt7e39QA3YOvZHNpN2rLs/IQLwZaUiw2jSvxW07LxMCWtOqsWFNQg==}
'@next/swc-darwin-x64@15.4.8':
resolution: {integrity: sha512-xla6AOfz68a6kq3gRQccWEvFC/VRGJmA/QuSLENSO7CZX5WIEkSz7r1FdXUjtGCQ1c2M+ndUAH7opdfLK1PQbw==}
engines: {node: '>= 10'}
cpu: [x64]
os: [darwin]
'@next/swc-linux-arm64-gnu@15.4.7':
resolution: {integrity: sha512-ny7lODPE7a15Qms8LZiN9wjNWIeI+iAZOFDOnv2pcHStncUr7cr9lD5XF81mdhrBXLUP9yT9RzlmSWKIazWoDw==}
'@next/swc-linux-arm64-gnu@15.4.8':
resolution: {integrity: sha512-y3fmp+1Px/SJD+5ntve5QLZnGLycsxsVPkTzAc3zUiXYSOlTPqT8ynfmt6tt4fSo1tAhDPmryXpYKEAcoAPDJw==}
engines: {node: '>= 10'}
cpu: [arm64]
os: [linux]
'@next/swc-linux-arm64-musl@15.4.7':
resolution: {integrity: sha512-4SaCjlFR/2hGJqZLLWycccy1t+wBrE/vyJWnYaZJhUVHccpGLG5q0C+Xkw4iRzUIkE+/dr90MJRUym3s1+vO8A==}
'@next/swc-linux-arm64-musl@15.4.8':
resolution: {integrity: sha512-DX/L8VHzrr1CfwaVjBQr3GWCqNNFgyWJbeQ10Lx/phzbQo3JNAxUok1DZ8JHRGcL6PgMRgj6HylnLNndxn4Z6A==}
engines: {node: '>= 10'}
cpu: [arm64]
os: [linux]
'@next/swc-linux-x64-gnu@15.4.7':
resolution: {integrity: sha512-2uNXjxvONyRidg00VwvlTYDwC9EgCGNzPAPYbttIATZRxmOZ3hllk/YYESzHZb65eyZfBR5g9xgCZjRAl9YYGg==}
'@next/swc-linux-x64-gnu@15.4.8':
resolution: {integrity: sha512-9fLAAXKAL3xEIFdKdzG5rUSvSiZTLLTCc6JKq1z04DR4zY7DbAPcRvNm3K1inVhTiQCs19ZRAgUerHiVKMZZIA==}
engines: {node: '>= 10'}
cpu: [x64]
os: [linux]
'@next/swc-linux-x64-musl@15.4.7':
resolution: {integrity: sha512-ceNbPjsFgLscYNGKSu4I6LYaadq2B8tcK116nVuInpHHdAWLWSwVK6CHNvCi0wVS9+TTArIFKJGsEyVD1H+4Kg==}
'@next/swc-linux-x64-musl@15.4.8':
resolution: {integrity: sha512-s45V7nfb5g7dbS7JK6XZDcapicVrMMvX2uYgOHP16QuKH/JA285oy6HcxlKqwUNaFY/UC6EvQ8QZUOo19cBKSA==}
engines: {node: '>= 10'}
cpu: [x64]
os: [linux]
'@next/swc-win32-arm64-msvc@15.4.7':
resolution: {integrity: sha512-pZyxmY1iHlZJ04LUL7Css8bNvsYAMYOY9JRwFA3HZgpaNKsJSowD09Vg2R9734GxAcLJc2KDQHSCR91uD6/AAw==}
'@next/swc-win32-arm64-msvc@15.4.8':
resolution: {integrity: sha512-KjgeQyOAq7t/HzAJcWPGA8X+4WY03uSCZ2Ekk98S9OgCFsb6lfBE3dbUzUuEQAN2THbwYgFfxX2yFTCMm8Kehw==}
engines: {node: '>= 10'}
cpu: [arm64]
os: [win32]
'@next/swc-win32-x64-msvc@15.4.7':
resolution: {integrity: sha512-HjuwPJ7BeRzgl3KrjKqD2iDng0eQIpIReyhpF5r4yeAHFwWRuAhfW92rWv/r3qeQHEwHsLRzFDvMqRjyM5DI6A==}
'@next/swc-win32-x64-msvc@15.4.8':
resolution: {integrity: sha512-Exsmf/+42fWVnLMaZHzshukTBxZrSwuuLKFvqhGHJ+mC1AokqieLY/XzAl3jc/CqhXLqLY3RRjkKJ9YnLPcRWg==}
engines: {node: '>= 10'}
cpu: [x64]
os: [win32]
@@ -2619,8 +2626,8 @@ packages:
'@rtsao/scc@1.1.0':
resolution: {integrity: sha512-zt6OdqaDoOnJ1ZYsCYGt9YmWzDXl4vQdKTyJev62gFhRGKdx7mcT54V9KIjg+d2wi9EXsPvAPKe7i7WjfVWB8g==}
'@rushstack/eslint-patch@1.12.0':
resolution: {integrity: sha512-5EwMtOqvJMMa3HbmxLlF74e+3/HhwBTMcvt3nqVJgGCozO6hzIPOBlwm8mGVNR9SN2IJpxSnlxczyDjcn7qIyw==}
'@rushstack/eslint-patch@1.15.0':
resolution: {integrity: sha512-ojSshQPKwVvSMR8yT2L/QtUkV5SXi/IfDiJ4/8d6UbTPjiHVmxZzUAzGD8Tzks1b9+qQkZa0isUOvYObedITaw==}
'@scarf/scarf@1.4.0':
resolution: {integrity: sha512-xxeapPiUXdZAE3che6f3xogoJPeZgig6omHEy1rIY5WVsB3H2BHNnZH+gHG6x91SCWyQCzWGsuL2Hh3ClO5/qQ==}
@@ -3094,8 +3101,8 @@ packages:
peerDependencies:
'@testing-library/dom': '>=7.21.4'
'@tybys/wasm-util@0.10.0':
resolution: {integrity: sha512-VyyPYFlOMNylG45GoAe0xDoLwWuowvf92F9kySqzYh8vmYm7D2u4iUJKa1tOUpS70Ku13ASrOkS4ScXFsTaCNQ==}
'@tybys/wasm-util@0.10.1':
resolution: {integrity: sha512-9tTaPJLSiejZKx+Bmog4uSubteqTvFrVrURwkmHixBo0G4seD0zUxp98E1DzUBJxLQ3NPwXrGKDiVjwx/DpPsg==}
'@types/aria-query@5.0.4':
resolution: {integrity: sha512-rfT93uj5s0PRL7EzccGMs3brplhcrghnDoV26NqKhCAS1hVo+WdNsPvE/yb6ilfr5hi2MEk6d5EWJTKdxg8jVw==}
@@ -3285,16 +3292,16 @@ packages:
'@types/ws@8.18.1':
resolution: {integrity: sha512-ThVF6DCVhA8kUGy+aazFQ4kXQ7E1Ty7A3ypFOe0IcJV8O/M511G99AW24irKrW56Wt44yG9+ij8FaqoBGkuBXg==}
'@typescript-eslint/eslint-plugin@8.43.0':
resolution: {integrity: sha512-8tg+gt7ENL7KewsKMKDHXR1vm8tt9eMxjJBYINf6swonlWgkYn5NwyIgXpbbDxTNU5DgpDFfj95prcTq2clIQQ==}
'@typescript-eslint/eslint-plugin@8.48.1':
resolution: {integrity: sha512-X63hI1bxl5ohelzr0LY5coufyl0LJNthld+abwxpCoo6Gq+hSqhKwci7MUWkXo67mzgUK6YFByhmaHmUcuBJmA==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
peerDependencies:
'@typescript-eslint/parser': ^8.43.0
'@typescript-eslint/parser': ^8.48.1
eslint: ^8.57.0 || ^9.0.0
typescript: '>=4.8.4 <6.0.0'
'@typescript-eslint/parser@8.43.0':
resolution: {integrity: sha512-B7RIQiTsCBBmY+yW4+ILd6mF5h1FUwJsVvpqkrgpszYifetQ2Ke+Z4u6aZh0CblkUGIdR59iYVyXqqZGkZ3aBw==}
'@typescript-eslint/parser@8.48.1':
resolution: {integrity: sha512-PC0PDZfJg8sP7cmKe6L3QIL8GZwU5aRvUFedqSIpw3B+QjRSUZeeITC2M5XKeMXEzL6wccN196iy3JLwKNvDVA==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
peerDependencies:
eslint: ^8.57.0 || ^9.0.0
@@ -3312,6 +3319,12 @@ packages:
peerDependencies:
typescript: '>=4.8.4 <6.0.0'
'@typescript-eslint/project-service@8.48.1':
resolution: {integrity: sha512-HQWSicah4s9z2/HifRPQ6b6R7G+SBx64JlFQpgSSHWPKdvCZX57XCbszg/bapbRsOEv42q5tayTYcEFpACcX1w==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
peerDependencies:
typescript: '>=4.8.4 <6.0.0'
'@typescript-eslint/scope-manager@8.43.0':
resolution: {integrity: sha512-daSWlQ87ZhsjrbMLvpuuMAt3y4ba57AuvadcR7f3nl8eS3BjRc8L9VLxFLk92RL5xdXOg6IQ+qKjjqNEimGuAg==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
@@ -3320,6 +3333,10 @@ packages:
resolution: {integrity: sha512-LF4b/NmGvdWEHD2H4MsHD8ny6JpiVNDzrSZr3CsckEgCbAGZbYM4Cqxvi9L+WqDMT+51Ozy7lt2M+d0JLEuBqA==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
'@typescript-eslint/scope-manager@8.48.1':
resolution: {integrity: sha512-rj4vWQsytQbLxC5Bf4XwZ0/CKd362DkWMUkviT7DCS057SK64D5lH74sSGzhI6PDD2HCEq02xAP9cX68dYyg1w==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
'@typescript-eslint/tsconfig-utils@8.43.0':
resolution: {integrity: sha512-ALC2prjZcj2YqqL5X/bwWQmHA2em6/94GcbB/KKu5SX3EBDOsqztmmX1kMkvAJHzxk7TazKzJfFiEIagNV3qEA==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
@@ -3332,8 +3349,14 @@ packages:
peerDependencies:
typescript: '>=4.8.4 <6.0.0'
'@typescript-eslint/type-utils@8.43.0':
resolution: {integrity: sha512-qaH1uLBpBuBBuRf8c1mLJ6swOfzCXryhKND04Igr4pckzSEW9JX5Aw9AgW00kwfjWJF0kk0ps9ExKTfvXfw4Qg==}
'@typescript-eslint/tsconfig-utils@8.48.1':
resolution: {integrity: sha512-k0Jhs4CpEffIBm6wPaCXBAD7jxBtrHjrSgtfCjUvPp9AZ78lXKdTR8fxyZO5y4vWNlOvYXRtngSZNSn+H53Jkw==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
peerDependencies:
typescript: '>=4.8.4 <6.0.0'
'@typescript-eslint/type-utils@8.48.1':
resolution: {integrity: sha512-1jEop81a3LrJQLTf/1VfPQdhIY4PlGDBc/i67EVWObrtvcziysbLN3oReexHOM6N3jyXgCrkBsZpqwH0hiDOQg==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
peerDependencies:
eslint: ^8.57.0 || ^9.0.0
@@ -3347,6 +3370,10 @@ packages:
resolution: {integrity: sha512-lNCWCbq7rpg7qDsQrd3D6NyWYu+gkTENkG5IKYhUIcxSb59SQC/hEQ+MrG4sTgBVghTonNWq42bA/d4yYumldQ==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
'@typescript-eslint/types@8.48.1':
resolution: {integrity: sha512-+fZ3LZNeiELGmimrujsDCT4CRIbq5oXdHe7chLiW8qzqyPMnn1puNstCrMNVAqwcl2FdIxkuJ4tOs/RFDBVc/Q==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
'@typescript-eslint/typescript-estree@8.43.0':
resolution: {integrity: sha512-7Vv6zlAhPb+cvEpP06WXXy/ZByph9iL6BQRBDj4kmBsW98AqEeQHlj/13X+sZOrKSo9/rNKH4Ul4f6EICREFdw==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
@@ -3359,6 +3386,12 @@ packages:
peerDependencies:
typescript: '>=4.8.4 <6.0.0'
'@typescript-eslint/typescript-estree@8.48.1':
resolution: {integrity: sha512-/9wQ4PqaefTK6POVTjJaYS0bynCgzh6ClJHGSBj06XEHjkfylzB+A3qvyaXnErEZSaxhIo4YdyBgq6j4RysxDg==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
peerDependencies:
typescript: '>=4.8.4 <6.0.0'
'@typescript-eslint/utils@8.43.0':
resolution: {integrity: sha512-S1/tEmkUeeswxd0GGcnwuVQPFWo8NzZTOMxCvw8BX7OMxnNae+i8Tm7REQen/SwUIPoPqfKn7EaZ+YLpiB3k9g==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
@@ -3373,6 +3406,13 @@ packages:
eslint: ^8.57.0 || ^9.0.0
typescript: '>=4.8.4 <6.0.0'
'@typescript-eslint/utils@8.48.1':
resolution: {integrity: sha512-fAnhLrDjiVfey5wwFRwrweyRlCmdz5ZxXz2G/4cLn0YDLjTapmN4gcCsTBR1N2rWnZSDeWpYtgLDsJt+FpmcwA==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
peerDependencies:
eslint: ^8.57.0 || ^9.0.0
typescript: '>=4.8.4 <6.0.0'
'@typescript-eslint/visitor-keys@8.43.0':
resolution: {integrity: sha512-T+S1KqRD4sg/bHfLwrpF/K3gQLBM1n7Rp7OjjikjTEssI2YJzQpi5WXoynOaQ93ERIuq3O8RBTOUYDKszUCEHw==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
@@ -3381,6 +3421,10 @@ packages:
resolution: {integrity: sha512-tUFMXI4gxzzMXt4xpGJEsBsTox0XbNQ1y94EwlD/CuZwFcQP79xfQqMhau9HsRc/J0cAPA/HZt1dZPtGn9V/7w==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
'@typescript-eslint/visitor-keys@8.48.1':
resolution: {integrity: sha512-BmxxndzEWhE4TIEEMBs8lP3MBWN3jFPs/p6gPm/wkv02o41hI6cq9AuSmGAaTTHPtA1FTi2jBre4A9rm5ZmX+Q==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
'@ungap/structured-clone@1.3.0':
resolution: {integrity: sha512-WmoN8qaIAo7WTYWbAZuG8PYEhn5fkz7dZrqTBZ7dtt//lL2Gwms1IcnQ5yHqjDfX8Ft5j4YzDM23f87zBfDe9g==}
@@ -4582,8 +4626,8 @@ packages:
resolution: {integrity: sha512-/veY75JbMK4j1yjvuUxuVsiS/hr/4iHs9FTT6cgTexxdE0Ly/glccBAkloH/DofkjRbZU3bnoj38mOmhkZ0lHw==}
engines: {node: '>=12'}
eslint-config-next@15.5.2:
resolution: {integrity: sha512-3hPZghsLupMxxZ2ggjIIrat/bPniM2yRpsVPVM40rp8ZMzKWOJp2CGWn7+EzoV2ddkUr5fxNfHpF+wU1hGt/3g==}
eslint-config-next@15.5.7:
resolution: {integrity: sha512-nU/TRGHHeG81NeLW5DeQT5t6BDUqbpsNQTvef1ld/tqHT+/zTx60/TIhKnmPISTTe++DVo+DLxDmk4rnwHaZVw==}
peerDependencies:
eslint: ^7.23.0 || ^8.0.0 || ^9.0.0
typescript: '>=3.3.1'
@@ -4835,6 +4879,12 @@ packages:
resolution: {integrity: sha512-CYcENa+FtcUKLmhhqyctpclsq7QF38pKjZHsGNiSQF5r4FtoKDWabFDl3hzaEQMvT1LHEysw5twgLvpYYb4vbw==}
engines: {node: ^10.12.0 || >=12.0.0}
flatbush@4.5.0:
resolution: {integrity: sha512-K7JSilGr4lySRLdJqKY45fu0m/dIs6YAAu/ESqdMsnW3pI0m3gpa6oRc6NDXW161Ov9+rIQjsuyOt5ObdIfgwg==}
flatqueue@3.0.0:
resolution: {integrity: sha512-y1deYaVt+lIc/d2uIcWDNd0CrdQTO5xoCjeFdhX0kSXvm2Acm0o+3bAOiYklTEoRyzwio3sv3/IiBZdusbAe2Q==}
flatted@3.3.3:
resolution: {integrity: sha512-GX+ysw4PBCz0PzosHDepZGANEuFCMLrnRTiEy9McGjmkCQYwRq4A/X786G/fjM/+OjsWSU1ZrY5qyARZmO/uwg==}
@@ -4909,6 +4959,10 @@ packages:
peerDependencies:
next: '>=13.2.0'
generator-function@2.0.1:
resolution: {integrity: sha512-SFdFmIJi+ybC0vjlHN0ZGVGHc3lgE0DxPAT0djjVg+kjOnSqclqmj0KQ7ykTOLP6YxoqOvuAODGdcHJn+43q3g==}
engines: {node: '>= 0.4'}
gensync@1.0.0-beta.2:
resolution: {integrity: sha512-3hN7NaskYvMDLQY55gnW3NQ+mesEAepTqlg+VEbj7zzqEMBVNhzcGYYeqFo/TlYz6eQiFcp1HcsCZO+nGgS8zg==}
engines: {node: '>=6.9.0'}
@@ -4937,8 +4991,8 @@ packages:
resolution: {integrity: sha512-w9UMqWwJxHNOvoNzSJ2oPF5wvYcvP7jUvYzhp67yEhTi17ZDBBC1z9pTdGuzjD+EFIqLSYRweZjqfiPzQ06Ebg==}
engines: {node: '>= 0.4'}
get-tsconfig@4.10.1:
resolution: {integrity: sha512-auHyJ4AgMz7vgS8Hp3N6HXSmlMdUyhSUrfBF16w153rxtLIEOE+HGqaBppczZvnHLqQJfiHotCYpNhl0lUROFQ==}
get-tsconfig@4.13.0:
resolution: {integrity: sha512-1VKTZJCwBrvbd+Wn3AOgQP/2Av+TfTCOlE4AcRJE72W1ksZXbAx8PPBR9RzgTeSPzlPMHrbANMH3LbltH73wxQ==}
github-slugger@2.0.0:
resolution: {integrity: sha512-IaOQ9puYtjrkq7Y0Ygl9KDZnrf/aiUJYUpVf89y8kyaxbRG7Y1SrX/jaumrv81vc61+kiMempujsM3Yw7w5qcw==}
@@ -5159,9 +5213,6 @@ packages:
resolution: {integrity: sha512-TR3KfrTZTYLPB6jUjfx6MF9WcWrHL9su5TObK4ZkYgBdWKPOFoSoQIdEuTuR82pmtxH2spWG9h6etwfr1pLBqQ==}
engines: {node: '>=6'}
import-in-the-middle@1.14.2:
resolution: {integrity: sha512-5tCuY9BV8ujfOpwtAGgsTx9CGUapcFMEEyByLv1B+v2+6DhAcw+Zr0nhQT7uwaZ7DiourxFEscghOR8e1aPLQw==}
import-in-the-middle@2.0.0:
resolution: {integrity: sha512-yNZhyQYqXpkT0AKq3F3KLasUSK4fHvebNH5hOsKQw2dhGSALvQ4U0BqUc5suziKvydO5u5hgN2hy1RJaho8U5A==}
@@ -5273,6 +5324,10 @@ packages:
resolution: {integrity: sha512-nPUB5km40q9e8UfN/Zc24eLlzdSf9OfKByBw9CIdw4H1giPMeA0OIJvbchsCu4npfI2QcMVBsGEBHKZ7wLTWmQ==}
engines: {node: '>= 0.4'}
is-generator-function@1.1.2:
resolution: {integrity: sha512-upqt1SkGkODW9tsGNG5mtXTXtECizwtS2kA161M+gJPc1xdb/Ax629af6YrTwcOeQHbewrPNlE5Dx7kzvXTizA==}
engines: {node: '>= 0.4'}
is-glob@4.0.3:
resolution: {integrity: sha512-xelSayHH36ZgE7ZWhli7pW34hNbNl8Ojv5KVmkJD4hBdD3th8Tfk9vYasLM+mXWOZhFkgZfxhLSnrwRr4elSSg==}
engines: {node: '>=0.10.0'}
@@ -5894,8 +5949,8 @@ packages:
engines: {node: ^10 || ^12 || ^13.7 || ^14 || >=15.0.1}
hasBin: true
napi-postinstall@0.3.3:
resolution: {integrity: sha512-uTp172LLXSxuSYHv/kou+f6KW3SMppU9ivthaVTXian9sOt3XM/zHYHpRZiLgQoxeWfYUnslNWQHF1+G71xcow==}
napi-postinstall@0.3.4:
resolution: {integrity: sha512-PHI5f1O0EP5xJ9gQmFGMS6IZcrVvTjpXjz7Na41gTE7eE2hK11lg04CECCYEEjdc17EV4DO+fkGEtt7TpTaTiQ==}
engines: {node: ^12.20.0 || ^14.18.0 || >=16.0.0}
hasBin: true
@@ -5911,8 +5966,8 @@ packages:
react: ^16.8 || ^17 || ^18 || ^19 || ^19.0.0-rc
react-dom: ^16.8 || ^17 || ^18 || ^19 || ^19.0.0-rc
next@15.4.7:
resolution: {integrity: sha512-OcqRugwF7n7mC8OSYjvsZhhG1AYSvulor1EIUsIkbbEbf1qoE5EbH36Swj8WhF4cHqmDgkiam3z1c1W0J1Wifg==}
next@15.4.10:
resolution: {integrity: sha512-itVlc79QjpKMFMRhP+kbGKaSG/gZM6RCvwhEbwmCNF06CdDiNaoHcbeg0PqkEa2GOcn8KJ0nnc7+yL7EjoYLHQ==}
engines: {node: ^18.18.0 || ^19.8.0 || >= 20.0.0}
hasBin: true
peerDependencies:
@@ -6760,6 +6815,11 @@ packages:
engines: {node: '>= 0.4'}
hasBin: true
resolve@1.22.11:
resolution: {integrity: sha512-RfqAvLnMl313r7c9oclB1HhUEAezcpLjz95wFH4LVuhk9JF/r22qmVP9AMmOU4vMX7Q8pN8jwNg/CSpdFnMjTQ==}
engines: {node: '>= 0.4'}
hasBin: true
resolve@1.22.8:
resolution: {integrity: sha512-oKWePCxqpd6FlLvGV1VU0x7bkPmmCNolxzjMf4NczoDnQcIWrAF+cPtZn5i6n+RfD2d9i0tzpKnG6Yk168yIyw==}
hasBin: true
@@ -7849,7 +7909,7 @@ snapshots:
'@babel/helper-plugin-utils': 7.27.1
debug: 4.4.3
lodash.debounce: 4.0.8
resolve: 1.22.10
resolve: 1.22.11
transitivePeerDependencies:
- supports-color
@@ -8541,7 +8601,7 @@ snapshots:
'@date-fns/tz@1.4.1': {}
'@emnapi/core@1.5.0':
'@emnapi/core@1.7.1':
dependencies:
'@emnapi/wasi-threads': 1.1.0
tslib: 2.8.1
@@ -8552,6 +8612,11 @@ snapshots:
tslib: 2.8.1
optional: true
'@emnapi/runtime@1.7.1':
dependencies:
tslib: 2.8.1
optional: true
'@emnapi/wasi-threads@1.1.0':
dependencies:
tslib: 2.8.1
@@ -8730,6 +8795,8 @@ snapshots:
'@eslint-community/regexpp@4.12.1': {}
'@eslint-community/regexpp@4.12.2': {}
'@eslint/eslintrc@2.1.4':
dependencies:
ajv: 6.12.6
@@ -8987,46 +9054,46 @@ snapshots:
'@napi-rs/wasm-runtime@0.2.12':
dependencies:
'@emnapi/core': 1.5.0
'@emnapi/runtime': 1.5.0
'@tybys/wasm-util': 0.10.0
'@emnapi/core': 1.7.1
'@emnapi/runtime': 1.7.1
'@tybys/wasm-util': 0.10.1
optional: true
'@neoconfetti/react@1.0.0': {}
'@next/env@15.4.7': {}
'@next/env@15.4.10': {}
'@next/eslint-plugin-next@15.5.2':
'@next/eslint-plugin-next@15.5.7':
dependencies:
fast-glob: 3.3.1
'@next/swc-darwin-arm64@15.4.7':
'@next/swc-darwin-arm64@15.4.8':
optional: true
'@next/swc-darwin-x64@15.4.7':
'@next/swc-darwin-x64@15.4.8':
optional: true
'@next/swc-linux-arm64-gnu@15.4.7':
'@next/swc-linux-arm64-gnu@15.4.8':
optional: true
'@next/swc-linux-arm64-musl@15.4.7':
'@next/swc-linux-arm64-musl@15.4.8':
optional: true
'@next/swc-linux-x64-gnu@15.4.7':
'@next/swc-linux-x64-gnu@15.4.8':
optional: true
'@next/swc-linux-x64-musl@15.4.7':
'@next/swc-linux-x64-musl@15.4.8':
optional: true
'@next/swc-win32-arm64-msvc@15.4.7':
'@next/swc-win32-arm64-msvc@15.4.8':
optional: true
'@next/swc-win32-x64-msvc@15.4.7':
'@next/swc-win32-x64-msvc@15.4.8':
optional: true
'@next/third-parties@15.4.6(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)':
'@next/third-parties@15.4.6(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)':
dependencies:
next: 15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
next: 15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
react: 18.3.1
third-party-capital: 1.0.20
@@ -10106,7 +10173,7 @@ snapshots:
'@rtsao/scc@1.1.0': {}
'@rushstack/eslint-patch@1.12.0': {}
'@rushstack/eslint-patch@1.15.0': {}
'@scarf/scarf@1.4.0': {}
@@ -10258,7 +10325,7 @@ snapshots:
'@sentry/core@10.27.0': {}
'@sentry/nextjs@10.27.0(@opentelemetry/context-async-hooks@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/core@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/sdk-trace-base@2.2.0(@opentelemetry/api@1.9.0))(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)(webpack@5.101.3(esbuild@0.25.9))':
'@sentry/nextjs@10.27.0(@opentelemetry/context-async-hooks@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/core@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/sdk-trace-base@2.2.0(@opentelemetry/api@1.9.0))(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)(webpack@5.101.3(esbuild@0.25.9))':
dependencies:
'@opentelemetry/api': 1.9.0
'@opentelemetry/semantic-conventions': 1.37.0
@@ -10271,7 +10338,7 @@ snapshots:
'@sentry/react': 10.27.0(react@18.3.1)
'@sentry/vercel-edge': 10.27.0
'@sentry/webpack-plugin': 4.3.0(webpack@5.101.3(esbuild@0.25.9))
next: 15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
next: 15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
resolve: 1.22.8
rollup: 4.52.2
stacktrace-parser: 0.1.11
@@ -10633,7 +10700,7 @@ snapshots:
react: 18.3.1
react-dom: 18.3.1(react@18.3.1)
'@storybook/nextjs@9.1.5(esbuild@0.25.9)(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react-dom@18.3.1(react@18.3.1))(react@18.3.1)(storybook@9.1.5(@testing-library/dom@10.4.1)(msw@2.11.6(@types/node@24.10.0)(typescript@5.9.3))(prettier@3.6.2))(type-fest@4.41.0)(typescript@5.9.3)(webpack-hot-middleware@2.26.1)(webpack@5.101.3(esbuild@0.25.9))':
'@storybook/nextjs@9.1.5(esbuild@0.25.9)(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react-dom@18.3.1(react@18.3.1))(react@18.3.1)(storybook@9.1.5(@testing-library/dom@10.4.1)(msw@2.11.6(@types/node@24.10.0)(typescript@5.9.3))(prettier@3.6.2))(type-fest@4.41.0)(typescript@5.9.3)(webpack-hot-middleware@2.26.1)(webpack@5.101.3(esbuild@0.25.9))':
dependencies:
'@babel/core': 7.28.4
'@babel/plugin-syntax-bigint': 7.8.3(@babel/core@7.28.4)
@@ -10657,7 +10724,7 @@ snapshots:
css-loader: 6.11.0(webpack@5.101.3(esbuild@0.25.9))
image-size: 2.0.2
loader-utils: 3.3.1
next: 15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
next: 15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
node-polyfill-webpack-plugin: 2.0.1(webpack@5.101.3(esbuild@0.25.9))
postcss: 8.5.6
postcss-loader: 8.2.0(postcss@8.5.6)(typescript@5.9.3)(webpack@5.101.3(esbuild@0.25.9))
@@ -10858,7 +10925,7 @@ snapshots:
dependencies:
'@testing-library/dom': 10.4.1
'@tybys/wasm-util@0.10.0':
'@tybys/wasm-util@0.10.1':
dependencies:
tslib: 2.8.1
optional: true
@@ -11056,14 +11123,14 @@ snapshots:
dependencies:
'@types/node': 24.10.0
'@typescript-eslint/eslint-plugin@8.43.0(@typescript-eslint/parser@8.43.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1)(typescript@5.9.3)':
'@typescript-eslint/eslint-plugin@8.48.1(@typescript-eslint/parser@8.48.1(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1)(typescript@5.9.3)':
dependencies:
'@eslint-community/regexpp': 4.12.1
'@typescript-eslint/parser': 8.43.0(eslint@8.57.1)(typescript@5.9.3)
'@typescript-eslint/scope-manager': 8.43.0
'@typescript-eslint/type-utils': 8.43.0(eslint@8.57.1)(typescript@5.9.3)
'@typescript-eslint/utils': 8.43.0(eslint@8.57.1)(typescript@5.9.3)
'@typescript-eslint/visitor-keys': 8.43.0
'@eslint-community/regexpp': 4.12.2
'@typescript-eslint/parser': 8.48.1(eslint@8.57.1)(typescript@5.9.3)
'@typescript-eslint/scope-manager': 8.48.1
'@typescript-eslint/type-utils': 8.48.1(eslint@8.57.1)(typescript@5.9.3)
'@typescript-eslint/utils': 8.48.1(eslint@8.57.1)(typescript@5.9.3)
'@typescript-eslint/visitor-keys': 8.48.1
eslint: 8.57.1
graphemer: 1.4.0
ignore: 7.0.5
@@ -11073,12 +11140,12 @@ snapshots:
transitivePeerDependencies:
- supports-color
'@typescript-eslint/parser@8.43.0(eslint@8.57.1)(typescript@5.9.3)':
'@typescript-eslint/parser@8.48.1(eslint@8.57.1)(typescript@5.9.3)':
dependencies:
'@typescript-eslint/scope-manager': 8.43.0
'@typescript-eslint/types': 8.43.0
'@typescript-eslint/typescript-estree': 8.43.0(typescript@5.9.3)
'@typescript-eslint/visitor-keys': 8.43.0
'@typescript-eslint/scope-manager': 8.48.1
'@typescript-eslint/types': 8.48.1
'@typescript-eslint/typescript-estree': 8.48.1(typescript@5.9.3)
'@typescript-eslint/visitor-keys': 8.48.1
debug: 4.4.3
eslint: 8.57.1
typescript: 5.9.3
@@ -11088,7 +11155,7 @@ snapshots:
'@typescript-eslint/project-service@8.43.0(typescript@5.9.3)':
dependencies:
'@typescript-eslint/tsconfig-utils': 8.43.0(typescript@5.9.3)
'@typescript-eslint/types': 8.43.0
'@typescript-eslint/types': 8.48.1
debug: 4.4.3
typescript: 5.9.3
transitivePeerDependencies:
@@ -11097,7 +11164,16 @@ snapshots:
'@typescript-eslint/project-service@8.46.2(typescript@5.9.3)':
dependencies:
'@typescript-eslint/tsconfig-utils': 8.46.2(typescript@5.9.3)
'@typescript-eslint/types': 8.46.2
'@typescript-eslint/types': 8.48.1
debug: 4.4.3
typescript: 5.9.3
transitivePeerDependencies:
- supports-color
'@typescript-eslint/project-service@8.48.1(typescript@5.9.3)':
dependencies:
'@typescript-eslint/tsconfig-utils': 8.48.1(typescript@5.9.3)
'@typescript-eslint/types': 8.48.1
debug: 4.4.3
typescript: 5.9.3
transitivePeerDependencies:
@@ -11113,6 +11189,11 @@ snapshots:
'@typescript-eslint/types': 8.46.2
'@typescript-eslint/visitor-keys': 8.46.2
'@typescript-eslint/scope-manager@8.48.1':
dependencies:
'@typescript-eslint/types': 8.48.1
'@typescript-eslint/visitor-keys': 8.48.1
'@typescript-eslint/tsconfig-utils@8.43.0(typescript@5.9.3)':
dependencies:
typescript: 5.9.3
@@ -11121,11 +11202,15 @@ snapshots:
dependencies:
typescript: 5.9.3
'@typescript-eslint/type-utils@8.43.0(eslint@8.57.1)(typescript@5.9.3)':
'@typescript-eslint/tsconfig-utils@8.48.1(typescript@5.9.3)':
dependencies:
'@typescript-eslint/types': 8.43.0
'@typescript-eslint/typescript-estree': 8.43.0(typescript@5.9.3)
'@typescript-eslint/utils': 8.43.0(eslint@8.57.1)(typescript@5.9.3)
typescript: 5.9.3
'@typescript-eslint/type-utils@8.48.1(eslint@8.57.1)(typescript@5.9.3)':
dependencies:
'@typescript-eslint/types': 8.48.1
'@typescript-eslint/typescript-estree': 8.48.1(typescript@5.9.3)
'@typescript-eslint/utils': 8.48.1(eslint@8.57.1)(typescript@5.9.3)
debug: 4.4.3
eslint: 8.57.1
ts-api-utils: 2.1.0(typescript@5.9.3)
@@ -11137,6 +11222,8 @@ snapshots:
'@typescript-eslint/types@8.46.2': {}
'@typescript-eslint/types@8.48.1': {}
'@typescript-eslint/typescript-estree@8.43.0(typescript@5.9.3)':
dependencies:
'@typescript-eslint/project-service': 8.43.0(typescript@5.9.3)
@@ -11147,7 +11234,7 @@ snapshots:
fast-glob: 3.3.3
is-glob: 4.0.3
minimatch: 9.0.5
semver: 7.7.2
semver: 7.7.3
ts-api-utils: 2.1.0(typescript@5.9.3)
typescript: 5.9.3
transitivePeerDependencies:
@@ -11169,6 +11256,21 @@ snapshots:
transitivePeerDependencies:
- supports-color
'@typescript-eslint/typescript-estree@8.48.1(typescript@5.9.3)':
dependencies:
'@typescript-eslint/project-service': 8.48.1(typescript@5.9.3)
'@typescript-eslint/tsconfig-utils': 8.48.1(typescript@5.9.3)
'@typescript-eslint/types': 8.48.1
'@typescript-eslint/visitor-keys': 8.48.1
debug: 4.4.3
minimatch: 9.0.5
semver: 7.7.3
tinyglobby: 0.2.15
ts-api-utils: 2.1.0(typescript@5.9.3)
typescript: 5.9.3
transitivePeerDependencies:
- supports-color
'@typescript-eslint/utils@8.43.0(eslint@8.57.1)(typescript@5.9.3)':
dependencies:
'@eslint-community/eslint-utils': 4.9.0(eslint@8.57.1)
@@ -11191,6 +11293,17 @@ snapshots:
transitivePeerDependencies:
- supports-color
'@typescript-eslint/utils@8.48.1(eslint@8.57.1)(typescript@5.9.3)':
dependencies:
'@eslint-community/eslint-utils': 4.9.0(eslint@8.57.1)
'@typescript-eslint/scope-manager': 8.48.1
'@typescript-eslint/types': 8.48.1
'@typescript-eslint/typescript-estree': 8.48.1(typescript@5.9.3)
eslint: 8.57.1
typescript: 5.9.3
transitivePeerDependencies:
- supports-color
'@typescript-eslint/visitor-keys@8.43.0':
dependencies:
'@typescript-eslint/types': 8.43.0
@@ -11201,6 +11314,11 @@ snapshots:
'@typescript-eslint/types': 8.46.2
eslint-visitor-keys: 4.2.1
'@typescript-eslint/visitor-keys@8.48.1':
dependencies:
'@typescript-eslint/types': 8.48.1
eslint-visitor-keys: 4.2.1
'@ungap/structured-clone@1.3.0': {}
'@unrs/resolver-binding-android-arm-eabi@1.11.1':
@@ -11262,14 +11380,14 @@ snapshots:
'@unrs/resolver-binding-win32-x64-msvc@1.11.1':
optional: true
'@vercel/analytics@1.5.0(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)':
'@vercel/analytics@1.5.0(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)':
optionalDependencies:
next: 15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
next: 15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
react: 18.3.1
'@vercel/speed-insights@1.2.0(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)':
'@vercel/speed-insights@1.2.0(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)':
optionalDependencies:
next: 15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
next: 15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
react: 18.3.1
'@vitest/expect@3.2.4':
@@ -12523,16 +12641,16 @@ snapshots:
escape-string-regexp@5.0.0: {}
eslint-config-next@15.5.2(eslint@8.57.1)(typescript@5.9.3):
eslint-config-next@15.5.7(eslint@8.57.1)(typescript@5.9.3):
dependencies:
'@next/eslint-plugin-next': 15.5.2
'@rushstack/eslint-patch': 1.12.0
'@typescript-eslint/eslint-plugin': 8.43.0(@typescript-eslint/parser@8.43.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1)(typescript@5.9.3)
'@typescript-eslint/parser': 8.43.0(eslint@8.57.1)(typescript@5.9.3)
'@next/eslint-plugin-next': 15.5.7
'@rushstack/eslint-patch': 1.15.0
'@typescript-eslint/eslint-plugin': 8.48.1(@typescript-eslint/parser@8.48.1(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1)(typescript@5.9.3)
'@typescript-eslint/parser': 8.48.1(eslint@8.57.1)(typescript@5.9.3)
eslint: 8.57.1
eslint-import-resolver-node: 0.3.9
eslint-import-resolver-typescript: 3.10.1(eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.43.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1))(eslint@8.57.1)
eslint-plugin-import: 2.32.0(@typescript-eslint/parser@8.43.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-typescript@3.10.1(eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.43.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1))(eslint@8.57.1))(eslint@8.57.1)
eslint-import-resolver-typescript: 3.10.1(eslint-plugin-import@2.32.0)(eslint@8.57.1)
eslint-plugin-import: 2.32.0(@typescript-eslint/parser@8.48.1(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1)
eslint-plugin-jsx-a11y: 6.10.2(eslint@8.57.1)
eslint-plugin-react: 7.37.5(eslint@8.57.1)
eslint-plugin-react-hooks: 5.2.0(eslint@8.57.1)
@@ -12547,37 +12665,37 @@ snapshots:
dependencies:
debug: 3.2.7
is-core-module: 2.16.1
resolve: 1.22.10
resolve: 1.22.11
transitivePeerDependencies:
- supports-color
eslint-import-resolver-typescript@3.10.1(eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.43.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1))(eslint@8.57.1):
eslint-import-resolver-typescript@3.10.1(eslint-plugin-import@2.32.0)(eslint@8.57.1):
dependencies:
'@nolyfill/is-core-module': 1.0.39
debug: 4.4.3
eslint: 8.57.1
get-tsconfig: 4.10.1
get-tsconfig: 4.13.0
is-bun-module: 2.0.0
stable-hash: 0.0.5
tinyglobby: 0.2.15
unrs-resolver: 1.11.1
optionalDependencies:
eslint-plugin-import: 2.32.0(@typescript-eslint/parser@8.43.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-typescript@3.10.1(eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.43.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1))(eslint@8.57.1))(eslint@8.57.1)
eslint-plugin-import: 2.32.0(@typescript-eslint/parser@8.48.1(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1)
transitivePeerDependencies:
- supports-color
eslint-module-utils@2.12.1(@typescript-eslint/parser@8.43.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-node@0.3.9)(eslint-import-resolver-typescript@3.10.1(eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.43.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1))(eslint@8.57.1))(eslint@8.57.1):
eslint-module-utils@2.12.1(@typescript-eslint/parser@8.48.1(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-node@0.3.9)(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1):
dependencies:
debug: 3.2.7
optionalDependencies:
'@typescript-eslint/parser': 8.43.0(eslint@8.57.1)(typescript@5.9.3)
'@typescript-eslint/parser': 8.48.1(eslint@8.57.1)(typescript@5.9.3)
eslint: 8.57.1
eslint-import-resolver-node: 0.3.9
eslint-import-resolver-typescript: 3.10.1(eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.43.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1))(eslint@8.57.1)
eslint-import-resolver-typescript: 3.10.1(eslint-plugin-import@2.32.0)(eslint@8.57.1)
transitivePeerDependencies:
- supports-color
eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.43.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-typescript@3.10.1(eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.43.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1))(eslint@8.57.1))(eslint@8.57.1):
eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.48.1(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1):
dependencies:
'@rtsao/scc': 1.1.0
array-includes: 3.1.9
@@ -12588,7 +12706,7 @@ snapshots:
doctrine: 2.1.0
eslint: 8.57.1
eslint-import-resolver-node: 0.3.9
eslint-module-utils: 2.12.1(@typescript-eslint/parser@8.43.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-node@0.3.9)(eslint-import-resolver-typescript@3.10.1(eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.43.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1))(eslint@8.57.1))(eslint@8.57.1)
eslint-module-utils: 2.12.1(@typescript-eslint/parser@8.48.1(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-node@0.3.9)(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1)
hasown: 2.0.2
is-core-module: 2.16.1
is-glob: 4.0.3
@@ -12600,7 +12718,7 @@ snapshots:
string.prototype.trimend: 1.0.9
tsconfig-paths: 3.15.0
optionalDependencies:
'@typescript-eslint/parser': 8.43.0(eslint@8.57.1)(typescript@5.9.3)
'@typescript-eslint/parser': 8.48.1(eslint@8.57.1)(typescript@5.9.3)
transitivePeerDependencies:
- eslint-import-resolver-typescript
- eslint-import-resolver-webpack
@@ -12864,6 +12982,12 @@ snapshots:
keyv: 4.5.4
rimraf: 3.0.2
flatbush@4.5.0:
dependencies:
flatqueue: 3.0.0
flatqueue@3.0.0: {}
flatted@3.3.3: {}
for-each@0.3.5:
@@ -12939,9 +13063,11 @@ snapshots:
functions-have-names@1.2.3: {}
geist@1.5.1(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)):
geist@1.5.1(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)):
dependencies:
next: 15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
next: 15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
generator-function@2.0.1: {}
gensync@1.0.0-beta.2: {}
@@ -12975,7 +13101,7 @@ snapshots:
es-errors: 1.3.0
get-intrinsic: 1.3.0
get-tsconfig@4.10.1:
get-tsconfig@4.13.0:
dependencies:
resolve-pkg-maps: 1.0.0
@@ -13259,13 +13385,6 @@ snapshots:
parent-module: 1.0.1
resolve-from: 4.0.0
import-in-the-middle@1.14.2:
dependencies:
acorn: 8.15.0
acorn-import-attributes: 1.9.5(acorn@8.15.0)
cjs-module-lexer: 1.4.3
module-details-from-path: 1.0.4
import-in-the-middle@2.0.0:
dependencies:
acorn: 8.15.0
@@ -13342,7 +13461,7 @@ snapshots:
is-bun-module@2.0.0:
dependencies:
semver: 7.7.2
semver: 7.7.3
is-callable@1.2.7: {}
@@ -13380,6 +13499,14 @@ snapshots:
has-tostringtag: 1.0.2
safe-regex-test: 1.1.0
is-generator-function@1.1.2:
dependencies:
call-bound: 1.0.4
generator-function: 2.0.1
get-proto: 1.0.1
has-tostringtag: 1.0.2
safe-regex-test: 1.1.0
is-glob@4.0.3:
dependencies:
is-extglob: 2.1.1
@@ -14200,7 +14327,7 @@ snapshots:
nanoid@3.3.11: {}
napi-postinstall@0.3.3: {}
napi-postinstall@0.3.4: {}
natural-compare@1.4.0: {}
@@ -14211,9 +14338,9 @@ snapshots:
react: 18.3.1
react-dom: 18.3.1(react@18.3.1)
next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1):
next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1):
dependencies:
'@next/env': 15.4.7
'@next/env': 15.4.10
'@swc/helpers': 0.5.15
caniuse-lite: 1.0.30001741
postcss: 8.4.31
@@ -14221,14 +14348,14 @@ snapshots:
react-dom: 18.3.1(react@18.3.1)
styled-jsx: 5.1.6(@babel/core@7.28.4)(react@18.3.1)
optionalDependencies:
'@next/swc-darwin-arm64': 15.4.7
'@next/swc-darwin-x64': 15.4.7
'@next/swc-linux-arm64-gnu': 15.4.7
'@next/swc-linux-arm64-musl': 15.4.7
'@next/swc-linux-x64-gnu': 15.4.7
'@next/swc-linux-x64-musl': 15.4.7
'@next/swc-win32-arm64-msvc': 15.4.7
'@next/swc-win32-x64-msvc': 15.4.7
'@next/swc-darwin-arm64': 15.4.8
'@next/swc-darwin-x64': 15.4.8
'@next/swc-linux-arm64-gnu': 15.4.8
'@next/swc-linux-arm64-musl': 15.4.8
'@next/swc-linux-x64-gnu': 15.4.8
'@next/swc-linux-x64-musl': 15.4.8
'@next/swc-win32-arm64-msvc': 15.4.8
'@next/swc-win32-x64-msvc': 15.4.8
'@opentelemetry/api': 1.9.0
'@playwright/test': 1.56.1
sharp: 0.34.3
@@ -14306,12 +14433,12 @@ snapshots:
dependencies:
boolbase: 1.0.0
nuqs@2.7.2(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1):
nuqs@2.7.2(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1):
dependencies:
'@standard-schema/spec': 1.0.0
react: 18.3.1
optionalDependencies:
next: 15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
next: 15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
oas-kit-common@1.0.8:
dependencies:
@@ -15170,6 +15297,12 @@ snapshots:
path-parse: 1.0.7
supports-preserve-symlinks-flag: 1.0.0
resolve@1.22.11:
dependencies:
is-core-module: 2.16.1
path-parse: 1.0.7
supports-preserve-symlinks-flag: 1.0.0
resolve@1.22.8:
dependencies:
is-core-module: 2.16.1
@@ -15325,7 +15458,7 @@ snapshots:
dependencies:
color: 4.2.3
detect-libc: 2.0.4
semver: 7.7.2
semver: 7.7.3
optionalDependencies:
'@img/sharp-darwin-arm64': 0.34.3
'@img/sharp-darwin-x64': 0.34.3
@@ -15981,7 +16114,7 @@ snapshots:
unrs-resolver@1.11.1:
dependencies:
napi-postinstall: 0.3.3
napi-postinstall: 0.3.4
optionalDependencies:
'@unrs/resolver-binding-android-arm-eabi': 1.11.1
'@unrs/resolver-binding-android-arm64': 1.11.1
@@ -16209,7 +16342,7 @@ snapshots:
is-async-function: 2.1.1
is-date-object: 1.1.0
is-finalizationregistry: 1.1.1
is-generator-function: 1.1.0
is-generator-function: 1.1.2
is-regex: 1.2.1
is-weakref: 1.1.1
isarray: 2.0.5

View File

@@ -1,6 +1,4 @@
"use client";
import { StoreAgentDetails } from "@/lib/autogpt-server-api";
import { useBackendAPI } from "@/lib/autogpt-server-api/context";
import { isEmptyOrWhitespace } from "@/lib/utils";
import { useRouter } from "next/navigation";
import { useEffect, useState } from "react";
@@ -13,15 +11,17 @@ import {
OnboardingStep,
} from "../components/OnboardingStep";
import { OnboardingText } from "../components/OnboardingText";
import { getV1RecommendedOnboardingAgents } from "@/app/api/__generated__/endpoints/onboarding/onboarding";
import { resolveResponse } from "@/app/api/helpers";
import { StoreAgentDetails } from "@/app/api/__generated__/models/storeAgentDetails";
export default function Page() {
const { state, updateState, completeStep } = useOnboarding(4, "INTEGRATIONS");
const [agents, setAgents] = useState<StoreAgentDetails[]>([]);
const api = useBackendAPI();
const router = useRouter();
useEffect(() => {
api.getOnboardingAgents().then((agents) => {
resolveResponse(getV1RecommendedOnboardingAgents()).then((agents) => {
if (agents.length < 2) {
completeStep("CONGRATS");
router.replace("/");

View File

@@ -8,7 +8,6 @@ import {
CardTitle,
} from "@/components/__legacy__/ui/card";
import { ErrorCard } from "@/components/molecules/ErrorCard/ErrorCard";
import { InformationTooltip } from "@/components/molecules/InformationTooltip/InformationTooltip";
import { CircleNotchIcon } from "@phosphor-icons/react/dist/ssr";
import { Play } from "lucide-react";
import OnboardingButton from "../components/OnboardingButton";
@@ -79,20 +78,13 @@ export default function Page() {
<CardContent className="flex flex-col gap-4">
{Object.entries(agent?.input_schema.properties || {}).map(
([key, inputSubSchema]) => (
<div key={key} className="flex flex-col space-y-2">
<label className="flex items-center gap-1 text-sm font-medium">
{inputSubSchema.title || key}
<InformationTooltip
description={inputSubSchema.description}
/>
</label>
<RunAgentInputs
schema={inputSubSchema}
value={onboarding.state?.agentInput?.[key]}
placeholder={inputSubSchema.description}
onChange={(value) => handleSetAgentInput(key, value)}
/>
</div>
<RunAgentInputs
key={key}
schema={inputSubSchema}
value={onboarding.state?.agentInput?.[key]}
placeholder={inputSubSchema.description}
onChange={(value) => handleSetAgentInput(key, value)}
/>
),
)}
<AgentOnboardingCredentials

View File

@@ -12,6 +12,9 @@ import {
useGetV2GetAgentByVersion,
useGetV2GetAgentGraph,
} from "@/app/api/__generated__/endpoints/store/store";
import { resolveResponse } from "@/app/api/helpers";
import { postV2AddMarketplaceAgent } from "@/app/api/__generated__/endpoints/library/library";
import { GraphID } from "@/lib/autogpt-server-api";
export function useOnboardingRunStep() {
const onboarding = useOnboarding(undefined, "AGENT_CHOICE");
@@ -77,12 +80,7 @@ export function useOnboardingRunStep() {
setShowInput(true);
onboarding.setStep(6);
onboarding.updateState({
completedSteps: [
...(onboarding.state.completedSteps || []),
"AGENT_NEW_RUN",
],
});
onboarding.completeStep("AGENT_NEW_RUN");
}
function handleSetAgentInput(key: string, value: string) {
@@ -111,21 +109,22 @@ export function useOnboardingRunStep() {
setRunningAgent(true);
try {
const libraryAgent = await api.addMarketplaceAgentToLibrary(
storeAgent?.store_listing_version_id || "",
const libraryAgent = await resolveResponse(
postV2AddMarketplaceAgent({
store_listing_version_id: storeAgent?.store_listing_version_id || "",
source: "onboarding",
}),
);
const { id: runID } = await api.executeGraph(
libraryAgent.graph_id,
libraryAgent.graph_id as GraphID,
libraryAgent.graph_version,
onboarding.state.agentInput || {},
inputCredentials,
"onboarding",
);
onboarding.updateState({
onboardingAgentExecutionId: runID,
agentRuns: (onboarding.state.agentRuns || 0) + 1,
});
onboarding.updateState({ onboardingAgentExecutionId: runID });
router.push("/onboarding/6-congrats");
} catch (error) {

View File

@@ -5,6 +5,9 @@ import { useRouter } from "next/navigation";
import * as party from "party-js";
import { useEffect, useRef, useState } from "react";
import { useOnboarding } from "../../../../providers/onboarding/onboarding-provider";
import { resolveResponse } from "@/app/api/helpers";
import { getV1OnboardingState } from "@/app/api/__generated__/endpoints/onboarding/onboarding";
import { postV2AddMarketplaceAgent } from "@/app/api/__generated__/endpoints/library/library";
export default function Page() {
const { completeStep } = useOnboarding(7, "AGENT_INPUT");
@@ -37,11 +40,15 @@ export default function Page() {
completeStep("CONGRATS");
try {
const onboarding = await api.getUserOnboarding();
const onboarding = await resolveResponse(getV1OnboardingState());
if (onboarding?.selectedStoreListingVersionId) {
try {
const libraryAgent = await api.addMarketplaceAgentToLibrary(
onboarding.selectedStoreListingVersionId,
const libraryAgent = await resolveResponse(
postV2AddMarketplaceAgent({
store_listing_version_id:
onboarding.selectedStoreListingVersionId,
source: "onboarding",
}),
);
router.replace(`/library/agents/${libraryAgent.id}`);
} catch (error) {

View File

@@ -1,7 +1,7 @@
import { cn } from "@/lib/utils";
import StarRating from "./StarRating";
import { StoreAgentDetails } from "@/lib/autogpt-server-api";
import SmartImage from "@/components/__legacy__/SmartImage";
import { StoreAgentDetails } from "@/app/api/__generated__/models/storeAgentDetails";
type OnboardingAgentCardProps = {
agent?: StoreAgentDetails;

View File

@@ -1,24 +1,24 @@
"use client";
import { LoadingSpinner } from "@/components/atoms/LoadingSpinner/LoadingSpinner";
import { useBackendAPI } from "@/lib/autogpt-server-api/context";
import { useRouter } from "next/navigation";
import { useEffect } from "react";
import { resolveResponse, shouldShowOnboarding } from "@/app/api/helpers";
import { getV1OnboardingState } from "@/app/api/__generated__/endpoints/onboarding/onboarding";
export default function OnboardingPage() {
const router = useRouter();
const api = useBackendAPI();
useEffect(() => {
async function redirectToStep() {
try {
// Check if onboarding is enabled
const isEnabled = await api.isOnboardingEnabled();
const isEnabled = await shouldShowOnboarding();
if (!isEnabled) {
router.replace("/");
return;
}
const onboarding = await api.getUserOnboarding();
const onboarding = await resolveResponse(getV1OnboardingState());
// Handle completed onboarding
if (onboarding.completedSteps.includes("GET_RESULTS")) {
@@ -66,7 +66,7 @@ export default function OnboardingPage() {
}
redirectToStep();
}, [api, router]);
}, [router]);
return <LoadingSpinner size="large" cover />;
}

View File

@@ -1,6 +1,16 @@
"use client";
import { useState, useEffect } from "react";
import {
LineChart,
Line,
XAxis,
YAxis,
CartesianGrid,
Tooltip,
Legend,
ResponsiveContainer,
} from "recharts";
import { Button } from "@/components/atoms/Button/Button";
import { Input } from "@/components/__legacy__/ui/input";
import { Label } from "@/components/__legacy__/ui/label";
@@ -18,9 +28,12 @@ import { useToast } from "@/components/molecules/Toast/use-toast";
import {
usePostV2GenerateExecutionAnalytics,
useGetV2GetExecutionAnalyticsConfiguration,
useGetV2GetExecutionAccuracyTrendsAndAlerts,
} from "@/app/api/__generated__/endpoints/admin/admin";
import type { ExecutionAnalyticsRequest } from "@/app/api/__generated__/models/executionAnalyticsRequest";
import type { ExecutionAnalyticsResponse } from "@/app/api/__generated__/models/executionAnalyticsResponse";
import type { AccuracyTrendsResponse } from "@/app/api/__generated__/models/accuracyTrendsResponse";
import type { AccuracyLatestData } from "@/app/api/__generated__/models/accuracyLatestData";
// Use the generated type with minimal adjustment for form handling
interface FormData extends Omit<ExecutionAnalyticsRequest, "created_after"> {
@@ -33,8 +46,133 @@ export function ExecutionAnalyticsForm() {
const [results, setResults] = useState<ExecutionAnalyticsResponse | null>(
null,
);
const [trendsData, setTrendsData] = useState<AccuracyTrendsResponse | null>(
null,
);
const { toast } = useToast();
// State for accuracy trends query parameters
const [accuracyParams, setAccuracyParams] = useState<{
graph_id: string;
user_id?: string;
days_back: number;
drop_threshold: number;
include_historical?: boolean;
} | null>(null);
// Use the generated API client for accuracy trends (GET)
const { data: accuracyApiResponse, error: accuracyError } =
useGetV2GetExecutionAccuracyTrendsAndAlerts(
accuracyParams || {
graph_id: "",
days_back: 30,
drop_threshold: 10.0,
include_historical: false,
},
{
query: {
enabled: !!accuracyParams?.graph_id,
},
},
);
// Update local state when data changes and handle success/error
useEffect(() => {
if (accuracyError) {
console.error("Failed to fetch trends:", accuracyError);
toast({
title: "Trends Error",
description:
(accuracyError as any)?.message || "Failed to fetch accuracy trends",
variant: "destructive",
});
return;
}
const data = accuracyApiResponse?.data;
if (data && "latest_data" in data) {
setTrendsData(data);
// Check for alerts
if (data.alert) {
toast({
title: "🚨 Accuracy Alert Detected",
description: `${data.alert.drop_percent.toFixed(1)}% accuracy drop detected for this agent`,
variant: "destructive",
});
}
}
}, [accuracyApiResponse, accuracyError, toast]);
// Chart component for accuracy trends
function AccuracyChart({ data }: { data: AccuracyLatestData[] }) {
const chartData = data.map((item) => ({
date: new Date(item.date).toLocaleDateString(),
"Daily Score": item.daily_score,
"3-Day Avg": item.three_day_avg,
"7-Day Avg": item.seven_day_avg,
"14-Day Avg": item.fourteen_day_avg,
}));
return (
<ResponsiveContainer width="100%" height={400}>
<LineChart
data={chartData}
margin={{ top: 5, right: 30, left: 20, bottom: 5 }}
>
<CartesianGrid strokeDasharray="3 3" />
<XAxis dataKey="date" />
<YAxis domain={[0, 100]} />
<Tooltip
formatter={(value) => [`${Number(value).toFixed(2)}%`, ""]}
/>
<Legend />
<Line
type="monotone"
dataKey="Daily Score"
stroke="#3b82f6"
strokeWidth={2}
dot={{ r: 3 }}
/>
<Line
type="monotone"
dataKey="3-Day Avg"
stroke="#10b981"
strokeWidth={2}
dot={{ r: 3 }}
/>
<Line
type="monotone"
dataKey="7-Day Avg"
stroke="#f59e0b"
strokeWidth={2}
dot={{ r: 3 }}
/>
<Line
type="monotone"
dataKey="14-Day Avg"
stroke="#8b5cf6"
strokeWidth={2}
dot={{ r: 3 }}
/>
</LineChart>
</ResponsiveContainer>
);
}
// Function to fetch accuracy trends using generated API client
const fetchAccuracyTrends = (graphId: string, userId?: string) => {
if (!graphId.trim()) return;
setAccuracyParams({
graph_id: graphId.trim(),
user_id: userId?.trim() || undefined,
days_back: 30,
drop_threshold: 10.0,
include_historical: showAccuracyChart, // Include historical data when chart is enabled
});
};
// Fetch configuration from API
const {
data: config,
@@ -50,6 +188,7 @@ export function ExecutionAnalyticsForm() {
}
const result = res.data;
setResults(result);
toast({
title: "Analytics Generated",
description: `Processed ${result.processed_executions} executions. ${result.successful_analytics} successful, ${result.failed_analytics} failed, ${result.skipped_executions} skipped.`,
@@ -58,11 +197,21 @@ export function ExecutionAnalyticsForm() {
},
onError: (error: any) => {
console.error("Analytics generation error:", error);
const errorMessage =
error?.message || error?.detail || "An unexpected error occurred";
const isOpenAIError = errorMessage.includes(
"OpenAI API key not configured",
);
toast({
title: "Analytics Generation Failed",
description:
error?.message || error?.detail || "An unexpected error occurred",
variant: "destructive",
title: isOpenAIError
? "Analytics Generation Skipped"
: "Analytics Generation Failed",
description: isOpenAIError
? "Analytics generation requires OpenAI configuration, but accuracy trends are still available above."
: errorMessage,
variant: isOpenAIError ? "default" : "destructive",
});
},
},
@@ -77,6 +226,9 @@ export function ExecutionAnalyticsForm() {
user_prompt: "", // Will use config default when empty
});
// State for accuracy trends chart toggle
const [showAccuracyChart, setShowAccuracyChart] = useState(true);
// Update form defaults when config loads
useEffect(() => {
if (config?.data && config.status === 200 && !formData.model_name) {
@@ -101,6 +253,11 @@ export function ExecutionAnalyticsForm() {
setResults(null);
// Fetch accuracy trends if chart is enabled
if (showAccuracyChart) {
fetchAccuracyTrends(formData.graph_id, formData.user_id || undefined);
}
// Prepare the request payload
const payload: ExecutionAnalyticsRequest = {
graph_id: formData.graph_id.trim(),
@@ -262,6 +419,18 @@ export function ExecutionAnalyticsForm() {
</Label>
</div>
{/* Show Accuracy Chart Checkbox */}
<div className="flex items-center space-x-2">
<Checkbox
id="show_accuracy_chart"
checked={showAccuracyChart}
onCheckedChange={(checked) => setShowAccuracyChart(!!checked)}
/>
<Label htmlFor="show_accuracy_chart" className="text-sm">
Show accuracy trends chart and historical data visualization
</Label>
</div>
{/* Custom System Prompt */}
<div className="space-y-2">
<Label htmlFor="system_prompt">
@@ -370,6 +539,98 @@ export function ExecutionAnalyticsForm() {
</div>
</form>
{/* Accuracy Trends Display */}
{trendsData && (
<div className="space-y-4">
<h3 className="text-lg font-semibold">Execution Accuracy Trends</h3>
{/* Alert Section */}
{trendsData.alert && (
<div className="rounded-lg border-l-4 border-red-500 bg-red-50 p-4">
<div className="flex items-start">
<span className="text-2xl">🚨</span>
<div className="ml-3 space-y-2">
<h4 className="text-lg font-semibold text-red-800">
Accuracy Alert Detected
</h4>
<p className="text-red-700">
<strong>
{trendsData.alert.drop_percent.toFixed(1)}% accuracy drop
</strong>{" "}
detected for agent{" "}
<code className="rounded bg-red-100 px-1 text-sm">
{formData.graph_id}
</code>
</p>
<div className="space-y-1 text-sm text-red-600">
<p>
3-day average:{" "}
<strong>
{trendsData.alert.three_day_avg.toFixed(2)}%
</strong>
</p>
<p>
7-day average:{" "}
<strong>
{trendsData.alert.seven_day_avg.toFixed(2)}%
</strong>
</p>
<p>
Detected at:{" "}
<strong>
{new Date(
trendsData.alert.detected_at,
).toLocaleString()}
</strong>
</p>
</div>
</div>
</div>
</div>
)}
{/* Latest Data Summary */}
<div className="grid grid-cols-2 gap-4 md:grid-cols-4">
<div className="rounded-lg border bg-white p-4 text-center">
<div className="text-2xl font-bold text-blue-600">
{trendsData.latest_data.daily_score?.toFixed(2) || "N/A"}
</div>
<div className="text-sm text-gray-600">Daily Score</div>
</div>
<div className="rounded-lg border bg-white p-4 text-center">
<div className="text-2xl font-bold text-green-600">
{trendsData.latest_data.three_day_avg?.toFixed(2) || "N/A"}
</div>
<div className="text-sm text-gray-600">3-Day Avg</div>
</div>
<div className="rounded-lg border bg-white p-4 text-center">
<div className="text-2xl font-bold text-orange-600">
{trendsData.latest_data.seven_day_avg?.toFixed(2) || "N/A"}
</div>
<div className="text-sm text-gray-600">7-Day Avg</div>
</div>
<div className="rounded-lg border bg-white p-4 text-center">
<div className="text-2xl font-bold text-purple-600">
{trendsData.latest_data.fourteen_day_avg?.toFixed(2) || "N/A"}
</div>
<div className="text-sm text-gray-600">14-Day Avg</div>
</div>
</div>
{/* Chart Section - only show when toggle is enabled and historical data exists */}
{showAccuracyChart && trendsData?.historical_data && (
<div className="mt-6">
<h4 className="mb-4 text-lg font-semibold">
Execution Accuracy Trends Chart
</h4>
<div className="rounded-lg border bg-white p-6">
<AccuracyChart data={trendsData.historical_data} />
</div>
</div>
)}
</div>
)}
{results && <AnalyticsResultsTable results={results} />}
</div>
);

View File

@@ -17,12 +17,13 @@ function ExecutionAnalyticsDashboard() {
</div>
<div className="rounded-lg border bg-white p-6 shadow-sm">
<h2 className="mb-4 text-xl font-semibold">Analytics Generation</h2>
<h2 className="mb-4 text-xl font-semibold">
Execution Analytics & Accuracy Monitoring
</h2>
<p className="mb-6 text-gray-600">
This tool will identify completed executions missing activity
summaries or success scores and generate them using AI. Only
executions that meet the criteria and are missing these fields will
be processed.
Generate missing activity summaries and success scores for agent
executions. After generation, accuracy trends and alerts will
automatically be displayed to help monitor agent health over time.
</p>
<Suspense

View File

@@ -1,4 +1,4 @@
import { OAuthPopupResultMessage } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/modals/CredentialsInputs/CredentialsInputs";
import { OAuthPopupResultMessage } from "@/components/renderers/input-renderer/fields/CredentialField/models/OAuthCredentialModal/useOAuthCredentialModal";
import { NextResponse } from "next/server";
// This route is intended to be used as the callback for integration OAuth flows,

View File

@@ -9,6 +9,8 @@ import { useGraphStore } from "@/app/(platform)/build/stores/graphStore";
import { useShallow } from "zustand/react/shallow";
import { useState } from "react";
import { useSaveGraph } from "@/app/(platform)/build/hooks/useSaveGraph";
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
import { ApiError } from "@/lib/autogpt-server-api/helpers"; // Check if this exists
export const useRunGraph = () => {
const { saveGraph, isSaving } = useSaveGraph({
@@ -24,6 +26,13 @@ export const useRunGraph = () => {
);
const [openRunInputDialog, setOpenRunInputDialog] = useState(false);
const setNodeErrorsForBackendId = useNodeStore(
useShallow((state) => state.setNodeErrorsForBackendId),
);
const clearAllNodeErrors = useNodeStore(
useShallow((state) => state.clearAllNodeErrors),
);
const [{ flowID, flowVersion, flowExecutionID }, setQueryStates] =
useQueryStates({
flowID: parseAsString,
@@ -35,19 +44,49 @@ export const useRunGraph = () => {
usePostV1ExecuteGraphAgent({
mutation: {
onSuccess: (response: any) => {
clearAllNodeErrors();
const { id } = response.data as GraphExecutionMeta;
setQueryStates({
flowExecutionID: id,
});
},
onError: (error: any) => {
// Reset running state on error
setIsGraphRunning(false);
toast({
title: (error.detail as string) ?? "An unexpected error occurred.",
description: "An unexpected error occurred.",
variant: "destructive",
});
if (error instanceof ApiError && error.isGraphValidationError?.()) {
const errorData = error.response?.detail;
if (errorData?.node_errors) {
Object.entries(errorData.node_errors).forEach(
([backendId, nodeErrors]) => {
setNodeErrorsForBackendId(
backendId,
nodeErrors as { [key: string]: string },
);
},
);
useNodeStore.getState().nodes.forEach((node) => {
const backendId = node.data.metadata?.backend_id || node.id;
if (!errorData.node_errors[backendId as string]) {
useNodeStore.getState().updateNodeErrors(node.id, {});
}
});
}
toast({
title: errorData?.message || "Graph validation failed",
description:
"Please fix the validation errors on the highlighted nodes and try again.",
variant: "destructive",
});
} else {
toast({
title:
(error.detail as string) ?? "An unexpected error occurred.",
description: "An unexpected error occurred.",
variant: "destructive",
});
}
},
},
});
@@ -77,7 +116,7 @@ export const useRunGraph = () => {
await executeGraph({
graphId: flowID ?? "",
graphVersion: flowVersion || null,
data: { inputs: {}, credentials_inputs: {} },
data: { inputs: {}, credentials_inputs: {}, source: "builder" },
});
}
};

View File

@@ -79,7 +79,11 @@ export const useRunInputDialog = ({
await executeGraph({
graphId: flowID ?? "",
graphVersion: flowVersion || null,
data: { inputs: inputValues, credentials_inputs: credentialValues },
data: {
inputs: inputValues,
credentials_inputs: credentialValues,
source: "builder",
},
});
// Optimistically set running state immediately for responsive UI
setIsGraphRunning(true);

View File

@@ -4,7 +4,7 @@ import CustomEdge from "../edges/CustomEdge";
import { useFlow } from "./useFlow";
import { useShallow } from "zustand/react/shallow";
import { useNodeStore } from "../../../stores/nodeStore";
import { useMemo, useEffect } from "react";
import { useMemo, useEffect, useCallback } from "react";
import { CustomNode } from "../nodes/CustomNode/CustomNode";
import { useCustomEdge } from "../edges/useCustomEdge";
import { useFlowRealtime } from "./useFlowRealtime";
@@ -21,6 +21,7 @@ import { useGetV1GetSpecificGraph } from "@/app/api/__generated__/endpoints/grap
import { GraphModel } from "@/app/api/__generated__/models/graphModel";
import { okData } from "@/app/api/helpers";
import { TriggerAgentBanner } from "./components/TriggerAgentBanner";
import { resolveCollisions } from "./helpers/resolve-collision";
export const Flow = () => {
const [{ flowID, flowExecutionID }] = useQueryStates({
@@ -40,6 +41,7 @@ export const Flow = () => {
);
const nodes = useNodeStore(useShallow((state) => state.nodes));
const setNodes = useNodeStore(useShallow((state) => state.setNodes));
const onNodesChange = useNodeStore(
useShallow((state) => state.onNodesChange),
);
@@ -48,6 +50,15 @@ export const Flow = () => {
);
const nodeTypes = useMemo(() => ({ custom: CustomNode }), []);
const edgeTypes = useMemo(() => ({ custom: CustomEdge }), []);
const onNodeDragStop = useCallback(() => {
setNodes(
resolveCollisions(nodes, {
maxIterations: Infinity,
overlapThreshold: 0.5,
margin: 15,
}),
);
}, [setNodes, nodes]);
const { edges, onConnect, onEdgesChange } = useCustomEdge();
// We use this hook to load the graph and convert them into custom nodes and edges.
@@ -84,6 +95,7 @@ export const Flow = () => {
edges={edges}
onConnect={onConnect}
onEdgesChange={onEdgesChange}
onNodeDragStop={onNodeDragStop}
maxZoom={2}
minZoom={0.1}
onDragOver={onDragOver}

View File

@@ -0,0 +1,160 @@
import { CustomNode } from "../../nodes/CustomNode/CustomNode";
import Flatbush from "flatbush";
export type CollisionAlgorithmOptions = {
maxIterations: number;
overlapThreshold: number;
margin: number;
};
export type CollisionAlgorithm = (
nodes: CustomNode[],
options: CollisionAlgorithmOptions,
) => CustomNode[];
type Box = {
minX: number;
minY: number;
maxX: number;
maxY: number;
id: string;
moved: boolean;
x: number;
y: number;
width: number;
height: number;
node: CustomNode;
};
function rebuildFlatbush(boxes: Box[]) {
const index = new Flatbush(boxes.length);
for (const box of boxes) {
index.add(box.minX, box.minY, box.maxX, box.maxY);
}
index.finish();
return index;
}
export const resolveCollisions: CollisionAlgorithm = (
nodes,
{ maxIterations = 50, overlapThreshold = 0.5, margin = 0 },
) => {
// Create boxes from nodes
const boxes: Box[] = new Array(nodes.length);
for (let i = 0; i < nodes.length; i++) {
const node = nodes[i];
// Use measured dimensions if available, otherwise use defaults
const width = (node.width ?? node.measured?.width ?? 0) + margin * 2;
const height = (node.height ?? node.measured?.height ?? 0) + margin * 2;
console.log("width", width);
console.log("height", height);
const x = node.position.x - margin;
const y = node.position.y - margin;
const box: Box = {
minX: x,
minY: y,
maxX: x + width,
maxY: y + height,
id: node.id,
moved: false,
x,
y,
width,
height,
node,
};
boxes[i] = box;
}
let numIterations = 0;
let index = rebuildFlatbush(boxes);
for (let iter = 0; iter <= maxIterations; iter++) {
let moved = false;
// For each box, find potential collisions using spatial search
for (let i = 0; i < boxes.length; i++) {
const A = boxes[i];
// Search for boxes that might overlap with A
const candidateIndices = index.search(A.minX, A.minY, A.maxX, A.maxY);
for (const j of candidateIndices) {
const B = boxes[j];
// Skip self
if (A.id === B.id) continue;
// Calculate center positions
const centerAX = A.x + A.width * 0.5;
const centerAY = A.y + A.height * 0.5;
const centerBX = B.x + B.width * 0.5;
const centerBY = B.y + B.height * 0.5;
// Calculate distance between centers
const dx = centerAX - centerBX;
const dy = centerAY - centerBY;
// Calculate overlap along each axis
const px = (A.width + B.width) * 0.5 - Math.abs(dx);
const py = (A.height + B.height) * 0.5 - Math.abs(dy);
// Check if there's significant overlap
if (px > overlapThreshold && py > overlapThreshold) {
A.moved = B.moved = moved = true;
// Resolve along the smallest overlap axis
if (px < py) {
// Move along x-axis
const sx = dx > 0 ? 1 : -1;
const moveAmount = (px / 2) * sx;
A.x += moveAmount;
A.minX += moveAmount;
A.maxX += moveAmount;
B.x -= moveAmount;
B.minX -= moveAmount;
B.maxX -= moveAmount;
} else {
// Move along y-axis
const sy = dy > 0 ? 1 : -1;
const moveAmount = (py / 2) * sy;
A.y += moveAmount;
A.minY += moveAmount;
A.maxY += moveAmount;
B.y -= moveAmount;
B.minY -= moveAmount;
B.maxY -= moveAmount;
}
}
}
}
numIterations = numIterations + 1;
// Early exit if no overlaps were found
if (!moved) {
break;
}
index = rebuildFlatbush(boxes);
}
const newNodes = boxes.map((box) => {
if (box.moved) {
return {
...box.node,
position: {
x: box.x + margin,
y: box.y + margin,
},
};
}
return box.node;
});
return newNodes;
};

View File

@@ -1,24 +1,25 @@
import { useCallback } from "react";
import { useReactFlow } from "@xyflow/react";
import { Key, storage } from "@/services/storage/local-storage";
import { v4 as uuidv4 } from "uuid";
import { useNodeStore } from "../../../stores/nodeStore";
import { useEdgeStore } from "../../../stores/edgeStore";
import { CustomNode } from "../nodes/CustomNode/CustomNode";
import { CustomEdge } from "../edges/CustomEdge";
import { useToast } from "@/components/molecules/Toast/use-toast";
interface CopyableData {
nodes: CustomNode[];
edges: CustomEdge[];
}
const CLIPBOARD_PREFIX = "autogpt-flow-data:";
export function useCopyPaste() {
// Only use useReactFlow for viewport (not managed by stores)
const { getViewport } = useReactFlow();
const { toast } = useToast();
const handleCopyPaste = useCallback(
(event: KeyboardEvent) => {
// Prevent copy/paste if any modal is open or if the focus is on an input element
const activeElement = document.activeElement;
const isInputField =
activeElement?.tagName === "INPUT" ||
@@ -28,7 +29,6 @@ export function useCopyPaste() {
if (isInputField) return;
if (event.ctrlKey || event.metaKey) {
// COPY: Ctrl+C or Cmd+C
if (event.key === "c" || event.key === "C") {
const { nodes } = useNodeStore.getState();
const { edges } = useEdgeStore.getState();
@@ -53,81 +53,102 @@ export function useCopyPaste() {
edges: selectedEdges,
};
storage.set(Key.COPIED_FLOW_DATA, JSON.stringify(copiedData));
const clipboardText = `${CLIPBOARD_PREFIX}${JSON.stringify(copiedData)}`;
navigator.clipboard
.writeText(clipboardText)
.then(() => {
toast({
title: "Copied successfully",
description: `${selectedNodes.length} node(s) copied to clipboard`,
});
})
.catch((error) => {
console.error("Failed to copy to clipboard:", error);
});
}
// PASTE: Ctrl+V or Cmd+V
if (event.key === "v" || event.key === "V") {
const copiedDataString = storage.get(Key.COPIED_FLOW_DATA);
if (copiedDataString) {
const copiedData = JSON.parse(copiedDataString) as CopyableData;
const oldToNewIdMap: Record<string, string> = {};
navigator.clipboard
.readText()
.then((clipboardText) => {
if (!clipboardText.startsWith(CLIPBOARD_PREFIX)) {
return; // Not our data, ignore
}
// Get fresh viewport values at paste time to ensure correct positioning
const { x, y, zoom } = getViewport();
const viewportCenter = {
x: (window.innerWidth / 2 - x) / zoom,
y: (window.innerHeight / 2 - y) / zoom,
};
const jsonString = clipboardText.slice(CLIPBOARD_PREFIX.length);
const copiedData = JSON.parse(jsonString) as CopyableData;
const oldToNewIdMap: Record<string, string> = {};
let minX = Infinity,
minY = Infinity,
maxX = -Infinity,
maxY = -Infinity;
copiedData.nodes.forEach((node) => {
minX = Math.min(minX, node.position.x);
minY = Math.min(minY, node.position.y);
maxX = Math.max(maxX, node.position.x);
maxY = Math.max(maxY, node.position.y);
});
const offsetX = viewportCenter.x - (minX + maxX) / 2;
const offsetY = viewportCenter.y - (minY + maxY) / 2;
// Deselect existing nodes first
useNodeStore.setState((state) => ({
nodes: state.nodes.map((node) => ({ ...node, selected: false })),
}));
// Create and add new nodes with UNIQUE IDs using UUID
copiedData.nodes.forEach((node) => {
const newNodeId = uuidv4();
oldToNewIdMap[node.id] = newNodeId;
const newNode: CustomNode = {
...node,
id: newNodeId,
selected: true,
position: {
x: node.position.x + offsetX,
y: node.position.y + offsetY,
},
const { x, y, zoom } = getViewport();
const viewportCenter = {
x: (window.innerWidth / 2 - x) / zoom,
y: (window.innerHeight / 2 - y) / zoom,
};
useNodeStore.getState().addNode(newNode);
});
// Add edges with updated source/target IDs
const { addEdge } = useEdgeStore.getState();
copiedData.edges.forEach((edge) => {
const newSourceId = oldToNewIdMap[edge.source] ?? edge.source;
const newTargetId = oldToNewIdMap[edge.target] ?? edge.target;
addEdge({
source: newSourceId,
target: newTargetId,
sourceHandle: edge.sourceHandle ?? "",
targetHandle: edge.targetHandle ?? "",
data: {
...edge.data,
},
let minX = Infinity,
minY = Infinity,
maxX = -Infinity,
maxY = -Infinity;
copiedData.nodes.forEach((node) => {
minX = Math.min(minX, node.position.x);
minY = Math.min(minY, node.position.y);
maxX = Math.max(maxX, node.position.x);
maxY = Math.max(maxY, node.position.y);
});
const offsetX = viewportCenter.x - (minX + maxX) / 2;
const offsetY = viewportCenter.y - (minY + maxY) / 2;
// Deselect existing nodes first
useNodeStore.setState((state) => ({
nodes: state.nodes.map((node) => ({
...node,
selected: false,
})),
}));
// Create and add new nodes with UNIQUE IDs using UUID
copiedData.nodes.forEach((node) => {
const newNodeId = uuidv4();
oldToNewIdMap[node.id] = newNodeId;
const newNode: CustomNode = {
...node,
id: newNodeId,
selected: true,
position: {
x: node.position.x + offsetX,
y: node.position.y + offsetY,
},
};
useNodeStore.getState().addNode(newNode);
});
// Add edges with updated source/target IDs
const { addEdge } = useEdgeStore.getState();
copiedData.edges.forEach((edge) => {
const newSourceId = oldToNewIdMap[edge.source] ?? edge.source;
const newTargetId = oldToNewIdMap[edge.target] ?? edge.target;
addEdge({
source: newSourceId,
target: newTargetId,
sourceHandle: edge.sourceHandle ?? "",
targetHandle: edge.targetHandle ?? "",
data: {
...edge.data,
},
});
});
})
.catch((error) => {
console.error("Failed to read from clipboard:", error);
});
}
}
}
},
[getViewport],
[getViewport, toast],
);
return handleCopyPaste;

View File

@@ -42,11 +42,12 @@ export const useFlow = () => {
const setBlockMenuOpen = useControlPanelStore(
useShallow((state) => state.setBlockMenuOpen),
);
const [{ flowID, flowVersion, flowExecutionID }] = useQueryStates({
flowID: parseAsString,
flowVersion: parseAsInteger,
flowExecutionID: parseAsString,
});
const [{ flowID, flowVersion, flowExecutionID }, setQueryStates] =
useQueryStates({
flowID: parseAsString,
flowVersion: parseAsInteger,
flowExecutionID: parseAsString,
});
const { data: executionDetails } = useGetV1GetExecutionDetails(
flowID || "",
@@ -81,7 +82,7 @@ export const useFlow = () => {
{
query: {
select: (res) => res.data as BlockInfo[],
enabled: !!flowID && !!blockIds,
enabled: !!flowID && !!blockIds && blockIds.length > 0,
},
},
);
@@ -102,6 +103,9 @@ export const useFlow = () => {
// load graph schemas
useEffect(() => {
if (graph) {
setQueryStates({
flowVersion: graph.version ?? 1,
});
setGraphSchemas(
graph.input_schema as Record<string, any> | null,
graph.credentials_input_schema as Record<string, any> | null,

View File

@@ -37,6 +37,7 @@ export type CustomNodeData = {
costs: BlockCost[];
categories: BlockInfoCategoriesItem[];
metadata?: NodeModelMetadata;
errors?: { [key: string]: string };
};
export type CustomNode = XYNode<CustomNodeData, "custom">;
@@ -71,10 +72,24 @@ export const CustomNode: React.FC<NodeProps<CustomNode>> = React.memo(
? (data.hardcodedValues.output_schema ?? {})
: data.outputSchema;
const hasConfigErrors =
data.errors &&
Object.values(data.errors).some(
(value) => value !== null && value !== undefined && value !== "",
);
const outputData = data.nodeExecutionResult?.output_data;
const hasOutputError =
typeof outputData === "object" &&
outputData !== null &&
"error" in outputData;
const hasErrors = hasConfigErrors || hasOutputError;
// Currently all blockTypes design are similar - that's why i am using the same component for all of them
// If in future - if we need some drastic change in some blockTypes design - we can create separate components for them
return (
<NodeContainer selected={selected} nodeId={nodeId}>
<NodeContainer selected={selected} nodeId={nodeId} hasErrors={hasErrors}>
<div className="rounded-xlarge bg-white">
<NodeHeader data={data} nodeId={nodeId} />
{isWebhook && <WebhookDisclaimer nodeId={nodeId} />}
@@ -91,7 +106,11 @@ export const CustomNode: React.FC<NodeProps<CustomNode>> = React.memo(
/>
<NodeAdvancedToggle nodeId={nodeId} />
{data.uiType != BlockUIType.OUTPUT && (
<OutputHandler outputSchema={outputSchema} nodeId={nodeId} />
<OutputHandler
uiType={data.uiType}
outputSchema={outputSchema}
nodeId={nodeId}
/>
)}
<NodeDataRenderer nodeId={nodeId} />
</div>

Some files were not shown because too many files have changed in this diff Show More