Compare commits
60 Commits
abhi/show-
...
make-old-w
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
326554d89a | ||
|
|
5e22a1888a | ||
|
|
a4d7b0142f | ||
|
|
7d6375f59c | ||
|
|
aeec0ce509 | ||
|
|
b32bfcaac5 | ||
|
|
5373a6eb6e | ||
|
|
98cde46ccb | ||
|
|
bd10da10d9 | ||
|
|
60fdee1345 | ||
|
|
6f2783468c | ||
|
|
c1031b286d | ||
|
|
b849eafb7f | ||
|
|
572c3f5e0d | ||
|
|
89003a585d | ||
|
|
0e65785228 | ||
|
|
f07dff1cdd | ||
|
|
00e02a4696 | ||
|
|
634bff8277 | ||
|
|
d591f36c7b | ||
|
|
a347bed0b1 | ||
|
|
4eeb6ee2b0 | ||
|
|
7db962b9f9 | ||
|
|
9108b21541 | ||
|
|
ffe9325296 | ||
|
|
0a616d9267 | ||
|
|
ab95077e5b | ||
|
|
e477150979 | ||
|
|
804430e243 | ||
|
|
acb320d32d | ||
|
|
32f68d5999 | ||
|
|
49f56b4e8d | ||
|
|
bead811e73 | ||
|
|
013f728ebf | ||
|
|
cda9572acd | ||
|
|
e0784f8f6b | ||
|
|
3040f39136 | ||
|
|
515504c604 | ||
|
|
18edeaeaf4 | ||
|
|
44182aff9c | ||
|
|
864c5a7846 | ||
|
|
699fffb1a8 | ||
|
|
f0641c2d26 | ||
|
|
94b6f74c95 | ||
|
|
46aabab3ea | ||
|
|
0a65df5102 | ||
|
|
6fbd208fe3 | ||
|
|
8fc174ca87 | ||
|
|
cacc89790f | ||
|
|
b9113bee02 | ||
|
|
3f65da03e7 | ||
|
|
9e96d11b2d | ||
|
|
4c264b7ae9 | ||
|
|
0adbc0bd05 | ||
|
|
8f3291bc92 | ||
|
|
7a20de880d | ||
|
|
ef8a6d2528 | ||
|
|
fd66be2aaa | ||
|
|
ae2cc97dc4 | ||
|
|
ea521eed26 |
73
.github/workflows/classic-autogpt-ci.yml
vendored
@@ -6,11 +6,15 @@ on:
|
||||
paths:
|
||||
- '.github/workflows/classic-autogpt-ci.yml'
|
||||
- 'classic/original_autogpt/**'
|
||||
- 'classic/direct_benchmark/**'
|
||||
- 'classic/forge/**'
|
||||
pull_request:
|
||||
branches: [ master, dev, release-* ]
|
||||
paths:
|
||||
- '.github/workflows/classic-autogpt-ci.yml'
|
||||
- 'classic/original_autogpt/**'
|
||||
- 'classic/direct_benchmark/**'
|
||||
- 'classic/forge/**'
|
||||
|
||||
concurrency:
|
||||
group: ${{ format('classic-autogpt-ci-{0}', github.head_ref && format('{0}-{1}', github.event_name, github.event.pull_request.number) || github.sha) }}
|
||||
@@ -19,47 +23,22 @@ concurrency:
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
working-directory: classic/original_autogpt
|
||||
working-directory: classic
|
||||
|
||||
jobs:
|
||||
test:
|
||||
permissions:
|
||||
contents: read
|
||||
timeout-minutes: 30
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python-version: ["3.10"]
|
||||
platform-os: [ubuntu, macos, macos-arm64, windows]
|
||||
runs-on: ${{ matrix.platform-os != 'macos-arm64' && format('{0}-latest', matrix.platform-os) || 'macos-14' }}
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
# Quite slow on macOS (2~4 minutes to set up Docker)
|
||||
# - name: Set up Docker (macOS)
|
||||
# if: runner.os == 'macOS'
|
||||
# uses: crazy-max/ghaction-setup-docker@v3
|
||||
|
||||
- name: Start MinIO service (Linux)
|
||||
if: runner.os == 'Linux'
|
||||
- name: Start MinIO service
|
||||
working-directory: '.'
|
||||
run: |
|
||||
docker pull minio/minio:edge-cicd
|
||||
docker run -d -p 9000:9000 minio/minio:edge-cicd
|
||||
|
||||
- name: Start MinIO service (macOS)
|
||||
if: runner.os == 'macOS'
|
||||
working-directory: ${{ runner.temp }}
|
||||
run: |
|
||||
brew install minio/stable/minio
|
||||
mkdir data
|
||||
minio server ./data &
|
||||
|
||||
# No MinIO on Windows:
|
||||
# - Windows doesn't support running Linux Docker containers
|
||||
# - It doesn't seem possible to start background processes on Windows. They are
|
||||
# killed after the step returns.
|
||||
# See: https://github.com/actions/runner/issues/598#issuecomment-2011890429
|
||||
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
@@ -71,41 +50,23 @@ jobs:
|
||||
git config --global user.name "Auto-GPT-Bot"
|
||||
git config --global user.email "github-bot@agpt.co"
|
||||
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
- name: Set up Python 3.12
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
python-version: "3.12"
|
||||
|
||||
- id: get_date
|
||||
name: Get date
|
||||
run: echo "date=$(date +'%Y-%m-%d')" >> $GITHUB_OUTPUT
|
||||
|
||||
- name: Set up Python dependency cache
|
||||
# On Windows, unpacking cached dependencies takes longer than just installing them
|
||||
if: runner.os != 'Windows'
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ${{ runner.os == 'macOS' && '~/Library/Caches/pypoetry' || '~/.cache/pypoetry' }}
|
||||
key: poetry-${{ runner.os }}-${{ hashFiles('classic/original_autogpt/poetry.lock') }}
|
||||
path: ~/.cache/pypoetry
|
||||
key: poetry-${{ runner.os }}-${{ hashFiles('classic/poetry.lock') }}
|
||||
|
||||
- name: Install Poetry (Unix)
|
||||
if: runner.os != 'Windows'
|
||||
run: |
|
||||
curl -sSL https://install.python-poetry.org | python3 -
|
||||
|
||||
if [ "${{ runner.os }}" = "macOS" ]; then
|
||||
PATH="$HOME/.local/bin:$PATH"
|
||||
echo "$HOME/.local/bin" >> $GITHUB_PATH
|
||||
fi
|
||||
|
||||
- name: Install Poetry (Windows)
|
||||
if: runner.os == 'Windows'
|
||||
shell: pwsh
|
||||
run: |
|
||||
(Invoke-WebRequest -Uri https://install.python-poetry.org -UseBasicParsing).Content | python -
|
||||
|
||||
$env:PATH += ";$env:APPDATA\Python\Scripts"
|
||||
echo "$env:APPDATA\Python\Scripts" >> $env:GITHUB_PATH
|
||||
- name: Install Poetry
|
||||
run: curl -sSL https://install.python-poetry.org | python3 -
|
||||
|
||||
- name: Install Python dependencies
|
||||
run: poetry install
|
||||
@@ -116,12 +77,12 @@ jobs:
|
||||
--cov=autogpt --cov-branch --cov-report term-missing --cov-report xml \
|
||||
--numprocesses=logical --durations=10 \
|
||||
--junitxml=junit.xml -o junit_family=legacy \
|
||||
tests/unit tests/integration
|
||||
original_autogpt/tests/unit original_autogpt/tests/integration
|
||||
env:
|
||||
CI: true
|
||||
PLAIN_OUTPUT: True
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
S3_ENDPOINT_URL: ${{ runner.os != 'Windows' && 'http://127.0.0.1:9000' || '' }}
|
||||
S3_ENDPOINT_URL: http://127.0.0.1:9000
|
||||
AWS_ACCESS_KEY_ID: minioadmin
|
||||
AWS_SECRET_ACCESS_KEY: minioadmin
|
||||
|
||||
@@ -135,11 +96,11 @@ jobs:
|
||||
uses: codecov/codecov-action@v5
|
||||
with:
|
||||
token: ${{ secrets.CODECOV_TOKEN }}
|
||||
flags: autogpt-agent,${{ runner.os }}
|
||||
flags: autogpt-agent
|
||||
|
||||
- name: Upload logs to artifact
|
||||
if: always()
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: test-logs
|
||||
path: classic/original_autogpt/logs/
|
||||
path: classic/logs/
|
||||
|
||||
36
.github/workflows/classic-autogpts-ci.yml
vendored
@@ -11,9 +11,6 @@ on:
|
||||
- 'classic/original_autogpt/**'
|
||||
- 'classic/forge/**'
|
||||
- 'classic/benchmark/**'
|
||||
- 'classic/run'
|
||||
- 'classic/cli.py'
|
||||
- 'classic/setup.py'
|
||||
- '!**/*.md'
|
||||
pull_request:
|
||||
branches: [ master, dev, release-* ]
|
||||
@@ -22,9 +19,6 @@ on:
|
||||
- 'classic/original_autogpt/**'
|
||||
- 'classic/forge/**'
|
||||
- 'classic/benchmark/**'
|
||||
- 'classic/run'
|
||||
- 'classic/cli.py'
|
||||
- 'classic/setup.py'
|
||||
- '!**/*.md'
|
||||
|
||||
defaults:
|
||||
@@ -35,13 +29,9 @@ defaults:
|
||||
jobs:
|
||||
serve-agent-protocol:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
agent-name: [ original_autogpt ]
|
||||
fail-fast: false
|
||||
timeout-minutes: 20
|
||||
env:
|
||||
min-python-version: '3.10'
|
||||
min-python-version: '3.12'
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
@@ -55,22 +45,22 @@ jobs:
|
||||
python-version: ${{ env.min-python-version }}
|
||||
|
||||
- name: Install Poetry
|
||||
working-directory: ./classic/${{ matrix.agent-name }}/
|
||||
run: |
|
||||
curl -sSL https://install.python-poetry.org | python -
|
||||
|
||||
- name: Run regression tests
|
||||
- name: Install dependencies
|
||||
run: poetry install
|
||||
|
||||
- name: Run smoke tests with direct-benchmark
|
||||
run: |
|
||||
./run agent start ${{ matrix.agent-name }}
|
||||
cd ${{ matrix.agent-name }}
|
||||
poetry run agbenchmark --mock --test=BasicRetrieval --test=Battleship --test=WebArenaTask_0
|
||||
poetry run agbenchmark --test=WriteFile
|
||||
poetry run direct-benchmark run \
|
||||
--strategies one_shot \
|
||||
--models claude \
|
||||
--tests ReadFile,WriteFile \
|
||||
--json
|
||||
env:
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
AGENT_NAME: ${{ matrix.agent-name }}
|
||||
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
|
||||
REQUESTS_CA_BUNDLE: /etc/ssl/certs/ca-certificates.crt
|
||||
HELICONE_CACHE_ENABLED: false
|
||||
HELICONE_PROPERTY_AGENT: ${{ matrix.agent-name }}
|
||||
REPORTS_FOLDER: ${{ format('../../reports/{0}', matrix.agent-name) }}
|
||||
TELEMETRY_ENVIRONMENT: autogpt-ci
|
||||
TELEMETRY_OPT_IN: ${{ github.ref_name == 'master' }}
|
||||
NONINTERACTIVE_MODE: "true"
|
||||
CI: true
|
||||
|
||||
189
.github/workflows/classic-benchmark-ci.yml
vendored
@@ -1,17 +1,21 @@
|
||||
name: Classic - AGBenchmark CI
|
||||
name: Classic - Direct Benchmark CI
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ master, dev, ci-test* ]
|
||||
paths:
|
||||
- 'classic/benchmark/**'
|
||||
- '!classic/benchmark/reports/**'
|
||||
- 'classic/direct_benchmark/**'
|
||||
- 'classic/benchmark/agbenchmark/challenges/**'
|
||||
- 'classic/original_autogpt/**'
|
||||
- 'classic/forge/**'
|
||||
- .github/workflows/classic-benchmark-ci.yml
|
||||
pull_request:
|
||||
branches: [ master, dev, release-* ]
|
||||
paths:
|
||||
- 'classic/benchmark/**'
|
||||
- '!classic/benchmark/reports/**'
|
||||
- 'classic/direct_benchmark/**'
|
||||
- 'classic/benchmark/agbenchmark/challenges/**'
|
||||
- 'classic/original_autogpt/**'
|
||||
- 'classic/forge/**'
|
||||
- .github/workflows/classic-benchmark-ci.yml
|
||||
|
||||
concurrency:
|
||||
@@ -23,23 +27,16 @@ defaults:
|
||||
shell: bash
|
||||
|
||||
env:
|
||||
min-python-version: '3.10'
|
||||
min-python-version: '3.12'
|
||||
|
||||
jobs:
|
||||
test:
|
||||
permissions:
|
||||
contents: read
|
||||
benchmark-tests:
|
||||
runs-on: ubuntu-latest
|
||||
timeout-minutes: 30
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python-version: ["3.10"]
|
||||
platform-os: [ubuntu, macos, macos-arm64, windows]
|
||||
runs-on: ${{ matrix.platform-os != 'macos-arm64' && format('{0}-latest', matrix.platform-os) || 'macos-14' }}
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
working-directory: classic/benchmark
|
||||
working-directory: classic
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
@@ -47,71 +44,84 @@ jobs:
|
||||
fetch-depth: 0
|
||||
submodules: true
|
||||
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
- name: Set up Python ${{ env.min-python-version }}
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
python-version: ${{ env.min-python-version }}
|
||||
|
||||
- name: Set up Python dependency cache
|
||||
# On Windows, unpacking cached dependencies takes longer than just installing them
|
||||
if: runner.os != 'Windows'
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ${{ runner.os == 'macOS' && '~/Library/Caches/pypoetry' || '~/.cache/pypoetry' }}
|
||||
key: poetry-${{ runner.os }}-${{ hashFiles('classic/benchmark/poetry.lock') }}
|
||||
path: ~/.cache/pypoetry
|
||||
key: poetry-${{ runner.os }}-${{ hashFiles('classic/poetry.lock') }}
|
||||
|
||||
- name: Install Poetry (Unix)
|
||||
if: runner.os != 'Windows'
|
||||
- name: Install Poetry
|
||||
run: |
|
||||
curl -sSL https://install.python-poetry.org | python3 -
|
||||
|
||||
if [ "${{ runner.os }}" = "macOS" ]; then
|
||||
PATH="$HOME/.local/bin:$PATH"
|
||||
echo "$HOME/.local/bin" >> $GITHUB_PATH
|
||||
fi
|
||||
|
||||
- name: Install Poetry (Windows)
|
||||
if: runner.os == 'Windows'
|
||||
shell: pwsh
|
||||
run: |
|
||||
(Invoke-WebRequest -Uri https://install.python-poetry.org -UseBasicParsing).Content | python -
|
||||
|
||||
$env:PATH += ";$env:APPDATA\Python\Scripts"
|
||||
echo "$env:APPDATA\Python\Scripts" >> $env:GITHUB_PATH
|
||||
|
||||
- name: Install Python dependencies
|
||||
- name: Install dependencies
|
||||
run: poetry install
|
||||
|
||||
- name: Run pytest with coverage
|
||||
- name: Run basic benchmark tests
|
||||
run: |
|
||||
poetry run pytest -vv \
|
||||
--cov=agbenchmark --cov-branch --cov-report term-missing --cov-report xml \
|
||||
--durations=10 \
|
||||
--junitxml=junit.xml -o junit_family=legacy \
|
||||
tests
|
||||
echo "Testing ReadFile challenge with one_shot strategy..."
|
||||
poetry run direct-benchmark run \
|
||||
--strategies one_shot \
|
||||
--models claude \
|
||||
--tests ReadFile \
|
||||
--json
|
||||
|
||||
echo "Testing WriteFile challenge..."
|
||||
poetry run direct-benchmark run \
|
||||
--strategies one_shot \
|
||||
--models claude \
|
||||
--tests WriteFile \
|
||||
--json
|
||||
env:
|
||||
CI: true
|
||||
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
NONINTERACTIVE_MODE: "true"
|
||||
|
||||
- name: Upload test results to Codecov
|
||||
if: ${{ !cancelled() }} # Run even if tests fail
|
||||
uses: codecov/test-results-action@v1
|
||||
with:
|
||||
token: ${{ secrets.CODECOV_TOKEN }}
|
||||
- name: Test category filtering
|
||||
run: |
|
||||
echo "Testing coding category..."
|
||||
poetry run direct-benchmark run \
|
||||
--strategies one_shot \
|
||||
--models claude \
|
||||
--categories coding \
|
||||
--tests ReadFile,WriteFile \
|
||||
--json
|
||||
env:
|
||||
CI: true
|
||||
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
NONINTERACTIVE_MODE: "true"
|
||||
|
||||
- name: Upload coverage reports to Codecov
|
||||
uses: codecov/codecov-action@v5
|
||||
with:
|
||||
token: ${{ secrets.CODECOV_TOKEN }}
|
||||
flags: agbenchmark,${{ runner.os }}
|
||||
- name: Test multiple strategies
|
||||
run: |
|
||||
echo "Testing multiple strategies..."
|
||||
poetry run direct-benchmark run \
|
||||
--strategies one_shot,plan_execute \
|
||||
--models claude \
|
||||
--tests ReadFile \
|
||||
--parallel 2 \
|
||||
--json
|
||||
env:
|
||||
CI: true
|
||||
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
NONINTERACTIVE_MODE: "true"
|
||||
|
||||
self-test-with-agent:
|
||||
# Run regression tests on maintain challenges
|
||||
regression-tests:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
agent-name: [forge]
|
||||
fail-fast: false
|
||||
timeout-minutes: 20
|
||||
timeout-minutes: 45
|
||||
if: github.ref == 'refs/heads/master' || github.ref == 'refs/heads/dev'
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
working-directory: classic
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
@@ -126,51 +136,22 @@ jobs:
|
||||
|
||||
- name: Install Poetry
|
||||
run: |
|
||||
curl -sSL https://install.python-poetry.org | python -
|
||||
curl -sSL https://install.python-poetry.org | python3 -
|
||||
|
||||
- name: Install dependencies
|
||||
run: poetry install
|
||||
|
||||
- name: Run regression tests
|
||||
working-directory: classic
|
||||
run: |
|
||||
./run agent start ${{ matrix.agent-name }}
|
||||
cd ${{ matrix.agent-name }}
|
||||
|
||||
set +e # Ignore non-zero exit codes and continue execution
|
||||
echo "Running the following command: poetry run agbenchmark --maintain --mock"
|
||||
poetry run agbenchmark --maintain --mock
|
||||
EXIT_CODE=$?
|
||||
set -e # Stop ignoring non-zero exit codes
|
||||
# Check if the exit code was 5, and if so, exit with 0 instead
|
||||
if [ $EXIT_CODE -eq 5 ]; then
|
||||
echo "regression_tests.json is empty."
|
||||
fi
|
||||
|
||||
echo "Running the following command: poetry run agbenchmark --mock"
|
||||
poetry run agbenchmark --mock
|
||||
|
||||
echo "Running the following command: poetry run agbenchmark --mock --category=data"
|
||||
poetry run agbenchmark --mock --category=data
|
||||
|
||||
echo "Running the following command: poetry run agbenchmark --mock --category=coding"
|
||||
poetry run agbenchmark --mock --category=coding
|
||||
|
||||
# echo "Running the following command: poetry run agbenchmark --test=WriteFile"
|
||||
# poetry run agbenchmark --test=WriteFile
|
||||
cd ../benchmark
|
||||
poetry install
|
||||
echo "Adding the BUILD_SKILL_TREE environment variable. This will attempt to add new elements in the skill tree. If new elements are added, the CI fails because they should have been pushed"
|
||||
export BUILD_SKILL_TREE=true
|
||||
|
||||
# poetry run agbenchmark --mock
|
||||
|
||||
# CHANGED=$(git diff --name-only | grep -E '(agbenchmark/challenges)|(../classic/frontend/assets)') || echo "No diffs"
|
||||
# if [ ! -z "$CHANGED" ]; then
|
||||
# echo "There are unstaged changes please run agbenchmark and commit those changes since they are needed."
|
||||
# echo "$CHANGED"
|
||||
# exit 1
|
||||
# else
|
||||
# echo "No unstaged changes."
|
||||
# fi
|
||||
echo "Running regression tests (previously beaten challenges)..."
|
||||
poetry run direct-benchmark run \
|
||||
--strategies one_shot \
|
||||
--models claude \
|
||||
--maintain \
|
||||
--parallel 4 \
|
||||
--json
|
||||
env:
|
||||
CI: true
|
||||
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
TELEMETRY_ENVIRONMENT: autogpt-benchmark-ci
|
||||
TELEMETRY_OPT_IN: ${{ github.ref_name == 'master' }}
|
||||
NONINTERACTIVE_MODE: "true"
|
||||
|
||||
182
.github/workflows/classic-forge-ci.yml
vendored
@@ -6,13 +6,11 @@ on:
|
||||
paths:
|
||||
- '.github/workflows/classic-forge-ci.yml'
|
||||
- 'classic/forge/**'
|
||||
- '!classic/forge/tests/vcr_cassettes'
|
||||
pull_request:
|
||||
branches: [ master, dev, release-* ]
|
||||
paths:
|
||||
- '.github/workflows/classic-forge-ci.yml'
|
||||
- 'classic/forge/**'
|
||||
- '!classic/forge/tests/vcr_cassettes'
|
||||
|
||||
concurrency:
|
||||
group: ${{ format('forge-ci-{0}', github.head_ref && format('{0}-{1}', github.event_name, github.event.pull_request.number) || github.sha) }}
|
||||
@@ -21,115 +19,38 @@ concurrency:
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
working-directory: classic/forge
|
||||
working-directory: classic
|
||||
|
||||
jobs:
|
||||
test:
|
||||
permissions:
|
||||
contents: read
|
||||
timeout-minutes: 30
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python-version: ["3.10"]
|
||||
platform-os: [ubuntu, macos, macos-arm64, windows]
|
||||
runs-on: ${{ matrix.platform-os != 'macos-arm64' && format('{0}-latest', matrix.platform-os) || 'macos-14' }}
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
# Quite slow on macOS (2~4 minutes to set up Docker)
|
||||
# - name: Set up Docker (macOS)
|
||||
# if: runner.os == 'macOS'
|
||||
# uses: crazy-max/ghaction-setup-docker@v3
|
||||
|
||||
- name: Start MinIO service (Linux)
|
||||
if: runner.os == 'Linux'
|
||||
- name: Start MinIO service
|
||||
working-directory: '.'
|
||||
run: |
|
||||
docker pull minio/minio:edge-cicd
|
||||
docker run -d -p 9000:9000 minio/minio:edge-cicd
|
||||
|
||||
- name: Start MinIO service (macOS)
|
||||
if: runner.os == 'macOS'
|
||||
working-directory: ${{ runner.temp }}
|
||||
run: |
|
||||
brew install minio/stable/minio
|
||||
mkdir data
|
||||
minio server ./data &
|
||||
|
||||
# No MinIO on Windows:
|
||||
# - Windows doesn't support running Linux Docker containers
|
||||
# - It doesn't seem possible to start background processes on Windows. They are
|
||||
# killed after the step returns.
|
||||
# See: https://github.com/actions/runner/issues/598#issuecomment-2011890429
|
||||
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
submodules: true
|
||||
|
||||
- name: Checkout cassettes
|
||||
if: ${{ startsWith(github.event_name, 'pull_request') }}
|
||||
env:
|
||||
PR_BASE: ${{ github.event.pull_request.base.ref }}
|
||||
PR_BRANCH: ${{ github.event.pull_request.head.ref }}
|
||||
PR_AUTHOR: ${{ github.event.pull_request.user.login }}
|
||||
run: |
|
||||
cassette_branch="${PR_AUTHOR}-${PR_BRANCH}"
|
||||
cassette_base_branch="${PR_BASE}"
|
||||
cd tests/vcr_cassettes
|
||||
|
||||
if ! git ls-remote --exit-code --heads origin $cassette_base_branch ; then
|
||||
cassette_base_branch="master"
|
||||
fi
|
||||
|
||||
if git ls-remote --exit-code --heads origin $cassette_branch ; then
|
||||
git fetch origin $cassette_branch
|
||||
git fetch origin $cassette_base_branch
|
||||
|
||||
git checkout $cassette_branch
|
||||
|
||||
# Pick non-conflicting cassette updates from the base branch
|
||||
git merge --no-commit --strategy-option=ours origin/$cassette_base_branch
|
||||
echo "Using cassettes from mirror branch '$cassette_branch'," \
|
||||
"synced to upstream branch '$cassette_base_branch'."
|
||||
else
|
||||
git checkout -b $cassette_branch
|
||||
echo "Branch '$cassette_branch' does not exist in cassette submodule." \
|
||||
"Using cassettes from '$cassette_base_branch'."
|
||||
fi
|
||||
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
- name: Set up Python 3.12
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
python-version: "3.12"
|
||||
|
||||
- name: Set up Python dependency cache
|
||||
# On Windows, unpacking cached dependencies takes longer than just installing them
|
||||
if: runner.os != 'Windows'
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ${{ runner.os == 'macOS' && '~/Library/Caches/pypoetry' || '~/.cache/pypoetry' }}
|
||||
key: poetry-${{ runner.os }}-${{ hashFiles('classic/forge/poetry.lock') }}
|
||||
path: ~/.cache/pypoetry
|
||||
key: poetry-${{ runner.os }}-${{ hashFiles('classic/poetry.lock') }}
|
||||
|
||||
- name: Install Poetry (Unix)
|
||||
if: runner.os != 'Windows'
|
||||
run: |
|
||||
curl -sSL https://install.python-poetry.org | python3 -
|
||||
|
||||
if [ "${{ runner.os }}" = "macOS" ]; then
|
||||
PATH="$HOME/.local/bin:$PATH"
|
||||
echo "$HOME/.local/bin" >> $GITHUB_PATH
|
||||
fi
|
||||
|
||||
- name: Install Poetry (Windows)
|
||||
if: runner.os == 'Windows'
|
||||
shell: pwsh
|
||||
run: |
|
||||
(Invoke-WebRequest -Uri https://install.python-poetry.org -UseBasicParsing).Content | python -
|
||||
|
||||
$env:PATH += ";$env:APPDATA\Python\Scripts"
|
||||
echo "$env:APPDATA\Python\Scripts" >> $env:GITHUB_PATH
|
||||
- name: Install Poetry
|
||||
run: curl -sSL https://install.python-poetry.org | python3 -
|
||||
|
||||
- name: Install Python dependencies
|
||||
run: poetry install
|
||||
@@ -140,12 +61,15 @@ jobs:
|
||||
--cov=forge --cov-branch --cov-report term-missing --cov-report xml \
|
||||
--durations=10 \
|
||||
--junitxml=junit.xml -o junit_family=legacy \
|
||||
forge
|
||||
forge/forge forge/tests
|
||||
env:
|
||||
CI: true
|
||||
PLAIN_OUTPUT: True
|
||||
# API keys - tests that need these will skip if not available
|
||||
# Secrets are not available to fork PRs (GitHub security feature)
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
S3_ENDPOINT_URL: ${{ runner.os != 'Windows' && 'http://127.0.0.1:9000' || '' }}
|
||||
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
|
||||
S3_ENDPOINT_URL: http://127.0.0.1:9000
|
||||
AWS_ACCESS_KEY_ID: minioadmin
|
||||
AWS_SECRET_ACCESS_KEY: minioadmin
|
||||
|
||||
@@ -159,85 +83,11 @@ jobs:
|
||||
uses: codecov/codecov-action@v5
|
||||
with:
|
||||
token: ${{ secrets.CODECOV_TOKEN }}
|
||||
flags: forge,${{ runner.os }}
|
||||
|
||||
- id: setup_git_auth
|
||||
name: Set up git token authentication
|
||||
# Cassettes may be pushed even when tests fail
|
||||
if: success() || failure()
|
||||
run: |
|
||||
config_key="http.${{ github.server_url }}/.extraheader"
|
||||
if [ "${{ runner.os }}" = 'macOS' ]; then
|
||||
base64_pat=$(echo -n "pat:${{ secrets.PAT_REVIEW }}" | base64)
|
||||
else
|
||||
base64_pat=$(echo -n "pat:${{ secrets.PAT_REVIEW }}" | base64 -w0)
|
||||
fi
|
||||
|
||||
git config "$config_key" \
|
||||
"Authorization: Basic $base64_pat"
|
||||
|
||||
cd tests/vcr_cassettes
|
||||
git config "$config_key" \
|
||||
"Authorization: Basic $base64_pat"
|
||||
|
||||
echo "config_key=$config_key" >> $GITHUB_OUTPUT
|
||||
|
||||
- id: push_cassettes
|
||||
name: Push updated cassettes
|
||||
# For pull requests, push updated cassettes even when tests fail
|
||||
if: github.event_name == 'push' || (! github.event.pull_request.head.repo.fork && (success() || failure()))
|
||||
env:
|
||||
PR_BRANCH: ${{ github.event.pull_request.head.ref }}
|
||||
PR_AUTHOR: ${{ github.event.pull_request.user.login }}
|
||||
run: |
|
||||
if [ "${{ startsWith(github.event_name, 'pull_request') }}" = "true" ]; then
|
||||
is_pull_request=true
|
||||
cassette_branch="${PR_AUTHOR}-${PR_BRANCH}"
|
||||
else
|
||||
cassette_branch="${{ github.ref_name }}"
|
||||
fi
|
||||
|
||||
cd tests/vcr_cassettes
|
||||
# Commit & push changes to cassettes if any
|
||||
if ! git diff --quiet; then
|
||||
git add .
|
||||
git commit -m "Auto-update cassettes"
|
||||
git push origin HEAD:$cassette_branch
|
||||
if [ ! $is_pull_request ]; then
|
||||
cd ../..
|
||||
git add tests/vcr_cassettes
|
||||
git commit -m "Update cassette submodule"
|
||||
git push origin HEAD:$cassette_branch
|
||||
fi
|
||||
echo "updated=true" >> $GITHUB_OUTPUT
|
||||
else
|
||||
echo "updated=false" >> $GITHUB_OUTPUT
|
||||
echo "No cassette changes to commit"
|
||||
fi
|
||||
|
||||
- name: Post Set up git token auth
|
||||
if: steps.setup_git_auth.outcome == 'success'
|
||||
run: |
|
||||
git config --unset-all '${{ steps.setup_git_auth.outputs.config_key }}'
|
||||
git submodule foreach git config --unset-all '${{ steps.setup_git_auth.outputs.config_key }}'
|
||||
|
||||
- name: Apply "behaviour change" label and comment on PR
|
||||
if: ${{ startsWith(github.event_name, 'pull_request') }}
|
||||
run: |
|
||||
PR_NUMBER="${{ github.event.pull_request.number }}"
|
||||
TOKEN="${{ secrets.PAT_REVIEW }}"
|
||||
REPO="${{ github.repository }}"
|
||||
|
||||
if [[ "${{ steps.push_cassettes.outputs.updated }}" == "true" ]]; then
|
||||
echo "Adding label and comment..."
|
||||
echo $TOKEN | gh auth login --with-token
|
||||
gh issue edit $PR_NUMBER --add-label "behaviour change"
|
||||
gh issue comment $PR_NUMBER --body "You changed AutoGPT's behaviour on ${{ runner.os }}. The cassettes have been updated and will be merged to the submodule when this Pull Request gets merged."
|
||||
fi
|
||||
flags: forge
|
||||
|
||||
- name: Upload logs to artifact
|
||||
if: always()
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: test-logs
|
||||
path: classic/forge/logs/
|
||||
path: classic/logs/
|
||||
|
||||
60
.github/workflows/classic-frontend-ci.yml
vendored
@@ -1,60 +0,0 @@
|
||||
name: Classic - Frontend CI/CD
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
- dev
|
||||
- 'ci-test*' # This will match any branch that starts with "ci-test"
|
||||
paths:
|
||||
- 'classic/frontend/**'
|
||||
- '.github/workflows/classic-frontend-ci.yml'
|
||||
pull_request:
|
||||
paths:
|
||||
- 'classic/frontend/**'
|
||||
- '.github/workflows/classic-frontend-ci.yml'
|
||||
|
||||
jobs:
|
||||
build:
|
||||
permissions:
|
||||
contents: write
|
||||
pull-requests: write
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
BUILD_BRANCH: ${{ format('classic-frontend-build/{0}', github.ref_name) }}
|
||||
|
||||
steps:
|
||||
- name: Checkout Repo
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Setup Flutter
|
||||
uses: subosito/flutter-action@v2
|
||||
with:
|
||||
flutter-version: '3.13.2'
|
||||
|
||||
- name: Build Flutter to Web
|
||||
run: |
|
||||
cd classic/frontend
|
||||
flutter build web --base-href /app/
|
||||
|
||||
# - name: Commit and Push to ${{ env.BUILD_BRANCH }}
|
||||
# if: github.event_name == 'push'
|
||||
# run: |
|
||||
# git config --local user.email "action@github.com"
|
||||
# git config --local user.name "GitHub Action"
|
||||
# git add classic/frontend/build/web
|
||||
# git checkout -B ${{ env.BUILD_BRANCH }}
|
||||
# git commit -m "Update frontend build to ${GITHUB_SHA:0:7}" -a
|
||||
# git push -f origin ${{ env.BUILD_BRANCH }}
|
||||
|
||||
- name: Create PR ${{ env.BUILD_BRANCH }} -> ${{ github.ref_name }}
|
||||
if: github.event_name == 'push'
|
||||
uses: peter-evans/create-pull-request@v7
|
||||
with:
|
||||
add-paths: classic/frontend/build/web
|
||||
base: ${{ github.ref_name }}
|
||||
branch: ${{ env.BUILD_BRANCH }}
|
||||
delete-branch: true
|
||||
title: "Update frontend build in `${{ github.ref_name }}`"
|
||||
body: "This PR updates the frontend build based on commit ${{ github.sha }}."
|
||||
commit-message: "Update frontend build based on commit ${{ github.sha }}"
|
||||
67
.github/workflows/classic-python-checks.yml
vendored
@@ -7,7 +7,9 @@ on:
|
||||
- '.github/workflows/classic-python-checks-ci.yml'
|
||||
- 'classic/original_autogpt/**'
|
||||
- 'classic/forge/**'
|
||||
- 'classic/benchmark/**'
|
||||
- 'classic/direct_benchmark/**'
|
||||
- 'classic/pyproject.toml'
|
||||
- 'classic/poetry.lock'
|
||||
- '**.py'
|
||||
- '!classic/forge/tests/vcr_cassettes'
|
||||
pull_request:
|
||||
@@ -16,7 +18,9 @@ on:
|
||||
- '.github/workflows/classic-python-checks-ci.yml'
|
||||
- 'classic/original_autogpt/**'
|
||||
- 'classic/forge/**'
|
||||
- 'classic/benchmark/**'
|
||||
- 'classic/direct_benchmark/**'
|
||||
- 'classic/pyproject.toml'
|
||||
- 'classic/poetry.lock'
|
||||
- '**.py'
|
||||
- '!classic/forge/tests/vcr_cassettes'
|
||||
|
||||
@@ -27,44 +31,13 @@ concurrency:
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
working-directory: classic
|
||||
|
||||
jobs:
|
||||
get-changed-parts:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- id: changes-in
|
||||
name: Determine affected subprojects
|
||||
uses: dorny/paths-filter@v3
|
||||
with:
|
||||
filters: |
|
||||
original_autogpt:
|
||||
- classic/original_autogpt/autogpt/**
|
||||
- classic/original_autogpt/tests/**
|
||||
- classic/original_autogpt/poetry.lock
|
||||
forge:
|
||||
- classic/forge/forge/**
|
||||
- classic/forge/tests/**
|
||||
- classic/forge/poetry.lock
|
||||
benchmark:
|
||||
- classic/benchmark/agbenchmark/**
|
||||
- classic/benchmark/tests/**
|
||||
- classic/benchmark/poetry.lock
|
||||
outputs:
|
||||
changed-parts: ${{ steps.changes-in.outputs.changes }}
|
||||
|
||||
lint:
|
||||
needs: get-changed-parts
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
min-python-version: "3.10"
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
sub-package: ${{ fromJson(needs.get-changed-parts.outputs.changed-parts) }}
|
||||
fail-fast: false
|
||||
min-python-version: "3.12"
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
@@ -81,42 +54,31 @@ jobs:
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.cache/pypoetry
|
||||
key: ${{ runner.os }}-poetry-${{ hashFiles(format('{0}/poetry.lock', matrix.sub-package)) }}
|
||||
key: ${{ runner.os }}-poetry-${{ hashFiles('classic/poetry.lock') }}
|
||||
|
||||
- name: Install Poetry
|
||||
run: curl -sSL https://install.python-poetry.org | python3 -
|
||||
|
||||
# Install dependencies
|
||||
|
||||
- name: Install Python dependencies
|
||||
run: poetry -C classic/${{ matrix.sub-package }} install
|
||||
run: poetry install
|
||||
|
||||
# Lint
|
||||
|
||||
- name: Lint (isort)
|
||||
run: poetry run isort --check .
|
||||
working-directory: classic/${{ matrix.sub-package }}
|
||||
|
||||
- name: Lint (Black)
|
||||
if: success() || failure()
|
||||
run: poetry run black --check .
|
||||
working-directory: classic/${{ matrix.sub-package }}
|
||||
|
||||
- name: Lint (Flake8)
|
||||
if: success() || failure()
|
||||
run: poetry run flake8 .
|
||||
working-directory: classic/${{ matrix.sub-package }}
|
||||
|
||||
types:
|
||||
needs: get-changed-parts
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
min-python-version: "3.10"
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
sub-package: ${{ fromJson(needs.get-changed-parts.outputs.changed-parts) }}
|
||||
fail-fast: false
|
||||
min-python-version: "3.12"
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
@@ -133,19 +95,16 @@ jobs:
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.cache/pypoetry
|
||||
key: ${{ runner.os }}-poetry-${{ hashFiles(format('{0}/poetry.lock', matrix.sub-package)) }}
|
||||
key: ${{ runner.os }}-poetry-${{ hashFiles('classic/poetry.lock') }}
|
||||
|
||||
- name: Install Poetry
|
||||
run: curl -sSL https://install.python-poetry.org | python3 -
|
||||
|
||||
# Install dependencies
|
||||
|
||||
- name: Install Python dependencies
|
||||
run: poetry -C classic/${{ matrix.sub-package }} install
|
||||
run: poetry install
|
||||
|
||||
# Typecheck
|
||||
|
||||
- name: Typecheck
|
||||
if: success() || failure()
|
||||
run: poetry run pyright
|
||||
working-directory: classic/${{ matrix.sub-package }}
|
||||
|
||||
38
.github/workflows/platform-frontend-ci.yml
vendored
@@ -128,7 +128,7 @@ jobs:
|
||||
token: ${{ secrets.GITHUB_TOKEN }}
|
||||
exitOnceUploaded: true
|
||||
|
||||
e2e_test:
|
||||
test:
|
||||
runs-on: big-boi
|
||||
needs: setup
|
||||
strategy:
|
||||
@@ -258,39 +258,3 @@ jobs:
|
||||
- name: Print Final Docker Compose logs
|
||||
if: always()
|
||||
run: docker compose -f ../docker-compose.yml logs
|
||||
|
||||
integration_test:
|
||||
runs-on: ubuntu-latest
|
||||
needs: setup
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: recursive
|
||||
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: "22.18.0"
|
||||
|
||||
- name: Enable corepack
|
||||
run: corepack enable
|
||||
|
||||
- name: Restore dependencies cache
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.pnpm-store
|
||||
key: ${{ needs.setup.outputs.cache-key }}
|
||||
restore-keys: |
|
||||
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
|
||||
${{ runner.os }}-pnpm-
|
||||
|
||||
- name: Install dependencies
|
||||
run: pnpm install --frozen-lockfile
|
||||
|
||||
- name: Generate API client
|
||||
run: pnpm generate:api
|
||||
|
||||
- name: Run Integration Tests
|
||||
run: pnpm test:unit
|
||||
|
||||
10
.gitignore
vendored
@@ -3,6 +3,7 @@
|
||||
classic/original_autogpt/keys.py
|
||||
classic/original_autogpt/*.json
|
||||
auto_gpt_workspace/*
|
||||
.autogpt/
|
||||
*.mpeg
|
||||
.env
|
||||
# Root .env files
|
||||
@@ -159,6 +160,10 @@ CURRENT_BULLETIN.md
|
||||
|
||||
# AgBenchmark
|
||||
classic/benchmark/agbenchmark/reports/
|
||||
classic/reports/
|
||||
classic/direct_benchmark/reports/
|
||||
classic/.benchmark_workspaces/
|
||||
classic/direct_benchmark/.benchmark_workspaces/
|
||||
|
||||
# Nodejs
|
||||
package-lock.json
|
||||
@@ -177,5 +182,8 @@ autogpt_platform/backend/settings.py
|
||||
|
||||
*.ign.*
|
||||
.test-contents
|
||||
.claude/settings.local.json
|
||||
**/.claude/settings.local.json
|
||||
/autogpt_platform/backend/logs
|
||||
|
||||
# Test database
|
||||
test.db
|
||||
|
||||
3
.gitmodules
vendored
@@ -1,3 +0,0 @@
|
||||
[submodule "classic/forge/tests/vcr_cassettes"]
|
||||
path = classic/forge/tests/vcr_cassettes
|
||||
url = https://github.com/Significant-Gravitas/Auto-GPT-test-cassettes
|
||||
@@ -43,29 +43,10 @@ repos:
|
||||
pass_filenames: false
|
||||
|
||||
- id: poetry-install
|
||||
name: Check & Install dependencies - Classic - AutoGPT
|
||||
alias: poetry-install-classic-autogpt
|
||||
entry: poetry -C classic/original_autogpt install
|
||||
# include forge source (since it's a path dependency)
|
||||
files: ^classic/(original_autogpt|forge)/poetry\.lock$
|
||||
types: [file]
|
||||
language: system
|
||||
pass_filenames: false
|
||||
|
||||
- id: poetry-install
|
||||
name: Check & Install dependencies - Classic - Forge
|
||||
alias: poetry-install-classic-forge
|
||||
entry: poetry -C classic/forge install
|
||||
files: ^classic/forge/poetry\.lock$
|
||||
types: [file]
|
||||
language: system
|
||||
pass_filenames: false
|
||||
|
||||
- id: poetry-install
|
||||
name: Check & Install dependencies - Classic - Benchmark
|
||||
alias: poetry-install-classic-benchmark
|
||||
entry: poetry -C classic/benchmark install
|
||||
files: ^classic/benchmark/poetry\.lock$
|
||||
name: Check & Install dependencies - Classic
|
||||
alias: poetry-install-classic
|
||||
entry: poetry -C classic install
|
||||
files: ^classic/poetry\.lock$
|
||||
types: [file]
|
||||
language: system
|
||||
pass_filenames: false
|
||||
@@ -116,26 +97,10 @@ repos:
|
||||
language: system
|
||||
|
||||
- id: isort
|
||||
name: Lint (isort) - Classic - AutoGPT
|
||||
alias: isort-classic-autogpt
|
||||
entry: poetry -P classic/original_autogpt run isort -p autogpt
|
||||
files: ^classic/original_autogpt/
|
||||
types: [file, python]
|
||||
language: system
|
||||
|
||||
- id: isort
|
||||
name: Lint (isort) - Classic - Forge
|
||||
alias: isort-classic-forge
|
||||
entry: poetry -P classic/forge run isort -p forge
|
||||
files: ^classic/forge/
|
||||
types: [file, python]
|
||||
language: system
|
||||
|
||||
- id: isort
|
||||
name: Lint (isort) - Classic - Benchmark
|
||||
alias: isort-classic-benchmark
|
||||
entry: poetry -P classic/benchmark run isort -p agbenchmark
|
||||
files: ^classic/benchmark/
|
||||
name: Lint (isort) - Classic
|
||||
alias: isort-classic
|
||||
entry: bash -c 'cd classic && poetry run isort $(echo "$@" | sed "s|classic/||g")' --
|
||||
files: ^classic/(original_autogpt|forge|direct_benchmark)/
|
||||
types: [file, python]
|
||||
language: system
|
||||
|
||||
@@ -149,26 +114,13 @@ repos:
|
||||
|
||||
- repo: https://github.com/PyCQA/flake8
|
||||
rev: 7.0.0
|
||||
# To have flake8 load the config of the individual subprojects, we have to call
|
||||
# them separately.
|
||||
# Use consolidated flake8 config at classic/.flake8
|
||||
hooks:
|
||||
- id: flake8
|
||||
name: Lint (Flake8) - Classic - AutoGPT
|
||||
alias: flake8-classic-autogpt
|
||||
files: ^classic/original_autogpt/(autogpt|scripts|tests)/
|
||||
args: [--config=classic/original_autogpt/.flake8]
|
||||
|
||||
- id: flake8
|
||||
name: Lint (Flake8) - Classic - Forge
|
||||
alias: flake8-classic-forge
|
||||
files: ^classic/forge/(forge|tests)/
|
||||
args: [--config=classic/forge/.flake8]
|
||||
|
||||
- id: flake8
|
||||
name: Lint (Flake8) - Classic - Benchmark
|
||||
alias: flake8-classic-benchmark
|
||||
files: ^classic/benchmark/(agbenchmark|tests)/((?!reports).)*[/.]
|
||||
args: [--config=classic/benchmark/.flake8]
|
||||
name: Lint (Flake8) - Classic
|
||||
alias: flake8-classic
|
||||
files: ^classic/(original_autogpt|forge|direct_benchmark)/
|
||||
args: [--config=classic/.flake8]
|
||||
|
||||
- repo: local
|
||||
hooks:
|
||||
@@ -204,29 +156,10 @@ repos:
|
||||
pass_filenames: false
|
||||
|
||||
- id: pyright
|
||||
name: Typecheck - Classic - AutoGPT
|
||||
alias: pyright-classic-autogpt
|
||||
entry: poetry -C classic/original_autogpt run pyright
|
||||
# include forge source (since it's a path dependency) but exclude *_test.py files:
|
||||
files: ^(classic/original_autogpt/((autogpt|scripts|tests)/|poetry\.lock$)|classic/forge/(forge/.*(?<!_test)\.py|poetry\.lock)$)
|
||||
types: [file]
|
||||
language: system
|
||||
pass_filenames: false
|
||||
|
||||
- id: pyright
|
||||
name: Typecheck - Classic - Forge
|
||||
alias: pyright-classic-forge
|
||||
entry: poetry -C classic/forge run pyright
|
||||
files: ^classic/forge/(forge/|poetry\.lock$)
|
||||
types: [file]
|
||||
language: system
|
||||
pass_filenames: false
|
||||
|
||||
- id: pyright
|
||||
name: Typecheck - Classic - Benchmark
|
||||
alias: pyright-classic-benchmark
|
||||
entry: poetry -C classic/benchmark run pyright
|
||||
files: ^classic/benchmark/(agbenchmark/|tests/|poetry\.lock$)
|
||||
name: Typecheck - Classic
|
||||
alias: pyright-classic
|
||||
entry: poetry -C classic run pyright
|
||||
files: ^classic/(original_autogpt|forge|direct_benchmark)/.*\.py$|^classic/poetry\.lock$
|
||||
types: [file]
|
||||
language: system
|
||||
pass_filenames: false
|
||||
|
||||
26
AGENTS.md
@@ -16,32 +16,6 @@ See `docs/content/platform/getting-started.md` for setup instructions.
|
||||
- Format Python code with `poetry run format`.
|
||||
- Format frontend code using `pnpm format`.
|
||||
|
||||
|
||||
## Frontend guidelines:
|
||||
|
||||
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
|
||||
|
||||
1. **Pages**: Create in `src/app/(platform)/feature-name/page.tsx`
|
||||
- Add `usePageName.ts` hook for logic
|
||||
- Put sub-components in local `components/` folder
|
||||
2. **Components**: Structure as `ComponentName/ComponentName.tsx` + `useComponentName.ts` + `helpers.ts`
|
||||
- Use design system components from `src/components/` (atoms, molecules, organisms)
|
||||
- Never use `src/components/__legacy__/*`
|
||||
3. **Data fetching**: Use generated API hooks from `@/app/api/__generated__/endpoints/`
|
||||
- Regenerate with `pnpm generate:api`
|
||||
- Pattern: `use{Method}{Version}{OperationName}`
|
||||
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
|
||||
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
|
||||
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
|
||||
- Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component
|
||||
- Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts)
|
||||
- Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible
|
||||
- Avoid large hooks, abstract logic into `helpers.ts` files when sensible
|
||||
- Use function declarations for components, arrow functions only for callbacks
|
||||
- No barrel files or `index.ts` re-exports
|
||||
- Do not use `useCallback` or `useMemo` unless strictly needed
|
||||
- Avoid comments at all times unless the code is very complex
|
||||
|
||||
## Testing
|
||||
|
||||
- Backend: `poetry run test` (runs pytest with a docker based postgres + prisma).
|
||||
|
||||
@@ -201,7 +201,7 @@ If you get any pushback or hit complex block conditions check the new_blocks gui
|
||||
3. Write tests alongside the route file
|
||||
4. Run `poetry run test` to verify
|
||||
|
||||
### Frontend guidelines:
|
||||
**Frontend feature development:**
|
||||
|
||||
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
|
||||
|
||||
@@ -217,14 +217,6 @@ See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
|
||||
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
|
||||
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
|
||||
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
|
||||
- Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component
|
||||
- Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts)
|
||||
- Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible
|
||||
- Avoid large hooks, abstract logic into `helpers.ts` files when sensible
|
||||
- Use function declarations for components, arrow functions only for callbacks
|
||||
- No barrel files or `index.ts` re-exports
|
||||
- Do not use `useCallback` or `useMemo` unless strictly needed
|
||||
- Avoid comments at all times unless the code is very complex
|
||||
|
||||
### Security Implementation
|
||||
|
||||
|
||||
@@ -290,11 +290,6 @@ async def _cache_session(session: ChatSession) -> None:
|
||||
await async_redis.setex(redis_key, config.session_ttl, session.model_dump_json())
|
||||
|
||||
|
||||
async def cache_chat_session(session: ChatSession) -> None:
|
||||
"""Cache a chat session without persisting to the database."""
|
||||
await _cache_session(session)
|
||||
|
||||
|
||||
async def _get_session_from_db(session_id: str) -> ChatSession | None:
|
||||
"""Get a chat session from the database."""
|
||||
prisma_session = await chat_db.get_chat_session(session_id)
|
||||
|
||||
@@ -172,12 +172,12 @@ async def get_session(
|
||||
user_id: The optional authenticated user ID, or None for anonymous access.
|
||||
|
||||
Returns:
|
||||
SessionDetailResponse: Details for the requested session, or None if not found.
|
||||
SessionDetailResponse: Details for the requested session; raises NotFoundError if not found.
|
||||
|
||||
"""
|
||||
session = await get_chat_session(session_id, user_id)
|
||||
if not session:
|
||||
raise NotFoundError(f"Session {session_id} not found.")
|
||||
raise NotFoundError(f"Session {session_id} not found")
|
||||
|
||||
messages = [message.model_dump() for message in session.messages]
|
||||
logger.info(
|
||||
@@ -222,8 +222,6 @@ async def stream_chat_post(
|
||||
session = await _validate_and_get_session(session_id, user_id)
|
||||
|
||||
async def event_generator() -> AsyncGenerator[str, None]:
|
||||
chunk_count = 0
|
||||
first_chunk_type: str | None = None
|
||||
async for chunk in chat_service.stream_chat_completion(
|
||||
session_id,
|
||||
request.message,
|
||||
@@ -232,26 +230,7 @@ async def stream_chat_post(
|
||||
session=session, # Pass pre-fetched session to avoid double-fetch
|
||||
context=request.context,
|
||||
):
|
||||
if chunk_count < 3:
|
||||
logger.info(
|
||||
"Chat stream chunk",
|
||||
extra={
|
||||
"session_id": session_id,
|
||||
"chunk_type": str(chunk.type),
|
||||
},
|
||||
)
|
||||
if not first_chunk_type:
|
||||
first_chunk_type = str(chunk.type)
|
||||
chunk_count += 1
|
||||
yield chunk.to_sse()
|
||||
logger.info(
|
||||
"Chat stream completed",
|
||||
extra={
|
||||
"session_id": session_id,
|
||||
"chunk_count": chunk_count,
|
||||
"first_chunk_type": first_chunk_type,
|
||||
},
|
||||
)
|
||||
# AI SDK protocol termination
|
||||
yield "data: [DONE]\n\n"
|
||||
|
||||
@@ -296,8 +275,6 @@ async def stream_chat_get(
|
||||
session = await _validate_and_get_session(session_id, user_id)
|
||||
|
||||
async def event_generator() -> AsyncGenerator[str, None]:
|
||||
chunk_count = 0
|
||||
first_chunk_type: str | None = None
|
||||
async for chunk in chat_service.stream_chat_completion(
|
||||
session_id,
|
||||
message,
|
||||
@@ -305,26 +282,7 @@ async def stream_chat_get(
|
||||
user_id=user_id,
|
||||
session=session, # Pass pre-fetched session to avoid double-fetch
|
||||
):
|
||||
if chunk_count < 3:
|
||||
logger.info(
|
||||
"Chat stream chunk",
|
||||
extra={
|
||||
"session_id": session_id,
|
||||
"chunk_type": str(chunk.type),
|
||||
},
|
||||
)
|
||||
if not first_chunk_type:
|
||||
first_chunk_type = str(chunk.type)
|
||||
chunk_count += 1
|
||||
yield chunk.to_sse()
|
||||
logger.info(
|
||||
"Chat stream completed",
|
||||
extra={
|
||||
"session_id": session_id,
|
||||
"chunk_count": chunk_count,
|
||||
"first_chunk_type": first_chunk_type,
|
||||
},
|
||||
)
|
||||
# AI SDK protocol termination
|
||||
yield "data: [DONE]\n\n"
|
||||
|
||||
|
||||
@@ -1,20 +1,12 @@
|
||||
import asyncio
|
||||
import logging
|
||||
import time
|
||||
from asyncio import CancelledError
|
||||
from collections.abc import AsyncGenerator
|
||||
from typing import Any
|
||||
|
||||
import orjson
|
||||
from langfuse import get_client, propagate_attributes
|
||||
from langfuse.openai import openai # type: ignore
|
||||
from openai import (
|
||||
APIConnectionError,
|
||||
APIError,
|
||||
APIStatusError,
|
||||
PermissionDeniedError,
|
||||
RateLimitError,
|
||||
)
|
||||
from openai import APIConnectionError, APIError, APIStatusError, RateLimitError
|
||||
from openai.types.chat import ChatCompletionChunk, ChatCompletionToolParam
|
||||
|
||||
from backend.data.understanding import (
|
||||
@@ -29,7 +21,6 @@ from .model import (
|
||||
ChatMessage,
|
||||
ChatSession,
|
||||
Usage,
|
||||
cache_chat_session,
|
||||
get_chat_session,
|
||||
update_session_title,
|
||||
upsert_chat_session,
|
||||
@@ -305,10 +296,6 @@ async def stream_chat_completion(
|
||||
content="",
|
||||
)
|
||||
accumulated_tool_calls: list[dict[str, Any]] = []
|
||||
has_saved_assistant_message = False
|
||||
has_appended_streaming_message = False
|
||||
last_cache_time = 0.0
|
||||
last_cache_content_len = 0
|
||||
|
||||
# Wrap main logic in try/finally to ensure Langfuse observations are always ended
|
||||
has_yielded_end = False
|
||||
@@ -345,23 +332,6 @@ async def stream_chat_completion(
|
||||
assert assistant_response.content is not None
|
||||
assistant_response.content += delta
|
||||
has_received_text = True
|
||||
if not has_appended_streaming_message:
|
||||
session.messages.append(assistant_response)
|
||||
has_appended_streaming_message = True
|
||||
current_time = time.monotonic()
|
||||
content_len = len(assistant_response.content)
|
||||
if (
|
||||
current_time - last_cache_time >= 1.0
|
||||
and content_len > last_cache_content_len
|
||||
):
|
||||
try:
|
||||
await cache_chat_session(session)
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
f"Failed to cache partial session {session.session_id}: {e}"
|
||||
)
|
||||
last_cache_time = current_time
|
||||
last_cache_content_len = content_len
|
||||
yield chunk
|
||||
elif isinstance(chunk, StreamTextEnd):
|
||||
# Emit text-end after text completes
|
||||
@@ -420,42 +390,10 @@ async def stream_chat_completion(
|
||||
if has_received_text and not text_streaming_ended:
|
||||
yield StreamTextEnd(id=text_block_id)
|
||||
text_streaming_ended = True
|
||||
|
||||
# Save assistant message before yielding finish to ensure it's persisted
|
||||
# even if client disconnects immediately after receiving StreamFinish
|
||||
if not has_saved_assistant_message:
|
||||
messages_to_save_early: list[ChatMessage] = []
|
||||
if accumulated_tool_calls:
|
||||
assistant_response.tool_calls = (
|
||||
accumulated_tool_calls
|
||||
)
|
||||
if not has_appended_streaming_message and (
|
||||
assistant_response.content
|
||||
or assistant_response.tool_calls
|
||||
):
|
||||
messages_to_save_early.append(assistant_response)
|
||||
messages_to_save_early.extend(tool_response_messages)
|
||||
|
||||
if messages_to_save_early:
|
||||
session.messages.extend(messages_to_save_early)
|
||||
logger.info(
|
||||
f"Saving assistant message before StreamFinish: "
|
||||
f"content_len={len(assistant_response.content or '')}, "
|
||||
f"tool_calls={len(assistant_response.tool_calls or [])}, "
|
||||
f"tool_responses={len(tool_response_messages)}"
|
||||
)
|
||||
if (
|
||||
messages_to_save_early
|
||||
or has_appended_streaming_message
|
||||
):
|
||||
await upsert_chat_session(session)
|
||||
has_saved_assistant_message = True
|
||||
|
||||
has_yielded_end = True
|
||||
yield chunk
|
||||
elif isinstance(chunk, StreamError):
|
||||
has_yielded_error = True
|
||||
yield chunk
|
||||
elif isinstance(chunk, StreamUsage):
|
||||
session.usage.append(
|
||||
Usage(
|
||||
@@ -475,27 +413,6 @@ async def stream_chat_completion(
|
||||
langfuse.update_current_trace(output=str(tool_response_messages))
|
||||
langfuse.update_current_span(output=str(tool_response_messages))
|
||||
|
||||
except CancelledError:
|
||||
if not has_saved_assistant_message:
|
||||
if accumulated_tool_calls:
|
||||
assistant_response.tool_calls = accumulated_tool_calls
|
||||
if assistant_response.content:
|
||||
assistant_response.content = (
|
||||
f"{assistant_response.content}\n\n[interrupted]"
|
||||
)
|
||||
else:
|
||||
assistant_response.content = "[interrupted]"
|
||||
if not has_appended_streaming_message:
|
||||
session.messages.append(assistant_response)
|
||||
if tool_response_messages:
|
||||
session.messages.extend(tool_response_messages)
|
||||
try:
|
||||
await upsert_chat_session(session)
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
f"Failed to save interrupted session {session.session_id}: {e}"
|
||||
)
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(f"Error during stream: {e!s}", exc_info=True)
|
||||
|
||||
@@ -517,19 +434,14 @@ async def stream_chat_completion(
|
||||
# Add assistant message if it has content or tool calls
|
||||
if accumulated_tool_calls:
|
||||
assistant_response.tool_calls = accumulated_tool_calls
|
||||
if not has_appended_streaming_message and (
|
||||
assistant_response.content or assistant_response.tool_calls
|
||||
):
|
||||
if assistant_response.content or assistant_response.tool_calls:
|
||||
messages_to_save.append(assistant_response)
|
||||
|
||||
# Add tool response messages after assistant message
|
||||
messages_to_save.extend(tool_response_messages)
|
||||
|
||||
if not has_saved_assistant_message:
|
||||
if messages_to_save:
|
||||
session.messages.extend(messages_to_save)
|
||||
if messages_to_save or has_appended_streaming_message:
|
||||
await upsert_chat_session(session)
|
||||
session.messages.extend(messages_to_save)
|
||||
await upsert_chat_session(session)
|
||||
|
||||
if not has_yielded_error:
|
||||
error_message = str(e)
|
||||
@@ -560,49 +472,38 @@ async def stream_chat_completion(
|
||||
return # Exit after retry to avoid double-saving in finally block
|
||||
|
||||
# Normal completion path - save session and handle tool call continuation
|
||||
# Only save if we haven't already saved when StreamFinish was received
|
||||
if not has_saved_assistant_message:
|
||||
logger.info(
|
||||
f"Normal completion path: session={session.session_id}, "
|
||||
f"current message_count={len(session.messages)}"
|
||||
)
|
||||
|
||||
# Build the messages list in the correct order
|
||||
messages_to_save: list[ChatMessage] = []
|
||||
|
||||
# Add assistant message with tool_calls if any
|
||||
if accumulated_tool_calls:
|
||||
assistant_response.tool_calls = accumulated_tool_calls
|
||||
logger.info(
|
||||
f"Normal completion path: session={session.session_id}, "
|
||||
f"current message_count={len(session.messages)}"
|
||||
f"Added {len(accumulated_tool_calls)} tool calls to assistant message"
|
||||
)
|
||||
if assistant_response.content or assistant_response.tool_calls:
|
||||
messages_to_save.append(assistant_response)
|
||||
logger.info(
|
||||
f"Saving assistant message with content_len={len(assistant_response.content or '')}, tool_calls={len(assistant_response.tool_calls or [])}"
|
||||
)
|
||||
|
||||
# Build the messages list in the correct order
|
||||
messages_to_save: list[ChatMessage] = []
|
||||
# Add tool response messages after assistant message
|
||||
messages_to_save.extend(tool_response_messages)
|
||||
logger.info(
|
||||
f"Saving {len(tool_response_messages)} tool response messages, "
|
||||
f"total_to_save={len(messages_to_save)}"
|
||||
)
|
||||
|
||||
# Add assistant message with tool_calls if any
|
||||
if accumulated_tool_calls:
|
||||
assistant_response.tool_calls = accumulated_tool_calls
|
||||
logger.info(
|
||||
f"Added {len(accumulated_tool_calls)} tool calls to assistant message"
|
||||
)
|
||||
if not has_appended_streaming_message and (
|
||||
assistant_response.content or assistant_response.tool_calls
|
||||
):
|
||||
messages_to_save.append(assistant_response)
|
||||
logger.info(
|
||||
f"Saving assistant message with content_len={len(assistant_response.content or '')}, tool_calls={len(assistant_response.tool_calls or [])}"
|
||||
)
|
||||
|
||||
# Add tool response messages after assistant message
|
||||
messages_to_save.extend(tool_response_messages)
|
||||
logger.info(
|
||||
f"Saving {len(tool_response_messages)} tool response messages, "
|
||||
f"total_to_save={len(messages_to_save)}"
|
||||
)
|
||||
|
||||
if messages_to_save:
|
||||
session.messages.extend(messages_to_save)
|
||||
logger.info(
|
||||
f"Extended session messages, new message_count={len(session.messages)}"
|
||||
)
|
||||
if messages_to_save or has_appended_streaming_message:
|
||||
await upsert_chat_session(session)
|
||||
else:
|
||||
logger.info(
|
||||
"Assistant message already saved when StreamFinish was received, "
|
||||
"skipping duplicate save"
|
||||
)
|
||||
session.messages.extend(messages_to_save)
|
||||
logger.info(
|
||||
f"Extended session messages, new message_count={len(session.messages)}"
|
||||
)
|
||||
await upsert_chat_session(session)
|
||||
|
||||
# If we did a tool call, stream the chat completion again to get the next response
|
||||
if has_done_tool_call:
|
||||
@@ -644,12 +545,6 @@ def _is_retryable_error(error: Exception) -> bool:
|
||||
return False
|
||||
|
||||
|
||||
def _is_region_blocked_error(error: Exception) -> bool:
|
||||
if isinstance(error, PermissionDeniedError):
|
||||
return "not available in your region" in str(error).lower()
|
||||
return "not available in your region" in str(error).lower()
|
||||
|
||||
|
||||
async def _stream_chat_chunks(
|
||||
session: ChatSession,
|
||||
tools: list[ChatCompletionToolParam],
|
||||
@@ -842,18 +737,7 @@ async def _stream_chat_chunks(
|
||||
f"Error in stream (not retrying): {e!s}",
|
||||
exc_info=True,
|
||||
)
|
||||
error_code = None
|
||||
error_text = str(e)
|
||||
if _is_region_blocked_error(e):
|
||||
error_code = "MODEL_NOT_AVAILABLE_REGION"
|
||||
error_text = (
|
||||
"This model is not available in your region. "
|
||||
"Please connect via VPN and try again."
|
||||
)
|
||||
error_response = StreamError(
|
||||
errorText=error_text,
|
||||
code=error_code,
|
||||
)
|
||||
error_response = StreamError(errorText=str(e))
|
||||
yield error_response
|
||||
yield StreamFinish()
|
||||
return
|
||||
|
||||
@@ -1,28 +1,29 @@
|
||||
"""Agent generator package - Creates agents from natural language."""
|
||||
|
||||
from .core import (
|
||||
AgentGeneratorNotConfiguredError,
|
||||
apply_agent_patch,
|
||||
decompose_goal,
|
||||
generate_agent,
|
||||
generate_agent_patch,
|
||||
get_agent_as_json,
|
||||
json_to_graph,
|
||||
save_agent_to_library,
|
||||
)
|
||||
from .service import health_check as check_external_service_health
|
||||
from .service import is_external_service_configured
|
||||
from .fixer import apply_all_fixes
|
||||
from .utils import get_blocks_info
|
||||
from .validator import validate_agent
|
||||
|
||||
__all__ = [
|
||||
# Core functions
|
||||
"decompose_goal",
|
||||
"generate_agent",
|
||||
"generate_agent_patch",
|
||||
"apply_agent_patch",
|
||||
"save_agent_to_library",
|
||||
"get_agent_as_json",
|
||||
"json_to_graph",
|
||||
# Exceptions
|
||||
"AgentGeneratorNotConfiguredError",
|
||||
# Service
|
||||
"is_external_service_configured",
|
||||
"check_external_service_health",
|
||||
# Fixer
|
||||
"apply_all_fixes",
|
||||
# Validator
|
||||
"validate_agent",
|
||||
# Utils
|
||||
"get_blocks_info",
|
||||
]
|
||||
|
||||
@@ -0,0 +1,25 @@
|
||||
"""OpenRouter client configuration for agent generation."""
|
||||
|
||||
import os
|
||||
|
||||
from openai import AsyncOpenAI
|
||||
|
||||
# Configuration - use OPEN_ROUTER_API_KEY for consistency with chat/config.py
|
||||
OPENROUTER_API_KEY = os.getenv("OPEN_ROUTER_API_KEY")
|
||||
AGENT_GENERATOR_MODEL = os.getenv("AGENT_GENERATOR_MODEL", "anthropic/claude-opus-4.5")
|
||||
|
||||
# OpenRouter client (OpenAI-compatible API)
|
||||
_client: AsyncOpenAI | None = None
|
||||
|
||||
|
||||
def get_client() -> AsyncOpenAI:
|
||||
"""Get or create the OpenRouter client."""
|
||||
global _client
|
||||
if _client is None:
|
||||
if not OPENROUTER_API_KEY:
|
||||
raise ValueError("OPENROUTER_API_KEY environment variable is required")
|
||||
_client = AsyncOpenAI(
|
||||
base_url="https://openrouter.ai/api/v1",
|
||||
api_key=OPENROUTER_API_KEY,
|
||||
)
|
||||
return _client
|
||||
@@ -1,5 +1,7 @@
|
||||
"""Core agent generation functions."""
|
||||
|
||||
import copy
|
||||
import json
|
||||
import logging
|
||||
import uuid
|
||||
from typing import Any
|
||||
@@ -7,35 +9,13 @@ from typing import Any
|
||||
from backend.api.features.library import db as library_db
|
||||
from backend.data.graph import Graph, Link, Node, create_graph
|
||||
|
||||
from .service import (
|
||||
decompose_goal_external,
|
||||
generate_agent_external,
|
||||
generate_agent_patch_external,
|
||||
is_external_service_configured,
|
||||
)
|
||||
from .client import AGENT_GENERATOR_MODEL, get_client
|
||||
from .prompts import DECOMPOSITION_PROMPT, GENERATION_PROMPT, PATCH_PROMPT
|
||||
from .utils import get_block_summaries, parse_json_from_llm
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AgentGeneratorNotConfiguredError(Exception):
|
||||
"""Raised when the external Agent Generator service is not configured."""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
def _check_service_configured() -> None:
|
||||
"""Check if the external Agent Generator service is configured.
|
||||
|
||||
Raises:
|
||||
AgentGeneratorNotConfiguredError: If the service is not configured.
|
||||
"""
|
||||
if not is_external_service_configured():
|
||||
raise AgentGeneratorNotConfiguredError(
|
||||
"Agent Generator service is not configured. "
|
||||
"Set AGENTGENERATOR_HOST environment variable to enable agent generation."
|
||||
)
|
||||
|
||||
|
||||
async def decompose_goal(description: str, context: str = "") -> dict[str, Any] | None:
|
||||
"""Break down a goal into steps or return clarifying questions.
|
||||
|
||||
@@ -48,13 +28,40 @@ async def decompose_goal(description: str, context: str = "") -> dict[str, Any]
|
||||
- {"type": "clarifying_questions", "questions": [...]}
|
||||
- {"type": "instructions", "steps": [...]}
|
||||
Or None on error
|
||||
|
||||
Raises:
|
||||
AgentGeneratorNotConfiguredError: If the external service is not configured.
|
||||
"""
|
||||
_check_service_configured()
|
||||
logger.info("Calling external Agent Generator service for decompose_goal")
|
||||
return await decompose_goal_external(description, context)
|
||||
client = get_client()
|
||||
prompt = DECOMPOSITION_PROMPT.format(block_summaries=get_block_summaries())
|
||||
|
||||
full_description = description
|
||||
if context:
|
||||
full_description = f"{description}\n\nAdditional context:\n{context}"
|
||||
|
||||
try:
|
||||
response = await client.chat.completions.create(
|
||||
model=AGENT_GENERATOR_MODEL,
|
||||
messages=[
|
||||
{"role": "system", "content": prompt},
|
||||
{"role": "user", "content": full_description},
|
||||
],
|
||||
temperature=0,
|
||||
)
|
||||
|
||||
content = response.choices[0].message.content
|
||||
if content is None:
|
||||
logger.error("LLM returned empty content for decomposition")
|
||||
return None
|
||||
|
||||
result = parse_json_from_llm(content)
|
||||
|
||||
if result is None:
|
||||
logger.error(f"Failed to parse decomposition response: {content[:200]}")
|
||||
return None
|
||||
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error decomposing goal: {e}")
|
||||
return None
|
||||
|
||||
|
||||
async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None:
|
||||
@@ -65,14 +72,31 @@ async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None:
|
||||
|
||||
Returns:
|
||||
Agent JSON dict or None on error
|
||||
|
||||
Raises:
|
||||
AgentGeneratorNotConfiguredError: If the external service is not configured.
|
||||
"""
|
||||
_check_service_configured()
|
||||
logger.info("Calling external Agent Generator service for generate_agent")
|
||||
result = await generate_agent_external(instructions)
|
||||
if result:
|
||||
client = get_client()
|
||||
prompt = GENERATION_PROMPT.format(block_summaries=get_block_summaries())
|
||||
|
||||
try:
|
||||
response = await client.chat.completions.create(
|
||||
model=AGENT_GENERATOR_MODEL,
|
||||
messages=[
|
||||
{"role": "system", "content": prompt},
|
||||
{"role": "user", "content": json.dumps(instructions, indent=2)},
|
||||
],
|
||||
temperature=0,
|
||||
)
|
||||
|
||||
content = response.choices[0].message.content
|
||||
if content is None:
|
||||
logger.error("LLM returned empty content for agent generation")
|
||||
return None
|
||||
|
||||
result = parse_json_from_llm(content)
|
||||
|
||||
if result is None:
|
||||
logger.error(f"Failed to parse agent JSON: {content[:200]}")
|
||||
return None
|
||||
|
||||
# Ensure required fields
|
||||
if "id" not in result:
|
||||
result["id"] = str(uuid.uuid4())
|
||||
@@ -80,7 +104,12 @@ async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None:
|
||||
result["version"] = 1
|
||||
if "is_active" not in result:
|
||||
result["is_active"] = True
|
||||
return result
|
||||
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error generating agent: {e}")
|
||||
return None
|
||||
|
||||
|
||||
def json_to_graph(agent_json: dict[str, Any]) -> Graph:
|
||||
@@ -189,7 +218,6 @@ async def save_agent_to_library(
|
||||
library_agents = await library_db.create_library_agent(
|
||||
graph=created_graph,
|
||||
user_id=user_id,
|
||||
sensitive_action_safe_mode=True,
|
||||
create_library_agents_for_sub_graphs=False,
|
||||
)
|
||||
|
||||
@@ -255,23 +283,108 @@ async def get_agent_as_json(
|
||||
async def generate_agent_patch(
|
||||
update_request: str, current_agent: dict[str, Any]
|
||||
) -> dict[str, Any] | None:
|
||||
"""Update an existing agent using natural language.
|
||||
|
||||
The external Agent Generator service handles:
|
||||
- Generating the patch
|
||||
- Applying the patch
|
||||
- Fixing and validating the result
|
||||
"""Generate a patch to update an existing agent.
|
||||
|
||||
Args:
|
||||
update_request: Natural language description of changes
|
||||
current_agent: Current agent JSON
|
||||
|
||||
Returns:
|
||||
Updated agent JSON, clarifying questions dict, or None on error
|
||||
|
||||
Raises:
|
||||
AgentGeneratorNotConfiguredError: If the external service is not configured.
|
||||
Patch dict or clarifying questions, or None on error
|
||||
"""
|
||||
_check_service_configured()
|
||||
logger.info("Calling external Agent Generator service for generate_agent_patch")
|
||||
return await generate_agent_patch_external(update_request, current_agent)
|
||||
client = get_client()
|
||||
prompt = PATCH_PROMPT.format(
|
||||
current_agent=json.dumps(current_agent, indent=2),
|
||||
block_summaries=get_block_summaries(),
|
||||
)
|
||||
|
||||
try:
|
||||
response = await client.chat.completions.create(
|
||||
model=AGENT_GENERATOR_MODEL,
|
||||
messages=[
|
||||
{"role": "system", "content": prompt},
|
||||
{"role": "user", "content": update_request},
|
||||
],
|
||||
temperature=0,
|
||||
)
|
||||
|
||||
content = response.choices[0].message.content
|
||||
if content is None:
|
||||
logger.error("LLM returned empty content for patch generation")
|
||||
return None
|
||||
|
||||
return parse_json_from_llm(content)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error generating patch: {e}")
|
||||
return None
|
||||
|
||||
|
||||
def apply_agent_patch(
|
||||
current_agent: dict[str, Any], patch: dict[str, Any]
|
||||
) -> dict[str, Any]:
|
||||
"""Apply a patch to an existing agent.
|
||||
|
||||
Args:
|
||||
current_agent: Current agent JSON
|
||||
patch: Patch dict with operations
|
||||
|
||||
Returns:
|
||||
Updated agent JSON
|
||||
"""
|
||||
agent = copy.deepcopy(current_agent)
|
||||
patches = patch.get("patches", [])
|
||||
|
||||
for p in patches:
|
||||
patch_type = p.get("type")
|
||||
|
||||
if patch_type == "modify":
|
||||
node_id = p.get("node_id")
|
||||
changes = p.get("changes", {})
|
||||
|
||||
for node in agent.get("nodes", []):
|
||||
if node["id"] == node_id:
|
||||
_deep_update(node, changes)
|
||||
logger.debug(f"Modified node {node_id}")
|
||||
break
|
||||
|
||||
elif patch_type == "add":
|
||||
new_nodes = p.get("new_nodes", [])
|
||||
new_links = p.get("new_links", [])
|
||||
|
||||
agent["nodes"] = agent.get("nodes", []) + new_nodes
|
||||
agent["links"] = agent.get("links", []) + new_links
|
||||
logger.debug(f"Added {len(new_nodes)} nodes, {len(new_links)} links")
|
||||
|
||||
elif patch_type == "remove":
|
||||
node_ids_to_remove = set(p.get("node_ids", []))
|
||||
link_ids_to_remove = set(p.get("link_ids", []))
|
||||
|
||||
# Remove nodes
|
||||
agent["nodes"] = [
|
||||
n for n in agent.get("nodes", []) if n["id"] not in node_ids_to_remove
|
||||
]
|
||||
|
||||
# Remove links (both explicit and those referencing removed nodes)
|
||||
agent["links"] = [
|
||||
link
|
||||
for link in agent.get("links", [])
|
||||
if link["id"] not in link_ids_to_remove
|
||||
and link["source_id"] not in node_ids_to_remove
|
||||
and link["sink_id"] not in node_ids_to_remove
|
||||
]
|
||||
|
||||
logger.debug(
|
||||
f"Removed {len(node_ids_to_remove)} nodes, {len(link_ids_to_remove)} links"
|
||||
)
|
||||
|
||||
return agent
|
||||
|
||||
|
||||
def _deep_update(target: dict, source: dict) -> None:
|
||||
"""Recursively update a dict with another dict."""
|
||||
for key, value in source.items():
|
||||
if key in target and isinstance(target[key], dict) and isinstance(value, dict):
|
||||
_deep_update(target[key], value)
|
||||
else:
|
||||
target[key] = value
|
||||
|
||||
@@ -0,0 +1,606 @@
|
||||
"""Agent fixer - Fixes common LLM generation errors."""
|
||||
|
||||
import logging
|
||||
import re
|
||||
import uuid
|
||||
from typing import Any
|
||||
|
||||
from .utils import (
|
||||
ADDTODICTIONARY_BLOCK_ID,
|
||||
ADDTOLIST_BLOCK_ID,
|
||||
CODE_EXECUTION_BLOCK_ID,
|
||||
CONDITION_BLOCK_ID,
|
||||
CREATEDICT_BLOCK_ID,
|
||||
CREATELIST_BLOCK_ID,
|
||||
DATA_SAMPLING_BLOCK_ID,
|
||||
DOUBLE_CURLY_BRACES_BLOCK_IDS,
|
||||
GET_CURRENT_DATE_BLOCK_ID,
|
||||
STORE_VALUE_BLOCK_ID,
|
||||
UNIVERSAL_TYPE_CONVERTER_BLOCK_ID,
|
||||
get_blocks_info,
|
||||
is_valid_uuid,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def fix_agent_ids(agent: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Fix invalid UUIDs in agent and link IDs."""
|
||||
# Fix agent ID
|
||||
if not is_valid_uuid(agent.get("id", "")):
|
||||
agent["id"] = str(uuid.uuid4())
|
||||
logger.debug(f"Fixed agent ID: {agent['id']}")
|
||||
|
||||
# Fix node IDs
|
||||
id_mapping = {} # Old ID -> New ID
|
||||
for node in agent.get("nodes", []):
|
||||
if not is_valid_uuid(node.get("id", "")):
|
||||
old_id = node.get("id", "")
|
||||
new_id = str(uuid.uuid4())
|
||||
id_mapping[old_id] = new_id
|
||||
node["id"] = new_id
|
||||
logger.debug(f"Fixed node ID: {old_id} -> {new_id}")
|
||||
|
||||
# Fix link IDs and update references
|
||||
for link in agent.get("links", []):
|
||||
if not is_valid_uuid(link.get("id", "")):
|
||||
link["id"] = str(uuid.uuid4())
|
||||
logger.debug(f"Fixed link ID: {link['id']}")
|
||||
|
||||
# Update source/sink IDs if they were remapped
|
||||
if link.get("source_id") in id_mapping:
|
||||
link["source_id"] = id_mapping[link["source_id"]]
|
||||
if link.get("sink_id") in id_mapping:
|
||||
link["sink_id"] = id_mapping[link["sink_id"]]
|
||||
|
||||
return agent
|
||||
|
||||
|
||||
def fix_double_curly_braces(agent: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Fix single curly braces to double in template blocks."""
|
||||
for node in agent.get("nodes", []):
|
||||
if node.get("block_id") not in DOUBLE_CURLY_BRACES_BLOCK_IDS:
|
||||
continue
|
||||
|
||||
input_data = node.get("input_default", {})
|
||||
for key in ("prompt", "format"):
|
||||
if key in input_data and isinstance(input_data[key], str):
|
||||
original = input_data[key]
|
||||
# Fix simple variable references: {var} -> {{var}}
|
||||
fixed = re.sub(
|
||||
r"(?<!\{)\{([a-zA-Z_][a-zA-Z0-9_]*)\}(?!\})",
|
||||
r"{{\1}}",
|
||||
original,
|
||||
)
|
||||
if fixed != original:
|
||||
input_data[key] = fixed
|
||||
logger.debug(f"Fixed curly braces in {key}")
|
||||
|
||||
return agent
|
||||
|
||||
|
||||
def fix_storevalue_before_condition(agent: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Add StoreValueBlock before ConditionBlock if needed for value2."""
|
||||
nodes = agent.get("nodes", [])
|
||||
links = agent.get("links", [])
|
||||
|
||||
# Find all ConditionBlock nodes
|
||||
condition_node_ids = {
|
||||
node["id"] for node in nodes if node.get("block_id") == CONDITION_BLOCK_ID
|
||||
}
|
||||
|
||||
if not condition_node_ids:
|
||||
return agent
|
||||
|
||||
new_nodes = []
|
||||
new_links = []
|
||||
processed_conditions = set()
|
||||
|
||||
for link in links:
|
||||
sink_id = link.get("sink_id")
|
||||
sink_name = link.get("sink_name")
|
||||
|
||||
# Check if this link goes to a ConditionBlock's value2
|
||||
if sink_id in condition_node_ids and sink_name == "value2":
|
||||
source_node = next(
|
||||
(n for n in nodes if n["id"] == link.get("source_id")), None
|
||||
)
|
||||
|
||||
# Skip if source is already a StoreValueBlock
|
||||
if source_node and source_node.get("block_id") == STORE_VALUE_BLOCK_ID:
|
||||
continue
|
||||
|
||||
# Skip if we already processed this condition
|
||||
if sink_id in processed_conditions:
|
||||
continue
|
||||
|
||||
processed_conditions.add(sink_id)
|
||||
|
||||
# Create StoreValueBlock
|
||||
store_node_id = str(uuid.uuid4())
|
||||
store_node = {
|
||||
"id": store_node_id,
|
||||
"block_id": STORE_VALUE_BLOCK_ID,
|
||||
"input_default": {"data": None},
|
||||
"metadata": {"position": {"x": 0, "y": -100}},
|
||||
}
|
||||
new_nodes.append(store_node)
|
||||
|
||||
# Create link: original source -> StoreValueBlock
|
||||
new_links.append(
|
||||
{
|
||||
"id": str(uuid.uuid4()),
|
||||
"source_id": link["source_id"],
|
||||
"source_name": link["source_name"],
|
||||
"sink_id": store_node_id,
|
||||
"sink_name": "input",
|
||||
"is_static": False,
|
||||
}
|
||||
)
|
||||
|
||||
# Update original link: StoreValueBlock -> ConditionBlock
|
||||
link["source_id"] = store_node_id
|
||||
link["source_name"] = "output"
|
||||
|
||||
logger.debug(f"Added StoreValueBlock before ConditionBlock {sink_id}")
|
||||
|
||||
if new_nodes:
|
||||
agent["nodes"] = nodes + new_nodes
|
||||
|
||||
return agent
|
||||
|
||||
|
||||
def fix_addtolist_blocks(agent: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Fix AddToList blocks by adding prerequisite empty AddToList block.
|
||||
|
||||
When an AddToList block is found:
|
||||
1. Checks if there's a CreateListBlock before it
|
||||
2. Removes CreateListBlock if linked directly to AddToList
|
||||
3. Adds an empty AddToList block before the original
|
||||
4. Ensures the original has a self-referencing link
|
||||
"""
|
||||
nodes = agent.get("nodes", [])
|
||||
links = agent.get("links", [])
|
||||
new_nodes = []
|
||||
original_addtolist_ids = set()
|
||||
nodes_to_remove = set()
|
||||
links_to_remove = []
|
||||
|
||||
# First pass: identify CreateListBlock nodes to remove
|
||||
for link in links:
|
||||
source_node = next(
|
||||
(n for n in nodes if n.get("id") == link.get("source_id")), None
|
||||
)
|
||||
sink_node = next((n for n in nodes if n.get("id") == link.get("sink_id")), None)
|
||||
|
||||
if (
|
||||
source_node
|
||||
and sink_node
|
||||
and source_node.get("block_id") == CREATELIST_BLOCK_ID
|
||||
and sink_node.get("block_id") == ADDTOLIST_BLOCK_ID
|
||||
):
|
||||
nodes_to_remove.add(source_node.get("id"))
|
||||
links_to_remove.append(link)
|
||||
logger.debug(f"Removing CreateListBlock {source_node.get('id')}")
|
||||
|
||||
# Second pass: process AddToList blocks
|
||||
filtered_nodes = []
|
||||
for node in nodes:
|
||||
if node.get("id") in nodes_to_remove:
|
||||
continue
|
||||
|
||||
if node.get("block_id") == ADDTOLIST_BLOCK_ID:
|
||||
original_addtolist_ids.add(node.get("id"))
|
||||
node_id = node.get("id")
|
||||
pos = node.get("metadata", {}).get("position", {"x": 0, "y": 0})
|
||||
|
||||
# Check if already has prerequisite
|
||||
has_prereq = any(
|
||||
link.get("sink_id") == node_id
|
||||
and link.get("sink_name") == "list"
|
||||
and link.get("source_name") == "updated_list"
|
||||
for link in links
|
||||
)
|
||||
|
||||
if not has_prereq:
|
||||
# Remove links to "list" input (except self-reference)
|
||||
for link in links:
|
||||
if (
|
||||
link.get("sink_id") == node_id
|
||||
and link.get("sink_name") == "list"
|
||||
and link.get("source_id") != node_id
|
||||
and link not in links_to_remove
|
||||
):
|
||||
links_to_remove.append(link)
|
||||
|
||||
# Create prerequisite AddToList block
|
||||
prereq_id = str(uuid.uuid4())
|
||||
prereq_node = {
|
||||
"id": prereq_id,
|
||||
"block_id": ADDTOLIST_BLOCK_ID,
|
||||
"input_default": {"list": [], "entry": None, "entries": []},
|
||||
"metadata": {
|
||||
"position": {"x": pos.get("x", 0) - 800, "y": pos.get("y", 0)}
|
||||
},
|
||||
}
|
||||
new_nodes.append(prereq_node)
|
||||
|
||||
# Link prerequisite to original
|
||||
links.append(
|
||||
{
|
||||
"id": str(uuid.uuid4()),
|
||||
"source_id": prereq_id,
|
||||
"source_name": "updated_list",
|
||||
"sink_id": node_id,
|
||||
"sink_name": "list",
|
||||
"is_static": False,
|
||||
}
|
||||
)
|
||||
logger.debug(f"Added prerequisite AddToList block for {node_id}")
|
||||
|
||||
filtered_nodes.append(node)
|
||||
|
||||
# Remove marked links
|
||||
filtered_links = [link for link in links if link not in links_to_remove]
|
||||
|
||||
# Add self-referencing links for original AddToList blocks
|
||||
for node in filtered_nodes + new_nodes:
|
||||
if (
|
||||
node.get("block_id") == ADDTOLIST_BLOCK_ID
|
||||
and node.get("id") in original_addtolist_ids
|
||||
):
|
||||
node_id = node.get("id")
|
||||
has_self_ref = any(
|
||||
link["source_id"] == node_id
|
||||
and link["sink_id"] == node_id
|
||||
and link["source_name"] == "updated_list"
|
||||
and link["sink_name"] == "list"
|
||||
for link in filtered_links
|
||||
)
|
||||
if not has_self_ref:
|
||||
filtered_links.append(
|
||||
{
|
||||
"id": str(uuid.uuid4()),
|
||||
"source_id": node_id,
|
||||
"source_name": "updated_list",
|
||||
"sink_id": node_id,
|
||||
"sink_name": "list",
|
||||
"is_static": False,
|
||||
}
|
||||
)
|
||||
logger.debug(f"Added self-reference for AddToList {node_id}")
|
||||
|
||||
agent["nodes"] = filtered_nodes + new_nodes
|
||||
agent["links"] = filtered_links
|
||||
return agent
|
||||
|
||||
|
||||
def fix_addtodictionary_blocks(agent: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Fix AddToDictionary blocks by removing empty CreateDictionary nodes."""
|
||||
nodes = agent.get("nodes", [])
|
||||
links = agent.get("links", [])
|
||||
nodes_to_remove = set()
|
||||
links_to_remove = []
|
||||
|
||||
for link in links:
|
||||
source_node = next(
|
||||
(n for n in nodes if n.get("id") == link.get("source_id")), None
|
||||
)
|
||||
sink_node = next((n for n in nodes if n.get("id") == link.get("sink_id")), None)
|
||||
|
||||
if (
|
||||
source_node
|
||||
and sink_node
|
||||
and source_node.get("block_id") == CREATEDICT_BLOCK_ID
|
||||
and sink_node.get("block_id") == ADDTODICTIONARY_BLOCK_ID
|
||||
):
|
||||
nodes_to_remove.add(source_node.get("id"))
|
||||
links_to_remove.append(link)
|
||||
logger.debug(f"Removing CreateDictionary {source_node.get('id')}")
|
||||
|
||||
agent["nodes"] = [n for n in nodes if n.get("id") not in nodes_to_remove]
|
||||
agent["links"] = [link for link in links if link not in links_to_remove]
|
||||
return agent
|
||||
|
||||
|
||||
def fix_code_execution_output(agent: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Fix CodeExecutionBlock output: change 'response' to 'stdout_logs'."""
|
||||
nodes = agent.get("nodes", [])
|
||||
links = agent.get("links", [])
|
||||
|
||||
for link in links:
|
||||
source_node = next(
|
||||
(n for n in nodes if n.get("id") == link.get("source_id")), None
|
||||
)
|
||||
if (
|
||||
source_node
|
||||
and source_node.get("block_id") == CODE_EXECUTION_BLOCK_ID
|
||||
and link.get("source_name") == "response"
|
||||
):
|
||||
link["source_name"] = "stdout_logs"
|
||||
logger.debug("Fixed CodeExecutionBlock output: response -> stdout_logs")
|
||||
|
||||
return agent
|
||||
|
||||
|
||||
def fix_data_sampling_sample_size(agent: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Fix DataSamplingBlock by setting sample_size to 1 as default."""
|
||||
nodes = agent.get("nodes", [])
|
||||
links = agent.get("links", [])
|
||||
links_to_remove = []
|
||||
|
||||
for node in nodes:
|
||||
if node.get("block_id") == DATA_SAMPLING_BLOCK_ID:
|
||||
node_id = node.get("id")
|
||||
input_default = node.get("input_default", {})
|
||||
|
||||
# Remove links to sample_size
|
||||
for link in links:
|
||||
if (
|
||||
link.get("sink_id") == node_id
|
||||
and link.get("sink_name") == "sample_size"
|
||||
):
|
||||
links_to_remove.append(link)
|
||||
|
||||
# Set default
|
||||
input_default["sample_size"] = 1
|
||||
node["input_default"] = input_default
|
||||
logger.debug(f"Fixed DataSamplingBlock {node_id} sample_size to 1")
|
||||
|
||||
if links_to_remove:
|
||||
agent["links"] = [link for link in links if link not in links_to_remove]
|
||||
|
||||
return agent
|
||||
|
||||
|
||||
def fix_node_x_coordinates(agent: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Fix node x-coordinates to ensure 800+ unit spacing between linked nodes."""
|
||||
nodes = agent.get("nodes", [])
|
||||
links = agent.get("links", [])
|
||||
node_lookup = {n.get("id"): n for n in nodes}
|
||||
|
||||
for link in links:
|
||||
source_id = link.get("source_id")
|
||||
sink_id = link.get("sink_id")
|
||||
|
||||
source_node = node_lookup.get(source_id)
|
||||
sink_node = node_lookup.get(sink_id)
|
||||
|
||||
if not source_node or not sink_node:
|
||||
continue
|
||||
|
||||
source_pos = source_node.get("metadata", {}).get("position", {})
|
||||
sink_pos = sink_node.get("metadata", {}).get("position", {})
|
||||
|
||||
source_x = source_pos.get("x", 0)
|
||||
sink_x = sink_pos.get("x", 0)
|
||||
|
||||
if abs(sink_x - source_x) < 800:
|
||||
new_x = source_x + 800
|
||||
if "metadata" not in sink_node:
|
||||
sink_node["metadata"] = {}
|
||||
if "position" not in sink_node["metadata"]:
|
||||
sink_node["metadata"]["position"] = {}
|
||||
sink_node["metadata"]["position"]["x"] = new_x
|
||||
logger.debug(f"Fixed node {sink_id} x: {sink_x} -> {new_x}")
|
||||
|
||||
return agent
|
||||
|
||||
|
||||
def fix_getcurrentdate_offset(agent: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Fix GetCurrentDateBlock offset to ensure it's positive."""
|
||||
for node in agent.get("nodes", []):
|
||||
if node.get("block_id") == GET_CURRENT_DATE_BLOCK_ID:
|
||||
input_default = node.get("input_default", {})
|
||||
if "offset" in input_default:
|
||||
offset = input_default["offset"]
|
||||
if isinstance(offset, (int, float)) and offset < 0:
|
||||
input_default["offset"] = abs(offset)
|
||||
logger.debug(f"Fixed offset: {offset} -> {abs(offset)}")
|
||||
|
||||
return agent
|
||||
|
||||
|
||||
def fix_ai_model_parameter(
|
||||
agent: dict[str, Any],
|
||||
blocks_info: list[dict[str, Any]],
|
||||
default_model: str = "gpt-4o",
|
||||
) -> dict[str, Any]:
|
||||
"""Add default model parameter to AI blocks if missing."""
|
||||
block_map = {b.get("id"): b for b in blocks_info}
|
||||
|
||||
for node in agent.get("nodes", []):
|
||||
block_id = node.get("block_id")
|
||||
block = block_map.get(block_id)
|
||||
|
||||
if not block:
|
||||
continue
|
||||
|
||||
# Check if block has AI category
|
||||
categories = block.get("categories", [])
|
||||
is_ai_block = any(
|
||||
cat.get("category") == "AI" for cat in categories if isinstance(cat, dict)
|
||||
)
|
||||
|
||||
if is_ai_block:
|
||||
input_default = node.get("input_default", {})
|
||||
if "model" not in input_default:
|
||||
input_default["model"] = default_model
|
||||
node["input_default"] = input_default
|
||||
logger.debug(
|
||||
f"Added model '{default_model}' to AI block {node.get('id')}"
|
||||
)
|
||||
|
||||
return agent
|
||||
|
||||
|
||||
def fix_link_static_properties(
|
||||
agent: dict[str, Any], blocks_info: list[dict[str, Any]]
|
||||
) -> dict[str, Any]:
|
||||
"""Fix is_static property based on source block's staticOutput."""
|
||||
block_map = {b.get("id"): b for b in blocks_info}
|
||||
node_lookup = {n.get("id"): n for n in agent.get("nodes", [])}
|
||||
|
||||
for link in agent.get("links", []):
|
||||
source_node = node_lookup.get(link.get("source_id"))
|
||||
if not source_node:
|
||||
continue
|
||||
|
||||
source_block = block_map.get(source_node.get("block_id"))
|
||||
if not source_block:
|
||||
continue
|
||||
|
||||
static_output = source_block.get("staticOutput", False)
|
||||
if link.get("is_static") != static_output:
|
||||
link["is_static"] = static_output
|
||||
logger.debug(f"Fixed link {link.get('id')} is_static to {static_output}")
|
||||
|
||||
return agent
|
||||
|
||||
|
||||
def fix_data_type_mismatch(
|
||||
agent: dict[str, Any], blocks_info: list[dict[str, Any]]
|
||||
) -> dict[str, Any]:
|
||||
"""Fix data type mismatches by inserting UniversalTypeConverterBlock."""
|
||||
nodes = agent.get("nodes", [])
|
||||
links = agent.get("links", [])
|
||||
block_map = {b.get("id"): b for b in blocks_info}
|
||||
node_lookup = {n.get("id"): n for n in nodes}
|
||||
|
||||
def get_property_type(schema: dict, name: str) -> str | None:
|
||||
if "_#_" in name:
|
||||
parent, child = name.split("_#_", 1)
|
||||
parent_schema = schema.get(parent, {})
|
||||
if "properties" in parent_schema:
|
||||
return parent_schema["properties"].get(child, {}).get("type")
|
||||
return None
|
||||
return schema.get(name, {}).get("type")
|
||||
|
||||
def are_types_compatible(src: str, sink: str) -> bool:
|
||||
if {src, sink} <= {"integer", "number"}:
|
||||
return True
|
||||
return src == sink
|
||||
|
||||
type_mapping = {
|
||||
"string": "string",
|
||||
"text": "string",
|
||||
"integer": "number",
|
||||
"number": "number",
|
||||
"float": "number",
|
||||
"boolean": "boolean",
|
||||
"bool": "boolean",
|
||||
"array": "list",
|
||||
"list": "list",
|
||||
"object": "dictionary",
|
||||
"dict": "dictionary",
|
||||
"dictionary": "dictionary",
|
||||
}
|
||||
|
||||
new_links = []
|
||||
nodes_to_add = []
|
||||
|
||||
for link in links:
|
||||
source_node = node_lookup.get(link.get("source_id"))
|
||||
sink_node = node_lookup.get(link.get("sink_id"))
|
||||
|
||||
if not source_node or not sink_node:
|
||||
new_links.append(link)
|
||||
continue
|
||||
|
||||
source_block = block_map.get(source_node.get("block_id"))
|
||||
sink_block = block_map.get(sink_node.get("block_id"))
|
||||
|
||||
if not source_block or not sink_block:
|
||||
new_links.append(link)
|
||||
continue
|
||||
|
||||
source_outputs = source_block.get("outputSchema", {}).get("properties", {})
|
||||
sink_inputs = sink_block.get("inputSchema", {}).get("properties", {})
|
||||
|
||||
source_type = get_property_type(source_outputs, link.get("source_name", ""))
|
||||
sink_type = get_property_type(sink_inputs, link.get("sink_name", ""))
|
||||
|
||||
if (
|
||||
source_type
|
||||
and sink_type
|
||||
and not are_types_compatible(source_type, sink_type)
|
||||
):
|
||||
# Insert type converter
|
||||
converter_id = str(uuid.uuid4())
|
||||
target_type = type_mapping.get(sink_type, sink_type)
|
||||
|
||||
converter_node = {
|
||||
"id": converter_id,
|
||||
"block_id": UNIVERSAL_TYPE_CONVERTER_BLOCK_ID,
|
||||
"input_default": {"type": target_type},
|
||||
"metadata": {"position": {"x": 0, "y": 100}},
|
||||
}
|
||||
nodes_to_add.append(converter_node)
|
||||
|
||||
# source -> converter
|
||||
new_links.append(
|
||||
{
|
||||
"id": str(uuid.uuid4()),
|
||||
"source_id": link["source_id"],
|
||||
"source_name": link["source_name"],
|
||||
"sink_id": converter_id,
|
||||
"sink_name": "value",
|
||||
"is_static": False,
|
||||
}
|
||||
)
|
||||
|
||||
# converter -> sink
|
||||
new_links.append(
|
||||
{
|
||||
"id": str(uuid.uuid4()),
|
||||
"source_id": converter_id,
|
||||
"source_name": "value",
|
||||
"sink_id": link["sink_id"],
|
||||
"sink_name": link["sink_name"],
|
||||
"is_static": False,
|
||||
}
|
||||
)
|
||||
|
||||
logger.debug(f"Inserted type converter: {source_type} -> {target_type}")
|
||||
else:
|
||||
new_links.append(link)
|
||||
|
||||
if nodes_to_add:
|
||||
agent["nodes"] = nodes + nodes_to_add
|
||||
agent["links"] = new_links
|
||||
|
||||
return agent
|
||||
|
||||
|
||||
def apply_all_fixes(
|
||||
agent: dict[str, Any], blocks_info: list[dict[str, Any]] | None = None
|
||||
) -> dict[str, Any]:
|
||||
"""Apply all fixes to an agent JSON.
|
||||
|
||||
Args:
|
||||
agent: Agent JSON dict
|
||||
blocks_info: Optional list of block info dicts for advanced fixes
|
||||
|
||||
Returns:
|
||||
Fixed agent JSON
|
||||
"""
|
||||
# Basic fixes (no block info needed)
|
||||
agent = fix_agent_ids(agent)
|
||||
agent = fix_double_curly_braces(agent)
|
||||
agent = fix_storevalue_before_condition(agent)
|
||||
agent = fix_addtolist_blocks(agent)
|
||||
agent = fix_addtodictionary_blocks(agent)
|
||||
agent = fix_code_execution_output(agent)
|
||||
agent = fix_data_sampling_sample_size(agent)
|
||||
agent = fix_node_x_coordinates(agent)
|
||||
agent = fix_getcurrentdate_offset(agent)
|
||||
|
||||
# Advanced fixes (require block info)
|
||||
if blocks_info is None:
|
||||
blocks_info = get_blocks_info()
|
||||
|
||||
agent = fix_ai_model_parameter(agent, blocks_info)
|
||||
agent = fix_link_static_properties(agent, blocks_info)
|
||||
agent = fix_data_type_mismatch(agent, blocks_info)
|
||||
|
||||
return agent
|
||||
@@ -0,0 +1,225 @@
|
||||
"""Prompt templates for agent generation."""
|
||||
|
||||
DECOMPOSITION_PROMPT = """
|
||||
You are an expert AutoGPT Workflow Decomposer. Your task is to analyze a user's high-level goal and break it down into a clear, step-by-step plan using the available blocks.
|
||||
|
||||
Each step should represent a distinct, automatable action suitable for execution by an AI automation system.
|
||||
|
||||
---
|
||||
|
||||
FIRST: Analyze the user's goal and determine:
|
||||
1) Design-time configuration (fixed settings that won't change per run)
|
||||
2) Runtime inputs (values the agent's end-user will provide each time it runs)
|
||||
|
||||
For anything that can vary per run (email addresses, names, dates, search terms, etc.):
|
||||
- DO NOT ask for the actual value
|
||||
- Instead, define it as an Agent Input with a clear name, type, and description
|
||||
|
||||
Only ask clarifying questions about design-time config that affects how you build the workflow:
|
||||
- Which external service to use (e.g., "Gmail vs Outlook", "Notion vs Google Docs")
|
||||
- Required formats or structures (e.g., "CSV, JSON, or PDF output?")
|
||||
- Business rules that must be hard-coded
|
||||
|
||||
IMPORTANT CLARIFICATIONS POLICY:
|
||||
- Ask no more than five essential questions
|
||||
- Do not ask for concrete values that can be provided at runtime as Agent Inputs
|
||||
- Do not ask for API keys or credentials; the platform handles those directly
|
||||
- If there is enough information to infer reasonable defaults, prefer to propose defaults
|
||||
|
||||
---
|
||||
|
||||
GUIDELINES:
|
||||
1. List each step as a numbered item
|
||||
2. Describe the action clearly and specify inputs/outputs
|
||||
3. Ensure steps are in logical, sequential order
|
||||
4. Mention block names naturally (e.g., "Use GetWeatherByLocationBlock to...")
|
||||
5. Help the user reach their goal efficiently
|
||||
|
||||
---
|
||||
|
||||
RULES:
|
||||
1. OUTPUT FORMAT: Only output either clarifying questions OR step-by-step instructions, not both
|
||||
2. USE ONLY THE BLOCKS PROVIDED
|
||||
3. ALL required_input fields must be provided
|
||||
4. Data types of linked properties must match
|
||||
5. Write expert-level prompts for AI-related blocks
|
||||
|
||||
---
|
||||
|
||||
CRITICAL BLOCK RESTRICTIONS:
|
||||
1. AddToListBlock: Outputs updated list EVERY addition, not after all additions
|
||||
2. SendEmailBlock: Draft the email for user review; set SMTP config based on email type
|
||||
3. ConditionBlock: value2 is reference, value1 is contrast
|
||||
4. CodeExecutionBlock: DO NOT USE - use AI blocks instead
|
||||
5. ReadCsvBlock: Only use the 'rows' output, not 'row'
|
||||
|
||||
---
|
||||
|
||||
OUTPUT FORMAT:
|
||||
|
||||
If more information is needed:
|
||||
```json
|
||||
{{
|
||||
"type": "clarifying_questions",
|
||||
"questions": [
|
||||
{{
|
||||
"question": "Which email provider should be used? (Gmail, Outlook, custom SMTP)",
|
||||
"keyword": "email_provider",
|
||||
"example": "Gmail"
|
||||
}}
|
||||
]
|
||||
}}
|
||||
```
|
||||
|
||||
If ready to proceed:
|
||||
```json
|
||||
{{
|
||||
"type": "instructions",
|
||||
"steps": [
|
||||
{{
|
||||
"step_number": 1,
|
||||
"block_name": "AgentShortTextInputBlock",
|
||||
"description": "Get the URL of the content to analyze.",
|
||||
"inputs": [{{"name": "name", "value": "URL"}}],
|
||||
"outputs": [{{"name": "result", "description": "The URL entered by user"}}]
|
||||
}}
|
||||
]
|
||||
}}
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
AVAILABLE BLOCKS:
|
||||
{block_summaries}
|
||||
"""
|
||||
|
||||
GENERATION_PROMPT = """
|
||||
You are an expert AI workflow builder. Generate a valid agent JSON from the given instructions.
|
||||
|
||||
---
|
||||
|
||||
NODES:
|
||||
Each node must include:
|
||||
- `id`: Unique UUID v4 (e.g. `a8f5b1e2-c3d4-4e5f-8a9b-0c1d2e3f4a5b`)
|
||||
- `block_id`: The block identifier (must match an Allowed Block)
|
||||
- `input_default`: Dict of inputs (can be empty if no static inputs needed)
|
||||
- `metadata`: Must contain:
|
||||
- `position`: {{"x": number, "y": number}} - adjacent nodes should differ by 800+ in X
|
||||
- `customized_name`: Clear name describing this block's purpose in the workflow
|
||||
|
||||
---
|
||||
|
||||
LINKS:
|
||||
Each link connects a source node's output to a sink node's input:
|
||||
- `id`: MUST be UUID v4 (NOT "link-1", "link-2", etc.)
|
||||
- `source_id`: ID of the source node
|
||||
- `source_name`: Output field name from the source block
|
||||
- `sink_id`: ID of the sink node
|
||||
- `sink_name`: Input field name on the sink block
|
||||
- `is_static`: true only if source block has static_output: true
|
||||
|
||||
CRITICAL: All IDs must be valid UUID v4 format!
|
||||
|
||||
---
|
||||
|
||||
AGENT (GRAPH):
|
||||
Wrap nodes and links in:
|
||||
- `id`: UUID of the agent
|
||||
- `name`: Short, generic name (avoid specific company names, URLs)
|
||||
- `description`: Short, generic description
|
||||
- `nodes`: List of all nodes
|
||||
- `links`: List of all links
|
||||
- `version`: 1
|
||||
- `is_active`: true
|
||||
|
||||
---
|
||||
|
||||
TIPS:
|
||||
- All required_input fields must be provided via input_default or a valid link
|
||||
- Ensure consistent source_id and sink_id references
|
||||
- Avoid dangling links
|
||||
- Input/output pins must match block schemas
|
||||
- Do not invent unknown block_ids
|
||||
|
||||
---
|
||||
|
||||
ALLOWED BLOCKS:
|
||||
{block_summaries}
|
||||
|
||||
---
|
||||
|
||||
Generate the complete agent JSON. Output ONLY valid JSON, no explanation.
|
||||
"""
|
||||
|
||||
PATCH_PROMPT = """
|
||||
You are an expert at modifying AutoGPT agent workflows. Given the current agent and a modification request, generate a JSON patch to update the agent.
|
||||
|
||||
CURRENT AGENT:
|
||||
{current_agent}
|
||||
|
||||
AVAILABLE BLOCKS:
|
||||
{block_summaries}
|
||||
|
||||
---
|
||||
|
||||
PATCH FORMAT:
|
||||
Return a JSON object with the following structure:
|
||||
|
||||
```json
|
||||
{{
|
||||
"type": "patch",
|
||||
"intent": "Brief description of what the patch does",
|
||||
"patches": [
|
||||
{{
|
||||
"type": "modify",
|
||||
"node_id": "uuid-of-node-to-modify",
|
||||
"changes": {{
|
||||
"input_default": {{"field": "new_value"}},
|
||||
"metadata": {{"customized_name": "New Name"}}
|
||||
}}
|
||||
}},
|
||||
{{
|
||||
"type": "add",
|
||||
"new_nodes": [
|
||||
{{
|
||||
"id": "new-uuid",
|
||||
"block_id": "block-uuid",
|
||||
"input_default": {{}},
|
||||
"metadata": {{"position": {{"x": 0, "y": 0}}, "customized_name": "Name"}}
|
||||
}}
|
||||
],
|
||||
"new_links": [
|
||||
{{
|
||||
"id": "link-uuid",
|
||||
"source_id": "source-node-id",
|
||||
"source_name": "output_field",
|
||||
"sink_id": "sink-node-id",
|
||||
"sink_name": "input_field"
|
||||
}}
|
||||
]
|
||||
}},
|
||||
{{
|
||||
"type": "remove",
|
||||
"node_ids": ["uuid-of-node-to-remove"],
|
||||
"link_ids": ["uuid-of-link-to-remove"]
|
||||
}}
|
||||
]
|
||||
}}
|
||||
```
|
||||
|
||||
If you need more information, return:
|
||||
```json
|
||||
{{
|
||||
"type": "clarifying_questions",
|
||||
"questions": [
|
||||
{{
|
||||
"question": "What specific change do you want?",
|
||||
"keyword": "change_type",
|
||||
"example": "Add error handling"
|
||||
}}
|
||||
]
|
||||
}}
|
||||
```
|
||||
|
||||
Generate the minimal patch needed. Output ONLY valid JSON.
|
||||
"""
|
||||
@@ -1,269 +0,0 @@
|
||||
"""External Agent Generator service client.
|
||||
|
||||
This module provides a client for communicating with the external Agent Generator
|
||||
microservice. When AGENTGENERATOR_HOST is configured, the agent generation functions
|
||||
will delegate to the external service instead of using the built-in LLM-based implementation.
|
||||
"""
|
||||
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
import httpx
|
||||
|
||||
from backend.util.settings import Settings
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
_client: httpx.AsyncClient | None = None
|
||||
_settings: Settings | None = None
|
||||
|
||||
|
||||
def _get_settings() -> Settings:
|
||||
"""Get or create settings singleton."""
|
||||
global _settings
|
||||
if _settings is None:
|
||||
_settings = Settings()
|
||||
return _settings
|
||||
|
||||
|
||||
def is_external_service_configured() -> bool:
|
||||
"""Check if external Agent Generator service is configured."""
|
||||
settings = _get_settings()
|
||||
return bool(settings.config.agentgenerator_host)
|
||||
|
||||
|
||||
def _get_base_url() -> str:
|
||||
"""Get the base URL for the external service."""
|
||||
settings = _get_settings()
|
||||
host = settings.config.agentgenerator_host
|
||||
port = settings.config.agentgenerator_port
|
||||
return f"http://{host}:{port}"
|
||||
|
||||
|
||||
def _get_client() -> httpx.AsyncClient:
|
||||
"""Get or create the HTTP client for the external service."""
|
||||
global _client
|
||||
if _client is None:
|
||||
settings = _get_settings()
|
||||
_client = httpx.AsyncClient(
|
||||
base_url=_get_base_url(),
|
||||
timeout=httpx.Timeout(settings.config.agentgenerator_timeout),
|
||||
)
|
||||
return _client
|
||||
|
||||
|
||||
async def decompose_goal_external(
|
||||
description: str, context: str = ""
|
||||
) -> dict[str, Any] | None:
|
||||
"""Call the external service to decompose a goal.
|
||||
|
||||
Args:
|
||||
description: Natural language goal description
|
||||
context: Additional context (e.g., answers to previous questions)
|
||||
|
||||
Returns:
|
||||
Dict with either:
|
||||
- {"type": "clarifying_questions", "questions": [...]}
|
||||
- {"type": "instructions", "steps": [...]}
|
||||
- {"type": "unachievable_goal", ...}
|
||||
- {"type": "vague_goal", ...}
|
||||
Or None on error
|
||||
"""
|
||||
client = _get_client()
|
||||
|
||||
# Build the request payload
|
||||
payload: dict[str, Any] = {"description": description}
|
||||
if context:
|
||||
# The external service uses user_instruction for additional context
|
||||
payload["user_instruction"] = context
|
||||
|
||||
try:
|
||||
response = await client.post("/api/decompose-description", json=payload)
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
|
||||
if not data.get("success"):
|
||||
logger.error(f"External service returned error: {data.get('error')}")
|
||||
return None
|
||||
|
||||
# Map the response to the expected format
|
||||
response_type = data.get("type")
|
||||
if response_type == "instructions":
|
||||
return {"type": "instructions", "steps": data.get("steps", [])}
|
||||
elif response_type == "clarifying_questions":
|
||||
return {
|
||||
"type": "clarifying_questions",
|
||||
"questions": data.get("questions", []),
|
||||
}
|
||||
elif response_type == "unachievable_goal":
|
||||
return {
|
||||
"type": "unachievable_goal",
|
||||
"reason": data.get("reason"),
|
||||
"suggested_goal": data.get("suggested_goal"),
|
||||
}
|
||||
elif response_type == "vague_goal":
|
||||
return {
|
||||
"type": "vague_goal",
|
||||
"suggested_goal": data.get("suggested_goal"),
|
||||
}
|
||||
else:
|
||||
logger.error(
|
||||
f"Unknown response type from external service: {response_type}"
|
||||
)
|
||||
return None
|
||||
|
||||
except httpx.HTTPStatusError as e:
|
||||
logger.error(f"HTTP error calling external agent generator: {e}")
|
||||
return None
|
||||
except httpx.RequestError as e:
|
||||
logger.error(f"Request error calling external agent generator: {e}")
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error calling external agent generator: {e}")
|
||||
return None
|
||||
|
||||
|
||||
async def generate_agent_external(
|
||||
instructions: dict[str, Any]
|
||||
) -> dict[str, Any] | None:
|
||||
"""Call the external service to generate an agent from instructions.
|
||||
|
||||
Args:
|
||||
instructions: Structured instructions from decompose_goal
|
||||
|
||||
Returns:
|
||||
Agent JSON dict or None on error
|
||||
"""
|
||||
client = _get_client()
|
||||
|
||||
try:
|
||||
response = await client.post(
|
||||
"/api/generate-agent", json={"instructions": instructions}
|
||||
)
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
|
||||
if not data.get("success"):
|
||||
logger.error(f"External service returned error: {data.get('error')}")
|
||||
return None
|
||||
|
||||
return data.get("agent_json")
|
||||
|
||||
except httpx.HTTPStatusError as e:
|
||||
logger.error(f"HTTP error calling external agent generator: {e}")
|
||||
return None
|
||||
except httpx.RequestError as e:
|
||||
logger.error(f"Request error calling external agent generator: {e}")
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error calling external agent generator: {e}")
|
||||
return None
|
||||
|
||||
|
||||
async def generate_agent_patch_external(
|
||||
update_request: str, current_agent: dict[str, Any]
|
||||
) -> dict[str, Any] | None:
|
||||
"""Call the external service to generate a patch for an existing agent.
|
||||
|
||||
Args:
|
||||
update_request: Natural language description of changes
|
||||
current_agent: Current agent JSON
|
||||
|
||||
Returns:
|
||||
Updated agent JSON, clarifying questions dict, or None on error
|
||||
"""
|
||||
client = _get_client()
|
||||
|
||||
try:
|
||||
response = await client.post(
|
||||
"/api/update-agent",
|
||||
json={
|
||||
"update_request": update_request,
|
||||
"current_agent_json": current_agent,
|
||||
},
|
||||
)
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
|
||||
if not data.get("success"):
|
||||
logger.error(f"External service returned error: {data.get('error')}")
|
||||
return None
|
||||
|
||||
# Check if it's clarifying questions
|
||||
if data.get("type") == "clarifying_questions":
|
||||
return {
|
||||
"type": "clarifying_questions",
|
||||
"questions": data.get("questions", []),
|
||||
}
|
||||
|
||||
# Otherwise return the updated agent JSON
|
||||
return data.get("agent_json")
|
||||
|
||||
except httpx.HTTPStatusError as e:
|
||||
logger.error(f"HTTP error calling external agent generator: {e}")
|
||||
return None
|
||||
except httpx.RequestError as e:
|
||||
logger.error(f"Request error calling external agent generator: {e}")
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error calling external agent generator: {e}")
|
||||
return None
|
||||
|
||||
|
||||
async def get_blocks_external() -> list[dict[str, Any]] | None:
|
||||
"""Get available blocks from the external service.
|
||||
|
||||
Returns:
|
||||
List of block info dicts or None on error
|
||||
"""
|
||||
client = _get_client()
|
||||
|
||||
try:
|
||||
response = await client.get("/api/blocks")
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
|
||||
if not data.get("success"):
|
||||
logger.error("External service returned error getting blocks")
|
||||
return None
|
||||
|
||||
return data.get("blocks", [])
|
||||
|
||||
except httpx.HTTPStatusError as e:
|
||||
logger.error(f"HTTP error getting blocks from external service: {e}")
|
||||
return None
|
||||
except httpx.RequestError as e:
|
||||
logger.error(f"Request error getting blocks from external service: {e}")
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error getting blocks from external service: {e}")
|
||||
return None
|
||||
|
||||
|
||||
async def health_check() -> bool:
|
||||
"""Check if the external service is healthy.
|
||||
|
||||
Returns:
|
||||
True if healthy, False otherwise
|
||||
"""
|
||||
if not is_external_service_configured():
|
||||
return False
|
||||
|
||||
client = _get_client()
|
||||
|
||||
try:
|
||||
response = await client.get("/health")
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
return data.get("status") == "healthy" and data.get("blocks_loaded", False)
|
||||
except Exception as e:
|
||||
logger.warning(f"External agent generator health check failed: {e}")
|
||||
return False
|
||||
|
||||
|
||||
async def close_client() -> None:
|
||||
"""Close the HTTP client."""
|
||||
global _client
|
||||
if _client is not None:
|
||||
await _client.aclose()
|
||||
_client = None
|
||||
@@ -0,0 +1,213 @@
|
||||
"""Utilities for agent generation."""
|
||||
|
||||
import json
|
||||
import re
|
||||
from typing import Any
|
||||
|
||||
from backend.data.block import get_blocks
|
||||
|
||||
# UUID validation regex
|
||||
UUID_REGEX = re.compile(
|
||||
r"^[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}$"
|
||||
)
|
||||
|
||||
# Block IDs for various fixes
|
||||
STORE_VALUE_BLOCK_ID = "1ff065e9-88e8-4358-9d82-8dc91f622ba9"
|
||||
CONDITION_BLOCK_ID = "715696a0-e1da-45c8-b209-c2fa9c3b0be6"
|
||||
ADDTOLIST_BLOCK_ID = "aeb08fc1-2fc1-4141-bc8e-f758f183a822"
|
||||
ADDTODICTIONARY_BLOCK_ID = "31d1064e-7446-4693-a7d4-65e5ca1180d1"
|
||||
CREATELIST_BLOCK_ID = "a912d5c7-6e00-4542-b2a9-8034136930e4"
|
||||
CREATEDICT_BLOCK_ID = "b924ddf4-de4f-4b56-9a85-358930dcbc91"
|
||||
CODE_EXECUTION_BLOCK_ID = "0b02b072-abe7-11ef-8372-fb5d162dd712"
|
||||
DATA_SAMPLING_BLOCK_ID = "4a448883-71fa-49cf-91cf-70d793bd7d87"
|
||||
UNIVERSAL_TYPE_CONVERTER_BLOCK_ID = "95d1b990-ce13-4d88-9737-ba5c2070c97b"
|
||||
GET_CURRENT_DATE_BLOCK_ID = "b29c1b50-5d0e-4d9f-8f9d-1b0e6fcbf0b1"
|
||||
|
||||
DOUBLE_CURLY_BRACES_BLOCK_IDS = [
|
||||
"44f6c8ad-d75c-4ae1-8209-aad1c0326928", # FillTextTemplateBlock
|
||||
"6ab085e2-20b3-4055-bc3e-08036e01eca6",
|
||||
"90f8c45e-e983-4644-aa0b-b4ebe2f531bc",
|
||||
"363ae599-353e-4804-937e-b2ee3cef3da4", # AgentOutputBlock
|
||||
"3b191d9f-356f-482d-8238-ba04b6d18381",
|
||||
"db7d8f02-2f44-4c55-ab7a-eae0941f0c30",
|
||||
"3a7c4b8d-6e2f-4a5d-b9c1-f8d23c5a9b0e",
|
||||
"ed1ae7a0-b770-4089-b520-1f0005fad19a",
|
||||
"a892b8d9-3e4e-4e9c-9c1e-75f8efcf1bfa",
|
||||
"b29c1b50-5d0e-4d9f-8f9d-1b0e6fcbf0b1",
|
||||
"716a67b3-6760-42e7-86dc-18645c6e00fc",
|
||||
"530cf046-2ce0-4854-ae2c-659db17c7a46",
|
||||
"ed55ac19-356e-4243-a6cb-bc599e9b716f",
|
||||
"1f292d4a-41a4-4977-9684-7c8d560b9f91", # LLM blocks
|
||||
"32a87eab-381e-4dd4-bdb8-4c47151be35a",
|
||||
]
|
||||
|
||||
|
||||
def is_valid_uuid(value: str) -> bool:
|
||||
"""Check if a string is a valid UUID v4."""
|
||||
return isinstance(value, str) and UUID_REGEX.match(value) is not None
|
||||
|
||||
|
||||
def _compact_schema(schema: dict) -> dict[str, str]:
|
||||
"""Extract compact type info from a JSON schema properties dict.
|
||||
|
||||
Returns a dict of {field_name: type_string} for essential info only.
|
||||
"""
|
||||
props = schema.get("properties", {})
|
||||
result = {}
|
||||
|
||||
for name, prop in props.items():
|
||||
# Skip internal/complex fields
|
||||
if name.startswith("_"):
|
||||
continue
|
||||
|
||||
# Get type string
|
||||
type_str = prop.get("type", "any")
|
||||
|
||||
# Handle anyOf/oneOf (optional types)
|
||||
if "anyOf" in prop:
|
||||
types = [t.get("type", "?") for t in prop["anyOf"] if t.get("type")]
|
||||
type_str = "|".join(types) if types else "any"
|
||||
elif "allOf" in prop:
|
||||
type_str = "object"
|
||||
|
||||
# Add array item type if present
|
||||
if type_str == "array" and "items" in prop:
|
||||
items = prop["items"]
|
||||
if isinstance(items, dict):
|
||||
item_type = items.get("type", "any")
|
||||
type_str = f"array[{item_type}]"
|
||||
|
||||
result[name] = type_str
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def get_block_summaries(include_schemas: bool = True) -> str:
|
||||
"""Generate compact block summaries for prompts.
|
||||
|
||||
Args:
|
||||
include_schemas: Whether to include input/output type info
|
||||
|
||||
Returns:
|
||||
Formatted string of block summaries (compact format)
|
||||
"""
|
||||
blocks = get_blocks()
|
||||
summaries = []
|
||||
|
||||
for block_id, block_cls in blocks.items():
|
||||
block = block_cls()
|
||||
name = block.name
|
||||
desc = getattr(block, "description", "") or ""
|
||||
|
||||
# Truncate description
|
||||
if len(desc) > 150:
|
||||
desc = desc[:147] + "..."
|
||||
|
||||
if not include_schemas:
|
||||
summaries.append(f"- {name} (id: {block_id}): {desc}")
|
||||
else:
|
||||
# Compact format with type info only
|
||||
inputs = {}
|
||||
outputs = {}
|
||||
required = []
|
||||
|
||||
if hasattr(block, "input_schema"):
|
||||
try:
|
||||
schema = block.input_schema.jsonschema()
|
||||
inputs = _compact_schema(schema)
|
||||
required = schema.get("required", [])
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
if hasattr(block, "output_schema"):
|
||||
try:
|
||||
schema = block.output_schema.jsonschema()
|
||||
outputs = _compact_schema(schema)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
# Build compact line format
|
||||
# Format: NAME (id): desc | in: {field:type, ...} [required] | out: {field:type}
|
||||
in_str = ", ".join(f"{k}:{v}" for k, v in inputs.items())
|
||||
out_str = ", ".join(f"{k}:{v}" for k, v in outputs.items())
|
||||
req_str = f" req=[{','.join(required)}]" if required else ""
|
||||
|
||||
static = " [static]" if getattr(block, "static_output", False) else ""
|
||||
|
||||
line = f"- {name} (id: {block_id}): {desc}"
|
||||
if in_str:
|
||||
line += f"\n in: {{{in_str}}}{req_str}"
|
||||
if out_str:
|
||||
line += f"\n out: {{{out_str}}}{static}"
|
||||
|
||||
summaries.append(line)
|
||||
|
||||
return "\n".join(summaries)
|
||||
|
||||
|
||||
def get_blocks_info() -> list[dict[str, Any]]:
|
||||
"""Get block information with schemas for validation and fixing."""
|
||||
blocks = get_blocks()
|
||||
blocks_info = []
|
||||
for block_id, block_cls in blocks.items():
|
||||
block = block_cls()
|
||||
blocks_info.append(
|
||||
{
|
||||
"id": block_id,
|
||||
"name": block.name,
|
||||
"description": getattr(block, "description", ""),
|
||||
"categories": getattr(block, "categories", []),
|
||||
"staticOutput": getattr(block, "static_output", False),
|
||||
"inputSchema": (
|
||||
block.input_schema.jsonschema()
|
||||
if hasattr(block, "input_schema")
|
||||
else {}
|
||||
),
|
||||
"outputSchema": (
|
||||
block.output_schema.jsonschema()
|
||||
if hasattr(block, "output_schema")
|
||||
else {}
|
||||
),
|
||||
}
|
||||
)
|
||||
return blocks_info
|
||||
|
||||
|
||||
def parse_json_from_llm(text: str) -> dict[str, Any] | None:
|
||||
"""Extract JSON from LLM response (handles markdown code blocks)."""
|
||||
if not text:
|
||||
return None
|
||||
|
||||
# Try fenced code block
|
||||
match = re.search(r"```(?:json)?\s*([\s\S]*?)```", text, re.IGNORECASE)
|
||||
if match:
|
||||
try:
|
||||
return json.loads(match.group(1).strip())
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
# Try raw text
|
||||
try:
|
||||
return json.loads(text.strip())
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
# Try finding {...} span
|
||||
start = text.find("{")
|
||||
end = text.rfind("}")
|
||||
if start != -1 and end > start:
|
||||
try:
|
||||
return json.loads(text[start : end + 1])
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
# Try finding [...] span
|
||||
start = text.find("[")
|
||||
end = text.rfind("]")
|
||||
if start != -1 and end > start:
|
||||
try:
|
||||
return json.loads(text[start : end + 1])
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
return None
|
||||
@@ -0,0 +1,279 @@
|
||||
"""Agent validator - Validates agent structure and connections."""
|
||||
|
||||
import logging
|
||||
import re
|
||||
from typing import Any
|
||||
|
||||
from .utils import get_blocks_info
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AgentValidator:
|
||||
"""Validator for AutoGPT agents with detailed error reporting."""
|
||||
|
||||
def __init__(self):
|
||||
self.errors: list[str] = []
|
||||
|
||||
def add_error(self, error: str) -> None:
|
||||
"""Add an error message."""
|
||||
self.errors.append(error)
|
||||
|
||||
def validate_block_existence(
|
||||
self, agent: dict[str, Any], blocks_info: list[dict[str, Any]]
|
||||
) -> bool:
|
||||
"""Validate all block IDs exist in the blocks library."""
|
||||
valid = True
|
||||
valid_block_ids = {b.get("id") for b in blocks_info if b.get("id")}
|
||||
|
||||
for node in agent.get("nodes", []):
|
||||
block_id = node.get("block_id")
|
||||
node_id = node.get("id")
|
||||
|
||||
if not block_id:
|
||||
self.add_error(f"Node '{node_id}' is missing 'block_id' field.")
|
||||
valid = False
|
||||
continue
|
||||
|
||||
if block_id not in valid_block_ids:
|
||||
self.add_error(
|
||||
f"Node '{node_id}' references block_id '{block_id}' which does not exist."
|
||||
)
|
||||
valid = False
|
||||
|
||||
return valid
|
||||
|
||||
def validate_link_node_references(self, agent: dict[str, Any]) -> bool:
|
||||
"""Validate all node IDs referenced in links exist."""
|
||||
valid = True
|
||||
valid_node_ids = {n.get("id") for n in agent.get("nodes", []) if n.get("id")}
|
||||
|
||||
for link in agent.get("links", []):
|
||||
link_id = link.get("id", "Unknown")
|
||||
source_id = link.get("source_id")
|
||||
sink_id = link.get("sink_id")
|
||||
|
||||
if not source_id:
|
||||
self.add_error(f"Link '{link_id}' is missing 'source_id'.")
|
||||
valid = False
|
||||
elif source_id not in valid_node_ids:
|
||||
self.add_error(
|
||||
f"Link '{link_id}' references non-existent source_id '{source_id}'."
|
||||
)
|
||||
valid = False
|
||||
|
||||
if not sink_id:
|
||||
self.add_error(f"Link '{link_id}' is missing 'sink_id'.")
|
||||
valid = False
|
||||
elif sink_id not in valid_node_ids:
|
||||
self.add_error(
|
||||
f"Link '{link_id}' references non-existent sink_id '{sink_id}'."
|
||||
)
|
||||
valid = False
|
||||
|
||||
return valid
|
||||
|
||||
def validate_required_inputs(
|
||||
self, agent: dict[str, Any], blocks_info: list[dict[str, Any]]
|
||||
) -> bool:
|
||||
"""Validate required inputs are provided."""
|
||||
valid = True
|
||||
block_map = {b.get("id"): b for b in blocks_info}
|
||||
|
||||
for node in agent.get("nodes", []):
|
||||
block_id = node.get("block_id")
|
||||
block = block_map.get(block_id)
|
||||
|
||||
if not block:
|
||||
continue
|
||||
|
||||
required_inputs = block.get("inputSchema", {}).get("required", [])
|
||||
input_defaults = node.get("input_default", {})
|
||||
node_id = node.get("id")
|
||||
|
||||
# Get linked inputs
|
||||
linked_inputs = {
|
||||
link["sink_name"]
|
||||
for link in agent.get("links", [])
|
||||
if link.get("sink_id") == node_id
|
||||
}
|
||||
|
||||
for req_input in required_inputs:
|
||||
if (
|
||||
req_input not in input_defaults
|
||||
and req_input not in linked_inputs
|
||||
and req_input != "credentials"
|
||||
):
|
||||
block_name = block.get("name", "Unknown Block")
|
||||
self.add_error(
|
||||
f"Node '{node_id}' ({block_name}) is missing required input '{req_input}'."
|
||||
)
|
||||
valid = False
|
||||
|
||||
return valid
|
||||
|
||||
def validate_data_type_compatibility(
|
||||
self, agent: dict[str, Any], blocks_info: list[dict[str, Any]]
|
||||
) -> bool:
|
||||
"""Validate linked data types are compatible."""
|
||||
valid = True
|
||||
block_map = {b.get("id"): b for b in blocks_info}
|
||||
node_lookup = {n.get("id"): n for n in agent.get("nodes", [])}
|
||||
|
||||
def get_type(schema: dict, name: str) -> str | None:
|
||||
if "_#_" in name:
|
||||
parent, child = name.split("_#_", 1)
|
||||
parent_schema = schema.get(parent, {})
|
||||
if "properties" in parent_schema:
|
||||
return parent_schema["properties"].get(child, {}).get("type")
|
||||
return None
|
||||
return schema.get(name, {}).get("type")
|
||||
|
||||
def are_compatible(src: str, sink: str) -> bool:
|
||||
if {src, sink} <= {"integer", "number"}:
|
||||
return True
|
||||
return src == sink
|
||||
|
||||
for link in agent.get("links", []):
|
||||
source_node = node_lookup.get(link.get("source_id"))
|
||||
sink_node = node_lookup.get(link.get("sink_id"))
|
||||
|
||||
if not source_node or not sink_node:
|
||||
continue
|
||||
|
||||
source_block = block_map.get(source_node.get("block_id"))
|
||||
sink_block = block_map.get(sink_node.get("block_id"))
|
||||
|
||||
if not source_block or not sink_block:
|
||||
continue
|
||||
|
||||
source_outputs = source_block.get("outputSchema", {}).get("properties", {})
|
||||
sink_inputs = sink_block.get("inputSchema", {}).get("properties", {})
|
||||
|
||||
source_type = get_type(source_outputs, link.get("source_name", ""))
|
||||
sink_type = get_type(sink_inputs, link.get("sink_name", ""))
|
||||
|
||||
if source_type and sink_type and not are_compatible(source_type, sink_type):
|
||||
self.add_error(
|
||||
f"Type mismatch: {source_block.get('name')} output '{link['source_name']}' "
|
||||
f"({source_type}) -> {sink_block.get('name')} input '{link['sink_name']}' ({sink_type})."
|
||||
)
|
||||
valid = False
|
||||
|
||||
return valid
|
||||
|
||||
def validate_nested_sink_links(
|
||||
self, agent: dict[str, Any], blocks_info: list[dict[str, Any]]
|
||||
) -> bool:
|
||||
"""Validate nested sink links (with _#_ notation)."""
|
||||
valid = True
|
||||
block_map = {b.get("id"): b for b in blocks_info}
|
||||
node_lookup = {n.get("id"): n for n in agent.get("nodes", [])}
|
||||
|
||||
for link in agent.get("links", []):
|
||||
sink_name = link.get("sink_name", "")
|
||||
|
||||
if "_#_" in sink_name:
|
||||
parent, child = sink_name.split("_#_", 1)
|
||||
|
||||
sink_node = node_lookup.get(link.get("sink_id"))
|
||||
if not sink_node:
|
||||
continue
|
||||
|
||||
block = block_map.get(sink_node.get("block_id"))
|
||||
if not block:
|
||||
continue
|
||||
|
||||
input_props = block.get("inputSchema", {}).get("properties", {})
|
||||
parent_schema = input_props.get(parent)
|
||||
|
||||
if not parent_schema:
|
||||
self.add_error(
|
||||
f"Invalid nested link '{sink_name}': parent '{parent}' not found."
|
||||
)
|
||||
valid = False
|
||||
continue
|
||||
|
||||
if not parent_schema.get("additionalProperties"):
|
||||
if not (
|
||||
isinstance(parent_schema, dict)
|
||||
and "properties" in parent_schema
|
||||
and child in parent_schema.get("properties", {})
|
||||
):
|
||||
self.add_error(
|
||||
f"Invalid nested link '{sink_name}': child '{child}' not found in '{parent}'."
|
||||
)
|
||||
valid = False
|
||||
|
||||
return valid
|
||||
|
||||
def validate_prompt_spaces(self, agent: dict[str, Any]) -> bool:
|
||||
"""Validate prompts don't have spaces in template variables."""
|
||||
valid = True
|
||||
|
||||
for node in agent.get("nodes", []):
|
||||
input_default = node.get("input_default", {})
|
||||
prompt = input_default.get("prompt", "")
|
||||
|
||||
if not isinstance(prompt, str):
|
||||
continue
|
||||
|
||||
# Find {{...}} with spaces
|
||||
matches = re.finditer(r"\{\{([^}]+)\}\}", prompt)
|
||||
for match in matches:
|
||||
content = match.group(1)
|
||||
if " " in content:
|
||||
self.add_error(
|
||||
f"Node '{node.get('id')}' has spaces in template variable: "
|
||||
f"'{{{{{content}}}}}' should be '{{{{{content.replace(' ', '_')}}}}}'."
|
||||
)
|
||||
valid = False
|
||||
|
||||
return valid
|
||||
|
||||
def validate(
|
||||
self, agent: dict[str, Any], blocks_info: list[dict[str, Any]] | None = None
|
||||
) -> tuple[bool, str | None]:
|
||||
"""Run all validations.
|
||||
|
||||
Returns:
|
||||
Tuple of (is_valid, error_message)
|
||||
"""
|
||||
self.errors = []
|
||||
|
||||
if blocks_info is None:
|
||||
blocks_info = get_blocks_info()
|
||||
|
||||
checks = [
|
||||
self.validate_block_existence(agent, blocks_info),
|
||||
self.validate_link_node_references(agent),
|
||||
self.validate_required_inputs(agent, blocks_info),
|
||||
self.validate_data_type_compatibility(agent, blocks_info),
|
||||
self.validate_nested_sink_links(agent, blocks_info),
|
||||
self.validate_prompt_spaces(agent),
|
||||
]
|
||||
|
||||
all_passed = all(checks)
|
||||
|
||||
if all_passed:
|
||||
logger.info("Agent validation successful")
|
||||
return True, None
|
||||
|
||||
error_message = "Agent validation failed:\n"
|
||||
for i, error in enumerate(self.errors, 1):
|
||||
error_message += f"{i}. {error}\n"
|
||||
|
||||
logger.warning(f"Agent validation failed with {len(self.errors)} errors")
|
||||
return False, error_message
|
||||
|
||||
|
||||
def validate_agent(
|
||||
agent: dict[str, Any], blocks_info: list[dict[str, Any]] | None = None
|
||||
) -> tuple[bool, str | None]:
|
||||
"""Convenience function to validate an agent.
|
||||
|
||||
Returns:
|
||||
Tuple of (is_valid, error_message)
|
||||
"""
|
||||
validator = AgentValidator()
|
||||
return validator.validate(agent, blocks_info)
|
||||
@@ -8,10 +8,12 @@ from langfuse import observe
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
|
||||
from .agent_generator import (
|
||||
AgentGeneratorNotConfiguredError,
|
||||
apply_all_fixes,
|
||||
decompose_goal,
|
||||
generate_agent,
|
||||
get_blocks_info,
|
||||
save_agent_to_library,
|
||||
validate_agent,
|
||||
)
|
||||
from .base import BaseTool
|
||||
from .models import (
|
||||
@@ -25,6 +27,9 @@ from .models import (
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Maximum retries for agent generation with validation feedback
|
||||
MAX_GENERATION_RETRIES = 2
|
||||
|
||||
|
||||
class CreateAgentTool(BaseTool):
|
||||
"""Tool for creating agents from natural language descriptions."""
|
||||
@@ -86,8 +91,9 @@ class CreateAgentTool(BaseTool):
|
||||
|
||||
Flow:
|
||||
1. Decompose the description into steps (may return clarifying questions)
|
||||
2. Generate agent JSON (external service handles fixing and validation)
|
||||
3. Preview or save based on the save parameter
|
||||
2. Generate agent JSON from the steps
|
||||
3. Apply fixes to correct common LLM errors
|
||||
4. Preview or save based on the save parameter
|
||||
"""
|
||||
description = kwargs.get("description", "").strip()
|
||||
context = kwargs.get("context", "")
|
||||
@@ -104,13 +110,11 @@ class CreateAgentTool(BaseTool):
|
||||
# Step 1: Decompose goal into steps
|
||||
try:
|
||||
decomposition_result = await decompose_goal(description, context)
|
||||
except AgentGeneratorNotConfiguredError:
|
||||
except ValueError as e:
|
||||
# Handle missing API key or configuration errors
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
"Agent generation is not available. "
|
||||
"The Agent Generator service is not configured."
|
||||
),
|
||||
error="service_not_configured",
|
||||
message=f"Agent generation is not configured: {str(e)}",
|
||||
error="configuration_error",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
@@ -167,32 +171,72 @@ class CreateAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Step 2: Generate agent JSON (external service handles fixing and validation)
|
||||
try:
|
||||
agent_json = await generate_agent(decomposition_result)
|
||||
except AgentGeneratorNotConfiguredError:
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
"Agent generation is not available. "
|
||||
"The Agent Generator service is not configured."
|
||||
),
|
||||
error="service_not_configured",
|
||||
session_id=session_id,
|
||||
# Step 2: Generate agent JSON with retry on validation failure
|
||||
blocks_info = get_blocks_info()
|
||||
agent_json = None
|
||||
validation_errors = None
|
||||
|
||||
for attempt in range(MAX_GENERATION_RETRIES + 1):
|
||||
# Generate agent (include validation errors from previous attempt)
|
||||
if attempt == 0:
|
||||
agent_json = await generate_agent(decomposition_result)
|
||||
else:
|
||||
# Retry with validation error feedback
|
||||
logger.info(
|
||||
f"Retry {attempt}/{MAX_GENERATION_RETRIES} with validation feedback"
|
||||
)
|
||||
retry_instructions = {
|
||||
**decomposition_result,
|
||||
"previous_errors": validation_errors,
|
||||
"retry_instructions": (
|
||||
"The previous generation had validation errors. "
|
||||
"Please fix these issues in the new generation:\n"
|
||||
f"{validation_errors}"
|
||||
),
|
||||
}
|
||||
agent_json = await generate_agent(retry_instructions)
|
||||
|
||||
if agent_json is None:
|
||||
if attempt == MAX_GENERATION_RETRIES:
|
||||
return ErrorResponse(
|
||||
message="Failed to generate the agent. Please try again.",
|
||||
error="Generation failed",
|
||||
session_id=session_id,
|
||||
)
|
||||
continue
|
||||
|
||||
# Step 3: Apply fixes to correct common errors
|
||||
agent_json = apply_all_fixes(agent_json, blocks_info)
|
||||
|
||||
# Step 4: Validate the agent
|
||||
is_valid, validation_errors = validate_agent(agent_json, blocks_info)
|
||||
|
||||
if is_valid:
|
||||
logger.info(f"Agent generated successfully on attempt {attempt + 1}")
|
||||
break
|
||||
|
||||
logger.warning(
|
||||
f"Validation failed on attempt {attempt + 1}: {validation_errors}"
|
||||
)
|
||||
|
||||
if agent_json is None:
|
||||
return ErrorResponse(
|
||||
message="Failed to generate the agent. Please try again.",
|
||||
error="Generation failed",
|
||||
session_id=session_id,
|
||||
)
|
||||
if attempt == MAX_GENERATION_RETRIES:
|
||||
# Return error with validation details
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
f"Generated agent has validation errors after {MAX_GENERATION_RETRIES + 1} attempts. "
|
||||
f"Please try rephrasing your request or simplify the workflow."
|
||||
),
|
||||
error="validation_failed",
|
||||
details={"validation_errors": validation_errors},
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
agent_name = agent_json.get("name", "Generated Agent")
|
||||
agent_description = agent_json.get("description", "")
|
||||
node_count = len(agent_json.get("nodes", []))
|
||||
link_count = len(agent_json.get("links", []))
|
||||
|
||||
# Step 3: Preview or save
|
||||
# Step 4: Preview or save
|
||||
if not save:
|
||||
return AgentPreviewResponse(
|
||||
message=(
|
||||
|
||||
@@ -8,10 +8,13 @@ from langfuse import observe
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
|
||||
from .agent_generator import (
|
||||
AgentGeneratorNotConfiguredError,
|
||||
apply_agent_patch,
|
||||
apply_all_fixes,
|
||||
generate_agent_patch,
|
||||
get_agent_as_json,
|
||||
get_blocks_info,
|
||||
save_agent_to_library,
|
||||
validate_agent,
|
||||
)
|
||||
from .base import BaseTool
|
||||
from .models import (
|
||||
@@ -25,6 +28,9 @@ from .models import (
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Maximum retries for patch generation with validation feedback
|
||||
MAX_GENERATION_RETRIES = 2
|
||||
|
||||
|
||||
class EditAgentTool(BaseTool):
|
||||
"""Tool for editing existing agents using natural language."""
|
||||
@@ -37,7 +43,7 @@ class EditAgentTool(BaseTool):
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Edit an existing agent from the user's library using natural language. "
|
||||
"Generates updates to the agent while preserving unchanged parts."
|
||||
"Generates a patch to update the agent while preserving unchanged parts."
|
||||
)
|
||||
|
||||
@property
|
||||
@@ -92,8 +98,9 @@ class EditAgentTool(BaseTool):
|
||||
|
||||
Flow:
|
||||
1. Fetch the current agent
|
||||
2. Generate updated agent (external service handles fixing and validation)
|
||||
3. Preview or save based on the save parameter
|
||||
2. Generate a patch based on the requested changes
|
||||
3. Apply the patch to create an updated agent
|
||||
4. Preview or save based on the save parameter
|
||||
"""
|
||||
agent_id = kwargs.get("agent_id", "").strip()
|
||||
changes = kwargs.get("changes", "").strip()
|
||||
@@ -130,58 +137,121 @@ class EditAgentTool(BaseTool):
|
||||
if context:
|
||||
update_request = f"{changes}\n\nAdditional context:\n{context}"
|
||||
|
||||
# Step 2: Generate updated agent (external service handles fixing and validation)
|
||||
try:
|
||||
result = await generate_agent_patch(update_request, current_agent)
|
||||
except AgentGeneratorNotConfiguredError:
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
"Agent editing is not available. "
|
||||
"The Agent Generator service is not configured."
|
||||
),
|
||||
error="service_not_configured",
|
||||
session_id=session_id,
|
||||
)
|
||||
# Step 2: Generate patch with retry on validation failure
|
||||
blocks_info = get_blocks_info()
|
||||
updated_agent = None
|
||||
validation_errors = None
|
||||
intent = "Applied requested changes"
|
||||
|
||||
if result is None:
|
||||
return ErrorResponse(
|
||||
message="Failed to generate changes. Please try rephrasing.",
|
||||
error="Update generation failed",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Check if LLM returned clarifying questions
|
||||
if result.get("type") == "clarifying_questions":
|
||||
questions = result.get("questions", [])
|
||||
return ClarificationNeededResponse(
|
||||
message=(
|
||||
"I need some more information about the changes. "
|
||||
"Please answer the following questions:"
|
||||
),
|
||||
questions=[
|
||||
ClarifyingQuestion(
|
||||
question=q.get("question", ""),
|
||||
keyword=q.get("keyword", ""),
|
||||
example=q.get("example"),
|
||||
for attempt in range(MAX_GENERATION_RETRIES + 1):
|
||||
# Generate patch (include validation errors from previous attempt)
|
||||
try:
|
||||
if attempt == 0:
|
||||
patch_result = await generate_agent_patch(
|
||||
update_request, current_agent
|
||||
)
|
||||
for q in questions
|
||||
],
|
||||
session_id=session_id,
|
||||
else:
|
||||
# Retry with validation error feedback
|
||||
logger.info(
|
||||
f"Retry {attempt}/{MAX_GENERATION_RETRIES} with validation feedback"
|
||||
)
|
||||
retry_request = (
|
||||
f"{update_request}\n\n"
|
||||
f"IMPORTANT: The previous edit had validation errors. "
|
||||
f"Please fix these issues:\n{validation_errors}"
|
||||
)
|
||||
patch_result = await generate_agent_patch(
|
||||
retry_request, current_agent
|
||||
)
|
||||
except ValueError as e:
|
||||
# Handle missing API key or configuration errors
|
||||
return ErrorResponse(
|
||||
message=f"Agent generation is not configured: {str(e)}",
|
||||
error="configuration_error",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if patch_result is None:
|
||||
if attempt == MAX_GENERATION_RETRIES:
|
||||
return ErrorResponse(
|
||||
message="Failed to generate changes. Please try rephrasing.",
|
||||
error="Patch generation failed",
|
||||
session_id=session_id,
|
||||
)
|
||||
continue
|
||||
|
||||
# Check if LLM returned clarifying questions
|
||||
if patch_result.get("type") == "clarifying_questions":
|
||||
questions = patch_result.get("questions", [])
|
||||
return ClarificationNeededResponse(
|
||||
message=(
|
||||
"I need some more information about the changes. "
|
||||
"Please answer the following questions:"
|
||||
),
|
||||
questions=[
|
||||
ClarifyingQuestion(
|
||||
question=q.get("question", ""),
|
||||
keyword=q.get("keyword", ""),
|
||||
example=q.get("example"),
|
||||
)
|
||||
for q in questions
|
||||
],
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Step 3: Apply patch and fixes
|
||||
try:
|
||||
updated_agent = apply_agent_patch(current_agent, patch_result)
|
||||
updated_agent = apply_all_fixes(updated_agent, blocks_info)
|
||||
except Exception as e:
|
||||
if attempt == MAX_GENERATION_RETRIES:
|
||||
return ErrorResponse(
|
||||
message=f"Failed to apply changes: {str(e)}",
|
||||
error="patch_apply_failed",
|
||||
details={"exception": str(e)},
|
||||
session_id=session_id,
|
||||
)
|
||||
validation_errors = str(e)
|
||||
continue
|
||||
|
||||
# Step 4: Validate the updated agent
|
||||
is_valid, validation_errors = validate_agent(updated_agent, blocks_info)
|
||||
|
||||
if is_valid:
|
||||
logger.info(f"Agent edited successfully on attempt {attempt + 1}")
|
||||
intent = patch_result.get("intent", "Applied requested changes")
|
||||
break
|
||||
|
||||
logger.warning(
|
||||
f"Validation failed on attempt {attempt + 1}: {validation_errors}"
|
||||
)
|
||||
|
||||
# Result is the updated agent JSON
|
||||
updated_agent = result
|
||||
if attempt == MAX_GENERATION_RETRIES:
|
||||
# Return error with validation details
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
f"Updated agent has validation errors after "
|
||||
f"{MAX_GENERATION_RETRIES + 1} attempts. "
|
||||
f"Please try rephrasing your request or simplify the changes."
|
||||
),
|
||||
error="validation_failed",
|
||||
details={"validation_errors": validation_errors},
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# At this point, updated_agent is guaranteed to be set (we return on all failure paths)
|
||||
assert updated_agent is not None
|
||||
|
||||
agent_name = updated_agent.get("name", "Updated Agent")
|
||||
agent_description = updated_agent.get("description", "")
|
||||
node_count = len(updated_agent.get("nodes", []))
|
||||
link_count = len(updated_agent.get("links", []))
|
||||
|
||||
# Step 3: Preview or save
|
||||
# Step 5: Preview or save
|
||||
if not save:
|
||||
return AgentPreviewResponse(
|
||||
message=(
|
||||
f"I've updated the agent. "
|
||||
f"I've updated the agent. Changes: {intent}. "
|
||||
f"The agent now has {node_count} blocks. "
|
||||
f"Review it and call edit_agent with save=true to save the changes."
|
||||
),
|
||||
@@ -207,7 +277,10 @@ class EditAgentTool(BaseTool):
|
||||
)
|
||||
|
||||
return AgentSavedResponse(
|
||||
message=f"Updated agent '{created_graph.name}' has been saved to your library!",
|
||||
message=(
|
||||
f"Updated agent '{created_graph.name}' has been saved to your library! "
|
||||
f"Changes: {intent}"
|
||||
),
|
||||
agent_id=created_graph.id,
|
||||
agent_name=created_graph.name,
|
||||
library_agent_id=library_agent.id,
|
||||
|
||||
@@ -33,7 +33,7 @@ from .models import (
|
||||
UserReadiness,
|
||||
)
|
||||
from .utils import (
|
||||
build_missing_credentials_from_graph,
|
||||
check_user_has_required_credentials,
|
||||
extract_credentials_from_schema,
|
||||
fetch_graph_from_store_slug,
|
||||
get_or_create_library_agent,
|
||||
@@ -237,13 +237,15 @@ class RunAgentTool(BaseTool):
|
||||
# Return credentials needed response with input data info
|
||||
# The UI handles credential setup automatically, so the message
|
||||
# focuses on asking about input data
|
||||
requirements_creds_dict = build_missing_credentials_from_graph(
|
||||
graph, None
|
||||
credentials = extract_credentials_from_schema(
|
||||
graph.credentials_input_schema
|
||||
)
|
||||
missing_credentials_dict = build_missing_credentials_from_graph(
|
||||
graph, graph_credentials
|
||||
missing_creds_check = await check_user_has_required_credentials(
|
||||
user_id, credentials
|
||||
)
|
||||
requirements_creds_list = list(requirements_creds_dict.values())
|
||||
missing_credentials_dict = {
|
||||
c.id: c.model_dump() for c in missing_creds_check
|
||||
}
|
||||
|
||||
return SetupRequirementsResponse(
|
||||
message=self._build_inputs_message(graph, MSG_WHAT_VALUES_TO_USE),
|
||||
@@ -257,7 +259,7 @@ class RunAgentTool(BaseTool):
|
||||
ready_to_run=False,
|
||||
),
|
||||
requirements={
|
||||
"credentials": requirements_creds_list,
|
||||
"credentials": [c.model_dump() for c in credentials],
|
||||
"inputs": self._get_inputs_list(graph.input_schema),
|
||||
"execution_modes": self._get_execution_modes(graph),
|
||||
},
|
||||
|
||||
@@ -29,7 +29,7 @@ def mock_embedding_functions():
|
||||
yield
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent(setup_test_data):
|
||||
"""Test that the run_agent tool successfully executes an approved agent"""
|
||||
# Use test data from fixture
|
||||
@@ -70,7 +70,7 @@ async def test_run_agent(setup_test_data):
|
||||
assert result_data["graph_name"] == "Test Agent"
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_missing_inputs(setup_test_data):
|
||||
"""Test that the run_agent tool returns error when inputs are missing"""
|
||||
# Use test data from fixture
|
||||
@@ -106,7 +106,7 @@ async def test_run_agent_missing_inputs(setup_test_data):
|
||||
assert "message" in result_data
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_invalid_agent_id(setup_test_data):
|
||||
"""Test that the run_agent tool returns error for invalid agent ID"""
|
||||
# Use test data from fixture
|
||||
@@ -141,7 +141,7 @@ async def test_run_agent_invalid_agent_id(setup_test_data):
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_with_llm_credentials(setup_llm_test_data):
|
||||
"""Test that run_agent works with an agent requiring LLM credentials"""
|
||||
# Use test data from fixture
|
||||
@@ -185,7 +185,7 @@ async def test_run_agent_with_llm_credentials(setup_llm_test_data):
|
||||
assert result_data["graph_name"] == "LLM Test Agent"
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_shows_available_inputs_when_none_provided(setup_test_data):
|
||||
"""Test that run_agent returns available inputs when called without inputs or use_defaults."""
|
||||
user = setup_test_data["user"]
|
||||
@@ -219,7 +219,7 @@ async def test_run_agent_shows_available_inputs_when_none_provided(setup_test_da
|
||||
assert "inputs" in result_data["message"].lower()
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_with_use_defaults(setup_test_data):
|
||||
"""Test that run_agent executes successfully with use_defaults=True."""
|
||||
user = setup_test_data["user"]
|
||||
@@ -251,7 +251,7 @@ async def test_run_agent_with_use_defaults(setup_test_data):
|
||||
assert result_data["graph_id"] == graph.id
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_missing_credentials(setup_firecrawl_test_data):
|
||||
"""Test that run_agent returns setup_requirements when credentials are missing."""
|
||||
user = setup_firecrawl_test_data["user"]
|
||||
@@ -285,7 +285,7 @@ async def test_run_agent_missing_credentials(setup_firecrawl_test_data):
|
||||
assert len(setup_info["user_readiness"]["missing_credentials"]) > 0
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_invalid_slug_format(setup_test_data):
|
||||
"""Test that run_agent returns error for invalid slug format (no slash)."""
|
||||
user = setup_test_data["user"]
|
||||
@@ -313,7 +313,7 @@ async def test_run_agent_invalid_slug_format(setup_test_data):
|
||||
assert "username/agent-name" in result_data["message"]
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_unauthenticated():
|
||||
"""Test that run_agent returns need_login for unauthenticated users."""
|
||||
tool = RunAgentTool()
|
||||
@@ -340,7 +340,7 @@ async def test_run_agent_unauthenticated():
|
||||
assert "sign in" in result_data["message"].lower()
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_schedule_without_cron(setup_test_data):
|
||||
"""Test that run_agent returns error when scheduling without cron expression."""
|
||||
user = setup_test_data["user"]
|
||||
@@ -372,7 +372,7 @@ async def test_run_agent_schedule_without_cron(setup_test_data):
|
||||
assert "cron" in result_data["message"].lower()
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_schedule_without_name(setup_test_data):
|
||||
"""Test that run_agent returns error when scheduling without schedule_name."""
|
||||
user = setup_test_data["user"]
|
||||
|
||||
@@ -22,7 +22,6 @@ from .models import (
|
||||
ToolResponseBase,
|
||||
UserReadiness,
|
||||
)
|
||||
from .utils import build_missing_credentials_from_field_info
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -190,11 +189,7 @@ class RunBlockTool(BaseTool):
|
||||
|
||||
if missing_credentials:
|
||||
# Return setup requirements response with missing credentials
|
||||
credentials_fields_info = block.input_schema.get_credentials_fields_info()
|
||||
missing_creds_dict = build_missing_credentials_from_field_info(
|
||||
credentials_fields_info, set(matched_credentials.keys())
|
||||
)
|
||||
missing_creds_list = list(missing_creds_dict.values())
|
||||
missing_creds_dict = {c.id: c.model_dump() for c in missing_credentials}
|
||||
|
||||
return SetupRequirementsResponse(
|
||||
message=(
|
||||
@@ -211,7 +206,7 @@ class RunBlockTool(BaseTool):
|
||||
ready_to_run=False,
|
||||
),
|
||||
requirements={
|
||||
"credentials": missing_creds_list,
|
||||
"credentials": [c.model_dump() for c in missing_credentials],
|
||||
"inputs": self._get_inputs_list(block),
|
||||
"execution_modes": ["immediate"],
|
||||
},
|
||||
|
||||
@@ -8,7 +8,7 @@ from backend.api.features.library import model as library_model
|
||||
from backend.api.features.store import db as store_db
|
||||
from backend.data import graph as graph_db
|
||||
from backend.data.graph import GraphModel
|
||||
from backend.data.model import CredentialsFieldInfo, CredentialsMetaInput
|
||||
from backend.data.model import CredentialsMetaInput
|
||||
from backend.integrations.creds_manager import IntegrationCredentialsManager
|
||||
from backend.util.exceptions import NotFoundError
|
||||
|
||||
@@ -89,59 +89,6 @@ def extract_credentials_from_schema(
|
||||
return credentials
|
||||
|
||||
|
||||
def _serialize_missing_credential(
|
||||
field_key: str, field_info: CredentialsFieldInfo
|
||||
) -> dict[str, Any]:
|
||||
"""
|
||||
Convert credential field info into a serializable dict that preserves all supported
|
||||
credential types (e.g., api_key + oauth2) so the UI can offer multiple options.
|
||||
"""
|
||||
supported_types = sorted(field_info.supported_types)
|
||||
provider = next(iter(field_info.provider), "unknown")
|
||||
scopes = sorted(field_info.required_scopes or [])
|
||||
|
||||
return {
|
||||
"id": field_key,
|
||||
"title": field_key.replace("_", " ").title(),
|
||||
"provider": provider,
|
||||
"provider_name": provider.replace("_", " ").title(),
|
||||
"type": supported_types[0] if supported_types else "api_key",
|
||||
"types": supported_types,
|
||||
"scopes": scopes,
|
||||
}
|
||||
|
||||
|
||||
def build_missing_credentials_from_graph(
|
||||
graph: GraphModel, matched_credentials: dict[str, CredentialsMetaInput] | None
|
||||
) -> dict[str, Any]:
|
||||
"""
|
||||
Build a missing_credentials mapping from a graph's aggregated credentials inputs,
|
||||
preserving all supported credential types for each field.
|
||||
"""
|
||||
matched_keys = set(matched_credentials.keys()) if matched_credentials else set()
|
||||
aggregated_fields = graph.aggregate_credentials_inputs()
|
||||
|
||||
return {
|
||||
field_key: _serialize_missing_credential(field_key, field_info)
|
||||
for field_key, (field_info, _node_fields) in aggregated_fields.items()
|
||||
if field_key not in matched_keys
|
||||
}
|
||||
|
||||
|
||||
def build_missing_credentials_from_field_info(
|
||||
credential_fields: dict[str, CredentialsFieldInfo],
|
||||
matched_keys: set[str],
|
||||
) -> dict[str, Any]:
|
||||
"""
|
||||
Build missing_credentials mapping from a simple credentials field info dictionary.
|
||||
"""
|
||||
return {
|
||||
field_key: _serialize_missing_credential(field_key, field_info)
|
||||
for field_key, field_info in credential_fields.items()
|
||||
if field_key not in matched_keys
|
||||
}
|
||||
|
||||
|
||||
def extract_credentials_as_dict(
|
||||
credentials_input_schema: dict[str, Any] | None,
|
||||
) -> dict[str, CredentialsMetaInput]:
|
||||
|
||||
@@ -23,7 +23,6 @@ class PendingHumanReviewModel(BaseModel):
|
||||
id: Unique identifier for the review record
|
||||
user_id: ID of the user who must perform the review
|
||||
node_exec_id: ID of the node execution that created this review
|
||||
node_id: ID of the node definition (for grouping reviews from same node)
|
||||
graph_exec_id: ID of the graph execution containing the node
|
||||
graph_id: ID of the graph template being executed
|
||||
graph_version: Version number of the graph template
|
||||
@@ -38,10 +37,6 @@ class PendingHumanReviewModel(BaseModel):
|
||||
"""
|
||||
|
||||
node_exec_id: str = Field(description="Node execution ID (primary key)")
|
||||
node_id: str = Field(
|
||||
description="Node definition ID (for grouping)",
|
||||
default="", # Temporary default for test compatibility
|
||||
)
|
||||
user_id: str = Field(description="User ID associated with the review")
|
||||
graph_exec_id: str = Field(description="Graph execution ID")
|
||||
graph_id: str = Field(description="Graph ID")
|
||||
@@ -71,9 +66,7 @@ class PendingHumanReviewModel(BaseModel):
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_db(
|
||||
cls, review: "PendingHumanReview", node_id: str
|
||||
) -> "PendingHumanReviewModel":
|
||||
def from_db(cls, review: "PendingHumanReview") -> "PendingHumanReviewModel":
|
||||
"""
|
||||
Convert a database model to a response model.
|
||||
|
||||
@@ -81,14 +74,9 @@ class PendingHumanReviewModel(BaseModel):
|
||||
payload, instructions, and editable flag.
|
||||
|
||||
Handles invalid data gracefully by using safe defaults.
|
||||
|
||||
Args:
|
||||
review: Database review object
|
||||
node_id: Node definition ID (fetched from NodeExecution)
|
||||
"""
|
||||
return cls(
|
||||
node_exec_id=review.nodeExecId,
|
||||
node_id=node_id,
|
||||
user_id=review.userId,
|
||||
graph_exec_id=review.graphExecId,
|
||||
graph_id=review.graphId,
|
||||
@@ -119,13 +107,6 @@ class ReviewItem(BaseModel):
|
||||
reviewed_data: SafeJsonData | None = Field(
|
||||
None, description="Optional edited data (ignored if approved=False)"
|
||||
)
|
||||
auto_approve_future: bool = Field(
|
||||
default=False,
|
||||
description=(
|
||||
"If true and this review is approved, future executions of this same "
|
||||
"block (node) will be automatically approved. This only affects approved reviews."
|
||||
),
|
||||
)
|
||||
|
||||
@field_validator("reviewed_data")
|
||||
@classmethod
|
||||
@@ -193,9 +174,6 @@ class ReviewRequest(BaseModel):
|
||||
This request must include ALL pending reviews for a graph execution.
|
||||
Each review will be either approved (with optional data modifications)
|
||||
or rejected (data ignored). The execution will resume only after ALL reviews are processed.
|
||||
|
||||
Each review item can individually specify whether to auto-approve future executions
|
||||
of the same block via the `auto_approve_future` field on ReviewItem.
|
||||
"""
|
||||
|
||||
reviews: List[ReviewItem] = Field(
|
||||
|
||||
@@ -1,27 +1,17 @@
|
||||
import asyncio
|
||||
import logging
|
||||
from typing import Any, List
|
||||
from typing import List
|
||||
|
||||
import autogpt_libs.auth as autogpt_auth_lib
|
||||
from fastapi import APIRouter, HTTPException, Query, Security, status
|
||||
from prisma.enums import ReviewStatus
|
||||
|
||||
from backend.data.execution import (
|
||||
ExecutionContext,
|
||||
ExecutionStatus,
|
||||
get_graph_execution_meta,
|
||||
)
|
||||
from backend.data.graph import get_graph_settings
|
||||
from backend.data.execution import get_graph_execution_meta
|
||||
from backend.data.human_review import (
|
||||
create_auto_approval_record,
|
||||
get_pending_reviews_by_node_exec_ids,
|
||||
get_pending_reviews_for_execution,
|
||||
get_pending_reviews_for_user,
|
||||
has_pending_reviews_for_graph_exec,
|
||||
process_all_reviews_for_execution,
|
||||
)
|
||||
from backend.data.model import USER_TIMEZONE_NOT_SET
|
||||
from backend.data.user import get_user_by_id
|
||||
from backend.executor.utils import add_graph_execution
|
||||
|
||||
from .model import PendingHumanReviewModel, ReviewRequest, ReviewResponse
|
||||
@@ -137,70 +127,17 @@ async def process_review_action(
|
||||
detail="At least one review must be provided",
|
||||
)
|
||||
|
||||
# Batch fetch all requested reviews
|
||||
reviews_map = await get_pending_reviews_by_node_exec_ids(
|
||||
list(all_request_node_ids), user_id
|
||||
)
|
||||
|
||||
# Validate all reviews were found
|
||||
missing_ids = all_request_node_ids - set(reviews_map.keys())
|
||||
if missing_ids:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_404_NOT_FOUND,
|
||||
detail=f"No pending review found for node execution(s): {', '.join(missing_ids)}",
|
||||
)
|
||||
|
||||
# Validate all reviews belong to the same execution
|
||||
graph_exec_ids = {review.graph_exec_id for review in reviews_map.values()}
|
||||
if len(graph_exec_ids) > 1:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_409_CONFLICT,
|
||||
detail="All reviews in a single request must belong to the same execution.",
|
||||
)
|
||||
|
||||
graph_exec_id = next(iter(graph_exec_ids))
|
||||
|
||||
# Validate execution status before processing reviews
|
||||
graph_exec_meta = await get_graph_execution_meta(
|
||||
user_id=user_id, execution_id=graph_exec_id
|
||||
)
|
||||
|
||||
if not graph_exec_meta:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_404_NOT_FOUND,
|
||||
detail=f"Graph execution #{graph_exec_id} not found",
|
||||
)
|
||||
|
||||
# Only allow processing reviews if execution is paused for review
|
||||
# or incomplete (partial execution with some reviews already processed)
|
||||
if graph_exec_meta.status not in (
|
||||
ExecutionStatus.REVIEW,
|
||||
ExecutionStatus.INCOMPLETE,
|
||||
):
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_409_CONFLICT,
|
||||
detail=f"Cannot process reviews while execution status is {graph_exec_meta.status}. "
|
||||
f"Reviews can only be processed when execution is paused (REVIEW status). "
|
||||
f"Current status: {graph_exec_meta.status}",
|
||||
)
|
||||
|
||||
# Build review decisions map and track which reviews requested auto-approval
|
||||
# Auto-approved reviews use original data (no modifications allowed)
|
||||
# Build review decisions map
|
||||
review_decisions = {}
|
||||
auto_approve_requests = {} # Map node_exec_id -> auto_approve_future flag
|
||||
|
||||
for review in request.reviews:
|
||||
review_status = (
|
||||
ReviewStatus.APPROVED if review.approved else ReviewStatus.REJECTED
|
||||
)
|
||||
# If this review requested auto-approval, don't allow data modifications
|
||||
reviewed_data = None if review.auto_approve_future else review.reviewed_data
|
||||
review_decisions[review.node_exec_id] = (
|
||||
review_status,
|
||||
reviewed_data,
|
||||
review.reviewed_data,
|
||||
review.message,
|
||||
)
|
||||
auto_approve_requests[review.node_exec_id] = review.auto_approve_future
|
||||
|
||||
# Process all reviews
|
||||
updated_reviews = await process_all_reviews_for_execution(
|
||||
@@ -208,87 +145,6 @@ async def process_review_action(
|
||||
review_decisions=review_decisions,
|
||||
)
|
||||
|
||||
# Create auto-approval records for approved reviews that requested it
|
||||
# Deduplicate by node_id to avoid race conditions when multiple reviews
|
||||
# for the same node are processed in parallel
|
||||
async def create_auto_approval_for_node(
|
||||
node_id: str, review_result
|
||||
) -> tuple[str, bool]:
|
||||
"""
|
||||
Create auto-approval record for a node.
|
||||
Returns (node_id, success) tuple for tracking failures.
|
||||
"""
|
||||
try:
|
||||
await create_auto_approval_record(
|
||||
user_id=user_id,
|
||||
graph_exec_id=review_result.graph_exec_id,
|
||||
graph_id=review_result.graph_id,
|
||||
graph_version=review_result.graph_version,
|
||||
node_id=node_id,
|
||||
payload=review_result.payload,
|
||||
)
|
||||
return (node_id, True)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Failed to create auto-approval record for node {node_id}",
|
||||
exc_info=e,
|
||||
)
|
||||
return (node_id, False)
|
||||
|
||||
# Collect node_exec_ids that need auto-approval
|
||||
node_exec_ids_needing_auto_approval = [
|
||||
node_exec_id
|
||||
for node_exec_id, review_result in updated_reviews.items()
|
||||
if review_result.status == ReviewStatus.APPROVED
|
||||
and auto_approve_requests.get(node_exec_id, False)
|
||||
]
|
||||
|
||||
# Batch-fetch node executions to get node_ids
|
||||
nodes_needing_auto_approval: dict[str, Any] = {}
|
||||
if node_exec_ids_needing_auto_approval:
|
||||
from backend.data.execution import get_node_executions
|
||||
|
||||
node_execs = await get_node_executions(
|
||||
graph_exec_id=graph_exec_id, include_exec_data=False
|
||||
)
|
||||
node_exec_map = {node_exec.node_exec_id: node_exec for node_exec in node_execs}
|
||||
|
||||
for node_exec_id in node_exec_ids_needing_auto_approval:
|
||||
node_exec = node_exec_map.get(node_exec_id)
|
||||
if node_exec:
|
||||
review_result = updated_reviews[node_exec_id]
|
||||
# Use the first approved review for this node (deduplicate by node_id)
|
||||
if node_exec.node_id not in nodes_needing_auto_approval:
|
||||
nodes_needing_auto_approval[node_exec.node_id] = review_result
|
||||
else:
|
||||
logger.error(
|
||||
f"Failed to create auto-approval record for {node_exec_id}: "
|
||||
f"Node execution not found. This may indicate a race condition "
|
||||
f"or data inconsistency."
|
||||
)
|
||||
|
||||
# Execute all auto-approval creations in parallel (deduplicated by node_id)
|
||||
auto_approval_results = await asyncio.gather(
|
||||
*[
|
||||
create_auto_approval_for_node(node_id, review_result)
|
||||
for node_id, review_result in nodes_needing_auto_approval.items()
|
||||
],
|
||||
return_exceptions=True,
|
||||
)
|
||||
|
||||
# Count auto-approval failures
|
||||
auto_approval_failed_count = 0
|
||||
for result in auto_approval_results:
|
||||
if isinstance(result, Exception):
|
||||
# Unexpected exception during auto-approval creation
|
||||
auto_approval_failed_count += 1
|
||||
logger.error(
|
||||
f"Unexpected exception during auto-approval creation: {result}"
|
||||
)
|
||||
elif isinstance(result, tuple) and len(result) == 2 and not result[1]:
|
||||
# Auto-approval creation failed (returned False)
|
||||
auto_approval_failed_count += 1
|
||||
|
||||
# Count results
|
||||
approved_count = sum(
|
||||
1
|
||||
@@ -301,53 +157,30 @@ async def process_review_action(
|
||||
if review.status == ReviewStatus.REJECTED
|
||||
)
|
||||
|
||||
# Resume execution only if ALL pending reviews for this execution have been processed
|
||||
# Resume execution if we processed some reviews
|
||||
if updated_reviews:
|
||||
# Get graph execution ID from any processed review
|
||||
first_review = next(iter(updated_reviews.values()))
|
||||
graph_exec_id = first_review.graph_exec_id
|
||||
|
||||
# Check if any pending reviews remain for this execution
|
||||
still_has_pending = await has_pending_reviews_for_graph_exec(graph_exec_id)
|
||||
|
||||
if not still_has_pending:
|
||||
# Get the graph_id from any processed review
|
||||
first_review = next(iter(updated_reviews.values()))
|
||||
|
||||
# Resume execution
|
||||
try:
|
||||
# Fetch user and settings to build complete execution context
|
||||
user = await get_user_by_id(user_id)
|
||||
settings = await get_graph_settings(
|
||||
user_id=user_id, graph_id=first_review.graph_id
|
||||
)
|
||||
|
||||
# Preserve user's timezone preference when resuming execution
|
||||
user_timezone = (
|
||||
user.timezone if user.timezone != USER_TIMEZONE_NOT_SET else "UTC"
|
||||
)
|
||||
|
||||
execution_context = ExecutionContext(
|
||||
human_in_the_loop_safe_mode=settings.human_in_the_loop_safe_mode,
|
||||
sensitive_action_safe_mode=settings.sensitive_action_safe_mode,
|
||||
user_timezone=user_timezone,
|
||||
)
|
||||
|
||||
await add_graph_execution(
|
||||
graph_id=first_review.graph_id,
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
execution_context=execution_context,
|
||||
)
|
||||
logger.info(f"Resumed execution {graph_exec_id}")
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to resume execution {graph_exec_id}: {str(e)}")
|
||||
|
||||
# Build error message if auto-approvals failed
|
||||
error_message = None
|
||||
if auto_approval_failed_count > 0:
|
||||
error_message = (
|
||||
f"{auto_approval_failed_count} auto-approval setting(s) could not be saved. "
|
||||
f"You may need to manually approve these reviews in future executions."
|
||||
)
|
||||
|
||||
return ReviewResponse(
|
||||
approved_count=approved_count,
|
||||
rejected_count=rejected_count,
|
||||
failed_count=auto_approval_failed_count,
|
||||
error=error_message,
|
||||
failed_count=0,
|
||||
error=None,
|
||||
)
|
||||
|
||||
@@ -401,11 +401,27 @@ async def add_generated_agent_image(
|
||||
)
|
||||
|
||||
|
||||
def _initialize_graph_settings(graph: graph_db.GraphModel) -> GraphSettings:
|
||||
"""
|
||||
Initialize GraphSettings based on graph content.
|
||||
|
||||
Args:
|
||||
graph: The graph to analyze
|
||||
|
||||
Returns:
|
||||
GraphSettings with appropriate human_in_the_loop_safe_mode value
|
||||
"""
|
||||
if graph.has_human_in_the_loop:
|
||||
# Graph has HITL blocks - set safe mode to True by default
|
||||
return GraphSettings(human_in_the_loop_safe_mode=True)
|
||||
else:
|
||||
# Graph has no HITL blocks - keep None
|
||||
return GraphSettings(human_in_the_loop_safe_mode=None)
|
||||
|
||||
|
||||
async def create_library_agent(
|
||||
graph: graph_db.GraphModel,
|
||||
user_id: str,
|
||||
hitl_safe_mode: bool = True,
|
||||
sensitive_action_safe_mode: bool = False,
|
||||
create_library_agents_for_sub_graphs: bool = True,
|
||||
) -> list[library_model.LibraryAgent]:
|
||||
"""
|
||||
@@ -414,8 +430,6 @@ async def create_library_agent(
|
||||
Args:
|
||||
agent: The agent/Graph to add to the library.
|
||||
user_id: The user to whom the agent will be added.
|
||||
hitl_safe_mode: Whether HITL blocks require manual review (default True).
|
||||
sensitive_action_safe_mode: Whether sensitive action blocks require review.
|
||||
create_library_agents_for_sub_graphs: If True, creates LibraryAgent records for sub-graphs as well.
|
||||
|
||||
Returns:
|
||||
@@ -451,11 +465,7 @@ async def create_library_agent(
|
||||
}
|
||||
},
|
||||
settings=SafeJson(
|
||||
GraphSettings.from_graph(
|
||||
graph_entry,
|
||||
hitl_safe_mode=hitl_safe_mode,
|
||||
sensitive_action_safe_mode=sensitive_action_safe_mode,
|
||||
).model_dump()
|
||||
_initialize_graph_settings(graph_entry).model_dump()
|
||||
),
|
||||
),
|
||||
include=library_agent_include(
|
||||
@@ -583,13 +593,7 @@ async def update_library_agent(
|
||||
)
|
||||
update_fields["isDeleted"] = is_deleted
|
||||
if settings is not None:
|
||||
existing_agent = await get_library_agent(id=library_agent_id, user_id=user_id)
|
||||
current_settings_dict = (
|
||||
existing_agent.settings.model_dump() if existing_agent.settings else {}
|
||||
)
|
||||
new_settings = settings.model_dump(exclude_unset=True)
|
||||
merged_settings = {**current_settings_dict, **new_settings}
|
||||
update_fields["settings"] = SafeJson(merged_settings)
|
||||
update_fields["settings"] = SafeJson(settings.model_dump())
|
||||
|
||||
try:
|
||||
# If graph_version is provided, update to that specific version
|
||||
@@ -623,6 +627,33 @@ async def update_library_agent(
|
||||
raise DatabaseError("Failed to update library agent") from e
|
||||
|
||||
|
||||
async def update_library_agent_settings(
|
||||
user_id: str,
|
||||
agent_id: str,
|
||||
settings: GraphSettings,
|
||||
) -> library_model.LibraryAgent:
|
||||
"""
|
||||
Updates the settings for a specific LibraryAgent.
|
||||
|
||||
Args:
|
||||
user_id: The owner of the LibraryAgent.
|
||||
agent_id: The ID of the LibraryAgent to update.
|
||||
settings: New GraphSettings to apply.
|
||||
|
||||
Returns:
|
||||
The updated LibraryAgent.
|
||||
|
||||
Raises:
|
||||
NotFoundError: If the specified LibraryAgent does not exist.
|
||||
DatabaseError: If there's an error in the update operation.
|
||||
"""
|
||||
return await update_library_agent(
|
||||
library_agent_id=agent_id,
|
||||
user_id=user_id,
|
||||
settings=settings,
|
||||
)
|
||||
|
||||
|
||||
async def delete_library_agent(
|
||||
library_agent_id: str, user_id: str, soft_delete: bool = True
|
||||
) -> None:
|
||||
@@ -807,7 +838,7 @@ async def add_store_agent_to_library(
|
||||
"isCreatedByUser": False,
|
||||
"useGraphIsActiveVersion": False,
|
||||
"settings": SafeJson(
|
||||
GraphSettings.from_graph(graph_model).model_dump()
|
||||
_initialize_graph_settings(graph_model).model_dump()
|
||||
),
|
||||
},
|
||||
include=library_agent_include(
|
||||
@@ -1197,15 +1228,8 @@ async def fork_library_agent(
|
||||
)
|
||||
new_graph = await on_graph_activate(new_graph, user_id=user_id)
|
||||
|
||||
# Create a library agent for the new graph, preserving safe mode settings
|
||||
return (
|
||||
await create_library_agent(
|
||||
new_graph,
|
||||
user_id,
|
||||
hitl_safe_mode=original_agent.settings.human_in_the_loop_safe_mode,
|
||||
sensitive_action_safe_mode=original_agent.settings.sensitive_action_safe_mode,
|
||||
)
|
||||
)[0]
|
||||
# Create a library agent for the new graph
|
||||
return (await create_library_agent(new_graph, user_id))[0]
|
||||
except prisma.errors.PrismaError as e:
|
||||
logger.error(f"Database error cloning library agent: {e}")
|
||||
raise DatabaseError("Failed to fork library agent") from e
|
||||
|
||||
@@ -73,12 +73,6 @@ class LibraryAgent(pydantic.BaseModel):
|
||||
has_external_trigger: bool = pydantic.Field(
|
||||
description="Whether the agent has an external trigger (e.g. webhook) node"
|
||||
)
|
||||
has_human_in_the_loop: bool = pydantic.Field(
|
||||
description="Whether the agent has human-in-the-loop blocks"
|
||||
)
|
||||
has_sensitive_action: bool = pydantic.Field(
|
||||
description="Whether the agent has sensitive action blocks"
|
||||
)
|
||||
trigger_setup_info: Optional[GraphTriggerInfo] = None
|
||||
|
||||
# Indicates whether there's a new output (based on recent runs)
|
||||
@@ -186,8 +180,6 @@ class LibraryAgent(pydantic.BaseModel):
|
||||
graph.credentials_input_schema if sub_graphs is not None else None
|
||||
),
|
||||
has_external_trigger=graph.has_external_trigger,
|
||||
has_human_in_the_loop=graph.has_human_in_the_loop,
|
||||
has_sensitive_action=graph.has_sensitive_action,
|
||||
trigger_setup_info=graph.trigger_setup_info,
|
||||
new_output=new_output,
|
||||
can_access_graph=can_access_graph,
|
||||
|
||||
@@ -52,8 +52,6 @@ async def test_get_library_agents_success(
|
||||
output_schema={"type": "object", "properties": {}},
|
||||
credentials_input_schema={"type": "object", "properties": {}},
|
||||
has_external_trigger=False,
|
||||
has_human_in_the_loop=False,
|
||||
has_sensitive_action=False,
|
||||
status=library_model.LibraryAgentStatus.COMPLETED,
|
||||
recommended_schedule_cron=None,
|
||||
new_output=False,
|
||||
@@ -77,8 +75,6 @@ async def test_get_library_agents_success(
|
||||
output_schema={"type": "object", "properties": {}},
|
||||
credentials_input_schema={"type": "object", "properties": {}},
|
||||
has_external_trigger=False,
|
||||
has_human_in_the_loop=False,
|
||||
has_sensitive_action=False,
|
||||
status=library_model.LibraryAgentStatus.COMPLETED,
|
||||
recommended_schedule_cron=None,
|
||||
new_output=False,
|
||||
@@ -154,8 +150,6 @@ async def test_get_favorite_library_agents_success(
|
||||
output_schema={"type": "object", "properties": {}},
|
||||
credentials_input_schema={"type": "object", "properties": {}},
|
||||
has_external_trigger=False,
|
||||
has_human_in_the_loop=False,
|
||||
has_sensitive_action=False,
|
||||
status=library_model.LibraryAgentStatus.COMPLETED,
|
||||
recommended_schedule_cron=None,
|
||||
new_output=False,
|
||||
@@ -224,8 +218,6 @@ def test_add_agent_to_library_success(
|
||||
output_schema={"type": "object", "properties": {}},
|
||||
credentials_input_schema={"type": "object", "properties": {}},
|
||||
has_external_trigger=False,
|
||||
has_human_in_the_loop=False,
|
||||
has_sensitive_action=False,
|
||||
status=library_model.LibraryAgentStatus.COMPLETED,
|
||||
new_output=False,
|
||||
can_access_graph=True,
|
||||
|
||||
@@ -20,7 +20,6 @@ from typing import AsyncGenerator
|
||||
|
||||
import httpx
|
||||
import pytest
|
||||
import pytest_asyncio
|
||||
from autogpt_libs.api_key.keysmith import APIKeySmith
|
||||
from prisma.enums import APIKeyPermission
|
||||
from prisma.models import OAuthAccessToken as PrismaOAuthAccessToken
|
||||
@@ -39,13 +38,13 @@ keysmith = APIKeySmith()
|
||||
# ============================================================================
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
@pytest.fixture
|
||||
def test_user_id() -> str:
|
||||
"""Test user ID for OAuth tests."""
|
||||
return str(uuid.uuid4())
|
||||
|
||||
|
||||
@pytest_asyncio.fixture(scope="session", loop_scope="session")
|
||||
@pytest.fixture
|
||||
async def test_user(server, test_user_id: str):
|
||||
"""Create a test user in the database."""
|
||||
await PrismaUser.prisma().create(
|
||||
@@ -68,7 +67,7 @@ async def test_user(server, test_user_id: str):
|
||||
await PrismaUser.prisma().delete(where={"id": test_user_id})
|
||||
|
||||
|
||||
@pytest_asyncio.fixture
|
||||
@pytest.fixture
|
||||
async def test_oauth_app(test_user: str):
|
||||
"""Create a test OAuth application in the database."""
|
||||
app_id = str(uuid.uuid4())
|
||||
@@ -123,7 +122,7 @@ def pkce_credentials() -> tuple[str, str]:
|
||||
return generate_pkce()
|
||||
|
||||
|
||||
@pytest_asyncio.fixture
|
||||
@pytest.fixture
|
||||
async def client(server, test_user: str) -> AsyncGenerator[httpx.AsyncClient, None]:
|
||||
"""
|
||||
Create an async HTTP client that talks directly to the FastAPI app.
|
||||
@@ -288,7 +287,7 @@ async def test_authorize_invalid_client_returns_error(
|
||||
assert query_params["error"][0] == "invalid_client"
|
||||
|
||||
|
||||
@pytest_asyncio.fixture
|
||||
@pytest.fixture
|
||||
async def inactive_oauth_app(test_user: str):
|
||||
"""Create an inactive test OAuth application in the database."""
|
||||
app_id = str(uuid.uuid4())
|
||||
@@ -1005,7 +1004,7 @@ async def test_token_refresh_revoked(
|
||||
assert "revoked" in response.json()["detail"].lower()
|
||||
|
||||
|
||||
@pytest_asyncio.fixture
|
||||
@pytest.fixture
|
||||
async def other_oauth_app(test_user: str):
|
||||
"""Create a second OAuth application for cross-app tests."""
|
||||
app_id = str(uuid.uuid4())
|
||||
|
||||
@@ -1552,7 +1552,7 @@ async def review_store_submission(
|
||||
|
||||
# Generate embedding for approved listing (blocking - admin operation)
|
||||
# Inside transaction: if embedding fails, entire transaction rolls back
|
||||
await ensure_embedding(
|
||||
embedding_success = await ensure_embedding(
|
||||
version_id=store_listing_version_id,
|
||||
name=store_listing_version.name,
|
||||
description=store_listing_version.description,
|
||||
@@ -1560,6 +1560,12 @@ async def review_store_submission(
|
||||
categories=store_listing_version.categories or [],
|
||||
tx=tx,
|
||||
)
|
||||
if not embedding_success:
|
||||
raise ValueError(
|
||||
f"Failed to generate embedding for listing {store_listing_version_id}. "
|
||||
"This is likely due to OpenAI API being unavailable. "
|
||||
"Please try again later or contact support if the issue persists."
|
||||
)
|
||||
|
||||
await prisma.models.StoreListing.prisma(tx).update(
|
||||
where={"id": store_listing_version.StoreListing.id},
|
||||
|
||||
@@ -21,6 +21,7 @@ from backend.util.json import dumps
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
# OpenAI embedding model configuration
|
||||
EMBEDDING_MODEL = "text-embedding-3-small"
|
||||
# Embedding dimension for the model above
|
||||
@@ -62,42 +63,49 @@ def build_searchable_text(
|
||||
return " ".join(parts)
|
||||
|
||||
|
||||
async def generate_embedding(text: str) -> list[float]:
|
||||
async def generate_embedding(text: str) -> list[float] | None:
|
||||
"""
|
||||
Generate embedding for text using OpenAI API.
|
||||
|
||||
Raises exceptions on failure - caller should handle.
|
||||
Returns None if embedding generation fails.
|
||||
Fail-fast: no retries to maintain consistency with approval flow.
|
||||
"""
|
||||
client = get_openai_client()
|
||||
if not client:
|
||||
raise RuntimeError("openai_internal_api_key not set, cannot generate embedding")
|
||||
try:
|
||||
client = get_openai_client()
|
||||
if not client:
|
||||
logger.error("openai_internal_api_key not set, cannot generate embedding")
|
||||
return None
|
||||
|
||||
# Truncate text to token limit using tiktoken
|
||||
# Character-based truncation is insufficient because token ratios vary by content type
|
||||
enc = encoding_for_model(EMBEDDING_MODEL)
|
||||
tokens = enc.encode(text)
|
||||
if len(tokens) > EMBEDDING_MAX_TOKENS:
|
||||
tokens = tokens[:EMBEDDING_MAX_TOKENS]
|
||||
truncated_text = enc.decode(tokens)
|
||||
logger.info(
|
||||
f"Truncated text from {len(enc.encode(text))} to {len(tokens)} tokens"
|
||||
# Truncate text to token limit using tiktoken
|
||||
# Character-based truncation is insufficient because token ratios vary by content type
|
||||
enc = encoding_for_model(EMBEDDING_MODEL)
|
||||
tokens = enc.encode(text)
|
||||
if len(tokens) > EMBEDDING_MAX_TOKENS:
|
||||
tokens = tokens[:EMBEDDING_MAX_TOKENS]
|
||||
truncated_text = enc.decode(tokens)
|
||||
logger.info(
|
||||
f"Truncated text from {len(enc.encode(text))} to {len(tokens)} tokens"
|
||||
)
|
||||
else:
|
||||
truncated_text = text
|
||||
|
||||
start_time = time.time()
|
||||
response = await client.embeddings.create(
|
||||
model=EMBEDDING_MODEL,
|
||||
input=truncated_text,
|
||||
)
|
||||
else:
|
||||
truncated_text = text
|
||||
latency_ms = (time.time() - start_time) * 1000
|
||||
|
||||
start_time = time.time()
|
||||
response = await client.embeddings.create(
|
||||
model=EMBEDDING_MODEL,
|
||||
input=truncated_text,
|
||||
)
|
||||
latency_ms = (time.time() - start_time) * 1000
|
||||
embedding = response.data[0].embedding
|
||||
logger.info(
|
||||
f"Generated embedding: {len(embedding)} dims, "
|
||||
f"{len(tokens)} tokens, {latency_ms:.0f}ms"
|
||||
)
|
||||
return embedding
|
||||
|
||||
embedding = response.data[0].embedding
|
||||
logger.info(
|
||||
f"Generated embedding: {len(embedding)} dims, "
|
||||
f"{len(tokens)} tokens, {latency_ms:.0f}ms"
|
||||
)
|
||||
return embedding
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to generate embedding: {e}")
|
||||
return None
|
||||
|
||||
|
||||
async def store_embedding(
|
||||
@@ -136,45 +144,48 @@ async def store_content_embedding(
|
||||
|
||||
New function for unified content embedding storage.
|
||||
Uses raw SQL since Prisma doesn't natively support pgvector.
|
||||
|
||||
Raises exceptions on failure - caller should handle.
|
||||
"""
|
||||
client = tx if tx else prisma.get_client()
|
||||
try:
|
||||
client = tx if tx else prisma.get_client()
|
||||
|
||||
# Convert embedding to PostgreSQL vector format
|
||||
embedding_str = embedding_to_vector_string(embedding)
|
||||
metadata_json = dumps(metadata or {})
|
||||
# Convert embedding to PostgreSQL vector format
|
||||
embedding_str = embedding_to_vector_string(embedding)
|
||||
metadata_json = dumps(metadata or {})
|
||||
|
||||
# Upsert the embedding
|
||||
# WHERE clause in DO UPDATE prevents PostgreSQL 15 bug with NULLS NOT DISTINCT
|
||||
# Use unqualified ::vector - pgvector is in search_path on all environments
|
||||
await execute_raw_with_schema(
|
||||
"""
|
||||
INSERT INTO {schema_prefix}"UnifiedContentEmbedding" (
|
||||
"id", "contentType", "contentId", "userId", "embedding", "searchableText", "metadata", "createdAt", "updatedAt"
|
||||
# Upsert the embedding
|
||||
# WHERE clause in DO UPDATE prevents PostgreSQL 15 bug with NULLS NOT DISTINCT
|
||||
await execute_raw_with_schema(
|
||||
"""
|
||||
INSERT INTO {schema_prefix}"UnifiedContentEmbedding" (
|
||||
"id", "contentType", "contentId", "userId", "embedding", "searchableText", "metadata", "createdAt", "updatedAt"
|
||||
)
|
||||
VALUES (gen_random_uuid()::text, $1::{schema_prefix}"ContentType", $2, $3, $4::vector, $5, $6::jsonb, NOW(), NOW())
|
||||
ON CONFLICT ("contentType", "contentId", "userId")
|
||||
DO UPDATE SET
|
||||
"embedding" = $4::vector,
|
||||
"searchableText" = $5,
|
||||
"metadata" = $6::jsonb,
|
||||
"updatedAt" = NOW()
|
||||
WHERE {schema_prefix}"UnifiedContentEmbedding"."contentType" = $1::{schema_prefix}"ContentType"
|
||||
AND {schema_prefix}"UnifiedContentEmbedding"."contentId" = $2
|
||||
AND ({schema_prefix}"UnifiedContentEmbedding"."userId" = $3 OR ($3 IS NULL AND {schema_prefix}"UnifiedContentEmbedding"."userId" IS NULL))
|
||||
""",
|
||||
content_type,
|
||||
content_id,
|
||||
user_id,
|
||||
embedding_str,
|
||||
searchable_text,
|
||||
metadata_json,
|
||||
client=client,
|
||||
set_public_search_path=True,
|
||||
)
|
||||
VALUES (gen_random_uuid()::text, $1::{schema_prefix}"ContentType", $2, $3, $4::vector, $5, $6::jsonb, NOW(), NOW())
|
||||
ON CONFLICT ("contentType", "contentId", "userId")
|
||||
DO UPDATE SET
|
||||
"embedding" = $4::vector,
|
||||
"searchableText" = $5,
|
||||
"metadata" = $6::jsonb,
|
||||
"updatedAt" = NOW()
|
||||
WHERE {schema_prefix}"UnifiedContentEmbedding"."contentType" = $1::{schema_prefix}"ContentType"
|
||||
AND {schema_prefix}"UnifiedContentEmbedding"."contentId" = $2
|
||||
AND ({schema_prefix}"UnifiedContentEmbedding"."userId" = $3 OR ($3 IS NULL AND {schema_prefix}"UnifiedContentEmbedding"."userId" IS NULL))
|
||||
""",
|
||||
content_type,
|
||||
content_id,
|
||||
user_id,
|
||||
embedding_str,
|
||||
searchable_text,
|
||||
metadata_json,
|
||||
client=client,
|
||||
)
|
||||
|
||||
logger.info(f"Stored embedding for {content_type}:{content_id}")
|
||||
return True
|
||||
logger.info(f"Stored embedding for {content_type}:{content_id}")
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to store embedding for {content_type}:{content_id}: {e}")
|
||||
return False
|
||||
|
||||
|
||||
async def get_embedding(version_id: str) -> dict[str, Any] | None:
|
||||
@@ -206,31 +217,35 @@ async def get_content_embedding(
|
||||
|
||||
New function for unified content embedding retrieval.
|
||||
Returns dict with contentType, contentId, embedding, timestamps or None if not found.
|
||||
|
||||
Raises exceptions on failure - caller should handle.
|
||||
"""
|
||||
result = await query_raw_with_schema(
|
||||
"""
|
||||
SELECT
|
||||
"contentType",
|
||||
"contentId",
|
||||
"userId",
|
||||
"embedding"::text as "embedding",
|
||||
"searchableText",
|
||||
"metadata",
|
||||
"createdAt",
|
||||
"updatedAt"
|
||||
FROM {schema_prefix}"UnifiedContentEmbedding"
|
||||
WHERE "contentType" = $1::{schema_prefix}"ContentType" AND "contentId" = $2 AND ("userId" = $3 OR ($3 IS NULL AND "userId" IS NULL))
|
||||
""",
|
||||
content_type,
|
||||
content_id,
|
||||
user_id,
|
||||
)
|
||||
try:
|
||||
result = await query_raw_with_schema(
|
||||
"""
|
||||
SELECT
|
||||
"contentType",
|
||||
"contentId",
|
||||
"userId",
|
||||
"embedding"::text as "embedding",
|
||||
"searchableText",
|
||||
"metadata",
|
||||
"createdAt",
|
||||
"updatedAt"
|
||||
FROM {schema_prefix}"UnifiedContentEmbedding"
|
||||
WHERE "contentType" = $1::{schema_prefix}"ContentType" AND "contentId" = $2 AND ("userId" = $3 OR ($3 IS NULL AND "userId" IS NULL))
|
||||
""",
|
||||
content_type,
|
||||
content_id,
|
||||
user_id,
|
||||
set_public_search_path=True,
|
||||
)
|
||||
|
||||
if result and len(result) > 0:
|
||||
return result[0]
|
||||
return None
|
||||
if result and len(result) > 0:
|
||||
return result[0]
|
||||
return None
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to get embedding for {content_type}:{content_id}: {e}")
|
||||
return None
|
||||
|
||||
|
||||
async def ensure_embedding(
|
||||
@@ -258,38 +273,46 @@ async def ensure_embedding(
|
||||
tx: Optional transaction client
|
||||
|
||||
Returns:
|
||||
True if embedding exists/was created
|
||||
|
||||
Raises exceptions on failure - caller should handle.
|
||||
True if embedding exists/was created, False on failure
|
||||
"""
|
||||
# Check if embedding already exists
|
||||
if not force:
|
||||
existing = await get_embedding(version_id)
|
||||
if existing and existing.get("embedding"):
|
||||
logger.debug(f"Embedding for version {version_id} already exists")
|
||||
return True
|
||||
try:
|
||||
# Check if embedding already exists
|
||||
if not force:
|
||||
existing = await get_embedding(version_id)
|
||||
if existing and existing.get("embedding"):
|
||||
logger.debug(f"Embedding for version {version_id} already exists")
|
||||
return True
|
||||
|
||||
# Build searchable text for embedding
|
||||
searchable_text = build_searchable_text(name, description, sub_heading, categories)
|
||||
# Build searchable text for embedding
|
||||
searchable_text = build_searchable_text(
|
||||
name, description, sub_heading, categories
|
||||
)
|
||||
|
||||
# Generate new embedding
|
||||
embedding = await generate_embedding(searchable_text)
|
||||
# Generate new embedding
|
||||
embedding = await generate_embedding(searchable_text)
|
||||
if embedding is None:
|
||||
logger.warning(f"Could not generate embedding for version {version_id}")
|
||||
return False
|
||||
|
||||
# Store the embedding with metadata using new function
|
||||
metadata = {
|
||||
"name": name,
|
||||
"subHeading": sub_heading,
|
||||
"categories": categories,
|
||||
}
|
||||
return await store_content_embedding(
|
||||
content_type=ContentType.STORE_AGENT,
|
||||
content_id=version_id,
|
||||
embedding=embedding,
|
||||
searchable_text=searchable_text,
|
||||
metadata=metadata,
|
||||
user_id=None, # Store agents are public
|
||||
tx=tx,
|
||||
)
|
||||
# Store the embedding with metadata using new function
|
||||
metadata = {
|
||||
"name": name,
|
||||
"subHeading": sub_heading,
|
||||
"categories": categories,
|
||||
}
|
||||
return await store_content_embedding(
|
||||
content_type=ContentType.STORE_AGENT,
|
||||
content_id=version_id,
|
||||
embedding=embedding,
|
||||
searchable_text=searchable_text,
|
||||
metadata=metadata,
|
||||
user_id=None, # Store agents are public
|
||||
tx=tx,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to ensure embedding for version {version_id}: {e}")
|
||||
return False
|
||||
|
||||
|
||||
async def delete_embedding(version_id: str) -> bool:
|
||||
@@ -499,24 +522,6 @@ async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
|
||||
success = sum(1 for result in results if result is True)
|
||||
failed = len(results) - success
|
||||
|
||||
# Aggregate unique errors to avoid Sentry spam
|
||||
if failed > 0:
|
||||
# Group errors by type and message
|
||||
error_summary: dict[str, int] = {}
|
||||
for result in results:
|
||||
if isinstance(result, Exception):
|
||||
error_key = f"{type(result).__name__}: {str(result)}"
|
||||
error_summary[error_key] = error_summary.get(error_key, 0) + 1
|
||||
|
||||
# Log aggregated error summary
|
||||
error_details = ", ".join(
|
||||
f"{error} ({count}x)" for error, count in error_summary.items()
|
||||
)
|
||||
logger.error(
|
||||
f"{content_type.value}: {failed}/{len(results)} embeddings failed. "
|
||||
f"Errors: {error_details}"
|
||||
)
|
||||
|
||||
results_by_type[content_type.value] = {
|
||||
"processed": len(missing_items),
|
||||
"success": success,
|
||||
@@ -553,12 +558,11 @@ async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
|
||||
}
|
||||
|
||||
|
||||
async def embed_query(query: str) -> list[float]:
|
||||
async def embed_query(query: str) -> list[float] | None:
|
||||
"""
|
||||
Generate embedding for a search query.
|
||||
|
||||
Same as generate_embedding but with clearer intent.
|
||||
Raises exceptions on failure - caller should handle.
|
||||
"""
|
||||
return await generate_embedding(query)
|
||||
|
||||
@@ -591,30 +595,40 @@ async def ensure_content_embedding(
|
||||
tx: Optional transaction client
|
||||
|
||||
Returns:
|
||||
True if embedding exists/was created
|
||||
|
||||
Raises exceptions on failure - caller should handle.
|
||||
True if embedding exists/was created, False on failure
|
||||
"""
|
||||
# Check if embedding already exists
|
||||
if not force:
|
||||
existing = await get_content_embedding(content_type, content_id, user_id)
|
||||
if existing and existing.get("embedding"):
|
||||
logger.debug(f"Embedding for {content_type}:{content_id} already exists")
|
||||
return True
|
||||
try:
|
||||
# Check if embedding already exists
|
||||
if not force:
|
||||
existing = await get_content_embedding(content_type, content_id, user_id)
|
||||
if existing and existing.get("embedding"):
|
||||
logger.debug(
|
||||
f"Embedding for {content_type}:{content_id} already exists"
|
||||
)
|
||||
return True
|
||||
|
||||
# Generate new embedding
|
||||
embedding = await generate_embedding(searchable_text)
|
||||
# Generate new embedding
|
||||
embedding = await generate_embedding(searchable_text)
|
||||
if embedding is None:
|
||||
logger.warning(
|
||||
f"Could not generate embedding for {content_type}:{content_id}"
|
||||
)
|
||||
return False
|
||||
|
||||
# Store the embedding
|
||||
return await store_content_embedding(
|
||||
content_type=content_type,
|
||||
content_id=content_id,
|
||||
embedding=embedding,
|
||||
searchable_text=searchable_text,
|
||||
metadata=metadata or {},
|
||||
user_id=user_id,
|
||||
tx=tx,
|
||||
)
|
||||
# Store the embedding
|
||||
return await store_content_embedding(
|
||||
content_type=content_type,
|
||||
content_id=content_id,
|
||||
embedding=embedding,
|
||||
searchable_text=searchable_text,
|
||||
metadata=metadata or {},
|
||||
user_id=user_id,
|
||||
tx=tx,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to ensure embedding for {content_type}:{content_id}: {e}")
|
||||
return False
|
||||
|
||||
|
||||
async def cleanup_orphaned_embeddings() -> dict[str, Any]:
|
||||
@@ -841,8 +855,9 @@ async def semantic_search(
|
||||
limit = 100
|
||||
|
||||
# Generate query embedding
|
||||
try:
|
||||
query_embedding = await embed_query(query)
|
||||
query_embedding = await embed_query(query)
|
||||
|
||||
if query_embedding is not None:
|
||||
# Semantic search with embeddings
|
||||
embedding_str = embedding_to_vector_string(query_embedding)
|
||||
|
||||
@@ -856,58 +871,47 @@ async def semantic_search(
|
||||
# Add content type parameters and build placeholders dynamically
|
||||
content_type_start_idx = len(params) + 1
|
||||
content_type_placeholders = ", ".join(
|
||||
"$" + str(content_type_start_idx + i) + '::{schema_prefix}"ContentType"'
|
||||
f'${content_type_start_idx + i}::{{{{schema_prefix}}}}"ContentType"'
|
||||
for i in range(len(content_types))
|
||||
)
|
||||
params.extend([ct.value for ct in content_types])
|
||||
|
||||
# Build min_similarity param index before appending
|
||||
min_similarity_idx = len(params) + 1
|
||||
params.append(min_similarity)
|
||||
|
||||
# Use unqualified ::vector and <=> operator - pgvector is in search_path on all environments
|
||||
sql = (
|
||||
"""
|
||||
sql = f"""
|
||||
SELECT
|
||||
"contentId" as content_id,
|
||||
"contentType" as content_type,
|
||||
"searchableText" as searchable_text,
|
||||
metadata,
|
||||
1 - (embedding <=> '"""
|
||||
+ embedding_str
|
||||
+ """'::vector) as similarity
|
||||
FROM {schema_prefix}"UnifiedContentEmbedding"
|
||||
WHERE "contentType" IN ("""
|
||||
+ content_type_placeholders
|
||||
+ """)
|
||||
"""
|
||||
+ user_filter
|
||||
+ """
|
||||
AND 1 - (embedding <=> '"""
|
||||
+ embedding_str
|
||||
+ """'::vector) >= $"""
|
||||
+ str(min_similarity_idx)
|
||||
+ """
|
||||
1 - (embedding <=> '{embedding_str}'::vector) as similarity
|
||||
FROM {{{{schema_prefix}}}}"UnifiedContentEmbedding"
|
||||
WHERE "contentType" IN ({content_type_placeholders})
|
||||
{user_filter}
|
||||
AND 1 - (embedding <=> '{embedding_str}'::vector) >= ${len(params) + 1}
|
||||
ORDER BY similarity DESC
|
||||
LIMIT $1
|
||||
"""
|
||||
)
|
||||
params.append(min_similarity)
|
||||
|
||||
results = await query_raw_with_schema(sql, *params)
|
||||
return [
|
||||
{
|
||||
"content_id": row["content_id"],
|
||||
"content_type": row["content_type"],
|
||||
"searchable_text": row["searchable_text"],
|
||||
"metadata": row["metadata"],
|
||||
"similarity": float(row["similarity"]),
|
||||
}
|
||||
for row in results
|
||||
]
|
||||
except Exception as e:
|
||||
logger.warning(f"Semantic search failed, falling back to lexical search: {e}")
|
||||
try:
|
||||
results = await query_raw_with_schema(
|
||||
sql, *params, set_public_search_path=True
|
||||
)
|
||||
return [
|
||||
{
|
||||
"content_id": row["content_id"],
|
||||
"content_type": row["content_type"],
|
||||
"searchable_text": row["searchable_text"],
|
||||
"metadata": row["metadata"],
|
||||
"similarity": float(row["similarity"]),
|
||||
}
|
||||
for row in results
|
||||
]
|
||||
except Exception as e:
|
||||
logger.error(f"Semantic search failed: {e}")
|
||||
# Fall through to lexical search below
|
||||
|
||||
# Fallback to lexical search if embeddings unavailable
|
||||
logger.warning("Falling back to lexical search (embeddings unavailable)")
|
||||
|
||||
params_lexical: list[Any] = [limit]
|
||||
user_filter = ""
|
||||
@@ -918,41 +922,31 @@ async def semantic_search(
|
||||
# Add content type parameters and build placeholders dynamically
|
||||
content_type_start_idx = len(params_lexical) + 1
|
||||
content_type_placeholders_lexical = ", ".join(
|
||||
"$" + str(content_type_start_idx + i) + '::{schema_prefix}"ContentType"'
|
||||
f'${content_type_start_idx + i}::{{{{schema_prefix}}}}"ContentType"'
|
||||
for i in range(len(content_types))
|
||||
)
|
||||
params_lexical.extend([ct.value for ct in content_types])
|
||||
|
||||
# Build query param index before appending
|
||||
query_param_idx = len(params_lexical) + 1
|
||||
params_lexical.append(f"%{query}%")
|
||||
|
||||
# Use regular string (not f-string) for template to preserve {schema_prefix} placeholders
|
||||
sql_lexical = (
|
||||
"""
|
||||
sql_lexical = f"""
|
||||
SELECT
|
||||
"contentId" as content_id,
|
||||
"contentType" as content_type,
|
||||
"searchableText" as searchable_text,
|
||||
metadata,
|
||||
0.0 as similarity
|
||||
FROM {schema_prefix}"UnifiedContentEmbedding"
|
||||
WHERE "contentType" IN ("""
|
||||
+ content_type_placeholders_lexical
|
||||
+ """)
|
||||
"""
|
||||
+ user_filter
|
||||
+ """
|
||||
AND "searchableText" ILIKE $"""
|
||||
+ str(query_param_idx)
|
||||
+ """
|
||||
FROM {{{{schema_prefix}}}}"UnifiedContentEmbedding"
|
||||
WHERE "contentType" IN ({content_type_placeholders_lexical})
|
||||
{user_filter}
|
||||
AND "searchableText" ILIKE ${len(params_lexical) + 1}
|
||||
ORDER BY "updatedAt" DESC
|
||||
LIMIT $1
|
||||
"""
|
||||
)
|
||||
params_lexical.append(f"%{query}%")
|
||||
|
||||
try:
|
||||
results = await query_raw_with_schema(sql_lexical, *params_lexical)
|
||||
results = await query_raw_with_schema(
|
||||
sql_lexical, *params_lexical, set_public_search_path=True
|
||||
)
|
||||
return [
|
||||
{
|
||||
"content_id": row["content_id"],
|
||||
|
||||
@@ -298,16 +298,17 @@ async def test_schema_handling_error_cases():
|
||||
mock_client.execute_raw.side_effect = Exception("Database error")
|
||||
mock_get_client.return_value = mock_client
|
||||
|
||||
# Should raise exception on error
|
||||
with pytest.raises(Exception, match="Database error"):
|
||||
await embeddings.store_content_embedding(
|
||||
content_type=ContentType.STORE_AGENT,
|
||||
content_id="test-id",
|
||||
embedding=[0.1] * EMBEDDING_DIM,
|
||||
searchable_text="test",
|
||||
metadata=None,
|
||||
user_id=None,
|
||||
)
|
||||
result = await embeddings.store_content_embedding(
|
||||
content_type=ContentType.STORE_AGENT,
|
||||
content_id="test-id",
|
||||
embedding=[0.1] * EMBEDDING_DIM,
|
||||
searchable_text="test",
|
||||
metadata=None,
|
||||
user_id=None,
|
||||
)
|
||||
|
||||
# Should return False on error, not raise
|
||||
assert result is False
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@@ -80,8 +80,9 @@ async def test_generate_embedding_no_api_key():
|
||||
) as mock_get_client:
|
||||
mock_get_client.return_value = None
|
||||
|
||||
with pytest.raises(RuntimeError, match="openai_internal_api_key not set"):
|
||||
await embeddings.generate_embedding("test text")
|
||||
result = await embeddings.generate_embedding("test text")
|
||||
|
||||
assert result is None
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@@ -96,8 +97,9 @@ async def test_generate_embedding_api_error():
|
||||
) as mock_get_client:
|
||||
mock_get_client.return_value = mock_client
|
||||
|
||||
with pytest.raises(Exception, match="API Error"):
|
||||
await embeddings.generate_embedding("test text")
|
||||
result = await embeddings.generate_embedding("test text")
|
||||
|
||||
assert result is None
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@@ -153,14 +155,18 @@ async def test_store_embedding_success(mocker):
|
||||
)
|
||||
|
||||
assert result is True
|
||||
# execute_raw is called once for INSERT (no separate SET search_path needed)
|
||||
assert mock_client.execute_raw.call_count == 1
|
||||
# execute_raw is called twice: once for SET search_path, once for INSERT
|
||||
assert mock_client.execute_raw.call_count == 2
|
||||
|
||||
# Verify the INSERT query with the actual data
|
||||
call_args = mock_client.execute_raw.call_args_list[0][0]
|
||||
assert "test-version-id" in call_args
|
||||
assert "[0.1,0.2,0.3]" in call_args
|
||||
assert None in call_args # userId should be None for store agents
|
||||
# First call: SET search_path
|
||||
first_call_args = mock_client.execute_raw.call_args_list[0][0]
|
||||
assert "SET search_path" in first_call_args[0]
|
||||
|
||||
# Second call: INSERT query with the actual data
|
||||
second_call_args = mock_client.execute_raw.call_args_list[1][0]
|
||||
assert "test-version-id" in second_call_args
|
||||
assert "[0.1,0.2,0.3]" in second_call_args
|
||||
assert None in second_call_args # userId should be None for store agents
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@@ -171,10 +177,11 @@ async def test_store_embedding_database_error(mocker):
|
||||
|
||||
embedding = [0.1, 0.2, 0.3]
|
||||
|
||||
with pytest.raises(Exception, match="Database error"):
|
||||
await embeddings.store_embedding(
|
||||
version_id="test-version-id", embedding=embedding, tx=mock_client
|
||||
)
|
||||
result = await embeddings.store_embedding(
|
||||
version_id="test-version-id", embedding=embedding, tx=mock_client
|
||||
)
|
||||
|
||||
assert result is False
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@@ -274,16 +281,17 @@ async def test_ensure_embedding_create_new(mock_get, mock_store, mock_generate):
|
||||
async def test_ensure_embedding_generation_fails(mock_get, mock_generate):
|
||||
"""Test ensure_embedding when generation fails."""
|
||||
mock_get.return_value = None
|
||||
mock_generate.side_effect = Exception("Generation failed")
|
||||
mock_generate.return_value = None
|
||||
|
||||
with pytest.raises(Exception, match="Generation failed"):
|
||||
await embeddings.ensure_embedding(
|
||||
version_id="test-id",
|
||||
name="Test",
|
||||
description="Test description",
|
||||
sub_heading="Test heading",
|
||||
categories=["test"],
|
||||
)
|
||||
result = await embeddings.ensure_embedding(
|
||||
version_id="test-id",
|
||||
name="Test",
|
||||
description="Test description",
|
||||
sub_heading="Test heading",
|
||||
categories=["test"],
|
||||
)
|
||||
|
||||
assert result is False
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
|
||||
@@ -12,7 +12,7 @@ from dataclasses import dataclass
|
||||
from typing import Any, Literal
|
||||
|
||||
from prisma.enums import ContentType
|
||||
from rank_bm25 import BM25Okapi # type: ignore[import-untyped]
|
||||
from rank_bm25 import BM25Okapi
|
||||
|
||||
from backend.api.features.store.embeddings import (
|
||||
EMBEDDING_DIM,
|
||||
@@ -186,12 +186,13 @@ async def unified_hybrid_search(
|
||||
|
||||
offset = (page - 1) * page_size
|
||||
|
||||
# Generate query embedding with graceful degradation
|
||||
try:
|
||||
query_embedding = await embed_query(query)
|
||||
except Exception as e:
|
||||
# Generate query embedding
|
||||
query_embedding = await embed_query(query)
|
||||
|
||||
# Graceful degradation if embedding unavailable
|
||||
if query_embedding is None or not query_embedding:
|
||||
logger.warning(
|
||||
f"Failed to generate query embedding - falling back to lexical-only search: {e}. "
|
||||
"Failed to generate query embedding - falling back to lexical-only search. "
|
||||
"Check that openai_internal_api_key is configured and OpenAI API is accessible."
|
||||
)
|
||||
query_embedding = [0.0] * EMBEDDING_DIM
|
||||
@@ -362,7 +363,9 @@ async def unified_hybrid_search(
|
||||
LIMIT {limit_param} OFFSET {offset_param}
|
||||
"""
|
||||
|
||||
results = await query_raw_with_schema(sql_query, *params)
|
||||
results = await query_raw_with_schema(
|
||||
sql_query, *params, set_public_search_path=True
|
||||
)
|
||||
|
||||
total = results[0]["total_count"] if results else 0
|
||||
# Apply BM25 reranking
|
||||
@@ -463,12 +466,13 @@ async def hybrid_search(
|
||||
|
||||
offset = (page - 1) * page_size
|
||||
|
||||
# Generate query embedding with graceful degradation
|
||||
try:
|
||||
query_embedding = await embed_query(query)
|
||||
except Exception as e:
|
||||
# Generate query embedding
|
||||
query_embedding = await embed_query(query)
|
||||
|
||||
# Graceful degradation
|
||||
if query_embedding is None or not query_embedding:
|
||||
logger.warning(
|
||||
f"Failed to generate query embedding - falling back to lexical-only search: {e}"
|
||||
"Failed to generate query embedding - falling back to lexical-only search."
|
||||
)
|
||||
query_embedding = [0.0] * EMBEDDING_DIM
|
||||
total_non_semantic = (
|
||||
@@ -684,7 +688,9 @@ async def hybrid_search(
|
||||
LIMIT {limit_param} OFFSET {offset_param}
|
||||
"""
|
||||
|
||||
results = await query_raw_with_schema(sql_query, *params)
|
||||
results = await query_raw_with_schema(
|
||||
sql_query, *params, set_public_search_path=True
|
||||
)
|
||||
|
||||
total = results[0]["total_count"] if results else 0
|
||||
|
||||
|
||||
@@ -172,8 +172,8 @@ async def test_hybrid_search_without_embeddings():
|
||||
with patch(
|
||||
"backend.api.features.store.hybrid_search.query_raw_with_schema"
|
||||
) as mock_query:
|
||||
# Simulate embedding failure by raising exception
|
||||
mock_embed.side_effect = Exception("Embedding generation failed")
|
||||
# Simulate embedding failure
|
||||
mock_embed.return_value = None
|
||||
mock_query.return_value = mock_results
|
||||
|
||||
# Should NOT raise - graceful degradation
|
||||
@@ -613,9 +613,7 @@ async def test_unified_hybrid_search_graceful_degradation():
|
||||
"backend.api.features.store.hybrid_search.embed_query"
|
||||
) as mock_embed:
|
||||
mock_query.return_value = mock_results
|
||||
mock_embed.side_effect = Exception(
|
||||
"Embedding generation failed"
|
||||
) # Embedding failure
|
||||
mock_embed.return_value = None # Embedding failure
|
||||
|
||||
# Should NOT raise - graceful degradation
|
||||
results, total = await unified_hybrid_search(
|
||||
|
||||
@@ -761,8 +761,10 @@ async def create_new_graph(
|
||||
graph.reassign_ids(user_id=user_id, reassign_graph_id=True)
|
||||
graph.validate_graph(for_run=False)
|
||||
|
||||
# The return value of the create graph & library function is intentionally not used here,
|
||||
# as the graph already valid and no sub-graphs are returned back.
|
||||
await graph_db.create_graph(graph, user_id=user_id)
|
||||
await library_db.create_library_agent(graph, user_id)
|
||||
await library_db.create_library_agent(graph, user_id=user_id)
|
||||
activated_graph = await on_graph_activate(graph, user_id=user_id)
|
||||
|
||||
if create_graph.source == "builder":
|
||||
@@ -886,19 +888,21 @@ async def set_graph_active_version(
|
||||
async def _update_library_agent_version_and_settings(
|
||||
user_id: str, agent_graph: graph_db.GraphModel
|
||||
) -> library_model.LibraryAgent:
|
||||
# Keep the library agent up to date with the new active version
|
||||
library = await library_db.update_agent_version_in_library(
|
||||
user_id, agent_graph.id, agent_graph.version
|
||||
)
|
||||
updated_settings = GraphSettings.from_graph(
|
||||
graph=agent_graph,
|
||||
hitl_safe_mode=library.settings.human_in_the_loop_safe_mode,
|
||||
sensitive_action_safe_mode=library.settings.sensitive_action_safe_mode,
|
||||
)
|
||||
if updated_settings != library.settings:
|
||||
library = await library_db.update_library_agent(
|
||||
library_agent_id=library.id,
|
||||
# If the graph has HITL node, initialize the setting if it's not already set.
|
||||
if (
|
||||
agent_graph.has_human_in_the_loop
|
||||
and library.settings.human_in_the_loop_safe_mode is None
|
||||
):
|
||||
await library_db.update_library_agent_settings(
|
||||
user_id=user_id,
|
||||
settings=updated_settings,
|
||||
agent_id=library.id,
|
||||
settings=library.settings.model_copy(
|
||||
update={"human_in_the_loop_safe_mode": True}
|
||||
),
|
||||
)
|
||||
return library
|
||||
|
||||
@@ -915,18 +919,21 @@ async def update_graph_settings(
|
||||
user_id: Annotated[str, Security(get_user_id)],
|
||||
) -> GraphSettings:
|
||||
"""Update graph settings for the user's library agent."""
|
||||
# Get the library agent for this graph
|
||||
library_agent = await library_db.get_library_agent_by_graph_id(
|
||||
graph_id=graph_id, user_id=user_id
|
||||
)
|
||||
if not library_agent:
|
||||
raise HTTPException(404, f"Graph #{graph_id} not found in user's library")
|
||||
|
||||
updated_agent = await library_db.update_library_agent(
|
||||
library_agent_id=library_agent.id,
|
||||
# Update the library agent settings
|
||||
updated_agent = await library_db.update_library_agent_settings(
|
||||
user_id=user_id,
|
||||
agent_id=library_agent.id,
|
||||
settings=settings,
|
||||
)
|
||||
|
||||
# Return the updated settings
|
||||
return GraphSettings.model_validate(updated_agent.settings)
|
||||
|
||||
|
||||
|
||||
@@ -116,7 +116,6 @@ class PrintToConsoleBlock(Block):
|
||||
input_schema=PrintToConsoleBlock.Input,
|
||||
output_schema=PrintToConsoleBlock.Output,
|
||||
test_input={"text": "Hello, World!"},
|
||||
is_sensitive_action=True,
|
||||
test_output=[
|
||||
("output", "Hello, World!"),
|
||||
("status", "printed"),
|
||||
|
||||
@@ -1,659 +0,0 @@
|
||||
import json
|
||||
import shlex
|
||||
import uuid
|
||||
from typing import Literal, Optional
|
||||
|
||||
from e2b import AsyncSandbox as BaseAsyncSandbox
|
||||
from pydantic import BaseModel, SecretStr
|
||||
|
||||
from backend.data.block import (
|
||||
Block,
|
||||
BlockCategory,
|
||||
BlockOutput,
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.model import (
|
||||
APIKeyCredentials,
|
||||
CredentialsField,
|
||||
CredentialsMetaInput,
|
||||
SchemaField,
|
||||
)
|
||||
from backend.integrations.providers import ProviderName
|
||||
|
||||
|
||||
class ClaudeCodeExecutionError(Exception):
|
||||
"""Exception raised when Claude Code execution fails.
|
||||
|
||||
Carries the sandbox_id so it can be returned to the user for cleanup
|
||||
when dispose_sandbox=False.
|
||||
"""
|
||||
|
||||
def __init__(self, message: str, sandbox_id: str = ""):
|
||||
super().__init__(message)
|
||||
self.sandbox_id = sandbox_id
|
||||
|
||||
|
||||
# Test credentials for E2B
|
||||
TEST_E2B_CREDENTIALS = APIKeyCredentials(
|
||||
id="01234567-89ab-cdef-0123-456789abcdef",
|
||||
provider="e2b",
|
||||
api_key=SecretStr("mock-e2b-api-key"),
|
||||
title="Mock E2B API key",
|
||||
expires_at=None,
|
||||
)
|
||||
TEST_E2B_CREDENTIALS_INPUT = {
|
||||
"provider": TEST_E2B_CREDENTIALS.provider,
|
||||
"id": TEST_E2B_CREDENTIALS.id,
|
||||
"type": TEST_E2B_CREDENTIALS.type,
|
||||
"title": TEST_E2B_CREDENTIALS.title,
|
||||
}
|
||||
|
||||
# Test credentials for Anthropic
|
||||
TEST_ANTHROPIC_CREDENTIALS = APIKeyCredentials(
|
||||
id="2e568a2b-b2ea-475a-8564-9a676bf31c56",
|
||||
provider="anthropic",
|
||||
api_key=SecretStr("mock-anthropic-api-key"),
|
||||
title="Mock Anthropic API key",
|
||||
expires_at=None,
|
||||
)
|
||||
TEST_ANTHROPIC_CREDENTIALS_INPUT = {
|
||||
"provider": TEST_ANTHROPIC_CREDENTIALS.provider,
|
||||
"id": TEST_ANTHROPIC_CREDENTIALS.id,
|
||||
"type": TEST_ANTHROPIC_CREDENTIALS.type,
|
||||
"title": TEST_ANTHROPIC_CREDENTIALS.title,
|
||||
}
|
||||
|
||||
|
||||
class ClaudeCodeBlock(Block):
|
||||
"""
|
||||
Execute tasks using Claude Code (Anthropic's AI coding assistant) in an E2B sandbox.
|
||||
|
||||
Claude Code can create files, install tools, run commands, and perform complex
|
||||
coding tasks autonomously within a secure sandbox environment.
|
||||
"""
|
||||
|
||||
# Use base template - we'll install Claude Code ourselves for latest version
|
||||
DEFAULT_TEMPLATE = "base"
|
||||
|
||||
class Input(BlockSchemaInput):
|
||||
e2b_credentials: CredentialsMetaInput[
|
||||
Literal[ProviderName.E2B], Literal["api_key"]
|
||||
] = CredentialsField(
|
||||
description=(
|
||||
"API key for the E2B platform to create the sandbox. "
|
||||
"Get one on the [e2b website](https://e2b.dev/docs)"
|
||||
),
|
||||
)
|
||||
|
||||
anthropic_credentials: CredentialsMetaInput[
|
||||
Literal[ProviderName.ANTHROPIC], Literal["api_key"]
|
||||
] = CredentialsField(
|
||||
description=(
|
||||
"API key for Anthropic to power Claude Code. "
|
||||
"Get one at [Anthropic's website](https://console.anthropic.com)"
|
||||
),
|
||||
)
|
||||
|
||||
prompt: str = SchemaField(
|
||||
description=(
|
||||
"The task or instruction for Claude Code to execute. "
|
||||
"Claude Code can create files, install packages, run commands, "
|
||||
"and perform complex coding tasks."
|
||||
),
|
||||
placeholder="Create a hello world index.html file",
|
||||
default="",
|
||||
advanced=False,
|
||||
)
|
||||
|
||||
timeout: int = SchemaField(
|
||||
description=(
|
||||
"Sandbox timeout in seconds. Claude Code tasks can take "
|
||||
"a while, so set this appropriately for your task complexity. "
|
||||
"Note: This only applies when creating a new sandbox. "
|
||||
"When reconnecting to an existing sandbox via sandbox_id, "
|
||||
"the original timeout is retained."
|
||||
),
|
||||
default=300, # 5 minutes default
|
||||
advanced=True,
|
||||
)
|
||||
|
||||
setup_commands: list[str] = SchemaField(
|
||||
description=(
|
||||
"Optional shell commands to run before executing Claude Code. "
|
||||
"Useful for installing dependencies or setting up the environment."
|
||||
),
|
||||
default_factory=list,
|
||||
advanced=True,
|
||||
)
|
||||
|
||||
working_directory: str = SchemaField(
|
||||
description="Working directory for Claude Code to operate in.",
|
||||
default="/home/user",
|
||||
advanced=True,
|
||||
)
|
||||
|
||||
# Session/continuation support
|
||||
session_id: str = SchemaField(
|
||||
description=(
|
||||
"Session ID to resume a previous conversation. "
|
||||
"Leave empty for a new conversation. "
|
||||
"Use the session_id from a previous run to continue that conversation."
|
||||
),
|
||||
default="",
|
||||
advanced=True,
|
||||
)
|
||||
|
||||
sandbox_id: str = SchemaField(
|
||||
description=(
|
||||
"Sandbox ID to reconnect to an existing sandbox. "
|
||||
"Required when resuming a session (along with session_id). "
|
||||
"Use the sandbox_id from a previous run where dispose_sandbox was False."
|
||||
),
|
||||
default="",
|
||||
advanced=True,
|
||||
)
|
||||
|
||||
conversation_history: str = SchemaField(
|
||||
description=(
|
||||
"Previous conversation history to continue from. "
|
||||
"Use this to restore context on a fresh sandbox if the previous one timed out. "
|
||||
"Pass the conversation_history output from a previous run."
|
||||
),
|
||||
default="",
|
||||
advanced=True,
|
||||
)
|
||||
|
||||
dispose_sandbox: bool = SchemaField(
|
||||
description=(
|
||||
"Whether to dispose of the sandbox immediately after execution. "
|
||||
"Set to False if you want to continue the conversation later "
|
||||
"(you'll need both sandbox_id and session_id from the output)."
|
||||
),
|
||||
default=True,
|
||||
advanced=True,
|
||||
)
|
||||
|
||||
class FileOutput(BaseModel):
|
||||
"""A file extracted from the sandbox."""
|
||||
|
||||
path: str
|
||||
relative_path: str # Path relative to working directory (for GitHub, etc.)
|
||||
name: str
|
||||
content: str
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
response: str = SchemaField(
|
||||
description="The output/response from Claude Code execution"
|
||||
)
|
||||
files: list["ClaudeCodeBlock.FileOutput"] = SchemaField(
|
||||
description=(
|
||||
"List of text files created/modified by Claude Code during this execution. "
|
||||
"Each file has 'path', 'relative_path', 'name', and 'content' fields."
|
||||
)
|
||||
)
|
||||
conversation_history: str = SchemaField(
|
||||
description=(
|
||||
"Full conversation history including this turn. "
|
||||
"Pass this to conversation_history input to continue on a fresh sandbox "
|
||||
"if the previous sandbox timed out."
|
||||
)
|
||||
)
|
||||
session_id: str = SchemaField(
|
||||
description=(
|
||||
"Session ID for this conversation. "
|
||||
"Pass this back along with sandbox_id to continue the conversation."
|
||||
)
|
||||
)
|
||||
sandbox_id: Optional[str] = SchemaField(
|
||||
description=(
|
||||
"ID of the sandbox instance. "
|
||||
"Pass this back along with session_id to continue the conversation. "
|
||||
"This is None if dispose_sandbox was True (sandbox was disposed)."
|
||||
),
|
||||
default=None,
|
||||
)
|
||||
error: str = SchemaField(description="Error message if execution failed")
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="4e34f4a5-9b89-4326-ba77-2dd6750b7194",
|
||||
description=(
|
||||
"Execute tasks using Claude Code in an E2B sandbox. "
|
||||
"Claude Code can create files, install tools, run commands, "
|
||||
"and perform complex coding tasks autonomously."
|
||||
),
|
||||
categories={BlockCategory.DEVELOPER_TOOLS, BlockCategory.AI},
|
||||
input_schema=ClaudeCodeBlock.Input,
|
||||
output_schema=ClaudeCodeBlock.Output,
|
||||
test_credentials={
|
||||
"e2b_credentials": TEST_E2B_CREDENTIALS,
|
||||
"anthropic_credentials": TEST_ANTHROPIC_CREDENTIALS,
|
||||
},
|
||||
test_input={
|
||||
"e2b_credentials": TEST_E2B_CREDENTIALS_INPUT,
|
||||
"anthropic_credentials": TEST_ANTHROPIC_CREDENTIALS_INPUT,
|
||||
"prompt": "Create a hello world HTML file",
|
||||
"timeout": 300,
|
||||
"setup_commands": [],
|
||||
"working_directory": "/home/user",
|
||||
"session_id": "",
|
||||
"sandbox_id": "",
|
||||
"conversation_history": "",
|
||||
"dispose_sandbox": True,
|
||||
},
|
||||
test_output=[
|
||||
("response", "Created index.html with hello world content"),
|
||||
(
|
||||
"files",
|
||||
[
|
||||
{
|
||||
"path": "/home/user/index.html",
|
||||
"relative_path": "index.html",
|
||||
"name": "index.html",
|
||||
"content": "<html>Hello World</html>",
|
||||
}
|
||||
],
|
||||
),
|
||||
(
|
||||
"conversation_history",
|
||||
"User: Create a hello world HTML file\n"
|
||||
"Claude: Created index.html with hello world content",
|
||||
),
|
||||
("session_id", str),
|
||||
("sandbox_id", None), # None because dispose_sandbox=True in test_input
|
||||
],
|
||||
test_mock={
|
||||
"execute_claude_code": lambda *args, **kwargs: (
|
||||
"Created index.html with hello world content", # response
|
||||
[
|
||||
ClaudeCodeBlock.FileOutput(
|
||||
path="/home/user/index.html",
|
||||
relative_path="index.html",
|
||||
name="index.html",
|
||||
content="<html>Hello World</html>",
|
||||
)
|
||||
], # files
|
||||
"User: Create a hello world HTML file\n"
|
||||
"Claude: Created index.html with hello world content", # conversation_history
|
||||
"test-session-id", # session_id
|
||||
"sandbox_id", # sandbox_id
|
||||
),
|
||||
},
|
||||
)
|
||||
|
||||
async def execute_claude_code(
|
||||
self,
|
||||
e2b_api_key: str,
|
||||
anthropic_api_key: str,
|
||||
prompt: str,
|
||||
timeout: int,
|
||||
setup_commands: list[str],
|
||||
working_directory: str,
|
||||
session_id: str,
|
||||
existing_sandbox_id: str,
|
||||
conversation_history: str,
|
||||
dispose_sandbox: bool,
|
||||
) -> tuple[str, list["ClaudeCodeBlock.FileOutput"], str, str, str]:
|
||||
"""
|
||||
Execute Claude Code in an E2B sandbox.
|
||||
|
||||
Returns:
|
||||
Tuple of (response, files, conversation_history, session_id, sandbox_id)
|
||||
"""
|
||||
|
||||
# Validate that sandbox_id is provided when resuming a session
|
||||
if session_id and not existing_sandbox_id:
|
||||
raise ValueError(
|
||||
"sandbox_id is required when resuming a session with session_id. "
|
||||
"The session state is stored in the original sandbox. "
|
||||
"If the sandbox has timed out, use conversation_history instead "
|
||||
"to restore context on a fresh sandbox."
|
||||
)
|
||||
|
||||
sandbox = None
|
||||
sandbox_id = ""
|
||||
|
||||
try:
|
||||
# Either reconnect to existing sandbox or create a new one
|
||||
if existing_sandbox_id:
|
||||
# Reconnect to existing sandbox for conversation continuation
|
||||
sandbox = await BaseAsyncSandbox.connect(
|
||||
sandbox_id=existing_sandbox_id,
|
||||
api_key=e2b_api_key,
|
||||
)
|
||||
else:
|
||||
# Create new sandbox
|
||||
sandbox = await BaseAsyncSandbox.create(
|
||||
template=self.DEFAULT_TEMPLATE,
|
||||
api_key=e2b_api_key,
|
||||
timeout=timeout,
|
||||
envs={"ANTHROPIC_API_KEY": anthropic_api_key},
|
||||
)
|
||||
|
||||
# Install Claude Code from npm (ensures we get the latest version)
|
||||
install_result = await sandbox.commands.run(
|
||||
"npm install -g @anthropic-ai/claude-code@latest",
|
||||
timeout=120, # 2 min timeout for install
|
||||
)
|
||||
if install_result.exit_code != 0:
|
||||
raise Exception(
|
||||
f"Failed to install Claude Code: {install_result.stderr}"
|
||||
)
|
||||
|
||||
# Run any user-provided setup commands
|
||||
for cmd in setup_commands:
|
||||
setup_result = await sandbox.commands.run(cmd)
|
||||
if setup_result.exit_code != 0:
|
||||
raise Exception(
|
||||
f"Setup command failed: {cmd}\n"
|
||||
f"Exit code: {setup_result.exit_code}\n"
|
||||
f"Stdout: {setup_result.stdout}\n"
|
||||
f"Stderr: {setup_result.stderr}"
|
||||
)
|
||||
|
||||
# Capture sandbox_id immediately after creation/connection
|
||||
# so it's available for error recovery if dispose_sandbox=False
|
||||
sandbox_id = sandbox.sandbox_id
|
||||
|
||||
# Generate or use provided session ID
|
||||
current_session_id = session_id if session_id else str(uuid.uuid4())
|
||||
|
||||
# Build base Claude flags
|
||||
base_flags = "-p --dangerously-skip-permissions --output-format json"
|
||||
|
||||
# Add conversation history context if provided (for fresh sandbox continuation)
|
||||
history_flag = ""
|
||||
if conversation_history and not session_id:
|
||||
# Inject previous conversation as context via system prompt
|
||||
# Use consistent escaping via _escape_prompt helper
|
||||
escaped_history = self._escape_prompt(
|
||||
f"Previous conversation context: {conversation_history}"
|
||||
)
|
||||
history_flag = f" --append-system-prompt {escaped_history}"
|
||||
|
||||
# Build Claude command based on whether we're resuming or starting new
|
||||
# Use shlex.quote for working_directory and session IDs to prevent injection
|
||||
safe_working_dir = shlex.quote(working_directory)
|
||||
if session_id:
|
||||
# Resuming existing session (sandbox still alive)
|
||||
safe_session_id = shlex.quote(session_id)
|
||||
claude_command = (
|
||||
f"cd {safe_working_dir} && "
|
||||
f"echo {self._escape_prompt(prompt)} | "
|
||||
f"claude --resume {safe_session_id} {base_flags}"
|
||||
)
|
||||
else:
|
||||
# New session with specific ID
|
||||
safe_current_session_id = shlex.quote(current_session_id)
|
||||
claude_command = (
|
||||
f"cd {safe_working_dir} && "
|
||||
f"echo {self._escape_prompt(prompt)} | "
|
||||
f"claude --session-id {safe_current_session_id} {base_flags}{history_flag}"
|
||||
)
|
||||
|
||||
# Capture timestamp before running Claude Code to filter files later
|
||||
# Capture timestamp 1 second in the past to avoid race condition with file creation
|
||||
timestamp_result = await sandbox.commands.run(
|
||||
"date -u -d '1 second ago' +%Y-%m-%dT%H:%M:%S"
|
||||
)
|
||||
if timestamp_result.exit_code != 0:
|
||||
raise RuntimeError(
|
||||
f"Failed to capture timestamp: {timestamp_result.stderr}"
|
||||
)
|
||||
start_timestamp = (
|
||||
timestamp_result.stdout.strip() if timestamp_result.stdout else None
|
||||
)
|
||||
|
||||
result = await sandbox.commands.run(
|
||||
claude_command,
|
||||
timeout=0, # No command timeout - let sandbox timeout handle it
|
||||
)
|
||||
|
||||
# Check for command failure
|
||||
if result.exit_code != 0:
|
||||
error_msg = result.stderr or result.stdout or "Unknown error"
|
||||
raise Exception(
|
||||
f"Claude Code command failed with exit code {result.exit_code}:\n"
|
||||
f"{error_msg}"
|
||||
)
|
||||
|
||||
raw_output = result.stdout or ""
|
||||
|
||||
# Parse JSON output to extract response and build conversation history
|
||||
response = ""
|
||||
new_conversation_history = conversation_history or ""
|
||||
|
||||
try:
|
||||
# The JSON output contains the result
|
||||
output_data = json.loads(raw_output)
|
||||
response = output_data.get("result", raw_output)
|
||||
|
||||
# Build conversation history entry
|
||||
turn_entry = f"User: {prompt}\nClaude: {response}"
|
||||
if new_conversation_history:
|
||||
new_conversation_history = (
|
||||
f"{new_conversation_history}\n\n{turn_entry}"
|
||||
)
|
||||
else:
|
||||
new_conversation_history = turn_entry
|
||||
|
||||
except json.JSONDecodeError:
|
||||
# If not valid JSON, use raw output
|
||||
response = raw_output
|
||||
turn_entry = f"User: {prompt}\nClaude: {response}"
|
||||
if new_conversation_history:
|
||||
new_conversation_history = (
|
||||
f"{new_conversation_history}\n\n{turn_entry}"
|
||||
)
|
||||
else:
|
||||
new_conversation_history = turn_entry
|
||||
|
||||
# Extract files created/modified during this run
|
||||
files = await self._extract_files(
|
||||
sandbox, working_directory, start_timestamp
|
||||
)
|
||||
|
||||
return (
|
||||
response,
|
||||
files,
|
||||
new_conversation_history,
|
||||
current_session_id,
|
||||
sandbox_id,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
# Wrap exception with sandbox_id so caller can access/cleanup
|
||||
# the preserved sandbox when dispose_sandbox=False
|
||||
raise ClaudeCodeExecutionError(str(e), sandbox_id) from e
|
||||
|
||||
finally:
|
||||
if dispose_sandbox and sandbox:
|
||||
await sandbox.kill()
|
||||
|
||||
async def _extract_files(
|
||||
self,
|
||||
sandbox: BaseAsyncSandbox,
|
||||
working_directory: str,
|
||||
since_timestamp: str | None = None,
|
||||
) -> list["ClaudeCodeBlock.FileOutput"]:
|
||||
"""
|
||||
Extract text files created/modified during this Claude Code execution.
|
||||
|
||||
Args:
|
||||
sandbox: The E2B sandbox instance
|
||||
working_directory: Directory to search for files
|
||||
since_timestamp: ISO timestamp - only return files modified after this time
|
||||
|
||||
Returns:
|
||||
List of FileOutput objects with path, relative_path, name, and content
|
||||
"""
|
||||
files: list[ClaudeCodeBlock.FileOutput] = []
|
||||
|
||||
# Text file extensions we can safely read as text
|
||||
text_extensions = {
|
||||
".txt",
|
||||
".md",
|
||||
".html",
|
||||
".htm",
|
||||
".css",
|
||||
".js",
|
||||
".ts",
|
||||
".jsx",
|
||||
".tsx",
|
||||
".json",
|
||||
".xml",
|
||||
".yaml",
|
||||
".yml",
|
||||
".toml",
|
||||
".ini",
|
||||
".cfg",
|
||||
".conf",
|
||||
".py",
|
||||
".rb",
|
||||
".php",
|
||||
".java",
|
||||
".c",
|
||||
".cpp",
|
||||
".h",
|
||||
".hpp",
|
||||
".cs",
|
||||
".go",
|
||||
".rs",
|
||||
".swift",
|
||||
".kt",
|
||||
".scala",
|
||||
".sh",
|
||||
".bash",
|
||||
".zsh",
|
||||
".sql",
|
||||
".graphql",
|
||||
".env",
|
||||
".gitignore",
|
||||
".dockerfile",
|
||||
"Dockerfile",
|
||||
".vue",
|
||||
".svelte",
|
||||
".astro",
|
||||
".mdx",
|
||||
".rst",
|
||||
".tex",
|
||||
".csv",
|
||||
".log",
|
||||
}
|
||||
|
||||
try:
|
||||
# List files recursively using find command
|
||||
# Exclude node_modules and .git directories, but allow hidden files
|
||||
# like .env and .gitignore (they're filtered by text_extensions later)
|
||||
# Filter by timestamp to only get files created/modified during this run
|
||||
safe_working_dir = shlex.quote(working_directory)
|
||||
timestamp_filter = ""
|
||||
if since_timestamp:
|
||||
timestamp_filter = f"-newermt {shlex.quote(since_timestamp)} "
|
||||
find_result = await sandbox.commands.run(
|
||||
f"find {safe_working_dir} -type f "
|
||||
f"{timestamp_filter}"
|
||||
f"-not -path '*/node_modules/*' "
|
||||
f"-not -path '*/.git/*' "
|
||||
f"2>/dev/null"
|
||||
)
|
||||
|
||||
if find_result.stdout:
|
||||
for file_path in find_result.stdout.strip().split("\n"):
|
||||
if not file_path:
|
||||
continue
|
||||
|
||||
# Check if it's a text file we can read
|
||||
is_text = any(
|
||||
file_path.endswith(ext) for ext in text_extensions
|
||||
) or file_path.endswith("Dockerfile")
|
||||
|
||||
if is_text:
|
||||
try:
|
||||
content = await sandbox.files.read(file_path)
|
||||
# Handle bytes or string
|
||||
if isinstance(content, bytes):
|
||||
content = content.decode("utf-8", errors="replace")
|
||||
|
||||
# Extract filename from path
|
||||
file_name = file_path.split("/")[-1]
|
||||
|
||||
# Calculate relative path by stripping working directory
|
||||
relative_path = file_path
|
||||
if file_path.startswith(working_directory):
|
||||
relative_path = file_path[len(working_directory) :]
|
||||
# Remove leading slash if present
|
||||
if relative_path.startswith("/"):
|
||||
relative_path = relative_path[1:]
|
||||
|
||||
files.append(
|
||||
ClaudeCodeBlock.FileOutput(
|
||||
path=file_path,
|
||||
relative_path=relative_path,
|
||||
name=file_name,
|
||||
content=content,
|
||||
)
|
||||
)
|
||||
except Exception:
|
||||
# Skip files that can't be read
|
||||
pass
|
||||
|
||||
except Exception:
|
||||
# If file extraction fails, return empty results
|
||||
pass
|
||||
|
||||
return files
|
||||
|
||||
def _escape_prompt(self, prompt: str) -> str:
|
||||
"""Escape the prompt for safe shell execution."""
|
||||
# Use single quotes and escape any single quotes in the prompt
|
||||
escaped = prompt.replace("'", "'\"'\"'")
|
||||
return f"'{escaped}'"
|
||||
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
e2b_credentials: APIKeyCredentials,
|
||||
anthropic_credentials: APIKeyCredentials,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
try:
|
||||
(
|
||||
response,
|
||||
files,
|
||||
conversation_history,
|
||||
session_id,
|
||||
sandbox_id,
|
||||
) = await self.execute_claude_code(
|
||||
e2b_api_key=e2b_credentials.api_key.get_secret_value(),
|
||||
anthropic_api_key=anthropic_credentials.api_key.get_secret_value(),
|
||||
prompt=input_data.prompt,
|
||||
timeout=input_data.timeout,
|
||||
setup_commands=input_data.setup_commands,
|
||||
working_directory=input_data.working_directory,
|
||||
session_id=input_data.session_id,
|
||||
existing_sandbox_id=input_data.sandbox_id,
|
||||
conversation_history=input_data.conversation_history,
|
||||
dispose_sandbox=input_data.dispose_sandbox,
|
||||
)
|
||||
|
||||
yield "response", response
|
||||
# Always yield files (empty list if none) to match Output schema
|
||||
yield "files", [f.model_dump() for f in files]
|
||||
# Always yield conversation_history so user can restore context on fresh sandbox
|
||||
yield "conversation_history", conversation_history
|
||||
# Always yield session_id so user can continue conversation
|
||||
yield "session_id", session_id
|
||||
# Always yield sandbox_id (None if disposed) to match Output schema
|
||||
yield "sandbox_id", sandbox_id if not input_data.dispose_sandbox else None
|
||||
|
||||
except ClaudeCodeExecutionError as e:
|
||||
yield "error", str(e)
|
||||
# If sandbox was preserved (dispose_sandbox=False), yield sandbox_id
|
||||
# so user can reconnect to or clean up the orphaned sandbox
|
||||
if not input_data.dispose_sandbox and e.sandbox_id:
|
||||
yield "sandbox_id", e.sandbox_id
|
||||
except Exception as e:
|
||||
yield "error", str(e)
|
||||
@@ -680,58 +680,3 @@ class ListIsEmptyBlock(Block):
|
||||
|
||||
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
|
||||
yield "is_empty", len(input_data.list) == 0
|
||||
|
||||
|
||||
class ConcatenateListsBlock(Block):
|
||||
class Input(BlockSchemaInput):
|
||||
lists: List[List[Any]] = SchemaField(
|
||||
description="A list of lists to concatenate together. All lists will be combined in order into a single list.",
|
||||
placeholder="e.g., [[1, 2], [3, 4], [5, 6]]",
|
||||
)
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
concatenated_list: List[Any] = SchemaField(
|
||||
description="The concatenated list containing all elements from all input lists in order."
|
||||
)
|
||||
error: str = SchemaField(
|
||||
description="Error message if concatenation failed due to invalid input types."
|
||||
)
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="3cf9298b-5817-4141-9d80-7c2cc5199c8e",
|
||||
description="Concatenates multiple lists into a single list. All elements from all input lists are combined in order.",
|
||||
categories={BlockCategory.BASIC},
|
||||
input_schema=ConcatenateListsBlock.Input,
|
||||
output_schema=ConcatenateListsBlock.Output,
|
||||
test_input=[
|
||||
{"lists": [[1, 2, 3], [4, 5, 6]]},
|
||||
{"lists": [["a", "b"], ["c"], ["d", "e", "f"]]},
|
||||
{"lists": [[1, 2], []]},
|
||||
{"lists": []},
|
||||
],
|
||||
test_output=[
|
||||
("concatenated_list", [1, 2, 3, 4, 5, 6]),
|
||||
("concatenated_list", ["a", "b", "c", "d", "e", "f"]),
|
||||
("concatenated_list", [1, 2]),
|
||||
("concatenated_list", []),
|
||||
],
|
||||
)
|
||||
|
||||
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
|
||||
concatenated = []
|
||||
for idx, lst in enumerate(input_data.lists):
|
||||
if lst is None:
|
||||
# Skip None values to avoid errors
|
||||
continue
|
||||
if not isinstance(lst, list):
|
||||
# Type validation: each item must be a list
|
||||
# Strings are iterable and would cause extend() to iterate character-by-character
|
||||
# Non-iterable types would raise TypeError
|
||||
yield "error", (
|
||||
f"Invalid input at index {idx}: expected a list, got {type(lst).__name__}. "
|
||||
f"All items in 'lists' must be lists (e.g., [[1, 2], [3, 4]])."
|
||||
)
|
||||
return
|
||||
concatenated.extend(lst)
|
||||
yield "concatenated_list", concatenated
|
||||
|
||||
@@ -9,7 +9,7 @@ from typing import Any, Optional
|
||||
from prisma.enums import ReviewStatus
|
||||
from pydantic import BaseModel
|
||||
|
||||
from backend.data.execution import ExecutionStatus
|
||||
from backend.data.execution import ExecutionContext, ExecutionStatus
|
||||
from backend.data.human_review import ReviewResult
|
||||
from backend.executor.manager import async_update_node_execution_status
|
||||
from backend.util.clients import get_database_manager_async_client
|
||||
@@ -28,11 +28,6 @@ class ReviewDecision(BaseModel):
|
||||
class HITLReviewHelper:
|
||||
"""Helper class for Human-In-The-Loop review operations."""
|
||||
|
||||
@staticmethod
|
||||
async def check_approval(**kwargs) -> Optional[ReviewResult]:
|
||||
"""Check if there's an existing approval for this node execution."""
|
||||
return await get_database_manager_async_client().check_approval(**kwargs)
|
||||
|
||||
@staticmethod
|
||||
async def get_or_create_human_review(**kwargs) -> Optional[ReviewResult]:
|
||||
"""Create or retrieve a human review from the database."""
|
||||
@@ -60,11 +55,11 @@ class HITLReviewHelper:
|
||||
async def _handle_review_request(
|
||||
input_data: Any,
|
||||
user_id: str,
|
||||
node_id: str,
|
||||
node_exec_id: str,
|
||||
graph_exec_id: str,
|
||||
graph_id: str,
|
||||
graph_version: int,
|
||||
execution_context: ExecutionContext,
|
||||
block_name: str = "Block",
|
||||
editable: bool = False,
|
||||
) -> Optional[ReviewResult]:
|
||||
@@ -74,11 +69,11 @@ class HITLReviewHelper:
|
||||
Args:
|
||||
input_data: The input data to be reviewed
|
||||
user_id: ID of the user requesting the review
|
||||
node_id: ID of the node in the graph definition
|
||||
node_exec_id: ID of the node execution
|
||||
graph_exec_id: ID of the graph execution
|
||||
graph_id: ID of the graph
|
||||
graph_version: Version of the graph
|
||||
execution_context: Current execution context
|
||||
block_name: Name of the block requesting review
|
||||
editable: Whether the reviewer can edit the data
|
||||
|
||||
@@ -88,41 +83,15 @@ class HITLReviewHelper:
|
||||
Raises:
|
||||
Exception: If review creation or status update fails
|
||||
"""
|
||||
# Note: Safe mode checks (human_in_the_loop_safe_mode, sensitive_action_safe_mode)
|
||||
# are handled by the caller:
|
||||
# - HITL blocks check human_in_the_loop_safe_mode in their run() method
|
||||
# - Sensitive action blocks check sensitive_action_safe_mode in is_block_exec_need_review()
|
||||
# This function only handles checking for existing approvals.
|
||||
|
||||
# Check if this node has already been approved (normal or auto-approval)
|
||||
if approval_result := await HITLReviewHelper.check_approval(
|
||||
node_exec_id=node_exec_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
node_id=node_id,
|
||||
user_id=user_id,
|
||||
input_data=input_data,
|
||||
):
|
||||
# Skip review if safe mode is disabled - return auto-approved result
|
||||
if not execution_context.safe_mode:
|
||||
logger.info(
|
||||
f"Block {block_name} skipping review for node {node_exec_id} - "
|
||||
f"found existing approval"
|
||||
)
|
||||
# Return a new ReviewResult with the current node_exec_id but approved status
|
||||
# For auto-approvals, always use current input_data
|
||||
# For normal approvals, use approval_result.data unless it's None
|
||||
is_auto_approval = approval_result.node_exec_id != node_exec_id
|
||||
approved_data = (
|
||||
input_data
|
||||
if is_auto_approval
|
||||
else (
|
||||
approval_result.data
|
||||
if approval_result.data is not None
|
||||
else input_data
|
||||
)
|
||||
f"Block {block_name} skipping review for node {node_exec_id} - safe mode disabled"
|
||||
)
|
||||
return ReviewResult(
|
||||
data=approved_data,
|
||||
data=input_data,
|
||||
status=ReviewStatus.APPROVED,
|
||||
message=approval_result.message,
|
||||
message="Auto-approved (safe mode disabled)",
|
||||
processed=True,
|
||||
node_exec_id=node_exec_id,
|
||||
)
|
||||
@@ -134,7 +103,7 @@ class HITLReviewHelper:
|
||||
graph_id=graph_id,
|
||||
graph_version=graph_version,
|
||||
input_data=input_data,
|
||||
message=block_name, # Use block_name directly as the message
|
||||
message=f"Review required for {block_name} execution",
|
||||
editable=editable,
|
||||
)
|
||||
|
||||
@@ -160,11 +129,11 @@ class HITLReviewHelper:
|
||||
async def handle_review_decision(
|
||||
input_data: Any,
|
||||
user_id: str,
|
||||
node_id: str,
|
||||
node_exec_id: str,
|
||||
graph_exec_id: str,
|
||||
graph_id: str,
|
||||
graph_version: int,
|
||||
execution_context: ExecutionContext,
|
||||
block_name: str = "Block",
|
||||
editable: bool = False,
|
||||
) -> Optional[ReviewDecision]:
|
||||
@@ -174,11 +143,11 @@ class HITLReviewHelper:
|
||||
Args:
|
||||
input_data: The input data to be reviewed
|
||||
user_id: ID of the user requesting the review
|
||||
node_id: ID of the node in the graph definition
|
||||
node_exec_id: ID of the node execution
|
||||
graph_exec_id: ID of the graph execution
|
||||
graph_id: ID of the graph
|
||||
graph_version: Version of the graph
|
||||
execution_context: Current execution context
|
||||
block_name: Name of the block requesting review
|
||||
editable: Whether the reviewer can edit the data
|
||||
|
||||
@@ -189,11 +158,11 @@ class HITLReviewHelper:
|
||||
review_result = await HITLReviewHelper._handle_review_request(
|
||||
input_data=input_data,
|
||||
user_id=user_id,
|
||||
node_id=node_id,
|
||||
node_exec_id=node_exec_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
graph_id=graph_id,
|
||||
graph_version=graph_version,
|
||||
execution_context=execution_context,
|
||||
block_name=block_name,
|
||||
editable=editable,
|
||||
)
|
||||
|
||||
@@ -97,7 +97,6 @@ class HumanInTheLoopBlock(Block):
|
||||
input_data: Input,
|
||||
*,
|
||||
user_id: str,
|
||||
node_id: str,
|
||||
node_exec_id: str,
|
||||
graph_exec_id: str,
|
||||
graph_id: str,
|
||||
@@ -105,7 +104,7 @@ class HumanInTheLoopBlock(Block):
|
||||
execution_context: ExecutionContext,
|
||||
**_kwargs,
|
||||
) -> BlockOutput:
|
||||
if not execution_context.human_in_the_loop_safe_mode:
|
||||
if not execution_context.safe_mode:
|
||||
logger.info(
|
||||
f"HITL block skipping review for node {node_exec_id} - safe mode disabled"
|
||||
)
|
||||
@@ -116,12 +115,12 @@ class HumanInTheLoopBlock(Block):
|
||||
decision = await self.handle_review_decision(
|
||||
input_data=input_data.data,
|
||||
user_id=user_id,
|
||||
node_id=node_id,
|
||||
node_exec_id=node_exec_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
graph_id=graph_id,
|
||||
graph_version=graph_version,
|
||||
block_name=input_data.name, # Use user-provided name instead of block type
|
||||
execution_context=execution_context,
|
||||
block_name=self.name,
|
||||
editable=input_data.editable,
|
||||
)
|
||||
|
||||
|
||||
@@ -79,10 +79,6 @@ class ModelMetadata(NamedTuple):
|
||||
provider: str
|
||||
context_window: int
|
||||
max_output_tokens: int | None
|
||||
display_name: str
|
||||
provider_name: str
|
||||
creator_name: str
|
||||
price_tier: Literal[1, 2, 3]
|
||||
|
||||
|
||||
class LlmModelMeta(EnumMeta):
|
||||
@@ -175,26 +171,6 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
|
||||
V0_1_5_LG = "v0-1.5-lg"
|
||||
V0_1_0_MD = "v0-1.0-md"
|
||||
|
||||
@classmethod
|
||||
def __get_pydantic_json_schema__(cls, schema, handler):
|
||||
json_schema = handler(schema)
|
||||
llm_model_metadata = {}
|
||||
for model in cls:
|
||||
model_name = model.value
|
||||
metadata = model.metadata
|
||||
llm_model_metadata[model_name] = {
|
||||
"creator": metadata.creator_name,
|
||||
"creator_name": metadata.creator_name,
|
||||
"title": metadata.display_name,
|
||||
"provider": metadata.provider,
|
||||
"provider_name": metadata.provider_name,
|
||||
"name": model_name,
|
||||
"price_tier": metadata.price_tier,
|
||||
}
|
||||
json_schema["llm_model"] = True
|
||||
json_schema["llm_model_metadata"] = llm_model_metadata
|
||||
return json_schema
|
||||
|
||||
@property
|
||||
def metadata(self) -> ModelMetadata:
|
||||
return MODEL_METADATA[self]
|
||||
@@ -214,291 +190,119 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
|
||||
|
||||
MODEL_METADATA = {
|
||||
# https://platform.openai.com/docs/models
|
||||
LlmModel.O3: ModelMetadata("openai", 200000, 100000, "O3", "OpenAI", "OpenAI", 2),
|
||||
LlmModel.O3_MINI: ModelMetadata(
|
||||
"openai", 200000, 100000, "O3 Mini", "OpenAI", "OpenAI", 1
|
||||
), # o3-mini-2025-01-31
|
||||
LlmModel.O1: ModelMetadata(
|
||||
"openai", 200000, 100000, "O1", "OpenAI", "OpenAI", 3
|
||||
), # o1-2024-12-17
|
||||
LlmModel.O1_MINI: ModelMetadata(
|
||||
"openai", 128000, 65536, "O1 Mini", "OpenAI", "OpenAI", 2
|
||||
), # o1-mini-2024-09-12
|
||||
LlmModel.O3: ModelMetadata("openai", 200000, 100000),
|
||||
LlmModel.O3_MINI: ModelMetadata("openai", 200000, 100000), # o3-mini-2025-01-31
|
||||
LlmModel.O1: ModelMetadata("openai", 200000, 100000), # o1-2024-12-17
|
||||
LlmModel.O1_MINI: ModelMetadata("openai", 128000, 65536), # o1-mini-2024-09-12
|
||||
# GPT-5 models
|
||||
LlmModel.GPT5_2: ModelMetadata(
|
||||
"openai", 400000, 128000, "GPT-5.2", "OpenAI", "OpenAI", 3
|
||||
),
|
||||
LlmModel.GPT5_1: ModelMetadata(
|
||||
"openai", 400000, 128000, "GPT-5.1", "OpenAI", "OpenAI", 2
|
||||
),
|
||||
LlmModel.GPT5: ModelMetadata(
|
||||
"openai", 400000, 128000, "GPT-5", "OpenAI", "OpenAI", 1
|
||||
),
|
||||
LlmModel.GPT5_MINI: ModelMetadata(
|
||||
"openai", 400000, 128000, "GPT-5 Mini", "OpenAI", "OpenAI", 1
|
||||
),
|
||||
LlmModel.GPT5_NANO: ModelMetadata(
|
||||
"openai", 400000, 128000, "GPT-5 Nano", "OpenAI", "OpenAI", 1
|
||||
),
|
||||
LlmModel.GPT5_CHAT: ModelMetadata(
|
||||
"openai", 400000, 16384, "GPT-5 Chat Latest", "OpenAI", "OpenAI", 2
|
||||
),
|
||||
LlmModel.GPT41: ModelMetadata(
|
||||
"openai", 1047576, 32768, "GPT-4.1", "OpenAI", "OpenAI", 1
|
||||
),
|
||||
LlmModel.GPT41_MINI: ModelMetadata(
|
||||
"openai", 1047576, 32768, "GPT-4.1 Mini", "OpenAI", "OpenAI", 1
|
||||
),
|
||||
LlmModel.GPT5_2: ModelMetadata("openai", 400000, 128000),
|
||||
LlmModel.GPT5_1: ModelMetadata("openai", 400000, 128000),
|
||||
LlmModel.GPT5: ModelMetadata("openai", 400000, 128000),
|
||||
LlmModel.GPT5_MINI: ModelMetadata("openai", 400000, 128000),
|
||||
LlmModel.GPT5_NANO: ModelMetadata("openai", 400000, 128000),
|
||||
LlmModel.GPT5_CHAT: ModelMetadata("openai", 400000, 16384),
|
||||
LlmModel.GPT41: ModelMetadata("openai", 1047576, 32768),
|
||||
LlmModel.GPT41_MINI: ModelMetadata("openai", 1047576, 32768),
|
||||
LlmModel.GPT4O_MINI: ModelMetadata(
|
||||
"openai", 128000, 16384, "GPT-4o Mini", "OpenAI", "OpenAI", 1
|
||||
"openai", 128000, 16384
|
||||
), # gpt-4o-mini-2024-07-18
|
||||
LlmModel.GPT4O: ModelMetadata(
|
||||
"openai", 128000, 16384, "GPT-4o", "OpenAI", "OpenAI", 2
|
||||
), # gpt-4o-2024-08-06
|
||||
LlmModel.GPT4O: ModelMetadata("openai", 128000, 16384), # gpt-4o-2024-08-06
|
||||
LlmModel.GPT4_TURBO: ModelMetadata(
|
||||
"openai", 128000, 4096, "GPT-4 Turbo", "OpenAI", "OpenAI", 3
|
||||
"openai", 128000, 4096
|
||||
), # gpt-4-turbo-2024-04-09
|
||||
LlmModel.GPT3_5_TURBO: ModelMetadata(
|
||||
"openai", 16385, 4096, "GPT-3.5 Turbo", "OpenAI", "OpenAI", 1
|
||||
), # gpt-3.5-turbo-0125
|
||||
LlmModel.GPT3_5_TURBO: ModelMetadata("openai", 16385, 4096), # gpt-3.5-turbo-0125
|
||||
# https://docs.anthropic.com/en/docs/about-claude/models
|
||||
LlmModel.CLAUDE_4_1_OPUS: ModelMetadata(
|
||||
"anthropic", 200000, 32000, "Claude Opus 4.1", "Anthropic", "Anthropic", 3
|
||||
"anthropic", 200000, 32000
|
||||
), # claude-opus-4-1-20250805
|
||||
LlmModel.CLAUDE_4_OPUS: ModelMetadata(
|
||||
"anthropic", 200000, 32000, "Claude Opus 4", "Anthropic", "Anthropic", 3
|
||||
"anthropic", 200000, 32000
|
||||
), # claude-4-opus-20250514
|
||||
LlmModel.CLAUDE_4_SONNET: ModelMetadata(
|
||||
"anthropic", 200000, 64000, "Claude Sonnet 4", "Anthropic", "Anthropic", 2
|
||||
"anthropic", 200000, 64000
|
||||
), # claude-4-sonnet-20250514
|
||||
LlmModel.CLAUDE_4_5_OPUS: ModelMetadata(
|
||||
"anthropic", 200000, 64000, "Claude Opus 4.5", "Anthropic", "Anthropic", 3
|
||||
"anthropic", 200000, 64000
|
||||
), # claude-opus-4-5-20251101
|
||||
LlmModel.CLAUDE_4_5_SONNET: ModelMetadata(
|
||||
"anthropic", 200000, 64000, "Claude Sonnet 4.5", "Anthropic", "Anthropic", 3
|
||||
"anthropic", 200000, 64000
|
||||
), # claude-sonnet-4-5-20250929
|
||||
LlmModel.CLAUDE_4_5_HAIKU: ModelMetadata(
|
||||
"anthropic", 200000, 64000, "Claude Haiku 4.5", "Anthropic", "Anthropic", 2
|
||||
"anthropic", 200000, 64000
|
||||
), # claude-haiku-4-5-20251001
|
||||
LlmModel.CLAUDE_3_7_SONNET: ModelMetadata(
|
||||
"anthropic", 200000, 64000, "Claude 3.7 Sonnet", "Anthropic", "Anthropic", 2
|
||||
"anthropic", 200000, 64000
|
||||
), # claude-3-7-sonnet-20250219
|
||||
LlmModel.CLAUDE_3_HAIKU: ModelMetadata(
|
||||
"anthropic", 200000, 4096, "Claude 3 Haiku", "Anthropic", "Anthropic", 1
|
||||
"anthropic", 200000, 4096
|
||||
), # claude-3-haiku-20240307
|
||||
# https://docs.aimlapi.com/api-overview/model-database/text-models
|
||||
LlmModel.AIML_API_QWEN2_5_72B: ModelMetadata(
|
||||
"aiml_api", 32000, 8000, "Qwen 2.5 72B Instruct Turbo", "AI/ML", "Qwen", 1
|
||||
),
|
||||
LlmModel.AIML_API_LLAMA3_1_70B: ModelMetadata(
|
||||
"aiml_api",
|
||||
128000,
|
||||
40000,
|
||||
"Llama 3.1 Nemotron 70B Instruct",
|
||||
"AI/ML",
|
||||
"Nvidia",
|
||||
1,
|
||||
),
|
||||
LlmModel.AIML_API_LLAMA3_3_70B: ModelMetadata(
|
||||
"aiml_api", 128000, None, "Llama 3.3 70B Instruct Turbo", "AI/ML", "Meta", 1
|
||||
),
|
||||
LlmModel.AIML_API_META_LLAMA_3_1_70B: ModelMetadata(
|
||||
"aiml_api", 131000, 2000, "Llama 3.1 70B Instruct Turbo", "AI/ML", "Meta", 1
|
||||
),
|
||||
LlmModel.AIML_API_LLAMA_3_2_3B: ModelMetadata(
|
||||
"aiml_api", 128000, None, "Llama 3.2 3B Instruct Turbo", "AI/ML", "Meta", 1
|
||||
),
|
||||
LlmModel.AIML_API_QWEN2_5_72B: ModelMetadata("aiml_api", 32000, 8000),
|
||||
LlmModel.AIML_API_LLAMA3_1_70B: ModelMetadata("aiml_api", 128000, 40000),
|
||||
LlmModel.AIML_API_LLAMA3_3_70B: ModelMetadata("aiml_api", 128000, None),
|
||||
LlmModel.AIML_API_META_LLAMA_3_1_70B: ModelMetadata("aiml_api", 131000, 2000),
|
||||
LlmModel.AIML_API_LLAMA_3_2_3B: ModelMetadata("aiml_api", 128000, None),
|
||||
# https://console.groq.com/docs/models
|
||||
LlmModel.LLAMA3_3_70B: ModelMetadata(
|
||||
"groq", 128000, 32768, "Llama 3.3 70B Versatile", "Groq", "Meta", 1
|
||||
),
|
||||
LlmModel.LLAMA3_1_8B: ModelMetadata(
|
||||
"groq", 128000, 8192, "Llama 3.1 8B Instant", "Groq", "Meta", 1
|
||||
),
|
||||
LlmModel.LLAMA3_3_70B: ModelMetadata("groq", 128000, 32768),
|
||||
LlmModel.LLAMA3_1_8B: ModelMetadata("groq", 128000, 8192),
|
||||
# https://ollama.com/library
|
||||
LlmModel.OLLAMA_LLAMA3_3: ModelMetadata(
|
||||
"ollama", 8192, None, "Llama 3.3", "Ollama", "Meta", 1
|
||||
),
|
||||
LlmModel.OLLAMA_LLAMA3_2: ModelMetadata(
|
||||
"ollama", 8192, None, "Llama 3.2", "Ollama", "Meta", 1
|
||||
),
|
||||
LlmModel.OLLAMA_LLAMA3_8B: ModelMetadata(
|
||||
"ollama", 8192, None, "Llama 3", "Ollama", "Meta", 1
|
||||
),
|
||||
LlmModel.OLLAMA_LLAMA3_405B: ModelMetadata(
|
||||
"ollama", 8192, None, "Llama 3.1 405B", "Ollama", "Meta", 1
|
||||
),
|
||||
LlmModel.OLLAMA_DOLPHIN: ModelMetadata(
|
||||
"ollama", 32768, None, "Dolphin Mistral Latest", "Ollama", "Mistral AI", 1
|
||||
),
|
||||
LlmModel.OLLAMA_LLAMA3_3: ModelMetadata("ollama", 8192, None),
|
||||
LlmModel.OLLAMA_LLAMA3_2: ModelMetadata("ollama", 8192, None),
|
||||
LlmModel.OLLAMA_LLAMA3_8B: ModelMetadata("ollama", 8192, None),
|
||||
LlmModel.OLLAMA_LLAMA3_405B: ModelMetadata("ollama", 8192, None),
|
||||
LlmModel.OLLAMA_DOLPHIN: ModelMetadata("ollama", 32768, None),
|
||||
# https://openrouter.ai/models
|
||||
LlmModel.GEMINI_2_5_PRO: ModelMetadata(
|
||||
"open_router",
|
||||
1050000,
|
||||
8192,
|
||||
"Gemini 2.5 Pro Preview 03.25",
|
||||
"OpenRouter",
|
||||
"Google",
|
||||
2,
|
||||
),
|
||||
LlmModel.GEMINI_3_PRO_PREVIEW: ModelMetadata(
|
||||
"open_router", 1048576, 65535, "Gemini 3 Pro Preview", "OpenRouter", "Google", 2
|
||||
),
|
||||
LlmModel.GEMINI_2_5_FLASH: ModelMetadata(
|
||||
"open_router", 1048576, 65535, "Gemini 2.5 Flash", "OpenRouter", "Google", 1
|
||||
),
|
||||
LlmModel.GEMINI_2_0_FLASH: ModelMetadata(
|
||||
"open_router", 1048576, 8192, "Gemini 2.0 Flash 001", "OpenRouter", "Google", 1
|
||||
),
|
||||
LlmModel.GEMINI_2_5_PRO: ModelMetadata("open_router", 1050000, 8192),
|
||||
LlmModel.GEMINI_3_PRO_PREVIEW: ModelMetadata("open_router", 1048576, 65535),
|
||||
LlmModel.GEMINI_2_5_FLASH: ModelMetadata("open_router", 1048576, 65535),
|
||||
LlmModel.GEMINI_2_0_FLASH: ModelMetadata("open_router", 1048576, 8192),
|
||||
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: ModelMetadata(
|
||||
"open_router",
|
||||
1048576,
|
||||
65535,
|
||||
"Gemini 2.5 Flash Lite Preview 06.17",
|
||||
"OpenRouter",
|
||||
"Google",
|
||||
1,
|
||||
),
|
||||
LlmModel.GEMINI_2_0_FLASH_LITE: ModelMetadata(
|
||||
"open_router",
|
||||
1048576,
|
||||
8192,
|
||||
"Gemini 2.0 Flash Lite 001",
|
||||
"OpenRouter",
|
||||
"Google",
|
||||
1,
|
||||
),
|
||||
LlmModel.MISTRAL_NEMO: ModelMetadata(
|
||||
"open_router", 128000, 4096, "Mistral Nemo", "OpenRouter", "Mistral AI", 1
|
||||
),
|
||||
LlmModel.COHERE_COMMAND_R_08_2024: ModelMetadata(
|
||||
"open_router", 128000, 4096, "Command R 08.2024", "OpenRouter", "Cohere", 1
|
||||
),
|
||||
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: ModelMetadata(
|
||||
"open_router", 128000, 4096, "Command R Plus 08.2024", "OpenRouter", "Cohere", 2
|
||||
),
|
||||
LlmModel.DEEPSEEK_CHAT: ModelMetadata(
|
||||
"open_router", 64000, 2048, "DeepSeek Chat", "OpenRouter", "DeepSeek", 1
|
||||
),
|
||||
LlmModel.DEEPSEEK_R1_0528: ModelMetadata(
|
||||
"open_router", 163840, 163840, "DeepSeek R1 0528", "OpenRouter", "DeepSeek", 1
|
||||
),
|
||||
LlmModel.PERPLEXITY_SONAR: ModelMetadata(
|
||||
"open_router", 127000, 8000, "Sonar", "OpenRouter", "Perplexity", 1
|
||||
),
|
||||
LlmModel.PERPLEXITY_SONAR_PRO: ModelMetadata(
|
||||
"open_router", 200000, 8000, "Sonar Pro", "OpenRouter", "Perplexity", 2
|
||||
"open_router", 1048576, 65535
|
||||
),
|
||||
LlmModel.GEMINI_2_0_FLASH_LITE: ModelMetadata("open_router", 1048576, 8192),
|
||||
LlmModel.MISTRAL_NEMO: ModelMetadata("open_router", 128000, 4096),
|
||||
LlmModel.COHERE_COMMAND_R_08_2024: ModelMetadata("open_router", 128000, 4096),
|
||||
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: ModelMetadata("open_router", 128000, 4096),
|
||||
LlmModel.DEEPSEEK_CHAT: ModelMetadata("open_router", 64000, 2048),
|
||||
LlmModel.DEEPSEEK_R1_0528: ModelMetadata("open_router", 163840, 163840),
|
||||
LlmModel.PERPLEXITY_SONAR: ModelMetadata("open_router", 127000, 8000),
|
||||
LlmModel.PERPLEXITY_SONAR_PRO: ModelMetadata("open_router", 200000, 8000),
|
||||
LlmModel.PERPLEXITY_SONAR_DEEP_RESEARCH: ModelMetadata(
|
||||
"open_router",
|
||||
128000,
|
||||
16000,
|
||||
"Sonar Deep Research",
|
||||
"OpenRouter",
|
||||
"Perplexity",
|
||||
3,
|
||||
),
|
||||
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_405B: ModelMetadata(
|
||||
"open_router",
|
||||
131000,
|
||||
4096,
|
||||
"Hermes 3 Llama 3.1 405B",
|
||||
"OpenRouter",
|
||||
"Nous Research",
|
||||
1,
|
||||
"open_router", 131000, 4096
|
||||
),
|
||||
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_70B: ModelMetadata(
|
||||
"open_router",
|
||||
12288,
|
||||
12288,
|
||||
"Hermes 3 Llama 3.1 70B",
|
||||
"OpenRouter",
|
||||
"Nous Research",
|
||||
1,
|
||||
),
|
||||
LlmModel.OPENAI_GPT_OSS_120B: ModelMetadata(
|
||||
"open_router", 131072, 131072, "GPT-OSS 120B", "OpenRouter", "OpenAI", 1
|
||||
),
|
||||
LlmModel.OPENAI_GPT_OSS_20B: ModelMetadata(
|
||||
"open_router", 131072, 32768, "GPT-OSS 20B", "OpenRouter", "OpenAI", 1
|
||||
),
|
||||
LlmModel.AMAZON_NOVA_LITE_V1: ModelMetadata(
|
||||
"open_router", 300000, 5120, "Nova Lite V1", "OpenRouter", "Amazon", 1
|
||||
),
|
||||
LlmModel.AMAZON_NOVA_MICRO_V1: ModelMetadata(
|
||||
"open_router", 128000, 5120, "Nova Micro V1", "OpenRouter", "Amazon", 1
|
||||
),
|
||||
LlmModel.AMAZON_NOVA_PRO_V1: ModelMetadata(
|
||||
"open_router", 300000, 5120, "Nova Pro V1", "OpenRouter", "Amazon", 1
|
||||
),
|
||||
LlmModel.MICROSOFT_WIZARDLM_2_8X22B: ModelMetadata(
|
||||
"open_router", 65536, 4096, "WizardLM 2 8x22B", "OpenRouter", "Microsoft", 1
|
||||
),
|
||||
LlmModel.GRYPHE_MYTHOMAX_L2_13B: ModelMetadata(
|
||||
"open_router", 4096, 4096, "MythoMax L2 13B", "OpenRouter", "Gryphe", 1
|
||||
),
|
||||
LlmModel.META_LLAMA_4_SCOUT: ModelMetadata(
|
||||
"open_router", 131072, 131072, "Llama 4 Scout", "OpenRouter", "Meta", 1
|
||||
),
|
||||
LlmModel.META_LLAMA_4_MAVERICK: ModelMetadata(
|
||||
"open_router", 1048576, 1000000, "Llama 4 Maverick", "OpenRouter", "Meta", 1
|
||||
),
|
||||
LlmModel.GROK_4: ModelMetadata(
|
||||
"open_router", 256000, 256000, "Grok 4", "OpenRouter", "xAI", 3
|
||||
),
|
||||
LlmModel.GROK_4_FAST: ModelMetadata(
|
||||
"open_router", 2000000, 30000, "Grok 4 Fast", "OpenRouter", "xAI", 1
|
||||
),
|
||||
LlmModel.GROK_4_1_FAST: ModelMetadata(
|
||||
"open_router", 2000000, 30000, "Grok 4.1 Fast", "OpenRouter", "xAI", 1
|
||||
),
|
||||
LlmModel.GROK_CODE_FAST_1: ModelMetadata(
|
||||
"open_router", 256000, 10000, "Grok Code Fast 1", "OpenRouter", "xAI", 1
|
||||
),
|
||||
LlmModel.KIMI_K2: ModelMetadata(
|
||||
"open_router", 131000, 131000, "Kimi K2", "OpenRouter", "Moonshot AI", 1
|
||||
),
|
||||
LlmModel.QWEN3_235B_A22B_THINKING: ModelMetadata(
|
||||
"open_router",
|
||||
262144,
|
||||
262144,
|
||||
"Qwen 3 235B A22B Thinking 2507",
|
||||
"OpenRouter",
|
||||
"Qwen",
|
||||
1,
|
||||
),
|
||||
LlmModel.QWEN3_CODER: ModelMetadata(
|
||||
"open_router", 262144, 262144, "Qwen 3 Coder", "OpenRouter", "Qwen", 3
|
||||
"open_router", 12288, 12288
|
||||
),
|
||||
LlmModel.OPENAI_GPT_OSS_120B: ModelMetadata("open_router", 131072, 131072),
|
||||
LlmModel.OPENAI_GPT_OSS_20B: ModelMetadata("open_router", 131072, 32768),
|
||||
LlmModel.AMAZON_NOVA_LITE_V1: ModelMetadata("open_router", 300000, 5120),
|
||||
LlmModel.AMAZON_NOVA_MICRO_V1: ModelMetadata("open_router", 128000, 5120),
|
||||
LlmModel.AMAZON_NOVA_PRO_V1: ModelMetadata("open_router", 300000, 5120),
|
||||
LlmModel.MICROSOFT_WIZARDLM_2_8X22B: ModelMetadata("open_router", 65536, 4096),
|
||||
LlmModel.GRYPHE_MYTHOMAX_L2_13B: ModelMetadata("open_router", 4096, 4096),
|
||||
LlmModel.META_LLAMA_4_SCOUT: ModelMetadata("open_router", 131072, 131072),
|
||||
LlmModel.META_LLAMA_4_MAVERICK: ModelMetadata("open_router", 1048576, 1000000),
|
||||
LlmModel.GROK_4: ModelMetadata("open_router", 256000, 256000),
|
||||
LlmModel.GROK_4_FAST: ModelMetadata("open_router", 2000000, 30000),
|
||||
LlmModel.GROK_4_1_FAST: ModelMetadata("open_router", 2000000, 30000),
|
||||
LlmModel.GROK_CODE_FAST_1: ModelMetadata("open_router", 256000, 10000),
|
||||
LlmModel.KIMI_K2: ModelMetadata("open_router", 131000, 131000),
|
||||
LlmModel.QWEN3_235B_A22B_THINKING: ModelMetadata("open_router", 262144, 262144),
|
||||
LlmModel.QWEN3_CODER: ModelMetadata("open_router", 262144, 262144),
|
||||
# Llama API models
|
||||
LlmModel.LLAMA_API_LLAMA_4_SCOUT: ModelMetadata(
|
||||
"llama_api",
|
||||
128000,
|
||||
4028,
|
||||
"Llama 4 Scout 17B 16E Instruct FP8",
|
||||
"Llama API",
|
||||
"Meta",
|
||||
1,
|
||||
),
|
||||
LlmModel.LLAMA_API_LLAMA4_MAVERICK: ModelMetadata(
|
||||
"llama_api",
|
||||
128000,
|
||||
4028,
|
||||
"Llama 4 Maverick 17B 128E Instruct FP8",
|
||||
"Llama API",
|
||||
"Meta",
|
||||
1,
|
||||
),
|
||||
LlmModel.LLAMA_API_LLAMA3_3_8B: ModelMetadata(
|
||||
"llama_api", 128000, 4028, "Llama 3.3 8B Instruct", "Llama API", "Meta", 1
|
||||
),
|
||||
LlmModel.LLAMA_API_LLAMA3_3_70B: ModelMetadata(
|
||||
"llama_api", 128000, 4028, "Llama 3.3 70B Instruct", "Llama API", "Meta", 1
|
||||
),
|
||||
LlmModel.LLAMA_API_LLAMA_4_SCOUT: ModelMetadata("llama_api", 128000, 4028),
|
||||
LlmModel.LLAMA_API_LLAMA4_MAVERICK: ModelMetadata("llama_api", 128000, 4028),
|
||||
LlmModel.LLAMA_API_LLAMA3_3_8B: ModelMetadata("llama_api", 128000, 4028),
|
||||
LlmModel.LLAMA_API_LLAMA3_3_70B: ModelMetadata("llama_api", 128000, 4028),
|
||||
# v0 by Vercel models
|
||||
LlmModel.V0_1_5_MD: ModelMetadata("v0", 128000, 64000, "v0 1.5 MD", "V0", "V0", 1),
|
||||
LlmModel.V0_1_5_LG: ModelMetadata("v0", 512000, 64000, "v0 1.5 LG", "V0", "V0", 1),
|
||||
LlmModel.V0_1_0_MD: ModelMetadata("v0", 128000, 64000, "v0 1.0 MD", "V0", "V0", 1),
|
||||
LlmModel.V0_1_5_MD: ModelMetadata("v0", 128000, 64000),
|
||||
LlmModel.V0_1_5_LG: ModelMetadata("v0", 512000, 64000),
|
||||
LlmModel.V0_1_0_MD: ModelMetadata("v0", 128000, 64000),
|
||||
}
|
||||
|
||||
DEFAULT_LLM_MODEL = LlmModel.GPT5_2
|
||||
|
||||
@@ -242,7 +242,7 @@ async def test_smart_decision_maker_tracks_llm_stats():
|
||||
outputs = {}
|
||||
# Create execution context
|
||||
|
||||
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
|
||||
mock_execution_context = ExecutionContext(safe_mode=False)
|
||||
|
||||
# Create a mock execution processor for tests
|
||||
|
||||
@@ -343,7 +343,7 @@ async def test_smart_decision_maker_parameter_validation():
|
||||
|
||||
# Create execution context
|
||||
|
||||
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
|
||||
mock_execution_context = ExecutionContext(safe_mode=False)
|
||||
|
||||
# Create a mock execution processor for tests
|
||||
|
||||
@@ -409,7 +409,7 @@ async def test_smart_decision_maker_parameter_validation():
|
||||
|
||||
# Create execution context
|
||||
|
||||
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
|
||||
mock_execution_context = ExecutionContext(safe_mode=False)
|
||||
|
||||
# Create a mock execution processor for tests
|
||||
|
||||
@@ -471,7 +471,7 @@ async def test_smart_decision_maker_parameter_validation():
|
||||
outputs = {}
|
||||
# Create execution context
|
||||
|
||||
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
|
||||
mock_execution_context = ExecutionContext(safe_mode=False)
|
||||
|
||||
# Create a mock execution processor for tests
|
||||
|
||||
@@ -535,7 +535,7 @@ async def test_smart_decision_maker_parameter_validation():
|
||||
outputs = {}
|
||||
# Create execution context
|
||||
|
||||
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
|
||||
mock_execution_context = ExecutionContext(safe_mode=False)
|
||||
|
||||
# Create a mock execution processor for tests
|
||||
|
||||
@@ -658,7 +658,7 @@ async def test_smart_decision_maker_raw_response_conversion():
|
||||
outputs = {}
|
||||
# Create execution context
|
||||
|
||||
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
|
||||
mock_execution_context = ExecutionContext(safe_mode=False)
|
||||
|
||||
# Create a mock execution processor for tests
|
||||
|
||||
@@ -730,7 +730,7 @@ async def test_smart_decision_maker_raw_response_conversion():
|
||||
outputs = {}
|
||||
# Create execution context
|
||||
|
||||
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
|
||||
mock_execution_context = ExecutionContext(safe_mode=False)
|
||||
|
||||
# Create a mock execution processor for tests
|
||||
|
||||
@@ -786,7 +786,7 @@ async def test_smart_decision_maker_raw_response_conversion():
|
||||
outputs = {}
|
||||
# Create execution context
|
||||
|
||||
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
|
||||
mock_execution_context = ExecutionContext(safe_mode=False)
|
||||
|
||||
# Create a mock execution processor for tests
|
||||
|
||||
@@ -905,7 +905,7 @@ async def test_smart_decision_maker_agent_mode():
|
||||
# Create a mock execution context
|
||||
|
||||
mock_execution_context = ExecutionContext(
|
||||
human_in_the_loop_safe_mode=False,
|
||||
safe_mode=False,
|
||||
)
|
||||
|
||||
# Create a mock execution processor for agent mode tests
|
||||
@@ -1027,7 +1027,7 @@ async def test_smart_decision_maker_traditional_mode_default():
|
||||
|
||||
# Create execution context
|
||||
|
||||
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
|
||||
mock_execution_context = ExecutionContext(safe_mode=False)
|
||||
|
||||
# Create a mock execution processor for tests
|
||||
|
||||
|
||||
@@ -386,7 +386,7 @@ async def test_output_yielding_with_dynamic_fields():
|
||||
outputs = {}
|
||||
from backend.data.execution import ExecutionContext
|
||||
|
||||
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
|
||||
mock_execution_context = ExecutionContext(safe_mode=False)
|
||||
mock_execution_processor = MagicMock()
|
||||
|
||||
async for output_name, output_value in block.run(
|
||||
@@ -609,9 +609,7 @@ async def test_validation_errors_dont_pollute_conversation():
|
||||
outputs = {}
|
||||
from backend.data.execution import ExecutionContext
|
||||
|
||||
mock_execution_context = ExecutionContext(
|
||||
human_in_the_loop_safe_mode=False
|
||||
)
|
||||
mock_execution_context = ExecutionContext(safe_mode=False)
|
||||
|
||||
# Create a proper mock execution processor for agent mode
|
||||
from collections import defaultdict
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import logging
|
||||
import os
|
||||
|
||||
import pytest_asyncio
|
||||
import pytest
|
||||
from dotenv import load_dotenv
|
||||
|
||||
from backend.util.logging import configure_logging
|
||||
@@ -19,7 +19,7 @@ if not os.getenv("PRISMA_DEBUG"):
|
||||
prisma_logger.setLevel(logging.INFO)
|
||||
|
||||
|
||||
@pytest_asyncio.fixture(scope="session", loop_scope="session")
|
||||
@pytest.fixture(scope="session")
|
||||
async def server():
|
||||
from backend.util.test import SpinTestServer
|
||||
|
||||
@@ -27,7 +27,7 @@ async def server():
|
||||
yield server
|
||||
|
||||
|
||||
@pytest_asyncio.fixture(scope="session", loop_scope="session", autouse=True)
|
||||
@pytest.fixture(scope="session", autouse=True)
|
||||
async def graph_cleanup(server):
|
||||
created_graph_ids = []
|
||||
original_create_graph = server.agent_server.test_create_graph
|
||||
|
||||
@@ -441,7 +441,6 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
|
||||
static_output: bool = False,
|
||||
block_type: BlockType = BlockType.STANDARD,
|
||||
webhook_config: Optional[BlockWebhookConfig | BlockManualWebhookConfig] = None,
|
||||
is_sensitive_action: bool = False,
|
||||
):
|
||||
"""
|
||||
Initialize the block with the given schema.
|
||||
@@ -474,8 +473,8 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
|
||||
self.static_output = static_output
|
||||
self.block_type = block_type
|
||||
self.webhook_config = webhook_config
|
||||
self.is_sensitive_action = is_sensitive_action
|
||||
self.execution_stats: NodeExecutionStats = NodeExecutionStats()
|
||||
self.requires_human_review: bool = False
|
||||
|
||||
if self.webhook_config:
|
||||
if isinstance(self.webhook_config, BlockWebhookConfig):
|
||||
@@ -623,7 +622,6 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
|
||||
input_data: BlockInput,
|
||||
*,
|
||||
user_id: str,
|
||||
node_id: str,
|
||||
node_exec_id: str,
|
||||
graph_exec_id: str,
|
||||
graph_id: str,
|
||||
@@ -639,9 +637,8 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
|
||||
- should_pause: True if execution should be paused for review
|
||||
- input_data_to_use: The input data to use (may be modified by reviewer)
|
||||
"""
|
||||
if not (
|
||||
self.is_sensitive_action and execution_context.sensitive_action_safe_mode
|
||||
):
|
||||
# Skip review if not required or safe mode is disabled
|
||||
if not self.requires_human_review or not execution_context.safe_mode:
|
||||
return False, input_data
|
||||
|
||||
from backend.blocks.helpers.review import HITLReviewHelper
|
||||
@@ -650,11 +647,11 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
|
||||
decision = await HITLReviewHelper.handle_review_decision(
|
||||
input_data=input_data,
|
||||
user_id=user_id,
|
||||
node_id=node_id,
|
||||
node_exec_id=node_exec_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
graph_id=graph_id,
|
||||
graph_version=graph_version,
|
||||
execution_context=execution_context,
|
||||
block_name=self.name,
|
||||
editable=True,
|
||||
)
|
||||
|
||||
@@ -99,15 +99,10 @@ MODEL_COST: dict[LlmModel, int] = {
|
||||
LlmModel.OPENAI_GPT_OSS_20B: 1,
|
||||
LlmModel.GEMINI_2_5_PRO: 4,
|
||||
LlmModel.GEMINI_3_PRO_PREVIEW: 5,
|
||||
LlmModel.GEMINI_2_5_FLASH: 1,
|
||||
LlmModel.GEMINI_2_0_FLASH: 1,
|
||||
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: 1,
|
||||
LlmModel.GEMINI_2_0_FLASH_LITE: 1,
|
||||
LlmModel.MISTRAL_NEMO: 1,
|
||||
LlmModel.COHERE_COMMAND_R_08_2024: 1,
|
||||
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: 3,
|
||||
LlmModel.DEEPSEEK_CHAT: 2,
|
||||
LlmModel.DEEPSEEK_R1_0528: 1,
|
||||
LlmModel.PERPLEXITY_SONAR: 1,
|
||||
LlmModel.PERPLEXITY_SONAR_PRO: 5,
|
||||
LlmModel.PERPLEXITY_SONAR_DEEP_RESEARCH: 10,
|
||||
@@ -131,6 +126,11 @@ MODEL_COST: dict[LlmModel, int] = {
|
||||
LlmModel.KIMI_K2: 1,
|
||||
LlmModel.QWEN3_235B_A22B_THINKING: 1,
|
||||
LlmModel.QWEN3_CODER: 9,
|
||||
LlmModel.GEMINI_2_5_FLASH: 1,
|
||||
LlmModel.GEMINI_2_0_FLASH: 1,
|
||||
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: 1,
|
||||
LlmModel.GEMINI_2_0_FLASH_LITE: 1,
|
||||
LlmModel.DEEPSEEK_R1_0528: 1,
|
||||
# v0 by Vercel models
|
||||
LlmModel.V0_1_5_MD: 1,
|
||||
LlmModel.V0_1_5_LG: 2,
|
||||
|
||||
@@ -38,6 +38,20 @@ POOL_TIMEOUT = os.getenv("DB_POOL_TIMEOUT")
|
||||
if POOL_TIMEOUT:
|
||||
DATABASE_URL = add_param(DATABASE_URL, "pool_timeout", POOL_TIMEOUT)
|
||||
|
||||
# Add public schema to search_path for pgvector type access
|
||||
# The vector extension is in public schema, but search_path is determined by schema parameter
|
||||
# Extract the schema from DATABASE_URL or default to 'public' (matching get_database_schema())
|
||||
parsed_url = urlparse(DATABASE_URL)
|
||||
url_params = dict(parse_qsl(parsed_url.query))
|
||||
db_schema = url_params.get("schema", "public")
|
||||
# Build search_path, avoiding duplicates if db_schema is already 'public'
|
||||
search_path_schemas = list(
|
||||
dict.fromkeys([db_schema, "public"])
|
||||
) # Preserves order, removes duplicates
|
||||
search_path = ",".join(search_path_schemas)
|
||||
# This allows using ::vector without schema qualification
|
||||
DATABASE_URL = add_param(DATABASE_URL, "options", f"-c search_path={search_path}")
|
||||
|
||||
HTTP_TIMEOUT = int(POOL_TIMEOUT) if POOL_TIMEOUT else None
|
||||
|
||||
prisma = Prisma(
|
||||
@@ -113,48 +127,38 @@ async def _raw_with_schema(
|
||||
*args,
|
||||
execute: bool = False,
|
||||
client: Prisma | None = None,
|
||||
set_public_search_path: bool = False,
|
||||
) -> list[dict] | int:
|
||||
"""Internal: Execute raw SQL with proper schema handling.
|
||||
|
||||
Use query_raw_with_schema() or execute_raw_with_schema() instead.
|
||||
|
||||
Supports placeholders:
|
||||
- {schema_prefix}: Table/type prefix (e.g., "platform".)
|
||||
- {schema}: Raw schema name for application tables (e.g., platform)
|
||||
|
||||
Note on pgvector types:
|
||||
Use unqualified ::vector and <=> operator in queries. PostgreSQL resolves
|
||||
these via search_path, which includes the schema where pgvector is installed
|
||||
on all environments (local, CI, dev).
|
||||
|
||||
Args:
|
||||
query_template: SQL query with {schema_prefix} and/or {schema} placeholders
|
||||
query_template: SQL query with {schema_prefix} placeholder
|
||||
*args: Query parameters
|
||||
execute: If False, executes SELECT query. If True, executes INSERT/UPDATE/DELETE.
|
||||
client: Optional Prisma client for transactions (only used when execute=True).
|
||||
set_public_search_path: If True, sets search_path to include public schema.
|
||||
Needed for pgvector types and other public schema objects.
|
||||
|
||||
Returns:
|
||||
- list[dict] if execute=False (query results)
|
||||
- int if execute=True (number of affected rows)
|
||||
|
||||
Example with vector type:
|
||||
await execute_raw_with_schema(
|
||||
'INSERT INTO {schema_prefix}"Embedding" (vec) VALUES ($1::vector)',
|
||||
embedding_data
|
||||
)
|
||||
"""
|
||||
schema = get_database_schema()
|
||||
schema_prefix = f'"{schema}".' if schema != "public" else ""
|
||||
|
||||
formatted_query = query_template.format(
|
||||
schema_prefix=schema_prefix,
|
||||
schema=schema,
|
||||
)
|
||||
formatted_query = query_template.format(schema_prefix=schema_prefix)
|
||||
|
||||
import prisma as prisma_module
|
||||
|
||||
db_client = client if client else prisma_module.get_client()
|
||||
|
||||
# Set search_path to include public schema if requested
|
||||
# Prisma doesn't support the 'options' connection parameter, so we set it per-session
|
||||
# This is idempotent and safe to call multiple times
|
||||
if set_public_search_path:
|
||||
await db_client.execute_raw(f"SET search_path = {schema}, public") # type: ignore
|
||||
|
||||
if execute:
|
||||
result = await db_client.execute_raw(formatted_query, *args) # type: ignore
|
||||
else:
|
||||
@@ -163,12 +167,16 @@ async def _raw_with_schema(
|
||||
return result
|
||||
|
||||
|
||||
async def query_raw_with_schema(query_template: str, *args) -> list[dict]:
|
||||
async def query_raw_with_schema(
|
||||
query_template: str, *args, set_public_search_path: bool = False
|
||||
) -> list[dict]:
|
||||
"""Execute raw SQL SELECT query with proper schema handling.
|
||||
|
||||
Args:
|
||||
query_template: SQL query with {schema_prefix} and/or {schema} placeholders
|
||||
query_template: SQL query with {schema_prefix} placeholder
|
||||
*args: Query parameters
|
||||
set_public_search_path: If True, sets search_path to include public schema.
|
||||
Needed for pgvector types and other public schema objects.
|
||||
|
||||
Returns:
|
||||
List of result rows as dictionaries
|
||||
@@ -179,20 +187,23 @@ async def query_raw_with_schema(query_template: str, *args) -> list[dict]:
|
||||
user_id
|
||||
)
|
||||
"""
|
||||
return await _raw_with_schema(query_template, *args, execute=False) # type: ignore
|
||||
return await _raw_with_schema(query_template, *args, execute=False, set_public_search_path=set_public_search_path) # type: ignore
|
||||
|
||||
|
||||
async def execute_raw_with_schema(
|
||||
query_template: str,
|
||||
*args,
|
||||
client: Prisma | None = None,
|
||||
set_public_search_path: bool = False,
|
||||
) -> int:
|
||||
"""Execute raw SQL command (INSERT/UPDATE/DELETE) with proper schema handling.
|
||||
|
||||
Args:
|
||||
query_template: SQL query with {schema_prefix} and/or {schema} placeholders
|
||||
query_template: SQL query with {schema_prefix} placeholder
|
||||
*args: Query parameters
|
||||
client: Optional Prisma client for transactions
|
||||
set_public_search_path: If True, sets search_path to include public schema.
|
||||
Needed for pgvector types and other public schema objects.
|
||||
|
||||
Returns:
|
||||
Number of affected rows
|
||||
@@ -204,7 +215,7 @@ async def execute_raw_with_schema(
|
||||
client=tx # Optional transaction client
|
||||
)
|
||||
"""
|
||||
return await _raw_with_schema(query_template, *args, execute=True, client=client) # type: ignore
|
||||
return await _raw_with_schema(query_template, *args, execute=True, client=client, set_public_search_path=set_public_search_path) # type: ignore
|
||||
|
||||
|
||||
class BaseDbModel(BaseModel):
|
||||
|
||||
@@ -103,18 +103,8 @@ class RedisEventBus(BaseRedisEventBus[M], ABC):
|
||||
return redis.get_redis()
|
||||
|
||||
def publish_event(self, event: M, channel_key: str):
|
||||
"""
|
||||
Publish an event to Redis. Gracefully handles connection failures
|
||||
by logging the error instead of raising exceptions.
|
||||
"""
|
||||
try:
|
||||
message, full_channel_name = self._serialize_message(event, channel_key)
|
||||
self.connection.publish(full_channel_name, message)
|
||||
except Exception:
|
||||
logger.exception(
|
||||
f"Failed to publish event to Redis channel {channel_key}. "
|
||||
"Event bus operation will continue without Redis connectivity."
|
||||
)
|
||||
message, full_channel_name = self._serialize_message(event, channel_key)
|
||||
self.connection.publish(full_channel_name, message)
|
||||
|
||||
def listen_events(self, channel_key: str) -> Generator[M, None, None]:
|
||||
pubsub, full_channel_name = self._get_pubsub_channel(
|
||||
@@ -138,19 +128,9 @@ class AsyncRedisEventBus(BaseRedisEventBus[M], ABC):
|
||||
return await redis.get_redis_async()
|
||||
|
||||
async def publish_event(self, event: M, channel_key: str):
|
||||
"""
|
||||
Publish an event to Redis. Gracefully handles connection failures
|
||||
by logging the error instead of raising exceptions.
|
||||
"""
|
||||
try:
|
||||
message, full_channel_name = self._serialize_message(event, channel_key)
|
||||
connection = await self.connection
|
||||
await connection.publish(full_channel_name, message)
|
||||
except Exception:
|
||||
logger.exception(
|
||||
f"Failed to publish event to Redis channel {channel_key}. "
|
||||
"Event bus operation will continue without Redis connectivity."
|
||||
)
|
||||
message, full_channel_name = self._serialize_message(event, channel_key)
|
||||
connection = await self.connection
|
||||
await connection.publish(full_channel_name, message)
|
||||
|
||||
async def listen_events(self, channel_key: str) -> AsyncGenerator[M, None]:
|
||||
pubsub, full_channel_name = self._get_pubsub_channel(
|
||||
|
||||
@@ -1,56 +0,0 @@
|
||||
"""
|
||||
Tests for event_bus graceful degradation when Redis is unavailable.
|
||||
"""
|
||||
|
||||
from unittest.mock import AsyncMock, patch
|
||||
|
||||
import pytest
|
||||
from pydantic import BaseModel
|
||||
|
||||
from backend.data.event_bus import AsyncRedisEventBus
|
||||
|
||||
|
||||
class TestEvent(BaseModel):
|
||||
"""Test event model."""
|
||||
|
||||
message: str
|
||||
|
||||
|
||||
class TestNotificationBus(AsyncRedisEventBus[TestEvent]):
|
||||
"""Test implementation of AsyncRedisEventBus."""
|
||||
|
||||
Model = TestEvent
|
||||
|
||||
@property
|
||||
def event_bus_name(self) -> str:
|
||||
return "test_event_bus"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_publish_event_handles_connection_failure_gracefully():
|
||||
"""Test that publish_event logs exception instead of raising when Redis is unavailable."""
|
||||
bus = TestNotificationBus()
|
||||
event = TestEvent(message="test message")
|
||||
|
||||
# Mock get_redis_async to raise connection error
|
||||
with patch(
|
||||
"backend.data.event_bus.redis.get_redis_async",
|
||||
side_effect=ConnectionError("Authentication required."),
|
||||
):
|
||||
# Should not raise exception
|
||||
await bus.publish_event(event, "test_channel")
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_publish_event_works_with_redis_available():
|
||||
"""Test that publish_event works normally when Redis is available."""
|
||||
bus = TestNotificationBus()
|
||||
event = TestEvent(message="test message")
|
||||
|
||||
# Mock successful Redis connection
|
||||
mock_redis = AsyncMock()
|
||||
mock_redis.publish = AsyncMock()
|
||||
|
||||
with patch("backend.data.event_bus.redis.get_redis_async", return_value=mock_redis):
|
||||
await bus.publish_event(event, "test_channel")
|
||||
mock_redis.publish.assert_called_once()
|
||||
@@ -81,10 +81,7 @@ class ExecutionContext(BaseModel):
|
||||
This includes information needed by blocks, sub-graphs, and execution management.
|
||||
"""
|
||||
|
||||
model_config = {"extra": "ignore"}
|
||||
|
||||
human_in_the_loop_safe_mode: bool = True
|
||||
sensitive_action_safe_mode: bool = False
|
||||
safe_mode: bool = True
|
||||
user_timezone: str = "UTC"
|
||||
root_execution_id: Optional[str] = None
|
||||
parent_execution_id: Optional[str] = None
|
||||
|
||||
@@ -3,7 +3,7 @@ import logging
|
||||
import uuid
|
||||
from collections import defaultdict
|
||||
from datetime import datetime, timezone
|
||||
from typing import TYPE_CHECKING, Annotated, Any, Literal, Optional, cast
|
||||
from typing import TYPE_CHECKING, Any, Literal, Optional, cast
|
||||
|
||||
from prisma.enums import SubmissionStatus
|
||||
from prisma.models import (
|
||||
@@ -20,7 +20,7 @@ from prisma.types import (
|
||||
AgentNodeLinkCreateInput,
|
||||
StoreListingVersionWhereInput,
|
||||
)
|
||||
from pydantic import BaseModel, BeforeValidator, Field, create_model
|
||||
from pydantic import BaseModel, Field, create_model
|
||||
from pydantic.fields import computed_field
|
||||
|
||||
from backend.blocks.agent import AgentExecutorBlock
|
||||
@@ -62,31 +62,7 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class GraphSettings(BaseModel):
|
||||
# Use Annotated with BeforeValidator to coerce None to default values.
|
||||
# This handles cases where the database has null values for these fields.
|
||||
model_config = {"extra": "ignore"}
|
||||
|
||||
human_in_the_loop_safe_mode: Annotated[
|
||||
bool, BeforeValidator(lambda v: v if v is not None else True)
|
||||
] = True
|
||||
sensitive_action_safe_mode: Annotated[
|
||||
bool, BeforeValidator(lambda v: v if v is not None else False)
|
||||
] = False
|
||||
|
||||
@classmethod
|
||||
def from_graph(
|
||||
cls,
|
||||
graph: "GraphModel",
|
||||
hitl_safe_mode: bool | None = None,
|
||||
sensitive_action_safe_mode: bool = False,
|
||||
) -> "GraphSettings":
|
||||
# Default to True if not explicitly set
|
||||
if hitl_safe_mode is None:
|
||||
hitl_safe_mode = True
|
||||
return cls(
|
||||
human_in_the_loop_safe_mode=hitl_safe_mode,
|
||||
sensitive_action_safe_mode=sensitive_action_safe_mode,
|
||||
)
|
||||
human_in_the_loop_safe_mode: bool | None = None
|
||||
|
||||
|
||||
class Link(BaseDbModel):
|
||||
@@ -268,14 +244,10 @@ class BaseGraph(BaseDbModel):
|
||||
return any(
|
||||
node.block_id
|
||||
for node in self.nodes
|
||||
if node.block.block_type == BlockType.HUMAN_IN_THE_LOOP
|
||||
)
|
||||
|
||||
@computed_field
|
||||
@property
|
||||
def has_sensitive_action(self) -> bool:
|
||||
return any(
|
||||
node.block_id for node in self.nodes if node.block.is_sensitive_action
|
||||
if (
|
||||
node.block.block_type == BlockType.HUMAN_IN_THE_LOOP
|
||||
or node.block.requires_human_review
|
||||
)
|
||||
)
|
||||
|
||||
@property
|
||||
|
||||
@@ -6,10 +6,10 @@ Handles all database operations for pending human reviews.
|
||||
import asyncio
|
||||
import logging
|
||||
from datetime import datetime, timezone
|
||||
from typing import TYPE_CHECKING, Optional
|
||||
from typing import Optional
|
||||
|
||||
from prisma.enums import ReviewStatus
|
||||
from prisma.models import AgentNodeExecution, PendingHumanReview
|
||||
from prisma.models import PendingHumanReview
|
||||
from prisma.types import PendingHumanReviewUpdateInput
|
||||
from pydantic import BaseModel
|
||||
|
||||
@@ -17,12 +17,8 @@ from backend.api.features.executions.review.model import (
|
||||
PendingHumanReviewModel,
|
||||
SafeJsonData,
|
||||
)
|
||||
from backend.data.execution import get_graph_execution_meta
|
||||
from backend.util.json import SafeJson
|
||||
|
||||
if TYPE_CHECKING:
|
||||
pass
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@@ -36,125 +32,6 @@ class ReviewResult(BaseModel):
|
||||
node_exec_id: str
|
||||
|
||||
|
||||
def get_auto_approve_key(graph_exec_id: str, node_id: str) -> str:
|
||||
"""Generate the special nodeExecId key for auto-approval records."""
|
||||
return f"auto_approve_{graph_exec_id}_{node_id}"
|
||||
|
||||
|
||||
async def check_approval(
|
||||
node_exec_id: str,
|
||||
graph_exec_id: str,
|
||||
node_id: str,
|
||||
user_id: str,
|
||||
input_data: SafeJsonData | None = None,
|
||||
) -> Optional[ReviewResult]:
|
||||
"""
|
||||
Check if there's an existing approval for this node execution.
|
||||
|
||||
Checks both:
|
||||
1. Normal approval by node_exec_id (previous run of the same node execution)
|
||||
2. Auto-approval by special key pattern "auto_approve_{graph_exec_id}_{node_id}"
|
||||
|
||||
Args:
|
||||
node_exec_id: ID of the node execution
|
||||
graph_exec_id: ID of the graph execution
|
||||
node_id: ID of the node definition (not execution)
|
||||
user_id: ID of the user (for data isolation)
|
||||
input_data: Current input data (used for auto-approvals to avoid stale data)
|
||||
|
||||
Returns:
|
||||
ReviewResult if approval found (either normal or auto), None otherwise
|
||||
"""
|
||||
auto_approve_key = get_auto_approve_key(graph_exec_id, node_id)
|
||||
|
||||
# Check for either normal approval or auto-approval in a single query
|
||||
existing_review = await PendingHumanReview.prisma().find_first(
|
||||
where={
|
||||
"OR": [
|
||||
{"nodeExecId": node_exec_id},
|
||||
{"nodeExecId": auto_approve_key},
|
||||
],
|
||||
"status": ReviewStatus.APPROVED,
|
||||
"userId": user_id,
|
||||
},
|
||||
)
|
||||
|
||||
if existing_review:
|
||||
is_auto_approval = existing_review.nodeExecId == auto_approve_key
|
||||
logger.info(
|
||||
f"Found {'auto-' if is_auto_approval else ''}approval for node {node_id} "
|
||||
f"(exec: {node_exec_id}) in execution {graph_exec_id}"
|
||||
)
|
||||
# For auto-approvals, use current input_data to avoid replaying stale payload
|
||||
# For normal approvals, use the stored payload (which may have been edited)
|
||||
return ReviewResult(
|
||||
data=(
|
||||
input_data
|
||||
if is_auto_approval and input_data is not None
|
||||
else existing_review.payload
|
||||
),
|
||||
status=ReviewStatus.APPROVED,
|
||||
message=(
|
||||
"Auto-approved (user approved all future actions for this node)"
|
||||
if is_auto_approval
|
||||
else existing_review.reviewMessage or ""
|
||||
),
|
||||
processed=True,
|
||||
node_exec_id=existing_review.nodeExecId,
|
||||
)
|
||||
|
||||
return None
|
||||
|
||||
|
||||
async def create_auto_approval_record(
|
||||
user_id: str,
|
||||
graph_exec_id: str,
|
||||
graph_id: str,
|
||||
graph_version: int,
|
||||
node_id: str,
|
||||
payload: SafeJsonData,
|
||||
) -> None:
|
||||
"""
|
||||
Create an auto-approval record for a node in this execution.
|
||||
|
||||
This is stored as a PendingHumanReview with a special nodeExecId pattern
|
||||
and status=APPROVED, so future executions of the same node can skip review.
|
||||
|
||||
Raises:
|
||||
ValueError: If the graph execution doesn't belong to the user
|
||||
"""
|
||||
# Validate that the graph execution belongs to this user (defense in depth)
|
||||
graph_exec = await get_graph_execution_meta(
|
||||
user_id=user_id, execution_id=graph_exec_id
|
||||
)
|
||||
if not graph_exec:
|
||||
raise ValueError(
|
||||
f"Graph execution {graph_exec_id} not found or doesn't belong to user {user_id}"
|
||||
)
|
||||
|
||||
auto_approve_key = get_auto_approve_key(graph_exec_id, node_id)
|
||||
|
||||
await PendingHumanReview.prisma().upsert(
|
||||
where={"nodeExecId": auto_approve_key},
|
||||
data={
|
||||
"create": {
|
||||
"nodeExecId": auto_approve_key,
|
||||
"userId": user_id,
|
||||
"graphExecId": graph_exec_id,
|
||||
"graphId": graph_id,
|
||||
"graphVersion": graph_version,
|
||||
"payload": SafeJson(payload),
|
||||
"instructions": "Auto-approval record",
|
||||
"editable": False,
|
||||
"status": ReviewStatus.APPROVED,
|
||||
"processed": True,
|
||||
"reviewedAt": datetime.now(timezone.utc),
|
||||
},
|
||||
"update": {}, # Already exists, no update needed
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
async def get_or_create_human_review(
|
||||
user_id: str,
|
||||
node_exec_id: str,
|
||||
@@ -231,87 +108,6 @@ async def get_or_create_human_review(
|
||||
)
|
||||
|
||||
|
||||
async def get_pending_review_by_node_exec_id(
|
||||
node_exec_id: str, user_id: str
|
||||
) -> Optional["PendingHumanReviewModel"]:
|
||||
"""
|
||||
Get a pending review by its node execution ID.
|
||||
|
||||
Args:
|
||||
node_exec_id: The node execution ID to look up
|
||||
user_id: User ID for authorization (only returns if review belongs to this user)
|
||||
|
||||
Returns:
|
||||
The pending review if found and belongs to user, None otherwise
|
||||
"""
|
||||
review = await PendingHumanReview.prisma().find_first(
|
||||
where={
|
||||
"nodeExecId": node_exec_id,
|
||||
"userId": user_id,
|
||||
"status": ReviewStatus.WAITING,
|
||||
}
|
||||
)
|
||||
|
||||
if not review:
|
||||
return None
|
||||
|
||||
# Local import to avoid event loop conflicts in tests
|
||||
from backend.data.execution import get_node_execution
|
||||
|
||||
node_exec = await get_node_execution(review.nodeExecId)
|
||||
node_id = node_exec.node_id if node_exec else review.nodeExecId
|
||||
return PendingHumanReviewModel.from_db(review, node_id=node_id)
|
||||
|
||||
|
||||
async def get_pending_reviews_by_node_exec_ids(
|
||||
node_exec_ids: list[str], user_id: str
|
||||
) -> dict[str, "PendingHumanReviewModel"]:
|
||||
"""
|
||||
Get multiple pending reviews by their node execution IDs in a single batch query.
|
||||
|
||||
Args:
|
||||
node_exec_ids: List of node execution IDs to look up
|
||||
user_id: User ID for authorization (only returns reviews belonging to this user)
|
||||
|
||||
Returns:
|
||||
Dictionary mapping node_exec_id -> PendingHumanReviewModel for found reviews
|
||||
"""
|
||||
if not node_exec_ids:
|
||||
return {}
|
||||
|
||||
reviews = await PendingHumanReview.prisma().find_many(
|
||||
where={
|
||||
"nodeExecId": {"in": node_exec_ids},
|
||||
"userId": user_id,
|
||||
"status": ReviewStatus.WAITING,
|
||||
}
|
||||
)
|
||||
|
||||
if not reviews:
|
||||
return {}
|
||||
|
||||
# Batch fetch all node executions to avoid N+1 queries
|
||||
node_exec_ids_to_fetch = [review.nodeExecId for review in reviews]
|
||||
node_execs = await AgentNodeExecution.prisma().find_many(
|
||||
where={"id": {"in": node_exec_ids_to_fetch}},
|
||||
include={"Node": True},
|
||||
)
|
||||
|
||||
# Create mapping from node_exec_id to node_id
|
||||
node_exec_id_to_node_id = {
|
||||
node_exec.id: node_exec.agentNodeId for node_exec in node_execs
|
||||
}
|
||||
|
||||
result = {}
|
||||
for review in reviews:
|
||||
node_id = node_exec_id_to_node_id.get(review.nodeExecId, review.nodeExecId)
|
||||
result[review.nodeExecId] = PendingHumanReviewModel.from_db(
|
||||
review, node_id=node_id
|
||||
)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
async def has_pending_reviews_for_graph_exec(graph_exec_id: str) -> bool:
|
||||
"""
|
||||
Check if a graph execution has any pending reviews.
|
||||
@@ -341,11 +137,8 @@ async def get_pending_reviews_for_user(
|
||||
page_size: Number of reviews per page
|
||||
|
||||
Returns:
|
||||
List of pending review models with node_id included
|
||||
List of pending review models
|
||||
"""
|
||||
# Local import to avoid event loop conflicts in tests
|
||||
from backend.data.execution import get_node_execution
|
||||
|
||||
# Calculate offset for pagination
|
||||
offset = (page - 1) * page_size
|
||||
|
||||
@@ -356,14 +149,7 @@ async def get_pending_reviews_for_user(
|
||||
take=page_size,
|
||||
)
|
||||
|
||||
# Fetch node_id for each review from NodeExecution
|
||||
result = []
|
||||
for review in reviews:
|
||||
node_exec = await get_node_execution(review.nodeExecId)
|
||||
node_id = node_exec.node_id if node_exec else review.nodeExecId
|
||||
result.append(PendingHumanReviewModel.from_db(review, node_id=node_id))
|
||||
|
||||
return result
|
||||
return [PendingHumanReviewModel.from_db(review) for review in reviews]
|
||||
|
||||
|
||||
async def get_pending_reviews_for_execution(
|
||||
@@ -377,11 +163,8 @@ async def get_pending_reviews_for_execution(
|
||||
user_id: User ID for security validation
|
||||
|
||||
Returns:
|
||||
List of pending review models with node_id included
|
||||
List of pending review models
|
||||
"""
|
||||
# Local import to avoid event loop conflicts in tests
|
||||
from backend.data.execution import get_node_execution
|
||||
|
||||
reviews = await PendingHumanReview.prisma().find_many(
|
||||
where={
|
||||
"userId": user_id,
|
||||
@@ -391,14 +174,7 @@ async def get_pending_reviews_for_execution(
|
||||
order={"createdAt": "asc"},
|
||||
)
|
||||
|
||||
# Fetch node_id for each review from NodeExecution
|
||||
result = []
|
||||
for review in reviews:
|
||||
node_exec = await get_node_execution(review.nodeExecId)
|
||||
node_id = node_exec.node_id if node_exec else review.nodeExecId
|
||||
result.append(PendingHumanReviewModel.from_db(review, node_id=node_id))
|
||||
|
||||
return result
|
||||
return [PendingHumanReviewModel.from_db(review) for review in reviews]
|
||||
|
||||
|
||||
async def process_all_reviews_for_execution(
|
||||
@@ -468,19 +244,11 @@ async def process_all_reviews_for_execution(
|
||||
# Note: Execution resumption is now handled at the API layer after ALL reviews
|
||||
# for an execution are processed (both approved and rejected)
|
||||
|
||||
# Fetch node_id for each review and return as dict for easy access
|
||||
# Local import to avoid event loop conflicts in tests
|
||||
from backend.data.execution import get_node_execution
|
||||
|
||||
result = {}
|
||||
for review in updated_reviews:
|
||||
node_exec = await get_node_execution(review.nodeExecId)
|
||||
node_id = node_exec.node_id if node_exec else review.nodeExecId
|
||||
result[review.nodeExecId] = PendingHumanReviewModel.from_db(
|
||||
review, node_id=node_id
|
||||
)
|
||||
|
||||
return result
|
||||
# Return as dict for easy access
|
||||
return {
|
||||
review.nodeExecId: PendingHumanReviewModel.from_db(review)
|
||||
for review in updated_reviews
|
||||
}
|
||||
|
||||
|
||||
async def update_review_processed_status(node_exec_id: str, processed: bool) -> None:
|
||||
@@ -488,44 +256,3 @@ async def update_review_processed_status(node_exec_id: str, processed: bool) ->
|
||||
await PendingHumanReview.prisma().update(
|
||||
where={"nodeExecId": node_exec_id}, data={"processed": processed}
|
||||
)
|
||||
|
||||
|
||||
async def cancel_pending_reviews_for_execution(graph_exec_id: str, user_id: str) -> int:
|
||||
"""
|
||||
Cancel all pending reviews for a graph execution (e.g., when execution is stopped).
|
||||
|
||||
Marks all WAITING reviews as REJECTED with a message indicating the execution was stopped.
|
||||
|
||||
Args:
|
||||
graph_exec_id: The graph execution ID
|
||||
user_id: User ID who owns the execution (for security validation)
|
||||
|
||||
Returns:
|
||||
Number of reviews cancelled
|
||||
|
||||
Raises:
|
||||
ValueError: If the graph execution doesn't belong to the user
|
||||
"""
|
||||
# Validate user ownership before cancelling reviews
|
||||
graph_exec = await get_graph_execution_meta(
|
||||
user_id=user_id, execution_id=graph_exec_id
|
||||
)
|
||||
if not graph_exec:
|
||||
raise ValueError(
|
||||
f"Graph execution {graph_exec_id} not found or doesn't belong to user {user_id}"
|
||||
)
|
||||
|
||||
result = await PendingHumanReview.prisma().update_many(
|
||||
where={
|
||||
"graphExecId": graph_exec_id,
|
||||
"userId": user_id,
|
||||
"status": ReviewStatus.WAITING,
|
||||
},
|
||||
data={
|
||||
"status": ReviewStatus.REJECTED,
|
||||
"reviewMessage": "Execution was stopped by user",
|
||||
"processed": True,
|
||||
"reviewedAt": datetime.now(timezone.utc),
|
||||
},
|
||||
)
|
||||
return result
|
||||
|
||||
@@ -36,7 +36,7 @@ def sample_db_review():
|
||||
return mock_review
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="function")
|
||||
@pytest.mark.asyncio
|
||||
async def test_get_or_create_human_review_new(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
sample_db_review,
|
||||
@@ -46,8 +46,8 @@ async def test_get_or_create_human_review_new(
|
||||
sample_db_review.status = ReviewStatus.WAITING
|
||||
sample_db_review.processed = False
|
||||
|
||||
mock_prisma = mocker.patch("backend.data.human_review.PendingHumanReview.prisma")
|
||||
mock_prisma.return_value.upsert = AsyncMock(return_value=sample_db_review)
|
||||
mock_upsert = mocker.patch("backend.data.human_review.PendingHumanReview.prisma")
|
||||
mock_upsert.return_value.upsert = AsyncMock(return_value=sample_db_review)
|
||||
|
||||
result = await get_or_create_human_review(
|
||||
user_id="test-user-123",
|
||||
@@ -64,7 +64,7 @@ async def test_get_or_create_human_review_new(
|
||||
assert result is None
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="function")
|
||||
@pytest.mark.asyncio
|
||||
async def test_get_or_create_human_review_approved(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
sample_db_review,
|
||||
@@ -75,8 +75,8 @@ async def test_get_or_create_human_review_approved(
|
||||
sample_db_review.processed = False
|
||||
sample_db_review.reviewMessage = "Looks good"
|
||||
|
||||
mock_prisma = mocker.patch("backend.data.human_review.PendingHumanReview.prisma")
|
||||
mock_prisma.return_value.upsert = AsyncMock(return_value=sample_db_review)
|
||||
mock_upsert = mocker.patch("backend.data.human_review.PendingHumanReview.prisma")
|
||||
mock_upsert.return_value.upsert = AsyncMock(return_value=sample_db_review)
|
||||
|
||||
result = await get_or_create_human_review(
|
||||
user_id="test-user-123",
|
||||
@@ -96,7 +96,7 @@ async def test_get_or_create_human_review_approved(
|
||||
assert result.message == "Looks good"
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="function")
|
||||
@pytest.mark.asyncio
|
||||
async def test_has_pending_reviews_for_graph_exec_true(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
):
|
||||
@@ -109,7 +109,7 @@ async def test_has_pending_reviews_for_graph_exec_true(
|
||||
assert result is True
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="function")
|
||||
@pytest.mark.asyncio
|
||||
async def test_has_pending_reviews_for_graph_exec_false(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
):
|
||||
@@ -122,7 +122,7 @@ async def test_has_pending_reviews_for_graph_exec_false(
|
||||
assert result is False
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="function")
|
||||
@pytest.mark.asyncio
|
||||
async def test_get_pending_reviews_for_user(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
sample_db_review,
|
||||
@@ -131,19 +131,10 @@ async def test_get_pending_reviews_for_user(
|
||||
mock_find_many = mocker.patch("backend.data.human_review.PendingHumanReview.prisma")
|
||||
mock_find_many.return_value.find_many = AsyncMock(return_value=[sample_db_review])
|
||||
|
||||
# Mock get_node_execution to return node with node_id (async function)
|
||||
mock_node_exec = Mock()
|
||||
mock_node_exec.node_id = "test_node_def_789"
|
||||
mocker.patch(
|
||||
"backend.data.execution.get_node_execution",
|
||||
new=AsyncMock(return_value=mock_node_exec),
|
||||
)
|
||||
|
||||
result = await get_pending_reviews_for_user("test_user", page=2, page_size=10)
|
||||
|
||||
assert len(result) == 1
|
||||
assert result[0].node_exec_id == "test_node_123"
|
||||
assert result[0].node_id == "test_node_def_789"
|
||||
|
||||
# Verify pagination parameters
|
||||
call_args = mock_find_many.return_value.find_many.call_args
|
||||
@@ -151,7 +142,7 @@ async def test_get_pending_reviews_for_user(
|
||||
assert call_args.kwargs["take"] == 10
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="function")
|
||||
@pytest.mark.asyncio
|
||||
async def test_get_pending_reviews_for_execution(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
sample_db_review,
|
||||
@@ -160,21 +151,12 @@ async def test_get_pending_reviews_for_execution(
|
||||
mock_find_many = mocker.patch("backend.data.human_review.PendingHumanReview.prisma")
|
||||
mock_find_many.return_value.find_many = AsyncMock(return_value=[sample_db_review])
|
||||
|
||||
# Mock get_node_execution to return node with node_id (async function)
|
||||
mock_node_exec = Mock()
|
||||
mock_node_exec.node_id = "test_node_def_789"
|
||||
mocker.patch(
|
||||
"backend.data.execution.get_node_execution",
|
||||
new=AsyncMock(return_value=mock_node_exec),
|
||||
)
|
||||
|
||||
result = await get_pending_reviews_for_execution(
|
||||
"test_graph_exec_456", "test-user-123"
|
||||
)
|
||||
|
||||
assert len(result) == 1
|
||||
assert result[0].graph_exec_id == "test_graph_exec_456"
|
||||
assert result[0].node_id == "test_node_def_789"
|
||||
|
||||
# Verify it filters by execution and user
|
||||
call_args = mock_find_many.return_value.find_many.call_args
|
||||
@@ -184,7 +166,7 @@ async def test_get_pending_reviews_for_execution(
|
||||
assert where_clause["status"] == ReviewStatus.WAITING
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="function")
|
||||
@pytest.mark.asyncio
|
||||
async def test_process_all_reviews_for_execution_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
sample_db_review,
|
||||
@@ -219,14 +201,6 @@ async def test_process_all_reviews_for_execution_success(
|
||||
new=AsyncMock(return_value=[updated_review]),
|
||||
)
|
||||
|
||||
# Mock get_node_execution to return node with node_id (async function)
|
||||
mock_node_exec = Mock()
|
||||
mock_node_exec.node_id = "test_node_def_789"
|
||||
mocker.patch(
|
||||
"backend.data.execution.get_node_execution",
|
||||
new=AsyncMock(return_value=mock_node_exec),
|
||||
)
|
||||
|
||||
result = await process_all_reviews_for_execution(
|
||||
user_id="test-user-123",
|
||||
review_decisions={
|
||||
@@ -237,10 +211,9 @@ async def test_process_all_reviews_for_execution_success(
|
||||
assert len(result) == 1
|
||||
assert "test_node_123" in result
|
||||
assert result["test_node_123"].status == ReviewStatus.APPROVED
|
||||
assert result["test_node_123"].node_id == "test_node_def_789"
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="function")
|
||||
@pytest.mark.asyncio
|
||||
async def test_process_all_reviews_for_execution_validation_errors(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
):
|
||||
@@ -260,7 +233,7 @@ async def test_process_all_reviews_for_execution_validation_errors(
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="function")
|
||||
@pytest.mark.asyncio
|
||||
async def test_process_all_reviews_edit_permission_error(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
sample_db_review,
|
||||
@@ -286,7 +259,7 @@ async def test_process_all_reviews_edit_permission_error(
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="function")
|
||||
@pytest.mark.asyncio
|
||||
async def test_process_all_reviews_mixed_approval_rejection(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
sample_db_review,
|
||||
@@ -356,14 +329,6 @@ async def test_process_all_reviews_mixed_approval_rejection(
|
||||
new=AsyncMock(return_value=[approved_review, rejected_review]),
|
||||
)
|
||||
|
||||
# Mock get_node_execution to return node with node_id (async function)
|
||||
mock_node_exec = Mock()
|
||||
mock_node_exec.node_id = "test_node_def_789"
|
||||
mocker.patch(
|
||||
"backend.data.execution.get_node_execution",
|
||||
new=AsyncMock(return_value=mock_node_exec),
|
||||
)
|
||||
|
||||
result = await process_all_reviews_for_execution(
|
||||
user_id="test-user-123",
|
||||
review_decisions={
|
||||
@@ -375,5 +340,3 @@ async def test_process_all_reviews_mixed_approval_rejection(
|
||||
assert len(result) == 2
|
||||
assert "test_node_123" in result
|
||||
assert "test_node_456" in result
|
||||
assert result["test_node_123"].node_id == "test_node_def_789"
|
||||
assert result["test_node_456"].node_id == "test_node_def_789"
|
||||
|
||||
@@ -50,8 +50,6 @@ from backend.data.graph import (
|
||||
validate_graph_execution_permissions,
|
||||
)
|
||||
from backend.data.human_review import (
|
||||
cancel_pending_reviews_for_execution,
|
||||
check_approval,
|
||||
get_or_create_human_review,
|
||||
has_pending_reviews_for_graph_exec,
|
||||
update_review_processed_status,
|
||||
@@ -192,8 +190,6 @@ class DatabaseManager(AppService):
|
||||
get_user_notification_preference = _(get_user_notification_preference)
|
||||
|
||||
# Human In The Loop
|
||||
cancel_pending_reviews_for_execution = _(cancel_pending_reviews_for_execution)
|
||||
check_approval = _(check_approval)
|
||||
get_or_create_human_review = _(get_or_create_human_review)
|
||||
has_pending_reviews_for_graph_exec = _(has_pending_reviews_for_graph_exec)
|
||||
update_review_processed_status = _(update_review_processed_status)
|
||||
@@ -317,8 +313,6 @@ class DatabaseManagerAsyncClient(AppServiceClient):
|
||||
set_execution_kv_data = d.set_execution_kv_data
|
||||
|
||||
# Human In The Loop
|
||||
cancel_pending_reviews_for_execution = d.cancel_pending_reviews_for_execution
|
||||
check_approval = d.check_approval
|
||||
get_or_create_human_review = d.get_or_create_human_review
|
||||
update_review_processed_status = d.update_review_processed_status
|
||||
|
||||
|
||||
@@ -309,7 +309,7 @@ def ensure_embeddings_coverage():
|
||||
|
||||
# Process in batches until no more missing embeddings
|
||||
while True:
|
||||
result = db_client.backfill_missing_embeddings(batch_size=100)
|
||||
result = db_client.backfill_missing_embeddings(batch_size=10)
|
||||
|
||||
total_processed += result["processed"]
|
||||
total_success += result["success"]
|
||||
|
||||
@@ -10,7 +10,6 @@ from pydantic import BaseModel, JsonValue, ValidationError
|
||||
|
||||
from backend.data import execution as execution_db
|
||||
from backend.data import graph as graph_db
|
||||
from backend.data import human_review as human_review_db
|
||||
from backend.data import onboarding as onboarding_db
|
||||
from backend.data import user as user_db
|
||||
from backend.data.block import (
|
||||
@@ -750,27 +749,9 @@ async def stop_graph_execution(
|
||||
if graph_exec.status in [
|
||||
ExecutionStatus.QUEUED,
|
||||
ExecutionStatus.INCOMPLETE,
|
||||
ExecutionStatus.REVIEW,
|
||||
]:
|
||||
# If the graph is queued/incomplete/paused for review, terminate immediately
|
||||
# No need to wait for executor since it's not actively running
|
||||
|
||||
# If graph is in REVIEW status, clean up pending reviews before terminating
|
||||
if graph_exec.status == ExecutionStatus.REVIEW:
|
||||
# Use human_review_db if Prisma connected, else database manager
|
||||
review_db = (
|
||||
human_review_db
|
||||
if prisma.is_connected()
|
||||
else get_database_manager_async_client()
|
||||
)
|
||||
# Mark all pending reviews as rejected/cancelled
|
||||
cancelled_count = await review_db.cancel_pending_reviews_for_execution(
|
||||
graph_exec_id, user_id
|
||||
)
|
||||
logger.info(
|
||||
f"Cancelled {cancelled_count} pending review(s) for stopped execution {graph_exec_id}"
|
||||
)
|
||||
|
||||
# If the graph is still on the queue, we can prevent them from being executed
|
||||
# by setting the status to TERMINATED.
|
||||
graph_exec.status = ExecutionStatus.TERMINATED
|
||||
|
||||
await asyncio.gather(
|
||||
@@ -892,8 +873,11 @@ async def add_graph_execution(
|
||||
settings = await gdb.get_graph_settings(user_id=user_id, graph_id=graph_id)
|
||||
|
||||
execution_context = ExecutionContext(
|
||||
human_in_the_loop_safe_mode=settings.human_in_the_loop_safe_mode,
|
||||
sensitive_action_safe_mode=settings.sensitive_action_safe_mode,
|
||||
safe_mode=(
|
||||
settings.human_in_the_loop_safe_mode
|
||||
if settings.human_in_the_loop_safe_mode is not None
|
||||
else True
|
||||
),
|
||||
user_timezone=(
|
||||
user.timezone if user.timezone != USER_TIMEZONE_NOT_SET else "UTC"
|
||||
),
|
||||
@@ -906,28 +890,9 @@ async def add_graph_execution(
|
||||
nodes_to_skip=nodes_to_skip,
|
||||
execution_context=execution_context,
|
||||
)
|
||||
logger.info(f"Queueing execution {graph_exec.id}")
|
||||
|
||||
# Update execution status to QUEUED BEFORE publishing to prevent race condition
|
||||
# where two concurrent requests could both publish the same execution
|
||||
updated_exec = await edb.update_graph_execution_stats(
|
||||
graph_exec_id=graph_exec.id,
|
||||
status=ExecutionStatus.QUEUED,
|
||||
)
|
||||
|
||||
# Verify the status update succeeded (prevents duplicate queueing in race conditions)
|
||||
# If another request already updated the status, this execution will not be QUEUED
|
||||
if not updated_exec or updated_exec.status != ExecutionStatus.QUEUED:
|
||||
logger.warning(
|
||||
f"Skipping queue publish for execution {graph_exec.id} - "
|
||||
f"status update failed or execution already queued by another request"
|
||||
)
|
||||
return graph_exec
|
||||
|
||||
graph_exec.status = ExecutionStatus.QUEUED
|
||||
logger.info(f"Publishing execution {graph_exec.id} to execution queue")
|
||||
|
||||
# Publish to execution queue for executor to pick up
|
||||
# This happens AFTER status update to ensure only one request publishes
|
||||
exec_queue = await get_async_execution_queue()
|
||||
await exec_queue.publish_message(
|
||||
routing_key=GRAPH_EXECUTION_ROUTING_KEY,
|
||||
@@ -935,6 +900,13 @@ async def add_graph_execution(
|
||||
exchange=GRAPH_EXECUTION_EXCHANGE,
|
||||
)
|
||||
logger.info(f"Published execution {graph_exec.id} to RabbitMQ queue")
|
||||
|
||||
# Update execution status to QUEUED
|
||||
graph_exec.status = ExecutionStatus.QUEUED
|
||||
await edb.update_graph_execution_stats(
|
||||
graph_exec_id=graph_exec.id,
|
||||
status=graph_exec.status,
|
||||
)
|
||||
except BaseException as e:
|
||||
err = str(e) or type(e).__name__
|
||||
if not graph_exec:
|
||||
|
||||
@@ -4,7 +4,6 @@ import pytest
|
||||
from pytest_mock import MockerFixture
|
||||
|
||||
from backend.data.dynamic_fields import merge_execution_input, parse_execution_output
|
||||
from backend.data.execution import ExecutionStatus
|
||||
from backend.util.mock import MockObject
|
||||
|
||||
|
||||
@@ -347,7 +346,6 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
|
||||
mock_graph_exec = mocker.MagicMock(spec=GraphExecutionWithNodes)
|
||||
mock_graph_exec.id = "execution-id-123"
|
||||
mock_graph_exec.node_executions = [] # Add this to avoid AttributeError
|
||||
mock_graph_exec.status = ExecutionStatus.QUEUED # Required for race condition check
|
||||
mock_graph_exec.to_graph_execution_entry.return_value = mocker.MagicMock()
|
||||
|
||||
# Mock the queue and event bus
|
||||
@@ -388,7 +386,6 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
|
||||
mock_user.timezone = "UTC"
|
||||
mock_settings = mocker.MagicMock()
|
||||
mock_settings.human_in_the_loop_safe_mode = True
|
||||
mock_settings.sensitive_action_safe_mode = False
|
||||
|
||||
mock_udb.get_user_by_id = mocker.AsyncMock(return_value=mock_user)
|
||||
mock_gdb.get_graph_settings = mocker.AsyncMock(return_value=mock_settings)
|
||||
@@ -613,7 +610,6 @@ async def test_add_graph_execution_with_nodes_to_skip(mocker: MockerFixture):
|
||||
mock_graph_exec = mocker.MagicMock(spec=GraphExecutionWithNodes)
|
||||
mock_graph_exec.id = "execution-id-123"
|
||||
mock_graph_exec.node_executions = []
|
||||
mock_graph_exec.status = ExecutionStatus.QUEUED # Required for race condition check
|
||||
|
||||
# Track what's passed to to_graph_execution_entry
|
||||
captured_kwargs = {}
|
||||
@@ -655,7 +651,6 @@ async def test_add_graph_execution_with_nodes_to_skip(mocker: MockerFixture):
|
||||
mock_user.timezone = "UTC"
|
||||
mock_settings = mocker.MagicMock()
|
||||
mock_settings.human_in_the_loop_safe_mode = True
|
||||
mock_settings.sensitive_action_safe_mode = False
|
||||
|
||||
mock_udb.get_user_by_id = mocker.AsyncMock(return_value=mock_user)
|
||||
mock_gdb.get_graph_settings = mocker.AsyncMock(return_value=mock_settings)
|
||||
@@ -673,232 +668,3 @@ async def test_add_graph_execution_with_nodes_to_skip(mocker: MockerFixture):
|
||||
# Verify nodes_to_skip was passed to to_graph_execution_entry
|
||||
assert "nodes_to_skip" in captured_kwargs
|
||||
assert captured_kwargs["nodes_to_skip"] == nodes_to_skip
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_stop_graph_execution_in_review_status_cancels_pending_reviews(
|
||||
mocker: MockerFixture,
|
||||
):
|
||||
"""Test that stopping an execution in REVIEW status cancels pending reviews."""
|
||||
from backend.data.execution import ExecutionStatus, GraphExecutionMeta
|
||||
from backend.executor.utils import stop_graph_execution
|
||||
|
||||
user_id = "test-user"
|
||||
graph_exec_id = "test-exec-123"
|
||||
|
||||
# Mock graph execution in REVIEW status
|
||||
mock_graph_exec = mocker.MagicMock(spec=GraphExecutionMeta)
|
||||
mock_graph_exec.id = graph_exec_id
|
||||
mock_graph_exec.status = ExecutionStatus.REVIEW
|
||||
|
||||
# Mock dependencies
|
||||
mock_get_queue = mocker.patch("backend.executor.utils.get_async_execution_queue")
|
||||
mock_queue_client = mocker.AsyncMock()
|
||||
mock_get_queue.return_value = mock_queue_client
|
||||
|
||||
mock_prisma = mocker.patch("backend.executor.utils.prisma")
|
||||
mock_prisma.is_connected.return_value = True
|
||||
|
||||
mock_human_review_db = mocker.patch("backend.executor.utils.human_review_db")
|
||||
mock_human_review_db.cancel_pending_reviews_for_execution = mocker.AsyncMock(
|
||||
return_value=2 # 2 reviews cancelled
|
||||
)
|
||||
|
||||
mock_execution_db = mocker.patch("backend.executor.utils.execution_db")
|
||||
mock_execution_db.get_graph_execution_meta = mocker.AsyncMock(
|
||||
return_value=mock_graph_exec
|
||||
)
|
||||
mock_execution_db.update_graph_execution_stats = mocker.AsyncMock()
|
||||
|
||||
mock_get_event_bus = mocker.patch(
|
||||
"backend.executor.utils.get_async_execution_event_bus"
|
||||
)
|
||||
mock_event_bus = mocker.MagicMock()
|
||||
mock_event_bus.publish = mocker.AsyncMock()
|
||||
mock_get_event_bus.return_value = mock_event_bus
|
||||
|
||||
mock_get_child_executions = mocker.patch(
|
||||
"backend.executor.utils._get_child_executions"
|
||||
)
|
||||
mock_get_child_executions.return_value = [] # No children
|
||||
|
||||
# Call stop_graph_execution with timeout to allow status check
|
||||
await stop_graph_execution(
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
wait_timeout=1.0, # Wait to allow status check
|
||||
cascade=True,
|
||||
)
|
||||
|
||||
# Verify pending reviews were cancelled
|
||||
mock_human_review_db.cancel_pending_reviews_for_execution.assert_called_once_with(
|
||||
graph_exec_id, user_id
|
||||
)
|
||||
|
||||
# Verify execution status was updated to TERMINATED
|
||||
mock_execution_db.update_graph_execution_stats.assert_called_once()
|
||||
call_kwargs = mock_execution_db.update_graph_execution_stats.call_args[1]
|
||||
assert call_kwargs["graph_exec_id"] == graph_exec_id
|
||||
assert call_kwargs["status"] == ExecutionStatus.TERMINATED
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_stop_graph_execution_with_database_manager_when_prisma_disconnected(
|
||||
mocker: MockerFixture,
|
||||
):
|
||||
"""Test that stop uses database manager when Prisma is not connected."""
|
||||
from backend.data.execution import ExecutionStatus, GraphExecutionMeta
|
||||
from backend.executor.utils import stop_graph_execution
|
||||
|
||||
user_id = "test-user"
|
||||
graph_exec_id = "test-exec-456"
|
||||
|
||||
# Mock graph execution in REVIEW status
|
||||
mock_graph_exec = mocker.MagicMock(spec=GraphExecutionMeta)
|
||||
mock_graph_exec.id = graph_exec_id
|
||||
mock_graph_exec.status = ExecutionStatus.REVIEW
|
||||
|
||||
# Mock dependencies
|
||||
mock_get_queue = mocker.patch("backend.executor.utils.get_async_execution_queue")
|
||||
mock_queue_client = mocker.AsyncMock()
|
||||
mock_get_queue.return_value = mock_queue_client
|
||||
|
||||
# Prisma is NOT connected
|
||||
mock_prisma = mocker.patch("backend.executor.utils.prisma")
|
||||
mock_prisma.is_connected.return_value = False
|
||||
|
||||
# Mock database manager client
|
||||
mock_get_db_manager = mocker.patch(
|
||||
"backend.executor.utils.get_database_manager_async_client"
|
||||
)
|
||||
mock_db_manager = mocker.AsyncMock()
|
||||
mock_db_manager.get_graph_execution_meta = mocker.AsyncMock(
|
||||
return_value=mock_graph_exec
|
||||
)
|
||||
mock_db_manager.cancel_pending_reviews_for_execution = mocker.AsyncMock(
|
||||
return_value=3 # 3 reviews cancelled
|
||||
)
|
||||
mock_db_manager.update_graph_execution_stats = mocker.AsyncMock()
|
||||
mock_get_db_manager.return_value = mock_db_manager
|
||||
|
||||
mock_get_event_bus = mocker.patch(
|
||||
"backend.executor.utils.get_async_execution_event_bus"
|
||||
)
|
||||
mock_event_bus = mocker.MagicMock()
|
||||
mock_event_bus.publish = mocker.AsyncMock()
|
||||
mock_get_event_bus.return_value = mock_event_bus
|
||||
|
||||
mock_get_child_executions = mocker.patch(
|
||||
"backend.executor.utils._get_child_executions"
|
||||
)
|
||||
mock_get_child_executions.return_value = [] # No children
|
||||
|
||||
# Call stop_graph_execution with timeout
|
||||
await stop_graph_execution(
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
wait_timeout=1.0,
|
||||
cascade=True,
|
||||
)
|
||||
|
||||
# Verify database manager was used for cancel_pending_reviews
|
||||
mock_db_manager.cancel_pending_reviews_for_execution.assert_called_once_with(
|
||||
graph_exec_id, user_id
|
||||
)
|
||||
|
||||
# Verify execution status was updated via database manager
|
||||
mock_db_manager.update_graph_execution_stats.assert_called_once()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_stop_graph_execution_cascades_to_child_with_reviews(
|
||||
mocker: MockerFixture,
|
||||
):
|
||||
"""Test that stopping parent execution cascades to children and cancels their reviews."""
|
||||
from backend.data.execution import ExecutionStatus, GraphExecutionMeta
|
||||
from backend.executor.utils import stop_graph_execution
|
||||
|
||||
user_id = "test-user"
|
||||
parent_exec_id = "parent-exec"
|
||||
child_exec_id = "child-exec"
|
||||
|
||||
# Mock parent execution in RUNNING status
|
||||
mock_parent_exec = mocker.MagicMock(spec=GraphExecutionMeta)
|
||||
mock_parent_exec.id = parent_exec_id
|
||||
mock_parent_exec.status = ExecutionStatus.RUNNING
|
||||
|
||||
# Mock child execution in REVIEW status
|
||||
mock_child_exec = mocker.MagicMock(spec=GraphExecutionMeta)
|
||||
mock_child_exec.id = child_exec_id
|
||||
mock_child_exec.status = ExecutionStatus.REVIEW
|
||||
|
||||
# Mock dependencies
|
||||
mock_get_queue = mocker.patch("backend.executor.utils.get_async_execution_queue")
|
||||
mock_queue_client = mocker.AsyncMock()
|
||||
mock_get_queue.return_value = mock_queue_client
|
||||
|
||||
mock_prisma = mocker.patch("backend.executor.utils.prisma")
|
||||
mock_prisma.is_connected.return_value = True
|
||||
|
||||
mock_human_review_db = mocker.patch("backend.executor.utils.human_review_db")
|
||||
mock_human_review_db.cancel_pending_reviews_for_execution = mocker.AsyncMock(
|
||||
return_value=1 # 1 child review cancelled
|
||||
)
|
||||
|
||||
# Mock execution_db to return different status based on which execution is queried
|
||||
mock_execution_db = mocker.patch("backend.executor.utils.execution_db")
|
||||
|
||||
# Track call count to simulate status transition
|
||||
call_count = {"count": 0}
|
||||
|
||||
async def get_exec_meta_side_effect(execution_id, user_id):
|
||||
call_count["count"] += 1
|
||||
if execution_id == parent_exec_id:
|
||||
# After a few calls (child processing happens), transition parent to TERMINATED
|
||||
# This simulates the executor service processing the stop request
|
||||
if call_count["count"] > 3:
|
||||
mock_parent_exec.status = ExecutionStatus.TERMINATED
|
||||
return mock_parent_exec
|
||||
elif execution_id == child_exec_id:
|
||||
return mock_child_exec
|
||||
return None
|
||||
|
||||
mock_execution_db.get_graph_execution_meta = mocker.AsyncMock(
|
||||
side_effect=get_exec_meta_side_effect
|
||||
)
|
||||
mock_execution_db.update_graph_execution_stats = mocker.AsyncMock()
|
||||
|
||||
mock_get_event_bus = mocker.patch(
|
||||
"backend.executor.utils.get_async_execution_event_bus"
|
||||
)
|
||||
mock_event_bus = mocker.MagicMock()
|
||||
mock_event_bus.publish = mocker.AsyncMock()
|
||||
mock_get_event_bus.return_value = mock_event_bus
|
||||
|
||||
# Mock _get_child_executions to return the child
|
||||
mock_get_child_executions = mocker.patch(
|
||||
"backend.executor.utils._get_child_executions"
|
||||
)
|
||||
|
||||
def get_children_side_effect(parent_id):
|
||||
if parent_id == parent_exec_id:
|
||||
return [mock_child_exec]
|
||||
return []
|
||||
|
||||
mock_get_child_executions.side_effect = get_children_side_effect
|
||||
|
||||
# Call stop_graph_execution on parent with cascade=True
|
||||
await stop_graph_execution(
|
||||
user_id=user_id,
|
||||
graph_exec_id=parent_exec_id,
|
||||
wait_timeout=1.0,
|
||||
cascade=True,
|
||||
)
|
||||
|
||||
# Verify child reviews were cancelled
|
||||
mock_human_review_db.cancel_pending_reviews_for_execution.assert_called_once_with(
|
||||
child_exec_id, user_id
|
||||
)
|
||||
|
||||
# Verify both parent and child status updates
|
||||
assert mock_execution_db.update_graph_execution_stats.call_count >= 1
|
||||
|
||||
@@ -350,19 +350,6 @@ class Config(UpdateTrackingModel["Config"], BaseSettings):
|
||||
description="Whether to mark failed scans as clean or not",
|
||||
)
|
||||
|
||||
agentgenerator_host: str = Field(
|
||||
default="",
|
||||
description="The host for the Agent Generator service (empty to use built-in)",
|
||||
)
|
||||
agentgenerator_port: int = Field(
|
||||
default=8000,
|
||||
description="The port for the Agent Generator service",
|
||||
)
|
||||
agentgenerator_timeout: int = Field(
|
||||
default=120,
|
||||
description="The timeout in seconds for Agent Generator service requests",
|
||||
)
|
||||
|
||||
enable_example_blocks: bool = Field(
|
||||
default=False,
|
||||
description="Whether to enable example blocks in production",
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
import asyncio
|
||||
import inspect
|
||||
import logging
|
||||
import time
|
||||
@@ -59,11 +58,6 @@ class SpinTestServer:
|
||||
self.db_api.__exit__(exc_type, exc_val, exc_tb)
|
||||
self.notif_manager.__exit__(exc_type, exc_val, exc_tb)
|
||||
|
||||
# Give services time to fully shut down
|
||||
# This prevents event loop issues where services haven't fully cleaned up
|
||||
# before the next test starts
|
||||
await asyncio.sleep(0.5)
|
||||
|
||||
def setup_dependency_overrides(self):
|
||||
# Override get_user_id for testing
|
||||
self.agent_server.set_test_dependency_overrides(
|
||||
|
||||
@@ -1,37 +1,11 @@
|
||||
-- CreateExtension
|
||||
-- Supabase: pgvector must be enabled via Dashboard → Database → Extensions first
|
||||
-- Ensures vector extension is in the current schema (from DATABASE_URL ?schema= param)
|
||||
-- If it exists in a different schema (e.g., public), we drop and recreate it in the current schema
|
||||
-- This ensures vector type is in the same schema as tables, making ::vector work without explicit qualification
|
||||
-- Create in public schema so vector type is available across all schemas
|
||||
DO $$
|
||||
DECLARE
|
||||
current_schema_name text;
|
||||
vector_schema text;
|
||||
BEGIN
|
||||
-- Get the current schema from search_path
|
||||
SELECT current_schema() INTO current_schema_name;
|
||||
|
||||
-- Check if vector extension exists and which schema it's in
|
||||
SELECT n.nspname INTO vector_schema
|
||||
FROM pg_extension e
|
||||
JOIN pg_namespace n ON e.extnamespace = n.oid
|
||||
WHERE e.extname = 'vector';
|
||||
|
||||
-- Handle removal if in wrong schema
|
||||
IF vector_schema IS NOT NULL AND vector_schema != current_schema_name THEN
|
||||
BEGIN
|
||||
-- Vector exists in a different schema, drop it first
|
||||
RAISE WARNING 'pgvector found in schema "%" but need it in "%". Dropping and reinstalling...',
|
||||
vector_schema, current_schema_name;
|
||||
EXECUTE 'DROP EXTENSION IF EXISTS vector CASCADE';
|
||||
EXCEPTION WHEN OTHERS THEN
|
||||
RAISE EXCEPTION 'Failed to drop pgvector from schema "%": %. You may need to drop it manually.',
|
||||
vector_schema, SQLERRM;
|
||||
END;
|
||||
END IF;
|
||||
|
||||
-- Create extension in current schema (let it fail naturally if not available)
|
||||
EXECUTE format('CREATE EXTENSION IF NOT EXISTS vector SCHEMA %I', current_schema_name);
|
||||
CREATE EXTENSION IF NOT EXISTS "vector" WITH SCHEMA "public";
|
||||
EXCEPTION WHEN OTHERS THEN
|
||||
RAISE NOTICE 'vector extension not available or already exists, skipping';
|
||||
END $$;
|
||||
|
||||
-- CreateEnum
|
||||
@@ -45,7 +19,7 @@ CREATE TABLE "UnifiedContentEmbedding" (
|
||||
"contentType" "ContentType" NOT NULL,
|
||||
"contentId" TEXT NOT NULL,
|
||||
"userId" TEXT,
|
||||
"embedding" vector(1536) NOT NULL,
|
||||
"embedding" public.vector(1536) NOT NULL,
|
||||
"searchableText" TEXT NOT NULL,
|
||||
"metadata" JSONB NOT NULL DEFAULT '{}',
|
||||
|
||||
@@ -71,4 +45,4 @@ CREATE UNIQUE INDEX "UnifiedContentEmbedding_contentType_contentId_userId_key" O
|
||||
-- Uses cosine distance operator (<=>), which matches the query in hybrid_search.py
|
||||
-- Note: Drop first in case Prisma created a btree index (Prisma doesn't support HNSW)
|
||||
DROP INDEX IF EXISTS "UnifiedContentEmbedding_embedding_idx";
|
||||
CREATE INDEX "UnifiedContentEmbedding_embedding_idx" ON "UnifiedContentEmbedding" USING hnsw ("embedding" vector_cosine_ops);
|
||||
CREATE INDEX "UnifiedContentEmbedding_embedding_idx" ON "UnifiedContentEmbedding" USING hnsw ("embedding" public.vector_cosine_ops);
|
||||
|
||||
@@ -0,0 +1,71 @@
|
||||
-- Acknowledge Supabase-managed extensions to prevent drift warnings
|
||||
-- These extensions are pre-installed by Supabase in specific schemas
|
||||
-- This migration ensures they exist where available (Supabase) or skips gracefully (CI)
|
||||
|
||||
-- Create schemas (safe in both CI and Supabase)
|
||||
CREATE SCHEMA IF NOT EXISTS "extensions";
|
||||
|
||||
-- Extensions that exist in both CI and Supabase
|
||||
DO $$
|
||||
BEGIN
|
||||
CREATE EXTENSION IF NOT EXISTS "pgcrypto" WITH SCHEMA "extensions";
|
||||
EXCEPTION WHEN OTHERS THEN
|
||||
RAISE NOTICE 'pgcrypto extension not available, skipping';
|
||||
END $$;
|
||||
|
||||
DO $$
|
||||
BEGIN
|
||||
CREATE EXTENSION IF NOT EXISTS "uuid-ossp" WITH SCHEMA "extensions";
|
||||
EXCEPTION WHEN OTHERS THEN
|
||||
RAISE NOTICE 'uuid-ossp extension not available, skipping';
|
||||
END $$;
|
||||
|
||||
-- Supabase-specific extensions (skip gracefully in CI)
|
||||
DO $$
|
||||
BEGIN
|
||||
CREATE EXTENSION IF NOT EXISTS "pg_stat_statements" WITH SCHEMA "extensions";
|
||||
EXCEPTION WHEN OTHERS THEN
|
||||
RAISE NOTICE 'pg_stat_statements extension not available, skipping';
|
||||
END $$;
|
||||
|
||||
DO $$
|
||||
BEGIN
|
||||
CREATE EXTENSION IF NOT EXISTS "pg_net" WITH SCHEMA "extensions";
|
||||
EXCEPTION WHEN OTHERS THEN
|
||||
RAISE NOTICE 'pg_net extension not available, skipping';
|
||||
END $$;
|
||||
|
||||
DO $$
|
||||
BEGIN
|
||||
CREATE EXTENSION IF NOT EXISTS "pgjwt" WITH SCHEMA "extensions";
|
||||
EXCEPTION WHEN OTHERS THEN
|
||||
RAISE NOTICE 'pgjwt extension not available, skipping';
|
||||
END $$;
|
||||
|
||||
DO $$
|
||||
BEGIN
|
||||
CREATE SCHEMA IF NOT EXISTS "graphql";
|
||||
CREATE EXTENSION IF NOT EXISTS "pg_graphql" WITH SCHEMA "graphql";
|
||||
EXCEPTION WHEN OTHERS THEN
|
||||
RAISE NOTICE 'pg_graphql extension not available, skipping';
|
||||
END $$;
|
||||
|
||||
DO $$
|
||||
BEGIN
|
||||
CREATE SCHEMA IF NOT EXISTS "pgsodium";
|
||||
CREATE EXTENSION IF NOT EXISTS "pgsodium" WITH SCHEMA "pgsodium";
|
||||
EXCEPTION WHEN OTHERS THEN
|
||||
RAISE NOTICE 'pgsodium extension not available, skipping';
|
||||
END $$;
|
||||
|
||||
DO $$
|
||||
BEGIN
|
||||
CREATE SCHEMA IF NOT EXISTS "vault";
|
||||
CREATE EXTENSION IF NOT EXISTS "supabase_vault" WITH SCHEMA "vault";
|
||||
EXCEPTION WHEN OTHERS THEN
|
||||
RAISE NOTICE 'supabase_vault extension not available, skipping';
|
||||
END $$;
|
||||
|
||||
|
||||
-- Return to platform
|
||||
CREATE SCHEMA IF NOT EXISTS "platform";
|
||||
@@ -1,7 +0,0 @@
|
||||
-- Remove NodeExecution foreign key from PendingHumanReview
|
||||
-- The nodeExecId column remains as the primary key, but we remove the FK constraint
|
||||
-- to AgentNodeExecution since PendingHumanReview records can persist after node
|
||||
-- execution records are deleted.
|
||||
|
||||
-- Drop foreign key constraint that linked PendingHumanReview.nodeExecId to AgentNodeExecution.id
|
||||
ALTER TABLE "PendingHumanReview" DROP CONSTRAINT IF EXISTS "PendingHumanReview_nodeExecId_fkey";
|
||||
@@ -517,6 +517,8 @@ model AgentNodeExecution {
|
||||
|
||||
stats Json?
|
||||
|
||||
PendingHumanReview PendingHumanReview?
|
||||
|
||||
@@index([agentGraphExecutionId, agentNodeId, executionStatus])
|
||||
@@index([agentNodeId, executionStatus])
|
||||
@@index([addedTime, queuedTime])
|
||||
@@ -565,7 +567,6 @@ enum ReviewStatus {
|
||||
}
|
||||
|
||||
// Pending human reviews for Human-in-the-loop blocks
|
||||
// Also stores auto-approval records with special nodeExecId patterns (e.g., "auto_approve_{graph_exec_id}_{node_id}")
|
||||
model PendingHumanReview {
|
||||
nodeExecId String @id
|
||||
userId String
|
||||
@@ -584,6 +585,7 @@ model PendingHumanReview {
|
||||
reviewedAt DateTime?
|
||||
|
||||
User User @relation(fields: [userId], references: [id], onDelete: Cascade)
|
||||
NodeExecution AgentNodeExecution @relation(fields: [nodeExecId], references: [id], onDelete: Cascade)
|
||||
GraphExecution AgentGraphExecution @relation(fields: [graphExecId], references: [id], onDelete: Cascade)
|
||||
|
||||
@@unique([nodeExecId]) // One pending review per node execution
|
||||
|
||||
@@ -34,10 +34,7 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
# Default output directory relative to repo root
|
||||
DEFAULT_OUTPUT_DIR = (
|
||||
Path(__file__).parent.parent.parent.parent
|
||||
/ "docs"
|
||||
/ "integrations"
|
||||
/ "block-integrations"
|
||||
Path(__file__).parent.parent.parent.parent / "docs" / "integrations"
|
||||
)
|
||||
|
||||
|
||||
@@ -369,12 +366,12 @@ def generate_block_markdown(
|
||||
lines.append("")
|
||||
|
||||
# What it is (full description)
|
||||
lines.append("### What it is")
|
||||
lines.append(f"### What it is")
|
||||
lines.append(block.description or "No description available.")
|
||||
lines.append("")
|
||||
|
||||
# How it works (manual section)
|
||||
lines.append("### How it works")
|
||||
lines.append(f"### How it works")
|
||||
how_it_works = manual_content.get(
|
||||
"how_it_works", "_Add technical explanation here._"
|
||||
)
|
||||
@@ -386,7 +383,7 @@ def generate_block_markdown(
|
||||
# Inputs table (auto-generated)
|
||||
visible_inputs = [f for f in block.inputs if not f.hidden]
|
||||
if visible_inputs:
|
||||
lines.append("### Inputs")
|
||||
lines.append(f"### Inputs")
|
||||
lines.append("")
|
||||
lines.append("| Input | Description | Type | Required |")
|
||||
lines.append("|-------|-------------|------|----------|")
|
||||
@@ -403,7 +400,7 @@ def generate_block_markdown(
|
||||
# Outputs table (auto-generated)
|
||||
visible_outputs = [f for f in block.outputs if not f.hidden]
|
||||
if visible_outputs:
|
||||
lines.append("### Outputs")
|
||||
lines.append(f"### Outputs")
|
||||
lines.append("")
|
||||
lines.append("| Output | Description | Type |")
|
||||
lines.append("|--------|-------------|------|")
|
||||
@@ -417,21 +414,13 @@ def generate_block_markdown(
|
||||
lines.append("")
|
||||
|
||||
# Possible use case (manual section)
|
||||
lines.append("### Possible use case")
|
||||
lines.append(f"### Possible use case")
|
||||
use_case = manual_content.get("use_case", "_Add practical use case examples here._")
|
||||
lines.append("<!-- MANUAL: use_case -->")
|
||||
lines.append(use_case)
|
||||
lines.append("<!-- END MANUAL -->")
|
||||
lines.append("")
|
||||
|
||||
# Optional per-block extras (only include if has content)
|
||||
extras = manual_content.get("extras", "")
|
||||
if extras:
|
||||
lines.append("<!-- MANUAL: extras -->")
|
||||
lines.append(extras)
|
||||
lines.append("<!-- END MANUAL -->")
|
||||
lines.append("")
|
||||
|
||||
lines.append("---")
|
||||
lines.append("")
|
||||
|
||||
@@ -467,52 +456,25 @@ def get_block_file_mapping(blocks: list[BlockDoc]) -> dict[str, list[BlockDoc]]:
|
||||
return dict(file_mapping)
|
||||
|
||||
|
||||
def generate_overview_table(blocks: list[BlockDoc], block_dir_prefix: str = "") -> str:
|
||||
"""Generate the overview table markdown (blocks.md).
|
||||
|
||||
Args:
|
||||
blocks: List of block documentation objects
|
||||
block_dir_prefix: Prefix for block file links (e.g., "block-integrations/")
|
||||
"""
|
||||
def generate_overview_table(blocks: list[BlockDoc]) -> str:
|
||||
"""Generate the overview table markdown (blocks.md)."""
|
||||
lines = []
|
||||
|
||||
# GitBook YAML frontmatter
|
||||
lines.append("---")
|
||||
lines.append("layout:")
|
||||
lines.append(" width: default")
|
||||
lines.append(" title:")
|
||||
lines.append(" visible: true")
|
||||
lines.append(" description:")
|
||||
lines.append(" visible: true")
|
||||
lines.append(" tableOfContents:")
|
||||
lines.append(" visible: false")
|
||||
lines.append(" outline:")
|
||||
lines.append(" visible: true")
|
||||
lines.append(" pagination:")
|
||||
lines.append(" visible: true")
|
||||
lines.append(" metadata:")
|
||||
lines.append(" visible: true")
|
||||
lines.append("---")
|
||||
lines.append("")
|
||||
|
||||
lines.append("# AutoGPT Blocks Overview")
|
||||
lines.append("")
|
||||
lines.append(
|
||||
'AutoGPT uses a modular approach with various "blocks" to handle different tasks. These blocks are the building blocks of AutoGPT workflows, allowing users to create complex automations by combining simple, specialized components.'
|
||||
)
|
||||
lines.append("")
|
||||
lines.append('{% hint style="info" %}')
|
||||
lines.append("**Creating Your Own Blocks**")
|
||||
lines.append("")
|
||||
lines.append("Want to create your own custom blocks? Check out our guides:")
|
||||
lines.append("")
|
||||
lines.append('!!! info "Creating Your Own Blocks"')
|
||||
lines.append(" Want to create your own custom blocks? Check out our guides:")
|
||||
lines.append(" ")
|
||||
lines.append(
|
||||
"* [Build your own Blocks](https://docs.agpt.co/platform/new_blocks/) - Step-by-step tutorial with examples"
|
||||
" - [Build your own Blocks](https://docs.agpt.co/platform/new_blocks/) - Step-by-step tutorial with examples"
|
||||
)
|
||||
lines.append(
|
||||
"* [Block SDK Guide](https://docs.agpt.co/platform/block-sdk-guide/) - Advanced SDK patterns with OAuth, webhooks, and provider configuration"
|
||||
" - [Block SDK Guide](https://docs.agpt.co/platform/block-sdk-guide/) - Advanced SDK patterns with OAuth, webhooks, and provider configuration"
|
||||
)
|
||||
lines.append("{% endhint %}")
|
||||
lines.append("")
|
||||
lines.append(
|
||||
"Below is a comprehensive list of all available blocks, categorized by their primary function. Click on any block name to view its detailed documentation."
|
||||
@@ -575,8 +537,7 @@ def generate_overview_table(blocks: list[BlockDoc], block_dir_prefix: str = "")
|
||||
else "No description"
|
||||
)
|
||||
short_desc = short_desc.replace("\n", " ").replace("|", "\\|")
|
||||
link_path = f"{block_dir_prefix}{file_path}"
|
||||
lines.append(f"| [{block.name}]({link_path}#{anchor}) | {short_desc} |")
|
||||
lines.append(f"| [{block.name}]({file_path}#{anchor}) | {short_desc} |")
|
||||
lines.append("")
|
||||
continue
|
||||
|
||||
@@ -602,55 +563,13 @@ def generate_overview_table(blocks: list[BlockDoc], block_dir_prefix: str = "")
|
||||
)
|
||||
short_desc = short_desc.replace("\n", " ").replace("|", "\\|")
|
||||
|
||||
link_path = f"{block_dir_prefix}{file_path}"
|
||||
lines.append(f"| [{block.name}]({link_path}#{anchor}) | {short_desc} |")
|
||||
lines.append(f"| [{block.name}]({file_path}#{anchor}) | {short_desc} |")
|
||||
|
||||
lines.append("")
|
||||
|
||||
return "\n".join(lines)
|
||||
|
||||
|
||||
def generate_summary_md(
|
||||
blocks: list[BlockDoc], root_dir: Path, block_dir_prefix: str = ""
|
||||
) -> str:
|
||||
"""Generate SUMMARY.md for GitBook navigation.
|
||||
|
||||
Args:
|
||||
blocks: List of block documentation objects
|
||||
root_dir: The root docs directory (e.g., docs/integrations/)
|
||||
block_dir_prefix: Prefix for block file links (e.g., "block-integrations/")
|
||||
"""
|
||||
lines = []
|
||||
lines.append("# Table of contents")
|
||||
lines.append("")
|
||||
lines.append("* [AutoGPT Blocks Overview](README.md)")
|
||||
lines.append("")
|
||||
|
||||
# Check for guides/ directory at the root level (docs/integrations/guides/)
|
||||
guides_dir = root_dir / "guides"
|
||||
if guides_dir.exists():
|
||||
lines.append("## Guides")
|
||||
lines.append("")
|
||||
for guide_file in sorted(guides_dir.glob("*.md")):
|
||||
# Use just the file name for title (replace hyphens/underscores with spaces)
|
||||
title = file_path_to_title(guide_file.stem.replace("-", "_") + ".md")
|
||||
lines.append(f"* [{title}](guides/{guide_file.name})")
|
||||
lines.append("")
|
||||
|
||||
lines.append("## Block Integrations")
|
||||
lines.append("")
|
||||
|
||||
file_mapping = get_block_file_mapping(blocks)
|
||||
for file_path in sorted(file_mapping.keys()):
|
||||
title = file_path_to_title(file_path)
|
||||
link_path = f"{block_dir_prefix}{file_path}"
|
||||
lines.append(f"* [{title}]({link_path})")
|
||||
|
||||
lines.append("")
|
||||
|
||||
return "\n".join(lines)
|
||||
|
||||
|
||||
def load_all_blocks_for_docs() -> list[BlockDoc]:
|
||||
"""Load all blocks and extract documentation."""
|
||||
from backend.blocks import load_all_blocks
|
||||
@@ -734,16 +653,6 @@ def write_block_docs(
|
||||
)
|
||||
)
|
||||
|
||||
# Add file-level additional_content section if present
|
||||
file_additional = extract_manual_content(existing_content).get(
|
||||
"additional_content", ""
|
||||
)
|
||||
if file_additional:
|
||||
content_parts.append("<!-- MANUAL: additional_content -->")
|
||||
content_parts.append(file_additional)
|
||||
content_parts.append("<!-- END MANUAL -->")
|
||||
content_parts.append("")
|
||||
|
||||
full_content = file_header + "\n" + "\n".join(content_parts)
|
||||
generated_files[str(file_path)] = full_content
|
||||
|
||||
@@ -752,28 +661,14 @@ def write_block_docs(
|
||||
|
||||
full_path.write_text(full_content)
|
||||
|
||||
# Generate overview file at the parent directory (docs/integrations/)
|
||||
# with links prefixed to point into block-integrations/
|
||||
root_dir = output_dir.parent
|
||||
block_dir_name = output_dir.name # "block-integrations"
|
||||
block_dir_prefix = f"{block_dir_name}/"
|
||||
|
||||
overview_content = generate_overview_table(blocks, block_dir_prefix)
|
||||
overview_path = root_dir / "README.md"
|
||||
# Generate overview file
|
||||
overview_content = generate_overview_table(blocks)
|
||||
overview_path = output_dir / "README.md"
|
||||
generated_files["README.md"] = overview_content
|
||||
overview_path.write_text(overview_content)
|
||||
|
||||
if verbose:
|
||||
print(" Writing README.md (overview) to parent directory")
|
||||
|
||||
# Generate SUMMARY.md for GitBook navigation at the parent directory
|
||||
summary_content = generate_summary_md(blocks, root_dir, block_dir_prefix)
|
||||
summary_path = root_dir / "SUMMARY.md"
|
||||
generated_files["SUMMARY.md"] = summary_content
|
||||
summary_path.write_text(summary_content)
|
||||
|
||||
if verbose:
|
||||
print(" Writing SUMMARY.md (navigation) to parent directory")
|
||||
print(" Writing README.md (overview)")
|
||||
|
||||
return generated_files
|
||||
|
||||
@@ -853,16 +748,6 @@ def check_docs_in_sync(output_dir: Path, blocks: list[BlockDoc]) -> bool:
|
||||
elif block_match.group(1).strip() != expected_block_content.strip():
|
||||
mismatched_blocks.append(block.name)
|
||||
|
||||
# Add file-level additional_content to expected content (matches write_block_docs)
|
||||
file_additional = extract_manual_content(existing_content).get(
|
||||
"additional_content", ""
|
||||
)
|
||||
if file_additional:
|
||||
content_parts.append("<!-- MANUAL: additional_content -->")
|
||||
content_parts.append(file_additional)
|
||||
content_parts.append("<!-- END MANUAL -->")
|
||||
content_parts.append("")
|
||||
|
||||
expected_content = file_header + "\n" + "\n".join(content_parts)
|
||||
|
||||
if existing_content.strip() != expected_content.strip():
|
||||
@@ -872,15 +757,11 @@ def check_docs_in_sync(output_dir: Path, blocks: list[BlockDoc]) -> bool:
|
||||
out_of_sync_details.append((file_path, mismatched_blocks))
|
||||
all_match = False
|
||||
|
||||
# Check overview at the parent directory (docs/integrations/)
|
||||
root_dir = output_dir.parent
|
||||
block_dir_name = output_dir.name # "block-integrations"
|
||||
block_dir_prefix = f"{block_dir_name}/"
|
||||
|
||||
overview_path = root_dir / "README.md"
|
||||
# Check overview
|
||||
overview_path = output_dir / "README.md"
|
||||
if overview_path.exists():
|
||||
existing_overview = overview_path.read_text()
|
||||
expected_overview = generate_overview_table(blocks, block_dir_prefix)
|
||||
expected_overview = generate_overview_table(blocks)
|
||||
if existing_overview.strip() != expected_overview.strip():
|
||||
print("OUT OF SYNC: README.md (overview)")
|
||||
print(" The blocks overview table needs regeneration")
|
||||
@@ -891,21 +772,6 @@ def check_docs_in_sync(output_dir: Path, blocks: list[BlockDoc]) -> bool:
|
||||
out_of_sync_details.append(("README.md", ["overview table"]))
|
||||
all_match = False
|
||||
|
||||
# Check SUMMARY.md at the parent directory
|
||||
summary_path = root_dir / "SUMMARY.md"
|
||||
if summary_path.exists():
|
||||
existing_summary = summary_path.read_text()
|
||||
expected_summary = generate_summary_md(blocks, root_dir, block_dir_prefix)
|
||||
if existing_summary.strip() != expected_summary.strip():
|
||||
print("OUT OF SYNC: SUMMARY.md (navigation)")
|
||||
print(" The GitBook navigation needs regeneration")
|
||||
out_of_sync_details.append(("SUMMARY.md", ["navigation"]))
|
||||
all_match = False
|
||||
else:
|
||||
print("MISSING: SUMMARY.md (navigation)")
|
||||
out_of_sync_details.append(("SUMMARY.md", ["navigation"]))
|
||||
all_match = False
|
||||
|
||||
# Check for unfilled manual sections
|
||||
unfilled_patterns = [
|
||||
"_Add a description of this category of blocks._",
|
||||
|
||||
@@ -11,7 +11,6 @@
|
||||
"forked_from_version": null,
|
||||
"has_external_trigger": false,
|
||||
"has_human_in_the_loop": false,
|
||||
"has_sensitive_action": false,
|
||||
"id": "graph-123",
|
||||
"input_schema": {
|
||||
"properties": {},
|
||||
|
||||
@@ -11,7 +11,6 @@
|
||||
"forked_from_version": null,
|
||||
"has_external_trigger": false,
|
||||
"has_human_in_the_loop": false,
|
||||
"has_sensitive_action": false,
|
||||
"id": "graph-123",
|
||||
"input_schema": {
|
||||
"properties": {},
|
||||
|
||||
@@ -27,8 +27,6 @@
|
||||
"properties": {}
|
||||
},
|
||||
"has_external_trigger": false,
|
||||
"has_human_in_the_loop": false,
|
||||
"has_sensitive_action": false,
|
||||
"trigger_setup_info": null,
|
||||
"new_output": false,
|
||||
"can_access_graph": true,
|
||||
@@ -36,8 +34,7 @@
|
||||
"is_favorite": false,
|
||||
"recommended_schedule_cron": null,
|
||||
"settings": {
|
||||
"human_in_the_loop_safe_mode": true,
|
||||
"sensitive_action_safe_mode": false
|
||||
"human_in_the_loop_safe_mode": null
|
||||
},
|
||||
"marketplace_listing": null
|
||||
},
|
||||
@@ -68,8 +65,6 @@
|
||||
"properties": {}
|
||||
},
|
||||
"has_external_trigger": false,
|
||||
"has_human_in_the_loop": false,
|
||||
"has_sensitive_action": false,
|
||||
"trigger_setup_info": null,
|
||||
"new_output": false,
|
||||
"can_access_graph": false,
|
||||
@@ -77,8 +72,7 @@
|
||||
"is_favorite": false,
|
||||
"recommended_schedule_cron": null,
|
||||
"settings": {
|
||||
"human_in_the_loop_safe_mode": true,
|
||||
"sensitive_action_safe_mode": false
|
||||
"human_in_the_loop_safe_mode": null
|
||||
},
|
||||
"marketplace_listing": null
|
||||
}
|
||||
|
||||
@@ -1 +0,0 @@
|
||||
"""Tests for agent generator module."""
|
||||
@@ -1,273 +0,0 @@
|
||||
"""
|
||||
Tests for the Agent Generator core module.
|
||||
|
||||
This test suite verifies that the core functions correctly delegate to
|
||||
the external Agent Generator service.
|
||||
"""
|
||||
|
||||
from unittest.mock import AsyncMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from backend.api.features.chat.tools.agent_generator import core
|
||||
from backend.api.features.chat.tools.agent_generator.core import (
|
||||
AgentGeneratorNotConfiguredError,
|
||||
)
|
||||
|
||||
|
||||
class TestServiceNotConfigured:
|
||||
"""Test that functions raise AgentGeneratorNotConfiguredError when service is not configured."""
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_decompose_goal_raises_when_not_configured(self):
|
||||
"""Test that decompose_goal raises error when service not configured."""
|
||||
with patch.object(core, "is_external_service_configured", return_value=False):
|
||||
with pytest.raises(AgentGeneratorNotConfiguredError):
|
||||
await core.decompose_goal("Build a chatbot")
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_generate_agent_raises_when_not_configured(self):
|
||||
"""Test that generate_agent raises error when service not configured."""
|
||||
with patch.object(core, "is_external_service_configured", return_value=False):
|
||||
with pytest.raises(AgentGeneratorNotConfiguredError):
|
||||
await core.generate_agent({"steps": []})
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_generate_agent_patch_raises_when_not_configured(self):
|
||||
"""Test that generate_agent_patch raises error when service not configured."""
|
||||
with patch.object(core, "is_external_service_configured", return_value=False):
|
||||
with pytest.raises(AgentGeneratorNotConfiguredError):
|
||||
await core.generate_agent_patch("Add a node", {"nodes": []})
|
||||
|
||||
|
||||
class TestDecomposeGoal:
|
||||
"""Test decompose_goal function service delegation."""
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_calls_external_service(self):
|
||||
"""Test that decompose_goal calls the external service."""
|
||||
expected_result = {"type": "instructions", "steps": ["Step 1"]}
|
||||
|
||||
with patch.object(
|
||||
core, "is_external_service_configured", return_value=True
|
||||
), patch.object(
|
||||
core, "decompose_goal_external", new_callable=AsyncMock
|
||||
) as mock_external:
|
||||
mock_external.return_value = expected_result
|
||||
|
||||
result = await core.decompose_goal("Build a chatbot")
|
||||
|
||||
mock_external.assert_called_once_with("Build a chatbot", "")
|
||||
assert result == expected_result
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_passes_context_to_external_service(self):
|
||||
"""Test that decompose_goal passes context to external service."""
|
||||
expected_result = {"type": "instructions", "steps": ["Step 1"]}
|
||||
|
||||
with patch.object(
|
||||
core, "is_external_service_configured", return_value=True
|
||||
), patch.object(
|
||||
core, "decompose_goal_external", new_callable=AsyncMock
|
||||
) as mock_external:
|
||||
mock_external.return_value = expected_result
|
||||
|
||||
await core.decompose_goal("Build a chatbot", "Use Python")
|
||||
|
||||
mock_external.assert_called_once_with("Build a chatbot", "Use Python")
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_returns_none_on_service_failure(self):
|
||||
"""Test that decompose_goal returns None when external service fails."""
|
||||
with patch.object(
|
||||
core, "is_external_service_configured", return_value=True
|
||||
), patch.object(
|
||||
core, "decompose_goal_external", new_callable=AsyncMock
|
||||
) as mock_external:
|
||||
mock_external.return_value = None
|
||||
|
||||
result = await core.decompose_goal("Build a chatbot")
|
||||
|
||||
assert result is None
|
||||
|
||||
|
||||
class TestGenerateAgent:
|
||||
"""Test generate_agent function service delegation."""
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_calls_external_service(self):
|
||||
"""Test that generate_agent calls the external service."""
|
||||
expected_result = {"name": "Test Agent", "nodes": [], "links": []}
|
||||
|
||||
with patch.object(
|
||||
core, "is_external_service_configured", return_value=True
|
||||
), patch.object(
|
||||
core, "generate_agent_external", new_callable=AsyncMock
|
||||
) as mock_external:
|
||||
mock_external.return_value = expected_result
|
||||
|
||||
instructions = {"type": "instructions", "steps": ["Step 1"]}
|
||||
result = await core.generate_agent(instructions)
|
||||
|
||||
mock_external.assert_called_once_with(instructions)
|
||||
# Result should have id, version, is_active added if not present
|
||||
assert result is not None
|
||||
assert result["name"] == "Test Agent"
|
||||
assert "id" in result
|
||||
assert result["version"] == 1
|
||||
assert result["is_active"] is True
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_preserves_existing_id_and_version(self):
|
||||
"""Test that external service result preserves existing id and version."""
|
||||
expected_result = {
|
||||
"id": "existing-id",
|
||||
"version": 3,
|
||||
"is_active": False,
|
||||
"name": "Test Agent",
|
||||
}
|
||||
|
||||
with patch.object(
|
||||
core, "is_external_service_configured", return_value=True
|
||||
), patch.object(
|
||||
core, "generate_agent_external", new_callable=AsyncMock
|
||||
) as mock_external:
|
||||
mock_external.return_value = expected_result.copy()
|
||||
|
||||
result = await core.generate_agent({"steps": []})
|
||||
|
||||
assert result is not None
|
||||
assert result["id"] == "existing-id"
|
||||
assert result["version"] == 3
|
||||
assert result["is_active"] is False
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_returns_none_when_external_service_fails(self):
|
||||
"""Test that generate_agent returns None when external service fails."""
|
||||
with patch.object(
|
||||
core, "is_external_service_configured", return_value=True
|
||||
), patch.object(
|
||||
core, "generate_agent_external", new_callable=AsyncMock
|
||||
) as mock_external:
|
||||
mock_external.return_value = None
|
||||
|
||||
result = await core.generate_agent({"steps": []})
|
||||
|
||||
assert result is None
|
||||
|
||||
|
||||
class TestGenerateAgentPatch:
|
||||
"""Test generate_agent_patch function service delegation."""
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_calls_external_service(self):
|
||||
"""Test that generate_agent_patch calls the external service."""
|
||||
expected_result = {"name": "Updated Agent", "nodes": [], "links": []}
|
||||
|
||||
with patch.object(
|
||||
core, "is_external_service_configured", return_value=True
|
||||
), patch.object(
|
||||
core, "generate_agent_patch_external", new_callable=AsyncMock
|
||||
) as mock_external:
|
||||
mock_external.return_value = expected_result
|
||||
|
||||
current_agent = {"nodes": [], "links": []}
|
||||
result = await core.generate_agent_patch("Add a node", current_agent)
|
||||
|
||||
mock_external.assert_called_once_with("Add a node", current_agent)
|
||||
assert result == expected_result
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_returns_clarifying_questions(self):
|
||||
"""Test that generate_agent_patch returns clarifying questions."""
|
||||
expected_result = {
|
||||
"type": "clarifying_questions",
|
||||
"questions": [{"question": "What type of node?"}],
|
||||
}
|
||||
|
||||
with patch.object(
|
||||
core, "is_external_service_configured", return_value=True
|
||||
), patch.object(
|
||||
core, "generate_agent_patch_external", new_callable=AsyncMock
|
||||
) as mock_external:
|
||||
mock_external.return_value = expected_result
|
||||
|
||||
result = await core.generate_agent_patch("Add a node", {"nodes": []})
|
||||
|
||||
assert result == expected_result
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_returns_none_when_external_service_fails(self):
|
||||
"""Test that generate_agent_patch returns None when service fails."""
|
||||
with patch.object(
|
||||
core, "is_external_service_configured", return_value=True
|
||||
), patch.object(
|
||||
core, "generate_agent_patch_external", new_callable=AsyncMock
|
||||
) as mock_external:
|
||||
mock_external.return_value = None
|
||||
|
||||
result = await core.generate_agent_patch("Add a node", {"nodes": []})
|
||||
|
||||
assert result is None
|
||||
|
||||
|
||||
class TestJsonToGraph:
|
||||
"""Test json_to_graph function."""
|
||||
|
||||
def test_converts_agent_json_to_graph(self):
|
||||
"""Test conversion of agent JSON to Graph model."""
|
||||
agent_json = {
|
||||
"id": "test-id",
|
||||
"version": 2,
|
||||
"is_active": True,
|
||||
"name": "Test Agent",
|
||||
"description": "A test agent",
|
||||
"nodes": [
|
||||
{
|
||||
"id": "node1",
|
||||
"block_id": "block1",
|
||||
"input_default": {"key": "value"},
|
||||
"metadata": {"x": 100},
|
||||
}
|
||||
],
|
||||
"links": [
|
||||
{
|
||||
"id": "link1",
|
||||
"source_id": "node1",
|
||||
"sink_id": "output",
|
||||
"source_name": "result",
|
||||
"sink_name": "input",
|
||||
"is_static": False,
|
||||
}
|
||||
],
|
||||
}
|
||||
|
||||
graph = core.json_to_graph(agent_json)
|
||||
|
||||
assert graph.id == "test-id"
|
||||
assert graph.version == 2
|
||||
assert graph.is_active is True
|
||||
assert graph.name == "Test Agent"
|
||||
assert graph.description == "A test agent"
|
||||
assert len(graph.nodes) == 1
|
||||
assert graph.nodes[0].id == "node1"
|
||||
assert graph.nodes[0].block_id == "block1"
|
||||
assert len(graph.links) == 1
|
||||
assert graph.links[0].source_id == "node1"
|
||||
|
||||
def test_generates_ids_if_missing(self):
|
||||
"""Test that missing IDs are generated."""
|
||||
agent_json = {
|
||||
"name": "Test Agent",
|
||||
"nodes": [{"block_id": "block1"}],
|
||||
"links": [],
|
||||
}
|
||||
|
||||
graph = core.json_to_graph(agent_json)
|
||||
|
||||
assert graph.id is not None
|
||||
assert graph.nodes[0].id is not None
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
pytest.main([__file__, "-v"])
|
||||
@@ -1,422 +0,0 @@
|
||||
"""
|
||||
Tests for the Agent Generator external service client.
|
||||
|
||||
This test suite verifies the external Agent Generator service integration,
|
||||
including service detection, API calls, and error handling.
|
||||
"""
|
||||
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
import httpx
|
||||
import pytest
|
||||
|
||||
from backend.api.features.chat.tools.agent_generator import service
|
||||
|
||||
|
||||
class TestServiceConfiguration:
|
||||
"""Test service configuration detection."""
|
||||
|
||||
def setup_method(self):
|
||||
"""Reset settings singleton before each test."""
|
||||
service._settings = None
|
||||
service._client = None
|
||||
|
||||
def test_external_service_not_configured_when_host_empty(self):
|
||||
"""Test that external service is not configured when host is empty."""
|
||||
mock_settings = MagicMock()
|
||||
mock_settings.config.agentgenerator_host = ""
|
||||
|
||||
with patch.object(service, "_get_settings", return_value=mock_settings):
|
||||
assert service.is_external_service_configured() is False
|
||||
|
||||
def test_external_service_configured_when_host_set(self):
|
||||
"""Test that external service is configured when host is set."""
|
||||
mock_settings = MagicMock()
|
||||
mock_settings.config.agentgenerator_host = "agent-generator.local"
|
||||
|
||||
with patch.object(service, "_get_settings", return_value=mock_settings):
|
||||
assert service.is_external_service_configured() is True
|
||||
|
||||
def test_get_base_url(self):
|
||||
"""Test base URL construction."""
|
||||
mock_settings = MagicMock()
|
||||
mock_settings.config.agentgenerator_host = "agent-generator.local"
|
||||
mock_settings.config.agentgenerator_port = 8000
|
||||
|
||||
with patch.object(service, "_get_settings", return_value=mock_settings):
|
||||
url = service._get_base_url()
|
||||
assert url == "http://agent-generator.local:8000"
|
||||
|
||||
|
||||
class TestDecomposeGoalExternal:
|
||||
"""Test decompose_goal_external function."""
|
||||
|
||||
def setup_method(self):
|
||||
"""Reset client singleton before each test."""
|
||||
service._settings = None
|
||||
service._client = None
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_decompose_goal_returns_instructions(self):
|
||||
"""Test successful decomposition returning instructions."""
|
||||
mock_response = MagicMock()
|
||||
mock_response.json.return_value = {
|
||||
"success": True,
|
||||
"type": "instructions",
|
||||
"steps": ["Step 1", "Step 2"],
|
||||
}
|
||||
mock_response.raise_for_status = MagicMock()
|
||||
|
||||
mock_client = AsyncMock()
|
||||
mock_client.post.return_value = mock_response
|
||||
|
||||
with patch.object(service, "_get_client", return_value=mock_client):
|
||||
result = await service.decompose_goal_external("Build a chatbot")
|
||||
|
||||
assert result == {"type": "instructions", "steps": ["Step 1", "Step 2"]}
|
||||
mock_client.post.assert_called_once_with(
|
||||
"/api/decompose-description", json={"description": "Build a chatbot"}
|
||||
)
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_decompose_goal_returns_clarifying_questions(self):
|
||||
"""Test decomposition returning clarifying questions."""
|
||||
mock_response = MagicMock()
|
||||
mock_response.json.return_value = {
|
||||
"success": True,
|
||||
"type": "clarifying_questions",
|
||||
"questions": ["What platform?", "What language?"],
|
||||
}
|
||||
mock_response.raise_for_status = MagicMock()
|
||||
|
||||
mock_client = AsyncMock()
|
||||
mock_client.post.return_value = mock_response
|
||||
|
||||
with patch.object(service, "_get_client", return_value=mock_client):
|
||||
result = await service.decompose_goal_external("Build something")
|
||||
|
||||
assert result == {
|
||||
"type": "clarifying_questions",
|
||||
"questions": ["What platform?", "What language?"],
|
||||
}
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_decompose_goal_with_context(self):
|
||||
"""Test decomposition with additional context."""
|
||||
mock_response = MagicMock()
|
||||
mock_response.json.return_value = {
|
||||
"success": True,
|
||||
"type": "instructions",
|
||||
"steps": ["Step 1"],
|
||||
}
|
||||
mock_response.raise_for_status = MagicMock()
|
||||
|
||||
mock_client = AsyncMock()
|
||||
mock_client.post.return_value = mock_response
|
||||
|
||||
with patch.object(service, "_get_client", return_value=mock_client):
|
||||
await service.decompose_goal_external(
|
||||
"Build a chatbot", context="Use Python"
|
||||
)
|
||||
|
||||
mock_client.post.assert_called_once_with(
|
||||
"/api/decompose-description",
|
||||
json={"description": "Build a chatbot", "user_instruction": "Use Python"},
|
||||
)
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_decompose_goal_returns_unachievable_goal(self):
|
||||
"""Test decomposition returning unachievable goal response."""
|
||||
mock_response = MagicMock()
|
||||
mock_response.json.return_value = {
|
||||
"success": True,
|
||||
"type": "unachievable_goal",
|
||||
"reason": "Cannot do X",
|
||||
"suggested_goal": "Try Y instead",
|
||||
}
|
||||
mock_response.raise_for_status = MagicMock()
|
||||
|
||||
mock_client = AsyncMock()
|
||||
mock_client.post.return_value = mock_response
|
||||
|
||||
with patch.object(service, "_get_client", return_value=mock_client):
|
||||
result = await service.decompose_goal_external("Do something impossible")
|
||||
|
||||
assert result == {
|
||||
"type": "unachievable_goal",
|
||||
"reason": "Cannot do X",
|
||||
"suggested_goal": "Try Y instead",
|
||||
}
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_decompose_goal_handles_http_error(self):
|
||||
"""Test decomposition handles HTTP errors gracefully."""
|
||||
mock_client = AsyncMock()
|
||||
mock_client.post.side_effect = httpx.HTTPStatusError(
|
||||
"Server error", request=MagicMock(), response=MagicMock()
|
||||
)
|
||||
|
||||
with patch.object(service, "_get_client", return_value=mock_client):
|
||||
result = await service.decompose_goal_external("Build a chatbot")
|
||||
|
||||
assert result is None
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_decompose_goal_handles_request_error(self):
|
||||
"""Test decomposition handles request errors gracefully."""
|
||||
mock_client = AsyncMock()
|
||||
mock_client.post.side_effect = httpx.RequestError("Connection failed")
|
||||
|
||||
with patch.object(service, "_get_client", return_value=mock_client):
|
||||
result = await service.decompose_goal_external("Build a chatbot")
|
||||
|
||||
assert result is None
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_decompose_goal_handles_service_error(self):
|
||||
"""Test decomposition handles service returning error."""
|
||||
mock_response = MagicMock()
|
||||
mock_response.json.return_value = {
|
||||
"success": False,
|
||||
"error": "Internal error",
|
||||
}
|
||||
mock_response.raise_for_status = MagicMock()
|
||||
|
||||
mock_client = AsyncMock()
|
||||
mock_client.post.return_value = mock_response
|
||||
|
||||
with patch.object(service, "_get_client", return_value=mock_client):
|
||||
result = await service.decompose_goal_external("Build a chatbot")
|
||||
|
||||
assert result is None
|
||||
|
||||
|
||||
class TestGenerateAgentExternal:
|
||||
"""Test generate_agent_external function."""
|
||||
|
||||
def setup_method(self):
|
||||
"""Reset client singleton before each test."""
|
||||
service._settings = None
|
||||
service._client = None
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_generate_agent_success(self):
|
||||
"""Test successful agent generation."""
|
||||
agent_json = {
|
||||
"name": "Test Agent",
|
||||
"nodes": [],
|
||||
"links": [],
|
||||
}
|
||||
mock_response = MagicMock()
|
||||
mock_response.json.return_value = {
|
||||
"success": True,
|
||||
"agent_json": agent_json,
|
||||
}
|
||||
mock_response.raise_for_status = MagicMock()
|
||||
|
||||
mock_client = AsyncMock()
|
||||
mock_client.post.return_value = mock_response
|
||||
|
||||
instructions = {"type": "instructions", "steps": ["Step 1"]}
|
||||
|
||||
with patch.object(service, "_get_client", return_value=mock_client):
|
||||
result = await service.generate_agent_external(instructions)
|
||||
|
||||
assert result == agent_json
|
||||
mock_client.post.assert_called_once_with(
|
||||
"/api/generate-agent", json={"instructions": instructions}
|
||||
)
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_generate_agent_handles_error(self):
|
||||
"""Test agent generation handles errors gracefully."""
|
||||
mock_client = AsyncMock()
|
||||
mock_client.post.side_effect = httpx.RequestError("Connection failed")
|
||||
|
||||
with patch.object(service, "_get_client", return_value=mock_client):
|
||||
result = await service.generate_agent_external({"steps": []})
|
||||
|
||||
assert result is None
|
||||
|
||||
|
||||
class TestGenerateAgentPatchExternal:
|
||||
"""Test generate_agent_patch_external function."""
|
||||
|
||||
def setup_method(self):
|
||||
"""Reset client singleton before each test."""
|
||||
service._settings = None
|
||||
service._client = None
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_generate_patch_returns_updated_agent(self):
|
||||
"""Test successful patch generation returning updated agent."""
|
||||
updated_agent = {
|
||||
"name": "Updated Agent",
|
||||
"nodes": [{"id": "1", "block_id": "test"}],
|
||||
"links": [],
|
||||
}
|
||||
mock_response = MagicMock()
|
||||
mock_response.json.return_value = {
|
||||
"success": True,
|
||||
"agent_json": updated_agent,
|
||||
}
|
||||
mock_response.raise_for_status = MagicMock()
|
||||
|
||||
mock_client = AsyncMock()
|
||||
mock_client.post.return_value = mock_response
|
||||
|
||||
current_agent = {"name": "Old Agent", "nodes": [], "links": []}
|
||||
|
||||
with patch.object(service, "_get_client", return_value=mock_client):
|
||||
result = await service.generate_agent_patch_external(
|
||||
"Add a new node", current_agent
|
||||
)
|
||||
|
||||
assert result == updated_agent
|
||||
mock_client.post.assert_called_once_with(
|
||||
"/api/update-agent",
|
||||
json={
|
||||
"update_request": "Add a new node",
|
||||
"current_agent_json": current_agent,
|
||||
},
|
||||
)
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_generate_patch_returns_clarifying_questions(self):
|
||||
"""Test patch generation returning clarifying questions."""
|
||||
mock_response = MagicMock()
|
||||
mock_response.json.return_value = {
|
||||
"success": True,
|
||||
"type": "clarifying_questions",
|
||||
"questions": ["What type of node?"],
|
||||
}
|
||||
mock_response.raise_for_status = MagicMock()
|
||||
|
||||
mock_client = AsyncMock()
|
||||
mock_client.post.return_value = mock_response
|
||||
|
||||
with patch.object(service, "_get_client", return_value=mock_client):
|
||||
result = await service.generate_agent_patch_external(
|
||||
"Add something", {"nodes": []}
|
||||
)
|
||||
|
||||
assert result == {
|
||||
"type": "clarifying_questions",
|
||||
"questions": ["What type of node?"],
|
||||
}
|
||||
|
||||
|
||||
class TestHealthCheck:
|
||||
"""Test health_check function."""
|
||||
|
||||
def setup_method(self):
|
||||
"""Reset singletons before each test."""
|
||||
service._settings = None
|
||||
service._client = None
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_health_check_returns_false_when_not_configured(self):
|
||||
"""Test health check returns False when service not configured."""
|
||||
with patch.object(
|
||||
service, "is_external_service_configured", return_value=False
|
||||
):
|
||||
result = await service.health_check()
|
||||
assert result is False
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_health_check_returns_true_when_healthy(self):
|
||||
"""Test health check returns True when service is healthy."""
|
||||
mock_response = MagicMock()
|
||||
mock_response.json.return_value = {
|
||||
"status": "healthy",
|
||||
"blocks_loaded": True,
|
||||
}
|
||||
mock_response.raise_for_status = MagicMock()
|
||||
|
||||
mock_client = AsyncMock()
|
||||
mock_client.get.return_value = mock_response
|
||||
|
||||
with patch.object(service, "is_external_service_configured", return_value=True):
|
||||
with patch.object(service, "_get_client", return_value=mock_client):
|
||||
result = await service.health_check()
|
||||
|
||||
assert result is True
|
||||
mock_client.get.assert_called_once_with("/health")
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_health_check_returns_false_when_not_healthy(self):
|
||||
"""Test health check returns False when service is not healthy."""
|
||||
mock_response = MagicMock()
|
||||
mock_response.json.return_value = {
|
||||
"status": "unhealthy",
|
||||
"blocks_loaded": False,
|
||||
}
|
||||
mock_response.raise_for_status = MagicMock()
|
||||
|
||||
mock_client = AsyncMock()
|
||||
mock_client.get.return_value = mock_response
|
||||
|
||||
with patch.object(service, "is_external_service_configured", return_value=True):
|
||||
with patch.object(service, "_get_client", return_value=mock_client):
|
||||
result = await service.health_check()
|
||||
|
||||
assert result is False
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_health_check_returns_false_on_error(self):
|
||||
"""Test health check returns False on connection error."""
|
||||
mock_client = AsyncMock()
|
||||
mock_client.get.side_effect = httpx.RequestError("Connection failed")
|
||||
|
||||
with patch.object(service, "is_external_service_configured", return_value=True):
|
||||
with patch.object(service, "_get_client", return_value=mock_client):
|
||||
result = await service.health_check()
|
||||
|
||||
assert result is False
|
||||
|
||||
|
||||
class TestGetBlocksExternal:
|
||||
"""Test get_blocks_external function."""
|
||||
|
||||
def setup_method(self):
|
||||
"""Reset client singleton before each test."""
|
||||
service._settings = None
|
||||
service._client = None
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_get_blocks_success(self):
|
||||
"""Test successful blocks retrieval."""
|
||||
blocks = [
|
||||
{"id": "block1", "name": "Block 1"},
|
||||
{"id": "block2", "name": "Block 2"},
|
||||
]
|
||||
mock_response = MagicMock()
|
||||
mock_response.json.return_value = {
|
||||
"success": True,
|
||||
"blocks": blocks,
|
||||
}
|
||||
mock_response.raise_for_status = MagicMock()
|
||||
|
||||
mock_client = AsyncMock()
|
||||
mock_client.get.return_value = mock_response
|
||||
|
||||
with patch.object(service, "_get_client", return_value=mock_client):
|
||||
result = await service.get_blocks_external()
|
||||
|
||||
assert result == blocks
|
||||
mock_client.get.assert_called_once_with("/api/blocks")
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_get_blocks_handles_error(self):
|
||||
"""Test blocks retrieval handles errors gracefully."""
|
||||
mock_client = AsyncMock()
|
||||
mock_client.get.side_effect = httpx.RequestError("Connection failed")
|
||||
|
||||
with patch.object(service, "_get_client", return_value=mock_client):
|
||||
result = await service.get_blocks_external()
|
||||
|
||||
assert result is None
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
pytest.main([__file__, "-v"])
|
||||
@@ -29,4 +29,4 @@ NEXT_PUBLIC_CLOUDFLARE_TURNSTILE_SITE_KEY=
|
||||
NEXT_PUBLIC_TURNSTILE=disabled
|
||||
|
||||
# PR previews
|
||||
NEXT_PUBLIC_PREVIEW_STEALING_DEV=
|
||||
NEXT_PUBLIC_PREVIEW_STEALING_DEV=
|
||||
@@ -175,8 +175,6 @@ While server components and actions are cool and cutting-edge, they introduce a
|
||||
|
||||
- Prefer [React Query](https://tanstack.com/query/latest/docs/framework/react/overview) for server state, colocated near consumers (see [state colocation](https://kentcdodds.com/blog/state-colocation-will-make-your-react-app-faster))
|
||||
- Co-locate UI state inside components/hooks; keep global state minimal
|
||||
- Avoid `useMemo` and `useCallback` unless you have a measured performance issue
|
||||
- Do not abuse `useEffect`; prefer state colocation and derive values directly when possible
|
||||
|
||||
### Styling and components
|
||||
|
||||
@@ -551,48 +549,9 @@ Files:
|
||||
Types:
|
||||
|
||||
- Prefer `interface` for object shapes
|
||||
- Component props should be `interface Props { ... }` (not exported)
|
||||
- Only use specific exported names (e.g., `export interface MyComponentProps`) when the interface needs to be used outside the component
|
||||
- Keep type definitions inline with the component - do not create separate `types.ts` files unless types are shared across multiple files
|
||||
- Component props should be `interface Props { ... }`
|
||||
- Use precise types; avoid `any` and unsafe casts
|
||||
|
||||
**Props naming examples:**
|
||||
|
||||
```tsx
|
||||
// ✅ Good - internal props, not exported
|
||||
interface Props {
|
||||
title: string;
|
||||
onClose: () => void;
|
||||
}
|
||||
|
||||
export function Modal({ title, onClose }: Props) {
|
||||
// ...
|
||||
}
|
||||
|
||||
// ✅ Good - exported when needed externally
|
||||
export interface ModalProps {
|
||||
title: string;
|
||||
onClose: () => void;
|
||||
}
|
||||
|
||||
export function Modal({ title, onClose }: ModalProps) {
|
||||
// ...
|
||||
}
|
||||
|
||||
// ❌ Bad - unnecessarily specific name for internal use
|
||||
interface ModalComponentProps {
|
||||
title: string;
|
||||
onClose: () => void;
|
||||
}
|
||||
|
||||
// ❌ Bad - separate types.ts file for single component
|
||||
// types.ts
|
||||
export interface ModalProps { ... }
|
||||
|
||||
// Modal.tsx
|
||||
import type { ModalProps } from './types';
|
||||
```
|
||||
|
||||
Parameters:
|
||||
|
||||
- If more than one parameter is needed, pass a single `Args` object for clarity
|
||||
|
||||
@@ -16,12 +16,6 @@ export default defineConfig({
|
||||
client: "react-query",
|
||||
httpClient: "fetch",
|
||||
indexFiles: false,
|
||||
mock: {
|
||||
type: "msw",
|
||||
baseUrl: "http://localhost:3000/api/proxy",
|
||||
generateEachHttpStatus: true,
|
||||
delay: 0,
|
||||
},
|
||||
override: {
|
||||
mutator: {
|
||||
path: "./mutators/custom-mutator.ts",
|
||||
|
||||
@@ -15,8 +15,6 @@
|
||||
"types": "tsc --noEmit",
|
||||
"test": "NEXT_PUBLIC_PW_TEST=true next build --turbo && playwright test",
|
||||
"test-ui": "NEXT_PUBLIC_PW_TEST=true next build --turbo && playwright test --ui",
|
||||
"test:unit": "vitest run",
|
||||
"test:unit:watch": "vitest",
|
||||
"test:no-build": "playwright test",
|
||||
"gentests": "playwright codegen http://localhost:3000",
|
||||
"storybook": "storybook dev -p 6006",
|
||||
@@ -120,7 +118,6 @@
|
||||
},
|
||||
"devDependencies": {
|
||||
"@chromatic-com/storybook": "4.1.2",
|
||||
"happy-dom": "20.3.4",
|
||||
"@opentelemetry/instrumentation": "0.209.0",
|
||||
"@playwright/test": "1.56.1",
|
||||
"@storybook/addon-a11y": "9.1.5",
|
||||
@@ -130,8 +127,6 @@
|
||||
"@storybook/nextjs": "9.1.5",
|
||||
"@tanstack/eslint-plugin-query": "5.91.2",
|
||||
"@tanstack/react-query-devtools": "5.90.2",
|
||||
"@testing-library/dom": "10.4.1",
|
||||
"@testing-library/react": "16.3.2",
|
||||
"@types/canvas-confetti": "1.9.0",
|
||||
"@types/lodash": "4.17.20",
|
||||
"@types/negotiator": "0.6.4",
|
||||
@@ -140,7 +135,6 @@
|
||||
"@types/react-dom": "18.3.5",
|
||||
"@types/react-modal": "3.16.3",
|
||||
"@types/react-window": "1.8.8",
|
||||
"@vitejs/plugin-react": "5.1.2",
|
||||
"axe-playwright": "2.2.2",
|
||||
"chromatic": "13.3.3",
|
||||
"concurrently": "9.2.1",
|
||||
@@ -159,9 +153,7 @@
|
||||
"require-in-the-middle": "8.0.1",
|
||||
"storybook": "9.1.5",
|
||||
"tailwindcss": "3.4.17",
|
||||
"typescript": "5.9.3",
|
||||
"vite-tsconfig-paths": "6.0.4",
|
||||
"vitest": "4.0.17"
|
||||
"typescript": "5.9.3"
|
||||
},
|
||||
"msw": {
|
||||
"workerDirectory": [
|
||||
|
||||
1118
autogpt_platform/frontend/pnpm-lock.yaml
generated
|
Before Width: | Height: | Size: 5.9 KiB |
|
Before Width: | Height: | Size: 19 KiB |
|
Before Width: | Height: | Size: 26 KiB |
|
Before Width: | Height: | Size: 25 KiB |
|
Before Width: | Height: | Size: 72 KiB |
|
Before Width: | Height: | Size: 21 KiB |
|
Before Width: | Height: | Size: 374 B |
|
Before Width: | Height: | Size: 663 B |
|
Before Width: | Height: | Size: 40 KiB |
|
Before Width: | Height: | Size: 4.1 KiB |
|
Before Width: | Height: | Size: 2.5 KiB |
|
Before Width: | Height: | Size: 52 KiB |
|
Before Width: | Height: | Size: 1.8 KiB |
@@ -1,58 +0,0 @@
|
||||
"use client";
|
||||
|
||||
import { LoadingSpinner } from "@/components/atoms/LoadingSpinner/LoadingSpinner";
|
||||
import { Text } from "@/components/atoms/Text/Text";
|
||||
import { useToast } from "@/components/molecules/Toast/use-toast";
|
||||
import { useSupabase } from "@/lib/supabase/hooks/useSupabase";
|
||||
import { useRouter } from "next/navigation";
|
||||
import { useEffect, useRef } from "react";
|
||||
|
||||
const LOGOUT_REDIRECT_DELAY_MS = 400;
|
||||
|
||||
function wait(ms: number): Promise<void> {
|
||||
return new Promise(function resolveAfterDelay(resolve) {
|
||||
setTimeout(resolve, ms);
|
||||
});
|
||||
}
|
||||
|
||||
export default function LogoutPage() {
|
||||
const { logOut } = useSupabase();
|
||||
const { toast } = useToast();
|
||||
const router = useRouter();
|
||||
const hasStartedRef = useRef(false);
|
||||
|
||||
useEffect(
|
||||
function handleLogoutEffect() {
|
||||
if (hasStartedRef.current) return;
|
||||
hasStartedRef.current = true;
|
||||
|
||||
async function runLogout() {
|
||||
try {
|
||||
await logOut();
|
||||
} catch {
|
||||
toast({
|
||||
title: "Failed to log out. Redirecting to login.",
|
||||
variant: "destructive",
|
||||
});
|
||||
} finally {
|
||||
await wait(LOGOUT_REDIRECT_DELAY_MS);
|
||||
router.replace("/login");
|
||||
}
|
||||
}
|
||||
|
||||
void runLogout();
|
||||
},
|
||||
[logOut, router, toast],
|
||||
);
|
||||
|
||||
return (
|
||||
<div className="flex min-h-screen items-center justify-center px-4">
|
||||
<div className="flex flex-col items-center justify-center gap-4 py-8">
|
||||
<LoadingSpinner size="large" />
|
||||
<Text variant="body" className="text-center">
|
||||
Logging you out...
|
||||
</Text>
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
}
|
||||
@@ -9,7 +9,7 @@ export async function GET(request: Request) {
|
||||
const { searchParams, origin } = new URL(request.url);
|
||||
const code = searchParams.get("code");
|
||||
|
||||
let next = "/";
|
||||
let next = "/marketplace";
|
||||
|
||||
if (code) {
|
||||
const supabase = await getServerSupabase();
|
||||
|
||||
@@ -38,12 +38,8 @@ export const AgentOutputs = ({ flowID }: { flowID: string | null }) => {
|
||||
|
||||
return outputNodes
|
||||
.map((node) => {
|
||||
const executionResults = node.data.nodeExecutionResults || [];
|
||||
const latestResult =
|
||||
executionResults.length > 0
|
||||
? executionResults[executionResults.length - 1]
|
||||
: undefined;
|
||||
const outputData = latestResult?.output_data?.output;
|
||||
const executionResult = node.data.nodeExecutionResult;
|
||||
const outputData = executionResult?.output_data?.output;
|
||||
|
||||
const renderer = globalRegistry.getRenderer(outputData);
|
||||
|
||||
|
||||
@@ -5,11 +5,10 @@ import {
|
||||
TooltipContent,
|
||||
TooltipTrigger,
|
||||
} from "@/components/atoms/Tooltip/BaseTooltip";
|
||||
import { CircleNotchIcon, PlayIcon, StopIcon } from "@phosphor-icons/react";
|
||||
import { PlayIcon, StopIcon } from "@phosphor-icons/react";
|
||||
import { useShallow } from "zustand/react/shallow";
|
||||
import { RunInputDialog } from "../RunInputDialog/RunInputDialog";
|
||||
import { useRunGraph } from "./useRunGraph";
|
||||
import { cn } from "@/lib/utils";
|
||||
|
||||
export const RunGraph = ({ flowID }: { flowID: string | null }) => {
|
||||
const {
|
||||
@@ -25,31 +24,6 @@ export const RunGraph = ({ flowID }: { flowID: string | null }) => {
|
||||
useShallow((state) => state.isGraphRunning),
|
||||
);
|
||||
|
||||
const isLoading = isExecutingGraph || isTerminatingGraph || isSaving;
|
||||
|
||||
// Determine which icon to show with proper animation
|
||||
const renderIcon = () => {
|
||||
const iconClass = cn(
|
||||
"size-4 transition-transform duration-200 ease-out",
|
||||
!isLoading && "group-hover:scale-110",
|
||||
);
|
||||
|
||||
if (isLoading) {
|
||||
return (
|
||||
<CircleNotchIcon
|
||||
className={cn(iconClass, "animate-spin")}
|
||||
weight="bold"
|
||||
/>
|
||||
);
|
||||
}
|
||||
|
||||
if (isGraphRunning) {
|
||||
return <StopIcon className={iconClass} weight="fill" />;
|
||||
}
|
||||
|
||||
return <PlayIcon className={iconClass} weight="fill" />;
|
||||
};
|
||||
|
||||
return (
|
||||
<>
|
||||
<Tooltip>
|
||||
@@ -59,18 +33,18 @@ export const RunGraph = ({ flowID }: { flowID: string | null }) => {
|
||||
variant={isGraphRunning ? "destructive" : "primary"}
|
||||
data-id={isGraphRunning ? "stop-graph-button" : "run-graph-button"}
|
||||
onClick={isGraphRunning ? handleStopGraph : handleRunGraph}
|
||||
disabled={!flowID || isLoading}
|
||||
className="group"
|
||||
disabled={!flowID || isExecutingGraph || isTerminatingGraph}
|
||||
loading={isExecutingGraph || isTerminatingGraph || isSaving}
|
||||
>
|
||||
{renderIcon()}
|
||||
{!isGraphRunning ? (
|
||||
<PlayIcon className="size-4" />
|
||||
) : (
|
||||
<StopIcon className="size-4" />
|
||||
)}
|
||||
</Button>
|
||||
</TooltipTrigger>
|
||||
<TooltipContent>
|
||||
{isLoading
|
||||
? "Processing..."
|
||||
: isGraphRunning
|
||||
? "Stop agent"
|
||||
: "Run agent"}
|
||||
{isGraphRunning ? "Stop agent" : "Run agent"}
|
||||
</TooltipContent>
|
||||
</Tooltip>
|
||||
<RunInputDialog
|
||||
|
||||