Compare commits

..

4 Commits

Author SHA1 Message Date
copilot-swe-agent[bot]
54a3b6121e fix: Address code review feedback - use step title as key and add type safety
Co-authored-by: itsababseh <36419647+itsababseh@users.noreply.github.com>
2026-02-13 19:40:11 +00:00
copilot-swe-agent[bot]
e5f267df81 chore(frontend): Format code with prettier
Co-authored-by: itsababseh <36419647+itsababseh@users.noreply.github.com>
2026-02-13 19:35:08 +00:00
copilot-swe-agent[bot]
4fc3c70f77 feat(frontend): Add agent creation checklist in CoPilot chat
Co-authored-by: itsababseh <36419647+itsababseh@users.noreply.github.com>
2026-02-13 19:30:53 +00:00
copilot-swe-agent[bot]
efe0cd3bf8 Initial plan 2026-02-13 19:20:05 +00:00
292 changed files with 3266 additions and 14995 deletions

View File

@@ -5,13 +5,42 @@
!docs/
# Platform - Libs
!autogpt_platform/autogpt_libs/
!autogpt_platform/autogpt_libs/autogpt_libs/
!autogpt_platform/autogpt_libs/pyproject.toml
!autogpt_platform/autogpt_libs/poetry.lock
!autogpt_platform/autogpt_libs/README.md
# Platform - Backend
!autogpt_platform/backend/
!autogpt_platform/backend/backend/
!autogpt_platform/backend/test/e2e_test_data.py
!autogpt_platform/backend/migrations/
!autogpt_platform/backend/schema.prisma
!autogpt_platform/backend/pyproject.toml
!autogpt_platform/backend/poetry.lock
!autogpt_platform/backend/README.md
!autogpt_platform/backend/.env
!autogpt_platform/backend/gen_prisma_types_stub.py
# Platform - Market
!autogpt_platform/market/market/
!autogpt_platform/market/scripts.py
!autogpt_platform/market/schema.prisma
!autogpt_platform/market/pyproject.toml
!autogpt_platform/market/poetry.lock
!autogpt_platform/market/README.md
# Platform - Frontend
!autogpt_platform/frontend/
!autogpt_platform/frontend/src/
!autogpt_platform/frontend/public/
!autogpt_platform/frontend/scripts/
!autogpt_platform/frontend/package.json
!autogpt_platform/frontend/pnpm-lock.yaml
!autogpt_platform/frontend/tsconfig.json
!autogpt_platform/frontend/README.md
## config
!autogpt_platform/frontend/*.config.*
!autogpt_platform/frontend/.env.*
!autogpt_platform/frontend/.env
# Classic - AutoGPT
!classic/original_autogpt/autogpt/
@@ -35,38 +64,6 @@
# Classic - Frontend
!classic/frontend/build/web/
# Explicitly re-ignore unwanted files from whitelisted directories
# Note: These patterns MUST come after the whitelist rules to take effect
# Hidden files and directories (but keep frontend .env files needed for build)
**/.*
!autogpt_platform/frontend/.env
!autogpt_platform/frontend/.env.default
!autogpt_platform/frontend/.env.production
# Python artifacts
**/__pycache__/
**/*.pyc
**/*.pyo
**/.venv/
**/.ruff_cache/
**/.pytest_cache/
**/.coverage
**/htmlcov/
# Node artifacts
**/node_modules/
**/.next/
**/storybook-static/
**/playwright-report/
**/test-results/
# Build artifacts
**/dist/
**/build/
!autogpt_platform/frontend/src/**/build/
**/target/
# Logs and temp files
**/*.log
**/*.tmp
# Explicitly re-ignore some folders
.*
**/__pycache__

View File

@@ -26,6 +26,7 @@ jobs:
setup:
runs-on: ubuntu-latest
outputs:
cache-key: ${{ steps.cache-key.outputs.key }}
components-changed: ${{ steps.filter.outputs.components }}
steps:
@@ -40,17 +41,28 @@ jobs:
components:
- 'autogpt_platform/frontend/src/components/**'
- name: Enable corepack
run: corepack enable
- name: Set up Node
- name: Set up Node.js
uses: actions/setup-node@v6
with:
node-version: "22.18.0"
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
- name: Install dependencies to populate cache
- name: Enable corepack
run: corepack enable
- name: Generate cache key
id: cache-key
run: echo "key=${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}" >> $GITHUB_OUTPUT
- name: Cache dependencies
uses: actions/cache@v5
with:
path: ~/.pnpm-store
key: ${{ steps.cache-key.outputs.key }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
- name: Install dependencies
run: pnpm install --frozen-lockfile
lint:
@@ -61,15 +73,22 @@ jobs:
- name: Checkout repository
uses: actions/checkout@v6
- name: Enable corepack
run: corepack enable
- name: Set up Node
- name: Set up Node.js
uses: actions/setup-node@v6
with:
node-version: "22.18.0"
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
- name: Enable corepack
run: corepack enable
- name: Restore dependencies cache
uses: actions/cache@v5
with:
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
- name: Install dependencies
run: pnpm install --frozen-lockfile
@@ -92,15 +111,22 @@ jobs:
with:
fetch-depth: 0
- name: Enable corepack
run: corepack enable
- name: Set up Node
- name: Set up Node.js
uses: actions/setup-node@v6
with:
node-version: "22.18.0"
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
- name: Enable corepack
run: corepack enable
- name: Restore dependencies cache
uses: actions/cache@v5
with:
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
- name: Install dependencies
run: pnpm install --frozen-lockfile
@@ -115,8 +141,10 @@ jobs:
exitOnceUploaded: true
e2e_test:
name: end-to-end tests
runs-on: big-boi
needs: setup
strategy:
fail-fast: false
steps:
- name: Checkout repository
@@ -124,11 +152,19 @@ jobs:
with:
submodules: recursive
- name: Set up Platform - Copy default supabase .env
- name: Set up Node.js
uses: actions/setup-node@v6
with:
node-version: "22.18.0"
- name: Enable corepack
run: corepack enable
- name: Copy default supabase .env
run: |
cp ../.env.default ../.env
- name: Set up Platform - Copy backend .env and set OpenAI API key
- name: Copy backend .env and set OpenAI API key
run: |
cp ../backend/.env.default ../backend/.env
echo "OPENAI_INTERNAL_API_KEY=${{ secrets.OPENAI_API_KEY }}" >> ../backend/.env
@@ -136,125 +172,77 @@ jobs:
# Used by E2E test data script to generate embeddings for approved store agents
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
- name: Set up Platform - Set up Docker Buildx
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
with:
driver: docker-container
driver-opts: network=host
- name: Set up Platform - Expose GHA cache to docker buildx CLI
uses: crazy-max/ghaction-github-runtime@v3
- name: Set up Platform - Build Docker images (with cache)
working-directory: autogpt_platform
run: |
pip install pyyaml
# Resolve extends and generate a flat compose file that bake can understand
docker compose -f docker-compose.yml config > docker-compose.resolved.yml
# Add cache configuration to the resolved compose file
python ../.github/workflows/scripts/docker-ci-fix-compose-build-cache.py \
--source docker-compose.resolved.yml \
--cache-from "type=gha" \
--cache-to "type=gha,mode=max" \
--backend-hash "${{ hashFiles('autogpt_platform/backend/Dockerfile', 'autogpt_platform/backend/poetry.lock', 'autogpt_platform/backend/backend') }}" \
--frontend-hash "${{ hashFiles('autogpt_platform/frontend/Dockerfile', 'autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/src') }}" \
--git-ref "${{ github.ref }}"
# Build with bake using the resolved compose file (now includes cache config)
docker buildx bake --allow=fs.read=.. -f docker-compose.resolved.yml --load
env:
NEXT_PUBLIC_PW_TEST: true
- name: Set up tests - Cache E2E test data
id: e2e-data-cache
- name: Cache Docker layers
uses: actions/cache@v5
with:
path: /tmp/e2e_test_data.sql
key: e2e-test-data-${{ hashFiles('autogpt_platform/backend/test/e2e_test_data.py', 'autogpt_platform/backend/migrations/**', '.github/workflows/platform-frontend-ci.yml') }}
path: /tmp/.buildx-cache
key: ${{ runner.os }}-buildx-frontend-test-${{ hashFiles('autogpt_platform/docker-compose.yml', 'autogpt_platform/backend/Dockerfile', 'autogpt_platform/backend/pyproject.toml', 'autogpt_platform/backend/poetry.lock') }}
restore-keys: |
${{ runner.os }}-buildx-frontend-test-
- name: Set up Platform - Start Supabase DB + Auth
- name: Run docker compose
run: |
docker compose -f ../docker-compose.resolved.yml up -d db auth --no-build
echo "Waiting for database to be ready..."
timeout 60 sh -c 'until docker compose -f ../docker-compose.resolved.yml exec -T db pg_isready -U postgres 2>/dev/null; do sleep 2; done'
echo "Waiting for auth service to be ready..."
timeout 60 sh -c 'until docker compose -f ../docker-compose.resolved.yml exec -T db psql -U postgres -d postgres -c "SELECT 1 FROM auth.users LIMIT 1" 2>/dev/null; do sleep 2; done' || echo "Auth schema check timeout, continuing..."
- name: Set up Platform - Run migrations
run: |
echo "Running migrations..."
docker compose -f ../docker-compose.resolved.yml run --rm migrate
echo "✅ Migrations completed"
NEXT_PUBLIC_PW_TEST=true docker compose -f ../docker-compose.yml up -d
env:
NEXT_PUBLIC_PW_TEST: true
DOCKER_BUILDKIT: 1
BUILDX_CACHE_FROM: type=local,src=/tmp/.buildx-cache
BUILDX_CACHE_TO: type=local,dest=/tmp/.buildx-cache-new,mode=max
- name: Set up tests - Load cached E2E test data
if: steps.e2e-data-cache.outputs.cache-hit == 'true'
- name: Move cache
run: |
echo "✅ Found cached E2E test data, restoring..."
{
echo "SET session_replication_role = 'replica';"
cat /tmp/e2e_test_data.sql
echo "SET session_replication_role = 'origin';"
} | docker compose -f ../docker-compose.resolved.yml exec -T db psql -U postgres -d postgres -b
# Refresh materialized views after restore
docker compose -f ../docker-compose.resolved.yml exec -T db \
psql -U postgres -d postgres -b -c "SET search_path TO platform; SELECT refresh_store_materialized_views();" || true
rm -rf /tmp/.buildx-cache
if [ -d "/tmp/.buildx-cache-new" ]; then
mv /tmp/.buildx-cache-new /tmp/.buildx-cache
fi
echo "✅ E2E test data restored from cache"
- name: Set up Platform - Start (all other services)
- name: Wait for services to be ready
run: |
docker compose -f ../docker-compose.resolved.yml up -d --no-build
echo "Waiting for rest_server to be ready..."
timeout 60 sh -c 'until curl -f http://localhost:8006/health 2>/dev/null; do sleep 2; done' || echo "Rest server health check timeout, continuing..."
env:
NEXT_PUBLIC_PW_TEST: true
echo "Waiting for database to be ready..."
timeout 60 sh -c 'until docker compose -f ../docker-compose.yml exec -T db pg_isready -U postgres 2>/dev/null; do sleep 2; done' || echo "Database ready check timeout, continuing..."
- name: Set up tests - Create E2E test data
if: steps.e2e-data-cache.outputs.cache-hit != 'true'
- name: Create E2E test data
run: |
echo "Creating E2E test data..."
docker cp ../backend/test/e2e_test_data.py $(docker compose -f ../docker-compose.resolved.yml ps -q rest_server):/tmp/e2e_test_data.py
docker compose -f ../docker-compose.resolved.yml exec -T rest_server sh -c "cd /app/autogpt_platform && python /tmp/e2e_test_data.py" || {
echo "❌ E2E test data creation failed!"
docker compose -f ../docker-compose.resolved.yml logs --tail=50 rest_server
exit 1
}
# First try to run the script from inside the container
if docker compose -f ../docker-compose.yml exec -T rest_server test -f /app/autogpt_platform/backend/test/e2e_test_data.py; then
echo "✅ Found e2e_test_data.py in container, running it..."
docker compose -f ../docker-compose.yml exec -T rest_server sh -c "cd /app/autogpt_platform && python backend/test/e2e_test_data.py" || {
echo "❌ E2E test data creation failed!"
docker compose -f ../docker-compose.yml logs --tail=50 rest_server
exit 1
}
else
echo "⚠️ e2e_test_data.py not found in container, copying and running..."
# Copy the script into the container and run it
docker cp ../backend/test/e2e_test_data.py $(docker compose -f ../docker-compose.yml ps -q rest_server):/tmp/e2e_test_data.py || {
echo "❌ Failed to copy script to container"
exit 1
}
docker compose -f ../docker-compose.yml exec -T rest_server sh -c "cd /app/autogpt_platform && python /tmp/e2e_test_data.py" || {
echo "❌ E2E test data creation failed!"
docker compose -f ../docker-compose.yml logs --tail=50 rest_server
exit 1
}
fi
# Dump auth.users + platform schema for cache (two separate dumps)
echo "Dumping database for cache..."
{
docker compose -f ../docker-compose.resolved.yml exec -T db \
pg_dump -U postgres --data-only --column-inserts \
--table='auth.users' postgres
docker compose -f ../docker-compose.resolved.yml exec -T db \
pg_dump -U postgres --data-only --column-inserts \
--schema=platform \
--exclude-table='platform._prisma_migrations' \
--exclude-table='platform.apscheduler_jobs' \
--exclude-table='platform.apscheduler_jobs_batched_notifications' \
postgres
} > /tmp/e2e_test_data.sql
echo "✅ Database dump created for caching ($(wc -l < /tmp/e2e_test_data.sql) lines)"
- name: Set up tests - Enable corepack
run: corepack enable
- name: Set up tests - Set up Node
uses: actions/setup-node@v6
- name: Restore dependencies cache
uses: actions/cache@v5
with:
node-version: "22.18.0"
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
- name: Set up tests - Install dependencies
- name: Install dependencies
run: pnpm install --frozen-lockfile
- name: Set up tests - Install browser 'chromium'
- name: Install Browser 'chromium'
run: pnpm playwright install --with-deps chromium
- name: Run Playwright tests
@@ -281,7 +269,7 @@ jobs:
- name: Print Final Docker Compose logs
if: always()
run: docker compose -f ../docker-compose.resolved.yml logs
run: docker compose -f ../docker-compose.yml logs
integration_test:
runs-on: ubuntu-latest
@@ -293,15 +281,22 @@ jobs:
with:
submodules: recursive
- name: Enable corepack
run: corepack enable
- name: Set up Node
- name: Set up Node.js
uses: actions/setup-node@v6
with:
node-version: "22.18.0"
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
- name: Enable corepack
run: corepack enable
- name: Restore dependencies cache
uses: actions/cache@v5
with:
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
- name: Install dependencies
run: pnpm install --frozen-lockfile

View File

@@ -1,195 +0,0 @@
#!/usr/bin/env python3
"""
Add cache configuration to a resolved docker-compose file for all services
that have a build key, and ensure image names match what docker compose expects.
"""
import argparse
import yaml
DEFAULT_BRANCH = "dev"
CACHE_BUILDS_FOR_COMPONENTS = ["backend", "frontend"]
def main():
parser = argparse.ArgumentParser(
description="Add cache config to a resolved compose file"
)
parser.add_argument(
"--source",
required=True,
help="Source compose file to read (should be output of `docker compose config`)",
)
parser.add_argument(
"--cache-from",
default="type=gha",
help="Cache source configuration",
)
parser.add_argument(
"--cache-to",
default="type=gha,mode=max",
help="Cache destination configuration",
)
for component in CACHE_BUILDS_FOR_COMPONENTS:
parser.add_argument(
f"--{component}-hash",
default="",
help=f"Hash for {component} cache scope (e.g., from hashFiles())",
)
parser.add_argument(
"--git-ref",
default="",
help="Git ref for branch-based cache scope (e.g., refs/heads/master)",
)
args = parser.parse_args()
# Normalize git ref to a safe scope name (e.g., refs/heads/master -> master)
git_ref_scope = ""
if args.git_ref:
git_ref_scope = args.git_ref.replace("refs/heads/", "").replace("/", "-")
with open(args.source, "r") as f:
compose = yaml.safe_load(f)
# Get project name from compose file or default
project_name = compose.get("name", "autogpt_platform")
def get_image_name(dockerfile: str, target: str) -> str:
"""Generate image name based on Dockerfile folder and build target."""
dockerfile_parts = dockerfile.replace("\\", "/").split("/")
if len(dockerfile_parts) >= 2:
folder_name = dockerfile_parts[-2] # e.g., "backend" or "frontend"
else:
folder_name = "app"
return f"{project_name}-{folder_name}:{target}"
def get_build_key(dockerfile: str, target: str) -> str:
"""Generate a unique key for a Dockerfile+target combination."""
return f"{dockerfile}:{target}"
def get_component(dockerfile: str) -> str | None:
"""Get component name (frontend/backend) from dockerfile path."""
for component in CACHE_BUILDS_FOR_COMPONENTS:
if component in dockerfile:
return component
return None
# First pass: collect all services with build configs and identify duplicates
# Track which (dockerfile, target) combinations we've seen
build_key_to_first_service: dict[str, str] = {}
services_to_build: list[str] = []
services_to_dedupe: list[str] = []
for service_name, service_config in compose.get("services", {}).items():
if "build" not in service_config:
continue
build_config = service_config["build"]
dockerfile = build_config.get("dockerfile", "Dockerfile")
target = build_config.get("target", "default")
build_key = get_build_key(dockerfile, target)
if build_key not in build_key_to_first_service:
# First service with this build config - it will do the actual build
build_key_to_first_service[build_key] = service_name
services_to_build.append(service_name)
else:
# Duplicate - will just use the image from the first service
services_to_dedupe.append(service_name)
# Second pass: configure builds and deduplicate
modified_services = []
for service_name, service_config in compose.get("services", {}).items():
if "build" not in service_config:
continue
build_config = service_config["build"]
dockerfile = build_config.get("dockerfile", "Dockerfile")
target = build_config.get("target", "latest")
image_name = get_image_name(dockerfile, target)
# Set image name for all services (needed for both builders and deduped)
service_config["image"] = image_name
if service_name in services_to_dedupe:
# Remove build config - this service will use the pre-built image
del service_config["build"]
continue
# This service will do the actual build - add cache config
cache_from_list = []
cache_to_list = []
component = get_component(dockerfile)
if not component:
# Skip services that don't clearly match frontend/backend
continue
# Get the hash for this component
component_hash = getattr(args, f"{component}_hash")
# Scope format: platform-{component}-{target}-{hash|ref}
# Example: platform-backend-server-abc123
if "type=gha" in args.cache_from:
# 1. Primary: exact hash match (most specific)
if component_hash:
hash_scope = f"platform-{component}-{target}-{component_hash}"
cache_from_list.append(f"{args.cache_from},scope={hash_scope}")
# 2. Fallback: branch-based cache
if git_ref_scope:
ref_scope = f"platform-{component}-{target}-{git_ref_scope}"
cache_from_list.append(f"{args.cache_from},scope={ref_scope}")
# 3. Fallback: dev branch cache (for PRs/feature branches)
if git_ref_scope and git_ref_scope != DEFAULT_BRANCH:
master_scope = f"platform-{component}-{target}-{DEFAULT_BRANCH}"
cache_from_list.append(f"{args.cache_from},scope={master_scope}")
if "type=gha" in args.cache_to:
# Write to both hash-based and branch-based scopes
if component_hash:
hash_scope = f"platform-{component}-{target}-{component_hash}"
cache_to_list.append(f"{args.cache_to},scope={hash_scope}")
if git_ref_scope:
ref_scope = f"platform-{component}-{target}-{git_ref_scope}"
cache_to_list.append(f"{args.cache_to},scope={ref_scope}")
# Ensure we have at least one cache source/target
if not cache_from_list:
cache_from_list.append(args.cache_from)
if not cache_to_list:
cache_to_list.append(args.cache_to)
build_config["cache_from"] = cache_from_list
build_config["cache_to"] = cache_to_list
modified_services.append(service_name)
# Write back to the same file
with open(args.source, "w") as f:
yaml.dump(compose, f, default_flow_style=False, sort_keys=False)
print(f"Added cache config to {len(modified_services)} services in {args.source}:")
for svc in modified_services:
svc_config = compose["services"][svc]
build_cfg = svc_config.get("build", {})
cache_from_list = build_cfg.get("cache_from", ["none"])
cache_to_list = build_cfg.get("cache_to", ["none"])
print(f" - {svc}")
print(f" image: {svc_config.get('image', 'N/A')}")
print(f" cache_from: {cache_from_list}")
print(f" cache_to: {cache_to_list}")
if services_to_dedupe:
print(
f"Deduplicated {len(services_to_dedupe)} services (will use pre-built images):"
)
for svc in services_to_dedupe:
print(f" - {svc} -> {compose['services'][svc].get('image', 'N/A')}")
if __name__ == "__main__":
main()

View File

@@ -45,11 +45,6 @@ AutoGPT Platform is a monorepo containing:
- Backend/Frontend services use YAML anchors for consistent configuration
- Supabase services (`db/docker/docker-compose.yml`) follow the same pattern
### Branching Strategy
- **`dev`** is the main development branch. All PRs should target `dev`.
- **`master`** is the production branch. Only used for production releases.
### Creating Pull Requests
- Create the PR against the `dev` branch of the repository.

View File

@@ -448,61 +448,61 @@ toml = ["tomli ; python_full_version <= \"3.11.0a6\""]
[[package]]
name = "cryptography"
version = "46.0.5"
version = "46.0.4"
description = "cryptography is a package which provides cryptographic recipes and primitives to Python developers."
optional = false
python-versions = "!=3.9.0,!=3.9.1,>=3.8"
groups = ["main"]
files = [
{file = "cryptography-46.0.5-cp311-abi3-macosx_10_9_universal2.whl", hash = "sha256:351695ada9ea9618b3500b490ad54c739860883df6c1f555e088eaf25b1bbaad"},
{file = "cryptography-46.0.5-cp311-abi3-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:c18ff11e86df2e28854939acde2d003f7984f721eba450b56a200ad90eeb0e6b"},
{file = "cryptography-46.0.5-cp311-abi3-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:4d7e3d356b8cd4ea5aff04f129d5f66ebdc7b6f8eae802b93739ed520c47c79b"},
{file = "cryptography-46.0.5-cp311-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:50bfb6925eff619c9c023b967d5b77a54e04256c4281b0e21336a130cd7fc263"},
{file = "cryptography-46.0.5-cp311-abi3-manylinux_2_28_ppc64le.whl", hash = "sha256:803812e111e75d1aa73690d2facc295eaefd4439be1023fefc4995eaea2af90d"},
{file = "cryptography-46.0.5-cp311-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:3ee190460e2fbe447175cda91b88b84ae8322a104fc27766ad09428754a618ed"},
{file = "cryptography-46.0.5-cp311-abi3-manylinux_2_31_armv7l.whl", hash = "sha256:f145bba11b878005c496e93e257c1e88f154d278d2638e6450d17e0f31e558d2"},
{file = "cryptography-46.0.5-cp311-abi3-manylinux_2_34_aarch64.whl", hash = "sha256:e9251e3be159d1020c4030bd2e5f84d6a43fe54b6c19c12f51cde9542a2817b2"},
{file = "cryptography-46.0.5-cp311-abi3-manylinux_2_34_ppc64le.whl", hash = "sha256:47fb8a66058b80e509c47118ef8a75d14c455e81ac369050f20ba0d23e77fee0"},
{file = "cryptography-46.0.5-cp311-abi3-manylinux_2_34_x86_64.whl", hash = "sha256:4c3341037c136030cb46e4b1e17b7418ea4cbd9dd207e4a6f3b2b24e0d4ac731"},
{file = "cryptography-46.0.5-cp311-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:890bcb4abd5a2d3f852196437129eb3667d62630333aacc13dfd470fad3aaa82"},
{file = "cryptography-46.0.5-cp311-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:80a8d7bfdf38f87ca30a5391c0c9ce4ed2926918e017c29ddf643d0ed2778ea1"},
{file = "cryptography-46.0.5-cp311-abi3-win32.whl", hash = "sha256:60ee7e19e95104d4c03871d7d7dfb3d22ef8a9b9c6778c94e1c8fcc8365afd48"},
{file = "cryptography-46.0.5-cp311-abi3-win_amd64.whl", hash = "sha256:38946c54b16c885c72c4f59846be9743d699eee2b69b6988e0a00a01f46a61a4"},
{file = "cryptography-46.0.5-cp314-cp314t-macosx_10_9_universal2.whl", hash = "sha256:94a76daa32eb78d61339aff7952ea819b1734b46f73646a07decb40e5b3448e2"},
{file = "cryptography-46.0.5-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:5be7bf2fb40769e05739dd0046e7b26f9d4670badc7b032d6ce4db64dddc0678"},
{file = "cryptography-46.0.5-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:fe346b143ff9685e40192a4960938545c699054ba11d4f9029f94751e3f71d87"},
{file = "cryptography-46.0.5-cp314-cp314t-manylinux_2_28_aarch64.whl", hash = "sha256:c69fd885df7d089548a42d5ec05be26050ebcd2283d89b3d30676eb32ff87dee"},
{file = "cryptography-46.0.5-cp314-cp314t-manylinux_2_28_ppc64le.whl", hash = "sha256:8293f3dea7fc929ef7240796ba231413afa7b68ce38fd21da2995549f5961981"},
{file = "cryptography-46.0.5-cp314-cp314t-manylinux_2_28_x86_64.whl", hash = "sha256:1abfdb89b41c3be0365328a410baa9df3ff8a9110fb75e7b52e66803ddabc9a9"},
{file = "cryptography-46.0.5-cp314-cp314t-manylinux_2_31_armv7l.whl", hash = "sha256:d66e421495fdb797610a08f43b05269e0a5ea7f5e652a89bfd5a7d3c1dee3648"},
{file = "cryptography-46.0.5-cp314-cp314t-manylinux_2_34_aarch64.whl", hash = "sha256:4e817a8920bfbcff8940ecfd60f23d01836408242b30f1a708d93198393a80b4"},
{file = "cryptography-46.0.5-cp314-cp314t-manylinux_2_34_ppc64le.whl", hash = "sha256:68f68d13f2e1cb95163fa3b4db4bf9a159a418f5f6e7242564fc75fcae667fd0"},
{file = "cryptography-46.0.5-cp314-cp314t-manylinux_2_34_x86_64.whl", hash = "sha256:a3d1fae9863299076f05cb8a778c467578262fae09f9dc0ee9b12eb4268ce663"},
{file = "cryptography-46.0.5-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:c4143987a42a2397f2fc3b4d7e3a7d313fbe684f67ff443999e803dd75a76826"},
{file = "cryptography-46.0.5-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:7d731d4b107030987fd61a7f8ab512b25b53cef8f233a97379ede116f30eb67d"},
{file = "cryptography-46.0.5-cp314-cp314t-win32.whl", hash = "sha256:c3bcce8521d785d510b2aad26ae2c966092b7daa8f45dd8f44734a104dc0bc1a"},
{file = "cryptography-46.0.5-cp314-cp314t-win_amd64.whl", hash = "sha256:4d8ae8659ab18c65ced284993c2265910f6c9e650189d4e3f68445ef82a810e4"},
{file = "cryptography-46.0.5-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:4108d4c09fbbf2789d0c926eb4152ae1760d5a2d97612b92d508d96c861e4d31"},
{file = "cryptography-46.0.5-cp38-abi3-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:7d1f30a86d2757199cb2d56e48cce14deddf1f9c95f1ef1b64ee91ea43fe2e18"},
{file = "cryptography-46.0.5-cp38-abi3-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:039917b0dc418bb9f6edce8a906572d69e74bd330b0b3fea4f79dab7f8ddd235"},
{file = "cryptography-46.0.5-cp38-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:ba2a27ff02f48193fc4daeadf8ad2590516fa3d0adeeb34336b96f7fa64c1e3a"},
{file = "cryptography-46.0.5-cp38-abi3-manylinux_2_28_ppc64le.whl", hash = "sha256:61aa400dce22cb001a98014f647dc21cda08f7915ceb95df0c9eaf84b4b6af76"},
{file = "cryptography-46.0.5-cp38-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:3ce58ba46e1bc2aac4f7d9290223cead56743fa6ab94a5d53292ffaac6a91614"},
{file = "cryptography-46.0.5-cp38-abi3-manylinux_2_31_armv7l.whl", hash = "sha256:420d0e909050490d04359e7fdb5ed7e667ca5c3c402b809ae2563d7e66a92229"},
{file = "cryptography-46.0.5-cp38-abi3-manylinux_2_34_aarch64.whl", hash = "sha256:582f5fcd2afa31622f317f80426a027f30dc792e9c80ffee87b993200ea115f1"},
{file = "cryptography-46.0.5-cp38-abi3-manylinux_2_34_ppc64le.whl", hash = "sha256:bfd56bb4b37ed4f330b82402f6f435845a5f5648edf1ad497da51a8452d5d62d"},
{file = "cryptography-46.0.5-cp38-abi3-manylinux_2_34_x86_64.whl", hash = "sha256:a3d507bb6a513ca96ba84443226af944b0f7f47dcc9a399d110cd6146481d24c"},
{file = "cryptography-46.0.5-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:9f16fbdf4da055efb21c22d81b89f155f02ba420558db21288b3d0035bafd5f4"},
{file = "cryptography-46.0.5-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:ced80795227d70549a411a4ab66e8ce307899fad2220ce5ab2f296e687eacde9"},
{file = "cryptography-46.0.5-cp38-abi3-win32.whl", hash = "sha256:02f547fce831f5096c9a567fd41bc12ca8f11df260959ecc7c3202555cc47a72"},
{file = "cryptography-46.0.5-cp38-abi3-win_amd64.whl", hash = "sha256:556e106ee01aa13484ce9b0239bca667be5004efb0aabbed28d353df86445595"},
{file = "cryptography-46.0.5-pp311-pypy311_pp73-macosx_11_0_arm64.whl", hash = "sha256:3b4995dc971c9fb83c25aa44cf45f02ba86f71ee600d81091c2f0cbae116b06c"},
{file = "cryptography-46.0.5-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:bc84e875994c3b445871ea7181d424588171efec3e185dced958dad9e001950a"},
{file = "cryptography-46.0.5-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:2ae6971afd6246710480e3f15824ed3029a60fc16991db250034efd0b9fb4356"},
{file = "cryptography-46.0.5-pp311-pypy311_pp73-manylinux_2_34_aarch64.whl", hash = "sha256:d861ee9e76ace6cf36a6a89b959ec08e7bc2493ee39d07ffe5acb23ef46d27da"},
{file = "cryptography-46.0.5-pp311-pypy311_pp73-manylinux_2_34_x86_64.whl", hash = "sha256:2b7a67c9cd56372f3249b39699f2ad479f6991e62ea15800973b956f4b73e257"},
{file = "cryptography-46.0.5-pp311-pypy311_pp73-win_amd64.whl", hash = "sha256:8456928655f856c6e1533ff59d5be76578a7157224dbd9ce6872f25055ab9ab7"},
{file = "cryptography-46.0.5.tar.gz", hash = "sha256:abace499247268e3757271b2f1e244b36b06f8515cf27c4d49468fc9eb16e93d"},
{file = "cryptography-46.0.4-cp311-abi3-macosx_10_9_universal2.whl", hash = "sha256:281526e865ed4166009e235afadf3a4c4cba6056f99336a99efba65336fd5485"},
{file = "cryptography-46.0.4-cp311-abi3-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:5f14fba5bf6f4390d7ff8f086c566454bff0411f6d8aa7af79c88b6f9267aecc"},
{file = "cryptography-46.0.4-cp311-abi3-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:47bcd19517e6389132f76e2d5303ded6cf3f78903da2158a671be8de024f4cd0"},
{file = "cryptography-46.0.4-cp311-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:01df4f50f314fbe7009f54046e908d1754f19d0c6d3070df1e6268c5a4af09fa"},
{file = "cryptography-46.0.4-cp311-abi3-manylinux_2_28_ppc64le.whl", hash = "sha256:5aa3e463596b0087b3da0dbe2b2487e9fc261d25da85754e30e3b40637d61f81"},
{file = "cryptography-46.0.4-cp311-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:0a9ad24359fee86f131836a9ac3bffc9329e956624a2d379b613f8f8abaf5255"},
{file = "cryptography-46.0.4-cp311-abi3-manylinux_2_31_armv7l.whl", hash = "sha256:dc1272e25ef673efe72f2096e92ae39dea1a1a450dd44918b15351f72c5a168e"},
{file = "cryptography-46.0.4-cp311-abi3-manylinux_2_34_aarch64.whl", hash = "sha256:de0f5f4ec8711ebc555f54735d4c673fc34b65c44283895f1a08c2b49d2fd99c"},
{file = "cryptography-46.0.4-cp311-abi3-manylinux_2_34_ppc64le.whl", hash = "sha256:eeeb2e33d8dbcccc34d64651f00a98cb41b2dc69cef866771a5717e6734dfa32"},
{file = "cryptography-46.0.4-cp311-abi3-manylinux_2_34_x86_64.whl", hash = "sha256:3d425eacbc9aceafd2cb429e42f4e5d5633c6f873f5e567077043ef1b9bbf616"},
{file = "cryptography-46.0.4-cp311-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:91627ebf691d1ea3976a031b61fb7bac1ccd745afa03602275dda443e11c8de0"},
{file = "cryptography-46.0.4-cp311-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:2d08bc22efd73e8854b0b7caff402d735b354862f1145d7be3b9c0f740fef6a0"},
{file = "cryptography-46.0.4-cp311-abi3-win32.whl", hash = "sha256:82a62483daf20b8134f6e92898da70d04d0ef9a75829d732ea1018678185f4f5"},
{file = "cryptography-46.0.4-cp311-abi3-win_amd64.whl", hash = "sha256:6225d3ebe26a55dbc8ead5ad1265c0403552a63336499564675b29eb3184c09b"},
{file = "cryptography-46.0.4-cp314-cp314t-macosx_10_9_universal2.whl", hash = "sha256:485e2b65d25ec0d901bca7bcae0f53b00133bf3173916d8e421f6fddde103908"},
{file = "cryptography-46.0.4-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:078e5f06bd2fa5aea5a324f2a09f914b1484f1d0c2a4d6a8a28c74e72f65f2da"},
{file = "cryptography-46.0.4-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:dce1e4f068f03008da7fa51cc7abc6ddc5e5de3e3d1550334eaf8393982a5829"},
{file = "cryptography-46.0.4-cp314-cp314t-manylinux_2_28_aarch64.whl", hash = "sha256:2067461c80271f422ee7bdbe79b9b4be54a5162e90345f86a23445a0cf3fd8a2"},
{file = "cryptography-46.0.4-cp314-cp314t-manylinux_2_28_ppc64le.whl", hash = "sha256:c92010b58a51196a5f41c3795190203ac52edfd5dc3ff99149b4659eba9d2085"},
{file = "cryptography-46.0.4-cp314-cp314t-manylinux_2_28_x86_64.whl", hash = "sha256:829c2b12bbc5428ab02d6b7f7e9bbfd53e33efd6672d21341f2177470171ad8b"},
{file = "cryptography-46.0.4-cp314-cp314t-manylinux_2_31_armv7l.whl", hash = "sha256:62217ba44bf81b30abaeda1488686a04a702a261e26f87db51ff61d9d3510abd"},
{file = "cryptography-46.0.4-cp314-cp314t-manylinux_2_34_aarch64.whl", hash = "sha256:9c2da296c8d3415b93e6053f5a728649a87a48ce084a9aaf51d6e46c87c7f2d2"},
{file = "cryptography-46.0.4-cp314-cp314t-manylinux_2_34_ppc64le.whl", hash = "sha256:9b34d8ba84454641a6bf4d6762d15847ecbd85c1316c0a7984e6e4e9f748ec2e"},
{file = "cryptography-46.0.4-cp314-cp314t-manylinux_2_34_x86_64.whl", hash = "sha256:df4a817fa7138dd0c96c8c8c20f04b8aaa1fac3bbf610913dcad8ea82e1bfd3f"},
{file = "cryptography-46.0.4-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:b1de0ebf7587f28f9190b9cb526e901bf448c9e6a99655d2b07fff60e8212a82"},
{file = "cryptography-46.0.4-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:9b4d17bc7bd7cdd98e3af40b441feaea4c68225e2eb2341026c84511ad246c0c"},
{file = "cryptography-46.0.4-cp314-cp314t-win32.whl", hash = "sha256:c411f16275b0dea722d76544a61d6421e2cc829ad76eec79280dbdc9ddf50061"},
{file = "cryptography-46.0.4-cp314-cp314t-win_amd64.whl", hash = "sha256:728fedc529efc1439eb6107b677f7f7558adab4553ef8669f0d02d42d7b959a7"},
{file = "cryptography-46.0.4-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:a9556ba711f7c23f77b151d5798f3ac44a13455cc68db7697a1096e6d0563cab"},
{file = "cryptography-46.0.4-cp38-abi3-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:8bf75b0259e87fa70bddc0b8b4078b76e7fd512fd9afae6c1193bcf440a4dbef"},
{file = "cryptography-46.0.4-cp38-abi3-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:3c268a3490df22270955966ba236d6bc4a8f9b6e4ffddb78aac535f1a5ea471d"},
{file = "cryptography-46.0.4-cp38-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:812815182f6a0c1d49a37893a303b44eaac827d7f0d582cecfc81b6427f22973"},
{file = "cryptography-46.0.4-cp38-abi3-manylinux_2_28_ppc64le.whl", hash = "sha256:a90e43e3ef65e6dcf969dfe3bb40cbf5aef0d523dff95bfa24256be172a845f4"},
{file = "cryptography-46.0.4-cp38-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:a05177ff6296644ef2876fce50518dffb5bcdf903c85250974fc8bc85d54c0af"},
{file = "cryptography-46.0.4-cp38-abi3-manylinux_2_31_armv7l.whl", hash = "sha256:daa392191f626d50f1b136c9b4cf08af69ca8279d110ea24f5c2700054d2e263"},
{file = "cryptography-46.0.4-cp38-abi3-manylinux_2_34_aarch64.whl", hash = "sha256:e07ea39c5b048e085f15923511d8121e4a9dc45cee4e3b970ca4f0d338f23095"},
{file = "cryptography-46.0.4-cp38-abi3-manylinux_2_34_ppc64le.whl", hash = "sha256:d5a45ddc256f492ce42a4e35879c5e5528c09cd9ad12420828c972951d8e016b"},
{file = "cryptography-46.0.4-cp38-abi3-manylinux_2_34_x86_64.whl", hash = "sha256:6bb5157bf6a350e5b28aee23beb2d84ae6f5be390b2f8ee7ea179cda077e1019"},
{file = "cryptography-46.0.4-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:dd5aba870a2c40f87a3af043e0dee7d9eb02d4aff88a797b48f2b43eff8c3ab4"},
{file = "cryptography-46.0.4-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:93d8291da8d71024379ab2cb0b5c57915300155ad42e07f76bea6ad838d7e59b"},
{file = "cryptography-46.0.4-cp38-abi3-win32.whl", hash = "sha256:0563655cb3c6d05fb2afe693340bc050c30f9f34e15763361cf08e94749401fc"},
{file = "cryptography-46.0.4-cp38-abi3-win_amd64.whl", hash = "sha256:fa0900b9ef9c49728887d1576fd8d9e7e3ea872fa9b25ef9b64888adc434e976"},
{file = "cryptography-46.0.4-pp311-pypy311_pp73-macosx_11_0_arm64.whl", hash = "sha256:766330cce7416c92b5e90c3bb71b1b79521760cdcfc3a6a1a182d4c9fab23d2b"},
{file = "cryptography-46.0.4-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:c236a44acfb610e70f6b3e1c3ca20ff24459659231ef2f8c48e879e2d32b73da"},
{file = "cryptography-46.0.4-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:8a15fb869670efa8f83cbffbc8753c1abf236883225aed74cd179b720ac9ec80"},
{file = "cryptography-46.0.4-pp311-pypy311_pp73-manylinux_2_34_aarch64.whl", hash = "sha256:fdc3daab53b212472f1524d070735b2f0c214239df131903bae1d598016fa822"},
{file = "cryptography-46.0.4-pp311-pypy311_pp73-manylinux_2_34_x86_64.whl", hash = "sha256:44cc0675b27cadb71bdbb96099cca1fa051cd11d2ade09e5cd3a2edb929ed947"},
{file = "cryptography-46.0.4-pp311-pypy311_pp73-win_amd64.whl", hash = "sha256:be8c01a7d5a55f9a47d1888162b76c8f49d62b234d88f0ff91a9fbebe32ffbc3"},
{file = "cryptography-46.0.4.tar.gz", hash = "sha256:bfd019f60f8abc2ed1b9be4ddc21cfef059c841d86d710bb69909a688cbb8f59"},
]
[package.dependencies]
@@ -516,7 +516,7 @@ nox = ["nox[uv] (>=2024.4.15)"]
pep8test = ["check-sdist", "click (>=8.0.1)", "mypy (>=1.14)", "ruff (>=0.11.11)"]
sdist = ["build (>=1.0.0)"]
ssh = ["bcrypt (>=3.1.5)"]
test = ["certifi (>=2024)", "cryptography-vectors (==46.0.5)", "pretend (>=0.7)", "pytest (>=7.4.0)", "pytest-benchmark (>=4.0)", "pytest-cov (>=2.10.1)", "pytest-xdist (>=3.5.0)"]
test = ["certifi (>=2024)", "cryptography-vectors (==46.0.4)", "pretend (>=0.7)", "pytest (>=7.4.0)", "pytest-benchmark (>=4.0)", "pytest-cov (>=2.10.1)", "pytest-xdist (>=3.5.0)"]
test-randomorder = ["pytest-randomly"]
[[package]]
@@ -570,25 +570,24 @@ tests = ["coverage", "coveralls", "dill", "mock", "nose"]
[[package]]
name = "fastapi"
version = "0.128.7"
version = "0.128.0"
description = "FastAPI framework, high performance, easy to learn, fast to code, ready for production"
optional = false
python-versions = ">=3.9"
groups = ["main"]
files = [
{file = "fastapi-0.128.7-py3-none-any.whl", hash = "sha256:6bd9bd31cb7047465f2d3fa3ba3f33b0870b17d4eaf7cdb36d1576ab060ad662"},
{file = "fastapi-0.128.7.tar.gz", hash = "sha256:783c273416995486c155ad2c0e2b45905dedfaf20b9ef8d9f6a9124670639a24"},
{file = "fastapi-0.128.0-py3-none-any.whl", hash = "sha256:aebd93f9716ee3b4f4fcfe13ffb7cf308d99c9f3ab5622d8877441072561582d"},
{file = "fastapi-0.128.0.tar.gz", hash = "sha256:1cc179e1cef10a6be60ffe429f79b829dce99d8de32d7acb7e6c8dfdf7f2645a"},
]
[package.dependencies]
annotated-doc = ">=0.0.2"
pydantic = ">=2.7.0"
starlette = ">=0.40.0,<1.0.0"
starlette = ">=0.40.0,<0.51.0"
typing-extensions = ">=4.8.0"
typing-inspection = ">=0.4.2"
[package.extras]
all = ["email-validator (>=2.0.0)", "fastapi-cli[standard] (>=0.0.8)", "httpx (>=0.23.0,<1.0.0)", "itsdangerous (>=1.1.0)", "jinja2 (>=3.1.5)", "orjson (>=3.9.3)", "pydantic-extra-types (>=2.0.0)", "pydantic-settings (>=2.0.0)", "python-multipart (>=0.0.18)", "pyyaml (>=5.3.1)", "ujson (>=5.8.0)", "uvicorn[standard] (>=0.12.0)"]
all = ["email-validator (>=2.0.0)", "fastapi-cli[standard] (>=0.0.8)", "httpx (>=0.23.0,<1.0.0)", "itsdangerous (>=1.1.0)", "jinja2 (>=3.1.5)", "orjson (>=3.2.1)", "pydantic-extra-types (>=2.0.0)", "pydantic-settings (>=2.0.0)", "python-multipart (>=0.0.18)", "pyyaml (>=5.3.1)", "ujson (>=4.0.1,!=4.0.2,!=4.1.0,!=4.2.0,!=4.3.0,!=5.0.0,!=5.1.0)", "uvicorn[standard] (>=0.12.0)"]
standard = ["email-validator (>=2.0.0)", "fastapi-cli[standard] (>=0.0.8)", "httpx (>=0.23.0,<1.0.0)", "jinja2 (>=3.1.5)", "pydantic-extra-types (>=2.0.0)", "pydantic-settings (>=2.0.0)", "python-multipart (>=0.0.18)", "uvicorn[standard] (>=0.12.0)"]
standard-no-fastapi-cloud-cli = ["email-validator (>=2.0.0)", "fastapi-cli[standard-no-fastapi-cloud-cli] (>=0.0.8)", "httpx (>=0.23.0,<1.0.0)", "jinja2 (>=3.1.5)", "pydantic-extra-types (>=2.0.0)", "pydantic-settings (>=2.0.0)", "python-multipart (>=0.0.18)", "uvicorn[standard] (>=0.12.0)"]
@@ -1063,14 +1062,14 @@ urllib3 = ">=1.26.0,<3"
[[package]]
name = "launchdarkly-server-sdk"
version = "9.15.0"
version = "9.14.1"
description = "LaunchDarkly SDK for Python"
optional = false
python-versions = ">=3.10"
python-versions = ">=3.9"
groups = ["main"]
files = [
{file = "launchdarkly_server_sdk-9.15.0-py3-none-any.whl", hash = "sha256:c267e29bfa3fb5e2a06a208448ada6ed5557a2924979b8d79c970b45d227c668"},
{file = "launchdarkly_server_sdk-9.15.0.tar.gz", hash = "sha256:f31441b74bc1a69c381db57c33116509e407a2612628ad6dff0a7dbb39d5020b"},
{file = "launchdarkly_server_sdk-9.14.1-py3-none-any.whl", hash = "sha256:a9e2bd9ecdef845cd631ae0d4334a1115e5b44257c42eb2349492be4bac7815c"},
{file = "launchdarkly_server_sdk-9.14.1.tar.gz", hash = "sha256:1df44baf0a0efa74d8c1dad7a00592b98bce7d19edded7f770da8dbc49922213"},
]
[package.dependencies]
@@ -1479,14 +1478,14 @@ testing = ["coverage", "pytest", "pytest-benchmark"]
[[package]]
name = "postgrest"
version = "2.28.0"
version = "2.27.2"
description = "PostgREST client for Python. This library provides an ORM interface to PostgREST."
optional = false
python-versions = ">=3.9"
groups = ["main"]
files = [
{file = "postgrest-2.28.0-py3-none-any.whl", hash = "sha256:7bca2f24dd1a1bf8a3d586c7482aba6cd41662da6733045fad585b63b7f7df75"},
{file = "postgrest-2.28.0.tar.gz", hash = "sha256:c36b38646d25ea4255321d3d924ce70f8d20ec7799cb42c1221d6a818d4f6515"},
{file = "postgrest-2.27.2-py3-none-any.whl", hash = "sha256:1666fef3de05ca097a314433dd5ae2f2d71c613cb7b233d0f468c4ffe37277da"},
{file = "postgrest-2.27.2.tar.gz", hash = "sha256:55407d530b5af3d64e883a71fec1f345d369958f723ce4a8ab0b7d169e313242"},
]
[package.dependencies]
@@ -2249,14 +2248,14 @@ cli = ["click (>=5.0)"]
[[package]]
name = "realtime"
version = "2.28.0"
version = "2.27.2"
description = ""
optional = false
python-versions = ">=3.9"
groups = ["main"]
files = [
{file = "realtime-2.28.0-py3-none-any.whl", hash = "sha256:db1bd59bab9b1fcc9f9d3b1a073bed35bf4994d720e6751f10031a58d57a3836"},
{file = "realtime-2.28.0.tar.gz", hash = "sha256:d18cedcebd6a8f22fcd509bc767f639761eb218b7b2b6f14fc4205b6259b50fc"},
{file = "realtime-2.27.2-py3-none-any.whl", hash = "sha256:34a9cbb26a274e707e8fc9e3ee0a66de944beac0fe604dc336d1e985db2c830f"},
{file = "realtime-2.27.2.tar.gz", hash = "sha256:b960a90294d2cea1b3f1275ecb89204304728e08fff1c393cc1b3150739556b3"},
]
[package.dependencies]
@@ -2437,14 +2436,14 @@ full = ["httpx (>=0.27.0,<0.29.0)", "itsdangerous", "jinja2", "python-multipart
[[package]]
name = "storage3"
version = "2.28.0"
version = "2.27.2"
description = "Supabase Storage client for Python."
optional = false
python-versions = ">=3.9"
groups = ["main"]
files = [
{file = "storage3-2.28.0-py3-none-any.whl", hash = "sha256:ecb50efd2ac71dabbdf97e99ad346eafa630c4c627a8e5a138ceb5fbbadae716"},
{file = "storage3-2.28.0.tar.gz", hash = "sha256:bc1d008aff67de7a0f2bd867baee7aadbcdb6f78f5a310b4f7a38e8c13c19865"},
{file = "storage3-2.27.2-py3-none-any.whl", hash = "sha256:e6f16e7a260729e7b1f46e9bf61746805a02e30f5e419ee1291007c432e3ec63"},
{file = "storage3-2.27.2.tar.gz", hash = "sha256:cb4807b7f86b4bb1272ac6fdd2f3cfd8ba577297046fa5f88557425200275af5"},
]
[package.dependencies]
@@ -2488,35 +2487,35 @@ python-dateutil = ">=2.6.0"
[[package]]
name = "supabase"
version = "2.28.0"
version = "2.27.2"
description = "Supabase client for Python."
optional = false
python-versions = ">=3.9"
groups = ["main"]
files = [
{file = "supabase-2.28.0-py3-none-any.whl", hash = "sha256:42776971c7d0ccca16034df1ab96a31c50228eb1eb19da4249ad2f756fc20272"},
{file = "supabase-2.28.0.tar.gz", hash = "sha256:aea299aaab2a2eed3c57e0be7fc035c6807214194cce795a3575add20268ece1"},
{file = "supabase-2.27.2-py3-none-any.whl", hash = "sha256:d4dce00b3a418ee578017ec577c0e5be47a9a636355009c76f20ed2faa15bc54"},
{file = "supabase-2.27.2.tar.gz", hash = "sha256:2aed40e4f3454438822442a1e94a47be6694c2c70392e7ae99b51a226d4293f7"},
]
[package.dependencies]
httpx = ">=0.26,<0.29"
postgrest = "2.28.0"
realtime = "2.28.0"
storage3 = "2.28.0"
supabase-auth = "2.28.0"
supabase-functions = "2.28.0"
postgrest = "2.27.2"
realtime = "2.27.2"
storage3 = "2.27.2"
supabase-auth = "2.27.2"
supabase-functions = "2.27.2"
yarl = ">=1.22.0"
[[package]]
name = "supabase-auth"
version = "2.28.0"
version = "2.27.2"
description = "Python Client Library for Supabase Auth"
optional = false
python-versions = ">=3.9"
groups = ["main"]
files = [
{file = "supabase_auth-2.28.0-py3-none-any.whl", hash = "sha256:2ac85026cc285054c7fa6d41924f3a333e9ec298c013e5b5e1754039ba7caec9"},
{file = "supabase_auth-2.28.0.tar.gz", hash = "sha256:2bb8f18ff39934e44b28f10918db965659f3735cd6fbfcc022fe0b82dbf8233e"},
{file = "supabase_auth-2.27.2-py3-none-any.whl", hash = "sha256:78ec25b11314d0a9527a7205f3b1c72560dccdc11b38392f80297ef98664ee91"},
{file = "supabase_auth-2.27.2.tar.gz", hash = "sha256:0f5bcc79b3677cb42e9d321f3c559070cfa40d6a29a67672cc8382fb7dc2fe97"},
]
[package.dependencies]
@@ -2526,14 +2525,14 @@ pyjwt = {version = ">=2.10.1", extras = ["crypto"]}
[[package]]
name = "supabase-functions"
version = "2.28.0"
version = "2.27.2"
description = "Library for Supabase Functions"
optional = false
python-versions = ">=3.9"
groups = ["main"]
files = [
{file = "supabase_functions-2.28.0-py3-none-any.whl", hash = "sha256:30bf2d586f8df285faf0621bb5d5bb3ec3157234fc820553ca156f009475e4ae"},
{file = "supabase_functions-2.28.0.tar.gz", hash = "sha256:db3dddfc37aca5858819eb461130968473bd8c75bd284581013958526dac718b"},
{file = "supabase_functions-2.27.2-py3-none-any.whl", hash = "sha256:db480efc669d0bca07605b9b6f167312af43121adcc842a111f79bea416ef754"},
{file = "supabase_functions-2.27.2.tar.gz", hash = "sha256:d0c8266207a94371cb3fd35ad3c7f025b78a97cf026861e04ccd35ac1775f80b"},
]
[package.dependencies]
@@ -2912,4 +2911,4 @@ type = ["pytest-mypy"]
[metadata]
lock-version = "2.1"
python-versions = ">=3.10,<4.0"
content-hash = "9619cae908ad38fa2c48016a58bcf4241f6f5793aa0e6cc140276e91c433cbbb"
content-hash = "40eae94995dc0a388fa832ed4af9b6137f28d5b5ced3aaea70d5f91d4d9a179d"

View File

@@ -11,14 +11,14 @@ python = ">=3.10,<4.0"
colorama = "^0.4.6"
cryptography = "^46.0"
expiringdict = "^1.2.2"
fastapi = "^0.128.7"
fastapi = "^0.128.0"
google-cloud-logging = "^3.13.0"
launchdarkly-server-sdk = "^9.15.0"
launchdarkly-server-sdk = "^9.14.1"
pydantic = "^2.12.5"
pydantic-settings = "^2.12.0"
pyjwt = { version = "^2.11.0", extras = ["crypto"] }
redis = "^6.2.0"
supabase = "^2.28.0"
supabase = "^2.27.2"
uvicorn = "^0.40.0"
[tool.poetry.group.dev.dependencies]

View File

@@ -1,5 +1,3 @@
# ============================ DEPENDENCY BUILDER ============================ #
FROM debian:13-slim AS builder
# Set environment variables
@@ -53,9 +51,7 @@ COPY autogpt_platform/backend/backend/data/partial_types.py ./backend/data/parti
COPY autogpt_platform/backend/gen_prisma_types_stub.py ./
RUN poetry run prisma generate && poetry run gen-prisma-stub
# ============================== BACKEND SERVER ============================== #
FROM debian:13-slim AS server
FROM debian:13-slim AS server_dependencies
WORKDIR /app
@@ -67,14 +63,15 @@ ENV POETRY_HOME=/opt/poetry \
ENV PATH=/opt/poetry/bin:$PATH
# Install Python, FFmpeg, and ImageMagick (required for video processing blocks)
# Using --no-install-recommends saves ~650MB by skipping unnecessary deps like llvm, mesa, etc.
RUN apt-get update && apt-get install -y --no-install-recommends \
RUN apt-get update && apt-get install -y \
python3.13 \
python3-pip \
ffmpeg \
imagemagick \
&& rm -rf /var/lib/apt/lists/*
# Copy only necessary files from builder
COPY --from=builder /app /app
COPY --from=builder /usr/local/lib/python3* /usr/local/lib/python3*
COPY --from=builder /usr/local/bin/poetry /usr/local/bin/poetry
# Copy Node.js installation for Prisma
@@ -84,54 +81,30 @@ COPY --from=builder /usr/bin/npm /usr/bin/npm
COPY --from=builder /usr/bin/npx /usr/bin/npx
COPY --from=builder /root/.cache/prisma-python/binaries /root/.cache/prisma-python/binaries
WORKDIR /app/autogpt_platform/backend
# Copy only the .venv from builder (not the entire /app directory)
# The .venv includes the generated Prisma client
COPY --from=builder /app/autogpt_platform/backend/.venv ./.venv
ENV PATH="/app/autogpt_platform/backend/.venv/bin:$PATH"
# Copy dependency files + autogpt_libs (path dependency)
COPY autogpt_platform/autogpt_libs /app/autogpt_platform/autogpt_libs
COPY autogpt_platform/backend/poetry.lock autogpt_platform/backend/pyproject.toml ./
RUN mkdir -p /app/autogpt_platform/autogpt_libs
RUN mkdir -p /app/autogpt_platform/backend
# Copy backend code + docs (for Copilot docs search)
COPY autogpt_platform/backend ./
COPY autogpt_platform/autogpt_libs /app/autogpt_platform/autogpt_libs
COPY autogpt_platform/backend/poetry.lock autogpt_platform/backend/pyproject.toml /app/autogpt_platform/backend/
WORKDIR /app/autogpt_platform/backend
FROM server_dependencies AS migrate
# Migration stage only needs schema and migrations - much lighter than full backend
COPY autogpt_platform/backend/schema.prisma /app/autogpt_platform/backend/
COPY autogpt_platform/backend/backend/data/partial_types.py /app/autogpt_platform/backend/backend/data/partial_types.py
COPY autogpt_platform/backend/migrations /app/autogpt_platform/backend/migrations
FROM server_dependencies AS server
COPY autogpt_platform/backend /app/autogpt_platform/backend
COPY docs /app/docs
RUN poetry install --no-ansi --only-root
ENV PORT=8000
CMD ["poetry", "run", "rest"]
# =============================== DB MIGRATOR =============================== #
# Lightweight migrate stage - only needs Prisma CLI, not full Python environment
FROM debian:13-slim AS migrate
WORKDIR /app/autogpt_platform/backend
ENV DEBIAN_FRONTEND=noninteractive
# Install only what's needed for prisma migrate: Node.js and minimal Python for prisma-python
RUN apt-get update && apt-get install -y --no-install-recommends \
python3.13 \
python3-pip \
ca-certificates \
&& rm -rf /var/lib/apt/lists/*
# Copy Node.js from builder (needed for Prisma CLI)
COPY --from=builder /usr/bin/node /usr/bin/node
COPY --from=builder /usr/lib/node_modules /usr/lib/node_modules
COPY --from=builder /usr/bin/npm /usr/bin/npm
# Copy Prisma binaries
COPY --from=builder /root/.cache/prisma-python/binaries /root/.cache/prisma-python/binaries
# Install prisma-client-py directly (much smaller than copying full venv)
RUN pip3 install prisma>=0.15.0 --break-system-packages
COPY autogpt_platform/backend/schema.prisma ./
COPY autogpt_platform/backend/backend/data/partial_types.py ./backend/data/partial_types.py
COPY autogpt_platform/backend/gen_prisma_types_stub.py ./
COPY autogpt_platform/backend/migrations ./migrations

View File

@@ -122,24 +122,6 @@ class ConnectionManager:
return len(connections)
async def broadcast_to_all(self, *, method: WSMethod, data: dict) -> int:
"""Broadcast a message to all active websocket connections."""
message = WSMessage(
method=method,
data=data,
).model_dump_json()
connections = tuple(self.active_connections)
if not connections:
return 0
await asyncio.gather(
*(connection.send_text(message) for connection in connections),
return_exceptions=True,
)
return len(connections)
async def _subscribe(self, channel_key: str, websocket: WebSocket) -> str:
if channel_key not in self.subscriptions:
self.subscriptions[channel_key] = set()

View File

@@ -10,7 +10,7 @@ from typing_extensions import TypedDict
import backend.api.features.store.cache as store_cache
import backend.api.features.store.model as store_model
import backend.blocks
import backend.data.block
from backend.api.external.middleware import require_permission
from backend.data import execution as execution_db
from backend.data import graph as graph_db
@@ -67,7 +67,7 @@ async def get_user_info(
dependencies=[Security(require_permission(APIKeyPermission.READ_BLOCK))],
)
async def get_graph_blocks() -> Sequence[dict[Any, Any]]:
blocks = [block() for block in backend.blocks.get_blocks().values()]
blocks = [block() for block in backend.data.block.get_blocks().values()]
return [b.to_dict() for b in blocks if not b.disabled]
@@ -83,7 +83,7 @@ async def execute_graph_block(
require_permission(APIKeyPermission.EXECUTE_BLOCK)
),
) -> CompletedBlockOutput:
obj = backend.blocks.get_block(block_id)
obj = backend.data.block.get_block(block_id)
if not obj:
raise HTTPException(status_code=404, detail=f"Block #{block_id} not found.")
if obj.disabled:

View File

@@ -176,64 +176,30 @@ async def get_execution_analytics_config(
# Return with provider prefix for clarity
return f"{provider_name}: {model_name}"
# Get all models from the registry (dynamic, not hardcoded enum)
from backend.data import llm_registry
from backend.server.v2.llm import db as llm_db
# Get the recommended model from the database (configurable via admin UI)
recommended_model_slug = await llm_db.get_recommended_model_slug()
# Build the available models list
first_enabled_slug = None
for registry_model in llm_registry.iter_dynamic_models():
# Only include enabled models in the list
if not registry_model.is_enabled:
continue
# Track first enabled model as fallback
if first_enabled_slug is None:
first_enabled_slug = registry_model.slug
model = LlmModel(registry_model.slug)
# Include all LlmModel values (no more filtering by hardcoded list)
recommended_model = LlmModel.GPT4O_MINI.value
for model in LlmModel:
label = generate_model_label(model)
# Add "(Recommended)" suffix to the recommended model
if registry_model.slug == recommended_model_slug:
if model.value == recommended_model:
label += " (Recommended)"
available_models.append(
ModelInfo(
value=registry_model.slug,
value=model.value,
label=label,
provider=registry_model.metadata.provider,
provider=model.provider,
)
)
# Sort models by provider and name for better UX
available_models.sort(key=lambda x: (x.provider, x.label))
# Handle case where no models are available
if not available_models:
logger.warning(
"No enabled LLM models found in registry. "
"Ensure models are configured and enabled in the LLM Registry."
)
# Provide a placeholder entry so admins see meaningful feedback
available_models.append(
ModelInfo(
value="",
label="No models available - configure in LLM Registry",
provider="none",
)
)
# Use the DB recommended model, or fallback to first enabled model
final_recommended = recommended_model_slug or first_enabled_slug or ""
return ExecutionAnalyticsConfig(
available_models=available_models,
default_system_prompt=DEFAULT_SYSTEM_PROMPT,
default_user_prompt=DEFAULT_USER_PROMPT,
recommended_model=final_recommended,
recommended_model=recommended_model,
)

View File

@@ -1,593 +0,0 @@
import logging
import autogpt_libs.auth
import fastapi
from backend.data import llm_registry
from backend.data.block_cost_config import refresh_llm_costs
from backend.server.v2.llm import db as llm_db
from backend.server.v2.llm import model as llm_model
logger = logging.getLogger(__name__)
router = fastapi.APIRouter(
tags=["llm", "admin"],
dependencies=[fastapi.Security(autogpt_libs.auth.requires_admin_user)],
)
async def _refresh_runtime_state() -> None:
"""Refresh the LLM registry and clear all related caches to ensure real-time updates."""
logger.info("Refreshing LLM registry runtime state...")
try:
# Refresh registry from database
await llm_registry.refresh_llm_registry()
await refresh_llm_costs()
# Clear block schema caches so they're regenerated with updated model options
from backend.blocks._base import BlockSchema
BlockSchema.clear_all_schema_caches()
logger.info("Cleared all block schema caches")
# Clear the /blocks endpoint cache so frontend gets updated schemas
try:
from backend.api.features.v1 import _get_cached_blocks
_get_cached_blocks.cache_clear()
logger.info("Cleared /blocks endpoint cache")
except Exception as e:
logger.warning("Failed to clear /blocks cache: %s", e)
# Clear the v2 builder caches
try:
from backend.api.features.builder import db as builder_db
builder_db._get_all_providers.cache_clear()
logger.info("Cleared v2 builder providers cache")
builder_db._build_cached_search_results.cache_clear()
logger.info("Cleared v2 builder search results cache")
except Exception as e:
logger.debug("Could not clear v2 builder cache: %s", e)
# Notify all executor services to refresh their registry cache
from backend.data.llm_registry import publish_registry_refresh_notification
await publish_registry_refresh_notification()
logger.info("Published registry refresh notification")
except Exception as exc:
logger.exception(
"LLM runtime state refresh failed; caches may be stale: %s", exc
)
@router.get(
"/providers",
summary="List LLM providers",
response_model=llm_model.LlmProvidersResponse,
)
async def list_llm_providers(include_models: bool = True):
providers = await llm_db.list_providers(include_models=include_models)
return llm_model.LlmProvidersResponse(providers=providers)
@router.post(
"/providers",
summary="Create LLM provider",
response_model=llm_model.LlmProvider,
)
async def create_llm_provider(request: llm_model.UpsertLlmProviderRequest):
provider = await llm_db.upsert_provider(request=request)
await _refresh_runtime_state()
return provider
@router.patch(
"/providers/{provider_id}",
summary="Update LLM provider",
response_model=llm_model.LlmProvider,
)
async def update_llm_provider(
provider_id: str,
request: llm_model.UpsertLlmProviderRequest,
):
provider = await llm_db.upsert_provider(request=request, provider_id=provider_id)
await _refresh_runtime_state()
return provider
@router.delete(
"/providers/{provider_id}",
summary="Delete LLM provider",
response_model=dict,
)
async def delete_llm_provider(provider_id: str):
"""
Delete an LLM provider.
A provider can only be deleted if it has no associated models.
Delete all models from the provider first before deleting the provider.
"""
try:
await llm_db.delete_provider(provider_id)
await _refresh_runtime_state()
logger.info("Deleted LLM provider '%s'", provider_id)
return {"success": True, "message": "Provider deleted successfully"}
except ValueError as e:
logger.warning("Failed to delete provider '%s': %s", provider_id, e)
raise fastapi.HTTPException(status_code=400, detail=str(e))
except Exception as e:
logger.exception("Failed to delete provider '%s': %s", provider_id, e)
raise fastapi.HTTPException(status_code=500, detail=str(e))
@router.get(
"/models",
summary="List LLM models",
response_model=llm_model.LlmModelsResponse,
)
async def list_llm_models(
provider_id: str | None = fastapi.Query(default=None),
page: int = fastapi.Query(default=1, ge=1, description="Page number (1-indexed)"),
page_size: int = fastapi.Query(
default=50, ge=1, le=100, description="Number of models per page"
),
):
return await llm_db.list_models(
provider_id=provider_id, page=page, page_size=page_size
)
@router.post(
"/models",
summary="Create LLM model",
response_model=llm_model.LlmModel,
)
async def create_llm_model(request: llm_model.CreateLlmModelRequest):
model = await llm_db.create_model(request=request)
await _refresh_runtime_state()
return model
@router.patch(
"/models/{model_id}",
summary="Update LLM model",
response_model=llm_model.LlmModel,
)
async def update_llm_model(
model_id: str,
request: llm_model.UpdateLlmModelRequest,
):
model = await llm_db.update_model(model_id=model_id, request=request)
await _refresh_runtime_state()
return model
@router.patch(
"/models/{model_id}/toggle",
summary="Toggle LLM model availability",
response_model=llm_model.ToggleLlmModelResponse,
)
async def toggle_llm_model(
model_id: str,
request: llm_model.ToggleLlmModelRequest,
):
"""
Toggle a model's enabled status, optionally migrating workflows when disabling.
If disabling a model and `migrate_to_slug` is provided, all workflows using
this model will be migrated to the specified replacement model before disabling.
A migration record is created which can be reverted later using the revert endpoint.
Optional fields:
- `migration_reason`: Reason for the migration (e.g., "Provider outage")
- `custom_credit_cost`: Custom pricing override for billing during migration
"""
try:
result = await llm_db.toggle_model(
model_id=model_id,
is_enabled=request.is_enabled,
migrate_to_slug=request.migrate_to_slug,
migration_reason=request.migration_reason,
custom_credit_cost=request.custom_credit_cost,
)
await _refresh_runtime_state()
if result.nodes_migrated > 0:
logger.info(
"Toggled model '%s' to %s and migrated %d nodes to '%s' (migration_id=%s)",
result.model.slug,
"enabled" if request.is_enabled else "disabled",
result.nodes_migrated,
result.migrated_to_slug,
result.migration_id,
)
return result
except ValueError as exc:
logger.warning("Model toggle validation failed: %s", exc)
raise fastapi.HTTPException(status_code=400, detail=str(exc)) from exc
except Exception as exc:
logger.exception("Failed to toggle LLM model %s: %s", model_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to toggle model availability",
) from exc
@router.get(
"/models/{model_id}/usage",
summary="Get model usage count",
response_model=llm_model.LlmModelUsageResponse,
)
async def get_llm_model_usage(model_id: str):
"""Get the number of workflow nodes using this model."""
try:
return await llm_db.get_model_usage(model_id=model_id)
except ValueError as exc:
raise fastapi.HTTPException(status_code=404, detail=str(exc)) from exc
except Exception as exc:
logger.exception("Failed to get model usage %s: %s", model_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to get model usage",
) from exc
@router.delete(
"/models/{model_id}",
summary="Delete LLM model and migrate workflows",
response_model=llm_model.DeleteLlmModelResponse,
)
async def delete_llm_model(
model_id: str,
replacement_model_slug: str | None = fastapi.Query(
default=None,
description="Slug of the model to migrate existing workflows to (required only if workflows use this model)",
),
):
"""
Delete a model and optionally migrate workflows using it to a replacement model.
If no workflows are using this model, it can be deleted without providing a
replacement. If workflows exist, replacement_model_slug is required.
This endpoint:
1. Counts how many workflow nodes use the model being deleted
2. If nodes exist, validates the replacement model and migrates them
3. Deletes the model record
4. Refreshes all caches and notifies executors
Example: DELETE /api/llm/admin/models/{id}?replacement_model_slug=gpt-4o
Example (no usage): DELETE /api/llm/admin/models/{id}
"""
try:
result = await llm_db.delete_model(
model_id=model_id, replacement_model_slug=replacement_model_slug
)
await _refresh_runtime_state()
logger.info(
"Deleted model '%s' and migrated %d nodes to '%s'",
result.deleted_model_slug,
result.nodes_migrated,
result.replacement_model_slug,
)
return result
except ValueError as exc:
# Validation errors (model not found, replacement invalid, etc.)
logger.warning("Model deletion validation failed: %s", exc)
raise fastapi.HTTPException(status_code=400, detail=str(exc)) from exc
except Exception as exc:
logger.exception("Failed to delete LLM model %s: %s", model_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to delete model and migrate workflows",
) from exc
# ============================================================================
# Migration Management Endpoints
# ============================================================================
@router.get(
"/migrations",
summary="List model migrations",
response_model=llm_model.LlmMigrationsResponse,
)
async def list_llm_migrations(
include_reverted: bool = fastapi.Query(
default=False, description="Include reverted migrations in the list"
),
):
"""
List all model migrations.
Migrations are created when disabling a model with the migrate_to_slug option.
They can be reverted to restore the original model configuration.
"""
try:
migrations = await llm_db.list_migrations(include_reverted=include_reverted)
return llm_model.LlmMigrationsResponse(migrations=migrations)
except Exception as exc:
logger.exception("Failed to list migrations: %s", exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to list migrations",
) from exc
@router.get(
"/migrations/{migration_id}",
summary="Get migration details",
response_model=llm_model.LlmModelMigration,
)
async def get_llm_migration(migration_id: str):
"""Get details of a specific migration."""
try:
migration = await llm_db.get_migration(migration_id)
if not migration:
raise fastapi.HTTPException(
status_code=404, detail=f"Migration '{migration_id}' not found"
)
return migration
except fastapi.HTTPException:
raise
except Exception as exc:
logger.exception("Failed to get migration %s: %s", migration_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to get migration",
) from exc
@router.post(
"/migrations/{migration_id}/revert",
summary="Revert a model migration",
response_model=llm_model.RevertMigrationResponse,
)
async def revert_llm_migration(
migration_id: str,
request: llm_model.RevertMigrationRequest | None = None,
):
"""
Revert a model migration, restoring affected workflows to their original model.
This only reverts the specific nodes that were part of the migration.
The source model must exist for the revert to succeed.
Options:
- `re_enable_source_model`: Whether to re-enable the source model if disabled (default: True)
Response includes:
- `nodes_reverted`: Number of nodes successfully reverted
- `nodes_already_changed`: Number of nodes that were modified since migration (not reverted)
- `source_model_re_enabled`: Whether the source model was re-enabled
Requirements:
- Migration must not already be reverted
- Source model must exist
"""
try:
re_enable = request.re_enable_source_model if request else True
result = await llm_db.revert_migration(
migration_id,
re_enable_source_model=re_enable,
)
await _refresh_runtime_state()
logger.info(
"Reverted migration '%s': %d nodes restored from '%s' to '%s' "
"(%d already changed, source re-enabled=%s)",
migration_id,
result.nodes_reverted,
result.target_model_slug,
result.source_model_slug,
result.nodes_already_changed,
result.source_model_re_enabled,
)
return result
except ValueError as exc:
logger.warning("Migration revert validation failed: %s", exc)
raise fastapi.HTTPException(status_code=400, detail=str(exc)) from exc
except Exception as exc:
logger.exception("Failed to revert migration %s: %s", migration_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to revert migration",
) from exc
# ============================================================================
# Creator Management Endpoints
# ============================================================================
@router.get(
"/creators",
summary="List model creators",
response_model=llm_model.LlmCreatorsResponse,
)
async def list_llm_creators():
"""
List all model creators.
Creators are organizations that create/train models (e.g., OpenAI, Meta, Anthropic).
This is distinct from providers who host/serve the models (e.g., OpenRouter).
"""
try:
creators = await llm_db.list_creators()
return llm_model.LlmCreatorsResponse(creators=creators)
except Exception as exc:
logger.exception("Failed to list creators: %s", exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to list creators",
) from exc
@router.get(
"/creators/{creator_id}",
summary="Get creator details",
response_model=llm_model.LlmModelCreator,
)
async def get_llm_creator(creator_id: str):
"""Get details of a specific model creator."""
try:
creator = await llm_db.get_creator(creator_id)
if not creator:
raise fastapi.HTTPException(
status_code=404, detail=f"Creator '{creator_id}' not found"
)
return creator
except fastapi.HTTPException:
raise
except Exception as exc:
logger.exception("Failed to get creator %s: %s", creator_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to get creator",
) from exc
@router.post(
"/creators",
summary="Create model creator",
response_model=llm_model.LlmModelCreator,
)
async def create_llm_creator(request: llm_model.UpsertLlmCreatorRequest):
"""
Create a new model creator.
A creator represents an organization that creates/trains AI models,
such as OpenAI, Anthropic, Meta, or Google.
"""
try:
creator = await llm_db.upsert_creator(request=request)
await _refresh_runtime_state()
logger.info("Created model creator '%s' (%s)", creator.display_name, creator.id)
return creator
except Exception as exc:
logger.exception("Failed to create creator: %s", exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to create creator",
) from exc
@router.patch(
"/creators/{creator_id}",
summary="Update model creator",
response_model=llm_model.LlmModelCreator,
)
async def update_llm_creator(
creator_id: str,
request: llm_model.UpsertLlmCreatorRequest,
):
"""Update an existing model creator."""
try:
creator = await llm_db.upsert_creator(request=request, creator_id=creator_id)
await _refresh_runtime_state()
logger.info("Updated model creator '%s' (%s)", creator.display_name, creator_id)
return creator
except Exception as exc:
logger.exception("Failed to update creator %s: %s", creator_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to update creator",
) from exc
@router.delete(
"/creators/{creator_id}",
summary="Delete model creator",
response_model=dict,
)
async def delete_llm_creator(creator_id: str):
"""
Delete a model creator.
This will remove the creator association from all models that reference it
(sets creatorId to NULL), but will not delete the models themselves.
"""
try:
await llm_db.delete_creator(creator_id)
await _refresh_runtime_state()
logger.info("Deleted model creator '%s'", creator_id)
return {"success": True, "message": f"Creator '{creator_id}' deleted"}
except ValueError as exc:
logger.warning("Creator deletion validation failed: %s", exc)
raise fastapi.HTTPException(status_code=404, detail=str(exc)) from exc
except Exception as exc:
logger.exception("Failed to delete creator %s: %s", creator_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to delete creator",
) from exc
# ============================================================================
# Recommended Model Endpoints
# ============================================================================
@router.get(
"/recommended-model",
summary="Get recommended model",
response_model=llm_model.RecommendedModelResponse,
)
async def get_recommended_model():
"""
Get the currently recommended LLM model.
The recommended model is shown to users as the default/suggested option
in model selection dropdowns.
"""
try:
model = await llm_db.get_recommended_model()
return llm_model.RecommendedModelResponse(
model=model,
slug=model.slug if model else None,
)
except Exception as exc:
logger.exception("Failed to get recommended model: %s", exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to get recommended model",
) from exc
@router.post(
"/recommended-model",
summary="Set recommended model",
response_model=llm_model.SetRecommendedModelResponse,
)
async def set_recommended_model(request: llm_model.SetRecommendedModelRequest):
"""
Set a model as the recommended model.
This clears the recommended flag from any other model and sets it on
the specified model. The model must be enabled to be set as recommended.
The recommended model is displayed to users as the default/suggested
option in model selection dropdowns throughout the platform.
"""
try:
model, previous_slug = await llm_db.set_recommended_model(request.model_id)
await _refresh_runtime_state()
logger.info(
"Set recommended model to '%s' (previous: %s)",
model.slug,
previous_slug or "none",
)
return llm_model.SetRecommendedModelResponse(
model=model,
previous_recommended_slug=previous_slug,
message=f"Model '{model.display_name}' is now the recommended model",
)
except ValueError as exc:
logger.warning("Set recommended model validation failed: %s", exc)
raise fastapi.HTTPException(status_code=400, detail=str(exc)) from exc
except Exception as exc:
logger.exception("Failed to set recommended model: %s", exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to set recommended model",
) from exc

View File

@@ -1,491 +0,0 @@
import json
from unittest.mock import AsyncMock
import fastapi
import fastapi.testclient
import pytest
import pytest_mock
from autogpt_libs.auth.jwt_utils import get_jwt_payload
from pytest_snapshot.plugin import Snapshot
import backend.api.features.admin.llm_routes as llm_routes
from backend.server.v2.llm import model as llm_model
from backend.util.models import Pagination
app = fastapi.FastAPI()
app.include_router(llm_routes.router, prefix="/admin/llm")
client = fastapi.testclient.TestClient(app)
@pytest.fixture(autouse=True)
def setup_app_admin_auth(mock_jwt_admin):
"""Setup admin auth overrides for all tests in this module"""
app.dependency_overrides[get_jwt_payload] = mock_jwt_admin["get_jwt_payload"]
yield
app.dependency_overrides.clear()
def test_list_llm_providers_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful listing of LLM providers"""
# Mock the database function
mock_providers = [
{
"id": "provider-1",
"name": "openai",
"display_name": "OpenAI",
"description": "OpenAI LLM provider",
"supports_tools": True,
"supports_json_output": True,
"supports_reasoning": False,
"supports_parallel_tool": True,
"metadata": {},
"models": [],
},
{
"id": "provider-2",
"name": "anthropic",
"display_name": "Anthropic",
"description": "Anthropic LLM provider",
"supports_tools": True,
"supports_json_output": True,
"supports_reasoning": False,
"supports_parallel_tool": True,
"metadata": {},
"models": [],
},
]
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.list_providers",
new=AsyncMock(return_value=mock_providers),
)
response = client.get("/admin/llm/providers")
assert response.status_code == 200
response_data = response.json()
assert len(response_data["providers"]) == 2
assert response_data["providers"][0]["name"] == "openai"
# Snapshot test the response (must be string)
configured_snapshot.assert_match(
json.dumps(response_data, indent=2, sort_keys=True),
"list_llm_providers_success.json",
)
def test_list_llm_models_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful listing of LLM models with pagination"""
# Mock the database function - now returns LlmModelsResponse
mock_model = llm_model.LlmModel(
id="model-1",
slug="gpt-4o",
display_name="GPT-4o",
description="GPT-4 Optimized",
provider_id="provider-1",
context_window=128000,
max_output_tokens=16384,
is_enabled=True,
capabilities={},
metadata={},
costs=[
llm_model.LlmModelCost(
id="cost-1",
credit_cost=10,
credential_provider="openai",
metadata={},
)
],
)
mock_response = llm_model.LlmModelsResponse(
models=[mock_model],
pagination=Pagination(
total_items=1,
total_pages=1,
current_page=1,
page_size=50,
),
)
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.list_models",
new=AsyncMock(return_value=mock_response),
)
response = client.get("/admin/llm/models")
assert response.status_code == 200
response_data = response.json()
assert len(response_data["models"]) == 1
assert response_data["models"][0]["slug"] == "gpt-4o"
assert response_data["pagination"]["total_items"] == 1
assert response_data["pagination"]["page_size"] == 50
# Snapshot test the response (must be string)
configured_snapshot.assert_match(
json.dumps(response_data, indent=2, sort_keys=True),
"list_llm_models_success.json",
)
def test_create_llm_provider_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful creation of LLM provider"""
mock_provider = {
"id": "new-provider-id",
"name": "groq",
"display_name": "Groq",
"description": "Groq LLM provider",
"supports_tools": True,
"supports_json_output": True,
"supports_reasoning": False,
"supports_parallel_tool": False,
"metadata": {},
}
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.upsert_provider",
new=AsyncMock(return_value=mock_provider),
)
mock_refresh = mocker.patch(
"backend.api.features.admin.llm_routes._refresh_runtime_state",
new=AsyncMock(),
)
request_data = {
"name": "groq",
"display_name": "Groq",
"description": "Groq LLM provider",
"supports_tools": True,
"supports_json_output": True,
"supports_reasoning": False,
"supports_parallel_tool": False,
"metadata": {},
}
response = client.post("/admin/llm/providers", json=request_data)
assert response.status_code == 200
response_data = response.json()
assert response_data["name"] == "groq"
assert response_data["display_name"] == "Groq"
# Verify refresh was called
mock_refresh.assert_called_once()
# Snapshot test the response (must be string)
configured_snapshot.assert_match(
json.dumps(response_data, indent=2, sort_keys=True),
"create_llm_provider_success.json",
)
def test_create_llm_model_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful creation of LLM model"""
mock_model = {
"id": "new-model-id",
"slug": "gpt-4.1-mini",
"display_name": "GPT-4.1 Mini",
"description": "Latest GPT-4.1 Mini model",
"provider_id": "provider-1",
"context_window": 128000,
"max_output_tokens": 16384,
"is_enabled": True,
"capabilities": {},
"metadata": {},
"costs": [
{
"id": "cost-id",
"credit_cost": 5,
"credential_provider": "openai",
"metadata": {},
}
],
}
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.create_model",
new=AsyncMock(return_value=mock_model),
)
mock_refresh = mocker.patch(
"backend.api.features.admin.llm_routes._refresh_runtime_state",
new=AsyncMock(),
)
request_data = {
"slug": "gpt-4.1-mini",
"display_name": "GPT-4.1 Mini",
"description": "Latest GPT-4.1 Mini model",
"provider_id": "provider-1",
"context_window": 128000,
"max_output_tokens": 16384,
"is_enabled": True,
"capabilities": {},
"metadata": {},
"costs": [
{
"credit_cost": 5,
"credential_provider": "openai",
"metadata": {},
}
],
}
response = client.post("/admin/llm/models", json=request_data)
assert response.status_code == 200
response_data = response.json()
assert response_data["slug"] == "gpt-4.1-mini"
assert response_data["is_enabled"] is True
# Verify refresh was called
mock_refresh.assert_called_once()
# Snapshot test the response (must be string)
configured_snapshot.assert_match(
json.dumps(response_data, indent=2, sort_keys=True),
"create_llm_model_success.json",
)
def test_update_llm_model_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful update of LLM model"""
mock_model = {
"id": "model-1",
"slug": "gpt-4o",
"display_name": "GPT-4o Updated",
"description": "Updated description",
"provider_id": "provider-1",
"context_window": 256000,
"max_output_tokens": 32768,
"is_enabled": True,
"capabilities": {},
"metadata": {},
"costs": [
{
"id": "cost-1",
"credit_cost": 15,
"credential_provider": "openai",
"metadata": {},
}
],
}
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.update_model",
new=AsyncMock(return_value=mock_model),
)
mock_refresh = mocker.patch(
"backend.api.features.admin.llm_routes._refresh_runtime_state",
new=AsyncMock(),
)
request_data = {
"display_name": "GPT-4o Updated",
"description": "Updated description",
"context_window": 256000,
"max_output_tokens": 32768,
}
response = client.patch("/admin/llm/models/model-1", json=request_data)
assert response.status_code == 200
response_data = response.json()
assert response_data["display_name"] == "GPT-4o Updated"
assert response_data["context_window"] == 256000
# Verify refresh was called
mock_refresh.assert_called_once()
# Snapshot test the response (must be string)
configured_snapshot.assert_match(
json.dumps(response_data, indent=2, sort_keys=True),
"update_llm_model_success.json",
)
def test_toggle_llm_model_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful toggling of LLM model enabled status"""
# Create a proper mock model object
mock_model = llm_model.LlmModel(
id="model-1",
slug="gpt-4o",
display_name="GPT-4o",
description="GPT-4 Optimized",
provider_id="provider-1",
context_window=128000,
max_output_tokens=16384,
is_enabled=False,
capabilities={},
metadata={},
costs=[],
)
# Create a proper ToggleLlmModelResponse
mock_response = llm_model.ToggleLlmModelResponse(
model=mock_model,
nodes_migrated=0,
migrated_to_slug=None,
migration_id=None,
)
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.toggle_model",
new=AsyncMock(return_value=mock_response),
)
mock_refresh = mocker.patch(
"backend.api.features.admin.llm_routes._refresh_runtime_state",
new=AsyncMock(),
)
request_data = {"is_enabled": False}
response = client.patch("/admin/llm/models/model-1/toggle", json=request_data)
assert response.status_code == 200
response_data = response.json()
assert response_data["model"]["is_enabled"] is False
# Verify refresh was called
mock_refresh.assert_called_once()
# Snapshot test the response (must be string)
configured_snapshot.assert_match(
json.dumps(response_data, indent=2, sort_keys=True),
"toggle_llm_model_success.json",
)
def test_delete_llm_model_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful deletion of LLM model with migration"""
# Create a proper DeleteLlmModelResponse
mock_response = llm_model.DeleteLlmModelResponse(
deleted_model_slug="gpt-3.5-turbo",
deleted_model_display_name="GPT-3.5 Turbo",
replacement_model_slug="gpt-4o-mini",
nodes_migrated=42,
message="Successfully deleted model 'GPT-3.5 Turbo' (gpt-3.5-turbo) "
"and migrated 42 workflow node(s) to 'gpt-4o-mini'.",
)
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.delete_model",
new=AsyncMock(return_value=mock_response),
)
mock_refresh = mocker.patch(
"backend.api.features.admin.llm_routes._refresh_runtime_state",
new=AsyncMock(),
)
response = client.delete(
"/admin/llm/models/model-1?replacement_model_slug=gpt-4o-mini"
)
assert response.status_code == 200
response_data = response.json()
assert response_data["deleted_model_slug"] == "gpt-3.5-turbo"
assert response_data["nodes_migrated"] == 42
assert response_data["replacement_model_slug"] == "gpt-4o-mini"
# Verify refresh was called
mock_refresh.assert_called_once()
# Snapshot test the response (must be string)
configured_snapshot.assert_match(
json.dumps(response_data, indent=2, sort_keys=True),
"delete_llm_model_success.json",
)
def test_delete_llm_model_validation_error(
mocker: pytest_mock.MockFixture,
) -> None:
"""Test deletion fails with proper error when validation fails"""
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.delete_model",
new=AsyncMock(side_effect=ValueError("Replacement model 'invalid' not found")),
)
response = client.delete("/admin/llm/models/model-1?replacement_model_slug=invalid")
assert response.status_code == 400
assert "Replacement model 'invalid' not found" in response.json()["detail"]
def test_delete_llm_model_no_replacement_with_usage(
mocker: pytest_mock.MockFixture,
) -> None:
"""Test deletion fails when nodes exist but no replacement is provided"""
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.delete_model",
new=AsyncMock(
side_effect=ValueError(
"Cannot delete model 'test-model': 5 workflow node(s) are using it. "
"Please provide a replacement_model_slug to migrate them."
)
),
)
response = client.delete("/admin/llm/models/model-1")
assert response.status_code == 400
assert "workflow node(s) are using it" in response.json()["detail"]
def test_delete_llm_model_no_replacement_no_usage(
mocker: pytest_mock.MockFixture,
) -> None:
"""Test deletion succeeds when no nodes use the model and no replacement is provided"""
mock_response = llm_model.DeleteLlmModelResponse(
deleted_model_slug="unused-model",
deleted_model_display_name="Unused Model",
replacement_model_slug=None,
nodes_migrated=0,
message="Successfully deleted model 'Unused Model' (unused-model). No workflows were using this model.",
)
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.delete_model",
new=AsyncMock(return_value=mock_response),
)
mock_refresh = mocker.patch(
"backend.api.features.admin.llm_routes._refresh_runtime_state",
new=AsyncMock(),
)
response = client.delete("/admin/llm/models/model-1")
assert response.status_code == 200
response_data = response.json()
assert response_data["deleted_model_slug"] == "unused-model"
assert response_data["nodes_migrated"] == 0
assert response_data["replacement_model_slug"] is None
mock_refresh.assert_called_once()

View File

@@ -10,17 +10,11 @@ import backend.api.features.library.db as library_db
import backend.api.features.library.model as library_model
import backend.api.features.store.db as store_db
import backend.api.features.store.model as store_model
import backend.data.block
from backend.blocks import load_all_blocks
from backend.blocks._base import (
AnyBlockSchema,
BlockCategory,
BlockInfo,
BlockSchema,
BlockType,
)
from backend.blocks.llm import LlmModel
from backend.data.block import AnyBlockSchema, BlockCategory, BlockInfo, BlockSchema
from backend.data.db import query_raw_with_schema
from backend.data.llm_registry import get_all_model_slugs_for_validation
from backend.integrations.providers import ProviderName
from backend.util.cache import cached
from backend.util.models import Pagination
@@ -28,7 +22,7 @@ from backend.util.models import Pagination
from .model import (
BlockCategoryResponse,
BlockResponse,
BlockTypeFilter,
BlockType,
CountResponse,
FilterType,
Provider,
@@ -37,14 +31,7 @@ from .model import (
)
logger = logging.getLogger(__name__)
def _get_llm_models() -> list[str]:
"""Get LLM model names for search matching from the registry."""
return [
slug.lower().replace("-", " ") for slug in get_all_model_slugs_for_validation()
]
llm_models = [name.name.lower().replace("_", " ") for name in LlmModel]
MAX_LIBRARY_AGENT_RESULTS = 100
MAX_MARKETPLACE_AGENT_RESULTS = 100
@@ -101,7 +88,7 @@ def get_block_categories(category_blocks: int = 3) -> list[BlockCategoryResponse
def get_blocks(
*,
category: str | None = None,
type: BlockTypeFilter | None = None,
type: BlockType | None = None,
provider: ProviderName | None = None,
page: int = 1,
page_size: int = 50,
@@ -509,10 +496,8 @@ async def _get_static_counts():
def _matches_llm_model(schema_cls: type[BlockSchema], query: str) -> bool:
for field in schema_cls.model_fields.values():
if field.annotation == LlmModel:
# Normalize query same as model slugs (lowercase, hyphens to spaces)
normalized_model_query = query.lower().replace("-", " ")
# Check if query matches any value in llm_models from registry
if any(normalized_model_query in name for name in _get_llm_models()):
# Check if query matches any value in llm_models
if any(query in name for name in llm_models):
return True
return False
@@ -684,9 +669,9 @@ async def get_suggested_blocks(count: int = 5) -> list[BlockInfo]:
for block_type in load_all_blocks().values():
block: AnyBlockSchema = block_type()
if block.disabled or block.block_type in (
BlockType.INPUT,
BlockType.OUTPUT,
BlockType.AGENT,
backend.data.block.BlockType.INPUT,
backend.data.block.BlockType.OUTPUT,
backend.data.block.BlockType.AGENT,
):
continue
# Find the execution count for this block

View File

@@ -4,7 +4,7 @@ from pydantic import BaseModel
import backend.api.features.library.model as library_model
import backend.api.features.store.model as store_model
from backend.blocks._base import BlockInfo
from backend.data.block import BlockInfo
from backend.integrations.providers import ProviderName
from backend.util.models import Pagination
@@ -15,7 +15,7 @@ FilterType = Literal[
"my_agents",
]
BlockTypeFilter = Literal["all", "input", "action", "output"]
BlockType = Literal["all", "input", "action", "output"]
class SearchEntry(BaseModel):

View File

@@ -88,7 +88,7 @@ async def get_block_categories(
)
async def get_blocks(
category: Annotated[str | None, fastapi.Query()] = None,
type: Annotated[builder_model.BlockTypeFilter | None, fastapi.Query()] = None,
type: Annotated[builder_model.BlockType | None, fastapi.Query()] = None,
provider: Annotated[ProviderName | None, fastapi.Query()] = None,
page: Annotated[int, fastapi.Query()] = 1,
page_size: Annotated[int, fastapi.Query()] = 50,

View File

@@ -2,7 +2,7 @@ import asyncio
import logging
import uuid
from datetime import UTC, datetime
from typing import Any, cast
from typing import Any
from weakref import WeakValueDictionary
from openai.types.chat import (
@@ -104,26 +104,6 @@ class ChatSession(BaseModel):
successful_agent_runs: dict[str, int] = {}
successful_agent_schedules: dict[str, int] = {}
def add_tool_call_to_current_turn(self, tool_call: dict) -> None:
"""Attach a tool_call to the current turn's assistant message.
Searches backwards for the most recent assistant message (stopping at
any user message boundary). If found, appends the tool_call to it.
Otherwise creates a new assistant message with the tool_call.
"""
for msg in reversed(self.messages):
if msg.role == "user":
break
if msg.role == "assistant":
if not msg.tool_calls:
msg.tool_calls = []
msg.tool_calls.append(tool_call)
return
self.messages.append(
ChatMessage(role="assistant", content="", tool_calls=[tool_call])
)
@staticmethod
def new(user_id: str) -> "ChatSession":
return ChatSession(
@@ -192,47 +172,6 @@ class ChatSession(BaseModel):
successful_agent_schedules=successful_agent_schedules,
)
@staticmethod
def _merge_consecutive_assistant_messages(
messages: list[ChatCompletionMessageParam],
) -> list[ChatCompletionMessageParam]:
"""Merge consecutive assistant messages into single messages.
Long-running tool flows can create split assistant messages: one with
text content and another with tool_calls. Anthropic's API requires
tool_result blocks to reference a tool_use in the immediately preceding
assistant message, so these splits cause 400 errors via OpenRouter.
"""
if len(messages) < 2:
return messages
result: list[ChatCompletionMessageParam] = [messages[0]]
for msg in messages[1:]:
prev = result[-1]
if prev.get("role") != "assistant" or msg.get("role") != "assistant":
result.append(msg)
continue
prev = cast(ChatCompletionAssistantMessageParam, prev)
curr = cast(ChatCompletionAssistantMessageParam, msg)
curr_content = curr.get("content") or ""
if curr_content:
prev_content = prev.get("content") or ""
prev["content"] = (
f"{prev_content}\n{curr_content}" if prev_content else curr_content
)
curr_tool_calls = curr.get("tool_calls")
if curr_tool_calls:
prev_tool_calls = prev.get("tool_calls")
prev["tool_calls"] = (
list(prev_tool_calls) + list(curr_tool_calls)
if prev_tool_calls
else list(curr_tool_calls)
)
return result
def to_openai_messages(self) -> list[ChatCompletionMessageParam]:
messages = []
for message in self.messages:
@@ -319,7 +258,7 @@ class ChatSession(BaseModel):
name=message.name or "",
)
)
return self._merge_consecutive_assistant_messages(messages)
return messages
async def _get_session_from_cache(session_id: str) -> ChatSession | None:

View File

@@ -1,16 +1,4 @@
from typing import cast
import pytest
from openai.types.chat import (
ChatCompletionAssistantMessageParam,
ChatCompletionMessageParam,
ChatCompletionToolMessageParam,
ChatCompletionUserMessageParam,
)
from openai.types.chat.chat_completion_message_tool_call_param import (
ChatCompletionMessageToolCallParam,
Function,
)
from .model import (
ChatMessage,
@@ -129,205 +117,3 @@ async def test_chatsession_db_storage(setup_test_user, test_user_id):
loaded.tool_calls is not None
), f"Tool calls missing for {orig.role} message"
assert len(orig.tool_calls) == len(loaded.tool_calls)
# --------------------------------------------------------------------------- #
# _merge_consecutive_assistant_messages #
# --------------------------------------------------------------------------- #
_tc = ChatCompletionMessageToolCallParam(
id="tc1", type="function", function=Function(name="do_stuff", arguments="{}")
)
_tc2 = ChatCompletionMessageToolCallParam(
id="tc2", type="function", function=Function(name="other", arguments="{}")
)
def test_merge_noop_when_no_consecutive_assistants():
"""Messages without consecutive assistants are returned unchanged."""
msgs = [
ChatCompletionUserMessageParam(role="user", content="hi"),
ChatCompletionAssistantMessageParam(role="assistant", content="hello"),
ChatCompletionUserMessageParam(role="user", content="bye"),
]
merged = ChatSession._merge_consecutive_assistant_messages(msgs)
assert len(merged) == 3
assert [m["role"] for m in merged] == ["user", "assistant", "user"]
def test_merge_splits_text_and_tool_calls():
"""The exact bug scenario: text-only assistant followed by tool_calls-only assistant."""
msgs = [
ChatCompletionUserMessageParam(role="user", content="build agent"),
ChatCompletionAssistantMessageParam(
role="assistant", content="Let me build that"
),
ChatCompletionAssistantMessageParam(
role="assistant", content="", tool_calls=[_tc]
),
ChatCompletionToolMessageParam(role="tool", content="ok", tool_call_id="tc1"),
]
merged = ChatSession._merge_consecutive_assistant_messages(msgs)
assert len(merged) == 3
assert merged[0]["role"] == "user"
assert merged[2]["role"] == "tool"
a = cast(ChatCompletionAssistantMessageParam, merged[1])
assert a["role"] == "assistant"
assert a.get("content") == "Let me build that"
assert a.get("tool_calls") == [_tc]
def test_merge_combines_tool_calls_from_both():
"""Both consecutive assistants have tool_calls — they get merged."""
msgs: list[ChatCompletionAssistantMessageParam] = [
ChatCompletionAssistantMessageParam(
role="assistant", content="text", tool_calls=[_tc]
),
ChatCompletionAssistantMessageParam(
role="assistant", content="", tool_calls=[_tc2]
),
]
merged = ChatSession._merge_consecutive_assistant_messages(msgs) # type: ignore[arg-type]
assert len(merged) == 1
a = cast(ChatCompletionAssistantMessageParam, merged[0])
assert a.get("tool_calls") == [_tc, _tc2]
assert a.get("content") == "text"
def test_merge_three_consecutive_assistants():
"""Three consecutive assistants collapse into one."""
msgs: list[ChatCompletionAssistantMessageParam] = [
ChatCompletionAssistantMessageParam(role="assistant", content="a"),
ChatCompletionAssistantMessageParam(role="assistant", content="b"),
ChatCompletionAssistantMessageParam(
role="assistant", content="", tool_calls=[_tc]
),
]
merged = ChatSession._merge_consecutive_assistant_messages(msgs) # type: ignore[arg-type]
assert len(merged) == 1
a = cast(ChatCompletionAssistantMessageParam, merged[0])
assert a.get("content") == "a\nb"
assert a.get("tool_calls") == [_tc]
def test_merge_empty_and_single_message():
"""Edge cases: empty list and single message."""
assert ChatSession._merge_consecutive_assistant_messages([]) == []
single: list[ChatCompletionMessageParam] = [
ChatCompletionUserMessageParam(role="user", content="hi")
]
assert ChatSession._merge_consecutive_assistant_messages(single) == single
# --------------------------------------------------------------------------- #
# add_tool_call_to_current_turn #
# --------------------------------------------------------------------------- #
_raw_tc = {
"id": "tc1",
"type": "function",
"function": {"name": "f", "arguments": "{}"},
}
_raw_tc2 = {
"id": "tc2",
"type": "function",
"function": {"name": "g", "arguments": "{}"},
}
def test_add_tool_call_appends_to_existing_assistant():
"""When the last assistant is from the current turn, tool_call is added to it."""
session = ChatSession.new(user_id="u")
session.messages = [
ChatMessage(role="user", content="hi"),
ChatMessage(role="assistant", content="working on it"),
]
session.add_tool_call_to_current_turn(_raw_tc)
assert len(session.messages) == 2 # no new message created
assert session.messages[1].tool_calls == [_raw_tc]
def test_add_tool_call_creates_assistant_when_none_exists():
"""When there's no current-turn assistant, a new one is created."""
session = ChatSession.new(user_id="u")
session.messages = [
ChatMessage(role="user", content="hi"),
]
session.add_tool_call_to_current_turn(_raw_tc)
assert len(session.messages) == 2
assert session.messages[1].role == "assistant"
assert session.messages[1].tool_calls == [_raw_tc]
def test_add_tool_call_does_not_cross_user_boundary():
"""A user message acts as a boundary — previous assistant is not modified."""
session = ChatSession.new(user_id="u")
session.messages = [
ChatMessage(role="assistant", content="old turn"),
ChatMessage(role="user", content="new message"),
]
session.add_tool_call_to_current_turn(_raw_tc)
assert len(session.messages) == 3 # new assistant was created
assert session.messages[0].tool_calls is None # old assistant untouched
assert session.messages[2].role == "assistant"
assert session.messages[2].tool_calls == [_raw_tc]
def test_add_tool_call_multiple_times():
"""Multiple long-running tool calls accumulate on the same assistant."""
session = ChatSession.new(user_id="u")
session.messages = [
ChatMessage(role="user", content="hi"),
ChatMessage(role="assistant", content="doing stuff"),
]
session.add_tool_call_to_current_turn(_raw_tc)
# Simulate a pending tool result in between (like _yield_tool_call does)
session.messages.append(
ChatMessage(role="tool", content="pending", tool_call_id="tc1")
)
session.add_tool_call_to_current_turn(_raw_tc2)
assert len(session.messages) == 3 # user, assistant, tool — no extra assistant
assert session.messages[1].tool_calls == [_raw_tc, _raw_tc2]
def test_to_openai_messages_merges_split_assistants():
"""End-to-end: session with split assistants produces valid OpenAI messages."""
session = ChatSession.new(user_id="u")
session.messages = [
ChatMessage(role="user", content="build agent"),
ChatMessage(role="assistant", content="Let me build that"),
ChatMessage(
role="assistant",
content="",
tool_calls=[
{
"id": "tc1",
"type": "function",
"function": {"name": "create_agent", "arguments": "{}"},
}
],
),
ChatMessage(role="tool", content="done", tool_call_id="tc1"),
ChatMessage(role="assistant", content="Saved!"),
ChatMessage(role="user", content="show me an example run"),
]
openai_msgs = session.to_openai_messages()
# The two consecutive assistants at index 1,2 should be merged
roles = [m["role"] for m in openai_msgs]
assert roles == ["user", "assistant", "tool", "assistant", "user"]
# The merged assistant should have both content and tool_calls
merged = cast(ChatCompletionAssistantMessageParam, openai_msgs[1])
assert merged.get("content") == "Let me build that"
tc_list = merged.get("tool_calls")
assert tc_list is not None and len(list(tc_list)) == 1
assert list(tc_list)[0]["id"] == "tc1"

View File

@@ -10,8 +10,6 @@ from typing import Any
from pydantic import BaseModel, Field
from backend.util.json import dumps as json_dumps
class ResponseType(str, Enum):
"""Types of streaming responses following AI SDK protocol."""
@@ -195,18 +193,6 @@ class StreamError(StreamBaseResponse):
default=None, description="Additional error details"
)
def to_sse(self) -> str:
"""Convert to SSE format, only emitting fields required by AI SDK protocol.
The AI SDK uses z.strictObject({type, errorText}) which rejects
any extra fields like `code` or `details`.
"""
data = {
"type": self.type.value,
"errorText": self.errorText,
}
return f"data: {json_dumps(data)}\n\n"
class StreamHeartbeat(StreamBaseResponse):
"""Heartbeat to keep SSE connection alive during long-running operations.

View File

@@ -24,7 +24,6 @@ from .tools.models import (
AgentPreviewResponse,
AgentSavedResponse,
AgentsFoundResponse,
BlockDetailsResponse,
BlockListResponse,
BlockOutputResponse,
ClarificationNeededResponse,
@@ -972,7 +971,6 @@ ToolResponseUnion = (
| AgentSavedResponse
| ClarificationNeededResponse
| BlockListResponse
| BlockDetailsResponse
| BlockOutputResponse
| DocSearchResultsResponse
| DocPageResponse

View File

@@ -800,13 +800,9 @@ async def stream_chat_completion(
# Build the messages list in the correct order
messages_to_save: list[ChatMessage] = []
# Add assistant message with tool_calls if any.
# Use extend (not assign) to preserve tool_calls already added by
# _yield_tool_call for long-running tools.
# Add assistant message with tool_calls if any
if accumulated_tool_calls:
if not assistant_response.tool_calls:
assistant_response.tool_calls = []
assistant_response.tool_calls.extend(accumulated_tool_calls)
assistant_response.tool_calls = accumulated_tool_calls
logger.info(
f"Added {len(accumulated_tool_calls)} tool calls to assistant message"
)
@@ -1408,9 +1404,13 @@ async def _yield_tool_call(
operation_id=operation_id,
)
# Attach the tool_call to the current turn's assistant message
# (or create one if this is a tool-only response with no text).
session.add_tool_call_to_current_turn(tool_calls[yield_idx])
# Save assistant message with tool_call FIRST (required by LLM)
assistant_message = ChatMessage(
role="assistant",
content="",
tool_calls=[tool_calls[yield_idx]],
)
session.messages.append(assistant_message)
# Then save pending tool result
pending_message = ChatMessage(

View File

@@ -1,154 +0,0 @@
"""Dummy Agent Generator for testing.
Returns mock responses matching the format expected from the external service.
Enable via AGENTGENERATOR_USE_DUMMY=true in settings.
WARNING: This is for testing only. Do not use in production.
"""
import asyncio
import logging
import uuid
from typing import Any
logger = logging.getLogger(__name__)
# Dummy decomposition result (instructions type)
DUMMY_DECOMPOSITION_RESULT: dict[str, Any] = {
"type": "instructions",
"steps": [
{
"description": "Get input from user",
"action": "input",
"block_name": "AgentInputBlock",
},
{
"description": "Process the input",
"action": "process",
"block_name": "TextFormatterBlock",
},
{
"description": "Return output to user",
"action": "output",
"block_name": "AgentOutputBlock",
},
],
}
# Block IDs from backend/blocks/io.py
AGENT_INPUT_BLOCK_ID = "c0a8e994-ebf1-4a9c-a4d8-89d09c86741b"
AGENT_OUTPUT_BLOCK_ID = "363ae599-353e-4804-937e-b2ee3cef3da4"
def _generate_dummy_agent_json() -> dict[str, Any]:
"""Generate a minimal valid agent JSON for testing."""
input_node_id = str(uuid.uuid4())
output_node_id = str(uuid.uuid4())
return {
"id": str(uuid.uuid4()),
"version": 1,
"is_active": True,
"name": "Dummy Test Agent",
"description": "A dummy agent generated for testing purposes",
"nodes": [
{
"id": input_node_id,
"block_id": AGENT_INPUT_BLOCK_ID,
"input_default": {
"name": "input",
"title": "Input",
"description": "Enter your input",
"placeholder_values": [],
},
"metadata": {"position": {"x": 0, "y": 0}},
},
{
"id": output_node_id,
"block_id": AGENT_OUTPUT_BLOCK_ID,
"input_default": {
"name": "output",
"title": "Output",
"description": "Agent output",
"format": "{output}",
},
"metadata": {"position": {"x": 400, "y": 0}},
},
],
"links": [
{
"id": str(uuid.uuid4()),
"source_id": input_node_id,
"sink_id": output_node_id,
"source_name": "result",
"sink_name": "value",
"is_static": False,
},
],
}
async def decompose_goal_dummy(
description: str,
context: str = "",
library_agents: list[dict[str, Any]] | None = None,
) -> dict[str, Any]:
"""Return dummy decomposition result."""
logger.info("Using dummy agent generator for decompose_goal")
return DUMMY_DECOMPOSITION_RESULT.copy()
async def generate_agent_dummy(
instructions: dict[str, Any],
library_agents: list[dict[str, Any]] | None = None,
operation_id: str | None = None,
task_id: str | None = None,
) -> dict[str, Any]:
"""Return dummy agent JSON after a simulated delay."""
logger.info("Using dummy agent generator for generate_agent (30s delay)")
await asyncio.sleep(30)
return _generate_dummy_agent_json()
async def generate_agent_patch_dummy(
update_request: str,
current_agent: dict[str, Any],
library_agents: list[dict[str, Any]] | None = None,
operation_id: str | None = None,
task_id: str | None = None,
) -> dict[str, Any]:
"""Return dummy patched agent (returns the current agent with updated description)."""
logger.info("Using dummy agent generator for generate_agent_patch")
patched = current_agent.copy()
patched["description"] = (
f"{current_agent.get('description', '')} (updated: {update_request})"
)
return patched
async def customize_template_dummy(
template_agent: dict[str, Any],
modification_request: str,
context: str = "",
) -> dict[str, Any]:
"""Return dummy customized template (returns template with updated description)."""
logger.info("Using dummy agent generator for customize_template")
customized = template_agent.copy()
customized["description"] = (
f"{template_agent.get('description', '')} (customized: {modification_request})"
)
return customized
async def get_blocks_dummy() -> list[dict[str, Any]]:
"""Return dummy blocks list."""
logger.info("Using dummy agent generator for get_blocks")
return [
{"id": AGENT_INPUT_BLOCK_ID, "name": "AgentInputBlock"},
{"id": AGENT_OUTPUT_BLOCK_ID, "name": "AgentOutputBlock"},
]
async def health_check_dummy() -> bool:
"""Always returns healthy for dummy service."""
return True

View File

@@ -12,19 +12,8 @@ import httpx
from backend.util.settings import Settings
from .dummy import (
customize_template_dummy,
decompose_goal_dummy,
generate_agent_dummy,
generate_agent_patch_dummy,
get_blocks_dummy,
health_check_dummy,
)
logger = logging.getLogger(__name__)
_dummy_mode_warned = False
def _create_error_response(
error_message: str,
@@ -101,26 +90,10 @@ def _get_settings() -> Settings:
return _settings
def _is_dummy_mode() -> bool:
"""Check if dummy mode is enabled for testing."""
global _dummy_mode_warned
settings = _get_settings()
is_dummy = bool(settings.config.agentgenerator_use_dummy)
if is_dummy and not _dummy_mode_warned:
logger.warning(
"Agent Generator running in DUMMY MODE - returning mock responses. "
"Do not use in production!"
)
_dummy_mode_warned = True
return is_dummy
def is_external_service_configured() -> bool:
"""Check if external Agent Generator service is configured (or dummy mode)."""
"""Check if external Agent Generator service is configured."""
settings = _get_settings()
return bool(settings.config.agentgenerator_host) or bool(
settings.config.agentgenerator_use_dummy
)
return bool(settings.config.agentgenerator_host)
def _get_base_url() -> str:
@@ -164,9 +137,6 @@ async def decompose_goal_external(
- {"type": "error", "error": "...", "error_type": "..."} on error
Or None on unexpected error
"""
if _is_dummy_mode():
return await decompose_goal_dummy(description, context, library_agents)
client = _get_client()
if context:
@@ -256,11 +226,6 @@ async def generate_agent_external(
Returns:
Agent JSON dict, {"status": "accepted"} for async, or error dict {"type": "error", ...} on error
"""
if _is_dummy_mode():
return await generate_agent_dummy(
instructions, library_agents, operation_id, task_id
)
client = _get_client()
# Build request payload
@@ -332,11 +297,6 @@ async def generate_agent_patch_external(
Returns:
Updated agent JSON, clarifying questions dict, {"status": "accepted"} for async, or error dict on error
"""
if _is_dummy_mode():
return await generate_agent_patch_dummy(
update_request, current_agent, library_agents, operation_id, task_id
)
client = _get_client()
# Build request payload
@@ -423,11 +383,6 @@ async def customize_template_external(
Returns:
Customized agent JSON, clarifying questions dict, or error dict on error
"""
if _is_dummy_mode():
return await customize_template_dummy(
template_agent, modification_request, context
)
client = _get_client()
request = modification_request
@@ -490,9 +445,6 @@ async def get_blocks_external() -> list[dict[str, Any]] | None:
Returns:
List of block info dicts or None on error
"""
if _is_dummy_mode():
return await get_blocks_dummy()
client = _get_client()
try:
@@ -526,9 +478,6 @@ async def health_check() -> bool:
if not is_external_service_configured():
return False
if _is_dummy_mode():
return await health_check_dummy()
client = _get_client()
try:

View File

@@ -7,13 +7,13 @@ from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool, ToolResponseBase
from backend.api.features.chat.tools.models import (
BlockInfoSummary,
BlockInputFieldInfo,
BlockListResponse,
ErrorResponse,
NoResultsResponse,
)
from backend.api.features.store.hybrid_search import unified_hybrid_search
from backend.blocks import get_block
from backend.blocks._base import BlockType
from backend.data.block import BlockType, get_block
logger = logging.getLogger(__name__)
@@ -54,8 +54,7 @@ class FindBlockTool(BaseTool):
"Blocks are reusable components that perform specific tasks like "
"sending emails, making API calls, processing text, etc. "
"IMPORTANT: Use this tool FIRST to get the block's 'id' before calling run_block. "
"The response includes each block's id, name, and description. "
"Call run_block with the block's id **with no inputs** to see detailed inputs/outputs and execute it."
"The response includes each block's id, required_inputs, and input_schema."
)
@property
@@ -124,7 +123,7 @@ class FindBlockTool(BaseTool):
session_id=session_id,
)
# Enrich results with block information
# Enrich results with full block information
blocks: list[BlockInfoSummary] = []
for result in results:
block_id = result["content_id"]
@@ -141,11 +140,65 @@ class FindBlockTool(BaseTool):
):
continue
# Get input/output schemas
input_schema = {}
output_schema = {}
try:
input_schema = block.input_schema.jsonschema()
except Exception as e:
logger.debug(
"Failed to generate input schema for block %s: %s",
block_id,
e,
)
try:
output_schema = block.output_schema.jsonschema()
except Exception as e:
logger.debug(
"Failed to generate output schema for block %s: %s",
block_id,
e,
)
# Get categories from block instance
categories = []
if hasattr(block, "categories") and block.categories:
categories = [cat.value for cat in block.categories]
# Extract required inputs for easier use
required_inputs: list[BlockInputFieldInfo] = []
if input_schema:
properties = input_schema.get("properties", {})
required_fields = set(input_schema.get("required", []))
# Get credential field names to exclude from required inputs
credentials_fields = set(
block.input_schema.get_credentials_fields().keys()
)
for field_name, field_schema in properties.items():
# Skip credential fields - they're handled separately
if field_name in credentials_fields:
continue
required_inputs.append(
BlockInputFieldInfo(
name=field_name,
type=field_schema.get("type", "string"),
description=field_schema.get("description", ""),
required=field_name in required_fields,
default=field_schema.get("default"),
)
)
blocks.append(
BlockInfoSummary(
id=block_id,
name=block.name,
description=block.description or "",
categories=categories,
input_schema=input_schema,
output_schema=output_schema,
required_inputs=required_inputs,
)
)
@@ -174,7 +227,8 @@ class FindBlockTool(BaseTool):
return BlockListResponse(
message=(
f"Found {len(blocks)} block(s) matching '{query}'. "
"To see a block's inputs/outputs and execute it, use run_block with the block's 'id' - providing no inputs."
"To execute a block, use run_block with the block's 'id' field "
"and provide 'input_data' matching the block's input_schema."
),
blocks=blocks,
count=len(blocks),

View File

@@ -10,7 +10,7 @@ from backend.api.features.chat.tools.find_block import (
FindBlockTool,
)
from backend.api.features.chat.tools.models import BlockListResponse
from backend.blocks._base import BlockType
from backend.data.block import BlockType
from ._test_data import make_session
@@ -18,13 +18,7 @@ _TEST_USER_ID = "test-user-find-block"
def make_mock_block(
block_id: str,
name: str,
block_type: BlockType,
disabled: bool = False,
input_schema: dict | None = None,
output_schema: dict | None = None,
credentials_fields: dict | None = None,
block_id: str, name: str, block_type: BlockType, disabled: bool = False
):
"""Create a mock block for testing."""
mock = MagicMock()
@@ -34,13 +28,10 @@ def make_mock_block(
mock.block_type = block_type
mock.disabled = disabled
mock.input_schema = MagicMock()
mock.input_schema.jsonschema.return_value = input_schema or {
"properties": {},
"required": [],
}
mock.input_schema.get_credentials_fields.return_value = credentials_fields or {}
mock.input_schema.jsonschema.return_value = {"properties": {}, "required": []}
mock.input_schema.get_credentials_fields.return_value = {}
mock.output_schema = MagicMock()
mock.output_schema.jsonschema.return_value = output_schema or {}
mock.output_schema.jsonschema.return_value = {}
mock.categories = []
return mock
@@ -146,241 +137,3 @@ class TestFindBlockFiltering:
assert isinstance(response, BlockListResponse)
assert len(response.blocks) == 1
assert response.blocks[0].id == "normal-block-id"
@pytest.mark.asyncio(loop_scope="session")
async def test_response_size_average_chars_per_block(self):
"""Measure average chars per block in the serialized response."""
session = make_session(user_id=_TEST_USER_ID)
# Realistic block definitions modeled after real blocks
block_defs = [
{
"id": "http-block-id",
"name": "Send Web Request",
"input_schema": {
"properties": {
"url": {
"type": "string",
"description": "The URL to send the request to",
},
"method": {
"type": "string",
"description": "The HTTP method to use",
},
"headers": {
"type": "object",
"description": "Headers to include in the request",
},
"json_format": {
"type": "boolean",
"description": "If true, send the body as JSON",
},
"body": {
"type": "object",
"description": "Form/JSON body payload",
},
"credentials": {
"type": "object",
"description": "HTTP credentials",
},
},
"required": ["url", "method"],
},
"output_schema": {
"properties": {
"response": {
"type": "object",
"description": "The response from the server",
},
"client_error": {
"type": "object",
"description": "Errors on 4xx status codes",
},
"server_error": {
"type": "object",
"description": "Errors on 5xx status codes",
},
"error": {
"type": "string",
"description": "Errors for all other exceptions",
},
},
},
"credentials_fields": {"credentials": True},
},
{
"id": "email-block-id",
"name": "Send Email",
"input_schema": {
"properties": {
"to_email": {
"type": "string",
"description": "Recipient email address",
},
"subject": {
"type": "string",
"description": "Subject of the email",
},
"body": {
"type": "string",
"description": "Body of the email",
},
"config": {
"type": "object",
"description": "SMTP Config",
},
"credentials": {
"type": "object",
"description": "SMTP credentials",
},
},
"required": ["to_email", "subject", "body", "credentials"],
},
"output_schema": {
"properties": {
"status": {
"type": "string",
"description": "Status of the email sending operation",
},
"error": {
"type": "string",
"description": "Error message if sending failed",
},
},
},
"credentials_fields": {"credentials": True},
},
{
"id": "claude-code-block-id",
"name": "Claude Code",
"input_schema": {
"properties": {
"e2b_credentials": {
"type": "object",
"description": "API key for E2B platform",
},
"anthropic_credentials": {
"type": "object",
"description": "API key for Anthropic",
},
"prompt": {
"type": "string",
"description": "Task or instruction for Claude Code",
},
"timeout": {
"type": "integer",
"description": "Sandbox timeout in seconds",
},
"setup_commands": {
"type": "array",
"description": "Shell commands to run before execution",
},
"working_directory": {
"type": "string",
"description": "Working directory for Claude Code",
},
"session_id": {
"type": "string",
"description": "Session ID to resume a conversation",
},
"sandbox_id": {
"type": "string",
"description": "Sandbox ID to reconnect to",
},
"conversation_history": {
"type": "string",
"description": "Previous conversation history",
},
"dispose_sandbox": {
"type": "boolean",
"description": "Whether to dispose sandbox after execution",
},
},
"required": [
"e2b_credentials",
"anthropic_credentials",
"prompt",
],
},
"output_schema": {
"properties": {
"response": {
"type": "string",
"description": "Output from Claude Code execution",
},
"files": {
"type": "array",
"description": "Files created/modified by Claude Code",
},
"conversation_history": {
"type": "string",
"description": "Full conversation history",
},
"session_id": {
"type": "string",
"description": "Session ID for this conversation",
},
"sandbox_id": {
"type": "string",
"description": "ID of the sandbox instance",
},
"error": {
"type": "string",
"description": "Error message if execution failed",
},
},
},
"credentials_fields": {
"e2b_credentials": True,
"anthropic_credentials": True,
},
},
]
search_results = [
{"content_id": d["id"], "score": 0.9 - i * 0.1}
for i, d in enumerate(block_defs)
]
mock_blocks = {
d["id"]: make_mock_block(
block_id=d["id"],
name=d["name"],
block_type=BlockType.STANDARD,
input_schema=d["input_schema"],
output_schema=d["output_schema"],
credentials_fields=d["credentials_fields"],
)
for d in block_defs
}
with patch(
"backend.api.features.chat.tools.find_block.unified_hybrid_search",
new_callable=AsyncMock,
return_value=(search_results, len(search_results)),
), patch(
"backend.api.features.chat.tools.find_block.get_block",
side_effect=lambda bid: mock_blocks.get(bid),
):
tool = FindBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID, session=session, query="test"
)
assert isinstance(response, BlockListResponse)
assert response.count == len(block_defs)
total_chars = len(response.model_dump_json())
avg_chars = total_chars // response.count
# Print for visibility in test output
print(f"\nTotal response size: {total_chars} chars")
print(f"Number of blocks: {response.count}")
print(f"Average chars per block: {avg_chars}")
# The old response was ~90K for 10 blocks (~9K per block).
# Previous optimization reduced it to ~1.5K per block (no raw JSON schemas).
# Now with only id/name/description, we expect ~300 chars per block.
assert avg_chars < 500, (
f"Average chars per block ({avg_chars}) exceeds 500. "
f"Total response: {total_chars} chars for {response.count} blocks."
)

View File

@@ -2,7 +2,7 @@
from datetime import datetime
from enum import Enum
from typing import Any
from typing import Any, Literal
from pydantic import BaseModel, Field
@@ -25,7 +25,6 @@ class ResponseType(str, Enum):
AGENT_SAVED = "agent_saved"
CLARIFICATION_NEEDED = "clarification_needed"
BLOCK_LIST = "block_list"
BLOCK_DETAILS = "block_details"
BLOCK_OUTPUT = "block_output"
DOC_SEARCH_RESULTS = "doc_search_results"
DOC_PAGE = "doc_page"
@@ -41,6 +40,8 @@ class ResponseType(str, Enum):
OPERATION_IN_PROGRESS = "operation_in_progress"
# Input validation
INPUT_VALIDATION_ERROR = "input_validation_error"
# Agent creation steps
AGENT_CREATION_STEPS = "agent_creation_steps"
# Base response model
@@ -287,6 +288,21 @@ class ClarificationNeededResponse(ToolResponseBase):
questions: list[ClarifyingQuestion] = Field(default_factory=list)
class AgentCreationStep(BaseModel):
"""A single step in the agent creation process."""
title: str
description: str
status: Literal["pending", "in_progress", "completed"] = "pending"
class AgentCreationStepsResponse(ToolResponseBase):
"""Response showing the steps for agent creation as a checklist."""
type: ResponseType = ResponseType.AGENT_CREATION_STEPS
steps: list[AgentCreationStep] = Field(default_factory=list)
# Documentation search models
class DocSearchResult(BaseModel):
"""A single documentation search result."""
@@ -335,6 +351,13 @@ class BlockInfoSummary(BaseModel):
id: str
name: str
description: str
categories: list[str]
input_schema: dict[str, Any]
output_schema: dict[str, Any]
required_inputs: list[BlockInputFieldInfo] = Field(
default_factory=list,
description="List of required input fields for this block",
)
class BlockListResponse(ToolResponseBase):
@@ -344,25 +367,10 @@ class BlockListResponse(ToolResponseBase):
blocks: list[BlockInfoSummary]
count: int
query: str
class BlockDetails(BaseModel):
"""Detailed block information."""
id: str
name: str
description: str
inputs: dict[str, Any] = {}
outputs: dict[str, Any] = {}
credentials: list[CredentialsMetaInput] = []
class BlockDetailsResponse(ToolResponseBase):
"""Response for block details (first run_block attempt)."""
type: ResponseType = ResponseType.BLOCK_DETAILS
block: BlockDetails
user_authenticated: bool = False
usage_hint: str = Field(
default="To execute a block, call run_block with block_id set to the block's "
"'id' field and input_data containing the required fields from input_schema."
)
class BlockOutputResponse(ToolResponseBase):

View File

@@ -12,8 +12,7 @@ from backend.api.features.chat.tools.find_block import (
COPILOT_EXCLUDED_BLOCK_IDS,
COPILOT_EXCLUDED_BLOCK_TYPES,
)
from backend.blocks import get_block
from backend.blocks._base import AnyBlockSchema
from backend.data.block import AnyBlockSchema, get_block
from backend.data.execution import ExecutionContext
from backend.data.model import CredentialsFieldInfo, CredentialsMetaInput
from backend.data.workspace import get_or_create_workspace
@@ -23,11 +22,8 @@ from backend.util.exceptions import BlockError
from .base import BaseTool
from .helpers import get_inputs_from_schema
from .models import (
BlockDetails,
BlockDetailsResponse,
BlockOutputResponse,
ErrorResponse,
InputValidationErrorResponse,
SetupInfo,
SetupRequirementsResponse,
ToolResponseBase,
@@ -54,8 +50,8 @@ class RunBlockTool(BaseTool):
"Execute a specific block with the provided input data. "
"IMPORTANT: You MUST call find_block first to get the block's 'id' - "
"do NOT guess or make up block IDs. "
"On first attempt (without input_data), returns detailed schema showing "
"required inputs and outputs. Then call again with proper input_data to execute."
"Use the 'id' from find_block results and provide input_data "
"matching the block's required_inputs."
)
@property
@@ -70,19 +66,11 @@ class RunBlockTool(BaseTool):
"NEVER guess this - always get it from find_block first."
),
},
"block_name": {
"type": "string",
"description": (
"The block's human-readable name from find_block results. "
"Used for display purposes in the UI."
),
},
"input_data": {
"type": "object",
"description": (
"Input values for the block. "
"First call with empty {} to see the block's schema, "
"then call again with proper values to execute."
"Input values for the block. Use the 'required_inputs' field "
"from find_block to see what fields are needed."
),
},
},
@@ -167,34 +155,6 @@ class RunBlockTool(BaseTool):
await self._resolve_block_credentials(user_id, block, input_data)
)
# Get block schemas for details/validation
try:
input_schema: dict[str, Any] = block.input_schema.jsonschema()
except Exception as e:
logger.warning(
"Failed to generate input schema for block %s: %s",
block_id,
e,
)
return ErrorResponse(
message=f"Block '{block.name}' has an invalid input schema",
error=str(e),
session_id=session_id,
)
try:
output_schema: dict[str, Any] = block.output_schema.jsonschema()
except Exception as e:
logger.warning(
"Failed to generate output schema for block %s: %s",
block_id,
e,
)
return ErrorResponse(
message=f"Block '{block.name}' has an invalid output schema",
error=str(e),
session_id=session_id,
)
if missing_credentials:
# Return setup requirements response with missing credentials
credentials_fields_info = block.input_schema.get_credentials_fields_info()
@@ -227,53 +187,6 @@ class RunBlockTool(BaseTool):
graph_version=None,
)
# Check if this is a first attempt (required inputs missing)
# Return block details so user can see what inputs are needed
credentials_fields = set(block.input_schema.get_credentials_fields().keys())
required_keys = set(input_schema.get("required", []))
required_non_credential_keys = required_keys - credentials_fields
provided_input_keys = set(input_data.keys()) - credentials_fields
# Check for unknown input fields
valid_fields = (
set(input_schema.get("properties", {}).keys()) - credentials_fields
)
unrecognized_fields = provided_input_keys - valid_fields
if unrecognized_fields:
return InputValidationErrorResponse(
message=(
f"Unknown input field(s) provided: {', '.join(sorted(unrecognized_fields))}. "
f"Block was not executed. Please use the correct field names from the schema."
),
session_id=session_id,
unrecognized_fields=sorted(unrecognized_fields),
inputs=input_schema,
)
# Show details when not all required non-credential inputs are provided
if not (required_non_credential_keys <= provided_input_keys):
# Get credentials info for the response
credentials_meta = []
for field_name, cred_meta in matched_credentials.items():
credentials_meta.append(cred_meta)
return BlockDetailsResponse(
message=(
f"Block '{block.name}' details. "
"Provide input_data matching the inputs schema to execute the block."
),
session_id=session_id,
block=BlockDetails(
id=block_id,
name=block.name,
description=block.description or "",
inputs=input_schema,
outputs=output_schema,
credentials=credentials_meta,
),
user_authenticated=True,
)
try:
# Get or create user's workspace for CoPilot file operations
workspace = await get_or_create_workspace(user_id)

View File

@@ -1,17 +1,12 @@
"""Tests for block execution guards and input validation in RunBlockTool."""
"""Tests for block execution guards in RunBlockTool."""
from unittest.mock import AsyncMock, MagicMock, patch
from unittest.mock import MagicMock, patch
import pytest
from backend.api.features.chat.tools.models import (
BlockDetailsResponse,
BlockOutputResponse,
ErrorResponse,
InputValidationErrorResponse,
)
from backend.api.features.chat.tools.models import ErrorResponse
from backend.api.features.chat.tools.run_block import RunBlockTool
from backend.blocks._base import BlockType
from backend.data.block import BlockType
from ._test_data import make_session
@@ -33,39 +28,6 @@ def make_mock_block(
return mock
def make_mock_block_with_schema(
block_id: str,
name: str,
input_properties: dict,
required_fields: list[str],
output_properties: dict | None = None,
):
"""Create a mock block with a defined input/output schema for validation tests."""
mock = MagicMock()
mock.id = block_id
mock.name = name
mock.block_type = BlockType.STANDARD
mock.disabled = False
mock.description = f"Test block: {name}"
input_schema = {
"properties": input_properties,
"required": required_fields,
}
mock.input_schema = MagicMock()
mock.input_schema.jsonschema.return_value = input_schema
mock.input_schema.get_credentials_fields_info.return_value = {}
mock.input_schema.get_credentials_fields.return_value = {}
output_schema = {
"properties": output_properties or {"result": {"type": "string"}},
}
mock.output_schema = MagicMock()
mock.output_schema.jsonschema.return_value = output_schema
return mock
class TestRunBlockFiltering:
"""Tests for block execution guards in RunBlockTool."""
@@ -142,221 +104,3 @@ class TestRunBlockFiltering:
# (may be other errors like missing credentials, but not the exclusion guard)
if isinstance(response, ErrorResponse):
assert "cannot be run directly in CoPilot" not in response.message
class TestRunBlockInputValidation:
"""Tests for input field validation in RunBlockTool.
run_block rejects unknown input field names with InputValidationErrorResponse,
preventing silent failures where incorrect keys would be ignored and the block
would execute with default values instead of the caller's intended values.
"""
@pytest.mark.asyncio(loop_scope="session")
async def test_unknown_input_fields_are_rejected(self):
"""run_block rejects unknown input fields instead of silently ignoring them.
Scenario: The AI Text Generator block has a field called 'model' (for LLM model
selection), but the LLM calling the tool guesses wrong and sends 'LLM_Model'
instead. The block should reject the request and return the valid schema.
"""
session = make_session(user_id=_TEST_USER_ID)
mock_block = make_mock_block_with_schema(
block_id="ai-text-gen-id",
name="AI Text Generator",
input_properties={
"prompt": {"type": "string", "description": "The prompt to send"},
"model": {
"type": "string",
"description": "The LLM model to use",
"default": "gpt-4o-mini",
},
"sys_prompt": {
"type": "string",
"description": "System prompt",
"default": "",
},
},
required_fields=["prompt"],
output_properties={"response": {"type": "string"}},
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=mock_block,
):
tool = RunBlockTool()
# Provide 'prompt' (correct) but 'LLM_Model' instead of 'model' (wrong key)
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="ai-text-gen-id",
input_data={
"prompt": "Write a haiku about coding",
"LLM_Model": "claude-opus-4-6", # WRONG KEY - should be 'model'
},
)
assert isinstance(response, InputValidationErrorResponse)
assert "LLM_Model" in response.unrecognized_fields
assert "Block was not executed" in response.message
assert "inputs" in response.model_dump() # valid schema included
@pytest.mark.asyncio(loop_scope="session")
async def test_multiple_wrong_keys_are_all_reported(self):
"""All unrecognized field names are reported in a single error response."""
session = make_session(user_id=_TEST_USER_ID)
mock_block = make_mock_block_with_schema(
block_id="ai-text-gen-id",
name="AI Text Generator",
input_properties={
"prompt": {"type": "string"},
"model": {"type": "string", "default": "gpt-4o-mini"},
"sys_prompt": {"type": "string", "default": ""},
"retry": {"type": "integer", "default": 3},
},
required_fields=["prompt"],
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=mock_block,
):
tool = RunBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="ai-text-gen-id",
input_data={
"prompt": "Hello", # correct
"llm_model": "claude-opus-4-6", # WRONG - should be 'model'
"system_prompt": "Be helpful", # WRONG - should be 'sys_prompt'
"retries": 5, # WRONG - should be 'retry'
},
)
assert isinstance(response, InputValidationErrorResponse)
assert set(response.unrecognized_fields) == {
"llm_model",
"system_prompt",
"retries",
}
assert "Block was not executed" in response.message
@pytest.mark.asyncio(loop_scope="session")
async def test_unknown_fields_rejected_even_with_missing_required(self):
"""Unknown fields are caught before the missing-required-fields check."""
session = make_session(user_id=_TEST_USER_ID)
mock_block = make_mock_block_with_schema(
block_id="ai-text-gen-id",
name="AI Text Generator",
input_properties={
"prompt": {"type": "string"},
"model": {"type": "string", "default": "gpt-4o-mini"},
},
required_fields=["prompt"],
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=mock_block,
):
tool = RunBlockTool()
# 'prompt' is missing AND 'LLM_Model' is an unknown field
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="ai-text-gen-id",
input_data={
"LLM_Model": "claude-opus-4-6", # wrong key, and 'prompt' is missing
},
)
# Unknown fields are caught first
assert isinstance(response, InputValidationErrorResponse)
assert "LLM_Model" in response.unrecognized_fields
@pytest.mark.asyncio(loop_scope="session")
async def test_correct_inputs_still_execute(self):
"""Correct input field names pass validation and the block executes."""
session = make_session(user_id=_TEST_USER_ID)
mock_block = make_mock_block_with_schema(
block_id="ai-text-gen-id",
name="AI Text Generator",
input_properties={
"prompt": {"type": "string"},
"model": {"type": "string", "default": "gpt-4o-mini"},
},
required_fields=["prompt"],
)
async def mock_execute(input_data, **kwargs):
yield "response", "Generated text"
mock_block.execute = mock_execute
with (
patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=mock_block,
),
patch(
"backend.api.features.chat.tools.run_block.get_or_create_workspace",
new_callable=AsyncMock,
return_value=MagicMock(id="test-workspace-id"),
),
):
tool = RunBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="ai-text-gen-id",
input_data={
"prompt": "Write a haiku",
"model": "gpt-4o-mini", # correct field name
},
)
assert isinstance(response, BlockOutputResponse)
assert response.success is True
@pytest.mark.asyncio(loop_scope="session")
async def test_missing_required_fields_returns_details(self):
"""Missing required fields returns BlockDetailsResponse with schema."""
session = make_session(user_id=_TEST_USER_ID)
mock_block = make_mock_block_with_schema(
block_id="ai-text-gen-id",
name="AI Text Generator",
input_properties={
"prompt": {"type": "string"},
"model": {"type": "string", "default": "gpt-4o-mini"},
},
required_fields=["prompt"],
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=mock_block,
):
tool = RunBlockTool()
# Only provide valid optional field, missing required 'prompt'
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="ai-text-gen-id",
input_data={
"model": "gpt-4o-mini", # valid but optional
},
)
assert isinstance(response, BlockDetailsResponse)

View File

@@ -1,153 +0,0 @@
"""Tests for BlockDetailsResponse in RunBlockTool."""
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from backend.api.features.chat.tools.models import BlockDetailsResponse
from backend.api.features.chat.tools.run_block import RunBlockTool
from backend.blocks._base import BlockType
from backend.data.model import CredentialsMetaInput
from backend.integrations.providers import ProviderName
from ._test_data import make_session
_TEST_USER_ID = "test-user-run-block-details"
def make_mock_block_with_inputs(
block_id: str, name: str, description: str = "Test description"
):
"""Create a mock block with input/output schemas for testing."""
mock = MagicMock()
mock.id = block_id
mock.name = name
mock.description = description
mock.block_type = BlockType.STANDARD
mock.disabled = False
# Input schema with non-credential fields
mock.input_schema = MagicMock()
mock.input_schema.jsonschema.return_value = {
"properties": {
"url": {"type": "string", "description": "URL to fetch"},
"method": {"type": "string", "description": "HTTP method"},
},
"required": ["url"],
}
mock.input_schema.get_credentials_fields.return_value = {}
mock.input_schema.get_credentials_fields_info.return_value = {}
# Output schema
mock.output_schema = MagicMock()
mock.output_schema.jsonschema.return_value = {
"properties": {
"response": {"type": "object", "description": "HTTP response"},
"error": {"type": "string", "description": "Error message"},
}
}
return mock
@pytest.mark.asyncio(loop_scope="session")
async def test_run_block_returns_details_when_no_input_provided():
"""When run_block is called without input_data, it should return BlockDetailsResponse."""
session = make_session(user_id=_TEST_USER_ID)
# Create a block with inputs
http_block = make_mock_block_with_inputs(
"http-block-id", "HTTP Request", "Send HTTP requests"
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=http_block,
):
# Mock credentials check to return no missing credentials
with patch.object(
RunBlockTool,
"_resolve_block_credentials",
new_callable=AsyncMock,
return_value=({}, []), # (matched_credentials, missing_credentials)
):
tool = RunBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="http-block-id",
input_data={}, # Empty input data
)
# Should return BlockDetailsResponse showing the schema
assert isinstance(response, BlockDetailsResponse)
assert response.block.id == "http-block-id"
assert response.block.name == "HTTP Request"
assert response.block.description == "Send HTTP requests"
assert "url" in response.block.inputs["properties"]
assert "method" in response.block.inputs["properties"]
assert "response" in response.block.outputs["properties"]
assert response.user_authenticated is True
@pytest.mark.asyncio(loop_scope="session")
async def test_run_block_returns_details_when_only_credentials_provided():
"""When only credentials are provided (no actual input), should return details."""
session = make_session(user_id=_TEST_USER_ID)
# Create a block with both credential and non-credential inputs
mock = MagicMock()
mock.id = "api-block-id"
mock.name = "API Call"
mock.description = "Make API calls"
mock.block_type = BlockType.STANDARD
mock.disabled = False
mock.input_schema = MagicMock()
mock.input_schema.jsonschema.return_value = {
"properties": {
"credentials": {"type": "object", "description": "API credentials"},
"endpoint": {"type": "string", "description": "API endpoint"},
},
"required": ["credentials", "endpoint"],
}
mock.input_schema.get_credentials_fields.return_value = {"credentials": True}
mock.input_schema.get_credentials_fields_info.return_value = {}
mock.output_schema = MagicMock()
mock.output_schema.jsonschema.return_value = {
"properties": {"result": {"type": "object"}}
}
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=mock,
):
with patch.object(
RunBlockTool,
"_resolve_block_credentials",
new_callable=AsyncMock,
return_value=(
{
"credentials": CredentialsMetaInput(
id="cred-id",
provider=ProviderName("test_provider"),
type="api_key",
title="Test Credential",
)
},
[],
),
):
tool = RunBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="api-block-id",
input_data={"credentials": {"some": "cred"}}, # Only credential
)
# Should return details because no non-credential inputs provided
assert isinstance(response, BlockDetailsResponse)
assert response.block.id == "api-block-id"
assert response.block.name == "API Call"

View File

@@ -12,11 +12,12 @@ import backend.api.features.store.image_gen as store_image_gen
import backend.api.features.store.media as store_media
import backend.data.graph as graph_db
import backend.data.integrations as integrations_db
from backend.data.block import BlockInput
from backend.data.db import transaction
from backend.data.execution import get_graph_execution
from backend.data.graph import GraphSettings
from backend.data.includes import AGENT_PRESET_INCLUDE, library_agent_include
from backend.data.model import CredentialsMetaInput, GraphInput
from backend.data.model import CredentialsMetaInput
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.integrations.webhooks.graph_lifecycle_hooks import (
on_graph_activate,
@@ -1129,7 +1130,7 @@ async def create_preset_from_graph_execution(
async def update_preset(
user_id: str,
preset_id: str,
inputs: Optional[GraphInput] = None,
inputs: Optional[BlockInput] = None,
credentials: Optional[dict[str, CredentialsMetaInput]] = None,
name: Optional[str] = None,
description: Optional[str] = None,

View File

@@ -6,12 +6,9 @@ import prisma.enums
import prisma.models
import pydantic
from backend.data.block import BlockInput
from backend.data.graph import GraphModel, GraphSettings, GraphTriggerInfo
from backend.data.model import (
CredentialsMetaInput,
GraphInput,
is_credentials_field_name,
)
from backend.data.model import CredentialsMetaInput, is_credentials_field_name
from backend.util.json import loads as json_loads
from backend.util.models import Pagination
@@ -326,7 +323,7 @@ class LibraryAgentPresetCreatable(pydantic.BaseModel):
graph_id: str
graph_version: int
inputs: GraphInput
inputs: BlockInput
credentials: dict[str, CredentialsMetaInput]
name: str
@@ -355,7 +352,7 @@ class LibraryAgentPresetUpdatable(pydantic.BaseModel):
Request model used when updating a preset for a library agent.
"""
inputs: Optional[GraphInput] = None
inputs: Optional[BlockInput] = None
credentials: Optional[dict[str, CredentialsMetaInput]] = None
name: Optional[str] = None
@@ -398,7 +395,7 @@ class LibraryAgentPreset(LibraryAgentPresetCreatable):
"Webhook must be included in AgentPreset query when webhookId is set"
)
input_data: GraphInput = {}
input_data: BlockInput = {}
input_credentials: dict[str, CredentialsMetaInput] = {}
for preset_input in preset.InputPresets:

View File

@@ -5,8 +5,8 @@ from typing import Optional
import aiohttp
from fastapi import HTTPException
from backend.blocks import get_block
from backend.data import graph as graph_db
from backend.data.block import get_block
from backend.util.settings import Settings
from .models import ApiResponse, ChatRequest, GraphData

View File

@@ -152,7 +152,7 @@ class BlockHandler(ContentHandler):
async def get_missing_items(self, batch_size: int) -> list[ContentItem]:
"""Fetch blocks without embeddings."""
from backend.blocks import get_blocks
from backend.data.block import get_blocks
# Get all available blocks
all_blocks = get_blocks()
@@ -249,7 +249,7 @@ class BlockHandler(ContentHandler):
async def get_stats(self) -> dict[str, int]:
"""Get statistics about block embedding coverage."""
from backend.blocks import get_blocks
from backend.data.block import get_blocks
all_blocks = get_blocks()

View File

@@ -93,7 +93,7 @@ async def test_block_handler_get_missing_items(mocker):
mock_existing = []
with patch(
"backend.blocks.get_blocks",
"backend.data.block.get_blocks",
return_value=mock_blocks,
):
with patch(
@@ -135,7 +135,7 @@ async def test_block_handler_get_stats(mocker):
mock_embedded = [{"count": 2}]
with patch(
"backend.blocks.get_blocks",
"backend.data.block.get_blocks",
return_value=mock_blocks,
):
with patch(
@@ -327,7 +327,7 @@ async def test_block_handler_handles_missing_attributes():
mock_blocks = {"block-minimal": mock_block_class}
with patch(
"backend.blocks.get_blocks",
"backend.data.block.get_blocks",
return_value=mock_blocks,
):
with patch(
@@ -360,7 +360,7 @@ async def test_block_handler_skips_failed_blocks():
mock_blocks = {"good-block": good_block, "bad-block": bad_block}
with patch(
"backend.blocks.get_blocks",
"backend.data.block.get_blocks",
return_value=mock_blocks,
):
with patch(

View File

@@ -662,7 +662,7 @@ async def cleanup_orphaned_embeddings() -> dict[str, Any]:
)
current_ids = {row["id"] for row in valid_agents}
elif content_type == ContentType.BLOCK:
from backend.blocks import get_blocks
from backend.data.block import get_blocks
current_ids = set(get_blocks().keys())
elif content_type == ContentType.DOCUMENTATION:

View File

@@ -7,6 +7,15 @@ from replicate.client import Client as ReplicateClient
from replicate.exceptions import ReplicateError
from replicate.helpers import FileOutput
from backend.blocks.ideogram import (
AspectRatio,
ColorPalettePreset,
IdeogramModelBlock,
IdeogramModelName,
MagicPromptOption,
StyleType,
UpscaleOption,
)
from backend.data.graph import GraphBaseMeta
from backend.data.model import CredentialsMetaInput, ProviderName
from backend.integrations.credentials_store import ideogram_credentials
@@ -41,16 +50,6 @@ async def generate_agent_image_v2(graph: GraphBaseMeta | AgentGraph) -> io.Bytes
if not ideogram_credentials.api_key:
raise ValueError("Missing Ideogram API key")
from backend.blocks.ideogram import (
AspectRatio,
ColorPalettePreset,
IdeogramModelBlock,
IdeogramModelName,
MagicPromptOption,
StyleType,
UpscaleOption,
)
name = graph.name
description = f"{name} ({graph.description})" if graph.description else name

View File

@@ -393,7 +393,6 @@ async def get_creators(
@router.get(
"/creator/{username}",
summary="Get creator details",
operation_id="getV2GetCreatorDetails",
tags=["store", "public"],
response_model=store_model.CreatorDetails,
)

View File

@@ -40,11 +40,10 @@ from backend.api.model import (
UpdateTimezoneRequest,
UploadFileResponse,
)
from backend.blocks import get_block, get_blocks
from backend.data import execution as execution_db
from backend.data import graph as graph_db
from backend.data.auth import api_key as api_key_db
from backend.data.block import BlockInput, CompletedBlockOutput
from backend.data.block import BlockInput, CompletedBlockOutput, get_block, get_blocks
from backend.data.credit import (
AutoTopUpConfig,
RefundRequest,

View File

@@ -18,7 +18,6 @@ from prisma.errors import PrismaError
import backend.api.features.admin.credit_admin_routes
import backend.api.features.admin.execution_analytics_routes
import backend.api.features.admin.llm_routes
import backend.api.features.admin.store_admin_routes
import backend.api.features.builder
import backend.api.features.builder.routes
@@ -39,15 +38,13 @@ import backend.data.db
import backend.data.graph
import backend.data.user
import backend.integrations.webhooks.utils
import backend.server.v2.llm.routes as public_llm_routes
import backend.util.service
import backend.util.settings
from backend.api.features.chat.completion_consumer import (
start_completion_consumer,
stop_completion_consumer,
)
from backend.data import llm_registry
from backend.data.block_cost_config import refresh_llm_costs
from backend.blocks.llm import DEFAULT_LLM_MODEL
from backend.data.model import Credentials
from backend.integrations.providers import ProviderName
from backend.monitoring.instrumentation import instrument_fastapi
@@ -118,27 +115,11 @@ async def lifespan_context(app: fastapi.FastAPI):
AutoRegistry.patch_integrations()
# Refresh LLM registry before initializing blocks so blocks can use registry data
await llm_registry.refresh_llm_registry()
await refresh_llm_costs()
# Clear block schema caches so they're regenerated with updated discriminator_mapping
from backend.blocks._base import BlockSchema
BlockSchema.clear_all_schema_caches()
await backend.data.block.initialize_blocks()
await backend.data.user.migrate_and_encrypt_user_integrations()
await backend.data.graph.fix_llm_provider_credentials()
# migrate_llm_models uses registry default model
from backend.blocks.llm import LlmModel
default_model_slug = llm_registry.get_default_model_slug()
if default_model_slug:
await backend.data.graph.migrate_llm_models(LlmModel(default_model_slug))
else:
logger.warning("Skipping LLM model migration: no default model available")
await backend.data.graph.migrate_llm_models(DEFAULT_LLM_MODEL)
await backend.integrations.webhooks.utils.migrate_legacy_triggered_graphs()
# Start chat completion consumer for Redis Streams notifications
@@ -340,16 +321,6 @@ app.include_router(
tags=["v2", "executions", "review"],
prefix="/api/review",
)
app.include_router(
backend.api.features.admin.llm_routes.router,
tags=["v2", "admin", "llm"],
prefix="/api/llm/admin",
)
app.include_router(
public_llm_routes.router,
tags=["v2", "llm"],
prefix="/api",
)
app.include_router(
backend.api.features.library.routes.router, tags=["v2"], prefix="/api/library"
)

View File

@@ -79,49 +79,11 @@ async def event_broadcaster(manager: ConnectionManager):
payload=notification.payload,
)
# Track registry pubsub for cleanup
registry_pubsub = None
async def registry_refresh_worker():
"""Listen for LLM registry refresh notifications and broadcast to all clients."""
nonlocal registry_pubsub
from backend.data.llm_registry import REGISTRY_REFRESH_CHANNEL
from backend.data.redis_client import connect_async
redis = await connect_async()
registry_pubsub = redis.pubsub()
await registry_pubsub.subscribe(REGISTRY_REFRESH_CHANNEL)
logger.info(
"Subscribed to LLM registry refresh notifications for WebSocket broadcast"
)
async for message in registry_pubsub.listen():
if (
message["type"] == "message"
and message["channel"] == REGISTRY_REFRESH_CHANNEL
):
logger.info(
"Broadcasting LLM registry refresh to all WebSocket clients"
)
await manager.broadcast_to_all(
method=WSMethod.NOTIFICATION,
data={
"type": "LLM_REGISTRY_REFRESH",
"event": "registry_updated",
},
)
await asyncio.gather(
execution_worker(),
notification_worker(),
registry_refresh_worker(),
)
await asyncio.gather(execution_worker(), notification_worker())
finally:
# Ensure PubSub connections are closed on any exit to prevent leaks
await execution_bus.close()
await notification_bus.close()
if registry_pubsub:
await registry_pubsub.close()
async def authenticate_websocket(websocket: WebSocket) -> str:

View File

@@ -3,19 +3,22 @@ import logging
import os
import re
from pathlib import Path
from typing import Sequence, Type, TypeVar
from typing import TYPE_CHECKING, TypeVar
from backend.blocks._base import AnyBlockSchema, BlockType
from backend.util.cache import cached
logger = logging.getLogger(__name__)
if TYPE_CHECKING:
from backend.data.block import Block
T = TypeVar("T")
@cached(ttl_seconds=3600)
def load_all_blocks() -> dict[str, type["AnyBlockSchema"]]:
from backend.blocks._base import Block
def load_all_blocks() -> dict[str, type["Block"]]:
from backend.data.block import Block
from backend.util.settings import Config
# Check if example blocks should be loaded from settings
@@ -47,8 +50,8 @@ def load_all_blocks() -> dict[str, type["AnyBlockSchema"]]:
importlib.import_module(f".{module}", package=__name__)
# Load all Block instances from the available modules
available_blocks: dict[str, type["AnyBlockSchema"]] = {}
for block_cls in _all_subclasses(Block):
available_blocks: dict[str, type["Block"]] = {}
for block_cls in all_subclasses(Block):
class_name = block_cls.__name__
if class_name.endswith("Base"):
@@ -61,7 +64,7 @@ def load_all_blocks() -> dict[str, type["AnyBlockSchema"]]:
"please name the class with 'Base' at the end"
)
block = block_cls() # pyright: ignore[reportAbstractUsage]
block = block_cls.create()
if not isinstance(block.id, str) or len(block.id) != 36:
raise ValueError(
@@ -102,7 +105,7 @@ def load_all_blocks() -> dict[str, type["AnyBlockSchema"]]:
available_blocks[block.id] = block_cls
# Filter out blocks with incomplete auth configs, e.g. missing OAuth server secrets
from ._utils import is_block_auth_configured
from backend.data.block import is_block_auth_configured
filtered_blocks = {}
for block_id, block_cls in available_blocks.items():
@@ -112,48 +115,11 @@ def load_all_blocks() -> dict[str, type["AnyBlockSchema"]]:
return filtered_blocks
def _all_subclasses(cls: type[T]) -> list[type[T]]:
__all__ = ["load_all_blocks"]
def all_subclasses(cls: type[T]) -> list[type[T]]:
subclasses = cls.__subclasses__()
for subclass in subclasses:
subclasses += _all_subclasses(subclass)
subclasses += all_subclasses(subclass)
return subclasses
# ============== Block access helper functions ============== #
def get_blocks() -> dict[str, Type["AnyBlockSchema"]]:
return load_all_blocks()
# Note on the return type annotation: https://github.com/microsoft/pyright/issues/10281
def get_block(block_id: str) -> "AnyBlockSchema | None":
cls = get_blocks().get(block_id)
return cls() if cls else None
@cached(ttl_seconds=3600)
def get_webhook_block_ids() -> Sequence[str]:
return [
id
for id, B in get_blocks().items()
if B().block_type in (BlockType.WEBHOOK, BlockType.WEBHOOK_MANUAL)
]
@cached(ttl_seconds=3600)
def get_io_block_ids() -> Sequence[str]:
return [
id
for id, B in get_blocks().items()
if B().block_type in (BlockType.INPUT, BlockType.OUTPUT)
]
@cached(ttl_seconds=3600)
def get_human_in_the_loop_block_ids() -> Sequence[str]:
return [
id
for id, B in get_blocks().items()
if B().block_type == BlockType.HUMAN_IN_THE_LOOP
]

View File

@@ -1,759 +0,0 @@
import inspect
import logging
from abc import ABC, abstractmethod
from enum import Enum
from typing import (
TYPE_CHECKING,
Any,
Callable,
ClassVar,
Generic,
Optional,
Type,
TypeAlias,
TypeVar,
cast,
get_origin,
)
import jsonref
import jsonschema
from pydantic import BaseModel
from backend.data.block import BlockInput, BlockOutput, BlockOutputEntry
from backend.data.model import (
Credentials,
CredentialsFieldInfo,
CredentialsMetaInput,
SchemaField,
is_credentials_field_name,
)
from backend.integrations.providers import ProviderName
from backend.util import json
from backend.util.exceptions import (
BlockError,
BlockExecutionError,
BlockInputError,
BlockOutputError,
BlockUnknownError,
)
from backend.util.settings import Config
logger = logging.getLogger(__name__)
if TYPE_CHECKING:
from backend.data.execution import ExecutionContext
from backend.data.model import ContributorDetails, NodeExecutionStats
from ..data.graph import Link
app_config = Config()
BlockTestOutput = BlockOutputEntry | tuple[str, Callable[[Any], bool]]
class BlockType(Enum):
STANDARD = "Standard"
INPUT = "Input"
OUTPUT = "Output"
NOTE = "Note"
WEBHOOK = "Webhook"
WEBHOOK_MANUAL = "Webhook (manual)"
AGENT = "Agent"
AI = "AI"
AYRSHARE = "Ayrshare"
HUMAN_IN_THE_LOOP = "Human In The Loop"
class BlockCategory(Enum):
AI = "Block that leverages AI to perform a task."
SOCIAL = "Block that interacts with social media platforms."
TEXT = "Block that processes text data."
SEARCH = "Block that searches or extracts information from the internet."
BASIC = "Block that performs basic operations."
INPUT = "Block that interacts with input of the graph."
OUTPUT = "Block that interacts with output of the graph."
LOGIC = "Programming logic to control the flow of your agent"
COMMUNICATION = "Block that interacts with communication platforms."
DEVELOPER_TOOLS = "Developer tools such as GitHub blocks."
DATA = "Block that interacts with structured data."
HARDWARE = "Block that interacts with hardware."
AGENT = "Block that interacts with other agents."
CRM = "Block that interacts with CRM services."
SAFETY = (
"Block that provides AI safety mechanisms such as detecting harmful content"
)
PRODUCTIVITY = "Block that helps with productivity"
ISSUE_TRACKING = "Block that helps with issue tracking"
MULTIMEDIA = "Block that interacts with multimedia content"
MARKETING = "Block that helps with marketing"
def dict(self) -> dict[str, str]:
return {"category": self.name, "description": self.value}
class BlockCostType(str, Enum):
RUN = "run" # cost X credits per run
BYTE = "byte" # cost X credits per byte
SECOND = "second" # cost X credits per second
class BlockCost(BaseModel):
cost_amount: int
cost_filter: BlockInput
cost_type: BlockCostType
def __init__(
self,
cost_amount: int,
cost_type: BlockCostType = BlockCostType.RUN,
cost_filter: Optional[BlockInput] = None,
**data: Any,
) -> None:
super().__init__(
cost_amount=cost_amount,
cost_filter=cost_filter or {},
cost_type=cost_type,
**data,
)
class BlockInfo(BaseModel):
id: str
name: str
inputSchema: dict[str, Any]
outputSchema: dict[str, Any]
costs: list[BlockCost]
description: str
categories: list[dict[str, str]]
contributors: list[dict[str, Any]]
staticOutput: bool
uiType: str
class BlockSchema(BaseModel):
cached_jsonschema: ClassVar[dict[str, Any] | None] = None
@classmethod
def clear_schema_cache(cls) -> None:
"""Clear the cached JSON schema for this class."""
# Use None instead of {} because {} is truthy and would prevent regeneration
cls.cached_jsonschema = None # type: ignore
@staticmethod
def clear_all_schema_caches() -> None:
"""Clear cached JSON schemas for all BlockSchema subclasses."""
def clear_recursive(cls: type) -> None:
"""Recursively clear cache for class and all subclasses."""
if hasattr(cls, "clear_schema_cache"):
cls.clear_schema_cache()
for subclass in cls.__subclasses__():
clear_recursive(subclass)
clear_recursive(BlockSchema)
@classmethod
def jsonschema(cls) -> dict[str, Any]:
if cls.cached_jsonschema:
return cls.cached_jsonschema
model = jsonref.replace_refs(cls.model_json_schema(), merge_props=True)
def ref_to_dict(obj):
if isinstance(obj, dict):
# OpenAPI <3.1 does not support sibling fields that has a $ref key
# So sometimes, the schema has an "allOf"/"anyOf"/"oneOf" with 1 item.
keys = {"allOf", "anyOf", "oneOf"}
one_key = next((k for k in keys if k in obj and len(obj[k]) == 1), None)
if one_key:
obj.update(obj[one_key][0])
return {
key: ref_to_dict(value)
for key, value in obj.items()
if not key.startswith("$") and key != one_key
}
elif isinstance(obj, list):
return [ref_to_dict(item) for item in obj]
return obj
cls.cached_jsonschema = cast(dict[str, Any], ref_to_dict(model))
return cls.cached_jsonschema
@classmethod
def validate_data(cls, data: BlockInput) -> str | None:
return json.validate_with_jsonschema(
schema=cls.jsonschema(),
data={k: v for k, v in data.items() if v is not None},
)
@classmethod
def get_mismatch_error(cls, data: BlockInput) -> str | None:
return cls.validate_data(data)
@classmethod
def get_field_schema(cls, field_name: str) -> dict[str, Any]:
model_schema = cls.jsonschema().get("properties", {})
if not model_schema:
raise ValueError(f"Invalid model schema {cls}")
property_schema = model_schema.get(field_name)
if not property_schema:
raise ValueError(f"Invalid property name {field_name}")
return property_schema
@classmethod
def validate_field(cls, field_name: str, data: BlockInput) -> str | None:
"""
Validate the data against a specific property (one of the input/output name).
Returns the validation error message if the data does not match the schema.
"""
try:
property_schema = cls.get_field_schema(field_name)
jsonschema.validate(json.to_dict(data), property_schema)
return None
except jsonschema.ValidationError as e:
return str(e)
@classmethod
def get_fields(cls) -> set[str]:
return set(cls.model_fields.keys())
@classmethod
def get_required_fields(cls) -> set[str]:
return {
field
for field, field_info in cls.model_fields.items()
if field_info.is_required()
}
@classmethod
def __pydantic_init_subclass__(cls, **kwargs):
"""Validates the schema definition. Rules:
- Fields with annotation `CredentialsMetaInput` MUST be
named `credentials` or `*_credentials`
- Fields named `credentials` or `*_credentials` MUST be
of type `CredentialsMetaInput`
"""
super().__pydantic_init_subclass__(**kwargs)
# Reset cached JSON schema to prevent inheriting it from parent class
# Use None instead of {} because {} is truthy and would prevent regeneration
cls.cached_jsonschema = None
credentials_fields = cls.get_credentials_fields()
for field_name in cls.get_fields():
if is_credentials_field_name(field_name):
if field_name not in credentials_fields:
raise TypeError(
f"Credentials field '{field_name}' on {cls.__qualname__} "
f"is not of type {CredentialsMetaInput.__name__}"
)
CredentialsMetaInput.validate_credentials_field_schema(
cls.get_field_schema(field_name), field_name
)
elif field_name in credentials_fields:
raise KeyError(
f"Credentials field '{field_name}' on {cls.__qualname__} "
"has invalid name: must be 'credentials' or *_credentials"
)
@classmethod
def get_credentials_fields(cls) -> dict[str, type[CredentialsMetaInput]]:
return {
field_name: info.annotation
for field_name, info in cls.model_fields.items()
if (
inspect.isclass(info.annotation)
and issubclass(
get_origin(info.annotation) or info.annotation,
CredentialsMetaInput,
)
)
}
@classmethod
def get_auto_credentials_fields(cls) -> dict[str, dict[str, Any]]:
"""
Get fields that have auto_credentials metadata (e.g., GoogleDriveFileInput).
Returns a dict mapping kwarg_name -> {field_name, auto_credentials_config}
Raises:
ValueError: If multiple fields have the same kwarg_name, as this would
cause silent overwriting and only the last field would be processed.
"""
result: dict[str, dict[str, Any]] = {}
schema = cls.jsonschema()
properties = schema.get("properties", {})
for field_name, field_schema in properties.items():
auto_creds = field_schema.get("auto_credentials")
if auto_creds:
kwarg_name = auto_creds.get("kwarg_name", "credentials")
if kwarg_name in result:
raise ValueError(
f"Duplicate auto_credentials kwarg_name '{kwarg_name}' "
f"in fields '{result[kwarg_name]['field_name']}' and "
f"'{field_name}' on {cls.__qualname__}"
)
result[kwarg_name] = {
"field_name": field_name,
"config": auto_creds,
}
return result
@classmethod
def get_credentials_fields_info(cls) -> dict[str, CredentialsFieldInfo]:
result = {}
# Regular credentials fields
for field_name in cls.get_credentials_fields().keys():
result[field_name] = CredentialsFieldInfo.model_validate(
cls.get_field_schema(field_name), by_alias=True
)
# Auto-generated credentials fields (from GoogleDriveFileInput etc.)
for kwarg_name, info in cls.get_auto_credentials_fields().items():
config = info["config"]
# Build a schema-like dict that CredentialsFieldInfo can parse
auto_schema = {
"credentials_provider": [config.get("provider", "google")],
"credentials_types": [config.get("type", "oauth2")],
"credentials_scopes": config.get("scopes"),
}
result[kwarg_name] = CredentialsFieldInfo.model_validate(
auto_schema, by_alias=True
)
return result
@classmethod
def get_input_defaults(cls, data: BlockInput) -> BlockInput:
return data # Return as is, by default.
@classmethod
def get_missing_links(cls, data: BlockInput, links: list["Link"]) -> set[str]:
input_fields_from_nodes = {link.sink_name for link in links}
return input_fields_from_nodes - set(data)
@classmethod
def get_missing_input(cls, data: BlockInput) -> set[str]:
return cls.get_required_fields() - set(data)
class BlockSchemaInput(BlockSchema):
"""
Base schema class for block inputs.
All block input schemas should extend this class for consistency.
"""
pass
class BlockSchemaOutput(BlockSchema):
"""
Base schema class for block outputs that includes a standard error field.
All block output schemas should extend this class to ensure consistent error handling.
"""
error: str = SchemaField(
description="Error message if the operation failed", default=""
)
BlockSchemaInputType = TypeVar("BlockSchemaInputType", bound=BlockSchemaInput)
BlockSchemaOutputType = TypeVar("BlockSchemaOutputType", bound=BlockSchemaOutput)
class EmptyInputSchema(BlockSchemaInput):
pass
class EmptyOutputSchema(BlockSchemaOutput):
pass
# For backward compatibility - will be deprecated
EmptySchema = EmptyOutputSchema
# --8<-- [start:BlockWebhookConfig]
class BlockManualWebhookConfig(BaseModel):
"""
Configuration model for webhook-triggered blocks on which
the user has to manually set up the webhook at the provider.
"""
provider: ProviderName
"""The service provider that the webhook connects to"""
webhook_type: str
"""
Identifier for the webhook type. E.g. GitHub has repo and organization level hooks.
Only for use in the corresponding `WebhooksManager`.
"""
event_filter_input: str = ""
"""
Name of the block's event filter input.
Leave empty if the corresponding webhook doesn't have distinct event/payload types.
"""
event_format: str = "{event}"
"""
Template string for the event(s) that a block instance subscribes to.
Applied individually to each event selected in the event filter input.
Example: `"pull_request.{event}"` -> `"pull_request.opened"`
"""
class BlockWebhookConfig(BlockManualWebhookConfig):
"""
Configuration model for webhook-triggered blocks for which
the webhook can be automatically set up through the provider's API.
"""
resource_format: str
"""
Template string for the resource that a block instance subscribes to.
Fields will be filled from the block's inputs (except `payload`).
Example: `f"{repo}/pull_requests"` (note: not how it's actually implemented)
Only for use in the corresponding `WebhooksManager`.
"""
# --8<-- [end:BlockWebhookConfig]
class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
def __init__(
self,
id: str = "",
description: str = "",
contributors: list["ContributorDetails"] = [],
categories: set[BlockCategory] | None = None,
input_schema: Type[BlockSchemaInputType] = EmptyInputSchema,
output_schema: Type[BlockSchemaOutputType] = EmptyOutputSchema,
test_input: BlockInput | list[BlockInput] | None = None,
test_output: BlockTestOutput | list[BlockTestOutput] | None = None,
test_mock: dict[str, Any] | None = None,
test_credentials: Optional[Credentials | dict[str, Credentials]] = None,
disabled: bool = False,
static_output: bool = False,
block_type: BlockType = BlockType.STANDARD,
webhook_config: Optional[BlockWebhookConfig | BlockManualWebhookConfig] = None,
is_sensitive_action: bool = False,
):
"""
Initialize the block with the given schema.
Args:
id: The unique identifier for the block, this value will be persisted in the
DB. So it should be a unique and constant across the application run.
Use the UUID format for the ID.
description: The description of the block, explaining what the block does.
contributors: The list of contributors who contributed to the block.
input_schema: The schema, defined as a Pydantic model, for the input data.
output_schema: The schema, defined as a Pydantic model, for the output data.
test_input: The list or single sample input data for the block, for testing.
test_output: The list or single expected output if the test_input is run.
test_mock: function names on the block implementation to mock on test run.
disabled: If the block is disabled, it will not be available for execution.
static_output: Whether the output links of the block are static by default.
"""
from backend.data.model import NodeExecutionStats
self.id = id
self.input_schema = input_schema
self.output_schema = output_schema
self.test_input = test_input
self.test_output = test_output
self.test_mock = test_mock
self.test_credentials = test_credentials
self.description = description
self.categories = categories or set()
self.contributors = contributors or set()
self.disabled = disabled
self.static_output = static_output
self.block_type = block_type
self.webhook_config = webhook_config
self.is_sensitive_action = is_sensitive_action
self.execution_stats: "NodeExecutionStats" = NodeExecutionStats()
if self.webhook_config:
if isinstance(self.webhook_config, BlockWebhookConfig):
# Enforce presence of credentials field on auto-setup webhook blocks
if not (cred_fields := self.input_schema.get_credentials_fields()):
raise TypeError(
"credentials field is required on auto-setup webhook blocks"
)
# Disallow multiple credentials inputs on webhook blocks
elif len(cred_fields) > 1:
raise ValueError(
"Multiple credentials inputs not supported on webhook blocks"
)
self.block_type = BlockType.WEBHOOK
else:
self.block_type = BlockType.WEBHOOK_MANUAL
# Enforce shape of webhook event filter, if present
if self.webhook_config.event_filter_input:
event_filter_field = self.input_schema.model_fields[
self.webhook_config.event_filter_input
]
if not (
isinstance(event_filter_field.annotation, type)
and issubclass(event_filter_field.annotation, BaseModel)
and all(
field.annotation is bool
for field in event_filter_field.annotation.model_fields.values()
)
):
raise NotImplementedError(
f"{self.name} has an invalid webhook event selector: "
"field must be a BaseModel and all its fields must be boolean"
)
# Enforce presence of 'payload' input
if "payload" not in self.input_schema.model_fields:
raise TypeError(
f"{self.name} is webhook-triggered but has no 'payload' input"
)
# Disable webhook-triggered block if webhook functionality not available
if not app_config.platform_base_url:
self.disabled = True
@abstractmethod
async def run(self, input_data: BlockSchemaInputType, **kwargs) -> BlockOutput:
"""
Run the block with the given input data.
Args:
input_data: The input data with the structure of input_schema.
Kwargs: Currently 14/02/2025 these include
graph_id: The ID of the graph.
node_id: The ID of the node.
graph_exec_id: The ID of the graph execution.
node_exec_id: The ID of the node execution.
user_id: The ID of the user.
Returns:
A Generator that yields (output_name, output_data).
output_name: One of the output name defined in Block's output_schema.
output_data: The data for the output_name, matching the defined schema.
"""
# --- satisfy the type checker, never executed -------------
if False: # noqa: SIM115
yield "name", "value" # pyright: ignore[reportMissingYield]
raise NotImplementedError(f"{self.name} does not implement the run method.")
async def run_once(
self, input_data: BlockSchemaInputType, output: str, **kwargs
) -> Any:
async for item in self.run(input_data, **kwargs):
name, data = item
if name == output:
return data
raise ValueError(f"{self.name} did not produce any output for {output}")
def merge_stats(self, stats: "NodeExecutionStats") -> "NodeExecutionStats":
self.execution_stats += stats
return self.execution_stats
@property
def name(self):
return self.__class__.__name__
def to_dict(self):
return {
"id": self.id,
"name": self.name,
"inputSchema": self.input_schema.jsonschema(),
"outputSchema": self.output_schema.jsonschema(),
"description": self.description,
"categories": [category.dict() for category in self.categories],
"contributors": [
contributor.model_dump() for contributor in self.contributors
],
"staticOutput": self.static_output,
"uiType": self.block_type.value,
}
def get_info(self) -> BlockInfo:
from backend.data.credit import get_block_cost
return BlockInfo(
id=self.id,
name=self.name,
inputSchema=self.input_schema.jsonschema(),
outputSchema=self.output_schema.jsonschema(),
costs=get_block_cost(self),
description=self.description,
categories=[category.dict() for category in self.categories],
contributors=[
contributor.model_dump() for contributor in self.contributors
],
staticOutput=self.static_output,
uiType=self.block_type.value,
)
async def execute(self, input_data: BlockInput, **kwargs) -> BlockOutput:
try:
async for output_name, output_data in self._execute(input_data, **kwargs):
yield output_name, output_data
except Exception as ex:
if isinstance(ex, BlockError):
raise ex
else:
raise (
BlockExecutionError
if isinstance(ex, ValueError)
else BlockUnknownError
)(
message=str(ex),
block_name=self.name,
block_id=self.id,
) from ex
async def is_block_exec_need_review(
self,
input_data: BlockInput,
*,
user_id: str,
node_id: str,
node_exec_id: str,
graph_exec_id: str,
graph_id: str,
graph_version: int,
execution_context: "ExecutionContext",
**kwargs,
) -> tuple[bool, BlockInput]:
"""
Check if this block execution needs human review and handle the review process.
Returns:
Tuple of (should_pause, input_data_to_use)
- should_pause: True if execution should be paused for review
- input_data_to_use: The input data to use (may be modified by reviewer)
"""
if not (
self.is_sensitive_action and execution_context.sensitive_action_safe_mode
):
return False, input_data
from backend.blocks.helpers.review import HITLReviewHelper
# Handle the review request and get decision
decision = await HITLReviewHelper.handle_review_decision(
input_data=input_data,
user_id=user_id,
node_id=node_id,
node_exec_id=node_exec_id,
graph_exec_id=graph_exec_id,
graph_id=graph_id,
graph_version=graph_version,
block_name=self.name,
editable=True,
)
if decision is None:
# We're awaiting review - pause execution
return True, input_data
if not decision.should_proceed:
# Review was rejected, raise an error to stop execution
raise BlockExecutionError(
message=f"Block execution rejected by reviewer: {decision.message}",
block_name=self.name,
block_id=self.id,
)
# Review was approved - use the potentially modified data
# ReviewResult.data must be a dict for block inputs
reviewed_data = decision.review_result.data
if not isinstance(reviewed_data, dict):
raise BlockExecutionError(
message=f"Review data must be a dict for block input, got {type(reviewed_data).__name__}",
block_name=self.name,
block_id=self.id,
)
return False, reviewed_data
async def _execute(self, input_data: BlockInput, **kwargs) -> BlockOutput:
# Check for review requirement only if running within a graph execution context
# Direct block execution (e.g., from chat) skips the review process
has_graph_context = all(
key in kwargs
for key in (
"node_exec_id",
"graph_exec_id",
"graph_id",
"execution_context",
)
)
if has_graph_context:
should_pause, input_data = await self.is_block_exec_need_review(
input_data, **kwargs
)
if should_pause:
return
# Validate the input data (original or reviewer-modified) once
if error := self.input_schema.validate_data(input_data):
raise BlockInputError(
message=f"Unable to execute block with invalid input data: {error}",
block_name=self.name,
block_id=self.id,
)
# Use the validated input data
async for output_name, output_data in self.run(
self.input_schema(**{k: v for k, v in input_data.items() if v is not None}),
**kwargs,
):
if output_name == "error":
raise BlockExecutionError(
message=output_data, block_name=self.name, block_id=self.id
)
if self.block_type == BlockType.STANDARD and (
error := self.output_schema.validate_field(output_name, output_data)
):
raise BlockOutputError(
message=f"Block produced an invalid output data: {error}",
block_name=self.name,
block_id=self.id,
)
yield output_name, output_data
def is_triggered_by_event_type(
self, trigger_config: dict[str, Any], event_type: str
) -> bool:
if not self.webhook_config:
raise TypeError("This method can't be used on non-trigger blocks")
if not self.webhook_config.event_filter_input:
return True
event_filter = trigger_config.get(self.webhook_config.event_filter_input)
if not event_filter:
raise ValueError("Event filter is not configured on trigger")
return event_type in [
self.webhook_config.event_format.format(event=k)
for k in event_filter
if event_filter[k] is True
]
# Type alias for any block with standard input/output schemas
AnyBlockSchema: TypeAlias = Block[BlockSchemaInput, BlockSchemaOutput]

View File

@@ -1,122 +0,0 @@
import logging
import os
from backend.integrations.providers import ProviderName
from ._base import AnyBlockSchema
logger = logging.getLogger(__name__)
def is_block_auth_configured(
block_cls: type[AnyBlockSchema],
) -> bool:
"""
Check if a block has a valid authentication method configured at runtime.
For example if a block is an OAuth-only block and there env vars are not set,
do not show it in the UI.
"""
from backend.sdk.registry import AutoRegistry
# Create an instance to access input_schema
try:
block = block_cls()
except Exception as e:
# If we can't create a block instance, assume it's not OAuth-only
logger.error(f"Error creating block instance for {block_cls.__name__}: {e}")
return True
logger.debug(
f"Checking if block {block_cls.__name__} has a valid provider configured"
)
# Get all credential inputs from input schema
credential_inputs = block.input_schema.get_credentials_fields_info()
required_inputs = block.input_schema.get_required_fields()
if not credential_inputs:
logger.debug(
f"Block {block_cls.__name__} has no credential inputs - Treating as valid"
)
return True
# Check credential inputs
if len(required_inputs.intersection(credential_inputs.keys())) == 0:
logger.debug(
f"Block {block_cls.__name__} has only optional credential inputs"
" - will work without credentials configured"
)
# Check if the credential inputs for this block are correctly configured
for field_name, field_info in credential_inputs.items():
provider_names = field_info.provider
if not provider_names:
logger.warning(
f"Block {block_cls.__name__} "
f"has credential input '{field_name}' with no provider options"
" - Disabling"
)
return False
# If a field has multiple possible providers, each one needs to be usable to
# prevent breaking the UX
for _provider_name in provider_names:
provider_name = _provider_name.value
if provider_name in ProviderName.__members__.values():
logger.debug(
f"Block {block_cls.__name__} credential input '{field_name}' "
f"provider '{provider_name}' is part of the legacy provider system"
" - Treating as valid"
)
break
provider = AutoRegistry.get_provider(provider_name)
if not provider:
logger.warning(
f"Block {block_cls.__name__} credential input '{field_name}' "
f"refers to unknown provider '{provider_name}' - Disabling"
)
return False
# Check the provider's supported auth types
if field_info.supported_types != provider.supported_auth_types:
logger.warning(
f"Block {block_cls.__name__} credential input '{field_name}' "
f"has mismatched supported auth types (field <> Provider): "
f"{field_info.supported_types} != {provider.supported_auth_types}"
)
if not (supported_auth_types := provider.supported_auth_types):
# No auth methods are been configured for this provider
logger.warning(
f"Block {block_cls.__name__} credential input '{field_name}' "
f"provider '{provider_name}' "
"has no authentication methods configured - Disabling"
)
return False
# Check if provider supports OAuth
if "oauth2" in supported_auth_types:
# Check if OAuth environment variables are set
if (oauth_config := provider.oauth_config) and bool(
os.getenv(oauth_config.client_id_env_var)
and os.getenv(oauth_config.client_secret_env_var)
):
logger.debug(
f"Block {block_cls.__name__} credential input '{field_name}' "
f"provider '{provider_name}' is configured for OAuth"
)
else:
logger.error(
f"Block {block_cls.__name__} credential input '{field_name}' "
f"provider '{provider_name}' "
"is missing OAuth client ID or secret - Disabling"
)
return False
logger.debug(
f"Block {block_cls.__name__} credential input '{field_name}' is valid; "
f"supported credential types: {', '.join(field_info.supported_types)}"
)
return True

View File

@@ -1,7 +1,7 @@
import logging
from typing import TYPE_CHECKING, Any, Optional
from typing import Any, Optional
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockInput,
@@ -9,15 +9,13 @@ from backend.blocks._base import (
BlockSchema,
BlockSchemaInput,
BlockType,
get_block,
)
from backend.data.execution import ExecutionContext, ExecutionStatus, NodesInputMasks
from backend.data.model import NodeExecutionStats, SchemaField
from backend.util.json import validate_with_jsonschema
from backend.util.retry import func_retry
if TYPE_CHECKING:
from backend.executor.utils import LogMetadata
_logger = logging.getLogger(__name__)
@@ -126,10 +124,9 @@ class AgentExecutorBlock(Block):
graph_version: int,
graph_exec_id: str,
user_id: str,
logger: "LogMetadata",
logger,
) -> BlockOutput:
from backend.blocks import get_block
from backend.data.execution import ExecutionEventType
from backend.executor import utils as execution_utils
@@ -201,7 +198,7 @@ class AgentExecutorBlock(Block):
self,
graph_exec_id: str,
user_id: str,
logger: "LogMetadata",
logger,
) -> None:
from backend.executor import utils as execution_utils

View File

@@ -1,12 +1,7 @@
from typing import Any
from backend.blocks._base import (
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.blocks.llm import (
DEFAULT_LLM_MODEL,
TEST_CREDENTIALS,
TEST_CREDENTIALS_INPUT,
AIBlockBase,
@@ -15,7 +10,12 @@ from backend.blocks.llm import (
LlmModel,
LLMResponse,
llm_call,
llm_model_schema_extra,
)
from backend.data.block import (
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.model import APIKeyCredentials, NodeExecutionStats, SchemaField
@@ -50,10 +50,9 @@ class AIConditionBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default_factory=LlmModel.default,
default=DEFAULT_LLM_MODEL,
description="The language model to use for evaluating the condition.",
advanced=False,
json_schema_extra=llm_model_schema_extra(),
)
credentials: AICredentials = AICredentialsField()
@@ -83,7 +82,7 @@ class AIConditionBlock(AIBlockBase):
"condition": "the input is an email address",
"yes_value": "Valid email",
"no_value": "Not an email",
"model": LlmModel.default(),
"model": DEFAULT_LLM_MODEL,
"credentials": TEST_CREDENTIALS_INPUT,
},
test_credentials=TEST_CREDENTIALS,

View File

@@ -6,7 +6,7 @@ from pydantic import SecretStr
from replicate.client import Client as ReplicateClient
from replicate.helpers import FileOutput
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -5,12 +5,7 @@ from pydantic import SecretStr
from replicate.client import Client as ReplicateClient
from replicate.helpers import FileOutput
from backend.blocks._base import (
Block,
BlockCategory,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.block import Block, BlockCategory, BlockSchemaInput, BlockSchemaOutput
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,

View File

@@ -6,7 +6,7 @@ from typing import Literal
from pydantic import SecretStr
from replicate.client import Client as ReplicateClient
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -6,7 +6,7 @@ from typing import Literal
from pydantic import SecretStr
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -1,10 +1,3 @@
from backend.blocks._base import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.blocks.apollo._api import ApolloClient
from backend.blocks.apollo._auth import (
TEST_CREDENTIALS,
@@ -17,6 +10,13 @@ from backend.blocks.apollo.models import (
PrimaryPhone,
SearchOrganizationsRequest,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.model import CredentialsField, SchemaField

View File

@@ -1,12 +1,5 @@
import asyncio
from backend.blocks._base import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.blocks.apollo._api import ApolloClient
from backend.blocks.apollo._auth import (
TEST_CREDENTIALS,
@@ -21,6 +14,13 @@ from backend.blocks.apollo.models import (
SearchPeopleRequest,
SenorityLevels,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.model import CredentialsField, SchemaField

View File

@@ -1,10 +1,3 @@
from backend.blocks._base import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.blocks.apollo._api import ApolloClient
from backend.blocks.apollo._auth import (
TEST_CREDENTIALS,
@@ -13,6 +6,13 @@ from backend.blocks.apollo._auth import (
ApolloCredentialsInput,
)
from backend.blocks.apollo.models import Contact, EnrichPersonRequest
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.model import CredentialsField, SchemaField

View File

@@ -3,7 +3,7 @@ from typing import Optional
from pydantic import BaseModel, Field
from backend.blocks._base import BlockSchemaInput
from backend.data.block import BlockSchemaInput
from backend.data.model import SchemaField, UserIntegrations
from backend.integrations.ayrshare import AyrshareClient
from backend.util.clients import get_database_manager_async_client

View File

@@ -1,7 +1,7 @@
import enum
from typing import Any
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -2,7 +2,7 @@ import os
import re
from typing import Type
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -1,7 +1,7 @@
from enum import Enum
from typing import Any
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -1,12 +1,12 @@
import json
import shlex
import uuid
from typing import TYPE_CHECKING, Literal, Optional
from typing import Literal, Optional
from e2b import AsyncSandbox as BaseAsyncSandbox
from pydantic import SecretStr
from pydantic import BaseModel, SecretStr
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
@@ -20,13 +20,6 @@ from backend.data.model import (
SchemaField,
)
from backend.integrations.providers import ProviderName
from backend.util.sandbox_files import (
SandboxFileOutput,
extract_and_store_sandbox_files,
)
if TYPE_CHECKING:
from backend.executor.utils import ExecutionContext
class ClaudeCodeExecutionError(Exception):
@@ -181,15 +174,22 @@ class ClaudeCodeBlock(Block):
advanced=True,
)
class FileOutput(BaseModel):
"""A file extracted from the sandbox."""
path: str
relative_path: str # Path relative to working directory (for GitHub, etc.)
name: str
content: str
class Output(BlockSchemaOutput):
response: str = SchemaField(
description="The output/response from Claude Code execution"
)
files: list[SandboxFileOutput] = SchemaField(
files: list["ClaudeCodeBlock.FileOutput"] = SchemaField(
description=(
"List of text files created/modified by Claude Code during this execution. "
"Each file has 'path', 'relative_path', 'name', 'content', and 'workspace_ref' fields. "
"workspace_ref contains a workspace:// URI if the file was stored to workspace."
"Each file has 'path', 'relative_path', 'name', and 'content' fields."
)
)
conversation_history: str = SchemaField(
@@ -252,7 +252,6 @@ class ClaudeCodeBlock(Block):
"relative_path": "index.html",
"name": "index.html",
"content": "<html>Hello World</html>",
"workspace_ref": None,
}
],
),
@@ -268,12 +267,11 @@ class ClaudeCodeBlock(Block):
"execute_claude_code": lambda *args, **kwargs: (
"Created index.html with hello world content", # response
[
SandboxFileOutput(
ClaudeCodeBlock.FileOutput(
path="/home/user/index.html",
relative_path="index.html",
name="index.html",
content="<html>Hello World</html>",
workspace_ref=None,
)
], # files
"User: Create a hello world HTML file\n"
@@ -296,8 +294,7 @@ class ClaudeCodeBlock(Block):
existing_sandbox_id: str,
conversation_history: str,
dispose_sandbox: bool,
execution_context: "ExecutionContext",
) -> tuple[str, list[SandboxFileOutput], str, str, str]:
) -> tuple[str, list["ClaudeCodeBlock.FileOutput"], str, str, str]:
"""
Execute Claude Code in an E2B sandbox.
@@ -452,18 +449,14 @@ class ClaudeCodeBlock(Block):
else:
new_conversation_history = turn_entry
# Extract files created/modified during this run and store to workspace
sandbox_files = await extract_and_store_sandbox_files(
sandbox=sandbox,
working_directory=working_directory,
execution_context=execution_context,
since_timestamp=start_timestamp,
text_only=True,
# Extract files created/modified during this run
files = await self._extract_files(
sandbox, working_directory, start_timestamp
)
return (
response,
sandbox_files, # Already SandboxFileOutput objects
files,
new_conversation_history,
current_session_id,
sandbox_id,
@@ -478,6 +471,140 @@ class ClaudeCodeBlock(Block):
if dispose_sandbox and sandbox:
await sandbox.kill()
async def _extract_files(
self,
sandbox: BaseAsyncSandbox,
working_directory: str,
since_timestamp: str | None = None,
) -> list["ClaudeCodeBlock.FileOutput"]:
"""
Extract text files created/modified during this Claude Code execution.
Args:
sandbox: The E2B sandbox instance
working_directory: Directory to search for files
since_timestamp: ISO timestamp - only return files modified after this time
Returns:
List of FileOutput objects with path, relative_path, name, and content
"""
files: list[ClaudeCodeBlock.FileOutput] = []
# Text file extensions we can safely read as text
text_extensions = {
".txt",
".md",
".html",
".htm",
".css",
".js",
".ts",
".jsx",
".tsx",
".json",
".xml",
".yaml",
".yml",
".toml",
".ini",
".cfg",
".conf",
".py",
".rb",
".php",
".java",
".c",
".cpp",
".h",
".hpp",
".cs",
".go",
".rs",
".swift",
".kt",
".scala",
".sh",
".bash",
".zsh",
".sql",
".graphql",
".env",
".gitignore",
".dockerfile",
"Dockerfile",
".vue",
".svelte",
".astro",
".mdx",
".rst",
".tex",
".csv",
".log",
}
try:
# List files recursively using find command
# Exclude node_modules and .git directories, but allow hidden files
# like .env and .gitignore (they're filtered by text_extensions later)
# Filter by timestamp to only get files created/modified during this run
safe_working_dir = shlex.quote(working_directory)
timestamp_filter = ""
if since_timestamp:
timestamp_filter = f"-newermt {shlex.quote(since_timestamp)} "
find_result = await sandbox.commands.run(
f"find {safe_working_dir} -type f "
f"{timestamp_filter}"
f"-not -path '*/node_modules/*' "
f"-not -path '*/.git/*' "
f"2>/dev/null"
)
if find_result.stdout:
for file_path in find_result.stdout.strip().split("\n"):
if not file_path:
continue
# Check if it's a text file we can read
is_text = any(
file_path.endswith(ext) for ext in text_extensions
) or file_path.endswith("Dockerfile")
if is_text:
try:
content = await sandbox.files.read(file_path)
# Handle bytes or string
if isinstance(content, bytes):
content = content.decode("utf-8", errors="replace")
# Extract filename from path
file_name = file_path.split("/")[-1]
# Calculate relative path by stripping working directory
relative_path = file_path
if file_path.startswith(working_directory):
relative_path = file_path[len(working_directory) :]
# Remove leading slash if present
if relative_path.startswith("/"):
relative_path = relative_path[1:]
files.append(
ClaudeCodeBlock.FileOutput(
path=file_path,
relative_path=relative_path,
name=file_name,
content=content,
)
)
except Exception:
# Skip files that can't be read
pass
except Exception:
# If file extraction fails, return empty results
pass
return files
def _escape_prompt(self, prompt: str) -> str:
"""Escape the prompt for safe shell execution."""
# Use single quotes and escape any single quotes in the prompt
@@ -490,7 +617,6 @@ class ClaudeCodeBlock(Block):
*,
e2b_credentials: APIKeyCredentials,
anthropic_credentials: APIKeyCredentials,
execution_context: "ExecutionContext",
**kwargs,
) -> BlockOutput:
try:
@@ -511,7 +637,6 @@ class ClaudeCodeBlock(Block):
existing_sandbox_id=input_data.sandbox_id,
conversation_history=input_data.conversation_history,
dispose_sandbox=input_data.dispose_sandbox,
execution_context=execution_context,
)
yield "response", response

View File

@@ -1,12 +1,12 @@
from enum import Enum
from typing import TYPE_CHECKING, Any, Literal, Optional
from typing import Any, Literal, Optional
from e2b_code_interpreter import AsyncSandbox
from e2b_code_interpreter import Result as E2BExecutionResult
from e2b_code_interpreter.charts import Chart as E2BExecutionResultChart
from pydantic import BaseModel, Field, JsonValue, SecretStr
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
@@ -20,13 +20,6 @@ from backend.data.model import (
SchemaField,
)
from backend.integrations.providers import ProviderName
from backend.util.sandbox_files import (
SandboxFileOutput,
extract_and_store_sandbox_files,
)
if TYPE_CHECKING:
from backend.executor.utils import ExecutionContext
TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
@@ -92,9 +85,6 @@ class CodeExecutionResult(MainCodeExecutionResult):
class BaseE2BExecutorMixin:
"""Shared implementation methods for E2B executor blocks."""
# Default working directory in E2B sandboxes
WORKING_DIR = "/home/user"
async def execute_code(
self,
api_key: str,
@@ -105,21 +95,14 @@ class BaseE2BExecutorMixin:
timeout: Optional[int] = None,
sandbox_id: Optional[str] = None,
dispose_sandbox: bool = False,
execution_context: Optional["ExecutionContext"] = None,
extract_files: bool = False,
):
"""
Unified code execution method that handles all three use cases:
1. Create new sandbox and execute (ExecuteCodeBlock)
2. Create new sandbox, execute, and return sandbox_id (InstantiateCodeSandboxBlock)
3. Connect to existing sandbox and execute (ExecuteCodeStepBlock)
Args:
extract_files: If True and execution_context provided, extract files
created/modified during execution and store to workspace.
""" # noqa
sandbox = None
files: list[SandboxFileOutput] = []
try:
if sandbox_id:
# Connect to existing sandbox (ExecuteCodeStepBlock case)
@@ -135,12 +118,6 @@ class BaseE2BExecutorMixin:
for cmd in setup_commands:
await sandbox.commands.run(cmd)
# Capture timestamp before execution to scope file extraction
start_timestamp = None
if extract_files:
ts_result = await sandbox.commands.run("date -u +%Y-%m-%dT%H:%M:%S")
start_timestamp = ts_result.stdout.strip() if ts_result.stdout else None
# Execute the code
execution = await sandbox.run_code(
code,
@@ -156,24 +133,7 @@ class BaseE2BExecutorMixin:
stdout_logs = "".join(execution.logs.stdout)
stderr_logs = "".join(execution.logs.stderr)
# Extract files created/modified during this execution
if extract_files and execution_context:
files = await extract_and_store_sandbox_files(
sandbox=sandbox,
working_directory=self.WORKING_DIR,
execution_context=execution_context,
since_timestamp=start_timestamp,
text_only=False, # Include binary files too
)
return (
results,
text_output,
stdout_logs,
stderr_logs,
sandbox.sandbox_id,
files,
)
return results, text_output, stdout_logs, stderr_logs, sandbox.sandbox_id
finally:
# Dispose of sandbox if requested to reduce usage costs
if dispose_sandbox and sandbox:
@@ -278,12 +238,6 @@ class ExecuteCodeBlock(Block, BaseE2BExecutorMixin):
description="Standard output logs from execution"
)
stderr_logs: str = SchemaField(description="Standard error logs from execution")
files: list[SandboxFileOutput] = SchemaField(
description=(
"Files created or modified during execution. "
"Each file has path, name, content, and workspace_ref (if stored)."
),
)
def __init__(self):
super().__init__(
@@ -305,30 +259,23 @@ class ExecuteCodeBlock(Block, BaseE2BExecutorMixin):
("results", []),
("response", "Hello World"),
("stdout_logs", "Hello World\n"),
("files", []),
],
test_mock={
"execute_code": lambda api_key, code, language, template_id, setup_commands, timeout, dispose_sandbox, execution_context, extract_files: ( # noqa
"execute_code": lambda api_key, code, language, template_id, setup_commands, timeout, dispose_sandbox: ( # noqa
[], # results
"Hello World", # text_output
"Hello World\n", # stdout_logs
"", # stderr_logs
"sandbox_id", # sandbox_id
[], # files
),
},
)
async def run(
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: "ExecutionContext",
**kwargs,
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
try:
results, text_output, stdout, stderr, _, files = await self.execute_code(
results, text_output, stdout, stderr, _ = await self.execute_code(
api_key=credentials.api_key.get_secret_value(),
code=input_data.code,
language=input_data.language,
@@ -336,8 +283,6 @@ class ExecuteCodeBlock(Block, BaseE2BExecutorMixin):
setup_commands=input_data.setup_commands,
timeout=input_data.timeout,
dispose_sandbox=input_data.dispose_sandbox,
execution_context=execution_context,
extract_files=True,
)
# Determine result object shape & filter out empty formats
@@ -351,8 +296,6 @@ class ExecuteCodeBlock(Block, BaseE2BExecutorMixin):
yield "stdout_logs", stdout
if stderr:
yield "stderr_logs", stderr
# Always yield files (empty list if none)
yield "files", [f.model_dump() for f in files]
except Exception as e:
yield "error", str(e)
@@ -450,7 +393,6 @@ class InstantiateCodeSandboxBlock(Block, BaseE2BExecutorMixin):
"Hello World\n", # stdout_logs
"", # stderr_logs
"sandbox_id", # sandbox_id
[], # files
),
},
)
@@ -459,7 +401,7 @@ class InstantiateCodeSandboxBlock(Block, BaseE2BExecutorMixin):
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
try:
_, text_output, stdout, stderr, sandbox_id, _ = await self.execute_code(
_, text_output, stdout, stderr, sandbox_id = await self.execute_code(
api_key=credentials.api_key.get_secret_value(),
code=input_data.setup_code,
language=input_data.language,
@@ -558,7 +500,6 @@ class ExecuteCodeStepBlock(Block, BaseE2BExecutorMixin):
"Hello World\n", # stdout_logs
"", # stderr_logs
sandbox_id, # sandbox_id
[], # files
),
},
)
@@ -567,7 +508,7 @@ class ExecuteCodeStepBlock(Block, BaseE2BExecutorMixin):
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
try:
results, text_output, stdout, stderr, _, _ = await self.execute_code(
results, text_output, stdout, stderr, _ = await self.execute_code(
api_key=credentials.api_key.get_secret_value(),
code=input_data.step_code,
language=input_data.language,

View File

@@ -1,6 +1,6 @@
import re
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -6,7 +6,7 @@ from openai import AsyncOpenAI
from openai.types.responses import Response as OpenAIResponse
from pydantic import SecretStr
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -1,6 +1,6 @@
from pydantic import BaseModel
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockManualWebhookConfig,

View File

@@ -1,4 +1,4 @@
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -1,6 +1,6 @@
from typing import Any, List
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -1,6 +1,6 @@
import codecs
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -8,7 +8,7 @@ from typing import Any, Literal, cast
import discord
from pydantic import SecretStr
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -2,7 +2,7 @@
Discord OAuth-based blocks.
"""
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -7,7 +7,7 @@ from typing import Literal
from pydantic import BaseModel, ConfigDict, SecretStr
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -2,7 +2,7 @@
import codecs
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -8,7 +8,7 @@ which provides access to LinkedIn profile data and related information.
import logging
from typing import Optional
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -3,13 +3,6 @@ import logging
from enum import Enum
from typing import Any
from backend.blocks._base import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.blocks.fal._auth import (
TEST_CREDENTIALS,
TEST_CREDENTIALS_INPUT,
@@ -17,6 +10,13 @@ from backend.blocks.fal._auth import (
FalCredentialsField,
FalCredentialsInput,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import store_media_file

View File

@@ -5,7 +5,7 @@ from pydantic import SecretStr
from replicate.client import Client as ReplicateClient
from replicate.helpers import FileOutput
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -3,7 +3,7 @@ from typing import Optional
from pydantic import BaseModel
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -5,7 +5,7 @@ from typing import Optional
from typing_extensions import TypedDict
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -3,7 +3,7 @@ from urllib.parse import urlparse
from typing_extensions import TypedDict
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -2,7 +2,7 @@ import re
from typing_extensions import TypedDict
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -2,7 +2,7 @@ import base64
from typing_extensions import TypedDict
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -4,7 +4,7 @@ from typing import Any, List, Optional
from typing_extensions import TypedDict
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -3,7 +3,7 @@ from typing import Optional
from pydantic import BaseModel
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -4,7 +4,7 @@ from pathlib import Path
from pydantic import BaseModel
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -8,7 +8,7 @@ from google.oauth2.credentials import Credentials
from googleapiclient.discovery import build
from pydantic import BaseModel
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -7,14 +7,14 @@ from google.oauth2.credentials import Credentials
from googleapiclient.discovery import build
from gravitas_md2gdocs import to_requests
from backend.blocks._base import (
from backend.blocks.google._drive import GoogleDriveFile, GoogleDriveFileField
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.blocks.google._drive import GoogleDriveFile, GoogleDriveFileField
from backend.data.model import SchemaField
from backend.util.settings import Settings

View File

@@ -14,7 +14,7 @@ from google.oauth2.credentials import Credentials
from googleapiclient.discovery import build
from pydantic import BaseModel, Field
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -7,14 +7,14 @@ from enum import Enum
from google.oauth2.credentials import Credentials
from googleapiclient.discovery import build
from backend.blocks._base import (
from backend.blocks.google._drive import GoogleDriveFile, GoogleDriveFileField
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.blocks.google._drive import GoogleDriveFile, GoogleDriveFileField
from backend.data.model import SchemaField
from backend.util.settings import Settings

View File

@@ -3,7 +3,7 @@ from typing import Literal
import googlemaps
from pydantic import BaseModel, SecretStr
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -9,7 +9,9 @@ from typing import Any, Optional
from prisma.enums import ReviewStatus
from pydantic import BaseModel
from backend.data.execution import ExecutionStatus
from backend.data.human_review import ReviewResult
from backend.executor.manager import async_update_node_execution_status
from backend.util.clients import get_database_manager_async_client
logger = logging.getLogger(__name__)
@@ -41,8 +43,6 @@ class HITLReviewHelper:
@staticmethod
async def update_node_execution_status(**kwargs) -> None:
"""Update the execution status of a node."""
from backend.executor.manager import async_update_node_execution_status
await async_update_node_execution_status(
db_client=get_database_manager_async_client(), **kwargs
)
@@ -88,13 +88,12 @@ class HITLReviewHelper:
Raises:
Exception: If review creation or status update fails
"""
from backend.data.execution import ExecutionStatus
# Note: Safe mode checks (human_in_the_loop_safe_mode, sensitive_action_safe_mode)
# are handled by the caller:
# - HITL blocks check human_in_the_loop_safe_mode in their run() method
# - Sensitive action blocks check sensitive_action_safe_mode in is_block_exec_need_review()
# This function only handles checking for existing approvals.
# Check if this node has already been approved (normal or auto-approval)
if approval_result := await HITLReviewHelper.check_approval(
node_exec_id=node_exec_id,

View File

@@ -8,7 +8,7 @@ from typing import Literal
import aiofiles
from pydantic import SecretStr
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -1,15 +1,15 @@
from backend.blocks._base import (
from backend.blocks.hubspot._auth import (
HubSpotCredentials,
HubSpotCredentialsField,
HubSpotCredentialsInput,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.blocks.hubspot._auth import (
HubSpotCredentials,
HubSpotCredentialsField,
HubSpotCredentialsInput,
)
from backend.data.model import SchemaField
from backend.util.request import Requests

View File

@@ -1,15 +1,15 @@
from backend.blocks._base import (
from backend.blocks.hubspot._auth import (
HubSpotCredentials,
HubSpotCredentialsField,
HubSpotCredentialsInput,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.blocks.hubspot._auth import (
HubSpotCredentials,
HubSpotCredentialsField,
HubSpotCredentialsInput,
)
from backend.data.model import SchemaField
from backend.util.request import Requests

View File

@@ -1,17 +1,17 @@
from datetime import datetime, timedelta
from backend.blocks._base import (
from backend.blocks.hubspot._auth import (
HubSpotCredentials,
HubSpotCredentialsField,
HubSpotCredentialsInput,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.blocks.hubspot._auth import (
HubSpotCredentials,
HubSpotCredentialsField,
HubSpotCredentialsInput,
)
from backend.data.model import SchemaField
from backend.util.request import Requests

View File

@@ -3,7 +3,8 @@ from typing import Any
from prisma.enums import ReviewStatus
from backend.blocks._base import (
from backend.blocks.helpers.review import HITLReviewHelper
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
@@ -11,7 +12,6 @@ from backend.blocks._base import (
BlockSchemaOutput,
BlockType,
)
from backend.blocks.helpers.review import HITLReviewHelper
from backend.data.execution import ExecutionContext
from backend.data.human_review import ReviewResult
from backend.data.model import SchemaField
@@ -21,71 +21,43 @@ logger = logging.getLogger(__name__)
class HumanInTheLoopBlock(Block):
"""
Pauses execution and waits for human approval or rejection of the data.
This block pauses execution and waits for human approval or modification of the data.
When executed, this block creates a pending review entry and sets the node execution
status to REVIEW. The execution remains paused until a human user either approves
or rejects the data.
When executed, it creates a pending review entry and sets the node execution status
to REVIEW. The execution will remain paused until a human user either:
- Approves the data (with or without modifications)
- Rejects the data
**How it works:**
- The input data is presented to a human reviewer
- The reviewer can approve or reject (and optionally modify the data if editable)
- On approval: the data flows out through the `approved_data` output pin
- On rejection: the data flows out through the `rejected_data` output pin
**Important:** The output pins yield the actual data itself, NOT status strings.
The approval/rejection decision determines WHICH output pin fires, not the value.
You do NOT need to compare the output to "APPROVED" or "REJECTED" - simply connect
downstream blocks to the appropriate output pin for each case.
**Example usage:**
- Connect `approved_data` → next step in your workflow (data was approved)
- Connect `rejected_data` → error handling or notification (data was rejected)
This is useful for workflows that require human validation or intervention before
proceeding to the next steps.
"""
class Input(BlockSchemaInput):
data: Any = SchemaField(
description="The data to be reviewed by a human user. "
"This exact data will be passed through to either approved_data or "
"rejected_data output based on the reviewer's decision."
)
data: Any = SchemaField(description="The data to be reviewed by a human user")
name: str = SchemaField(
description="A descriptive name for what this data represents. "
"This helps the reviewer understand what they are reviewing.",
description="A descriptive name for what this data represents",
)
editable: bool = SchemaField(
description="Whether the human reviewer can edit the data before "
"approving or rejecting it",
description="Whether the human reviewer can edit the data",
default=True,
advanced=True,
)
class Output(BlockSchemaOutput):
approved_data: Any = SchemaField(
description="Outputs the input data when the reviewer APPROVES it. "
"The value is the actual data itself (not a status string like 'APPROVED'). "
"If the reviewer edited the data, this contains the modified version. "
"Connect downstream blocks here for the 'approved' workflow path."
description="The data when approved (may be modified by reviewer)"
)
rejected_data: Any = SchemaField(
description="Outputs the input data when the reviewer REJECTS it. "
"The value is the actual data itself (not a status string like 'REJECTED'). "
"If the reviewer edited the data, this contains the modified version. "
"Connect downstream blocks here for the 'rejected' workflow path."
description="The data when rejected (may be modified by reviewer)"
)
review_message: str = SchemaField(
description="Optional message provided by the reviewer explaining their "
"decision. Only outputs when the reviewer provides a message; "
"this pin does not fire if no message was given.",
default="",
description="Any message provided by the reviewer", default=""
)
def __init__(self):
super().__init__(
id="8b2a7b3c-6e9d-4a5f-8c1b-2e3f4a5b6c7d",
description="Pause execution for human review. Data flows through "
"approved_data or rejected_data output based on the reviewer's decision. "
"Outputs contain the actual data, not status strings.",
description="Pause execution and wait for human approval or modification of data",
categories={BlockCategory.BASIC},
input_schema=HumanInTheLoopBlock.Input,
output_schema=HumanInTheLoopBlock.Output,

View File

@@ -3,7 +3,7 @@ from typing import Any, Dict, Literal, Optional
from pydantic import SecretStr
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -2,7 +2,9 @@ import copy
from datetime import date, time
from typing import Any, Optional
from backend.blocks._base import (
# Import for Google Drive file input block
from backend.blocks.google._drive import AttachmentView, GoogleDriveFile
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
@@ -10,9 +12,6 @@ from backend.blocks._base import (
BlockSchemaInput,
BlockType,
)
# Import for Google Drive file input block
from backend.blocks.google._drive import AttachmentView, GoogleDriveFile
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import store_media_file

View File

@@ -1,6 +1,6 @@
from typing import Any
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -1,15 +1,15 @@
from backend.blocks._base import (
from backend.blocks.jina._auth import (
JinaCredentials,
JinaCredentialsField,
JinaCredentialsInput,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.blocks.jina._auth import (
JinaCredentials,
JinaCredentialsField,
JinaCredentialsInput,
)
from backend.data.model import SchemaField
from backend.util.request import Requests

View File

@@ -1,15 +1,15 @@
from backend.blocks._base import (
from backend.blocks.jina._auth import (
JinaCredentials,
JinaCredentialsField,
JinaCredentialsInput,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.blocks.jina._auth import (
JinaCredentials,
JinaCredentialsField,
JinaCredentialsInput,
)
from backend.data.model import SchemaField
from backend.util.request import Requests

View File

@@ -3,18 +3,18 @@ from urllib.parse import quote
from typing_extensions import TypedDict
from backend.blocks._base import (
from backend.blocks.jina._auth import (
JinaCredentials,
JinaCredentialsField,
JinaCredentialsInput,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.blocks.jina._auth import (
JinaCredentials,
JinaCredentialsField,
JinaCredentialsInput,
)
from backend.data.model import SchemaField
from backend.util.request import Requests

View File

@@ -1,12 +1,5 @@
from urllib.parse import quote
from backend.blocks._base import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.blocks.jina._auth import (
TEST_CREDENTIALS,
TEST_CREDENTIALS_INPUT,
@@ -15,6 +8,13 @@ from backend.blocks.jina._auth import (
JinaCredentialsInput,
)
from backend.blocks.search import GetRequest
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.model import SchemaField
from backend.util.exceptions import BlockExecutionError

View File

@@ -4,28 +4,24 @@ import logging
import re
import secrets
from abc import ABC
from dataclasses import dataclass
from enum import Enum
from enum import Enum, EnumMeta
from json import JSONDecodeError
from typing import Any, Iterable, List, Literal, Optional
from typing import Any, Iterable, List, Literal, NamedTuple, Optional
import anthropic
import ollama
import openai
from anthropic.types import ToolParam
from groq import AsyncGroq
from pydantic import BaseModel, GetCoreSchemaHandler, SecretStr
from pydantic_core import CoreSchema, core_schema
from pydantic import BaseModel, SecretStr
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data import llm_registry
from backend.data.llm_registry import ModelMetadata
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -70,123 +66,114 @@ TEST_CREDENTIALS_INPUT = {
def AICredentialsField() -> AICredentials:
"""
Returns a CredentialsField for LLM providers.
The discriminator_mapping will be refreshed when the schema is generated
if it's empty, ensuring the LLM registry is loaded.
"""
# Get the mapping now - it may be empty initially, but will be refreshed
# when the schema is generated via CredentialsMetaInput._add_json_schema_extra
mapping = llm_registry.get_llm_discriminator_mapping()
return CredentialsField(
description="API key for the LLM provider.",
discriminator="model",
discriminator_mapping=mapping, # May be empty initially, refreshed later
discriminator_mapping={
model.value: model.metadata.provider for model in LlmModel
},
)
def llm_model_schema_extra() -> dict[str, Any]:
return {"options": llm_registry.get_llm_model_schema_options()}
class ModelMetadata(NamedTuple):
provider: str
context_window: int
max_output_tokens: int | None
display_name: str
provider_name: str
creator_name: str
price_tier: Literal[1, 2, 3]
class LlmModelMeta(type):
"""
Metaclass for LlmModel that enables attribute-style access to dynamic models.
This allows code like `LlmModel.GPT4O` to work by converting the attribute
name to a slug format:
- GPT4O -> gpt-4o
- GPT4O_MINI -> gpt-4o-mini
- CLAUDE_3_5_SONNET -> claude-3-5-sonnet
"""
def __getattr__(cls, name: str):
# Don't intercept private/dunder attributes
if name.startswith("_"):
raise AttributeError(f"type object 'LlmModel' has no attribute '{name}'")
# Convert attribute name to slug format:
# 1. Lowercase: GPT4O -> gpt4o
# 2. Underscores to hyphens: GPT4O_MINI -> gpt4o-mini
slug = name.lower().replace("_", "-")
# Check for exact match in registry first (e.g., "o1" stays "o1")
registry_slugs = llm_registry.get_dynamic_model_slugs()
if slug in registry_slugs:
return cls(slug)
# If no exact match, try inserting hyphen between letter and digit
# e.g., gpt4o -> gpt-4o
transformed_slug = re.sub(r"([a-z])(\d)", r"\1-\2", slug)
return cls(transformed_slug)
def __iter__(cls):
"""Iterate over all models from the registry.
Yields LlmModel instances for each model in the dynamic registry.
Used by __get_pydantic_json_schema__ to build model metadata.
"""
for model in llm_registry.iter_dynamic_models():
yield cls(model.slug)
class LlmModelMeta(EnumMeta):
pass
class LlmModel(str, metaclass=LlmModelMeta):
"""
Dynamic LLM model type that accepts any model slug from the registry.
This is a string subclass (not an Enum) that allows any model slug value.
All models are managed via the LLM Registry in the database.
Usage:
model = LlmModel("gpt-4o") # Direct construction
model = LlmModel.GPT4O # Attribute access (converted to "gpt-4o")
model.value # Returns the slug string
model.provider # Returns the provider from registry
"""
def __new__(cls, value: str):
if isinstance(value, LlmModel):
return value
return str.__new__(cls, value)
@classmethod
def __get_pydantic_core_schema__(
cls, source_type: Any, handler: GetCoreSchemaHandler
) -> CoreSchema:
"""
Tell Pydantic how to validate LlmModel.
Accepts strings and converts them to LlmModel instances.
"""
return core_schema.no_info_after_validator_function(
cls, # The validator function (LlmModel constructor)
core_schema.str_schema(), # Accept string input
serialization=core_schema.to_string_ser_schema(), # Serialize as string
)
@property
def value(self) -> str:
"""Return the model slug (for compatibility with enum-style access)."""
return str(self)
@classmethod
def default(cls) -> "LlmModel":
"""
Get the default model from the registry.
Returns the recommended model if set, otherwise gpt-4o if available
and enabled, otherwise the first enabled model from the registry.
Falls back to "gpt-4o" if registry is empty (e.g., at module import time).
"""
from backend.data.llm_registry import get_default_model_slug
slug = get_default_model_slug()
if slug is None:
# Registry is empty (e.g., at module import time before DB connection).
# Fall back to gpt-4o for backward compatibility.
slug = "gpt-4o"
return cls(slug)
class LlmModel(str, Enum, metaclass=LlmModelMeta):
# OpenAI models
O3_MINI = "o3-mini"
O3 = "o3-2025-04-16"
O1 = "o1"
O1_MINI = "o1-mini"
# GPT-5 models
GPT5_2 = "gpt-5.2-2025-12-11"
GPT5_1 = "gpt-5.1-2025-11-13"
GPT5 = "gpt-5-2025-08-07"
GPT5_MINI = "gpt-5-mini-2025-08-07"
GPT5_NANO = "gpt-5-nano-2025-08-07"
GPT5_CHAT = "gpt-5-chat-latest"
GPT41 = "gpt-4.1-2025-04-14"
GPT41_MINI = "gpt-4.1-mini-2025-04-14"
GPT4O_MINI = "gpt-4o-mini"
GPT4O = "gpt-4o"
GPT4_TURBO = "gpt-4-turbo"
GPT3_5_TURBO = "gpt-3.5-turbo"
# Anthropic models
CLAUDE_4_1_OPUS = "claude-opus-4-1-20250805"
CLAUDE_4_OPUS = "claude-opus-4-20250514"
CLAUDE_4_SONNET = "claude-sonnet-4-20250514"
CLAUDE_4_5_OPUS = "claude-opus-4-5-20251101"
CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
CLAUDE_4_5_HAIKU = "claude-haiku-4-5-20251001"
CLAUDE_4_6_OPUS = "claude-opus-4-6"
CLAUDE_3_HAIKU = "claude-3-haiku-20240307"
# AI/ML API models
AIML_API_QWEN2_5_72B = "Qwen/Qwen2.5-72B-Instruct-Turbo"
AIML_API_LLAMA3_1_70B = "nvidia/llama-3.1-nemotron-70b-instruct"
AIML_API_LLAMA3_3_70B = "meta-llama/Llama-3.3-70B-Instruct-Turbo"
AIML_API_META_LLAMA_3_1_70B = "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo"
AIML_API_LLAMA_3_2_3B = "meta-llama/Llama-3.2-3B-Instruct-Turbo"
# Groq models
LLAMA3_3_70B = "llama-3.3-70b-versatile"
LLAMA3_1_8B = "llama-3.1-8b-instant"
# Ollama models
OLLAMA_LLAMA3_3 = "llama3.3"
OLLAMA_LLAMA3_2 = "llama3.2"
OLLAMA_LLAMA3_8B = "llama3"
OLLAMA_LLAMA3_405B = "llama3.1:405b"
OLLAMA_DOLPHIN = "dolphin-mistral:latest"
# OpenRouter models
OPENAI_GPT_OSS_120B = "openai/gpt-oss-120b"
OPENAI_GPT_OSS_20B = "openai/gpt-oss-20b"
GEMINI_2_5_PRO = "google/gemini-2.5-pro-preview-03-25"
GEMINI_3_PRO_PREVIEW = "google/gemini-3-pro-preview"
GEMINI_2_5_FLASH = "google/gemini-2.5-flash"
GEMINI_2_0_FLASH = "google/gemini-2.0-flash-001"
GEMINI_2_5_FLASH_LITE_PREVIEW = "google/gemini-2.5-flash-lite-preview-06-17"
GEMINI_2_0_FLASH_LITE = "google/gemini-2.0-flash-lite-001"
MISTRAL_NEMO = "mistralai/mistral-nemo"
COHERE_COMMAND_R_08_2024 = "cohere/command-r-08-2024"
COHERE_COMMAND_R_PLUS_08_2024 = "cohere/command-r-plus-08-2024"
DEEPSEEK_CHAT = "deepseek/deepseek-chat" # Actually: DeepSeek V3
DEEPSEEK_R1_0528 = "deepseek/deepseek-r1-0528"
PERPLEXITY_SONAR = "perplexity/sonar"
PERPLEXITY_SONAR_PRO = "perplexity/sonar-pro"
PERPLEXITY_SONAR_DEEP_RESEARCH = "perplexity/sonar-deep-research"
NOUSRESEARCH_HERMES_3_LLAMA_3_1_405B = "nousresearch/hermes-3-llama-3.1-405b"
NOUSRESEARCH_HERMES_3_LLAMA_3_1_70B = "nousresearch/hermes-3-llama-3.1-70b"
AMAZON_NOVA_LITE_V1 = "amazon/nova-lite-v1"
AMAZON_NOVA_MICRO_V1 = "amazon/nova-micro-v1"
AMAZON_NOVA_PRO_V1 = "amazon/nova-pro-v1"
MICROSOFT_WIZARDLM_2_8X22B = "microsoft/wizardlm-2-8x22b"
GRYPHE_MYTHOMAX_L2_13B = "gryphe/mythomax-l2-13b"
META_LLAMA_4_SCOUT = "meta-llama/llama-4-scout"
META_LLAMA_4_MAVERICK = "meta-llama/llama-4-maverick"
GROK_4 = "x-ai/grok-4"
GROK_4_FAST = "x-ai/grok-4-fast"
GROK_4_1_FAST = "x-ai/grok-4.1-fast"
GROK_CODE_FAST_1 = "x-ai/grok-code-fast-1"
KIMI_K2 = "moonshotai/kimi-k2"
QWEN3_235B_A22B_THINKING = "qwen/qwen3-235b-a22b-thinking-2507"
QWEN3_CODER = "qwen/qwen3-coder"
# Llama API models
LLAMA_API_LLAMA_4_SCOUT = "Llama-4-Scout-17B-16E-Instruct-FP8"
LLAMA_API_LLAMA4_MAVERICK = "Llama-4-Maverick-17B-128E-Instruct-FP8"
LLAMA_API_LLAMA3_3_8B = "Llama-3.3-8B-Instruct"
LLAMA_API_LLAMA3_3_70B = "Llama-3.3-70B-Instruct"
# v0 by Vercel models
V0_1_5_MD = "v0-1.5-md"
V0_1_5_LG = "v0-1.5-lg"
V0_1_0_MD = "v0-1.0-md"
@classmethod
def __get_pydantic_json_schema__(cls, schema, handler):
@@ -194,15 +181,7 @@ class LlmModel(str, metaclass=LlmModelMeta):
llm_model_metadata = {}
for model in cls:
model_name = model.value
# Skip disabled models - only show enabled models in the picker
if not llm_registry.is_model_enabled(model_name):
continue
# Use registry directly with None check to gracefully handle
# missing metadata during startup/import before registry is populated
metadata = llm_registry.get_llm_model_metadata(model_name)
if metadata is None:
# Skip models without metadata (registry not yet populated)
continue
metadata = model.metadata
llm_model_metadata[model_name] = {
"creator": metadata.creator_name,
"creator_name": metadata.creator_name,
@@ -218,12 +197,7 @@ class LlmModel(str, metaclass=LlmModelMeta):
@property
def metadata(self) -> ModelMetadata:
metadata = llm_registry.get_llm_model_metadata(self.value)
if metadata:
return metadata
raise ValueError(
f"Missing metadata for model: {self.value}. Model not found in LLM registry."
)
return MODEL_METADATA[self]
@property
def provider(self) -> str:
@@ -238,125 +212,300 @@ class LlmModel(str, metaclass=LlmModelMeta):
return self.metadata.max_output_tokens
# Default model constant for backward compatibility
# Uses the dynamic registry to get the default model
DEFAULT_LLM_MODEL = LlmModel.default()
MODEL_METADATA = {
# https://platform.openai.com/docs/models
LlmModel.O3: ModelMetadata("openai", 200000, 100000, "O3", "OpenAI", "OpenAI", 2),
LlmModel.O3_MINI: ModelMetadata(
"openai", 200000, 100000, "O3 Mini", "OpenAI", "OpenAI", 1
), # o3-mini-2025-01-31
LlmModel.O1: ModelMetadata(
"openai", 200000, 100000, "O1", "OpenAI", "OpenAI", 3
), # o1-2024-12-17
LlmModel.O1_MINI: ModelMetadata(
"openai", 128000, 65536, "O1 Mini", "OpenAI", "OpenAI", 2
), # o1-mini-2024-09-12
# GPT-5 models
LlmModel.GPT5_2: ModelMetadata(
"openai", 400000, 128000, "GPT-5.2", "OpenAI", "OpenAI", 3
),
LlmModel.GPT5_1: ModelMetadata(
"openai", 400000, 128000, "GPT-5.1", "OpenAI", "OpenAI", 2
),
LlmModel.GPT5: ModelMetadata(
"openai", 400000, 128000, "GPT-5", "OpenAI", "OpenAI", 1
),
LlmModel.GPT5_MINI: ModelMetadata(
"openai", 400000, 128000, "GPT-5 Mini", "OpenAI", "OpenAI", 1
),
LlmModel.GPT5_NANO: ModelMetadata(
"openai", 400000, 128000, "GPT-5 Nano", "OpenAI", "OpenAI", 1
),
LlmModel.GPT5_CHAT: ModelMetadata(
"openai", 400000, 16384, "GPT-5 Chat Latest", "OpenAI", "OpenAI", 2
),
LlmModel.GPT41: ModelMetadata(
"openai", 1047576, 32768, "GPT-4.1", "OpenAI", "OpenAI", 1
),
LlmModel.GPT41_MINI: ModelMetadata(
"openai", 1047576, 32768, "GPT-4.1 Mini", "OpenAI", "OpenAI", 1
),
LlmModel.GPT4O_MINI: ModelMetadata(
"openai", 128000, 16384, "GPT-4o Mini", "OpenAI", "OpenAI", 1
), # gpt-4o-mini-2024-07-18
LlmModel.GPT4O: ModelMetadata(
"openai", 128000, 16384, "GPT-4o", "OpenAI", "OpenAI", 2
), # gpt-4o-2024-08-06
LlmModel.GPT4_TURBO: ModelMetadata(
"openai", 128000, 4096, "GPT-4 Turbo", "OpenAI", "OpenAI", 3
), # gpt-4-turbo-2024-04-09
LlmModel.GPT3_5_TURBO: ModelMetadata(
"openai", 16385, 4096, "GPT-3.5 Turbo", "OpenAI", "OpenAI", 1
), # gpt-3.5-turbo-0125
# https://docs.anthropic.com/en/docs/about-claude/models
LlmModel.CLAUDE_4_1_OPUS: ModelMetadata(
"anthropic", 200000, 32000, "Claude Opus 4.1", "Anthropic", "Anthropic", 3
), # claude-opus-4-1-20250805
LlmModel.CLAUDE_4_OPUS: ModelMetadata(
"anthropic", 200000, 32000, "Claude Opus 4", "Anthropic", "Anthropic", 3
), # claude-4-opus-20250514
LlmModel.CLAUDE_4_SONNET: ModelMetadata(
"anthropic", 200000, 64000, "Claude Sonnet 4", "Anthropic", "Anthropic", 2
), # claude-4-sonnet-20250514
LlmModel.CLAUDE_4_6_OPUS: ModelMetadata(
"anthropic", 200000, 128000, "Claude Opus 4.6", "Anthropic", "Anthropic", 3
), # claude-opus-4-6
LlmModel.CLAUDE_4_5_OPUS: ModelMetadata(
"anthropic", 200000, 64000, "Claude Opus 4.5", "Anthropic", "Anthropic", 3
), # claude-opus-4-5-20251101
LlmModel.CLAUDE_4_5_SONNET: ModelMetadata(
"anthropic", 200000, 64000, "Claude Sonnet 4.5", "Anthropic", "Anthropic", 3
), # claude-sonnet-4-5-20250929
LlmModel.CLAUDE_4_5_HAIKU: ModelMetadata(
"anthropic", 200000, 64000, "Claude Haiku 4.5", "Anthropic", "Anthropic", 2
), # claude-haiku-4-5-20251001
LlmModel.CLAUDE_3_HAIKU: ModelMetadata(
"anthropic", 200000, 4096, "Claude 3 Haiku", "Anthropic", "Anthropic", 1
), # claude-3-haiku-20240307
# https://docs.aimlapi.com/api-overview/model-database/text-models
LlmModel.AIML_API_QWEN2_5_72B: ModelMetadata(
"aiml_api", 32000, 8000, "Qwen 2.5 72B Instruct Turbo", "AI/ML", "Qwen", 1
),
LlmModel.AIML_API_LLAMA3_1_70B: ModelMetadata(
"aiml_api",
128000,
40000,
"Llama 3.1 Nemotron 70B Instruct",
"AI/ML",
"Nvidia",
1,
),
LlmModel.AIML_API_LLAMA3_3_70B: ModelMetadata(
"aiml_api", 128000, None, "Llama 3.3 70B Instruct Turbo", "AI/ML", "Meta", 1
),
LlmModel.AIML_API_META_LLAMA_3_1_70B: ModelMetadata(
"aiml_api", 131000, 2000, "Llama 3.1 70B Instruct Turbo", "AI/ML", "Meta", 1
),
LlmModel.AIML_API_LLAMA_3_2_3B: ModelMetadata(
"aiml_api", 128000, None, "Llama 3.2 3B Instruct Turbo", "AI/ML", "Meta", 1
),
# https://console.groq.com/docs/models
LlmModel.LLAMA3_3_70B: ModelMetadata(
"groq", 128000, 32768, "Llama 3.3 70B Versatile", "Groq", "Meta", 1
),
LlmModel.LLAMA3_1_8B: ModelMetadata(
"groq", 128000, 8192, "Llama 3.1 8B Instant", "Groq", "Meta", 1
),
# https://ollama.com/library
LlmModel.OLLAMA_LLAMA3_3: ModelMetadata(
"ollama", 8192, None, "Llama 3.3", "Ollama", "Meta", 1
),
LlmModel.OLLAMA_LLAMA3_2: ModelMetadata(
"ollama", 8192, None, "Llama 3.2", "Ollama", "Meta", 1
),
LlmModel.OLLAMA_LLAMA3_8B: ModelMetadata(
"ollama", 8192, None, "Llama 3", "Ollama", "Meta", 1
),
LlmModel.OLLAMA_LLAMA3_405B: ModelMetadata(
"ollama", 8192, None, "Llama 3.1 405B", "Ollama", "Meta", 1
),
LlmModel.OLLAMA_DOLPHIN: ModelMetadata(
"ollama", 32768, None, "Dolphin Mistral Latest", "Ollama", "Mistral AI", 1
),
# https://openrouter.ai/models
LlmModel.GEMINI_2_5_PRO: ModelMetadata(
"open_router",
1050000,
8192,
"Gemini 2.5 Pro Preview 03.25",
"OpenRouter",
"Google",
2,
),
LlmModel.GEMINI_3_PRO_PREVIEW: ModelMetadata(
"open_router", 1048576, 65535, "Gemini 3 Pro Preview", "OpenRouter", "Google", 2
),
LlmModel.GEMINI_2_5_FLASH: ModelMetadata(
"open_router", 1048576, 65535, "Gemini 2.5 Flash", "OpenRouter", "Google", 1
),
LlmModel.GEMINI_2_0_FLASH: ModelMetadata(
"open_router", 1048576, 8192, "Gemini 2.0 Flash 001", "OpenRouter", "Google", 1
),
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: ModelMetadata(
"open_router",
1048576,
65535,
"Gemini 2.5 Flash Lite Preview 06.17",
"OpenRouter",
"Google",
1,
),
LlmModel.GEMINI_2_0_FLASH_LITE: ModelMetadata(
"open_router",
1048576,
8192,
"Gemini 2.0 Flash Lite 001",
"OpenRouter",
"Google",
1,
),
LlmModel.MISTRAL_NEMO: ModelMetadata(
"open_router", 128000, 4096, "Mistral Nemo", "OpenRouter", "Mistral AI", 1
),
LlmModel.COHERE_COMMAND_R_08_2024: ModelMetadata(
"open_router", 128000, 4096, "Command R 08.2024", "OpenRouter", "Cohere", 1
),
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: ModelMetadata(
"open_router", 128000, 4096, "Command R Plus 08.2024", "OpenRouter", "Cohere", 2
),
LlmModel.DEEPSEEK_CHAT: ModelMetadata(
"open_router", 64000, 2048, "DeepSeek Chat", "OpenRouter", "DeepSeek", 1
),
LlmModel.DEEPSEEK_R1_0528: ModelMetadata(
"open_router", 163840, 163840, "DeepSeek R1 0528", "OpenRouter", "DeepSeek", 1
),
LlmModel.PERPLEXITY_SONAR: ModelMetadata(
"open_router", 127000, 8000, "Sonar", "OpenRouter", "Perplexity", 1
),
LlmModel.PERPLEXITY_SONAR_PRO: ModelMetadata(
"open_router", 200000, 8000, "Sonar Pro", "OpenRouter", "Perplexity", 2
),
LlmModel.PERPLEXITY_SONAR_DEEP_RESEARCH: ModelMetadata(
"open_router",
128000,
16000,
"Sonar Deep Research",
"OpenRouter",
"Perplexity",
3,
),
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_405B: ModelMetadata(
"open_router",
131000,
4096,
"Hermes 3 Llama 3.1 405B",
"OpenRouter",
"Nous Research",
1,
),
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_70B: ModelMetadata(
"open_router",
12288,
12288,
"Hermes 3 Llama 3.1 70B",
"OpenRouter",
"Nous Research",
1,
),
LlmModel.OPENAI_GPT_OSS_120B: ModelMetadata(
"open_router", 131072, 131072, "GPT-OSS 120B", "OpenRouter", "OpenAI", 1
),
LlmModel.OPENAI_GPT_OSS_20B: ModelMetadata(
"open_router", 131072, 32768, "GPT-OSS 20B", "OpenRouter", "OpenAI", 1
),
LlmModel.AMAZON_NOVA_LITE_V1: ModelMetadata(
"open_router", 300000, 5120, "Nova Lite V1", "OpenRouter", "Amazon", 1
),
LlmModel.AMAZON_NOVA_MICRO_V1: ModelMetadata(
"open_router", 128000, 5120, "Nova Micro V1", "OpenRouter", "Amazon", 1
),
LlmModel.AMAZON_NOVA_PRO_V1: ModelMetadata(
"open_router", 300000, 5120, "Nova Pro V1", "OpenRouter", "Amazon", 1
),
LlmModel.MICROSOFT_WIZARDLM_2_8X22B: ModelMetadata(
"open_router", 65536, 4096, "WizardLM 2 8x22B", "OpenRouter", "Microsoft", 1
),
LlmModel.GRYPHE_MYTHOMAX_L2_13B: ModelMetadata(
"open_router", 4096, 4096, "MythoMax L2 13B", "OpenRouter", "Gryphe", 1
),
LlmModel.META_LLAMA_4_SCOUT: ModelMetadata(
"open_router", 131072, 131072, "Llama 4 Scout", "OpenRouter", "Meta", 1
),
LlmModel.META_LLAMA_4_MAVERICK: ModelMetadata(
"open_router", 1048576, 1000000, "Llama 4 Maverick", "OpenRouter", "Meta", 1
),
LlmModel.GROK_4: ModelMetadata(
"open_router", 256000, 256000, "Grok 4", "OpenRouter", "xAI", 3
),
LlmModel.GROK_4_FAST: ModelMetadata(
"open_router", 2000000, 30000, "Grok 4 Fast", "OpenRouter", "xAI", 1
),
LlmModel.GROK_4_1_FAST: ModelMetadata(
"open_router", 2000000, 30000, "Grok 4.1 Fast", "OpenRouter", "xAI", 1
),
LlmModel.GROK_CODE_FAST_1: ModelMetadata(
"open_router", 256000, 10000, "Grok Code Fast 1", "OpenRouter", "xAI", 1
),
LlmModel.KIMI_K2: ModelMetadata(
"open_router", 131000, 131000, "Kimi K2", "OpenRouter", "Moonshot AI", 1
),
LlmModel.QWEN3_235B_A22B_THINKING: ModelMetadata(
"open_router",
262144,
262144,
"Qwen 3 235B A22B Thinking 2507",
"OpenRouter",
"Qwen",
1,
),
LlmModel.QWEN3_CODER: ModelMetadata(
"open_router", 262144, 262144, "Qwen 3 Coder", "OpenRouter", "Qwen", 3
),
# Llama API models
LlmModel.LLAMA_API_LLAMA_4_SCOUT: ModelMetadata(
"llama_api",
128000,
4028,
"Llama 4 Scout 17B 16E Instruct FP8",
"Llama API",
"Meta",
1,
),
LlmModel.LLAMA_API_LLAMA4_MAVERICK: ModelMetadata(
"llama_api",
128000,
4028,
"Llama 4 Maverick 17B 128E Instruct FP8",
"Llama API",
"Meta",
1,
),
LlmModel.LLAMA_API_LLAMA3_3_8B: ModelMetadata(
"llama_api", 128000, 4028, "Llama 3.3 8B Instruct", "Llama API", "Meta", 1
),
LlmModel.LLAMA_API_LLAMA3_3_70B: ModelMetadata(
"llama_api", 128000, 4028, "Llama 3.3 70B Instruct", "Llama API", "Meta", 1
),
# v0 by Vercel models
LlmModel.V0_1_5_MD: ModelMetadata("v0", 128000, 64000, "v0 1.5 MD", "V0", "V0", 1),
LlmModel.V0_1_5_LG: ModelMetadata("v0", 512000, 64000, "v0 1.5 LG", "V0", "V0", 1),
LlmModel.V0_1_0_MD: ModelMetadata("v0", 128000, 64000, "v0 1.0 MD", "V0", "V0", 1),
}
DEFAULT_LLM_MODEL = LlmModel.GPT5_2
class ModelUnavailableError(ValueError):
"""Raised when a requested LLM model cannot be resolved for use."""
pass
@dataclass
class ResolvedModel:
"""Result of resolving a model for an LLM call."""
slug: str # The actual model slug to use (may differ from requested if fallback)
provider: str
context_window: int
max_output_tokens: int
used_fallback: bool = False
original_slug: str | None = None # Set if fallback was used
async def resolve_model_for_call(llm_model: LlmModel) -> ResolvedModel:
"""
Resolve a model for use in an LLM call.
Handles:
- Checking if the model exists in the registry
- Falling back to an enabled model from the same provider if disabled
- Refreshing the registry cache if model not found (with DB access)
Args:
llm_model: The requested LlmModel
Returns:
ResolvedModel with all necessary metadata for the call
Raises:
ModelUnavailableError: If model cannot be resolved (not found, disabled with no fallback)
"""
from backend.data.llm_registry import (
get_fallback_model_for_disabled,
get_model_info,
)
model_info = get_model_info(llm_model.value)
# Case 1: Model found and disabled - try fallback
if model_info and not model_info.is_enabled:
fallback = get_fallback_model_for_disabled(llm_model.value)
if fallback:
logger.warning(
f"Model '{llm_model.value}' is disabled. Using fallback "
f"'{fallback.slug}' from same provider ({fallback.metadata.provider})."
)
return ResolvedModel(
slug=fallback.slug,
provider=fallback.metadata.provider,
context_window=fallback.metadata.context_window,
max_output_tokens=fallback.metadata.max_output_tokens or 2**15,
used_fallback=True,
original_slug=llm_model.value,
)
raise ModelUnavailableError(
f"Model '{llm_model.value}' is disabled and no fallback from the same "
f"provider is available. Enable the model or select a different one."
)
# Case 2: Model found and enabled - use it directly
if model_info:
return ResolvedModel(
slug=llm_model.value,
provider=model_info.metadata.provider,
context_window=model_info.metadata.context_window,
max_output_tokens=model_info.metadata.max_output_tokens or 2**15,
)
# Case 3: Model not in registry - try refresh if DB available
logger.warning(f"Model '{llm_model.value}' not found in registry cache")
from backend.data.db import is_connected
if not is_connected():
raise ModelUnavailableError(
f"Model '{llm_model.value}' not found in registry. "
f"The registry may need to be refreshed via the admin UI."
)
# Try refreshing the registry
try:
logger.info(f"Refreshing LLM registry for model '{llm_model.value}'")
await llm_registry.refresh_llm_registry()
except Exception as e:
raise ModelUnavailableError(
f"Model '{llm_model.value}' not found and registry refresh failed: {e}"
) from e
# Check again after refresh
model_info = get_model_info(llm_model.value)
if not model_info:
raise ModelUnavailableError(
f"Model '{llm_model.value}' not found in registry. "
f"Add it via the admin UI at /admin/llms."
)
if not model_info.is_enabled:
raise ModelUnavailableError(
f"Model '{llm_model.value}' exists but is disabled. "
f"Enable it via the admin UI at /admin/llms."
)
logger.info(f"Model '{llm_model.value}' loaded after registry refresh")
return ResolvedModel(
slug=llm_model.value,
provider=model_info.metadata.provider,
context_window=model_info.metadata.context_window,
max_output_tokens=model_info.metadata.max_output_tokens or 2**15,
)
for model in LlmModel:
if model not in MODEL_METADATA:
raise ValueError(f"Missing MODEL_METADATA metadata for model: {model}")
class ToolCall(BaseModel):
@@ -382,12 +531,12 @@ class LLMResponse(BaseModel):
def convert_openai_tool_fmt_to_anthropic(
openai_tools: list[dict] | None = None,
) -> Iterable[ToolParam] | anthropic.NotGiven:
) -> Iterable[ToolParam] | anthropic.Omit:
"""
Convert OpenAI tool format to Anthropic tool format.
"""
if not openai_tools or len(openai_tools) == 0:
return anthropic.NOT_GIVEN
return anthropic.omit
anthropic_tools = []
for tool in openai_tools:
@@ -449,12 +598,7 @@ def get_parallel_tool_calls_param(
llm_model: LlmModel, parallel_tool_calls: bool | None
) -> bool | openai.Omit:
"""Get the appropriate parallel_tool_calls parameter for OpenAI-compatible APIs."""
# Check for o-series models (o1, o1-mini, o3-mini, etc.) which don't support
# parallel tool calls. Handle both bare slugs ("o1-mini") and provider-prefixed
# slugs ("openai/o1-mini"). The pattern matches "o" followed by a digit at the
# start of the string or after a "/" separator.
is_o_series = re.search(r"(^|/)o\d", llm_model) is not None
if is_o_series or parallel_tool_calls is None:
if llm_model.startswith("o") or parallel_tool_calls is None:
return openai.omit
return parallel_tool_calls
@@ -490,22 +634,15 @@ async def llm_call(
- prompt_tokens: The number of tokens used in the prompt.
- completion_tokens: The number of tokens used in the completion.
"""
# Resolve the model - handles disabled models, fallbacks, and cache misses
resolved = await resolve_model_for_call(llm_model)
model_to_use = resolved.slug
provider = resolved.provider
context_window = resolved.context_window
model_max_output = resolved.max_output_tokens
# Create effective model for model-specific parameter resolution (e.g., o-series check)
effective_model = LlmModel(model_to_use)
provider = llm_model.metadata.provider
context_window = llm_model.context_window
if compress_prompt_to_fit:
result = await compress_context(
messages=prompt,
target_tokens=context_window // 2,
target_tokens=llm_model.context_window // 2,
client=None, # Truncation-only, no LLM summarization
reserve=0, # Caller handles response token budget separately
)
if result.error:
logger.warning(
@@ -516,7 +653,7 @@ async def llm_call(
# Calculate available tokens based on context window and input length
estimated_input_tokens = estimate_token_count(prompt)
# model_max_output already set above
model_max_output = llm_model.max_output_tokens or int(2**15)
user_max = max_tokens or model_max_output
available_tokens = max(context_window - estimated_input_tokens, 0)
max_tokens = max(min(available_tokens, model_max_output, user_max), 1)
@@ -527,14 +664,14 @@ async def llm_call(
response_format = None
parallel_tool_calls = get_parallel_tool_calls_param(
effective_model, parallel_tool_calls
llm_model, parallel_tool_calls
)
if force_json_output:
response_format = {"type": "json_object"}
response = await oai_client.chat.completions.create(
model=model_to_use,
model=llm_model.value,
messages=prompt, # type: ignore
response_format=response_format, # type: ignore
max_completion_tokens=max_tokens,
@@ -581,7 +718,7 @@ async def llm_call(
)
try:
resp = await client.messages.create(
model=model_to_use,
model=llm_model.value,
system=sysprompt,
messages=messages,
max_tokens=max_tokens,
@@ -645,7 +782,7 @@ async def llm_call(
client = AsyncGroq(api_key=credentials.api_key.get_secret_value())
response_format = {"type": "json_object"} if force_json_output else None
response = await client.chat.completions.create(
model=model_to_use,
model=llm_model.value,
messages=prompt, # type: ignore
response_format=response_format, # type: ignore
max_tokens=max_tokens,
@@ -667,7 +804,7 @@ async def llm_call(
sys_messages = [p["content"] for p in prompt if p["role"] == "system"]
usr_messages = [p["content"] for p in prompt if p["role"] != "system"]
response = await client.generate(
model=model_to_use,
model=llm_model.value,
prompt=f"{sys_messages}\n\n{usr_messages}",
stream=False,
options={"num_ctx": max_tokens},
@@ -689,7 +826,7 @@ async def llm_call(
)
parallel_tool_calls_param = get_parallel_tool_calls_param(
effective_model, parallel_tool_calls
llm_model, parallel_tool_calls
)
response = await client.chat.completions.create(
@@ -697,7 +834,7 @@ async def llm_call(
"HTTP-Referer": "https://agpt.co",
"X-Title": "AutoGPT",
},
model=model_to_use,
model=llm_model.value,
messages=prompt, # type: ignore
max_tokens=max_tokens,
tools=tools_param, # type: ignore
@@ -731,7 +868,7 @@ async def llm_call(
)
parallel_tool_calls_param = get_parallel_tool_calls_param(
effective_model, parallel_tool_calls
llm_model, parallel_tool_calls
)
response = await client.chat.completions.create(
@@ -739,7 +876,7 @@ async def llm_call(
"HTTP-Referer": "https://agpt.co",
"X-Title": "AutoGPT",
},
model=model_to_use,
model=llm_model.value,
messages=prompt, # type: ignore
max_tokens=max_tokens,
tools=tools_param, # type: ignore
@@ -766,7 +903,7 @@ async def llm_call(
reasoning=reasoning,
)
elif provider == "aiml_api":
client = openai.AsyncOpenAI(
client = openai.OpenAI(
base_url="https://api.aimlapi.com/v2",
api_key=credentials.api_key.get_secret_value(),
default_headers={
@@ -776,8 +913,8 @@ async def llm_call(
},
)
completion = await client.chat.completions.create(
model=model_to_use,
completion = client.chat.completions.create(
model=llm_model.value,
messages=prompt, # type: ignore
max_tokens=max_tokens,
)
@@ -805,11 +942,11 @@ async def llm_call(
response_format = {"type": "json_object"}
parallel_tool_calls_param = get_parallel_tool_calls_param(
effective_model, parallel_tool_calls
llm_model, parallel_tool_calls
)
response = await client.chat.completions.create(
model=model_to_use,
model=llm_model.value,
messages=prompt, # type: ignore
response_format=response_format, # type: ignore
max_tokens=max_tokens,
@@ -860,10 +997,9 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default_factory=LlmModel.default,
default=DEFAULT_LLM_MODEL,
description="The language model to use for answering the prompt.",
advanced=False,
json_schema_extra=llm_model_schema_extra(),
)
force_json_output: bool = SchemaField(
title="Restrict LLM to pure JSON output",
@@ -926,7 +1062,7 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
input_schema=AIStructuredResponseGeneratorBlock.Input,
output_schema=AIStructuredResponseGeneratorBlock.Output,
test_input={
"model": "gpt-4o", # Using string value - enum accepts any model slug dynamically
"model": DEFAULT_LLM_MODEL,
"credentials": TEST_CREDENTIALS_INPUT,
"expected_format": {
"key1": "value1",
@@ -1292,10 +1428,9 @@ class AITextGeneratorBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default_factory=LlmModel.default,
default=DEFAULT_LLM_MODEL,
description="The language model to use for answering the prompt.",
advanced=False,
json_schema_extra=llm_model_schema_extra(),
)
credentials: AICredentials = AICredentialsField()
sys_prompt: str = SchemaField(
@@ -1389,9 +1524,8 @@ class AITextSummarizerBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default_factory=LlmModel.default,
default=DEFAULT_LLM_MODEL,
description="The language model to use for summarizing the text.",
json_schema_extra=llm_model_schema_extra(),
)
focus: str = SchemaField(
title="Focus",
@@ -1607,9 +1741,8 @@ class AIConversationBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default_factory=LlmModel.default,
default=DEFAULT_LLM_MODEL,
description="The language model to use for the conversation.",
json_schema_extra=llm_model_schema_extra(),
)
credentials: AICredentials = AICredentialsField()
max_tokens: int | None = SchemaField(
@@ -1646,7 +1779,7 @@ class AIConversationBlock(AIBlockBase):
},
{"role": "user", "content": "Where was it played?"},
],
"model": "gpt-4o", # Using string value - enum accepts any model slug dynamically
"model": DEFAULT_LLM_MODEL,
"credentials": TEST_CREDENTIALS_INPUT,
},
test_credentials=TEST_CREDENTIALS,
@@ -1709,10 +1842,9 @@ class AIListGeneratorBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default_factory=LlmModel.default,
default=DEFAULT_LLM_MODEL,
description="The language model to use for generating the list.",
advanced=True,
json_schema_extra=llm_model_schema_extra(),
)
credentials: AICredentials = AICredentialsField()
max_retries: int = SchemaField(
@@ -1767,7 +1899,7 @@ class AIListGeneratorBlock(AIBlockBase):
"drawing explorers to uncover its mysteries. Each planet showcases the limitless possibilities of "
"fictional worlds."
),
"model": "gpt-4o", # Using string value - enum accepts any model slug dynamically
"model": DEFAULT_LLM_MODEL,
"credentials": TEST_CREDENTIALS_INPUT,
"max_retries": 3,
"force_json_output": False,

View File

@@ -2,7 +2,7 @@ import operator
from enum import Enum
from typing import Any
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -3,7 +3,7 @@ from typing import List, Literal
from pydantic import SecretStr
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -3,7 +3,7 @@ from typing import Any, Literal, Optional, Union
from mem0 import MemoryClient
from pydantic import BaseModel, SecretStr
from backend.blocks._base import Block, BlockOutput, BlockSchemaInput, BlockSchemaOutput
from backend.data.block import Block, BlockOutput, BlockSchemaInput, BlockSchemaOutput
from backend.data.model import (
APIKeyCredentials,
CredentialsField,

Some files were not shown because too many files have changed in this diff Show More