Compare commits

..

7 Commits

Author SHA1 Message Date
Swifty
fa66473f68 Merge branch 'dev' into swiftyos/secrt-1954-gracefully-disable-feature-request-tools-when-linear_api_key 2026-02-13 16:39:21 +01:00
Bently
c2368f15ff fix(blocks): disable PrintToConsoleBlock (#12100)
## Summary
Disables the Print to Console block as requested by Nick Tindle.

## Changes
- Added `disabled=True` to PrintToConsoleBlock in `basic.py`

## Testing
- Block will no longer appear in the platform UI
- Existing graphs using this block should be checked (block ID:
`f3b1c1b2-4c4f-4f0d-8d2f-4c4f0d8d2f4c`)

Closes OPEN-3000

<!-- greptile_comment -->

<h2>Greptile Overview</h2>

<details><summary><h3>Greptile Summary</h3></summary>

Added `disabled=True` parameter to `PrintToConsoleBlock` in `basic.py`
per Nick Tindle's request (OPEN-3000).

- Block follows the same disabling pattern used by other blocks in the
codebase (e.g., `BlockInstallationBlock`, video blocks, Ayrshare blocks)
- Block will no longer appear in the platform UI for new graph creation
- Existing graphs using this block (ID:
`f3b1c1b2-4c4f-4f0d-8d2f-4c4f0d8d2f4c`) will need to be checked for
compatibility
- Comment properly documents the reason for disabling
</details>


<details><summary><h3>Confidence Score: 5/5</h3></summary>

- This PR is safe to merge with minimal risk
- Single-line change that adds a well-documented flag following existing
patterns used throughout the codebase. The change is non-destructive and
only affects UI visibility of the block for new graphs.
- No files require special attention
</details>


<sub>Last reviewed commit: 759003b</sub>

<!-- greptile_other_comments_section -->

<!-- /greptile_comment -->
2026-02-13 15:20:23 +00:00
dependabot[bot]
9ac3f64d56 chore(deps): bump github/codeql-action from 3 to 4 (#12033)
Bumps [github/codeql-action](https://github.com/github/codeql-action)
from 3 to 4.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/github/codeql-action/releases">github/codeql-action's
releases</a>.</em></p>
<blockquote>
<h2>v3.32.2</h2>
<ul>
<li>Update default CodeQL bundle version to <a
href="https://github.com/github/codeql-action/releases/tag/codeql-bundle-v2.24.1">2.24.1</a>.
<a
href="https://redirect.github.com/github/codeql-action/pull/3460">#3460</a></li>
</ul>
<h2>v3.32.1</h2>
<ul>
<li>A warning is now shown in Default Setup workflow logs if a <a
href="https://docs.github.com/en/code-security/how-tos/secure-at-scale/configure-organization-security/manage-usage-and-access/giving-org-access-private-registries">private
package registry is configured</a> using a GitHub Personal Access Token
(PAT), but no username is configured. <a
href="https://redirect.github.com/github/codeql-action/pull/3422">#3422</a></li>
<li>Fixed a bug which caused the CodeQL Action to fail when repository
properties cannot successfully be retrieved. <a
href="https://redirect.github.com/github/codeql-action/pull/3421">#3421</a></li>
</ul>
<h2>v3.32.0</h2>
<ul>
<li>Update default CodeQL bundle version to <a
href="https://github.com/github/codeql-action/releases/tag/codeql-bundle-v2.24.0">2.24.0</a>.
<a
href="https://redirect.github.com/github/codeql-action/pull/3425">#3425</a></li>
</ul>
<h2>v3.31.11</h2>
<ul>
<li>When running a Default Setup workflow with <a
href="https://docs.github.com/en/actions/how-tos/monitor-workflows/enable-debug-logging">Actions
debugging enabled</a>, the CodeQL Action will now use more unique names
when uploading logs from the Dependabot authentication proxy as workflow
artifacts. This ensures that the artifact names do not clash between
multiple jobs in a build matrix. <a
href="https://redirect.github.com/github/codeql-action/pull/3409">#3409</a></li>
<li>Improved error handling throughout the CodeQL Action. <a
href="https://redirect.github.com/github/codeql-action/pull/3415">#3415</a></li>
<li>Added experimental support for automatically excluding <a
href="https://docs.github.com/en/repositories/working-with-files/managing-files/customizing-how-changed-files-appear-on-github">generated
files</a> from the analysis. This feature is not currently enabled for
any analysis. In the future, it may be enabled by default for some
GitHub-managed analyses. <a
href="https://redirect.github.com/github/codeql-action/pull/3318">#3318</a></li>
<li>The changelog extracts that are included with releases of the CodeQL
Action are now shorter to avoid duplicated information from appearing in
Dependabot PRs. <a
href="https://redirect.github.com/github/codeql-action/pull/3403">#3403</a></li>
</ul>
<h2>v3.31.10</h2>
<h1>CodeQL Action Changelog</h1>
<p>See the <a
href="https://github.com/github/codeql-action/releases">releases
page</a> for the relevant changes to the CodeQL CLI and language
packs.</p>
<h2>3.31.10 - 12 Jan 2026</h2>
<ul>
<li>Update default CodeQL bundle version to 2.23.9. <a
href="https://redirect.github.com/github/codeql-action/pull/3393">#3393</a></li>
</ul>
<p>See the full <a
href="https://github.com/github/codeql-action/blob/v3.31.10/CHANGELOG.md">CHANGELOG.md</a>
for more information.</p>
<h2>v3.31.9</h2>
<h1>CodeQL Action Changelog</h1>
<p>See the <a
href="https://github.com/github/codeql-action/releases">releases
page</a> for the relevant changes to the CodeQL CLI and language
packs.</p>
<h2>3.31.9 - 16 Dec 2025</h2>
<p>No user facing changes.</p>
<p>See the full <a
href="https://github.com/github/codeql-action/blob/v3.31.9/CHANGELOG.md">CHANGELOG.md</a>
for more information.</p>
<h2>v3.31.8</h2>
<h1>CodeQL Action Changelog</h1>
<p>See the <a
href="https://github.com/github/codeql-action/releases">releases
page</a> for the relevant changes to the CodeQL CLI and language
packs.</p>
<h2>3.31.8 - 11 Dec 2025</h2>
<ul>
<li>Update default CodeQL bundle version to 2.23.8. <a
href="https://redirect.github.com/github/codeql-action/pull/3354">#3354</a></li>
</ul>
<p>See the full <a
href="https://github.com/github/codeql-action/blob/v3.31.8/CHANGELOG.md">CHANGELOG.md</a>
for more information.</p>
<h2>v3.31.7</h2>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/github/codeql-action/blob/main/CHANGELOG.md">github/codeql-action's
changelog</a>.</em></p>
<blockquote>
<h2>4.31.11 - 23 Jan 2026</h2>
<ul>
<li>When running a Default Setup workflow with <a
href="https://docs.github.com/en/actions/how-tos/monitor-workflows/enable-debug-logging">Actions
debugging enabled</a>, the CodeQL Action will now use more unique names
when uploading logs from the Dependabot authentication proxy as workflow
artifacts. This ensures that the artifact names do not clash between
multiple jobs in a build matrix. <a
href="https://redirect.github.com/github/codeql-action/pull/3409">#3409</a></li>
<li>Improved error handling throughout the CodeQL Action. <a
href="https://redirect.github.com/github/codeql-action/pull/3415">#3415</a></li>
<li>Added experimental support for automatically excluding <a
href="https://docs.github.com/en/repositories/working-with-files/managing-files/customizing-how-changed-files-appear-on-github">generated
files</a> from the analysis. This feature is not currently enabled for
any analysis. In the future, it may be enabled by default for some
GitHub-managed analyses. <a
href="https://redirect.github.com/github/codeql-action/pull/3318">#3318</a></li>
<li>The changelog extracts that are included with releases of the CodeQL
Action are now shorter to avoid duplicated information from appearing in
Dependabot PRs. <a
href="https://redirect.github.com/github/codeql-action/pull/3403">#3403</a></li>
</ul>
<h2>4.31.10 - 12 Jan 2026</h2>
<ul>
<li>Update default CodeQL bundle version to 2.23.9. <a
href="https://redirect.github.com/github/codeql-action/pull/3393">#3393</a></li>
</ul>
<h2>4.31.9 - 16 Dec 2025</h2>
<p>No user facing changes.</p>
<h2>4.31.8 - 11 Dec 2025</h2>
<ul>
<li>Update default CodeQL bundle version to 2.23.8. <a
href="https://redirect.github.com/github/codeql-action/pull/3354">#3354</a></li>
</ul>
<h2>4.31.7 - 05 Dec 2025</h2>
<ul>
<li>Update default CodeQL bundle version to 2.23.7. <a
href="https://redirect.github.com/github/codeql-action/pull/3343">#3343</a></li>
</ul>
<h2>4.31.6 - 01 Dec 2025</h2>
<p>No user facing changes.</p>
<h2>4.31.5 - 24 Nov 2025</h2>
<ul>
<li>Update default CodeQL bundle version to 2.23.6. <a
href="https://redirect.github.com/github/codeql-action/pull/3321">#3321</a></li>
</ul>
<h2>4.31.4 - 18 Nov 2025</h2>
<p>No user facing changes.</p>
<h2>4.31.3 - 13 Nov 2025</h2>
<ul>
<li>CodeQL Action v3 will be deprecated in December 2026. The Action now
logs a warning for customers who are running v3 but could be running v4.
For more information, see <a
href="https://github.blog/changelog/2025-10-28-upcoming-deprecation-of-codeql-action-v3/">Upcoming
deprecation of CodeQL Action v3</a>.</li>
<li>Update default CodeQL bundle version to 2.23.5. <a
href="https://redirect.github.com/github/codeql-action/pull/3288">#3288</a></li>
</ul>
<h2>4.31.2 - 30 Oct 2025</h2>
<p>No user facing changes.</p>
<h2>4.31.1 - 30 Oct 2025</h2>
<ul>
<li>The <code>add-snippets</code> input has been removed from the
<code>analyze</code> action. This input has been deprecated since CodeQL
Action 3.26.4 in August 2024 when this removal was announced.</li>
</ul>
<h2>4.31.0 - 24 Oct 2025</h2>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="8aac4e47ac"><code>8aac4e4</code></a>
Merge pull request <a
href="https://redirect.github.com/github/codeql-action/issues/3448">#3448</a>
from github/mergeback/v4.32.1-to-main-6bc82e05</li>
<li><a
href="e8d7df4f04"><code>e8d7df4</code></a>
Rebuild</li>
<li><a
href="c1bba77db0"><code>c1bba77</code></a>
Update changelog and version after v4.32.1</li>
<li><a
href="6bc82e05fd"><code>6bc82e0</code></a>
Merge pull request <a
href="https://redirect.github.com/github/codeql-action/issues/3447">#3447</a>
from github/update-v4.32.1-f52cbc830</li>
<li><a
href="42f00f2d33"><code>42f00f2</code></a>
Add a couple of change notes</li>
<li><a
href="cedee6de9f"><code>cedee6d</code></a>
Update changelog for v4.32.1</li>
<li><a
href="f52cbc8309"><code>f52cbc8</code></a>
Merge pull request <a
href="https://redirect.github.com/github/codeql-action/issues/3445">#3445</a>
from github/dependabot/npm_and_yarn/fast-xml-parser-...</li>
<li>See full diff in <a
href="https://github.com/github/codeql-action/compare/v3...v4">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=github/codeql-action&package-manager=github_actions&previous-version=3&new-version=4)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)


</details>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2026-02-13 15:04:05 +00:00
Swifty
753726dc18 fix(backend): disable feature request tools when Linear config is missing
Conditionally register search_feature_requests and create_feature_request
tools only when LINEAR_API_KEY, LINEAR_FEATURE_REQUEST_PROJECT_ID, and
LINEAR_FEATURE_REQUEST_TEAM_ID are all configured. This prevents the LLM
from calling tools that will fail at runtime and avoids confusing error
messages for users.

Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-13 15:52:15 +01:00
Swifty
5035b69c79 feat(platform): add feature request tools for CoPilot chat (#12102)
Users can now search for existing feature requests and submit new ones
directly through the CoPilot chat interface. Requests are tracked in
Linear with customer need attribution.

### Changes 🏗️

**Backend:**
- Added `SearchFeatureRequestsTool` and `CreateFeatureRequestTool` to
the CoPilot chat tools registry
- Integrated with Linear GraphQL API for searching issues in the feature
requests project, creating new issues, upserting customers, and
attaching customer needs
- Added `linear_api_key` secret to settings for system-level Linear API
access
- Added response models (`FeatureRequestSearchResponse`,
`FeatureRequestCreatedResponse`, `FeatureRequestInfo`) to the tools
models

**Frontend:**
- Added `SearchFeatureRequestsTool` and `CreateFeatureRequestTool` UI
components with full streaming state handling (input-streaming,
input-available, output-available, output-error)
- Added helper utilities for output parsing, type guards, animation
text, and icon rendering
- Wired tools into `ChatMessagesContainer` for rendering in the chat
- Added styleguide examples covering all tool states

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Verified search returns matching feature requests from Linear
- [x] Verified creating a new feature request creates an issue and
customer need in Linear
- [x] Verified adding a need to an existing issue works via
`existing_issue_id`
  - [x] Verified error states render correctly in the UI
  - [x] Verified styleguide page renders all tool states

#### For configuration changes:
- [x] `.env.default` is updated or already compatible with my changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

New secret: `LINEAR_API_KEY` — required for system-level Linear API
operations (defaults to empty string).

<!-- greptile_comment -->

<h2>Greptile Overview</h2>

<details><summary><h3>Greptile Summary</h3></summary>

Adds feature request search and creation tools to CoPilot chat,
integrating with Linear's GraphQL API to track user feedback. Users can
now search existing feature requests and submit new ones (or add their
need to existing issues) directly through conversation.

**Key changes:**
- Backend: `SearchFeatureRequestsTool` and `CreateFeatureRequestTool`
with Linear API integration via system-level `LINEAR_API_KEY`
- Frontend: React components with streaming state handling and accordion
UI for search results and creation confirmations
- Models: Added `FeatureRequestSearchResponse` and
`FeatureRequestCreatedResponse` to response types
- Customer need tracking: Upserts customers in Linear and attaches needs
to issues for better feedback attribution

**Issues found:**
- Missing `LINEAR_API_KEY` entry in `.env.default` (required per PR
description checklist)
- Hardcoded project/team IDs reduce maintainability
- Global singleton pattern could cause issues in async contexts
- Using `user_id` as customer name reduces readability in Linear
</details>


<details><summary><h3>Confidence Score: 4/5</h3></summary>

- Safe to merge with minor configuration fix required
- The implementation is well-structured with proper error handling, type
safety, and follows existing patterns in the codebase. The missing
`.env.default` entry is a straightforward configuration issue that must
be fixed before deployment but doesn't affect code quality. The other
findings are style improvements that don't impact functionality.
- Verify that `LINEAR_API_KEY` is added to `.env.default` before merging
</details>


<details><summary><h3>Sequence Diagram</h3></summary>

```mermaid
sequenceDiagram
    participant User
    participant CoPilot UI
    participant LLM
    participant FeatureRequestTool
    participant LinearClient
    participant Linear API

    User->>CoPilot UI: Request feature via chat
    CoPilot UI->>LLM: Send user message
    
    LLM->>FeatureRequestTool: search_feature_requests(query)
    FeatureRequestTool->>LinearClient: query(SEARCH_ISSUES_QUERY)
    LinearClient->>Linear API: POST /graphql (search)
    Linear API-->>LinearClient: searchIssues.nodes[]
    LinearClient-->>FeatureRequestTool: Feature request data
    FeatureRequestTool-->>LLM: FeatureRequestSearchResponse
    
    alt No existing requests found
        LLM->>FeatureRequestTool: create_feature_request(title, description)
        FeatureRequestTool->>LinearClient: mutate(CUSTOMER_UPSERT_MUTATION)
        LinearClient->>Linear API: POST /graphql (upsert customer)
        Linear API-->>LinearClient: customer {id, name}
        LinearClient-->>FeatureRequestTool: Customer data
        
        FeatureRequestTool->>LinearClient: mutate(ISSUE_CREATE_MUTATION)
        LinearClient->>Linear API: POST /graphql (create issue)
        Linear API-->>LinearClient: issue {id, identifier, url}
        LinearClient-->>FeatureRequestTool: Issue data
        
        FeatureRequestTool->>LinearClient: mutate(CUSTOMER_NEED_CREATE_MUTATION)
        LinearClient->>Linear API: POST /graphql (attach need)
        Linear API-->>LinearClient: need {id, issue}
        LinearClient-->>FeatureRequestTool: Need data
        FeatureRequestTool-->>LLM: FeatureRequestCreatedResponse
    else Existing request found
        LLM->>FeatureRequestTool: create_feature_request(title, description, existing_issue_id)
        FeatureRequestTool->>LinearClient: mutate(CUSTOMER_UPSERT_MUTATION)
        LinearClient->>Linear API: POST /graphql (upsert customer)
        Linear API-->>LinearClient: customer {id}
        LinearClient-->>FeatureRequestTool: Customer data
        
        FeatureRequestTool->>LinearClient: mutate(CUSTOMER_NEED_CREATE_MUTATION)
        LinearClient->>Linear API: POST /graphql (attach need to existing)
        Linear API-->>LinearClient: need {id, issue}
        LinearClient-->>FeatureRequestTool: Need data
        FeatureRequestTool-->>LLM: FeatureRequestCreatedResponse
    end
    
    LLM-->>CoPilot UI: Tool response + continuation
    CoPilot UI-->>User: Display result with accordion UI
```
</details>


<sub>Last reviewed commit: af2e093</sub>

<!-- greptile_other_comments_section -->

<!-- /greptile_comment -->
2026-02-13 15:27:00 +01:00
Otto
86af8fc856 ci: apply E2E CI optimizations to Claude workflows (#12097)
## Summary

Applies the CI performance optimizations from #12090 to Claude Code
workflows.

## Changes

### `claude.yml` & `claude-dependabot.yml`
- **pnpm caching**: Replaced manual `actions/cache` with `setup-node`
built-in `cache: "pnpm"`
- Removes 4 steps (set pnpm store dir, cache step, manual config) → 1
step

### `claude-ci-failure-auto-fix.yml`
- **Added dev environment setup** with optimized caching
- Now Claude can run lint/tests when fixing CI failures (previously
could only edit files)
- Uses the same optimized caching patterns

## Dependency

This PR is based on #12090 and will merge after it.

## Testing

- Workflow YAML syntax validated
- Patterns match proven #12090 implementation
- CI caching changes fail gracefully to uncached builds

## Linear

Fixes [SECRT-1950](https://linear.app/autogpt/issue/SECRT-1950)

## Future Enhancements

E2E test data caching could be added to Claude workflows if needed for
running integration tests. Currently Claude workflows set up a dev
environment but don't run E2E tests by default.

<!-- greptile_comment -->

<h2>Greptile Overview</h2>

<details><summary><h3>Greptile Summary</h3></summary>

Applies proven CI performance optimizations to Claude workflows by
simplifying pnpm caching and adding dev environment setup to the
auto-fix workflow.

**Key changes:**
- Replaced manual pnpm cache configuration (4 steps) with built-in
`setup-node` `cache: "pnpm"` support in `claude.yml` and
`claude-dependabot.yml`
- Added complete dev environment setup (Python/Poetry + Node.js/pnpm) to
`claude-ci-failure-auto-fix.yml` so Claude can run linting and tests
when fixing CI failures
- Correctly orders `corepack enable` before `setup-node` to ensure pnpm
is available for caching

The changes mirror the optimizations from PR #12090 and maintain
consistency across all Claude workflows.
</details>


<details><summary><h3>Confidence Score: 5/5</h3></summary>

- This PR is safe to merge with minimal risk
- The changes are CI infrastructure optimizations that mirror proven
patterns from PR #12090. The pnpm caching simplification reduces
complexity without changing functionality (caching failures gracefully
fall back to uncached builds). The dev environment setup in the auto-fix
workflow is additive and enables Claude to run linting/tests. All YAML
syntax is correct and the step ordering follows best practices.
- No files require special attention
</details>


<details><summary><h3>Sequence Diagram</h3></summary>

```mermaid
sequenceDiagram
    participant GHA as GitHub Actions
    participant Corepack as Corepack
    participant SetupNode as setup-node@v6
    participant Cache as GHA Cache
    participant pnpm as pnpm

    Note over GHA,pnpm: Before (Manual Caching)
    GHA->>SetupNode: Set up Node.js 22
    SetupNode-->>GHA: Node.js ready
    GHA->>Corepack: Enable corepack
    Corepack-->>GHA: pnpm available
    GHA->>pnpm: Configure store directory
    pnpm-->>GHA: Store path set
    GHA->>Cache: actions/cache (manual key)
    Cache-->>GHA: Cache restored/missed
    GHA->>pnpm: Install dependencies
    pnpm-->>GHA: Dependencies installed

    Note over GHA,pnpm: After (Built-in Caching)
    GHA->>Corepack: Enable corepack
    Corepack-->>GHA: pnpm available
    GHA->>SetupNode: Set up Node.js 22<br/>cache: "pnpm"<br/>cache-dependency-path: pnpm-lock.yaml
    SetupNode->>Cache: Auto-detect pnpm store
    Cache-->>SetupNode: Cache restored/missed
    SetupNode-->>GHA: Node.js + cache ready
    GHA->>pnpm: Install dependencies
    pnpm-->>GHA: Dependencies installed
```
</details>


<sub>Last reviewed commit: f1681a0</sub>

<!-- greptile_other_comments_section -->

<!-- /greptile_comment -->

---------

Co-authored-by: Reinier van der Leer <pwuts@agpt.co>
Co-authored-by: Ubbe <hi@ubbe.dev>
2026-02-13 13:48:04 +00:00
Otto
dfa517300b debug(copilot): Add detailed API error logging (#11942)
## Summary
Adds comprehensive error logging for OpenRouter/OpenAI API errors to
help diagnose issues like provider routing failures, context length
exceeded, rate limits, etc.

## Background
While investigating
[SECRT-1859](https://linear.app/autogpt/issue/SECRT-1859), we found that
when OpenRouter returns errors, the actual error details weren't being
captured or logged. Langfuse traces showed `provider_name: 'unknown'`
and `completion: null` without any insight into WHY all providers
rejected the request.

## Changes
- Add `_extract_api_error_details()` to extract rich information from
API errors including:
  - Status code and request ID
  - Response body (contains OpenRouter's actual error message)
  - OpenRouter-specific headers (provider, model)
  - Rate limit headers
- Add `_log_api_error()` helper that logs errors with context:
  - Session ID for correlation
  - Message count (helps identify context length issues)
  - Model being used
  - Retry count
- Update error handling in `_stream_chat_chunks()` and
`_generate_llm_continuation()` to use new logging
- Extract provider's error message from response body for better user
feedback

## Example log output
```
API error: {
  'error_type': 'APIStatusError',
  'error_message': 'Provider returned error',
  'status_code': 400,
  'request_id': 'req_xxx',
  'response_body': {'error': {'message': 'context_length_exceeded', 'type': 'invalid_request_error'}},
  'openrouter_provider': 'unknown',
  'session_id': '44fbb803-...',
  'message_count': 52,
  'model': 'anthropic/claude-opus-4.5',
  'retry_count': 0
}
```

## Testing
- [ ] Verified code passes linting (black, isort, ruff)
- [ ] Error details are properly extracted from different error types

## Refs
- Linear: SECRT-1859
- Thread:
https://discord.com/channels/1126875755960336515/1467066151002571034

---------

Co-authored-by: Reinier van der Leer <pwuts@agpt.co>
2026-02-13 13:15:17 +00:00
83 changed files with 2930 additions and 9834 deletions

View File

@@ -40,6 +40,48 @@ jobs:
git checkout -b "$BRANCH_NAME"
echo "branch_name=$BRANCH_NAME" >> $GITHUB_OUTPUT
# Backend Python/Poetry setup (so Claude can run linting/tests)
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Set up Python dependency cache
uses: actions/cache@v5
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
- name: Install Poetry
run: |
cd autogpt_platform/backend
HEAD_POETRY_VERSION=$(python3 ../../.github/workflows/scripts/get_package_version_from_lockfile.py poetry)
curl -sSL https://install.python-poetry.org | POETRY_VERSION=$HEAD_POETRY_VERSION python3 -
echo "$HOME/.local/bin" >> $GITHUB_PATH
- name: Install Python dependencies
working-directory: autogpt_platform/backend
run: poetry install
- name: Generate Prisma Client
working-directory: autogpt_platform/backend
run: poetry run prisma generate && poetry run gen-prisma-stub
# Frontend Node.js/pnpm setup (so Claude can run linting/tests)
- name: Enable corepack
run: corepack enable
- name: Set up Node.js
uses: actions/setup-node@v6
with:
node-version: "22"
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
- name: Install JavaScript dependencies
working-directory: autogpt_platform/frontend
run: pnpm install --frozen-lockfile
- name: Get CI failure details
id: failure_details
uses: actions/github-script@v8

View File

@@ -77,27 +77,15 @@ jobs:
run: poetry run prisma generate && poetry run gen-prisma-stub
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
- name: Enable corepack
run: corepack enable
- name: Set up Node.js
uses: actions/setup-node@v6
with:
node-version: "22"
- name: Enable corepack
run: corepack enable
- name: Set pnpm store directory
run: |
pnpm config set store-dir ~/.pnpm-store
echo "PNPM_HOME=$HOME/.pnpm-store" >> $GITHUB_ENV
- name: Cache frontend dependencies
uses: actions/cache@v5
with:
path: ~/.pnpm-store
key: ${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
- name: Install JavaScript dependencies
working-directory: autogpt_platform/frontend

View File

@@ -93,27 +93,15 @@ jobs:
run: poetry run prisma generate && poetry run gen-prisma-stub
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
- name: Enable corepack
run: corepack enable
- name: Set up Node.js
uses: actions/setup-node@v6
with:
node-version: "22"
- name: Enable corepack
run: corepack enable
- name: Set pnpm store directory
run: |
pnpm config set store-dir ~/.pnpm-store
echo "PNPM_HOME=$HOME/.pnpm-store" >> $GITHUB_ENV
- name: Cache frontend dependencies
uses: actions/cache@v5
with:
path: ~/.pnpm-store
key: ${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
- name: Install JavaScript dependencies
working-directory: autogpt_platform/frontend

View File

@@ -62,7 +62,7 @@ jobs:
# Initializes the CodeQL tools for scanning.
- name: Initialize CodeQL
uses: github/codeql-action/init@v3
uses: github/codeql-action/init@v4
with:
languages: ${{ matrix.language }}
build-mode: ${{ matrix.build-mode }}
@@ -93,6 +93,6 @@ jobs:
exit 1
- name: Perform CodeQL Analysis
uses: github/codeql-action/analyze@v3
uses: github/codeql-action/analyze@v4
with:
category: "/language:${{matrix.language}}"

View File

@@ -104,6 +104,12 @@ TWITTER_CLIENT_SECRET=
# Make a new workspace for your OAuth APP -- trust me
# https://linear.app/settings/api/applications/new
# Callback URL: http://localhost:3000/auth/integrations/oauth_callback
LINEAR_API_KEY=
# Linear project and team IDs for the feature request tracker.
# Find these in your Linear workspace URL: linear.app/<workspace>/project/<project-id>
# and in team settings. Used by the chat copilot to file and search feature requests.
LINEAR_FEATURE_REQUEST_PROJECT_ID=
LINEAR_FEATURE_REQUEST_TEAM_ID=
LINEAR_CLIENT_ID=
LINEAR_CLIENT_SECRET=

View File

@@ -122,24 +122,6 @@ class ConnectionManager:
return len(connections)
async def broadcast_to_all(self, *, method: WSMethod, data: dict) -> int:
"""Broadcast a message to all active websocket connections."""
message = WSMessage(
method=method,
data=data,
).model_dump_json()
connections = tuple(self.active_connections)
if not connections:
return 0
await asyncio.gather(
*(connection.send_text(message) for connection in connections),
return_exceptions=True,
)
return len(connections)
async def _subscribe(self, channel_key: str, websocket: WebSocket) -> str:
if channel_key not in self.subscriptions:
self.subscriptions[channel_key] = set()

View File

@@ -176,64 +176,30 @@ async def get_execution_analytics_config(
# Return with provider prefix for clarity
return f"{provider_name}: {model_name}"
# Get all models from the registry (dynamic, not hardcoded enum)
from backend.data import llm_registry
from backend.server.v2.llm import db as llm_db
# Get the recommended model from the database (configurable via admin UI)
recommended_model_slug = await llm_db.get_recommended_model_slug()
# Build the available models list
first_enabled_slug = None
for registry_model in llm_registry.iter_dynamic_models():
# Only include enabled models in the list
if not registry_model.is_enabled:
continue
# Track first enabled model as fallback
if first_enabled_slug is None:
first_enabled_slug = registry_model.slug
model = LlmModel(registry_model.slug)
# Include all LlmModel values (no more filtering by hardcoded list)
recommended_model = LlmModel.GPT4O_MINI.value
for model in LlmModel:
label = generate_model_label(model)
# Add "(Recommended)" suffix to the recommended model
if registry_model.slug == recommended_model_slug:
if model.value == recommended_model:
label += " (Recommended)"
available_models.append(
ModelInfo(
value=registry_model.slug,
value=model.value,
label=label,
provider=registry_model.metadata.provider,
provider=model.provider,
)
)
# Sort models by provider and name for better UX
available_models.sort(key=lambda x: (x.provider, x.label))
# Handle case where no models are available
if not available_models:
logger.warning(
"No enabled LLM models found in registry. "
"Ensure models are configured and enabled in the LLM Registry."
)
# Provide a placeholder entry so admins see meaningful feedback
available_models.append(
ModelInfo(
value="",
label="No models available - configure in LLM Registry",
provider="none",
)
)
# Use the DB recommended model, or fallback to first enabled model
final_recommended = recommended_model_slug or first_enabled_slug or ""
return ExecutionAnalyticsConfig(
available_models=available_models,
default_system_prompt=DEFAULT_SYSTEM_PROMPT,
default_user_prompt=DEFAULT_USER_PROMPT,
recommended_model=final_recommended,
recommended_model=recommended_model,
)

View File

@@ -1,593 +0,0 @@
import logging
import autogpt_libs.auth
import fastapi
from backend.data import llm_registry
from backend.data.block_cost_config import refresh_llm_costs
from backend.server.v2.llm import db as llm_db
from backend.server.v2.llm import model as llm_model
logger = logging.getLogger(__name__)
router = fastapi.APIRouter(
tags=["llm", "admin"],
dependencies=[fastapi.Security(autogpt_libs.auth.requires_admin_user)],
)
async def _refresh_runtime_state() -> None:
"""Refresh the LLM registry and clear all related caches to ensure real-time updates."""
logger.info("Refreshing LLM registry runtime state...")
try:
# Refresh registry from database
await llm_registry.refresh_llm_registry()
await refresh_llm_costs()
# Clear block schema caches so they're regenerated with updated model options
from backend.blocks._base import BlockSchema
BlockSchema.clear_all_schema_caches()
logger.info("Cleared all block schema caches")
# Clear the /blocks endpoint cache so frontend gets updated schemas
try:
from backend.api.features.v1 import _get_cached_blocks
_get_cached_blocks.cache_clear()
logger.info("Cleared /blocks endpoint cache")
except Exception as e:
logger.warning("Failed to clear /blocks cache: %s", e)
# Clear the v2 builder caches
try:
from backend.api.features.builder import db as builder_db
builder_db._get_all_providers.cache_clear()
logger.info("Cleared v2 builder providers cache")
builder_db._build_cached_search_results.cache_clear()
logger.info("Cleared v2 builder search results cache")
except Exception as e:
logger.debug("Could not clear v2 builder cache: %s", e)
# Notify all executor services to refresh their registry cache
from backend.data.llm_registry import publish_registry_refresh_notification
await publish_registry_refresh_notification()
logger.info("Published registry refresh notification")
except Exception as exc:
logger.exception(
"LLM runtime state refresh failed; caches may be stale: %s", exc
)
@router.get(
"/providers",
summary="List LLM providers",
response_model=llm_model.LlmProvidersResponse,
)
async def list_llm_providers(include_models: bool = True):
providers = await llm_db.list_providers(include_models=include_models)
return llm_model.LlmProvidersResponse(providers=providers)
@router.post(
"/providers",
summary="Create LLM provider",
response_model=llm_model.LlmProvider,
)
async def create_llm_provider(request: llm_model.UpsertLlmProviderRequest):
provider = await llm_db.upsert_provider(request=request)
await _refresh_runtime_state()
return provider
@router.patch(
"/providers/{provider_id}",
summary="Update LLM provider",
response_model=llm_model.LlmProvider,
)
async def update_llm_provider(
provider_id: str,
request: llm_model.UpsertLlmProviderRequest,
):
provider = await llm_db.upsert_provider(request=request, provider_id=provider_id)
await _refresh_runtime_state()
return provider
@router.delete(
"/providers/{provider_id}",
summary="Delete LLM provider",
response_model=dict,
)
async def delete_llm_provider(provider_id: str):
"""
Delete an LLM provider.
A provider can only be deleted if it has no associated models.
Delete all models from the provider first before deleting the provider.
"""
try:
await llm_db.delete_provider(provider_id)
await _refresh_runtime_state()
logger.info("Deleted LLM provider '%s'", provider_id)
return {"success": True, "message": "Provider deleted successfully"}
except ValueError as e:
logger.warning("Failed to delete provider '%s': %s", provider_id, e)
raise fastapi.HTTPException(status_code=400, detail=str(e))
except Exception as e:
logger.exception("Failed to delete provider '%s': %s", provider_id, e)
raise fastapi.HTTPException(status_code=500, detail=str(e))
@router.get(
"/models",
summary="List LLM models",
response_model=llm_model.LlmModelsResponse,
)
async def list_llm_models(
provider_id: str | None = fastapi.Query(default=None),
page: int = fastapi.Query(default=1, ge=1, description="Page number (1-indexed)"),
page_size: int = fastapi.Query(
default=50, ge=1, le=100, description="Number of models per page"
),
):
return await llm_db.list_models(
provider_id=provider_id, page=page, page_size=page_size
)
@router.post(
"/models",
summary="Create LLM model",
response_model=llm_model.LlmModel,
)
async def create_llm_model(request: llm_model.CreateLlmModelRequest):
model = await llm_db.create_model(request=request)
await _refresh_runtime_state()
return model
@router.patch(
"/models/{model_id}",
summary="Update LLM model",
response_model=llm_model.LlmModel,
)
async def update_llm_model(
model_id: str,
request: llm_model.UpdateLlmModelRequest,
):
model = await llm_db.update_model(model_id=model_id, request=request)
await _refresh_runtime_state()
return model
@router.patch(
"/models/{model_id}/toggle",
summary="Toggle LLM model availability",
response_model=llm_model.ToggleLlmModelResponse,
)
async def toggle_llm_model(
model_id: str,
request: llm_model.ToggleLlmModelRequest,
):
"""
Toggle a model's enabled status, optionally migrating workflows when disabling.
If disabling a model and `migrate_to_slug` is provided, all workflows using
this model will be migrated to the specified replacement model before disabling.
A migration record is created which can be reverted later using the revert endpoint.
Optional fields:
- `migration_reason`: Reason for the migration (e.g., "Provider outage")
- `custom_credit_cost`: Custom pricing override for billing during migration
"""
try:
result = await llm_db.toggle_model(
model_id=model_id,
is_enabled=request.is_enabled,
migrate_to_slug=request.migrate_to_slug,
migration_reason=request.migration_reason,
custom_credit_cost=request.custom_credit_cost,
)
await _refresh_runtime_state()
if result.nodes_migrated > 0:
logger.info(
"Toggled model '%s' to %s and migrated %d nodes to '%s' (migration_id=%s)",
result.model.slug,
"enabled" if request.is_enabled else "disabled",
result.nodes_migrated,
result.migrated_to_slug,
result.migration_id,
)
return result
except ValueError as exc:
logger.warning("Model toggle validation failed: %s", exc)
raise fastapi.HTTPException(status_code=400, detail=str(exc)) from exc
except Exception as exc:
logger.exception("Failed to toggle LLM model %s: %s", model_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to toggle model availability",
) from exc
@router.get(
"/models/{model_id}/usage",
summary="Get model usage count",
response_model=llm_model.LlmModelUsageResponse,
)
async def get_llm_model_usage(model_id: str):
"""Get the number of workflow nodes using this model."""
try:
return await llm_db.get_model_usage(model_id=model_id)
except ValueError as exc:
raise fastapi.HTTPException(status_code=404, detail=str(exc)) from exc
except Exception as exc:
logger.exception("Failed to get model usage %s: %s", model_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to get model usage",
) from exc
@router.delete(
"/models/{model_id}",
summary="Delete LLM model and migrate workflows",
response_model=llm_model.DeleteLlmModelResponse,
)
async def delete_llm_model(
model_id: str,
replacement_model_slug: str | None = fastapi.Query(
default=None,
description="Slug of the model to migrate existing workflows to (required only if workflows use this model)",
),
):
"""
Delete a model and optionally migrate workflows using it to a replacement model.
If no workflows are using this model, it can be deleted without providing a
replacement. If workflows exist, replacement_model_slug is required.
This endpoint:
1. Counts how many workflow nodes use the model being deleted
2. If nodes exist, validates the replacement model and migrates them
3. Deletes the model record
4. Refreshes all caches and notifies executors
Example: DELETE /api/llm/admin/models/{id}?replacement_model_slug=gpt-4o
Example (no usage): DELETE /api/llm/admin/models/{id}
"""
try:
result = await llm_db.delete_model(
model_id=model_id, replacement_model_slug=replacement_model_slug
)
await _refresh_runtime_state()
logger.info(
"Deleted model '%s' and migrated %d nodes to '%s'",
result.deleted_model_slug,
result.nodes_migrated,
result.replacement_model_slug,
)
return result
except ValueError as exc:
# Validation errors (model not found, replacement invalid, etc.)
logger.warning("Model deletion validation failed: %s", exc)
raise fastapi.HTTPException(status_code=400, detail=str(exc)) from exc
except Exception as exc:
logger.exception("Failed to delete LLM model %s: %s", model_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to delete model and migrate workflows",
) from exc
# ============================================================================
# Migration Management Endpoints
# ============================================================================
@router.get(
"/migrations",
summary="List model migrations",
response_model=llm_model.LlmMigrationsResponse,
)
async def list_llm_migrations(
include_reverted: bool = fastapi.Query(
default=False, description="Include reverted migrations in the list"
),
):
"""
List all model migrations.
Migrations are created when disabling a model with the migrate_to_slug option.
They can be reverted to restore the original model configuration.
"""
try:
migrations = await llm_db.list_migrations(include_reverted=include_reverted)
return llm_model.LlmMigrationsResponse(migrations=migrations)
except Exception as exc:
logger.exception("Failed to list migrations: %s", exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to list migrations",
) from exc
@router.get(
"/migrations/{migration_id}",
summary="Get migration details",
response_model=llm_model.LlmModelMigration,
)
async def get_llm_migration(migration_id: str):
"""Get details of a specific migration."""
try:
migration = await llm_db.get_migration(migration_id)
if not migration:
raise fastapi.HTTPException(
status_code=404, detail=f"Migration '{migration_id}' not found"
)
return migration
except fastapi.HTTPException:
raise
except Exception as exc:
logger.exception("Failed to get migration %s: %s", migration_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to get migration",
) from exc
@router.post(
"/migrations/{migration_id}/revert",
summary="Revert a model migration",
response_model=llm_model.RevertMigrationResponse,
)
async def revert_llm_migration(
migration_id: str,
request: llm_model.RevertMigrationRequest | None = None,
):
"""
Revert a model migration, restoring affected workflows to their original model.
This only reverts the specific nodes that were part of the migration.
The source model must exist for the revert to succeed.
Options:
- `re_enable_source_model`: Whether to re-enable the source model if disabled (default: True)
Response includes:
- `nodes_reverted`: Number of nodes successfully reverted
- `nodes_already_changed`: Number of nodes that were modified since migration (not reverted)
- `source_model_re_enabled`: Whether the source model was re-enabled
Requirements:
- Migration must not already be reverted
- Source model must exist
"""
try:
re_enable = request.re_enable_source_model if request else True
result = await llm_db.revert_migration(
migration_id,
re_enable_source_model=re_enable,
)
await _refresh_runtime_state()
logger.info(
"Reverted migration '%s': %d nodes restored from '%s' to '%s' "
"(%d already changed, source re-enabled=%s)",
migration_id,
result.nodes_reverted,
result.target_model_slug,
result.source_model_slug,
result.nodes_already_changed,
result.source_model_re_enabled,
)
return result
except ValueError as exc:
logger.warning("Migration revert validation failed: %s", exc)
raise fastapi.HTTPException(status_code=400, detail=str(exc)) from exc
except Exception as exc:
logger.exception("Failed to revert migration %s: %s", migration_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to revert migration",
) from exc
# ============================================================================
# Creator Management Endpoints
# ============================================================================
@router.get(
"/creators",
summary="List model creators",
response_model=llm_model.LlmCreatorsResponse,
)
async def list_llm_creators():
"""
List all model creators.
Creators are organizations that create/train models (e.g., OpenAI, Meta, Anthropic).
This is distinct from providers who host/serve the models (e.g., OpenRouter).
"""
try:
creators = await llm_db.list_creators()
return llm_model.LlmCreatorsResponse(creators=creators)
except Exception as exc:
logger.exception("Failed to list creators: %s", exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to list creators",
) from exc
@router.get(
"/creators/{creator_id}",
summary="Get creator details",
response_model=llm_model.LlmModelCreator,
)
async def get_llm_creator(creator_id: str):
"""Get details of a specific model creator."""
try:
creator = await llm_db.get_creator(creator_id)
if not creator:
raise fastapi.HTTPException(
status_code=404, detail=f"Creator '{creator_id}' not found"
)
return creator
except fastapi.HTTPException:
raise
except Exception as exc:
logger.exception("Failed to get creator %s: %s", creator_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to get creator",
) from exc
@router.post(
"/creators",
summary="Create model creator",
response_model=llm_model.LlmModelCreator,
)
async def create_llm_creator(request: llm_model.UpsertLlmCreatorRequest):
"""
Create a new model creator.
A creator represents an organization that creates/trains AI models,
such as OpenAI, Anthropic, Meta, or Google.
"""
try:
creator = await llm_db.upsert_creator(request=request)
await _refresh_runtime_state()
logger.info("Created model creator '%s' (%s)", creator.display_name, creator.id)
return creator
except Exception as exc:
logger.exception("Failed to create creator: %s", exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to create creator",
) from exc
@router.patch(
"/creators/{creator_id}",
summary="Update model creator",
response_model=llm_model.LlmModelCreator,
)
async def update_llm_creator(
creator_id: str,
request: llm_model.UpsertLlmCreatorRequest,
):
"""Update an existing model creator."""
try:
creator = await llm_db.upsert_creator(request=request, creator_id=creator_id)
await _refresh_runtime_state()
logger.info("Updated model creator '%s' (%s)", creator.display_name, creator_id)
return creator
except Exception as exc:
logger.exception("Failed to update creator %s: %s", creator_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to update creator",
) from exc
@router.delete(
"/creators/{creator_id}",
summary="Delete model creator",
response_model=dict,
)
async def delete_llm_creator(creator_id: str):
"""
Delete a model creator.
This will remove the creator association from all models that reference it
(sets creatorId to NULL), but will not delete the models themselves.
"""
try:
await llm_db.delete_creator(creator_id)
await _refresh_runtime_state()
logger.info("Deleted model creator '%s'", creator_id)
return {"success": True, "message": f"Creator '{creator_id}' deleted"}
except ValueError as exc:
logger.warning("Creator deletion validation failed: %s", exc)
raise fastapi.HTTPException(status_code=404, detail=str(exc)) from exc
except Exception as exc:
logger.exception("Failed to delete creator %s: %s", creator_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to delete creator",
) from exc
# ============================================================================
# Recommended Model Endpoints
# ============================================================================
@router.get(
"/recommended-model",
summary="Get recommended model",
response_model=llm_model.RecommendedModelResponse,
)
async def get_recommended_model():
"""
Get the currently recommended LLM model.
The recommended model is shown to users as the default/suggested option
in model selection dropdowns.
"""
try:
model = await llm_db.get_recommended_model()
return llm_model.RecommendedModelResponse(
model=model,
slug=model.slug if model else None,
)
except Exception as exc:
logger.exception("Failed to get recommended model: %s", exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to get recommended model",
) from exc
@router.post(
"/recommended-model",
summary="Set recommended model",
response_model=llm_model.SetRecommendedModelResponse,
)
async def set_recommended_model(request: llm_model.SetRecommendedModelRequest):
"""
Set a model as the recommended model.
This clears the recommended flag from any other model and sets it on
the specified model. The model must be enabled to be set as recommended.
The recommended model is displayed to users as the default/suggested
option in model selection dropdowns throughout the platform.
"""
try:
model, previous_slug = await llm_db.set_recommended_model(request.model_id)
await _refresh_runtime_state()
logger.info(
"Set recommended model to '%s' (previous: %s)",
model.slug,
previous_slug or "none",
)
return llm_model.SetRecommendedModelResponse(
model=model,
previous_recommended_slug=previous_slug,
message=f"Model '{model.display_name}' is now the recommended model",
)
except ValueError as exc:
logger.warning("Set recommended model validation failed: %s", exc)
raise fastapi.HTTPException(status_code=400, detail=str(exc)) from exc
except Exception as exc:
logger.exception("Failed to set recommended model: %s", exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to set recommended model",
) from exc

View File

@@ -1,491 +0,0 @@
import json
from unittest.mock import AsyncMock
import fastapi
import fastapi.testclient
import pytest
import pytest_mock
from autogpt_libs.auth.jwt_utils import get_jwt_payload
from pytest_snapshot.plugin import Snapshot
import backend.api.features.admin.llm_routes as llm_routes
from backend.server.v2.llm import model as llm_model
from backend.util.models import Pagination
app = fastapi.FastAPI()
app.include_router(llm_routes.router, prefix="/admin/llm")
client = fastapi.testclient.TestClient(app)
@pytest.fixture(autouse=True)
def setup_app_admin_auth(mock_jwt_admin):
"""Setup admin auth overrides for all tests in this module"""
app.dependency_overrides[get_jwt_payload] = mock_jwt_admin["get_jwt_payload"]
yield
app.dependency_overrides.clear()
def test_list_llm_providers_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful listing of LLM providers"""
# Mock the database function
mock_providers = [
{
"id": "provider-1",
"name": "openai",
"display_name": "OpenAI",
"description": "OpenAI LLM provider",
"supports_tools": True,
"supports_json_output": True,
"supports_reasoning": False,
"supports_parallel_tool": True,
"metadata": {},
"models": [],
},
{
"id": "provider-2",
"name": "anthropic",
"display_name": "Anthropic",
"description": "Anthropic LLM provider",
"supports_tools": True,
"supports_json_output": True,
"supports_reasoning": False,
"supports_parallel_tool": True,
"metadata": {},
"models": [],
},
]
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.list_providers",
new=AsyncMock(return_value=mock_providers),
)
response = client.get("/admin/llm/providers")
assert response.status_code == 200
response_data = response.json()
assert len(response_data["providers"]) == 2
assert response_data["providers"][0]["name"] == "openai"
# Snapshot test the response (must be string)
configured_snapshot.assert_match(
json.dumps(response_data, indent=2, sort_keys=True),
"list_llm_providers_success.json",
)
def test_list_llm_models_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful listing of LLM models with pagination"""
# Mock the database function - now returns LlmModelsResponse
mock_model = llm_model.LlmModel(
id="model-1",
slug="gpt-4o",
display_name="GPT-4o",
description="GPT-4 Optimized",
provider_id="provider-1",
context_window=128000,
max_output_tokens=16384,
is_enabled=True,
capabilities={},
metadata={},
costs=[
llm_model.LlmModelCost(
id="cost-1",
credit_cost=10,
credential_provider="openai",
metadata={},
)
],
)
mock_response = llm_model.LlmModelsResponse(
models=[mock_model],
pagination=Pagination(
total_items=1,
total_pages=1,
current_page=1,
page_size=50,
),
)
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.list_models",
new=AsyncMock(return_value=mock_response),
)
response = client.get("/admin/llm/models")
assert response.status_code == 200
response_data = response.json()
assert len(response_data["models"]) == 1
assert response_data["models"][0]["slug"] == "gpt-4o"
assert response_data["pagination"]["total_items"] == 1
assert response_data["pagination"]["page_size"] == 50
# Snapshot test the response (must be string)
configured_snapshot.assert_match(
json.dumps(response_data, indent=2, sort_keys=True),
"list_llm_models_success.json",
)
def test_create_llm_provider_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful creation of LLM provider"""
mock_provider = {
"id": "new-provider-id",
"name": "groq",
"display_name": "Groq",
"description": "Groq LLM provider",
"supports_tools": True,
"supports_json_output": True,
"supports_reasoning": False,
"supports_parallel_tool": False,
"metadata": {},
}
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.upsert_provider",
new=AsyncMock(return_value=mock_provider),
)
mock_refresh = mocker.patch(
"backend.api.features.admin.llm_routes._refresh_runtime_state",
new=AsyncMock(),
)
request_data = {
"name": "groq",
"display_name": "Groq",
"description": "Groq LLM provider",
"supports_tools": True,
"supports_json_output": True,
"supports_reasoning": False,
"supports_parallel_tool": False,
"metadata": {},
}
response = client.post("/admin/llm/providers", json=request_data)
assert response.status_code == 200
response_data = response.json()
assert response_data["name"] == "groq"
assert response_data["display_name"] == "Groq"
# Verify refresh was called
mock_refresh.assert_called_once()
# Snapshot test the response (must be string)
configured_snapshot.assert_match(
json.dumps(response_data, indent=2, sort_keys=True),
"create_llm_provider_success.json",
)
def test_create_llm_model_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful creation of LLM model"""
mock_model = {
"id": "new-model-id",
"slug": "gpt-4.1-mini",
"display_name": "GPT-4.1 Mini",
"description": "Latest GPT-4.1 Mini model",
"provider_id": "provider-1",
"context_window": 128000,
"max_output_tokens": 16384,
"is_enabled": True,
"capabilities": {},
"metadata": {},
"costs": [
{
"id": "cost-id",
"credit_cost": 5,
"credential_provider": "openai",
"metadata": {},
}
],
}
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.create_model",
new=AsyncMock(return_value=mock_model),
)
mock_refresh = mocker.patch(
"backend.api.features.admin.llm_routes._refresh_runtime_state",
new=AsyncMock(),
)
request_data = {
"slug": "gpt-4.1-mini",
"display_name": "GPT-4.1 Mini",
"description": "Latest GPT-4.1 Mini model",
"provider_id": "provider-1",
"context_window": 128000,
"max_output_tokens": 16384,
"is_enabled": True,
"capabilities": {},
"metadata": {},
"costs": [
{
"credit_cost": 5,
"credential_provider": "openai",
"metadata": {},
}
],
}
response = client.post("/admin/llm/models", json=request_data)
assert response.status_code == 200
response_data = response.json()
assert response_data["slug"] == "gpt-4.1-mini"
assert response_data["is_enabled"] is True
# Verify refresh was called
mock_refresh.assert_called_once()
# Snapshot test the response (must be string)
configured_snapshot.assert_match(
json.dumps(response_data, indent=2, sort_keys=True),
"create_llm_model_success.json",
)
def test_update_llm_model_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful update of LLM model"""
mock_model = {
"id": "model-1",
"slug": "gpt-4o",
"display_name": "GPT-4o Updated",
"description": "Updated description",
"provider_id": "provider-1",
"context_window": 256000,
"max_output_tokens": 32768,
"is_enabled": True,
"capabilities": {},
"metadata": {},
"costs": [
{
"id": "cost-1",
"credit_cost": 15,
"credential_provider": "openai",
"metadata": {},
}
],
}
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.update_model",
new=AsyncMock(return_value=mock_model),
)
mock_refresh = mocker.patch(
"backend.api.features.admin.llm_routes._refresh_runtime_state",
new=AsyncMock(),
)
request_data = {
"display_name": "GPT-4o Updated",
"description": "Updated description",
"context_window": 256000,
"max_output_tokens": 32768,
}
response = client.patch("/admin/llm/models/model-1", json=request_data)
assert response.status_code == 200
response_data = response.json()
assert response_data["display_name"] == "GPT-4o Updated"
assert response_data["context_window"] == 256000
# Verify refresh was called
mock_refresh.assert_called_once()
# Snapshot test the response (must be string)
configured_snapshot.assert_match(
json.dumps(response_data, indent=2, sort_keys=True),
"update_llm_model_success.json",
)
def test_toggle_llm_model_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful toggling of LLM model enabled status"""
# Create a proper mock model object
mock_model = llm_model.LlmModel(
id="model-1",
slug="gpt-4o",
display_name="GPT-4o",
description="GPT-4 Optimized",
provider_id="provider-1",
context_window=128000,
max_output_tokens=16384,
is_enabled=False,
capabilities={},
metadata={},
costs=[],
)
# Create a proper ToggleLlmModelResponse
mock_response = llm_model.ToggleLlmModelResponse(
model=mock_model,
nodes_migrated=0,
migrated_to_slug=None,
migration_id=None,
)
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.toggle_model",
new=AsyncMock(return_value=mock_response),
)
mock_refresh = mocker.patch(
"backend.api.features.admin.llm_routes._refresh_runtime_state",
new=AsyncMock(),
)
request_data = {"is_enabled": False}
response = client.patch("/admin/llm/models/model-1/toggle", json=request_data)
assert response.status_code == 200
response_data = response.json()
assert response_data["model"]["is_enabled"] is False
# Verify refresh was called
mock_refresh.assert_called_once()
# Snapshot test the response (must be string)
configured_snapshot.assert_match(
json.dumps(response_data, indent=2, sort_keys=True),
"toggle_llm_model_success.json",
)
def test_delete_llm_model_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful deletion of LLM model with migration"""
# Create a proper DeleteLlmModelResponse
mock_response = llm_model.DeleteLlmModelResponse(
deleted_model_slug="gpt-3.5-turbo",
deleted_model_display_name="GPT-3.5 Turbo",
replacement_model_slug="gpt-4o-mini",
nodes_migrated=42,
message="Successfully deleted model 'GPT-3.5 Turbo' (gpt-3.5-turbo) "
"and migrated 42 workflow node(s) to 'gpt-4o-mini'.",
)
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.delete_model",
new=AsyncMock(return_value=mock_response),
)
mock_refresh = mocker.patch(
"backend.api.features.admin.llm_routes._refresh_runtime_state",
new=AsyncMock(),
)
response = client.delete(
"/admin/llm/models/model-1?replacement_model_slug=gpt-4o-mini"
)
assert response.status_code == 200
response_data = response.json()
assert response_data["deleted_model_slug"] == "gpt-3.5-turbo"
assert response_data["nodes_migrated"] == 42
assert response_data["replacement_model_slug"] == "gpt-4o-mini"
# Verify refresh was called
mock_refresh.assert_called_once()
# Snapshot test the response (must be string)
configured_snapshot.assert_match(
json.dumps(response_data, indent=2, sort_keys=True),
"delete_llm_model_success.json",
)
def test_delete_llm_model_validation_error(
mocker: pytest_mock.MockFixture,
) -> None:
"""Test deletion fails with proper error when validation fails"""
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.delete_model",
new=AsyncMock(side_effect=ValueError("Replacement model 'invalid' not found")),
)
response = client.delete("/admin/llm/models/model-1?replacement_model_slug=invalid")
assert response.status_code == 400
assert "Replacement model 'invalid' not found" in response.json()["detail"]
def test_delete_llm_model_no_replacement_with_usage(
mocker: pytest_mock.MockFixture,
) -> None:
"""Test deletion fails when nodes exist but no replacement is provided"""
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.delete_model",
new=AsyncMock(
side_effect=ValueError(
"Cannot delete model 'test-model': 5 workflow node(s) are using it. "
"Please provide a replacement_model_slug to migrate them."
)
),
)
response = client.delete("/admin/llm/models/model-1")
assert response.status_code == 400
assert "workflow node(s) are using it" in response.json()["detail"]
def test_delete_llm_model_no_replacement_no_usage(
mocker: pytest_mock.MockFixture,
) -> None:
"""Test deletion succeeds when no nodes use the model and no replacement is provided"""
mock_response = llm_model.DeleteLlmModelResponse(
deleted_model_slug="unused-model",
deleted_model_display_name="Unused Model",
replacement_model_slug=None,
nodes_migrated=0,
message="Successfully deleted model 'Unused Model' (unused-model). No workflows were using this model.",
)
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.delete_model",
new=AsyncMock(return_value=mock_response),
)
mock_refresh = mocker.patch(
"backend.api.features.admin.llm_routes._refresh_runtime_state",
new=AsyncMock(),
)
response = client.delete("/admin/llm/models/model-1")
assert response.status_code == 200
response_data = response.json()
assert response_data["deleted_model_slug"] == "unused-model"
assert response_data["nodes_migrated"] == 0
assert response_data["replacement_model_slug"] is None
mock_refresh.assert_called_once()

View File

@@ -20,7 +20,6 @@ from backend.blocks._base import (
)
from backend.blocks.llm import LlmModel
from backend.data.db import query_raw_with_schema
from backend.data.llm_registry import get_all_model_slugs_for_validation
from backend.integrations.providers import ProviderName
from backend.util.cache import cached
from backend.util.models import Pagination
@@ -37,14 +36,7 @@ from .model import (
)
logger = logging.getLogger(__name__)
def _get_llm_models() -> list[str]:
"""Get LLM model names for search matching from the registry."""
return [
slug.lower().replace("-", " ") for slug in get_all_model_slugs_for_validation()
]
llm_models = [name.name.lower().replace("_", " ") for name in LlmModel]
MAX_LIBRARY_AGENT_RESULTS = 100
MAX_MARKETPLACE_AGENT_RESULTS = 100
@@ -509,10 +501,8 @@ async def _get_static_counts():
def _matches_llm_model(schema_cls: type[BlockSchema], query: str) -> bool:
for field in schema_cls.model_fields.values():
if field.annotation == LlmModel:
# Normalize query same as model slugs (lowercase, hyphens to spaces)
normalized_model_query = query.lower().replace("-", " ")
# Check if query matches any value in llm_models from registry
if any(normalized_model_query in name for name in _get_llm_models()):
# Check if query matches any value in llm_models
if any(query in name for name in llm_models):
return True
return False

View File

@@ -1245,6 +1245,7 @@ async def _stream_chat_chunks(
return
except Exception as e:
last_error = e
if _is_retryable_error(e) and retry_count < MAX_RETRIES:
retry_count += 1
# Calculate delay with exponential backoff
@@ -1260,12 +1261,27 @@ async def _stream_chat_chunks(
continue # Retry the stream
else:
# Non-retryable error or max retries exceeded
logger.error(
f"Error in stream (not retrying): {e!s}",
exc_info=True,
_log_api_error(
error=e,
context="stream (not retrying)",
session_id=session.session_id if session else None,
message_count=len(messages) if messages else None,
model=model,
retry_count=retry_count,
)
error_code = None
error_text = str(e)
error_details = _extract_api_error_details(e)
if error_details.get("response_body"):
body = error_details["response_body"]
if isinstance(body, dict):
err = body.get("error")
if isinstance(err, dict) and err.get("message"):
error_text = err["message"]
elif body.get("message"):
error_text = body["message"]
if _is_region_blocked_error(e):
error_code = "MODEL_NOT_AVAILABLE_REGION"
error_text = (
@@ -1282,9 +1298,13 @@ async def _stream_chat_chunks(
# If we exit the retry loop without returning, it means we exhausted retries
if last_error:
logger.error(
f"Max retries ({MAX_RETRIES}) exceeded. Last error: {last_error!s}",
exc_info=True,
_log_api_error(
error=last_error,
context=f"stream (max retries {MAX_RETRIES} exceeded)",
session_id=session.session_id if session else None,
message_count=len(messages) if messages else None,
model=model,
retry_count=MAX_RETRIES,
)
yield StreamError(errorText=f"Max retries exceeded: {last_error!s}")
yield StreamFinish()
@@ -1857,6 +1877,7 @@ async def _generate_llm_continuation(
break # Success, exit retry loop
except Exception as e:
last_error = e
if _is_retryable_error(e) and retry_count < MAX_RETRIES:
retry_count += 1
delay = min(
@@ -1870,17 +1891,25 @@ async def _generate_llm_continuation(
await asyncio.sleep(delay)
continue
else:
# Non-retryable error - log and exit gracefully
logger.error(
f"Non-retryable error in LLM continuation: {e!s}",
exc_info=True,
# Non-retryable error - log details and exit gracefully
_log_api_error(
error=e,
context="LLM continuation (not retrying)",
session_id=session_id,
message_count=len(messages) if messages else None,
model=config.model,
retry_count=retry_count,
)
return
if last_error:
logger.error(
f"Max retries ({MAX_RETRIES}) exceeded for LLM continuation. "
f"Last error: {last_error!s}"
_log_api_error(
error=last_error,
context=f"LLM continuation (max retries {MAX_RETRIES} exceeded)",
session_id=session_id,
message_count=len(messages) if messages else None,
model=config.model,
retry_count=MAX_RETRIES,
)
return
@@ -1920,6 +1949,91 @@ async def _generate_llm_continuation(
logger.error(f"Failed to generate LLM continuation: {e}", exc_info=True)
def _log_api_error(
error: Exception,
context: str,
session_id: str | None = None,
message_count: int | None = None,
model: str | None = None,
retry_count: int = 0,
) -> None:
"""Log detailed API error information for debugging."""
details = _extract_api_error_details(error)
details["context"] = context
details["session_id"] = session_id
details["message_count"] = message_count
details["model"] = model
details["retry_count"] = retry_count
if isinstance(error, RateLimitError):
logger.warning(f"Rate limit error in {context}: {details}", exc_info=error)
elif isinstance(error, APIConnectionError):
logger.warning(f"API connection error in {context}: {details}", exc_info=error)
elif isinstance(error, APIStatusError) and error.status_code >= 500:
logger.error(f"API server error (5xx) in {context}: {details}", exc_info=error)
else:
logger.error(f"API error in {context}: {details}", exc_info=error)
def _extract_api_error_details(error: Exception) -> dict[str, Any]:
"""Extract detailed information from OpenAI/OpenRouter API errors."""
error_msg = str(error)
details: dict[str, Any] = {
"error_type": type(error).__name__,
"error_message": error_msg[:500] + "..." if len(error_msg) > 500 else error_msg,
}
if hasattr(error, "code"):
details["code"] = getattr(error, "code", None)
if hasattr(error, "param"):
details["param"] = getattr(error, "param", None)
if isinstance(error, APIStatusError):
details["status_code"] = error.status_code
details["request_id"] = getattr(error, "request_id", None)
if hasattr(error, "body") and error.body:
details["response_body"] = _sanitize_error_body(error.body)
if hasattr(error, "response") and error.response:
headers = error.response.headers
details["openrouter_provider"] = headers.get("x-openrouter-provider")
details["openrouter_model"] = headers.get("x-openrouter-model")
details["retry_after"] = headers.get("retry-after")
details["rate_limit_remaining"] = headers.get("x-ratelimit-remaining")
return details
def _sanitize_error_body(
body: Any, max_length: int = 2000
) -> dict[str, Any] | str | None:
"""Extract only safe fields from error response body to avoid logging sensitive data."""
if not isinstance(body, dict):
# Non-dict bodies (e.g., HTML error pages) - return truncated string
if body is not None:
body_str = str(body)
if len(body_str) > max_length:
return body_str[:max_length] + "...[truncated]"
return body_str
return None
safe_fields = ("message", "type", "code", "param", "error")
sanitized: dict[str, Any] = {}
for field in safe_fields:
if field in body:
value = body[field]
if field == "error" and isinstance(value, dict):
sanitized[field] = _sanitize_error_body(value, max_length)
elif isinstance(value, str) and len(value) > max_length:
sanitized[field] = value[:max_length] + "...[truncated]"
else:
sanitized[field] = value
return sanitized if sanitized else None
async def _generate_llm_continuation_with_streaming(
session_id: str,
user_id: str | None,

View File

@@ -52,6 +52,38 @@ TOOL_REGISTRY: dict[str, BaseTool] = {
"delete_workspace_file": DeleteWorkspaceFileTool(),
}
def _register_feature_request_tools() -> None:
"""Register feature request tools only if Linear configuration is available."""
from backend.util.settings import Settings
try:
secrets = Settings().secrets
except Exception:
logger.warning("Feature request tools disabled: failed to load settings")
return
if not (
secrets.linear_api_key
and secrets.linear_feature_request_project_id
and secrets.linear_feature_request_team_id
):
logger.info(
"Feature request tools disabled: LINEAR_API_KEY, "
"LINEAR_FEATURE_REQUEST_PROJECT_ID, or "
"LINEAR_FEATURE_REQUEST_TEAM_ID is not configured"
)
return
from .feature_requests import CreateFeatureRequestTool, SearchFeatureRequestsTool
TOOL_REGISTRY["search_feature_requests"] = SearchFeatureRequestsTool()
TOOL_REGISTRY["create_feature_request"] = CreateFeatureRequestTool()
logger.info("Feature request tools enabled")
_register_feature_request_tools()
# Export individual tool instances for backwards compatibility
find_agent_tool = TOOL_REGISTRY["find_agent"]
run_agent_tool = TOOL_REGISTRY["run_agent"]

View File

@@ -0,0 +1,448 @@
"""Feature request tools - search and create feature requests via Linear."""
import logging
from typing import Any
from pydantic import SecretStr
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
ErrorResponse,
FeatureRequestCreatedResponse,
FeatureRequestInfo,
FeatureRequestSearchResponse,
NoResultsResponse,
ToolResponseBase,
)
from backend.blocks.linear._api import LinearClient
from backend.data.model import APIKeyCredentials
from backend.data.user import get_user_email_by_id
from backend.util.settings import Settings
logger = logging.getLogger(__name__)
MAX_SEARCH_RESULTS = 10
# GraphQL queries/mutations
SEARCH_ISSUES_QUERY = """
query SearchFeatureRequests($term: String!, $filter: IssueFilter, $first: Int) {
searchIssues(term: $term, filter: $filter, first: $first) {
nodes {
id
identifier
title
description
}
}
}
"""
CUSTOMER_UPSERT_MUTATION = """
mutation CustomerUpsert($input: CustomerUpsertInput!) {
customerUpsert(input: $input) {
success
customer {
id
name
externalIds
}
}
}
"""
ISSUE_CREATE_MUTATION = """
mutation IssueCreate($input: IssueCreateInput!) {
issueCreate(input: $input) {
success
issue {
id
identifier
title
url
}
}
}
"""
CUSTOMER_NEED_CREATE_MUTATION = """
mutation CustomerNeedCreate($input: CustomerNeedCreateInput!) {
customerNeedCreate(input: $input) {
success
need {
id
body
customer {
id
name
}
issue {
id
identifier
title
url
}
}
}
}
"""
_settings: Settings | None = None
def _get_settings() -> Settings:
global _settings
if _settings is None:
_settings = Settings()
return _settings
def _get_linear_config() -> tuple[LinearClient, str, str]:
"""Return a configured Linear client, project ID, and team ID.
Raises RuntimeError if any required setting is missing.
"""
secrets = _get_settings().secrets
if not secrets.linear_api_key:
raise RuntimeError("LINEAR_API_KEY is not configured")
if not secrets.linear_feature_request_project_id:
raise RuntimeError("LINEAR_FEATURE_REQUEST_PROJECT_ID is not configured")
if not secrets.linear_feature_request_team_id:
raise RuntimeError("LINEAR_FEATURE_REQUEST_TEAM_ID is not configured")
credentials = APIKeyCredentials(
id="system-linear",
provider="linear",
api_key=SecretStr(secrets.linear_api_key),
title="System Linear API Key",
)
client = LinearClient(credentials=credentials)
return (
client,
secrets.linear_feature_request_project_id,
secrets.linear_feature_request_team_id,
)
class SearchFeatureRequestsTool(BaseTool):
"""Tool for searching existing feature requests in Linear."""
@property
def name(self) -> str:
return "search_feature_requests"
@property
def description(self) -> str:
return (
"Search existing feature requests to check if a similar request "
"already exists before creating a new one. Returns matching feature "
"requests with their ID, title, and description."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "Search term to find matching feature requests.",
},
},
"required": ["query"],
}
@property
def requires_auth(self) -> bool:
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
query = kwargs.get("query", "").strip()
session_id = session.session_id if session else None
if not query:
return ErrorResponse(
message="Please provide a search query.",
error="Missing query parameter",
session_id=session_id,
)
try:
client, project_id, _team_id = _get_linear_config()
data = await client.query(
SEARCH_ISSUES_QUERY,
{
"term": query,
"filter": {
"project": {"id": {"eq": project_id}},
},
"first": MAX_SEARCH_RESULTS,
},
)
nodes = data.get("searchIssues", {}).get("nodes", [])
if not nodes:
return NoResultsResponse(
message=f"No feature requests found matching '{query}'.",
suggestions=[
"Try different keywords",
"Use broader search terms",
"You can create a new feature request if none exists",
],
session_id=session_id,
)
results = [
FeatureRequestInfo(
id=node["id"],
identifier=node["identifier"],
title=node["title"],
description=node.get("description"),
)
for node in nodes
]
return FeatureRequestSearchResponse(
message=f"Found {len(results)} feature request(s) matching '{query}'.",
results=results,
count=len(results),
query=query,
session_id=session_id,
)
except Exception as e:
logger.exception("Failed to search feature requests")
return ErrorResponse(
message="Failed to search feature requests.",
error=str(e),
session_id=session_id,
)
class CreateFeatureRequestTool(BaseTool):
"""Tool for creating feature requests (or adding needs to existing ones)."""
@property
def name(self) -> str:
return "create_feature_request"
@property
def description(self) -> str:
return (
"Create a new feature request or add a customer need to an existing one. "
"Always search first with search_feature_requests to avoid duplicates. "
"If a matching request exists, pass its ID as existing_issue_id to add "
"the user's need to it instead of creating a duplicate."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"title": {
"type": "string",
"description": "Title for the feature request.",
},
"description": {
"type": "string",
"description": "Detailed description of what the user wants and why.",
},
"existing_issue_id": {
"type": "string",
"description": (
"If adding a need to an existing feature request, "
"provide its Linear issue ID (from search results). "
"Omit to create a new feature request."
),
},
},
"required": ["title", "description"],
}
@property
def requires_auth(self) -> bool:
return True
async def _find_or_create_customer(
self, client: LinearClient, user_id: str, name: str
) -> dict:
"""Find existing customer by user_id or create a new one via upsert.
Args:
client: Linear API client.
user_id: Stable external ID used to deduplicate customers.
name: Human-readable display name (e.g. the user's email).
"""
data = await client.mutate(
CUSTOMER_UPSERT_MUTATION,
{
"input": {
"name": name,
"externalId": user_id,
},
},
)
result = data.get("customerUpsert", {})
if not result.get("success"):
raise RuntimeError(f"Failed to upsert customer: {data}")
return result["customer"]
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
title = kwargs.get("title", "").strip()
description = kwargs.get("description", "").strip()
existing_issue_id = kwargs.get("existing_issue_id")
session_id = session.session_id if session else None
if not title or not description:
return ErrorResponse(
message="Both title and description are required.",
error="Missing required parameters",
session_id=session_id,
)
if not user_id:
return ErrorResponse(
message="Authentication required to create feature requests.",
error="Missing user_id",
session_id=session_id,
)
try:
client, project_id, team_id = _get_linear_config()
except Exception as e:
logger.exception("Failed to initialize Linear client")
return ErrorResponse(
message="Failed to create feature request.",
error=str(e),
session_id=session_id,
)
# Resolve a human-readable name (email) for the Linear customer record.
# Fall back to user_id if the lookup fails or returns None.
try:
customer_display_name = await get_user_email_by_id(user_id) or user_id
except Exception:
customer_display_name = user_id
# Step 1: Find or create customer for this user
try:
customer = await self._find_or_create_customer(
client, user_id, customer_display_name
)
customer_id = customer["id"]
customer_name = customer["name"]
except Exception as e:
logger.exception("Failed to upsert customer in Linear")
return ErrorResponse(
message="Failed to create feature request.",
error=str(e),
session_id=session_id,
)
# Step 2: Create or reuse issue
issue_id: str | None = None
issue_identifier: str | None = None
if existing_issue_id:
# Add need to existing issue - we still need the issue details for response
is_new_issue = False
issue_id = existing_issue_id
else:
# Create new issue in the feature requests project
try:
data = await client.mutate(
ISSUE_CREATE_MUTATION,
{
"input": {
"title": title,
"description": description,
"teamId": team_id,
"projectId": project_id,
},
},
)
result = data.get("issueCreate", {})
if not result.get("success"):
return ErrorResponse(
message="Failed to create feature request issue.",
error=str(data),
session_id=session_id,
)
issue = result["issue"]
issue_id = issue["id"]
issue_identifier = issue.get("identifier")
except Exception as e:
logger.exception("Failed to create feature request issue")
return ErrorResponse(
message="Failed to create feature request.",
error=str(e),
session_id=session_id,
)
is_new_issue = True
# Step 3: Create customer need on the issue
try:
data = await client.mutate(
CUSTOMER_NEED_CREATE_MUTATION,
{
"input": {
"customerId": customer_id,
"issueId": issue_id,
"body": description,
"priority": 0,
},
},
)
need_result = data.get("customerNeedCreate", {})
if not need_result.get("success"):
orphaned = (
{"issue_id": issue_id, "issue_identifier": issue_identifier}
if is_new_issue
else None
)
return ErrorResponse(
message="Failed to attach customer need to the feature request.",
error=str(data),
details=orphaned,
session_id=session_id,
)
need = need_result["need"]
issue_info = need["issue"]
except Exception as e:
logger.exception("Failed to create customer need")
orphaned = (
{"issue_id": issue_id, "issue_identifier": issue_identifier}
if is_new_issue
else None
)
return ErrorResponse(
message="Failed to attach customer need to the feature request.",
error=str(e),
details=orphaned,
session_id=session_id,
)
return FeatureRequestCreatedResponse(
message=(
f"{'Created new feature request' if is_new_issue else 'Added your request to existing feature request'}: "
f"{issue_info['title']}."
),
issue_id=issue_info["id"],
issue_identifier=issue_info["identifier"],
issue_title=issue_info["title"],
issue_url=issue_info.get("url", ""),
is_new_issue=is_new_issue,
customer_name=customer_name,
session_id=session_id,
)

View File

@@ -0,0 +1,615 @@
"""Tests for SearchFeatureRequestsTool and CreateFeatureRequestTool."""
from unittest.mock import AsyncMock, patch
import pytest
from backend.api.features.chat.tools.feature_requests import (
CreateFeatureRequestTool,
SearchFeatureRequestsTool,
)
from backend.api.features.chat.tools.models import (
ErrorResponse,
FeatureRequestCreatedResponse,
FeatureRequestSearchResponse,
NoResultsResponse,
)
from ._test_data import make_session
_TEST_USER_ID = "test-user-feature-requests"
_TEST_USER_EMAIL = "testuser@example.com"
# ---------------------------------------------------------------------------
# Helpers
# ---------------------------------------------------------------------------
_FAKE_PROJECT_ID = "test-project-id"
_FAKE_TEAM_ID = "test-team-id"
def _mock_linear_config(*, query_return=None, mutate_return=None):
"""Return a patched _get_linear_config that yields a mock LinearClient."""
client = AsyncMock()
if query_return is not None:
client.query.return_value = query_return
if mutate_return is not None:
client.mutate.return_value = mutate_return
return (
patch(
"backend.api.features.chat.tools.feature_requests._get_linear_config",
return_value=(client, _FAKE_PROJECT_ID, _FAKE_TEAM_ID),
),
client,
)
def _search_response(nodes: list[dict]) -> dict:
return {"searchIssues": {"nodes": nodes}}
def _customer_upsert_response(
customer_id: str = "cust-1", name: str = _TEST_USER_EMAIL, success: bool = True
) -> dict:
return {
"customerUpsert": {
"success": success,
"customer": {"id": customer_id, "name": name, "externalIds": [name]},
}
}
def _issue_create_response(
issue_id: str = "issue-1",
identifier: str = "FR-1",
title: str = "New Feature",
success: bool = True,
) -> dict:
return {
"issueCreate": {
"success": success,
"issue": {
"id": issue_id,
"identifier": identifier,
"title": title,
"url": f"https://linear.app/issue/{identifier}",
},
}
}
def _need_create_response(
need_id: str = "need-1",
issue_id: str = "issue-1",
identifier: str = "FR-1",
title: str = "New Feature",
success: bool = True,
) -> dict:
return {
"customerNeedCreate": {
"success": success,
"need": {
"id": need_id,
"body": "description",
"customer": {"id": "cust-1", "name": _TEST_USER_EMAIL},
"issue": {
"id": issue_id,
"identifier": identifier,
"title": title,
"url": f"https://linear.app/issue/{identifier}",
},
},
}
}
# ===========================================================================
# SearchFeatureRequestsTool
# ===========================================================================
class TestSearchFeatureRequestsTool:
"""Tests for SearchFeatureRequestsTool._execute."""
@pytest.mark.asyncio(loop_scope="session")
async def test_successful_search(self):
session = make_session(user_id=_TEST_USER_ID)
nodes = [
{
"id": "id-1",
"identifier": "FR-1",
"title": "Dark mode",
"description": "Add dark mode support",
},
{
"id": "id-2",
"identifier": "FR-2",
"title": "Dark theme",
"description": None,
},
]
patcher, _ = _mock_linear_config(query_return=_search_response(nodes))
with patcher:
tool = SearchFeatureRequestsTool()
resp = await tool._execute(
user_id=_TEST_USER_ID, session=session, query="dark mode"
)
assert isinstance(resp, FeatureRequestSearchResponse)
assert resp.count == 2
assert resp.results[0].id == "id-1"
assert resp.results[1].identifier == "FR-2"
assert resp.query == "dark mode"
@pytest.mark.asyncio(loop_scope="session")
async def test_no_results(self):
session = make_session(user_id=_TEST_USER_ID)
patcher, _ = _mock_linear_config(query_return=_search_response([]))
with patcher:
tool = SearchFeatureRequestsTool()
resp = await tool._execute(
user_id=_TEST_USER_ID, session=session, query="nonexistent"
)
assert isinstance(resp, NoResultsResponse)
assert "nonexistent" in resp.message
@pytest.mark.asyncio(loop_scope="session")
async def test_empty_query_returns_error(self):
session = make_session(user_id=_TEST_USER_ID)
tool = SearchFeatureRequestsTool()
resp = await tool._execute(user_id=_TEST_USER_ID, session=session, query=" ")
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "query" in resp.error.lower()
@pytest.mark.asyncio(loop_scope="session")
async def test_missing_query_returns_error(self):
session = make_session(user_id=_TEST_USER_ID)
tool = SearchFeatureRequestsTool()
resp = await tool._execute(user_id=_TEST_USER_ID, session=session)
assert isinstance(resp, ErrorResponse)
@pytest.mark.asyncio(loop_scope="session")
async def test_api_failure(self):
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.query.side_effect = RuntimeError("Linear API down")
with patcher:
tool = SearchFeatureRequestsTool()
resp = await tool._execute(
user_id=_TEST_USER_ID, session=session, query="test"
)
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "Linear API down" in resp.error
@pytest.mark.asyncio(loop_scope="session")
async def test_malformed_node_returns_error(self):
"""A node missing required keys should be caught by the try/except."""
session = make_session(user_id=_TEST_USER_ID)
# Node missing 'identifier' key
bad_nodes = [{"id": "id-1", "title": "Missing identifier"}]
patcher, _ = _mock_linear_config(query_return=_search_response(bad_nodes))
with patcher:
tool = SearchFeatureRequestsTool()
resp = await tool._execute(
user_id=_TEST_USER_ID, session=session, query="test"
)
assert isinstance(resp, ErrorResponse)
@pytest.mark.asyncio(loop_scope="session")
async def test_linear_client_init_failure(self):
session = make_session(user_id=_TEST_USER_ID)
with patch(
"backend.api.features.chat.tools.feature_requests._get_linear_config",
side_effect=RuntimeError("No API key"),
):
tool = SearchFeatureRequestsTool()
resp = await tool._execute(
user_id=_TEST_USER_ID, session=session, query="test"
)
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "No API key" in resp.error
# ===========================================================================
# CreateFeatureRequestTool
# ===========================================================================
class TestCreateFeatureRequestTool:
"""Tests for CreateFeatureRequestTool._execute."""
@pytest.fixture(autouse=True)
def _patch_email_lookup(self):
with patch(
"backend.api.features.chat.tools.feature_requests.get_user_email_by_id",
new_callable=AsyncMock,
return_value=_TEST_USER_EMAIL,
):
yield
# ---- Happy paths -------------------------------------------------------
@pytest.mark.asyncio(loop_scope="session")
async def test_create_new_issue(self):
"""Full happy path: upsert customer -> create issue -> attach need."""
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
_issue_create_response(),
_need_create_response(),
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="New Feature",
description="Please add this",
)
assert isinstance(resp, FeatureRequestCreatedResponse)
assert resp.is_new_issue is True
assert resp.issue_identifier == "FR-1"
assert resp.customer_name == _TEST_USER_EMAIL
assert client.mutate.call_count == 3
@pytest.mark.asyncio(loop_scope="session")
async def test_add_need_to_existing_issue(self):
"""When existing_issue_id is provided, skip issue creation."""
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
_need_create_response(issue_id="existing-1", identifier="FR-99"),
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Existing Feature",
description="Me too",
existing_issue_id="existing-1",
)
assert isinstance(resp, FeatureRequestCreatedResponse)
assert resp.is_new_issue is False
assert resp.issue_id == "existing-1"
# Only 2 mutations: customer upsert + need create (no issue create)
assert client.mutate.call_count == 2
# ---- Validation errors -------------------------------------------------
@pytest.mark.asyncio(loop_scope="session")
async def test_missing_title(self):
session = make_session(user_id=_TEST_USER_ID)
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="",
description="some desc",
)
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "required" in resp.error.lower()
@pytest.mark.asyncio(loop_scope="session")
async def test_missing_description(self):
session = make_session(user_id=_TEST_USER_ID)
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Some title",
description="",
)
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "required" in resp.error.lower()
@pytest.mark.asyncio(loop_scope="session")
async def test_missing_user_id(self):
session = make_session(user_id=_TEST_USER_ID)
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=None,
session=session,
title="Some title",
description="Some desc",
)
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "user_id" in resp.error.lower()
# ---- Linear client init failure ----------------------------------------
@pytest.mark.asyncio(loop_scope="session")
async def test_linear_client_init_failure(self):
session = make_session(user_id=_TEST_USER_ID)
with patch(
"backend.api.features.chat.tools.feature_requests._get_linear_config",
side_effect=RuntimeError("No API key"),
):
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "No API key" in resp.error
# ---- Customer upsert failures ------------------------------------------
@pytest.mark.asyncio(loop_scope="session")
async def test_customer_upsert_api_error(self):
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = RuntimeError("Customer API error")
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "Customer API error" in resp.error
@pytest.mark.asyncio(loop_scope="session")
async def test_customer_upsert_not_success(self):
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.return_value = _customer_upsert_response(success=False)
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
@pytest.mark.asyncio(loop_scope="session")
async def test_customer_malformed_response(self):
"""Customer dict missing 'id' key should be caught."""
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
# success=True but customer has no 'id'
client.mutate.return_value = {
"customerUpsert": {
"success": True,
"customer": {"name": _TEST_USER_ID},
}
}
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
# ---- Issue creation failures -------------------------------------------
@pytest.mark.asyncio(loop_scope="session")
async def test_issue_create_api_error(self):
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
RuntimeError("Issue create failed"),
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "Issue create failed" in resp.error
@pytest.mark.asyncio(loop_scope="session")
async def test_issue_create_not_success(self):
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
_issue_create_response(success=False),
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
assert "Failed to create feature request issue" in resp.message
@pytest.mark.asyncio(loop_scope="session")
async def test_issue_create_malformed_response(self):
"""issueCreate success=True but missing 'issue' key."""
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
{"issueCreate": {"success": True}}, # no 'issue' key
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
# ---- Customer need attachment failures ---------------------------------
@pytest.mark.asyncio(loop_scope="session")
async def test_need_create_api_error_new_issue(self):
"""Need creation fails after new issue was created -> orphaned issue info."""
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
_issue_create_response(issue_id="orphan-1", identifier="FR-10"),
RuntimeError("Need attach failed"),
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "Need attach failed" in resp.error
assert resp.details is not None
assert resp.details["issue_id"] == "orphan-1"
assert resp.details["issue_identifier"] == "FR-10"
@pytest.mark.asyncio(loop_scope="session")
async def test_need_create_api_error_existing_issue(self):
"""Need creation fails on existing issue -> no orphaned info."""
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
RuntimeError("Need attach failed"),
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
existing_issue_id="existing-1",
)
assert isinstance(resp, ErrorResponse)
assert resp.details is None
@pytest.mark.asyncio(loop_scope="session")
async def test_need_create_not_success_includes_orphaned_info(self):
"""customerNeedCreate returns success=False -> includes orphaned issue."""
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
_issue_create_response(issue_id="orphan-2", identifier="FR-20"),
_need_create_response(success=False),
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
assert resp.details is not None
assert resp.details["issue_id"] == "orphan-2"
assert resp.details["issue_identifier"] == "FR-20"
@pytest.mark.asyncio(loop_scope="session")
async def test_need_create_not_success_existing_issue_no_details(self):
"""customerNeedCreate fails on existing issue -> no orphaned info."""
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
_need_create_response(success=False),
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
existing_issue_id="existing-1",
)
assert isinstance(resp, ErrorResponse)
assert resp.details is None
@pytest.mark.asyncio(loop_scope="session")
async def test_need_create_malformed_response(self):
"""need_result missing 'need' key after success=True."""
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
_issue_create_response(),
{"customerNeedCreate": {"success": True}}, # no 'need' key
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
assert resp.details is not None
assert resp.details["issue_id"] == "issue-1"

View File

@@ -41,6 +41,9 @@ class ResponseType(str, Enum):
OPERATION_IN_PROGRESS = "operation_in_progress"
# Input validation
INPUT_VALIDATION_ERROR = "input_validation_error"
# Feature request types
FEATURE_REQUEST_SEARCH = "feature_request_search"
FEATURE_REQUEST_CREATED = "feature_request_created"
# Base response model
@@ -430,3 +433,34 @@ class AsyncProcessingResponse(ToolResponseBase):
status: str = "accepted" # Must be "accepted" for detection
operation_id: str | None = None
task_id: str | None = None
# Feature request models
class FeatureRequestInfo(BaseModel):
"""Information about a feature request issue."""
id: str
identifier: str
title: str
description: str | None = None
class FeatureRequestSearchResponse(ToolResponseBase):
"""Response for search_feature_requests tool."""
type: ResponseType = ResponseType.FEATURE_REQUEST_SEARCH
results: list[FeatureRequestInfo]
count: int
query: str
class FeatureRequestCreatedResponse(ToolResponseBase):
"""Response for create_feature_request tool."""
type: ResponseType = ResponseType.FEATURE_REQUEST_CREATED
issue_id: str
issue_identifier: str
issue_title: str
issue_url: str
is_new_issue: bool # False if added to existing
customer_name: str

View File

@@ -393,7 +393,6 @@ async def get_creators(
@router.get(
"/creator/{username}",
summary="Get creator details",
operation_id="getV2GetCreatorDetails",
tags=["store", "public"],
response_model=store_model.CreatorDetails,
)

View File

@@ -18,7 +18,6 @@ from prisma.errors import PrismaError
import backend.api.features.admin.credit_admin_routes
import backend.api.features.admin.execution_analytics_routes
import backend.api.features.admin.llm_routes
import backend.api.features.admin.store_admin_routes
import backend.api.features.builder
import backend.api.features.builder.routes
@@ -39,15 +38,13 @@ import backend.data.db
import backend.data.graph
import backend.data.user
import backend.integrations.webhooks.utils
import backend.server.v2.llm.routes as public_llm_routes
import backend.util.service
import backend.util.settings
from backend.api.features.chat.completion_consumer import (
start_completion_consumer,
stop_completion_consumer,
)
from backend.data import llm_registry
from backend.data.block_cost_config import refresh_llm_costs
from backend.blocks.llm import DEFAULT_LLM_MODEL
from backend.data.model import Credentials
from backend.integrations.providers import ProviderName
from backend.monitoring.instrumentation import instrument_fastapi
@@ -118,27 +115,11 @@ async def lifespan_context(app: fastapi.FastAPI):
AutoRegistry.patch_integrations()
# Refresh LLM registry before initializing blocks so blocks can use registry data
await llm_registry.refresh_llm_registry()
await refresh_llm_costs()
# Clear block schema caches so they're regenerated with updated discriminator_mapping
from backend.blocks._base import BlockSchema
BlockSchema.clear_all_schema_caches()
await backend.data.block.initialize_blocks()
await backend.data.user.migrate_and_encrypt_user_integrations()
await backend.data.graph.fix_llm_provider_credentials()
# migrate_llm_models uses registry default model
from backend.blocks.llm import LlmModel
default_model_slug = llm_registry.get_default_model_slug()
if default_model_slug:
await backend.data.graph.migrate_llm_models(LlmModel(default_model_slug))
else:
logger.warning("Skipping LLM model migration: no default model available")
await backend.data.graph.migrate_llm_models(DEFAULT_LLM_MODEL)
await backend.integrations.webhooks.utils.migrate_legacy_triggered_graphs()
# Start chat completion consumer for Redis Streams notifications
@@ -340,16 +321,6 @@ app.include_router(
tags=["v2", "executions", "review"],
prefix="/api/review",
)
app.include_router(
backend.api.features.admin.llm_routes.router,
tags=["v2", "admin", "llm"],
prefix="/api/llm/admin",
)
app.include_router(
public_llm_routes.router,
tags=["v2", "llm"],
prefix="/api",
)
app.include_router(
backend.api.features.library.routes.router, tags=["v2"], prefix="/api/library"
)

View File

@@ -79,49 +79,11 @@ async def event_broadcaster(manager: ConnectionManager):
payload=notification.payload,
)
# Track registry pubsub for cleanup
registry_pubsub = None
async def registry_refresh_worker():
"""Listen for LLM registry refresh notifications and broadcast to all clients."""
nonlocal registry_pubsub
from backend.data.llm_registry import REGISTRY_REFRESH_CHANNEL
from backend.data.redis_client import connect_async
redis = await connect_async()
registry_pubsub = redis.pubsub()
await registry_pubsub.subscribe(REGISTRY_REFRESH_CHANNEL)
logger.info(
"Subscribed to LLM registry refresh notifications for WebSocket broadcast"
)
async for message in registry_pubsub.listen():
if (
message["type"] == "message"
and message["channel"] == REGISTRY_REFRESH_CHANNEL
):
logger.info(
"Broadcasting LLM registry refresh to all WebSocket clients"
)
await manager.broadcast_to_all(
method=WSMethod.NOTIFICATION,
data={
"type": "LLM_REGISTRY_REFRESH",
"event": "registry_updated",
},
)
await asyncio.gather(
execution_worker(),
notification_worker(),
registry_refresh_worker(),
)
await asyncio.gather(execution_worker(), notification_worker())
finally:
# Ensure PubSub connections are closed on any exit to prevent leaks
await execution_bus.close()
await notification_bus.close()
if registry_pubsub:
await registry_pubsub.close()
async def authenticate_websocket(websocket: WebSocket) -> str:

View File

@@ -133,26 +133,7 @@ class BlockInfo(BaseModel):
class BlockSchema(BaseModel):
cached_jsonschema: ClassVar[dict[str, Any] | None] = None
@classmethod
def clear_schema_cache(cls) -> None:
"""Clear the cached JSON schema for this class."""
# Use None instead of {} because {} is truthy and would prevent regeneration
cls.cached_jsonschema = None # type: ignore
@staticmethod
def clear_all_schema_caches() -> None:
"""Clear cached JSON schemas for all BlockSchema subclasses."""
def clear_recursive(cls: type) -> None:
"""Recursively clear cache for class and all subclasses."""
if hasattr(cls, "clear_schema_cache"):
cls.clear_schema_cache()
for subclass in cls.__subclasses__():
clear_recursive(subclass)
clear_recursive(BlockSchema)
cached_jsonschema: ClassVar[dict[str, Any]]
@classmethod
def jsonschema(cls) -> dict[str, Any]:
@@ -243,8 +224,7 @@ class BlockSchema(BaseModel):
super().__pydantic_init_subclass__(**kwargs)
# Reset cached JSON schema to prevent inheriting it from parent class
# Use None instead of {} because {} is truthy and would prevent regeneration
cls.cached_jsonschema = None
cls.cached_jsonschema = {}
credentials_fields = cls.get_credentials_fields()

View File

@@ -7,6 +7,7 @@ from backend.blocks._base import (
BlockSchemaOutput,
)
from backend.blocks.llm import (
DEFAULT_LLM_MODEL,
TEST_CREDENTIALS,
TEST_CREDENTIALS_INPUT,
AIBlockBase,
@@ -15,7 +16,6 @@ from backend.blocks.llm import (
LlmModel,
LLMResponse,
llm_call,
llm_model_schema_extra,
)
from backend.data.model import APIKeyCredentials, NodeExecutionStats, SchemaField
@@ -50,10 +50,9 @@ class AIConditionBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default_factory=LlmModel.default,
default=DEFAULT_LLM_MODEL,
description="The language model to use for evaluating the condition.",
advanced=False,
json_schema_extra=llm_model_schema_extra(),
)
credentials: AICredentials = AICredentialsField()
@@ -83,7 +82,7 @@ class AIConditionBlock(AIBlockBase):
"condition": "the input is an email address",
"yes_value": "Valid email",
"no_value": "Not an email",
"model": LlmModel.default(),
"model": DEFAULT_LLM_MODEL,
"credentials": TEST_CREDENTIALS_INPUT,
},
test_credentials=TEST_CREDENTIALS,

View File

@@ -126,6 +126,7 @@ class PrintToConsoleBlock(Block):
output_schema=PrintToConsoleBlock.Output,
test_input={"text": "Hello, World!"},
is_sensitive_action=True,
disabled=True, # Disabled per Nick Tindle's request (OPEN-3000)
test_output=[
("output", "Hello, World!"),
("status", "printed"),

View File

@@ -4,18 +4,16 @@ import logging
import re
import secrets
from abc import ABC
from dataclasses import dataclass
from enum import Enum
from enum import Enum, EnumMeta
from json import JSONDecodeError
from typing import Any, Iterable, List, Literal, Optional
from typing import Any, Iterable, List, Literal, NamedTuple, Optional
import anthropic
import ollama
import openai
from anthropic.types import ToolParam
from groq import AsyncGroq
from pydantic import BaseModel, GetCoreSchemaHandler, SecretStr
from pydantic_core import CoreSchema, core_schema
from pydantic import BaseModel, SecretStr
from backend.blocks._base import (
Block,
@@ -24,8 +22,6 @@ from backend.blocks._base import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data import llm_registry
from backend.data.llm_registry import ModelMetadata
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -70,123 +66,114 @@ TEST_CREDENTIALS_INPUT = {
def AICredentialsField() -> AICredentials:
"""
Returns a CredentialsField for LLM providers.
The discriminator_mapping will be refreshed when the schema is generated
if it's empty, ensuring the LLM registry is loaded.
"""
# Get the mapping now - it may be empty initially, but will be refreshed
# when the schema is generated via CredentialsMetaInput._add_json_schema_extra
mapping = llm_registry.get_llm_discriminator_mapping()
return CredentialsField(
description="API key for the LLM provider.",
discriminator="model",
discriminator_mapping=mapping, # May be empty initially, refreshed later
discriminator_mapping={
model.value: model.metadata.provider for model in LlmModel
},
)
def llm_model_schema_extra() -> dict[str, Any]:
return {"options": llm_registry.get_llm_model_schema_options()}
class ModelMetadata(NamedTuple):
provider: str
context_window: int
max_output_tokens: int | None
display_name: str
provider_name: str
creator_name: str
price_tier: Literal[1, 2, 3]
class LlmModelMeta(type):
"""
Metaclass for LlmModel that enables attribute-style access to dynamic models.
This allows code like `LlmModel.GPT4O` to work by converting the attribute
name to a slug format:
- GPT4O -> gpt-4o
- GPT4O_MINI -> gpt-4o-mini
- CLAUDE_3_5_SONNET -> claude-3-5-sonnet
"""
def __getattr__(cls, name: str):
# Don't intercept private/dunder attributes
if name.startswith("_"):
raise AttributeError(f"type object 'LlmModel' has no attribute '{name}'")
# Convert attribute name to slug format:
# 1. Lowercase: GPT4O -> gpt4o
# 2. Underscores to hyphens: GPT4O_MINI -> gpt4o-mini
slug = name.lower().replace("_", "-")
# Check for exact match in registry first (e.g., "o1" stays "o1")
registry_slugs = llm_registry.get_dynamic_model_slugs()
if slug in registry_slugs:
return cls(slug)
# If no exact match, try inserting hyphen between letter and digit
# e.g., gpt4o -> gpt-4o
transformed_slug = re.sub(r"([a-z])(\d)", r"\1-\2", slug)
return cls(transformed_slug)
def __iter__(cls):
"""Iterate over all models from the registry.
Yields LlmModel instances for each model in the dynamic registry.
Used by __get_pydantic_json_schema__ to build model metadata.
"""
for model in llm_registry.iter_dynamic_models():
yield cls(model.slug)
class LlmModelMeta(EnumMeta):
pass
class LlmModel(str, metaclass=LlmModelMeta):
"""
Dynamic LLM model type that accepts any model slug from the registry.
This is a string subclass (not an Enum) that allows any model slug value.
All models are managed via the LLM Registry in the database.
Usage:
model = LlmModel("gpt-4o") # Direct construction
model = LlmModel.GPT4O # Attribute access (converted to "gpt-4o")
model.value # Returns the slug string
model.provider # Returns the provider from registry
"""
def __new__(cls, value: str):
if isinstance(value, LlmModel):
return value
return str.__new__(cls, value)
@classmethod
def __get_pydantic_core_schema__(
cls, source_type: Any, handler: GetCoreSchemaHandler
) -> CoreSchema:
"""
Tell Pydantic how to validate LlmModel.
Accepts strings and converts them to LlmModel instances.
"""
return core_schema.no_info_after_validator_function(
cls, # The validator function (LlmModel constructor)
core_schema.str_schema(), # Accept string input
serialization=core_schema.to_string_ser_schema(), # Serialize as string
)
@property
def value(self) -> str:
"""Return the model slug (for compatibility with enum-style access)."""
return str(self)
@classmethod
def default(cls) -> "LlmModel":
"""
Get the default model from the registry.
Returns the recommended model if set, otherwise gpt-4o if available
and enabled, otherwise the first enabled model from the registry.
Falls back to "gpt-4o" if registry is empty (e.g., at module import time).
"""
from backend.data.llm_registry import get_default_model_slug
slug = get_default_model_slug()
if slug is None:
# Registry is empty (e.g., at module import time before DB connection).
# Fall back to gpt-4o for backward compatibility.
slug = "gpt-4o"
return cls(slug)
class LlmModel(str, Enum, metaclass=LlmModelMeta):
# OpenAI models
O3_MINI = "o3-mini"
O3 = "o3-2025-04-16"
O1 = "o1"
O1_MINI = "o1-mini"
# GPT-5 models
GPT5_2 = "gpt-5.2-2025-12-11"
GPT5_1 = "gpt-5.1-2025-11-13"
GPT5 = "gpt-5-2025-08-07"
GPT5_MINI = "gpt-5-mini-2025-08-07"
GPT5_NANO = "gpt-5-nano-2025-08-07"
GPT5_CHAT = "gpt-5-chat-latest"
GPT41 = "gpt-4.1-2025-04-14"
GPT41_MINI = "gpt-4.1-mini-2025-04-14"
GPT4O_MINI = "gpt-4o-mini"
GPT4O = "gpt-4o"
GPT4_TURBO = "gpt-4-turbo"
GPT3_5_TURBO = "gpt-3.5-turbo"
# Anthropic models
CLAUDE_4_1_OPUS = "claude-opus-4-1-20250805"
CLAUDE_4_OPUS = "claude-opus-4-20250514"
CLAUDE_4_SONNET = "claude-sonnet-4-20250514"
CLAUDE_4_5_OPUS = "claude-opus-4-5-20251101"
CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
CLAUDE_4_5_HAIKU = "claude-haiku-4-5-20251001"
CLAUDE_4_6_OPUS = "claude-opus-4-6"
CLAUDE_3_HAIKU = "claude-3-haiku-20240307"
# AI/ML API models
AIML_API_QWEN2_5_72B = "Qwen/Qwen2.5-72B-Instruct-Turbo"
AIML_API_LLAMA3_1_70B = "nvidia/llama-3.1-nemotron-70b-instruct"
AIML_API_LLAMA3_3_70B = "meta-llama/Llama-3.3-70B-Instruct-Turbo"
AIML_API_META_LLAMA_3_1_70B = "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo"
AIML_API_LLAMA_3_2_3B = "meta-llama/Llama-3.2-3B-Instruct-Turbo"
# Groq models
LLAMA3_3_70B = "llama-3.3-70b-versatile"
LLAMA3_1_8B = "llama-3.1-8b-instant"
# Ollama models
OLLAMA_LLAMA3_3 = "llama3.3"
OLLAMA_LLAMA3_2 = "llama3.2"
OLLAMA_LLAMA3_8B = "llama3"
OLLAMA_LLAMA3_405B = "llama3.1:405b"
OLLAMA_DOLPHIN = "dolphin-mistral:latest"
# OpenRouter models
OPENAI_GPT_OSS_120B = "openai/gpt-oss-120b"
OPENAI_GPT_OSS_20B = "openai/gpt-oss-20b"
GEMINI_2_5_PRO = "google/gemini-2.5-pro-preview-03-25"
GEMINI_3_PRO_PREVIEW = "google/gemini-3-pro-preview"
GEMINI_2_5_FLASH = "google/gemini-2.5-flash"
GEMINI_2_0_FLASH = "google/gemini-2.0-flash-001"
GEMINI_2_5_FLASH_LITE_PREVIEW = "google/gemini-2.5-flash-lite-preview-06-17"
GEMINI_2_0_FLASH_LITE = "google/gemini-2.0-flash-lite-001"
MISTRAL_NEMO = "mistralai/mistral-nemo"
COHERE_COMMAND_R_08_2024 = "cohere/command-r-08-2024"
COHERE_COMMAND_R_PLUS_08_2024 = "cohere/command-r-plus-08-2024"
DEEPSEEK_CHAT = "deepseek/deepseek-chat" # Actually: DeepSeek V3
DEEPSEEK_R1_0528 = "deepseek/deepseek-r1-0528"
PERPLEXITY_SONAR = "perplexity/sonar"
PERPLEXITY_SONAR_PRO = "perplexity/sonar-pro"
PERPLEXITY_SONAR_DEEP_RESEARCH = "perplexity/sonar-deep-research"
NOUSRESEARCH_HERMES_3_LLAMA_3_1_405B = "nousresearch/hermes-3-llama-3.1-405b"
NOUSRESEARCH_HERMES_3_LLAMA_3_1_70B = "nousresearch/hermes-3-llama-3.1-70b"
AMAZON_NOVA_LITE_V1 = "amazon/nova-lite-v1"
AMAZON_NOVA_MICRO_V1 = "amazon/nova-micro-v1"
AMAZON_NOVA_PRO_V1 = "amazon/nova-pro-v1"
MICROSOFT_WIZARDLM_2_8X22B = "microsoft/wizardlm-2-8x22b"
GRYPHE_MYTHOMAX_L2_13B = "gryphe/mythomax-l2-13b"
META_LLAMA_4_SCOUT = "meta-llama/llama-4-scout"
META_LLAMA_4_MAVERICK = "meta-llama/llama-4-maverick"
GROK_4 = "x-ai/grok-4"
GROK_4_FAST = "x-ai/grok-4-fast"
GROK_4_1_FAST = "x-ai/grok-4.1-fast"
GROK_CODE_FAST_1 = "x-ai/grok-code-fast-1"
KIMI_K2 = "moonshotai/kimi-k2"
QWEN3_235B_A22B_THINKING = "qwen/qwen3-235b-a22b-thinking-2507"
QWEN3_CODER = "qwen/qwen3-coder"
# Llama API models
LLAMA_API_LLAMA_4_SCOUT = "Llama-4-Scout-17B-16E-Instruct-FP8"
LLAMA_API_LLAMA4_MAVERICK = "Llama-4-Maverick-17B-128E-Instruct-FP8"
LLAMA_API_LLAMA3_3_8B = "Llama-3.3-8B-Instruct"
LLAMA_API_LLAMA3_3_70B = "Llama-3.3-70B-Instruct"
# v0 by Vercel models
V0_1_5_MD = "v0-1.5-md"
V0_1_5_LG = "v0-1.5-lg"
V0_1_0_MD = "v0-1.0-md"
@classmethod
def __get_pydantic_json_schema__(cls, schema, handler):
@@ -194,15 +181,7 @@ class LlmModel(str, metaclass=LlmModelMeta):
llm_model_metadata = {}
for model in cls:
model_name = model.value
# Skip disabled models - only show enabled models in the picker
if not llm_registry.is_model_enabled(model_name):
continue
# Use registry directly with None check to gracefully handle
# missing metadata during startup/import before registry is populated
metadata = llm_registry.get_llm_model_metadata(model_name)
if metadata is None:
# Skip models without metadata (registry not yet populated)
continue
metadata = model.metadata
llm_model_metadata[model_name] = {
"creator": metadata.creator_name,
"creator_name": metadata.creator_name,
@@ -218,12 +197,7 @@ class LlmModel(str, metaclass=LlmModelMeta):
@property
def metadata(self) -> ModelMetadata:
metadata = llm_registry.get_llm_model_metadata(self.value)
if metadata:
return metadata
raise ValueError(
f"Missing metadata for model: {self.value}. Model not found in LLM registry."
)
return MODEL_METADATA[self]
@property
def provider(self) -> str:
@@ -238,125 +212,300 @@ class LlmModel(str, metaclass=LlmModelMeta):
return self.metadata.max_output_tokens
# Default model constant for backward compatibility
# Uses the dynamic registry to get the default model
DEFAULT_LLM_MODEL = LlmModel.default()
MODEL_METADATA = {
# https://platform.openai.com/docs/models
LlmModel.O3: ModelMetadata("openai", 200000, 100000, "O3", "OpenAI", "OpenAI", 2),
LlmModel.O3_MINI: ModelMetadata(
"openai", 200000, 100000, "O3 Mini", "OpenAI", "OpenAI", 1
), # o3-mini-2025-01-31
LlmModel.O1: ModelMetadata(
"openai", 200000, 100000, "O1", "OpenAI", "OpenAI", 3
), # o1-2024-12-17
LlmModel.O1_MINI: ModelMetadata(
"openai", 128000, 65536, "O1 Mini", "OpenAI", "OpenAI", 2
), # o1-mini-2024-09-12
# GPT-5 models
LlmModel.GPT5_2: ModelMetadata(
"openai", 400000, 128000, "GPT-5.2", "OpenAI", "OpenAI", 3
),
LlmModel.GPT5_1: ModelMetadata(
"openai", 400000, 128000, "GPT-5.1", "OpenAI", "OpenAI", 2
),
LlmModel.GPT5: ModelMetadata(
"openai", 400000, 128000, "GPT-5", "OpenAI", "OpenAI", 1
),
LlmModel.GPT5_MINI: ModelMetadata(
"openai", 400000, 128000, "GPT-5 Mini", "OpenAI", "OpenAI", 1
),
LlmModel.GPT5_NANO: ModelMetadata(
"openai", 400000, 128000, "GPT-5 Nano", "OpenAI", "OpenAI", 1
),
LlmModel.GPT5_CHAT: ModelMetadata(
"openai", 400000, 16384, "GPT-5 Chat Latest", "OpenAI", "OpenAI", 2
),
LlmModel.GPT41: ModelMetadata(
"openai", 1047576, 32768, "GPT-4.1", "OpenAI", "OpenAI", 1
),
LlmModel.GPT41_MINI: ModelMetadata(
"openai", 1047576, 32768, "GPT-4.1 Mini", "OpenAI", "OpenAI", 1
),
LlmModel.GPT4O_MINI: ModelMetadata(
"openai", 128000, 16384, "GPT-4o Mini", "OpenAI", "OpenAI", 1
), # gpt-4o-mini-2024-07-18
LlmModel.GPT4O: ModelMetadata(
"openai", 128000, 16384, "GPT-4o", "OpenAI", "OpenAI", 2
), # gpt-4o-2024-08-06
LlmModel.GPT4_TURBO: ModelMetadata(
"openai", 128000, 4096, "GPT-4 Turbo", "OpenAI", "OpenAI", 3
), # gpt-4-turbo-2024-04-09
LlmModel.GPT3_5_TURBO: ModelMetadata(
"openai", 16385, 4096, "GPT-3.5 Turbo", "OpenAI", "OpenAI", 1
), # gpt-3.5-turbo-0125
# https://docs.anthropic.com/en/docs/about-claude/models
LlmModel.CLAUDE_4_1_OPUS: ModelMetadata(
"anthropic", 200000, 32000, "Claude Opus 4.1", "Anthropic", "Anthropic", 3
), # claude-opus-4-1-20250805
LlmModel.CLAUDE_4_OPUS: ModelMetadata(
"anthropic", 200000, 32000, "Claude Opus 4", "Anthropic", "Anthropic", 3
), # claude-4-opus-20250514
LlmModel.CLAUDE_4_SONNET: ModelMetadata(
"anthropic", 200000, 64000, "Claude Sonnet 4", "Anthropic", "Anthropic", 2
), # claude-4-sonnet-20250514
LlmModel.CLAUDE_4_6_OPUS: ModelMetadata(
"anthropic", 200000, 128000, "Claude Opus 4.6", "Anthropic", "Anthropic", 3
), # claude-opus-4-6
LlmModel.CLAUDE_4_5_OPUS: ModelMetadata(
"anthropic", 200000, 64000, "Claude Opus 4.5", "Anthropic", "Anthropic", 3
), # claude-opus-4-5-20251101
LlmModel.CLAUDE_4_5_SONNET: ModelMetadata(
"anthropic", 200000, 64000, "Claude Sonnet 4.5", "Anthropic", "Anthropic", 3
), # claude-sonnet-4-5-20250929
LlmModel.CLAUDE_4_5_HAIKU: ModelMetadata(
"anthropic", 200000, 64000, "Claude Haiku 4.5", "Anthropic", "Anthropic", 2
), # claude-haiku-4-5-20251001
LlmModel.CLAUDE_3_HAIKU: ModelMetadata(
"anthropic", 200000, 4096, "Claude 3 Haiku", "Anthropic", "Anthropic", 1
), # claude-3-haiku-20240307
# https://docs.aimlapi.com/api-overview/model-database/text-models
LlmModel.AIML_API_QWEN2_5_72B: ModelMetadata(
"aiml_api", 32000, 8000, "Qwen 2.5 72B Instruct Turbo", "AI/ML", "Qwen", 1
),
LlmModel.AIML_API_LLAMA3_1_70B: ModelMetadata(
"aiml_api",
128000,
40000,
"Llama 3.1 Nemotron 70B Instruct",
"AI/ML",
"Nvidia",
1,
),
LlmModel.AIML_API_LLAMA3_3_70B: ModelMetadata(
"aiml_api", 128000, None, "Llama 3.3 70B Instruct Turbo", "AI/ML", "Meta", 1
),
LlmModel.AIML_API_META_LLAMA_3_1_70B: ModelMetadata(
"aiml_api", 131000, 2000, "Llama 3.1 70B Instruct Turbo", "AI/ML", "Meta", 1
),
LlmModel.AIML_API_LLAMA_3_2_3B: ModelMetadata(
"aiml_api", 128000, None, "Llama 3.2 3B Instruct Turbo", "AI/ML", "Meta", 1
),
# https://console.groq.com/docs/models
LlmModel.LLAMA3_3_70B: ModelMetadata(
"groq", 128000, 32768, "Llama 3.3 70B Versatile", "Groq", "Meta", 1
),
LlmModel.LLAMA3_1_8B: ModelMetadata(
"groq", 128000, 8192, "Llama 3.1 8B Instant", "Groq", "Meta", 1
),
# https://ollama.com/library
LlmModel.OLLAMA_LLAMA3_3: ModelMetadata(
"ollama", 8192, None, "Llama 3.3", "Ollama", "Meta", 1
),
LlmModel.OLLAMA_LLAMA3_2: ModelMetadata(
"ollama", 8192, None, "Llama 3.2", "Ollama", "Meta", 1
),
LlmModel.OLLAMA_LLAMA3_8B: ModelMetadata(
"ollama", 8192, None, "Llama 3", "Ollama", "Meta", 1
),
LlmModel.OLLAMA_LLAMA3_405B: ModelMetadata(
"ollama", 8192, None, "Llama 3.1 405B", "Ollama", "Meta", 1
),
LlmModel.OLLAMA_DOLPHIN: ModelMetadata(
"ollama", 32768, None, "Dolphin Mistral Latest", "Ollama", "Mistral AI", 1
),
# https://openrouter.ai/models
LlmModel.GEMINI_2_5_PRO: ModelMetadata(
"open_router",
1050000,
8192,
"Gemini 2.5 Pro Preview 03.25",
"OpenRouter",
"Google",
2,
),
LlmModel.GEMINI_3_PRO_PREVIEW: ModelMetadata(
"open_router", 1048576, 65535, "Gemini 3 Pro Preview", "OpenRouter", "Google", 2
),
LlmModel.GEMINI_2_5_FLASH: ModelMetadata(
"open_router", 1048576, 65535, "Gemini 2.5 Flash", "OpenRouter", "Google", 1
),
LlmModel.GEMINI_2_0_FLASH: ModelMetadata(
"open_router", 1048576, 8192, "Gemini 2.0 Flash 001", "OpenRouter", "Google", 1
),
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: ModelMetadata(
"open_router",
1048576,
65535,
"Gemini 2.5 Flash Lite Preview 06.17",
"OpenRouter",
"Google",
1,
),
LlmModel.GEMINI_2_0_FLASH_LITE: ModelMetadata(
"open_router",
1048576,
8192,
"Gemini 2.0 Flash Lite 001",
"OpenRouter",
"Google",
1,
),
LlmModel.MISTRAL_NEMO: ModelMetadata(
"open_router", 128000, 4096, "Mistral Nemo", "OpenRouter", "Mistral AI", 1
),
LlmModel.COHERE_COMMAND_R_08_2024: ModelMetadata(
"open_router", 128000, 4096, "Command R 08.2024", "OpenRouter", "Cohere", 1
),
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: ModelMetadata(
"open_router", 128000, 4096, "Command R Plus 08.2024", "OpenRouter", "Cohere", 2
),
LlmModel.DEEPSEEK_CHAT: ModelMetadata(
"open_router", 64000, 2048, "DeepSeek Chat", "OpenRouter", "DeepSeek", 1
),
LlmModel.DEEPSEEK_R1_0528: ModelMetadata(
"open_router", 163840, 163840, "DeepSeek R1 0528", "OpenRouter", "DeepSeek", 1
),
LlmModel.PERPLEXITY_SONAR: ModelMetadata(
"open_router", 127000, 8000, "Sonar", "OpenRouter", "Perplexity", 1
),
LlmModel.PERPLEXITY_SONAR_PRO: ModelMetadata(
"open_router", 200000, 8000, "Sonar Pro", "OpenRouter", "Perplexity", 2
),
LlmModel.PERPLEXITY_SONAR_DEEP_RESEARCH: ModelMetadata(
"open_router",
128000,
16000,
"Sonar Deep Research",
"OpenRouter",
"Perplexity",
3,
),
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_405B: ModelMetadata(
"open_router",
131000,
4096,
"Hermes 3 Llama 3.1 405B",
"OpenRouter",
"Nous Research",
1,
),
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_70B: ModelMetadata(
"open_router",
12288,
12288,
"Hermes 3 Llama 3.1 70B",
"OpenRouter",
"Nous Research",
1,
),
LlmModel.OPENAI_GPT_OSS_120B: ModelMetadata(
"open_router", 131072, 131072, "GPT-OSS 120B", "OpenRouter", "OpenAI", 1
),
LlmModel.OPENAI_GPT_OSS_20B: ModelMetadata(
"open_router", 131072, 32768, "GPT-OSS 20B", "OpenRouter", "OpenAI", 1
),
LlmModel.AMAZON_NOVA_LITE_V1: ModelMetadata(
"open_router", 300000, 5120, "Nova Lite V1", "OpenRouter", "Amazon", 1
),
LlmModel.AMAZON_NOVA_MICRO_V1: ModelMetadata(
"open_router", 128000, 5120, "Nova Micro V1", "OpenRouter", "Amazon", 1
),
LlmModel.AMAZON_NOVA_PRO_V1: ModelMetadata(
"open_router", 300000, 5120, "Nova Pro V1", "OpenRouter", "Amazon", 1
),
LlmModel.MICROSOFT_WIZARDLM_2_8X22B: ModelMetadata(
"open_router", 65536, 4096, "WizardLM 2 8x22B", "OpenRouter", "Microsoft", 1
),
LlmModel.GRYPHE_MYTHOMAX_L2_13B: ModelMetadata(
"open_router", 4096, 4096, "MythoMax L2 13B", "OpenRouter", "Gryphe", 1
),
LlmModel.META_LLAMA_4_SCOUT: ModelMetadata(
"open_router", 131072, 131072, "Llama 4 Scout", "OpenRouter", "Meta", 1
),
LlmModel.META_LLAMA_4_MAVERICK: ModelMetadata(
"open_router", 1048576, 1000000, "Llama 4 Maverick", "OpenRouter", "Meta", 1
),
LlmModel.GROK_4: ModelMetadata(
"open_router", 256000, 256000, "Grok 4", "OpenRouter", "xAI", 3
),
LlmModel.GROK_4_FAST: ModelMetadata(
"open_router", 2000000, 30000, "Grok 4 Fast", "OpenRouter", "xAI", 1
),
LlmModel.GROK_4_1_FAST: ModelMetadata(
"open_router", 2000000, 30000, "Grok 4.1 Fast", "OpenRouter", "xAI", 1
),
LlmModel.GROK_CODE_FAST_1: ModelMetadata(
"open_router", 256000, 10000, "Grok Code Fast 1", "OpenRouter", "xAI", 1
),
LlmModel.KIMI_K2: ModelMetadata(
"open_router", 131000, 131000, "Kimi K2", "OpenRouter", "Moonshot AI", 1
),
LlmModel.QWEN3_235B_A22B_THINKING: ModelMetadata(
"open_router",
262144,
262144,
"Qwen 3 235B A22B Thinking 2507",
"OpenRouter",
"Qwen",
1,
),
LlmModel.QWEN3_CODER: ModelMetadata(
"open_router", 262144, 262144, "Qwen 3 Coder", "OpenRouter", "Qwen", 3
),
# Llama API models
LlmModel.LLAMA_API_LLAMA_4_SCOUT: ModelMetadata(
"llama_api",
128000,
4028,
"Llama 4 Scout 17B 16E Instruct FP8",
"Llama API",
"Meta",
1,
),
LlmModel.LLAMA_API_LLAMA4_MAVERICK: ModelMetadata(
"llama_api",
128000,
4028,
"Llama 4 Maverick 17B 128E Instruct FP8",
"Llama API",
"Meta",
1,
),
LlmModel.LLAMA_API_LLAMA3_3_8B: ModelMetadata(
"llama_api", 128000, 4028, "Llama 3.3 8B Instruct", "Llama API", "Meta", 1
),
LlmModel.LLAMA_API_LLAMA3_3_70B: ModelMetadata(
"llama_api", 128000, 4028, "Llama 3.3 70B Instruct", "Llama API", "Meta", 1
),
# v0 by Vercel models
LlmModel.V0_1_5_MD: ModelMetadata("v0", 128000, 64000, "v0 1.5 MD", "V0", "V0", 1),
LlmModel.V0_1_5_LG: ModelMetadata("v0", 512000, 64000, "v0 1.5 LG", "V0", "V0", 1),
LlmModel.V0_1_0_MD: ModelMetadata("v0", 128000, 64000, "v0 1.0 MD", "V0", "V0", 1),
}
DEFAULT_LLM_MODEL = LlmModel.GPT5_2
class ModelUnavailableError(ValueError):
"""Raised when a requested LLM model cannot be resolved for use."""
pass
@dataclass
class ResolvedModel:
"""Result of resolving a model for an LLM call."""
slug: str # The actual model slug to use (may differ from requested if fallback)
provider: str
context_window: int
max_output_tokens: int
used_fallback: bool = False
original_slug: str | None = None # Set if fallback was used
async def resolve_model_for_call(llm_model: LlmModel) -> ResolvedModel:
"""
Resolve a model for use in an LLM call.
Handles:
- Checking if the model exists in the registry
- Falling back to an enabled model from the same provider if disabled
- Refreshing the registry cache if model not found (with DB access)
Args:
llm_model: The requested LlmModel
Returns:
ResolvedModel with all necessary metadata for the call
Raises:
ModelUnavailableError: If model cannot be resolved (not found, disabled with no fallback)
"""
from backend.data.llm_registry import (
get_fallback_model_for_disabled,
get_model_info,
)
model_info = get_model_info(llm_model.value)
# Case 1: Model found and disabled - try fallback
if model_info and not model_info.is_enabled:
fallback = get_fallback_model_for_disabled(llm_model.value)
if fallback:
logger.warning(
f"Model '{llm_model.value}' is disabled. Using fallback "
f"'{fallback.slug}' from same provider ({fallback.metadata.provider})."
)
return ResolvedModel(
slug=fallback.slug,
provider=fallback.metadata.provider,
context_window=fallback.metadata.context_window,
max_output_tokens=fallback.metadata.max_output_tokens or 2**15,
used_fallback=True,
original_slug=llm_model.value,
)
raise ModelUnavailableError(
f"Model '{llm_model.value}' is disabled and no fallback from the same "
f"provider is available. Enable the model or select a different one."
)
# Case 2: Model found and enabled - use it directly
if model_info:
return ResolvedModel(
slug=llm_model.value,
provider=model_info.metadata.provider,
context_window=model_info.metadata.context_window,
max_output_tokens=model_info.metadata.max_output_tokens or 2**15,
)
# Case 3: Model not in registry - try refresh if DB available
logger.warning(f"Model '{llm_model.value}' not found in registry cache")
from backend.data.db import is_connected
if not is_connected():
raise ModelUnavailableError(
f"Model '{llm_model.value}' not found in registry. "
f"The registry may need to be refreshed via the admin UI."
)
# Try refreshing the registry
try:
logger.info(f"Refreshing LLM registry for model '{llm_model.value}'")
await llm_registry.refresh_llm_registry()
except Exception as e:
raise ModelUnavailableError(
f"Model '{llm_model.value}' not found and registry refresh failed: {e}"
) from e
# Check again after refresh
model_info = get_model_info(llm_model.value)
if not model_info:
raise ModelUnavailableError(
f"Model '{llm_model.value}' not found in registry. "
f"Add it via the admin UI at /admin/llms."
)
if not model_info.is_enabled:
raise ModelUnavailableError(
f"Model '{llm_model.value}' exists but is disabled. "
f"Enable it via the admin UI at /admin/llms."
)
logger.info(f"Model '{llm_model.value}' loaded after registry refresh")
return ResolvedModel(
slug=llm_model.value,
provider=model_info.metadata.provider,
context_window=model_info.metadata.context_window,
max_output_tokens=model_info.metadata.max_output_tokens or 2**15,
)
for model in LlmModel:
if model not in MODEL_METADATA:
raise ValueError(f"Missing MODEL_METADATA metadata for model: {model}")
class ToolCall(BaseModel):
@@ -382,12 +531,12 @@ class LLMResponse(BaseModel):
def convert_openai_tool_fmt_to_anthropic(
openai_tools: list[dict] | None = None,
) -> Iterable[ToolParam] | anthropic.NotGiven:
) -> Iterable[ToolParam] | anthropic.Omit:
"""
Convert OpenAI tool format to Anthropic tool format.
"""
if not openai_tools or len(openai_tools) == 0:
return anthropic.NOT_GIVEN
return anthropic.omit
anthropic_tools = []
for tool in openai_tools:
@@ -449,12 +598,7 @@ def get_parallel_tool_calls_param(
llm_model: LlmModel, parallel_tool_calls: bool | None
) -> bool | openai.Omit:
"""Get the appropriate parallel_tool_calls parameter for OpenAI-compatible APIs."""
# Check for o-series models (o1, o1-mini, o3-mini, etc.) which don't support
# parallel tool calls. Handle both bare slugs ("o1-mini") and provider-prefixed
# slugs ("openai/o1-mini"). The pattern matches "o" followed by a digit at the
# start of the string or after a "/" separator.
is_o_series = re.search(r"(^|/)o\d", llm_model) is not None
if is_o_series or parallel_tool_calls is None:
if llm_model.startswith("o") or parallel_tool_calls is None:
return openai.omit
return parallel_tool_calls
@@ -490,22 +634,15 @@ async def llm_call(
- prompt_tokens: The number of tokens used in the prompt.
- completion_tokens: The number of tokens used in the completion.
"""
# Resolve the model - handles disabled models, fallbacks, and cache misses
resolved = await resolve_model_for_call(llm_model)
model_to_use = resolved.slug
provider = resolved.provider
context_window = resolved.context_window
model_max_output = resolved.max_output_tokens
# Create effective model for model-specific parameter resolution (e.g., o-series check)
effective_model = LlmModel(model_to_use)
provider = llm_model.metadata.provider
context_window = llm_model.context_window
if compress_prompt_to_fit:
result = await compress_context(
messages=prompt,
target_tokens=context_window // 2,
target_tokens=llm_model.context_window // 2,
client=None, # Truncation-only, no LLM summarization
reserve=0, # Caller handles response token budget separately
)
if result.error:
logger.warning(
@@ -516,7 +653,7 @@ async def llm_call(
# Calculate available tokens based on context window and input length
estimated_input_tokens = estimate_token_count(prompt)
# model_max_output already set above
model_max_output = llm_model.max_output_tokens or int(2**15)
user_max = max_tokens or model_max_output
available_tokens = max(context_window - estimated_input_tokens, 0)
max_tokens = max(min(available_tokens, model_max_output, user_max), 1)
@@ -527,14 +664,14 @@ async def llm_call(
response_format = None
parallel_tool_calls = get_parallel_tool_calls_param(
effective_model, parallel_tool_calls
llm_model, parallel_tool_calls
)
if force_json_output:
response_format = {"type": "json_object"}
response = await oai_client.chat.completions.create(
model=model_to_use,
model=llm_model.value,
messages=prompt, # type: ignore
response_format=response_format, # type: ignore
max_completion_tokens=max_tokens,
@@ -581,7 +718,7 @@ async def llm_call(
)
try:
resp = await client.messages.create(
model=model_to_use,
model=llm_model.value,
system=sysprompt,
messages=messages,
max_tokens=max_tokens,
@@ -645,7 +782,7 @@ async def llm_call(
client = AsyncGroq(api_key=credentials.api_key.get_secret_value())
response_format = {"type": "json_object"} if force_json_output else None
response = await client.chat.completions.create(
model=model_to_use,
model=llm_model.value,
messages=prompt, # type: ignore
response_format=response_format, # type: ignore
max_tokens=max_tokens,
@@ -667,7 +804,7 @@ async def llm_call(
sys_messages = [p["content"] for p in prompt if p["role"] == "system"]
usr_messages = [p["content"] for p in prompt if p["role"] != "system"]
response = await client.generate(
model=model_to_use,
model=llm_model.value,
prompt=f"{sys_messages}\n\n{usr_messages}",
stream=False,
options={"num_ctx": max_tokens},
@@ -689,7 +826,7 @@ async def llm_call(
)
parallel_tool_calls_param = get_parallel_tool_calls_param(
effective_model, parallel_tool_calls
llm_model, parallel_tool_calls
)
response = await client.chat.completions.create(
@@ -697,7 +834,7 @@ async def llm_call(
"HTTP-Referer": "https://agpt.co",
"X-Title": "AutoGPT",
},
model=model_to_use,
model=llm_model.value,
messages=prompt, # type: ignore
max_tokens=max_tokens,
tools=tools_param, # type: ignore
@@ -731,7 +868,7 @@ async def llm_call(
)
parallel_tool_calls_param = get_parallel_tool_calls_param(
effective_model, parallel_tool_calls
llm_model, parallel_tool_calls
)
response = await client.chat.completions.create(
@@ -739,7 +876,7 @@ async def llm_call(
"HTTP-Referer": "https://agpt.co",
"X-Title": "AutoGPT",
},
model=model_to_use,
model=llm_model.value,
messages=prompt, # type: ignore
max_tokens=max_tokens,
tools=tools_param, # type: ignore
@@ -766,7 +903,7 @@ async def llm_call(
reasoning=reasoning,
)
elif provider == "aiml_api":
client = openai.AsyncOpenAI(
client = openai.OpenAI(
base_url="https://api.aimlapi.com/v2",
api_key=credentials.api_key.get_secret_value(),
default_headers={
@@ -776,8 +913,8 @@ async def llm_call(
},
)
completion = await client.chat.completions.create(
model=model_to_use,
completion = client.chat.completions.create(
model=llm_model.value,
messages=prompt, # type: ignore
max_tokens=max_tokens,
)
@@ -805,11 +942,11 @@ async def llm_call(
response_format = {"type": "json_object"}
parallel_tool_calls_param = get_parallel_tool_calls_param(
effective_model, parallel_tool_calls
llm_model, parallel_tool_calls
)
response = await client.chat.completions.create(
model=model_to_use,
model=llm_model.value,
messages=prompt, # type: ignore
response_format=response_format, # type: ignore
max_tokens=max_tokens,
@@ -860,10 +997,9 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default_factory=LlmModel.default,
default=DEFAULT_LLM_MODEL,
description="The language model to use for answering the prompt.",
advanced=False,
json_schema_extra=llm_model_schema_extra(),
)
force_json_output: bool = SchemaField(
title="Restrict LLM to pure JSON output",
@@ -926,7 +1062,7 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
input_schema=AIStructuredResponseGeneratorBlock.Input,
output_schema=AIStructuredResponseGeneratorBlock.Output,
test_input={
"model": "gpt-4o", # Using string value - enum accepts any model slug dynamically
"model": DEFAULT_LLM_MODEL,
"credentials": TEST_CREDENTIALS_INPUT,
"expected_format": {
"key1": "value1",
@@ -1292,10 +1428,9 @@ class AITextGeneratorBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default_factory=LlmModel.default,
default=DEFAULT_LLM_MODEL,
description="The language model to use for answering the prompt.",
advanced=False,
json_schema_extra=llm_model_schema_extra(),
)
credentials: AICredentials = AICredentialsField()
sys_prompt: str = SchemaField(
@@ -1389,9 +1524,8 @@ class AITextSummarizerBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default_factory=LlmModel.default,
default=DEFAULT_LLM_MODEL,
description="The language model to use for summarizing the text.",
json_schema_extra=llm_model_schema_extra(),
)
focus: str = SchemaField(
title="Focus",
@@ -1607,9 +1741,8 @@ class AIConversationBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default_factory=LlmModel.default,
default=DEFAULT_LLM_MODEL,
description="The language model to use for the conversation.",
json_schema_extra=llm_model_schema_extra(),
)
credentials: AICredentials = AICredentialsField()
max_tokens: int | None = SchemaField(
@@ -1646,7 +1779,7 @@ class AIConversationBlock(AIBlockBase):
},
{"role": "user", "content": "Where was it played?"},
],
"model": "gpt-4o", # Using string value - enum accepts any model slug dynamically
"model": DEFAULT_LLM_MODEL,
"credentials": TEST_CREDENTIALS_INPUT,
},
test_credentials=TEST_CREDENTIALS,
@@ -1709,10 +1842,9 @@ class AIListGeneratorBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default_factory=LlmModel.default,
default=DEFAULT_LLM_MODEL,
description="The language model to use for generating the list.",
advanced=True,
json_schema_extra=llm_model_schema_extra(),
)
credentials: AICredentials = AICredentialsField()
max_retries: int = SchemaField(
@@ -1767,7 +1899,7 @@ class AIListGeneratorBlock(AIBlockBase):
"drawing explorers to uncover its mysteries. Each planet showcases the limitless possibilities of "
"fictional worlds."
),
"model": "gpt-4o", # Using string value - enum accepts any model slug dynamically
"model": DEFAULT_LLM_MODEL,
"credentials": TEST_CREDENTIALS_INPUT,
"max_retries": 3,
"force_json_output": False,

View File

@@ -226,10 +226,9 @@ class SmartDecisionMakerBlock(Block):
)
model: llm.LlmModel = SchemaField(
title="LLM Model",
default_factory=llm.LlmModel.default,
default=llm.DEFAULT_LLM_MODEL,
description="The language model to use for answering the prompt.",
advanced=False,
json_schema_extra=llm.llm_model_schema_extra(),
)
credentials: llm.AICredentials = llm.AICredentialsField()
multiple_tool_calls: bool = SchemaField(

View File

@@ -10,13 +10,13 @@ import stagehand.main
from stagehand import Stagehand
from backend.blocks.llm import (
MODEL_METADATA,
AICredentials,
AICredentialsField,
LlmModel,
ModelMetadata,
)
from backend.blocks.stagehand._config import stagehand as stagehand_provider
from backend.data import llm_registry
from backend.sdk import (
APIKeyCredentials,
Block,
@@ -91,7 +91,7 @@ class StagehandRecommendedLlmModel(str, Enum):
Returns the provider name for the model in the required format for Stagehand:
provider/model_name
"""
model_metadata = self.metadata
model_metadata = MODEL_METADATA[LlmModel(self.value)]
model_name = self.value
if len(model_name.split("/")) == 1 and not self.value.startswith(
@@ -102,28 +102,24 @@ class StagehandRecommendedLlmModel(str, Enum):
), "Logic failed and open_router provider attempted to be prepended to model name! in stagehand/_config.py"
model_name = f"{model_metadata.provider}/{model_name}"
logger.debug(f"Model name: {model_name}")
logger.error(f"Model name: {model_name}")
return model_name
@property
def provider(self) -> str:
return self.metadata.provider
return MODEL_METADATA[LlmModel(self.value)].provider
@property
def metadata(self) -> ModelMetadata:
metadata = llm_registry.get_llm_model_metadata(self.value)
if metadata:
return metadata
# Fallback to LlmModel enum if registry lookup fails
return LlmModel(self.value).metadata
return MODEL_METADATA[LlmModel(self.value)]
@property
def context_window(self) -> int:
return self.metadata.context_window
return MODEL_METADATA[LlmModel(self.value)].context_window
@property
def max_output_tokens(self) -> int | None:
return self.metadata.max_output_tokens
return MODEL_METADATA[LlmModel(self.value)].max_output_tokens
class StagehandObserveBlock(Block):

View File

@@ -19,30 +19,6 @@ CompletedBlockOutput = dict[str, list[Any]] # Completed stream, collected as a
async def initialize_blocks() -> None:
# Refresh LLM registry before initializing blocks so blocks can use registry data
# This ensures the registry cache is populated even in executor context
try:
from backend.data import llm_registry
from backend.data.block_cost_config import refresh_llm_costs
# Only refresh if we have DB access (check if Prisma is connected)
from backend.data.db import is_connected
if is_connected():
await llm_registry.refresh_llm_registry()
await refresh_llm_costs()
logger.info("LLM registry refreshed during block initialization")
else:
logger.warning(
"Prisma not connected, skipping LLM registry refresh during block initialization"
)
except Exception as exc:
logger.warning(
"Failed to refresh LLM registry during block initialization: %s", exc
)
# First, sync all provider costs to blocks
# Imported here to avoid circular import
from backend.blocks import get_blocks
from backend.sdk.cost_integration import sync_all_provider_costs
from backend.util.retry import func_retry

View File

@@ -1,8 +1,5 @@
import logging
from typing import Type
import prisma.models
from backend.blocks._base import Block, BlockCost, BlockCostType
from backend.blocks.ai_image_customizer import AIImageCustomizerBlock, GeminiImageModel
from backend.blocks.ai_image_generator_block import AIImageGeneratorBlock, ImageGenModel
@@ -27,11 +24,13 @@ from backend.blocks.ideogram import IdeogramModelBlock
from backend.blocks.jina.embeddings import JinaEmbeddingBlock
from backend.blocks.jina.search import ExtractWebsiteContentBlock, SearchTheWebBlock
from backend.blocks.llm import (
MODEL_METADATA,
AIConversationBlock,
AIListGeneratorBlock,
AIStructuredResponseGeneratorBlock,
AITextGeneratorBlock,
AITextSummarizerBlock,
LlmModel,
)
from backend.blocks.replicate.flux_advanced import ReplicateFluxAdvancedModelBlock
from backend.blocks.replicate.replicate_block import ReplicateModelBlock
@@ -39,7 +38,6 @@ from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
from backend.blocks.talking_head import CreateTalkingAvatarVideoBlock
from backend.blocks.text_to_speech_block import UnrealTextToSpeechBlock
from backend.blocks.video.narration import VideoNarrationBlock
from backend.data import llm_registry
from backend.integrations.credentials_store import (
aiml_api_credentials,
anthropic_credentials,
@@ -59,116 +57,210 @@ from backend.integrations.credentials_store import (
v0_credentials,
)
logger = logging.getLogger(__name__)
# =============== Configure the cost for each LLM Model call =============== #
PROVIDER_CREDENTIALS = {
"openai": openai_credentials,
"anthropic": anthropic_credentials,
"groq": groq_credentials,
"open_router": open_router_credentials,
"llama_api": llama_api_credentials,
"aiml_api": aiml_api_credentials,
"v0": v0_credentials,
MODEL_COST: dict[LlmModel, int] = {
LlmModel.O3: 4,
LlmModel.O3_MINI: 2,
LlmModel.O1: 16,
LlmModel.O1_MINI: 4,
# GPT-5 models
LlmModel.GPT5_2: 6,
LlmModel.GPT5_1: 5,
LlmModel.GPT5: 2,
LlmModel.GPT5_MINI: 1,
LlmModel.GPT5_NANO: 1,
LlmModel.GPT5_CHAT: 5,
LlmModel.GPT41: 2,
LlmModel.GPT41_MINI: 1,
LlmModel.GPT4O_MINI: 1,
LlmModel.GPT4O: 3,
LlmModel.GPT4_TURBO: 10,
LlmModel.GPT3_5_TURBO: 1,
LlmModel.CLAUDE_4_1_OPUS: 21,
LlmModel.CLAUDE_4_OPUS: 21,
LlmModel.CLAUDE_4_SONNET: 5,
LlmModel.CLAUDE_4_6_OPUS: 14,
LlmModel.CLAUDE_4_5_HAIKU: 4,
LlmModel.CLAUDE_4_5_OPUS: 14,
LlmModel.CLAUDE_4_5_SONNET: 9,
LlmModel.CLAUDE_3_HAIKU: 1,
LlmModel.AIML_API_QWEN2_5_72B: 1,
LlmModel.AIML_API_LLAMA3_1_70B: 1,
LlmModel.AIML_API_LLAMA3_3_70B: 1,
LlmModel.AIML_API_META_LLAMA_3_1_70B: 1,
LlmModel.AIML_API_LLAMA_3_2_3B: 1,
LlmModel.LLAMA3_3_70B: 1,
LlmModel.LLAMA3_1_8B: 1,
LlmModel.OLLAMA_LLAMA3_3: 1,
LlmModel.OLLAMA_LLAMA3_2: 1,
LlmModel.OLLAMA_LLAMA3_8B: 1,
LlmModel.OLLAMA_LLAMA3_405B: 1,
LlmModel.OLLAMA_DOLPHIN: 1,
LlmModel.OPENAI_GPT_OSS_120B: 1,
LlmModel.OPENAI_GPT_OSS_20B: 1,
LlmModel.GEMINI_2_5_PRO: 4,
LlmModel.GEMINI_3_PRO_PREVIEW: 5,
LlmModel.GEMINI_2_5_FLASH: 1,
LlmModel.GEMINI_2_0_FLASH: 1,
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: 1,
LlmModel.GEMINI_2_0_FLASH_LITE: 1,
LlmModel.MISTRAL_NEMO: 1,
LlmModel.COHERE_COMMAND_R_08_2024: 1,
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: 3,
LlmModel.DEEPSEEK_CHAT: 2,
LlmModel.DEEPSEEK_R1_0528: 1,
LlmModel.PERPLEXITY_SONAR: 1,
LlmModel.PERPLEXITY_SONAR_PRO: 5,
LlmModel.PERPLEXITY_SONAR_DEEP_RESEARCH: 10,
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_405B: 1,
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_70B: 1,
LlmModel.AMAZON_NOVA_LITE_V1: 1,
LlmModel.AMAZON_NOVA_MICRO_V1: 1,
LlmModel.AMAZON_NOVA_PRO_V1: 1,
LlmModel.MICROSOFT_WIZARDLM_2_8X22B: 1,
LlmModel.GRYPHE_MYTHOMAX_L2_13B: 1,
LlmModel.META_LLAMA_4_SCOUT: 1,
LlmModel.META_LLAMA_4_MAVERICK: 1,
LlmModel.LLAMA_API_LLAMA_4_SCOUT: 1,
LlmModel.LLAMA_API_LLAMA4_MAVERICK: 1,
LlmModel.LLAMA_API_LLAMA3_3_8B: 1,
LlmModel.LLAMA_API_LLAMA3_3_70B: 1,
LlmModel.GROK_4: 9,
LlmModel.GROK_4_FAST: 1,
LlmModel.GROK_4_1_FAST: 1,
LlmModel.GROK_CODE_FAST_1: 1,
LlmModel.KIMI_K2: 1,
LlmModel.QWEN3_235B_A22B_THINKING: 1,
LlmModel.QWEN3_CODER: 9,
# v0 by Vercel models
LlmModel.V0_1_5_MD: 1,
LlmModel.V0_1_5_LG: 2,
LlmModel.V0_1_0_MD: 1,
}
# =============== Configure the cost for each LLM Model call =============== #
# All LLM costs now come from the database via llm_registry
LLM_COST: list[BlockCost] = []
for model in LlmModel:
if model not in MODEL_COST:
raise ValueError(f"Missing MODEL_COST for model: {model}")
async def _build_llm_costs_from_registry() -> list[BlockCost]:
"""
Build BlockCost list from all models in the LLM registry.
This function checks for active model migrations with customCreditCost overrides.
When a model has been migrated with a custom price, that price is used instead
of the target model's default cost.
"""
# Query active migrations with custom pricing overrides.
# Note: LlmModelMigration is system-level data (no userId field) and this function
# is only called during app startup and admin operations, so no user ID filter needed.
migration_overrides: dict[str, int] = {}
try:
active_migrations = await prisma.models.LlmModelMigration.prisma().find_many(
where={
"isReverted": False,
"customCreditCost": {"not": None},
}
)
# Key by targetModelSlug since that's the model nodes are now using
# after migration. The custom cost applies to the target model.
migration_overrides = {
migration.targetModelSlug: migration.customCreditCost
for migration in active_migrations
if migration.customCreditCost is not None
}
if migration_overrides:
logger.info(
"Found %d active model migrations with custom pricing overrides",
len(migration_overrides),
)
except Exception as exc:
logger.warning(
"Failed to query model migration overrides: %s. Proceeding with default costs.",
exc,
exc_info=True,
)
costs: list[BlockCost] = []
for model in llm_registry.iter_dynamic_models():
for cost in model.costs:
credentials = PROVIDER_CREDENTIALS.get(cost.credential_provider)
if not credentials:
logger.warning(
"Skipping cost entry for %s due to unknown credentials provider %s",
model.slug,
cost.credential_provider,
)
continue
# Check if this model has a custom cost override from migration
cost_amount = migration_overrides.get(model.slug, cost.credit_cost)
if model.slug in migration_overrides:
logger.debug(
"Applying custom cost override for model %s: %d credits (default: %d)",
model.slug,
cost_amount,
cost.credit_cost,
)
cost_filter = {
"model": model.slug,
LLM_COST = (
# Anthropic Models
[
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter={
"model": model,
"credentials": {
"id": credentials.id,
"provider": credentials.provider,
"type": credentials.type,
"id": anthropic_credentials.id,
"provider": anthropic_credentials.provider,
"type": anthropic_credentials.type,
},
}
costs.append(
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter=cost_filter,
cost_amount=cost_amount,
)
)
return costs
async def refresh_llm_costs() -> None:
"""
Refresh LLM costs from the registry. All costs now come from the database.
This function also checks for active model migrations with custom pricing overrides
and applies them to ensure accurate billing.
"""
LLM_COST.clear()
LLM_COST.extend(await _build_llm_costs_from_registry())
# Initial load will happen after registry is refreshed at startup
# Don't call refresh_llm_costs() here - it will be called after registry refresh
},
cost_amount=cost,
)
for model, cost in MODEL_COST.items()
if MODEL_METADATA[model].provider == "anthropic"
]
# OpenAI Models
+ [
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter={
"model": model,
"credentials": {
"id": openai_credentials.id,
"provider": openai_credentials.provider,
"type": openai_credentials.type,
},
},
cost_amount=cost,
)
for model, cost in MODEL_COST.items()
if MODEL_METADATA[model].provider == "openai"
]
# Groq Models
+ [
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter={
"model": model,
"credentials": {"id": groq_credentials.id},
},
cost_amount=cost,
)
for model, cost in MODEL_COST.items()
if MODEL_METADATA[model].provider == "groq"
]
# Open Router Models
+ [
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter={
"model": model,
"credentials": {
"id": open_router_credentials.id,
"provider": open_router_credentials.provider,
"type": open_router_credentials.type,
},
},
cost_amount=cost,
)
for model, cost in MODEL_COST.items()
if MODEL_METADATA[model].provider == "open_router"
]
# Llama API Models
+ [
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter={
"model": model,
"credentials": {
"id": llama_api_credentials.id,
"provider": llama_api_credentials.provider,
"type": llama_api_credentials.type,
},
},
cost_amount=cost,
)
for model, cost in MODEL_COST.items()
if MODEL_METADATA[model].provider == "llama_api"
]
# v0 by Vercel Models
+ [
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter={
"model": model,
"credentials": {
"id": v0_credentials.id,
"provider": v0_credentials.provider,
"type": v0_credentials.type,
},
},
cost_amount=cost,
)
for model, cost in MODEL_COST.items()
if MODEL_METADATA[model].provider == "v0"
]
# AI/ML Api Models
+ [
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter={
"model": model,
"credentials": {
"id": aiml_api_credentials.id,
"provider": aiml_api_credentials.provider,
"type": aiml_api_credentials.type,
},
},
cost_amount=cost,
)
for model, cost in MODEL_COST.items()
if MODEL_METADATA[model].provider == "aiml_api"
]
)
# =============== This is the exhaustive list of cost for each Block =============== #

View File

@@ -1625,10 +1625,8 @@ async def migrate_llm_models(migrate_to: LlmModel):
if field.annotation == LlmModel:
llm_model_fields[block.id] = field_name
# Get all model slugs from the registry (dynamic, not hardcoded enum)
from backend.data import llm_registry
enum_values = list(llm_registry.get_all_model_slugs_for_validation())
# Convert enum values to a list of strings for the SQL query
enum_values = [v.value for v in LlmModel]
escaped_enum_values = repr(tuple(enum_values)) # hack but works
# Update each block

View File

@@ -1,72 +0,0 @@
"""
LLM Registry module for managing LLM models, providers, and costs dynamically.
This module provides a database-driven registry system for LLM models,
replacing hardcoded model configurations with a flexible admin-managed system.
"""
from backend.data.llm_registry.model import ModelMetadata
# Re-export for backwards compatibility
from backend.data.llm_registry.notifications import (
REGISTRY_REFRESH_CHANNEL,
publish_registry_refresh_notification,
subscribe_to_registry_refresh,
)
from backend.data.llm_registry.registry import (
RegistryModel,
RegistryModelCost,
RegistryModelCreator,
get_all_model_slugs_for_validation,
get_default_model_slug,
get_dynamic_model_slugs,
get_fallback_model_for_disabled,
get_llm_discriminator_mapping,
get_llm_model_cost,
get_llm_model_metadata,
get_llm_model_schema_options,
get_model_info,
is_model_enabled,
iter_dynamic_models,
refresh_llm_registry,
register_static_costs,
register_static_metadata,
)
from backend.data.llm_registry.schema_utils import (
is_llm_model_field,
refresh_llm_discriminator_mapping,
refresh_llm_model_options,
update_schema_with_llm_registry,
)
__all__ = [
# Types
"ModelMetadata",
"RegistryModel",
"RegistryModelCost",
"RegistryModelCreator",
# Registry functions
"get_all_model_slugs_for_validation",
"get_default_model_slug",
"get_dynamic_model_slugs",
"get_fallback_model_for_disabled",
"get_llm_discriminator_mapping",
"get_llm_model_cost",
"get_llm_model_metadata",
"get_llm_model_schema_options",
"get_model_info",
"is_model_enabled",
"iter_dynamic_models",
"refresh_llm_registry",
"register_static_costs",
"register_static_metadata",
# Notifications
"REGISTRY_REFRESH_CHANNEL",
"publish_registry_refresh_notification",
"subscribe_to_registry_refresh",
# Schema utilities
"is_llm_model_field",
"refresh_llm_discriminator_mapping",
"refresh_llm_model_options",
"update_schema_with_llm_registry",
]

View File

@@ -1,25 +0,0 @@
"""Type definitions for LLM model metadata."""
from typing import Literal, NamedTuple
class ModelMetadata(NamedTuple):
"""Metadata for an LLM model.
Attributes:
provider: The provider identifier (e.g., "openai", "anthropic")
context_window: Maximum context window size in tokens
max_output_tokens: Maximum output tokens (None if unlimited)
display_name: Human-readable name for the model
provider_name: Human-readable provider name (e.g., "OpenAI", "Anthropic")
creator_name: Name of the organization that created the model
price_tier: Relative cost tier (1=cheapest, 2=medium, 3=expensive)
"""
provider: str
context_window: int
max_output_tokens: int | None
display_name: str
provider_name: str
creator_name: str
price_tier: Literal[1, 2, 3]

View File

@@ -1,89 +0,0 @@
"""
Redis pub/sub notifications for LLM registry updates.
When models are added/updated/removed via the admin UI, this module
publishes notifications to Redis that all executor services subscribe to,
ensuring they refresh their registry cache in real-time.
"""
import asyncio
import logging
from typing import Any
from backend.data.redis_client import connect_async
logger = logging.getLogger(__name__)
# Redis channel name for LLM registry refresh notifications
REGISTRY_REFRESH_CHANNEL = "llm_registry:refresh"
async def publish_registry_refresh_notification() -> None:
"""
Publish a notification to Redis that the LLM registry has been updated.
All executor services subscribed to this channel will refresh their registry.
"""
try:
redis = await connect_async()
await redis.publish(REGISTRY_REFRESH_CHANNEL, "refresh")
logger.info("Published LLM registry refresh notification to Redis")
except Exception as exc:
logger.warning(
"Failed to publish LLM registry refresh notification: %s",
exc,
exc_info=True,
)
async def subscribe_to_registry_refresh(
on_refresh: Any, # Async callable that takes no args
) -> None:
"""
Subscribe to Redis notifications for LLM registry updates.
This runs in a loop and processes messages as they arrive.
Args:
on_refresh: Async callable to execute when a refresh notification is received
"""
try:
redis = await connect_async()
pubsub = redis.pubsub()
await pubsub.subscribe(REGISTRY_REFRESH_CHANNEL)
logger.info(
"Subscribed to LLM registry refresh notifications on channel: %s",
REGISTRY_REFRESH_CHANNEL,
)
# Process messages in a loop
while True:
try:
message = await pubsub.get_message(
ignore_subscribe_messages=True, timeout=1.0
)
if (
message
and message["type"] == "message"
and message["channel"] == REGISTRY_REFRESH_CHANNEL
):
logger.info("Received LLM registry refresh notification")
try:
await on_refresh()
except Exception as exc:
logger.error(
"Error refreshing LLM registry from notification: %s",
exc,
exc_info=True,
)
except Exception as exc:
logger.warning(
"Error processing registry refresh message: %s", exc, exc_info=True
)
# Continue listening even if one message fails
await asyncio.sleep(1)
except Exception as exc:
logger.error(
"Failed to subscribe to LLM registry refresh notifications: %s",
exc,
exc_info=True,
)
raise

View File

@@ -1,388 +0,0 @@
"""Core LLM registry implementation for managing models dynamically."""
from __future__ import annotations
import asyncio
import logging
from dataclasses import dataclass, field
from typing import Any, Iterable
import prisma.models
from backend.data.llm_registry.model import ModelMetadata
logger = logging.getLogger(__name__)
def _json_to_dict(value: Any) -> dict[str, Any]:
"""Convert Prisma Json type to dict, with fallback to empty dict."""
if value is None:
return {}
if isinstance(value, dict):
return value
# Prisma Json type should always be a dict at runtime
return dict(value) if value else {}
@dataclass(frozen=True)
class RegistryModelCost:
"""Cost configuration for an LLM model."""
credit_cost: int
credential_provider: str
credential_id: str | None
credential_type: str | None
currency: str | None
metadata: dict[str, Any]
@dataclass(frozen=True)
class RegistryModelCreator:
"""Creator information for an LLM model."""
id: str
name: str
display_name: str
description: str | None
website_url: str | None
logo_url: str | None
@dataclass(frozen=True)
class RegistryModel:
"""Represents a model in the LLM registry."""
slug: str
display_name: str
description: str | None
metadata: ModelMetadata
capabilities: dict[str, Any]
extra_metadata: dict[str, Any]
provider_display_name: str
is_enabled: bool
is_recommended: bool = False
costs: tuple[RegistryModelCost, ...] = field(default_factory=tuple)
creator: RegistryModelCreator | None = None
_static_metadata: dict[str, ModelMetadata] = {}
_static_costs: dict[str, int] = {}
_dynamic_models: dict[str, RegistryModel] = {}
_schema_options: list[dict[str, str]] = []
_discriminator_mapping: dict[str, str] = {}
_lock = asyncio.Lock()
def register_static_metadata(metadata: dict[Any, ModelMetadata]) -> None:
"""Register static metadata for legacy models (deprecated)."""
_static_metadata.update({str(key): value for key, value in metadata.items()})
_refresh_cached_schema()
def register_static_costs(costs: dict[Any, int]) -> None:
"""Register static costs for legacy models (deprecated)."""
_static_costs.update({str(key): value for key, value in costs.items()})
def _build_schema_options() -> list[dict[str, str]]:
"""Build schema options for model selection dropdown. Only includes enabled models."""
options: list[dict[str, str]] = []
# Only include enabled models in the dropdown options
for model in sorted(_dynamic_models.values(), key=lambda m: m.display_name.lower()):
if model.is_enabled:
options.append(
{
"label": model.display_name,
"value": model.slug,
"group": model.metadata.provider,
"description": model.description or "",
}
)
for slug, metadata in _static_metadata.items():
if slug in _dynamic_models:
continue
options.append(
{
"label": slug,
"value": slug,
"group": metadata.provider,
"description": "",
}
)
return options
async def refresh_llm_registry() -> None:
"""Refresh the LLM registry from the database. Loads all models (enabled and disabled)."""
async with _lock:
try:
records = await prisma.models.LlmModel.prisma().find_many(
include={
"Provider": True,
"Costs": True,
"Creator": True,
}
)
logger.debug("Found %d LLM model records in database", len(records))
except Exception as exc:
logger.error(
"Failed to refresh LLM registry from DB: %s", exc, exc_info=True
)
return
dynamic: dict[str, RegistryModel] = {}
for record in records:
provider_name = (
record.Provider.name if record.Provider else record.providerId
)
provider_display_name = (
record.Provider.displayName if record.Provider else record.providerId
)
# Creator name: prefer Creator.name, fallback to provider display name
creator_name = (
record.Creator.name if record.Creator else provider_display_name
)
# Price tier: default to 1 (cheapest) if not set
price_tier = getattr(record, "priceTier", 1) or 1
# Clamp to valid range 1-3
price_tier = max(1, min(3, price_tier))
metadata = ModelMetadata(
provider=provider_name,
context_window=record.contextWindow,
max_output_tokens=record.maxOutputTokens,
display_name=record.displayName,
provider_name=provider_display_name,
creator_name=creator_name,
price_tier=price_tier, # type: ignore[arg-type]
)
costs = tuple(
RegistryModelCost(
credit_cost=cost.creditCost,
credential_provider=cost.credentialProvider,
credential_id=cost.credentialId,
credential_type=cost.credentialType,
currency=cost.currency,
metadata=_json_to_dict(cost.metadata),
)
for cost in (record.Costs or [])
)
# Map creator if present
creator = None
if record.Creator:
creator = RegistryModelCreator(
id=record.Creator.id,
name=record.Creator.name,
display_name=record.Creator.displayName,
description=record.Creator.description,
website_url=record.Creator.websiteUrl,
logo_url=record.Creator.logoUrl,
)
dynamic[record.slug] = RegistryModel(
slug=record.slug,
display_name=record.displayName,
description=record.description,
metadata=metadata,
capabilities=_json_to_dict(record.capabilities),
extra_metadata=_json_to_dict(record.metadata),
provider_display_name=(
record.Provider.displayName
if record.Provider
else record.providerId
),
is_enabled=record.isEnabled,
is_recommended=record.isRecommended,
costs=costs,
creator=creator,
)
# Atomic swap - build new structures then replace references
# This ensures readers never see partially updated state
global _dynamic_models
_dynamic_models = dynamic
_refresh_cached_schema()
logger.info(
"LLM registry refreshed with %s dynamic models (enabled: %s, disabled: %s)",
len(dynamic),
sum(1 for m in dynamic.values() if m.is_enabled),
sum(1 for m in dynamic.values() if not m.is_enabled),
)
def _refresh_cached_schema() -> None:
"""Refresh cached schema options and discriminator mapping."""
global _schema_options, _discriminator_mapping
# Build new structures
new_options = _build_schema_options()
new_mapping = {
slug: entry.metadata.provider for slug, entry in _dynamic_models.items()
}
for slug, metadata in _static_metadata.items():
new_mapping.setdefault(slug, metadata.provider)
# Atomic swap - replace references to ensure readers see consistent state
_schema_options = new_options
_discriminator_mapping = new_mapping
def get_llm_model_metadata(slug: str) -> ModelMetadata | None:
"""Get model metadata by slug. Checks dynamic models first, then static metadata."""
if slug in _dynamic_models:
return _dynamic_models[slug].metadata
return _static_metadata.get(slug)
def get_llm_model_cost(slug: str) -> tuple[RegistryModelCost, ...]:
"""Get model cost configuration by slug."""
if slug in _dynamic_models:
return _dynamic_models[slug].costs
cost_value = _static_costs.get(slug)
if cost_value is None:
return tuple()
return (
RegistryModelCost(
credit_cost=cost_value,
credential_provider="static",
credential_id=None,
credential_type=None,
currency=None,
metadata={},
),
)
def get_llm_model_schema_options() -> list[dict[str, str]]:
"""
Get schema options for LLM model selection dropdown.
Returns a copy of cached schema options that are refreshed when the registry is
updated via refresh_llm_registry() (called on startup and via Redis pub/sub).
"""
# Return a copy to prevent external mutation
return list(_schema_options)
def get_llm_discriminator_mapping() -> dict[str, str]:
"""
Get discriminator mapping for LLM models.
Returns a copy of cached discriminator mapping that is refreshed when the registry
is updated via refresh_llm_registry() (called on startup and via Redis pub/sub).
"""
# Return a copy to prevent external mutation
return dict(_discriminator_mapping)
def get_dynamic_model_slugs() -> set[str]:
"""Get all dynamic model slugs from the registry."""
return set(_dynamic_models.keys())
def get_all_model_slugs_for_validation() -> set[str]:
"""
Get ALL model slugs (both enabled and disabled) for validation purposes.
This is used for JSON schema enum validation - we need to accept any known
model value (even disabled ones) so that existing graphs don't fail validation.
The actual fallback/enforcement happens at runtime in llm_call().
"""
all_slugs = set(_dynamic_models.keys())
all_slugs.update(_static_metadata.keys())
return all_slugs
def iter_dynamic_models() -> Iterable[RegistryModel]:
"""Iterate over all dynamic models in the registry."""
return tuple(_dynamic_models.values())
def get_fallback_model_for_disabled(disabled_model_slug: str) -> RegistryModel | None:
"""
Find a fallback model when the requested model is disabled.
Looks for an enabled model from the same provider. Prefers models with
similar names or capabilities if possible.
Args:
disabled_model_slug: The slug of the disabled model
Returns:
An enabled RegistryModel from the same provider, or None if no fallback found
"""
disabled_model = _dynamic_models.get(disabled_model_slug)
if not disabled_model:
return None
provider = disabled_model.metadata.provider
# Find all enabled models from the same provider
candidates = [
model
for model in _dynamic_models.values()
if model.is_enabled and model.metadata.provider == provider
]
if not candidates:
return None
# Sort by: prefer models with similar context window, then by name
candidates.sort(
key=lambda m: (
abs(m.metadata.context_window - disabled_model.metadata.context_window),
m.display_name.lower(),
)
)
return candidates[0]
def is_model_enabled(model_slug: str) -> bool:
"""Check if a model is enabled in the registry."""
model = _dynamic_models.get(model_slug)
if not model:
# Model not in registry - assume it's a static/legacy model and allow it
return True
return model.is_enabled
def get_model_info(model_slug: str) -> RegistryModel | None:
"""Get model info from the registry."""
return _dynamic_models.get(model_slug)
def get_default_model_slug() -> str | None:
"""
Get the default model slug to use for block defaults.
Returns the recommended model if set (configured via admin UI),
otherwise returns the first enabled model alphabetically.
Returns None if no models are available or enabled.
"""
# Return the recommended model if one is set and enabled
for model in _dynamic_models.values():
if model.is_recommended and model.is_enabled:
return model.slug
# No recommended model set - find first enabled model alphabetically
for model in sorted(_dynamic_models.values(), key=lambda m: m.display_name.lower()):
if model.is_enabled:
logger.warning(
"No recommended model set, using '%s' as default",
model.slug,
)
return model.slug
# No enabled models available
if _dynamic_models:
logger.error(
"No enabled models found in registry (%d models registered but all disabled)",
len(_dynamic_models),
)
else:
logger.error("No models registered in LLM registry")
return None

View File

@@ -1,130 +0,0 @@
"""
Helper utilities for LLM registry integration with block schemas.
This module handles the dynamic injection of discriminator mappings
and model options from the LLM registry into block schemas.
"""
import logging
from typing import Any
from backend.data.llm_registry.registry import (
get_all_model_slugs_for_validation,
get_default_model_slug,
get_llm_discriminator_mapping,
get_llm_model_schema_options,
)
logger = logging.getLogger(__name__)
def is_llm_model_field(field_name: str, field_info: Any) -> bool:
"""
Check if a field is an LLM model selection field.
Returns True if the field has 'options' in json_schema_extra
(set by llm_model_schema_extra() in blocks/llm.py).
"""
if not hasattr(field_info, "json_schema_extra"):
return False
extra = field_info.json_schema_extra
if isinstance(extra, dict):
return "options" in extra
return False
def refresh_llm_model_options(field_schema: dict[str, Any]) -> None:
"""
Refresh LLM model options from the registry.
Updates 'options' (for frontend dropdown) to show only enabled models,
but keeps the 'enum' (for validation) inclusive of ALL known models.
This is important because:
- Options: What users see in the dropdown (enabled models only)
- Enum: What values pass validation (all known models, including disabled)
Existing graphs may have disabled models selected - they should pass validation
and the fallback logic in llm_call() will handle using an alternative model.
"""
fresh_options = get_llm_model_schema_options()
if not fresh_options:
return
# Update options array (UI dropdown) - only enabled models
if "options" in field_schema:
field_schema["options"] = fresh_options
all_known_slugs = get_all_model_slugs_for_validation()
if all_known_slugs and "enum" in field_schema:
existing_enum = set(field_schema.get("enum", []))
combined_enum = existing_enum | all_known_slugs
field_schema["enum"] = sorted(combined_enum)
# Set the default value from the registry (gpt-4o if available, else first enabled)
# This ensures new blocks have a sensible default pre-selected
default_slug = get_default_model_slug()
if default_slug:
field_schema["default"] = default_slug
def refresh_llm_discriminator_mapping(field_schema: dict[str, Any]) -> None:
"""
Refresh discriminator_mapping for fields that use model-based discrimination.
The discriminator is already set when AICredentialsField() creates the field.
We only need to refresh the mapping when models are added/removed.
"""
if field_schema.get("discriminator") != "model":
return
# Always refresh the mapping to get latest models
fresh_mapping = get_llm_discriminator_mapping()
if fresh_mapping is not None:
field_schema["discriminator_mapping"] = fresh_mapping
def update_schema_with_llm_registry(
schema: dict[str, Any], model_class: type | None = None
) -> None:
"""
Update a JSON schema with current LLM registry data.
Refreshes:
1. Model options for LLM model selection fields (dropdown choices)
2. Discriminator mappings for credentials fields (model → provider)
Args:
schema: The JSON schema to update (mutated in-place)
model_class: The Pydantic model class (optional, for field introspection)
"""
properties = schema.get("properties", {})
for field_name, field_schema in properties.items():
if not isinstance(field_schema, dict):
continue
# Refresh model options for LLM model fields
if model_class and hasattr(model_class, "model_fields"):
field_info = model_class.model_fields.get(field_name)
if field_info and is_llm_model_field(field_name, field_info):
try:
refresh_llm_model_options(field_schema)
except Exception as exc:
logger.warning(
"Failed to refresh LLM options for field %s: %s",
field_name,
exc,
)
# Refresh discriminator mapping for fields that use model discrimination
try:
refresh_llm_discriminator_mapping(field_schema)
except Exception as exc:
logger.warning(
"Failed to refresh discriminator mapping for field %s: %s",
field_name,
exc,
)

View File

@@ -39,7 +39,6 @@ from pydantic_core import (
)
from typing_extensions import TypedDict
from backend.data.llm_registry import update_schema_with_llm_registry
from backend.integrations.providers import ProviderName
from backend.util.json import loads as json_loads
from backend.util.request import parse_url
@@ -551,9 +550,7 @@ class CredentialsMetaInput(BaseModel, Generic[CP, CT]):
else:
schema["credentials_provider"] = allowed_providers
schema["credentials_types"] = model_class.allowed_cred_types()
# Ensure LLM discriminators are populated (delegates to shared helper)
update_schema_with_llm_registry(schema, model_class)
# Do not return anything, just mutate schema in place
model_config = ConfigDict(
json_schema_extra=_add_json_schema_extra, # type: ignore
@@ -708,20 +705,16 @@ def CredentialsField(
This is enforced by the `BlockSchema` base class.
"""
# Build field_schema_extra - always include discriminator and mapping if discriminator is set
field_schema_extra: dict[str, Any] = {}
# Always include discriminator if provided
if discriminator is not None:
field_schema_extra["discriminator"] = discriminator
# Always include discriminator_mapping when discriminator is set (even if empty initially)
field_schema_extra["discriminator_mapping"] = discriminator_mapping or {}
# Include other optional fields (only if not None)
if required_scopes:
field_schema_extra["credentials_scopes"] = list(required_scopes)
if discriminator_values:
field_schema_extra["discriminator_values"] = discriminator_values
field_schema_extra = {
k: v
for k, v in {
"credentials_scopes": list(required_scopes) or None,
"discriminator": discriminator,
"discriminator_mapping": discriminator_mapping,
"discriminator_values": discriminator_values,
}.items()
if v is not None
}
# Merge any json_schema_extra passed in kwargs
if "json_schema_extra" in kwargs:

View File

@@ -1,67 +0,0 @@
"""
Helper functions for LLM registry initialization in executor context.
These functions handle refreshing the LLM registry when the executor starts
and subscribing to real-time updates via Redis pub/sub.
"""
import logging
from backend.blocks._base import BlockSchema
from backend.data import db, llm_registry
from backend.data.block import initialize_blocks
from backend.data.block_cost_config import refresh_llm_costs
from backend.data.llm_registry import subscribe_to_registry_refresh
logger = logging.getLogger(__name__)
async def initialize_registry_for_executor() -> None:
"""
Initialize blocks and refresh LLM registry in the executor context.
This must run in the executor's event loop to have access to the database.
"""
try:
# Connect to database if not already connected
if not db.is_connected():
await db.connect()
logger.info("[GraphExecutor] Connected to database for registry refresh")
# Initialize blocks (internally refreshes LLM registry and costs)
await initialize_blocks()
logger.info("[GraphExecutor] Blocks initialized")
except Exception as exc:
logger.warning(
"[GraphExecutor] Failed to refresh LLM registry on startup: %s",
exc,
exc_info=True,
)
async def refresh_registry_on_notification() -> None:
"""Refresh LLM registry when notified via Redis pub/sub."""
try:
# Ensure DB is connected
if not db.is_connected():
await db.connect()
# Refresh registry and costs
await llm_registry.refresh_llm_registry()
await refresh_llm_costs()
# Clear block schema caches so they regenerate with new model options
BlockSchema.clear_all_schema_caches()
logger.info("[GraphExecutor] LLM registry refreshed from notification")
except Exception as exc:
logger.error(
"[GraphExecutor] Failed to refresh LLM registry from notification: %s",
exc,
exc_info=True,
)
async def subscribe_to_registry_updates() -> None:
"""Subscribe to Redis pub/sub for LLM registry refresh notifications."""
await subscribe_to_registry_refresh(refresh_registry_on_notification)

View File

@@ -708,20 +708,6 @@ class ExecutionProcessor:
)
self.node_execution_thread.start()
self.node_evaluation_thread.start()
# Initialize LLM registry and subscribe to updates
from backend.executor.llm_registry_init import (
initialize_registry_for_executor,
subscribe_to_registry_updates,
)
asyncio.run_coroutine_threadsafe(
initialize_registry_for_executor(), self.node_execution_loop
)
asyncio.run_coroutine_threadsafe(
subscribe_to_registry_updates(), self.node_execution_loop
)
logger.info(f"[GraphExecutor] {self.tid} started")
@error_logged(swallow=False)

View File

@@ -1,941 +0,0 @@
from __future__ import annotations
from typing import Any, Iterable, Sequence, cast
import prisma
import prisma.models
from backend.data.db import transaction
from backend.server.v2.llm import model as llm_model
from backend.util.models import Pagination
def _json_dict(value: Any | None) -> dict[str, Any]:
if not value:
return {}
if isinstance(value, dict):
return value
return {}
def _map_cost(record: prisma.models.LlmModelCost) -> llm_model.LlmModelCost:
return llm_model.LlmModelCost(
id=record.id,
unit=record.unit,
credit_cost=record.creditCost,
credential_provider=record.credentialProvider,
credential_id=record.credentialId,
credential_type=record.credentialType,
currency=record.currency,
metadata=_json_dict(record.metadata),
)
def _map_creator(
record: prisma.models.LlmModelCreator,
) -> llm_model.LlmModelCreator:
return llm_model.LlmModelCreator(
id=record.id,
name=record.name,
display_name=record.displayName,
description=record.description,
website_url=record.websiteUrl,
logo_url=record.logoUrl,
metadata=_json_dict(record.metadata),
)
def _map_model(record: prisma.models.LlmModel) -> llm_model.LlmModel:
costs = []
if record.Costs:
costs = [_map_cost(cost) for cost in record.Costs]
creator = None
if hasattr(record, "Creator") and record.Creator:
creator = _map_creator(record.Creator)
return llm_model.LlmModel(
id=record.id,
slug=record.slug,
display_name=record.displayName,
description=record.description,
provider_id=record.providerId,
creator_id=record.creatorId,
creator=creator,
context_window=record.contextWindow,
max_output_tokens=record.maxOutputTokens,
is_enabled=record.isEnabled,
is_recommended=record.isRecommended,
capabilities=_json_dict(record.capabilities),
metadata=_json_dict(record.metadata),
costs=costs,
)
def _map_provider(record: prisma.models.LlmProvider) -> llm_model.LlmProvider:
models: list[llm_model.LlmModel] = []
if record.Models:
models = [_map_model(model) for model in record.Models]
return llm_model.LlmProvider(
id=record.id,
name=record.name,
display_name=record.displayName,
description=record.description,
default_credential_provider=record.defaultCredentialProvider,
default_credential_id=record.defaultCredentialId,
default_credential_type=record.defaultCredentialType,
supports_tools=record.supportsTools,
supports_json_output=record.supportsJsonOutput,
supports_reasoning=record.supportsReasoning,
supports_parallel_tool=record.supportsParallelTool,
metadata=_json_dict(record.metadata),
models=models,
)
async def list_providers(
include_models: bool = True, enabled_only: bool = False
) -> list[llm_model.LlmProvider]:
"""
List all LLM providers.
Args:
include_models: Whether to include models for each provider
enabled_only: If True, only include enabled models (for public routes)
"""
include: Any = None
if include_models:
model_where = {"isEnabled": True} if enabled_only else None
include = {
"Models": {
"include": {"Costs": True, "Creator": True},
"where": model_where,
}
}
records = await prisma.models.LlmProvider.prisma().find_many(include=include)
return [_map_provider(record) for record in records]
async def upsert_provider(
request: llm_model.UpsertLlmProviderRequest,
provider_id: str | None = None,
) -> llm_model.LlmProvider:
data: Any = {
"name": request.name,
"displayName": request.display_name,
"description": request.description,
"defaultCredentialProvider": request.default_credential_provider,
"defaultCredentialId": request.default_credential_id,
"defaultCredentialType": request.default_credential_type,
"supportsTools": request.supports_tools,
"supportsJsonOutput": request.supports_json_output,
"supportsReasoning": request.supports_reasoning,
"supportsParallelTool": request.supports_parallel_tool,
"metadata": prisma.Json(request.metadata or {}),
}
include: Any = {"Models": {"include": {"Costs": True, "Creator": True}}}
if provider_id:
record = await prisma.models.LlmProvider.prisma().update(
where={"id": provider_id},
data=data,
include=include,
)
else:
record = await prisma.models.LlmProvider.prisma().create(
data=data,
include=include,
)
if record is None:
raise ValueError("Failed to create/update provider")
return _map_provider(record)
async def delete_provider(provider_id: str) -> bool:
"""
Delete an LLM provider.
A provider can only be deleted if it has no associated models.
Due to onDelete: Restrict on LlmModel.Provider, the database will
block deletion if models exist.
Args:
provider_id: UUID of the provider to delete
Returns:
True if deleted successfully
Raises:
ValueError: If provider not found or has associated models
"""
# Check if provider exists
provider = await prisma.models.LlmProvider.prisma().find_unique(
where={"id": provider_id},
include={"Models": True},
)
if not provider:
raise ValueError(f"Provider with id '{provider_id}' not found")
# Check if provider has any models
model_count = len(provider.Models) if provider.Models else 0
if model_count > 0:
raise ValueError(
f"Cannot delete provider '{provider.displayName}' because it has "
f"{model_count} model(s). Delete all models first."
)
# Safe to delete
await prisma.models.LlmProvider.prisma().delete(where={"id": provider_id})
return True
async def list_models(
provider_id: str | None = None,
enabled_only: bool = False,
page: int = 1,
page_size: int = 50,
) -> llm_model.LlmModelsResponse:
"""
List LLM models with pagination.
Args:
provider_id: Optional filter by provider ID
enabled_only: If True, only return enabled models (for public routes)
page: Page number (1-indexed)
page_size: Number of models per page
"""
# Validate pagination inputs to avoid runtime errors
if page_size < 1:
page_size = 50
if page < 1:
page = 1
where: Any = {}
if provider_id:
where["providerId"] = provider_id
if enabled_only:
where["isEnabled"] = True
# Get total count for pagination
total_items = await prisma.models.LlmModel.prisma().count(
where=where if where else None
)
# Calculate pagination
skip = (page - 1) * page_size
total_pages = (total_items + page_size - 1) // page_size if total_items > 0 else 0
records = await prisma.models.LlmModel.prisma().find_many(
where=where if where else None,
include={"Costs": True, "Creator": True},
skip=skip,
take=page_size,
)
models = [_map_model(record) for record in records]
return llm_model.LlmModelsResponse(
models=models,
pagination=Pagination(
total_items=total_items,
total_pages=total_pages,
current_page=page,
page_size=page_size,
),
)
def _cost_create_payload(
costs: Sequence[llm_model.LlmModelCostInput],
) -> dict[str, Iterable[dict[str, Any]]]:
create_items = []
for cost in costs:
item: dict[str, Any] = {
"unit": cost.unit,
"creditCost": cost.credit_cost,
"credentialProvider": cost.credential_provider,
}
# Only include optional fields if they have values
if cost.credential_id:
item["credentialId"] = cost.credential_id
if cost.credential_type:
item["credentialType"] = cost.credential_type
if cost.currency:
item["currency"] = cost.currency
# Handle metadata - use Prisma Json type
if cost.metadata is not None and cost.metadata != {}:
item["metadata"] = prisma.Json(cost.metadata)
create_items.append(item)
return {"create": create_items}
async def create_model(
request: llm_model.CreateLlmModelRequest,
) -> llm_model.LlmModel:
data: Any = {
"slug": request.slug,
"displayName": request.display_name,
"description": request.description,
"Provider": {"connect": {"id": request.provider_id}},
"contextWindow": request.context_window,
"maxOutputTokens": request.max_output_tokens,
"isEnabled": request.is_enabled,
"capabilities": prisma.Json(request.capabilities or {}),
"metadata": prisma.Json(request.metadata or {}),
"Costs": _cost_create_payload(request.costs),
}
if request.creator_id:
data["Creator"] = {"connect": {"id": request.creator_id}}
record = await prisma.models.LlmModel.prisma().create(
data=data,
include={"Costs": True, "Creator": True, "Provider": True},
)
return _map_model(record)
async def update_model(
model_id: str,
request: llm_model.UpdateLlmModelRequest,
) -> llm_model.LlmModel:
# Build scalar field updates (non-relation fields)
scalar_data: Any = {}
if request.display_name is not None:
scalar_data["displayName"] = request.display_name
if request.description is not None:
scalar_data["description"] = request.description
if request.context_window is not None:
scalar_data["contextWindow"] = request.context_window
if request.max_output_tokens is not None:
scalar_data["maxOutputTokens"] = request.max_output_tokens
if request.is_enabled is not None:
scalar_data["isEnabled"] = request.is_enabled
if request.capabilities is not None:
scalar_data["capabilities"] = request.capabilities
if request.metadata is not None:
scalar_data["metadata"] = request.metadata
# Foreign keys can be updated directly as scalar fields
if request.provider_id is not None:
scalar_data["providerId"] = request.provider_id
if request.creator_id is not None:
# Empty string means remove the creator
scalar_data["creatorId"] = request.creator_id if request.creator_id else None
# If we have costs to update, we need to handle them separately
# because nested writes have different constraints
if request.costs is not None:
# Wrap cost replacement in a transaction for atomicity
async with transaction() as tx:
# First update scalar fields
if scalar_data:
await tx.llmmodel.update(
where={"id": model_id},
data=scalar_data,
)
# Then handle costs: delete existing and create new
await tx.llmmodelcost.delete_many(where={"llmModelId": model_id})
if request.costs:
cost_payload = _cost_create_payload(request.costs)
for cost_item in cost_payload["create"]:
cost_item["llmModelId"] = model_id
await tx.llmmodelcost.create(data=cast(Any, cost_item))
# Fetch the updated record (outside transaction)
record = await prisma.models.LlmModel.prisma().find_unique(
where={"id": model_id},
include={"Costs": True, "Creator": True},
)
else:
# No costs update - simple update
record = await prisma.models.LlmModel.prisma().update(
where={"id": model_id},
data=scalar_data,
include={"Costs": True, "Creator": True},
)
if not record:
raise ValueError(f"Model with id '{model_id}' not found")
return _map_model(record)
async def toggle_model(
model_id: str,
is_enabled: bool,
migrate_to_slug: str | None = None,
migration_reason: str | None = None,
custom_credit_cost: int | None = None,
) -> llm_model.ToggleLlmModelResponse:
"""
Toggle a model's enabled status, optionally migrating workflows when disabling.
Args:
model_id: UUID of the model to toggle
is_enabled: New enabled status
migrate_to_slug: If disabling and this is provided, migrate all workflows
using this model to the specified replacement model
migration_reason: Optional reason for the migration (e.g., "Provider outage")
custom_credit_cost: Optional custom pricing override for migrated workflows.
When set, the billing system should use this cost instead
of the target model's cost for affected nodes.
Returns:
ToggleLlmModelResponse with the updated model and optional migration stats
"""
import json
# Get the model being toggled
model = await prisma.models.LlmModel.prisma().find_unique(
where={"id": model_id}, include={"Costs": True}
)
if not model:
raise ValueError(f"Model with id '{model_id}' not found")
nodes_migrated = 0
migration_id: str | None = None
# If disabling with migration, perform migration first
if not is_enabled and migrate_to_slug:
# Validate replacement model exists and is enabled
replacement = await prisma.models.LlmModel.prisma().find_unique(
where={"slug": migrate_to_slug}
)
if not replacement:
raise ValueError(f"Replacement model '{migrate_to_slug}' not found")
if not replacement.isEnabled:
raise ValueError(
f"Replacement model '{migrate_to_slug}' is disabled. "
f"Please enable it before using it as a replacement."
)
# Perform all operations atomically within a single transaction
# This ensures no nodes are missed between query and update
async with transaction() as tx:
# Get the IDs of nodes that will be migrated (inside transaction for consistency)
node_ids_result = await tx.query_raw(
"""
SELECT id
FROM "AgentNode"
WHERE "constantInput"::jsonb->>'model' = $1
FOR UPDATE
""",
model.slug,
)
migrated_node_ids = (
[row["id"] for row in node_ids_result] if node_ids_result else []
)
nodes_migrated = len(migrated_node_ids)
if nodes_migrated > 0:
# Update by IDs to ensure we only update the exact nodes we queried
# Use JSON array and jsonb_array_elements_text for safe parameterization
node_ids_json = json.dumps(migrated_node_ids)
await tx.execute_raw(
"""
UPDATE "AgentNode"
SET "constantInput" = JSONB_SET(
"constantInput"::jsonb,
'{model}',
to_jsonb($1::text)
)
WHERE id::text IN (
SELECT jsonb_array_elements_text($2::jsonb)
)
""",
migrate_to_slug,
node_ids_json,
)
record = await tx.llmmodel.update(
where={"id": model_id},
data={"isEnabled": is_enabled},
include={"Costs": True},
)
# Create migration record for revert capability
if nodes_migrated > 0:
migration_data: Any = {
"sourceModelSlug": model.slug,
"targetModelSlug": migrate_to_slug,
"reason": migration_reason,
"migratedNodeIds": json.dumps(migrated_node_ids),
"nodeCount": nodes_migrated,
"customCreditCost": custom_credit_cost,
}
migration_record = await tx.llmmodelmigration.create(
data=migration_data
)
migration_id = migration_record.id
else:
# Simple toggle without migration
record = await prisma.models.LlmModel.prisma().update(
where={"id": model_id},
data={"isEnabled": is_enabled},
include={"Costs": True},
)
if record is None:
raise ValueError(f"Model with id '{model_id}' not found")
return llm_model.ToggleLlmModelResponse(
model=_map_model(record),
nodes_migrated=nodes_migrated,
migrated_to_slug=migrate_to_slug if nodes_migrated > 0 else None,
migration_id=migration_id,
)
async def get_model_usage(model_id: str) -> llm_model.LlmModelUsageResponse:
"""Get usage count for a model."""
import prisma as prisma_module
model = await prisma.models.LlmModel.prisma().find_unique(where={"id": model_id})
if not model:
raise ValueError(f"Model with id '{model_id}' not found")
count_result = await prisma_module.get_client().query_raw(
"""
SELECT COUNT(*) as count
FROM "AgentNode"
WHERE "constantInput"::jsonb->>'model' = $1
""",
model.slug,
)
node_count = int(count_result[0]["count"]) if count_result else 0
return llm_model.LlmModelUsageResponse(model_slug=model.slug, node_count=node_count)
async def delete_model(
model_id: str, replacement_model_slug: str | None = None
) -> llm_model.DeleteLlmModelResponse:
"""
Delete a model and optionally migrate all AgentNodes using it to a replacement model.
This performs an atomic operation within a database transaction:
1. Validates the model exists
2. Counts affected nodes
3. If nodes exist, validates replacement model and migrates them
4. Deletes the LlmModel record (CASCADE deletes costs)
Args:
model_id: UUID of the model to delete
replacement_model_slug: Slug of the model to migrate to (required only if nodes use this model)
Returns:
DeleteLlmModelResponse with migration stats
Raises:
ValueError: If model not found, nodes exist but no replacement provided,
replacement not found, or replacement is disabled
"""
# 1. Get the model being deleted (early validation - outside transaction)
model = await prisma.models.LlmModel.prisma().find_unique(
where={"id": model_id}, include={"Costs": True}
)
if not model:
raise ValueError(f"Model with id '{model_id}' not found")
deleted_slug = model.slug
deleted_display_name = model.displayName
# 2. Perform all mutation logic atomically within a transaction
# This prevents TOCTOU issues where nodes could be created between count and delete
async with transaction() as tx:
# Count affected nodes inside the transaction
count_result = await tx.query_raw(
"""
SELECT COUNT(*) as count
FROM "AgentNode"
WHERE "constantInput"::jsonb->>'model' = $1
""",
deleted_slug,
)
nodes_to_migrate = int(count_result[0]["count"]) if count_result else 0
# Validate replacement model only if there are nodes to migrate
if nodes_to_migrate > 0:
if not replacement_model_slug:
raise ValueError(
f"Cannot delete model '{deleted_slug}': {nodes_to_migrate} workflow node(s) "
f"are using it. Please provide a replacement_model_slug to migrate them."
)
replacement = await tx.llmmodel.find_unique(
where={"slug": replacement_model_slug}
)
if not replacement:
raise ValueError(
f"Replacement model '{replacement_model_slug}' not found"
)
if not replacement.isEnabled:
raise ValueError(
f"Replacement model '{replacement_model_slug}' is disabled. "
f"Please enable it before using it as a replacement."
)
# Migrate all AgentNode.constantInput->model to replacement
await tx.execute_raw(
"""
UPDATE "AgentNode"
SET "constantInput" = JSONB_SET(
"constantInput"::jsonb,
'{model}',
to_jsonb($1::text)
)
WHERE "constantInput"::jsonb->>'model' = $2
""",
replacement_model_slug,
deleted_slug,
)
# Delete the model (CASCADE will delete costs automatically)
await tx.llmmodel.delete(where={"id": model_id})
# Build appropriate message based on whether migration happened
if nodes_to_migrate > 0:
message = (
f"Successfully deleted model '{deleted_display_name}' ({deleted_slug}) "
f"and migrated {nodes_to_migrate} workflow node(s) to '{replacement_model_slug}'."
)
else:
message = (
f"Successfully deleted model '{deleted_display_name}' ({deleted_slug}). "
f"No workflows were using this model."
)
return llm_model.DeleteLlmModelResponse(
deleted_model_slug=deleted_slug,
deleted_model_display_name=deleted_display_name,
replacement_model_slug=replacement_model_slug,
nodes_migrated=nodes_to_migrate,
message=message,
)
def _map_migration(
record: prisma.models.LlmModelMigration,
) -> llm_model.LlmModelMigration:
return llm_model.LlmModelMigration(
id=record.id,
source_model_slug=record.sourceModelSlug,
target_model_slug=record.targetModelSlug,
reason=record.reason,
node_count=record.nodeCount,
custom_credit_cost=record.customCreditCost,
is_reverted=record.isReverted,
created_at=record.createdAt,
reverted_at=record.revertedAt,
)
async def list_migrations(
include_reverted: bool = False,
) -> list[llm_model.LlmModelMigration]:
"""
List model migrations, optionally including reverted ones.
Args:
include_reverted: If True, include reverted migrations. Default is False.
Returns:
List of LlmModelMigration records
"""
where: Any = None if include_reverted else {"isReverted": False}
records = await prisma.models.LlmModelMigration.prisma().find_many(
where=where,
order={"createdAt": "desc"},
)
return [_map_migration(record) for record in records]
async def get_migration(migration_id: str) -> llm_model.LlmModelMigration | None:
"""Get a specific migration by ID."""
record = await prisma.models.LlmModelMigration.prisma().find_unique(
where={"id": migration_id}
)
return _map_migration(record) if record else None
async def revert_migration(
migration_id: str,
re_enable_source_model: bool = True,
) -> llm_model.RevertMigrationResponse:
"""
Revert a model migration, restoring affected nodes to their original model.
This only reverts the specific nodes that were migrated, not all nodes
currently using the target model.
Args:
migration_id: UUID of the migration to revert
re_enable_source_model: Whether to re-enable the source model if it's disabled
Returns:
RevertMigrationResponse with revert stats
Raises:
ValueError: If migration not found, already reverted, or source model not available
"""
import json
from datetime import datetime, timezone
# Get the migration record
migration = await prisma.models.LlmModelMigration.prisma().find_unique(
where={"id": migration_id}
)
if not migration:
raise ValueError(f"Migration with id '{migration_id}' not found")
if migration.isReverted:
raise ValueError(
f"Migration '{migration_id}' has already been reverted "
f"on {migration.revertedAt.isoformat() if migration.revertedAt else 'unknown date'}"
)
# Check if source model exists
source_model = await prisma.models.LlmModel.prisma().find_unique(
where={"slug": migration.sourceModelSlug}
)
if not source_model:
raise ValueError(
f"Source model '{migration.sourceModelSlug}' no longer exists. "
f"Cannot revert migration."
)
# Get the migrated node IDs (Prisma auto-parses JSONB to list)
migrated_node_ids: list[str] = (
migration.migratedNodeIds
if isinstance(migration.migratedNodeIds, list)
else json.loads(migration.migratedNodeIds) # type: ignore
)
if not migrated_node_ids:
raise ValueError("No nodes to revert in this migration")
# Track if we need to re-enable the source model
source_model_was_disabled = not source_model.isEnabled
should_re_enable = source_model_was_disabled and re_enable_source_model
source_model_re_enabled = False
# Perform revert atomically
async with transaction() as tx:
# Re-enable the source model if requested and it was disabled
if should_re_enable:
await tx.llmmodel.update(
where={"id": source_model.id},
data={"isEnabled": True},
)
source_model_re_enabled = True
# Update only the specific nodes that were migrated
# We need to check that they still have the target model (haven't been changed since)
# Use a single batch update for efficiency
# Use JSON array and jsonb_array_elements_text for safe parameterization
node_ids_json = json.dumps(migrated_node_ids)
result = await tx.execute_raw(
"""
UPDATE "AgentNode"
SET "constantInput" = JSONB_SET(
"constantInput"::jsonb,
'{model}',
to_jsonb($1::text)
)
WHERE id::text IN (
SELECT jsonb_array_elements_text($2::jsonb)
)
AND "constantInput"::jsonb->>'model' = $3
""",
migration.sourceModelSlug,
node_ids_json,
migration.targetModelSlug,
)
nodes_reverted = result if result else 0
# Mark migration as reverted
await tx.llmmodelmigration.update(
where={"id": migration_id},
data={
"isReverted": True,
"revertedAt": datetime.now(timezone.utc),
},
)
# Calculate nodes that were already changed since migration
nodes_already_changed = len(migrated_node_ids) - nodes_reverted
# Build appropriate message
message_parts = [
f"Successfully reverted migration: {nodes_reverted} node(s) restored "
f"from '{migration.targetModelSlug}' to '{migration.sourceModelSlug}'."
]
if nodes_already_changed > 0:
message_parts.append(
f" {nodes_already_changed} node(s) were already changed and not reverted."
)
if source_model_re_enabled:
message_parts.append(
f" Model '{migration.sourceModelSlug}' has been re-enabled."
)
return llm_model.RevertMigrationResponse(
migration_id=migration_id,
source_model_slug=migration.sourceModelSlug,
target_model_slug=migration.targetModelSlug,
nodes_reverted=nodes_reverted,
nodes_already_changed=nodes_already_changed,
source_model_re_enabled=source_model_re_enabled,
message="".join(message_parts),
)
# ============================================================================
# Creator CRUD operations
# ============================================================================
async def list_creators() -> list[llm_model.LlmModelCreator]:
"""List all LLM model creators."""
records = await prisma.models.LlmModelCreator.prisma().find_many(
order={"displayName": "asc"}
)
return [_map_creator(record) for record in records]
async def get_creator(creator_id: str) -> llm_model.LlmModelCreator | None:
"""Get a specific creator by ID."""
record = await prisma.models.LlmModelCreator.prisma().find_unique(
where={"id": creator_id}
)
return _map_creator(record) if record else None
async def upsert_creator(
request: llm_model.UpsertLlmCreatorRequest,
creator_id: str | None = None,
) -> llm_model.LlmModelCreator:
"""Create or update a model creator."""
data: Any = {
"name": request.name,
"displayName": request.display_name,
"description": request.description,
"websiteUrl": request.website_url,
"logoUrl": request.logo_url,
"metadata": prisma.Json(request.metadata or {}),
}
if creator_id:
record = await prisma.models.LlmModelCreator.prisma().update(
where={"id": creator_id},
data=data,
)
else:
record = await prisma.models.LlmModelCreator.prisma().create(data=data)
if record is None:
raise ValueError("Failed to create/update creator")
return _map_creator(record)
async def delete_creator(creator_id: str) -> bool:
"""
Delete a model creator.
This will set creatorId to NULL on all associated models (due to onDelete: SetNull).
Args:
creator_id: UUID of the creator to delete
Returns:
True if deleted successfully
Raises:
ValueError: If creator not found
"""
creator = await prisma.models.LlmModelCreator.prisma().find_unique(
where={"id": creator_id}
)
if not creator:
raise ValueError(f"Creator with id '{creator_id}' not found")
await prisma.models.LlmModelCreator.prisma().delete(where={"id": creator_id})
return True
async def get_recommended_model() -> llm_model.LlmModel | None:
"""
Get the currently recommended LLM model.
Returns:
The recommended model, or None if no model is marked as recommended.
"""
record = await prisma.models.LlmModel.prisma().find_first(
where={"isRecommended": True, "isEnabled": True},
include={"Costs": True, "Creator": True},
)
return _map_model(record) if record else None
async def set_recommended_model(
model_id: str,
) -> tuple[llm_model.LlmModel, str | None]:
"""
Set a model as the recommended model.
This will clear the isRecommended flag from any other model and set it
on the specified model. The model must be enabled.
Args:
model_id: UUID of the model to set as recommended
Returns:
Tuple of (the updated model, previous recommended model slug or None)
Raises:
ValueError: If model not found or not enabled
"""
# First, verify the model exists and is enabled
target_model = await prisma.models.LlmModel.prisma().find_unique(
where={"id": model_id}
)
if not target_model:
raise ValueError(f"Model with id '{model_id}' not found")
if not target_model.isEnabled:
raise ValueError(
f"Cannot set disabled model '{target_model.slug}' as recommended"
)
# Get the current recommended model (if any)
current_recommended = await prisma.models.LlmModel.prisma().find_first(
where={"isRecommended": True}
)
previous_slug = current_recommended.slug if current_recommended else None
# Use a transaction to ensure atomicity
async with transaction() as tx:
# Clear isRecommended from all models
await tx.llmmodel.update_many(
where={"isRecommended": True},
data={"isRecommended": False},
)
# Set the new recommended model
await tx.llmmodel.update(
where={"id": model_id},
data={"isRecommended": True},
)
# Fetch and return the updated model
updated_record = await prisma.models.LlmModel.prisma().find_unique(
where={"id": model_id},
include={"Costs": True, "Creator": True},
)
if not updated_record:
raise ValueError("Failed to fetch updated model")
return _map_model(updated_record), previous_slug
async def get_recommended_model_slug() -> str | None:
"""
Get the slug of the currently recommended LLM model.
Returns:
The slug of the recommended model, or None if no model is marked as recommended.
"""
record = await prisma.models.LlmModel.prisma().find_first(
where={"isRecommended": True, "isEnabled": True},
)
return record.slug if record else None

View File

@@ -1,235 +0,0 @@
from __future__ import annotations
import re
from datetime import datetime
from typing import Any, Optional
import prisma.enums
import pydantic
from backend.util.models import Pagination
# Pattern for valid model slugs: alphanumeric start, then alphanumeric, dots, underscores, slashes, hyphens
SLUG_PATTERN = re.compile(r"^[a-zA-Z0-9][a-zA-Z0-9._/-]*$")
class LlmModelCost(pydantic.BaseModel):
id: str
unit: prisma.enums.LlmCostUnit = prisma.enums.LlmCostUnit.RUN
credit_cost: int
credential_provider: str
credential_id: Optional[str] = None
credential_type: Optional[str] = None
currency: Optional[str] = None
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
class LlmModelCreator(pydantic.BaseModel):
"""Represents the organization that created/trained the model (e.g., OpenAI, Meta)."""
id: str
name: str
display_name: str
description: Optional[str] = None
website_url: Optional[str] = None
logo_url: Optional[str] = None
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
class LlmModel(pydantic.BaseModel):
id: str
slug: str
display_name: str
description: Optional[str] = None
provider_id: str
creator_id: Optional[str] = None
creator: Optional[LlmModelCreator] = None
context_window: int
max_output_tokens: Optional[int] = None
is_enabled: bool = True
is_recommended: bool = False
capabilities: dict[str, Any] = pydantic.Field(default_factory=dict)
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
costs: list[LlmModelCost] = pydantic.Field(default_factory=list)
class LlmProvider(pydantic.BaseModel):
id: str
name: str
display_name: str
description: Optional[str] = None
default_credential_provider: Optional[str] = None
default_credential_id: Optional[str] = None
default_credential_type: Optional[str] = None
supports_tools: bool = True
supports_json_output: bool = True
supports_reasoning: bool = False
supports_parallel_tool: bool = False
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
models: list[LlmModel] = pydantic.Field(default_factory=list)
class LlmProvidersResponse(pydantic.BaseModel):
providers: list[LlmProvider]
class LlmModelsResponse(pydantic.BaseModel):
models: list[LlmModel]
pagination: Optional[Pagination] = None
class LlmCreatorsResponse(pydantic.BaseModel):
creators: list[LlmModelCreator]
class UpsertLlmProviderRequest(pydantic.BaseModel):
name: str
display_name: str
description: Optional[str] = None
default_credential_provider: Optional[str] = None
default_credential_id: Optional[str] = None
default_credential_type: Optional[str] = "api_key"
supports_tools: bool = True
supports_json_output: bool = True
supports_reasoning: bool = False
supports_parallel_tool: bool = False
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
class UpsertLlmCreatorRequest(pydantic.BaseModel):
name: str
display_name: str
description: Optional[str] = None
website_url: Optional[str] = None
logo_url: Optional[str] = None
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
class LlmModelCostInput(pydantic.BaseModel):
unit: prisma.enums.LlmCostUnit = prisma.enums.LlmCostUnit.RUN
credit_cost: int
credential_provider: str
credential_id: Optional[str] = None
credential_type: Optional[str] = "api_key"
currency: Optional[str] = None
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
class CreateLlmModelRequest(pydantic.BaseModel):
slug: str
display_name: str
description: Optional[str] = None
provider_id: str
creator_id: Optional[str] = None
context_window: int
max_output_tokens: Optional[int] = None
is_enabled: bool = True
capabilities: dict[str, Any] = pydantic.Field(default_factory=dict)
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
costs: list[LlmModelCostInput]
@pydantic.field_validator("slug")
@classmethod
def validate_slug(cls, v: str) -> str:
if not v or len(v) > 100:
raise ValueError("Slug must be 1-100 characters")
if not SLUG_PATTERN.match(v):
raise ValueError(
"Slug must start with alphanumeric and contain only "
"alphanumeric characters, dots, underscores, slashes, or hyphens"
)
return v
class UpdateLlmModelRequest(pydantic.BaseModel):
display_name: Optional[str] = None
description: Optional[str] = None
context_window: Optional[int] = None
max_output_tokens: Optional[int] = None
is_enabled: Optional[bool] = None
capabilities: Optional[dict[str, Any]] = None
metadata: Optional[dict[str, Any]] = None
provider_id: Optional[str] = None
creator_id: Optional[str] = None
costs: Optional[list[LlmModelCostInput]] = None
class ToggleLlmModelRequest(pydantic.BaseModel):
is_enabled: bool
migrate_to_slug: Optional[str] = None
migration_reason: Optional[str] = None # e.g., "Provider outage"
# Custom pricing override for migrated workflows. When set, billing should use
# this cost instead of the target model's cost for affected nodes.
# See LlmModelMigration in schema.prisma for full documentation.
custom_credit_cost: Optional[int] = None
class ToggleLlmModelResponse(pydantic.BaseModel):
model: LlmModel
nodes_migrated: int = 0
migrated_to_slug: Optional[str] = None
migration_id: Optional[str] = None # ID of the migration record for revert
class DeleteLlmModelResponse(pydantic.BaseModel):
deleted_model_slug: str
deleted_model_display_name: str
replacement_model_slug: Optional[str] = None
nodes_migrated: int
message: str
class LlmModelUsageResponse(pydantic.BaseModel):
model_slug: str
node_count: int
# Migration tracking models
class LlmModelMigration(pydantic.BaseModel):
id: str
source_model_slug: str
target_model_slug: str
reason: Optional[str] = None
node_count: int
# Custom pricing override - billing should use this instead of target model's cost
custom_credit_cost: Optional[int] = None
is_reverted: bool = False
created_at: datetime
reverted_at: Optional[datetime] = None
class LlmMigrationsResponse(pydantic.BaseModel):
migrations: list[LlmModelMigration]
class RevertMigrationRequest(pydantic.BaseModel):
re_enable_source_model: bool = (
True # Whether to re-enable the source model if disabled
)
class RevertMigrationResponse(pydantic.BaseModel):
migration_id: str
source_model_slug: str
target_model_slug: str
nodes_reverted: int
nodes_already_changed: int = (
0 # Nodes that were modified since migration (not reverted)
)
source_model_re_enabled: bool = False # Whether the source model was re-enabled
message: str
class SetRecommendedModelRequest(pydantic.BaseModel):
model_id: str
class SetRecommendedModelResponse(pydantic.BaseModel):
model: LlmModel
previous_recommended_slug: Optional[str] = None
message: str
class RecommendedModelResponse(pydantic.BaseModel):
model: Optional[LlmModel] = None
slug: Optional[str] = None

View File

@@ -1,29 +0,0 @@
import autogpt_libs.auth
import fastapi
from backend.server.v2.llm import db as llm_db
from backend.server.v2.llm import model as llm_model
router = fastapi.APIRouter(
prefix="/llm",
tags=["llm"],
dependencies=[fastapi.Security(autogpt_libs.auth.requires_user)],
)
@router.get("/models", response_model=llm_model.LlmModelsResponse)
async def list_models(
page: int = fastapi.Query(default=1, ge=1, description="Page number (1-indexed)"),
page_size: int = fastapi.Query(
default=50, ge=1, le=100, description="Number of models per page"
),
):
"""List all enabled LLM models available to users."""
return await llm_db.list_models(enabled_only=True, page=page, page_size=page_size)
@router.get("/providers", response_model=llm_model.LlmProvidersResponse)
async def list_providers():
"""List all LLM providers with their enabled models."""
providers = await llm_db.list_providers(include_models=True, enabled_only=True)
return llm_model.LlmProvidersResponse(providers=providers)

View File

@@ -662,6 +662,17 @@ class Secrets(UpdateTrackingModel["Secrets"], BaseSettings):
mem0_api_key: str = Field(default="", description="Mem0 API key")
elevenlabs_api_key: str = Field(default="", description="ElevenLabs API key")
linear_api_key: str = Field(
default="", description="Linear API key for system-level operations"
)
linear_feature_request_project_id: str = Field(
default="",
description="Linear project ID where feature requests are tracked",
)
linear_feature_request_team_id: str = Field(
default="",
description="Linear team ID used when creating feature request issues",
)
linear_client_id: str = Field(default="", description="Linear client ID")
linear_client_secret: str = Field(default="", description="Linear client secret")

View File

@@ -1,81 +0,0 @@
-- CreateEnum
CREATE TYPE "LlmCostUnit" AS ENUM ('RUN', 'TOKENS');
-- CreateTable
CREATE TABLE "LlmProvider" (
"id" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"name" TEXT NOT NULL,
"displayName" TEXT NOT NULL,
"description" TEXT,
"defaultCredentialProvider" TEXT,
"defaultCredentialId" TEXT,
"defaultCredentialType" TEXT,
"supportsTools" BOOLEAN NOT NULL DEFAULT TRUE,
"supportsJsonOutput" BOOLEAN NOT NULL DEFAULT TRUE,
"supportsReasoning" BOOLEAN NOT NULL DEFAULT FALSE,
"supportsParallelTool" BOOLEAN NOT NULL DEFAULT FALSE,
"metadata" JSONB NOT NULL DEFAULT '{}'::jsonb,
CONSTRAINT "LlmProvider_pkey" PRIMARY KEY ("id"),
CONSTRAINT "LlmProvider_name_key" UNIQUE ("name")
);
-- CreateTable
CREATE TABLE "LlmModel" (
"id" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"slug" TEXT NOT NULL,
"displayName" TEXT NOT NULL,
"description" TEXT,
"providerId" TEXT NOT NULL,
"contextWindow" INTEGER NOT NULL,
"maxOutputTokens" INTEGER,
"isEnabled" BOOLEAN NOT NULL DEFAULT TRUE,
"capabilities" JSONB NOT NULL DEFAULT '{}'::jsonb,
"metadata" JSONB NOT NULL DEFAULT '{}'::jsonb,
CONSTRAINT "LlmModel_pkey" PRIMARY KEY ("id"),
CONSTRAINT "LlmModel_slug_key" UNIQUE ("slug")
);
-- CreateTable
CREATE TABLE "LlmModelCost" (
"id" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"unit" "LlmCostUnit" NOT NULL DEFAULT 'RUN',
"creditCost" INTEGER NOT NULL,
"credentialProvider" TEXT NOT NULL,
"credentialId" TEXT,
"credentialType" TEXT,
"currency" TEXT,
"metadata" JSONB NOT NULL DEFAULT '{}'::jsonb,
"llmModelId" TEXT NOT NULL,
CONSTRAINT "LlmModelCost_pkey" PRIMARY KEY ("id")
);
-- CreateIndex
CREATE INDEX "LlmModel_providerId_isEnabled_idx" ON "LlmModel"("providerId", "isEnabled");
-- CreateIndex
CREATE INDEX "LlmModel_slug_idx" ON "LlmModel"("slug");
-- CreateIndex
CREATE INDEX "LlmModelCost_llmModelId_idx" ON "LlmModelCost"("llmModelId");
-- CreateIndex
CREATE INDEX "LlmModelCost_credentialProvider_idx" ON "LlmModelCost"("credentialProvider");
-- CreateIndex
CREATE UNIQUE INDEX "LlmModelCost_llmModelId_credentialProvider_unit_key" ON "LlmModelCost"("llmModelId", "credentialProvider", "unit");
-- AddForeignKey
ALTER TABLE "LlmModel" ADD CONSTRAINT "LlmModel_providerId_fkey" FOREIGN KEY ("providerId") REFERENCES "LlmProvider"("id") ON DELETE RESTRICT ON UPDATE CASCADE;
-- AddForeignKey
ALTER TABLE "LlmModelCost" ADD CONSTRAINT "LlmModelCost_llmModelId_fkey" FOREIGN KEY ("llmModelId") REFERENCES "LlmModel"("id") ON DELETE CASCADE ON UPDATE CASCADE;

View File

@@ -1,226 +0,0 @@
-- Seed LLM Registry from existing hard-coded data
-- This migration populates the LlmProvider, LlmModel, and LlmModelCost tables
-- with data from the existing MODEL_METADATA and MODEL_COST dictionaries
-- Insert Providers
INSERT INTO "LlmProvider" ("id", "name", "displayName", "description", "defaultCredentialProvider", "defaultCredentialType", "supportsTools", "supportsJsonOutput", "supportsReasoning", "supportsParallelTool", "metadata")
VALUES
(gen_random_uuid(), 'openai', 'OpenAI', 'OpenAI language models', 'openai', 'api_key', true, true, true, true, '{}'::jsonb),
(gen_random_uuid(), 'anthropic', 'Anthropic', 'Anthropic Claude models', 'anthropic', 'api_key', true, true, true, false, '{}'::jsonb),
(gen_random_uuid(), 'groq', 'Groq', 'Groq inference API', 'groq', 'api_key', false, true, false, false, '{}'::jsonb),
(gen_random_uuid(), 'open_router', 'OpenRouter', 'OpenRouter unified API', 'open_router', 'api_key', true, true, false, false, '{}'::jsonb),
(gen_random_uuid(), 'aiml_api', 'AI/ML API', 'AI/ML API models', 'aiml_api', 'api_key', false, true, false, false, '{}'::jsonb),
(gen_random_uuid(), 'ollama', 'Ollama', 'Ollama local models', 'ollama', 'api_key', false, true, false, false, '{}'::jsonb),
(gen_random_uuid(), 'llama_api', 'Llama API', 'Llama API models', 'llama_api', 'api_key', false, true, false, false, '{}'::jsonb),
(gen_random_uuid(), 'v0', 'v0', 'v0 by Vercel models', 'v0', 'api_key', true, true, false, false, '{}'::jsonb)
ON CONFLICT ("name") DO NOTHING;
-- Insert Models (using CTEs to reference provider IDs)
WITH provider_ids AS (
SELECT "id", "name" FROM "LlmProvider"
)
INSERT INTO "LlmModel" ("id", "slug", "displayName", "description", "providerId", "contextWindow", "maxOutputTokens", "isEnabled", "capabilities", "metadata")
SELECT
gen_random_uuid(),
model_slug,
model_display_name,
NULL,
p."id",
context_window,
max_output_tokens,
true,
'{}'::jsonb,
'{}'::jsonb
FROM (VALUES
-- OpenAI models
('o3', 'O3', 'openai', 200000, 100000),
('o3-mini', 'O3 Mini', 'openai', 200000, 100000),
('o1', 'O1', 'openai', 200000, 100000),
('o1-mini', 'O1 Mini', 'openai', 128000, 65536),
('gpt-5-2025-08-07', 'GPT 5', 'openai', 400000, 128000),
('gpt-5.1-2025-11-13', 'GPT 5.1', 'openai', 400000, 128000),
('gpt-5-mini-2025-08-07', 'GPT 5 Mini', 'openai', 400000, 128000),
('gpt-5-nano-2025-08-07', 'GPT 5 Nano', 'openai', 400000, 128000),
('gpt-5-chat-latest', 'GPT 5 Chat', 'openai', 400000, 16384),
('gpt-4.1-2025-04-14', 'GPT 4.1', 'openai', 1000000, 32768),
('gpt-4.1-mini-2025-04-14', 'GPT 4.1 Mini', 'openai', 1047576, 32768),
('gpt-4o-mini', 'GPT 4o Mini', 'openai', 128000, 16384),
('gpt-4o', 'GPT 4o', 'openai', 128000, 16384),
('gpt-4-turbo', 'GPT 4 Turbo', 'openai', 128000, 4096),
('gpt-3.5-turbo', 'GPT 3.5 Turbo', 'openai', 16385, 4096),
-- Anthropic models
('claude-opus-4-1-20250805', 'Claude 4.1 Opus', 'anthropic', 200000, 32000),
('claude-opus-4-20250514', 'Claude 4 Opus', 'anthropic', 200000, 32000),
('claude-sonnet-4-20250514', 'Claude 4 Sonnet', 'anthropic', 200000, 64000),
('claude-opus-4-5-20251101', 'Claude 4.5 Opus', 'anthropic', 200000, 64000),
('claude-sonnet-4-5-20250929', 'Claude 4.5 Sonnet', 'anthropic', 200000, 64000),
('claude-haiku-4-5-20251001', 'Claude 4.5 Haiku', 'anthropic', 200000, 64000),
('claude-3-7-sonnet-20250219', 'Claude 3.7 Sonnet', 'anthropic', 200000, 64000),
('claude-3-haiku-20240307', 'Claude 3 Haiku', 'anthropic', 200000, 4096),
-- AI/ML API models
('Qwen/Qwen2.5-72B-Instruct-Turbo', 'Qwen 2.5 72B', 'aiml_api', 32000, 8000),
('nvidia/llama-3.1-nemotron-70b-instruct', 'Llama 3.1 Nemotron 70B', 'aiml_api', 128000, 40000),
('meta-llama/Llama-3.3-70B-Instruct-Turbo', 'Llama 3.3 70B', 'aiml_api', 128000, NULL),
('meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo', 'Meta Llama 3.1 70B', 'aiml_api', 131000, 2000),
('meta-llama/Llama-3.2-3B-Instruct-Turbo', 'Llama 3.2 3B', 'aiml_api', 128000, NULL),
-- Groq models
('llama-3.3-70b-versatile', 'Llama 3.3 70B', 'groq', 128000, 32768),
('llama-3.1-8b-instant', 'Llama 3.1 8B', 'groq', 128000, 8192),
-- Ollama models
('llama3.3', 'Llama 3.3', 'ollama', 8192, NULL),
('llama3.2', 'Llama 3.2', 'ollama', 8192, NULL),
('llama3', 'Llama 3', 'ollama', 8192, NULL),
('llama3.1:405b', 'Llama 3.1 405B', 'ollama', 8192, NULL),
('dolphin-mistral:latest', 'Dolphin Mistral', 'ollama', 32768, NULL),
-- OpenRouter models
('google/gemini-2.5-pro-preview-03-25', 'Gemini 2.5 Pro', 'open_router', 1050000, 8192),
('google/gemini-3-pro-preview', 'Gemini 3 Pro Preview', 'open_router', 1048576, 65535),
('google/gemini-2.5-flash', 'Gemini 2.5 Flash', 'open_router', 1048576, 65535),
('google/gemini-2.0-flash-001', 'Gemini 2.0 Flash', 'open_router', 1048576, 8192),
('google/gemini-2.5-flash-lite-preview-06-17', 'Gemini 2.5 Flash Lite Preview', 'open_router', 1048576, 65535),
('google/gemini-2.0-flash-lite-001', 'Gemini 2.0 Flash Lite', 'open_router', 1048576, 8192),
('mistralai/mistral-nemo', 'Mistral Nemo', 'open_router', 128000, 4096),
('cohere/command-r-08-2024', 'Command R', 'open_router', 128000, 4096),
('cohere/command-r-plus-08-2024', 'Command R Plus', 'open_router', 128000, 4096),
('deepseek/deepseek-chat', 'DeepSeek Chat', 'open_router', 64000, 2048),
('deepseek/deepseek-r1-0528', 'DeepSeek R1', 'open_router', 163840, 163840),
('perplexity/sonar', 'Perplexity Sonar', 'open_router', 127000, 8000),
('perplexity/sonar-pro', 'Perplexity Sonar Pro', 'open_router', 200000, 8000),
('perplexity/sonar-deep-research', 'Perplexity Sonar Deep Research', 'open_router', 128000, 16000),
('nousresearch/hermes-3-llama-3.1-405b', 'Hermes 3 Llama 3.1 405B', 'open_router', 131000, 4096),
('nousresearch/hermes-3-llama-3.1-70b', 'Hermes 3 Llama 3.1 70B', 'open_router', 12288, 12288),
('openai/gpt-oss-120b', 'GPT OSS 120B', 'open_router', 131072, 131072),
('openai/gpt-oss-20b', 'GPT OSS 20B', 'open_router', 131072, 32768),
('amazon/nova-lite-v1', 'Amazon Nova Lite', 'open_router', 300000, 5120),
('amazon/nova-micro-v1', 'Amazon Nova Micro', 'open_router', 128000, 5120),
('amazon/nova-pro-v1', 'Amazon Nova Pro', 'open_router', 300000, 5120),
('microsoft/wizardlm-2-8x22b', 'WizardLM 2 8x22B', 'open_router', 65536, 4096),
('gryphe/mythomax-l2-13b', 'MythoMax L2 13B', 'open_router', 4096, 4096),
('meta-llama/llama-4-scout', 'Llama 4 Scout', 'open_router', 131072, 131072),
('meta-llama/llama-4-maverick', 'Llama 4 Maverick', 'open_router', 1048576, 1000000),
('x-ai/grok-4', 'Grok 4', 'open_router', 256000, 256000),
('x-ai/grok-4-fast', 'Grok 4 Fast', 'open_router', 2000000, 30000),
('x-ai/grok-4.1-fast', 'Grok 4.1 Fast', 'open_router', 2000000, 30000),
('x-ai/grok-code-fast-1', 'Grok Code Fast 1', 'open_router', 256000, 10000),
('moonshotai/kimi-k2', 'Kimi K2', 'open_router', 131000, 131000),
('qwen/qwen3-235b-a22b-thinking-2507', 'Qwen 3 235B Thinking', 'open_router', 262144, 262144),
('qwen/qwen3-coder', 'Qwen 3 Coder', 'open_router', 262144, 262144),
-- Llama API models
('Llama-4-Scout-17B-16E-Instruct-FP8', 'Llama 4 Scout', 'llama_api', 128000, 4028),
('Llama-4-Maverick-17B-128E-Instruct-FP8', 'Llama 4 Maverick', 'llama_api', 128000, 4028),
('Llama-3.3-8B-Instruct', 'Llama 3.3 8B', 'llama_api', 128000, 4028),
('Llama-3.3-70B-Instruct', 'Llama 3.3 70B', 'llama_api', 128000, 4028),
-- v0 models
('v0-1.5-md', 'v0 1.5 MD', 'v0', 128000, 64000),
('v0-1.5-lg', 'v0 1.5 LG', 'v0', 512000, 64000),
('v0-1.0-md', 'v0 1.0 MD', 'v0', 128000, 64000)
) AS models(model_slug, model_display_name, provider_name, context_window, max_output_tokens)
JOIN provider_ids p ON p."name" = models.provider_name
ON CONFLICT ("slug") DO NOTHING;
-- Insert Costs (using CTEs to reference model IDs)
WITH model_ids AS (
SELECT "id", "slug", "providerId" FROM "LlmModel"
),
provider_ids AS (
SELECT "id", "name" FROM "LlmProvider"
)
INSERT INTO "LlmModelCost" ("id", "unit", "creditCost", "credentialProvider", "credentialId", "credentialType", "currency", "metadata", "llmModelId")
SELECT
gen_random_uuid(),
'RUN'::"LlmCostUnit",
cost,
p."name",
NULL,
'api_key',
NULL,
'{}'::jsonb,
m."id"
FROM (VALUES
-- OpenAI costs
('o3', 4),
('o3-mini', 2),
('o1', 16),
('o1-mini', 4),
('gpt-5-2025-08-07', 2),
('gpt-5.1-2025-11-13', 5),
('gpt-5-mini-2025-08-07', 1),
('gpt-5-nano-2025-08-07', 1),
('gpt-5-chat-latest', 5),
('gpt-4.1-2025-04-14', 2),
('gpt-4.1-mini-2025-04-14', 1),
('gpt-4o-mini', 1),
('gpt-4o', 3),
('gpt-4-turbo', 10),
('gpt-3.5-turbo', 1),
-- Anthropic costs
('claude-opus-4-1-20250805', 21),
('claude-opus-4-20250514', 21),
('claude-sonnet-4-20250514', 5),
('claude-haiku-4-5-20251001', 4),
('claude-opus-4-5-20251101', 14),
('claude-sonnet-4-5-20250929', 9),
('claude-3-7-sonnet-20250219', 5),
('claude-3-haiku-20240307', 1),
-- AI/ML API costs
('Qwen/Qwen2.5-72B-Instruct-Turbo', 1),
('nvidia/llama-3.1-nemotron-70b-instruct', 1),
('meta-llama/Llama-3.3-70B-Instruct-Turbo', 1),
('meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo', 1),
('meta-llama/Llama-3.2-3B-Instruct-Turbo', 1),
-- Groq costs
('llama-3.3-70b-versatile', 1),
('llama-3.1-8b-instant', 1),
-- Ollama costs
('llama3.3', 1),
('llama3.2', 1),
('llama3', 1),
('llama3.1:405b', 1),
('dolphin-mistral:latest', 1),
-- OpenRouter costs
('google/gemini-2.5-pro-preview-03-25', 4),
('google/gemini-3-pro-preview', 5),
('mistralai/mistral-nemo', 1),
('cohere/command-r-08-2024', 1),
('cohere/command-r-plus-08-2024', 3),
('deepseek/deepseek-chat', 2),
('perplexity/sonar', 1),
('perplexity/sonar-pro', 5),
('perplexity/sonar-deep-research', 10),
('nousresearch/hermes-3-llama-3.1-405b', 1),
('nousresearch/hermes-3-llama-3.1-70b', 1),
('amazon/nova-lite-v1', 1),
('amazon/nova-micro-v1', 1),
('amazon/nova-pro-v1', 1),
('microsoft/wizardlm-2-8x22b', 1),
('gryphe/mythomax-l2-13b', 1),
('meta-llama/llama-4-scout', 1),
('meta-llama/llama-4-maverick', 1),
('x-ai/grok-4', 9),
('x-ai/grok-4-fast', 1),
('x-ai/grok-4.1-fast', 1),
('x-ai/grok-code-fast-1', 1),
('moonshotai/kimi-k2', 1),
('qwen/qwen3-235b-a22b-thinking-2507', 1),
('qwen/qwen3-coder', 9),
('google/gemini-2.5-flash', 1),
('google/gemini-2.0-flash-001', 1),
('google/gemini-2.5-flash-lite-preview-06-17', 1),
('google/gemini-2.0-flash-lite-001', 1),
('deepseek/deepseek-r1-0528', 1),
('openai/gpt-oss-120b', 1),
('openai/gpt-oss-20b', 1),
-- Llama API costs
('Llama-4-Scout-17B-16E-Instruct-FP8', 1),
('Llama-4-Maverick-17B-128E-Instruct-FP8', 1),
('Llama-3.3-8B-Instruct', 1),
('Llama-3.3-70B-Instruct', 1),
-- v0 costs
('v0-1.5-md', 1),
('v0-1.5-lg', 2),
('v0-1.0-md', 1)
) AS costs(model_slug, cost)
JOIN model_ids m ON m."slug" = costs.model_slug
JOIN provider_ids p ON p."id" = m."providerId"
ON CONFLICT ("llmModelId", "credentialProvider", "unit") DO NOTHING;

View File

@@ -1,25 +0,0 @@
-- CreateTable
CREATE TABLE "LlmModelMigration" (
"id" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL,
"sourceModelSlug" TEXT NOT NULL,
"targetModelSlug" TEXT NOT NULL,
"reason" TEXT,
"migratedNodeIds" JSONB NOT NULL DEFAULT '[]',
"nodeCount" INTEGER NOT NULL,
"customCreditCost" INTEGER,
"isReverted" BOOLEAN NOT NULL DEFAULT false,
"revertedAt" TIMESTAMP(3),
CONSTRAINT "LlmModelMigration_pkey" PRIMARY KEY ("id")
);
-- CreateIndex
CREATE INDEX "LlmModelMigration_sourceModelSlug_idx" ON "LlmModelMigration"("sourceModelSlug");
-- CreateIndex
CREATE INDEX "LlmModelMigration_targetModelSlug_idx" ON "LlmModelMigration"("targetModelSlug");
-- CreateIndex
CREATE INDEX "LlmModelMigration_isReverted_idx" ON "LlmModelMigration"("isReverted");

View File

@@ -1,127 +0,0 @@
-- Add LlmModelCreator table
-- Creator represents who made/trained the model (e.g., OpenAI, Meta)
-- This is distinct from Provider who hosts/serves the model (e.g., OpenRouter)
-- Create the LlmModelCreator table
CREATE TABLE "LlmModelCreator" (
"id" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL,
"name" TEXT NOT NULL,
"displayName" TEXT NOT NULL,
"description" TEXT,
"websiteUrl" TEXT,
"logoUrl" TEXT,
"metadata" JSONB NOT NULL DEFAULT '{}',
CONSTRAINT "LlmModelCreator_pkey" PRIMARY KEY ("id")
);
-- Create unique index on name
CREATE UNIQUE INDEX "LlmModelCreator_name_key" ON "LlmModelCreator"("name");
-- Add creatorId column to LlmModel
ALTER TABLE "LlmModel" ADD COLUMN "creatorId" TEXT;
-- Add foreign key constraint
ALTER TABLE "LlmModel" ADD CONSTRAINT "LlmModel_creatorId_fkey"
FOREIGN KEY ("creatorId") REFERENCES "LlmModelCreator"("id") ON DELETE SET NULL ON UPDATE CASCADE;
-- Create index on creatorId
CREATE INDEX "LlmModel_creatorId_idx" ON "LlmModel"("creatorId");
-- Seed creators based on known model creators
INSERT INTO "LlmModelCreator" ("id", "updatedAt", "name", "displayName", "description", "websiteUrl", "metadata")
VALUES
(gen_random_uuid(), CURRENT_TIMESTAMP, 'openai', 'OpenAI', 'Creator of GPT models', 'https://openai.com', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'anthropic', 'Anthropic', 'Creator of Claude models', 'https://anthropic.com', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'meta', 'Meta', 'Creator of Llama models', 'https://ai.meta.com', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'google', 'Google', 'Creator of Gemini models', 'https://deepmind.google', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'mistral', 'Mistral AI', 'Creator of Mistral models', 'https://mistral.ai', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'cohere', 'Cohere', 'Creator of Command models', 'https://cohere.com', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'deepseek', 'DeepSeek', 'Creator of DeepSeek models', 'https://deepseek.com', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'perplexity', 'Perplexity AI', 'Creator of Sonar models', 'https://perplexity.ai', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'qwen', 'Qwen (Alibaba)', 'Creator of Qwen models', 'https://qwenlm.github.io', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'xai', 'xAI', 'Creator of Grok models', 'https://x.ai', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'amazon', 'Amazon', 'Creator of Nova models', 'https://aws.amazon.com/bedrock', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'microsoft', 'Microsoft', 'Creator of WizardLM models', 'https://microsoft.com', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'moonshot', 'Moonshot AI', 'Creator of Kimi models', 'https://moonshot.cn', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'nvidia', 'NVIDIA', 'Creator of Nemotron models', 'https://nvidia.com', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'nous_research', 'Nous Research', 'Creator of Hermes models', 'https://nousresearch.com', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'vercel', 'Vercel', 'Creator of v0 models', 'https://vercel.com', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'cognitive_computations', 'Cognitive Computations', 'Creator of Dolphin models', 'https://erichartford.com', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'gryphe', 'Gryphe', 'Creator of MythoMax models', 'https://huggingface.co/Gryphe', '{}')
ON CONFLICT ("name") DO NOTHING;
-- Update existing models with their creators
-- OpenAI models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'openai')
WHERE "slug" LIKE 'gpt-%' OR "slug" LIKE 'o1%' OR "slug" LIKE 'o3%' OR "slug" LIKE 'openai/%';
-- Anthropic models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'anthropic')
WHERE "slug" LIKE 'claude-%';
-- Meta/Llama models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'meta')
WHERE "slug" LIKE 'llama%' OR "slug" LIKE 'Llama%' OR "slug" LIKE 'meta-llama/%' OR "slug" LIKE '%/llama-%';
-- Google models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'google')
WHERE "slug" LIKE 'google/%' OR "slug" LIKE 'gemini%';
-- Mistral models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'mistral')
WHERE "slug" LIKE 'mistral%' OR "slug" LIKE 'mistralai/%';
-- Cohere models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'cohere')
WHERE "slug" LIKE 'cohere/%' OR "slug" LIKE 'command-%';
-- DeepSeek models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'deepseek')
WHERE "slug" LIKE 'deepseek/%' OR "slug" LIKE 'deepseek-%';
-- Perplexity models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'perplexity')
WHERE "slug" LIKE 'perplexity/%' OR "slug" LIKE 'sonar%';
-- Qwen models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'qwen')
WHERE "slug" LIKE 'Qwen/%' OR "slug" LIKE 'qwen/%';
-- xAI/Grok models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'xai')
WHERE "slug" LIKE 'x-ai/%' OR "slug" LIKE 'grok%';
-- Amazon models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'amazon')
WHERE "slug" LIKE 'amazon/%' OR "slug" LIKE 'nova-%';
-- Microsoft models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'microsoft')
WHERE "slug" LIKE 'microsoft/%' OR "slug" LIKE 'wizardlm%';
-- Moonshot models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'moonshot')
WHERE "slug" LIKE 'moonshotai/%' OR "slug" LIKE 'kimi%';
-- NVIDIA models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'nvidia')
WHERE "slug" LIKE 'nvidia/%' OR "slug" LIKE '%nemotron%';
-- Nous Research models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'nous_research')
WHERE "slug" LIKE 'nousresearch/%' OR "slug" LIKE 'hermes%';
-- Vercel/v0 models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'vercel')
WHERE "slug" LIKE 'v0-%';
-- Dolphin models (Cognitive Computations / Eric Hartford)
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'cognitive_computations')
WHERE "slug" LIKE 'dolphin-%';
-- Gryphe models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'gryphe')
WHERE "slug" LIKE 'gryphe/%' OR "slug" LIKE 'mythomax%';

View File

@@ -1,4 +0,0 @@
-- CreateIndex
-- Index for efficient LLM model lookups on AgentNode.constantInput->>'model'
-- This improves performance of model migration queries in the LLM registry
CREATE INDEX "AgentNode_constantInput_model_idx" ON "AgentNode" ((("constantInput"->>'model')));

View File

@@ -1,52 +0,0 @@
-- Add GPT-5.2 model and update O3 slug
-- This migration adds the new GPT-5.2 model added in dev branch
-- Update O3 slug to match dev branch format
UPDATE "LlmModel"
SET "slug" = 'o3-2025-04-16'
WHERE "slug" = 'o3';
-- Update cost reference for O3 if needed
-- (costs are linked by model ID, so no update needed)
-- Add GPT-5.2 model
WITH provider_id AS (
SELECT "id" FROM "LlmProvider" WHERE "name" = 'openai'
)
INSERT INTO "LlmModel" ("id", "slug", "displayName", "description", "providerId", "contextWindow", "maxOutputTokens", "isEnabled", "capabilities", "metadata")
SELECT
gen_random_uuid(),
'gpt-5.2-2025-12-11',
'GPT 5.2',
'OpenAI GPT-5.2 model',
p."id",
400000,
128000,
true,
'{}'::jsonb,
'{}'::jsonb
FROM provider_id p
ON CONFLICT ("slug") DO NOTHING;
-- Add cost for GPT-5.2
WITH model_id AS (
SELECT m."id", p."name" as provider_name
FROM "LlmModel" m
JOIN "LlmProvider" p ON p."id" = m."providerId"
WHERE m."slug" = 'gpt-5.2-2025-12-11'
)
INSERT INTO "LlmModelCost" ("id", "unit", "creditCost", "credentialProvider", "credentialId", "credentialType", "currency", "metadata", "llmModelId")
SELECT
gen_random_uuid(),
'RUN'::"LlmCostUnit",
3, -- Same cost tier as GPT-5.1
m.provider_name,
NULL,
'api_key',
NULL,
'{}'::jsonb,
m."id"
FROM model_id m
WHERE NOT EXISTS (
SELECT 1 FROM "LlmModelCost" c WHERE c."llmModelId" = m."id"
);

View File

@@ -1,11 +0,0 @@
-- Add isRecommended field to LlmModel table
-- This allows admins to mark a model as the recommended default
ALTER TABLE "LlmModel" ADD COLUMN "isRecommended" BOOLEAN NOT NULL DEFAULT false;
-- Set gpt-4o-mini as the default recommended model (if it exists)
UPDATE "LlmModel" SET "isRecommended" = true WHERE "slug" = 'gpt-4o-mini' AND "isEnabled" = true;
-- Create unique partial index to enforce only one recommended model at the database level
-- This prevents multiple rows from having isRecommended = true
CREATE UNIQUE INDEX "LlmModel_single_recommended_idx" ON "LlmModel" ("isRecommended") WHERE "isRecommended" = true;

View File

@@ -1,61 +0,0 @@
-- Add new columns to LlmModel table for extended model metadata
-- These columns support the LLM Picker UI enhancements
-- Add priceTier column: 1=cheapest, 2=medium, 3=expensive
ALTER TABLE "LlmModel" ADD COLUMN IF NOT EXISTS "priceTier" INTEGER NOT NULL DEFAULT 1;
-- Add creatorId column for model creator relationship (if not exists)
ALTER TABLE "LlmModel" ADD COLUMN IF NOT EXISTS "creatorId" TEXT;
-- Add isRecommended column (if not exists)
ALTER TABLE "LlmModel" ADD COLUMN IF NOT EXISTS "isRecommended" BOOLEAN NOT NULL DEFAULT FALSE;
-- Add index on creatorId if not exists
CREATE INDEX IF NOT EXISTS "LlmModel_creatorId_idx" ON "LlmModel"("creatorId");
-- Add foreign key for creatorId if not exists
DO $$
BEGIN
IF NOT EXISTS (SELECT 1 FROM pg_constraint WHERE conname = 'LlmModel_creatorId_fkey') THEN
-- Only add FK if LlmModelCreator table exists
IF EXISTS (SELECT 1 FROM information_schema.tables WHERE table_name = 'LlmModelCreator') THEN
ALTER TABLE "LlmModel" ADD CONSTRAINT "LlmModel_creatorId_fkey"
FOREIGN KEY ("creatorId") REFERENCES "LlmModelCreator"("id") ON DELETE SET NULL ON UPDATE CASCADE;
END IF;
END IF;
END $$;
-- Update priceTier values for existing models based on original MODEL_METADATA
-- Tier 1 = cheapest, Tier 2 = medium, Tier 3 = expensive
-- OpenAI models
UPDATE "LlmModel" SET "priceTier" = 2 WHERE "slug" = 'o3';
UPDATE "LlmModel" SET "priceTier" = 1 WHERE "slug" = 'o3-mini';
UPDATE "LlmModel" SET "priceTier" = 3 WHERE "slug" = 'o1';
UPDATE "LlmModel" SET "priceTier" = 2 WHERE "slug" = 'o1-mini';
UPDATE "LlmModel" SET "priceTier" = 3 WHERE "slug" = 'gpt-5.2';
UPDATE "LlmModel" SET "priceTier" = 2 WHERE "slug" = 'gpt-5.1';
UPDATE "LlmModel" SET "priceTier" = 1 WHERE "slug" = 'gpt-5';
UPDATE "LlmModel" SET "priceTier" = 1 WHERE "slug" = 'gpt-5-mini';
UPDATE "LlmModel" SET "priceTier" = 1 WHERE "slug" = 'gpt-5-nano';
UPDATE "LlmModel" SET "priceTier" = 2 WHERE "slug" = 'gpt-5-chat-latest';
UPDATE "LlmModel" SET "priceTier" = 1 WHERE "slug" LIKE 'gpt-4.1%';
UPDATE "LlmModel" SET "priceTier" = 1 WHERE "slug" = 'gpt-4o-mini';
UPDATE "LlmModel" SET "priceTier" = 2 WHERE "slug" = 'gpt-4o';
UPDATE "LlmModel" SET "priceTier" = 3 WHERE "slug" = 'gpt-4-turbo';
UPDATE "LlmModel" SET "priceTier" = 1 WHERE "slug" = 'gpt-3.5-turbo';
-- Anthropic models
UPDATE "LlmModel" SET "priceTier" = 3 WHERE "slug" LIKE 'claude-opus%';
UPDATE "LlmModel" SET "priceTier" = 2 WHERE "slug" LIKE 'claude-sonnet%';
UPDATE "LlmModel" SET "priceTier" = 3 WHERE "slug" LIKE 'claude%-4-5-sonnet%';
UPDATE "LlmModel" SET "priceTier" = 2 WHERE "slug" LIKE 'claude%-haiku%';
UPDATE "LlmModel" SET "priceTier" = 1 WHERE "slug" = 'claude-3-haiku-20240307';
-- OpenRouter models - Pro/expensive tiers
UPDATE "LlmModel" SET "priceTier" = 2 WHERE "slug" LIKE 'google/gemini%-pro%';
UPDATE "LlmModel" SET "priceTier" = 2 WHERE "slug" LIKE '%command-r-plus%';
UPDATE "LlmModel" SET "priceTier" = 2 WHERE "slug" LIKE '%sonar-pro%';
UPDATE "LlmModel" SET "priceTier" = 3 WHERE "slug" LIKE '%sonar-deep-research%';
UPDATE "LlmModel" SET "priceTier" = 3 WHERE "slug" = 'x-ai/grok-4';
UPDATE "LlmModel" SET "priceTier" = 3 WHERE "slug" LIKE '%qwen3-coder%';

View File

@@ -1,6 +0,0 @@
-- Add composite index on LlmModelMigration for optimized active migration queries
-- This index improves performance when querying for non-reverted migrations by model slug
-- Used by the billing system to apply customCreditCost overrides
-- CreateIndex
CREATE INDEX "LlmModelMigration_sourceModelSlug_isReverted_idx" ON "LlmModelMigration"("sourceModelSlug", "isReverted");

View File

@@ -1,65 +0,0 @@
-- Sync LLM models with latest dev branch changes
-- This migration adds new models and removes deprecated ones
-- Remove models that were deleted from dev
DELETE FROM "LlmModelCost" WHERE "llmModelId" IN (
SELECT "id" FROM "LlmModel" WHERE "slug" IN ('o3', 'o3-mini', 'claude-3-7-sonnet-20250219')
);
DELETE FROM "LlmModel" WHERE "slug" IN ('o3', 'o3-mini', 'claude-3-7-sonnet-20250219');
-- Add new models from dev
WITH provider_ids AS (
SELECT "id", "name" FROM "LlmProvider"
)
INSERT INTO "LlmModel" ("id", "slug", "displayName", "description", "providerId", "contextWindow", "maxOutputTokens", "isEnabled", "capabilities", "metadata", "createdAt", "updatedAt")
SELECT
gen_random_uuid(),
model_slug,
model_display_name,
NULL,
p."id",
context_window,
max_output_tokens,
true,
'{}'::jsonb,
'{}'::jsonb,
NOW(),
NOW()
FROM (VALUES
-- New OpenAI model
('gpt-5.2-2025-12-11', 'GPT 5.2', 'openai', 400000, 128000),
-- New Anthropic model
('claude-opus-4-6', 'Claude 4.6 Opus', 'anthropic', 200000, 64000)
) AS models(model_slug, model_display_name, provider_name, context_window, max_output_tokens)
JOIN provider_ids p ON p."name" = models.provider_name
ON CONFLICT ("slug") DO NOTHING;
-- Add costs for new models
WITH model_ids AS (
SELECT "id", "slug", "providerId" FROM "LlmModel"
),
provider_ids AS (
SELECT "id", "name" FROM "LlmProvider"
)
INSERT INTO "LlmModelCost" ("id", "unit", "creditCost", "credentialProvider", "credentialId", "credentialType", "currency", "metadata", "llmModelId", "createdAt", "updatedAt")
SELECT
gen_random_uuid(),
'RUN'::"LlmCostUnit",
cost,
p."name",
NULL,
'api_key',
NULL,
'{}'::jsonb,
m."id",
NOW(),
NOW()
FROM (VALUES
-- New model costs (estimate based on similar models)
('gpt-5.2-2025-12-11', 5), -- Similar to GPT 5.1
('claude-opus-4-6', 21) -- Similar to other Opus 4.x models
) AS costs(model_slug, cost)
JOIN model_ids m ON m."slug" = costs.model_slug
JOIN provider_ids p ON p."id" = m."providerId"
ON CONFLICT ("llmModelId", "credentialProvider", "unit") DO NOTHING;

View File

@@ -1143,154 +1143,6 @@ enum APIKeyStatus {
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
///////////// LLM REGISTRY AND BILLING DATA /////////////
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// LlmCostUnit: Defines how LLM MODEL costs are calculated (per run or per token).
// This is distinct from BlockCostType (in backend/data/block.py) which defines
// how BLOCK EXECUTION costs are calculated (per run, per byte, or per second).
// LlmCostUnit is for pricing individual LLM model API calls in the registry,
// while BlockCostType is for billing platform block executions.
enum LlmCostUnit {
RUN
TOKENS
}
model LlmModelCreator {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
name String @unique // e.g., "openai", "anthropic", "meta"
displayName String // e.g., "OpenAI", "Anthropic", "Meta"
description String?
websiteUrl String? // Link to creator's website
logoUrl String? // URL to creator's logo
metadata Json @default("{}")
Models LlmModel[]
}
model LlmProvider {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
name String @unique
displayName String
description String?
defaultCredentialProvider String?
defaultCredentialId String?
defaultCredentialType String?
supportsTools Boolean @default(true)
supportsJsonOutput Boolean @default(true)
supportsReasoning Boolean @default(false)
supportsParallelTool Boolean @default(false)
metadata Json @default("{}")
Models LlmModel[]
}
model LlmModel {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
slug String @unique
displayName String
description String?
providerId String
Provider LlmProvider @relation(fields: [providerId], references: [id], onDelete: Restrict)
// Creator is the organization that created/trained the model (e.g., OpenAI, Meta)
// This is distinct from the provider who hosts/serves the model (e.g., OpenRouter)
creatorId String?
Creator LlmModelCreator? @relation(fields: [creatorId], references: [id], onDelete: SetNull)
contextWindow Int
maxOutputTokens Int?
priceTier Int @default(1) // 1=cheapest, 2=medium, 3=expensive
isEnabled Boolean @default(true)
isRecommended Boolean @default(false)
capabilities Json @default("{}")
metadata Json @default("{}")
Costs LlmModelCost[]
@@index([providerId, isEnabled])
@@index([creatorId])
@@index([slug])
}
model LlmModelCost {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
unit LlmCostUnit @default(RUN)
creditCost Int
credentialProvider String
credentialId String?
credentialType String?
currency String?
metadata Json @default("{}")
llmModelId String
Model LlmModel @relation(fields: [llmModelId], references: [id], onDelete: Cascade)
@@unique([llmModelId, credentialProvider, unit])
@@index([llmModelId])
@@index([credentialProvider])
}
// Tracks model migrations for revert capability
// When a model is disabled with migration, we record which nodes were affected
// so they can be reverted when the original model is back online
model LlmModelMigration {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
sourceModelSlug String // The original model that was disabled
targetModelSlug String // The model workflows were migrated to
reason String? // Why the migration happened (e.g., "Provider outage")
// Track affected nodes as JSON array of node IDs
// Format: ["node-uuid-1", "node-uuid-2", ...]
migratedNodeIds Json @default("[]")
nodeCount Int // Number of nodes migrated
// Custom pricing override for migrated workflows during the migration period.
// Use case: When migrating users from an expensive model (e.g., GPT-4) to a cheaper
// one (e.g., GPT-3.5), you may want to temporarily maintain the original pricing
// to avoid billing surprises, or offer a discount during the transition.
//
// IMPORTANT: This field is intended for integration with the billing system.
// When billing calculates costs for nodes affected by this migration, it should
// check if customCreditCost is set and use it instead of the target model's cost.
// If null, the target model's normal cost applies.
//
// TODO: Integrate with billing system to apply this override during cost calculation.
customCreditCost Int?
// Revert tracking
isReverted Boolean @default(false)
revertedAt DateTime?
@@index([sourceModelSlug])
@@index([targetModelSlug])
@@index([isReverted])
@@index([sourceModelSlug, isReverted]) // Composite index for active migration queries
}
////////////// OAUTH PROVIDER TABLES //////////////////
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////

View File

@@ -1,8 +1,5 @@
"use client";
import { Sidebar } from "@/components/__legacy__/Sidebar";
import { Users, DollarSign, UserSearch, FileText } from "lucide-react";
import { Cpu } from "@phosphor-icons/react";
import { IconSliders } from "@/components/__legacy__/ui/icons";
@@ -29,11 +26,6 @@ const sidebarLinkGroups = [
href: "/admin/execution-analytics",
icon: <FileText className="h-6 w-6" />,
},
{
text: "LLM Registry",
href: "/admin/llms",
icon: <Cpu size={24} />,
},
{
text: "Admin User Management",
href: "/admin/settings",

View File

@@ -1,493 +0,0 @@
"use server";
import { revalidatePath } from "next/cache";
// Generated API functions
import {
getV2ListLlmProviders,
postV2CreateLlmProvider,
patchV2UpdateLlmProvider,
deleteV2DeleteLlmProvider,
getV2ListLlmModels,
postV2CreateLlmModel,
patchV2UpdateLlmModel,
patchV2ToggleLlmModelAvailability,
deleteV2DeleteLlmModelAndMigrateWorkflows,
getV2GetModelUsageCount,
getV2ListModelMigrations,
postV2RevertAModelMigration,
getV2ListModelCreators,
postV2CreateModelCreator,
patchV2UpdateModelCreator,
deleteV2DeleteModelCreator,
postV2SetRecommendedModel,
} from "@/app/api/__generated__/endpoints/admin/admin";
// Generated types
import type { LlmProvidersResponse } from "@/app/api/__generated__/models/llmProvidersResponse";
import type { LlmModelsResponse } from "@/app/api/__generated__/models/llmModelsResponse";
import type { UpsertLlmProviderRequest } from "@/app/api/__generated__/models/upsertLlmProviderRequest";
import type { CreateLlmModelRequest } from "@/app/api/__generated__/models/createLlmModelRequest";
import type { UpdateLlmModelRequest } from "@/app/api/__generated__/models/updateLlmModelRequest";
import type { ToggleLlmModelRequest } from "@/app/api/__generated__/models/toggleLlmModelRequest";
import type { LlmMigrationsResponse } from "@/app/api/__generated__/models/llmMigrationsResponse";
import type { LlmCreatorsResponse } from "@/app/api/__generated__/models/llmCreatorsResponse";
import type { UpsertLlmCreatorRequest } from "@/app/api/__generated__/models/upsertLlmCreatorRequest";
import type { LlmModelUsageResponse } from "@/app/api/__generated__/models/llmModelUsageResponse";
import { LlmCostUnit } from "@/app/api/__generated__/models/llmCostUnit";
const ADMIN_LLM_PATH = "/admin/llms";
// =============================================================================
// Utilities
// =============================================================================
/**
* Extracts and validates a required string field from FormData.
* Throws an error if the field is missing or empty.
*/
function getRequiredFormField(
formData: FormData,
fieldName: string,
displayName?: string,
): string {
const raw = formData.get(fieldName);
const value = raw ? String(raw).trim() : "";
if (!value) {
throw new Error(`${displayName || fieldName} is required`);
}
return value;
}
/**
* Extracts and validates a required positive number field from FormData.
* Throws an error if the field is missing, empty, or not a positive number.
*/
function getRequiredPositiveNumber(
formData: FormData,
fieldName: string,
displayName?: string,
): number {
const raw = formData.get(fieldName);
const value = Number(raw);
if (raw === null || raw === "" || !Number.isFinite(value) || value <= 0) {
throw new Error(`${displayName || fieldName} must be a positive number`);
}
return value;
}
/**
* Extracts and validates a required number field from FormData.
* Throws an error if the field is missing, empty, or not a finite number.
*/
function getRequiredNumber(
formData: FormData,
fieldName: string,
displayName?: string,
): number {
const raw = formData.get(fieldName);
const value = Number(raw);
if (raw === null || raw === "" || !Number.isFinite(value)) {
throw new Error(`${displayName || fieldName} is required`);
}
return value;
}
// =============================================================================
// Provider Actions
// =============================================================================
export async function fetchLlmProviders(): Promise<LlmProvidersResponse> {
const response = await getV2ListLlmProviders({ include_models: true });
if (response.status !== 200) {
throw new Error("Failed to fetch LLM providers");
}
return response.data;
}
export async function createLlmProviderAction(formData: FormData) {
const payload: UpsertLlmProviderRequest = {
name: String(formData.get("name") || "").trim(),
display_name: String(formData.get("display_name") || "").trim(),
description: formData.get("description")
? String(formData.get("description"))
: undefined,
default_credential_provider: formData.get("default_credential_provider")
? String(formData.get("default_credential_provider")).trim()
: undefined,
default_credential_id: formData.get("default_credential_id")
? String(formData.get("default_credential_id")).trim()
: undefined,
default_credential_type: formData.get("default_credential_type")
? String(formData.get("default_credential_type")).trim()
: "api_key",
supports_tools: formData.getAll("supports_tools").includes("on"),
supports_json_output: formData
.getAll("supports_json_output")
.includes("on"),
supports_reasoning: formData.getAll("supports_reasoning").includes("on"),
supports_parallel_tool: formData
.getAll("supports_parallel_tool")
.includes("on"),
metadata: {},
};
const response = await postV2CreateLlmProvider(payload);
if (response.status !== 200) {
throw new Error("Failed to create LLM provider");
}
revalidatePath(ADMIN_LLM_PATH);
}
export async function deleteLlmProviderAction(
formData: FormData,
): Promise<void> {
const providerId = getRequiredFormField(
formData,
"provider_id",
"Provider id",
);
const response = await deleteV2DeleteLlmProvider(providerId);
if (response.status !== 200) {
const errorData = response.data as { detail?: string };
throw new Error(errorData?.detail || "Failed to delete provider");
}
revalidatePath(ADMIN_LLM_PATH);
}
export async function updateLlmProviderAction(formData: FormData) {
const providerId = getRequiredFormField(
formData,
"provider_id",
"Provider id",
);
const payload: UpsertLlmProviderRequest = {
name: String(formData.get("name") || "").trim(),
display_name: String(formData.get("display_name") || "").trim(),
description: formData.get("description")
? String(formData.get("description"))
: undefined,
default_credential_provider: formData.get("default_credential_provider")
? String(formData.get("default_credential_provider")).trim()
: undefined,
default_credential_id: formData.get("default_credential_id")
? String(formData.get("default_credential_id")).trim()
: undefined,
default_credential_type: formData.get("default_credential_type")
? String(formData.get("default_credential_type")).trim()
: "api_key",
supports_tools: formData.getAll("supports_tools").includes("on"),
supports_json_output: formData
.getAll("supports_json_output")
.includes("on"),
supports_reasoning: formData.getAll("supports_reasoning").includes("on"),
supports_parallel_tool: formData
.getAll("supports_parallel_tool")
.includes("on"),
metadata: {},
};
const response = await patchV2UpdateLlmProvider(providerId, payload);
if (response.status !== 200) {
throw new Error("Failed to update LLM provider");
}
revalidatePath(ADMIN_LLM_PATH);
}
// =============================================================================
// Model Actions
// =============================================================================
export async function fetchLlmModels(): Promise<LlmModelsResponse> {
const response = await getV2ListLlmModels();
if (response.status !== 200) {
throw new Error("Failed to fetch LLM models");
}
return response.data;
}
export async function createLlmModelAction(formData: FormData) {
const providerId = getRequiredFormField(formData, "provider_id", "Provider");
const creatorId = formData.get("creator_id");
const contextWindow = getRequiredPositiveNumber(
formData,
"context_window",
"Context window",
);
const creditCost = getRequiredNumber(formData, "credit_cost", "Credit cost");
// Fetch provider to get default credentials
const providersResponse = await getV2ListLlmProviders({
include_models: false,
});
if (providersResponse.status !== 200) {
throw new Error("Failed to fetch providers");
}
const provider = providersResponse.data.providers.find(
(p) => p.id === providerId,
);
if (!provider) {
throw new Error("Provider not found");
}
const payload: CreateLlmModelRequest = {
slug: String(formData.get("slug") || "").trim(),
display_name: String(formData.get("display_name") || "").trim(),
description: formData.get("description")
? String(formData.get("description"))
: undefined,
provider_id: providerId,
creator_id: creatorId ? String(creatorId) : undefined,
context_window: contextWindow,
max_output_tokens: formData.get("max_output_tokens")
? Number(formData.get("max_output_tokens"))
: undefined,
is_enabled: formData.getAll("is_enabled").includes("on"),
capabilities: {},
metadata: {},
costs: [
{
unit: (formData.get("unit") as LlmCostUnit) || LlmCostUnit.RUN,
credit_cost: creditCost,
credential_provider:
provider.default_credential_provider || provider.name,
credential_id: provider.default_credential_id || undefined,
credential_type: provider.default_credential_type || "api_key",
metadata: {},
},
],
};
const response = await postV2CreateLlmModel(payload);
if (response.status !== 200) {
throw new Error("Failed to create LLM model");
}
revalidatePath(ADMIN_LLM_PATH);
}
export async function updateLlmModelAction(formData: FormData) {
const modelId = getRequiredFormField(formData, "model_id", "Model id");
const creatorId = formData.get("creator_id");
const payload: UpdateLlmModelRequest = {
display_name: formData.get("display_name")
? String(formData.get("display_name"))
: undefined,
description: formData.get("description")
? String(formData.get("description"))
: undefined,
provider_id: formData.get("provider_id")
? String(formData.get("provider_id"))
: undefined,
creator_id: creatorId ? String(creatorId) : undefined,
context_window: formData.get("context_window")
? Number(formData.get("context_window"))
: undefined,
max_output_tokens: formData.get("max_output_tokens")
? Number(formData.get("max_output_tokens"))
: undefined,
is_enabled: formData.has("is_enabled")
? formData.getAll("is_enabled").includes("on")
: undefined,
costs: formData.get("credit_cost")
? [
{
unit: (formData.get("unit") as LlmCostUnit) || LlmCostUnit.RUN,
credit_cost: Number(formData.get("credit_cost")),
credential_provider: String(
formData.get("credential_provider") || "",
).trim(),
credential_id: formData.get("credential_id")
? String(formData.get("credential_id"))
: undefined,
credential_type: formData.get("credential_type")
? String(formData.get("credential_type"))
: undefined,
metadata: {},
},
]
: undefined,
};
const response = await patchV2UpdateLlmModel(modelId, payload);
if (response.status !== 200) {
throw new Error("Failed to update LLM model");
}
revalidatePath(ADMIN_LLM_PATH);
}
export async function toggleLlmModelAction(formData: FormData): Promise<void> {
const modelId = getRequiredFormField(formData, "model_id", "Model id");
const shouldEnable = formData.get("is_enabled") === "true";
const migrateToSlug = formData.get("migrate_to_slug");
const migrationReason = formData.get("migration_reason");
const customCreditCost = formData.get("custom_credit_cost");
const payload: ToggleLlmModelRequest = {
is_enabled: shouldEnable,
migrate_to_slug: migrateToSlug ? String(migrateToSlug) : undefined,
migration_reason: migrationReason ? String(migrationReason) : undefined,
custom_credit_cost: customCreditCost ? Number(customCreditCost) : undefined,
};
const response = await patchV2ToggleLlmModelAvailability(modelId, payload);
if (response.status !== 200) {
throw new Error("Failed to toggle LLM model");
}
revalidatePath(ADMIN_LLM_PATH);
}
export async function deleteLlmModelAction(formData: FormData): Promise<void> {
const modelId = getRequiredFormField(formData, "model_id", "Model id");
const rawReplacement = formData.get("replacement_model_slug");
const replacementModelSlug =
rawReplacement && String(rawReplacement).trim()
? String(rawReplacement).trim()
: undefined;
const response = await deleteV2DeleteLlmModelAndMigrateWorkflows(modelId, {
replacement_model_slug: replacementModelSlug,
});
if (response.status !== 200) {
throw new Error("Failed to delete model");
}
revalidatePath(ADMIN_LLM_PATH);
}
export async function fetchLlmModelUsage(
modelId: string,
): Promise<LlmModelUsageResponse> {
const response = await getV2GetModelUsageCount(modelId);
if (response.status !== 200) {
throw new Error("Failed to fetch model usage");
}
return response.data;
}
// =============================================================================
// Migration Actions
// =============================================================================
export async function fetchLlmMigrations(
includeReverted: boolean = false,
): Promise<LlmMigrationsResponse> {
const response = await getV2ListModelMigrations({
include_reverted: includeReverted,
});
if (response.status !== 200) {
throw new Error("Failed to fetch migrations");
}
return response.data;
}
export async function revertLlmMigrationAction(
formData: FormData,
): Promise<void> {
const migrationId = getRequiredFormField(
formData,
"migration_id",
"Migration id",
);
const response = await postV2RevertAModelMigration(migrationId, null);
if (response.status !== 200) {
throw new Error("Failed to revert migration");
}
revalidatePath(ADMIN_LLM_PATH);
}
// =============================================================================
// Creator Actions
// =============================================================================
export async function fetchLlmCreators(): Promise<LlmCreatorsResponse> {
const response = await getV2ListModelCreators();
if (response.status !== 200) {
throw new Error("Failed to fetch creators");
}
return response.data;
}
export async function createLlmCreatorAction(
formData: FormData,
): Promise<void> {
const payload: UpsertLlmCreatorRequest = {
name: String(formData.get("name") || "").trim(),
display_name: String(formData.get("display_name") || "").trim(),
description: formData.get("description")
? String(formData.get("description"))
: undefined,
website_url: formData.get("website_url")
? String(formData.get("website_url")).trim()
: undefined,
logo_url: formData.get("logo_url")
? String(formData.get("logo_url")).trim()
: undefined,
metadata: {},
};
const response = await postV2CreateModelCreator(payload);
if (response.status !== 200) {
throw new Error("Failed to create creator");
}
revalidatePath(ADMIN_LLM_PATH);
}
export async function updateLlmCreatorAction(
formData: FormData,
): Promise<void> {
const creatorId = getRequiredFormField(formData, "creator_id", "Creator id");
const payload: UpsertLlmCreatorRequest = {
name: String(formData.get("name") || "").trim(),
display_name: String(formData.get("display_name") || "").trim(),
description: formData.get("description")
? String(formData.get("description"))
: undefined,
website_url: formData.get("website_url")
? String(formData.get("website_url")).trim()
: undefined,
logo_url: formData.get("logo_url")
? String(formData.get("logo_url")).trim()
: undefined,
metadata: {},
};
const response = await patchV2UpdateModelCreator(creatorId, payload);
if (response.status !== 200) {
throw new Error("Failed to update creator");
}
revalidatePath(ADMIN_LLM_PATH);
}
export async function deleteLlmCreatorAction(
formData: FormData,
): Promise<void> {
const creatorId = getRequiredFormField(formData, "creator_id", "Creator id");
const response = await deleteV2DeleteModelCreator(creatorId);
if (response.status !== 200) {
throw new Error("Failed to delete creator");
}
revalidatePath(ADMIN_LLM_PATH);
}
// =============================================================================
// Recommended Model Actions
// =============================================================================
export async function setRecommendedModelAction(
formData: FormData,
): Promise<void> {
const modelId = getRequiredFormField(formData, "model_id", "Model id");
const response = await postV2SetRecommendedModel({ model_id: modelId });
if (response.status !== 200) {
throw new Error("Failed to set recommended model");
}
revalidatePath(ADMIN_LLM_PATH);
}

View File

@@ -1,147 +0,0 @@
"use client";
import { useState } from "react";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { Button } from "@/components/atoms/Button/Button";
import { createLlmCreatorAction } from "../actions";
import { useRouter } from "next/navigation";
export function AddCreatorModal() {
const [open, setOpen] = useState(false);
const [isSubmitting, setIsSubmitting] = useState(false);
const [error, setError] = useState<string | null>(null);
const router = useRouter();
async function handleSubmit(formData: FormData) {
setIsSubmitting(true);
setError(null);
try {
await createLlmCreatorAction(formData);
setOpen(false);
router.refresh();
} catch (err) {
setError(err instanceof Error ? err.message : "Failed to create creator");
} finally {
setIsSubmitting(false);
}
}
return (
<Dialog
title="Add Creator"
controlled={{ isOpen: open, set: setOpen }}
styling={{ maxWidth: "512px" }}
>
<Dialog.Trigger>
<Button variant="primary" size="small">
Add Creator
</Button>
</Dialog.Trigger>
<Dialog.Content>
<div className="mb-4 text-sm text-muted-foreground">
Add a new model creator (the organization that made/trained the
model).
</div>
<form action={handleSubmit} className="space-y-4">
<div className="grid gap-4 sm:grid-cols-2">
<div className="space-y-2">
<label
htmlFor="name"
className="text-sm font-medium text-foreground"
>
Name (slug) <span className="text-destructive">*</span>
</label>
<input
id="name"
required
name="name"
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors placeholder:text-muted-foreground focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
placeholder="openai"
/>
<p className="text-xs text-muted-foreground">
Lowercase identifier (e.g., openai, meta, anthropic)
</p>
</div>
<div className="space-y-2">
<label
htmlFor="display_name"
className="text-sm font-medium text-foreground"
>
Display Name <span className="text-destructive">*</span>
</label>
<input
id="display_name"
required
name="display_name"
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors placeholder:text-muted-foreground focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
placeholder="OpenAI"
/>
</div>
</div>
<div className="space-y-2">
<label
htmlFor="description"
className="text-sm font-medium text-foreground"
>
Description
</label>
<textarea
id="description"
name="description"
rows={2}
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors placeholder:text-muted-foreground focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
placeholder="Creator of GPT models..."
/>
</div>
<div className="space-y-2">
<label
htmlFor="website_url"
className="text-sm font-medium text-foreground"
>
Website URL
</label>
<input
id="website_url"
name="website_url"
type="url"
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors placeholder:text-muted-foreground focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
placeholder="https://openai.com"
/>
</div>
{error && (
<div className="rounded-lg border border-destructive/30 bg-destructive/10 p-3 text-sm text-destructive">
{error}
</div>
)}
<Dialog.Footer>
<Button
variant="ghost"
size="small"
type="button"
onClick={() => {
setOpen(false);
setError(null);
}}
disabled={isSubmitting}
>
Cancel
</Button>
<Button
variant="primary"
size="small"
type="submit"
disabled={isSubmitting}
>
{isSubmitting ? "Creating..." : "Add Creator"}
</Button>
</Dialog.Footer>
</form>
</Dialog.Content>
</Dialog>
);
}

View File

@@ -1,314 +0,0 @@
"use client";
import { useState } from "react";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { Button } from "@/components/atoms/Button/Button";
import type { LlmProvider } from "@/app/api/__generated__/models/llmProvider";
import type { LlmModelCreator } from "@/app/api/__generated__/models/llmModelCreator";
import { createLlmModelAction } from "../actions";
import { useRouter } from "next/navigation";
interface Props {
providers: LlmProvider[];
creators: LlmModelCreator[];
}
export function AddModelModal({ providers, creators }: Props) {
const [open, setOpen] = useState(false);
const [selectedCreatorId, setSelectedCreatorId] = useState("");
const [isSubmitting, setIsSubmitting] = useState(false);
const [error, setError] = useState<string | null>(null);
const router = useRouter();
async function handleSubmit(formData: FormData) {
setIsSubmitting(true);
setError(null);
try {
await createLlmModelAction(formData);
setOpen(false);
router.refresh();
} catch (err) {
setError(err instanceof Error ? err.message : "Failed to create model");
} finally {
setIsSubmitting(false);
}
}
// When provider changes, auto-select matching creator if one exists
function handleProviderChange(providerId: string) {
const provider = providers.find((p) => p.id === providerId);
if (provider) {
// Find creator with same name as provider (e.g., "openai" -> "openai")
const matchingCreator = creators.find((c) => c.name === provider.name);
if (matchingCreator) {
setSelectedCreatorId(matchingCreator.id);
} else {
// No matching creator (e.g., OpenRouter hosts other creators' models)
setSelectedCreatorId("");
}
}
}
return (
<Dialog
title="Add Model"
controlled={{ isOpen: open, set: setOpen }}
styling={{ maxWidth: "768px", maxHeight: "90vh", overflowY: "auto" }}
>
<Dialog.Trigger>
<Button variant="primary" size="small">
Add Model
</Button>
</Dialog.Trigger>
<Dialog.Content>
<div className="mb-4 text-sm text-muted-foreground">
Register a new model slug, metadata, and pricing.
</div>
<form action={handleSubmit} className="space-y-6">
{/* Basic Information */}
<div className="space-y-4">
<div className="space-y-1">
<h3 className="text-sm font-semibold text-foreground">
Basic Information
</h3>
<p className="text-xs text-muted-foreground">
Core model details
</p>
</div>
<div className="grid gap-4 sm:grid-cols-2">
<div className="space-y-2">
<label
htmlFor="slug"
className="text-sm font-medium text-foreground"
>
Model Slug <span className="text-destructive">*</span>
</label>
<input
id="slug"
required
name="slug"
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors placeholder:text-muted-foreground focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
placeholder="gpt-4.1-mini-2025-04-14"
/>
</div>
<div className="space-y-2">
<label
htmlFor="display_name"
className="text-sm font-medium text-foreground"
>
Display Name <span className="text-destructive">*</span>
</label>
<input
id="display_name"
required
name="display_name"
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors placeholder:text-muted-foreground focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
placeholder="GPT 4.1 Mini"
/>
</div>
</div>
<div className="space-y-2">
<label
htmlFor="description"
className="text-sm font-medium text-foreground"
>
Description
</label>
<textarea
id="description"
name="description"
rows={3}
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors placeholder:text-muted-foreground focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
placeholder="Optional description..."
/>
</div>
</div>
{/* Model Configuration */}
<div className="space-y-4 border-t border-border pt-6">
<div className="space-y-1">
<h3 className="text-sm font-semibold text-foreground">
Model Configuration
</h3>
<p className="text-xs text-muted-foreground">
Model capabilities and limits
</p>
</div>
<div className="grid gap-4 sm:grid-cols-2">
<div className="space-y-2">
<label
htmlFor="provider_id"
className="text-sm font-medium text-foreground"
>
Provider <span className="text-destructive">*</span>
</label>
<select
id="provider_id"
required
name="provider_id"
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
defaultValue=""
onChange={(e) => handleProviderChange(e.target.value)}
>
<option value="" disabled>
Select provider
</option>
{providers.map((provider) => (
<option key={provider.id} value={provider.id}>
{provider.display_name} ({provider.name})
</option>
))}
</select>
<p className="text-xs text-muted-foreground">
Who hosts/serves the model
</p>
</div>
<div className="space-y-2">
<label
htmlFor="creator_id"
className="text-sm font-medium text-foreground"
>
Creator
</label>
<select
id="creator_id"
name="creator_id"
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
value={selectedCreatorId}
onChange={(e) => setSelectedCreatorId(e.target.value)}
>
<option value="">No creator selected</option>
{creators.map((creator) => (
<option key={creator.id} value={creator.id}>
{creator.display_name} ({creator.name})
</option>
))}
</select>
<p className="text-xs text-muted-foreground">
Who made/trained the model (e.g., OpenAI, Meta)
</p>
</div>
</div>
<div className="grid gap-4 sm:grid-cols-2">
<div className="space-y-2">
<label
htmlFor="context_window"
className="text-sm font-medium text-foreground"
>
Context Window <span className="text-destructive">*</span>
</label>
<input
id="context_window"
required
type="number"
name="context_window"
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors placeholder:text-muted-foreground focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
placeholder="128000"
min={1}
/>
</div>
<div className="space-y-2">
<label
htmlFor="max_output_tokens"
className="text-sm font-medium text-foreground"
>
Max Output Tokens
</label>
<input
id="max_output_tokens"
type="number"
name="max_output_tokens"
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors placeholder:text-muted-foreground focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
placeholder="16384"
min={1}
/>
</div>
</div>
</div>
{/* Pricing */}
<div className="space-y-4 border-t border-border pt-6">
<div className="space-y-1">
<h3 className="text-sm font-semibold text-foreground">Pricing</h3>
<p className="text-xs text-muted-foreground">
Credit cost per run (credentials are managed via the provider)
</p>
</div>
<div className="grid gap-4 sm:grid-cols-1">
<div className="space-y-2">
<label
htmlFor="credit_cost"
className="text-sm font-medium text-foreground"
>
Credit Cost <span className="text-destructive">*</span>
</label>
<input
id="credit_cost"
required
type="number"
name="credit_cost"
step="1"
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors placeholder:text-muted-foreground focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
placeholder="5"
min={0}
/>
</div>
</div>
<p className="text-xs text-muted-foreground">
Credit cost is always in platform credits. Credentials are
inherited from the selected provider.
</p>
</div>
{/* Enabled Toggle */}
<div className="flex items-center gap-3 border-t border-border pt-6">
<input type="hidden" name="is_enabled" value="off" />
<input
id="is_enabled"
type="checkbox"
name="is_enabled"
defaultChecked
className="h-4 w-4 rounded border-input"
/>
<label
htmlFor="is_enabled"
className="text-sm font-medium text-foreground"
>
Enabled by default
</label>
</div>
{error && (
<div className="rounded-lg border border-destructive/30 bg-destructive/10 p-3 text-sm text-destructive">
{error}
</div>
)}
<Dialog.Footer>
<Button
variant="ghost"
size="small"
type="button"
onClick={() => {
setOpen(false);
setError(null);
}}
disabled={isSubmitting}
>
Cancel
</Button>
<Button
variant="primary"
size="small"
type="submit"
disabled={isSubmitting}
>
{isSubmitting ? "Creating..." : "Save Model"}
</Button>
</Dialog.Footer>
</form>
</Dialog.Content>
</Dialog>
);
}

View File

@@ -1,268 +0,0 @@
"use client";
import { useState } from "react";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { Button } from "@/components/atoms/Button/Button";
import { createLlmProviderAction } from "../actions";
import { useRouter } from "next/navigation";
export function AddProviderModal() {
const [open, setOpen] = useState(false);
const [isSubmitting, setIsSubmitting] = useState(false);
const [error, setError] = useState<string | null>(null);
const router = useRouter();
async function handleSubmit(formData: FormData) {
setIsSubmitting(true);
setError(null);
try {
await createLlmProviderAction(formData);
setOpen(false);
router.refresh();
} catch (err) {
setError(
err instanceof Error ? err.message : "Failed to create provider",
);
} finally {
setIsSubmitting(false);
}
}
return (
<Dialog
title="Add Provider"
controlled={{ isOpen: open, set: setOpen }}
styling={{ maxWidth: "768px", maxHeight: "90vh", overflowY: "auto" }}
>
<Dialog.Trigger>
<Button variant="primary" size="small">
Add Provider
</Button>
</Dialog.Trigger>
<Dialog.Content>
<div className="mb-4 text-sm text-muted-foreground">
Define a new upstream provider and default credential information.
</div>
{/* Setup Instructions */}
<div className="mb-6 rounded-lg border border-primary/30 bg-primary/5 p-4">
<div className="space-y-2">
<h4 className="text-sm font-semibold text-foreground">
Before Adding a Provider
</h4>
<p className="text-xs text-muted-foreground">
To use a new provider, you must first configure its credentials in
the backend:
</p>
<ol className="list-inside list-decimal space-y-1 text-xs text-muted-foreground">
<li>
Add the credential to{" "}
<code className="rounded bg-muted px-1 py-0.5 font-mono">
backend/integrations/credentials_store.py
</code>{" "}
with a UUID, provider name, and settings secret reference
</li>
<li>
Add it to the{" "}
<code className="rounded bg-muted px-1 py-0.5 font-mono">
PROVIDER_CREDENTIALS
</code>{" "}
dictionary in{" "}
<code className="rounded bg-muted px-1 py-0.5 font-mono">
backend/data/block_cost_config.py
</code>
</li>
<li>
Use the <strong>same provider name</strong> in the
&quot;Credential Provider&quot; field below that matches the key
in{" "}
<code className="rounded bg-muted px-1 py-0.5 font-mono">
PROVIDER_CREDENTIALS
</code>
</li>
</ol>
</div>
</div>
<form action={handleSubmit} className="space-y-6">
{/* Basic Information */}
<div className="space-y-4">
<div className="space-y-1">
<h3 className="text-sm font-semibold text-foreground">
Basic Information
</h3>
<p className="text-xs text-muted-foreground">
Core provider details
</p>
</div>
<div className="grid gap-4 sm:grid-cols-2">
<div className="space-y-2">
<label
htmlFor="name"
className="text-sm font-medium text-foreground"
>
Provider Slug <span className="text-destructive">*</span>
</label>
<input
id="name"
required
name="name"
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors placeholder:text-muted-foreground focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
placeholder="e.g. openai"
/>
</div>
<div className="space-y-2">
<label
htmlFor="display_name"
className="text-sm font-medium text-foreground"
>
Display Name <span className="text-destructive">*</span>
</label>
<input
id="display_name"
required
name="display_name"
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors placeholder:text-muted-foreground focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
placeholder="OpenAI"
/>
</div>
</div>
<div className="space-y-2">
<label
htmlFor="description"
className="text-sm font-medium text-foreground"
>
Description
</label>
<textarea
id="description"
name="description"
rows={3}
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors placeholder:text-muted-foreground focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
placeholder="Optional description..."
/>
</div>
</div>
{/* Default Credentials */}
<div className="space-y-4 border-t border-border pt-6">
<div className="space-y-1">
<h3 className="text-sm font-semibold text-foreground">
Default Credentials
</h3>
<p className="text-xs text-muted-foreground">
Credential provider name that matches the key in{" "}
<code className="rounded bg-muted px-1 py-0.5 font-mono text-xs">
PROVIDER_CREDENTIALS
</code>
</p>
</div>
<div className="space-y-2">
<label
htmlFor="default_credential_provider"
className="text-sm font-medium text-foreground"
>
Credential Provider <span className="text-destructive">*</span>
</label>
<input
id="default_credential_provider"
name="default_credential_provider"
required
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors placeholder:text-muted-foreground focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
placeholder="openai"
/>
<p className="text-xs text-muted-foreground">
<strong>Important:</strong> This must exactly match the key in
the{" "}
<code className="rounded bg-muted px-1 py-0.5 font-mono text-xs">
PROVIDER_CREDENTIALS
</code>{" "}
dictionary in{" "}
<code className="rounded bg-muted px-1 py-0.5 font-mono text-xs">
block_cost_config.py
</code>
. Common values: &quot;openai&quot;, &quot;anthropic&quot;,
&quot;groq&quot;, &quot;open_router&quot;, etc.
</p>
</div>
</div>
{/* Capabilities */}
<div className="space-y-4 border-t border-border pt-6">
<div className="space-y-1">
<h3 className="text-sm font-semibold text-foreground">
Capabilities
</h3>
<p className="text-xs text-muted-foreground">
Provider feature flags
</p>
</div>
<div className="grid gap-3 sm:grid-cols-2">
{[
{ name: "supports_tools", label: "Supports tools" },
{ name: "supports_json_output", label: "Supports JSON output" },
{ name: "supports_reasoning", label: "Supports reasoning" },
{
name: "supports_parallel_tool",
label: "Supports parallel tool calls",
},
].map(({ name, label }) => (
<div
key={name}
className="flex items-center gap-3 rounded-md border border-border bg-muted/30 px-4 py-3 transition-colors hover:bg-muted/50"
>
<input type="hidden" name={name} value="off" />
<input
id={name}
type="checkbox"
name={name}
defaultChecked={
name !== "supports_reasoning" &&
name !== "supports_parallel_tool"
}
className="h-4 w-4 rounded border-input"
/>
<label
htmlFor={name}
className="text-sm font-medium text-foreground"
>
{label}
</label>
</div>
))}
</div>
</div>
{error && (
<div className="rounded-lg border border-destructive/30 bg-destructive/10 p-3 text-sm text-destructive">
{error}
</div>
)}
<Dialog.Footer>
<Button
variant="ghost"
size="small"
type="button"
onClick={() => {
setOpen(false);
setError(null);
}}
disabled={isSubmitting}
>
Cancel
</Button>
<Button
variant="primary"
size="small"
type="submit"
disabled={isSubmitting}
>
{isSubmitting ? "Creating..." : "Save Provider"}
</Button>
</Dialog.Footer>
</form>
</Dialog.Content>
</Dialog>
);
}

View File

@@ -1,195 +0,0 @@
"use client";
import { useState } from "react";
import type { LlmModelCreator } from "@/app/api/__generated__/models/llmModelCreator";
import {
Table,
TableBody,
TableCell,
TableHead,
TableHeader,
TableRow,
} from "@/components/atoms/Table/Table";
import { Button } from "@/components/atoms/Button/Button";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { updateLlmCreatorAction } from "../actions";
import { useRouter } from "next/navigation";
import { DeleteCreatorModal } from "./DeleteCreatorModal";
export function CreatorsTable({ creators }: { creators: LlmModelCreator[] }) {
if (!creators.length) {
return (
<div className="rounded-lg border border-dashed border-border p-6 text-center text-sm text-muted-foreground">
No creators registered yet.
</div>
);
}
return (
<div className="rounded-lg border">
<Table>
<TableHeader>
<TableRow>
<TableHead>Creator</TableHead>
<TableHead>Description</TableHead>
<TableHead>Website</TableHead>
<TableHead>Actions</TableHead>
</TableRow>
</TableHeader>
<TableBody>
{creators.map((creator) => (
<TableRow key={creator.id}>
<TableCell>
<div className="font-medium">{creator.display_name}</div>
<div className="text-xs text-muted-foreground">
{creator.name}
</div>
</TableCell>
<TableCell>
<span className="text-sm text-muted-foreground">
{creator.description || "—"}
</span>
</TableCell>
<TableCell>
{creator.website_url ? (
<a
href={creator.website_url}
target="_blank"
rel="noopener noreferrer"
className="text-sm text-primary hover:underline"
>
{(() => {
try {
return new URL(creator.website_url).hostname;
} catch {
return creator.website_url;
}
})()}
</a>
) : (
<span className="text-muted-foreground"></span>
)}
</TableCell>
<TableCell>
<div className="flex items-center justify-end gap-2">
<EditCreatorModal creator={creator} />
<DeleteCreatorModal creator={creator} />
</div>
</TableCell>
</TableRow>
))}
</TableBody>
</Table>
</div>
);
}
function EditCreatorModal({ creator }: { creator: LlmModelCreator }) {
const [open, setOpen] = useState(false);
const [isSubmitting, setIsSubmitting] = useState(false);
const [error, setError] = useState<string | null>(null);
const router = useRouter();
async function handleSubmit(formData: FormData) {
setIsSubmitting(true);
setError(null);
try {
await updateLlmCreatorAction(formData);
setOpen(false);
router.refresh();
} catch (err) {
setError(err instanceof Error ? err.message : "Failed to update creator");
} finally {
setIsSubmitting(false);
}
}
return (
<Dialog
title="Edit Creator"
controlled={{ isOpen: open, set: setOpen }}
styling={{ maxWidth: "512px" }}
>
<Dialog.Trigger>
<Button variant="outline" size="small" className="min-w-0">
Edit
</Button>
</Dialog.Trigger>
<Dialog.Content>
<form action={handleSubmit} className="space-y-4">
<input type="hidden" name="creator_id" value={creator.id} />
<div className="grid gap-4 sm:grid-cols-2">
<div className="space-y-2">
<label className="text-sm font-medium">Name (slug)</label>
<input
required
name="name"
defaultValue={creator.name}
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm"
/>
</div>
<div className="space-y-2">
<label className="text-sm font-medium">Display Name</label>
<input
required
name="display_name"
defaultValue={creator.display_name}
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm"
/>
</div>
</div>
<div className="space-y-2">
<label className="text-sm font-medium">Description</label>
<textarea
name="description"
rows={2}
defaultValue={creator.description ?? ""}
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm"
/>
</div>
<div className="space-y-2">
<label className="text-sm font-medium">Website URL</label>
<input
name="website_url"
type="url"
defaultValue={creator.website_url ?? ""}
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm"
/>
</div>
{error && (
<div className="rounded-lg border border-destructive/30 bg-destructive/10 p-3 text-sm text-destructive">
{error}
</div>
)}
<Dialog.Footer>
<Button
variant="ghost"
size="small"
type="button"
onClick={() => {
setOpen(false);
setError(null);
}}
disabled={isSubmitting}
>
Cancel
</Button>
<Button
variant="primary"
size="small"
type="submit"
disabled={isSubmitting}
>
{isSubmitting ? "Updating..." : "Update"}
</Button>
</Dialog.Footer>
</form>
</Dialog.Content>
</Dialog>
);
}

View File

@@ -1,107 +0,0 @@
"use client";
import { useState } from "react";
import { useRouter } from "next/navigation";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { Button } from "@/components/atoms/Button/Button";
import type { LlmModelCreator } from "@/app/api/__generated__/models/llmModelCreator";
import { deleteLlmCreatorAction } from "../actions";
export function DeleteCreatorModal({ creator }: { creator: LlmModelCreator }) {
const [open, setOpen] = useState(false);
const [isDeleting, setIsDeleting] = useState(false);
const [error, setError] = useState<string | null>(null);
const router = useRouter();
async function handleDelete(formData: FormData) {
setIsDeleting(true);
setError(null);
try {
await deleteLlmCreatorAction(formData);
setOpen(false);
router.refresh();
} catch (err) {
setError(err instanceof Error ? err.message : "Failed to delete creator");
} finally {
setIsDeleting(false);
}
}
return (
<Dialog
title="Delete Creator"
controlled={{ isOpen: open, set: setOpen }}
styling={{ maxWidth: "480px" }}
>
<Dialog.Trigger>
<Button
type="button"
variant="outline"
size="small"
className="min-w-0 text-destructive hover:bg-destructive/10"
>
Delete
</Button>
</Dialog.Trigger>
<Dialog.Content>
<div className="space-y-4">
<div className="rounded-lg border border-amber-500/30 bg-amber-500/10 p-4 dark:border-amber-400/30 dark:bg-amber-400/10">
<div className="flex items-start gap-3">
<div className="flex-shrink-0 text-amber-600 dark:text-amber-400">
</div>
<div className="text-sm text-foreground">
<p className="font-semibold">You are about to delete:</p>
<p className="mt-1">
<span className="font-medium">{creator.display_name}</span>{" "}
<span className="text-muted-foreground">
({creator.name})
</span>
</p>
<p className="mt-2 text-muted-foreground">
Models using this creator will have their creator field
cleared. This is safe and won&apos;t affect model
functionality.
</p>
</div>
</div>
</div>
<form action={handleDelete} className="space-y-4">
<input type="hidden" name="creator_id" value={creator.id} />
{error && (
<div className="rounded-lg border border-destructive/30 bg-destructive/10 p-3 text-sm text-destructive">
{error}
</div>
)}
<Dialog.Footer>
<Button
variant="ghost"
size="small"
onClick={() => {
setOpen(false);
setError(null);
}}
disabled={isDeleting}
type="button"
>
Cancel
</Button>
<Button
type="submit"
variant="primary"
size="small"
disabled={isDeleting}
className="bg-destructive text-destructive-foreground hover:bg-destructive/90"
>
{isDeleting ? "Deleting..." : "Delete Creator"}
</Button>
</Dialog.Footer>
</form>
</div>
</Dialog.Content>
</Dialog>
);
}

View File

@@ -1,224 +0,0 @@
"use client";
import { useState } from "react";
import { useRouter } from "next/navigation";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { Button } from "@/components/atoms/Button/Button";
import type { LlmModel } from "@/app/api/__generated__/models/llmModel";
import { deleteLlmModelAction, fetchLlmModelUsage } from "../actions";
export function DeleteModelModal({
model,
availableModels,
}: {
model: LlmModel;
availableModels: LlmModel[];
}) {
const router = useRouter();
const [open, setOpen] = useState(false);
const [selectedReplacement, setSelectedReplacement] = useState<string>("");
const [isDeleting, setIsDeleting] = useState(false);
const [error, setError] = useState<string | null>(null);
const [usageCount, setUsageCount] = useState<number | null>(null);
const [usageLoading, setUsageLoading] = useState(false);
const [usageError, setUsageError] = useState<string | null>(null);
// Filter out the current model and disabled models from replacement options
const replacementOptions = availableModels.filter(
(m) => m.id !== model.id && m.is_enabled,
);
// Check if migration is required (has blocks using this model)
const requiresMigration = usageCount !== null && usageCount > 0;
async function fetchUsage() {
setUsageLoading(true);
setUsageError(null);
try {
const usage = await fetchLlmModelUsage(model.id);
setUsageCount(usage.node_count);
} catch (err) {
console.error("Failed to fetch model usage:", err);
setUsageError("Failed to load usage count");
setUsageCount(null);
} finally {
setUsageLoading(false);
}
}
async function handleDelete(formData: FormData) {
setIsDeleting(true);
setError(null);
try {
await deleteLlmModelAction(formData);
setOpen(false);
router.refresh();
} catch (err) {
setError(err instanceof Error ? err.message : "Failed to delete model");
} finally {
setIsDeleting(false);
}
}
// Determine if delete button should be enabled
const canDelete =
!isDeleting &&
!usageLoading &&
usageCount !== null &&
(requiresMigration
? selectedReplacement && replacementOptions.length > 0
: true);
return (
<Dialog
title="Delete Model"
controlled={{
isOpen: open,
set: async (isOpen) => {
setOpen(isOpen);
if (isOpen) {
setUsageCount(null);
setUsageError(null);
setError(null);
setSelectedReplacement("");
await fetchUsage();
}
},
}}
styling={{ maxWidth: "600px" }}
>
<Dialog.Trigger>
<Button
type="button"
variant="outline"
size="small"
className="min-w-0 text-destructive hover:bg-destructive/10"
>
Delete
</Button>
</Dialog.Trigger>
<Dialog.Content>
<div className="mb-4 text-sm text-muted-foreground">
{requiresMigration
? "This action cannot be undone. All workflows using this model will be migrated to the replacement model you select."
: "This action cannot be undone."}
</div>
<div className="space-y-4">
<div className="rounded-lg border border-amber-500/30 bg-amber-500/10 p-4 dark:border-amber-400/30 dark:bg-amber-400/10">
<div className="flex items-start gap-3">
<div className="flex-shrink-0 text-amber-600 dark:text-amber-400">
</div>
<div className="text-sm text-foreground">
<p className="font-semibold">You are about to delete:</p>
<p className="mt-1">
<span className="font-medium">{model.display_name}</span>{" "}
<span className="text-muted-foreground">({model.slug})</span>
</p>
{usageLoading && (
<p className="mt-2 text-muted-foreground">
Loading usage count...
</p>
)}
{usageError && (
<p className="mt-2 text-destructive">{usageError}</p>
)}
{!usageLoading && !usageError && usageCount !== null && (
<p className="mt-2 font-semibold">
Impact: {usageCount} block{usageCount !== 1 ? "s" : ""}{" "}
currently use this model
</p>
)}
{requiresMigration && (
<p className="mt-2 text-muted-foreground">
All workflows currently using this model will be
automatically updated to use the replacement model you
choose below.
</p>
)}
{!usageLoading && usageCount === 0 && (
<p className="mt-2 text-muted-foreground">
No workflows are using this model. It can be safely deleted.
</p>
)}
</div>
</div>
</div>
<form action={handleDelete} className="space-y-4">
<input type="hidden" name="model_id" value={model.id} />
<input
type="hidden"
name="replacement_model_slug"
value={selectedReplacement}
/>
{requiresMigration && (
<label className="text-sm font-medium">
<span className="mb-2 block">
Select Replacement Model{" "}
<span className="text-destructive">*</span>
</span>
<select
required
value={selectedReplacement}
onChange={(e) => setSelectedReplacement(e.target.value)}
className="w-full rounded border border-input bg-background p-2 text-sm"
>
<option value="">-- Choose a replacement model --</option>
{replacementOptions.map((m) => (
<option key={m.id} value={m.slug}>
{m.display_name} ({m.slug})
</option>
))}
</select>
{replacementOptions.length === 0 && (
<p className="mt-2 text-xs text-destructive">
No replacement models available. You must have at least one
other enabled model before deleting this one.
</p>
)}
</label>
)}
{error && (
<div className="rounded-lg border border-destructive/30 bg-destructive/10 p-3 text-sm text-destructive">
{error}
</div>
)}
<Dialog.Footer>
<Button
variant="ghost"
size="small"
type="button"
onClick={() => {
setOpen(false);
setSelectedReplacement("");
setError(null);
}}
disabled={isDeleting}
>
Cancel
</Button>
<Button
type="submit"
variant="primary"
size="small"
disabled={!canDelete}
className="bg-destructive text-destructive-foreground hover:bg-destructive/90"
>
{isDeleting
? "Deleting..."
: requiresMigration
? "Delete and Migrate"
: "Delete"}
</Button>
</Dialog.Footer>
</form>
</div>
</Dialog.Content>
</Dialog>
);
}

View File

@@ -1,129 +0,0 @@
"use client";
import { useState } from "react";
import { useRouter } from "next/navigation";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { Button } from "@/components/atoms/Button/Button";
import type { LlmProvider } from "@/app/api/__generated__/models/llmProvider";
import { deleteLlmProviderAction } from "../actions";
export function DeleteProviderModal({ provider }: { provider: LlmProvider }) {
const [open, setOpen] = useState(false);
const [isDeleting, setIsDeleting] = useState(false);
const [error, setError] = useState<string | null>(null);
const router = useRouter();
const modelCount = provider.models?.length ?? 0;
const hasModels = modelCount > 0;
async function handleDelete(formData: FormData) {
setIsDeleting(true);
setError(null);
try {
await deleteLlmProviderAction(formData);
setOpen(false);
router.refresh();
} catch (err) {
setError(
err instanceof Error ? err.message : "Failed to delete provider",
);
} finally {
setIsDeleting(false);
}
}
return (
<Dialog
title="Delete Provider"
controlled={{ isOpen: open, set: setOpen }}
styling={{ maxWidth: "480px" }}
>
<Dialog.Trigger>
<Button
type="button"
variant="outline"
size="small"
className="min-w-0 text-destructive hover:bg-destructive/10"
>
Delete
</Button>
</Dialog.Trigger>
<Dialog.Content>
<div className="space-y-4">
<div
className={`rounded-lg border p-4 ${
hasModels
? "border-destructive/30 bg-destructive/10"
: "border-amber-500/30 bg-amber-500/10 dark:border-amber-400/30 dark:bg-amber-400/10"
}`}
>
<div className="flex items-start gap-3">
<div
className={`flex-shrink-0 ${
hasModels
? "text-destructive"
: "text-amber-600 dark:text-amber-400"
}`}
>
{hasModels ? "🚫" : "⚠️"}
</div>
<div className="text-sm text-foreground">
<p className="font-semibold">You are about to delete:</p>
<p className="mt-1">
<span className="font-medium">{provider.display_name}</span>{" "}
<span className="text-muted-foreground">
({provider.name})
</span>
</p>
{hasModels ? (
<p className="mt-2 text-destructive">
This provider has {modelCount} model(s). You must delete all
models before you can delete this provider.
</p>
) : (
<p className="mt-2 text-muted-foreground">
This provider has no models and can be safely deleted.
</p>
)}
</div>
</div>
</div>
<form action={handleDelete} className="space-y-4">
<input type="hidden" name="provider_id" value={provider.id} />
{error && (
<div className="rounded-lg border border-destructive/30 bg-destructive/10 p-3 text-sm text-destructive">
{error}
</div>
)}
<Dialog.Footer>
<Button
variant="ghost"
size="small"
onClick={() => {
setOpen(false);
setError(null);
}}
disabled={isDeleting}
type="button"
>
Cancel
</Button>
<Button
type="submit"
variant="primary"
size="small"
disabled={isDeleting || hasModels}
className="bg-destructive text-destructive-foreground hover:bg-destructive/90 disabled:opacity-50"
>
{isDeleting ? "Deleting..." : "Delete Provider"}
</Button>
</Dialog.Footer>
</form>
</div>
</Dialog.Content>
</Dialog>
);
}

View File

@@ -1,288 +0,0 @@
"use client";
import { useState } from "react";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { Button } from "@/components/atoms/Button/Button";
import type { LlmModel } from "@/app/api/__generated__/models/llmModel";
import { toggleLlmModelAction, fetchLlmModelUsage } from "../actions";
export function DisableModelModal({
model,
availableModels,
}: {
model: LlmModel;
availableModels: LlmModel[];
}) {
const [open, setOpen] = useState(false);
const [isDisabling, setIsDisabling] = useState(false);
const [error, setError] = useState<string | null>(null);
const [usageCount, setUsageCount] = useState<number | null>(null);
const [selectedMigration, setSelectedMigration] = useState<string>("");
const [wantsMigration, setWantsMigration] = useState(false);
const [migrationReason, setMigrationReason] = useState("");
const [customCreditCost, setCustomCreditCost] = useState<string>("");
// Filter out the current model and disabled models from replacement options
const migrationOptions = availableModels.filter(
(m) => m.id !== model.id && m.is_enabled,
);
async function fetchUsage() {
try {
const usage = await fetchLlmModelUsage(model.id);
setUsageCount(usage.node_count);
} catch {
setUsageCount(null);
}
}
async function handleDisable(formData: FormData) {
setIsDisabling(true);
setError(null);
try {
await toggleLlmModelAction(formData);
setOpen(false);
} catch (err) {
setError(err instanceof Error ? err.message : "Failed to disable model");
} finally {
setIsDisabling(false);
}
}
function resetState() {
setError(null);
setSelectedMigration("");
setWantsMigration(false);
setMigrationReason("");
setCustomCreditCost("");
}
const hasUsage = usageCount !== null && usageCount > 0;
return (
<Dialog
title="Disable Model"
controlled={{
isOpen: open,
set: async (isOpen) => {
setOpen(isOpen);
if (isOpen) {
setUsageCount(null);
resetState();
await fetchUsage();
}
},
}}
styling={{ maxWidth: "600px" }}
>
<Dialog.Trigger>
<Button
type="button"
variant="outline"
size="small"
className="min-w-0"
>
Disable
</Button>
</Dialog.Trigger>
<Dialog.Content>
<div className="mb-4 text-sm text-muted-foreground">
Disabling a model will hide it from users when creating new workflows.
</div>
<div className="space-y-4">
<div className="rounded-lg border border-amber-500/30 bg-amber-500/10 p-4 dark:border-amber-400/30 dark:bg-amber-400/10">
<div className="flex items-start gap-3">
<div className="flex-shrink-0 text-amber-600 dark:text-amber-400">
</div>
<div className="text-sm text-foreground">
<p className="font-semibold">You are about to disable:</p>
<p className="mt-1">
<span className="font-medium">{model.display_name}</span>{" "}
<span className="text-muted-foreground">({model.slug})</span>
</p>
{usageCount === null ? (
<p className="mt-2 text-muted-foreground">
Loading usage data...
</p>
) : usageCount > 0 ? (
<p className="mt-2 font-semibold">
Impact: {usageCount} block{usageCount !== 1 ? "s" : ""}{" "}
currently use this model
</p>
) : (
<p className="mt-2 text-muted-foreground">
No workflows are currently using this model.
</p>
)}
</div>
</div>
</div>
{hasUsage && (
<div className="space-y-4 rounded-lg border border-border bg-muted/50 p-4">
<label className="flex items-start gap-3">
<input
type="checkbox"
checked={wantsMigration}
onChange={(e) => {
setWantsMigration(e.target.checked);
if (!e.target.checked) {
setSelectedMigration("");
}
}}
className="mt-1"
/>
<div className="text-sm">
<span className="font-medium">
Migrate existing workflows to another model
</span>
<p className="mt-1 text-muted-foreground">
Creates a revertible migration record. If unchecked,
existing workflows will use automatic fallback to an enabled
model from the same provider.
</p>
</div>
</label>
{wantsMigration && (
<div className="space-y-4 border-t border-border pt-4">
<label className="block text-sm font-medium">
<span className="mb-2 block">
Replacement Model{" "}
<span className="text-destructive">*</span>
</span>
<select
required
value={selectedMigration}
onChange={(e) => setSelectedMigration(e.target.value)}
className="w-full rounded border border-input bg-background p-2 text-sm"
>
<option value="">-- Choose a replacement model --</option>
{migrationOptions.map((m) => (
<option key={m.id} value={m.slug}>
{m.display_name} ({m.slug})
</option>
))}
</select>
{migrationOptions.length === 0 && (
<p className="mt-2 text-xs text-destructive">
No other enabled models available for migration.
</p>
)}
</label>
<label className="block text-sm font-medium">
<span className="mb-2 block">
Migration Reason{" "}
<span className="font-normal text-muted-foreground">
(optional)
</span>
</span>
<input
type="text"
value={migrationReason}
onChange={(e) => setMigrationReason(e.target.value)}
placeholder="e.g., Provider outage, Cost reduction"
className="w-full rounded border border-input bg-background p-2 text-sm"
/>
<p className="mt-1 text-xs text-muted-foreground">
Helps track why the migration was made
</p>
</label>
<label className="block text-sm font-medium">
<span className="mb-2 block">
Custom Credit Cost{" "}
<span className="font-normal text-muted-foreground">
(optional)
</span>
</span>
<input
type="number"
min="0"
value={customCreditCost}
onChange={(e) => setCustomCreditCost(e.target.value)}
placeholder="Leave blank to use target model's cost"
className="w-full rounded border border-input bg-background p-2 text-sm"
/>
<p className="mt-1 text-xs text-muted-foreground">
Override pricing for migrated workflows. When set, billing
will use this cost instead of the target model&apos;s
cost.
</p>
</label>
</div>
)}
</div>
)}
<form action={handleDisable} className="space-y-4">
<input type="hidden" name="model_id" value={model.id} />
<input type="hidden" name="is_enabled" value="false" />
{wantsMigration && selectedMigration && (
<>
<input
type="hidden"
name="migrate_to_slug"
value={selectedMigration}
/>
{migrationReason && (
<input
type="hidden"
name="migration_reason"
value={migrationReason}
/>
)}
{customCreditCost && (
<input
type="hidden"
name="custom_credit_cost"
value={customCreditCost}
/>
)}
</>
)}
{error && (
<div className="rounded-lg border border-destructive/30 bg-destructive/10 p-3 text-sm text-destructive">
{error}
</div>
)}
<Dialog.Footer>
<Button
variant="ghost"
size="small"
onClick={() => {
setOpen(false);
resetState();
}}
disabled={isDisabling}
>
Cancel
</Button>
<Button
type="submit"
variant="primary"
size="small"
disabled={
isDisabling ||
(wantsMigration && !selectedMigration) ||
usageCount === null
}
>
{isDisabling
? "Disabling..."
: wantsMigration && selectedMigration
? "Disable & Migrate"
: "Disable Model"}
</Button>
</Dialog.Footer>
</form>
</div>
</Dialog.Content>
</Dialog>
);
}

View File

@@ -1,223 +0,0 @@
"use client";
import { useState } from "react";
import { useRouter } from "next/navigation";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { Button } from "@/components/atoms/Button/Button";
import type { LlmModel } from "@/app/api/__generated__/models/llmModel";
import type { LlmModelCreator } from "@/app/api/__generated__/models/llmModelCreator";
import type { LlmProvider } from "@/app/api/__generated__/models/llmProvider";
import { updateLlmModelAction } from "../actions";
export function EditModelModal({
model,
providers,
creators,
}: {
model: LlmModel;
providers: LlmProvider[];
creators: LlmModelCreator[];
}) {
const router = useRouter();
const [open, setOpen] = useState(false);
const [isSubmitting, setIsSubmitting] = useState(false);
const [error, setError] = useState<string | null>(null);
const cost = model.costs?.[0];
const provider = providers.find((p) => p.id === model.provider_id);
async function handleSubmit(formData: FormData) {
setIsSubmitting(true);
setError(null);
try {
await updateLlmModelAction(formData);
setOpen(false);
router.refresh();
} catch (err) {
setError(err instanceof Error ? err.message : "Failed to update model");
} finally {
setIsSubmitting(false);
}
}
return (
<Dialog
title="Edit Model"
controlled={{ isOpen: open, set: setOpen }}
styling={{ maxWidth: "768px", maxHeight: "90vh", overflowY: "auto" }}
>
<Dialog.Trigger>
<Button variant="outline" size="small" className="min-w-0">
Edit
</Button>
</Dialog.Trigger>
<Dialog.Content>
<div className="mb-4 text-sm text-muted-foreground">
Update model metadata and pricing information.
</div>
{error && (
<div className="mb-4 rounded-lg border border-destructive/30 bg-destructive/10 p-3 text-sm text-destructive">
{error}
</div>
)}
<form action={handleSubmit} className="space-y-4">
<input type="hidden" name="model_id" value={model.id} />
<div className="grid gap-4 md:grid-cols-2">
<label className="text-sm font-medium">
Display Name
<input
required
name="display_name"
defaultValue={model.display_name}
className="mt-1 w-full rounded border border-input bg-background p-2 text-sm"
/>
</label>
<label className="text-sm font-medium">
Provider
<select
required
name="provider_id"
className="mt-1 w-full rounded border border-input bg-background p-2 text-sm"
defaultValue={model.provider_id}
>
{providers.map((p) => (
<option key={p.id} value={p.id}>
{p.display_name} ({p.name})
</option>
))}
</select>
<span className="text-xs text-muted-foreground">
Who hosts/serves the model
</span>
</label>
</div>
<div className="grid gap-4 md:grid-cols-2">
<label className="text-sm font-medium">
Creator
<select
name="creator_id"
className="mt-1 w-full rounded border border-input bg-background p-2 text-sm"
defaultValue={model.creator_id ?? ""}
>
<option value="">No creator selected</option>
{creators.map((c) => (
<option key={c.id} value={c.id}>
{c.display_name} ({c.name})
</option>
))}
</select>
<span className="text-xs text-muted-foreground">
Who made/trained the model (e.g., OpenAI, Meta)
</span>
</label>
</div>
<label className="text-sm font-medium">
Description
<textarea
name="description"
rows={2}
defaultValue={model.description ?? ""}
className="mt-1 w-full rounded border border-input bg-background p-2 text-sm"
placeholder="Optional description..."
/>
</label>
<div className="grid gap-4 md:grid-cols-2">
<label className="text-sm font-medium">
Context Window
<input
required
type="number"
name="context_window"
defaultValue={model.context_window}
className="mt-1 w-full rounded border border-input bg-background p-2 text-sm"
min={1}
/>
</label>
<label className="text-sm font-medium">
Max Output Tokens
<input
type="number"
name="max_output_tokens"
defaultValue={model.max_output_tokens ?? undefined}
className="mt-1 w-full rounded border border-input bg-background p-2 text-sm"
min={1}
/>
</label>
</div>
<div className="grid gap-4 md:grid-cols-2">
<label className="text-sm font-medium">
Credit Cost
<input
required
type="number"
name="credit_cost"
defaultValue={cost?.credit_cost ?? 0}
className="mt-1 w-full rounded border border-input bg-background p-2 text-sm"
min={0}
/>
<span className="text-xs text-muted-foreground">
Credits charged per run
</span>
</label>
<label className="text-sm font-medium">
Credential Provider
<select
required
name="credential_provider"
defaultValue={cost?.credential_provider ?? provider?.name ?? ""}
className="mt-1 w-full rounded border border-input bg-background p-2 text-sm"
>
<option value="" disabled>
Select provider
</option>
{providers.map((p) => (
<option key={p.id} value={p.name}>
{p.display_name} ({p.name})
</option>
))}
</select>
<span className="text-xs text-muted-foreground">
Must match a key in PROVIDER_CREDENTIALS
</span>
</label>
</div>
{/* Hidden defaults for credential_type and unit */}
<input
type="hidden"
name="credential_type"
value={
cost?.credential_type ??
provider?.default_credential_type ??
"api_key"
}
/>
<input type="hidden" name="unit" value={cost?.unit ?? "RUN"} />
<Dialog.Footer>
<Button
type="button"
variant="ghost"
size="small"
onClick={() => setOpen(false)}
disabled={isSubmitting}
>
Cancel
</Button>
<Button
variant="primary"
size="small"
type="submit"
disabled={isSubmitting}
>
{isSubmitting ? "Updating..." : "Update Model"}
</Button>
</Dialog.Footer>
</form>
</Dialog.Content>
</Dialog>
);
}

View File

@@ -1,263 +0,0 @@
"use client";
import { useState } from "react";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { Button } from "@/components/atoms/Button/Button";
import { updateLlmProviderAction } from "../actions";
import { useRouter } from "next/navigation";
import type { LlmProvider } from "@/app/api/__generated__/models/llmProvider";
export function EditProviderModal({ provider }: { provider: LlmProvider }) {
const [open, setOpen] = useState(false);
const [isSubmitting, setIsSubmitting] = useState(false);
const [error, setError] = useState<string | null>(null);
const router = useRouter();
async function handleSubmit(formData: FormData) {
setIsSubmitting(true);
setError(null);
try {
await updateLlmProviderAction(formData);
setOpen(false);
router.refresh();
} catch (err) {
setError(
err instanceof Error ? err.message : "Failed to update provider",
);
} finally {
setIsSubmitting(false);
}
}
return (
<Dialog
title="Edit Provider"
controlled={{ isOpen: open, set: setOpen }}
styling={{ maxWidth: "768px", maxHeight: "90vh", overflowY: "auto" }}
>
<Dialog.Trigger>
<Button variant="outline" size="small">
Edit
</Button>
</Dialog.Trigger>
<Dialog.Content>
<div className="mb-4 text-sm text-muted-foreground">
Update provider configuration and capabilities.
</div>
<form action={handleSubmit} className="space-y-6">
<input type="hidden" name="provider_id" value={provider.id} />
{/* Basic Information */}
<div className="space-y-4">
<div className="space-y-1">
<h3 className="text-sm font-semibold text-foreground">
Basic Information
</h3>
<p className="text-xs text-muted-foreground">
Core provider details
</p>
</div>
<div className="grid gap-4 sm:grid-cols-2">
<div className="space-y-2">
<label
htmlFor="name"
className="text-sm font-medium text-foreground"
>
Provider Slug <span className="text-destructive">*</span>
</label>
<input
id="name"
required
name="name"
defaultValue={provider.name}
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors placeholder:text-muted-foreground focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
placeholder="e.g. openai"
/>
</div>
<div className="space-y-2">
<label
htmlFor="display_name"
className="text-sm font-medium text-foreground"
>
Display Name <span className="text-destructive">*</span>
</label>
<input
id="display_name"
required
name="display_name"
defaultValue={provider.display_name}
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors placeholder:text-muted-foreground focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
placeholder="OpenAI"
/>
</div>
</div>
<div className="space-y-2">
<label
htmlFor="description"
className="text-sm font-medium text-foreground"
>
Description
</label>
<textarea
id="description"
name="description"
rows={3}
defaultValue={provider.description ?? ""}
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors placeholder:text-muted-foreground focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
placeholder="Optional description..."
/>
</div>
</div>
{/* Default Credentials */}
<div className="space-y-4 border-t border-border pt-6">
<div className="space-y-1">
<h3 className="text-sm font-semibold text-foreground">
Default Credentials
</h3>
<p className="text-xs text-muted-foreground">
Credential provider name that matches the key in{" "}
<code className="rounded bg-muted px-1 py-0.5 font-mono text-xs">
PROVIDER_CREDENTIALS
</code>
</p>
</div>
<div className="grid gap-4 sm:grid-cols-2">
<div className="space-y-2">
<label
htmlFor="default_credential_provider"
className="text-sm font-medium text-foreground"
>
Credential Provider
</label>
<input
id="default_credential_provider"
name="default_credential_provider"
defaultValue={provider.default_credential_provider ?? ""}
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors placeholder:text-muted-foreground focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
placeholder="openai"
/>
</div>
<div className="space-y-2">
<label
htmlFor="default_credential_id"
className="text-sm font-medium text-foreground"
>
Credential ID
</label>
<input
id="default_credential_id"
name="default_credential_id"
defaultValue={provider.default_credential_id ?? ""}
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors placeholder:text-muted-foreground focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
placeholder="Optional credential ID"
/>
</div>
</div>
<div className="space-y-2">
<label
htmlFor="default_credential_type"
className="text-sm font-medium text-foreground"
>
Credential Type
</label>
<input
id="default_credential_type"
name="default_credential_type"
defaultValue={provider.default_credential_type ?? "api_key"}
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors placeholder:text-muted-foreground focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
placeholder="api_key"
/>
</div>
</div>
{/* Capabilities */}
<div className="space-y-4 border-t border-border pt-6">
<div className="space-y-1">
<h3 className="text-sm font-semibold text-foreground">
Capabilities
</h3>
<p className="text-xs text-muted-foreground">
Provider feature flags
</p>
</div>
<div className="grid gap-3 sm:grid-cols-2">
{[
{
name: "supports_tools",
label: "Supports tools",
checked: provider.supports_tools,
},
{
name: "supports_json_output",
label: "Supports JSON output",
checked: provider.supports_json_output,
},
{
name: "supports_reasoning",
label: "Supports reasoning",
checked: provider.supports_reasoning,
},
{
name: "supports_parallel_tool",
label: "Supports parallel tool calls",
checked: provider.supports_parallel_tool,
},
].map(({ name, label, checked }) => (
<div
key={name}
className="flex items-center gap-3 rounded-md border border-border bg-muted/30 px-4 py-3 transition-colors hover:bg-muted/50"
>
<input type="hidden" name={name} value="off" />
<input
id={name}
type="checkbox"
name={name}
defaultChecked={checked}
className="h-4 w-4 rounded border-input"
/>
<label
htmlFor={name}
className="text-sm font-medium text-foreground"
>
{label}
</label>
</div>
))}
</div>
</div>
{error && (
<div className="rounded-lg border border-destructive/30 bg-destructive/10 p-3 text-sm text-destructive">
{error}
</div>
)}
<Dialog.Footer>
<Button
variant="ghost"
size="small"
type="button"
onClick={() => {
setOpen(false);
setError(null);
}}
disabled={isSubmitting}
>
Cancel
</Button>
<Button
variant="primary"
size="small"
type="submit"
disabled={isSubmitting}
>
{isSubmitting ? "Saving..." : "Save Changes"}
</Button>
</Dialog.Footer>
</form>
</Dialog.Content>
</Dialog>
);
}

View File

@@ -1,131 +0,0 @@
"use client";
import type { LlmModel } from "@/app/api/__generated__/models/llmModel";
import type { LlmModelCreator } from "@/app/api/__generated__/models/llmModelCreator";
import type { LlmModelMigration } from "@/app/api/__generated__/models/llmModelMigration";
import type { LlmProvider } from "@/app/api/__generated__/models/llmProvider";
import { ErrorBoundary } from "@/components/molecules/ErrorBoundary/ErrorBoundary";
import { ErrorCard } from "@/components/molecules/ErrorCard/ErrorCard";
import { AddProviderModal } from "./AddProviderModal";
import { AddModelModal } from "./AddModelModal";
import { AddCreatorModal } from "./AddCreatorModal";
import { ProviderList } from "./ProviderList";
import { ModelsTable } from "./ModelsTable";
import { MigrationsTable } from "./MigrationsTable";
import { CreatorsTable } from "./CreatorsTable";
import { RecommendedModelSelector } from "./RecommendedModelSelector";
interface Props {
providers: LlmProvider[];
models: LlmModel[];
migrations: LlmModelMigration[];
creators: LlmModelCreator[];
}
function AdminErrorFallback() {
return (
<div className="mx-auto max-w-xl p-6">
<ErrorCard
responseError={{
message:
"An error occurred while loading the LLM Registry. Please refresh the page.",
}}
context="llm-registry"
onRetry={() => window.location.reload()}
/>
</div>
);
}
export function LlmRegistryDashboard({
providers,
models,
migrations,
creators,
}: Props) {
return (
<ErrorBoundary fallback={<AdminErrorFallback />} context="llm-registry">
<div className="mx-auto p-6">
<div className="flex flex-col gap-6">
{/* Header */}
<div>
<h1 className="text-3xl font-bold">LLM Registry</h1>
<p className="text-muted-foreground">
Manage providers, creators, models, and credit pricing
</p>
</div>
{/* Active Migrations Section - Only show if there are migrations */}
{migrations.length > 0 && (
<div className="rounded-lg border border-primary/30 bg-primary/5 p-6 shadow-sm">
<div className="mb-4">
<h2 className="text-xl font-semibold">Active Migrations</h2>
<p className="mt-1 text-sm text-muted-foreground">
These migrations can be reverted to restore workflows to their
original model
</p>
</div>
<MigrationsTable migrations={migrations} />
</div>
)}
{/* Providers & Creators Section - Side by Side */}
<div className="grid gap-6 lg:grid-cols-2">
{/* Providers */}
<div className="rounded-lg border bg-card p-6 shadow-sm">
<div className="mb-4 flex items-center justify-between">
<div>
<h2 className="text-xl font-semibold">Providers</h2>
<p className="mt-1 text-sm text-muted-foreground">
Who hosts/serves the models
</p>
</div>
<AddProviderModal />
</div>
<ProviderList providers={providers} />
</div>
{/* Creators */}
<div className="rounded-lg border bg-card p-6 shadow-sm">
<div className="mb-4 flex items-center justify-between">
<div>
<h2 className="text-xl font-semibold">Creators</h2>
<p className="mt-1 text-sm text-muted-foreground">
Who made/trained the models
</p>
</div>
<AddCreatorModal />
</div>
<CreatorsTable creators={creators} />
</div>
</div>
{/* Models Section */}
<div className="rounded-lg border bg-card p-6 shadow-sm">
<div className="mb-4 flex items-center justify-between">
<div>
<h2 className="text-xl font-semibold">Models</h2>
<p className="mt-1 text-sm text-muted-foreground">
Toggle availability, adjust context windows, and update credit
pricing
</p>
</div>
<AddModelModal providers={providers} creators={creators} />
</div>
{/* Recommended Model Selector */}
<div className="mb-6">
<RecommendedModelSelector models={models} />
</div>
<ModelsTable
models={models}
providers={providers}
creators={creators}
/>
</div>
</div>
</div>
</ErrorBoundary>
);
}

View File

@@ -1,133 +0,0 @@
"use client";
import { useState } from "react";
import type { LlmModelMigration } from "@/app/api/__generated__/models/llmModelMigration";
import { Button } from "@/components/atoms/Button/Button";
import {
Table,
TableBody,
TableCell,
TableHead,
TableHeader,
TableRow,
} from "@/components/atoms/Table/Table";
import { revertLlmMigrationAction } from "../actions";
export function MigrationsTable({
migrations,
}: {
migrations: LlmModelMigration[];
}) {
if (!migrations.length) {
return (
<div className="rounded-lg border border-dashed border-border p-6 text-center text-sm text-muted-foreground">
No active migrations. Migrations are created when you disable a model
with the &quot;Migrate existing workflows&quot; option.
</div>
);
}
return (
<div className="rounded-lg border">
<Table>
<TableHeader>
<TableRow>
<TableHead>Migration</TableHead>
<TableHead>Reason</TableHead>
<TableHead>Nodes Affected</TableHead>
<TableHead>Custom Cost</TableHead>
<TableHead>Created</TableHead>
<TableHead className="text-right">Actions</TableHead>
</TableRow>
</TableHeader>
<TableBody>
{migrations.map((migration) => (
<MigrationRow key={migration.id} migration={migration} />
))}
</TableBody>
</Table>
</div>
);
}
function MigrationRow({ migration }: { migration: LlmModelMigration }) {
const [isReverting, setIsReverting] = useState(false);
const [error, setError] = useState<string | null>(null);
async function handleRevert(formData: FormData) {
setIsReverting(true);
setError(null);
try {
await revertLlmMigrationAction(formData);
} catch (err) {
setError(
err instanceof Error ? err.message : "Failed to revert migration",
);
} finally {
setIsReverting(false);
}
}
const createdDate = new Date(migration.created_at);
return (
<>
<TableRow>
<TableCell>
<div className="text-sm">
<span className="font-medium">{migration.source_model_slug}</span>
<span className="mx-2 text-muted-foreground"></span>
<span className="font-medium">{migration.target_model_slug}</span>
</div>
</TableCell>
<TableCell>
<div className="text-sm text-muted-foreground">
{migration.reason || "—"}
</div>
</TableCell>
<TableCell>
<div className="text-sm">{migration.node_count}</div>
</TableCell>
<TableCell>
<div className="text-sm">
{migration.custom_credit_cost !== null &&
migration.custom_credit_cost !== undefined
? `${migration.custom_credit_cost} credits`
: "—"}
</div>
</TableCell>
<TableCell>
<div className="text-sm text-muted-foreground">
{createdDate.toLocaleDateString()}{" "}
{createdDate.toLocaleTimeString([], {
hour: "2-digit",
minute: "2-digit",
})}
</div>
</TableCell>
<TableCell className="text-right">
<form action={handleRevert} className="inline">
<input type="hidden" name="migration_id" value={migration.id} />
<Button
type="submit"
variant="outline"
size="small"
disabled={isReverting}
>
{isReverting ? "Reverting..." : "Revert"}
</Button>
</form>
</TableCell>
</TableRow>
{error && (
<TableRow>
<TableCell colSpan={6}>
<div className="rounded border border-destructive/30 bg-destructive/10 p-2 text-sm text-destructive">
{error}
</div>
</TableCell>
</TableRow>
)}
</>
);
}

View File

@@ -1,265 +0,0 @@
"use client";
import { useState, useEffect, useRef } from "react";
import type { LlmModel } from "@/app/api/__generated__/models/llmModel";
import type { LlmModelCreator } from "@/app/api/__generated__/models/llmModelCreator";
import type { LlmProvider } from "@/app/api/__generated__/models/llmProvider";
import {
Table,
TableBody,
TableCell,
TableHead,
TableHeader,
TableRow,
} from "@/components/atoms/Table/Table";
import { Button } from "@/components/atoms/Button/Button";
import { toggleLlmModelAction } from "../actions";
import { DeleteModelModal } from "./DeleteModelModal";
import { DisableModelModal } from "./DisableModelModal";
import { EditModelModal } from "./EditModelModal";
import { Star, Spinner } from "@phosphor-icons/react";
import { getV2ListLlmModels } from "@/app/api/__generated__/endpoints/admin/admin";
const PAGE_SIZE = 50;
export function ModelsTable({
models: initialModels,
providers,
creators,
}: {
models: LlmModel[];
providers: LlmProvider[];
creators: LlmModelCreator[];
}) {
const [models, setModels] = useState<LlmModel[]>(initialModels);
const [currentPage, setCurrentPage] = useState(1);
const [hasMore, setHasMore] = useState(initialModels.length === PAGE_SIZE);
const [isLoading, setIsLoading] = useState(false);
const loadedPagesRef = useRef(1);
// Sync with parent when initialModels changes (e.g., after enable/disable)
// Re-fetch all loaded pages to preserve expanded state
useEffect(() => {
async function refetchAllPages() {
const pagesToLoad = loadedPagesRef.current;
if (pagesToLoad === 1) {
// Only first page loaded, just use initialModels
setModels(initialModels);
setHasMore(initialModels.length === PAGE_SIZE);
return;
}
// Re-fetch all pages we had loaded
const allModels: LlmModel[] = [...initialModels];
let lastPageHadFullResults = initialModels.length === PAGE_SIZE;
for (let page = 2; page <= pagesToLoad; page++) {
try {
const response = await getV2ListLlmModels({
page,
page_size: PAGE_SIZE,
});
if (response.status === 200) {
allModels.push(...response.data.models);
lastPageHadFullResults = response.data.models.length === PAGE_SIZE;
}
} catch (err) {
console.error(`Error refetching page ${page}:`, err);
break;
}
}
setModels(allModels);
setHasMore(lastPageHadFullResults);
}
refetchAllPages();
}, [initialModels]);
async function loadMore() {
if (isLoading) return;
setIsLoading(true);
try {
const nextPage = currentPage + 1;
const response = await getV2ListLlmModels({
page: nextPage,
page_size: PAGE_SIZE,
});
if (response.status === 200) {
setModels((prev) => [...prev, ...response.data.models]);
setCurrentPage(nextPage);
loadedPagesRef.current = nextPage;
setHasMore(response.data.models.length === PAGE_SIZE);
}
} catch (err) {
console.error("Error loading more models:", err);
} finally {
setIsLoading(false);
}
}
if (!models.length) {
return (
<div className="rounded-lg border border-dashed border-border p-6 text-center text-sm text-muted-foreground">
No models registered yet.
</div>
);
}
const providerLookup = new Map(
providers.map((provider) => [provider.id, provider]),
);
return (
<div>
<div className="rounded-lg border">
<Table>
<TableHeader>
<TableRow>
<TableHead>Model</TableHead>
<TableHead>Provider</TableHead>
<TableHead>Creator</TableHead>
<TableHead>Context Window</TableHead>
<TableHead>Max Output</TableHead>
<TableHead>Cost</TableHead>
<TableHead>Status</TableHead>
<TableHead>Actions</TableHead>
</TableRow>
</TableHeader>
<TableBody>
{models.map((model) => {
const cost = model.costs?.[0];
const provider = providerLookup.get(model.provider_id);
return (
<TableRow
key={model.id}
className={model.is_enabled ? "" : "opacity-60"}
>
<TableCell>
<div className="font-medium">{model.display_name}</div>
<div className="text-xs text-muted-foreground">
{model.slug}
</div>
</TableCell>
<TableCell>
{provider ? (
<>
<div>{provider.display_name}</div>
<div className="text-xs text-muted-foreground">
{provider.name}
</div>
</>
) : (
model.provider_id
)}
</TableCell>
<TableCell>
{model.creator ? (
<>
<div>{model.creator.display_name}</div>
<div className="text-xs text-muted-foreground">
{model.creator.name}
</div>
</>
) : (
<span className="text-muted-foreground"></span>
)}
</TableCell>
<TableCell>{model.context_window.toLocaleString()}</TableCell>
<TableCell>
{model.max_output_tokens
? model.max_output_tokens.toLocaleString()
: "—"}
</TableCell>
<TableCell>
{cost ? (
<>
<div className="font-medium">
{cost.credit_cost} credits
</div>
<div className="text-xs text-muted-foreground">
{cost.credential_provider}
</div>
</>
) : (
"—"
)}
</TableCell>
<TableCell>
<div className="flex flex-col gap-1">
<span
className={`inline-flex rounded-full px-2.5 py-1 text-xs font-semibold ${
model.is_enabled
? "bg-primary/10 text-primary"
: "bg-muted text-muted-foreground"
}`}
>
{model.is_enabled ? "Enabled" : "Disabled"}
</span>
{model.is_recommended && (
<span className="inline-flex items-center gap-1 rounded-full bg-amber-500/10 px-2.5 py-1 text-xs font-semibold text-amber-600 dark:text-amber-400">
<Star size={12} weight="fill" />
Recommended
</span>
)}
</div>
</TableCell>
<TableCell>
<div className="flex items-center justify-end gap-2">
{model.is_enabled ? (
<DisableModelModal
model={model}
availableModels={models}
/>
) : (
<EnableModelButton modelId={model.id} />
)}
<EditModelModal
model={model}
providers={providers}
creators={creators}
/>
<DeleteModelModal
model={model}
availableModels={models}
/>
</div>
</TableCell>
</TableRow>
);
})}
</TableBody>
</Table>
</div>
{hasMore && (
<div className="mt-4 flex justify-center">
<Button onClick={loadMore} disabled={isLoading} variant="outline">
{isLoading ? (
<>
<Spinner className="mr-2 h-4 w-4 animate-spin" />
Loading...
</>
) : (
"Load More"
)}
</Button>
</div>
)}
</div>
);
}
function EnableModelButton({ modelId }: { modelId: string }) {
return (
<form action={toggleLlmModelAction} className="inline">
<input type="hidden" name="model_id" value={modelId} />
<input type="hidden" name="is_enabled" value="true" />
<Button type="submit" variant="outline" size="small" className="min-w-0">
Enable
</Button>
</form>
);
}

View File

@@ -1,94 +0,0 @@
"use client";
import {
Table,
TableBody,
TableCell,
TableHead,
TableHeader,
TableRow,
} from "@/components/atoms/Table/Table";
import type { LlmProvider } from "@/app/api/__generated__/models/llmProvider";
import { DeleteProviderModal } from "./DeleteProviderModal";
import { EditProviderModal } from "./EditProviderModal";
export function ProviderList({ providers }: { providers: LlmProvider[] }) {
if (!providers.length) {
return (
<div className="rounded-lg border border-dashed border-border p-6 text-center text-sm text-muted-foreground">
No providers configured yet.
</div>
);
}
return (
<div className="rounded-lg border">
<Table>
<TableHeader>
<TableRow>
<TableHead>Name</TableHead>
<TableHead>Display Name</TableHead>
<TableHead>Default Credential</TableHead>
<TableHead>Capabilities</TableHead>
<TableHead>Models</TableHead>
<TableHead className="w-[100px]">Actions</TableHead>
</TableRow>
</TableHeader>
<TableBody>
{providers.map((provider) => (
<TableRow key={provider.id}>
<TableCell className="font-medium">{provider.name}</TableCell>
<TableCell>{provider.display_name}</TableCell>
<TableCell>
{provider.default_credential_provider
? `${provider.default_credential_provider} (${provider.default_credential_id ?? "id?"})`
: "—"}
</TableCell>
<TableCell className="text-sm text-muted-foreground">
<div className="flex flex-wrap gap-2">
{provider.supports_tools && (
<span className="rounded bg-muted px-2 py-0.5 text-xs">
Tools
</span>
)}
{provider.supports_json_output && (
<span className="rounded bg-muted px-2 py-0.5 text-xs">
JSON
</span>
)}
{provider.supports_reasoning && (
<span className="rounded bg-muted px-2 py-0.5 text-xs">
Reasoning
</span>
)}
{provider.supports_parallel_tool && (
<span className="rounded bg-muted px-2 py-0.5 text-xs">
Parallel Tools
</span>
)}
</div>
</TableCell>
<TableCell className="text-sm">
<span
className={
(provider.models?.length ?? 0) > 0
? "text-foreground"
: "text-muted-foreground"
}
>
{provider.models?.length ?? 0}
</span>
</TableCell>
<TableCell>
<div className="flex gap-2">
<EditProviderModal provider={provider} />
<DeleteProviderModal provider={provider} />
</div>
</TableCell>
</TableRow>
))}
</TableBody>
</Table>
</div>
);
}

View File

@@ -1,87 +0,0 @@
"use client";
import { useState } from "react";
import { useRouter } from "next/navigation";
import type { LlmModel } from "@/app/api/__generated__/models/llmModel";
import { Button } from "@/components/atoms/Button/Button";
import { setRecommendedModelAction } from "../actions";
import { Star } from "@phosphor-icons/react";
export function RecommendedModelSelector({ models }: { models: LlmModel[] }) {
const router = useRouter();
const enabledModels = models.filter((m) => m.is_enabled);
const currentRecommended = models.find((m) => m.is_recommended);
const [selectedModelId, setSelectedModelId] = useState<string>(
currentRecommended?.id || "",
);
const [isSaving, setIsSaving] = useState(false);
const [error, setError] = useState<string | null>(null);
const hasChanges = selectedModelId !== (currentRecommended?.id || "");
async function handleSave() {
if (!selectedModelId) return;
setIsSaving(true);
setError(null);
try {
const formData = new FormData();
formData.set("model_id", selectedModelId);
await setRecommendedModelAction(formData);
router.refresh();
} catch (err) {
setError(err instanceof Error ? err.message : "Failed to save");
} finally {
setIsSaving(false);
}
}
return (
<div className="rounded-lg border border-border bg-card p-4">
<div className="mb-3 flex items-center gap-2">
<Star size={20} weight="fill" className="text-amber-500" />
<h3 className="text-sm font-semibold">Recommended Model</h3>
</div>
<p className="mb-3 text-xs text-muted-foreground">
The recommended model is shown as the default suggestion in model
selection dropdowns throughout the platform.
</p>
<div className="flex items-center gap-3">
<select
value={selectedModelId}
onChange={(e) => setSelectedModelId(e.target.value)}
className="flex-1 rounded-md border border-input bg-background px-3 py-2 text-sm"
disabled={isSaving}
>
<option value="">-- Select a model --</option>
{enabledModels.map((model) => (
<option key={model.id} value={model.id}>
{model.display_name} ({model.slug})
</option>
))}
</select>
<Button
type="button"
variant="primary"
size="small"
onClick={handleSave}
disabled={!hasChanges || !selectedModelId || isSaving}
>
{isSaving ? "Saving..." : "Save"}
</Button>
</div>
{error && <p className="mt-2 text-xs text-destructive">{error}</p>}
{currentRecommended && !hasChanges && (
<p className="mt-2 text-xs text-muted-foreground">
Currently set to:{" "}
<span className="font-medium">{currentRecommended.display_name}</span>
</p>
)}
</div>
);
}

View File

@@ -1,46 +0,0 @@
/**
* Server-side data fetching for LLM Registry page.
*/
import {
fetchLlmCreators,
fetchLlmMigrations,
fetchLlmModels,
fetchLlmProviders,
} from "./actions";
export async function getLlmRegistryPageData() {
// Fetch providers and models (required)
const [providersResponse, modelsResponse] = await Promise.all([
fetchLlmProviders(),
fetchLlmModels(),
]);
// Fetch migrations separately with fallback (table might not exist yet)
let migrations: Awaited<ReturnType<typeof fetchLlmMigrations>>["migrations"] =
[];
try {
const migrationsResponse = await fetchLlmMigrations(false);
migrations = migrationsResponse.migrations;
} catch {
// Migrations table might not exist yet - that's ok, just show empty list
console.warn("Could not fetch migrations - table may not exist yet");
}
// Fetch creators separately with fallback (table might not exist yet)
let creators: Awaited<ReturnType<typeof fetchLlmCreators>>["creators"] = [];
try {
const creatorsResponse = await fetchLlmCreators();
creators = creatorsResponse.creators;
} catch {
// Creators table might not exist yet - that's ok, just show empty list
console.warn("Could not fetch creators - table may not exist yet");
}
return {
providers: providersResponse.providers,
models: modelsResponse.models,
migrations,
creators,
};
}

View File

@@ -1,14 +0,0 @@
import { withRoleAccess } from "@/lib/withRoleAccess";
import { getLlmRegistryPageData } from "./getLlmRegistryPage";
import { LlmRegistryDashboard } from "./components/LlmRegistryDashboard";
async function LlmRegistryPage() {
const data = await getLlmRegistryPageData();
return <LlmRegistryDashboard {...data} />;
}
export default async function AdminLlmRegistryPage() {
const withAdminAccess = await withRoleAccess(["admin"]);
const ProtectedLlmRegistryPage = await withAdminAccess(LlmRegistryPage);
return <ProtectedLlmRegistryPage />;
}

View File

@@ -7,9 +7,8 @@ import { BlockCategoryResponse } from "@/app/api/__generated__/models/blockCateg
import { BlockResponse } from "@/app/api/__generated__/models/blockResponse";
import * as Sentry from "@sentry/nextjs";
import { getQueryClient } from "@/lib/react-query/queryClient";
import { useState, useEffect } from "react";
import { useState } from "react";
import { useToast } from "@/components/molecules/Toast/use-toast";
import BackendApi from "@/lib/autogpt-server-api";
export const useAllBlockContent = () => {
const { toast } = useToast();
@@ -94,32 +93,6 @@ export const useAllBlockContent = () => {
const isErrorOnLoadingMore = (categoryName: string) =>
errorLoadingCategories.has(categoryName);
// Listen for LLM registry refresh notifications
useEffect(() => {
const api = new BackendApi();
const queryClient = getQueryClient();
const handleNotification = (notification: any) => {
if (
notification?.type === "LLM_REGISTRY_REFRESH" ||
notification?.event === "registry_updated"
) {
// Invalidate all block-related queries to force refresh
const categoriesQueryKey = getGetV2GetBuilderBlockCategoriesQueryKey();
queryClient.invalidateQueries({ queryKey: categoriesQueryKey });
}
};
const unsubscribe = api.onWebSocketMessage(
"notification",
handleNotification,
);
return () => {
unsubscribe();
};
}, []);
return {
data,
isLoading,

View File

@@ -610,11 +610,8 @@ const NodeOneOfDiscriminatorField: FC<{
return oneOfVariants
.map((variant) => {
const discProperty = variant.properties?.[discriminatorProperty];
const variantDiscValue =
discProperty && "const" in discProperty
? (discProperty.const as string)
: undefined; // NOTE: can discriminators only be strings?
const variantDiscValue = variant.properties?.[discriminatorProperty]
?.const as string; // NOTE: can discriminators only be strings?
return {
value: variantDiscValue,
@@ -1127,47 +1124,9 @@ const NodeStringInput: FC<{
displayName,
}) => {
value ||= schema.default || "";
// Check if we have options with labels (e.g., LLM model picker)
const hasOptions = schema.options && schema.options.length > 0;
const hasEnum = schema.enum && schema.enum.length > 0;
// Helper to get display label for a value
const getDisplayLabel = (val: string) => {
if (hasOptions) {
const option = schema.options!.find((opt) => opt.value === val);
return option?.label || beautifyString(val);
}
return beautifyString(val);
};
return (
<div className={className}>
{hasOptions ? (
// Render options with proper labels (used by LLM model picker)
<Select
defaultValue={value}
onValueChange={(newValue) => handleInputChange(selfKey, newValue)}
>
<SelectTrigger>
<SelectValue placeholder={schema.placeholder || displayName}>
{value ? getDisplayLabel(value) : undefined}
</SelectValue>
</SelectTrigger>
<SelectContent className="nodrag">
{schema.options!.map((option, index) => (
<SelectItem
key={index}
value={option.value}
title={option.description}
>
{option.label || beautifyString(option.value)}
</SelectItem>
))}
</SelectContent>
</Select>
) : hasEnum ? (
// Fallback to enum with beautified strings
{schema.enum && schema.enum.length > 0 ? (
<Select
defaultValue={value}
onValueChange={(newValue) => handleInputChange(selfKey, newValue)}
@@ -1176,8 +1135,8 @@ const NodeStringInput: FC<{
<SelectValue placeholder={schema.placeholder || displayName} />
</SelectTrigger>
<SelectContent className="nodrag">
{schema
.enum!.filter((option) => option)
{schema.enum
.filter((option) => option)
.map((option, index) => (
<SelectItem key={index} value={option}>
{beautifyString(option)}

View File

@@ -15,6 +15,10 @@ import { ToolUIPart, UIDataTypes, UIMessage, UITools } from "ai";
import { useEffect, useRef, useState } from "react";
import { CreateAgentTool } from "../../tools/CreateAgent/CreateAgent";
import { EditAgentTool } from "../../tools/EditAgent/EditAgent";
import {
CreateFeatureRequestTool,
SearchFeatureRequestsTool,
} from "../../tools/FeatureRequests/FeatureRequests";
import { FindAgentsTool } from "../../tools/FindAgents/FindAgents";
import { FindBlocksTool } from "../../tools/FindBlocks/FindBlocks";
import { RunAgentTool } from "../../tools/RunAgent/RunAgent";
@@ -254,6 +258,20 @@ export const ChatMessagesContainer = ({
part={part as ToolUIPart}
/>
);
case "tool-search_feature_requests":
return (
<SearchFeatureRequestsTool
key={`${message.id}-${i}`}
part={part as ToolUIPart}
/>
);
case "tool-create_feature_request":
return (
<CreateFeatureRequestTool
key={`${message.id}-${i}`}
part={part as ToolUIPart}
/>
);
default:
return null;
}

View File

@@ -14,6 +14,10 @@ import { Text } from "@/components/atoms/Text/Text";
import { CopilotChatActionsProvider } from "../components/CopilotChatActionsProvider/CopilotChatActionsProvider";
import { CreateAgentTool } from "../tools/CreateAgent/CreateAgent";
import { EditAgentTool } from "../tools/EditAgent/EditAgent";
import {
CreateFeatureRequestTool,
SearchFeatureRequestsTool,
} from "../tools/FeatureRequests/FeatureRequests";
import { FindAgentsTool } from "../tools/FindAgents/FindAgents";
import { FindBlocksTool } from "../tools/FindBlocks/FindBlocks";
import { RunAgentTool } from "../tools/RunAgent/RunAgent";
@@ -45,6 +49,8 @@ const SECTIONS = [
"Tool: Create Agent",
"Tool: Edit Agent",
"Tool: View Agent Output",
"Tool: Search Feature Requests",
"Tool: Create Feature Request",
"Full Conversation Example",
] as const;
@@ -1421,6 +1427,235 @@ export default function StyleguidePage() {
</SubSection>
</Section>
{/* ============================================================= */}
{/* SEARCH FEATURE REQUESTS */}
{/* ============================================================= */}
<Section title="Tool: Search Feature Requests">
<SubSection label="Input streaming">
<SearchFeatureRequestsTool
part={{
type: "tool-search_feature_requests",
toolCallId: uid(),
state: "input-streaming",
input: { query: "dark mode" },
}}
/>
</SubSection>
<SubSection label="Input available">
<SearchFeatureRequestsTool
part={{
type: "tool-search_feature_requests",
toolCallId: uid(),
state: "input-available",
input: { query: "dark mode" },
}}
/>
</SubSection>
<SubSection label="Output available (with results)">
<SearchFeatureRequestsTool
part={{
type: "tool-search_feature_requests",
toolCallId: uid(),
state: "output-available",
input: { query: "dark mode" },
output: {
type: "feature_request_search",
message:
'Found 2 feature request(s) matching "dark mode".',
query: "dark mode",
count: 2,
results: [
{
id: "fr-001",
identifier: "INT-42",
title: "Add dark mode to the platform",
description:
"Users have requested a dark mode option for the builder and copilot interfaces to reduce eye strain during long sessions.",
},
{
id: "fr-002",
identifier: "INT-87",
title: "Dark theme for agent output viewer",
description:
"Specifically requesting dark theme support for the agent output/execution viewer panel.",
},
],
},
}}
/>
</SubSection>
<SubSection label="Output available (no results)">
<SearchFeatureRequestsTool
part={{
type: "tool-search_feature_requests",
toolCallId: uid(),
state: "output-available",
input: { query: "teleportation" },
output: {
type: "no_results",
message:
"No feature requests found matching 'teleportation'.",
suggestions: [
"Try different keywords",
"Use broader search terms",
"You can create a new feature request if none exists",
],
},
}}
/>
</SubSection>
<SubSection label="Output available (error)">
<SearchFeatureRequestsTool
part={{
type: "tool-search_feature_requests",
toolCallId: uid(),
state: "output-available",
input: { query: "dark mode" },
output: {
type: "error",
message: "Failed to search feature requests.",
error: "LINEAR_API_KEY environment variable is not set",
},
}}
/>
</SubSection>
<SubSection label="Output error">
<SearchFeatureRequestsTool
part={{
type: "tool-search_feature_requests",
toolCallId: uid(),
state: "output-error",
input: { query: "dark mode" },
}}
/>
</SubSection>
</Section>
{/* ============================================================= */}
{/* CREATE FEATURE REQUEST */}
{/* ============================================================= */}
<Section title="Tool: Create Feature Request">
<SubSection label="Input streaming">
<CreateFeatureRequestTool
part={{
type: "tool-create_feature_request",
toolCallId: uid(),
state: "input-streaming",
input: {
title: "Add dark mode",
description: "I would love dark mode for the platform.",
},
}}
/>
</SubSection>
<SubSection label="Input available">
<CreateFeatureRequestTool
part={{
type: "tool-create_feature_request",
toolCallId: uid(),
state: "input-available",
input: {
title: "Add dark mode",
description: "I would love dark mode for the platform.",
},
}}
/>
</SubSection>
<SubSection label="Output available (new issue created)">
<CreateFeatureRequestTool
part={{
type: "tool-create_feature_request",
toolCallId: uid(),
state: "output-available",
input: {
title: "Add dark mode",
description: "I would love dark mode for the platform.",
},
output: {
type: "feature_request_created",
message:
"Created new feature request [INT-105] Add dark mode.",
issue_id: "issue-new-123",
issue_identifier: "INT-105",
issue_title: "Add dark mode",
issue_url:
"https://linear.app/autogpt/issue/INT-105/add-dark-mode",
is_new_issue: true,
customer_name: "user-abc-123",
},
}}
/>
</SubSection>
<SubSection label="Output available (added to existing issue)">
<CreateFeatureRequestTool
part={{
type: "tool-create_feature_request",
toolCallId: uid(),
state: "output-available",
input: {
title: "Dark mode support",
description:
"Please add dark mode, it would help with long sessions.",
existing_issue_id: "fr-001",
},
output: {
type: "feature_request_created",
message:
"Added your request to existing feature request [INT-42] Add dark mode to the platform.",
issue_id: "fr-001",
issue_identifier: "INT-42",
issue_title: "Add dark mode to the platform",
issue_url:
"https://linear.app/autogpt/issue/INT-42/add-dark-mode-to-the-platform",
is_new_issue: false,
customer_name: "user-xyz-789",
},
}}
/>
</SubSection>
<SubSection label="Output available (error)">
<CreateFeatureRequestTool
part={{
type: "tool-create_feature_request",
toolCallId: uid(),
state: "output-available",
input: {
title: "Add dark mode",
description: "I would love dark mode.",
},
output: {
type: "error",
message:
"Failed to attach customer need to the feature request.",
error: "Linear API request failed (500): Internal error",
},
}}
/>
</SubSection>
<SubSection label="Output error">
<CreateFeatureRequestTool
part={{
type: "tool-create_feature_request",
toolCallId: uid(),
state: "output-error",
input: { title: "Add dark mode" },
}}
/>
</SubSection>
</Section>
{/* ============================================================= */}
{/* FULL CONVERSATION EXAMPLE */}
{/* ============================================================= */}

View File

@@ -0,0 +1,227 @@
"use client";
import type { ToolUIPart } from "ai";
import { useMemo } from "react";
import { MorphingTextAnimation } from "../../components/MorphingTextAnimation/MorphingTextAnimation";
import {
ContentBadge,
ContentCard,
ContentCardDescription,
ContentCardHeader,
ContentCardTitle,
ContentGrid,
ContentMessage,
ContentSuggestionsList,
} from "../../components/ToolAccordion/AccordionContent";
import { ToolAccordion } from "../../components/ToolAccordion/ToolAccordion";
import {
AccordionIcon,
getAccordionTitle,
getAnimationText,
getFeatureRequestOutput,
isCreatedOutput,
isErrorOutput,
isNoResultsOutput,
isSearchResultsOutput,
ToolIcon,
type FeatureRequestToolType,
} from "./helpers";
export interface FeatureRequestToolPart {
type: FeatureRequestToolType;
toolCallId: string;
state: ToolUIPart["state"];
input?: unknown;
output?: unknown;
}
interface Props {
part: FeatureRequestToolPart;
}
function truncate(text: string, maxChars: number): string {
const trimmed = text.trim();
if (trimmed.length <= maxChars) return trimmed;
return `${trimmed.slice(0, maxChars).trimEnd()}`;
}
export function SearchFeatureRequestsTool({ part }: Props) {
const output = getFeatureRequestOutput(part);
const text = getAnimationText(part);
const isStreaming =
part.state === "input-streaming" || part.state === "input-available";
const isError =
part.state === "output-error" || (!!output && isErrorOutput(output));
const normalized = useMemo(() => {
if (!output) return null;
return { title: getAccordionTitle(part.type, output) };
}, [output, part.type]);
const isOutputAvailable = part.state === "output-available" && !!output;
const searchOutput =
isOutputAvailable && output && isSearchResultsOutput(output)
? output
: null;
const noResultsOutput =
isOutputAvailable && output && isNoResultsOutput(output) ? output : null;
const errorOutput =
isOutputAvailable && output && isErrorOutput(output) ? output : null;
const hasExpandableContent =
isOutputAvailable &&
((!!searchOutput && searchOutput.count > 0) ||
!!noResultsOutput ||
!!errorOutput);
const accordionDescription =
hasExpandableContent && searchOutput
? `Found ${searchOutput.count} result${searchOutput.count === 1 ? "" : "s"} for "${searchOutput.query}"`
: hasExpandableContent && (noResultsOutput || errorOutput)
? ((noResultsOutput ?? errorOutput)?.message ?? null)
: null;
return (
<div className="py-2">
<div className="flex items-center gap-2 text-sm text-muted-foreground">
<ToolIcon
toolType={part.type}
isStreaming={isStreaming}
isError={isError}
/>
<MorphingTextAnimation
text={text}
className={isError ? "text-red-500" : undefined}
/>
</div>
{hasExpandableContent && normalized && (
<ToolAccordion
icon={<AccordionIcon toolType={part.type} />}
title={normalized.title}
description={accordionDescription}
>
{searchOutput && (
<ContentGrid>
{searchOutput.results.map((r) => (
<ContentCard key={r.id}>
<ContentCardHeader>
<ContentCardTitle>{r.title}</ContentCardTitle>
</ContentCardHeader>
{r.description && (
<ContentCardDescription>
{truncate(r.description, 200)}
</ContentCardDescription>
)}
</ContentCard>
))}
</ContentGrid>
)}
{noResultsOutput && (
<div>
<ContentMessage>{noResultsOutput.message}</ContentMessage>
{noResultsOutput.suggestions &&
noResultsOutput.suggestions.length > 0 && (
<ContentSuggestionsList items={noResultsOutput.suggestions} />
)}
</div>
)}
{errorOutput && (
<div>
<ContentMessage>{errorOutput.message}</ContentMessage>
{errorOutput.error && (
<ContentCardDescription>
{errorOutput.error}
</ContentCardDescription>
)}
</div>
)}
</ToolAccordion>
)}
</div>
);
}
export function CreateFeatureRequestTool({ part }: Props) {
const output = getFeatureRequestOutput(part);
const text = getAnimationText(part);
const isStreaming =
part.state === "input-streaming" || part.state === "input-available";
const isError =
part.state === "output-error" || (!!output && isErrorOutput(output));
const normalized = useMemo(() => {
if (!output) return null;
return { title: getAccordionTitle(part.type, output) };
}, [output, part.type]);
const isOutputAvailable = part.state === "output-available" && !!output;
const createdOutput =
isOutputAvailable && output && isCreatedOutput(output) ? output : null;
const errorOutput =
isOutputAvailable && output && isErrorOutput(output) ? output : null;
const hasExpandableContent =
isOutputAvailable && (!!createdOutput || !!errorOutput);
const accordionDescription =
hasExpandableContent && createdOutput
? createdOutput.issue_title
: hasExpandableContent && errorOutput
? errorOutput.message
: null;
return (
<div className="py-2">
<div className="flex items-center gap-2 text-sm text-muted-foreground">
<ToolIcon
toolType={part.type}
isStreaming={isStreaming}
isError={isError}
/>
<MorphingTextAnimation
text={text}
className={isError ? "text-red-500" : undefined}
/>
</div>
{hasExpandableContent && normalized && (
<ToolAccordion
icon={<AccordionIcon toolType={part.type} />}
title={normalized.title}
description={accordionDescription}
>
{createdOutput && (
<ContentCard>
<ContentCardHeader>
<ContentCardTitle>{createdOutput.issue_title}</ContentCardTitle>
</ContentCardHeader>
<div className="mt-2 flex items-center gap-2">
<ContentBadge>
{createdOutput.is_new_issue ? "New" : "Existing"}
</ContentBadge>
</div>
<ContentMessage>{createdOutput.message}</ContentMessage>
</ContentCard>
)}
{errorOutput && (
<div>
<ContentMessage>{errorOutput.message}</ContentMessage>
{errorOutput.error && (
<ContentCardDescription>
{errorOutput.error}
</ContentCardDescription>
)}
</div>
)}
</ToolAccordion>
)}
</div>
);
}

View File

@@ -0,0 +1,271 @@
import {
CheckCircleIcon,
LightbulbIcon,
MagnifyingGlassIcon,
PlusCircleIcon,
} from "@phosphor-icons/react";
import type { ToolUIPart } from "ai";
/* ------------------------------------------------------------------ */
/* Types (local until API client is regenerated) */
/* ------------------------------------------------------------------ */
interface FeatureRequestInfo {
id: string;
identifier: string;
title: string;
description?: string | null;
}
export interface FeatureRequestSearchResponse {
type: "feature_request_search";
message: string;
results: FeatureRequestInfo[];
count: number;
query: string;
}
export interface FeatureRequestCreatedResponse {
type: "feature_request_created";
message: string;
issue_id: string;
issue_identifier: string;
issue_title: string;
issue_url: string;
is_new_issue: boolean;
customer_name: string;
}
interface NoResultsResponse {
type: "no_results";
message: string;
suggestions?: string[];
}
interface ErrorResponse {
type: "error";
message: string;
error?: string;
}
export type FeatureRequestOutput =
| FeatureRequestSearchResponse
| FeatureRequestCreatedResponse
| NoResultsResponse
| ErrorResponse;
export type FeatureRequestToolType =
| "tool-search_feature_requests"
| "tool-create_feature_request"
| string;
/* ------------------------------------------------------------------ */
/* Output parsing */
/* ------------------------------------------------------------------ */
function parseOutput(output: unknown): FeatureRequestOutput | null {
if (!output) return null;
if (typeof output === "string") {
const trimmed = output.trim();
if (!trimmed) return null;
try {
return parseOutput(JSON.parse(trimmed) as unknown);
} catch {
return null;
}
}
if (typeof output === "object") {
const type = (output as { type?: unknown }).type;
if (
type === "feature_request_search" ||
type === "feature_request_created" ||
type === "no_results" ||
type === "error"
) {
return output as FeatureRequestOutput;
}
// Fallback structural checks
if ("results" in output && "query" in output)
return output as FeatureRequestSearchResponse;
if ("issue_identifier" in output)
return output as FeatureRequestCreatedResponse;
if ("suggestions" in output && !("error" in output))
return output as NoResultsResponse;
if ("error" in output || "details" in output)
return output as ErrorResponse;
}
return null;
}
export function getFeatureRequestOutput(
part: unknown,
): FeatureRequestOutput | null {
if (!part || typeof part !== "object") return null;
return parseOutput((part as { output?: unknown }).output);
}
/* ------------------------------------------------------------------ */
/* Type guards */
/* ------------------------------------------------------------------ */
export function isSearchResultsOutput(
output: FeatureRequestOutput,
): output is FeatureRequestSearchResponse {
return (
output.type === "feature_request_search" ||
("results" in output && "query" in output)
);
}
export function isCreatedOutput(
output: FeatureRequestOutput,
): output is FeatureRequestCreatedResponse {
return (
output.type === "feature_request_created" || "issue_identifier" in output
);
}
export function isNoResultsOutput(
output: FeatureRequestOutput,
): output is NoResultsResponse {
return (
output.type === "no_results" ||
("suggestions" in output && !("error" in output))
);
}
export function isErrorOutput(
output: FeatureRequestOutput,
): output is ErrorResponse {
return output.type === "error" || "error" in output;
}
/* ------------------------------------------------------------------ */
/* Accordion metadata */
/* ------------------------------------------------------------------ */
export function getAccordionTitle(
toolType: FeatureRequestToolType,
output: FeatureRequestOutput,
): string {
if (toolType === "tool-search_feature_requests") {
if (isSearchResultsOutput(output)) return "Feature requests";
if (isNoResultsOutput(output)) return "No feature requests found";
return "Feature request search error";
}
if (isCreatedOutput(output)) {
return output.is_new_issue
? "Feature request created"
: "Added to feature request";
}
if (isErrorOutput(output)) return "Feature request error";
return "Feature request";
}
/* ------------------------------------------------------------------ */
/* Animation text */
/* ------------------------------------------------------------------ */
interface AnimationPart {
type: FeatureRequestToolType;
state: ToolUIPart["state"];
input?: unknown;
output?: unknown;
}
export function getAnimationText(part: AnimationPart): string {
if (part.type === "tool-search_feature_requests") {
const query = (part.input as { query?: string } | undefined)?.query?.trim();
const queryText = query ? ` for "${query}"` : "";
switch (part.state) {
case "input-streaming":
case "input-available":
return `Searching feature requests${queryText}`;
case "output-available": {
const output = parseOutput(part.output);
if (!output) return `Searching feature requests${queryText}`;
if (isSearchResultsOutput(output)) {
return `Found ${output.count} feature request${output.count === 1 ? "" : "s"}${queryText}`;
}
if (isNoResultsOutput(output))
return `No feature requests found${queryText}`;
return `Error searching feature requests${queryText}`;
}
case "output-error":
return `Error searching feature requests${queryText}`;
default:
return "Searching feature requests";
}
}
// create_feature_request
const title = (part.input as { title?: string } | undefined)?.title?.trim();
const titleText = title ? ` "${title}"` : "";
switch (part.state) {
case "input-streaming":
case "input-available":
return `Creating feature request${titleText}`;
case "output-available": {
const output = parseOutput(part.output);
if (!output) return `Creating feature request${titleText}`;
if (isCreatedOutput(output)) {
return output.is_new_issue
? "Feature request created"
: "Added to existing feature request";
}
if (isErrorOutput(output)) return "Error creating feature request";
return `Created feature request${titleText}`;
}
case "output-error":
return "Error creating feature request";
default:
return "Creating feature request";
}
}
/* ------------------------------------------------------------------ */
/* Icons */
/* ------------------------------------------------------------------ */
export function ToolIcon({
toolType,
isStreaming,
isError,
}: {
toolType: FeatureRequestToolType;
isStreaming?: boolean;
isError?: boolean;
}) {
const IconComponent =
toolType === "tool-create_feature_request"
? PlusCircleIcon
: MagnifyingGlassIcon;
return (
<IconComponent
size={14}
weight="regular"
className={
isError
? "text-red-500"
: isStreaming
? "text-neutral-500"
: "text-neutral-400"
}
/>
);
}
export function AccordionIcon({
toolType,
}: {
toolType: FeatureRequestToolType;
}) {
const IconComponent =
toolType === "tool-create_feature_request"
? CheckCircleIcon
: LightbulbIcon;
return <IconComponent size={32} weight="light" />;
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,123 +0,0 @@
import * as React from "react";
import { cn } from "@/lib/utils";
const Table = React.forwardRef<
HTMLTableElement,
React.HTMLAttributes<HTMLTableElement>
>(({ className, ...props }, ref) => (
<div className="relative w-full overflow-auto">
<table
ref={ref}
className={cn("w-full caption-bottom text-sm", className)}
{...props}
/>
</div>
));
Table.displayName = "Table";
const TableHeader = React.forwardRef<
HTMLTableSectionElement,
React.HTMLAttributes<HTMLTableSectionElement>
>(({ className, ...props }, ref) => (
<thead ref={ref} className={cn("[&_tr]:border-b", className)} {...props} />
));
TableHeader.displayName = "TableHeader";
const TableBody = React.forwardRef<
HTMLTableSectionElement,
React.HTMLAttributes<HTMLTableSectionElement>
>(({ className, ...props }, ref) => (
<tbody
ref={ref}
className={cn("[&_tr:last-child]:border-0", className)}
{...props}
/>
));
TableBody.displayName = "TableBody";
const TableFooter = React.forwardRef<
HTMLTableSectionElement,
React.HTMLAttributes<HTMLTableSectionElement>
>(({ className, ...props }, ref) => (
<tfoot
ref={ref}
className={cn(
"border-t bg-neutral-100/50 font-medium dark:bg-neutral-800/50 [&>tr]:last:border-b-0",
className,
)}
{...props}
/>
));
TableFooter.displayName = "TableFooter";
const TableRow = React.forwardRef<
HTMLTableRowElement,
React.HTMLAttributes<HTMLTableRowElement>
>(({ className, ...props }, ref) => (
<tr
ref={ref}
className={cn(
"border-b transition-colors data-[state=selected]:bg-neutral-100 hover:bg-neutral-100/50 dark:data-[state=selected]:bg-neutral-800 dark:hover:bg-neutral-800/50",
className,
)}
{...props}
/>
));
TableRow.displayName = "TableRow";
const TableHead = React.forwardRef<
HTMLTableCellElement,
React.ThHTMLAttributes<HTMLTableCellElement>
>(({ className, ...props }, ref) => (
<th
ref={ref}
className={cn(
"h-10 px-2 text-left align-middle font-medium text-neutral-500 dark:text-neutral-400 [&:has([role=checkbox])]:pr-0 [&>[role=checkbox]]:translate-y-[2px]",
className,
)}
{...props}
/>
));
TableHead.displayName = "TableHead";
const TableCell = React.forwardRef<
HTMLTableCellElement,
React.TdHTMLAttributes<HTMLTableCellElement>
>(({ className, ...props }, ref) => (
<td
ref={ref}
className={cn(
"p-2 align-middle [&:has([role=checkbox])]:pr-0 [&>[role=checkbox]]:translate-y-[2px]",
className,
)}
{...props}
/>
));
TableCell.displayName = "TableCell";
const TableCaption = React.forwardRef<
HTMLTableCaptionElement,
React.HTMLAttributes<HTMLTableCaptionElement>
>(({ className, ...props }, ref) => (
<caption
ref={ref}
className={cn(
"mt-4 text-sm text-neutral-500 dark:text-neutral-400",
className,
)}
{...props}
/>
));
TableCaption.displayName = "TableCaption";
export {
Table,
TableHeader,
TableBody,
TableFooter,
TableHead,
TableRow,
TableCell,
TableCaption,
};

View File

@@ -6,7 +6,7 @@ import {
TableHead,
TableHeader,
TableRow,
} from "@/components/atoms/Table/Table";
} from "@/components/__legacy__/ui/table";
import { Button } from "@/components/atoms/Button/Button";
import { Input } from "@/components/atoms/Input/Input";
import { Text } from "@/components/atoms/Text/Text";

View File

@@ -1,19 +1,8 @@
import { RJSFSchema } from "@rjsf/utils";
/**
* Options type for fields with label/value pairs (e.g., LLM model picker)
*/
type SchemaOption = {
label: string;
value: string;
group?: string;
description?: string;
};
/**
* Pre-processes the input schema to ensure all properties have a type defined.
* If a property doesn't have a type, it assigns a union of all supported JSON Schema types.
* Also converts custom 'options' array to RJSF's enum/enumNames format.
*/
export function preprocessInputSchema(schema: RJSFSchema): RJSFSchema {
@@ -31,20 +20,6 @@ export function preprocessInputSchema(schema: RJSFSchema): RJSFSchema {
if (property && typeof property === "object") {
const processedProperty = { ...property };
// Convert custom 'options' array to RJSF's enum/enumNames format
// This enables proper label display for dropdowns like the LLM model picker
if (
(processedProperty as any).options &&
Array.isArray((processedProperty as any).options) &&
(processedProperty as any).options.length > 0
) {
const options = (processedProperty as any).options as SchemaOption[];
processedProperty.enum = options.map((opt) => opt.value);
(processedProperty as any).enumNames = options.map(
(opt) => opt.label,
);
}
// Only add type if no type is defined AND no anyOf/oneOf/allOf is present
if (
!processedProperty.type &&

View File

@@ -77,45 +77,17 @@ export default function useAgentGraph(
// Load available blocks & flows (stable - only loads once)
useEffect(() => {
const loadBlocks = () => {
api
.getBlocks()
.then((blocks) => {
setAllBlocks(blocks);
})
.catch();
};
api
.getBlocks()
.then((blocks) => {
setAllBlocks(blocks);
})
.catch();
const loadFlows = () => {
api
.listGraphs()
.then((flows) => setAvailableFlows(flows))
.catch();
};
// Initial load
loadBlocks();
loadFlows();
// Listen for LLM registry refresh notifications to reload blocks
const deregisterRegistryRefresh = api.onWebSocketMessage(
"notification",
(notification) => {
if (
notification?.type === "LLM_REGISTRY_REFRESH" ||
notification?.event === "registry_updated"
) {
console.log(
"Received LLM registry refresh notification, reloading blocks...",
);
loadBlocks();
}
},
);
return () => {
deregisterRegistryRefresh();
};
api
.listGraphs()
.then((flows) => setAvailableFlows(flows))
.catch();
}, [api]);
// Subscribe to execution events

View File

@@ -186,7 +186,6 @@ export type BlockIOStringSubSchema = BlockIOSubSchemaMeta & {
default?: string;
format?: string;
maxLength?: number;
options?: { value: string; label: string; description?: string }[];
};
export type BlockIONumberSubSchema = BlockIOSubSchemaMeta & {

View File

@@ -285,20 +285,17 @@ export function fillObjectDefaultsFromSchema(
// Apply simple default values
obj[key] ??= propertySchema.default;
} else if (
"type" in propertySchema &&
propertySchema.type === "object" &&
"properties" in propertySchema
) {
// Recursively fill defaults for nested objects
obj[key] = fillObjectDefaultsFromSchema(obj[key] ?? {}, propertySchema);
} else if ("type" in propertySchema && propertySchema.type === "array") {
} else if (propertySchema.type === "array") {
obj[key] ??= [];
// If the array items are objects, fill their defaults as well
if (
Array.isArray(obj[key]) &&
propertySchema.items &&
"type" in propertySchema.items &&
propertySchema.items.type === "object" &&
propertySchema.items?.type === "object" &&
"properties" in propertySchema.items
) {
for (const item of obj[key]) {

View File

@@ -0,0 +1,165 @@
# Implementation Plan: SECRT-1950 - Apply E2E CI Optimizations to Claude Code Workflows
## Ticket
[SECRT-1950](https://linear.app/autogpt/issue/SECRT-1950)
## Summary
Apply Pwuts's CI performance optimizations from PR #12090 to Claude Code workflows.
## Reference PR
https://github.com/Significant-Gravitas/AutoGPT/pull/12090
---
## Analysis
### Current State (claude.yml)
**pnpm caching (lines 104-118):**
```yaml
- name: Set up Node.js
uses: actions/setup-node@v6
with:
node-version: "22"
- name: Enable corepack
run: corepack enable
- name: Set pnpm store directory
run: |
pnpm config set store-dir ~/.pnpm-store
echo "PNPM_HOME=$HOME/.pnpm-store" >> $GITHUB_ENV
- name: Cache frontend dependencies
uses: actions/cache@v5
with:
path: ~/.pnpm-store
key: ${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
```
**Docker setup (lines 134-165):**
- Uses `docker-buildx-action@v3`
- Has manual Docker image caching via `actions/cache`
- Runs `docker compose up` without buildx bake optimization
### Pwuts's Optimizations (PR #12090)
1. **Simplified pnpm caching** - Use `setup-node` built-in cache:
```yaml
- name: Enable corepack
run: corepack enable
- name: Set up Node
uses: actions/setup-node@v6
with:
node-version: "22.18.0"
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
```
2. **Docker build caching via buildx bake**:
```yaml
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
with:
driver: docker-container
driver-opts: network=host
- name: Expose GHA cache to docker buildx CLI
uses: crazy-max/ghaction-github-runtime@v3
- name: Build Docker images (with cache)
run: |
pip install pyyaml
docker compose -f docker-compose.yml config > docker-compose.resolved.yml
python ../.github/workflows/scripts/docker-ci-fix-compose-build-cache.py \
--source docker-compose.resolved.yml \
--cache-from "type=gha" \
--cache-to "type=gha,mode=max" \
...
docker buildx bake --allow=fs.read=.. -f docker-compose.resolved.yml --load
```
---
## Proposed Changes
### 1. Update pnpm caching in `claude.yml`
**Before:**
- Manual cache key generation
- Separate `actions/cache` step
- Manual pnpm store directory config
**After:**
- Use `setup-node` built-in `cache: "pnpm"` option
- Remove manual cache step
- Keep `corepack enable` before `setup-node`
### 2. Update Docker build in `claude.yml`
**Before:**
- Manual Docker layer caching via `actions/cache` with `/tmp/.buildx-cache`
- Simple `docker compose build`
**After:**
- Use `crazy-max/ghaction-github-runtime@v3` to expose GHA cache
- Use `docker-ci-fix-compose-build-cache.py` script
- Build with `docker buildx bake`
### 3. Apply same changes to other Claude workflows
- `claude-dependabot.yml` - Check if it has similar patterns
- `claude-ci-failure-auto-fix.yml` - Check if it has similar patterns
- `copilot-setup-steps.yml` - Reusable workflow, may be the source of truth
---
## Files to Modify
1. `.github/workflows/claude.yml`
2. `.github/workflows/claude-dependabot.yml` (if applicable)
3. `.github/workflows/claude-ci-failure-auto-fix.yml` (if applicable)
## Dependencies
- PR #12090 must be merged first (provides the `docker-ci-fix-compose-build-cache.py` script)
- Backend Dockerfile optimizations (already in PR #12090)
---
## Test Plan
1. Create PR with changes
2. Trigger Claude workflow manually or via `@claude` mention on a test issue
3. Compare CI runtime before/after
4. Verify Claude agent still works correctly (can checkout, build, run tests)
---
## Risk Assessment
**Low risk:**
- These are CI infrastructure changes, not code changes
- If caching fails, builds fall back to uncached (slower but works)
- Changes mirror proven patterns from PR #12090
---
## Questions for Reviewer
1. Should we wait for PR #12090 to merge before creating this PR?
2. Does `copilot-setup-steps.yml` need updating, or is it a separate concern?
3. Any concerns about cache key collisions between frontend E2E and Claude workflows?
---
## Verified
-**`claude-dependabot.yml`**: Has same pnpm caching pattern as `claude.yml` (manual `actions/cache`) — NEEDS UPDATE
-**`claude-ci-failure-auto-fix.yml`**: Simple workflow with no pnpm or Docker caching — NO CHANGES NEEDED
-**Script path**: `docker-ci-fix-compose-build-cache.py` will be at `.github/workflows/scripts/` after PR #12090 merges
-**Test seed caching**: NOT APPLICABLE — Claude workflows spin up a dev environment but don't run E2E tests with pre-seeded data. The seed caching in PR #12090 is specific to the frontend E2E test suite which needs consistent test data. Claude just needs the services running.