mirror of
https://github.com/Significant-Gravitas/AutoGPT.git
synced 2026-02-04 11:55:11 -05:00
Compare commits
53 Commits
add-llm-ma
...
otto/secrt
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
11fe703489 | ||
|
|
f897e8d41f | ||
|
|
7e5b84cc5c | ||
|
|
09cb313211 | ||
|
|
c026485023 | ||
|
|
1eabc60484 | ||
|
|
f4bf492f24 | ||
|
|
81e48c00a4 | ||
|
|
7dc53071e8 | ||
|
|
4878665c66 | ||
|
|
678ddde751 | ||
|
|
aef6f57cfd | ||
|
|
14cee1670a | ||
|
|
d81d1ce024 | ||
|
|
2dd341c369 | ||
|
|
f7350c797a | ||
|
|
1081590384 | ||
|
|
7e37de8e30 | ||
|
|
2abbb7fbc8 | ||
|
|
7ee94d986c | ||
|
|
05b60db554 | ||
|
|
18a1661fa3 | ||
|
|
b72521daa9 | ||
|
|
cc4839bedb | ||
|
|
dbbff04616 | ||
|
|
350ad3591b | ||
|
|
e6438b9a76 | ||
|
|
de0ec3d388 | ||
|
|
e10ff8d37f | ||
|
|
7cb1e588b0 | ||
|
|
582c6cad36 | ||
|
|
3b822cdaf7 | ||
|
|
b2eb4831bd | ||
|
|
4cd5da678d | ||
|
|
9538992eaf | ||
|
|
b94c83aacc | ||
|
|
7668c17d9c | ||
|
|
27b72062f2 | ||
|
|
e0dfae5732 | ||
|
|
9a79a8d257 | ||
|
|
7df867d645 | ||
|
|
a9bf08748b | ||
|
|
d855f79874 | ||
|
|
dac99694fe | ||
|
|
0953983944 | ||
|
|
0058cd3ba6 | ||
|
|
ea035224bc | ||
|
|
62813a1ea6 | ||
|
|
67405f7eb9 | ||
|
|
171ff6e776 | ||
|
|
349b1f9c79 | ||
|
|
277b0537e9 | ||
|
|
071b3bb5cd |
@@ -29,8 +29,7 @@
|
||||
"postCreateCmd": [
|
||||
"cd autogpt_platform/autogpt_libs && poetry install",
|
||||
"cd autogpt_platform/backend && poetry install && poetry run prisma generate",
|
||||
"cd autogpt_platform/frontend && pnpm install",
|
||||
"cd docs && pip install -r requirements.txt"
|
||||
"cd autogpt_platform/frontend && pnpm install"
|
||||
],
|
||||
"terminalCommand": "code .",
|
||||
"deleteBranchWithWorktree": false
|
||||
|
||||
6
.github/copilot-instructions.md
vendored
6
.github/copilot-instructions.md
vendored
@@ -160,7 +160,7 @@ pnpm storybook # Start component development server
|
||||
|
||||
**Backend Entry Points:**
|
||||
|
||||
- `backend/backend/server/server.py` - FastAPI application setup
|
||||
- `backend/backend/api/rest_api.py` - FastAPI application setup
|
||||
- `backend/backend/data/` - Database models and user management
|
||||
- `backend/blocks/` - Agent execution blocks and logic
|
||||
|
||||
@@ -219,7 +219,7 @@ Agents are built using a visual block-based system where each block performs a s
|
||||
|
||||
### API Development
|
||||
|
||||
1. Update routes in `/backend/backend/server/routers/`
|
||||
1. Update routes in `/backend/backend/api/features/`
|
||||
2. Add/update Pydantic models in same directory
|
||||
3. Write tests alongside route files
|
||||
4. For `data/*.py` changes, validate user ID checks
|
||||
@@ -285,7 +285,7 @@ Agents are built using a visual block-based system where each block performs a s
|
||||
|
||||
### Security Guidelines
|
||||
|
||||
**Cache Protection Middleware** (`/backend/backend/server/middleware/security.py`):
|
||||
**Cache Protection Middleware** (`/backend/backend/api/middleware/security.py`):
|
||||
|
||||
- Default: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
|
||||
- Uses allow list approach for cacheable paths (static assets, health checks, public pages)
|
||||
|
||||
2
.gitignore
vendored
2
.gitignore
vendored
@@ -178,4 +178,6 @@ autogpt_platform/backend/settings.py
|
||||
*.ign.*
|
||||
.test-contents
|
||||
.claude/settings.local.json
|
||||
CLAUDE.local.md
|
||||
/autogpt_platform/backend/logs
|
||||
.next
|
||||
24
AGENTS.md
24
AGENTS.md
@@ -16,7 +16,6 @@ See `docs/content/platform/getting-started.md` for setup instructions.
|
||||
- Format Python code with `poetry run format`.
|
||||
- Format frontend code using `pnpm format`.
|
||||
|
||||
|
||||
## Frontend guidelines:
|
||||
|
||||
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
|
||||
@@ -33,14 +32,17 @@ See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
|
||||
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
|
||||
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
|
||||
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
|
||||
|
||||
- Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component
|
||||
- Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts)
|
||||
- Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible
|
||||
- Avoid large hooks, abstract logic into `helpers.ts` files when sensible
|
||||
- Use function declarations for components, arrow functions only for callbacks
|
||||
- No barrel files or `index.ts` re-exports
|
||||
- Do not use `useCallback` or `useMemo` unless strictly needed
|
||||
- Avoid comments at all times unless the code is very complex
|
||||
- Do not use `useCallback` or `useMemo` unless asked to optimise a given function
|
||||
- Do not type hook returns, let Typescript infer as much as possible
|
||||
- Never type with `any`, if not types available use `unknown`
|
||||
|
||||
## Testing
|
||||
|
||||
@@ -49,22 +51,8 @@ See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
|
||||
|
||||
Always run the relevant linters and tests before committing.
|
||||
Use conventional commit messages for all commits (e.g. `feat(backend): add API`).
|
||||
Types:
|
||||
- feat
|
||||
- fix
|
||||
- refactor
|
||||
- ci
|
||||
- dx (developer experience)
|
||||
Scopes:
|
||||
- platform
|
||||
- platform/library
|
||||
- platform/marketplace
|
||||
- backend
|
||||
- backend/executor
|
||||
- frontend
|
||||
- frontend/library
|
||||
- frontend/marketplace
|
||||
- blocks
|
||||
Types: - feat - fix - refactor - ci - dx (developer experience)
|
||||
Scopes: - platform - platform/library - platform/marketplace - backend - backend/executor - frontend - frontend/library - frontend/marketplace - blocks
|
||||
|
||||
## Pull requests
|
||||
|
||||
|
||||
@@ -54,7 +54,7 @@ Before proceeding with the installation, ensure your system meets the following
|
||||
### Updated Setup Instructions:
|
||||
We've moved to a fully maintained and regularly updated documentation site.
|
||||
|
||||
👉 [Follow the official self-hosting guide here](https://docs.agpt.co/platform/getting-started/)
|
||||
👉 [Follow the official self-hosting guide here](https://agpt.co/docs/platform/getting-started/getting-started)
|
||||
|
||||
|
||||
This tutorial assumes you have Docker, VSCode, git and npm installed.
|
||||
|
||||
@@ -6,152 +6,30 @@ This file provides guidance to Claude Code (claude.ai/code) when working with co
|
||||
|
||||
AutoGPT Platform is a monorepo containing:
|
||||
|
||||
- **Backend** (`/backend`): Python FastAPI server with async support
|
||||
- **Frontend** (`/frontend`): Next.js React application
|
||||
- **Shared Libraries** (`/autogpt_libs`): Common Python utilities
|
||||
- **Backend** (`backend`): Python FastAPI server with async support
|
||||
- **Frontend** (`frontend`): Next.js React application
|
||||
- **Shared Libraries** (`autogpt_libs`): Common Python utilities
|
||||
|
||||
## Essential Commands
|
||||
## Component Documentation
|
||||
|
||||
### Backend Development
|
||||
- **Backend**: See @backend/CLAUDE.md for backend-specific commands, architecture, and development tasks
|
||||
- **Frontend**: See @frontend/CLAUDE.md for frontend-specific commands, architecture, and development patterns
|
||||
|
||||
```bash
|
||||
# Install dependencies
|
||||
cd backend && poetry install
|
||||
|
||||
# Run database migrations
|
||||
poetry run prisma migrate dev
|
||||
|
||||
# Start all services (database, redis, rabbitmq, clamav)
|
||||
docker compose up -d
|
||||
|
||||
# Run the backend server
|
||||
poetry run serve
|
||||
|
||||
# Run tests
|
||||
poetry run test
|
||||
|
||||
# Run specific test
|
||||
poetry run pytest path/to/test_file.py::test_function_name
|
||||
|
||||
# Run block tests (tests that validate all blocks work correctly)
|
||||
poetry run pytest backend/blocks/test/test_block.py -xvs
|
||||
|
||||
# Run tests for a specific block (e.g., GetCurrentTimeBlock)
|
||||
poetry run pytest 'backend/blocks/test/test_block.py::test_available_blocks[GetCurrentTimeBlock]' -xvs
|
||||
|
||||
# Lint and format
|
||||
# prefer format if you want to just "fix" it and only get the errors that can't be autofixed
|
||||
poetry run format # Black + isort
|
||||
poetry run lint # ruff
|
||||
```
|
||||
|
||||
More details can be found in TESTING.md
|
||||
|
||||
#### Creating/Updating Snapshots
|
||||
|
||||
When you first write a test or when the expected output changes:
|
||||
|
||||
```bash
|
||||
poetry run pytest path/to/test.py --snapshot-update
|
||||
```
|
||||
|
||||
⚠️ **Important**: Always review snapshot changes before committing! Use `git diff` to verify the changes are expected.
|
||||
|
||||
### Frontend Development
|
||||
|
||||
```bash
|
||||
# Install dependencies
|
||||
cd frontend && pnpm i
|
||||
|
||||
# Generate API client from OpenAPI spec
|
||||
pnpm generate:api
|
||||
|
||||
# Start development server
|
||||
pnpm dev
|
||||
|
||||
# Run E2E tests
|
||||
pnpm test
|
||||
|
||||
# Run Storybook for component development
|
||||
pnpm storybook
|
||||
|
||||
# Build production
|
||||
pnpm build
|
||||
|
||||
# Format and lint
|
||||
pnpm format
|
||||
|
||||
# Type checking
|
||||
pnpm types
|
||||
```
|
||||
|
||||
**📖 Complete Guide**: See `/frontend/CONTRIBUTING.md` and `/frontend/.cursorrules` for comprehensive frontend patterns.
|
||||
|
||||
**Key Frontend Conventions:**
|
||||
|
||||
- Separate render logic from data/behavior in components
|
||||
- Use generated API hooks from `@/app/api/__generated__/endpoints/`
|
||||
- Use function declarations (not arrow functions) for components/handlers
|
||||
- Use design system components from `src/components/` (atoms, molecules, organisms)
|
||||
- Only use Phosphor Icons
|
||||
- Never use `src/components/__legacy__/*` or deprecated `BackendAPI`
|
||||
|
||||
## Architecture Overview
|
||||
|
||||
### Backend Architecture
|
||||
|
||||
- **API Layer**: FastAPI with REST and WebSocket endpoints
|
||||
- **Database**: PostgreSQL with Prisma ORM, includes pgvector for embeddings
|
||||
- **Queue System**: RabbitMQ for async task processing
|
||||
- **Execution Engine**: Separate executor service processes agent workflows
|
||||
- **Authentication**: JWT-based with Supabase integration
|
||||
- **Security**: Cache protection middleware prevents sensitive data caching in browsers/proxies
|
||||
|
||||
### Frontend Architecture
|
||||
|
||||
- **Framework**: Next.js 15 App Router (client-first approach)
|
||||
- **Data Fetching**: Type-safe generated API hooks via Orval + React Query
|
||||
- **State Management**: React Query for server state, co-located UI state in components/hooks
|
||||
- **Component Structure**: Separate render logic (`.tsx`) from business logic (`use*.ts` hooks)
|
||||
- **Workflow Builder**: Visual graph editor using @xyflow/react
|
||||
- **UI Components**: shadcn/ui (Radix UI primitives) with Tailwind CSS styling
|
||||
- **Icons**: Phosphor Icons only
|
||||
- **Feature Flags**: LaunchDarkly integration
|
||||
- **Error Handling**: ErrorCard for render errors, toast for mutations, Sentry for exceptions
|
||||
- **Testing**: Playwright for E2E, Storybook for component development
|
||||
|
||||
### Key Concepts
|
||||
## Key Concepts
|
||||
|
||||
1. **Agent Graphs**: Workflow definitions stored as JSON, executed by the backend
|
||||
2. **Blocks**: Reusable components in `/backend/blocks/` that perform specific tasks
|
||||
2. **Blocks**: Reusable components in `backend/backend/blocks/` that perform specific tasks
|
||||
3. **Integrations**: OAuth and API connections stored per user
|
||||
4. **Store**: Marketplace for sharing agent templates
|
||||
5. **Virus Scanning**: ClamAV integration for file upload security
|
||||
|
||||
### Testing Approach
|
||||
|
||||
- Backend uses pytest with snapshot testing for API responses
|
||||
- Test files are colocated with source files (`*_test.py`)
|
||||
- Frontend uses Playwright for E2E tests
|
||||
- Component testing via Storybook
|
||||
|
||||
### Database Schema
|
||||
|
||||
Key models (defined in `/backend/schema.prisma`):
|
||||
|
||||
- `User`: Authentication and profile data
|
||||
- `AgentGraph`: Workflow definitions with version control
|
||||
- `AgentGraphExecution`: Execution history and results
|
||||
- `AgentNode`: Individual nodes in a workflow
|
||||
- `StoreListing`: Marketplace listings for sharing agents
|
||||
|
||||
### Environment Configuration
|
||||
|
||||
#### Configuration Files
|
||||
|
||||
- **Backend**: `/backend/.env.default` (defaults) → `/backend/.env` (user overrides)
|
||||
- **Frontend**: `/frontend/.env.default` (defaults) → `/frontend/.env` (user overrides)
|
||||
- **Platform**: `/.env.default` (Supabase/shared defaults) → `/.env` (user overrides)
|
||||
- **Backend**: `backend/.env.default` (defaults) → `backend/.env` (user overrides)
|
||||
- **Frontend**: `frontend/.env.default` (defaults) → `frontend/.env` (user overrides)
|
||||
- **Platform**: `.env.default` (Supabase/shared defaults) → `.env` (user overrides)
|
||||
|
||||
#### Docker Environment Loading Order
|
||||
|
||||
@@ -167,83 +45,12 @@ Key models (defined in `/backend/schema.prisma`):
|
||||
- Backend/Frontend services use YAML anchors for consistent configuration
|
||||
- Supabase services (`db/docker/docker-compose.yml`) follow the same pattern
|
||||
|
||||
### Common Development Tasks
|
||||
|
||||
**Adding a new block:**
|
||||
|
||||
Follow the comprehensive [Block SDK Guide](../../../docs/content/platform/block-sdk-guide.md) which covers:
|
||||
|
||||
- Provider configuration with `ProviderBuilder`
|
||||
- Block schema definition
|
||||
- Authentication (API keys, OAuth, webhooks)
|
||||
- Testing and validation
|
||||
- File organization
|
||||
|
||||
Quick steps:
|
||||
|
||||
1. Create new file in `/backend/backend/blocks/`
|
||||
2. Configure provider using `ProviderBuilder` in `_config.py`
|
||||
3. Inherit from `Block` base class
|
||||
4. Define input/output schemas using `BlockSchema`
|
||||
5. Implement async `run` method
|
||||
6. Generate unique block ID using `uuid.uuid4()`
|
||||
7. Test with `poetry run pytest backend/blocks/test/test_block.py`
|
||||
|
||||
Note: when making many new blocks analyze the interfaces for each of these blocks and picture if they would go well together in a graph based editor or would they struggle to connect productively?
|
||||
ex: do the inputs and outputs tie well together?
|
||||
|
||||
If you get any pushback or hit complex block conditions check the new_blocks guide in the docs.
|
||||
|
||||
**Modifying the API:**
|
||||
|
||||
1. Update route in `/backend/backend/server/routers/`
|
||||
2. Add/update Pydantic models in same directory
|
||||
3. Write tests alongside the route file
|
||||
4. Run `poetry run test` to verify
|
||||
|
||||
### Frontend guidelines:
|
||||
|
||||
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
|
||||
|
||||
1. **Pages**: Create in `src/app/(platform)/feature-name/page.tsx`
|
||||
- Add `usePageName.ts` hook for logic
|
||||
- Put sub-components in local `components/` folder
|
||||
2. **Components**: Structure as `ComponentName/ComponentName.tsx` + `useComponentName.ts` + `helpers.ts`
|
||||
- Use design system components from `src/components/` (atoms, molecules, organisms)
|
||||
- Never use `src/components/__legacy__/*`
|
||||
3. **Data fetching**: Use generated API hooks from `@/app/api/__generated__/endpoints/`
|
||||
- Regenerate with `pnpm generate:api`
|
||||
- Pattern: `use{Method}{Version}{OperationName}`
|
||||
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
|
||||
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
|
||||
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
|
||||
- Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component
|
||||
- Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts)
|
||||
- Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible
|
||||
- Avoid large hooks, abstract logic into `helpers.ts` files when sensible
|
||||
- Use function declarations for components, arrow functions only for callbacks
|
||||
- No barrel files or `index.ts` re-exports
|
||||
- Do not use `useCallback` or `useMemo` unless strictly needed
|
||||
- Avoid comments at all times unless the code is very complex
|
||||
|
||||
### Security Implementation
|
||||
|
||||
**Cache Protection Middleware:**
|
||||
|
||||
- Located in `/backend/backend/server/middleware/security.py`
|
||||
- Default behavior: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
|
||||
- Uses an allow list approach - only explicitly permitted paths can be cached
|
||||
- Cacheable paths include: static assets (`/static/*`, `/_next/static/*`), health checks, public store pages, documentation
|
||||
- Prevents sensitive data (auth tokens, API keys, user data) from being cached by browsers/proxies
|
||||
- To allow caching for a new endpoint, add it to `CACHEABLE_PATHS` in the middleware
|
||||
- Applied to both main API server and external API applications
|
||||
|
||||
### Creating Pull Requests
|
||||
|
||||
- Create the PR aginst the `dev` branch of the repository.
|
||||
- Ensure the branch name is descriptive (e.g., `feature/add-new-block`)/
|
||||
- Use conventional commit messages (see below)/
|
||||
- Fill out the .github/PULL_REQUEST_TEMPLATE.md template as the PR description/
|
||||
- Create the PR against the `dev` branch of the repository.
|
||||
- Ensure the branch name is descriptive (e.g., `feature/add-new-block`)
|
||||
- Use conventional commit messages (see below)
|
||||
- Fill out the .github/PULL_REQUEST_TEMPLATE.md template as the PR description
|
||||
- Run the github pre-commit hooks to ensure code quality.
|
||||
|
||||
### Reviewing/Revising Pull Requests
|
||||
|
||||
170
autogpt_platform/backend/CLAUDE.md
Normal file
170
autogpt_platform/backend/CLAUDE.md
Normal file
@@ -0,0 +1,170 @@
|
||||
# CLAUDE.md - Backend
|
||||
|
||||
This file provides guidance to Claude Code when working with the backend.
|
||||
|
||||
## Essential Commands
|
||||
|
||||
To run something with Python package dependencies you MUST use `poetry run ...`.
|
||||
|
||||
```bash
|
||||
# Install dependencies
|
||||
poetry install
|
||||
|
||||
# Run database migrations
|
||||
poetry run prisma migrate dev
|
||||
|
||||
# Start all services (database, redis, rabbitmq, clamav)
|
||||
docker compose up -d
|
||||
|
||||
# Run the backend as a whole
|
||||
poetry run app
|
||||
|
||||
# Run tests
|
||||
poetry run test
|
||||
|
||||
# Run specific test
|
||||
poetry run pytest path/to/test_file.py::test_function_name
|
||||
|
||||
# Run block tests (tests that validate all blocks work correctly)
|
||||
poetry run pytest backend/blocks/test/test_block.py -xvs
|
||||
|
||||
# Run tests for a specific block (e.g., GetCurrentTimeBlock)
|
||||
poetry run pytest 'backend/blocks/test/test_block.py::test_available_blocks[GetCurrentTimeBlock]' -xvs
|
||||
|
||||
# Lint and format
|
||||
# prefer format if you want to just "fix" it and only get the errors that can't be autofixed
|
||||
poetry run format # Black + isort
|
||||
poetry run lint # ruff
|
||||
```
|
||||
|
||||
More details can be found in @TESTING.md
|
||||
|
||||
### Creating/Updating Snapshots
|
||||
|
||||
When you first write a test or when the expected output changes:
|
||||
|
||||
```bash
|
||||
poetry run pytest path/to/test.py --snapshot-update
|
||||
```
|
||||
|
||||
⚠️ **Important**: Always review snapshot changes before committing! Use `git diff` to verify the changes are expected.
|
||||
|
||||
## Architecture
|
||||
|
||||
- **API Layer**: FastAPI with REST and WebSocket endpoints
|
||||
- **Database**: PostgreSQL with Prisma ORM, includes pgvector for embeddings
|
||||
- **Queue System**: RabbitMQ for async task processing
|
||||
- **Execution Engine**: Separate executor service processes agent workflows
|
||||
- **Authentication**: JWT-based with Supabase integration
|
||||
- **Security**: Cache protection middleware prevents sensitive data caching in browsers/proxies
|
||||
|
||||
## Testing Approach
|
||||
|
||||
- Uses pytest with snapshot testing for API responses
|
||||
- Test files are colocated with source files (`*_test.py`)
|
||||
|
||||
## Database Schema
|
||||
|
||||
Key models (defined in `schema.prisma`):
|
||||
|
||||
- `User`: Authentication and profile data
|
||||
- `AgentGraph`: Workflow definitions with version control
|
||||
- `AgentGraphExecution`: Execution history and results
|
||||
- `AgentNode`: Individual nodes in a workflow
|
||||
- `StoreListing`: Marketplace listings for sharing agents
|
||||
|
||||
## Environment Configuration
|
||||
|
||||
- **Backend**: `.env.default` (defaults) → `.env` (user overrides)
|
||||
|
||||
## Common Development Tasks
|
||||
|
||||
### Adding a new block
|
||||
|
||||
Follow the comprehensive [Block SDK Guide](@../../docs/content/platform/block-sdk-guide.md) which covers:
|
||||
|
||||
- Provider configuration with `ProviderBuilder`
|
||||
- Block schema definition
|
||||
- Authentication (API keys, OAuth, webhooks)
|
||||
- Testing and validation
|
||||
- File organization
|
||||
|
||||
Quick steps:
|
||||
|
||||
1. Create new file in `backend/blocks/`
|
||||
2. Configure provider using `ProviderBuilder` in `_config.py`
|
||||
3. Inherit from `Block` base class
|
||||
4. Define input/output schemas using `BlockSchema`
|
||||
5. Implement async `run` method
|
||||
6. Generate unique block ID using `uuid.uuid4()`
|
||||
7. Test with `poetry run pytest backend/blocks/test/test_block.py`
|
||||
|
||||
Note: when making many new blocks analyze the interfaces for each of these blocks and picture if they would go well together in a graph-based editor or would they struggle to connect productively?
|
||||
ex: do the inputs and outputs tie well together?
|
||||
|
||||
If you get any pushback or hit complex block conditions check the new_blocks guide in the docs.
|
||||
|
||||
#### Handling files in blocks with `store_media_file()`
|
||||
|
||||
When blocks need to work with files (images, videos, documents), use `store_media_file()` from `backend.util.file`. The `return_format` parameter determines what you get back:
|
||||
|
||||
| Format | Use When | Returns |
|
||||
|--------|----------|---------|
|
||||
| `"for_local_processing"` | Processing with local tools (ffmpeg, MoviePy, PIL) | Local file path (e.g., `"image.png"`) |
|
||||
| `"for_external_api"` | Sending content to external APIs (Replicate, OpenAI) | Data URI (e.g., `"data:image/png;base64,..."`) |
|
||||
| `"for_block_output"` | Returning output from your block | Smart: `workspace://` in CoPilot, data URI in graphs |
|
||||
|
||||
**Examples:**
|
||||
|
||||
```python
|
||||
# INPUT: Need to process file locally with ffmpeg
|
||||
local_path = await store_media_file(
|
||||
file=input_data.video,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
# local_path = "video.mp4" - use with Path/ffmpeg/etc
|
||||
|
||||
# INPUT: Need to send to external API like Replicate
|
||||
image_b64 = await store_media_file(
|
||||
file=input_data.image,
|
||||
execution_context=execution_context,
|
||||
return_format="for_external_api",
|
||||
)
|
||||
# image_b64 = "..." - send to API
|
||||
|
||||
# OUTPUT: Returning result from block
|
||||
result_url = await store_media_file(
|
||||
file=generated_image_url,
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "image_url", result_url
|
||||
# In CoPilot: result_url = "workspace://abc123"
|
||||
# In graphs: result_url = "data:image/png;base64,..."
|
||||
```
|
||||
|
||||
**Key points:**
|
||||
|
||||
- `for_block_output` is the ONLY format that auto-adapts to execution context
|
||||
- Always use `for_block_output` for block outputs unless you have a specific reason not to
|
||||
- Never hardcode workspace checks - let `for_block_output` handle it
|
||||
|
||||
### Modifying the API
|
||||
|
||||
1. Update route in `backend/api/features/`
|
||||
2. Add/update Pydantic models in same directory
|
||||
3. Write tests alongside the route file
|
||||
4. Run `poetry run test` to verify
|
||||
|
||||
## Security Implementation
|
||||
|
||||
### Cache Protection Middleware
|
||||
|
||||
- Located in `backend/api/middleware/security.py`
|
||||
- Default behavior: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
|
||||
- Uses an allow list approach - only explicitly permitted paths can be cached
|
||||
- Cacheable paths include: static assets (`static/*`, `_next/static/*`), health checks, public store pages, documentation
|
||||
- Prevents sensitive data (auth tokens, API keys, user data) from being cached by browsers/proxies
|
||||
- To allow caching for a new endpoint, add it to `CACHEABLE_PATHS` in the middleware
|
||||
- Applied to both main API server and external API applications
|
||||
@@ -138,7 +138,7 @@ If the test doesn't need the `user_id` specifically, mocking is not necessary as
|
||||
|
||||
#### Using Global Auth Fixtures
|
||||
|
||||
Two global auth fixtures are provided by `backend/server/conftest.py`:
|
||||
Two global auth fixtures are provided by `backend/api/conftest.py`:
|
||||
|
||||
- `mock_jwt_user` - Regular user with `test_user_id` ("test-user-id")
|
||||
- `mock_jwt_admin` - Admin user with `admin_user_id` ("admin-user-id")
|
||||
|
||||
@@ -122,24 +122,6 @@ class ConnectionManager:
|
||||
|
||||
return len(connections)
|
||||
|
||||
async def broadcast_to_all(self, *, method: WSMethod, data: dict) -> int:
|
||||
"""Broadcast a message to all active websocket connections."""
|
||||
message = WSMessage(
|
||||
method=method,
|
||||
data=data,
|
||||
).model_dump_json()
|
||||
|
||||
connections = tuple(self.active_connections)
|
||||
if not connections:
|
||||
return 0
|
||||
|
||||
await asyncio.gather(
|
||||
*(connection.send_text(message) for connection in connections),
|
||||
return_exceptions=True,
|
||||
)
|
||||
|
||||
return len(connections)
|
||||
|
||||
async def _subscribe(self, channel_key: str, websocket: WebSocket) -> str:
|
||||
if channel_key not in self.subscriptions:
|
||||
self.subscriptions[channel_key] = set()
|
||||
|
||||
@@ -176,64 +176,30 @@ async def get_execution_analytics_config(
|
||||
# Return with provider prefix for clarity
|
||||
return f"{provider_name}: {model_name}"
|
||||
|
||||
# Get all models from the registry (dynamic, not hardcoded enum)
|
||||
from backend.data import llm_registry
|
||||
from backend.server.v2.llm import db as llm_db
|
||||
|
||||
# Get the recommended model from the database (configurable via admin UI)
|
||||
recommended_model_slug = await llm_db.get_recommended_model_slug()
|
||||
|
||||
# Build the available models list
|
||||
first_enabled_slug = None
|
||||
for registry_model in llm_registry.iter_dynamic_models():
|
||||
# Only include enabled models in the list
|
||||
if not registry_model.is_enabled:
|
||||
continue
|
||||
|
||||
# Track first enabled model as fallback
|
||||
if first_enabled_slug is None:
|
||||
first_enabled_slug = registry_model.slug
|
||||
|
||||
model_enum = LlmModel(registry_model.slug) # Create enum instance from slug
|
||||
label = generate_model_label(model_enum)
|
||||
# Include all LlmModel values (no more filtering by hardcoded list)
|
||||
recommended_model = LlmModel.GPT4O_MINI.value
|
||||
for model in LlmModel:
|
||||
label = generate_model_label(model)
|
||||
# Add "(Recommended)" suffix to the recommended model
|
||||
if registry_model.slug == recommended_model_slug:
|
||||
if model.value == recommended_model:
|
||||
label += " (Recommended)"
|
||||
|
||||
available_models.append(
|
||||
ModelInfo(
|
||||
value=registry_model.slug,
|
||||
value=model.value,
|
||||
label=label,
|
||||
provider=registry_model.metadata.provider,
|
||||
provider=model.provider,
|
||||
)
|
||||
)
|
||||
|
||||
# Sort models by provider and name for better UX
|
||||
available_models.sort(key=lambda x: (x.provider, x.label))
|
||||
|
||||
# Handle case where no models are available
|
||||
if not available_models:
|
||||
logger.warning(
|
||||
"No enabled LLM models found in registry. "
|
||||
"Ensure models are configured and enabled in the LLM Registry."
|
||||
)
|
||||
# Provide a placeholder entry so admins see meaningful feedback
|
||||
available_models.append(
|
||||
ModelInfo(
|
||||
value="",
|
||||
label="No models available - configure in LLM Registry",
|
||||
provider="none",
|
||||
)
|
||||
)
|
||||
|
||||
# Use the DB recommended model, or fallback to first enabled model
|
||||
final_recommended = recommended_model_slug or first_enabled_slug or ""
|
||||
|
||||
return ExecutionAnalyticsConfig(
|
||||
available_models=available_models,
|
||||
default_system_prompt=DEFAULT_SYSTEM_PROMPT,
|
||||
default_user_prompt=DEFAULT_USER_PROMPT,
|
||||
recommended_model=final_recommended,
|
||||
recommended_model=recommended_model,
|
||||
)
|
||||
|
||||
|
||||
|
||||
@@ -1,595 +0,0 @@
|
||||
import logging
|
||||
|
||||
import autogpt_libs.auth
|
||||
import fastapi
|
||||
|
||||
from backend.data import llm_registry
|
||||
from backend.data.block_cost_config import refresh_llm_costs
|
||||
from backend.server.v2.llm import db as llm_db
|
||||
from backend.server.v2.llm import model as llm_model
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
router = fastapi.APIRouter(
|
||||
tags=["llm", "admin"],
|
||||
dependencies=[fastapi.Security(autogpt_libs.auth.requires_admin_user)],
|
||||
)
|
||||
|
||||
|
||||
async def _refresh_runtime_state() -> None:
|
||||
"""Refresh the LLM registry and clear all related caches to ensure real-time updates."""
|
||||
logger.info("Refreshing LLM registry runtime state...")
|
||||
try:
|
||||
# Refresh registry from database
|
||||
await llm_registry.refresh_llm_registry()
|
||||
refresh_llm_costs()
|
||||
|
||||
# Clear block schema caches so they're regenerated with updated model options
|
||||
from backend.data.block import BlockSchema
|
||||
|
||||
BlockSchema.clear_all_schema_caches()
|
||||
logger.info("Cleared all block schema caches")
|
||||
|
||||
# Clear the /blocks endpoint cache so frontend gets updated schemas
|
||||
try:
|
||||
from backend.api.features.v1 import _get_cached_blocks
|
||||
|
||||
_get_cached_blocks.cache_clear()
|
||||
logger.info("Cleared /blocks endpoint cache")
|
||||
except Exception as e:
|
||||
logger.warning("Failed to clear /blocks cache: %s", e)
|
||||
|
||||
# Clear the v2 builder caches (if they exist)
|
||||
try:
|
||||
from backend.api.features.builder import db as builder_db
|
||||
|
||||
if hasattr(builder_db, "_get_all_providers"):
|
||||
builder_db._get_all_providers.cache_clear()
|
||||
logger.info("Cleared v2 builder providers cache")
|
||||
if hasattr(builder_db, "_build_cached_search_results"):
|
||||
builder_db._build_cached_search_results.cache_clear()
|
||||
logger.info("Cleared v2 builder search results cache")
|
||||
except Exception as e:
|
||||
logger.debug("Could not clear v2 builder cache: %s", e)
|
||||
|
||||
# Notify all executor services to refresh their registry cache
|
||||
from backend.data.llm_registry import publish_registry_refresh_notification
|
||||
|
||||
await publish_registry_refresh_notification()
|
||||
logger.info("Published registry refresh notification")
|
||||
except Exception as exc:
|
||||
logger.exception(
|
||||
"LLM runtime state refresh failed; caches may be stale: %s", exc
|
||||
)
|
||||
|
||||
|
||||
@router.get(
|
||||
"/providers",
|
||||
summary="List LLM providers",
|
||||
response_model=llm_model.LlmProvidersResponse,
|
||||
)
|
||||
async def list_llm_providers(include_models: bool = True):
|
||||
providers = await llm_db.list_providers(include_models=include_models)
|
||||
return llm_model.LlmProvidersResponse(providers=providers)
|
||||
|
||||
|
||||
@router.post(
|
||||
"/providers",
|
||||
summary="Create LLM provider",
|
||||
response_model=llm_model.LlmProvider,
|
||||
)
|
||||
async def create_llm_provider(request: llm_model.UpsertLlmProviderRequest):
|
||||
provider = await llm_db.upsert_provider(request=request)
|
||||
await _refresh_runtime_state()
|
||||
return provider
|
||||
|
||||
|
||||
@router.patch(
|
||||
"/providers/{provider_id}",
|
||||
summary="Update LLM provider",
|
||||
response_model=llm_model.LlmProvider,
|
||||
)
|
||||
async def update_llm_provider(
|
||||
provider_id: str,
|
||||
request: llm_model.UpsertLlmProviderRequest,
|
||||
):
|
||||
provider = await llm_db.upsert_provider(request=request, provider_id=provider_id)
|
||||
await _refresh_runtime_state()
|
||||
return provider
|
||||
|
||||
|
||||
@router.delete(
|
||||
"/providers/{provider_id}",
|
||||
summary="Delete LLM provider",
|
||||
response_model=dict,
|
||||
)
|
||||
async def delete_llm_provider(provider_id: str):
|
||||
"""
|
||||
Delete an LLM provider.
|
||||
|
||||
A provider can only be deleted if it has no associated models.
|
||||
Delete all models from the provider first before deleting the provider.
|
||||
"""
|
||||
try:
|
||||
await llm_db.delete_provider(provider_id)
|
||||
await _refresh_runtime_state()
|
||||
logger.info("Deleted LLM provider '%s'", provider_id)
|
||||
return {"success": True, "message": "Provider deleted successfully"}
|
||||
except ValueError as e:
|
||||
logger.warning("Failed to delete provider '%s': %s", provider_id, e)
|
||||
raise fastapi.HTTPException(status_code=400, detail=str(e))
|
||||
except Exception as e:
|
||||
logger.exception("Failed to delete provider '%s': %s", provider_id, e)
|
||||
raise fastapi.HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
@router.get(
|
||||
"/models",
|
||||
summary="List LLM models",
|
||||
response_model=llm_model.LlmModelsResponse,
|
||||
)
|
||||
async def list_llm_models(
|
||||
provider_id: str | None = fastapi.Query(default=None),
|
||||
page: int = fastapi.Query(default=1, ge=1, description="Page number (1-indexed)"),
|
||||
page_size: int = fastapi.Query(
|
||||
default=50, ge=1, le=100, description="Number of models per page"
|
||||
),
|
||||
):
|
||||
return await llm_db.list_models(
|
||||
provider_id=provider_id, page=page, page_size=page_size
|
||||
)
|
||||
|
||||
|
||||
@router.post(
|
||||
"/models",
|
||||
summary="Create LLM model",
|
||||
response_model=llm_model.LlmModel,
|
||||
)
|
||||
async def create_llm_model(request: llm_model.CreateLlmModelRequest):
|
||||
model = await llm_db.create_model(request=request)
|
||||
await _refresh_runtime_state()
|
||||
return model
|
||||
|
||||
|
||||
@router.patch(
|
||||
"/models/{model_id}",
|
||||
summary="Update LLM model",
|
||||
response_model=llm_model.LlmModel,
|
||||
)
|
||||
async def update_llm_model(
|
||||
model_id: str,
|
||||
request: llm_model.UpdateLlmModelRequest,
|
||||
):
|
||||
model = await llm_db.update_model(model_id=model_id, request=request)
|
||||
await _refresh_runtime_state()
|
||||
return model
|
||||
|
||||
|
||||
@router.patch(
|
||||
"/models/{model_id}/toggle",
|
||||
summary="Toggle LLM model availability",
|
||||
response_model=llm_model.ToggleLlmModelResponse,
|
||||
)
|
||||
async def toggle_llm_model(
|
||||
model_id: str,
|
||||
request: llm_model.ToggleLlmModelRequest,
|
||||
):
|
||||
"""
|
||||
Toggle a model's enabled status, optionally migrating workflows when disabling.
|
||||
|
||||
If disabling a model and `migrate_to_slug` is provided, all workflows using
|
||||
this model will be migrated to the specified replacement model before disabling.
|
||||
A migration record is created which can be reverted later using the revert endpoint.
|
||||
|
||||
Optional fields:
|
||||
- `migration_reason`: Reason for the migration (e.g., "Provider outage")
|
||||
- `custom_credit_cost`: Custom pricing override for billing during migration
|
||||
"""
|
||||
try:
|
||||
result = await llm_db.toggle_model(
|
||||
model_id=model_id,
|
||||
is_enabled=request.is_enabled,
|
||||
migrate_to_slug=request.migrate_to_slug,
|
||||
migration_reason=request.migration_reason,
|
||||
custom_credit_cost=request.custom_credit_cost,
|
||||
)
|
||||
await _refresh_runtime_state()
|
||||
if result.nodes_migrated > 0:
|
||||
logger.info(
|
||||
"Toggled model '%s' to %s and migrated %d nodes to '%s' (migration_id=%s)",
|
||||
result.model.slug,
|
||||
"enabled" if request.is_enabled else "disabled",
|
||||
result.nodes_migrated,
|
||||
result.migrated_to_slug,
|
||||
result.migration_id,
|
||||
)
|
||||
return result
|
||||
except ValueError as exc:
|
||||
logger.warning("Model toggle validation failed: %s", exc)
|
||||
raise fastapi.HTTPException(status_code=400, detail=str(exc)) from exc
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to toggle LLM model %s: %s", model_id, exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to toggle model availability",
|
||||
) from exc
|
||||
|
||||
|
||||
@router.get(
|
||||
"/models/{model_id}/usage",
|
||||
summary="Get model usage count",
|
||||
response_model=llm_model.LlmModelUsageResponse,
|
||||
)
|
||||
async def get_llm_model_usage(model_id: str):
|
||||
"""Get the number of workflow nodes using this model."""
|
||||
try:
|
||||
return await llm_db.get_model_usage(model_id=model_id)
|
||||
except ValueError as exc:
|
||||
raise fastapi.HTTPException(status_code=404, detail=str(exc)) from exc
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to get model usage %s: %s", model_id, exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to get model usage",
|
||||
) from exc
|
||||
|
||||
|
||||
@router.delete(
|
||||
"/models/{model_id}",
|
||||
summary="Delete LLM model and migrate workflows",
|
||||
response_model=llm_model.DeleteLlmModelResponse,
|
||||
)
|
||||
async def delete_llm_model(
|
||||
model_id: str,
|
||||
replacement_model_slug: str | None = fastapi.Query(
|
||||
default=None,
|
||||
description="Slug of the model to migrate existing workflows to (required only if workflows use this model)",
|
||||
),
|
||||
):
|
||||
"""
|
||||
Delete a model and optionally migrate workflows using it to a replacement model.
|
||||
|
||||
If no workflows are using this model, it can be deleted without providing a
|
||||
replacement. If workflows exist, replacement_model_slug is required.
|
||||
|
||||
This endpoint:
|
||||
1. Counts how many workflow nodes use the model being deleted
|
||||
2. If nodes exist, validates the replacement model and migrates them
|
||||
3. Deletes the model record
|
||||
4. Refreshes all caches and notifies executors
|
||||
|
||||
Example: DELETE /admin/llm/models/{id}?replacement_model_slug=gpt-4o
|
||||
Example (no usage): DELETE /admin/llm/models/{id}
|
||||
"""
|
||||
try:
|
||||
result = await llm_db.delete_model(
|
||||
model_id=model_id, replacement_model_slug=replacement_model_slug
|
||||
)
|
||||
await _refresh_runtime_state()
|
||||
logger.info(
|
||||
"Deleted model '%s' and migrated %d nodes to '%s'",
|
||||
result.deleted_model_slug,
|
||||
result.nodes_migrated,
|
||||
result.replacement_model_slug,
|
||||
)
|
||||
return result
|
||||
except ValueError as exc:
|
||||
# Validation errors (model not found, replacement invalid, etc.)
|
||||
logger.warning("Model deletion validation failed: %s", exc)
|
||||
raise fastapi.HTTPException(status_code=400, detail=str(exc)) from exc
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to delete LLM model %s: %s", model_id, exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to delete model and migrate workflows",
|
||||
) from exc
|
||||
|
||||
|
||||
# ============================================================================
|
||||
# Migration Management Endpoints
|
||||
# ============================================================================
|
||||
|
||||
|
||||
@router.get(
|
||||
"/migrations",
|
||||
summary="List model migrations",
|
||||
response_model=llm_model.LlmMigrationsResponse,
|
||||
)
|
||||
async def list_llm_migrations(
|
||||
include_reverted: bool = fastapi.Query(
|
||||
default=False, description="Include reverted migrations in the list"
|
||||
),
|
||||
):
|
||||
"""
|
||||
List all model migrations.
|
||||
|
||||
Migrations are created when disabling a model with the migrate_to_slug option.
|
||||
They can be reverted to restore the original model configuration.
|
||||
"""
|
||||
try:
|
||||
migrations = await llm_db.list_migrations(include_reverted=include_reverted)
|
||||
return llm_model.LlmMigrationsResponse(migrations=migrations)
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to list migrations: %s", exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to list migrations",
|
||||
) from exc
|
||||
|
||||
|
||||
@router.get(
|
||||
"/migrations/{migration_id}",
|
||||
summary="Get migration details",
|
||||
response_model=llm_model.LlmModelMigration,
|
||||
)
|
||||
async def get_llm_migration(migration_id: str):
|
||||
"""Get details of a specific migration."""
|
||||
try:
|
||||
migration = await llm_db.get_migration(migration_id)
|
||||
if not migration:
|
||||
raise fastapi.HTTPException(
|
||||
status_code=404, detail=f"Migration '{migration_id}' not found"
|
||||
)
|
||||
return migration
|
||||
except fastapi.HTTPException:
|
||||
raise
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to get migration %s: %s", migration_id, exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to get migration",
|
||||
) from exc
|
||||
|
||||
|
||||
@router.post(
|
||||
"/migrations/{migration_id}/revert",
|
||||
summary="Revert a model migration",
|
||||
response_model=llm_model.RevertMigrationResponse,
|
||||
)
|
||||
async def revert_llm_migration(
|
||||
migration_id: str,
|
||||
request: llm_model.RevertMigrationRequest | None = None,
|
||||
):
|
||||
"""
|
||||
Revert a model migration, restoring affected workflows to their original model.
|
||||
|
||||
This only reverts the specific nodes that were part of the migration.
|
||||
The source model must exist for the revert to succeed.
|
||||
|
||||
Options:
|
||||
- `re_enable_source_model`: Whether to re-enable the source model if disabled (default: True)
|
||||
|
||||
Response includes:
|
||||
- `nodes_reverted`: Number of nodes successfully reverted
|
||||
- `nodes_already_changed`: Number of nodes that were modified since migration (not reverted)
|
||||
- `source_model_re_enabled`: Whether the source model was re-enabled
|
||||
|
||||
Requirements:
|
||||
- Migration must not already be reverted
|
||||
- Source model must exist
|
||||
"""
|
||||
try:
|
||||
re_enable = request.re_enable_source_model if request else True
|
||||
result = await llm_db.revert_migration(
|
||||
migration_id,
|
||||
re_enable_source_model=re_enable,
|
||||
)
|
||||
await _refresh_runtime_state()
|
||||
logger.info(
|
||||
"Reverted migration '%s': %d nodes restored from '%s' to '%s' "
|
||||
"(%d already changed, source re-enabled=%s)",
|
||||
migration_id,
|
||||
result.nodes_reverted,
|
||||
result.target_model_slug,
|
||||
result.source_model_slug,
|
||||
result.nodes_already_changed,
|
||||
result.source_model_re_enabled,
|
||||
)
|
||||
return result
|
||||
except ValueError as exc:
|
||||
logger.warning("Migration revert validation failed: %s", exc)
|
||||
raise fastapi.HTTPException(status_code=400, detail=str(exc)) from exc
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to revert migration %s: %s", migration_id, exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to revert migration",
|
||||
) from exc
|
||||
|
||||
|
||||
# ============================================================================
|
||||
# Creator Management Endpoints
|
||||
# ============================================================================
|
||||
|
||||
|
||||
@router.get(
|
||||
"/creators",
|
||||
summary="List model creators",
|
||||
response_model=llm_model.LlmCreatorsResponse,
|
||||
)
|
||||
async def list_llm_creators():
|
||||
"""
|
||||
List all model creators.
|
||||
|
||||
Creators are organizations that create/train models (e.g., OpenAI, Meta, Anthropic).
|
||||
This is distinct from providers who host/serve the models (e.g., OpenRouter).
|
||||
"""
|
||||
try:
|
||||
creators = await llm_db.list_creators()
|
||||
return llm_model.LlmCreatorsResponse(creators=creators)
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to list creators: %s", exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to list creators",
|
||||
) from exc
|
||||
|
||||
|
||||
@router.get(
|
||||
"/creators/{creator_id}",
|
||||
summary="Get creator details",
|
||||
response_model=llm_model.LlmModelCreator,
|
||||
)
|
||||
async def get_llm_creator(creator_id: str):
|
||||
"""Get details of a specific model creator."""
|
||||
try:
|
||||
creator = await llm_db.get_creator(creator_id)
|
||||
if not creator:
|
||||
raise fastapi.HTTPException(
|
||||
status_code=404, detail=f"Creator '{creator_id}' not found"
|
||||
)
|
||||
return creator
|
||||
except fastapi.HTTPException:
|
||||
raise
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to get creator %s: %s", creator_id, exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to get creator",
|
||||
) from exc
|
||||
|
||||
|
||||
@router.post(
|
||||
"/creators",
|
||||
summary="Create model creator",
|
||||
response_model=llm_model.LlmModelCreator,
|
||||
)
|
||||
async def create_llm_creator(request: llm_model.UpsertLlmCreatorRequest):
|
||||
"""
|
||||
Create a new model creator.
|
||||
|
||||
A creator represents an organization that creates/trains AI models,
|
||||
such as OpenAI, Anthropic, Meta, or Google.
|
||||
"""
|
||||
try:
|
||||
creator = await llm_db.upsert_creator(request=request)
|
||||
await _refresh_runtime_state()
|
||||
logger.info("Created model creator '%s' (%s)", creator.display_name, creator.id)
|
||||
return creator
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to create creator: %s", exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to create creator",
|
||||
) from exc
|
||||
|
||||
|
||||
@router.patch(
|
||||
"/creators/{creator_id}",
|
||||
summary="Update model creator",
|
||||
response_model=llm_model.LlmModelCreator,
|
||||
)
|
||||
async def update_llm_creator(
|
||||
creator_id: str,
|
||||
request: llm_model.UpsertLlmCreatorRequest,
|
||||
):
|
||||
"""Update an existing model creator."""
|
||||
try:
|
||||
creator = await llm_db.upsert_creator(request=request, creator_id=creator_id)
|
||||
await _refresh_runtime_state()
|
||||
logger.info("Updated model creator '%s' (%s)", creator.display_name, creator_id)
|
||||
return creator
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to update creator %s: %s", creator_id, exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to update creator",
|
||||
) from exc
|
||||
|
||||
|
||||
@router.delete(
|
||||
"/creators/{creator_id}",
|
||||
summary="Delete model creator",
|
||||
response_model=dict,
|
||||
)
|
||||
async def delete_llm_creator(creator_id: str):
|
||||
"""
|
||||
Delete a model creator.
|
||||
|
||||
This will remove the creator association from all models that reference it
|
||||
(sets creatorId to NULL), but will not delete the models themselves.
|
||||
"""
|
||||
try:
|
||||
await llm_db.delete_creator(creator_id)
|
||||
await _refresh_runtime_state()
|
||||
logger.info("Deleted model creator '%s'", creator_id)
|
||||
return {"success": True, "message": f"Creator '{creator_id}' deleted"}
|
||||
except ValueError as exc:
|
||||
logger.warning("Creator deletion validation failed: %s", exc)
|
||||
raise fastapi.HTTPException(status_code=404, detail=str(exc)) from exc
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to delete creator %s: %s", creator_id, exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to delete creator",
|
||||
) from exc
|
||||
|
||||
|
||||
# ============================================================================
|
||||
# Recommended Model Endpoints
|
||||
# ============================================================================
|
||||
|
||||
|
||||
@router.get(
|
||||
"/recommended-model",
|
||||
summary="Get recommended model",
|
||||
response_model=llm_model.RecommendedModelResponse,
|
||||
)
|
||||
async def get_recommended_model():
|
||||
"""
|
||||
Get the currently recommended LLM model.
|
||||
|
||||
The recommended model is shown to users as the default/suggested option
|
||||
in model selection dropdowns.
|
||||
"""
|
||||
try:
|
||||
model = await llm_db.get_recommended_model()
|
||||
return llm_model.RecommendedModelResponse(
|
||||
model=model,
|
||||
slug=model.slug if model else None,
|
||||
)
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to get recommended model: %s", exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to get recommended model",
|
||||
) from exc
|
||||
|
||||
|
||||
@router.post(
|
||||
"/recommended-model",
|
||||
summary="Set recommended model",
|
||||
response_model=llm_model.SetRecommendedModelResponse,
|
||||
)
|
||||
async def set_recommended_model(request: llm_model.SetRecommendedModelRequest):
|
||||
"""
|
||||
Set a model as the recommended model.
|
||||
|
||||
This clears the recommended flag from any other model and sets it on
|
||||
the specified model. The model must be enabled to be set as recommended.
|
||||
|
||||
The recommended model is displayed to users as the default/suggested
|
||||
option in model selection dropdowns throughout the platform.
|
||||
"""
|
||||
try:
|
||||
model, previous_slug = await llm_db.set_recommended_model(request.model_id)
|
||||
await _refresh_runtime_state()
|
||||
logger.info(
|
||||
"Set recommended model to '%s' (previous: %s)",
|
||||
model.slug,
|
||||
previous_slug or "none",
|
||||
)
|
||||
return llm_model.SetRecommendedModelResponse(
|
||||
model=model,
|
||||
previous_recommended_slug=previous_slug,
|
||||
message=f"Model '{model.display_name}' is now the recommended model",
|
||||
)
|
||||
except ValueError as exc:
|
||||
logger.warning("Set recommended model validation failed: %s", exc)
|
||||
raise fastapi.HTTPException(status_code=400, detail=str(exc)) from exc
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to set recommended model: %s", exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to set recommended model",
|
||||
) from exc
|
||||
@@ -1,491 +0,0 @@
|
||||
import json
|
||||
from unittest.mock import AsyncMock
|
||||
|
||||
import fastapi
|
||||
import fastapi.testclient
|
||||
import pytest
|
||||
import pytest_mock
|
||||
from autogpt_libs.auth.jwt_utils import get_jwt_payload
|
||||
from pytest_snapshot.plugin import Snapshot
|
||||
|
||||
import backend.api.features.admin.llm_routes as llm_routes
|
||||
from backend.server.v2.llm import model as llm_model
|
||||
from backend.util.models import Pagination
|
||||
|
||||
app = fastapi.FastAPI()
|
||||
app.include_router(llm_routes.router, prefix="/admin/llm")
|
||||
|
||||
client = fastapi.testclient.TestClient(app)
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def setup_app_admin_auth(mock_jwt_admin):
|
||||
"""Setup admin auth overrides for all tests in this module"""
|
||||
app.dependency_overrides[get_jwt_payload] = mock_jwt_admin["get_jwt_payload"]
|
||||
yield
|
||||
app.dependency_overrides.clear()
|
||||
|
||||
|
||||
def test_list_llm_providers_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
configured_snapshot: Snapshot,
|
||||
) -> None:
|
||||
"""Test successful listing of LLM providers"""
|
||||
# Mock the database function
|
||||
mock_providers = [
|
||||
{
|
||||
"id": "provider-1",
|
||||
"name": "openai",
|
||||
"display_name": "OpenAI",
|
||||
"description": "OpenAI LLM provider",
|
||||
"supports_tools": True,
|
||||
"supports_json_output": True,
|
||||
"supports_reasoning": False,
|
||||
"supports_parallel_tool": True,
|
||||
"metadata": {},
|
||||
"models": [],
|
||||
},
|
||||
{
|
||||
"id": "provider-2",
|
||||
"name": "anthropic",
|
||||
"display_name": "Anthropic",
|
||||
"description": "Anthropic LLM provider",
|
||||
"supports_tools": True,
|
||||
"supports_json_output": True,
|
||||
"supports_reasoning": False,
|
||||
"supports_parallel_tool": True,
|
||||
"metadata": {},
|
||||
"models": [],
|
||||
},
|
||||
]
|
||||
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.list_providers",
|
||||
new=AsyncMock(return_value=mock_providers),
|
||||
)
|
||||
|
||||
response = client.get("/admin/llm/providers")
|
||||
|
||||
assert response.status_code == 200
|
||||
response_data = response.json()
|
||||
assert len(response_data["providers"]) == 2
|
||||
assert response_data["providers"][0]["name"] == "openai"
|
||||
|
||||
# Snapshot test the response (must be string)
|
||||
configured_snapshot.assert_match(
|
||||
json.dumps(response_data, indent=2, sort_keys=True),
|
||||
"list_llm_providers_success.json",
|
||||
)
|
||||
|
||||
|
||||
def test_list_llm_models_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
configured_snapshot: Snapshot,
|
||||
) -> None:
|
||||
"""Test successful listing of LLM models with pagination"""
|
||||
# Mock the database function - now returns LlmModelsResponse
|
||||
mock_model = llm_model.LlmModel(
|
||||
id="model-1",
|
||||
slug="gpt-4o",
|
||||
display_name="GPT-4o",
|
||||
description="GPT-4 Optimized",
|
||||
provider_id="provider-1",
|
||||
context_window=128000,
|
||||
max_output_tokens=16384,
|
||||
is_enabled=True,
|
||||
capabilities={},
|
||||
metadata={},
|
||||
costs=[
|
||||
llm_model.LlmModelCost(
|
||||
id="cost-1",
|
||||
credit_cost=10,
|
||||
credential_provider="openai",
|
||||
metadata={},
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
mock_response = llm_model.LlmModelsResponse(
|
||||
models=[mock_model],
|
||||
pagination=Pagination(
|
||||
total_items=1,
|
||||
total_pages=1,
|
||||
current_page=1,
|
||||
page_size=50,
|
||||
),
|
||||
)
|
||||
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.list_models",
|
||||
new=AsyncMock(return_value=mock_response),
|
||||
)
|
||||
|
||||
response = client.get("/admin/llm/models")
|
||||
|
||||
assert response.status_code == 200
|
||||
response_data = response.json()
|
||||
assert len(response_data["models"]) == 1
|
||||
assert response_data["models"][0]["slug"] == "gpt-4o"
|
||||
assert response_data["pagination"]["total_items"] == 1
|
||||
assert response_data["pagination"]["page_size"] == 50
|
||||
|
||||
# Snapshot test the response (must be string)
|
||||
configured_snapshot.assert_match(
|
||||
json.dumps(response_data, indent=2, sort_keys=True),
|
||||
"list_llm_models_success.json",
|
||||
)
|
||||
|
||||
|
||||
def test_create_llm_provider_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
configured_snapshot: Snapshot,
|
||||
) -> None:
|
||||
"""Test successful creation of LLM provider"""
|
||||
mock_provider = {
|
||||
"id": "new-provider-id",
|
||||
"name": "groq",
|
||||
"display_name": "Groq",
|
||||
"description": "Groq LLM provider",
|
||||
"supports_tools": True,
|
||||
"supports_json_output": True,
|
||||
"supports_reasoning": False,
|
||||
"supports_parallel_tool": False,
|
||||
"metadata": {},
|
||||
}
|
||||
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.upsert_provider",
|
||||
new=AsyncMock(return_value=mock_provider),
|
||||
)
|
||||
|
||||
mock_refresh = mocker.patch(
|
||||
"backend.api.features.admin.llm_routes._refresh_runtime_state",
|
||||
new=AsyncMock(),
|
||||
)
|
||||
|
||||
request_data = {
|
||||
"name": "groq",
|
||||
"display_name": "Groq",
|
||||
"description": "Groq LLM provider",
|
||||
"supports_tools": True,
|
||||
"supports_json_output": True,
|
||||
"supports_reasoning": False,
|
||||
"supports_parallel_tool": False,
|
||||
"metadata": {},
|
||||
}
|
||||
|
||||
response = client.post("/admin/llm/providers", json=request_data)
|
||||
|
||||
assert response.status_code == 200
|
||||
response_data = response.json()
|
||||
assert response_data["name"] == "groq"
|
||||
assert response_data["display_name"] == "Groq"
|
||||
|
||||
# Verify refresh was called
|
||||
mock_refresh.assert_called_once()
|
||||
|
||||
# Snapshot test the response (must be string)
|
||||
configured_snapshot.assert_match(
|
||||
json.dumps(response_data, indent=2, sort_keys=True),
|
||||
"create_llm_provider_success.json",
|
||||
)
|
||||
|
||||
|
||||
def test_create_llm_model_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
configured_snapshot: Snapshot,
|
||||
) -> None:
|
||||
"""Test successful creation of LLM model"""
|
||||
mock_model = {
|
||||
"id": "new-model-id",
|
||||
"slug": "gpt-4.1-mini",
|
||||
"display_name": "GPT-4.1 Mini",
|
||||
"description": "Latest GPT-4.1 Mini model",
|
||||
"provider_id": "provider-1",
|
||||
"context_window": 128000,
|
||||
"max_output_tokens": 16384,
|
||||
"is_enabled": True,
|
||||
"capabilities": {},
|
||||
"metadata": {},
|
||||
"costs": [
|
||||
{
|
||||
"id": "cost-id",
|
||||
"credit_cost": 5,
|
||||
"credential_provider": "openai",
|
||||
"metadata": {},
|
||||
}
|
||||
],
|
||||
}
|
||||
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.create_model",
|
||||
new=AsyncMock(return_value=mock_model),
|
||||
)
|
||||
|
||||
mock_refresh = mocker.patch(
|
||||
"backend.api.features.admin.llm_routes._refresh_runtime_state",
|
||||
new=AsyncMock(),
|
||||
)
|
||||
|
||||
request_data = {
|
||||
"slug": "gpt-4.1-mini",
|
||||
"display_name": "GPT-4.1 Mini",
|
||||
"description": "Latest GPT-4.1 Mini model",
|
||||
"provider_id": "provider-1",
|
||||
"context_window": 128000,
|
||||
"max_output_tokens": 16384,
|
||||
"is_enabled": True,
|
||||
"capabilities": {},
|
||||
"metadata": {},
|
||||
"costs": [
|
||||
{
|
||||
"credit_cost": 5,
|
||||
"credential_provider": "openai",
|
||||
"metadata": {},
|
||||
}
|
||||
],
|
||||
}
|
||||
|
||||
response = client.post("/admin/llm/models", json=request_data)
|
||||
|
||||
assert response.status_code == 200
|
||||
response_data = response.json()
|
||||
assert response_data["slug"] == "gpt-4.1-mini"
|
||||
assert response_data["is_enabled"] is True
|
||||
|
||||
# Verify refresh was called
|
||||
mock_refresh.assert_called_once()
|
||||
|
||||
# Snapshot test the response (must be string)
|
||||
configured_snapshot.assert_match(
|
||||
json.dumps(response_data, indent=2, sort_keys=True),
|
||||
"create_llm_model_success.json",
|
||||
)
|
||||
|
||||
|
||||
def test_update_llm_model_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
configured_snapshot: Snapshot,
|
||||
) -> None:
|
||||
"""Test successful update of LLM model"""
|
||||
mock_model = {
|
||||
"id": "model-1",
|
||||
"slug": "gpt-4o",
|
||||
"display_name": "GPT-4o Updated",
|
||||
"description": "Updated description",
|
||||
"provider_id": "provider-1",
|
||||
"context_window": 256000,
|
||||
"max_output_tokens": 32768,
|
||||
"is_enabled": True,
|
||||
"capabilities": {},
|
||||
"metadata": {},
|
||||
"costs": [
|
||||
{
|
||||
"id": "cost-1",
|
||||
"credit_cost": 15,
|
||||
"credential_provider": "openai",
|
||||
"metadata": {},
|
||||
}
|
||||
],
|
||||
}
|
||||
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.update_model",
|
||||
new=AsyncMock(return_value=mock_model),
|
||||
)
|
||||
|
||||
mock_refresh = mocker.patch(
|
||||
"backend.api.features.admin.llm_routes._refresh_runtime_state",
|
||||
new=AsyncMock(),
|
||||
)
|
||||
|
||||
request_data = {
|
||||
"display_name": "GPT-4o Updated",
|
||||
"description": "Updated description",
|
||||
"context_window": 256000,
|
||||
"max_output_tokens": 32768,
|
||||
}
|
||||
|
||||
response = client.patch("/admin/llm/models/model-1", json=request_data)
|
||||
|
||||
assert response.status_code == 200
|
||||
response_data = response.json()
|
||||
assert response_data["display_name"] == "GPT-4o Updated"
|
||||
assert response_data["context_window"] == 256000
|
||||
|
||||
# Verify refresh was called
|
||||
mock_refresh.assert_called_once()
|
||||
|
||||
# Snapshot test the response (must be string)
|
||||
configured_snapshot.assert_match(
|
||||
json.dumps(response_data, indent=2, sort_keys=True),
|
||||
"update_llm_model_success.json",
|
||||
)
|
||||
|
||||
|
||||
def test_toggle_llm_model_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
configured_snapshot: Snapshot,
|
||||
) -> None:
|
||||
"""Test successful toggling of LLM model enabled status"""
|
||||
# Create a proper mock model object
|
||||
mock_model = llm_model.LlmModel(
|
||||
id="model-1",
|
||||
slug="gpt-4o",
|
||||
display_name="GPT-4o",
|
||||
description="GPT-4 Optimized",
|
||||
provider_id="provider-1",
|
||||
context_window=128000,
|
||||
max_output_tokens=16384,
|
||||
is_enabled=False,
|
||||
capabilities={},
|
||||
metadata={},
|
||||
costs=[],
|
||||
)
|
||||
|
||||
# Create a proper ToggleLlmModelResponse
|
||||
mock_response = llm_model.ToggleLlmModelResponse(
|
||||
model=mock_model,
|
||||
nodes_migrated=0,
|
||||
migrated_to_slug=None,
|
||||
migration_id=None,
|
||||
)
|
||||
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.toggle_model",
|
||||
new=AsyncMock(return_value=mock_response),
|
||||
)
|
||||
|
||||
mock_refresh = mocker.patch(
|
||||
"backend.api.features.admin.llm_routes._refresh_runtime_state",
|
||||
new=AsyncMock(),
|
||||
)
|
||||
|
||||
request_data = {"is_enabled": False}
|
||||
|
||||
response = client.patch("/admin/llm/models/model-1/toggle", json=request_data)
|
||||
|
||||
assert response.status_code == 200
|
||||
response_data = response.json()
|
||||
assert response_data["model"]["is_enabled"] is False
|
||||
|
||||
# Verify refresh was called
|
||||
mock_refresh.assert_called_once()
|
||||
|
||||
# Snapshot test the response (must be string)
|
||||
configured_snapshot.assert_match(
|
||||
json.dumps(response_data, indent=2, sort_keys=True),
|
||||
"toggle_llm_model_success.json",
|
||||
)
|
||||
|
||||
|
||||
def test_delete_llm_model_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
configured_snapshot: Snapshot,
|
||||
) -> None:
|
||||
"""Test successful deletion of LLM model with migration"""
|
||||
# Create a proper DeleteLlmModelResponse
|
||||
mock_response = llm_model.DeleteLlmModelResponse(
|
||||
deleted_model_slug="gpt-3.5-turbo",
|
||||
deleted_model_display_name="GPT-3.5 Turbo",
|
||||
replacement_model_slug="gpt-4o-mini",
|
||||
nodes_migrated=42,
|
||||
message="Successfully deleted model 'GPT-3.5 Turbo' (gpt-3.5-turbo) "
|
||||
"and migrated 42 workflow node(s) to 'gpt-4o-mini'.",
|
||||
)
|
||||
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.delete_model",
|
||||
new=AsyncMock(return_value=mock_response),
|
||||
)
|
||||
|
||||
mock_refresh = mocker.patch(
|
||||
"backend.api.features.admin.llm_routes._refresh_runtime_state",
|
||||
new=AsyncMock(),
|
||||
)
|
||||
|
||||
response = client.delete(
|
||||
"/admin/llm/models/model-1?replacement_model_slug=gpt-4o-mini"
|
||||
)
|
||||
|
||||
assert response.status_code == 200
|
||||
response_data = response.json()
|
||||
assert response_data["deleted_model_slug"] == "gpt-3.5-turbo"
|
||||
assert response_data["nodes_migrated"] == 42
|
||||
assert response_data["replacement_model_slug"] == "gpt-4o-mini"
|
||||
|
||||
# Verify refresh was called
|
||||
mock_refresh.assert_called_once()
|
||||
|
||||
# Snapshot test the response (must be string)
|
||||
configured_snapshot.assert_match(
|
||||
json.dumps(response_data, indent=2, sort_keys=True),
|
||||
"delete_llm_model_success.json",
|
||||
)
|
||||
|
||||
|
||||
def test_delete_llm_model_validation_error(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
) -> None:
|
||||
"""Test deletion fails with proper error when validation fails"""
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.delete_model",
|
||||
new=AsyncMock(side_effect=ValueError("Replacement model 'invalid' not found")),
|
||||
)
|
||||
|
||||
response = client.delete("/admin/llm/models/model-1?replacement_model_slug=invalid")
|
||||
|
||||
assert response.status_code == 400
|
||||
assert "Replacement model 'invalid' not found" in response.json()["detail"]
|
||||
|
||||
|
||||
def test_delete_llm_model_no_replacement_with_usage(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
) -> None:
|
||||
"""Test deletion fails when nodes exist but no replacement is provided"""
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.delete_model",
|
||||
new=AsyncMock(
|
||||
side_effect=ValueError(
|
||||
"Cannot delete model 'test-model': 5 workflow node(s) are using it. "
|
||||
"Please provide a replacement_model_slug to migrate them."
|
||||
)
|
||||
),
|
||||
)
|
||||
|
||||
response = client.delete("/admin/llm/models/model-1")
|
||||
|
||||
assert response.status_code == 400
|
||||
assert "workflow node(s) are using it" in response.json()["detail"]
|
||||
|
||||
|
||||
def test_delete_llm_model_no_replacement_no_usage(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
) -> None:
|
||||
"""Test deletion succeeds when no nodes use the model and no replacement is provided"""
|
||||
mock_response = llm_model.DeleteLlmModelResponse(
|
||||
deleted_model_slug="unused-model",
|
||||
deleted_model_display_name="Unused Model",
|
||||
replacement_model_slug=None,
|
||||
nodes_migrated=0,
|
||||
message="Successfully deleted model 'Unused Model' (unused-model). No workflows were using this model.",
|
||||
)
|
||||
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.delete_model",
|
||||
new=AsyncMock(return_value=mock_response),
|
||||
)
|
||||
|
||||
mock_refresh = mocker.patch(
|
||||
"backend.api.features.admin.llm_routes._refresh_runtime_state",
|
||||
new=AsyncMock(),
|
||||
)
|
||||
|
||||
response = client.delete("/admin/llm/models/model-1")
|
||||
|
||||
assert response.status_code == 200
|
||||
response_data = response.json()
|
||||
assert response_data["deleted_model_slug"] == "unused-model"
|
||||
assert response_data["nodes_migrated"] == 0
|
||||
assert response_data["replacement_model_slug"] is None
|
||||
mock_refresh.assert_called_once()
|
||||
@@ -15,7 +15,6 @@ from backend.blocks import load_all_blocks
|
||||
from backend.blocks.llm import LlmModel
|
||||
from backend.data.block import AnyBlockSchema, BlockCategory, BlockInfo, BlockSchema
|
||||
from backend.data.db import query_raw_with_schema
|
||||
from backend.data.llm_registry import get_all_model_slugs_for_validation
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.cache import cached
|
||||
from backend.util.models import Pagination
|
||||
@@ -32,14 +31,7 @@ from .model import (
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _get_llm_models() -> list[str]:
|
||||
"""Get LLM model names for search matching from the registry."""
|
||||
return [
|
||||
slug.lower().replace("-", " ") for slug in get_all_model_slugs_for_validation()
|
||||
]
|
||||
|
||||
llm_models = [name.name.lower().replace("_", " ") for name in LlmModel]
|
||||
|
||||
MAX_LIBRARY_AGENT_RESULTS = 100
|
||||
MAX_MARKETPLACE_AGENT_RESULTS = 100
|
||||
@@ -504,8 +496,8 @@ async def _get_static_counts():
|
||||
def _matches_llm_model(schema_cls: type[BlockSchema], query: str) -> bool:
|
||||
for field in schema_cls.model_fields.values():
|
||||
if field.annotation == LlmModel:
|
||||
# Check if query matches any value in llm_models from registry
|
||||
if any(query in name for name in _get_llm_models()):
|
||||
# Check if query matches any value in llm_models
|
||||
if any(query in name for name in llm_models):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
@@ -17,7 +17,7 @@ router = fastapi.APIRouter(
|
||||
)
|
||||
|
||||
|
||||
# Taken from backend/server/v2/store/db.py
|
||||
# Taken from backend/api/features/store/db.py
|
||||
def sanitize_query(query: str | None) -> str | None:
|
||||
if query is None:
|
||||
return query
|
||||
|
||||
@@ -0,0 +1,368 @@
|
||||
"""Redis Streams consumer for operation completion messages.
|
||||
|
||||
This module provides a consumer (ChatCompletionConsumer) that listens for
|
||||
completion notifications (OperationCompleteMessage) from external services
|
||||
(like Agent Generator) and triggers the appropriate stream registry and
|
||||
chat service updates via process_operation_success/process_operation_failure.
|
||||
|
||||
Why Redis Streams instead of RabbitMQ?
|
||||
--------------------------------------
|
||||
While the project typically uses RabbitMQ for async task queues (e.g., execution
|
||||
queue), Redis Streams was chosen for chat completion notifications because:
|
||||
|
||||
1. **Unified Infrastructure**: The SSE reconnection feature already uses Redis
|
||||
Streams (via stream_registry) for message persistence and replay. Using Redis
|
||||
Streams for completion notifications keeps all chat streaming infrastructure
|
||||
in one system, simplifying operations and reducing cross-system coordination.
|
||||
|
||||
2. **Message Replay**: Redis Streams support XREAD with arbitrary message IDs,
|
||||
allowing consumers to replay missed messages after reconnection. This aligns
|
||||
with the SSE reconnection pattern where clients can resume from last_message_id.
|
||||
|
||||
3. **Consumer Groups with XAUTOCLAIM**: Redis consumer groups provide automatic
|
||||
load balancing across pods with explicit message claiming (XAUTOCLAIM) for
|
||||
recovering from dead consumers - ideal for the completion callback pattern.
|
||||
|
||||
4. **Lower Latency**: For real-time SSE updates, Redis (already in-memory for
|
||||
stream_registry) provides lower latency than an additional RabbitMQ hop.
|
||||
|
||||
5. **Atomicity with Task State**: Completion processing often needs to update
|
||||
task metadata stored in Redis. Keeping both in Redis enables simpler
|
||||
transactional semantics without distributed coordination.
|
||||
|
||||
The consumer uses Redis Streams with consumer groups for reliable message
|
||||
processing across multiple platform pods, with XAUTOCLAIM for reclaiming
|
||||
stale pending messages from dead consumers.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
import os
|
||||
import uuid
|
||||
from typing import Any
|
||||
|
||||
import orjson
|
||||
from prisma import Prisma
|
||||
from pydantic import BaseModel
|
||||
from redis.exceptions import ResponseError
|
||||
|
||||
from backend.data.redis_client import get_redis_async
|
||||
|
||||
from . import stream_registry
|
||||
from .completion_handler import process_operation_failure, process_operation_success
|
||||
from .config import ChatConfig
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
config = ChatConfig()
|
||||
|
||||
|
||||
class OperationCompleteMessage(BaseModel):
|
||||
"""Message format for operation completion notifications."""
|
||||
|
||||
operation_id: str
|
||||
task_id: str
|
||||
success: bool
|
||||
result: dict | str | None = None
|
||||
error: str | None = None
|
||||
|
||||
|
||||
class ChatCompletionConsumer:
|
||||
"""Consumer for chat operation completion messages from Redis Streams.
|
||||
|
||||
This consumer initializes its own Prisma client in start() to ensure
|
||||
database operations work correctly within this async context.
|
||||
|
||||
Uses Redis consumer groups to allow multiple platform pods to consume
|
||||
messages reliably with automatic redelivery on failure.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self._consumer_task: asyncio.Task | None = None
|
||||
self._running = False
|
||||
self._prisma: Prisma | None = None
|
||||
self._consumer_name = f"consumer-{uuid.uuid4().hex[:8]}"
|
||||
|
||||
async def start(self) -> None:
|
||||
"""Start the completion consumer."""
|
||||
if self._running:
|
||||
logger.warning("Completion consumer already running")
|
||||
return
|
||||
|
||||
# Create consumer group if it doesn't exist
|
||||
try:
|
||||
redis = await get_redis_async()
|
||||
await redis.xgroup_create(
|
||||
config.stream_completion_name,
|
||||
config.stream_consumer_group,
|
||||
id="0",
|
||||
mkstream=True,
|
||||
)
|
||||
logger.info(
|
||||
f"Created consumer group '{config.stream_consumer_group}' "
|
||||
f"on stream '{config.stream_completion_name}'"
|
||||
)
|
||||
except ResponseError as e:
|
||||
if "BUSYGROUP" in str(e):
|
||||
logger.debug(
|
||||
f"Consumer group '{config.stream_consumer_group}' already exists"
|
||||
)
|
||||
else:
|
||||
raise
|
||||
|
||||
self._running = True
|
||||
self._consumer_task = asyncio.create_task(self._consume_messages())
|
||||
logger.info(
|
||||
f"Chat completion consumer started (consumer: {self._consumer_name})"
|
||||
)
|
||||
|
||||
async def _ensure_prisma(self) -> Prisma:
|
||||
"""Lazily initialize Prisma client on first use."""
|
||||
if self._prisma is None:
|
||||
database_url = os.getenv("DATABASE_URL", "postgresql://localhost:5432")
|
||||
self._prisma = Prisma(datasource={"url": database_url})
|
||||
await self._prisma.connect()
|
||||
logger.info("[COMPLETION] Consumer Prisma client connected (lazy init)")
|
||||
return self._prisma
|
||||
|
||||
async def stop(self) -> None:
|
||||
"""Stop the completion consumer."""
|
||||
self._running = False
|
||||
|
||||
if self._consumer_task:
|
||||
self._consumer_task.cancel()
|
||||
try:
|
||||
await self._consumer_task
|
||||
except asyncio.CancelledError:
|
||||
pass
|
||||
self._consumer_task = None
|
||||
|
||||
if self._prisma:
|
||||
await self._prisma.disconnect()
|
||||
self._prisma = None
|
||||
logger.info("[COMPLETION] Consumer Prisma client disconnected")
|
||||
|
||||
logger.info("Chat completion consumer stopped")
|
||||
|
||||
async def _consume_messages(self) -> None:
|
||||
"""Main message consumption loop with retry logic."""
|
||||
max_retries = 10
|
||||
retry_delay = 5 # seconds
|
||||
retry_count = 0
|
||||
block_timeout = 5000 # milliseconds
|
||||
|
||||
while self._running and retry_count < max_retries:
|
||||
try:
|
||||
redis = await get_redis_async()
|
||||
|
||||
# Reset retry count on successful connection
|
||||
retry_count = 0
|
||||
|
||||
while self._running:
|
||||
# First, claim any stale pending messages from dead consumers
|
||||
# Redis does NOT auto-redeliver pending messages; we must explicitly
|
||||
# claim them using XAUTOCLAIM
|
||||
try:
|
||||
claimed_result = await redis.xautoclaim(
|
||||
name=config.stream_completion_name,
|
||||
groupname=config.stream_consumer_group,
|
||||
consumername=self._consumer_name,
|
||||
min_idle_time=config.stream_claim_min_idle_ms,
|
||||
start_id="0-0",
|
||||
count=10,
|
||||
)
|
||||
# xautoclaim returns: (next_start_id, [(id, data), ...], [deleted_ids])
|
||||
if claimed_result and len(claimed_result) >= 2:
|
||||
claimed_entries = claimed_result[1]
|
||||
if claimed_entries:
|
||||
logger.info(
|
||||
f"Claimed {len(claimed_entries)} stale pending messages"
|
||||
)
|
||||
for entry_id, data in claimed_entries:
|
||||
if not self._running:
|
||||
return
|
||||
await self._process_entry(redis, entry_id, data)
|
||||
except Exception as e:
|
||||
logger.warning(f"XAUTOCLAIM failed (non-fatal): {e}")
|
||||
|
||||
# Read new messages from the stream
|
||||
messages = await redis.xreadgroup(
|
||||
groupname=config.stream_consumer_group,
|
||||
consumername=self._consumer_name,
|
||||
streams={config.stream_completion_name: ">"},
|
||||
block=block_timeout,
|
||||
count=10,
|
||||
)
|
||||
|
||||
if not messages:
|
||||
continue
|
||||
|
||||
for stream_name, entries in messages:
|
||||
for entry_id, data in entries:
|
||||
if not self._running:
|
||||
return
|
||||
await self._process_entry(redis, entry_id, data)
|
||||
|
||||
except asyncio.CancelledError:
|
||||
logger.info("Consumer cancelled")
|
||||
return
|
||||
except Exception as e:
|
||||
retry_count += 1
|
||||
logger.error(
|
||||
f"Consumer error (retry {retry_count}/{max_retries}): {e}",
|
||||
exc_info=True,
|
||||
)
|
||||
if self._running and retry_count < max_retries:
|
||||
await asyncio.sleep(retry_delay)
|
||||
else:
|
||||
logger.error("Max retries reached, stopping consumer")
|
||||
return
|
||||
|
||||
async def _process_entry(
|
||||
self, redis: Any, entry_id: str, data: dict[str, Any]
|
||||
) -> None:
|
||||
"""Process a single stream entry and acknowledge it on success.
|
||||
|
||||
Args:
|
||||
redis: Redis client connection
|
||||
entry_id: The stream entry ID
|
||||
data: The entry data dict
|
||||
"""
|
||||
try:
|
||||
# Handle the message
|
||||
message_data = data.get("data")
|
||||
if message_data:
|
||||
await self._handle_message(
|
||||
message_data.encode()
|
||||
if isinstance(message_data, str)
|
||||
else message_data
|
||||
)
|
||||
|
||||
# Acknowledge the message after successful processing
|
||||
await redis.xack(
|
||||
config.stream_completion_name,
|
||||
config.stream_consumer_group,
|
||||
entry_id,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Error processing completion message {entry_id}: {e}",
|
||||
exc_info=True,
|
||||
)
|
||||
# Message remains in pending state and will be claimed by
|
||||
# XAUTOCLAIM after min_idle_time expires
|
||||
|
||||
async def _handle_message(self, body: bytes) -> None:
|
||||
"""Handle a completion message using our own Prisma client."""
|
||||
try:
|
||||
data = orjson.loads(body)
|
||||
message = OperationCompleteMessage(**data)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to parse completion message: {e}")
|
||||
return
|
||||
|
||||
logger.info(
|
||||
f"[COMPLETION] Received completion for operation {message.operation_id} "
|
||||
f"(task_id={message.task_id}, success={message.success})"
|
||||
)
|
||||
|
||||
# Find task in registry
|
||||
task = await stream_registry.find_task_by_operation_id(message.operation_id)
|
||||
if task is None:
|
||||
task = await stream_registry.get_task(message.task_id)
|
||||
|
||||
if task is None:
|
||||
logger.warning(
|
||||
f"[COMPLETION] Task not found for operation {message.operation_id} "
|
||||
f"(task_id={message.task_id})"
|
||||
)
|
||||
return
|
||||
|
||||
logger.info(
|
||||
f"[COMPLETION] Found task: task_id={task.task_id}, "
|
||||
f"session_id={task.session_id}, tool_call_id={task.tool_call_id}"
|
||||
)
|
||||
|
||||
# Guard against empty task fields
|
||||
if not task.task_id or not task.session_id or not task.tool_call_id:
|
||||
logger.error(
|
||||
f"[COMPLETION] Task has empty critical fields! "
|
||||
f"task_id={task.task_id!r}, session_id={task.session_id!r}, "
|
||||
f"tool_call_id={task.tool_call_id!r}"
|
||||
)
|
||||
return
|
||||
|
||||
if message.success:
|
||||
await self._handle_success(task, message)
|
||||
else:
|
||||
await self._handle_failure(task, message)
|
||||
|
||||
async def _handle_success(
|
||||
self,
|
||||
task: stream_registry.ActiveTask,
|
||||
message: OperationCompleteMessage,
|
||||
) -> None:
|
||||
"""Handle successful operation completion."""
|
||||
prisma = await self._ensure_prisma()
|
||||
await process_operation_success(task, message.result, prisma)
|
||||
|
||||
async def _handle_failure(
|
||||
self,
|
||||
task: stream_registry.ActiveTask,
|
||||
message: OperationCompleteMessage,
|
||||
) -> None:
|
||||
"""Handle failed operation completion."""
|
||||
prisma = await self._ensure_prisma()
|
||||
await process_operation_failure(task, message.error, prisma)
|
||||
|
||||
|
||||
# Module-level consumer instance
|
||||
_consumer: ChatCompletionConsumer | None = None
|
||||
|
||||
|
||||
async def start_completion_consumer() -> None:
|
||||
"""Start the global completion consumer."""
|
||||
global _consumer
|
||||
if _consumer is None:
|
||||
_consumer = ChatCompletionConsumer()
|
||||
await _consumer.start()
|
||||
|
||||
|
||||
async def stop_completion_consumer() -> None:
|
||||
"""Stop the global completion consumer."""
|
||||
global _consumer
|
||||
if _consumer:
|
||||
await _consumer.stop()
|
||||
_consumer = None
|
||||
|
||||
|
||||
async def publish_operation_complete(
|
||||
operation_id: str,
|
||||
task_id: str,
|
||||
success: bool,
|
||||
result: dict | str | None = None,
|
||||
error: str | None = None,
|
||||
) -> None:
|
||||
"""Publish an operation completion message to Redis Streams.
|
||||
|
||||
Args:
|
||||
operation_id: The operation ID that completed.
|
||||
task_id: The task ID associated with the operation.
|
||||
success: Whether the operation succeeded.
|
||||
result: The result data (for success).
|
||||
error: The error message (for failure).
|
||||
"""
|
||||
message = OperationCompleteMessage(
|
||||
operation_id=operation_id,
|
||||
task_id=task_id,
|
||||
success=success,
|
||||
result=result,
|
||||
error=error,
|
||||
)
|
||||
|
||||
redis = await get_redis_async()
|
||||
await redis.xadd(
|
||||
config.stream_completion_name,
|
||||
{"data": message.model_dump_json()},
|
||||
maxlen=config.stream_max_length,
|
||||
)
|
||||
logger.info(f"Published completion for operation {operation_id}")
|
||||
@@ -0,0 +1,344 @@
|
||||
"""Shared completion handling for operation success and failure.
|
||||
|
||||
This module provides common logic for handling operation completion from both:
|
||||
- The Redis Streams consumer (completion_consumer.py)
|
||||
- The HTTP webhook endpoint (routes.py)
|
||||
"""
|
||||
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
import orjson
|
||||
from prisma import Prisma
|
||||
|
||||
from . import service as chat_service
|
||||
from . import stream_registry
|
||||
from .response_model import StreamError, StreamToolOutputAvailable
|
||||
from .tools.models import ErrorResponse
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Tools that produce agent_json that needs to be saved to library
|
||||
AGENT_GENERATION_TOOLS = {"create_agent", "edit_agent"}
|
||||
|
||||
# Keys that should be stripped from agent_json when returning in error responses
|
||||
SENSITIVE_KEYS = frozenset(
|
||||
{
|
||||
"api_key",
|
||||
"apikey",
|
||||
"api_secret",
|
||||
"password",
|
||||
"secret",
|
||||
"credentials",
|
||||
"credential",
|
||||
"token",
|
||||
"access_token",
|
||||
"refresh_token",
|
||||
"private_key",
|
||||
"privatekey",
|
||||
"auth",
|
||||
"authorization",
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
def _sanitize_agent_json(obj: Any) -> Any:
|
||||
"""Recursively sanitize agent_json by removing sensitive keys.
|
||||
|
||||
Args:
|
||||
obj: The object to sanitize (dict, list, or primitive)
|
||||
|
||||
Returns:
|
||||
Sanitized copy with sensitive keys removed/redacted
|
||||
"""
|
||||
if isinstance(obj, dict):
|
||||
return {
|
||||
k: "[REDACTED]" if k.lower() in SENSITIVE_KEYS else _sanitize_agent_json(v)
|
||||
for k, v in obj.items()
|
||||
}
|
||||
elif isinstance(obj, list):
|
||||
return [_sanitize_agent_json(item) for item in obj]
|
||||
else:
|
||||
return obj
|
||||
|
||||
|
||||
class ToolMessageUpdateError(Exception):
|
||||
"""Raised when updating a tool message in the database fails."""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
async def _update_tool_message(
|
||||
session_id: str,
|
||||
tool_call_id: str,
|
||||
content: str,
|
||||
prisma_client: Prisma | None,
|
||||
) -> None:
|
||||
"""Update tool message in database.
|
||||
|
||||
Args:
|
||||
session_id: The session ID
|
||||
tool_call_id: The tool call ID to update
|
||||
content: The new content for the message
|
||||
prisma_client: Optional Prisma client. If None, uses chat_service.
|
||||
|
||||
Raises:
|
||||
ToolMessageUpdateError: If the database update fails. The caller should
|
||||
handle this to avoid marking the task as completed with inconsistent state.
|
||||
"""
|
||||
try:
|
||||
if prisma_client:
|
||||
# Use provided Prisma client (for consumer with its own connection)
|
||||
updated_count = await prisma_client.chatmessage.update_many(
|
||||
where={
|
||||
"sessionId": session_id,
|
||||
"toolCallId": tool_call_id,
|
||||
},
|
||||
data={"content": content},
|
||||
)
|
||||
# Check if any rows were updated - 0 means message not found
|
||||
if updated_count == 0:
|
||||
raise ToolMessageUpdateError(
|
||||
f"No message found with tool_call_id={tool_call_id} in session {session_id}"
|
||||
)
|
||||
else:
|
||||
# Use service function (for webhook endpoint)
|
||||
await chat_service._update_pending_operation(
|
||||
session_id=session_id,
|
||||
tool_call_id=tool_call_id,
|
||||
result=content,
|
||||
)
|
||||
except ToolMessageUpdateError:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(f"[COMPLETION] Failed to update tool message: {e}", exc_info=True)
|
||||
raise ToolMessageUpdateError(
|
||||
f"Failed to update tool message for tool_call_id={tool_call_id}: {e}"
|
||||
) from e
|
||||
|
||||
|
||||
def serialize_result(result: dict | list | str | int | float | bool | None) -> str:
|
||||
"""Serialize result to JSON string with sensible defaults.
|
||||
|
||||
Args:
|
||||
result: The result to serialize. Can be a dict, list, string,
|
||||
number, boolean, or None.
|
||||
|
||||
Returns:
|
||||
JSON string representation of the result. Returns '{"status": "completed"}'
|
||||
only when result is explicitly None.
|
||||
"""
|
||||
if isinstance(result, str):
|
||||
return result
|
||||
if result is None:
|
||||
return '{"status": "completed"}'
|
||||
return orjson.dumps(result).decode("utf-8")
|
||||
|
||||
|
||||
async def _save_agent_from_result(
|
||||
result: dict[str, Any],
|
||||
user_id: str | None,
|
||||
tool_name: str,
|
||||
) -> dict[str, Any]:
|
||||
"""Save agent to library if result contains agent_json.
|
||||
|
||||
Args:
|
||||
result: The result dict that may contain agent_json
|
||||
user_id: The user ID to save the agent for
|
||||
tool_name: The tool name (create_agent or edit_agent)
|
||||
|
||||
Returns:
|
||||
Updated result dict with saved agent details, or original result if no agent_json
|
||||
"""
|
||||
if not user_id:
|
||||
logger.warning("[COMPLETION] Cannot save agent: no user_id in task")
|
||||
return result
|
||||
|
||||
agent_json = result.get("agent_json")
|
||||
if not agent_json:
|
||||
logger.warning(
|
||||
f"[COMPLETION] {tool_name} completed but no agent_json in result"
|
||||
)
|
||||
return result
|
||||
|
||||
try:
|
||||
from .tools.agent_generator import save_agent_to_library
|
||||
|
||||
is_update = tool_name == "edit_agent"
|
||||
created_graph, library_agent = await save_agent_to_library(
|
||||
agent_json, user_id, is_update=is_update
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"[COMPLETION] Saved agent '{created_graph.name}' to library "
|
||||
f"(graph_id={created_graph.id}, library_agent_id={library_agent.id})"
|
||||
)
|
||||
|
||||
# Return a response similar to AgentSavedResponse
|
||||
return {
|
||||
"type": "agent_saved",
|
||||
"message": f"Agent '{created_graph.name}' has been saved to your library!",
|
||||
"agent_id": created_graph.id,
|
||||
"agent_name": created_graph.name,
|
||||
"library_agent_id": library_agent.id,
|
||||
"library_agent_link": f"/library/agents/{library_agent.id}",
|
||||
"agent_page_link": f"/build?flowID={created_graph.id}",
|
||||
}
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"[COMPLETION] Failed to save agent to library: {e}",
|
||||
exc_info=True,
|
||||
)
|
||||
# Return error but don't fail the whole operation
|
||||
# Sanitize agent_json to remove sensitive keys before returning
|
||||
return {
|
||||
"type": "error",
|
||||
"message": f"Agent was generated but failed to save: {str(e)}",
|
||||
"error": str(e),
|
||||
"agent_json": _sanitize_agent_json(agent_json),
|
||||
}
|
||||
|
||||
|
||||
async def process_operation_success(
|
||||
task: stream_registry.ActiveTask,
|
||||
result: dict | str | None,
|
||||
prisma_client: Prisma | None = None,
|
||||
) -> None:
|
||||
"""Handle successful operation completion.
|
||||
|
||||
Publishes the result to the stream registry, updates the database,
|
||||
generates LLM continuation, and marks the task as completed.
|
||||
|
||||
Args:
|
||||
task: The active task that completed
|
||||
result: The result data from the operation
|
||||
prisma_client: Optional Prisma client for database operations.
|
||||
If None, uses chat_service._update_pending_operation instead.
|
||||
|
||||
Raises:
|
||||
ToolMessageUpdateError: If the database update fails. The task will be
|
||||
marked as failed instead of completed to avoid inconsistent state.
|
||||
"""
|
||||
# For agent generation tools, save the agent to library
|
||||
if task.tool_name in AGENT_GENERATION_TOOLS and isinstance(result, dict):
|
||||
result = await _save_agent_from_result(result, task.user_id, task.tool_name)
|
||||
|
||||
# Serialize result for output (only substitute default when result is exactly None)
|
||||
result_output = result if result is not None else {"status": "completed"}
|
||||
output_str = (
|
||||
result_output
|
||||
if isinstance(result_output, str)
|
||||
else orjson.dumps(result_output).decode("utf-8")
|
||||
)
|
||||
|
||||
# Publish result to stream registry
|
||||
await stream_registry.publish_chunk(
|
||||
task.task_id,
|
||||
StreamToolOutputAvailable(
|
||||
toolCallId=task.tool_call_id,
|
||||
toolName=task.tool_name,
|
||||
output=output_str,
|
||||
success=True,
|
||||
),
|
||||
)
|
||||
|
||||
# Update pending operation in database
|
||||
# If this fails, we must not continue to mark the task as completed
|
||||
result_str = serialize_result(result)
|
||||
try:
|
||||
await _update_tool_message(
|
||||
session_id=task.session_id,
|
||||
tool_call_id=task.tool_call_id,
|
||||
content=result_str,
|
||||
prisma_client=prisma_client,
|
||||
)
|
||||
except ToolMessageUpdateError:
|
||||
# DB update failed - mark task as failed to avoid inconsistent state
|
||||
logger.error(
|
||||
f"[COMPLETION] DB update failed for task {task.task_id}, "
|
||||
"marking as failed instead of completed"
|
||||
)
|
||||
await stream_registry.publish_chunk(
|
||||
task.task_id,
|
||||
StreamError(errorText="Failed to save operation result to database"),
|
||||
)
|
||||
await stream_registry.mark_task_completed(task.task_id, status="failed")
|
||||
raise
|
||||
|
||||
# Generate LLM continuation with streaming
|
||||
try:
|
||||
await chat_service._generate_llm_continuation_with_streaming(
|
||||
session_id=task.session_id,
|
||||
user_id=task.user_id,
|
||||
task_id=task.task_id,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"[COMPLETION] Failed to generate LLM continuation: {e}",
|
||||
exc_info=True,
|
||||
)
|
||||
|
||||
# Mark task as completed and release Redis lock
|
||||
await stream_registry.mark_task_completed(task.task_id, status="completed")
|
||||
try:
|
||||
await chat_service._mark_operation_completed(task.tool_call_id)
|
||||
except Exception as e:
|
||||
logger.error(f"[COMPLETION] Failed to mark operation completed: {e}")
|
||||
|
||||
logger.info(
|
||||
f"[COMPLETION] Successfully processed completion for task {task.task_id}"
|
||||
)
|
||||
|
||||
|
||||
async def process_operation_failure(
|
||||
task: stream_registry.ActiveTask,
|
||||
error: str | None,
|
||||
prisma_client: Prisma | None = None,
|
||||
) -> None:
|
||||
"""Handle failed operation completion.
|
||||
|
||||
Publishes the error to the stream registry, updates the database with
|
||||
the error response, and marks the task as failed.
|
||||
|
||||
Args:
|
||||
task: The active task that failed
|
||||
error: The error message from the operation
|
||||
prisma_client: Optional Prisma client for database operations.
|
||||
If None, uses chat_service._update_pending_operation instead.
|
||||
"""
|
||||
error_msg = error or "Operation failed"
|
||||
|
||||
# Publish error to stream registry
|
||||
await stream_registry.publish_chunk(
|
||||
task.task_id,
|
||||
StreamError(errorText=error_msg),
|
||||
)
|
||||
|
||||
# Update pending operation with error
|
||||
# If this fails, we still continue to mark the task as failed
|
||||
error_response = ErrorResponse(
|
||||
message=error_msg,
|
||||
error=error,
|
||||
)
|
||||
try:
|
||||
await _update_tool_message(
|
||||
session_id=task.session_id,
|
||||
tool_call_id=task.tool_call_id,
|
||||
content=error_response.model_dump_json(),
|
||||
prisma_client=prisma_client,
|
||||
)
|
||||
except ToolMessageUpdateError:
|
||||
# DB update failed - log but continue with cleanup
|
||||
logger.error(
|
||||
f"[COMPLETION] DB update failed while processing failure for task {task.task_id}, "
|
||||
"continuing with cleanup"
|
||||
)
|
||||
|
||||
# Mark task as failed and release Redis lock
|
||||
await stream_registry.mark_task_completed(task.task_id, status="failed")
|
||||
try:
|
||||
await chat_service._mark_operation_completed(task.tool_call_id)
|
||||
except Exception as e:
|
||||
logger.error(f"[COMPLETION] Failed to mark operation completed: {e}")
|
||||
|
||||
logger.info(f"[COMPLETION] Processed failure for task {task.task_id}: {error_msg}")
|
||||
@@ -33,9 +33,57 @@ class ChatConfig(BaseSettings):
|
||||
|
||||
stream_timeout: int = Field(default=300, description="Stream timeout in seconds")
|
||||
max_retries: int = Field(default=3, description="Maximum number of retries")
|
||||
max_agent_runs: int = Field(default=3, description="Maximum number of agent runs")
|
||||
max_agent_runs: int = Field(default=30, description="Maximum number of agent runs")
|
||||
max_agent_schedules: int = Field(
|
||||
default=3, description="Maximum number of agent schedules"
|
||||
default=30, description="Maximum number of agent schedules"
|
||||
)
|
||||
|
||||
# Long-running operation configuration
|
||||
long_running_operation_ttl: int = Field(
|
||||
default=600,
|
||||
description="TTL in seconds for long-running operation tracking in Redis (safety net if pod dies)",
|
||||
)
|
||||
|
||||
# Stream registry configuration for SSE reconnection
|
||||
stream_ttl: int = Field(
|
||||
default=3600,
|
||||
description="TTL in seconds for stream data in Redis (1 hour)",
|
||||
)
|
||||
stream_max_length: int = Field(
|
||||
default=10000,
|
||||
description="Maximum number of messages to store per stream",
|
||||
)
|
||||
|
||||
# Redis Streams configuration for completion consumer
|
||||
stream_completion_name: str = Field(
|
||||
default="chat:completions",
|
||||
description="Redis Stream name for operation completions",
|
||||
)
|
||||
stream_consumer_group: str = Field(
|
||||
default="chat_consumers",
|
||||
description="Consumer group name for completion stream",
|
||||
)
|
||||
stream_claim_min_idle_ms: int = Field(
|
||||
default=60000,
|
||||
description="Minimum idle time in milliseconds before claiming pending messages from dead consumers",
|
||||
)
|
||||
|
||||
# Redis key prefixes for stream registry
|
||||
task_meta_prefix: str = Field(
|
||||
default="chat:task:meta:",
|
||||
description="Prefix for task metadata hash keys",
|
||||
)
|
||||
task_stream_prefix: str = Field(
|
||||
default="chat:stream:",
|
||||
description="Prefix for task message stream keys",
|
||||
)
|
||||
task_op_prefix: str = Field(
|
||||
default="chat:task:op:",
|
||||
description="Prefix for operation ID to task ID mapping keys",
|
||||
)
|
||||
internal_api_key: str | None = Field(
|
||||
default=None,
|
||||
description="API key for internal webhook callbacks (env: CHAT_INTERNAL_API_KEY)",
|
||||
)
|
||||
|
||||
# Langfuse Prompt Management Configuration
|
||||
@@ -76,6 +124,14 @@ class ChatConfig(BaseSettings):
|
||||
v = "https://openrouter.ai/api/v1"
|
||||
return v
|
||||
|
||||
@field_validator("internal_api_key", mode="before")
|
||||
@classmethod
|
||||
def get_internal_api_key(cls, v):
|
||||
"""Get internal API key from environment if not provided."""
|
||||
if v is None:
|
||||
v = os.getenv("CHAT_INTERNAL_API_KEY")
|
||||
return v
|
||||
|
||||
# Prompt paths for different contexts
|
||||
PROMPT_PATHS: dict[str, str] = {
|
||||
"default": "prompts/chat_system.md",
|
||||
|
||||
@@ -247,3 +247,45 @@ async def get_chat_session_message_count(session_id: str) -> int:
|
||||
"""Get the number of messages in a chat session."""
|
||||
count = await PrismaChatMessage.prisma().count(where={"sessionId": session_id})
|
||||
return count
|
||||
|
||||
|
||||
async def update_tool_message_content(
|
||||
session_id: str,
|
||||
tool_call_id: str,
|
||||
new_content: str,
|
||||
) -> bool:
|
||||
"""Update the content of a tool message in chat history.
|
||||
|
||||
Used by background tasks to update pending operation messages with final results.
|
||||
|
||||
Args:
|
||||
session_id: The chat session ID.
|
||||
tool_call_id: The tool call ID to find the message.
|
||||
new_content: The new content to set.
|
||||
|
||||
Returns:
|
||||
True if a message was updated, False otherwise.
|
||||
"""
|
||||
try:
|
||||
result = await PrismaChatMessage.prisma().update_many(
|
||||
where={
|
||||
"sessionId": session_id,
|
||||
"toolCallId": tool_call_id,
|
||||
},
|
||||
data={
|
||||
"content": new_content,
|
||||
},
|
||||
)
|
||||
if result == 0:
|
||||
logger.warning(
|
||||
f"No message found to update for session {session_id}, "
|
||||
f"tool_call_id {tool_call_id}"
|
||||
)
|
||||
return False
|
||||
return True
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Failed to update tool message for session {session_id}, "
|
||||
f"tool_call_id {tool_call_id}: {e}"
|
||||
)
|
||||
return False
|
||||
|
||||
@@ -295,6 +295,21 @@ async def cache_chat_session(session: ChatSession) -> None:
|
||||
await _cache_session(session)
|
||||
|
||||
|
||||
async def invalidate_session_cache(session_id: str) -> None:
|
||||
"""Invalidate a chat session from Redis cache.
|
||||
|
||||
Used by background tasks to ensure fresh data is loaded on next access.
|
||||
This is best-effort - Redis failures are logged but don't fail the operation.
|
||||
"""
|
||||
try:
|
||||
redis_key = _get_session_cache_key(session_id)
|
||||
async_redis = await get_redis_async()
|
||||
await async_redis.delete(redis_key)
|
||||
except Exception as e:
|
||||
# Best-effort: log but don't fail - cache will expire naturally
|
||||
logger.warning(f"Failed to invalidate session cache for {session_id}: {e}")
|
||||
|
||||
|
||||
async def _get_session_from_db(session_id: str) -> ChatSession | None:
|
||||
"""Get a chat session from the database."""
|
||||
prisma_session = await chat_db.get_chat_session(session_id)
|
||||
|
||||
@@ -52,6 +52,10 @@ class StreamStart(StreamBaseResponse):
|
||||
|
||||
type: ResponseType = ResponseType.START
|
||||
messageId: str = Field(..., description="Unique message ID")
|
||||
taskId: str | None = Field(
|
||||
default=None,
|
||||
description="Task ID for SSE reconnection. Clients can reconnect using GET /tasks/{taskId}/stream",
|
||||
)
|
||||
|
||||
|
||||
class StreamFinish(StreamBaseResponse):
|
||||
|
||||
@@ -1,19 +1,23 @@
|
||||
"""Chat API routes for chat session management and streaming via SSE."""
|
||||
|
||||
import logging
|
||||
import uuid as uuid_module
|
||||
from collections.abc import AsyncGenerator
|
||||
from typing import Annotated
|
||||
|
||||
from autogpt_libs import auth
|
||||
from fastapi import APIRouter, Depends, Query, Security
|
||||
from fastapi import APIRouter, Depends, Header, HTTPException, Query, Security
|
||||
from fastapi.responses import StreamingResponse
|
||||
from pydantic import BaseModel
|
||||
|
||||
from backend.util.exceptions import NotFoundError
|
||||
|
||||
from . import service as chat_service
|
||||
from . import stream_registry
|
||||
from .completion_handler import process_operation_failure, process_operation_success
|
||||
from .config import ChatConfig
|
||||
from .model import ChatSession, create_chat_session, get_chat_session, get_user_sessions
|
||||
from .response_model import StreamFinish, StreamHeartbeat, StreamStart
|
||||
|
||||
config = ChatConfig()
|
||||
|
||||
@@ -55,6 +59,15 @@ class CreateSessionResponse(BaseModel):
|
||||
user_id: str | None
|
||||
|
||||
|
||||
class ActiveStreamInfo(BaseModel):
|
||||
"""Information about an active stream for reconnection."""
|
||||
|
||||
task_id: str
|
||||
last_message_id: str # Redis Stream message ID for resumption
|
||||
operation_id: str # Operation ID for completion tracking
|
||||
tool_name: str # Name of the tool being executed
|
||||
|
||||
|
||||
class SessionDetailResponse(BaseModel):
|
||||
"""Response model providing complete details for a chat session, including messages."""
|
||||
|
||||
@@ -63,6 +76,7 @@ class SessionDetailResponse(BaseModel):
|
||||
updated_at: str
|
||||
user_id: str | None
|
||||
messages: list[dict]
|
||||
active_stream: ActiveStreamInfo | None = None # Present if stream is still active
|
||||
|
||||
|
||||
class SessionSummaryResponse(BaseModel):
|
||||
@@ -81,6 +95,14 @@ class ListSessionsResponse(BaseModel):
|
||||
total: int
|
||||
|
||||
|
||||
class OperationCompleteRequest(BaseModel):
|
||||
"""Request model for external completion webhook."""
|
||||
|
||||
success: bool
|
||||
result: dict | str | None = None
|
||||
error: str | None = None
|
||||
|
||||
|
||||
# ========== Routes ==========
|
||||
|
||||
|
||||
@@ -166,13 +188,14 @@ async def get_session(
|
||||
Retrieve the details of a specific chat session.
|
||||
|
||||
Looks up a chat session by ID for the given user (if authenticated) and returns all session data including messages.
|
||||
If there's an active stream for this session, returns the task_id for reconnection.
|
||||
|
||||
Args:
|
||||
session_id: The unique identifier for the desired chat session.
|
||||
user_id: The optional authenticated user ID, or None for anonymous access.
|
||||
|
||||
Returns:
|
||||
SessionDetailResponse: Details for the requested session, or None if not found.
|
||||
SessionDetailResponse: Details for the requested session, including active_stream info if applicable.
|
||||
|
||||
"""
|
||||
session = await get_chat_session(session_id, user_id)
|
||||
@@ -180,11 +203,28 @@ async def get_session(
|
||||
raise NotFoundError(f"Session {session_id} not found.")
|
||||
|
||||
messages = [message.model_dump() for message in session.messages]
|
||||
logger.info(
|
||||
f"Returning session {session_id}: "
|
||||
f"message_count={len(messages)}, "
|
||||
f"roles={[m.get('role') for m in messages]}"
|
||||
|
||||
# Check if there's an active stream for this session
|
||||
active_stream_info = None
|
||||
active_task, last_message_id = await stream_registry.get_active_task_for_session(
|
||||
session_id, user_id
|
||||
)
|
||||
if active_task:
|
||||
# Filter out the in-progress assistant message from the session response.
|
||||
# The client will receive the complete assistant response through the SSE
|
||||
# stream replay instead, preventing duplicate content.
|
||||
if messages and messages[-1].get("role") == "assistant":
|
||||
messages = messages[:-1]
|
||||
|
||||
# Use "0-0" as last_message_id to replay the stream from the beginning.
|
||||
# Since we filtered out the cached assistant message, the client needs
|
||||
# the full stream to reconstruct the response.
|
||||
active_stream_info = ActiveStreamInfo(
|
||||
task_id=active_task.task_id,
|
||||
last_message_id="0-0",
|
||||
operation_id=active_task.operation_id,
|
||||
tool_name=active_task.tool_name,
|
||||
)
|
||||
|
||||
return SessionDetailResponse(
|
||||
id=session.session_id,
|
||||
@@ -192,6 +232,7 @@ async def get_session(
|
||||
updated_at=session.updated_at.isoformat(),
|
||||
user_id=session.user_id or None,
|
||||
messages=messages,
|
||||
active_stream=active_stream_info,
|
||||
)
|
||||
|
||||
|
||||
@@ -211,49 +252,112 @@ async def stream_chat_post(
|
||||
- Tool call UI elements (if invoked)
|
||||
- Tool execution results
|
||||
|
||||
The AI generation runs in a background task that continues even if the client disconnects.
|
||||
All chunks are written to Redis for reconnection support. If the client disconnects,
|
||||
they can reconnect using GET /tasks/{task_id}/stream to resume from where they left off.
|
||||
|
||||
Args:
|
||||
session_id: The chat session identifier to associate with the streamed messages.
|
||||
request: Request body containing message, is_user_message, and optional context.
|
||||
user_id: Optional authenticated user ID.
|
||||
Returns:
|
||||
StreamingResponse: SSE-formatted response chunks.
|
||||
StreamingResponse: SSE-formatted response chunks. First chunk is a "start" event
|
||||
containing the task_id for reconnection.
|
||||
|
||||
"""
|
||||
import asyncio
|
||||
|
||||
session = await _validate_and_get_session(session_id, user_id)
|
||||
|
||||
# Create a task in the stream registry for reconnection support
|
||||
task_id = str(uuid_module.uuid4())
|
||||
operation_id = str(uuid_module.uuid4())
|
||||
await stream_registry.create_task(
|
||||
task_id=task_id,
|
||||
session_id=session_id,
|
||||
user_id=user_id,
|
||||
tool_call_id="chat_stream", # Not a tool call, but needed for the model
|
||||
tool_name="chat",
|
||||
operation_id=operation_id,
|
||||
)
|
||||
|
||||
# Background task that runs the AI generation independently of SSE connection
|
||||
async def run_ai_generation():
|
||||
try:
|
||||
# Emit a start event with task_id for reconnection
|
||||
start_chunk = StreamStart(messageId=task_id, taskId=task_id)
|
||||
await stream_registry.publish_chunk(task_id, start_chunk)
|
||||
|
||||
async for chunk in chat_service.stream_chat_completion(
|
||||
session_id,
|
||||
request.message,
|
||||
is_user_message=request.is_user_message,
|
||||
user_id=user_id,
|
||||
session=session, # Pass pre-fetched session to avoid double-fetch
|
||||
context=request.context,
|
||||
):
|
||||
# Write to Redis (subscribers will receive via XREAD)
|
||||
await stream_registry.publish_chunk(task_id, chunk)
|
||||
|
||||
# Mark task as completed
|
||||
await stream_registry.mark_task_completed(task_id, "completed")
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Error in background AI generation for session {session_id}: {e}"
|
||||
)
|
||||
await stream_registry.mark_task_completed(task_id, "failed")
|
||||
|
||||
# Start the AI generation in a background task
|
||||
bg_task = asyncio.create_task(run_ai_generation())
|
||||
await stream_registry.set_task_asyncio_task(task_id, bg_task)
|
||||
|
||||
# SSE endpoint that subscribes to the task's stream
|
||||
async def event_generator() -> AsyncGenerator[str, None]:
|
||||
chunk_count = 0
|
||||
first_chunk_type: str | None = None
|
||||
async for chunk in chat_service.stream_chat_completion(
|
||||
session_id,
|
||||
request.message,
|
||||
is_user_message=request.is_user_message,
|
||||
user_id=user_id,
|
||||
session=session, # Pass pre-fetched session to avoid double-fetch
|
||||
context=request.context,
|
||||
):
|
||||
if chunk_count < 3:
|
||||
logger.info(
|
||||
"Chat stream chunk",
|
||||
extra={
|
||||
"session_id": session_id,
|
||||
"chunk_type": str(chunk.type),
|
||||
},
|
||||
)
|
||||
if not first_chunk_type:
|
||||
first_chunk_type = str(chunk.type)
|
||||
chunk_count += 1
|
||||
yield chunk.to_sse()
|
||||
logger.info(
|
||||
"Chat stream completed",
|
||||
extra={
|
||||
"session_id": session_id,
|
||||
"chunk_count": chunk_count,
|
||||
"first_chunk_type": first_chunk_type,
|
||||
},
|
||||
)
|
||||
# AI SDK protocol termination
|
||||
yield "data: [DONE]\n\n"
|
||||
subscriber_queue = None
|
||||
try:
|
||||
# Subscribe to the task stream (this replays existing messages + live updates)
|
||||
subscriber_queue = await stream_registry.subscribe_to_task(
|
||||
task_id=task_id,
|
||||
user_id=user_id,
|
||||
last_message_id="0-0", # Get all messages from the beginning
|
||||
)
|
||||
|
||||
if subscriber_queue is None:
|
||||
yield StreamFinish().to_sse()
|
||||
yield "data: [DONE]\n\n"
|
||||
return
|
||||
|
||||
# Read from the subscriber queue and yield to SSE
|
||||
while True:
|
||||
try:
|
||||
chunk = await asyncio.wait_for(subscriber_queue.get(), timeout=30.0)
|
||||
yield chunk.to_sse()
|
||||
|
||||
# Check for finish signal
|
||||
if isinstance(chunk, StreamFinish):
|
||||
break
|
||||
except asyncio.TimeoutError:
|
||||
# Send heartbeat to keep connection alive
|
||||
yield StreamHeartbeat().to_sse()
|
||||
|
||||
except GeneratorExit:
|
||||
pass # Client disconnected - background task continues
|
||||
except Exception as e:
|
||||
logger.error(f"Error in SSE stream for task {task_id}: {e}")
|
||||
finally:
|
||||
# Unsubscribe when client disconnects or stream ends to prevent resource leak
|
||||
if subscriber_queue is not None:
|
||||
try:
|
||||
await stream_registry.unsubscribe_from_task(
|
||||
task_id, subscriber_queue
|
||||
)
|
||||
except Exception as unsub_err:
|
||||
logger.error(
|
||||
f"Error unsubscribing from task {task_id}: {unsub_err}",
|
||||
exc_info=True,
|
||||
)
|
||||
# AI SDK protocol termination - always yield even if unsubscribe fails
|
||||
yield "data: [DONE]\n\n"
|
||||
|
||||
return StreamingResponse(
|
||||
event_generator(),
|
||||
@@ -366,6 +470,251 @@ async def session_assign_user(
|
||||
return {"status": "ok"}
|
||||
|
||||
|
||||
# ========== Task Streaming (SSE Reconnection) ==========
|
||||
|
||||
|
||||
@router.get(
|
||||
"/tasks/{task_id}/stream",
|
||||
)
|
||||
async def stream_task(
|
||||
task_id: str,
|
||||
user_id: str | None = Depends(auth.get_user_id),
|
||||
last_message_id: str = Query(
|
||||
default="0-0",
|
||||
description="Last Redis Stream message ID received (e.g., '1706540123456-0'). Use '0-0' for full replay.",
|
||||
),
|
||||
):
|
||||
"""
|
||||
Reconnect to a long-running task's SSE stream.
|
||||
|
||||
When a long-running operation (like agent generation) starts, the client
|
||||
receives a task_id. If the connection drops, the client can reconnect
|
||||
using this endpoint to resume receiving updates.
|
||||
|
||||
Args:
|
||||
task_id: The task ID from the operation_started response.
|
||||
user_id: Authenticated user ID for ownership validation.
|
||||
last_message_id: Last Redis Stream message ID received ("0-0" for full replay).
|
||||
|
||||
Returns:
|
||||
StreamingResponse: SSE-formatted response chunks starting after last_message_id.
|
||||
|
||||
Raises:
|
||||
HTTPException: 404 if task not found, 410 if task expired, 403 if access denied.
|
||||
"""
|
||||
# Check task existence and expiry before subscribing
|
||||
task, error_code = await stream_registry.get_task_with_expiry_info(task_id)
|
||||
|
||||
if error_code == "TASK_EXPIRED":
|
||||
raise HTTPException(
|
||||
status_code=410,
|
||||
detail={
|
||||
"code": "TASK_EXPIRED",
|
||||
"message": "This operation has expired. Please try again.",
|
||||
},
|
||||
)
|
||||
|
||||
if error_code == "TASK_NOT_FOUND":
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail={
|
||||
"code": "TASK_NOT_FOUND",
|
||||
"message": f"Task {task_id} not found.",
|
||||
},
|
||||
)
|
||||
|
||||
# Validate ownership if task has an owner
|
||||
if task and task.user_id and user_id != task.user_id:
|
||||
raise HTTPException(
|
||||
status_code=403,
|
||||
detail={
|
||||
"code": "ACCESS_DENIED",
|
||||
"message": "You do not have access to this task.",
|
||||
},
|
||||
)
|
||||
|
||||
# Get subscriber queue from stream registry
|
||||
subscriber_queue = await stream_registry.subscribe_to_task(
|
||||
task_id=task_id,
|
||||
user_id=user_id,
|
||||
last_message_id=last_message_id,
|
||||
)
|
||||
|
||||
if subscriber_queue is None:
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail={
|
||||
"code": "TASK_NOT_FOUND",
|
||||
"message": f"Task {task_id} not found or access denied.",
|
||||
},
|
||||
)
|
||||
|
||||
async def event_generator() -> AsyncGenerator[str, None]:
|
||||
import asyncio
|
||||
|
||||
heartbeat_interval = 15.0 # Send heartbeat every 15 seconds
|
||||
try:
|
||||
while True:
|
||||
try:
|
||||
# Wait for next chunk with timeout for heartbeats
|
||||
chunk = await asyncio.wait_for(
|
||||
subscriber_queue.get(), timeout=heartbeat_interval
|
||||
)
|
||||
yield chunk.to_sse()
|
||||
|
||||
# Check for finish signal
|
||||
if isinstance(chunk, StreamFinish):
|
||||
break
|
||||
except asyncio.TimeoutError:
|
||||
# Send heartbeat to keep connection alive
|
||||
yield StreamHeartbeat().to_sse()
|
||||
except Exception as e:
|
||||
logger.error(f"Error in task stream {task_id}: {e}", exc_info=True)
|
||||
finally:
|
||||
# Unsubscribe when client disconnects or stream ends
|
||||
try:
|
||||
await stream_registry.unsubscribe_from_task(task_id, subscriber_queue)
|
||||
except Exception as unsub_err:
|
||||
logger.error(
|
||||
f"Error unsubscribing from task {task_id}: {unsub_err}",
|
||||
exc_info=True,
|
||||
)
|
||||
# AI SDK protocol termination - always yield even if unsubscribe fails
|
||||
yield "data: [DONE]\n\n"
|
||||
|
||||
return StreamingResponse(
|
||||
event_generator(),
|
||||
media_type="text/event-stream",
|
||||
headers={
|
||||
"Cache-Control": "no-cache",
|
||||
"Connection": "keep-alive",
|
||||
"X-Accel-Buffering": "no",
|
||||
"x-vercel-ai-ui-message-stream": "v1",
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@router.get(
|
||||
"/tasks/{task_id}",
|
||||
)
|
||||
async def get_task_status(
|
||||
task_id: str,
|
||||
user_id: str | None = Depends(auth.get_user_id),
|
||||
) -> dict:
|
||||
"""
|
||||
Get the status of a long-running task.
|
||||
|
||||
Args:
|
||||
task_id: The task ID to check.
|
||||
user_id: Authenticated user ID for ownership validation.
|
||||
|
||||
Returns:
|
||||
dict: Task status including task_id, status, tool_name, and operation_id.
|
||||
|
||||
Raises:
|
||||
NotFoundError: If task_id is not found or user doesn't have access.
|
||||
"""
|
||||
task = await stream_registry.get_task(task_id)
|
||||
|
||||
if task is None:
|
||||
raise NotFoundError(f"Task {task_id} not found.")
|
||||
|
||||
# Validate ownership - if task has an owner, requester must match
|
||||
if task.user_id and user_id != task.user_id:
|
||||
raise NotFoundError(f"Task {task_id} not found.")
|
||||
|
||||
return {
|
||||
"task_id": task.task_id,
|
||||
"session_id": task.session_id,
|
||||
"status": task.status,
|
||||
"tool_name": task.tool_name,
|
||||
"operation_id": task.operation_id,
|
||||
"created_at": task.created_at.isoformat(),
|
||||
}
|
||||
|
||||
|
||||
# ========== External Completion Webhook ==========
|
||||
|
||||
|
||||
@router.post(
|
||||
"/operations/{operation_id}/complete",
|
||||
status_code=200,
|
||||
)
|
||||
async def complete_operation(
|
||||
operation_id: str,
|
||||
request: OperationCompleteRequest,
|
||||
x_api_key: str | None = Header(default=None),
|
||||
) -> dict:
|
||||
"""
|
||||
External completion webhook for long-running operations.
|
||||
|
||||
Called by Agent Generator (or other services) when an operation completes.
|
||||
This triggers the stream registry to publish completion and continue LLM generation.
|
||||
|
||||
Args:
|
||||
operation_id: The operation ID to complete.
|
||||
request: Completion payload with success status and result/error.
|
||||
x_api_key: Internal API key for authentication.
|
||||
|
||||
Returns:
|
||||
dict: Status of the completion.
|
||||
|
||||
Raises:
|
||||
HTTPException: If API key is invalid or operation not found.
|
||||
"""
|
||||
# Validate internal API key - reject if not configured or invalid
|
||||
if not config.internal_api_key:
|
||||
logger.error(
|
||||
"Operation complete webhook rejected: CHAT_INTERNAL_API_KEY not configured"
|
||||
)
|
||||
raise HTTPException(
|
||||
status_code=503,
|
||||
detail="Webhook not available: internal API key not configured",
|
||||
)
|
||||
if x_api_key != config.internal_api_key:
|
||||
raise HTTPException(status_code=401, detail="Invalid API key")
|
||||
|
||||
# Find task by operation_id
|
||||
task = await stream_registry.find_task_by_operation_id(operation_id)
|
||||
if task is None:
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail=f"Operation {operation_id} not found",
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"Received completion webhook for operation {operation_id} "
|
||||
f"(task_id={task.task_id}, success={request.success})"
|
||||
)
|
||||
|
||||
if request.success:
|
||||
await process_operation_success(task, request.result)
|
||||
else:
|
||||
await process_operation_failure(task, request.error)
|
||||
|
||||
return {"status": "ok", "task_id": task.task_id}
|
||||
|
||||
|
||||
# ========== Configuration ==========
|
||||
|
||||
|
||||
@router.get("/config/ttl", status_code=200)
|
||||
async def get_ttl_config() -> dict:
|
||||
"""
|
||||
Get the stream TTL configuration.
|
||||
|
||||
Returns the Time-To-Live settings for chat streams, which determines
|
||||
how long clients can reconnect to an active stream.
|
||||
|
||||
Returns:
|
||||
dict: TTL configuration with seconds and milliseconds values.
|
||||
"""
|
||||
return {
|
||||
"stream_ttl_seconds": config.stream_ttl,
|
||||
"stream_ttl_ms": config.stream_ttl * 1000,
|
||||
}
|
||||
|
||||
|
||||
# ========== Health Check ==========
|
||||
|
||||
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1,704 @@
|
||||
"""Stream registry for managing reconnectable SSE streams.
|
||||
|
||||
This module provides a registry for tracking active streaming tasks and their
|
||||
messages. It uses Redis for all state management (no in-memory state), making
|
||||
pods stateless and horizontally scalable.
|
||||
|
||||
Architecture:
|
||||
- Redis Stream: Persists all messages for replay and real-time delivery
|
||||
- Redis Hash: Task metadata (status, session_id, etc.)
|
||||
|
||||
Subscribers:
|
||||
1. Replay missed messages from Redis Stream (XREAD)
|
||||
2. Listen for live updates via blocking XREAD
|
||||
3. No in-memory state required on the subscribing pod
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
from dataclasses import dataclass, field
|
||||
from datetime import datetime, timezone
|
||||
from typing import Any, Literal
|
||||
|
||||
import orjson
|
||||
|
||||
from backend.data.redis_client import get_redis_async
|
||||
|
||||
from .config import ChatConfig
|
||||
from .response_model import StreamBaseResponse, StreamError, StreamFinish
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
config = ChatConfig()
|
||||
|
||||
# Track background tasks for this pod (just the asyncio.Task reference, not subscribers)
|
||||
_local_tasks: dict[str, asyncio.Task] = {}
|
||||
|
||||
# Track listener tasks per subscriber queue for cleanup
|
||||
# Maps queue id() to (task_id, asyncio.Task) for proper cleanup on unsubscribe
|
||||
_listener_tasks: dict[int, tuple[str, asyncio.Task]] = {}
|
||||
|
||||
# Timeout for putting chunks into subscriber queues (seconds)
|
||||
# If the queue is full and doesn't drain within this time, send an overflow error
|
||||
QUEUE_PUT_TIMEOUT = 5.0
|
||||
|
||||
# Lua script for atomic compare-and-swap status update (idempotent completion)
|
||||
# Returns 1 if status was updated, 0 if already completed/failed
|
||||
COMPLETE_TASK_SCRIPT = """
|
||||
local current = redis.call("HGET", KEYS[1], "status")
|
||||
if current == "running" then
|
||||
redis.call("HSET", KEYS[1], "status", ARGV[1])
|
||||
return 1
|
||||
end
|
||||
return 0
|
||||
"""
|
||||
|
||||
|
||||
@dataclass
|
||||
class ActiveTask:
|
||||
"""Represents an active streaming task (metadata only, no in-memory queues)."""
|
||||
|
||||
task_id: str
|
||||
session_id: str
|
||||
user_id: str | None
|
||||
tool_call_id: str
|
||||
tool_name: str
|
||||
operation_id: str
|
||||
status: Literal["running", "completed", "failed"] = "running"
|
||||
created_at: datetime = field(default_factory=lambda: datetime.now(timezone.utc))
|
||||
asyncio_task: asyncio.Task | None = None
|
||||
|
||||
|
||||
def _get_task_meta_key(task_id: str) -> str:
|
||||
"""Get Redis key for task metadata."""
|
||||
return f"{config.task_meta_prefix}{task_id}"
|
||||
|
||||
|
||||
def _get_task_stream_key(task_id: str) -> str:
|
||||
"""Get Redis key for task message stream."""
|
||||
return f"{config.task_stream_prefix}{task_id}"
|
||||
|
||||
|
||||
def _get_operation_mapping_key(operation_id: str) -> str:
|
||||
"""Get Redis key for operation_id to task_id mapping."""
|
||||
return f"{config.task_op_prefix}{operation_id}"
|
||||
|
||||
|
||||
async def create_task(
|
||||
task_id: str,
|
||||
session_id: str,
|
||||
user_id: str | None,
|
||||
tool_call_id: str,
|
||||
tool_name: str,
|
||||
operation_id: str,
|
||||
) -> ActiveTask:
|
||||
"""Create a new streaming task in Redis.
|
||||
|
||||
Args:
|
||||
task_id: Unique identifier for the task
|
||||
session_id: Chat session ID
|
||||
user_id: User ID (may be None for anonymous)
|
||||
tool_call_id: Tool call ID from the LLM
|
||||
tool_name: Name of the tool being executed
|
||||
operation_id: Operation ID for webhook callbacks
|
||||
|
||||
Returns:
|
||||
The created ActiveTask instance (metadata only)
|
||||
"""
|
||||
task = ActiveTask(
|
||||
task_id=task_id,
|
||||
session_id=session_id,
|
||||
user_id=user_id,
|
||||
tool_call_id=tool_call_id,
|
||||
tool_name=tool_name,
|
||||
operation_id=operation_id,
|
||||
)
|
||||
|
||||
# Store metadata in Redis
|
||||
redis = await get_redis_async()
|
||||
meta_key = _get_task_meta_key(task_id)
|
||||
op_key = _get_operation_mapping_key(operation_id)
|
||||
|
||||
await redis.hset( # type: ignore[misc]
|
||||
meta_key,
|
||||
mapping={
|
||||
"task_id": task_id,
|
||||
"session_id": session_id,
|
||||
"user_id": user_id or "",
|
||||
"tool_call_id": tool_call_id,
|
||||
"tool_name": tool_name,
|
||||
"operation_id": operation_id,
|
||||
"status": task.status,
|
||||
"created_at": task.created_at.isoformat(),
|
||||
},
|
||||
)
|
||||
await redis.expire(meta_key, config.stream_ttl)
|
||||
|
||||
# Create operation_id -> task_id mapping for webhook lookups
|
||||
await redis.set(op_key, task_id, ex=config.stream_ttl)
|
||||
|
||||
logger.debug(f"Created task {task_id} for session {session_id}")
|
||||
|
||||
return task
|
||||
|
||||
|
||||
async def publish_chunk(
|
||||
task_id: str,
|
||||
chunk: StreamBaseResponse,
|
||||
) -> str:
|
||||
"""Publish a chunk to Redis Stream.
|
||||
|
||||
All delivery is via Redis Streams - no in-memory state.
|
||||
|
||||
Args:
|
||||
task_id: Task ID to publish to
|
||||
chunk: The stream response chunk to publish
|
||||
|
||||
Returns:
|
||||
The Redis Stream message ID
|
||||
"""
|
||||
chunk_json = chunk.model_dump_json()
|
||||
message_id = "0-0"
|
||||
|
||||
try:
|
||||
redis = await get_redis_async()
|
||||
stream_key = _get_task_stream_key(task_id)
|
||||
|
||||
# Write to Redis Stream for persistence and real-time delivery
|
||||
raw_id = await redis.xadd(
|
||||
stream_key,
|
||||
{"data": chunk_json},
|
||||
maxlen=config.stream_max_length,
|
||||
)
|
||||
message_id = raw_id if isinstance(raw_id, str) else raw_id.decode()
|
||||
|
||||
# Set TTL on stream to match task metadata TTL
|
||||
await redis.expire(stream_key, config.stream_ttl)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Failed to publish chunk for task {task_id}: {e}",
|
||||
exc_info=True,
|
||||
)
|
||||
|
||||
return message_id
|
||||
|
||||
|
||||
async def subscribe_to_task(
|
||||
task_id: str,
|
||||
user_id: str | None,
|
||||
last_message_id: str = "0-0",
|
||||
) -> asyncio.Queue[StreamBaseResponse] | None:
|
||||
"""Subscribe to a task's stream with replay of missed messages.
|
||||
|
||||
This is fully stateless - uses Redis Stream for replay and pub/sub for live updates.
|
||||
|
||||
Args:
|
||||
task_id: Task ID to subscribe to
|
||||
user_id: User ID for ownership validation
|
||||
last_message_id: Last Redis Stream message ID received ("0-0" for full replay)
|
||||
|
||||
Returns:
|
||||
An asyncio Queue that will receive stream chunks, or None if task not found
|
||||
or user doesn't have access
|
||||
"""
|
||||
redis = await get_redis_async()
|
||||
meta_key = _get_task_meta_key(task_id)
|
||||
meta: dict[Any, Any] = await redis.hgetall(meta_key) # type: ignore[misc]
|
||||
|
||||
if not meta:
|
||||
logger.debug(f"Task {task_id} not found in Redis")
|
||||
return None
|
||||
|
||||
# Note: Redis client uses decode_responses=True, so keys are strings
|
||||
task_status = meta.get("status", "")
|
||||
task_user_id = meta.get("user_id", "") or None
|
||||
|
||||
# Validate ownership - if task has an owner, requester must match
|
||||
if task_user_id:
|
||||
if user_id != task_user_id:
|
||||
logger.warning(
|
||||
f"User {user_id} denied access to task {task_id} "
|
||||
f"owned by {task_user_id}"
|
||||
)
|
||||
return None
|
||||
|
||||
subscriber_queue: asyncio.Queue[StreamBaseResponse] = asyncio.Queue()
|
||||
stream_key = _get_task_stream_key(task_id)
|
||||
|
||||
# Step 1: Replay messages from Redis Stream
|
||||
messages = await redis.xread({stream_key: last_message_id}, block=0, count=1000)
|
||||
|
||||
replayed_count = 0
|
||||
replay_last_id = last_message_id
|
||||
if messages:
|
||||
for _stream_name, stream_messages in messages:
|
||||
for msg_id, msg_data in stream_messages:
|
||||
replay_last_id = msg_id if isinstance(msg_id, str) else msg_id.decode()
|
||||
# Note: Redis client uses decode_responses=True, so keys are strings
|
||||
if "data" in msg_data:
|
||||
try:
|
||||
chunk_data = orjson.loads(msg_data["data"])
|
||||
chunk = _reconstruct_chunk(chunk_data)
|
||||
if chunk:
|
||||
await subscriber_queue.put(chunk)
|
||||
replayed_count += 1
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to replay message: {e}")
|
||||
|
||||
logger.debug(f"Task {task_id}: replayed {replayed_count} messages")
|
||||
|
||||
# Step 2: If task is still running, start stream listener for live updates
|
||||
if task_status == "running":
|
||||
listener_task = asyncio.create_task(
|
||||
_stream_listener(task_id, subscriber_queue, replay_last_id)
|
||||
)
|
||||
# Track listener task for cleanup on unsubscribe
|
||||
_listener_tasks[id(subscriber_queue)] = (task_id, listener_task)
|
||||
else:
|
||||
# Task is completed/failed - add finish marker
|
||||
await subscriber_queue.put(StreamFinish())
|
||||
|
||||
return subscriber_queue
|
||||
|
||||
|
||||
async def _stream_listener(
|
||||
task_id: str,
|
||||
subscriber_queue: asyncio.Queue[StreamBaseResponse],
|
||||
last_replayed_id: str,
|
||||
) -> None:
|
||||
"""Listen to Redis Stream for new messages using blocking XREAD.
|
||||
|
||||
This approach avoids the duplicate message issue that can occur with pub/sub
|
||||
when messages are published during the gap between replay and subscription.
|
||||
|
||||
Args:
|
||||
task_id: Task ID to listen for
|
||||
subscriber_queue: Queue to deliver messages to
|
||||
last_replayed_id: Last message ID from replay (continue from here)
|
||||
"""
|
||||
queue_id = id(subscriber_queue)
|
||||
# Track the last successfully delivered message ID for recovery hints
|
||||
last_delivered_id = last_replayed_id
|
||||
|
||||
try:
|
||||
redis = await get_redis_async()
|
||||
stream_key = _get_task_stream_key(task_id)
|
||||
current_id = last_replayed_id
|
||||
|
||||
while True:
|
||||
# Block for up to 30 seconds waiting for new messages
|
||||
# This allows periodic checking if task is still running
|
||||
messages = await redis.xread(
|
||||
{stream_key: current_id}, block=30000, count=100
|
||||
)
|
||||
|
||||
if not messages:
|
||||
# Timeout - check if task is still running
|
||||
meta_key = _get_task_meta_key(task_id)
|
||||
status = await redis.hget(meta_key, "status") # type: ignore[misc]
|
||||
if status and status != "running":
|
||||
try:
|
||||
await asyncio.wait_for(
|
||||
subscriber_queue.put(StreamFinish()),
|
||||
timeout=QUEUE_PUT_TIMEOUT,
|
||||
)
|
||||
except asyncio.TimeoutError:
|
||||
logger.warning(
|
||||
f"Timeout delivering finish event for task {task_id}"
|
||||
)
|
||||
break
|
||||
continue
|
||||
|
||||
for _stream_name, stream_messages in messages:
|
||||
for msg_id, msg_data in stream_messages:
|
||||
current_id = msg_id if isinstance(msg_id, str) else msg_id.decode()
|
||||
|
||||
if "data" not in msg_data:
|
||||
continue
|
||||
|
||||
try:
|
||||
chunk_data = orjson.loads(msg_data["data"])
|
||||
chunk = _reconstruct_chunk(chunk_data)
|
||||
if chunk:
|
||||
try:
|
||||
await asyncio.wait_for(
|
||||
subscriber_queue.put(chunk),
|
||||
timeout=QUEUE_PUT_TIMEOUT,
|
||||
)
|
||||
# Update last delivered ID on successful delivery
|
||||
last_delivered_id = current_id
|
||||
except asyncio.TimeoutError:
|
||||
logger.warning(
|
||||
f"Subscriber queue full for task {task_id}, "
|
||||
f"message delivery timed out after {QUEUE_PUT_TIMEOUT}s"
|
||||
)
|
||||
# Send overflow error with recovery info
|
||||
try:
|
||||
overflow_error = StreamError(
|
||||
errorText="Message delivery timeout - some messages may have been missed",
|
||||
code="QUEUE_OVERFLOW",
|
||||
details={
|
||||
"last_delivered_id": last_delivered_id,
|
||||
"recovery_hint": f"Reconnect with last_message_id={last_delivered_id}",
|
||||
},
|
||||
)
|
||||
subscriber_queue.put_nowait(overflow_error)
|
||||
except asyncio.QueueFull:
|
||||
# Queue is completely stuck, nothing more we can do
|
||||
logger.error(
|
||||
f"Cannot deliver overflow error for task {task_id}, "
|
||||
"queue completely blocked"
|
||||
)
|
||||
|
||||
# Stop listening on finish
|
||||
if isinstance(chunk, StreamFinish):
|
||||
return
|
||||
except Exception as e:
|
||||
logger.warning(f"Error processing stream message: {e}")
|
||||
|
||||
except asyncio.CancelledError:
|
||||
logger.debug(f"Stream listener cancelled for task {task_id}")
|
||||
raise # Re-raise to propagate cancellation
|
||||
except Exception as e:
|
||||
logger.error(f"Stream listener error for task {task_id}: {e}")
|
||||
# On error, send finish to unblock subscriber
|
||||
try:
|
||||
await asyncio.wait_for(
|
||||
subscriber_queue.put(StreamFinish()),
|
||||
timeout=QUEUE_PUT_TIMEOUT,
|
||||
)
|
||||
except (asyncio.TimeoutError, asyncio.QueueFull):
|
||||
logger.warning(
|
||||
f"Could not deliver finish event for task {task_id} after error"
|
||||
)
|
||||
finally:
|
||||
# Clean up listener task mapping on exit
|
||||
_listener_tasks.pop(queue_id, None)
|
||||
|
||||
|
||||
async def mark_task_completed(
|
||||
task_id: str,
|
||||
status: Literal["completed", "failed"] = "completed",
|
||||
) -> bool:
|
||||
"""Mark a task as completed and publish finish event.
|
||||
|
||||
This is idempotent - calling multiple times with the same task_id is safe.
|
||||
Uses atomic compare-and-swap via Lua script to prevent race conditions.
|
||||
Status is updated first (source of truth), then finish event is published (best-effort).
|
||||
|
||||
Args:
|
||||
task_id: Task ID to mark as completed
|
||||
status: Final status ("completed" or "failed")
|
||||
|
||||
Returns:
|
||||
True if task was newly marked completed, False if already completed/failed
|
||||
"""
|
||||
redis = await get_redis_async()
|
||||
meta_key = _get_task_meta_key(task_id)
|
||||
|
||||
# Atomic compare-and-swap: only update if status is "running"
|
||||
# This prevents race conditions when multiple callers try to complete simultaneously
|
||||
result = await redis.eval(COMPLETE_TASK_SCRIPT, 1, meta_key, status) # type: ignore[misc]
|
||||
|
||||
if result == 0:
|
||||
logger.debug(f"Task {task_id} already completed/failed, skipping")
|
||||
return False
|
||||
|
||||
# THEN publish finish event (best-effort - listeners can detect via status polling)
|
||||
try:
|
||||
await publish_chunk(task_id, StreamFinish())
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Failed to publish finish event for task {task_id}: {e}. "
|
||||
"Listeners will detect completion via status polling."
|
||||
)
|
||||
|
||||
# Clean up local task reference if exists
|
||||
_local_tasks.pop(task_id, None)
|
||||
return True
|
||||
|
||||
|
||||
async def find_task_by_operation_id(operation_id: str) -> ActiveTask | None:
|
||||
"""Find a task by its operation ID.
|
||||
|
||||
Used by webhook callbacks to locate the task to update.
|
||||
|
||||
Args:
|
||||
operation_id: Operation ID to search for
|
||||
|
||||
Returns:
|
||||
ActiveTask if found, None otherwise
|
||||
"""
|
||||
redis = await get_redis_async()
|
||||
op_key = _get_operation_mapping_key(operation_id)
|
||||
task_id = await redis.get(op_key)
|
||||
|
||||
if not task_id:
|
||||
return None
|
||||
|
||||
task_id_str = task_id.decode() if isinstance(task_id, bytes) else task_id
|
||||
return await get_task(task_id_str)
|
||||
|
||||
|
||||
async def get_task(task_id: str) -> ActiveTask | None:
|
||||
"""Get a task by its ID from Redis.
|
||||
|
||||
Args:
|
||||
task_id: Task ID to look up
|
||||
|
||||
Returns:
|
||||
ActiveTask if found, None otherwise
|
||||
"""
|
||||
redis = await get_redis_async()
|
||||
meta_key = _get_task_meta_key(task_id)
|
||||
meta: dict[Any, Any] = await redis.hgetall(meta_key) # type: ignore[misc]
|
||||
|
||||
if not meta:
|
||||
return None
|
||||
|
||||
# Note: Redis client uses decode_responses=True, so keys/values are strings
|
||||
return ActiveTask(
|
||||
task_id=meta.get("task_id", ""),
|
||||
session_id=meta.get("session_id", ""),
|
||||
user_id=meta.get("user_id", "") or None,
|
||||
tool_call_id=meta.get("tool_call_id", ""),
|
||||
tool_name=meta.get("tool_name", ""),
|
||||
operation_id=meta.get("operation_id", ""),
|
||||
status=meta.get("status", "running"), # type: ignore[arg-type]
|
||||
)
|
||||
|
||||
|
||||
async def get_task_with_expiry_info(
|
||||
task_id: str,
|
||||
) -> tuple[ActiveTask | None, str | None]:
|
||||
"""Get a task by its ID with expiration detection.
|
||||
|
||||
Returns (task, error_code) where error_code is:
|
||||
- None if task found
|
||||
- "TASK_EXPIRED" if stream exists but metadata is gone (TTL expired)
|
||||
- "TASK_NOT_FOUND" if neither exists
|
||||
|
||||
Args:
|
||||
task_id: Task ID to look up
|
||||
|
||||
Returns:
|
||||
Tuple of (ActiveTask or None, error_code or None)
|
||||
"""
|
||||
redis = await get_redis_async()
|
||||
meta_key = _get_task_meta_key(task_id)
|
||||
stream_key = _get_task_stream_key(task_id)
|
||||
|
||||
meta: dict[Any, Any] = await redis.hgetall(meta_key) # type: ignore[misc]
|
||||
|
||||
if not meta:
|
||||
# Check if stream still has data (metadata expired but stream hasn't)
|
||||
stream_len = await redis.xlen(stream_key)
|
||||
if stream_len > 0:
|
||||
return None, "TASK_EXPIRED"
|
||||
return None, "TASK_NOT_FOUND"
|
||||
|
||||
# Note: Redis client uses decode_responses=True, so keys/values are strings
|
||||
return (
|
||||
ActiveTask(
|
||||
task_id=meta.get("task_id", ""),
|
||||
session_id=meta.get("session_id", ""),
|
||||
user_id=meta.get("user_id", "") or None,
|
||||
tool_call_id=meta.get("tool_call_id", ""),
|
||||
tool_name=meta.get("tool_name", ""),
|
||||
operation_id=meta.get("operation_id", ""),
|
||||
status=meta.get("status", "running"), # type: ignore[arg-type]
|
||||
),
|
||||
None,
|
||||
)
|
||||
|
||||
|
||||
async def get_active_task_for_session(
|
||||
session_id: str,
|
||||
user_id: str | None = None,
|
||||
) -> tuple[ActiveTask | None, str]:
|
||||
"""Get the active (running) task for a session, if any.
|
||||
|
||||
Scans Redis for tasks matching the session_id with status="running".
|
||||
|
||||
Args:
|
||||
session_id: Session ID to look up
|
||||
user_id: User ID for ownership validation (optional)
|
||||
|
||||
Returns:
|
||||
Tuple of (ActiveTask if found and running, last_message_id from Redis Stream)
|
||||
"""
|
||||
|
||||
redis = await get_redis_async()
|
||||
|
||||
# Scan Redis for task metadata keys
|
||||
cursor = 0
|
||||
tasks_checked = 0
|
||||
|
||||
while True:
|
||||
cursor, keys = await redis.scan(
|
||||
cursor, match=f"{config.task_meta_prefix}*", count=100
|
||||
)
|
||||
|
||||
for key in keys:
|
||||
tasks_checked += 1
|
||||
meta: dict[Any, Any] = await redis.hgetall(key) # type: ignore[misc]
|
||||
if not meta:
|
||||
continue
|
||||
|
||||
# Note: Redis client uses decode_responses=True, so keys/values are strings
|
||||
task_session_id = meta.get("session_id", "")
|
||||
task_status = meta.get("status", "")
|
||||
task_user_id = meta.get("user_id", "") or None
|
||||
task_id = meta.get("task_id", "")
|
||||
|
||||
if task_session_id == session_id and task_status == "running":
|
||||
# Validate ownership - if task has an owner, requester must match
|
||||
if task_user_id and user_id != task_user_id:
|
||||
continue
|
||||
|
||||
# Get the last message ID from Redis Stream
|
||||
stream_key = _get_task_stream_key(task_id)
|
||||
last_id = "0-0"
|
||||
try:
|
||||
messages = await redis.xrevrange(stream_key, count=1)
|
||||
if messages:
|
||||
msg_id = messages[0][0]
|
||||
last_id = msg_id if isinstance(msg_id, str) else msg_id.decode()
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to get last message ID: {e}")
|
||||
|
||||
return (
|
||||
ActiveTask(
|
||||
task_id=task_id,
|
||||
session_id=task_session_id,
|
||||
user_id=task_user_id,
|
||||
tool_call_id=meta.get("tool_call_id", ""),
|
||||
tool_name=meta.get("tool_name", ""),
|
||||
operation_id=meta.get("operation_id", ""),
|
||||
status="running",
|
||||
),
|
||||
last_id,
|
||||
)
|
||||
|
||||
if cursor == 0:
|
||||
break
|
||||
|
||||
return None, "0-0"
|
||||
|
||||
|
||||
def _reconstruct_chunk(chunk_data: dict) -> StreamBaseResponse | None:
|
||||
"""Reconstruct a StreamBaseResponse from JSON data.
|
||||
|
||||
Args:
|
||||
chunk_data: Parsed JSON data from Redis
|
||||
|
||||
Returns:
|
||||
Reconstructed response object, or None if unknown type
|
||||
"""
|
||||
from .response_model import (
|
||||
ResponseType,
|
||||
StreamError,
|
||||
StreamFinish,
|
||||
StreamHeartbeat,
|
||||
StreamStart,
|
||||
StreamTextDelta,
|
||||
StreamTextEnd,
|
||||
StreamTextStart,
|
||||
StreamToolInputAvailable,
|
||||
StreamToolInputStart,
|
||||
StreamToolOutputAvailable,
|
||||
StreamUsage,
|
||||
)
|
||||
|
||||
# Map response types to their corresponding classes
|
||||
type_to_class: dict[str, type[StreamBaseResponse]] = {
|
||||
ResponseType.START.value: StreamStart,
|
||||
ResponseType.FINISH.value: StreamFinish,
|
||||
ResponseType.TEXT_START.value: StreamTextStart,
|
||||
ResponseType.TEXT_DELTA.value: StreamTextDelta,
|
||||
ResponseType.TEXT_END.value: StreamTextEnd,
|
||||
ResponseType.TOOL_INPUT_START.value: StreamToolInputStart,
|
||||
ResponseType.TOOL_INPUT_AVAILABLE.value: StreamToolInputAvailable,
|
||||
ResponseType.TOOL_OUTPUT_AVAILABLE.value: StreamToolOutputAvailable,
|
||||
ResponseType.ERROR.value: StreamError,
|
||||
ResponseType.USAGE.value: StreamUsage,
|
||||
ResponseType.HEARTBEAT.value: StreamHeartbeat,
|
||||
}
|
||||
|
||||
chunk_type = chunk_data.get("type")
|
||||
chunk_class = type_to_class.get(chunk_type) # type: ignore[arg-type]
|
||||
|
||||
if chunk_class is None:
|
||||
logger.warning(f"Unknown chunk type: {chunk_type}")
|
||||
return None
|
||||
|
||||
try:
|
||||
return chunk_class(**chunk_data)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to reconstruct chunk of type {chunk_type}: {e}")
|
||||
return None
|
||||
|
||||
|
||||
async def set_task_asyncio_task(task_id: str, asyncio_task: asyncio.Task) -> None:
|
||||
"""Track the asyncio.Task for a task (local reference only).
|
||||
|
||||
This is just for cleanup purposes - the task state is in Redis.
|
||||
|
||||
Args:
|
||||
task_id: Task ID
|
||||
asyncio_task: The asyncio Task to track
|
||||
"""
|
||||
_local_tasks[task_id] = asyncio_task
|
||||
|
||||
|
||||
async def unsubscribe_from_task(
|
||||
task_id: str,
|
||||
subscriber_queue: asyncio.Queue[StreamBaseResponse],
|
||||
) -> None:
|
||||
"""Clean up when a subscriber disconnects.
|
||||
|
||||
Cancels the XREAD-based listener task associated with this subscriber queue
|
||||
to prevent resource leaks.
|
||||
|
||||
Args:
|
||||
task_id: Task ID
|
||||
subscriber_queue: The subscriber's queue used to look up the listener task
|
||||
"""
|
||||
queue_id = id(subscriber_queue)
|
||||
listener_entry = _listener_tasks.pop(queue_id, None)
|
||||
|
||||
if listener_entry is None:
|
||||
logger.debug(
|
||||
f"No listener task found for task {task_id} queue {queue_id} "
|
||||
"(may have already completed)"
|
||||
)
|
||||
return
|
||||
|
||||
stored_task_id, listener_task = listener_entry
|
||||
|
||||
if stored_task_id != task_id:
|
||||
logger.warning(
|
||||
f"Task ID mismatch in unsubscribe: expected {task_id}, "
|
||||
f"found {stored_task_id}"
|
||||
)
|
||||
|
||||
if listener_task.done():
|
||||
logger.debug(f"Listener task for task {task_id} already completed")
|
||||
return
|
||||
|
||||
# Cancel the listener task
|
||||
listener_task.cancel()
|
||||
|
||||
try:
|
||||
# Wait for the task to be cancelled with a timeout
|
||||
await asyncio.wait_for(listener_task, timeout=5.0)
|
||||
except asyncio.CancelledError:
|
||||
# Expected - the task was successfully cancelled
|
||||
pass
|
||||
except asyncio.TimeoutError:
|
||||
logger.warning(
|
||||
f"Timeout waiting for listener task cancellation for task {task_id}"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error during listener task cancellation for task {task_id}: {e}")
|
||||
|
||||
logger.debug(f"Successfully unsubscribed from task {task_id}")
|
||||
@@ -0,0 +1,79 @@
|
||||
# CoPilot Tools - Future Ideas
|
||||
|
||||
## Multimodal Image Support for CoPilot
|
||||
|
||||
**Problem:** CoPilot uses a vision-capable model but can't "see" workspace images. When a block generates an image and returns `workspace://abc123`, CoPilot can't evaluate it (e.g., checking blog thumbnail quality).
|
||||
|
||||
**Backend Solution:**
|
||||
When preparing messages for the LLM, detect `workspace://` image references and convert them to proper image content blocks:
|
||||
|
||||
```python
|
||||
# Before sending to LLM, scan for workspace image references
|
||||
# and inject them as image content parts
|
||||
|
||||
# Example message transformation:
|
||||
# FROM: {"role": "assistant", "content": "Generated image: workspace://abc123"}
|
||||
# TO: {"role": "assistant", "content": [
|
||||
# {"type": "text", "text": "Generated image: workspace://abc123"},
|
||||
# {"type": "image_url", "image_url": {"url": "data:image/png;base64,..."}}
|
||||
# ]}
|
||||
```
|
||||
|
||||
**Where to implement:**
|
||||
- In the chat stream handler before calling the LLM
|
||||
- Or in a message preprocessing step
|
||||
- Need to fetch image from workspace, convert to base64, add as image content
|
||||
|
||||
**Considerations:**
|
||||
- Only do this for image MIME types (image/png, image/jpeg, etc.)
|
||||
- May want a size limit (don't pass 10MB images)
|
||||
- Track which images were "shown" to the AI for frontend indicator
|
||||
- Cost implications - vision API calls are more expensive
|
||||
|
||||
**Frontend Solution:**
|
||||
Show visual indicator on workspace files in chat:
|
||||
- If AI saw the image: normal display
|
||||
- If AI didn't see it: overlay icon saying "AI can't see this image"
|
||||
|
||||
Requires response metadata indicating which `workspace://` refs were passed to the model.
|
||||
|
||||
---
|
||||
|
||||
## Output Post-Processing Layer for run_block
|
||||
|
||||
**Problem:** Many blocks produce large outputs that:
|
||||
- Consume massive context (100KB base64 image = ~133KB tokens)
|
||||
- Can't fit in conversation
|
||||
- Break things and cause high LLM costs
|
||||
|
||||
**Proposed Solution:** Instead of modifying individual blocks or `store_media_file()`, implement a centralized output processor in `run_block.py` that handles outputs before they're returned to CoPilot.
|
||||
|
||||
**Benefits:**
|
||||
1. **Centralized** - one place to handle all output processing
|
||||
2. **Future-proof** - new blocks automatically get output processing
|
||||
3. **Keeps blocks pure** - they don't need to know about context constraints
|
||||
4. **Handles all large outputs** - not just images
|
||||
|
||||
**Processing Rules:**
|
||||
- Detect base64 data URIs → save to workspace, return `workspace://` reference
|
||||
- Truncate very long strings (>N chars) with truncation note
|
||||
- Summarize large arrays/lists (e.g., "Array with 1000 items, first 5: [...]")
|
||||
- Handle nested large outputs in dicts recursively
|
||||
- Cap total output size
|
||||
|
||||
**Implementation Location:** `run_block.py` after block execution, before returning `BlockOutputResponse`
|
||||
|
||||
**Example:**
|
||||
```python
|
||||
def _process_outputs_for_context(
|
||||
outputs: dict[str, list[Any]],
|
||||
workspace_manager: WorkspaceManager,
|
||||
max_string_length: int = 10000,
|
||||
max_array_preview: int = 5,
|
||||
) -> dict[str, list[Any]]:
|
||||
"""Process block outputs to prevent context bloat."""
|
||||
processed = {}
|
||||
for name, values in outputs.items():
|
||||
processed[name] = [_process_value(v, workspace_manager) for v in values]
|
||||
return processed
|
||||
```
|
||||
@@ -10,6 +10,7 @@ from .add_understanding import AddUnderstandingTool
|
||||
from .agent_output import AgentOutputTool
|
||||
from .base import BaseTool
|
||||
from .create_agent import CreateAgentTool
|
||||
from .customize_agent import CustomizeAgentTool
|
||||
from .edit_agent import EditAgentTool
|
||||
from .find_agent import FindAgentTool
|
||||
from .find_block import FindBlockTool
|
||||
@@ -18,6 +19,12 @@ from .get_doc_page import GetDocPageTool
|
||||
from .run_agent import RunAgentTool
|
||||
from .run_block import RunBlockTool
|
||||
from .search_docs import SearchDocsTool
|
||||
from .workspace_files import (
|
||||
DeleteWorkspaceFileTool,
|
||||
ListWorkspaceFilesTool,
|
||||
ReadWorkspaceFileTool,
|
||||
WriteWorkspaceFileTool,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from backend.api.features.chat.response_model import StreamToolOutputAvailable
|
||||
@@ -28,6 +35,7 @@ logger = logging.getLogger(__name__)
|
||||
TOOL_REGISTRY: dict[str, BaseTool] = {
|
||||
"add_understanding": AddUnderstandingTool(),
|
||||
"create_agent": CreateAgentTool(),
|
||||
"customize_agent": CustomizeAgentTool(),
|
||||
"edit_agent": EditAgentTool(),
|
||||
"find_agent": FindAgentTool(),
|
||||
"find_block": FindBlockTool(),
|
||||
@@ -37,6 +45,11 @@ TOOL_REGISTRY: dict[str, BaseTool] = {
|
||||
"view_agent_output": AgentOutputTool(),
|
||||
"search_docs": SearchDocsTool(),
|
||||
"get_doc_page": GetDocPageTool(),
|
||||
# Workspace tools for CoPilot file operations
|
||||
"list_workspace_files": ListWorkspaceFilesTool(),
|
||||
"read_workspace_file": ReadWorkspaceFileTool(),
|
||||
"write_workspace_file": WriteWorkspaceFileTool(),
|
||||
"delete_workspace_file": DeleteWorkspaceFileTool(),
|
||||
}
|
||||
|
||||
# Export individual tool instances for backwards compatibility
|
||||
@@ -49,6 +62,11 @@ tools: list[ChatCompletionToolParam] = [
|
||||
]
|
||||
|
||||
|
||||
def get_tool(tool_name: str) -> BaseTool | None:
|
||||
"""Get a tool instance by name."""
|
||||
return TOOL_REGISTRY.get(tool_name)
|
||||
|
||||
|
||||
async def execute_tool(
|
||||
tool_name: str,
|
||||
parameters: dict[str, Any],
|
||||
@@ -57,7 +75,7 @@ async def execute_tool(
|
||||
tool_call_id: str,
|
||||
) -> "StreamToolOutputAvailable":
|
||||
"""Execute a tool by name."""
|
||||
tool = TOOL_REGISTRY.get(tool_name)
|
||||
tool = get_tool(tool_name)
|
||||
if not tool:
|
||||
raise ValueError(f"Tool {tool_name} not found")
|
||||
|
||||
|
||||
@@ -2,27 +2,58 @@
|
||||
|
||||
from .core import (
|
||||
AgentGeneratorNotConfiguredError,
|
||||
AgentJsonValidationError,
|
||||
AgentSummary,
|
||||
DecompositionResult,
|
||||
DecompositionStep,
|
||||
LibraryAgentSummary,
|
||||
MarketplaceAgentSummary,
|
||||
customize_template,
|
||||
decompose_goal,
|
||||
enrich_library_agents_from_steps,
|
||||
extract_search_terms_from_steps,
|
||||
extract_uuids_from_text,
|
||||
generate_agent,
|
||||
generate_agent_patch,
|
||||
get_agent_as_json,
|
||||
get_all_relevant_agents_for_generation,
|
||||
get_library_agent_by_graph_id,
|
||||
get_library_agent_by_id,
|
||||
get_library_agents_for_generation,
|
||||
graph_to_json,
|
||||
json_to_graph,
|
||||
save_agent_to_library,
|
||||
search_marketplace_agents_for_generation,
|
||||
)
|
||||
from .errors import get_user_message_for_error
|
||||
from .service import health_check as check_external_service_health
|
||||
from .service import is_external_service_configured
|
||||
|
||||
__all__ = [
|
||||
# Core functions
|
||||
"AgentGeneratorNotConfiguredError",
|
||||
"AgentJsonValidationError",
|
||||
"AgentSummary",
|
||||
"DecompositionResult",
|
||||
"DecompositionStep",
|
||||
"LibraryAgentSummary",
|
||||
"MarketplaceAgentSummary",
|
||||
"check_external_service_health",
|
||||
"customize_template",
|
||||
"decompose_goal",
|
||||
"enrich_library_agents_from_steps",
|
||||
"extract_search_terms_from_steps",
|
||||
"extract_uuids_from_text",
|
||||
"generate_agent",
|
||||
"generate_agent_patch",
|
||||
"save_agent_to_library",
|
||||
"get_agent_as_json",
|
||||
"json_to_graph",
|
||||
# Exceptions
|
||||
"AgentGeneratorNotConfiguredError",
|
||||
# Service
|
||||
"get_all_relevant_agents_for_generation",
|
||||
"get_library_agent_by_graph_id",
|
||||
"get_library_agent_by_id",
|
||||
"get_library_agents_for_generation",
|
||||
"get_user_message_for_error",
|
||||
"graph_to_json",
|
||||
"is_external_service_configured",
|
||||
"check_external_service_health",
|
||||
"json_to_graph",
|
||||
"save_agent_to_library",
|
||||
"search_marketplace_agents_for_generation",
|
||||
]
|
||||
|
||||
@@ -1,13 +1,25 @@
|
||||
"""Core agent generation functions."""
|
||||
|
||||
import logging
|
||||
import re
|
||||
import uuid
|
||||
from typing import Any
|
||||
from typing import Any, NotRequired, TypedDict
|
||||
|
||||
from backend.api.features.library import db as library_db
|
||||
from backend.data.graph import Graph, Link, Node, create_graph
|
||||
from backend.api.features.store import db as store_db
|
||||
from backend.data.graph import (
|
||||
Graph,
|
||||
Link,
|
||||
Node,
|
||||
create_graph,
|
||||
get_graph,
|
||||
get_graph_all_versions,
|
||||
get_store_listed_graphs,
|
||||
)
|
||||
from backend.util.exceptions import DatabaseError, NotFoundError
|
||||
|
||||
from .service import (
|
||||
customize_template_external,
|
||||
decompose_goal_external,
|
||||
generate_agent_external,
|
||||
generate_agent_patch_external,
|
||||
@@ -16,6 +28,74 @@ from .service import (
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
AGENT_EXECUTOR_BLOCK_ID = "e189baac-8c20-45a1-94a7-55177ea42565"
|
||||
|
||||
|
||||
class ExecutionSummary(TypedDict):
|
||||
"""Summary of a single execution for quality assessment."""
|
||||
|
||||
status: str
|
||||
correctness_score: NotRequired[float]
|
||||
activity_summary: NotRequired[str]
|
||||
|
||||
|
||||
class LibraryAgentSummary(TypedDict):
|
||||
"""Summary of a library agent for sub-agent composition.
|
||||
|
||||
Includes recent executions to help the LLM decide whether to use this agent.
|
||||
Each execution shows status, correctness_score (0-1), and activity_summary.
|
||||
"""
|
||||
|
||||
graph_id: str
|
||||
graph_version: int
|
||||
name: str
|
||||
description: str
|
||||
input_schema: dict[str, Any]
|
||||
output_schema: dict[str, Any]
|
||||
recent_executions: NotRequired[list[ExecutionSummary]]
|
||||
|
||||
|
||||
class MarketplaceAgentSummary(TypedDict):
|
||||
"""Summary of a marketplace agent for sub-agent composition."""
|
||||
|
||||
name: str
|
||||
description: str
|
||||
sub_heading: str
|
||||
creator: str
|
||||
is_marketplace_agent: bool
|
||||
|
||||
|
||||
class DecompositionStep(TypedDict, total=False):
|
||||
"""A single step in decomposed instructions."""
|
||||
|
||||
description: str
|
||||
action: str
|
||||
block_name: str
|
||||
tool: str
|
||||
name: str
|
||||
|
||||
|
||||
class DecompositionResult(TypedDict, total=False):
|
||||
"""Result from decompose_goal - can be instructions, questions, or error."""
|
||||
|
||||
type: str
|
||||
steps: list[DecompositionStep]
|
||||
questions: list[dict[str, Any]]
|
||||
error: str
|
||||
error_type: str
|
||||
|
||||
|
||||
AgentSummary = LibraryAgentSummary | MarketplaceAgentSummary | dict[str, Any]
|
||||
|
||||
|
||||
def _to_dict_list(
|
||||
agents: list[AgentSummary] | list[dict[str, Any]] | None,
|
||||
) -> list[dict[str, Any]] | None:
|
||||
"""Convert typed agent summaries to plain dicts for external service calls."""
|
||||
if agents is None:
|
||||
return None
|
||||
return [dict(a) for a in agents]
|
||||
|
||||
|
||||
class AgentGeneratorNotConfiguredError(Exception):
|
||||
"""Raised when the external Agent Generator service is not configured."""
|
||||
@@ -36,15 +116,422 @@ def _check_service_configured() -> None:
|
||||
)
|
||||
|
||||
|
||||
async def decompose_goal(description: str, context: str = "") -> dict[str, Any] | None:
|
||||
_UUID_PATTERN = re.compile(
|
||||
r"[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}",
|
||||
re.IGNORECASE,
|
||||
)
|
||||
|
||||
|
||||
def extract_uuids_from_text(text: str) -> list[str]:
|
||||
"""Extract all UUID v4 strings from text.
|
||||
|
||||
Args:
|
||||
text: Text that may contain UUIDs (e.g., user's goal description)
|
||||
|
||||
Returns:
|
||||
List of unique UUIDs found in the text (lowercase)
|
||||
"""
|
||||
matches = _UUID_PATTERN.findall(text)
|
||||
return list({m.lower() for m in matches})
|
||||
|
||||
|
||||
async def get_library_agent_by_id(
|
||||
user_id: str, agent_id: str
|
||||
) -> LibraryAgentSummary | None:
|
||||
"""Fetch a specific library agent by its ID (library agent ID or graph_id).
|
||||
|
||||
This function tries multiple lookup strategies:
|
||||
1. First tries to find by graph_id (AgentGraph primary key)
|
||||
2. If not found, tries to find by library agent ID (LibraryAgent primary key)
|
||||
|
||||
This handles both cases:
|
||||
- User provides graph_id (e.g., from AgentExecutorBlock)
|
||||
- User provides library agent ID (e.g., from library URL)
|
||||
|
||||
Args:
|
||||
user_id: The user ID
|
||||
agent_id: The ID to look up (can be graph_id or library agent ID)
|
||||
|
||||
Returns:
|
||||
LibraryAgentSummary if found, None otherwise
|
||||
"""
|
||||
try:
|
||||
agent = await library_db.get_library_agent_by_graph_id(user_id, agent_id)
|
||||
if agent:
|
||||
logger.debug(f"Found library agent by graph_id: {agent.name}")
|
||||
return LibraryAgentSummary(
|
||||
graph_id=agent.graph_id,
|
||||
graph_version=agent.graph_version,
|
||||
name=agent.name,
|
||||
description=agent.description,
|
||||
input_schema=agent.input_schema,
|
||||
output_schema=agent.output_schema,
|
||||
)
|
||||
except DatabaseError:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.debug(f"Could not fetch library agent by graph_id {agent_id}: {e}")
|
||||
|
||||
try:
|
||||
agent = await library_db.get_library_agent(agent_id, user_id)
|
||||
if agent:
|
||||
logger.debug(f"Found library agent by library_id: {agent.name}")
|
||||
return LibraryAgentSummary(
|
||||
graph_id=agent.graph_id,
|
||||
graph_version=agent.graph_version,
|
||||
name=agent.name,
|
||||
description=agent.description,
|
||||
input_schema=agent.input_schema,
|
||||
output_schema=agent.output_schema,
|
||||
)
|
||||
except NotFoundError:
|
||||
logger.debug(f"Library agent not found by library_id: {agent_id}")
|
||||
except DatabaseError:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
f"Could not fetch library agent by library_id {agent_id}: {e}",
|
||||
exc_info=True,
|
||||
)
|
||||
|
||||
return None
|
||||
|
||||
|
||||
get_library_agent_by_graph_id = get_library_agent_by_id
|
||||
|
||||
|
||||
async def get_library_agents_for_generation(
|
||||
user_id: str,
|
||||
search_query: str | None = None,
|
||||
exclude_graph_id: str | None = None,
|
||||
max_results: int = 15,
|
||||
) -> list[LibraryAgentSummary]:
|
||||
"""Fetch user's library agents formatted for Agent Generator.
|
||||
|
||||
Uses search-based fetching to return relevant agents instead of all agents.
|
||||
This is more scalable for users with large libraries.
|
||||
|
||||
Includes recent_executions list to help the LLM assess agent quality:
|
||||
- Each execution has status, correctness_score (0-1), and activity_summary
|
||||
- This gives the LLM concrete examples of recent performance
|
||||
|
||||
Args:
|
||||
user_id: The user ID
|
||||
search_query: Optional search term to find relevant agents (user's goal/description)
|
||||
exclude_graph_id: Optional graph ID to exclude (prevents circular references)
|
||||
max_results: Maximum number of agents to return (default 15)
|
||||
|
||||
Returns:
|
||||
List of LibraryAgentSummary with schemas and recent executions for sub-agent composition
|
||||
"""
|
||||
try:
|
||||
response = await library_db.list_library_agents(
|
||||
user_id=user_id,
|
||||
search_term=search_query,
|
||||
page=1,
|
||||
page_size=max_results,
|
||||
include_executions=True,
|
||||
)
|
||||
|
||||
results: list[LibraryAgentSummary] = []
|
||||
for agent in response.agents:
|
||||
if exclude_graph_id is not None and agent.graph_id == exclude_graph_id:
|
||||
continue
|
||||
|
||||
summary = LibraryAgentSummary(
|
||||
graph_id=agent.graph_id,
|
||||
graph_version=agent.graph_version,
|
||||
name=agent.name,
|
||||
description=agent.description,
|
||||
input_schema=agent.input_schema,
|
||||
output_schema=agent.output_schema,
|
||||
)
|
||||
if agent.recent_executions:
|
||||
exec_summaries: list[ExecutionSummary] = []
|
||||
for ex in agent.recent_executions:
|
||||
exec_sum = ExecutionSummary(status=ex.status)
|
||||
if ex.correctness_score is not None:
|
||||
exec_sum["correctness_score"] = ex.correctness_score
|
||||
if ex.activity_summary:
|
||||
exec_sum["activity_summary"] = ex.activity_summary
|
||||
exec_summaries.append(exec_sum)
|
||||
summary["recent_executions"] = exec_summaries
|
||||
results.append(summary)
|
||||
return results
|
||||
except DatabaseError:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to fetch library agents: {e}")
|
||||
return []
|
||||
|
||||
|
||||
async def search_marketplace_agents_for_generation(
|
||||
search_query: str,
|
||||
max_results: int = 10,
|
||||
) -> list[LibraryAgentSummary]:
|
||||
"""Search marketplace agents formatted for Agent Generator.
|
||||
|
||||
Fetches marketplace agents and their full schemas so they can be used
|
||||
as sub-agents in generated workflows.
|
||||
|
||||
Args:
|
||||
search_query: Search term to find relevant public agents
|
||||
max_results: Maximum number of agents to return (default 10)
|
||||
|
||||
Returns:
|
||||
List of LibraryAgentSummary with full input/output schemas
|
||||
"""
|
||||
try:
|
||||
response = await store_db.get_store_agents(
|
||||
search_query=search_query,
|
||||
page=1,
|
||||
page_size=max_results,
|
||||
)
|
||||
|
||||
agents_with_graphs = [
|
||||
agent for agent in response.agents if agent.agent_graph_id
|
||||
]
|
||||
|
||||
if not agents_with_graphs:
|
||||
return []
|
||||
|
||||
graph_ids = [agent.agent_graph_id for agent in agents_with_graphs]
|
||||
graphs = await get_store_listed_graphs(*graph_ids)
|
||||
|
||||
results: list[LibraryAgentSummary] = []
|
||||
for agent in agents_with_graphs:
|
||||
graph_id = agent.agent_graph_id
|
||||
if graph_id and graph_id in graphs:
|
||||
graph = graphs[graph_id]
|
||||
results.append(
|
||||
LibraryAgentSummary(
|
||||
graph_id=graph.id,
|
||||
graph_version=graph.version,
|
||||
name=agent.agent_name,
|
||||
description=agent.description,
|
||||
input_schema=graph.input_schema,
|
||||
output_schema=graph.output_schema,
|
||||
)
|
||||
)
|
||||
return results
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to search marketplace agents: {e}")
|
||||
return []
|
||||
|
||||
|
||||
async def get_all_relevant_agents_for_generation(
|
||||
user_id: str,
|
||||
search_query: str | None = None,
|
||||
exclude_graph_id: str | None = None,
|
||||
include_library: bool = True,
|
||||
include_marketplace: bool = True,
|
||||
max_library_results: int = 15,
|
||||
max_marketplace_results: int = 10,
|
||||
) -> list[AgentSummary]:
|
||||
"""Fetch relevant agents from library and/or marketplace.
|
||||
|
||||
Searches both user's library and marketplace by default.
|
||||
Explicitly mentioned UUIDs in the search query are always looked up.
|
||||
|
||||
Args:
|
||||
user_id: The user ID
|
||||
search_query: Search term to find relevant agents (user's goal/description)
|
||||
exclude_graph_id: Optional graph ID to exclude (prevents circular references)
|
||||
include_library: Whether to search user's library (default True)
|
||||
include_marketplace: Whether to also search marketplace (default True)
|
||||
max_library_results: Max library agents to return (default 15)
|
||||
max_marketplace_results: Max marketplace agents to return (default 10)
|
||||
|
||||
Returns:
|
||||
List of AgentSummary with full schemas (both library and marketplace agents)
|
||||
"""
|
||||
agents: list[AgentSummary] = []
|
||||
seen_graph_ids: set[str] = set()
|
||||
|
||||
if search_query:
|
||||
mentioned_uuids = extract_uuids_from_text(search_query)
|
||||
for graph_id in mentioned_uuids:
|
||||
if graph_id == exclude_graph_id:
|
||||
continue
|
||||
agent = await get_library_agent_by_graph_id(user_id, graph_id)
|
||||
agent_graph_id = agent.get("graph_id") if agent else None
|
||||
if agent and agent_graph_id and agent_graph_id not in seen_graph_ids:
|
||||
agents.append(agent)
|
||||
seen_graph_ids.add(agent_graph_id)
|
||||
logger.debug(
|
||||
f"Found explicitly mentioned agent: {agent.get('name') or 'Unknown'}"
|
||||
)
|
||||
|
||||
if include_library:
|
||||
library_agents = await get_library_agents_for_generation(
|
||||
user_id=user_id,
|
||||
search_query=search_query,
|
||||
exclude_graph_id=exclude_graph_id,
|
||||
max_results=max_library_results,
|
||||
)
|
||||
for agent in library_agents:
|
||||
graph_id = agent.get("graph_id")
|
||||
if graph_id and graph_id not in seen_graph_ids:
|
||||
agents.append(agent)
|
||||
seen_graph_ids.add(graph_id)
|
||||
|
||||
if include_marketplace and search_query:
|
||||
marketplace_agents = await search_marketplace_agents_for_generation(
|
||||
search_query=search_query,
|
||||
max_results=max_marketplace_results,
|
||||
)
|
||||
for agent in marketplace_agents:
|
||||
graph_id = agent.get("graph_id")
|
||||
if graph_id and graph_id not in seen_graph_ids:
|
||||
agents.append(agent)
|
||||
seen_graph_ids.add(graph_id)
|
||||
|
||||
return agents
|
||||
|
||||
|
||||
def extract_search_terms_from_steps(
|
||||
decomposition_result: DecompositionResult | dict[str, Any],
|
||||
) -> list[str]:
|
||||
"""Extract search terms from decomposed instruction steps.
|
||||
|
||||
Analyzes the decomposition result to extract relevant keywords
|
||||
for additional library agent searches.
|
||||
|
||||
Args:
|
||||
decomposition_result: Result from decompose_goal containing steps
|
||||
|
||||
Returns:
|
||||
List of unique search terms extracted from steps
|
||||
"""
|
||||
search_terms: list[str] = []
|
||||
|
||||
if decomposition_result.get("type") != "instructions":
|
||||
return search_terms
|
||||
|
||||
steps = decomposition_result.get("steps", [])
|
||||
if not steps:
|
||||
return search_terms
|
||||
|
||||
step_keys: list[str] = ["description", "action", "block_name", "tool", "name"]
|
||||
|
||||
for step in steps:
|
||||
for key in step_keys:
|
||||
value = step.get(key) # type: ignore[union-attr]
|
||||
if isinstance(value, str) and len(value) > 3:
|
||||
search_terms.append(value)
|
||||
|
||||
seen: set[str] = set()
|
||||
unique_terms: list[str] = []
|
||||
for term in search_terms:
|
||||
term_lower = term.lower()
|
||||
if term_lower not in seen:
|
||||
seen.add(term_lower)
|
||||
unique_terms.append(term)
|
||||
|
||||
return unique_terms
|
||||
|
||||
|
||||
async def enrich_library_agents_from_steps(
|
||||
user_id: str,
|
||||
decomposition_result: DecompositionResult | dict[str, Any],
|
||||
existing_agents: list[AgentSummary] | list[dict[str, Any]],
|
||||
exclude_graph_id: str | None = None,
|
||||
include_marketplace: bool = True,
|
||||
max_additional_results: int = 10,
|
||||
) -> list[AgentSummary] | list[dict[str, Any]]:
|
||||
"""Enrich library agents list with additional searches based on decomposed steps.
|
||||
|
||||
This implements two-phase search: after decomposition, we search for additional
|
||||
relevant agents based on the specific steps identified.
|
||||
|
||||
Args:
|
||||
user_id: The user ID
|
||||
decomposition_result: Result from decompose_goal containing steps
|
||||
existing_agents: Already fetched library agents from initial search
|
||||
exclude_graph_id: Optional graph ID to exclude
|
||||
include_marketplace: Whether to also search marketplace
|
||||
max_additional_results: Max additional agents per search term (default 10)
|
||||
|
||||
Returns:
|
||||
Combined list of library agents (existing + newly discovered)
|
||||
"""
|
||||
search_terms = extract_search_terms_from_steps(decomposition_result)
|
||||
|
||||
if not search_terms:
|
||||
return existing_agents
|
||||
|
||||
existing_ids: set[str] = set()
|
||||
existing_names: set[str] = set()
|
||||
|
||||
for agent in existing_agents:
|
||||
agent_name = agent.get("name")
|
||||
if agent_name and isinstance(agent_name, str):
|
||||
existing_names.add(agent_name.lower())
|
||||
graph_id = agent.get("graph_id") # type: ignore[call-overload]
|
||||
if graph_id and isinstance(graph_id, str):
|
||||
existing_ids.add(graph_id)
|
||||
|
||||
all_agents: list[AgentSummary] | list[dict[str, Any]] = list(existing_agents)
|
||||
|
||||
for term in search_terms[:3]:
|
||||
try:
|
||||
additional_agents = await get_all_relevant_agents_for_generation(
|
||||
user_id=user_id,
|
||||
search_query=term,
|
||||
exclude_graph_id=exclude_graph_id,
|
||||
include_marketplace=include_marketplace,
|
||||
max_library_results=max_additional_results,
|
||||
max_marketplace_results=5,
|
||||
)
|
||||
|
||||
for agent in additional_agents:
|
||||
agent_name = agent.get("name")
|
||||
if not agent_name or not isinstance(agent_name, str):
|
||||
continue
|
||||
agent_name_lower = agent_name.lower()
|
||||
|
||||
if agent_name_lower in existing_names:
|
||||
continue
|
||||
|
||||
graph_id = agent.get("graph_id") # type: ignore[call-overload]
|
||||
if graph_id and graph_id in existing_ids:
|
||||
continue
|
||||
|
||||
all_agents.append(agent)
|
||||
existing_names.add(agent_name_lower)
|
||||
if graph_id and isinstance(graph_id, str):
|
||||
existing_ids.add(graph_id)
|
||||
|
||||
except DatabaseError:
|
||||
logger.error(f"Database error searching for agents with term '{term}'")
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
f"Failed to search for additional agents with term '{term}': {e}"
|
||||
)
|
||||
|
||||
logger.debug(
|
||||
f"Enriched library agents: {len(existing_agents)} initial + "
|
||||
f"{len(all_agents) - len(existing_agents)} additional = {len(all_agents)} total"
|
||||
)
|
||||
|
||||
return all_agents
|
||||
|
||||
|
||||
async def decompose_goal(
|
||||
description: str,
|
||||
context: str = "",
|
||||
library_agents: list[AgentSummary] | None = None,
|
||||
) -> DecompositionResult | None:
|
||||
"""Break down a goal into steps or return clarifying questions.
|
||||
|
||||
Args:
|
||||
description: Natural language goal description
|
||||
context: Additional context (e.g., answers to previous questions)
|
||||
library_agents: User's library agents available for sub-agent composition
|
||||
|
||||
Returns:
|
||||
Dict with either:
|
||||
DecompositionResult with either:
|
||||
- {"type": "clarifying_questions", "questions": [...]}
|
||||
- {"type": "instructions", "steps": [...]}
|
||||
Or None on error
|
||||
@@ -54,26 +541,47 @@ async def decompose_goal(description: str, context: str = "") -> dict[str, Any]
|
||||
"""
|
||||
_check_service_configured()
|
||||
logger.info("Calling external Agent Generator service for decompose_goal")
|
||||
return await decompose_goal_external(description, context)
|
||||
result = await decompose_goal_external(
|
||||
description, context, _to_dict_list(library_agents)
|
||||
)
|
||||
return result # type: ignore[return-value]
|
||||
|
||||
|
||||
async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None:
|
||||
async def generate_agent(
|
||||
instructions: DecompositionResult | dict[str, Any],
|
||||
library_agents: list[AgentSummary] | list[dict[str, Any]] | None = None,
|
||||
operation_id: str | None = None,
|
||||
task_id: str | None = None,
|
||||
) -> dict[str, Any] | None:
|
||||
"""Generate agent JSON from instructions.
|
||||
|
||||
Args:
|
||||
instructions: Structured instructions from decompose_goal
|
||||
library_agents: User's library agents available for sub-agent composition
|
||||
operation_id: Operation ID for async processing (enables Redis Streams
|
||||
completion notification)
|
||||
task_id: Task ID for async processing (enables Redis Streams persistence
|
||||
and SSE delivery)
|
||||
|
||||
Returns:
|
||||
Agent JSON dict or None on error
|
||||
Agent JSON dict, {"status": "accepted"} for async, error dict {"type": "error", ...}, or None on error
|
||||
|
||||
Raises:
|
||||
AgentGeneratorNotConfiguredError: If the external service is not configured.
|
||||
"""
|
||||
_check_service_configured()
|
||||
logger.info("Calling external Agent Generator service for generate_agent")
|
||||
result = await generate_agent_external(instructions)
|
||||
result = await generate_agent_external(
|
||||
dict(instructions), _to_dict_list(library_agents), operation_id, task_id
|
||||
)
|
||||
|
||||
# Don't modify async response
|
||||
if result and result.get("status") == "accepted":
|
||||
return result
|
||||
|
||||
if result:
|
||||
# Ensure required fields
|
||||
if isinstance(result, dict) and result.get("type") == "error":
|
||||
return result
|
||||
if "id" not in result:
|
||||
result["id"] = str(uuid.uuid4())
|
||||
if "version" not in result:
|
||||
@@ -83,6 +591,12 @@ async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None:
|
||||
return result
|
||||
|
||||
|
||||
class AgentJsonValidationError(Exception):
|
||||
"""Raised when agent JSON is invalid or missing required fields."""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
def json_to_graph(agent_json: dict[str, Any]) -> Graph:
|
||||
"""Convert agent JSON dict to Graph model.
|
||||
|
||||
@@ -91,25 +605,55 @@ def json_to_graph(agent_json: dict[str, Any]) -> Graph:
|
||||
|
||||
Returns:
|
||||
Graph ready for saving
|
||||
|
||||
Raises:
|
||||
AgentJsonValidationError: If required fields are missing from nodes or links
|
||||
"""
|
||||
nodes = []
|
||||
for n in agent_json.get("nodes", []):
|
||||
for idx, n in enumerate(agent_json.get("nodes", [])):
|
||||
block_id = n.get("block_id")
|
||||
if not block_id:
|
||||
node_id = n.get("id", f"index_{idx}")
|
||||
raise AgentJsonValidationError(
|
||||
f"Node '{node_id}' is missing required field 'block_id'"
|
||||
)
|
||||
node = Node(
|
||||
id=n.get("id", str(uuid.uuid4())),
|
||||
block_id=n["block_id"],
|
||||
block_id=block_id,
|
||||
input_default=n.get("input_default", {}),
|
||||
metadata=n.get("metadata", {}),
|
||||
)
|
||||
nodes.append(node)
|
||||
|
||||
links = []
|
||||
for link_data in agent_json.get("links", []):
|
||||
for idx, link_data in enumerate(agent_json.get("links", [])):
|
||||
source_id = link_data.get("source_id")
|
||||
sink_id = link_data.get("sink_id")
|
||||
source_name = link_data.get("source_name")
|
||||
sink_name = link_data.get("sink_name")
|
||||
|
||||
missing_fields = []
|
||||
if not source_id:
|
||||
missing_fields.append("source_id")
|
||||
if not sink_id:
|
||||
missing_fields.append("sink_id")
|
||||
if not source_name:
|
||||
missing_fields.append("source_name")
|
||||
if not sink_name:
|
||||
missing_fields.append("sink_name")
|
||||
|
||||
if missing_fields:
|
||||
link_id = link_data.get("id", f"index_{idx}")
|
||||
raise AgentJsonValidationError(
|
||||
f"Link '{link_id}' is missing required fields: {', '.join(missing_fields)}"
|
||||
)
|
||||
|
||||
link = Link(
|
||||
id=link_data.get("id", str(uuid.uuid4())),
|
||||
source_id=link_data["source_id"],
|
||||
sink_id=link_data["sink_id"],
|
||||
source_name=link_data["source_name"],
|
||||
sink_name=link_data["sink_name"],
|
||||
source_id=source_id,
|
||||
sink_id=sink_id,
|
||||
source_name=source_name,
|
||||
sink_name=sink_name,
|
||||
is_static=link_data.get("is_static", False),
|
||||
)
|
||||
links.append(link)
|
||||
@@ -130,22 +674,40 @@ def _reassign_node_ids(graph: Graph) -> None:
|
||||
|
||||
This is needed when creating a new version to avoid unique constraint violations.
|
||||
"""
|
||||
# Create mapping from old node IDs to new UUIDs
|
||||
id_map = {node.id: str(uuid.uuid4()) for node in graph.nodes}
|
||||
|
||||
# Reassign node IDs
|
||||
for node in graph.nodes:
|
||||
node.id = id_map[node.id]
|
||||
|
||||
# Update link references to use new node IDs
|
||||
for link in graph.links:
|
||||
link.id = str(uuid.uuid4()) # Also give links new IDs
|
||||
link.id = str(uuid.uuid4())
|
||||
if link.source_id in id_map:
|
||||
link.source_id = id_map[link.source_id]
|
||||
if link.sink_id in id_map:
|
||||
link.sink_id = id_map[link.sink_id]
|
||||
|
||||
|
||||
def _populate_agent_executor_user_ids(agent_json: dict[str, Any], user_id: str) -> None:
|
||||
"""Populate user_id in AgentExecutorBlock nodes.
|
||||
|
||||
The external agent generator creates AgentExecutorBlock nodes with empty user_id.
|
||||
This function fills in the actual user_id so sub-agents run with correct permissions.
|
||||
|
||||
Args:
|
||||
agent_json: Agent JSON dict (modified in place)
|
||||
user_id: User ID to set
|
||||
"""
|
||||
for node in agent_json.get("nodes", []):
|
||||
if node.get("block_id") == AGENT_EXECUTOR_BLOCK_ID:
|
||||
input_default = node.get("input_default") or {}
|
||||
if not input_default.get("user_id"):
|
||||
input_default["user_id"] = user_id
|
||||
node["input_default"] = input_default
|
||||
logger.debug(
|
||||
f"Set user_id for AgentExecutorBlock node {node.get('id')}"
|
||||
)
|
||||
|
||||
|
||||
async def save_agent_to_library(
|
||||
agent_json: dict[str, Any], user_id: str, is_update: bool = False
|
||||
) -> tuple[Graph, Any]:
|
||||
@@ -159,33 +721,27 @@ async def save_agent_to_library(
|
||||
Returns:
|
||||
Tuple of (created Graph, LibraryAgent)
|
||||
"""
|
||||
from backend.data.graph import get_graph_all_versions
|
||||
# Populate user_id in AgentExecutorBlock nodes before conversion
|
||||
_populate_agent_executor_user_ids(agent_json, user_id)
|
||||
|
||||
graph = json_to_graph(agent_json)
|
||||
|
||||
if is_update:
|
||||
# For updates, keep the same graph ID but increment version
|
||||
# and reassign node/link IDs to avoid conflicts
|
||||
if graph.id:
|
||||
existing_versions = await get_graph_all_versions(graph.id, user_id)
|
||||
if existing_versions:
|
||||
latest_version = max(v.version for v in existing_versions)
|
||||
graph.version = latest_version + 1
|
||||
# Reassign node IDs (but keep graph ID the same)
|
||||
_reassign_node_ids(graph)
|
||||
logger.info(f"Updating agent {graph.id} to version {graph.version}")
|
||||
else:
|
||||
# For new agents, always generate a fresh UUID to avoid collisions
|
||||
graph.id = str(uuid.uuid4())
|
||||
graph.version = 1
|
||||
# Reassign all node IDs as well
|
||||
_reassign_node_ids(graph)
|
||||
logger.info(f"Creating new agent with ID {graph.id}")
|
||||
|
||||
# Save to database
|
||||
created_graph = await create_graph(graph, user_id)
|
||||
|
||||
# Add to user's library (or update existing library agent)
|
||||
library_agents = await library_db.create_library_agent(
|
||||
graph=created_graph,
|
||||
user_id=user_id,
|
||||
@@ -196,26 +752,15 @@ async def save_agent_to_library(
|
||||
return created_graph, library_agents[0]
|
||||
|
||||
|
||||
async def get_agent_as_json(
|
||||
graph_id: str, user_id: str | None
|
||||
) -> dict[str, Any] | None:
|
||||
"""Fetch an agent and convert to JSON format for editing.
|
||||
def graph_to_json(graph: Graph) -> dict[str, Any]:
|
||||
"""Convert a Graph object to JSON format for the agent generator.
|
||||
|
||||
Args:
|
||||
graph_id: Graph ID or library agent ID
|
||||
user_id: User ID
|
||||
graph: Graph object to convert
|
||||
|
||||
Returns:
|
||||
Agent as JSON dict or None if not found
|
||||
Agent as JSON dict
|
||||
"""
|
||||
from backend.data.graph import get_graph
|
||||
|
||||
# Try to get the graph (version=None gets the active version)
|
||||
graph = await get_graph(graph_id, version=None, user_id=user_id)
|
||||
if not graph:
|
||||
return None
|
||||
|
||||
# Convert to JSON format
|
||||
nodes = []
|
||||
for node in graph.nodes:
|
||||
nodes.append(
|
||||
@@ -252,8 +797,41 @@ async def get_agent_as_json(
|
||||
}
|
||||
|
||||
|
||||
async def get_agent_as_json(
|
||||
agent_id: str, user_id: str | None
|
||||
) -> dict[str, Any] | None:
|
||||
"""Fetch an agent and convert to JSON format for editing.
|
||||
|
||||
Args:
|
||||
agent_id: Graph ID or library agent ID
|
||||
user_id: User ID
|
||||
|
||||
Returns:
|
||||
Agent as JSON dict or None if not found
|
||||
"""
|
||||
graph = await get_graph(agent_id, version=None, user_id=user_id)
|
||||
|
||||
if not graph and user_id:
|
||||
try:
|
||||
library_agent = await library_db.get_library_agent(agent_id, user_id)
|
||||
graph = await get_graph(
|
||||
library_agent.graph_id, version=None, user_id=user_id
|
||||
)
|
||||
except NotFoundError:
|
||||
pass
|
||||
|
||||
if not graph:
|
||||
return None
|
||||
|
||||
return graph_to_json(graph)
|
||||
|
||||
|
||||
async def generate_agent_patch(
|
||||
update_request: str, current_agent: dict[str, Any]
|
||||
update_request: str,
|
||||
current_agent: dict[str, Any],
|
||||
library_agents: list[AgentSummary] | None = None,
|
||||
operation_id: str | None = None,
|
||||
task_id: str | None = None,
|
||||
) -> dict[str, Any] | None:
|
||||
"""Update an existing agent using natural language.
|
||||
|
||||
@@ -265,13 +843,57 @@ async def generate_agent_patch(
|
||||
Args:
|
||||
update_request: Natural language description of changes
|
||||
current_agent: Current agent JSON
|
||||
library_agents: User's library agents available for sub-agent composition
|
||||
operation_id: Operation ID for async processing (enables Redis Streams callback)
|
||||
task_id: Task ID for async processing (enables Redis Streams callback)
|
||||
|
||||
Returns:
|
||||
Updated agent JSON, clarifying questions dict, or None on error
|
||||
Updated agent JSON, clarifying questions dict {"type": "clarifying_questions", ...},
|
||||
{"status": "accepted"} for async, error dict {"type": "error", ...}, or None on error
|
||||
|
||||
Raises:
|
||||
AgentGeneratorNotConfiguredError: If the external service is not configured.
|
||||
"""
|
||||
_check_service_configured()
|
||||
logger.info("Calling external Agent Generator service for generate_agent_patch")
|
||||
return await generate_agent_patch_external(update_request, current_agent)
|
||||
return await generate_agent_patch_external(
|
||||
update_request,
|
||||
current_agent,
|
||||
_to_dict_list(library_agents),
|
||||
operation_id,
|
||||
task_id,
|
||||
)
|
||||
|
||||
|
||||
async def customize_template(
|
||||
template_agent: dict[str, Any],
|
||||
modification_request: str,
|
||||
context: str = "",
|
||||
) -> dict[str, Any] | None:
|
||||
"""Customize a template/marketplace agent using natural language.
|
||||
|
||||
This is used when users want to modify a template or marketplace agent
|
||||
to fit their specific needs before adding it to their library.
|
||||
|
||||
The external Agent Generator service handles:
|
||||
- Understanding the modification request
|
||||
- Applying changes to the template
|
||||
- Fixing and validating the result
|
||||
|
||||
Args:
|
||||
template_agent: The template agent JSON to customize
|
||||
modification_request: Natural language description of customizations
|
||||
context: Additional context (e.g., answers to previous questions)
|
||||
|
||||
Returns:
|
||||
Customized agent JSON, clarifying questions dict {"type": "clarifying_questions", ...},
|
||||
error dict {"type": "error", ...}, or None on unexpected error
|
||||
|
||||
Raises:
|
||||
AgentGeneratorNotConfiguredError: If the external service is not configured.
|
||||
"""
|
||||
_check_service_configured()
|
||||
logger.info("Calling external Agent Generator service for customize_template")
|
||||
return await customize_template_external(
|
||||
template_agent, modification_request, context
|
||||
)
|
||||
|
||||
@@ -0,0 +1,95 @@
|
||||
"""Error handling utilities for agent generator."""
|
||||
|
||||
import re
|
||||
|
||||
|
||||
def _sanitize_error_details(details: str) -> str:
|
||||
"""Sanitize error details to remove sensitive information.
|
||||
|
||||
Strips common patterns that could expose internal system info:
|
||||
- File paths (Unix and Windows)
|
||||
- Database connection strings
|
||||
- URLs with credentials
|
||||
- Stack trace internals
|
||||
|
||||
Args:
|
||||
details: Raw error details string
|
||||
|
||||
Returns:
|
||||
Sanitized error details safe for user display
|
||||
"""
|
||||
sanitized = re.sub(
|
||||
r"/[a-zA-Z0-9_./\-]+\.(py|js|ts|json|yaml|yml)", "[path]", details
|
||||
)
|
||||
sanitized = re.sub(r"[A-Z]:\\[a-zA-Z0-9_\\.\\-]+", "[path]", sanitized)
|
||||
sanitized = re.sub(
|
||||
r"(postgres|mysql|mongodb|redis)://[^\s]+", "[database_url]", sanitized
|
||||
)
|
||||
sanitized = re.sub(r"https?://[^:]+:[^@]+@[^\s]+", "[url]", sanitized)
|
||||
sanitized = re.sub(r", line \d+", "", sanitized)
|
||||
sanitized = re.sub(r'File "[^"]+",?', "", sanitized)
|
||||
|
||||
return sanitized.strip()
|
||||
|
||||
|
||||
def get_user_message_for_error(
|
||||
error_type: str,
|
||||
operation: str = "process the request",
|
||||
llm_parse_message: str | None = None,
|
||||
validation_message: str | None = None,
|
||||
error_details: str | None = None,
|
||||
) -> str:
|
||||
"""Get a user-friendly error message based on error type.
|
||||
|
||||
This function maps internal error types to user-friendly messages,
|
||||
providing a consistent experience across different agent operations.
|
||||
|
||||
Args:
|
||||
error_type: The error type from the external service
|
||||
(e.g., "llm_parse_error", "timeout", "rate_limit")
|
||||
operation: Description of what operation failed, used in the default
|
||||
message (e.g., "analyze the goal", "generate the agent")
|
||||
llm_parse_message: Custom message for llm_parse_error type
|
||||
validation_message: Custom message for validation_error type
|
||||
error_details: Optional additional details about the error
|
||||
|
||||
Returns:
|
||||
User-friendly error message suitable for display to the user
|
||||
"""
|
||||
base_message = ""
|
||||
|
||||
if error_type == "llm_parse_error":
|
||||
base_message = (
|
||||
llm_parse_message
|
||||
or "The AI had trouble processing this request. Please try again."
|
||||
)
|
||||
elif error_type == "validation_error":
|
||||
base_message = (
|
||||
validation_message
|
||||
or "The generated agent failed validation. "
|
||||
"This usually happens when the agent structure doesn't match "
|
||||
"what the platform expects. Please try simplifying your goal "
|
||||
"or breaking it into smaller parts."
|
||||
)
|
||||
elif error_type == "patch_error":
|
||||
base_message = (
|
||||
"Failed to apply the changes. The modification couldn't be "
|
||||
"validated. Please try a different approach or simplify the change."
|
||||
)
|
||||
elif error_type in ("timeout", "llm_timeout"):
|
||||
base_message = (
|
||||
"The request took too long to process. This can happen with "
|
||||
"complex agents. Please try again or simplify your goal."
|
||||
)
|
||||
elif error_type in ("rate_limit", "llm_rate_limit"):
|
||||
base_message = "The service is currently busy. Please try again in a moment."
|
||||
else:
|
||||
base_message = f"Failed to {operation}. Please try again."
|
||||
|
||||
if error_details:
|
||||
details = _sanitize_error_details(error_details)
|
||||
if len(details) > 200:
|
||||
details = details[:200] + "..."
|
||||
base_message += f"\n\nTechnical details: {details}"
|
||||
|
||||
return base_message
|
||||
@@ -14,6 +14,70 @@ from backend.util.settings import Settings
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _create_error_response(
|
||||
error_message: str,
|
||||
error_type: str = "unknown",
|
||||
details: dict[str, Any] | None = None,
|
||||
) -> dict[str, Any]:
|
||||
"""Create a standardized error response dict.
|
||||
|
||||
Args:
|
||||
error_message: Human-readable error message
|
||||
error_type: Machine-readable error type
|
||||
details: Optional additional error details
|
||||
|
||||
Returns:
|
||||
Error dict with type="error" and error details
|
||||
"""
|
||||
response: dict[str, Any] = {
|
||||
"type": "error",
|
||||
"error": error_message,
|
||||
"error_type": error_type,
|
||||
}
|
||||
if details:
|
||||
response["details"] = details
|
||||
return response
|
||||
|
||||
|
||||
def _classify_http_error(e: httpx.HTTPStatusError) -> tuple[str, str]:
|
||||
"""Classify an HTTP error into error_type and message.
|
||||
|
||||
Args:
|
||||
e: The HTTP status error
|
||||
|
||||
Returns:
|
||||
Tuple of (error_type, error_message)
|
||||
"""
|
||||
status = e.response.status_code
|
||||
if status == 429:
|
||||
return "rate_limit", f"Agent Generator rate limited: {e}"
|
||||
elif status == 503:
|
||||
return "service_unavailable", f"Agent Generator unavailable: {e}"
|
||||
elif status == 504 or status == 408:
|
||||
return "timeout", f"Agent Generator timed out: {e}"
|
||||
else:
|
||||
return "http_error", f"HTTP error calling Agent Generator: {e}"
|
||||
|
||||
|
||||
def _classify_request_error(e: httpx.RequestError) -> tuple[str, str]:
|
||||
"""Classify a request error into error_type and message.
|
||||
|
||||
Args:
|
||||
e: The request error
|
||||
|
||||
Returns:
|
||||
Tuple of (error_type, error_message)
|
||||
"""
|
||||
error_str = str(e).lower()
|
||||
if "timeout" in error_str or "timed out" in error_str:
|
||||
return "timeout", f"Agent Generator request timed out: {e}"
|
||||
elif "connect" in error_str:
|
||||
return "connection_error", f"Could not connect to Agent Generator: {e}"
|
||||
else:
|
||||
return "request_error", f"Request error calling Agent Generator: {e}"
|
||||
|
||||
|
||||
_client: httpx.AsyncClient | None = None
|
||||
_settings: Settings | None = None
|
||||
|
||||
@@ -53,13 +117,16 @@ def _get_client() -> httpx.AsyncClient:
|
||||
|
||||
|
||||
async def decompose_goal_external(
|
||||
description: str, context: str = ""
|
||||
description: str,
|
||||
context: str = "",
|
||||
library_agents: list[dict[str, Any]] | None = None,
|
||||
) -> dict[str, Any] | None:
|
||||
"""Call the external service to decompose a goal.
|
||||
|
||||
Args:
|
||||
description: Natural language goal description
|
||||
context: Additional context (e.g., answers to previous questions)
|
||||
library_agents: User's library agents available for sub-agent composition
|
||||
|
||||
Returns:
|
||||
Dict with either:
|
||||
@@ -67,15 +134,17 @@ async def decompose_goal_external(
|
||||
- {"type": "instructions", "steps": [...]}
|
||||
- {"type": "unachievable_goal", ...}
|
||||
- {"type": "vague_goal", ...}
|
||||
Or None on error
|
||||
- {"type": "error", "error": "...", "error_type": "..."} on error
|
||||
Or None on unexpected error
|
||||
"""
|
||||
client = _get_client()
|
||||
|
||||
# Build the request payload
|
||||
payload: dict[str, Any] = {"description": description}
|
||||
if context:
|
||||
# The external service uses user_instruction for additional context
|
||||
payload["user_instruction"] = context
|
||||
description = f"{description}\n\nAdditional context from user:\n{context}"
|
||||
|
||||
payload: dict[str, Any] = {"description": description}
|
||||
if library_agents:
|
||||
payload["library_agents"] = library_agents
|
||||
|
||||
try:
|
||||
response = await client.post("/api/decompose-description", json=payload)
|
||||
@@ -83,8 +152,13 @@ async def decompose_goal_external(
|
||||
data = response.json()
|
||||
|
||||
if not data.get("success"):
|
||||
logger.error(f"External service returned error: {data.get('error')}")
|
||||
return None
|
||||
error_msg = data.get("error", "Unknown error from Agent Generator")
|
||||
error_type = data.get("error_type", "unknown")
|
||||
logger.error(
|
||||
f"Agent Generator decomposition failed: {error_msg} "
|
||||
f"(type: {error_type})"
|
||||
)
|
||||
return _create_error_response(error_msg, error_type)
|
||||
|
||||
# Map the response to the expected format
|
||||
response_type = data.get("type")
|
||||
@@ -106,88 +180,162 @@ async def decompose_goal_external(
|
||||
"type": "vague_goal",
|
||||
"suggested_goal": data.get("suggested_goal"),
|
||||
}
|
||||
elif response_type == "error":
|
||||
# Pass through error from the service
|
||||
return _create_error_response(
|
||||
data.get("error", "Unknown error"),
|
||||
data.get("error_type", "unknown"),
|
||||
)
|
||||
else:
|
||||
logger.error(
|
||||
f"Unknown response type from external service: {response_type}"
|
||||
)
|
||||
return None
|
||||
return _create_error_response(
|
||||
f"Unknown response type from Agent Generator: {response_type}",
|
||||
"invalid_response",
|
||||
)
|
||||
|
||||
except httpx.HTTPStatusError as e:
|
||||
logger.error(f"HTTP error calling external agent generator: {e}")
|
||||
return None
|
||||
error_type, error_msg = _classify_http_error(e)
|
||||
logger.error(error_msg)
|
||||
return _create_error_response(error_msg, error_type)
|
||||
except httpx.RequestError as e:
|
||||
logger.error(f"Request error calling external agent generator: {e}")
|
||||
return None
|
||||
error_type, error_msg = _classify_request_error(e)
|
||||
logger.error(error_msg)
|
||||
return _create_error_response(error_msg, error_type)
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error calling external agent generator: {e}")
|
||||
return None
|
||||
error_msg = f"Unexpected error calling Agent Generator: {e}"
|
||||
logger.error(error_msg)
|
||||
return _create_error_response(error_msg, "unexpected_error")
|
||||
|
||||
|
||||
async def generate_agent_external(
|
||||
instructions: dict[str, Any]
|
||||
instructions: dict[str, Any],
|
||||
library_agents: list[dict[str, Any]] | None = None,
|
||||
operation_id: str | None = None,
|
||||
task_id: str | None = None,
|
||||
) -> dict[str, Any] | None:
|
||||
"""Call the external service to generate an agent from instructions.
|
||||
|
||||
Args:
|
||||
instructions: Structured instructions from decompose_goal
|
||||
library_agents: User's library agents available for sub-agent composition
|
||||
operation_id: Operation ID for async processing (enables Redis Streams callback)
|
||||
task_id: Task ID for async processing (enables Redis Streams callback)
|
||||
|
||||
Returns:
|
||||
Agent JSON dict or None on error
|
||||
Agent JSON dict, {"status": "accepted"} for async, or error dict {"type": "error", ...} on error
|
||||
"""
|
||||
client = _get_client()
|
||||
|
||||
# Build request payload
|
||||
payload: dict[str, Any] = {"instructions": instructions}
|
||||
if library_agents:
|
||||
payload["library_agents"] = library_agents
|
||||
if operation_id and task_id:
|
||||
payload["operation_id"] = operation_id
|
||||
payload["task_id"] = task_id
|
||||
|
||||
try:
|
||||
response = await client.post(
|
||||
"/api/generate-agent", json={"instructions": instructions}
|
||||
)
|
||||
response = await client.post("/api/generate-agent", json=payload)
|
||||
|
||||
# Handle 202 Accepted for async processing
|
||||
if response.status_code == 202:
|
||||
logger.info(
|
||||
f"Agent Generator accepted async request "
|
||||
f"(operation_id={operation_id}, task_id={task_id})"
|
||||
)
|
||||
return {
|
||||
"status": "accepted",
|
||||
"operation_id": operation_id,
|
||||
"task_id": task_id,
|
||||
}
|
||||
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
|
||||
if not data.get("success"):
|
||||
logger.error(f"External service returned error: {data.get('error')}")
|
||||
return None
|
||||
error_msg = data.get("error", "Unknown error from Agent Generator")
|
||||
error_type = data.get("error_type", "unknown")
|
||||
logger.error(
|
||||
f"Agent Generator generation failed: {error_msg} (type: {error_type})"
|
||||
)
|
||||
return _create_error_response(error_msg, error_type)
|
||||
|
||||
return data.get("agent_json")
|
||||
|
||||
except httpx.HTTPStatusError as e:
|
||||
logger.error(f"HTTP error calling external agent generator: {e}")
|
||||
return None
|
||||
error_type, error_msg = _classify_http_error(e)
|
||||
logger.error(error_msg)
|
||||
return _create_error_response(error_msg, error_type)
|
||||
except httpx.RequestError as e:
|
||||
logger.error(f"Request error calling external agent generator: {e}")
|
||||
return None
|
||||
error_type, error_msg = _classify_request_error(e)
|
||||
logger.error(error_msg)
|
||||
return _create_error_response(error_msg, error_type)
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error calling external agent generator: {e}")
|
||||
return None
|
||||
error_msg = f"Unexpected error calling Agent Generator: {e}"
|
||||
logger.error(error_msg)
|
||||
return _create_error_response(error_msg, "unexpected_error")
|
||||
|
||||
|
||||
async def generate_agent_patch_external(
|
||||
update_request: str, current_agent: dict[str, Any]
|
||||
update_request: str,
|
||||
current_agent: dict[str, Any],
|
||||
library_agents: list[dict[str, Any]] | None = None,
|
||||
operation_id: str | None = None,
|
||||
task_id: str | None = None,
|
||||
) -> dict[str, Any] | None:
|
||||
"""Call the external service to generate a patch for an existing agent.
|
||||
|
||||
Args:
|
||||
update_request: Natural language description of changes
|
||||
current_agent: Current agent JSON
|
||||
library_agents: User's library agents available for sub-agent composition
|
||||
operation_id: Operation ID for async processing (enables Redis Streams callback)
|
||||
task_id: Task ID for async processing (enables Redis Streams callback)
|
||||
|
||||
Returns:
|
||||
Updated agent JSON, clarifying questions dict, or None on error
|
||||
Updated agent JSON, clarifying questions dict, {"status": "accepted"} for async, or error dict on error
|
||||
"""
|
||||
client = _get_client()
|
||||
|
||||
# Build request payload
|
||||
payload: dict[str, Any] = {
|
||||
"update_request": update_request,
|
||||
"current_agent_json": current_agent,
|
||||
}
|
||||
if library_agents:
|
||||
payload["library_agents"] = library_agents
|
||||
if operation_id and task_id:
|
||||
payload["operation_id"] = operation_id
|
||||
payload["task_id"] = task_id
|
||||
|
||||
try:
|
||||
response = await client.post(
|
||||
"/api/update-agent",
|
||||
json={
|
||||
"update_request": update_request,
|
||||
"current_agent_json": current_agent,
|
||||
},
|
||||
)
|
||||
response = await client.post("/api/update-agent", json=payload)
|
||||
|
||||
# Handle 202 Accepted for async processing
|
||||
if response.status_code == 202:
|
||||
logger.info(
|
||||
f"Agent Generator accepted async update request "
|
||||
f"(operation_id={operation_id}, task_id={task_id})"
|
||||
)
|
||||
return {
|
||||
"status": "accepted",
|
||||
"operation_id": operation_id,
|
||||
"task_id": task_id,
|
||||
}
|
||||
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
|
||||
if not data.get("success"):
|
||||
logger.error(f"External service returned error: {data.get('error')}")
|
||||
return None
|
||||
error_msg = data.get("error", "Unknown error from Agent Generator")
|
||||
error_type = data.get("error_type", "unknown")
|
||||
logger.error(
|
||||
f"Agent Generator patch generation failed: {error_msg} "
|
||||
f"(type: {error_type})"
|
||||
)
|
||||
return _create_error_response(error_msg, error_type)
|
||||
|
||||
# Check if it's clarifying questions
|
||||
if data.get("type") == "clarifying_questions":
|
||||
@@ -196,18 +344,99 @@ async def generate_agent_patch_external(
|
||||
"questions": data.get("questions", []),
|
||||
}
|
||||
|
||||
# Check if it's an error passed through
|
||||
if data.get("type") == "error":
|
||||
return _create_error_response(
|
||||
data.get("error", "Unknown error"),
|
||||
data.get("error_type", "unknown"),
|
||||
)
|
||||
|
||||
# Otherwise return the updated agent JSON
|
||||
return data.get("agent_json")
|
||||
|
||||
except httpx.HTTPStatusError as e:
|
||||
logger.error(f"HTTP error calling external agent generator: {e}")
|
||||
return None
|
||||
error_type, error_msg = _classify_http_error(e)
|
||||
logger.error(error_msg)
|
||||
return _create_error_response(error_msg, error_type)
|
||||
except httpx.RequestError as e:
|
||||
logger.error(f"Request error calling external agent generator: {e}")
|
||||
return None
|
||||
error_type, error_msg = _classify_request_error(e)
|
||||
logger.error(error_msg)
|
||||
return _create_error_response(error_msg, error_type)
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error calling external agent generator: {e}")
|
||||
return None
|
||||
error_msg = f"Unexpected error calling Agent Generator: {e}"
|
||||
logger.error(error_msg)
|
||||
return _create_error_response(error_msg, "unexpected_error")
|
||||
|
||||
|
||||
async def customize_template_external(
|
||||
template_agent: dict[str, Any],
|
||||
modification_request: str,
|
||||
context: str = "",
|
||||
) -> dict[str, Any] | None:
|
||||
"""Call the external service to customize a template/marketplace agent.
|
||||
|
||||
Args:
|
||||
template_agent: The template agent JSON to customize
|
||||
modification_request: Natural language description of customizations
|
||||
context: Additional context (e.g., answers to previous questions)
|
||||
|
||||
Returns:
|
||||
Customized agent JSON, clarifying questions dict, or error dict on error
|
||||
"""
|
||||
client = _get_client()
|
||||
|
||||
request = modification_request
|
||||
if context:
|
||||
request = f"{modification_request}\n\nAdditional context from user:\n{context}"
|
||||
|
||||
payload: dict[str, Any] = {
|
||||
"template_agent_json": template_agent,
|
||||
"modification_request": request,
|
||||
}
|
||||
|
||||
try:
|
||||
response = await client.post("/api/template-modification", json=payload)
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
|
||||
if not data.get("success"):
|
||||
error_msg = data.get("error", "Unknown error from Agent Generator")
|
||||
error_type = data.get("error_type", "unknown")
|
||||
logger.error(
|
||||
f"Agent Generator template customization failed: {error_msg} "
|
||||
f"(type: {error_type})"
|
||||
)
|
||||
return _create_error_response(error_msg, error_type)
|
||||
|
||||
# Check if it's clarifying questions
|
||||
if data.get("type") == "clarifying_questions":
|
||||
return {
|
||||
"type": "clarifying_questions",
|
||||
"questions": data.get("questions", []),
|
||||
}
|
||||
|
||||
# Check if it's an error passed through
|
||||
if data.get("type") == "error":
|
||||
return _create_error_response(
|
||||
data.get("error", "Unknown error"),
|
||||
data.get("error_type", "unknown"),
|
||||
)
|
||||
|
||||
# Otherwise return the customized agent JSON
|
||||
return data.get("agent_json")
|
||||
|
||||
except httpx.HTTPStatusError as e:
|
||||
error_type, error_msg = _classify_http_error(e)
|
||||
logger.error(error_msg)
|
||||
return _create_error_response(error_msg, error_type)
|
||||
except httpx.RequestError as e:
|
||||
error_type, error_msg = _classify_request_error(e)
|
||||
logger.error(error_msg)
|
||||
return _create_error_response(error_msg, error_type)
|
||||
except Exception as e:
|
||||
error_msg = f"Unexpected error calling Agent Generator: {e}"
|
||||
logger.error(error_msg)
|
||||
return _create_error_response(error_msg, "unexpected_error")
|
||||
|
||||
|
||||
async def get_blocks_external() -> list[dict[str, Any]] | None:
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
"""Shared agent search functionality for find_agent and find_library_agent tools."""
|
||||
|
||||
import logging
|
||||
import re
|
||||
from typing import Literal
|
||||
|
||||
from backend.api.features.library import db as library_db
|
||||
@@ -19,6 +20,85 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
SearchSource = Literal["marketplace", "library"]
|
||||
|
||||
_UUID_PATTERN = re.compile(
|
||||
r"^[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}$",
|
||||
re.IGNORECASE,
|
||||
)
|
||||
|
||||
|
||||
def _is_uuid(text: str) -> bool:
|
||||
"""Check if text is a valid UUID v4."""
|
||||
return bool(_UUID_PATTERN.match(text.strip()))
|
||||
|
||||
|
||||
async def _get_library_agent_by_id(user_id: str, agent_id: str) -> AgentInfo | None:
|
||||
"""Fetch a library agent by ID (library agent ID or graph_id).
|
||||
|
||||
Tries multiple lookup strategies:
|
||||
1. First by graph_id (AgentGraph primary key)
|
||||
2. Then by library agent ID (LibraryAgent primary key)
|
||||
|
||||
Args:
|
||||
user_id: The user ID
|
||||
agent_id: The ID to look up (can be graph_id or library agent ID)
|
||||
|
||||
Returns:
|
||||
AgentInfo if found, None otherwise
|
||||
"""
|
||||
try:
|
||||
agent = await library_db.get_library_agent_by_graph_id(user_id, agent_id)
|
||||
if agent:
|
||||
logger.debug(f"Found library agent by graph_id: {agent.name}")
|
||||
return AgentInfo(
|
||||
id=agent.id,
|
||||
name=agent.name,
|
||||
description=agent.description or "",
|
||||
source="library",
|
||||
in_library=True,
|
||||
creator=agent.creator_name,
|
||||
status=agent.status.value,
|
||||
can_access_graph=agent.can_access_graph,
|
||||
has_external_trigger=agent.has_external_trigger,
|
||||
new_output=agent.new_output,
|
||||
graph_id=agent.graph_id,
|
||||
)
|
||||
except DatabaseError:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
f"Could not fetch library agent by graph_id {agent_id}: {e}",
|
||||
exc_info=True,
|
||||
)
|
||||
|
||||
try:
|
||||
agent = await library_db.get_library_agent(agent_id, user_id)
|
||||
if agent:
|
||||
logger.debug(f"Found library agent by library_id: {agent.name}")
|
||||
return AgentInfo(
|
||||
id=agent.id,
|
||||
name=agent.name,
|
||||
description=agent.description or "",
|
||||
source="library",
|
||||
in_library=True,
|
||||
creator=agent.creator_name,
|
||||
status=agent.status.value,
|
||||
can_access_graph=agent.can_access_graph,
|
||||
has_external_trigger=agent.has_external_trigger,
|
||||
new_output=agent.new_output,
|
||||
graph_id=agent.graph_id,
|
||||
)
|
||||
except NotFoundError:
|
||||
logger.debug(f"Library agent not found by library_id: {agent_id}")
|
||||
except DatabaseError:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
f"Could not fetch library agent by library_id {agent_id}: {e}",
|
||||
exc_info=True,
|
||||
)
|
||||
|
||||
return None
|
||||
|
||||
|
||||
async def search_agents(
|
||||
query: str,
|
||||
@@ -69,29 +149,37 @@ async def search_agents(
|
||||
is_featured=False,
|
||||
)
|
||||
)
|
||||
else: # library
|
||||
logger.info(f"Searching user library for: {query}")
|
||||
results = await library_db.list_library_agents(
|
||||
user_id=user_id, # type: ignore[arg-type]
|
||||
search_term=query,
|
||||
page_size=10,
|
||||
)
|
||||
for agent in results.agents:
|
||||
agents.append(
|
||||
AgentInfo(
|
||||
id=agent.id,
|
||||
name=agent.name,
|
||||
description=agent.description or "",
|
||||
source="library",
|
||||
in_library=True,
|
||||
creator=agent.creator_name,
|
||||
status=agent.status.value,
|
||||
can_access_graph=agent.can_access_graph,
|
||||
has_external_trigger=agent.has_external_trigger,
|
||||
new_output=agent.new_output,
|
||||
graph_id=agent.graph_id,
|
||||
)
|
||||
else:
|
||||
if _is_uuid(query):
|
||||
logger.info(f"Query looks like UUID, trying direct lookup: {query}")
|
||||
agent = await _get_library_agent_by_id(user_id, query) # type: ignore[arg-type]
|
||||
if agent:
|
||||
agents.append(agent)
|
||||
logger.info(f"Found agent by direct ID lookup: {agent.name}")
|
||||
|
||||
if not agents:
|
||||
logger.info(f"Searching user library for: {query}")
|
||||
results = await library_db.list_library_agents(
|
||||
user_id=user_id, # type: ignore[arg-type]
|
||||
search_term=query,
|
||||
page_size=10,
|
||||
)
|
||||
for agent in results.agents:
|
||||
agents.append(
|
||||
AgentInfo(
|
||||
id=agent.id,
|
||||
name=agent.name,
|
||||
description=agent.description or "",
|
||||
source="library",
|
||||
in_library=True,
|
||||
creator=agent.creator_name,
|
||||
status=agent.status.value,
|
||||
can_access_graph=agent.can_access_graph,
|
||||
has_external_trigger=agent.has_external_trigger,
|
||||
new_output=agent.new_output,
|
||||
graph_id=agent.graph_id,
|
||||
)
|
||||
)
|
||||
logger.info(f"Found {len(agents)} agents in {source}")
|
||||
except NotFoundError:
|
||||
pass
|
||||
|
||||
@@ -36,6 +36,16 @@ class BaseTool:
|
||||
"""Whether this tool requires authentication."""
|
||||
return False
|
||||
|
||||
@property
|
||||
def is_long_running(self) -> bool:
|
||||
"""Whether this tool is long-running and should execute in background.
|
||||
|
||||
Long-running tools (like agent generation) are executed via background
|
||||
tasks to survive SSE disconnections. The result is persisted to chat
|
||||
history and visible when the user refreshes.
|
||||
"""
|
||||
return False
|
||||
|
||||
def as_openai_tool(self) -> ChatCompletionToolParam:
|
||||
"""Convert to OpenAI tool format."""
|
||||
return ChatCompletionToolParam(
|
||||
|
||||
@@ -8,13 +8,17 @@ from backend.api.features.chat.model import ChatSession
|
||||
from .agent_generator import (
|
||||
AgentGeneratorNotConfiguredError,
|
||||
decompose_goal,
|
||||
enrich_library_agents_from_steps,
|
||||
generate_agent,
|
||||
get_all_relevant_agents_for_generation,
|
||||
get_user_message_for_error,
|
||||
save_agent_to_library,
|
||||
)
|
||||
from .base import BaseTool
|
||||
from .models import (
|
||||
AgentPreviewResponse,
|
||||
AgentSavedResponse,
|
||||
AsyncProcessingResponse,
|
||||
ClarificationNeededResponse,
|
||||
ClarifyingQuestion,
|
||||
ErrorResponse,
|
||||
@@ -42,6 +46,10 @@ class CreateAgentTool(BaseTool):
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
@property
|
||||
def is_long_running(self) -> bool:
|
||||
return True
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
@@ -91,6 +99,10 @@ class CreateAgentTool(BaseTool):
|
||||
save = kwargs.get("save", True)
|
||||
session_id = session.session_id if session else None
|
||||
|
||||
# Extract async processing params (passed by long-running tool handler)
|
||||
operation_id = kwargs.get("_operation_id")
|
||||
task_id = kwargs.get("_task_id")
|
||||
|
||||
if not description:
|
||||
return ErrorResponse(
|
||||
message="Please provide a description of what the agent should do.",
|
||||
@@ -98,9 +110,24 @@ class CreateAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Step 1: Decompose goal into steps
|
||||
library_agents = None
|
||||
if user_id:
|
||||
try:
|
||||
library_agents = await get_all_relevant_agents_for_generation(
|
||||
user_id=user_id,
|
||||
search_query=description,
|
||||
include_marketplace=True,
|
||||
)
|
||||
logger.debug(
|
||||
f"Found {len(library_agents)} relevant agents for sub-agent composition"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to fetch library agents: {e}")
|
||||
|
||||
try:
|
||||
decomposition_result = await decompose_goal(description, context)
|
||||
decomposition_result = await decompose_goal(
|
||||
description, context, library_agents
|
||||
)
|
||||
except AgentGeneratorNotConfiguredError:
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
@@ -113,15 +140,31 @@ class CreateAgentTool(BaseTool):
|
||||
|
||||
if decomposition_result is None:
|
||||
return ErrorResponse(
|
||||
message="Failed to analyze the goal. The agent generation service may be unavailable or timed out. Please try again.",
|
||||
message="Failed to analyze the goal. The agent generation service may be unavailable. Please try again.",
|
||||
error="decomposition_failed",
|
||||
details={
|
||||
"description": description[:100]
|
||||
}, # Include context for debugging
|
||||
details={"description": description[:100]},
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if decomposition_result.get("type") == "error":
|
||||
error_msg = decomposition_result.get("error", "Unknown error")
|
||||
error_type = decomposition_result.get("error_type", "unknown")
|
||||
user_message = get_user_message_for_error(
|
||||
error_type,
|
||||
operation="analyze the goal",
|
||||
llm_parse_message="The AI had trouble understanding this request. Please try rephrasing your goal.",
|
||||
)
|
||||
return ErrorResponse(
|
||||
message=user_message,
|
||||
error=f"decomposition_failed:{error_type}",
|
||||
details={
|
||||
"description": description[:100],
|
||||
"service_error": error_msg,
|
||||
"error_type": error_type,
|
||||
},
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Check if LLM returned clarifying questions
|
||||
if decomposition_result.get("type") == "clarifying_questions":
|
||||
questions = decomposition_result.get("questions", [])
|
||||
return ClarificationNeededResponse(
|
||||
@@ -140,7 +183,6 @@ class CreateAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Check for unachievable/vague goals
|
||||
if decomposition_result.get("type") == "unachievable_goal":
|
||||
suggested = decomposition_result.get("suggested_goal", "")
|
||||
reason = decomposition_result.get("reason", "")
|
||||
@@ -167,9 +209,27 @@ class CreateAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Step 2: Generate agent JSON (external service handles fixing and validation)
|
||||
if user_id and library_agents is not None:
|
||||
try:
|
||||
library_agents = await enrich_library_agents_from_steps(
|
||||
user_id=user_id,
|
||||
decomposition_result=decomposition_result,
|
||||
existing_agents=library_agents,
|
||||
include_marketplace=True,
|
||||
)
|
||||
logger.debug(
|
||||
f"After enrichment: {len(library_agents)} total agents for sub-agent composition"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to enrich library agents from steps: {e}")
|
||||
|
||||
try:
|
||||
agent_json = await generate_agent(decomposition_result)
|
||||
agent_json = await generate_agent(
|
||||
decomposition_result,
|
||||
library_agents,
|
||||
operation_id=operation_id,
|
||||
task_id=task_id,
|
||||
)
|
||||
except AgentGeneratorNotConfiguredError:
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
@@ -182,11 +242,47 @@ class CreateAgentTool(BaseTool):
|
||||
|
||||
if agent_json is None:
|
||||
return ErrorResponse(
|
||||
message="Failed to generate the agent. The agent generation service may be unavailable or timed out. Please try again.",
|
||||
message="Failed to generate the agent. The agent generation service may be unavailable. Please try again.",
|
||||
error="generation_failed",
|
||||
details={"description": description[:100]},
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if isinstance(agent_json, dict) and agent_json.get("type") == "error":
|
||||
error_msg = agent_json.get("error", "Unknown error")
|
||||
error_type = agent_json.get("error_type", "unknown")
|
||||
user_message = get_user_message_for_error(
|
||||
error_type,
|
||||
operation="generate the agent",
|
||||
llm_parse_message="The AI had trouble generating the agent. Please try again or simplify your goal.",
|
||||
validation_message=(
|
||||
"I wasn't able to create a valid agent for this request. "
|
||||
"The generated workflow had some structural issues. "
|
||||
"Please try simplifying your goal or breaking it into smaller steps."
|
||||
),
|
||||
error_details=error_msg,
|
||||
)
|
||||
return ErrorResponse(
|
||||
message=user_message,
|
||||
error=f"generation_failed:{error_type}",
|
||||
details={
|
||||
"description": description[:100]
|
||||
}, # Include context for debugging
|
||||
"description": description[:100],
|
||||
"service_error": error_msg,
|
||||
"error_type": error_type,
|
||||
},
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Check if Agent Generator accepted for async processing
|
||||
if agent_json.get("status") == "accepted":
|
||||
logger.info(
|
||||
f"Agent generation delegated to async processing "
|
||||
f"(operation_id={operation_id}, task_id={task_id})"
|
||||
)
|
||||
return AsyncProcessingResponse(
|
||||
message="Agent generation started. You'll be notified when it's complete.",
|
||||
operation_id=operation_id,
|
||||
task_id=task_id,
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
@@ -195,7 +291,6 @@ class CreateAgentTool(BaseTool):
|
||||
node_count = len(agent_json.get("nodes", []))
|
||||
link_count = len(agent_json.get("links", []))
|
||||
|
||||
# Step 3: Preview or save
|
||||
if not save:
|
||||
return AgentPreviewResponse(
|
||||
message=(
|
||||
@@ -210,7 +305,6 @@ class CreateAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Save to library
|
||||
if not user_id:
|
||||
return ErrorResponse(
|
||||
message="You must be logged in to save agents.",
|
||||
@@ -228,7 +322,7 @@ class CreateAgentTool(BaseTool):
|
||||
agent_id=created_graph.id,
|
||||
agent_name=created_graph.name,
|
||||
library_agent_id=library_agent.id,
|
||||
library_agent_link=f"/library/{library_agent.id}",
|
||||
library_agent_link=f"/library/agents/{library_agent.id}",
|
||||
agent_page_link=f"/build?flowID={created_graph.id}",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
@@ -0,0 +1,337 @@
|
||||
"""CustomizeAgentTool - Customizes marketplace/template agents using natural language."""
|
||||
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.api.features.store import db as store_db
|
||||
from backend.api.features.store.exceptions import AgentNotFoundError
|
||||
|
||||
from .agent_generator import (
|
||||
AgentGeneratorNotConfiguredError,
|
||||
customize_template,
|
||||
get_user_message_for_error,
|
||||
graph_to_json,
|
||||
save_agent_to_library,
|
||||
)
|
||||
from .base import BaseTool
|
||||
from .models import (
|
||||
AgentPreviewResponse,
|
||||
AgentSavedResponse,
|
||||
ClarificationNeededResponse,
|
||||
ClarifyingQuestion,
|
||||
ErrorResponse,
|
||||
ToolResponseBase,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class CustomizeAgentTool(BaseTool):
|
||||
"""Tool for customizing marketplace/template agents using natural language."""
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "customize_agent"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Customize a marketplace or template agent using natural language. "
|
||||
"Takes an existing agent from the marketplace and modifies it based on "
|
||||
"the user's requirements before adding to their library."
|
||||
)
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
@property
|
||||
def is_long_running(self) -> bool:
|
||||
return True
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"agent_id": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"The marketplace agent ID in format 'creator/slug' "
|
||||
"(e.g., 'autogpt/newsletter-writer'). "
|
||||
"Get this from find_agent results."
|
||||
),
|
||||
},
|
||||
"modifications": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"Natural language description of how to customize the agent. "
|
||||
"Be specific about what changes you want to make."
|
||||
),
|
||||
},
|
||||
"context": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"Additional context or answers to previous clarifying questions."
|
||||
),
|
||||
},
|
||||
"save": {
|
||||
"type": "boolean",
|
||||
"description": (
|
||||
"Whether to save the customized agent to the user's library. "
|
||||
"Default is true. Set to false for preview only."
|
||||
),
|
||||
"default": True,
|
||||
},
|
||||
},
|
||||
"required": ["agent_id", "modifications"],
|
||||
}
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs,
|
||||
) -> ToolResponseBase:
|
||||
"""Execute the customize_agent tool.
|
||||
|
||||
Flow:
|
||||
1. Parse the agent ID to get creator/slug
|
||||
2. Fetch the template agent from the marketplace
|
||||
3. Call customize_template with the modification request
|
||||
4. Preview or save based on the save parameter
|
||||
"""
|
||||
agent_id = kwargs.get("agent_id", "").strip()
|
||||
modifications = kwargs.get("modifications", "").strip()
|
||||
context = kwargs.get("context", "")
|
||||
save = kwargs.get("save", True)
|
||||
session_id = session.session_id if session else None
|
||||
|
||||
if not agent_id:
|
||||
return ErrorResponse(
|
||||
message="Please provide the marketplace agent ID (e.g., 'creator/agent-name').",
|
||||
error="missing_agent_id",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if not modifications:
|
||||
return ErrorResponse(
|
||||
message="Please describe how you want to customize this agent.",
|
||||
error="missing_modifications",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Parse agent_id in format "creator/slug"
|
||||
parts = [p.strip() for p in agent_id.split("/")]
|
||||
if len(parts) != 2 or not parts[0] or not parts[1]:
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
f"Invalid agent ID format: '{agent_id}'. "
|
||||
"Expected format is 'creator/agent-name' "
|
||||
"(e.g., 'autogpt/newsletter-writer')."
|
||||
),
|
||||
error="invalid_agent_id_format",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
creator_username, agent_slug = parts
|
||||
|
||||
# Fetch the marketplace agent details
|
||||
try:
|
||||
agent_details = await store_db.get_store_agent_details(
|
||||
username=creator_username, agent_name=agent_slug
|
||||
)
|
||||
except AgentNotFoundError:
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
f"Could not find marketplace agent '{agent_id}'. "
|
||||
"Please check the agent ID and try again."
|
||||
),
|
||||
error="agent_not_found",
|
||||
session_id=session_id,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error fetching marketplace agent {agent_id}: {e}")
|
||||
return ErrorResponse(
|
||||
message="Failed to fetch the marketplace agent. Please try again.",
|
||||
error="fetch_error",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if not agent_details.store_listing_version_id:
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
f"The agent '{agent_id}' does not have an available version. "
|
||||
"Please try a different agent."
|
||||
),
|
||||
error="no_version_available",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Get the full agent graph
|
||||
try:
|
||||
graph = await store_db.get_agent(agent_details.store_listing_version_id)
|
||||
template_agent = graph_to_json(graph)
|
||||
except Exception as e:
|
||||
logger.error(f"Error fetching agent graph for {agent_id}: {e}")
|
||||
return ErrorResponse(
|
||||
message="Failed to fetch the agent configuration. Please try again.",
|
||||
error="graph_fetch_error",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Call customize_template
|
||||
try:
|
||||
result = await customize_template(
|
||||
template_agent=template_agent,
|
||||
modification_request=modifications,
|
||||
context=context,
|
||||
)
|
||||
except AgentGeneratorNotConfiguredError:
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
"Agent customization is not available. "
|
||||
"The Agent Generator service is not configured."
|
||||
),
|
||||
error="service_not_configured",
|
||||
session_id=session_id,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error calling customize_template for {agent_id}: {e}")
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
"Failed to customize the agent due to a service error. "
|
||||
"Please try again."
|
||||
),
|
||||
error="customization_service_error",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if result is None:
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
"Failed to customize the agent. "
|
||||
"The agent generation service may be unavailable or timed out. "
|
||||
"Please try again."
|
||||
),
|
||||
error="customization_failed",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Handle error response
|
||||
if isinstance(result, dict) and result.get("type") == "error":
|
||||
error_msg = result.get("error", "Unknown error")
|
||||
error_type = result.get("error_type", "unknown")
|
||||
user_message = get_user_message_for_error(
|
||||
error_type,
|
||||
operation="customize the agent",
|
||||
llm_parse_message=(
|
||||
"The AI had trouble customizing the agent. "
|
||||
"Please try again or simplify your request."
|
||||
),
|
||||
validation_message=(
|
||||
"The customized agent failed validation. "
|
||||
"Please try rephrasing your request."
|
||||
),
|
||||
error_details=error_msg,
|
||||
)
|
||||
return ErrorResponse(
|
||||
message=user_message,
|
||||
error=f"customization_failed:{error_type}",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Handle clarifying questions
|
||||
if isinstance(result, dict) and result.get("type") == "clarifying_questions":
|
||||
questions = result.get("questions") or []
|
||||
if not isinstance(questions, list):
|
||||
logger.error(
|
||||
f"Unexpected clarifying questions format: {type(questions)}"
|
||||
)
|
||||
questions = []
|
||||
return ClarificationNeededResponse(
|
||||
message=(
|
||||
"I need some more information to customize this agent. "
|
||||
"Please answer the following questions:"
|
||||
),
|
||||
questions=[
|
||||
ClarifyingQuestion(
|
||||
question=q.get("question", ""),
|
||||
keyword=q.get("keyword", ""),
|
||||
example=q.get("example"),
|
||||
)
|
||||
for q in questions
|
||||
if isinstance(q, dict)
|
||||
],
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Result should be the customized agent JSON
|
||||
if not isinstance(result, dict):
|
||||
logger.error(f"Unexpected customize_template response type: {type(result)}")
|
||||
return ErrorResponse(
|
||||
message="Failed to customize the agent due to an unexpected response.",
|
||||
error="unexpected_response_type",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
customized_agent = result
|
||||
|
||||
agent_name = customized_agent.get(
|
||||
"name", f"Customized {agent_details.agent_name}"
|
||||
)
|
||||
agent_description = customized_agent.get("description", "")
|
||||
nodes = customized_agent.get("nodes")
|
||||
links = customized_agent.get("links")
|
||||
node_count = len(nodes) if isinstance(nodes, list) else 0
|
||||
link_count = len(links) if isinstance(links, list) else 0
|
||||
|
||||
if not save:
|
||||
return AgentPreviewResponse(
|
||||
message=(
|
||||
f"I've customized the agent '{agent_details.agent_name}'. "
|
||||
f"The customized agent has {node_count} blocks. "
|
||||
f"Review it and call customize_agent with save=true to save it."
|
||||
),
|
||||
agent_json=customized_agent,
|
||||
agent_name=agent_name,
|
||||
description=agent_description,
|
||||
node_count=node_count,
|
||||
link_count=link_count,
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if not user_id:
|
||||
return ErrorResponse(
|
||||
message="You must be logged in to save agents.",
|
||||
error="auth_required",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Save to user's library
|
||||
try:
|
||||
created_graph, library_agent = await save_agent_to_library(
|
||||
customized_agent, user_id, is_update=False
|
||||
)
|
||||
|
||||
return AgentSavedResponse(
|
||||
message=(
|
||||
f"Customized agent '{created_graph.name}' "
|
||||
f"(based on '{agent_details.agent_name}') "
|
||||
f"has been saved to your library!"
|
||||
),
|
||||
agent_id=created_graph.id,
|
||||
agent_name=created_graph.name,
|
||||
library_agent_id=library_agent.id,
|
||||
library_agent_link=f"/library/agents/{library_agent.id}",
|
||||
agent_page_link=f"/build?flowID={created_graph.id}",
|
||||
session_id=session_id,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error saving customized agent: {e}")
|
||||
return ErrorResponse(
|
||||
message="Failed to save the customized agent. Please try again.",
|
||||
error="save_failed",
|
||||
session_id=session_id,
|
||||
)
|
||||
@@ -9,12 +9,15 @@ from .agent_generator import (
|
||||
AgentGeneratorNotConfiguredError,
|
||||
generate_agent_patch,
|
||||
get_agent_as_json,
|
||||
get_all_relevant_agents_for_generation,
|
||||
get_user_message_for_error,
|
||||
save_agent_to_library,
|
||||
)
|
||||
from .base import BaseTool
|
||||
from .models import (
|
||||
AgentPreviewResponse,
|
||||
AgentSavedResponse,
|
||||
AsyncProcessingResponse,
|
||||
ClarificationNeededResponse,
|
||||
ClarifyingQuestion,
|
||||
ErrorResponse,
|
||||
@@ -42,6 +45,10 @@ class EditAgentTool(BaseTool):
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
@property
|
||||
def is_long_running(self) -> bool:
|
||||
return True
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
@@ -98,6 +105,10 @@ class EditAgentTool(BaseTool):
|
||||
save = kwargs.get("save", True)
|
||||
session_id = session.session_id if session else None
|
||||
|
||||
# Extract async processing params (passed by long-running tool handler)
|
||||
operation_id = kwargs.get("_operation_id")
|
||||
task_id = kwargs.get("_task_id")
|
||||
|
||||
if not agent_id:
|
||||
return ErrorResponse(
|
||||
message="Please provide the agent ID to edit.",
|
||||
@@ -112,7 +123,6 @@ class EditAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Step 1: Fetch current agent
|
||||
current_agent = await get_agent_as_json(agent_id, user_id)
|
||||
|
||||
if current_agent is None:
|
||||
@@ -122,14 +132,34 @@ class EditAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Build the update request with context
|
||||
library_agents = None
|
||||
if user_id:
|
||||
try:
|
||||
graph_id = current_agent.get("id")
|
||||
library_agents = await get_all_relevant_agents_for_generation(
|
||||
user_id=user_id,
|
||||
search_query=changes,
|
||||
exclude_graph_id=graph_id,
|
||||
include_marketplace=True,
|
||||
)
|
||||
logger.debug(
|
||||
f"Found {len(library_agents)} relevant agents for sub-agent composition"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to fetch library agents: {e}")
|
||||
|
||||
update_request = changes
|
||||
if context:
|
||||
update_request = f"{changes}\n\nAdditional context:\n{context}"
|
||||
|
||||
# Step 2: Generate updated agent (external service handles fixing and validation)
|
||||
try:
|
||||
result = await generate_agent_patch(update_request, current_agent)
|
||||
result = await generate_agent_patch(
|
||||
update_request,
|
||||
current_agent,
|
||||
library_agents,
|
||||
operation_id=operation_id,
|
||||
task_id=task_id,
|
||||
)
|
||||
except AgentGeneratorNotConfiguredError:
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
@@ -148,7 +178,42 @@ class EditAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Check if LLM returned clarifying questions
|
||||
# Check if Agent Generator accepted for async processing
|
||||
if result.get("status") == "accepted":
|
||||
logger.info(
|
||||
f"Agent edit delegated to async processing "
|
||||
f"(operation_id={operation_id}, task_id={task_id})"
|
||||
)
|
||||
return AsyncProcessingResponse(
|
||||
message="Agent edit started. You'll be notified when it's complete.",
|
||||
operation_id=operation_id,
|
||||
task_id=task_id,
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Check if the result is an error from the external service
|
||||
if isinstance(result, dict) and result.get("type") == "error":
|
||||
error_msg = result.get("error", "Unknown error")
|
||||
error_type = result.get("error_type", "unknown")
|
||||
user_message = get_user_message_for_error(
|
||||
error_type,
|
||||
operation="generate the changes",
|
||||
llm_parse_message="The AI had trouble generating the changes. Please try again or simplify your request.",
|
||||
validation_message="The generated changes failed validation. Please try rephrasing your request.",
|
||||
error_details=error_msg,
|
||||
)
|
||||
return ErrorResponse(
|
||||
message=user_message,
|
||||
error=f"update_generation_failed:{error_type}",
|
||||
details={
|
||||
"agent_id": agent_id,
|
||||
"changes": changes[:100],
|
||||
"service_error": error_msg,
|
||||
"error_type": error_type,
|
||||
},
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if result.get("type") == "clarifying_questions":
|
||||
questions = result.get("questions", [])
|
||||
return ClarificationNeededResponse(
|
||||
@@ -167,7 +232,6 @@ class EditAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Result is the updated agent JSON
|
||||
updated_agent = result
|
||||
|
||||
agent_name = updated_agent.get("name", "Updated Agent")
|
||||
@@ -175,7 +239,6 @@ class EditAgentTool(BaseTool):
|
||||
node_count = len(updated_agent.get("nodes", []))
|
||||
link_count = len(updated_agent.get("links", []))
|
||||
|
||||
# Step 3: Preview or save
|
||||
if not save:
|
||||
return AgentPreviewResponse(
|
||||
message=(
|
||||
@@ -191,7 +254,6 @@ class EditAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Save to library (creates a new version)
|
||||
if not user_id:
|
||||
return ErrorResponse(
|
||||
message="You must be logged in to save agents.",
|
||||
@@ -209,7 +271,7 @@ class EditAgentTool(BaseTool):
|
||||
agent_id=created_graph.id,
|
||||
agent_name=created_graph.name,
|
||||
library_agent_id=library_agent.id,
|
||||
library_agent_link=f"/library/{library_agent.id}",
|
||||
library_agent_link=f"/library/agents/{library_agent.id}",
|
||||
agent_page_link=f"/build?flowID={created_graph.id}",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
@@ -28,6 +28,18 @@ class ResponseType(str, Enum):
|
||||
BLOCK_OUTPUT = "block_output"
|
||||
DOC_SEARCH_RESULTS = "doc_search_results"
|
||||
DOC_PAGE = "doc_page"
|
||||
# Workspace response types
|
||||
WORKSPACE_FILE_LIST = "workspace_file_list"
|
||||
WORKSPACE_FILE_CONTENT = "workspace_file_content"
|
||||
WORKSPACE_FILE_METADATA = "workspace_file_metadata"
|
||||
WORKSPACE_FILE_WRITTEN = "workspace_file_written"
|
||||
WORKSPACE_FILE_DELETED = "workspace_file_deleted"
|
||||
# Long-running operation types
|
||||
OPERATION_STARTED = "operation_started"
|
||||
OPERATION_PENDING = "operation_pending"
|
||||
OPERATION_IN_PROGRESS = "operation_in_progress"
|
||||
# Input validation
|
||||
INPUT_VALIDATION_ERROR = "input_validation_error"
|
||||
|
||||
|
||||
# Base response model
|
||||
@@ -58,6 +70,10 @@ class AgentInfo(BaseModel):
|
||||
has_external_trigger: bool | None = None
|
||||
new_output: bool | None = None
|
||||
graph_id: str | None = None
|
||||
inputs: dict[str, Any] | None = Field(
|
||||
default=None,
|
||||
description="Input schema for the agent, including field names, types, and defaults",
|
||||
)
|
||||
|
||||
|
||||
class AgentsFoundResponse(ToolResponseBase):
|
||||
@@ -184,6 +200,20 @@ class ErrorResponse(ToolResponseBase):
|
||||
details: dict[str, Any] | None = None
|
||||
|
||||
|
||||
class InputValidationErrorResponse(ToolResponseBase):
|
||||
"""Response when run_agent receives unknown input fields."""
|
||||
|
||||
type: ResponseType = ResponseType.INPUT_VALIDATION_ERROR
|
||||
unrecognized_fields: list[str] = Field(
|
||||
description="List of input field names that were not recognized"
|
||||
)
|
||||
inputs: dict[str, Any] = Field(
|
||||
description="The agent's valid input schema for reference"
|
||||
)
|
||||
graph_id: str | None = None
|
||||
graph_version: int | None = None
|
||||
|
||||
|
||||
# Agent output models
|
||||
class ExecutionOutputInfo(BaseModel):
|
||||
"""Summary of a single execution's outputs."""
|
||||
@@ -334,3 +364,60 @@ class BlockOutputResponse(ToolResponseBase):
|
||||
block_name: str
|
||||
outputs: dict[str, list[Any]]
|
||||
success: bool = True
|
||||
|
||||
|
||||
# Long-running operation models
|
||||
class OperationStartedResponse(ToolResponseBase):
|
||||
"""Response when a long-running operation has been started in the background.
|
||||
|
||||
This is returned immediately to the client while the operation continues
|
||||
to execute. The user can close the tab and check back later.
|
||||
|
||||
The task_id can be used to reconnect to the SSE stream via
|
||||
GET /chat/tasks/{task_id}/stream?last_idx=0
|
||||
"""
|
||||
|
||||
type: ResponseType = ResponseType.OPERATION_STARTED
|
||||
operation_id: str
|
||||
tool_name: str
|
||||
task_id: str | None = None # For SSE reconnection
|
||||
|
||||
|
||||
class OperationPendingResponse(ToolResponseBase):
|
||||
"""Response stored in chat history while a long-running operation is executing.
|
||||
|
||||
This is persisted to the database so users see a pending state when they
|
||||
refresh before the operation completes.
|
||||
"""
|
||||
|
||||
type: ResponseType = ResponseType.OPERATION_PENDING
|
||||
operation_id: str
|
||||
tool_name: str
|
||||
|
||||
|
||||
class OperationInProgressResponse(ToolResponseBase):
|
||||
"""Response when an operation is already in progress.
|
||||
|
||||
Returned for idempotency when the same tool_call_id is requested again
|
||||
while the background task is still running.
|
||||
"""
|
||||
|
||||
type: ResponseType = ResponseType.OPERATION_IN_PROGRESS
|
||||
tool_call_id: str
|
||||
|
||||
|
||||
class AsyncProcessingResponse(ToolResponseBase):
|
||||
"""Response when an operation has been delegated to async processing.
|
||||
|
||||
This is returned by tools when the external service accepts the request
|
||||
for async processing (HTTP 202 Accepted). The Redis Streams completion
|
||||
consumer will handle the result when the external service completes.
|
||||
|
||||
The status field is specifically "accepted" to allow the long-running tool
|
||||
handler to detect this response and skip LLM continuation.
|
||||
"""
|
||||
|
||||
type: ResponseType = ResponseType.OPERATION_STARTED
|
||||
status: str = "accepted" # Must be "accepted" for detection
|
||||
operation_id: str | None = None
|
||||
task_id: str | None = None
|
||||
|
||||
@@ -30,6 +30,7 @@ from .models import (
|
||||
ErrorResponse,
|
||||
ExecutionOptions,
|
||||
ExecutionStartedResponse,
|
||||
InputValidationErrorResponse,
|
||||
SetupInfo,
|
||||
SetupRequirementsResponse,
|
||||
ToolResponseBase,
|
||||
@@ -273,6 +274,22 @@ class RunAgentTool(BaseTool):
|
||||
input_properties = graph.input_schema.get("properties", {})
|
||||
required_fields = set(graph.input_schema.get("required", []))
|
||||
provided_inputs = set(params.inputs.keys())
|
||||
valid_fields = set(input_properties.keys())
|
||||
|
||||
# Check for unknown input fields
|
||||
unrecognized_fields = provided_inputs - valid_fields
|
||||
if unrecognized_fields:
|
||||
return InputValidationErrorResponse(
|
||||
message=(
|
||||
f"Unknown input field(s) provided: {', '.join(sorted(unrecognized_fields))}. "
|
||||
f"Agent was not executed. Please use the correct field names from the schema."
|
||||
),
|
||||
session_id=session_id,
|
||||
unrecognized_fields=sorted(unrecognized_fields),
|
||||
inputs=graph.input_schema,
|
||||
graph_id=graph.id,
|
||||
graph_version=graph.version,
|
||||
)
|
||||
|
||||
# If agent has inputs but none were provided AND use_defaults is not set,
|
||||
# always show what's available first so user can decide
|
||||
|
||||
@@ -402,3 +402,42 @@ async def test_run_agent_schedule_without_name(setup_test_data):
|
||||
# Should return error about missing schedule_name
|
||||
assert result_data.get("type") == "error"
|
||||
assert "schedule_name" in result_data["message"].lower()
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_run_agent_rejects_unknown_input_fields(setup_test_data):
|
||||
"""Test that run_agent returns input_validation_error for unknown input fields."""
|
||||
user = setup_test_data["user"]
|
||||
store_submission = setup_test_data["store_submission"]
|
||||
|
||||
tool = RunAgentTool()
|
||||
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
|
||||
session = make_session(user_id=user.id)
|
||||
|
||||
# Execute with unknown input field names
|
||||
response = await tool.execute(
|
||||
user_id=user.id,
|
||||
session_id=str(uuid.uuid4()),
|
||||
tool_call_id=str(uuid.uuid4()),
|
||||
username_agent_slug=agent_marketplace_id,
|
||||
inputs={
|
||||
"unknown_field": "some value",
|
||||
"another_unknown": "another value",
|
||||
},
|
||||
session=session,
|
||||
)
|
||||
|
||||
assert response is not None
|
||||
assert hasattr(response, "output")
|
||||
assert isinstance(response.output, str)
|
||||
result_data = orjson.loads(response.output)
|
||||
|
||||
# Should return input_validation_error type with unrecognized fields
|
||||
assert result_data.get("type") == "input_validation_error"
|
||||
assert "unrecognized_fields" in result_data
|
||||
assert set(result_data["unrecognized_fields"]) == {
|
||||
"another_unknown",
|
||||
"unknown_field",
|
||||
}
|
||||
assert "inputs" in result_data # Contains the valid schema
|
||||
assert "Agent was not executed" in result_data["message"]
|
||||
|
||||
@@ -1,13 +1,17 @@
|
||||
"""Tool for executing blocks directly."""
|
||||
|
||||
import logging
|
||||
import uuid
|
||||
from collections import defaultdict
|
||||
from typing import Any
|
||||
|
||||
from pydantic_core import PydanticUndefined
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.data.block import get_block
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import CredentialsMetaInput
|
||||
from backend.data.workspace import get_or_create_workspace
|
||||
from backend.integrations.creds_manager import IntegrationCredentialsManager
|
||||
from backend.util.exceptions import BlockError
|
||||
|
||||
@@ -73,15 +77,22 @@ class RunBlockTool(BaseTool):
|
||||
self,
|
||||
user_id: str,
|
||||
block: Any,
|
||||
input_data: dict[str, Any] | None = None,
|
||||
) -> tuple[dict[str, CredentialsMetaInput], list[CredentialsMetaInput]]:
|
||||
"""
|
||||
Check if user has required credentials for a block.
|
||||
|
||||
Args:
|
||||
user_id: User ID
|
||||
block: Block to check credentials for
|
||||
input_data: Input data for the block (used to determine provider via discriminator)
|
||||
|
||||
Returns:
|
||||
tuple[matched_credentials, missing_credentials]
|
||||
"""
|
||||
matched_credentials: dict[str, CredentialsMetaInput] = {}
|
||||
missing_credentials: list[CredentialsMetaInput] = []
|
||||
input_data = input_data or {}
|
||||
|
||||
# Get credential field info from block's input schema
|
||||
credentials_fields_info = block.input_schema.get_credentials_fields_info()
|
||||
@@ -94,14 +105,33 @@ class RunBlockTool(BaseTool):
|
||||
available_creds = await creds_manager.store.get_all_creds(user_id)
|
||||
|
||||
for field_name, field_info in credentials_fields_info.items():
|
||||
# field_info.provider is a frozenset of acceptable providers
|
||||
# field_info.supported_types is a frozenset of acceptable types
|
||||
effective_field_info = field_info
|
||||
if field_info.discriminator and field_info.discriminator_mapping:
|
||||
# Get discriminator from input, falling back to schema default
|
||||
discriminator_value = input_data.get(field_info.discriminator)
|
||||
if discriminator_value is None:
|
||||
field = block.input_schema.model_fields.get(
|
||||
field_info.discriminator
|
||||
)
|
||||
if field and field.default is not PydanticUndefined:
|
||||
discriminator_value = field.default
|
||||
|
||||
if (
|
||||
discriminator_value
|
||||
and discriminator_value in field_info.discriminator_mapping
|
||||
):
|
||||
effective_field_info = field_info.discriminate(discriminator_value)
|
||||
logger.debug(
|
||||
f"Discriminated provider for {field_name}: "
|
||||
f"{discriminator_value} -> {effective_field_info.provider}"
|
||||
)
|
||||
|
||||
matching_cred = next(
|
||||
(
|
||||
cred
|
||||
for cred in available_creds
|
||||
if cred.provider in field_info.provider
|
||||
and cred.type in field_info.supported_types
|
||||
if cred.provider in effective_field_info.provider
|
||||
and cred.type in effective_field_info.supported_types
|
||||
),
|
||||
None,
|
||||
)
|
||||
@@ -115,8 +145,8 @@ class RunBlockTool(BaseTool):
|
||||
)
|
||||
else:
|
||||
# Create a placeholder for the missing credential
|
||||
provider = next(iter(field_info.provider), "unknown")
|
||||
cred_type = next(iter(field_info.supported_types), "api_key")
|
||||
provider = next(iter(effective_field_info.provider), "unknown")
|
||||
cred_type = next(iter(effective_field_info.supported_types), "api_key")
|
||||
missing_credentials.append(
|
||||
CredentialsMetaInput(
|
||||
id=field_name,
|
||||
@@ -184,10 +214,9 @@ class RunBlockTool(BaseTool):
|
||||
|
||||
logger.info(f"Executing block {block.name} ({block_id}) for user {user_id}")
|
||||
|
||||
# Check credentials
|
||||
creds_manager = IntegrationCredentialsManager()
|
||||
matched_credentials, missing_credentials = await self._check_block_credentials(
|
||||
user_id, block
|
||||
user_id, block, input_data
|
||||
)
|
||||
|
||||
if missing_credentials:
|
||||
@@ -223,11 +252,48 @@ class RunBlockTool(BaseTool):
|
||||
)
|
||||
|
||||
try:
|
||||
# Fetch actual credentials and prepare kwargs for block execution
|
||||
# Create execution context with defaults (blocks may require it)
|
||||
# Get or create user's workspace for CoPilot file operations
|
||||
workspace = await get_or_create_workspace(user_id)
|
||||
|
||||
# Generate synthetic IDs for CoPilot context
|
||||
# Each chat session is treated as its own agent with one continuous run
|
||||
# This means:
|
||||
# - graph_id (agent) = session (memories scoped to session when limit_to_agent=True)
|
||||
# - graph_exec_id (run) = session (memories scoped to session when limit_to_run=True)
|
||||
# - node_exec_id = unique per block execution
|
||||
synthetic_graph_id = f"copilot-session-{session.session_id}"
|
||||
synthetic_graph_exec_id = f"copilot-session-{session.session_id}"
|
||||
synthetic_node_id = f"copilot-node-{block_id}"
|
||||
synthetic_node_exec_id = (
|
||||
f"copilot-{session.session_id}-{uuid.uuid4().hex[:8]}"
|
||||
)
|
||||
|
||||
# Create unified execution context with all required fields
|
||||
execution_context = ExecutionContext(
|
||||
# Execution identity
|
||||
user_id=user_id,
|
||||
graph_id=synthetic_graph_id,
|
||||
graph_exec_id=synthetic_graph_exec_id,
|
||||
graph_version=1, # Versions are 1-indexed
|
||||
node_id=synthetic_node_id,
|
||||
node_exec_id=synthetic_node_exec_id,
|
||||
# Workspace with session scoping
|
||||
workspace_id=workspace.id,
|
||||
session_id=session.session_id,
|
||||
)
|
||||
|
||||
# Prepare kwargs for block execution
|
||||
# Keep individual kwargs for backwards compatibility with existing blocks
|
||||
exec_kwargs: dict[str, Any] = {
|
||||
"user_id": user_id,
|
||||
"execution_context": ExecutionContext(),
|
||||
"execution_context": execution_context,
|
||||
# Legacy: individual kwargs for blocks not yet using execution_context
|
||||
"workspace_id": workspace.id,
|
||||
"graph_exec_id": synthetic_graph_exec_id,
|
||||
"node_exec_id": synthetic_node_exec_id,
|
||||
"node_id": synthetic_node_id,
|
||||
"graph_version": 1, # Versions are 1-indexed
|
||||
"graph_id": synthetic_graph_id,
|
||||
}
|
||||
|
||||
for field_name, cred_meta in matched_credentials.items():
|
||||
|
||||
@@ -8,7 +8,7 @@ from backend.api.features.library import model as library_model
|
||||
from backend.api.features.store import db as store_db
|
||||
from backend.data import graph as graph_db
|
||||
from backend.data.graph import GraphModel
|
||||
from backend.data.model import CredentialsFieldInfo, CredentialsMetaInput
|
||||
from backend.data.model import Credentials, CredentialsFieldInfo, CredentialsMetaInput
|
||||
from backend.integrations.creds_manager import IntegrationCredentialsManager
|
||||
from backend.util.exceptions import NotFoundError
|
||||
|
||||
@@ -266,13 +266,14 @@ async def match_user_credentials_to_graph(
|
||||
credential_requirements,
|
||||
_node_fields,
|
||||
) in aggregated_creds.items():
|
||||
# Find first matching credential by provider and type
|
||||
# Find first matching credential by provider, type, and scopes
|
||||
matching_cred = next(
|
||||
(
|
||||
cred
|
||||
for cred in available_creds
|
||||
if cred.provider in credential_requirements.provider
|
||||
and cred.type in credential_requirements.supported_types
|
||||
and _credential_has_required_scopes(cred, credential_requirements)
|
||||
),
|
||||
None,
|
||||
)
|
||||
@@ -296,10 +297,17 @@ async def match_user_credentials_to_graph(
|
||||
f"{credential_field_name} (validation failed: {e})"
|
||||
)
|
||||
else:
|
||||
# Build a helpful error message including scope requirements
|
||||
error_parts = [
|
||||
f"provider in {list(credential_requirements.provider)}",
|
||||
f"type in {list(credential_requirements.supported_types)}",
|
||||
]
|
||||
if credential_requirements.required_scopes:
|
||||
error_parts.append(
|
||||
f"scopes including {list(credential_requirements.required_scopes)}"
|
||||
)
|
||||
missing_creds.append(
|
||||
f"{credential_field_name} "
|
||||
f"(requires provider in {list(credential_requirements.provider)}, "
|
||||
f"type in {list(credential_requirements.supported_types)})"
|
||||
f"{credential_field_name} (requires {', '.join(error_parts)})"
|
||||
)
|
||||
|
||||
logger.info(
|
||||
@@ -309,6 +317,28 @@ async def match_user_credentials_to_graph(
|
||||
return graph_credentials_inputs, missing_creds
|
||||
|
||||
|
||||
def _credential_has_required_scopes(
|
||||
credential: Credentials,
|
||||
requirements: CredentialsFieldInfo,
|
||||
) -> bool:
|
||||
"""
|
||||
Check if a credential has all the scopes required by the block.
|
||||
|
||||
For OAuth2 credentials, verifies that the credential's scopes are a superset
|
||||
of the required scopes. For other credential types, returns True (no scope check).
|
||||
"""
|
||||
# Only OAuth2 credentials have scopes to check
|
||||
if credential.type != "oauth2":
|
||||
return True
|
||||
|
||||
# If no scopes are required, any credential matches
|
||||
if not requirements.required_scopes:
|
||||
return True
|
||||
|
||||
# Check that credential scopes are a superset of required scopes
|
||||
return set(credential.scopes).issuperset(requirements.required_scopes)
|
||||
|
||||
|
||||
async def check_user_has_required_credentials(
|
||||
user_id: str,
|
||||
required_credentials: list[CredentialsMetaInput],
|
||||
|
||||
@@ -0,0 +1,620 @@
|
||||
"""CoPilot tools for workspace file operations."""
|
||||
|
||||
import base64
|
||||
import logging
|
||||
from typing import Any, Optional
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.data.workspace import get_or_create_workspace
|
||||
from backend.util.settings import Config
|
||||
from backend.util.virus_scanner import scan_content_safe
|
||||
from backend.util.workspace import WorkspaceManager
|
||||
|
||||
from .base import BaseTool
|
||||
from .models import ErrorResponse, ResponseType, ToolResponseBase
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class WorkspaceFileInfoData(BaseModel):
|
||||
"""Data model for workspace file information (not a response itself)."""
|
||||
|
||||
file_id: str
|
||||
name: str
|
||||
path: str
|
||||
mime_type: str
|
||||
size_bytes: int
|
||||
|
||||
|
||||
class WorkspaceFileListResponse(ToolResponseBase):
|
||||
"""Response containing list of workspace files."""
|
||||
|
||||
type: ResponseType = ResponseType.WORKSPACE_FILE_LIST
|
||||
files: list[WorkspaceFileInfoData]
|
||||
total_count: int
|
||||
|
||||
|
||||
class WorkspaceFileContentResponse(ToolResponseBase):
|
||||
"""Response containing workspace file content (legacy, for small text files)."""
|
||||
|
||||
type: ResponseType = ResponseType.WORKSPACE_FILE_CONTENT
|
||||
file_id: str
|
||||
name: str
|
||||
path: str
|
||||
mime_type: str
|
||||
content_base64: str
|
||||
|
||||
|
||||
class WorkspaceFileMetadataResponse(ToolResponseBase):
|
||||
"""Response containing workspace file metadata and download URL (prevents context bloat)."""
|
||||
|
||||
type: ResponseType = ResponseType.WORKSPACE_FILE_METADATA
|
||||
file_id: str
|
||||
name: str
|
||||
path: str
|
||||
mime_type: str
|
||||
size_bytes: int
|
||||
download_url: str
|
||||
preview: str | None = None # First 500 chars for text files
|
||||
|
||||
|
||||
class WorkspaceWriteResponse(ToolResponseBase):
|
||||
"""Response after writing a file to workspace."""
|
||||
|
||||
type: ResponseType = ResponseType.WORKSPACE_FILE_WRITTEN
|
||||
file_id: str
|
||||
name: str
|
||||
path: str
|
||||
size_bytes: int
|
||||
|
||||
|
||||
class WorkspaceDeleteResponse(ToolResponseBase):
|
||||
"""Response after deleting a file from workspace."""
|
||||
|
||||
type: ResponseType = ResponseType.WORKSPACE_FILE_DELETED
|
||||
file_id: str
|
||||
success: bool
|
||||
|
||||
|
||||
class ListWorkspaceFilesTool(BaseTool):
|
||||
"""Tool for listing files in user's workspace."""
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "list_workspace_files"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"List files in the user's workspace. "
|
||||
"Returns file names, paths, sizes, and metadata. "
|
||||
"Optionally filter by path prefix."
|
||||
)
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"path_prefix": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"Optional path prefix to filter files "
|
||||
"(e.g., '/documents/' to list only files in documents folder). "
|
||||
"By default, only files from the current session are listed."
|
||||
),
|
||||
},
|
||||
"limit": {
|
||||
"type": "integer",
|
||||
"description": "Maximum number of files to return (default 50, max 100)",
|
||||
"minimum": 1,
|
||||
"maximum": 100,
|
||||
},
|
||||
"include_all_sessions": {
|
||||
"type": "boolean",
|
||||
"description": (
|
||||
"If true, list files from all sessions. "
|
||||
"Default is false (only current session's files)."
|
||||
),
|
||||
},
|
||||
},
|
||||
"required": [],
|
||||
}
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs,
|
||||
) -> ToolResponseBase:
|
||||
session_id = session.session_id
|
||||
|
||||
if not user_id:
|
||||
return ErrorResponse(
|
||||
message="Authentication required",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
path_prefix: Optional[str] = kwargs.get("path_prefix")
|
||||
limit = min(kwargs.get("limit", 50), 100)
|
||||
include_all_sessions: bool = kwargs.get("include_all_sessions", False)
|
||||
|
||||
try:
|
||||
workspace = await get_or_create_workspace(user_id)
|
||||
# Pass session_id for session-scoped file access
|
||||
manager = WorkspaceManager(user_id, workspace.id, session_id)
|
||||
|
||||
files = await manager.list_files(
|
||||
path=path_prefix,
|
||||
limit=limit,
|
||||
include_all_sessions=include_all_sessions,
|
||||
)
|
||||
total = await manager.get_file_count(
|
||||
path=path_prefix,
|
||||
include_all_sessions=include_all_sessions,
|
||||
)
|
||||
|
||||
file_infos = [
|
||||
WorkspaceFileInfoData(
|
||||
file_id=f.id,
|
||||
name=f.name,
|
||||
path=f.path,
|
||||
mime_type=f.mimeType,
|
||||
size_bytes=f.sizeBytes,
|
||||
)
|
||||
for f in files
|
||||
]
|
||||
|
||||
scope_msg = "all sessions" if include_all_sessions else "current session"
|
||||
return WorkspaceFileListResponse(
|
||||
files=file_infos,
|
||||
total_count=total,
|
||||
message=f"Found {len(files)} files in workspace ({scope_msg})",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error listing workspace files: {e}", exc_info=True)
|
||||
return ErrorResponse(
|
||||
message=f"Failed to list workspace files: {str(e)}",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
|
||||
class ReadWorkspaceFileTool(BaseTool):
|
||||
"""Tool for reading file content from workspace."""
|
||||
|
||||
# Size threshold for returning full content vs metadata+URL
|
||||
# Files larger than this return metadata with download URL to prevent context bloat
|
||||
MAX_INLINE_SIZE_BYTES = 32 * 1024 # 32KB
|
||||
# Preview size for text files
|
||||
PREVIEW_SIZE = 500
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "read_workspace_file"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Read a file from the user's workspace. "
|
||||
"Specify either file_id or path to identify the file. "
|
||||
"For small text files, returns content directly. "
|
||||
"For large or binary files, returns metadata and a download URL. "
|
||||
"Paths are scoped to the current session by default. "
|
||||
"Use /sessions/<session_id>/... for cross-session access."
|
||||
)
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"file_id": {
|
||||
"type": "string",
|
||||
"description": "The file's unique ID (from list_workspace_files)",
|
||||
},
|
||||
"path": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"The virtual file path (e.g., '/documents/report.pdf'). "
|
||||
"Scoped to current session by default."
|
||||
),
|
||||
},
|
||||
"force_download_url": {
|
||||
"type": "boolean",
|
||||
"description": (
|
||||
"If true, always return metadata+URL instead of inline content. "
|
||||
"Default is false (auto-selects based on file size/type)."
|
||||
),
|
||||
},
|
||||
},
|
||||
"required": [], # At least one must be provided
|
||||
}
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
def _is_text_mime_type(self, mime_type: str) -> bool:
|
||||
"""Check if the MIME type is a text-based type."""
|
||||
text_types = [
|
||||
"text/",
|
||||
"application/json",
|
||||
"application/xml",
|
||||
"application/javascript",
|
||||
"application/x-python",
|
||||
"application/x-sh",
|
||||
]
|
||||
return any(mime_type.startswith(t) for t in text_types)
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs,
|
||||
) -> ToolResponseBase:
|
||||
session_id = session.session_id
|
||||
|
||||
if not user_id:
|
||||
return ErrorResponse(
|
||||
message="Authentication required",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
file_id: Optional[str] = kwargs.get("file_id")
|
||||
path: Optional[str] = kwargs.get("path")
|
||||
force_download_url: bool = kwargs.get("force_download_url", False)
|
||||
|
||||
if not file_id and not path:
|
||||
return ErrorResponse(
|
||||
message="Please provide either file_id or path",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
try:
|
||||
workspace = await get_or_create_workspace(user_id)
|
||||
# Pass session_id for session-scoped file access
|
||||
manager = WorkspaceManager(user_id, workspace.id, session_id)
|
||||
|
||||
# Get file info
|
||||
if file_id:
|
||||
file_info = await manager.get_file_info(file_id)
|
||||
if file_info is None:
|
||||
return ErrorResponse(
|
||||
message=f"File not found: {file_id}",
|
||||
session_id=session_id,
|
||||
)
|
||||
target_file_id = file_id
|
||||
else:
|
||||
# path is guaranteed to be non-None here due to the check above
|
||||
assert path is not None
|
||||
file_info = await manager.get_file_info_by_path(path)
|
||||
if file_info is None:
|
||||
return ErrorResponse(
|
||||
message=f"File not found at path: {path}",
|
||||
session_id=session_id,
|
||||
)
|
||||
target_file_id = file_info.id
|
||||
|
||||
# Decide whether to return inline content or metadata+URL
|
||||
is_small_file = file_info.sizeBytes <= self.MAX_INLINE_SIZE_BYTES
|
||||
is_text_file = self._is_text_mime_type(file_info.mimeType)
|
||||
|
||||
# Return inline content for small text files (unless force_download_url)
|
||||
if is_small_file and is_text_file and not force_download_url:
|
||||
content = await manager.read_file_by_id(target_file_id)
|
||||
content_b64 = base64.b64encode(content).decode("utf-8")
|
||||
|
||||
return WorkspaceFileContentResponse(
|
||||
file_id=file_info.id,
|
||||
name=file_info.name,
|
||||
path=file_info.path,
|
||||
mime_type=file_info.mimeType,
|
||||
content_base64=content_b64,
|
||||
message=f"Successfully read file: {file_info.name}",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Return metadata + workspace:// reference for large or binary files
|
||||
# This prevents context bloat (100KB file = ~133KB as base64)
|
||||
# Use workspace:// format so frontend urlTransform can add proxy prefix
|
||||
download_url = f"workspace://{target_file_id}"
|
||||
|
||||
# Generate preview for text files
|
||||
preview: str | None = None
|
||||
if is_text_file:
|
||||
try:
|
||||
content = await manager.read_file_by_id(target_file_id)
|
||||
preview_text = content[: self.PREVIEW_SIZE].decode(
|
||||
"utf-8", errors="replace"
|
||||
)
|
||||
if len(content) > self.PREVIEW_SIZE:
|
||||
preview_text += "..."
|
||||
preview = preview_text
|
||||
except Exception:
|
||||
pass # Preview is optional
|
||||
|
||||
return WorkspaceFileMetadataResponse(
|
||||
file_id=file_info.id,
|
||||
name=file_info.name,
|
||||
path=file_info.path,
|
||||
mime_type=file_info.mimeType,
|
||||
size_bytes=file_info.sizeBytes,
|
||||
download_url=download_url,
|
||||
preview=preview,
|
||||
message=f"File: {file_info.name} ({file_info.sizeBytes} bytes). Use download_url to retrieve content.",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
except FileNotFoundError as e:
|
||||
return ErrorResponse(
|
||||
message=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error reading workspace file: {e}", exc_info=True)
|
||||
return ErrorResponse(
|
||||
message=f"Failed to read workspace file: {str(e)}",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
|
||||
class WriteWorkspaceFileTool(BaseTool):
|
||||
"""Tool for writing files to workspace."""
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "write_workspace_file"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Write or create a file in the user's workspace. "
|
||||
"Provide the content as a base64-encoded string. "
|
||||
f"Maximum file size is {Config().max_file_size_mb}MB. "
|
||||
"Files are saved to the current session's folder by default. "
|
||||
"Use /sessions/<session_id>/... for cross-session access."
|
||||
)
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"filename": {
|
||||
"type": "string",
|
||||
"description": "Name for the file (e.g., 'report.pdf')",
|
||||
},
|
||||
"content_base64": {
|
||||
"type": "string",
|
||||
"description": "Base64-encoded file content",
|
||||
},
|
||||
"path": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"Optional virtual path where to save the file "
|
||||
"(e.g., '/documents/report.pdf'). "
|
||||
"Defaults to '/{filename}'. Scoped to current session."
|
||||
),
|
||||
},
|
||||
"mime_type": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"Optional MIME type of the file. "
|
||||
"Auto-detected from filename if not provided."
|
||||
),
|
||||
},
|
||||
"overwrite": {
|
||||
"type": "boolean",
|
||||
"description": "Whether to overwrite if file exists at path (default: false)",
|
||||
},
|
||||
},
|
||||
"required": ["filename", "content_base64"],
|
||||
}
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs,
|
||||
) -> ToolResponseBase:
|
||||
session_id = session.session_id
|
||||
|
||||
if not user_id:
|
||||
return ErrorResponse(
|
||||
message="Authentication required",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
filename: str = kwargs.get("filename", "")
|
||||
content_b64: str = kwargs.get("content_base64", "")
|
||||
path: Optional[str] = kwargs.get("path")
|
||||
mime_type: Optional[str] = kwargs.get("mime_type")
|
||||
overwrite: bool = kwargs.get("overwrite", False)
|
||||
|
||||
if not filename:
|
||||
return ErrorResponse(
|
||||
message="Please provide a filename",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if not content_b64:
|
||||
return ErrorResponse(
|
||||
message="Please provide content_base64",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Decode content
|
||||
try:
|
||||
content = base64.b64decode(content_b64)
|
||||
except Exception:
|
||||
return ErrorResponse(
|
||||
message="Invalid base64-encoded content",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Check size
|
||||
max_file_size = Config().max_file_size_mb * 1024 * 1024
|
||||
if len(content) > max_file_size:
|
||||
return ErrorResponse(
|
||||
message=f"File too large. Maximum size is {Config().max_file_size_mb}MB",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
try:
|
||||
# Virus scan
|
||||
await scan_content_safe(content, filename=filename)
|
||||
|
||||
workspace = await get_or_create_workspace(user_id)
|
||||
# Pass session_id for session-scoped file access
|
||||
manager = WorkspaceManager(user_id, workspace.id, session_id)
|
||||
|
||||
file_record = await manager.write_file(
|
||||
content=content,
|
||||
filename=filename,
|
||||
path=path,
|
||||
mime_type=mime_type,
|
||||
overwrite=overwrite,
|
||||
)
|
||||
|
||||
return WorkspaceWriteResponse(
|
||||
file_id=file_record.id,
|
||||
name=file_record.name,
|
||||
path=file_record.path,
|
||||
size_bytes=file_record.sizeBytes,
|
||||
message=f"Successfully wrote file: {file_record.name}",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
except ValueError as e:
|
||||
return ErrorResponse(
|
||||
message=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error writing workspace file: {e}", exc_info=True)
|
||||
return ErrorResponse(
|
||||
message=f"Failed to write workspace file: {str(e)}",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
|
||||
class DeleteWorkspaceFileTool(BaseTool):
|
||||
"""Tool for deleting files from workspace."""
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "delete_workspace_file"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Delete a file from the user's workspace. "
|
||||
"Specify either file_id or path to identify the file. "
|
||||
"Paths are scoped to the current session by default. "
|
||||
"Use /sessions/<session_id>/... for cross-session access."
|
||||
)
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"file_id": {
|
||||
"type": "string",
|
||||
"description": "The file's unique ID (from list_workspace_files)",
|
||||
},
|
||||
"path": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"The virtual file path (e.g., '/documents/report.pdf'). "
|
||||
"Scoped to current session by default."
|
||||
),
|
||||
},
|
||||
},
|
||||
"required": [], # At least one must be provided
|
||||
}
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs,
|
||||
) -> ToolResponseBase:
|
||||
session_id = session.session_id
|
||||
|
||||
if not user_id:
|
||||
return ErrorResponse(
|
||||
message="Authentication required",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
file_id: Optional[str] = kwargs.get("file_id")
|
||||
path: Optional[str] = kwargs.get("path")
|
||||
|
||||
if not file_id and not path:
|
||||
return ErrorResponse(
|
||||
message="Please provide either file_id or path",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
try:
|
||||
workspace = await get_or_create_workspace(user_id)
|
||||
# Pass session_id for session-scoped file access
|
||||
manager = WorkspaceManager(user_id, workspace.id, session_id)
|
||||
|
||||
# Determine the file_id to delete
|
||||
target_file_id: str
|
||||
if file_id:
|
||||
target_file_id = file_id
|
||||
else:
|
||||
# path is guaranteed to be non-None here due to the check above
|
||||
assert path is not None
|
||||
file_info = await manager.get_file_info_by_path(path)
|
||||
if file_info is None:
|
||||
return ErrorResponse(
|
||||
message=f"File not found at path: {path}",
|
||||
session_id=session_id,
|
||||
)
|
||||
target_file_id = file_info.id
|
||||
|
||||
success = await manager.delete_file(target_file_id)
|
||||
|
||||
if not success:
|
||||
return ErrorResponse(
|
||||
message=f"File not found: {target_file_id}",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
return WorkspaceDeleteResponse(
|
||||
file_id=target_file_id,
|
||||
success=True,
|
||||
message="File deleted successfully",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting workspace file: {e}", exc_info=True)
|
||||
return ErrorResponse(
|
||||
message=f"Failed to delete workspace file: {str(e)}",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
@@ -21,7 +21,7 @@ from backend.data.model import CredentialsMetaInput
|
||||
from backend.integrations.creds_manager import IntegrationCredentialsManager
|
||||
from backend.integrations.webhooks.graph_lifecycle_hooks import on_graph_activate
|
||||
from backend.util.clients import get_scheduler_client
|
||||
from backend.util.exceptions import DatabaseError, NotFoundError
|
||||
from backend.util.exceptions import DatabaseError, InvalidInputError, NotFoundError
|
||||
from backend.util.json import SafeJson
|
||||
from backend.util.models import Pagination
|
||||
from backend.util.settings import Config
|
||||
@@ -39,6 +39,7 @@ async def list_library_agents(
|
||||
sort_by: library_model.LibraryAgentSort = library_model.LibraryAgentSort.UPDATED_AT,
|
||||
page: int = 1,
|
||||
page_size: int = 50,
|
||||
include_executions: bool = False,
|
||||
) -> library_model.LibraryAgentResponse:
|
||||
"""
|
||||
Retrieves a paginated list of LibraryAgent records for a given user.
|
||||
@@ -49,6 +50,9 @@ async def list_library_agents(
|
||||
sort_by: Sorting field (createdAt, updatedAt, isFavorite, isCreatedByUser).
|
||||
page: Current page (1-indexed).
|
||||
page_size: Number of items per page.
|
||||
include_executions: Whether to include execution data for status calculation.
|
||||
Defaults to False for performance (UI fetches status separately).
|
||||
Set to True when accurate status/metrics are needed (e.g., agent generator).
|
||||
|
||||
Returns:
|
||||
A LibraryAgentResponse containing the list of agents and pagination details.
|
||||
@@ -64,11 +68,11 @@ async def list_library_agents(
|
||||
|
||||
if page < 1 or page_size < 1:
|
||||
logger.warning(f"Invalid pagination: page={page}, page_size={page_size}")
|
||||
raise DatabaseError("Invalid pagination input")
|
||||
raise InvalidInputError("Invalid pagination input")
|
||||
|
||||
if search_term and len(search_term.strip()) > 100:
|
||||
logger.warning(f"Search term too long: {repr(search_term)}")
|
||||
raise DatabaseError("Search term is too long")
|
||||
raise InvalidInputError("Search term is too long")
|
||||
|
||||
where_clause: prisma.types.LibraryAgentWhereInput = {
|
||||
"userId": user_id,
|
||||
@@ -76,7 +80,6 @@ async def list_library_agents(
|
||||
"isArchived": False,
|
||||
}
|
||||
|
||||
# Build search filter if applicable
|
||||
if search_term:
|
||||
where_clause["OR"] = [
|
||||
{
|
||||
@@ -93,7 +96,6 @@ async def list_library_agents(
|
||||
},
|
||||
]
|
||||
|
||||
# Determine sorting
|
||||
order_by: prisma.types.LibraryAgentOrderByInput | None = None
|
||||
|
||||
if sort_by == library_model.LibraryAgentSort.CREATED_AT:
|
||||
@@ -105,7 +107,7 @@ async def list_library_agents(
|
||||
library_agents = await prisma.models.LibraryAgent.prisma().find_many(
|
||||
where=where_clause,
|
||||
include=library_agent_include(
|
||||
user_id, include_nodes=False, include_executions=False
|
||||
user_id, include_nodes=False, include_executions=include_executions
|
||||
),
|
||||
order=order_by,
|
||||
skip=(page - 1) * page_size,
|
||||
@@ -175,7 +177,7 @@ async def list_favorite_library_agents(
|
||||
|
||||
if page < 1 or page_size < 1:
|
||||
logger.warning(f"Invalid pagination: page={page}, page_size={page_size}")
|
||||
raise DatabaseError("Invalid pagination input")
|
||||
raise InvalidInputError("Invalid pagination input")
|
||||
|
||||
where_clause: prisma.types.LibraryAgentWhereInput = {
|
||||
"userId": user_id,
|
||||
|
||||
@@ -9,6 +9,7 @@ import pydantic
|
||||
from backend.data.block import BlockInput
|
||||
from backend.data.graph import GraphModel, GraphSettings, GraphTriggerInfo
|
||||
from backend.data.model import CredentialsMetaInput, is_credentials_field_name
|
||||
from backend.util.json import loads as json_loads
|
||||
from backend.util.models import Pagination
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@@ -16,10 +17,10 @@ if TYPE_CHECKING:
|
||||
|
||||
|
||||
class LibraryAgentStatus(str, Enum):
|
||||
COMPLETED = "COMPLETED" # All runs completed
|
||||
HEALTHY = "HEALTHY" # Agent is running (not all runs have completed)
|
||||
WAITING = "WAITING" # Agent is queued or waiting to start
|
||||
ERROR = "ERROR" # Agent is in an error state
|
||||
COMPLETED = "COMPLETED"
|
||||
HEALTHY = "HEALTHY"
|
||||
WAITING = "WAITING"
|
||||
ERROR = "ERROR"
|
||||
|
||||
|
||||
class MarketplaceListingCreator(pydantic.BaseModel):
|
||||
@@ -39,6 +40,30 @@ class MarketplaceListing(pydantic.BaseModel):
|
||||
creator: MarketplaceListingCreator
|
||||
|
||||
|
||||
class RecentExecution(pydantic.BaseModel):
|
||||
"""Summary of a recent execution for quality assessment.
|
||||
|
||||
Used by the LLM to understand the agent's recent performance with specific examples
|
||||
rather than just aggregate statistics.
|
||||
"""
|
||||
|
||||
status: str
|
||||
correctness_score: float | None = None
|
||||
activity_summary: str | None = None
|
||||
|
||||
|
||||
def _parse_settings(settings: dict | str | None) -> GraphSettings:
|
||||
"""Parse settings from database, handling both dict and string formats."""
|
||||
if settings is None:
|
||||
return GraphSettings()
|
||||
try:
|
||||
if isinstance(settings, str):
|
||||
settings = json_loads(settings)
|
||||
return GraphSettings.model_validate(settings)
|
||||
except Exception:
|
||||
return GraphSettings()
|
||||
|
||||
|
||||
class LibraryAgent(pydantic.BaseModel):
|
||||
"""
|
||||
Represents an agent in the library, including metadata for display and
|
||||
@@ -48,7 +73,7 @@ class LibraryAgent(pydantic.BaseModel):
|
||||
id: str
|
||||
graph_id: str
|
||||
graph_version: int
|
||||
owner_user_id: str # ID of user who owns/created this agent graph
|
||||
owner_user_id: str
|
||||
|
||||
image_url: str | None
|
||||
|
||||
@@ -64,7 +89,7 @@ class LibraryAgent(pydantic.BaseModel):
|
||||
description: str
|
||||
instructions: str | None = None
|
||||
|
||||
input_schema: dict[str, Any] # Should be BlockIOObjectSubSchema in frontend
|
||||
input_schema: dict[str, Any]
|
||||
output_schema: dict[str, Any]
|
||||
credentials_input_schema: dict[str, Any] | None = pydantic.Field(
|
||||
description="Input schema for credentials required by the agent",
|
||||
@@ -81,25 +106,19 @@ class LibraryAgent(pydantic.BaseModel):
|
||||
)
|
||||
trigger_setup_info: Optional[GraphTriggerInfo] = None
|
||||
|
||||
# Indicates whether there's a new output (based on recent runs)
|
||||
new_output: bool
|
||||
|
||||
# Whether the user can access the underlying graph
|
||||
execution_count: int = 0
|
||||
success_rate: float | None = None
|
||||
avg_correctness_score: float | None = None
|
||||
recent_executions: list[RecentExecution] = pydantic.Field(
|
||||
default_factory=list,
|
||||
description="List of recent executions with status, score, and summary",
|
||||
)
|
||||
can_access_graph: bool
|
||||
|
||||
# Indicates if this agent is the latest version
|
||||
is_latest_version: bool
|
||||
|
||||
# Whether the agent is marked as favorite by the user
|
||||
is_favorite: bool
|
||||
|
||||
# Recommended schedule cron (from marketplace agents)
|
||||
recommended_schedule_cron: str | None = None
|
||||
|
||||
# User-specific settings for this library agent
|
||||
settings: GraphSettings = pydantic.Field(default_factory=GraphSettings)
|
||||
|
||||
# Marketplace listing information if the agent has been published
|
||||
marketplace_listing: Optional["MarketplaceListing"] = None
|
||||
|
||||
@staticmethod
|
||||
@@ -123,7 +142,6 @@ class LibraryAgent(pydantic.BaseModel):
|
||||
agent_updated_at = agent.AgentGraph.updatedAt
|
||||
lib_agent_updated_at = agent.updatedAt
|
||||
|
||||
# Compute updated_at as the latest between library agent and graph
|
||||
updated_at = (
|
||||
max(agent_updated_at, lib_agent_updated_at)
|
||||
if agent_updated_at
|
||||
@@ -136,7 +154,6 @@ class LibraryAgent(pydantic.BaseModel):
|
||||
creator_name = agent.Creator.name or "Unknown"
|
||||
creator_image_url = agent.Creator.avatarUrl or ""
|
||||
|
||||
# Logic to calculate status and new_output
|
||||
week_ago = datetime.datetime.now(datetime.timezone.utc) - datetime.timedelta(
|
||||
days=7
|
||||
)
|
||||
@@ -145,13 +162,55 @@ class LibraryAgent(pydantic.BaseModel):
|
||||
status = status_result.status
|
||||
new_output = status_result.new_output
|
||||
|
||||
# Check if user can access the graph
|
||||
can_access_graph = agent.AgentGraph.userId == agent.userId
|
||||
execution_count = len(executions)
|
||||
success_rate: float | None = None
|
||||
avg_correctness_score: float | None = None
|
||||
if execution_count > 0:
|
||||
success_count = sum(
|
||||
1
|
||||
for e in executions
|
||||
if e.executionStatus == prisma.enums.AgentExecutionStatus.COMPLETED
|
||||
)
|
||||
success_rate = (success_count / execution_count) * 100
|
||||
|
||||
# Hard-coded to True until a method to check is implemented
|
||||
correctness_scores = []
|
||||
for e in executions:
|
||||
if e.stats and isinstance(e.stats, dict):
|
||||
score = e.stats.get("correctness_score")
|
||||
if score is not None and isinstance(score, (int, float)):
|
||||
correctness_scores.append(float(score))
|
||||
if correctness_scores:
|
||||
avg_correctness_score = sum(correctness_scores) / len(
|
||||
correctness_scores
|
||||
)
|
||||
|
||||
recent_executions: list[RecentExecution] = []
|
||||
for e in executions:
|
||||
exec_score: float | None = None
|
||||
exec_summary: str | None = None
|
||||
if e.stats and isinstance(e.stats, dict):
|
||||
score = e.stats.get("correctness_score")
|
||||
if score is not None and isinstance(score, (int, float)):
|
||||
exec_score = float(score)
|
||||
summary = e.stats.get("activity_status")
|
||||
if summary is not None and isinstance(summary, str):
|
||||
exec_summary = summary
|
||||
exec_status = (
|
||||
e.executionStatus.value
|
||||
if hasattr(e.executionStatus, "value")
|
||||
else str(e.executionStatus)
|
||||
)
|
||||
recent_executions.append(
|
||||
RecentExecution(
|
||||
status=exec_status,
|
||||
correctness_score=exec_score,
|
||||
activity_summary=exec_summary,
|
||||
)
|
||||
)
|
||||
|
||||
can_access_graph = agent.AgentGraph.userId == agent.userId
|
||||
is_latest_version = True
|
||||
|
||||
# Build marketplace_listing if available
|
||||
marketplace_listing_data = None
|
||||
if store_listing and store_listing.ActiveVersion and profile:
|
||||
creator_data = MarketplaceListingCreator(
|
||||
@@ -190,11 +249,15 @@ class LibraryAgent(pydantic.BaseModel):
|
||||
has_sensitive_action=graph.has_sensitive_action,
|
||||
trigger_setup_info=graph.trigger_setup_info,
|
||||
new_output=new_output,
|
||||
execution_count=execution_count,
|
||||
success_rate=success_rate,
|
||||
avg_correctness_score=avg_correctness_score,
|
||||
recent_executions=recent_executions,
|
||||
can_access_graph=can_access_graph,
|
||||
is_latest_version=is_latest_version,
|
||||
is_favorite=agent.isFavorite,
|
||||
recommended_schedule_cron=agent.AgentGraph.recommendedScheduleCron,
|
||||
settings=GraphSettings.model_validate(agent.settings),
|
||||
settings=_parse_settings(agent.settings),
|
||||
marketplace_listing=marketplace_listing_data,
|
||||
)
|
||||
|
||||
@@ -220,18 +283,15 @@ def _calculate_agent_status(
|
||||
if not executions:
|
||||
return AgentStatusResult(status=LibraryAgentStatus.COMPLETED, new_output=False)
|
||||
|
||||
# Track how many times each execution status appears
|
||||
status_counts = {status: 0 for status in prisma.enums.AgentExecutionStatus}
|
||||
new_output = False
|
||||
|
||||
for execution in executions:
|
||||
# Check if there's a completed run more recent than `recent_threshold`
|
||||
if execution.createdAt >= recent_threshold:
|
||||
if execution.executionStatus == prisma.enums.AgentExecutionStatus.COMPLETED:
|
||||
new_output = True
|
||||
status_counts[execution.executionStatus] += 1
|
||||
|
||||
# Determine the final status based on counts
|
||||
if status_counts[prisma.enums.AgentExecutionStatus.FAILED] > 0:
|
||||
return AgentStatusResult(status=LibraryAgentStatus.ERROR, new_output=new_output)
|
||||
elif status_counts[prisma.enums.AgentExecutionStatus.QUEUED] > 0:
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
import logging
|
||||
from typing import Literal, Optional
|
||||
|
||||
import autogpt_libs.auth as autogpt_auth_lib
|
||||
@@ -6,15 +5,11 @@ from fastapi import APIRouter, Body, HTTPException, Query, Security, status
|
||||
from fastapi.responses import Response
|
||||
from prisma.enums import OnboardingStep
|
||||
|
||||
import backend.api.features.store.exceptions as store_exceptions
|
||||
from backend.data.onboarding import complete_onboarding_step
|
||||
from backend.util.exceptions import DatabaseError, NotFoundError
|
||||
|
||||
from .. import db as library_db
|
||||
from .. import model as library_model
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
router = APIRouter(
|
||||
prefix="/agents",
|
||||
tags=["library", "private"],
|
||||
@@ -26,10 +21,6 @@ router = APIRouter(
|
||||
"",
|
||||
summary="List Library Agents",
|
||||
response_model=library_model.LibraryAgentResponse,
|
||||
responses={
|
||||
200: {"description": "List of library agents"},
|
||||
500: {"description": "Server error", "content": {"application/json": {}}},
|
||||
},
|
||||
)
|
||||
async def list_library_agents(
|
||||
user_id: str = Security(autogpt_auth_lib.get_user_id),
|
||||
@@ -53,43 +44,19 @@ async def list_library_agents(
|
||||
) -> library_model.LibraryAgentResponse:
|
||||
"""
|
||||
Get all agents in the user's library (both created and saved).
|
||||
|
||||
Args:
|
||||
user_id: ID of the authenticated user.
|
||||
search_term: Optional search term to filter agents by name/description.
|
||||
filter_by: List of filters to apply (favorites, created by user).
|
||||
sort_by: List of sorting criteria (created date, updated date).
|
||||
page: Page number to retrieve.
|
||||
page_size: Number of agents per page.
|
||||
|
||||
Returns:
|
||||
A LibraryAgentResponse containing agents and pagination metadata.
|
||||
|
||||
Raises:
|
||||
HTTPException: If a server/database error occurs.
|
||||
"""
|
||||
try:
|
||||
return await library_db.list_library_agents(
|
||||
user_id=user_id,
|
||||
search_term=search_term,
|
||||
sort_by=sort_by,
|
||||
page=page,
|
||||
page_size=page_size,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Could not list library agents for user #{user_id}: {e}")
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
||||
detail=str(e),
|
||||
) from e
|
||||
return await library_db.list_library_agents(
|
||||
user_id=user_id,
|
||||
search_term=search_term,
|
||||
sort_by=sort_by,
|
||||
page=page,
|
||||
page_size=page_size,
|
||||
)
|
||||
|
||||
|
||||
@router.get(
|
||||
"/favorites",
|
||||
summary="List Favorite Library Agents",
|
||||
responses={
|
||||
500: {"description": "Server error", "content": {"application/json": {}}},
|
||||
},
|
||||
)
|
||||
async def list_favorite_library_agents(
|
||||
user_id: str = Security(autogpt_auth_lib.get_user_id),
|
||||
@@ -106,30 +73,12 @@ async def list_favorite_library_agents(
|
||||
) -> library_model.LibraryAgentResponse:
|
||||
"""
|
||||
Get all favorite agents in the user's library.
|
||||
|
||||
Args:
|
||||
user_id: ID of the authenticated user.
|
||||
page: Page number to retrieve.
|
||||
page_size: Number of agents per page.
|
||||
|
||||
Returns:
|
||||
A LibraryAgentResponse containing favorite agents and pagination metadata.
|
||||
|
||||
Raises:
|
||||
HTTPException: If a server/database error occurs.
|
||||
"""
|
||||
try:
|
||||
return await library_db.list_favorite_library_agents(
|
||||
user_id=user_id,
|
||||
page=page,
|
||||
page_size=page_size,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Could not list favorite library agents for user #{user_id}: {e}")
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
||||
detail=str(e),
|
||||
) from e
|
||||
return await library_db.list_favorite_library_agents(
|
||||
user_id=user_id,
|
||||
page=page,
|
||||
page_size=page_size,
|
||||
)
|
||||
|
||||
|
||||
@router.get("/{library_agent_id}", summary="Get Library Agent")
|
||||
@@ -162,10 +111,6 @@ async def get_library_agent_by_graph_id(
|
||||
summary="Get Agent By Store ID",
|
||||
tags=["store", "library"],
|
||||
response_model=library_model.LibraryAgent | None,
|
||||
responses={
|
||||
200: {"description": "Library agent found"},
|
||||
404: {"description": "Agent not found"},
|
||||
},
|
||||
)
|
||||
async def get_library_agent_by_store_listing_version_id(
|
||||
store_listing_version_id: str,
|
||||
@@ -174,32 +119,15 @@ async def get_library_agent_by_store_listing_version_id(
|
||||
"""
|
||||
Get Library Agent from Store Listing Version ID.
|
||||
"""
|
||||
try:
|
||||
return await library_db.get_library_agent_by_store_version_id(
|
||||
store_listing_version_id, user_id
|
||||
)
|
||||
except NotFoundError as e:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_404_NOT_FOUND,
|
||||
detail=str(e),
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Could not fetch library agent from store version ID: {e}")
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
||||
detail=str(e),
|
||||
) from e
|
||||
return await library_db.get_library_agent_by_store_version_id(
|
||||
store_listing_version_id, user_id
|
||||
)
|
||||
|
||||
|
||||
@router.post(
|
||||
"",
|
||||
summary="Add Marketplace Agent",
|
||||
status_code=status.HTTP_201_CREATED,
|
||||
responses={
|
||||
201: {"description": "Agent added successfully"},
|
||||
404: {"description": "Store listing version not found"},
|
||||
500: {"description": "Server error"},
|
||||
},
|
||||
)
|
||||
async def add_marketplace_agent_to_library(
|
||||
store_listing_version_id: str = Body(embed=True),
|
||||
@@ -210,59 +138,19 @@ async def add_marketplace_agent_to_library(
|
||||
) -> library_model.LibraryAgent:
|
||||
"""
|
||||
Add an agent from the marketplace to the user's library.
|
||||
|
||||
Args:
|
||||
store_listing_version_id: ID of the store listing version to add.
|
||||
user_id: ID of the authenticated user.
|
||||
|
||||
Returns:
|
||||
library_model.LibraryAgent: Agent added to the library
|
||||
|
||||
Raises:
|
||||
HTTPException(404): If the listing version is not found.
|
||||
HTTPException(500): If a server/database error occurs.
|
||||
"""
|
||||
try:
|
||||
agent = await library_db.add_store_agent_to_library(
|
||||
store_listing_version_id=store_listing_version_id,
|
||||
user_id=user_id,
|
||||
)
|
||||
if source != "onboarding":
|
||||
await complete_onboarding_step(
|
||||
user_id, OnboardingStep.MARKETPLACE_ADD_AGENT
|
||||
)
|
||||
return agent
|
||||
|
||||
except store_exceptions.AgentNotFoundError as e:
|
||||
logger.warning(
|
||||
f"Could not find store listing version {store_listing_version_id} "
|
||||
"to add to library"
|
||||
)
|
||||
raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail=str(e))
|
||||
except DatabaseError as e:
|
||||
logger.error(f"Database error while adding agent to library: {e}", e)
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
||||
detail={"message": str(e), "hint": "Inspect DB logs for details."},
|
||||
) from e
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error while adding agent to library: {e}")
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
||||
detail={
|
||||
"message": str(e),
|
||||
"hint": "Check server logs for more information.",
|
||||
},
|
||||
) from e
|
||||
agent = await library_db.add_store_agent_to_library(
|
||||
store_listing_version_id=store_listing_version_id,
|
||||
user_id=user_id,
|
||||
)
|
||||
if source != "onboarding":
|
||||
await complete_onboarding_step(user_id, OnboardingStep.MARKETPLACE_ADD_AGENT)
|
||||
return agent
|
||||
|
||||
|
||||
@router.patch(
|
||||
"/{library_agent_id}",
|
||||
summary="Update Library Agent",
|
||||
responses={
|
||||
200: {"description": "Agent updated successfully"},
|
||||
500: {"description": "Server error"},
|
||||
},
|
||||
)
|
||||
async def update_library_agent(
|
||||
library_agent_id: str,
|
||||
@@ -271,52 +159,21 @@ async def update_library_agent(
|
||||
) -> library_model.LibraryAgent:
|
||||
"""
|
||||
Update the library agent with the given fields.
|
||||
|
||||
Args:
|
||||
library_agent_id: ID of the library agent to update.
|
||||
payload: Fields to update (auto_update_version, is_favorite, etc.).
|
||||
user_id: ID of the authenticated user.
|
||||
|
||||
Raises:
|
||||
HTTPException(500): If a server/database error occurs.
|
||||
"""
|
||||
try:
|
||||
return await library_db.update_library_agent(
|
||||
library_agent_id=library_agent_id,
|
||||
user_id=user_id,
|
||||
auto_update_version=payload.auto_update_version,
|
||||
graph_version=payload.graph_version,
|
||||
is_favorite=payload.is_favorite,
|
||||
is_archived=payload.is_archived,
|
||||
settings=payload.settings,
|
||||
)
|
||||
except NotFoundError as e:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_404_NOT_FOUND,
|
||||
detail=str(e),
|
||||
) from e
|
||||
except DatabaseError as e:
|
||||
logger.error(f"Database error while updating library agent: {e}")
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
||||
detail={"message": str(e), "hint": "Verify DB connection."},
|
||||
) from e
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error while updating library agent: {e}")
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
||||
detail={"message": str(e), "hint": "Check server logs."},
|
||||
) from e
|
||||
return await library_db.update_library_agent(
|
||||
library_agent_id=library_agent_id,
|
||||
user_id=user_id,
|
||||
auto_update_version=payload.auto_update_version,
|
||||
graph_version=payload.graph_version,
|
||||
is_favorite=payload.is_favorite,
|
||||
is_archived=payload.is_archived,
|
||||
settings=payload.settings,
|
||||
)
|
||||
|
||||
|
||||
@router.delete(
|
||||
"/{library_agent_id}",
|
||||
summary="Delete Library Agent",
|
||||
responses={
|
||||
204: {"description": "Agent deleted successfully"},
|
||||
404: {"description": "Agent not found"},
|
||||
500: {"description": "Server error"},
|
||||
},
|
||||
)
|
||||
async def delete_library_agent(
|
||||
library_agent_id: str,
|
||||
@@ -324,28 +181,11 @@ async def delete_library_agent(
|
||||
) -> Response:
|
||||
"""
|
||||
Soft-delete the specified library agent.
|
||||
|
||||
Args:
|
||||
library_agent_id: ID of the library agent to delete.
|
||||
user_id: ID of the authenticated user.
|
||||
|
||||
Returns:
|
||||
204 No Content if successful.
|
||||
|
||||
Raises:
|
||||
HTTPException(404): If the agent does not exist.
|
||||
HTTPException(500): If a server/database error occurs.
|
||||
"""
|
||||
try:
|
||||
await library_db.delete_library_agent(
|
||||
library_agent_id=library_agent_id, user_id=user_id
|
||||
)
|
||||
return Response(status_code=status.HTTP_204_NO_CONTENT)
|
||||
except NotFoundError as e:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_404_NOT_FOUND,
|
||||
detail=str(e),
|
||||
) from e
|
||||
await library_db.delete_library_agent(
|
||||
library_agent_id=library_agent_id, user_id=user_id
|
||||
)
|
||||
return Response(status_code=status.HTTP_204_NO_CONTENT)
|
||||
|
||||
|
||||
@router.post("/{library_agent_id}/fork", summary="Fork Library Agent")
|
||||
|
||||
@@ -118,21 +118,6 @@ async def test_get_library_agents_success(
|
||||
)
|
||||
|
||||
|
||||
def test_get_library_agents_error(mocker: pytest_mock.MockFixture, test_user_id: str):
|
||||
mock_db_call = mocker.patch("backend.api.features.library.db.list_library_agents")
|
||||
mock_db_call.side_effect = Exception("Test error")
|
||||
|
||||
response = client.get("/agents?search_term=test")
|
||||
assert response.status_code == 500
|
||||
mock_db_call.assert_called_once_with(
|
||||
user_id=test_user_id,
|
||||
search_term="test",
|
||||
sort_by=library_model.LibraryAgentSort.UPDATED_AT,
|
||||
page=1,
|
||||
page_size=15,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_get_favorite_library_agents_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
@@ -190,23 +175,6 @@ async def test_get_favorite_library_agents_success(
|
||||
)
|
||||
|
||||
|
||||
def test_get_favorite_library_agents_error(
|
||||
mocker: pytest_mock.MockFixture, test_user_id: str
|
||||
):
|
||||
mock_db_call = mocker.patch(
|
||||
"backend.api.features.library.db.list_favorite_library_agents"
|
||||
)
|
||||
mock_db_call.side_effect = Exception("Test error")
|
||||
|
||||
response = client.get("/agents/favorites")
|
||||
assert response.status_code == 500
|
||||
mock_db_call.assert_called_once_with(
|
||||
user_id=test_user_id,
|
||||
page=1,
|
||||
page_size=15,
|
||||
)
|
||||
|
||||
|
||||
def test_add_agent_to_library_success(
|
||||
mocker: pytest_mock.MockFixture, test_user_id: str
|
||||
):
|
||||
@@ -258,19 +226,3 @@ def test_add_agent_to_library_success(
|
||||
store_listing_version_id="test-version-id", user_id=test_user_id
|
||||
)
|
||||
mock_complete_onboarding.assert_awaited_once()
|
||||
|
||||
|
||||
def test_add_agent_to_library_error(mocker: pytest_mock.MockFixture, test_user_id: str):
|
||||
mock_db_call = mocker.patch(
|
||||
"backend.api.features.library.db.add_store_agent_to_library"
|
||||
)
|
||||
mock_db_call.side_effect = Exception("Test error")
|
||||
|
||||
response = client.post(
|
||||
"/agents", json={"store_listing_version_id": "test-version-id"}
|
||||
)
|
||||
assert response.status_code == 500
|
||||
assert "detail" in response.json() # Verify error response structure
|
||||
mock_db_call.assert_called_once_with(
|
||||
store_listing_version_id="test-version-id", user_id=test_user_id
|
||||
)
|
||||
|
||||
@@ -112,6 +112,7 @@ async def get_store_agents(
|
||||
description=agent["description"],
|
||||
runs=agent["runs"],
|
||||
rating=agent["rating"],
|
||||
agent_graph_id=agent.get("agentGraphId", ""),
|
||||
)
|
||||
store_agents.append(store_agent)
|
||||
except Exception as e:
|
||||
@@ -170,6 +171,7 @@ async def get_store_agents(
|
||||
description=agent.description,
|
||||
runs=agent.runs,
|
||||
rating=agent.rating,
|
||||
agent_graph_id=agent.agentGraphId,
|
||||
)
|
||||
# Add to the list only if creation was successful
|
||||
store_agents.append(store_agent)
|
||||
|
||||
@@ -454,6 +454,7 @@ async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
|
||||
total_processed = 0
|
||||
total_success = 0
|
||||
total_failed = 0
|
||||
all_errors: dict[str, int] = {} # Aggregate errors across all content types
|
||||
|
||||
# Process content types in explicit order
|
||||
processing_order = [
|
||||
@@ -499,23 +500,12 @@ async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
|
||||
success = sum(1 for result in results if result is True)
|
||||
failed = len(results) - success
|
||||
|
||||
# Aggregate unique errors to avoid Sentry spam
|
||||
# Aggregate errors across all content types
|
||||
if failed > 0:
|
||||
# Group errors by type and message
|
||||
error_summary: dict[str, int] = {}
|
||||
for result in results:
|
||||
if isinstance(result, Exception):
|
||||
error_key = f"{type(result).__name__}: {str(result)}"
|
||||
error_summary[error_key] = error_summary.get(error_key, 0) + 1
|
||||
|
||||
# Log aggregated error summary
|
||||
error_details = ", ".join(
|
||||
f"{error} ({count}x)" for error, count in error_summary.items()
|
||||
)
|
||||
logger.error(
|
||||
f"{content_type.value}: {failed}/{len(results)} embeddings failed. "
|
||||
f"Errors: {error_details}"
|
||||
)
|
||||
all_errors[error_key] = all_errors.get(error_key, 0) + 1
|
||||
|
||||
results_by_type[content_type.value] = {
|
||||
"processed": len(missing_items),
|
||||
@@ -542,6 +532,13 @@ async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
|
||||
"error": str(e),
|
||||
}
|
||||
|
||||
# Log aggregated errors once at the end
|
||||
if all_errors:
|
||||
error_details = ", ".join(
|
||||
f"{error} ({count}x)" for error, count in all_errors.items()
|
||||
)
|
||||
logger.error(f"Embedding backfill errors: {error_details}")
|
||||
|
||||
return {
|
||||
"by_type": results_by_type,
|
||||
"totals": {
|
||||
|
||||
@@ -454,6 +454,9 @@ async def test_unified_hybrid_search_pagination(
|
||||
cleanup_embeddings: list,
|
||||
):
|
||||
"""Test unified search pagination works correctly."""
|
||||
# Use a unique search term to avoid matching other test data
|
||||
unique_term = f"xyzpagtest{uuid.uuid4().hex[:8]}"
|
||||
|
||||
# Create multiple items
|
||||
content_ids = []
|
||||
for i in range(5):
|
||||
@@ -465,14 +468,14 @@ async def test_unified_hybrid_search_pagination(
|
||||
content_type=ContentType.BLOCK,
|
||||
content_id=content_id,
|
||||
embedding=mock_embedding,
|
||||
searchable_text=f"pagination test item number {i}",
|
||||
searchable_text=f"{unique_term} item number {i}",
|
||||
metadata={"index": i},
|
||||
user_id=None,
|
||||
)
|
||||
|
||||
# Get first page
|
||||
page1_results, total1 = await unified_hybrid_search(
|
||||
query="pagination test",
|
||||
query=unique_term,
|
||||
content_types=[ContentType.BLOCK],
|
||||
page=1,
|
||||
page_size=2,
|
||||
@@ -480,7 +483,7 @@ async def test_unified_hybrid_search_pagination(
|
||||
|
||||
# Get second page
|
||||
page2_results, total2 = await unified_hybrid_search(
|
||||
query="pagination test",
|
||||
query=unique_term,
|
||||
content_types=[ContentType.BLOCK],
|
||||
page=2,
|
||||
page_size=2,
|
||||
|
||||
@@ -600,6 +600,7 @@ async def hybrid_search(
|
||||
sa.featured,
|
||||
sa.is_available,
|
||||
sa.updated_at,
|
||||
sa."agentGraphId",
|
||||
-- Searchable text for BM25 reranking
|
||||
COALESCE(sa.agent_name, '') || ' ' || COALESCE(sa.sub_heading, '') || ' ' || COALESCE(sa.description, '') as searchable_text,
|
||||
-- Semantic score
|
||||
@@ -659,6 +660,7 @@ async def hybrid_search(
|
||||
featured,
|
||||
is_available,
|
||||
updated_at,
|
||||
"agentGraphId",
|
||||
searchable_text,
|
||||
semantic_score,
|
||||
lexical_score,
|
||||
|
||||
@@ -38,6 +38,7 @@ class StoreAgent(pydantic.BaseModel):
|
||||
description: str
|
||||
runs: int
|
||||
rating: float
|
||||
agent_graph_id: str
|
||||
|
||||
|
||||
class StoreAgentsResponse(pydantic.BaseModel):
|
||||
|
||||
@@ -26,11 +26,13 @@ def test_store_agent():
|
||||
description="Test description",
|
||||
runs=50,
|
||||
rating=4.5,
|
||||
agent_graph_id="test-graph-id",
|
||||
)
|
||||
assert agent.slug == "test-agent"
|
||||
assert agent.agent_name == "Test Agent"
|
||||
assert agent.runs == 50
|
||||
assert agent.rating == 4.5
|
||||
assert agent.agent_graph_id == "test-graph-id"
|
||||
|
||||
|
||||
def test_store_agents_response():
|
||||
@@ -46,6 +48,7 @@ def test_store_agents_response():
|
||||
description="Test description",
|
||||
runs=50,
|
||||
rating=4.5,
|
||||
agent_graph_id="test-graph-id",
|
||||
)
|
||||
],
|
||||
pagination=store_model.Pagination(
|
||||
|
||||
@@ -393,7 +393,6 @@ async def get_creators(
|
||||
@router.get(
|
||||
"/creator/{username}",
|
||||
summary="Get creator details",
|
||||
operation_id="getV2GetCreatorDetails",
|
||||
tags=["store", "public"],
|
||||
response_model=store_model.CreatorDetails,
|
||||
)
|
||||
|
||||
@@ -82,6 +82,7 @@ def test_get_agents_featured(
|
||||
description="Featured agent description",
|
||||
runs=100,
|
||||
rating=4.5,
|
||||
agent_graph_id="test-graph-1",
|
||||
)
|
||||
],
|
||||
pagination=store_model.Pagination(
|
||||
@@ -127,6 +128,7 @@ def test_get_agents_by_creator(
|
||||
description="Creator agent description",
|
||||
runs=50,
|
||||
rating=4.0,
|
||||
agent_graph_id="test-graph-2",
|
||||
)
|
||||
],
|
||||
pagination=store_model.Pagination(
|
||||
@@ -172,6 +174,7 @@ def test_get_agents_sorted(
|
||||
description="Top agent description",
|
||||
runs=1000,
|
||||
rating=5.0,
|
||||
agent_graph_id="test-graph-3",
|
||||
)
|
||||
],
|
||||
pagination=store_model.Pagination(
|
||||
@@ -217,6 +220,7 @@ def test_get_agents_search(
|
||||
description="Specific search term description",
|
||||
runs=75,
|
||||
rating=4.2,
|
||||
agent_graph_id="test-graph-search",
|
||||
)
|
||||
],
|
||||
pagination=store_model.Pagination(
|
||||
@@ -262,6 +266,7 @@ def test_get_agents_category(
|
||||
description="Category agent description",
|
||||
runs=60,
|
||||
rating=4.1,
|
||||
agent_graph_id="test-graph-category",
|
||||
)
|
||||
],
|
||||
pagination=store_model.Pagination(
|
||||
@@ -306,6 +311,7 @@ def test_get_agents_pagination(
|
||||
description=f"Agent {i} description",
|
||||
runs=i * 10,
|
||||
rating=4.0,
|
||||
agent_graph_id="test-graph-2",
|
||||
)
|
||||
for i in range(5)
|
||||
],
|
||||
|
||||
@@ -33,6 +33,7 @@ class TestCacheDeletion:
|
||||
description="Test description",
|
||||
runs=100,
|
||||
rating=4.5,
|
||||
agent_graph_id="test-graph-id",
|
||||
)
|
||||
],
|
||||
pagination=Pagination(
|
||||
|
||||
@@ -261,14 +261,36 @@ async def get_onboarding_agents(
|
||||
return await get_recommended_agents(user_id)
|
||||
|
||||
|
||||
class OnboardingStatusResponse(pydantic.BaseModel):
|
||||
"""Response for onboarding status check."""
|
||||
|
||||
is_onboarding_enabled: bool
|
||||
is_chat_enabled: bool
|
||||
|
||||
|
||||
@v1_router.get(
|
||||
"/onboarding/enabled",
|
||||
summary="Is onboarding enabled",
|
||||
tags=["onboarding", "public"],
|
||||
dependencies=[Security(requires_user)],
|
||||
response_model=OnboardingStatusResponse,
|
||||
)
|
||||
async def is_onboarding_enabled() -> bool:
|
||||
return await onboarding_enabled()
|
||||
async def is_onboarding_enabled(
|
||||
user_id: Annotated[str, Security(get_user_id)],
|
||||
) -> OnboardingStatusResponse:
|
||||
# Check if chat is enabled for user
|
||||
is_chat_enabled = await is_feature_enabled(Flag.CHAT, user_id, False)
|
||||
|
||||
# If chat is enabled, skip legacy onboarding
|
||||
if is_chat_enabled:
|
||||
return OnboardingStatusResponse(
|
||||
is_onboarding_enabled=False,
|
||||
is_chat_enabled=True,
|
||||
)
|
||||
|
||||
return OnboardingStatusResponse(
|
||||
is_onboarding_enabled=await onboarding_enabled(),
|
||||
is_chat_enabled=False,
|
||||
)
|
||||
|
||||
|
||||
@v1_router.post(
|
||||
|
||||
@@ -0,0 +1 @@
|
||||
# Workspace API feature module
|
||||
@@ -0,0 +1,122 @@
|
||||
"""
|
||||
Workspace API routes for managing user file storage.
|
||||
"""
|
||||
|
||||
import logging
|
||||
import re
|
||||
from typing import Annotated
|
||||
from urllib.parse import quote
|
||||
|
||||
import fastapi
|
||||
from autogpt_libs.auth.dependencies import get_user_id, requires_user
|
||||
from fastapi.responses import Response
|
||||
|
||||
from backend.data.workspace import get_workspace, get_workspace_file
|
||||
from backend.util.workspace_storage import get_workspace_storage
|
||||
|
||||
|
||||
def _sanitize_filename_for_header(filename: str) -> str:
|
||||
"""
|
||||
Sanitize filename for Content-Disposition header to prevent header injection.
|
||||
|
||||
Removes/replaces characters that could break the header or inject new headers.
|
||||
Uses RFC5987 encoding for non-ASCII characters.
|
||||
"""
|
||||
# Remove CR, LF, and null bytes (header injection prevention)
|
||||
sanitized = re.sub(r"[\r\n\x00]", "", filename)
|
||||
# Escape quotes
|
||||
sanitized = sanitized.replace('"', '\\"')
|
||||
# For non-ASCII, use RFC5987 filename* parameter
|
||||
# Check if filename has non-ASCII characters
|
||||
try:
|
||||
sanitized.encode("ascii")
|
||||
return f'attachment; filename="{sanitized}"'
|
||||
except UnicodeEncodeError:
|
||||
# Use RFC5987 encoding for UTF-8 filenames
|
||||
encoded = quote(sanitized, safe="")
|
||||
return f"attachment; filename*=UTF-8''{encoded}"
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
router = fastapi.APIRouter(
|
||||
dependencies=[fastapi.Security(requires_user)],
|
||||
)
|
||||
|
||||
|
||||
def _create_streaming_response(content: bytes, file) -> Response:
|
||||
"""Create a streaming response for file content."""
|
||||
return Response(
|
||||
content=content,
|
||||
media_type=file.mimeType,
|
||||
headers={
|
||||
"Content-Disposition": _sanitize_filename_for_header(file.name),
|
||||
"Content-Length": str(len(content)),
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
async def _create_file_download_response(file) -> Response:
|
||||
"""
|
||||
Create a download response for a workspace file.
|
||||
|
||||
Handles both local storage (direct streaming) and GCS (signed URL redirect
|
||||
with fallback to streaming).
|
||||
"""
|
||||
storage = await get_workspace_storage()
|
||||
|
||||
# For local storage, stream the file directly
|
||||
if file.storagePath.startswith("local://"):
|
||||
content = await storage.retrieve(file.storagePath)
|
||||
return _create_streaming_response(content, file)
|
||||
|
||||
# For GCS, try to redirect to signed URL, fall back to streaming
|
||||
try:
|
||||
url = await storage.get_download_url(file.storagePath, expires_in=300)
|
||||
# If we got back an API path (fallback), stream directly instead
|
||||
if url.startswith("/api/"):
|
||||
content = await storage.retrieve(file.storagePath)
|
||||
return _create_streaming_response(content, file)
|
||||
return fastapi.responses.RedirectResponse(url=url, status_code=302)
|
||||
except Exception as e:
|
||||
# Log the signed URL failure with context
|
||||
logger.error(
|
||||
f"Failed to get signed URL for file {file.id} "
|
||||
f"(storagePath={file.storagePath}): {e}",
|
||||
exc_info=True,
|
||||
)
|
||||
# Fall back to streaming directly from GCS
|
||||
try:
|
||||
content = await storage.retrieve(file.storagePath)
|
||||
return _create_streaming_response(content, file)
|
||||
except Exception as fallback_error:
|
||||
logger.error(
|
||||
f"Fallback streaming also failed for file {file.id} "
|
||||
f"(storagePath={file.storagePath}): {fallback_error}",
|
||||
exc_info=True,
|
||||
)
|
||||
raise
|
||||
|
||||
|
||||
@router.get(
|
||||
"/files/{file_id}/download",
|
||||
summary="Download file by ID",
|
||||
)
|
||||
async def download_file(
|
||||
user_id: Annotated[str, fastapi.Security(get_user_id)],
|
||||
file_id: str,
|
||||
) -> Response:
|
||||
"""
|
||||
Download a file by its ID.
|
||||
|
||||
Returns the file content directly or redirects to a signed URL for GCS.
|
||||
"""
|
||||
workspace = await get_workspace(user_id)
|
||||
if workspace is None:
|
||||
raise fastapi.HTTPException(status_code=404, detail="Workspace not found")
|
||||
|
||||
file = await get_workspace_file(file_id, workspace.id)
|
||||
if file is None:
|
||||
raise fastapi.HTTPException(status_code=404, detail="File not found")
|
||||
|
||||
return await _create_file_download_response(file)
|
||||
@@ -18,7 +18,6 @@ from prisma.errors import PrismaError
|
||||
|
||||
import backend.api.features.admin.credit_admin_routes
|
||||
import backend.api.features.admin.execution_analytics_routes
|
||||
import backend.api.features.admin.llm_routes
|
||||
import backend.api.features.admin.store_admin_routes
|
||||
import backend.api.features.builder
|
||||
import backend.api.features.builder.routes
|
||||
@@ -33,16 +32,19 @@ import backend.api.features.postmark.postmark
|
||||
import backend.api.features.store.model
|
||||
import backend.api.features.store.routes
|
||||
import backend.api.features.v1
|
||||
import backend.api.features.workspace.routes as workspace_routes
|
||||
import backend.data.block
|
||||
import backend.data.db
|
||||
import backend.data.graph
|
||||
import backend.data.user
|
||||
import backend.integrations.webhooks.utils
|
||||
import backend.server.v2.llm.routes as public_llm_routes
|
||||
import backend.util.service
|
||||
import backend.util.settings
|
||||
from backend.data import llm_registry
|
||||
from backend.data.block_cost_config import refresh_llm_costs
|
||||
from backend.api.features.chat.completion_consumer import (
|
||||
start_completion_consumer,
|
||||
stop_completion_consumer,
|
||||
)
|
||||
from backend.blocks.llm import DEFAULT_LLM_MODEL
|
||||
from backend.data.model import Credentials
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.monitoring.instrumentation import instrument_fastapi
|
||||
@@ -55,6 +57,7 @@ from backend.util.exceptions import (
|
||||
)
|
||||
from backend.util.feature_flag import initialize_launchdarkly, shutdown_launchdarkly
|
||||
from backend.util.service import UnhealthyServiceError
|
||||
from backend.util.workspace_storage import shutdown_workspace_storage
|
||||
|
||||
from .external.fastapi_app import external_api
|
||||
from .features.analytics import router as analytics_router
|
||||
@@ -112,37 +115,38 @@ async def lifespan_context(app: fastapi.FastAPI):
|
||||
|
||||
AutoRegistry.patch_integrations()
|
||||
|
||||
# Refresh LLM registry before initializing blocks so blocks can use registry data
|
||||
await llm_registry.refresh_llm_registry()
|
||||
refresh_llm_costs()
|
||||
|
||||
# Clear block schema caches so they're regenerated with updated discriminator_mapping
|
||||
from backend.data.block import BlockSchema
|
||||
|
||||
BlockSchema.clear_all_schema_caches()
|
||||
|
||||
await backend.data.block.initialize_blocks()
|
||||
|
||||
await backend.data.user.migrate_and_encrypt_user_integrations()
|
||||
await backend.data.graph.fix_llm_provider_credentials()
|
||||
# migrate_llm_models uses registry default model
|
||||
from backend.blocks.llm import LlmModel
|
||||
|
||||
default_model_slug = llm_registry.get_default_model_slug()
|
||||
if default_model_slug:
|
||||
await backend.data.graph.migrate_llm_models(LlmModel(default_model_slug))
|
||||
else:
|
||||
logger.warning("Skipping LLM model migration: no default model available")
|
||||
await backend.data.graph.migrate_llm_models(DEFAULT_LLM_MODEL)
|
||||
await backend.integrations.webhooks.utils.migrate_legacy_triggered_graphs()
|
||||
|
||||
# Start chat completion consumer for Redis Streams notifications
|
||||
try:
|
||||
await start_completion_consumer()
|
||||
except Exception as e:
|
||||
logger.warning(f"Could not start chat completion consumer: {e}")
|
||||
|
||||
with launch_darkly_context():
|
||||
yield
|
||||
|
||||
# Stop chat completion consumer
|
||||
try:
|
||||
await stop_completion_consumer()
|
||||
except Exception as e:
|
||||
logger.warning(f"Error stopping chat completion consumer: {e}")
|
||||
|
||||
try:
|
||||
await shutdown_cloud_storage_handler()
|
||||
except Exception as e:
|
||||
logger.warning(f"Error shutting down cloud storage handler: {e}")
|
||||
|
||||
try:
|
||||
await shutdown_workspace_storage()
|
||||
except Exception as e:
|
||||
logger.warning(f"Error shutting down workspace storage: {e}")
|
||||
|
||||
await backend.data.db.disconnect()
|
||||
|
||||
|
||||
@@ -317,16 +321,6 @@ app.include_router(
|
||||
tags=["v2", "executions", "review"],
|
||||
prefix="/api/review",
|
||||
)
|
||||
app.include_router(
|
||||
backend.api.features.admin.llm_routes.router,
|
||||
tags=["v2", "admin", "llm"],
|
||||
prefix="/api/llm/admin",
|
||||
)
|
||||
app.include_router(
|
||||
public_llm_routes.router,
|
||||
tags=["v2", "llm"],
|
||||
prefix="/api",
|
||||
)
|
||||
app.include_router(
|
||||
backend.api.features.library.routes.router, tags=["v2"], prefix="/api/library"
|
||||
)
|
||||
@@ -344,6 +338,11 @@ app.include_router(
|
||||
tags=["v2", "chat"],
|
||||
prefix="/api/chat",
|
||||
)
|
||||
app.include_router(
|
||||
workspace_routes.router,
|
||||
tags=["workspace"],
|
||||
prefix="/api/workspace",
|
||||
)
|
||||
app.include_router(
|
||||
backend.api.features.oauth.router,
|
||||
tags=["oauth"],
|
||||
|
||||
@@ -66,50 +66,24 @@ async def event_broadcaster(manager: ConnectionManager):
|
||||
execution_bus = AsyncRedisExecutionEventBus()
|
||||
notification_bus = AsyncRedisNotificationEventBus()
|
||||
|
||||
async def execution_worker():
|
||||
async for event in execution_bus.listen("*"):
|
||||
await manager.send_execution_update(event)
|
||||
try:
|
||||
|
||||
async def notification_worker():
|
||||
async for notification in notification_bus.listen("*"):
|
||||
await manager.send_notification(
|
||||
user_id=notification.user_id,
|
||||
payload=notification.payload,
|
||||
)
|
||||
async def execution_worker():
|
||||
async for event in execution_bus.listen("*"):
|
||||
await manager.send_execution_update(event)
|
||||
|
||||
async def registry_refresh_worker():
|
||||
"""Listen for LLM registry refresh notifications and broadcast to all clients."""
|
||||
from backend.data.llm_registry import REGISTRY_REFRESH_CHANNEL
|
||||
from backend.data.redis_client import connect_async
|
||||
|
||||
redis = await connect_async()
|
||||
pubsub = redis.pubsub()
|
||||
await pubsub.subscribe(REGISTRY_REFRESH_CHANNEL)
|
||||
logger.info(
|
||||
"Subscribed to LLM registry refresh notifications for WebSocket broadcast"
|
||||
)
|
||||
|
||||
async for message in pubsub.listen():
|
||||
if (
|
||||
message["type"] == "message"
|
||||
and message["channel"] == REGISTRY_REFRESH_CHANNEL
|
||||
):
|
||||
logger.info(
|
||||
"Broadcasting LLM registry refresh to all WebSocket clients"
|
||||
)
|
||||
await manager.broadcast_to_all(
|
||||
method=WSMethod.NOTIFICATION,
|
||||
data={
|
||||
"type": "LLM_REGISTRY_REFRESH",
|
||||
"event": "registry_updated",
|
||||
},
|
||||
async def notification_worker():
|
||||
async for notification in notification_bus.listen("*"):
|
||||
await manager.send_notification(
|
||||
user_id=notification.user_id,
|
||||
payload=notification.payload,
|
||||
)
|
||||
|
||||
await asyncio.gather(
|
||||
execution_worker(),
|
||||
notification_worker(),
|
||||
registry_refresh_worker(),
|
||||
)
|
||||
await asyncio.gather(execution_worker(), notification_worker())
|
||||
finally:
|
||||
# Ensure PubSub connections are closed on any exit to prevent leaks
|
||||
await execution_bus.close()
|
||||
await notification_bus.close()
|
||||
|
||||
|
||||
async def authenticate_websocket(websocket: WebSocket) -> str:
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
from typing import Any
|
||||
|
||||
from backend.blocks.llm import (
|
||||
DEFAULT_LLM_MODEL,
|
||||
TEST_CREDENTIALS,
|
||||
TEST_CREDENTIALS_INPUT,
|
||||
AIBlockBase,
|
||||
@@ -9,7 +10,6 @@ from backend.blocks.llm import (
|
||||
LlmModel,
|
||||
LLMResponse,
|
||||
llm_call,
|
||||
llm_model_schema_extra,
|
||||
)
|
||||
from backend.data.block import (
|
||||
BlockCategory,
|
||||
@@ -50,10 +50,9 @@ class AIConditionBlock(AIBlockBase):
|
||||
)
|
||||
model: LlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
default_factory=LlmModel.default,
|
||||
default=DEFAULT_LLM_MODEL,
|
||||
description="The language model to use for evaluating the condition.",
|
||||
advanced=False,
|
||||
json_schema_extra=llm_model_schema_extra(),
|
||||
)
|
||||
credentials: AICredentials = AICredentialsField()
|
||||
|
||||
@@ -83,7 +82,7 @@ class AIConditionBlock(AIBlockBase):
|
||||
"condition": "the input is an email address",
|
||||
"yes_value": "Valid email",
|
||||
"no_value": "Not an email",
|
||||
"model": "gpt-4o", # Using string value - enum accepts any model slug dynamically
|
||||
"model": DEFAULT_LLM_MODEL,
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
|
||||
@@ -13,6 +13,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import (
|
||||
APIKeyCredentials,
|
||||
CredentialsField,
|
||||
@@ -117,11 +118,13 @@ class AIImageCustomizerBlock(Block):
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
},
|
||||
test_output=[
|
||||
("image_url", "https://replicate.delivery/generated-image.jpg"),
|
||||
# Output will be a workspace ref or data URI depending on context
|
||||
("image_url", lambda x: x.startswith(("workspace://", "data:"))),
|
||||
],
|
||||
test_mock={
|
||||
# Use data URI to avoid HTTP requests during tests
|
||||
"run_model": lambda *args, **kwargs: MediaFileType(
|
||||
"https://replicate.delivery/generated-image.jpg"
|
||||
""
|
||||
),
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
@@ -132,8 +135,7 @@ class AIImageCustomizerBlock(Block):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
try:
|
||||
@@ -141,10 +143,9 @@ class AIImageCustomizerBlock(Block):
|
||||
processed_images = await asyncio.gather(
|
||||
*(
|
||||
store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=img,
|
||||
user_id=user_id,
|
||||
return_content=True,
|
||||
execution_context=execution_context,
|
||||
return_format="for_external_api", # Get content for Replicate API
|
||||
)
|
||||
for img in input_data.images
|
||||
)
|
||||
@@ -158,7 +159,14 @@ class AIImageCustomizerBlock(Block):
|
||||
aspect_ratio=input_data.aspect_ratio.value,
|
||||
output_format=input_data.output_format.value,
|
||||
)
|
||||
yield "image_url", result
|
||||
|
||||
# Store the generated image to the user's workspace for persistence
|
||||
stored_url = await store_media_file(
|
||||
file=result,
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "image_url", stored_url
|
||||
except Exception as e:
|
||||
yield "error", str(e)
|
||||
|
||||
|
||||
@@ -6,6 +6,7 @@ from replicate.client import Client as ReplicateClient
|
||||
from replicate.helpers import FileOutput
|
||||
|
||||
from backend.data.block import Block, BlockCategory, BlockSchemaInput, BlockSchemaOutput
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import (
|
||||
APIKeyCredentials,
|
||||
CredentialsField,
|
||||
@@ -13,6 +14,8 @@ from backend.data.model import (
|
||||
SchemaField,
|
||||
)
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.type import MediaFileType
|
||||
|
||||
|
||||
class ImageSize(str, Enum):
|
||||
@@ -165,11 +168,13 @@ class AIImageGeneratorBlock(Block):
|
||||
test_output=[
|
||||
(
|
||||
"image_url",
|
||||
"https://replicate.delivery/generated-image.webp",
|
||||
# Test output is a data URI since we now store images
|
||||
lambda x: x.startswith(""
|
||||
},
|
||||
)
|
||||
|
||||
@@ -318,11 +323,24 @@ class AIImageGeneratorBlock(Block):
|
||||
style_text = style_map.get(style, "")
|
||||
return f"{style_text} of" if style_text else ""
|
||||
|
||||
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
):
|
||||
try:
|
||||
url = await self.generate_image(input_data, credentials)
|
||||
if url:
|
||||
yield "image_url", url
|
||||
# Store the generated image to the user's workspace/execution folder
|
||||
stored_url = await store_media_file(
|
||||
file=MediaFileType(url),
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "image_url", stored_url
|
||||
else:
|
||||
yield "error", "Image generation returned an empty result."
|
||||
except Exception as e:
|
||||
|
||||
@@ -13,6 +13,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import (
|
||||
APIKeyCredentials,
|
||||
CredentialsField,
|
||||
@@ -21,7 +22,9 @@ from backend.data.model import (
|
||||
)
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.exceptions import BlockExecutionError
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.request import Requests
|
||||
from backend.util.type import MediaFileType
|
||||
|
||||
TEST_CREDENTIALS = APIKeyCredentials(
|
||||
id="01234567-89ab-cdef-0123-456789abcdef",
|
||||
@@ -271,7 +274,10 @@ class AIShortformVideoCreatorBlock(Block):
|
||||
"voice": Voice.LILY,
|
||||
"video_style": VisualMediaType.STOCK_VIDEOS,
|
||||
},
|
||||
test_output=("video_url", "https://example.com/video.mp4"),
|
||||
test_output=(
|
||||
"video_url",
|
||||
lambda x: x.startswith(("workspace://", "data:")),
|
||||
),
|
||||
test_mock={
|
||||
"create_webhook": lambda *args, **kwargs: (
|
||||
"test_uuid",
|
||||
@@ -280,15 +286,21 @@ class AIShortformVideoCreatorBlock(Block):
|
||||
"create_video": lambda *args, **kwargs: {"pid": "test_pid"},
|
||||
"check_video_status": lambda *args, **kwargs: {
|
||||
"status": "ready",
|
||||
"videoUrl": "https://example.com/video.mp4",
|
||||
"videoUrl": "data:video/mp4;base64,AAAA",
|
||||
},
|
||||
"wait_for_video": lambda *args, **kwargs: "https://example.com/video.mp4",
|
||||
# Use data URI to avoid HTTP requests during tests
|
||||
"wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA",
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
)
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
# Create a new Webhook.site URL
|
||||
webhook_token, webhook_url = await self.create_webhook()
|
||||
@@ -340,7 +352,13 @@ class AIShortformVideoCreatorBlock(Block):
|
||||
)
|
||||
video_url = await self.wait_for_video(credentials.api_key, pid)
|
||||
logger.debug(f"Video ready: {video_url}")
|
||||
yield "video_url", video_url
|
||||
# Store the generated video to the user's workspace for persistence
|
||||
stored_url = await store_media_file(
|
||||
file=MediaFileType(video_url),
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "video_url", stored_url
|
||||
|
||||
|
||||
class AIAdMakerVideoCreatorBlock(Block):
|
||||
@@ -447,7 +465,10 @@ class AIAdMakerVideoCreatorBlock(Block):
|
||||
"https://cdn.revid.ai/uploads/1747076315114-image.png",
|
||||
],
|
||||
},
|
||||
test_output=("video_url", "https://example.com/ad.mp4"),
|
||||
test_output=(
|
||||
"video_url",
|
||||
lambda x: x.startswith(("workspace://", "data:")),
|
||||
),
|
||||
test_mock={
|
||||
"create_webhook": lambda *args, **kwargs: (
|
||||
"test_uuid",
|
||||
@@ -456,14 +477,21 @@ class AIAdMakerVideoCreatorBlock(Block):
|
||||
"create_video": lambda *args, **kwargs: {"pid": "test_pid"},
|
||||
"check_video_status": lambda *args, **kwargs: {
|
||||
"status": "ready",
|
||||
"videoUrl": "https://example.com/ad.mp4",
|
||||
"videoUrl": "data:video/mp4;base64,AAAA",
|
||||
},
|
||||
"wait_for_video": lambda *args, **kwargs: "https://example.com/ad.mp4",
|
||||
"wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA",
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
)
|
||||
|
||||
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
):
|
||||
webhook_token, webhook_url = await self.create_webhook()
|
||||
|
||||
payload = {
|
||||
@@ -531,7 +559,13 @@ class AIAdMakerVideoCreatorBlock(Block):
|
||||
raise RuntimeError("Failed to create video: No project ID returned")
|
||||
|
||||
video_url = await self.wait_for_video(credentials.api_key, pid)
|
||||
yield "video_url", video_url
|
||||
# Store the generated video to the user's workspace for persistence
|
||||
stored_url = await store_media_file(
|
||||
file=MediaFileType(video_url),
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "video_url", stored_url
|
||||
|
||||
|
||||
class AIScreenshotToVideoAdBlock(Block):
|
||||
@@ -626,7 +660,10 @@ class AIScreenshotToVideoAdBlock(Block):
|
||||
"script": "Amazing numbers!",
|
||||
"screenshot_url": "https://cdn.revid.ai/uploads/1747080376028-image.png",
|
||||
},
|
||||
test_output=("video_url", "https://example.com/screenshot.mp4"),
|
||||
test_output=(
|
||||
"video_url",
|
||||
lambda x: x.startswith(("workspace://", "data:")),
|
||||
),
|
||||
test_mock={
|
||||
"create_webhook": lambda *args, **kwargs: (
|
||||
"test_uuid",
|
||||
@@ -635,14 +672,21 @@ class AIScreenshotToVideoAdBlock(Block):
|
||||
"create_video": lambda *args, **kwargs: {"pid": "test_pid"},
|
||||
"check_video_status": lambda *args, **kwargs: {
|
||||
"status": "ready",
|
||||
"videoUrl": "https://example.com/screenshot.mp4",
|
||||
"videoUrl": "data:video/mp4;base64,AAAA",
|
||||
},
|
||||
"wait_for_video": lambda *args, **kwargs: "https://example.com/screenshot.mp4",
|
||||
"wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA",
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
)
|
||||
|
||||
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
):
|
||||
webhook_token, webhook_url = await self.create_webhook()
|
||||
|
||||
payload = {
|
||||
@@ -710,4 +754,10 @@ class AIScreenshotToVideoAdBlock(Block):
|
||||
raise RuntimeError("Failed to create video: No project ID returned")
|
||||
|
||||
video_url = await self.wait_for_video(credentials.api_key, pid)
|
||||
yield "video_url", video_url
|
||||
# Store the generated video to the user's workspace for persistence
|
||||
stored_url = await store_media_file(
|
||||
file=MediaFileType(video_url),
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "video_url", stored_url
|
||||
|
||||
@@ -6,6 +6,7 @@ if TYPE_CHECKING:
|
||||
|
||||
from pydantic import SecretStr
|
||||
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.sdk import (
|
||||
APIKeyCredentials,
|
||||
Block,
|
||||
@@ -17,6 +18,8 @@ from backend.sdk import (
|
||||
Requests,
|
||||
SchemaField,
|
||||
)
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.type import MediaFileType
|
||||
|
||||
from ._config import bannerbear
|
||||
|
||||
@@ -135,15 +138,17 @@ class BannerbearTextOverlayBlock(Block):
|
||||
},
|
||||
test_output=[
|
||||
("success", True),
|
||||
("image_url", "https://cdn.bannerbear.com/test-image.jpg"),
|
||||
# Output will be a workspace ref or data URI depending on context
|
||||
("image_url", lambda x: x.startswith(("workspace://", "data:"))),
|
||||
("uid", "test-uid-123"),
|
||||
("status", "completed"),
|
||||
],
|
||||
test_mock={
|
||||
# Use data URI to avoid HTTP requests during tests
|
||||
"_make_api_request": lambda *args, **kwargs: {
|
||||
"uid": "test-uid-123",
|
||||
"status": "completed",
|
||||
"image_url": "https://cdn.bannerbear.com/test-image.jpg",
|
||||
"image_url": "",
|
||||
}
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
@@ -177,7 +182,12 @@ class BannerbearTextOverlayBlock(Block):
|
||||
raise Exception(error_msg)
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
# Build the modifications array
|
||||
modifications = []
|
||||
@@ -234,6 +244,18 @@ class BannerbearTextOverlayBlock(Block):
|
||||
|
||||
# Synchronous request - image should be ready
|
||||
yield "success", True
|
||||
yield "image_url", data.get("image_url", "")
|
||||
|
||||
# Store the generated image to workspace for persistence
|
||||
image_url = data.get("image_url", "")
|
||||
if image_url:
|
||||
stored_url = await store_media_file(
|
||||
file=MediaFileType(image_url),
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "image_url", stored_url
|
||||
else:
|
||||
yield "image_url", ""
|
||||
|
||||
yield "uid", data.get("uid", "")
|
||||
yield "status", data.get("status", "completed")
|
||||
|
||||
@@ -9,6 +9,7 @@ from backend.data.block import (
|
||||
BlockSchemaOutput,
|
||||
BlockType,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.type import MediaFileType, convert
|
||||
@@ -17,10 +18,10 @@ from backend.util.type import MediaFileType, convert
|
||||
class FileStoreBlock(Block):
|
||||
class Input(BlockSchemaInput):
|
||||
file_in: MediaFileType = SchemaField(
|
||||
description="The file to store in the temporary directory, it can be a URL, data URI, or local path."
|
||||
description="The file to download and store. Can be a URL (https://...), data URI, or local path."
|
||||
)
|
||||
base_64: bool = SchemaField(
|
||||
description="Whether produce an output in base64 format (not recommended, you can pass the string path just fine accross blocks).",
|
||||
description="Whether to produce output in base64 format (not recommended, you can pass the file reference across blocks).",
|
||||
default=False,
|
||||
advanced=True,
|
||||
title="Produce Base64 Output",
|
||||
@@ -28,13 +29,18 @@ class FileStoreBlock(Block):
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
file_out: MediaFileType = SchemaField(
|
||||
description="The relative path to the stored file in the temporary directory."
|
||||
description="Reference to the stored file. In CoPilot: workspace:// URI (visible in list_workspace_files). In graphs: data URI for passing to other blocks."
|
||||
)
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="cbb50872-625b-42f0-8203-a2ae78242d8a",
|
||||
description="Stores the input file in the temporary directory.",
|
||||
description=(
|
||||
"Downloads and stores a file from a URL, data URI, or local path. "
|
||||
"Use this to fetch images, documents, or other files for processing. "
|
||||
"In CoPilot: saves to workspace (use list_workspace_files to see it). "
|
||||
"In graphs: outputs a data URI to pass to other blocks."
|
||||
),
|
||||
categories={BlockCategory.BASIC, BlockCategory.MULTIMEDIA},
|
||||
input_schema=FileStoreBlock.Input,
|
||||
output_schema=FileStoreBlock.Output,
|
||||
@@ -45,15 +51,18 @@ class FileStoreBlock(Block):
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
# Determine return format based on user preference
|
||||
# for_external_api: always returns data URI (base64) - honors "Produce Base64 Output"
|
||||
# for_block_output: smart format - workspace:// in CoPilot, data URI in graphs
|
||||
return_format = "for_external_api" if input_data.base_64 else "for_block_output"
|
||||
|
||||
yield "file_out", await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.file_in,
|
||||
user_id=user_id,
|
||||
return_content=input_data.base_64,
|
||||
execution_context=execution_context,
|
||||
return_format=return_format,
|
||||
)
|
||||
|
||||
|
||||
|
||||
@@ -15,6 +15,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import APIKeyCredentials, SchemaField
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.request import Requests
|
||||
@@ -666,8 +667,7 @@ class SendDiscordFileBlock(Block):
|
||||
file: MediaFileType,
|
||||
filename: str,
|
||||
message_content: str,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
) -> dict:
|
||||
intents = discord.Intents.default()
|
||||
intents.guilds = True
|
||||
@@ -731,10 +731,9 @@ class SendDiscordFileBlock(Block):
|
||||
# Local file path - read from stored media file
|
||||
# This would be a path from a previous block's output
|
||||
stored_file = await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=file,
|
||||
user_id=user_id,
|
||||
return_content=True, # Get as data URI
|
||||
execution_context=execution_context,
|
||||
return_format="for_external_api", # Get content to send to Discord
|
||||
)
|
||||
# Now process as data URI
|
||||
header, encoded = stored_file.split(",", 1)
|
||||
@@ -781,8 +780,7 @@ class SendDiscordFileBlock(Block):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
try:
|
||||
@@ -793,8 +791,7 @@ class SendDiscordFileBlock(Block):
|
||||
file=input_data.file,
|
||||
filename=input_data.filename,
|
||||
message_content=input_data.message_content,
|
||||
graph_exec_id=graph_exec_id,
|
||||
user_id=user_id,
|
||||
execution_context=execution_context,
|
||||
)
|
||||
|
||||
yield "status", result.get("status", "Unknown error")
|
||||
|
||||
@@ -17,8 +17,11 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.request import ClientResponseError, Requests
|
||||
from backend.util.type import MediaFileType
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -64,9 +67,13 @@ class AIVideoGeneratorBlock(Block):
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
test_output=[("video_url", "https://fal.media/files/example/video.mp4")],
|
||||
test_output=[
|
||||
# Output will be a workspace ref or data URI depending on context
|
||||
("video_url", lambda x: x.startswith(("workspace://", "data:"))),
|
||||
],
|
||||
test_mock={
|
||||
"generate_video": lambda *args, **kwargs: "https://fal.media/files/example/video.mp4"
|
||||
# Use data URI to avoid HTTP requests during tests
|
||||
"generate_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA"
|
||||
},
|
||||
)
|
||||
|
||||
@@ -208,11 +215,22 @@ class AIVideoGeneratorBlock(Block):
|
||||
raise RuntimeError(f"API request failed: {str(e)}")
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, credentials: FalCredentials, **kwargs
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: FalCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
try:
|
||||
video_url = await self.generate_video(input_data, credentials)
|
||||
yield "video_url", video_url
|
||||
# Store the generated video to the user's workspace for persistence
|
||||
stored_url = await store_media_file(
|
||||
file=MediaFileType(video_url),
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "video_url", stored_url
|
||||
except Exception as e:
|
||||
error_message = str(e)
|
||||
yield "error", error_message
|
||||
|
||||
@@ -12,6 +12,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import (
|
||||
APIKeyCredentials,
|
||||
CredentialsField,
|
||||
@@ -121,10 +122,12 @@ class AIImageEditorBlock(Block):
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
},
|
||||
test_output=[
|
||||
("output_image", "https://replicate.com/output/edited-image.png"),
|
||||
# Output will be a workspace ref or data URI depending on context
|
||||
("output_image", lambda x: x.startswith(("workspace://", "data:"))),
|
||||
],
|
||||
test_mock={
|
||||
"run_model": lambda *args, **kwargs: "https://replicate.com/output/edited-image.png",
|
||||
# Use data URI to avoid HTTP requests during tests
|
||||
"run_model": lambda *args, **kwargs: "",
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
)
|
||||
@@ -134,8 +137,7 @@ class AIImageEditorBlock(Block):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
result = await self.run_model(
|
||||
@@ -144,20 +146,25 @@ class AIImageEditorBlock(Block):
|
||||
prompt=input_data.prompt,
|
||||
input_image_b64=(
|
||||
await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.input_image,
|
||||
user_id=user_id,
|
||||
return_content=True,
|
||||
execution_context=execution_context,
|
||||
return_format="for_external_api", # Get content for Replicate API
|
||||
)
|
||||
if input_data.input_image
|
||||
else None
|
||||
),
|
||||
aspect_ratio=input_data.aspect_ratio.value,
|
||||
seed=input_data.seed,
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
user_id=execution_context.user_id or "",
|
||||
graph_exec_id=execution_context.graph_exec_id or "",
|
||||
)
|
||||
yield "output_image", result
|
||||
# Store the generated image to the user's workspace for persistence
|
||||
stored_url = await store_media_file(
|
||||
file=result,
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "output_image", stored_url
|
||||
|
||||
async def run_model(
|
||||
self,
|
||||
|
||||
@@ -21,6 +21,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
|
||||
from backend.util.settings import Settings
|
||||
@@ -95,8 +96,7 @@ def _make_mime_text(
|
||||
|
||||
async def create_mime_message(
|
||||
input_data,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
) -> str:
|
||||
"""Create a MIME message with attachments and return base64-encoded raw message."""
|
||||
|
||||
@@ -117,12 +117,12 @@ async def create_mime_message(
|
||||
if input_data.attachments:
|
||||
for attach in input_data.attachments:
|
||||
local_path = await store_media_file(
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=attach,
|
||||
return_content=False,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
abs_path = get_exec_file_path(graph_exec_id, local_path)
|
||||
assert execution_context.graph_exec_id # Validated by store_media_file
|
||||
abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
|
||||
part = MIMEBase("application", "octet-stream")
|
||||
with open(abs_path, "rb") as f:
|
||||
part.set_payload(f.read())
|
||||
@@ -582,27 +582,25 @@ class GmailSendBlock(GmailBase):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: GoogleCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
service = self._build_service(credentials, **kwargs)
|
||||
result = await self._send_email(
|
||||
service,
|
||||
input_data,
|
||||
graph_exec_id,
|
||||
user_id,
|
||||
execution_context,
|
||||
)
|
||||
yield "result", result
|
||||
|
||||
async def _send_email(
|
||||
self, service, input_data: Input, graph_exec_id: str, user_id: str
|
||||
self, service, input_data: Input, execution_context: ExecutionContext
|
||||
) -> dict:
|
||||
if not input_data.to or not input_data.subject or not input_data.body:
|
||||
raise ValueError(
|
||||
"At least one recipient, subject, and body are required for sending an email"
|
||||
)
|
||||
raw_message = await create_mime_message(input_data, graph_exec_id, user_id)
|
||||
raw_message = await create_mime_message(input_data, execution_context)
|
||||
sent_message = await asyncio.to_thread(
|
||||
lambda: service.users()
|
||||
.messages()
|
||||
@@ -692,30 +690,28 @@ class GmailCreateDraftBlock(GmailBase):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: GoogleCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
service = self._build_service(credentials, **kwargs)
|
||||
result = await self._create_draft(
|
||||
service,
|
||||
input_data,
|
||||
graph_exec_id,
|
||||
user_id,
|
||||
execution_context,
|
||||
)
|
||||
yield "result", GmailDraftResult(
|
||||
id=result["id"], message_id=result["message"]["id"], status="draft_created"
|
||||
)
|
||||
|
||||
async def _create_draft(
|
||||
self, service, input_data: Input, graph_exec_id: str, user_id: str
|
||||
self, service, input_data: Input, execution_context: ExecutionContext
|
||||
) -> dict:
|
||||
if not input_data.to or not input_data.subject:
|
||||
raise ValueError(
|
||||
"At least one recipient and subject are required for creating a draft"
|
||||
)
|
||||
|
||||
raw_message = await create_mime_message(input_data, graph_exec_id, user_id)
|
||||
raw_message = await create_mime_message(input_data, execution_context)
|
||||
draft = await asyncio.to_thread(
|
||||
lambda: service.users()
|
||||
.drafts()
|
||||
@@ -1100,7 +1096,7 @@ class GmailGetThreadBlock(GmailBase):
|
||||
|
||||
|
||||
async def _build_reply_message(
|
||||
service, input_data, graph_exec_id: str, user_id: str
|
||||
service, input_data, execution_context: ExecutionContext
|
||||
) -> tuple[str, str]:
|
||||
"""
|
||||
Builds a reply MIME message for Gmail threads.
|
||||
@@ -1190,12 +1186,12 @@ async def _build_reply_message(
|
||||
# Handle attachments
|
||||
for attach in input_data.attachments:
|
||||
local_path = await store_media_file(
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=attach,
|
||||
return_content=False,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
abs_path = get_exec_file_path(graph_exec_id, local_path)
|
||||
assert execution_context.graph_exec_id # Validated by store_media_file
|
||||
abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
|
||||
part = MIMEBase("application", "octet-stream")
|
||||
with open(abs_path, "rb") as f:
|
||||
part.set_payload(f.read())
|
||||
@@ -1311,16 +1307,14 @@ class GmailReplyBlock(GmailBase):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: GoogleCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
service = self._build_service(credentials, **kwargs)
|
||||
message = await self._reply(
|
||||
service,
|
||||
input_data,
|
||||
graph_exec_id,
|
||||
user_id,
|
||||
execution_context,
|
||||
)
|
||||
yield "messageId", message["id"]
|
||||
yield "threadId", message.get("threadId", input_data.threadId)
|
||||
@@ -1343,11 +1337,11 @@ class GmailReplyBlock(GmailBase):
|
||||
yield "email", email
|
||||
|
||||
async def _reply(
|
||||
self, service, input_data: Input, graph_exec_id: str, user_id: str
|
||||
self, service, input_data: Input, execution_context: ExecutionContext
|
||||
) -> dict:
|
||||
# Build the reply message using the shared helper
|
||||
raw, thread_id = await _build_reply_message(
|
||||
service, input_data, graph_exec_id, user_id
|
||||
service, input_data, execution_context
|
||||
)
|
||||
|
||||
# Send the message
|
||||
@@ -1441,16 +1435,14 @@ class GmailDraftReplyBlock(GmailBase):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: GoogleCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
service = self._build_service(credentials, **kwargs)
|
||||
draft = await self._create_draft_reply(
|
||||
service,
|
||||
input_data,
|
||||
graph_exec_id,
|
||||
user_id,
|
||||
execution_context,
|
||||
)
|
||||
yield "draftId", draft["id"]
|
||||
yield "messageId", draft["message"]["id"]
|
||||
@@ -1458,11 +1450,11 @@ class GmailDraftReplyBlock(GmailBase):
|
||||
yield "status", "draft_created"
|
||||
|
||||
async def _create_draft_reply(
|
||||
self, service, input_data: Input, graph_exec_id: str, user_id: str
|
||||
self, service, input_data: Input, execution_context: ExecutionContext
|
||||
) -> dict:
|
||||
# Build the reply message using the shared helper
|
||||
raw, thread_id = await _build_reply_message(
|
||||
service, input_data, graph_exec_id, user_id
|
||||
service, input_data, execution_context
|
||||
)
|
||||
|
||||
# Create draft with proper thread association
|
||||
@@ -1629,23 +1621,21 @@ class GmailForwardBlock(GmailBase):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: GoogleCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
service = self._build_service(credentials, **kwargs)
|
||||
result = await self._forward_message(
|
||||
service,
|
||||
input_data,
|
||||
graph_exec_id,
|
||||
user_id,
|
||||
execution_context,
|
||||
)
|
||||
yield "messageId", result["id"]
|
||||
yield "threadId", result.get("threadId", "")
|
||||
yield "status", "forwarded"
|
||||
|
||||
async def _forward_message(
|
||||
self, service, input_data: Input, graph_exec_id: str, user_id: str
|
||||
self, service, input_data: Input, execution_context: ExecutionContext
|
||||
) -> dict:
|
||||
if not input_data.to:
|
||||
raise ValueError("At least one recipient is required for forwarding")
|
||||
@@ -1727,12 +1717,12 @@ To: {original_to}
|
||||
# Add any additional attachments
|
||||
for attach in input_data.additionalAttachments:
|
||||
local_path = await store_media_file(
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=attach,
|
||||
return_content=False,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
abs_path = get_exec_file_path(graph_exec_id, local_path)
|
||||
assert execution_context.graph_exec_id # Validated by store_media_file
|
||||
abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
|
||||
part = MIMEBase("application", "octet-stream")
|
||||
with open(abs_path, "rb") as f:
|
||||
part.set_payload(f.read())
|
||||
|
||||
@@ -15,6 +15,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import (
|
||||
CredentialsField,
|
||||
CredentialsMetaInput,
|
||||
@@ -116,10 +117,9 @@ class SendWebRequestBlock(Block):
|
||||
|
||||
@staticmethod
|
||||
async def _prepare_files(
|
||||
graph_exec_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
files_name: str,
|
||||
files: list[MediaFileType],
|
||||
user_id: str,
|
||||
) -> list[tuple[str, tuple[str, BytesIO, str]]]:
|
||||
"""
|
||||
Prepare files for the request by storing them and reading their content.
|
||||
@@ -127,11 +127,16 @@ class SendWebRequestBlock(Block):
|
||||
(files_name, (filename, BytesIO, mime_type))
|
||||
"""
|
||||
files_payload: list[tuple[str, tuple[str, BytesIO, str]]] = []
|
||||
graph_exec_id = execution_context.graph_exec_id
|
||||
if graph_exec_id is None:
|
||||
raise ValueError("graph_exec_id is required for file operations")
|
||||
|
||||
for media in files:
|
||||
# Normalise to a list so we can repeat the same key
|
||||
rel_path = await store_media_file(
|
||||
graph_exec_id, media, user_id, return_content=False
|
||||
file=media,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
abs_path = get_exec_file_path(graph_exec_id, rel_path)
|
||||
async with aiofiles.open(abs_path, "rb") as f:
|
||||
@@ -143,7 +148,7 @@ class SendWebRequestBlock(Block):
|
||||
return files_payload
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, graph_exec_id: str, user_id: str, **kwargs
|
||||
self, input_data: Input, *, execution_context: ExecutionContext, **kwargs
|
||||
) -> BlockOutput:
|
||||
# ─── Parse/normalise body ────────────────────────────────────
|
||||
body = input_data.body
|
||||
@@ -174,7 +179,7 @@ class SendWebRequestBlock(Block):
|
||||
files_payload: list[tuple[str, tuple[str, BytesIO, str]]] = []
|
||||
if use_files:
|
||||
files_payload = await self._prepare_files(
|
||||
graph_exec_id, input_data.files_name, input_data.files, user_id
|
||||
execution_context, input_data.files_name, input_data.files
|
||||
)
|
||||
|
||||
# Enforce body format rules
|
||||
@@ -238,9 +243,8 @@ class SendAuthenticatedWebRequestBlock(SendWebRequestBlock):
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
graph_exec_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
credentials: HostScopedCredentials,
|
||||
user_id: str,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
# Create SendWebRequestBlock.Input from our input (removing credentials field)
|
||||
@@ -271,6 +275,6 @@ class SendAuthenticatedWebRequestBlock(SendWebRequestBlock):
|
||||
|
||||
# Use parent class run method
|
||||
async for output_name, output_data in super().run(
|
||||
base_input, graph_exec_id=graph_exec_id, user_id=user_id, **kwargs
|
||||
base_input, execution_context=execution_context, **kwargs
|
||||
):
|
||||
yield output_name, output_data
|
||||
|
||||
@@ -12,6 +12,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockType,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.mock import MockObject
|
||||
@@ -462,18 +463,21 @@ class AgentFileInputBlock(AgentInputBlock):
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
if not input_data.value:
|
||||
return
|
||||
|
||||
# Determine return format based on user preference
|
||||
# for_external_api: always returns data URI (base64) - honors "Produce Base64 Output"
|
||||
# for_block_output: smart format - workspace:// in CoPilot, data URI in graphs
|
||||
return_format = "for_external_api" if input_data.base_64 else "for_block_output"
|
||||
|
||||
yield "result", await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.value,
|
||||
user_id=user_id,
|
||||
return_content=input_data.base_64,
|
||||
execution_context=execution_context,
|
||||
return_format=return_format,
|
||||
)
|
||||
|
||||
|
||||
|
||||
@@ -162,8 +162,16 @@ class LinearClient:
|
||||
"searchTerm": team_name,
|
||||
}
|
||||
|
||||
team_id = await self.query(query, variables)
|
||||
return team_id["teams"]["nodes"][0]["id"]
|
||||
result = await self.query(query, variables)
|
||||
nodes = result["teams"]["nodes"]
|
||||
|
||||
if not nodes:
|
||||
raise LinearAPIException(
|
||||
f"Team '{team_name}' not found. Check the team name or key and try again.",
|
||||
status_code=404,
|
||||
)
|
||||
|
||||
return nodes[0]["id"]
|
||||
except LinearAPIException as e:
|
||||
raise e
|
||||
|
||||
@@ -240,17 +248,44 @@ class LinearClient:
|
||||
except LinearAPIException as e:
|
||||
raise e
|
||||
|
||||
async def try_search_issues(self, term: str) -> list[Issue]:
|
||||
async def try_search_issues(
|
||||
self,
|
||||
term: str,
|
||||
max_results: int = 10,
|
||||
team_id: str | None = None,
|
||||
) -> list[Issue]:
|
||||
try:
|
||||
query = """
|
||||
query SearchIssues($term: String!, $includeComments: Boolean!) {
|
||||
searchIssues(term: $term, includeComments: $includeComments) {
|
||||
query SearchIssues(
|
||||
$term: String!,
|
||||
$first: Int,
|
||||
$teamId: String
|
||||
) {
|
||||
searchIssues(
|
||||
term: $term,
|
||||
first: $first,
|
||||
teamId: $teamId
|
||||
) {
|
||||
nodes {
|
||||
id
|
||||
identifier
|
||||
title
|
||||
description
|
||||
priority
|
||||
createdAt
|
||||
state {
|
||||
id
|
||||
name
|
||||
type
|
||||
}
|
||||
project {
|
||||
id
|
||||
name
|
||||
}
|
||||
assignee {
|
||||
id
|
||||
name
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -258,7 +293,8 @@ class LinearClient:
|
||||
|
||||
variables: dict[str, Any] = {
|
||||
"term": term,
|
||||
"includeComments": True,
|
||||
"first": max_results,
|
||||
"teamId": team_id,
|
||||
}
|
||||
|
||||
issues = await self.query(query, variables)
|
||||
|
||||
@@ -17,7 +17,7 @@ from ._config import (
|
||||
LinearScope,
|
||||
linear,
|
||||
)
|
||||
from .models import CreateIssueResponse, Issue
|
||||
from .models import CreateIssueResponse, Issue, State
|
||||
|
||||
|
||||
class LinearCreateIssueBlock(Block):
|
||||
@@ -135,9 +135,20 @@ class LinearSearchIssuesBlock(Block):
|
||||
description="Linear credentials with read permissions",
|
||||
required_scopes={LinearScope.READ},
|
||||
)
|
||||
max_results: int = SchemaField(
|
||||
description="Maximum number of results to return",
|
||||
default=10,
|
||||
ge=1,
|
||||
le=100,
|
||||
)
|
||||
team_name: str | None = SchemaField(
|
||||
description="Optional team name to filter results (e.g., 'Internal', 'Open Source')",
|
||||
default=None,
|
||||
)
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
issues: list[Issue] = SchemaField(description="List of issues")
|
||||
error: str = SchemaField(description="Error message if the search failed")
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
@@ -145,8 +156,11 @@ class LinearSearchIssuesBlock(Block):
|
||||
description="Searches for issues on Linear",
|
||||
input_schema=self.Input,
|
||||
output_schema=self.Output,
|
||||
categories={BlockCategory.PRODUCTIVITY, BlockCategory.ISSUE_TRACKING},
|
||||
test_input={
|
||||
"term": "Test issue",
|
||||
"max_results": 10,
|
||||
"team_name": None,
|
||||
"credentials": TEST_CREDENTIALS_INPUT_OAUTH,
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS_OAUTH,
|
||||
@@ -156,10 +170,14 @@ class LinearSearchIssuesBlock(Block):
|
||||
[
|
||||
Issue(
|
||||
id="abc123",
|
||||
identifier="abc123",
|
||||
identifier="TST-123",
|
||||
title="Test issue",
|
||||
description="Test description",
|
||||
priority=1,
|
||||
state=State(
|
||||
id="state1", name="In Progress", type="started"
|
||||
),
|
||||
createdAt="2026-01-15T10:00:00.000Z",
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -168,10 +186,12 @@ class LinearSearchIssuesBlock(Block):
|
||||
"search_issues": lambda *args, **kwargs: [
|
||||
Issue(
|
||||
id="abc123",
|
||||
identifier="abc123",
|
||||
identifier="TST-123",
|
||||
title="Test issue",
|
||||
description="Test description",
|
||||
priority=1,
|
||||
state=State(id="state1", name="In Progress", type="started"),
|
||||
createdAt="2026-01-15T10:00:00.000Z",
|
||||
)
|
||||
]
|
||||
},
|
||||
@@ -181,10 +201,22 @@ class LinearSearchIssuesBlock(Block):
|
||||
async def search_issues(
|
||||
credentials: OAuth2Credentials | APIKeyCredentials,
|
||||
term: str,
|
||||
max_results: int = 10,
|
||||
team_name: str | None = None,
|
||||
) -> list[Issue]:
|
||||
client = LinearClient(credentials=credentials)
|
||||
response: list[Issue] = await client.try_search_issues(term=term)
|
||||
return response
|
||||
|
||||
# Resolve team name to ID if provided
|
||||
# Raises LinearAPIException with descriptive message if team not found
|
||||
team_id: str | None = None
|
||||
if team_name:
|
||||
team_id = await client.try_get_team_by_name(team_name=team_name)
|
||||
|
||||
return await client.try_search_issues(
|
||||
term=term,
|
||||
max_results=max_results,
|
||||
team_id=team_id,
|
||||
)
|
||||
|
||||
async def run(
|
||||
self,
|
||||
@@ -196,7 +228,10 @@ class LinearSearchIssuesBlock(Block):
|
||||
"""Execute the issue search"""
|
||||
try:
|
||||
issues = await self.search_issues(
|
||||
credentials=credentials, term=input_data.term
|
||||
credentials=credentials,
|
||||
term=input_data.term,
|
||||
max_results=input_data.max_results,
|
||||
team_name=input_data.team_name,
|
||||
)
|
||||
yield "issues", issues
|
||||
except LinearAPIException as e:
|
||||
|
||||
@@ -36,12 +36,21 @@ class Project(BaseModel):
|
||||
content: str | None = None
|
||||
|
||||
|
||||
class State(BaseModel):
|
||||
id: str
|
||||
name: str
|
||||
type: str | None = (
|
||||
None # Workflow state type (e.g., "triage", "backlog", "started", "completed", "canceled")
|
||||
)
|
||||
|
||||
|
||||
class Issue(BaseModel):
|
||||
id: str
|
||||
identifier: str
|
||||
title: str
|
||||
description: str | None
|
||||
priority: int
|
||||
state: State | None = None
|
||||
project: Project | None = None
|
||||
createdAt: str | None = None
|
||||
comments: list[Comment] | None = None
|
||||
|
||||
@@ -4,19 +4,17 @@ import logging
|
||||
import re
|
||||
import secrets
|
||||
from abc import ABC
|
||||
from enum import Enum
|
||||
from enum import Enum, EnumMeta
|
||||
from json import JSONDecodeError
|
||||
from typing import Any, Iterable, List, Literal, Optional
|
||||
from typing import Any, Iterable, List, Literal, NamedTuple, Optional
|
||||
|
||||
import anthropic
|
||||
import ollama
|
||||
import openai
|
||||
from anthropic.types import ToolParam
|
||||
from groq import AsyncGroq
|
||||
from pydantic import BaseModel, GetCoreSchemaHandler, SecretStr
|
||||
from pydantic_core import CoreSchema, core_schema
|
||||
from pydantic import BaseModel, SecretStr
|
||||
|
||||
from backend.data import llm_registry
|
||||
from backend.data.block import (
|
||||
Block,
|
||||
BlockCategory,
|
||||
@@ -24,7 +22,6 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.llm_registry import ModelMetadata
|
||||
from backend.data.model import (
|
||||
APIKeyCredentials,
|
||||
CredentialsField,
|
||||
@@ -35,7 +32,7 @@ from backend.data.model import (
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util import json
|
||||
from backend.util.logging import TruncatedLogger
|
||||
from backend.util.prompt import compress_prompt, estimate_token_count
|
||||
from backend.util.prompt import compress_context, estimate_token_count
|
||||
from backend.util.text import TextFormatter
|
||||
|
||||
logger = TruncatedLogger(logging.getLogger(__name__), "[LLM-Block]")
|
||||
@@ -69,123 +66,113 @@ TEST_CREDENTIALS_INPUT = {
|
||||
|
||||
|
||||
def AICredentialsField() -> AICredentials:
|
||||
"""
|
||||
Returns a CredentialsField for LLM providers.
|
||||
The discriminator_mapping will be refreshed when the schema is generated
|
||||
if it's empty, ensuring the LLM registry is loaded.
|
||||
"""
|
||||
# Get the mapping now - it may be empty initially, but will be refreshed
|
||||
# when the schema is generated via CredentialsMetaInput._add_json_schema_extra
|
||||
mapping = llm_registry.get_llm_discriminator_mapping()
|
||||
|
||||
return CredentialsField(
|
||||
description="API key for the LLM provider.",
|
||||
discriminator="model",
|
||||
discriminator_mapping=mapping, # May be empty initially, refreshed later
|
||||
discriminator_mapping={
|
||||
model.value: model.metadata.provider for model in LlmModel
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def llm_model_schema_extra() -> dict[str, Any]:
|
||||
return {"options": llm_registry.get_llm_model_schema_options()}
|
||||
class ModelMetadata(NamedTuple):
|
||||
provider: str
|
||||
context_window: int
|
||||
max_output_tokens: int | None
|
||||
display_name: str
|
||||
provider_name: str
|
||||
creator_name: str
|
||||
price_tier: Literal[1, 2, 3]
|
||||
|
||||
|
||||
class LlmModelMeta(type):
|
||||
"""
|
||||
Metaclass for LlmModel that enables attribute-style access to dynamic models.
|
||||
|
||||
This allows code like `LlmModel.GPT4O` to work by converting the attribute
|
||||
name to a slug format:
|
||||
- GPT4O -> gpt-4o
|
||||
- GPT4O_MINI -> gpt-4o-mini
|
||||
- CLAUDE_3_5_SONNET -> claude-3-5-sonnet
|
||||
"""
|
||||
|
||||
def __getattr__(cls, name: str):
|
||||
# Don't intercept private/dunder attributes
|
||||
if name.startswith("_"):
|
||||
raise AttributeError(f"type object 'LlmModel' has no attribute '{name}'")
|
||||
|
||||
# Convert attribute name to slug format:
|
||||
# 1. Lowercase: GPT4O -> gpt4o
|
||||
# 2. Underscores to hyphens: GPT4O_MINI -> gpt4o-mini
|
||||
slug = name.lower().replace("_", "-")
|
||||
|
||||
# Check for exact match in registry first (e.g., "o1" stays "o1")
|
||||
registry_slugs = llm_registry.get_dynamic_model_slugs()
|
||||
if slug in registry_slugs:
|
||||
return cls(slug)
|
||||
|
||||
# If no exact match, try inserting hyphen between letter and digit
|
||||
# e.g., gpt4o -> gpt-4o
|
||||
transformed_slug = re.sub(r"([a-z])(\d)", r"\1-\2", slug)
|
||||
return cls(transformed_slug)
|
||||
|
||||
def __iter__(cls):
|
||||
"""Iterate over all models from the registry.
|
||||
|
||||
Yields LlmModel instances for each model in the dynamic registry.
|
||||
Used by __get_pydantic_json_schema__ to build model metadata.
|
||||
"""
|
||||
for model in llm_registry.iter_dynamic_models():
|
||||
yield cls(model.slug)
|
||||
class LlmModelMeta(EnumMeta):
|
||||
pass
|
||||
|
||||
|
||||
class LlmModel(str, metaclass=LlmModelMeta):
|
||||
"""
|
||||
Dynamic LLM model type that accepts any model slug from the registry.
|
||||
|
||||
This is a string subclass (not an Enum) that allows any model slug value.
|
||||
All models are managed via the LLM Registry in the database.
|
||||
|
||||
Usage:
|
||||
model = LlmModel("gpt-4o") # Direct construction
|
||||
model = LlmModel.GPT4O # Attribute access (converted to "gpt-4o")
|
||||
model.value # Returns the slug string
|
||||
model.provider # Returns the provider from registry
|
||||
"""
|
||||
|
||||
def __new__(cls, value: str):
|
||||
if isinstance(value, LlmModel):
|
||||
return value
|
||||
return str.__new__(cls, value)
|
||||
|
||||
@classmethod
|
||||
def __get_pydantic_core_schema__(
|
||||
cls, source_type: Any, handler: GetCoreSchemaHandler
|
||||
) -> CoreSchema:
|
||||
"""
|
||||
Tell Pydantic how to validate LlmModel.
|
||||
|
||||
Accepts strings and converts them to LlmModel instances.
|
||||
"""
|
||||
return core_schema.no_info_after_validator_function(
|
||||
cls, # The validator function (LlmModel constructor)
|
||||
core_schema.str_schema(), # Accept string input
|
||||
serialization=core_schema.to_string_ser_schema(), # Serialize as string
|
||||
)
|
||||
|
||||
@property
|
||||
def value(self) -> str:
|
||||
"""Return the model slug (for compatibility with enum-style access)."""
|
||||
return str(self)
|
||||
|
||||
@classmethod
|
||||
def default(cls) -> "LlmModel":
|
||||
"""
|
||||
Get the default model from the registry.
|
||||
|
||||
Returns the recommended model if set, otherwise gpt-4o if available
|
||||
and enabled, otherwise the first enabled model from the registry.
|
||||
Falls back to "gpt-4o" if registry is empty (e.g., at module import time).
|
||||
"""
|
||||
from backend.data.llm_registry import get_default_model_slug
|
||||
|
||||
slug = get_default_model_slug()
|
||||
if slug is None:
|
||||
# Registry is empty (e.g., at module import time before DB connection).
|
||||
# Fall back to gpt-4o for backward compatibility.
|
||||
slug = "gpt-4o"
|
||||
return cls(slug)
|
||||
class LlmModel(str, Enum, metaclass=LlmModelMeta):
|
||||
# OpenAI models
|
||||
O3_MINI = "o3-mini"
|
||||
O3 = "o3-2025-04-16"
|
||||
O1 = "o1"
|
||||
O1_MINI = "o1-mini"
|
||||
# GPT-5 models
|
||||
GPT5_2 = "gpt-5.2-2025-12-11"
|
||||
GPT5_1 = "gpt-5.1-2025-11-13"
|
||||
GPT5 = "gpt-5-2025-08-07"
|
||||
GPT5_MINI = "gpt-5-mini-2025-08-07"
|
||||
GPT5_NANO = "gpt-5-nano-2025-08-07"
|
||||
GPT5_CHAT = "gpt-5-chat-latest"
|
||||
GPT41 = "gpt-4.1-2025-04-14"
|
||||
GPT41_MINI = "gpt-4.1-mini-2025-04-14"
|
||||
GPT4O_MINI = "gpt-4o-mini"
|
||||
GPT4O = "gpt-4o"
|
||||
GPT4_TURBO = "gpt-4-turbo"
|
||||
GPT3_5_TURBO = "gpt-3.5-turbo"
|
||||
# Anthropic models
|
||||
CLAUDE_4_1_OPUS = "claude-opus-4-1-20250805"
|
||||
CLAUDE_4_OPUS = "claude-opus-4-20250514"
|
||||
CLAUDE_4_SONNET = "claude-sonnet-4-20250514"
|
||||
CLAUDE_4_5_OPUS = "claude-opus-4-5-20251101"
|
||||
CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
|
||||
CLAUDE_4_5_HAIKU = "claude-haiku-4-5-20251001"
|
||||
CLAUDE_3_HAIKU = "claude-3-haiku-20240307"
|
||||
# AI/ML API models
|
||||
AIML_API_QWEN2_5_72B = "Qwen/Qwen2.5-72B-Instruct-Turbo"
|
||||
AIML_API_LLAMA3_1_70B = "nvidia/llama-3.1-nemotron-70b-instruct"
|
||||
AIML_API_LLAMA3_3_70B = "meta-llama/Llama-3.3-70B-Instruct-Turbo"
|
||||
AIML_API_META_LLAMA_3_1_70B = "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo"
|
||||
AIML_API_LLAMA_3_2_3B = "meta-llama/Llama-3.2-3B-Instruct-Turbo"
|
||||
# Groq models
|
||||
LLAMA3_3_70B = "llama-3.3-70b-versatile"
|
||||
LLAMA3_1_8B = "llama-3.1-8b-instant"
|
||||
# Ollama models
|
||||
OLLAMA_LLAMA3_3 = "llama3.3"
|
||||
OLLAMA_LLAMA3_2 = "llama3.2"
|
||||
OLLAMA_LLAMA3_8B = "llama3"
|
||||
OLLAMA_LLAMA3_405B = "llama3.1:405b"
|
||||
OLLAMA_DOLPHIN = "dolphin-mistral:latest"
|
||||
# OpenRouter models
|
||||
OPENAI_GPT_OSS_120B = "openai/gpt-oss-120b"
|
||||
OPENAI_GPT_OSS_20B = "openai/gpt-oss-20b"
|
||||
GEMINI_2_5_PRO = "google/gemini-2.5-pro-preview-03-25"
|
||||
GEMINI_3_PRO_PREVIEW = "google/gemini-3-pro-preview"
|
||||
GEMINI_2_5_FLASH = "google/gemini-2.5-flash"
|
||||
GEMINI_2_0_FLASH = "google/gemini-2.0-flash-001"
|
||||
GEMINI_2_5_FLASH_LITE_PREVIEW = "google/gemini-2.5-flash-lite-preview-06-17"
|
||||
GEMINI_2_0_FLASH_LITE = "google/gemini-2.0-flash-lite-001"
|
||||
MISTRAL_NEMO = "mistralai/mistral-nemo"
|
||||
COHERE_COMMAND_R_08_2024 = "cohere/command-r-08-2024"
|
||||
COHERE_COMMAND_R_PLUS_08_2024 = "cohere/command-r-plus-08-2024"
|
||||
DEEPSEEK_CHAT = "deepseek/deepseek-chat" # Actually: DeepSeek V3
|
||||
DEEPSEEK_R1_0528 = "deepseek/deepseek-r1-0528"
|
||||
PERPLEXITY_SONAR = "perplexity/sonar"
|
||||
PERPLEXITY_SONAR_PRO = "perplexity/sonar-pro"
|
||||
PERPLEXITY_SONAR_DEEP_RESEARCH = "perplexity/sonar-deep-research"
|
||||
NOUSRESEARCH_HERMES_3_LLAMA_3_1_405B = "nousresearch/hermes-3-llama-3.1-405b"
|
||||
NOUSRESEARCH_HERMES_3_LLAMA_3_1_70B = "nousresearch/hermes-3-llama-3.1-70b"
|
||||
AMAZON_NOVA_LITE_V1 = "amazon/nova-lite-v1"
|
||||
AMAZON_NOVA_MICRO_V1 = "amazon/nova-micro-v1"
|
||||
AMAZON_NOVA_PRO_V1 = "amazon/nova-pro-v1"
|
||||
MICROSOFT_WIZARDLM_2_8X22B = "microsoft/wizardlm-2-8x22b"
|
||||
GRYPHE_MYTHOMAX_L2_13B = "gryphe/mythomax-l2-13b"
|
||||
META_LLAMA_4_SCOUT = "meta-llama/llama-4-scout"
|
||||
META_LLAMA_4_MAVERICK = "meta-llama/llama-4-maverick"
|
||||
GROK_4 = "x-ai/grok-4"
|
||||
GROK_4_FAST = "x-ai/grok-4-fast"
|
||||
GROK_4_1_FAST = "x-ai/grok-4.1-fast"
|
||||
GROK_CODE_FAST_1 = "x-ai/grok-code-fast-1"
|
||||
KIMI_K2 = "moonshotai/kimi-k2"
|
||||
QWEN3_235B_A22B_THINKING = "qwen/qwen3-235b-a22b-thinking-2507"
|
||||
QWEN3_CODER = "qwen/qwen3-coder"
|
||||
# Llama API models
|
||||
LLAMA_API_LLAMA_4_SCOUT = "Llama-4-Scout-17B-16E-Instruct-FP8"
|
||||
LLAMA_API_LLAMA4_MAVERICK = "Llama-4-Maverick-17B-128E-Instruct-FP8"
|
||||
LLAMA_API_LLAMA3_3_8B = "Llama-3.3-8B-Instruct"
|
||||
LLAMA_API_LLAMA3_3_70B = "Llama-3.3-70B-Instruct"
|
||||
# v0 by Vercel models
|
||||
V0_1_5_MD = "v0-1.5-md"
|
||||
V0_1_5_LG = "v0-1.5-lg"
|
||||
V0_1_0_MD = "v0-1.0-md"
|
||||
|
||||
@classmethod
|
||||
def __get_pydantic_json_schema__(cls, schema, handler):
|
||||
@@ -193,15 +180,7 @@ class LlmModel(str, metaclass=LlmModelMeta):
|
||||
llm_model_metadata = {}
|
||||
for model in cls:
|
||||
model_name = model.value
|
||||
# Skip disabled models - only show enabled models in the picker
|
||||
if not llm_registry.is_model_enabled(model_name):
|
||||
continue
|
||||
# Use registry directly with None check to gracefully handle
|
||||
# missing metadata during startup/import before registry is populated
|
||||
metadata = llm_registry.get_llm_model_metadata(model_name)
|
||||
if metadata is None:
|
||||
# Skip models without metadata (registry not yet populated)
|
||||
continue
|
||||
metadata = model.metadata
|
||||
llm_model_metadata[model_name] = {
|
||||
"creator": metadata.creator_name,
|
||||
"creator_name": metadata.creator_name,
|
||||
@@ -217,12 +196,7 @@ class LlmModel(str, metaclass=LlmModelMeta):
|
||||
|
||||
@property
|
||||
def metadata(self) -> ModelMetadata:
|
||||
metadata = llm_registry.get_llm_model_metadata(self.value)
|
||||
if metadata:
|
||||
return metadata
|
||||
raise ValueError(
|
||||
f"Missing metadata for model: {self.value}. Model not found in LLM registry."
|
||||
)
|
||||
return MODEL_METADATA[self]
|
||||
|
||||
@property
|
||||
def provider(self) -> str:
|
||||
@@ -237,11 +211,297 @@ class LlmModel(str, metaclass=LlmModelMeta):
|
||||
return self.metadata.max_output_tokens
|
||||
|
||||
|
||||
# MODEL_METADATA removed - all models now come from the database via llm_registry
|
||||
MODEL_METADATA = {
|
||||
# https://platform.openai.com/docs/models
|
||||
LlmModel.O3: ModelMetadata("openai", 200000, 100000, "O3", "OpenAI", "OpenAI", 2),
|
||||
LlmModel.O3_MINI: ModelMetadata(
|
||||
"openai", 200000, 100000, "O3 Mini", "OpenAI", "OpenAI", 1
|
||||
), # o3-mini-2025-01-31
|
||||
LlmModel.O1: ModelMetadata(
|
||||
"openai", 200000, 100000, "O1", "OpenAI", "OpenAI", 3
|
||||
), # o1-2024-12-17
|
||||
LlmModel.O1_MINI: ModelMetadata(
|
||||
"openai", 128000, 65536, "O1 Mini", "OpenAI", "OpenAI", 2
|
||||
), # o1-mini-2024-09-12
|
||||
# GPT-5 models
|
||||
LlmModel.GPT5_2: ModelMetadata(
|
||||
"openai", 400000, 128000, "GPT-5.2", "OpenAI", "OpenAI", 3
|
||||
),
|
||||
LlmModel.GPT5_1: ModelMetadata(
|
||||
"openai", 400000, 128000, "GPT-5.1", "OpenAI", "OpenAI", 2
|
||||
),
|
||||
LlmModel.GPT5: ModelMetadata(
|
||||
"openai", 400000, 128000, "GPT-5", "OpenAI", "OpenAI", 1
|
||||
),
|
||||
LlmModel.GPT5_MINI: ModelMetadata(
|
||||
"openai", 400000, 128000, "GPT-5 Mini", "OpenAI", "OpenAI", 1
|
||||
),
|
||||
LlmModel.GPT5_NANO: ModelMetadata(
|
||||
"openai", 400000, 128000, "GPT-5 Nano", "OpenAI", "OpenAI", 1
|
||||
),
|
||||
LlmModel.GPT5_CHAT: ModelMetadata(
|
||||
"openai", 400000, 16384, "GPT-5 Chat Latest", "OpenAI", "OpenAI", 2
|
||||
),
|
||||
LlmModel.GPT41: ModelMetadata(
|
||||
"openai", 1047576, 32768, "GPT-4.1", "OpenAI", "OpenAI", 1
|
||||
),
|
||||
LlmModel.GPT41_MINI: ModelMetadata(
|
||||
"openai", 1047576, 32768, "GPT-4.1 Mini", "OpenAI", "OpenAI", 1
|
||||
),
|
||||
LlmModel.GPT4O_MINI: ModelMetadata(
|
||||
"openai", 128000, 16384, "GPT-4o Mini", "OpenAI", "OpenAI", 1
|
||||
), # gpt-4o-mini-2024-07-18
|
||||
LlmModel.GPT4O: ModelMetadata(
|
||||
"openai", 128000, 16384, "GPT-4o", "OpenAI", "OpenAI", 2
|
||||
), # gpt-4o-2024-08-06
|
||||
LlmModel.GPT4_TURBO: ModelMetadata(
|
||||
"openai", 128000, 4096, "GPT-4 Turbo", "OpenAI", "OpenAI", 3
|
||||
), # gpt-4-turbo-2024-04-09
|
||||
LlmModel.GPT3_5_TURBO: ModelMetadata(
|
||||
"openai", 16385, 4096, "GPT-3.5 Turbo", "OpenAI", "OpenAI", 1
|
||||
), # gpt-3.5-turbo-0125
|
||||
# https://docs.anthropic.com/en/docs/about-claude/models
|
||||
LlmModel.CLAUDE_4_1_OPUS: ModelMetadata(
|
||||
"anthropic", 200000, 32000, "Claude Opus 4.1", "Anthropic", "Anthropic", 3
|
||||
), # claude-opus-4-1-20250805
|
||||
LlmModel.CLAUDE_4_OPUS: ModelMetadata(
|
||||
"anthropic", 200000, 32000, "Claude Opus 4", "Anthropic", "Anthropic", 3
|
||||
), # claude-4-opus-20250514
|
||||
LlmModel.CLAUDE_4_SONNET: ModelMetadata(
|
||||
"anthropic", 200000, 64000, "Claude Sonnet 4", "Anthropic", "Anthropic", 2
|
||||
), # claude-4-sonnet-20250514
|
||||
LlmModel.CLAUDE_4_5_OPUS: ModelMetadata(
|
||||
"anthropic", 200000, 64000, "Claude Opus 4.5", "Anthropic", "Anthropic", 3
|
||||
), # claude-opus-4-5-20251101
|
||||
LlmModel.CLAUDE_4_5_SONNET: ModelMetadata(
|
||||
"anthropic", 200000, 64000, "Claude Sonnet 4.5", "Anthropic", "Anthropic", 3
|
||||
), # claude-sonnet-4-5-20250929
|
||||
LlmModel.CLAUDE_4_5_HAIKU: ModelMetadata(
|
||||
"anthropic", 200000, 64000, "Claude Haiku 4.5", "Anthropic", "Anthropic", 2
|
||||
), # claude-haiku-4-5-20251001
|
||||
LlmModel.CLAUDE_3_HAIKU: ModelMetadata(
|
||||
"anthropic", 200000, 4096, "Claude 3 Haiku", "Anthropic", "Anthropic", 1
|
||||
), # claude-3-haiku-20240307
|
||||
# https://docs.aimlapi.com/api-overview/model-database/text-models
|
||||
LlmModel.AIML_API_QWEN2_5_72B: ModelMetadata(
|
||||
"aiml_api", 32000, 8000, "Qwen 2.5 72B Instruct Turbo", "AI/ML", "Qwen", 1
|
||||
),
|
||||
LlmModel.AIML_API_LLAMA3_1_70B: ModelMetadata(
|
||||
"aiml_api",
|
||||
128000,
|
||||
40000,
|
||||
"Llama 3.1 Nemotron 70B Instruct",
|
||||
"AI/ML",
|
||||
"Nvidia",
|
||||
1,
|
||||
),
|
||||
LlmModel.AIML_API_LLAMA3_3_70B: ModelMetadata(
|
||||
"aiml_api", 128000, None, "Llama 3.3 70B Instruct Turbo", "AI/ML", "Meta", 1
|
||||
),
|
||||
LlmModel.AIML_API_META_LLAMA_3_1_70B: ModelMetadata(
|
||||
"aiml_api", 131000, 2000, "Llama 3.1 70B Instruct Turbo", "AI/ML", "Meta", 1
|
||||
),
|
||||
LlmModel.AIML_API_LLAMA_3_2_3B: ModelMetadata(
|
||||
"aiml_api", 128000, None, "Llama 3.2 3B Instruct Turbo", "AI/ML", "Meta", 1
|
||||
),
|
||||
# https://console.groq.com/docs/models
|
||||
LlmModel.LLAMA3_3_70B: ModelMetadata(
|
||||
"groq", 128000, 32768, "Llama 3.3 70B Versatile", "Groq", "Meta", 1
|
||||
),
|
||||
LlmModel.LLAMA3_1_8B: ModelMetadata(
|
||||
"groq", 128000, 8192, "Llama 3.1 8B Instant", "Groq", "Meta", 1
|
||||
),
|
||||
# https://ollama.com/library
|
||||
LlmModel.OLLAMA_LLAMA3_3: ModelMetadata(
|
||||
"ollama", 8192, None, "Llama 3.3", "Ollama", "Meta", 1
|
||||
),
|
||||
LlmModel.OLLAMA_LLAMA3_2: ModelMetadata(
|
||||
"ollama", 8192, None, "Llama 3.2", "Ollama", "Meta", 1
|
||||
),
|
||||
LlmModel.OLLAMA_LLAMA3_8B: ModelMetadata(
|
||||
"ollama", 8192, None, "Llama 3", "Ollama", "Meta", 1
|
||||
),
|
||||
LlmModel.OLLAMA_LLAMA3_405B: ModelMetadata(
|
||||
"ollama", 8192, None, "Llama 3.1 405B", "Ollama", "Meta", 1
|
||||
),
|
||||
LlmModel.OLLAMA_DOLPHIN: ModelMetadata(
|
||||
"ollama", 32768, None, "Dolphin Mistral Latest", "Ollama", "Mistral AI", 1
|
||||
),
|
||||
# https://openrouter.ai/models
|
||||
LlmModel.GEMINI_2_5_PRO: ModelMetadata(
|
||||
"open_router",
|
||||
1050000,
|
||||
8192,
|
||||
"Gemini 2.5 Pro Preview 03.25",
|
||||
"OpenRouter",
|
||||
"Google",
|
||||
2,
|
||||
),
|
||||
LlmModel.GEMINI_3_PRO_PREVIEW: ModelMetadata(
|
||||
"open_router", 1048576, 65535, "Gemini 3 Pro Preview", "OpenRouter", "Google", 2
|
||||
),
|
||||
LlmModel.GEMINI_2_5_FLASH: ModelMetadata(
|
||||
"open_router", 1048576, 65535, "Gemini 2.5 Flash", "OpenRouter", "Google", 1
|
||||
),
|
||||
LlmModel.GEMINI_2_0_FLASH: ModelMetadata(
|
||||
"open_router", 1048576, 8192, "Gemini 2.0 Flash 001", "OpenRouter", "Google", 1
|
||||
),
|
||||
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: ModelMetadata(
|
||||
"open_router",
|
||||
1048576,
|
||||
65535,
|
||||
"Gemini 2.5 Flash Lite Preview 06.17",
|
||||
"OpenRouter",
|
||||
"Google",
|
||||
1,
|
||||
),
|
||||
LlmModel.GEMINI_2_0_FLASH_LITE: ModelMetadata(
|
||||
"open_router",
|
||||
1048576,
|
||||
8192,
|
||||
"Gemini 2.0 Flash Lite 001",
|
||||
"OpenRouter",
|
||||
"Google",
|
||||
1,
|
||||
),
|
||||
LlmModel.MISTRAL_NEMO: ModelMetadata(
|
||||
"open_router", 128000, 4096, "Mistral Nemo", "OpenRouter", "Mistral AI", 1
|
||||
),
|
||||
LlmModel.COHERE_COMMAND_R_08_2024: ModelMetadata(
|
||||
"open_router", 128000, 4096, "Command R 08.2024", "OpenRouter", "Cohere", 1
|
||||
),
|
||||
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: ModelMetadata(
|
||||
"open_router", 128000, 4096, "Command R Plus 08.2024", "OpenRouter", "Cohere", 2
|
||||
),
|
||||
LlmModel.DEEPSEEK_CHAT: ModelMetadata(
|
||||
"open_router", 64000, 2048, "DeepSeek Chat", "OpenRouter", "DeepSeek", 1
|
||||
),
|
||||
LlmModel.DEEPSEEK_R1_0528: ModelMetadata(
|
||||
"open_router", 163840, 163840, "DeepSeek R1 0528", "OpenRouter", "DeepSeek", 1
|
||||
),
|
||||
LlmModel.PERPLEXITY_SONAR: ModelMetadata(
|
||||
"open_router", 127000, 8000, "Sonar", "OpenRouter", "Perplexity", 1
|
||||
),
|
||||
LlmModel.PERPLEXITY_SONAR_PRO: ModelMetadata(
|
||||
"open_router", 200000, 8000, "Sonar Pro", "OpenRouter", "Perplexity", 2
|
||||
),
|
||||
LlmModel.PERPLEXITY_SONAR_DEEP_RESEARCH: ModelMetadata(
|
||||
"open_router",
|
||||
128000,
|
||||
16000,
|
||||
"Sonar Deep Research",
|
||||
"OpenRouter",
|
||||
"Perplexity",
|
||||
3,
|
||||
),
|
||||
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_405B: ModelMetadata(
|
||||
"open_router",
|
||||
131000,
|
||||
4096,
|
||||
"Hermes 3 Llama 3.1 405B",
|
||||
"OpenRouter",
|
||||
"Nous Research",
|
||||
1,
|
||||
),
|
||||
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_70B: ModelMetadata(
|
||||
"open_router",
|
||||
12288,
|
||||
12288,
|
||||
"Hermes 3 Llama 3.1 70B",
|
||||
"OpenRouter",
|
||||
"Nous Research",
|
||||
1,
|
||||
),
|
||||
LlmModel.OPENAI_GPT_OSS_120B: ModelMetadata(
|
||||
"open_router", 131072, 131072, "GPT-OSS 120B", "OpenRouter", "OpenAI", 1
|
||||
),
|
||||
LlmModel.OPENAI_GPT_OSS_20B: ModelMetadata(
|
||||
"open_router", 131072, 32768, "GPT-OSS 20B", "OpenRouter", "OpenAI", 1
|
||||
),
|
||||
LlmModel.AMAZON_NOVA_LITE_V1: ModelMetadata(
|
||||
"open_router", 300000, 5120, "Nova Lite V1", "OpenRouter", "Amazon", 1
|
||||
),
|
||||
LlmModel.AMAZON_NOVA_MICRO_V1: ModelMetadata(
|
||||
"open_router", 128000, 5120, "Nova Micro V1", "OpenRouter", "Amazon", 1
|
||||
),
|
||||
LlmModel.AMAZON_NOVA_PRO_V1: ModelMetadata(
|
||||
"open_router", 300000, 5120, "Nova Pro V1", "OpenRouter", "Amazon", 1
|
||||
),
|
||||
LlmModel.MICROSOFT_WIZARDLM_2_8X22B: ModelMetadata(
|
||||
"open_router", 65536, 4096, "WizardLM 2 8x22B", "OpenRouter", "Microsoft", 1
|
||||
),
|
||||
LlmModel.GRYPHE_MYTHOMAX_L2_13B: ModelMetadata(
|
||||
"open_router", 4096, 4096, "MythoMax L2 13B", "OpenRouter", "Gryphe", 1
|
||||
),
|
||||
LlmModel.META_LLAMA_4_SCOUT: ModelMetadata(
|
||||
"open_router", 131072, 131072, "Llama 4 Scout", "OpenRouter", "Meta", 1
|
||||
),
|
||||
LlmModel.META_LLAMA_4_MAVERICK: ModelMetadata(
|
||||
"open_router", 1048576, 1000000, "Llama 4 Maverick", "OpenRouter", "Meta", 1
|
||||
),
|
||||
LlmModel.GROK_4: ModelMetadata(
|
||||
"open_router", 256000, 256000, "Grok 4", "OpenRouter", "xAI", 3
|
||||
),
|
||||
LlmModel.GROK_4_FAST: ModelMetadata(
|
||||
"open_router", 2000000, 30000, "Grok 4 Fast", "OpenRouter", "xAI", 1
|
||||
),
|
||||
LlmModel.GROK_4_1_FAST: ModelMetadata(
|
||||
"open_router", 2000000, 30000, "Grok 4.1 Fast", "OpenRouter", "xAI", 1
|
||||
),
|
||||
LlmModel.GROK_CODE_FAST_1: ModelMetadata(
|
||||
"open_router", 256000, 10000, "Grok Code Fast 1", "OpenRouter", "xAI", 1
|
||||
),
|
||||
LlmModel.KIMI_K2: ModelMetadata(
|
||||
"open_router", 131000, 131000, "Kimi K2", "OpenRouter", "Moonshot AI", 1
|
||||
),
|
||||
LlmModel.QWEN3_235B_A22B_THINKING: ModelMetadata(
|
||||
"open_router",
|
||||
262144,
|
||||
262144,
|
||||
"Qwen 3 235B A22B Thinking 2507",
|
||||
"OpenRouter",
|
||||
"Qwen",
|
||||
1,
|
||||
),
|
||||
LlmModel.QWEN3_CODER: ModelMetadata(
|
||||
"open_router", 262144, 262144, "Qwen 3 Coder", "OpenRouter", "Qwen", 3
|
||||
),
|
||||
# Llama API models
|
||||
LlmModel.LLAMA_API_LLAMA_4_SCOUT: ModelMetadata(
|
||||
"llama_api",
|
||||
128000,
|
||||
4028,
|
||||
"Llama 4 Scout 17B 16E Instruct FP8",
|
||||
"Llama API",
|
||||
"Meta",
|
||||
1,
|
||||
),
|
||||
LlmModel.LLAMA_API_LLAMA4_MAVERICK: ModelMetadata(
|
||||
"llama_api",
|
||||
128000,
|
||||
4028,
|
||||
"Llama 4 Maverick 17B 128E Instruct FP8",
|
||||
"Llama API",
|
||||
"Meta",
|
||||
1,
|
||||
),
|
||||
LlmModel.LLAMA_API_LLAMA3_3_8B: ModelMetadata(
|
||||
"llama_api", 128000, 4028, "Llama 3.3 8B Instruct", "Llama API", "Meta", 1
|
||||
),
|
||||
LlmModel.LLAMA_API_LLAMA3_3_70B: ModelMetadata(
|
||||
"llama_api", 128000, 4028, "Llama 3.3 70B Instruct", "Llama API", "Meta", 1
|
||||
),
|
||||
# v0 by Vercel models
|
||||
LlmModel.V0_1_5_MD: ModelMetadata("v0", 128000, 64000, "v0 1.5 MD", "V0", "V0", 1),
|
||||
LlmModel.V0_1_5_LG: ModelMetadata("v0", 512000, 64000, "v0 1.5 LG", "V0", "V0", 1),
|
||||
LlmModel.V0_1_0_MD: ModelMetadata("v0", 128000, 64000, "v0 1.0 MD", "V0", "V0", 1),
|
||||
}
|
||||
|
||||
# Default model constant for backward compatibility
|
||||
# Uses the dynamic registry to get the default model
|
||||
DEFAULT_LLM_MODEL = LlmModel.default()
|
||||
DEFAULT_LLM_MODEL = LlmModel.GPT5_2
|
||||
|
||||
for model in LlmModel:
|
||||
if model not in MODEL_METADATA:
|
||||
raise ValueError(f"Missing MODEL_METADATA metadata for model: {model}")
|
||||
|
||||
|
||||
class ToolCall(BaseModel):
|
||||
@@ -334,10 +594,7 @@ def get_parallel_tool_calls_param(
|
||||
llm_model: LlmModel, parallel_tool_calls: bool | None
|
||||
):
|
||||
"""Get the appropriate parallel_tool_calls parameter for OpenAI-compatible APIs."""
|
||||
# Check for o-series models (o1, o1-mini, o3-mini, etc.) which don't support
|
||||
# parallel tool calls. Use regex to avoid false positives like "openai/gpt-oss".
|
||||
is_o_series = re.match(r"^o\d", llm_model) is not None
|
||||
if is_o_series or parallel_tool_calls is None:
|
||||
if llm_model.startswith("o") or parallel_tool_calls is None:
|
||||
return openai.NOT_GIVEN
|
||||
return parallel_tool_calls
|
||||
|
||||
@@ -373,98 +630,26 @@ async def llm_call(
|
||||
- prompt_tokens: The number of tokens used in the prompt.
|
||||
- completion_tokens: The number of tokens used in the completion.
|
||||
"""
|
||||
# Get model metadata and check if enabled - with fallback support
|
||||
# The model we'll actually use (may differ if original is disabled)
|
||||
model_to_use = llm_model.value
|
||||
|
||||
# Check if model is in registry and if it's enabled
|
||||
from backend.data.llm_registry import (
|
||||
get_fallback_model_for_disabled,
|
||||
get_model_info,
|
||||
)
|
||||
|
||||
model_info = get_model_info(llm_model.value)
|
||||
|
||||
if model_info and not model_info.is_enabled:
|
||||
# Model is disabled - try to find a fallback from the same provider
|
||||
fallback = get_fallback_model_for_disabled(llm_model.value)
|
||||
if fallback:
|
||||
logger.warning(
|
||||
f"Model '{llm_model.value}' is disabled. Using fallback model '{fallback.slug}' from the same provider ({fallback.metadata.provider})."
|
||||
)
|
||||
model_to_use = fallback.slug
|
||||
# Use fallback model's metadata
|
||||
provider = fallback.metadata.provider
|
||||
context_window = fallback.metadata.context_window
|
||||
model_max_output = fallback.metadata.max_output_tokens or int(2**15)
|
||||
else:
|
||||
# No fallback available - raise error
|
||||
raise ValueError(
|
||||
f"LLM model '{llm_model.value}' is disabled and no fallback model "
|
||||
f"from the same provider is available. Please enable the model or "
|
||||
f"select a different model in the block configuration."
|
||||
)
|
||||
else:
|
||||
# Model is enabled or not in registry (legacy/static model)
|
||||
try:
|
||||
provider = llm_model.metadata.provider
|
||||
context_window = llm_model.context_window
|
||||
model_max_output = llm_model.max_output_tokens or int(2**15)
|
||||
except ValueError:
|
||||
# Model not in cache - try refreshing the registry once if we have DB access
|
||||
logger.warning(f"Model {llm_model.value} not found in registry cache")
|
||||
|
||||
# Try refreshing the registry if we have database access
|
||||
from backend.data.db import is_connected
|
||||
|
||||
if is_connected():
|
||||
try:
|
||||
logger.info(
|
||||
f"Refreshing LLM registry and retrying lookup for {llm_model.value}"
|
||||
)
|
||||
await llm_registry.refresh_llm_registry()
|
||||
# Try again after refresh
|
||||
try:
|
||||
provider = llm_model.metadata.provider
|
||||
context_window = llm_model.context_window
|
||||
model_max_output = llm_model.max_output_tokens or int(2**15)
|
||||
logger.info(
|
||||
f"Successfully loaded model {llm_model.value} metadata after registry refresh"
|
||||
)
|
||||
except ValueError:
|
||||
# Still not found after refresh
|
||||
raise ValueError(
|
||||
f"LLM model '{llm_model.value}' not found in registry after refresh. "
|
||||
"Please ensure the model is added and enabled in the LLM registry via the admin UI."
|
||||
)
|
||||
except Exception as refresh_exc:
|
||||
logger.error(f"Failed to refresh LLM registry: {refresh_exc}")
|
||||
raise ValueError(
|
||||
f"LLM model '{llm_model.value}' not found in registry and failed to refresh. "
|
||||
"Please ensure the model is added to the LLM registry via the admin UI."
|
||||
) from refresh_exc
|
||||
else:
|
||||
# No DB access (e.g., in executor without direct DB connection)
|
||||
# The registry should have been loaded on startup
|
||||
raise ValueError(
|
||||
f"LLM model '{llm_model.value}' not found in registry cache. "
|
||||
"The registry may need to be refreshed. Please contact support or try again later."
|
||||
)
|
||||
|
||||
# Create effective model for model-specific parameter resolution (e.g., o-series check)
|
||||
# This uses the resolved model_to_use which may differ from llm_model if fallback occurred
|
||||
effective_model = LlmModel(model_to_use)
|
||||
provider = llm_model.metadata.provider
|
||||
context_window = llm_model.context_window
|
||||
|
||||
if compress_prompt_to_fit:
|
||||
prompt = compress_prompt(
|
||||
result = await compress_context(
|
||||
messages=prompt,
|
||||
target_tokens=context_window // 2,
|
||||
lossy_ok=True,
|
||||
target_tokens=llm_model.context_window // 2,
|
||||
client=None, # Truncation-only, no LLM summarization
|
||||
reserve=0, # Caller handles response token budget separately
|
||||
)
|
||||
if result.error:
|
||||
logger.warning(
|
||||
f"Prompt compression did not meet target: {result.error}. "
|
||||
f"Proceeding with {result.token_count} tokens."
|
||||
)
|
||||
prompt = result.messages
|
||||
|
||||
# Calculate available tokens based on context window and input length
|
||||
estimated_input_tokens = estimate_token_count(prompt)
|
||||
# model_max_output already set above
|
||||
model_max_output = llm_model.max_output_tokens or int(2**15)
|
||||
user_max = max_tokens or model_max_output
|
||||
available_tokens = max(context_window - estimated_input_tokens, 0)
|
||||
max_tokens = max(min(available_tokens, model_max_output, user_max), 1)
|
||||
@@ -475,14 +660,14 @@ async def llm_call(
|
||||
response_format = None
|
||||
|
||||
parallel_tool_calls = get_parallel_tool_calls_param(
|
||||
effective_model, parallel_tool_calls
|
||||
llm_model, parallel_tool_calls
|
||||
)
|
||||
|
||||
if force_json_output:
|
||||
response_format = {"type": "json_object"}
|
||||
|
||||
response = await oai_client.chat.completions.create(
|
||||
model=model_to_use,
|
||||
model=llm_model.value,
|
||||
messages=prompt, # type: ignore
|
||||
response_format=response_format, # type: ignore
|
||||
max_completion_tokens=max_tokens,
|
||||
@@ -529,7 +714,7 @@ async def llm_call(
|
||||
)
|
||||
try:
|
||||
resp = await client.messages.create(
|
||||
model=model_to_use,
|
||||
model=llm_model.value,
|
||||
system=sysprompt,
|
||||
messages=messages,
|
||||
max_tokens=max_tokens,
|
||||
@@ -593,7 +778,7 @@ async def llm_call(
|
||||
client = AsyncGroq(api_key=credentials.api_key.get_secret_value())
|
||||
response_format = {"type": "json_object"} if force_json_output else None
|
||||
response = await client.chat.completions.create(
|
||||
model=model_to_use,
|
||||
model=llm_model.value,
|
||||
messages=prompt, # type: ignore
|
||||
response_format=response_format, # type: ignore
|
||||
max_tokens=max_tokens,
|
||||
@@ -615,7 +800,7 @@ async def llm_call(
|
||||
sys_messages = [p["content"] for p in prompt if p["role"] == "system"]
|
||||
usr_messages = [p["content"] for p in prompt if p["role"] != "system"]
|
||||
response = await client.generate(
|
||||
model=model_to_use,
|
||||
model=llm_model.value,
|
||||
prompt=f"{sys_messages}\n\n{usr_messages}",
|
||||
stream=False,
|
||||
options={"num_ctx": max_tokens},
|
||||
@@ -637,7 +822,7 @@ async def llm_call(
|
||||
)
|
||||
|
||||
parallel_tool_calls_param = get_parallel_tool_calls_param(
|
||||
effective_model, parallel_tool_calls
|
||||
llm_model, parallel_tool_calls
|
||||
)
|
||||
|
||||
response = await client.chat.completions.create(
|
||||
@@ -645,7 +830,7 @@ async def llm_call(
|
||||
"HTTP-Referer": "https://agpt.co",
|
||||
"X-Title": "AutoGPT",
|
||||
},
|
||||
model=model_to_use,
|
||||
model=llm_model.value,
|
||||
messages=prompt, # type: ignore
|
||||
max_tokens=max_tokens,
|
||||
tools=tools_param, # type: ignore
|
||||
@@ -679,7 +864,7 @@ async def llm_call(
|
||||
)
|
||||
|
||||
parallel_tool_calls_param = get_parallel_tool_calls_param(
|
||||
effective_model, parallel_tool_calls
|
||||
llm_model, parallel_tool_calls
|
||||
)
|
||||
|
||||
response = await client.chat.completions.create(
|
||||
@@ -687,7 +872,7 @@ async def llm_call(
|
||||
"HTTP-Referer": "https://agpt.co",
|
||||
"X-Title": "AutoGPT",
|
||||
},
|
||||
model=model_to_use,
|
||||
model=llm_model.value,
|
||||
messages=prompt, # type: ignore
|
||||
max_tokens=max_tokens,
|
||||
tools=tools_param, # type: ignore
|
||||
@@ -714,7 +899,7 @@ async def llm_call(
|
||||
reasoning=reasoning,
|
||||
)
|
||||
elif provider == "aiml_api":
|
||||
client = openai.AsyncOpenAI(
|
||||
client = openai.OpenAI(
|
||||
base_url="https://api.aimlapi.com/v2",
|
||||
api_key=credentials.api_key.get_secret_value(),
|
||||
default_headers={
|
||||
@@ -724,8 +909,8 @@ async def llm_call(
|
||||
},
|
||||
)
|
||||
|
||||
completion = await client.chat.completions.create(
|
||||
model=model_to_use,
|
||||
completion = client.chat.completions.create(
|
||||
model=llm_model.value,
|
||||
messages=prompt, # type: ignore
|
||||
max_tokens=max_tokens,
|
||||
)
|
||||
@@ -753,11 +938,11 @@ async def llm_call(
|
||||
response_format = {"type": "json_object"}
|
||||
|
||||
parallel_tool_calls_param = get_parallel_tool_calls_param(
|
||||
effective_model, parallel_tool_calls
|
||||
llm_model, parallel_tool_calls
|
||||
)
|
||||
|
||||
response = await client.chat.completions.create(
|
||||
model=model_to_use,
|
||||
model=llm_model.value,
|
||||
messages=prompt, # type: ignore
|
||||
response_format=response_format, # type: ignore
|
||||
max_tokens=max_tokens,
|
||||
@@ -808,10 +993,9 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
|
||||
)
|
||||
model: LlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
default_factory=LlmModel.default,
|
||||
default=DEFAULT_LLM_MODEL,
|
||||
description="The language model to use for answering the prompt.",
|
||||
advanced=False,
|
||||
json_schema_extra=llm_model_schema_extra(),
|
||||
)
|
||||
force_json_output: bool = SchemaField(
|
||||
title="Restrict LLM to pure JSON output",
|
||||
@@ -874,7 +1058,7 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
|
||||
input_schema=AIStructuredResponseGeneratorBlock.Input,
|
||||
output_schema=AIStructuredResponseGeneratorBlock.Output,
|
||||
test_input={
|
||||
"model": "gpt-4o", # Using string value - enum accepts any model slug dynamically
|
||||
"model": DEFAULT_LLM_MODEL,
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
"expected_format": {
|
||||
"key1": "value1",
|
||||
@@ -1240,10 +1424,9 @@ class AITextGeneratorBlock(AIBlockBase):
|
||||
)
|
||||
model: LlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
default_factory=LlmModel.default,
|
||||
default=DEFAULT_LLM_MODEL,
|
||||
description="The language model to use for answering the prompt.",
|
||||
advanced=False,
|
||||
json_schema_extra=llm_model_schema_extra(),
|
||||
)
|
||||
credentials: AICredentials = AICredentialsField()
|
||||
sys_prompt: str = SchemaField(
|
||||
@@ -1337,9 +1520,8 @@ class AITextSummarizerBlock(AIBlockBase):
|
||||
)
|
||||
model: LlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
default_factory=LlmModel.default,
|
||||
default=DEFAULT_LLM_MODEL,
|
||||
description="The language model to use for summarizing the text.",
|
||||
json_schema_extra=llm_model_schema_extra(),
|
||||
)
|
||||
focus: str = SchemaField(
|
||||
title="Focus",
|
||||
@@ -1555,9 +1737,8 @@ class AIConversationBlock(AIBlockBase):
|
||||
)
|
||||
model: LlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
default_factory=LlmModel.default,
|
||||
default=DEFAULT_LLM_MODEL,
|
||||
description="The language model to use for the conversation.",
|
||||
json_schema_extra=llm_model_schema_extra(),
|
||||
)
|
||||
credentials: AICredentials = AICredentialsField()
|
||||
max_tokens: int | None = SchemaField(
|
||||
@@ -1594,7 +1775,7 @@ class AIConversationBlock(AIBlockBase):
|
||||
},
|
||||
{"role": "user", "content": "Where was it played?"},
|
||||
],
|
||||
"model": "gpt-4o", # Using string value - enum accepts any model slug dynamically
|
||||
"model": DEFAULT_LLM_MODEL,
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
@@ -1657,10 +1838,9 @@ class AIListGeneratorBlock(AIBlockBase):
|
||||
)
|
||||
model: LlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
default_factory=LlmModel.default,
|
||||
default=DEFAULT_LLM_MODEL,
|
||||
description="The language model to use for generating the list.",
|
||||
advanced=True,
|
||||
json_schema_extra=llm_model_schema_extra(),
|
||||
)
|
||||
credentials: AICredentials = AICredentialsField()
|
||||
max_retries: int = SchemaField(
|
||||
@@ -1715,7 +1895,7 @@ class AIListGeneratorBlock(AIBlockBase):
|
||||
"drawing explorers to uncover its mysteries. Each planet showcases the limitless possibilities of "
|
||||
"fictional worlds."
|
||||
),
|
||||
"model": "gpt-4o", # Using string value - enum accepts any model slug dynamically
|
||||
"model": DEFAULT_LLM_MODEL,
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
"max_retries": 3,
|
||||
"force_json_output": False,
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import os
|
||||
import tempfile
|
||||
from typing import Literal, Optional
|
||||
from typing import Optional
|
||||
|
||||
from moviepy.audio.io.AudioFileClip import AudioFileClip
|
||||
from moviepy.video.fx.Loop import Loop
|
||||
@@ -13,6 +13,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
|
||||
|
||||
@@ -46,18 +47,19 @@ class MediaDurationBlock(Block):
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
# 1) Store the input media locally
|
||||
local_media_path = await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.media_in,
|
||||
user_id=user_id,
|
||||
return_content=False,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
assert execution_context.graph_exec_id is not None
|
||||
media_abspath = get_exec_file_path(
|
||||
execution_context.graph_exec_id, local_media_path
|
||||
)
|
||||
media_abspath = get_exec_file_path(graph_exec_id, local_media_path)
|
||||
|
||||
# 2) Load the clip
|
||||
if input_data.is_video:
|
||||
@@ -88,10 +90,6 @@ class LoopVideoBlock(Block):
|
||||
default=None,
|
||||
ge=1,
|
||||
)
|
||||
output_return_type: Literal["file_path", "data_uri"] = SchemaField(
|
||||
description="How to return the output video. Either a relative path or base64 data URI.",
|
||||
default="file_path",
|
||||
)
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
video_out: str = SchemaField(
|
||||
@@ -111,17 +109,19 @@ class LoopVideoBlock(Block):
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
node_exec_id: str,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
assert execution_context.graph_exec_id is not None
|
||||
assert execution_context.node_exec_id is not None
|
||||
graph_exec_id = execution_context.graph_exec_id
|
||||
node_exec_id = execution_context.node_exec_id
|
||||
|
||||
# 1) Store the input video locally
|
||||
local_video_path = await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.video_in,
|
||||
user_id=user_id,
|
||||
return_content=False,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
input_abspath = get_exec_file_path(graph_exec_id, local_video_path)
|
||||
|
||||
@@ -149,12 +149,11 @@ class LoopVideoBlock(Block):
|
||||
looped_clip = looped_clip.with_audio(clip.audio)
|
||||
looped_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac")
|
||||
|
||||
# Return as data URI
|
||||
# Return output - for_block_output returns workspace:// if available, else data URI
|
||||
video_out = await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=output_filename,
|
||||
user_id=user_id,
|
||||
return_content=input_data.output_return_type == "data_uri",
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
|
||||
yield "video_out", video_out
|
||||
@@ -177,10 +176,6 @@ class AddAudioToVideoBlock(Block):
|
||||
description="Volume scale for the newly attached audio track (1.0 = original).",
|
||||
default=1.0,
|
||||
)
|
||||
output_return_type: Literal["file_path", "data_uri"] = SchemaField(
|
||||
description="Return the final output as a relative path or base64 data URI.",
|
||||
default="file_path",
|
||||
)
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
video_out: MediaFileType = SchemaField(
|
||||
@@ -200,23 +195,24 @@ class AddAudioToVideoBlock(Block):
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
node_exec_id: str,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
assert execution_context.graph_exec_id is not None
|
||||
assert execution_context.node_exec_id is not None
|
||||
graph_exec_id = execution_context.graph_exec_id
|
||||
node_exec_id = execution_context.node_exec_id
|
||||
|
||||
# 1) Store the inputs locally
|
||||
local_video_path = await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.video_in,
|
||||
user_id=user_id,
|
||||
return_content=False,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
local_audio_path = await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.audio_in,
|
||||
user_id=user_id,
|
||||
return_content=False,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
|
||||
abs_temp_dir = os.path.join(tempfile.gettempdir(), "exec_file", graph_exec_id)
|
||||
@@ -240,12 +236,11 @@ class AddAudioToVideoBlock(Block):
|
||||
output_abspath = os.path.join(abs_temp_dir, output_filename)
|
||||
final_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac")
|
||||
|
||||
# 5) Return either path or data URI
|
||||
# 5) Return output - for_block_output returns workspace:// if available, else data URI
|
||||
video_out = await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=output_filename,
|
||||
user_id=user_id,
|
||||
return_content=input_data.output_return_type == "data_uri",
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
|
||||
yield "video_out", video_out
|
||||
|
||||
@@ -11,6 +11,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import (
|
||||
APIKeyCredentials,
|
||||
CredentialsField,
|
||||
@@ -112,8 +113,7 @@ class ScreenshotWebPageBlock(Block):
|
||||
@staticmethod
|
||||
async def take_screenshot(
|
||||
credentials: APIKeyCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
url: str,
|
||||
viewport_width: int,
|
||||
viewport_height: int,
|
||||
@@ -155,12 +155,11 @@ class ScreenshotWebPageBlock(Block):
|
||||
|
||||
return {
|
||||
"image": await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=MediaFileType(
|
||||
f"data:image/{format.value};base64,{b64encode(content).decode('utf-8')}"
|
||||
),
|
||||
user_id=user_id,
|
||||
return_content=True,
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
}
|
||||
|
||||
@@ -169,15 +168,13 @@ class ScreenshotWebPageBlock(Block):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
try:
|
||||
screenshot_data = await self.take_screenshot(
|
||||
credentials=credentials,
|
||||
graph_exec_id=graph_exec_id,
|
||||
user_id=user_id,
|
||||
execution_context=execution_context,
|
||||
url=input_data.url,
|
||||
viewport_width=input_data.viewport_width,
|
||||
viewport_height=input_data.viewport_height,
|
||||
|
||||
@@ -226,10 +226,9 @@ class SmartDecisionMakerBlock(Block):
|
||||
)
|
||||
model: llm.LlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
default_factory=llm.LlmModel.default,
|
||||
default=llm.DEFAULT_LLM_MODEL,
|
||||
description="The language model to use for answering the prompt.",
|
||||
advanced=False,
|
||||
json_schema_extra=llm.llm_model_schema_extra(),
|
||||
)
|
||||
credentials: llm.AICredentials = llm.AICredentialsField()
|
||||
multiple_tool_calls: bool = SchemaField(
|
||||
|
||||
@@ -7,6 +7,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import ContributorDetails, SchemaField
|
||||
from backend.util.file import get_exec_file_path, store_media_file
|
||||
from backend.util.type import MediaFileType
|
||||
@@ -98,7 +99,7 @@ class ReadSpreadsheetBlock(Block):
|
||||
)
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, graph_exec_id: str, user_id: str, **_kwargs
|
||||
self, input_data: Input, *, execution_context: ExecutionContext, **_kwargs
|
||||
) -> BlockOutput:
|
||||
import csv
|
||||
from io import StringIO
|
||||
@@ -106,14 +107,16 @@ class ReadSpreadsheetBlock(Block):
|
||||
# Determine data source - prefer file_input if provided, otherwise use contents
|
||||
if input_data.file_input:
|
||||
stored_file_path = await store_media_file(
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.file_input,
|
||||
return_content=False,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
|
||||
# Get full file path
|
||||
file_path = get_exec_file_path(graph_exec_id, stored_file_path)
|
||||
assert execution_context.graph_exec_id # Validated by store_media_file
|
||||
file_path = get_exec_file_path(
|
||||
execution_context.graph_exec_id, stored_file_path
|
||||
)
|
||||
if not Path(file_path).exists():
|
||||
raise ValueError(f"File does not exist: {file_path}")
|
||||
|
||||
|
||||
@@ -10,13 +10,13 @@ import stagehand.main
|
||||
from stagehand import Stagehand
|
||||
|
||||
from backend.blocks.llm import (
|
||||
MODEL_METADATA,
|
||||
AICredentials,
|
||||
AICredentialsField,
|
||||
LlmModel,
|
||||
ModelMetadata,
|
||||
)
|
||||
from backend.blocks.stagehand._config import stagehand as stagehand_provider
|
||||
from backend.data import llm_registry
|
||||
from backend.sdk import (
|
||||
APIKeyCredentials,
|
||||
Block,
|
||||
@@ -83,7 +83,7 @@ class StagehandRecommendedLlmModel(str, Enum):
|
||||
GPT41_MINI = "gpt-4.1-mini-2025-04-14"
|
||||
|
||||
# Anthropic
|
||||
CLAUDE_3_7_SONNET = "claude-3-7-sonnet-20250219"
|
||||
CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
|
||||
|
||||
@property
|
||||
def provider_name(self) -> str:
|
||||
@@ -91,7 +91,7 @@ class StagehandRecommendedLlmModel(str, Enum):
|
||||
Returns the provider name for the model in the required format for Stagehand:
|
||||
provider/model_name
|
||||
"""
|
||||
model_metadata = self.metadata
|
||||
model_metadata = MODEL_METADATA[LlmModel(self.value)]
|
||||
model_name = self.value
|
||||
|
||||
if len(model_name.split("/")) == 1 and not self.value.startswith(
|
||||
@@ -107,23 +107,19 @@ class StagehandRecommendedLlmModel(str, Enum):
|
||||
|
||||
@property
|
||||
def provider(self) -> str:
|
||||
return self.metadata.provider
|
||||
return MODEL_METADATA[LlmModel(self.value)].provider
|
||||
|
||||
@property
|
||||
def metadata(self) -> ModelMetadata:
|
||||
metadata = llm_registry.get_llm_model_metadata(self.value)
|
||||
if metadata:
|
||||
return metadata
|
||||
# Fallback to LlmModel enum if registry lookup fails
|
||||
return LlmModel(self.value).metadata
|
||||
return MODEL_METADATA[LlmModel(self.value)]
|
||||
|
||||
@property
|
||||
def context_window(self) -> int:
|
||||
return self.metadata.context_window
|
||||
return MODEL_METADATA[LlmModel(self.value)].context_window
|
||||
|
||||
@property
|
||||
def max_output_tokens(self) -> int | None:
|
||||
return self.metadata.max_output_tokens
|
||||
return MODEL_METADATA[LlmModel(self.value)].max_output_tokens
|
||||
|
||||
|
||||
class StagehandObserveBlock(Block):
|
||||
@@ -141,7 +137,7 @@ class StagehandObserveBlock(Block):
|
||||
model: StagehandRecommendedLlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
description="LLM to use for Stagehand (provider is inferred)",
|
||||
default=StagehandRecommendedLlmModel.CLAUDE_3_7_SONNET,
|
||||
default=StagehandRecommendedLlmModel.CLAUDE_4_5_SONNET,
|
||||
advanced=False,
|
||||
)
|
||||
model_credentials: AICredentials = AICredentialsField()
|
||||
@@ -186,10 +182,7 @@ class StagehandObserveBlock(Block):
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
|
||||
logger.info(f"OBSERVE: Stagehand credentials: {stagehand_credentials}")
|
||||
logger.info(
|
||||
f"OBSERVE: Model credentials: {model_credentials} for provider {model_credentials.provider} secret: {model_credentials.api_key.get_secret_value()}"
|
||||
)
|
||||
logger.debug(f"OBSERVE: Using model provider {model_credentials.provider}")
|
||||
|
||||
with disable_signal_handling():
|
||||
stagehand = Stagehand(
|
||||
@@ -234,7 +227,7 @@ class StagehandActBlock(Block):
|
||||
model: StagehandRecommendedLlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
description="LLM to use for Stagehand (provider is inferred)",
|
||||
default=StagehandRecommendedLlmModel.CLAUDE_3_7_SONNET,
|
||||
default=StagehandRecommendedLlmModel.CLAUDE_4_5_SONNET,
|
||||
advanced=False,
|
||||
)
|
||||
model_credentials: AICredentials = AICredentialsField()
|
||||
@@ -286,10 +279,7 @@ class StagehandActBlock(Block):
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
|
||||
logger.info(f"ACT: Stagehand credentials: {stagehand_credentials}")
|
||||
logger.info(
|
||||
f"ACT: Model credentials: {model_credentials} for provider {model_credentials.provider} secret: {model_credentials.api_key.get_secret_value()}"
|
||||
)
|
||||
logger.debug(f"ACT: Using model provider {model_credentials.provider}")
|
||||
|
||||
with disable_signal_handling():
|
||||
stagehand = Stagehand(
|
||||
@@ -334,7 +324,7 @@ class StagehandExtractBlock(Block):
|
||||
model: StagehandRecommendedLlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
description="LLM to use for Stagehand (provider is inferred)",
|
||||
default=StagehandRecommendedLlmModel.CLAUDE_3_7_SONNET,
|
||||
default=StagehandRecommendedLlmModel.CLAUDE_4_5_SONNET,
|
||||
advanced=False,
|
||||
)
|
||||
model_credentials: AICredentials = AICredentialsField()
|
||||
@@ -374,10 +364,7 @@ class StagehandExtractBlock(Block):
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
|
||||
logger.info(f"EXTRACT: Stagehand credentials: {stagehand_credentials}")
|
||||
logger.info(
|
||||
f"EXTRACT: Model credentials: {model_credentials} for provider {model_credentials.provider} secret: {model_credentials.api_key.get_secret_value()}"
|
||||
)
|
||||
logger.debug(f"EXTRACT: Using model provider {model_credentials.provider}")
|
||||
|
||||
with disable_signal_handling():
|
||||
stagehand = Stagehand(
|
||||
|
||||
@@ -10,6 +10,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import (
|
||||
APIKeyCredentials,
|
||||
CredentialsField,
|
||||
@@ -17,7 +18,9 @@ from backend.data.model import (
|
||||
SchemaField,
|
||||
)
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.request import Requests
|
||||
from backend.util.type import MediaFileType
|
||||
|
||||
TEST_CREDENTIALS = APIKeyCredentials(
|
||||
id="01234567-89ab-cdef-0123-456789abcdef",
|
||||
@@ -102,7 +105,7 @@ class CreateTalkingAvatarVideoBlock(Block):
|
||||
test_output=[
|
||||
(
|
||||
"video_url",
|
||||
"https://d-id.com/api/clips/abcd1234-5678-efgh-ijkl-mnopqrstuvwx/video",
|
||||
lambda x: x.startswith(("workspace://", "data:")),
|
||||
),
|
||||
],
|
||||
test_mock={
|
||||
@@ -110,9 +113,10 @@ class CreateTalkingAvatarVideoBlock(Block):
|
||||
"id": "abcd1234-5678-efgh-ijkl-mnopqrstuvwx",
|
||||
"status": "created",
|
||||
},
|
||||
# Use data URI to avoid HTTP requests during tests
|
||||
"get_clip_status": lambda *args, **kwargs: {
|
||||
"status": "done",
|
||||
"result_url": "https://d-id.com/api/clips/abcd1234-5678-efgh-ijkl-mnopqrstuvwx/video",
|
||||
"result_url": "data:video/mp4;base64,AAAA",
|
||||
},
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
@@ -138,7 +142,12 @@ class CreateTalkingAvatarVideoBlock(Block):
|
||||
return response.json()
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
# Create the clip
|
||||
payload = {
|
||||
@@ -165,7 +174,14 @@ class CreateTalkingAvatarVideoBlock(Block):
|
||||
for _ in range(input_data.max_polling_attempts):
|
||||
status_response = await self.get_clip_status(credentials.api_key, clip_id)
|
||||
if status_response["status"] == "done":
|
||||
yield "video_url", status_response["result_url"]
|
||||
# Store the generated video to the user's workspace for persistence
|
||||
video_url = status_response["result_url"]
|
||||
stored_url = await store_media_file(
|
||||
file=MediaFileType(video_url),
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "video_url", stored_url
|
||||
return
|
||||
elif status_response["status"] == "error":
|
||||
raise RuntimeError(
|
||||
|
||||
@@ -12,6 +12,7 @@ from backend.blocks.iteration import StepThroughItemsBlock
|
||||
from backend.blocks.llm import AITextSummarizerBlock
|
||||
from backend.blocks.text import ExtractTextInformationBlock
|
||||
from backend.blocks.xml_parser import XMLParserBlock
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.type import MediaFileType
|
||||
|
||||
@@ -233,9 +234,12 @@ class TestStoreMediaFileSecurity:
|
||||
|
||||
with pytest.raises(ValueError, match="File too large"):
|
||||
await store_media_file(
|
||||
graph_exec_id="test",
|
||||
file=MediaFileType(large_data_uri),
|
||||
user_id="test_user",
|
||||
execution_context=ExecutionContext(
|
||||
user_id="test_user",
|
||||
graph_exec_id="test",
|
||||
),
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
|
||||
@patch("backend.util.file.Path")
|
||||
@@ -270,9 +274,12 @@ class TestStoreMediaFileSecurity:
|
||||
# Should raise an error when directory size exceeds limit
|
||||
with pytest.raises(ValueError, match="Disk usage limit exceeded"):
|
||||
await store_media_file(
|
||||
graph_exec_id="test",
|
||||
file=MediaFileType(
|
||||
"data:text/plain;base64,dGVzdA=="
|
||||
), # Small test file
|
||||
user_id="test_user",
|
||||
execution_context=ExecutionContext(
|
||||
user_id="test_user",
|
||||
graph_exec_id="test",
|
||||
),
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
|
||||
@@ -11,10 +11,22 @@ from backend.blocks.http import (
|
||||
HttpMethod,
|
||||
SendAuthenticatedWebRequestBlock,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import HostScopedCredentials
|
||||
from backend.util.request import Response
|
||||
|
||||
|
||||
def make_test_context(
|
||||
graph_exec_id: str = "test-exec-id",
|
||||
user_id: str = "test-user-id",
|
||||
) -> ExecutionContext:
|
||||
"""Helper to create test ExecutionContext."""
|
||||
return ExecutionContext(
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
)
|
||||
|
||||
|
||||
class TestHttpBlockWithHostScopedCredentials:
|
||||
"""Test suite for HTTP block integration with HostScopedCredentials."""
|
||||
|
||||
@@ -105,8 +117,7 @@ class TestHttpBlockWithHostScopedCredentials:
|
||||
async for output_name, output_data in http_block.run(
|
||||
input_data,
|
||||
credentials=exact_match_credentials,
|
||||
graph_exec_id="test-exec-id",
|
||||
user_id="test-user-id",
|
||||
execution_context=make_test_context(),
|
||||
):
|
||||
result.append((output_name, output_data))
|
||||
|
||||
@@ -161,8 +172,7 @@ class TestHttpBlockWithHostScopedCredentials:
|
||||
async for output_name, output_data in http_block.run(
|
||||
input_data,
|
||||
credentials=wildcard_credentials,
|
||||
graph_exec_id="test-exec-id",
|
||||
user_id="test-user-id",
|
||||
execution_context=make_test_context(),
|
||||
):
|
||||
result.append((output_name, output_data))
|
||||
|
||||
@@ -208,8 +218,7 @@ class TestHttpBlockWithHostScopedCredentials:
|
||||
async for output_name, output_data in http_block.run(
|
||||
input_data,
|
||||
credentials=non_matching_credentials,
|
||||
graph_exec_id="test-exec-id",
|
||||
user_id="test-user-id",
|
||||
execution_context=make_test_context(),
|
||||
):
|
||||
result.append((output_name, output_data))
|
||||
|
||||
@@ -258,8 +267,7 @@ class TestHttpBlockWithHostScopedCredentials:
|
||||
async for output_name, output_data in http_block.run(
|
||||
input_data,
|
||||
credentials=exact_match_credentials,
|
||||
graph_exec_id="test-exec-id",
|
||||
user_id="test-user-id",
|
||||
execution_context=make_test_context(),
|
||||
):
|
||||
result.append((output_name, output_data))
|
||||
|
||||
@@ -318,8 +326,7 @@ class TestHttpBlockWithHostScopedCredentials:
|
||||
async for output_name, output_data in http_block.run(
|
||||
input_data,
|
||||
credentials=auto_discovered_creds, # Execution manager found these
|
||||
graph_exec_id="test-exec-id",
|
||||
user_id="test-user-id",
|
||||
execution_context=make_test_context(),
|
||||
):
|
||||
result.append((output_name, output_data))
|
||||
|
||||
@@ -382,8 +389,7 @@ class TestHttpBlockWithHostScopedCredentials:
|
||||
async for output_name, output_data in http_block.run(
|
||||
input_data,
|
||||
credentials=multi_header_creds,
|
||||
graph_exec_id="test-exec-id",
|
||||
user_id="test-user-id",
|
||||
execution_context=make_test_context(),
|
||||
):
|
||||
result.append((output_name, output_data))
|
||||
|
||||
@@ -471,8 +477,7 @@ class TestHttpBlockWithHostScopedCredentials:
|
||||
async for output_name, output_data in http_block.run(
|
||||
input_data,
|
||||
credentials=test_creds,
|
||||
graph_exec_id="test-exec-id",
|
||||
user_id="test-user-id",
|
||||
execution_context=make_test_context(),
|
||||
):
|
||||
result.append((output_name, output_data))
|
||||
|
||||
|
||||
@@ -11,6 +11,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util import json, text
|
||||
from backend.util.file import get_exec_file_path, store_media_file
|
||||
@@ -444,18 +445,21 @@ class FileReadBlock(Block):
|
||||
)
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, graph_exec_id: str, user_id: str, **_kwargs
|
||||
self, input_data: Input, *, execution_context: ExecutionContext, **_kwargs
|
||||
) -> BlockOutput:
|
||||
# Store the media file properly (handles URLs, data URIs, etc.)
|
||||
stored_file_path = await store_media_file(
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.file_input,
|
||||
return_content=False,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
|
||||
# Get full file path
|
||||
file_path = get_exec_file_path(graph_exec_id, stored_file_path)
|
||||
# Get full file path (graph_exec_id validated by store_media_file above)
|
||||
if not execution_context.graph_exec_id:
|
||||
raise ValueError("execution_context.graph_exec_id is required")
|
||||
file_path = get_exec_file_path(
|
||||
execution_context.graph_exec_id, stored_file_path
|
||||
)
|
||||
|
||||
if not Path(file_path).exists():
|
||||
raise ValueError(f"File does not exist: {file_path}")
|
||||
|
||||
@@ -25,7 +25,6 @@ from prisma.models import AgentBlock
|
||||
from prisma.types import AgentBlockCreateInput
|
||||
from pydantic import BaseModel
|
||||
|
||||
from backend.data.llm_registry import update_schema_with_llm_registry
|
||||
from backend.data.model import NodeExecutionStats
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util import json
|
||||
@@ -144,59 +143,35 @@ class BlockInfo(BaseModel):
|
||||
|
||||
|
||||
class BlockSchema(BaseModel):
|
||||
cached_jsonschema: ClassVar[dict[str, Any] | None] = None
|
||||
|
||||
@classmethod
|
||||
def clear_schema_cache(cls) -> None:
|
||||
"""Clear the cached JSON schema for this class."""
|
||||
# Use None instead of {} because {} is truthy and would prevent regeneration
|
||||
cls.cached_jsonschema = None # type: ignore
|
||||
|
||||
@staticmethod
|
||||
def clear_all_schema_caches() -> None:
|
||||
"""Clear cached JSON schemas for all BlockSchema subclasses."""
|
||||
|
||||
def clear_recursive(cls: type) -> None:
|
||||
"""Recursively clear cache for class and all subclasses."""
|
||||
if hasattr(cls, "clear_schema_cache"):
|
||||
cls.clear_schema_cache()
|
||||
for subclass in cls.__subclasses__():
|
||||
clear_recursive(subclass)
|
||||
|
||||
clear_recursive(BlockSchema)
|
||||
cached_jsonschema: ClassVar[dict[str, Any]]
|
||||
|
||||
@classmethod
|
||||
def jsonschema(cls) -> dict[str, Any]:
|
||||
# Generate schema if not cached
|
||||
if not cls.cached_jsonschema:
|
||||
model = jsonref.replace_refs(cls.model_json_schema(), merge_props=True)
|
||||
if cls.cached_jsonschema:
|
||||
return cls.cached_jsonschema
|
||||
|
||||
def ref_to_dict(obj):
|
||||
if isinstance(obj, dict):
|
||||
# OpenAPI <3.1 does not support sibling fields that has a $ref key
|
||||
# So sometimes, the schema has an "allOf"/"anyOf"/"oneOf" with 1 item.
|
||||
keys = {"allOf", "anyOf", "oneOf"}
|
||||
one_key = next(
|
||||
(k for k in keys if k in obj and len(obj[k]) == 1), None
|
||||
)
|
||||
if one_key:
|
||||
obj.update(obj[one_key][0])
|
||||
model = jsonref.replace_refs(cls.model_json_schema(), merge_props=True)
|
||||
|
||||
return {
|
||||
key: ref_to_dict(value)
|
||||
for key, value in obj.items()
|
||||
if not key.startswith("$") and key != one_key
|
||||
}
|
||||
elif isinstance(obj, list):
|
||||
return [ref_to_dict(item) for item in obj]
|
||||
def ref_to_dict(obj):
|
||||
if isinstance(obj, dict):
|
||||
# OpenAPI <3.1 does not support sibling fields that has a $ref key
|
||||
# So sometimes, the schema has an "allOf"/"anyOf"/"oneOf" with 1 item.
|
||||
keys = {"allOf", "anyOf", "oneOf"}
|
||||
one_key = next((k for k in keys if k in obj and len(obj[k]) == 1), None)
|
||||
if one_key:
|
||||
obj.update(obj[one_key][0])
|
||||
|
||||
return obj
|
||||
return {
|
||||
key: ref_to_dict(value)
|
||||
for key, value in obj.items()
|
||||
if not key.startswith("$") and key != one_key
|
||||
}
|
||||
elif isinstance(obj, list):
|
||||
return [ref_to_dict(item) for item in obj]
|
||||
|
||||
cls.cached_jsonschema = cast(dict[str, Any], ref_to_dict(model))
|
||||
return obj
|
||||
|
||||
# Always post-process to ensure LLM registry data is up-to-date
|
||||
# This refreshes model options and discriminator mappings even if schema was cached
|
||||
update_schema_with_llm_registry(cls.cached_jsonschema, cls)
|
||||
cls.cached_jsonschema = cast(dict[str, Any], ref_to_dict(model))
|
||||
|
||||
return cls.cached_jsonschema
|
||||
|
||||
@@ -259,7 +234,7 @@ class BlockSchema(BaseModel):
|
||||
super().__pydantic_init_subclass__(**kwargs)
|
||||
|
||||
# Reset cached JSON schema to prevent inheriting it from parent class
|
||||
cls.cached_jsonschema = None
|
||||
cls.cached_jsonschema = {}
|
||||
|
||||
credentials_fields = cls.get_credentials_fields()
|
||||
|
||||
@@ -898,36 +873,13 @@ def is_block_auth_configured(
|
||||
|
||||
|
||||
async def initialize_blocks() -> None:
|
||||
# Refresh LLM registry before initializing blocks so blocks can use registry data
|
||||
# This ensures the registry cache is populated even in executor context
|
||||
try:
|
||||
from backend.data import llm_registry
|
||||
from backend.data.block_cost_config import refresh_llm_costs
|
||||
|
||||
# Only refresh if we have DB access (check if Prisma is connected)
|
||||
from backend.data.db import is_connected
|
||||
|
||||
if is_connected():
|
||||
await llm_registry.refresh_llm_registry()
|
||||
refresh_llm_costs()
|
||||
logger.info("LLM registry refreshed during block initialization")
|
||||
else:
|
||||
logger.warning(
|
||||
"Prisma not connected, skipping LLM registry refresh during block initialization"
|
||||
)
|
||||
except Exception as exc:
|
||||
logger.warning(
|
||||
"Failed to refresh LLM registry during block initialization: %s", exc
|
||||
)
|
||||
|
||||
# First, sync all provider costs to blocks
|
||||
# Imported here to avoid circular import
|
||||
from backend.sdk.cost_integration import sync_all_provider_costs
|
||||
from backend.util.retry import func_retry
|
||||
|
||||
sync_all_provider_costs()
|
||||
|
||||
for cls in get_blocks().values():
|
||||
block = cls()
|
||||
@func_retry
|
||||
async def sync_block_to_db(block: Block) -> None:
|
||||
existing_block = await AgentBlock.prisma().find_first(
|
||||
where={"OR": [{"id": block.id}, {"name": block.name}]}
|
||||
)
|
||||
@@ -940,7 +892,7 @@ async def initialize_blocks() -> None:
|
||||
outputSchema=json.dumps(block.output_schema.jsonschema()),
|
||||
)
|
||||
)
|
||||
continue
|
||||
return
|
||||
|
||||
input_schema = json.dumps(block.input_schema.jsonschema())
|
||||
output_schema = json.dumps(block.output_schema.jsonschema())
|
||||
@@ -960,6 +912,25 @@ async def initialize_blocks() -> None:
|
||||
},
|
||||
)
|
||||
|
||||
failed_blocks: list[str] = []
|
||||
for cls in get_blocks().values():
|
||||
block = cls()
|
||||
try:
|
||||
await sync_block_to_db(block)
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
f"Failed to sync block {block.name} to database: {e}. "
|
||||
"Block is still available in memory.",
|
||||
exc_info=True,
|
||||
)
|
||||
failed_blocks.append(block.name)
|
||||
|
||||
if failed_blocks:
|
||||
logger.error(
|
||||
f"Failed to sync {len(failed_blocks)} block(s) to database: "
|
||||
f"{', '.join(failed_blocks)}. These blocks are still available in memory."
|
||||
)
|
||||
|
||||
|
||||
# Note on the return type annotation: https://github.com/microsoft/pyright/issues/10281
|
||||
def get_block(block_id: str) -> AnyBlockSchema | None:
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
import logging
|
||||
from typing import Type
|
||||
|
||||
from backend.blocks.ai_image_customizer import AIImageCustomizerBlock, GeminiImageModel
|
||||
@@ -24,18 +23,19 @@ from backend.blocks.ideogram import IdeogramModelBlock
|
||||
from backend.blocks.jina.embeddings import JinaEmbeddingBlock
|
||||
from backend.blocks.jina.search import ExtractWebsiteContentBlock, SearchTheWebBlock
|
||||
from backend.blocks.llm import (
|
||||
MODEL_METADATA,
|
||||
AIConversationBlock,
|
||||
AIListGeneratorBlock,
|
||||
AIStructuredResponseGeneratorBlock,
|
||||
AITextGeneratorBlock,
|
||||
AITextSummarizerBlock,
|
||||
LlmModel,
|
||||
)
|
||||
from backend.blocks.replicate.flux_advanced import ReplicateFluxAdvancedModelBlock
|
||||
from backend.blocks.replicate.replicate_block import ReplicateModelBlock
|
||||
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
|
||||
from backend.blocks.talking_head import CreateTalkingAvatarVideoBlock
|
||||
from backend.blocks.text_to_speech_block import UnrealTextToSpeechBlock
|
||||
from backend.data import llm_registry
|
||||
from backend.data.block import Block, BlockCost, BlockCostType
|
||||
from backend.integrations.credentials_store import (
|
||||
aiml_api_credentials,
|
||||
@@ -55,63 +55,209 @@ from backend.integrations.credentials_store import (
|
||||
v0_credentials,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
# =============== Configure the cost for each LLM Model call =============== #
|
||||
|
||||
PROVIDER_CREDENTIALS = {
|
||||
"openai": openai_credentials,
|
||||
"anthropic": anthropic_credentials,
|
||||
"groq": groq_credentials,
|
||||
"open_router": open_router_credentials,
|
||||
"llama_api": llama_api_credentials,
|
||||
"aiml_api": aiml_api_credentials,
|
||||
"v0": v0_credentials,
|
||||
MODEL_COST: dict[LlmModel, int] = {
|
||||
LlmModel.O3: 4,
|
||||
LlmModel.O3_MINI: 2,
|
||||
LlmModel.O1: 16,
|
||||
LlmModel.O1_MINI: 4,
|
||||
# GPT-5 models
|
||||
LlmModel.GPT5_2: 6,
|
||||
LlmModel.GPT5_1: 5,
|
||||
LlmModel.GPT5: 2,
|
||||
LlmModel.GPT5_MINI: 1,
|
||||
LlmModel.GPT5_NANO: 1,
|
||||
LlmModel.GPT5_CHAT: 5,
|
||||
LlmModel.GPT41: 2,
|
||||
LlmModel.GPT41_MINI: 1,
|
||||
LlmModel.GPT4O_MINI: 1,
|
||||
LlmModel.GPT4O: 3,
|
||||
LlmModel.GPT4_TURBO: 10,
|
||||
LlmModel.GPT3_5_TURBO: 1,
|
||||
LlmModel.CLAUDE_4_1_OPUS: 21,
|
||||
LlmModel.CLAUDE_4_OPUS: 21,
|
||||
LlmModel.CLAUDE_4_SONNET: 5,
|
||||
LlmModel.CLAUDE_4_5_HAIKU: 4,
|
||||
LlmModel.CLAUDE_4_5_OPUS: 14,
|
||||
LlmModel.CLAUDE_4_5_SONNET: 9,
|
||||
LlmModel.CLAUDE_3_HAIKU: 1,
|
||||
LlmModel.AIML_API_QWEN2_5_72B: 1,
|
||||
LlmModel.AIML_API_LLAMA3_1_70B: 1,
|
||||
LlmModel.AIML_API_LLAMA3_3_70B: 1,
|
||||
LlmModel.AIML_API_META_LLAMA_3_1_70B: 1,
|
||||
LlmModel.AIML_API_LLAMA_3_2_3B: 1,
|
||||
LlmModel.LLAMA3_3_70B: 1,
|
||||
LlmModel.LLAMA3_1_8B: 1,
|
||||
LlmModel.OLLAMA_LLAMA3_3: 1,
|
||||
LlmModel.OLLAMA_LLAMA3_2: 1,
|
||||
LlmModel.OLLAMA_LLAMA3_8B: 1,
|
||||
LlmModel.OLLAMA_LLAMA3_405B: 1,
|
||||
LlmModel.OLLAMA_DOLPHIN: 1,
|
||||
LlmModel.OPENAI_GPT_OSS_120B: 1,
|
||||
LlmModel.OPENAI_GPT_OSS_20B: 1,
|
||||
LlmModel.GEMINI_2_5_PRO: 4,
|
||||
LlmModel.GEMINI_3_PRO_PREVIEW: 5,
|
||||
LlmModel.GEMINI_2_5_FLASH: 1,
|
||||
LlmModel.GEMINI_2_0_FLASH: 1,
|
||||
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: 1,
|
||||
LlmModel.GEMINI_2_0_FLASH_LITE: 1,
|
||||
LlmModel.MISTRAL_NEMO: 1,
|
||||
LlmModel.COHERE_COMMAND_R_08_2024: 1,
|
||||
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: 3,
|
||||
LlmModel.DEEPSEEK_CHAT: 2,
|
||||
LlmModel.DEEPSEEK_R1_0528: 1,
|
||||
LlmModel.PERPLEXITY_SONAR: 1,
|
||||
LlmModel.PERPLEXITY_SONAR_PRO: 5,
|
||||
LlmModel.PERPLEXITY_SONAR_DEEP_RESEARCH: 10,
|
||||
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_405B: 1,
|
||||
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_70B: 1,
|
||||
LlmModel.AMAZON_NOVA_LITE_V1: 1,
|
||||
LlmModel.AMAZON_NOVA_MICRO_V1: 1,
|
||||
LlmModel.AMAZON_NOVA_PRO_V1: 1,
|
||||
LlmModel.MICROSOFT_WIZARDLM_2_8X22B: 1,
|
||||
LlmModel.GRYPHE_MYTHOMAX_L2_13B: 1,
|
||||
LlmModel.META_LLAMA_4_SCOUT: 1,
|
||||
LlmModel.META_LLAMA_4_MAVERICK: 1,
|
||||
LlmModel.LLAMA_API_LLAMA_4_SCOUT: 1,
|
||||
LlmModel.LLAMA_API_LLAMA4_MAVERICK: 1,
|
||||
LlmModel.LLAMA_API_LLAMA3_3_8B: 1,
|
||||
LlmModel.LLAMA_API_LLAMA3_3_70B: 1,
|
||||
LlmModel.GROK_4: 9,
|
||||
LlmModel.GROK_4_FAST: 1,
|
||||
LlmModel.GROK_4_1_FAST: 1,
|
||||
LlmModel.GROK_CODE_FAST_1: 1,
|
||||
LlmModel.KIMI_K2: 1,
|
||||
LlmModel.QWEN3_235B_A22B_THINKING: 1,
|
||||
LlmModel.QWEN3_CODER: 9,
|
||||
# v0 by Vercel models
|
||||
LlmModel.V0_1_5_MD: 1,
|
||||
LlmModel.V0_1_5_LG: 2,
|
||||
LlmModel.V0_1_0_MD: 1,
|
||||
}
|
||||
|
||||
# =============== Configure the cost for each LLM Model call =============== #
|
||||
# All LLM costs now come from the database via llm_registry
|
||||
|
||||
LLM_COST: list[BlockCost] = []
|
||||
for model in LlmModel:
|
||||
if model not in MODEL_COST:
|
||||
raise ValueError(f"Missing MODEL_COST for model: {model}")
|
||||
|
||||
|
||||
def _build_llm_costs_from_registry() -> list[BlockCost]:
|
||||
"""Build BlockCost list from all models in the LLM registry."""
|
||||
costs: list[BlockCost] = []
|
||||
for model in llm_registry.iter_dynamic_models():
|
||||
for cost in model.costs:
|
||||
credentials = PROVIDER_CREDENTIALS.get(cost.credential_provider)
|
||||
if not credentials:
|
||||
logger.warning(
|
||||
"Skipping cost entry for %s due to unknown credentials provider %s",
|
||||
model.slug,
|
||||
cost.credential_provider,
|
||||
)
|
||||
continue
|
||||
cost_filter = {
|
||||
"model": model.slug,
|
||||
LLM_COST = (
|
||||
# Anthropic Models
|
||||
[
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter={
|
||||
"model": model,
|
||||
"credentials": {
|
||||
"id": credentials.id,
|
||||
"provider": credentials.provider,
|
||||
"type": credentials.type,
|
||||
"id": anthropic_credentials.id,
|
||||
"provider": anthropic_credentials.provider,
|
||||
"type": anthropic_credentials.type,
|
||||
},
|
||||
}
|
||||
costs.append(
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter=cost_filter,
|
||||
cost_amount=cost.credit_cost,
|
||||
)
|
||||
)
|
||||
return costs
|
||||
|
||||
|
||||
def refresh_llm_costs() -> None:
|
||||
"""Refresh LLM costs from the registry. All costs now come from the database."""
|
||||
LLM_COST.clear()
|
||||
LLM_COST.extend(_build_llm_costs_from_registry())
|
||||
|
||||
|
||||
# Initial load will happen after registry is refreshed at startup
|
||||
# Don't call refresh_llm_costs() here - it will be called after registry refresh
|
||||
},
|
||||
cost_amount=cost,
|
||||
)
|
||||
for model, cost in MODEL_COST.items()
|
||||
if MODEL_METADATA[model].provider == "anthropic"
|
||||
]
|
||||
# OpenAI Models
|
||||
+ [
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter={
|
||||
"model": model,
|
||||
"credentials": {
|
||||
"id": openai_credentials.id,
|
||||
"provider": openai_credentials.provider,
|
||||
"type": openai_credentials.type,
|
||||
},
|
||||
},
|
||||
cost_amount=cost,
|
||||
)
|
||||
for model, cost in MODEL_COST.items()
|
||||
if MODEL_METADATA[model].provider == "openai"
|
||||
]
|
||||
# Groq Models
|
||||
+ [
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter={
|
||||
"model": model,
|
||||
"credentials": {"id": groq_credentials.id},
|
||||
},
|
||||
cost_amount=cost,
|
||||
)
|
||||
for model, cost in MODEL_COST.items()
|
||||
if MODEL_METADATA[model].provider == "groq"
|
||||
]
|
||||
# Open Router Models
|
||||
+ [
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter={
|
||||
"model": model,
|
||||
"credentials": {
|
||||
"id": open_router_credentials.id,
|
||||
"provider": open_router_credentials.provider,
|
||||
"type": open_router_credentials.type,
|
||||
},
|
||||
},
|
||||
cost_amount=cost,
|
||||
)
|
||||
for model, cost in MODEL_COST.items()
|
||||
if MODEL_METADATA[model].provider == "open_router"
|
||||
]
|
||||
# Llama API Models
|
||||
+ [
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter={
|
||||
"model": model,
|
||||
"credentials": {
|
||||
"id": llama_api_credentials.id,
|
||||
"provider": llama_api_credentials.provider,
|
||||
"type": llama_api_credentials.type,
|
||||
},
|
||||
},
|
||||
cost_amount=cost,
|
||||
)
|
||||
for model, cost in MODEL_COST.items()
|
||||
if MODEL_METADATA[model].provider == "llama_api"
|
||||
]
|
||||
# v0 by Vercel Models
|
||||
+ [
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter={
|
||||
"model": model,
|
||||
"credentials": {
|
||||
"id": v0_credentials.id,
|
||||
"provider": v0_credentials.provider,
|
||||
"type": v0_credentials.type,
|
||||
},
|
||||
},
|
||||
cost_amount=cost,
|
||||
)
|
||||
for model, cost in MODEL_COST.items()
|
||||
if MODEL_METADATA[model].provider == "v0"
|
||||
]
|
||||
# AI/ML Api Models
|
||||
+ [
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter={
|
||||
"model": model,
|
||||
"credentials": {
|
||||
"id": aiml_api_credentials.id,
|
||||
"provider": aiml_api_credentials.provider,
|
||||
"type": aiml_api_credentials.type,
|
||||
},
|
||||
},
|
||||
cost_amount=cost,
|
||||
)
|
||||
for model, cost in MODEL_COST.items()
|
||||
if MODEL_METADATA[model].provider == "aiml_api"
|
||||
]
|
||||
)
|
||||
|
||||
# =============== This is the exhaustive list of cost for each Block =============== #
|
||||
|
||||
|
||||
@@ -133,10 +133,23 @@ class RedisEventBus(BaseRedisEventBus[M], ABC):
|
||||
|
||||
|
||||
class AsyncRedisEventBus(BaseRedisEventBus[M], ABC):
|
||||
def __init__(self):
|
||||
self._pubsub: AsyncPubSub | None = None
|
||||
|
||||
@property
|
||||
async def connection(self) -> redis.AsyncRedis:
|
||||
return await redis.get_redis_async()
|
||||
|
||||
async def close(self) -> None:
|
||||
"""Close the PubSub connection if it exists."""
|
||||
if self._pubsub is not None:
|
||||
try:
|
||||
await self._pubsub.close()
|
||||
except Exception:
|
||||
logger.warning("Failed to close PubSub connection", exc_info=True)
|
||||
finally:
|
||||
self._pubsub = None
|
||||
|
||||
async def publish_event(self, event: M, channel_key: str):
|
||||
"""
|
||||
Publish an event to Redis. Gracefully handles connection failures
|
||||
@@ -157,6 +170,7 @@ class AsyncRedisEventBus(BaseRedisEventBus[M], ABC):
|
||||
await self.connection, channel_key
|
||||
)
|
||||
assert isinstance(pubsub, AsyncPubSub)
|
||||
self._pubsub = pubsub
|
||||
|
||||
if "*" in channel_key:
|
||||
await pubsub.psubscribe(full_channel_name)
|
||||
|
||||
@@ -83,12 +83,29 @@ class ExecutionContext(BaseModel):
|
||||
|
||||
model_config = {"extra": "ignore"}
|
||||
|
||||
# Execution identity
|
||||
user_id: Optional[str] = None
|
||||
graph_id: Optional[str] = None
|
||||
graph_exec_id: Optional[str] = None
|
||||
graph_version: Optional[int] = None
|
||||
node_id: Optional[str] = None
|
||||
node_exec_id: Optional[str] = None
|
||||
|
||||
# Safety settings
|
||||
human_in_the_loop_safe_mode: bool = True
|
||||
sensitive_action_safe_mode: bool = False
|
||||
|
||||
# User settings
|
||||
user_timezone: str = "UTC"
|
||||
|
||||
# Execution hierarchy
|
||||
root_execution_id: Optional[str] = None
|
||||
parent_execution_id: Optional[str] = None
|
||||
|
||||
# Workspace
|
||||
workspace_id: Optional[str] = None
|
||||
session_id: Optional[str] = None
|
||||
|
||||
|
||||
# -------------------------- Models -------------------------- #
|
||||
|
||||
|
||||
@@ -1028,6 +1028,39 @@ async def get_graph(
|
||||
return GraphModel.from_db(graph, for_export)
|
||||
|
||||
|
||||
async def get_store_listed_graphs(*graph_ids: str) -> dict[str, GraphModel]:
|
||||
"""Batch-fetch multiple store-listed graphs by their IDs.
|
||||
|
||||
Only returns graphs that have approved store listings (publicly available).
|
||||
Does not require permission checks since store-listed graphs are public.
|
||||
|
||||
Args:
|
||||
*graph_ids: Variable number of graph IDs to fetch
|
||||
|
||||
Returns:
|
||||
Dict mapping graph_id to GraphModel for graphs with approved store listings
|
||||
"""
|
||||
if not graph_ids:
|
||||
return {}
|
||||
|
||||
store_listings = await StoreListingVersion.prisma().find_many(
|
||||
where={
|
||||
"agentGraphId": {"in": list(graph_ids)},
|
||||
"submissionStatus": SubmissionStatus.APPROVED,
|
||||
"isDeleted": False,
|
||||
},
|
||||
include={"AgentGraph": {"include": AGENT_GRAPH_INCLUDE}},
|
||||
distinct=["agentGraphId"],
|
||||
order={"agentGraphVersion": "desc"},
|
||||
)
|
||||
|
||||
return {
|
||||
listing.agentGraphId: GraphModel.from_db(listing.AgentGraph)
|
||||
for listing in store_listings
|
||||
if listing.AgentGraph
|
||||
}
|
||||
|
||||
|
||||
async def get_graph_as_admin(
|
||||
graph_id: str,
|
||||
version: int | None = None,
|
||||
@@ -1511,10 +1544,8 @@ async def migrate_llm_models(migrate_to: LlmModel):
|
||||
if field.annotation == LlmModel:
|
||||
llm_model_fields[block.id] = field_name
|
||||
|
||||
# Get all model slugs from the registry (dynamic, not hardcoded enum)
|
||||
from backend.data import llm_registry
|
||||
|
||||
enum_values = list(llm_registry.get_all_model_slugs_for_validation())
|
||||
# Convert enum values to a list of strings for the SQL query
|
||||
enum_values = [v.value for v in LlmModel]
|
||||
escaped_enum_values = repr(tuple(enum_values)) # hack but works
|
||||
|
||||
# Update each block
|
||||
|
||||
@@ -1,72 +0,0 @@
|
||||
"""
|
||||
LLM Registry module for managing LLM models, providers, and costs dynamically.
|
||||
|
||||
This module provides a database-driven registry system for LLM models,
|
||||
replacing hardcoded model configurations with a flexible admin-managed system.
|
||||
"""
|
||||
|
||||
from backend.data.llm_registry.model import ModelMetadata
|
||||
|
||||
# Re-export for backwards compatibility
|
||||
from backend.data.llm_registry.notifications import (
|
||||
REGISTRY_REFRESH_CHANNEL,
|
||||
publish_registry_refresh_notification,
|
||||
subscribe_to_registry_refresh,
|
||||
)
|
||||
from backend.data.llm_registry.registry import (
|
||||
RegistryModel,
|
||||
RegistryModelCost,
|
||||
RegistryModelCreator,
|
||||
get_all_model_slugs_for_validation,
|
||||
get_default_model_slug,
|
||||
get_dynamic_model_slugs,
|
||||
get_fallback_model_for_disabled,
|
||||
get_llm_discriminator_mapping,
|
||||
get_llm_model_cost,
|
||||
get_llm_model_metadata,
|
||||
get_llm_model_schema_options,
|
||||
get_model_info,
|
||||
is_model_enabled,
|
||||
iter_dynamic_models,
|
||||
refresh_llm_registry,
|
||||
register_static_costs,
|
||||
register_static_metadata,
|
||||
)
|
||||
from backend.data.llm_registry.schema_utils import (
|
||||
is_llm_model_field,
|
||||
refresh_llm_discriminator_mapping,
|
||||
refresh_llm_model_options,
|
||||
update_schema_with_llm_registry,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
# Types
|
||||
"ModelMetadata",
|
||||
"RegistryModel",
|
||||
"RegistryModelCost",
|
||||
"RegistryModelCreator",
|
||||
# Registry functions
|
||||
"get_all_model_slugs_for_validation",
|
||||
"get_default_model_slug",
|
||||
"get_dynamic_model_slugs",
|
||||
"get_fallback_model_for_disabled",
|
||||
"get_llm_discriminator_mapping",
|
||||
"get_llm_model_cost",
|
||||
"get_llm_model_metadata",
|
||||
"get_llm_model_schema_options",
|
||||
"get_model_info",
|
||||
"is_model_enabled",
|
||||
"iter_dynamic_models",
|
||||
"refresh_llm_registry",
|
||||
"register_static_costs",
|
||||
"register_static_metadata",
|
||||
# Notifications
|
||||
"REGISTRY_REFRESH_CHANNEL",
|
||||
"publish_registry_refresh_notification",
|
||||
"subscribe_to_registry_refresh",
|
||||
# Schema utilities
|
||||
"is_llm_model_field",
|
||||
"refresh_llm_discriminator_mapping",
|
||||
"refresh_llm_model_options",
|
||||
"update_schema_with_llm_registry",
|
||||
]
|
||||
@@ -1,25 +0,0 @@
|
||||
"""Type definitions for LLM model metadata."""
|
||||
|
||||
from typing import Literal, NamedTuple
|
||||
|
||||
|
||||
class ModelMetadata(NamedTuple):
|
||||
"""Metadata for an LLM model.
|
||||
|
||||
Attributes:
|
||||
provider: The provider identifier (e.g., "openai", "anthropic")
|
||||
context_window: Maximum context window size in tokens
|
||||
max_output_tokens: Maximum output tokens (None if unlimited)
|
||||
display_name: Human-readable name for the model
|
||||
provider_name: Human-readable provider name (e.g., "OpenAI", "Anthropic")
|
||||
creator_name: Name of the organization that created the model
|
||||
price_tier: Relative cost tier (1=cheapest, 2=medium, 3=expensive)
|
||||
"""
|
||||
|
||||
provider: str
|
||||
context_window: int
|
||||
max_output_tokens: int | None
|
||||
display_name: str
|
||||
provider_name: str
|
||||
creator_name: str
|
||||
price_tier: Literal[1, 2, 3]
|
||||
@@ -1,89 +0,0 @@
|
||||
"""
|
||||
Redis pub/sub notifications for LLM registry updates.
|
||||
|
||||
When models are added/updated/removed via the admin UI, this module
|
||||
publishes notifications to Redis that all executor services subscribe to,
|
||||
ensuring they refresh their registry cache in real-time.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from backend.data.redis_client import connect_async
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Redis channel name for LLM registry refresh notifications
|
||||
REGISTRY_REFRESH_CHANNEL = "llm_registry:refresh"
|
||||
|
||||
|
||||
async def publish_registry_refresh_notification() -> None:
|
||||
"""
|
||||
Publish a notification to Redis that the LLM registry has been updated.
|
||||
All executor services subscribed to this channel will refresh their registry.
|
||||
"""
|
||||
try:
|
||||
redis = await connect_async()
|
||||
await redis.publish(REGISTRY_REFRESH_CHANNEL, "refresh")
|
||||
logger.info("Published LLM registry refresh notification to Redis")
|
||||
except Exception as exc:
|
||||
logger.warning(
|
||||
"Failed to publish LLM registry refresh notification: %s",
|
||||
exc,
|
||||
exc_info=True,
|
||||
)
|
||||
|
||||
|
||||
async def subscribe_to_registry_refresh(
|
||||
on_refresh: Any, # Async callable that takes no args
|
||||
) -> None:
|
||||
"""
|
||||
Subscribe to Redis notifications for LLM registry updates.
|
||||
This runs in a loop and processes messages as they arrive.
|
||||
|
||||
Args:
|
||||
on_refresh: Async callable to execute when a refresh notification is received
|
||||
"""
|
||||
try:
|
||||
redis = await connect_async()
|
||||
pubsub = redis.pubsub()
|
||||
await pubsub.subscribe(REGISTRY_REFRESH_CHANNEL)
|
||||
logger.info(
|
||||
"Subscribed to LLM registry refresh notifications on channel: %s",
|
||||
REGISTRY_REFRESH_CHANNEL,
|
||||
)
|
||||
|
||||
# Process messages in a loop
|
||||
while True:
|
||||
try:
|
||||
message = await pubsub.get_message(
|
||||
ignore_subscribe_messages=True, timeout=1.0
|
||||
)
|
||||
if (
|
||||
message
|
||||
and message["type"] == "message"
|
||||
and message["channel"] == REGISTRY_REFRESH_CHANNEL
|
||||
):
|
||||
logger.info("Received LLM registry refresh notification")
|
||||
try:
|
||||
await on_refresh()
|
||||
except Exception as exc:
|
||||
logger.error(
|
||||
"Error refreshing LLM registry from notification: %s",
|
||||
exc,
|
||||
exc_info=True,
|
||||
)
|
||||
except Exception as exc:
|
||||
logger.warning(
|
||||
"Error processing registry refresh message: %s", exc, exc_info=True
|
||||
)
|
||||
# Continue listening even if one message fails
|
||||
await asyncio.sleep(1)
|
||||
except Exception as exc:
|
||||
logger.error(
|
||||
"Failed to subscribe to LLM registry refresh notifications: %s",
|
||||
exc,
|
||||
exc_info=True,
|
||||
)
|
||||
raise
|
||||
@@ -1,388 +0,0 @@
|
||||
"""Core LLM registry implementation for managing models dynamically."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Any, Iterable
|
||||
|
||||
import prisma.models
|
||||
|
||||
from backend.data.llm_registry.model import ModelMetadata
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _json_to_dict(value: Any) -> dict[str, Any]:
|
||||
"""Convert Prisma Json type to dict, with fallback to empty dict."""
|
||||
if value is None:
|
||||
return {}
|
||||
if isinstance(value, dict):
|
||||
return value
|
||||
# Prisma Json type should always be a dict at runtime
|
||||
return dict(value) if value else {}
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class RegistryModelCost:
|
||||
"""Cost configuration for an LLM model."""
|
||||
|
||||
credit_cost: int
|
||||
credential_provider: str
|
||||
credential_id: str | None
|
||||
credential_type: str | None
|
||||
currency: str | None
|
||||
metadata: dict[str, Any]
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class RegistryModelCreator:
|
||||
"""Creator information for an LLM model."""
|
||||
|
||||
id: str
|
||||
name: str
|
||||
display_name: str
|
||||
description: str | None
|
||||
website_url: str | None
|
||||
logo_url: str | None
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class RegistryModel:
|
||||
"""Represents a model in the LLM registry."""
|
||||
|
||||
slug: str
|
||||
display_name: str
|
||||
description: str | None
|
||||
metadata: ModelMetadata
|
||||
capabilities: dict[str, Any]
|
||||
extra_metadata: dict[str, Any]
|
||||
provider_display_name: str
|
||||
is_enabled: bool
|
||||
is_recommended: bool = False
|
||||
costs: tuple[RegistryModelCost, ...] = field(default_factory=tuple)
|
||||
creator: RegistryModelCreator | None = None
|
||||
|
||||
|
||||
_static_metadata: dict[str, ModelMetadata] = {}
|
||||
_static_costs: dict[str, int] = {}
|
||||
_dynamic_models: dict[str, RegistryModel] = {}
|
||||
_schema_options: list[dict[str, str]] = []
|
||||
_discriminator_mapping: dict[str, str] = {}
|
||||
_lock = asyncio.Lock()
|
||||
|
||||
|
||||
def register_static_metadata(metadata: dict[Any, ModelMetadata]) -> None:
|
||||
"""Register static metadata for legacy models (deprecated)."""
|
||||
_static_metadata.update({str(key): value for key, value in metadata.items()})
|
||||
_refresh_cached_schema()
|
||||
|
||||
|
||||
def register_static_costs(costs: dict[Any, int]) -> None:
|
||||
"""Register static costs for legacy models (deprecated)."""
|
||||
_static_costs.update({str(key): value for key, value in costs.items()})
|
||||
|
||||
|
||||
def _build_schema_options() -> list[dict[str, str]]:
|
||||
"""Build schema options for model selection dropdown. Only includes enabled models."""
|
||||
options: list[dict[str, str]] = []
|
||||
# Only include enabled models in the dropdown options
|
||||
for model in sorted(_dynamic_models.values(), key=lambda m: m.display_name.lower()):
|
||||
if model.is_enabled:
|
||||
options.append(
|
||||
{
|
||||
"label": model.display_name,
|
||||
"value": model.slug,
|
||||
"group": model.metadata.provider,
|
||||
"description": model.description or "",
|
||||
}
|
||||
)
|
||||
|
||||
for slug, metadata in _static_metadata.items():
|
||||
if slug in _dynamic_models:
|
||||
continue
|
||||
options.append(
|
||||
{
|
||||
"label": slug,
|
||||
"value": slug,
|
||||
"group": metadata.provider,
|
||||
"description": "",
|
||||
}
|
||||
)
|
||||
return options
|
||||
|
||||
|
||||
async def refresh_llm_registry() -> None:
|
||||
"""Refresh the LLM registry from the database. Loads all models (enabled and disabled)."""
|
||||
async with _lock:
|
||||
try:
|
||||
records = await prisma.models.LlmModel.prisma().find_many(
|
||||
include={
|
||||
"Provider": True,
|
||||
"Costs": True,
|
||||
"Creator": True,
|
||||
}
|
||||
)
|
||||
logger.debug("Found %d LLM model records in database", len(records))
|
||||
except Exception as exc:
|
||||
logger.error(
|
||||
"Failed to refresh LLM registry from DB: %s", exc, exc_info=True
|
||||
)
|
||||
return
|
||||
|
||||
dynamic: dict[str, RegistryModel] = {}
|
||||
for record in records:
|
||||
provider_name = (
|
||||
record.Provider.name if record.Provider else record.providerId
|
||||
)
|
||||
provider_display_name = (
|
||||
record.Provider.displayName if record.Provider else record.providerId
|
||||
)
|
||||
# Creator name: prefer Creator.name, fallback to provider display name
|
||||
creator_name = (
|
||||
record.Creator.name if record.Creator else provider_display_name
|
||||
)
|
||||
# Price tier: default to 1 (cheapest) if not set
|
||||
price_tier = getattr(record, "priceTier", 1) or 1
|
||||
# Clamp to valid range 1-3
|
||||
price_tier = max(1, min(3, price_tier))
|
||||
|
||||
metadata = ModelMetadata(
|
||||
provider=provider_name,
|
||||
context_window=record.contextWindow,
|
||||
max_output_tokens=record.maxOutputTokens,
|
||||
display_name=record.displayName,
|
||||
provider_name=provider_display_name,
|
||||
creator_name=creator_name,
|
||||
price_tier=price_tier, # type: ignore[arg-type]
|
||||
)
|
||||
costs = tuple(
|
||||
RegistryModelCost(
|
||||
credit_cost=cost.creditCost,
|
||||
credential_provider=cost.credentialProvider,
|
||||
credential_id=cost.credentialId,
|
||||
credential_type=cost.credentialType,
|
||||
currency=cost.currency,
|
||||
metadata=_json_to_dict(cost.metadata),
|
||||
)
|
||||
for cost in (record.Costs or [])
|
||||
)
|
||||
|
||||
# Map creator if present
|
||||
creator = None
|
||||
if record.Creator:
|
||||
creator = RegistryModelCreator(
|
||||
id=record.Creator.id,
|
||||
name=record.Creator.name,
|
||||
display_name=record.Creator.displayName,
|
||||
description=record.Creator.description,
|
||||
website_url=record.Creator.websiteUrl,
|
||||
logo_url=record.Creator.logoUrl,
|
||||
)
|
||||
|
||||
dynamic[record.slug] = RegistryModel(
|
||||
slug=record.slug,
|
||||
display_name=record.displayName,
|
||||
description=record.description,
|
||||
metadata=metadata,
|
||||
capabilities=_json_to_dict(record.capabilities),
|
||||
extra_metadata=_json_to_dict(record.metadata),
|
||||
provider_display_name=(
|
||||
record.Provider.displayName
|
||||
if record.Provider
|
||||
else record.providerId
|
||||
),
|
||||
is_enabled=record.isEnabled,
|
||||
is_recommended=record.isRecommended,
|
||||
costs=costs,
|
||||
creator=creator,
|
||||
)
|
||||
|
||||
# Atomic swap - build new structures then replace references
|
||||
# This ensures readers never see partially updated state
|
||||
global _dynamic_models
|
||||
_dynamic_models = dynamic
|
||||
_refresh_cached_schema()
|
||||
logger.info(
|
||||
"LLM registry refreshed with %s dynamic models (enabled: %s, disabled: %s)",
|
||||
len(dynamic),
|
||||
sum(1 for m in dynamic.values() if m.is_enabled),
|
||||
sum(1 for m in dynamic.values() if not m.is_enabled),
|
||||
)
|
||||
|
||||
|
||||
def _refresh_cached_schema() -> None:
|
||||
"""Refresh cached schema options and discriminator mapping."""
|
||||
global _schema_options, _discriminator_mapping
|
||||
|
||||
# Build new structures
|
||||
new_options = _build_schema_options()
|
||||
new_mapping = {
|
||||
slug: entry.metadata.provider for slug, entry in _dynamic_models.items()
|
||||
}
|
||||
for slug, metadata in _static_metadata.items():
|
||||
new_mapping.setdefault(slug, metadata.provider)
|
||||
|
||||
# Atomic swap - replace references to ensure readers see consistent state
|
||||
_schema_options = new_options
|
||||
_discriminator_mapping = new_mapping
|
||||
|
||||
|
||||
def get_llm_model_metadata(slug: str) -> ModelMetadata | None:
|
||||
"""Get model metadata by slug. Checks dynamic models first, then static metadata."""
|
||||
if slug in _dynamic_models:
|
||||
return _dynamic_models[slug].metadata
|
||||
return _static_metadata.get(slug)
|
||||
|
||||
|
||||
def get_llm_model_cost(slug: str) -> tuple[RegistryModelCost, ...]:
|
||||
"""Get model cost configuration by slug."""
|
||||
if slug in _dynamic_models:
|
||||
return _dynamic_models[slug].costs
|
||||
cost_value = _static_costs.get(slug)
|
||||
if cost_value is None:
|
||||
return tuple()
|
||||
return (
|
||||
RegistryModelCost(
|
||||
credit_cost=cost_value,
|
||||
credential_provider="static",
|
||||
credential_id=None,
|
||||
credential_type=None,
|
||||
currency=None,
|
||||
metadata={},
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def get_llm_model_schema_options() -> list[dict[str, str]]:
|
||||
"""
|
||||
Get schema options for LLM model selection dropdown.
|
||||
|
||||
Returns a copy of cached schema options that are refreshed when the registry is
|
||||
updated via refresh_llm_registry() (called on startup and via Redis pub/sub).
|
||||
"""
|
||||
# Return a copy to prevent external mutation
|
||||
return list(_schema_options)
|
||||
|
||||
|
||||
def get_llm_discriminator_mapping() -> dict[str, str]:
|
||||
"""
|
||||
Get discriminator mapping for LLM models.
|
||||
|
||||
Returns a copy of cached discriminator mapping that is refreshed when the registry
|
||||
is updated via refresh_llm_registry() (called on startup and via Redis pub/sub).
|
||||
"""
|
||||
# Return a copy to prevent external mutation
|
||||
return dict(_discriminator_mapping)
|
||||
|
||||
|
||||
def get_dynamic_model_slugs() -> set[str]:
|
||||
"""Get all dynamic model slugs from the registry."""
|
||||
return set(_dynamic_models.keys())
|
||||
|
||||
|
||||
def get_all_model_slugs_for_validation() -> set[str]:
|
||||
"""
|
||||
Get ALL model slugs (both enabled and disabled) for validation purposes.
|
||||
|
||||
This is used for JSON schema enum validation - we need to accept any known
|
||||
model value (even disabled ones) so that existing graphs don't fail validation.
|
||||
The actual fallback/enforcement happens at runtime in llm_call().
|
||||
"""
|
||||
all_slugs = set(_dynamic_models.keys())
|
||||
all_slugs.update(_static_metadata.keys())
|
||||
return all_slugs
|
||||
|
||||
|
||||
def iter_dynamic_models() -> Iterable[RegistryModel]:
|
||||
"""Iterate over all dynamic models in the registry."""
|
||||
return tuple(_dynamic_models.values())
|
||||
|
||||
|
||||
def get_fallback_model_for_disabled(disabled_model_slug: str) -> RegistryModel | None:
|
||||
"""
|
||||
Find a fallback model when the requested model is disabled.
|
||||
|
||||
Looks for an enabled model from the same provider. Prefers models with
|
||||
similar names or capabilities if possible.
|
||||
|
||||
Args:
|
||||
disabled_model_slug: The slug of the disabled model
|
||||
|
||||
Returns:
|
||||
An enabled RegistryModel from the same provider, or None if no fallback found
|
||||
"""
|
||||
disabled_model = _dynamic_models.get(disabled_model_slug)
|
||||
if not disabled_model:
|
||||
return None
|
||||
|
||||
provider = disabled_model.metadata.provider
|
||||
|
||||
# Find all enabled models from the same provider
|
||||
candidates = [
|
||||
model
|
||||
for model in _dynamic_models.values()
|
||||
if model.is_enabled and model.metadata.provider == provider
|
||||
]
|
||||
|
||||
if not candidates:
|
||||
return None
|
||||
|
||||
# Sort by: prefer models with similar context window, then by name
|
||||
candidates.sort(
|
||||
key=lambda m: (
|
||||
abs(m.metadata.context_window - disabled_model.metadata.context_window),
|
||||
m.display_name.lower(),
|
||||
)
|
||||
)
|
||||
|
||||
return candidates[0]
|
||||
|
||||
|
||||
def is_model_enabled(model_slug: str) -> bool:
|
||||
"""Check if a model is enabled in the registry."""
|
||||
model = _dynamic_models.get(model_slug)
|
||||
if not model:
|
||||
# Model not in registry - assume it's a static/legacy model and allow it
|
||||
return True
|
||||
return model.is_enabled
|
||||
|
||||
|
||||
def get_model_info(model_slug: str) -> RegistryModel | None:
|
||||
"""Get model info from the registry."""
|
||||
return _dynamic_models.get(model_slug)
|
||||
|
||||
|
||||
def get_default_model_slug() -> str | None:
|
||||
"""
|
||||
Get the default model slug to use for block defaults.
|
||||
|
||||
Returns the recommended model if set (configured via admin UI),
|
||||
otherwise returns the first enabled model alphabetically.
|
||||
Returns None if no models are available or enabled.
|
||||
"""
|
||||
# Return the recommended model if one is set and enabled
|
||||
for model in _dynamic_models.values():
|
||||
if model.is_recommended and model.is_enabled:
|
||||
return model.slug
|
||||
|
||||
# No recommended model set - find first enabled model alphabetically
|
||||
for model in sorted(_dynamic_models.values(), key=lambda m: m.display_name.lower()):
|
||||
if model.is_enabled:
|
||||
logger.warning(
|
||||
"No recommended model set, using '%s' as default",
|
||||
model.slug,
|
||||
)
|
||||
return model.slug
|
||||
|
||||
# No enabled models available
|
||||
if _dynamic_models:
|
||||
logger.error(
|
||||
"No enabled models found in registry (%d models registered but all disabled)",
|
||||
len(_dynamic_models),
|
||||
)
|
||||
else:
|
||||
logger.error("No models registered in LLM registry")
|
||||
|
||||
return None
|
||||
@@ -1,130 +0,0 @@
|
||||
"""
|
||||
Helper utilities for LLM registry integration with block schemas.
|
||||
|
||||
This module handles the dynamic injection of discriminator mappings
|
||||
and model options from the LLM registry into block schemas.
|
||||
"""
|
||||
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from backend.data.llm_registry.registry import (
|
||||
get_all_model_slugs_for_validation,
|
||||
get_default_model_slug,
|
||||
get_llm_discriminator_mapping,
|
||||
get_llm_model_schema_options,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def is_llm_model_field(field_name: str, field_info: Any) -> bool:
|
||||
"""
|
||||
Check if a field is an LLM model selection field.
|
||||
|
||||
Returns True if the field has 'options' in json_schema_extra
|
||||
(set by llm_model_schema_extra() in blocks/llm.py).
|
||||
"""
|
||||
if not hasattr(field_info, "json_schema_extra"):
|
||||
return False
|
||||
|
||||
extra = field_info.json_schema_extra
|
||||
if isinstance(extra, dict):
|
||||
return "options" in extra
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def refresh_llm_model_options(field_schema: dict[str, Any]) -> None:
|
||||
"""
|
||||
Refresh LLM model options from the registry.
|
||||
|
||||
Updates 'options' (for frontend dropdown) to show only enabled models,
|
||||
but keeps the 'enum' (for validation) inclusive of ALL known models.
|
||||
|
||||
This is important because:
|
||||
- Options: What users see in the dropdown (enabled models only)
|
||||
- Enum: What values pass validation (all known models, including disabled)
|
||||
|
||||
Existing graphs may have disabled models selected - they should pass validation
|
||||
and the fallback logic in llm_call() will handle using an alternative model.
|
||||
"""
|
||||
fresh_options = get_llm_model_schema_options()
|
||||
if not fresh_options:
|
||||
return
|
||||
|
||||
# Update options array (UI dropdown) - only enabled models
|
||||
if "options" in field_schema:
|
||||
field_schema["options"] = fresh_options
|
||||
|
||||
all_known_slugs = get_all_model_slugs_for_validation()
|
||||
if all_known_slugs and "enum" in field_schema:
|
||||
existing_enum = set(field_schema.get("enum", []))
|
||||
combined_enum = existing_enum | all_known_slugs
|
||||
field_schema["enum"] = sorted(combined_enum)
|
||||
|
||||
# Set the default value from the registry (gpt-4o if available, else first enabled)
|
||||
# This ensures new blocks have a sensible default pre-selected
|
||||
default_slug = get_default_model_slug()
|
||||
if default_slug:
|
||||
field_schema["default"] = default_slug
|
||||
|
||||
|
||||
def refresh_llm_discriminator_mapping(field_schema: dict[str, Any]) -> None:
|
||||
"""
|
||||
Refresh discriminator_mapping for fields that use model-based discrimination.
|
||||
|
||||
The discriminator is already set when AICredentialsField() creates the field.
|
||||
We only need to refresh the mapping when models are added/removed.
|
||||
"""
|
||||
if field_schema.get("discriminator") != "model":
|
||||
return
|
||||
|
||||
# Always refresh the mapping to get latest models
|
||||
fresh_mapping = get_llm_discriminator_mapping()
|
||||
if fresh_mapping is not None:
|
||||
field_schema["discriminator_mapping"] = fresh_mapping
|
||||
|
||||
|
||||
def update_schema_with_llm_registry(
|
||||
schema: dict[str, Any], model_class: type | None = None
|
||||
) -> None:
|
||||
"""
|
||||
Update a JSON schema with current LLM registry data.
|
||||
|
||||
Refreshes:
|
||||
1. Model options for LLM model selection fields (dropdown choices)
|
||||
2. Discriminator mappings for credentials fields (model → provider)
|
||||
|
||||
Args:
|
||||
schema: The JSON schema to update (mutated in-place)
|
||||
model_class: The Pydantic model class (optional, for field introspection)
|
||||
"""
|
||||
properties = schema.get("properties", {})
|
||||
|
||||
for field_name, field_schema in properties.items():
|
||||
if not isinstance(field_schema, dict):
|
||||
continue
|
||||
|
||||
# Refresh model options for LLM model fields
|
||||
if model_class and hasattr(model_class, "model_fields"):
|
||||
field_info = model_class.model_fields.get(field_name)
|
||||
if field_info and is_llm_model_field(field_name, field_info):
|
||||
try:
|
||||
refresh_llm_model_options(field_schema)
|
||||
except Exception as exc:
|
||||
logger.warning(
|
||||
"Failed to refresh LLM options for field %s: %s",
|
||||
field_name,
|
||||
exc,
|
||||
)
|
||||
|
||||
# Refresh discriminator mapping for fields that use model discrimination
|
||||
try:
|
||||
refresh_llm_discriminator_mapping(field_schema)
|
||||
except Exception as exc:
|
||||
logger.warning(
|
||||
"Failed to refresh discriminator mapping for field %s: %s",
|
||||
field_name,
|
||||
exc,
|
||||
)
|
||||
@@ -40,7 +40,6 @@ from pydantic_core import (
|
||||
)
|
||||
from typing_extensions import TypedDict
|
||||
|
||||
from backend.data.llm_registry import update_schema_with_llm_registry
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.json import loads as json_loads
|
||||
from backend.util.settings import Secrets
|
||||
@@ -545,9 +544,7 @@ class CredentialsMetaInput(BaseModel, Generic[CP, CT]):
|
||||
else:
|
||||
schema["credentials_provider"] = allowed_providers
|
||||
schema["credentials_types"] = model_class.allowed_cred_types()
|
||||
|
||||
# Ensure LLM discriminators are populated (delegates to shared helper)
|
||||
update_schema_with_llm_registry(schema, model_class)
|
||||
# Do not return anything, just mutate schema in place
|
||||
|
||||
model_config = ConfigDict(
|
||||
json_schema_extra=_add_json_schema_extra, # type: ignore
|
||||
@@ -669,10 +666,16 @@ class CredentialsFieldInfo(BaseModel, Generic[CP, CT]):
|
||||
if not (self.discriminator and self.discriminator_mapping):
|
||||
return self
|
||||
|
||||
try:
|
||||
provider = self.discriminator_mapping[discriminator_value]
|
||||
except KeyError:
|
||||
raise ValueError(
|
||||
f"Model '{discriminator_value}' is not supported. "
|
||||
"It may have been deprecated. Please update your agent configuration."
|
||||
)
|
||||
|
||||
return CredentialsFieldInfo(
|
||||
credentials_provider=frozenset(
|
||||
[self.discriminator_mapping[discriminator_value]]
|
||||
),
|
||||
credentials_provider=frozenset([provider]),
|
||||
credentials_types=self.supported_types,
|
||||
credentials_scopes=self.required_scopes,
|
||||
discriminator=self.discriminator,
|
||||
@@ -696,20 +699,16 @@ def CredentialsField(
|
||||
This is enforced by the `BlockSchema` base class.
|
||||
"""
|
||||
|
||||
# Build field_schema_extra - always include discriminator and mapping if discriminator is set
|
||||
field_schema_extra: dict[str, Any] = {}
|
||||
|
||||
# Always include discriminator if provided
|
||||
if discriminator is not None:
|
||||
field_schema_extra["discriminator"] = discriminator
|
||||
# Always include discriminator_mapping when discriminator is set (even if empty initially)
|
||||
field_schema_extra["discriminator_mapping"] = discriminator_mapping or {}
|
||||
|
||||
# Include other optional fields (only if not None)
|
||||
if required_scopes:
|
||||
field_schema_extra["credentials_scopes"] = list(required_scopes)
|
||||
if discriminator_values:
|
||||
field_schema_extra["discriminator_values"] = discriminator_values
|
||||
field_schema_extra = {
|
||||
k: v
|
||||
for k, v in {
|
||||
"credentials_scopes": list(required_scopes) or None,
|
||||
"discriminator": discriminator,
|
||||
"discriminator_mapping": discriminator_mapping,
|
||||
"discriminator_values": discriminator_values,
|
||||
}.items()
|
||||
if v is not None
|
||||
}
|
||||
|
||||
# Merge any json_schema_extra passed in kwargs
|
||||
if "json_schema_extra" in kwargs:
|
||||
|
||||
@@ -41,6 +41,7 @@ FrontendOnboardingStep = Literal[
|
||||
OnboardingStep.AGENT_NEW_RUN,
|
||||
OnboardingStep.AGENT_INPUT,
|
||||
OnboardingStep.CONGRATS,
|
||||
OnboardingStep.VISIT_COPILOT,
|
||||
OnboardingStep.MARKETPLACE_VISIT,
|
||||
OnboardingStep.BUILDER_OPEN,
|
||||
]
|
||||
@@ -122,6 +123,9 @@ async def update_user_onboarding(user_id: str, data: UserOnboardingUpdate):
|
||||
async def _reward_user(user_id: str, onboarding: UserOnboarding, step: OnboardingStep):
|
||||
reward = 0
|
||||
match step:
|
||||
# Welcome bonus for visiting copilot ($5 = 500 credits)
|
||||
case OnboardingStep.VISIT_COPILOT:
|
||||
reward = 500
|
||||
# Reward user when they clicked New Run during onboarding
|
||||
# This is because they need credits before scheduling a run (next step)
|
||||
# This is seen as a reward for the GET_RESULTS step in the wallet
|
||||
|
||||
276
autogpt_platform/backend/backend/data/workspace.py
Normal file
276
autogpt_platform/backend/backend/data/workspace.py
Normal file
@@ -0,0 +1,276 @@
|
||||
"""
|
||||
Database CRUD operations for User Workspace.
|
||||
|
||||
This module provides functions for managing user workspaces and workspace files.
|
||||
"""
|
||||
|
||||
import logging
|
||||
from datetime import datetime, timezone
|
||||
from typing import Optional
|
||||
|
||||
from prisma.models import UserWorkspace, UserWorkspaceFile
|
||||
from prisma.types import UserWorkspaceFileWhereInput
|
||||
|
||||
from backend.util.json import SafeJson
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
async def get_or_create_workspace(user_id: str) -> UserWorkspace:
|
||||
"""
|
||||
Get user's workspace, creating one if it doesn't exist.
|
||||
|
||||
Uses upsert to handle race conditions when multiple concurrent requests
|
||||
attempt to create a workspace for the same user.
|
||||
|
||||
Args:
|
||||
user_id: The user's ID
|
||||
|
||||
Returns:
|
||||
UserWorkspace instance
|
||||
"""
|
||||
workspace = await UserWorkspace.prisma().upsert(
|
||||
where={"userId": user_id},
|
||||
data={
|
||||
"create": {"userId": user_id},
|
||||
"update": {}, # No updates needed if exists
|
||||
},
|
||||
)
|
||||
|
||||
return workspace
|
||||
|
||||
|
||||
async def get_workspace(user_id: str) -> Optional[UserWorkspace]:
|
||||
"""
|
||||
Get user's workspace if it exists.
|
||||
|
||||
Args:
|
||||
user_id: The user's ID
|
||||
|
||||
Returns:
|
||||
UserWorkspace instance or None
|
||||
"""
|
||||
return await UserWorkspace.prisma().find_unique(where={"userId": user_id})
|
||||
|
||||
|
||||
async def create_workspace_file(
|
||||
workspace_id: str,
|
||||
file_id: str,
|
||||
name: str,
|
||||
path: str,
|
||||
storage_path: str,
|
||||
mime_type: str,
|
||||
size_bytes: int,
|
||||
checksum: Optional[str] = None,
|
||||
metadata: Optional[dict] = None,
|
||||
) -> UserWorkspaceFile:
|
||||
"""
|
||||
Create a new workspace file record.
|
||||
|
||||
Args:
|
||||
workspace_id: The workspace ID
|
||||
file_id: The file ID (same as used in storage path for consistency)
|
||||
name: User-visible filename
|
||||
path: Virtual path (e.g., "/documents/report.pdf")
|
||||
storage_path: Actual storage path (GCS or local)
|
||||
mime_type: MIME type of the file
|
||||
size_bytes: File size in bytes
|
||||
checksum: Optional SHA256 checksum
|
||||
metadata: Optional additional metadata
|
||||
|
||||
Returns:
|
||||
Created UserWorkspaceFile instance
|
||||
"""
|
||||
# Normalize path to start with /
|
||||
if not path.startswith("/"):
|
||||
path = f"/{path}"
|
||||
|
||||
file = await UserWorkspaceFile.prisma().create(
|
||||
data={
|
||||
"id": file_id,
|
||||
"workspaceId": workspace_id,
|
||||
"name": name,
|
||||
"path": path,
|
||||
"storagePath": storage_path,
|
||||
"mimeType": mime_type,
|
||||
"sizeBytes": size_bytes,
|
||||
"checksum": checksum,
|
||||
"metadata": SafeJson(metadata or {}),
|
||||
}
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"Created workspace file {file.id} at path {path} "
|
||||
f"in workspace {workspace_id}"
|
||||
)
|
||||
return file
|
||||
|
||||
|
||||
async def get_workspace_file(
|
||||
file_id: str,
|
||||
workspace_id: Optional[str] = None,
|
||||
) -> Optional[UserWorkspaceFile]:
|
||||
"""
|
||||
Get a workspace file by ID.
|
||||
|
||||
Args:
|
||||
file_id: The file ID
|
||||
workspace_id: Optional workspace ID for validation
|
||||
|
||||
Returns:
|
||||
UserWorkspaceFile instance or None
|
||||
"""
|
||||
where_clause: dict = {"id": file_id, "isDeleted": False}
|
||||
if workspace_id:
|
||||
where_clause["workspaceId"] = workspace_id
|
||||
|
||||
return await UserWorkspaceFile.prisma().find_first(where=where_clause)
|
||||
|
||||
|
||||
async def get_workspace_file_by_path(
|
||||
workspace_id: str,
|
||||
path: str,
|
||||
) -> Optional[UserWorkspaceFile]:
|
||||
"""
|
||||
Get a workspace file by its virtual path.
|
||||
|
||||
Args:
|
||||
workspace_id: The workspace ID
|
||||
path: Virtual path
|
||||
|
||||
Returns:
|
||||
UserWorkspaceFile instance or None
|
||||
"""
|
||||
# Normalize path
|
||||
if not path.startswith("/"):
|
||||
path = f"/{path}"
|
||||
|
||||
return await UserWorkspaceFile.prisma().find_first(
|
||||
where={
|
||||
"workspaceId": workspace_id,
|
||||
"path": path,
|
||||
"isDeleted": False,
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
async def list_workspace_files(
|
||||
workspace_id: str,
|
||||
path_prefix: Optional[str] = None,
|
||||
include_deleted: bool = False,
|
||||
limit: Optional[int] = None,
|
||||
offset: int = 0,
|
||||
) -> list[UserWorkspaceFile]:
|
||||
"""
|
||||
List files in a workspace.
|
||||
|
||||
Args:
|
||||
workspace_id: The workspace ID
|
||||
path_prefix: Optional path prefix to filter (e.g., "/documents/")
|
||||
include_deleted: Whether to include soft-deleted files
|
||||
limit: Maximum number of files to return
|
||||
offset: Number of files to skip
|
||||
|
||||
Returns:
|
||||
List of UserWorkspaceFile instances
|
||||
"""
|
||||
where_clause: UserWorkspaceFileWhereInput = {"workspaceId": workspace_id}
|
||||
|
||||
if not include_deleted:
|
||||
where_clause["isDeleted"] = False
|
||||
|
||||
if path_prefix:
|
||||
# Normalize prefix
|
||||
if not path_prefix.startswith("/"):
|
||||
path_prefix = f"/{path_prefix}"
|
||||
where_clause["path"] = {"startswith": path_prefix}
|
||||
|
||||
return await UserWorkspaceFile.prisma().find_many(
|
||||
where=where_clause,
|
||||
order={"createdAt": "desc"},
|
||||
take=limit,
|
||||
skip=offset,
|
||||
)
|
||||
|
||||
|
||||
async def count_workspace_files(
|
||||
workspace_id: str,
|
||||
path_prefix: Optional[str] = None,
|
||||
include_deleted: bool = False,
|
||||
) -> int:
|
||||
"""
|
||||
Count files in a workspace.
|
||||
|
||||
Args:
|
||||
workspace_id: The workspace ID
|
||||
path_prefix: Optional path prefix to filter (e.g., "/sessions/abc123/")
|
||||
include_deleted: Whether to include soft-deleted files
|
||||
|
||||
Returns:
|
||||
Number of files
|
||||
"""
|
||||
where_clause: dict = {"workspaceId": workspace_id}
|
||||
if not include_deleted:
|
||||
where_clause["isDeleted"] = False
|
||||
|
||||
if path_prefix:
|
||||
# Normalize prefix
|
||||
if not path_prefix.startswith("/"):
|
||||
path_prefix = f"/{path_prefix}"
|
||||
where_clause["path"] = {"startswith": path_prefix}
|
||||
|
||||
return await UserWorkspaceFile.prisma().count(where=where_clause)
|
||||
|
||||
|
||||
async def soft_delete_workspace_file(
|
||||
file_id: str,
|
||||
workspace_id: Optional[str] = None,
|
||||
) -> Optional[UserWorkspaceFile]:
|
||||
"""
|
||||
Soft-delete a workspace file.
|
||||
|
||||
The path is modified to include a deletion timestamp to free up the original
|
||||
path for new files while preserving the record for potential recovery.
|
||||
|
||||
Args:
|
||||
file_id: The file ID
|
||||
workspace_id: Optional workspace ID for validation
|
||||
|
||||
Returns:
|
||||
Updated UserWorkspaceFile instance or None if not found
|
||||
"""
|
||||
# First verify the file exists and belongs to workspace
|
||||
file = await get_workspace_file(file_id, workspace_id)
|
||||
if file is None:
|
||||
return None
|
||||
|
||||
deleted_at = datetime.now(timezone.utc)
|
||||
# Modify path to free up the unique constraint for new files at original path
|
||||
# Format: {original_path}__deleted__{timestamp}
|
||||
deleted_path = f"{file.path}__deleted__{int(deleted_at.timestamp())}"
|
||||
|
||||
updated = await UserWorkspaceFile.prisma().update(
|
||||
where={"id": file_id},
|
||||
data={
|
||||
"isDeleted": True,
|
||||
"deletedAt": deleted_at,
|
||||
"path": deleted_path,
|
||||
},
|
||||
)
|
||||
|
||||
logger.info(f"Soft-deleted workspace file {file_id}")
|
||||
return updated
|
||||
|
||||
|
||||
async def get_workspace_total_size(workspace_id: str) -> int:
|
||||
"""
|
||||
Get the total size of all files in a workspace.
|
||||
|
||||
Args:
|
||||
workspace_id: The workspace ID
|
||||
|
||||
Returns:
|
||||
Total size in bytes
|
||||
"""
|
||||
files = await list_workspace_files(workspace_id)
|
||||
return sum(file.sizeBytes for file in files)
|
||||
@@ -17,6 +17,7 @@ from backend.data.analytics import (
|
||||
get_accuracy_trends_and_alerts,
|
||||
get_marketplace_graphs_for_monitoring,
|
||||
)
|
||||
from backend.data.auth.oauth import cleanup_expired_oauth_tokens
|
||||
from backend.data.credit import UsageTransactionMetadata, get_user_credit_model
|
||||
from backend.data.execution import (
|
||||
create_graph_execution,
|
||||
@@ -219,6 +220,9 @@ class DatabaseManager(AppService):
|
||||
# Onboarding
|
||||
increment_onboarding_runs = _(increment_onboarding_runs)
|
||||
|
||||
# OAuth
|
||||
cleanup_expired_oauth_tokens = _(cleanup_expired_oauth_tokens)
|
||||
|
||||
# Store
|
||||
get_store_agents = _(get_store_agents)
|
||||
get_store_agent_details = _(get_store_agent_details)
|
||||
@@ -349,6 +353,9 @@ class DatabaseManagerAsyncClient(AppServiceClient):
|
||||
# Onboarding
|
||||
increment_onboarding_runs = d.increment_onboarding_runs
|
||||
|
||||
# OAuth
|
||||
cleanup_expired_oauth_tokens = d.cleanup_expired_oauth_tokens
|
||||
|
||||
# Store
|
||||
get_store_agents = d.get_store_agents
|
||||
get_store_agent_details = d.get_store_agent_details
|
||||
|
||||
@@ -1,66 +0,0 @@
|
||||
"""
|
||||
Helper functions for LLM registry initialization in executor context.
|
||||
|
||||
These functions handle refreshing the LLM registry when the executor starts
|
||||
and subscribing to real-time updates via Redis pub/sub.
|
||||
"""
|
||||
|
||||
import logging
|
||||
|
||||
from backend.data import db, llm_registry
|
||||
from backend.data.block import BlockSchema, initialize_blocks
|
||||
from backend.data.block_cost_config import refresh_llm_costs
|
||||
from backend.data.llm_registry import subscribe_to_registry_refresh
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
async def initialize_registry_for_executor() -> None:
|
||||
"""
|
||||
Initialize blocks and refresh LLM registry in the executor context.
|
||||
|
||||
This must run in the executor's event loop to have access to the database.
|
||||
"""
|
||||
try:
|
||||
# Connect to database if not already connected
|
||||
if not db.is_connected():
|
||||
await db.connect()
|
||||
logger.info("[GraphExecutor] Connected to database for registry refresh")
|
||||
|
||||
# Initialize blocks (internally refreshes LLM registry and costs)
|
||||
await initialize_blocks()
|
||||
logger.info("[GraphExecutor] Blocks initialized")
|
||||
except Exception as exc:
|
||||
logger.warning(
|
||||
"[GraphExecutor] Failed to refresh LLM registry on startup: %s",
|
||||
exc,
|
||||
exc_info=True,
|
||||
)
|
||||
|
||||
|
||||
async def refresh_registry_on_notification() -> None:
|
||||
"""Refresh LLM registry when notified via Redis pub/sub."""
|
||||
try:
|
||||
# Ensure DB is connected
|
||||
if not db.is_connected():
|
||||
await db.connect()
|
||||
|
||||
# Refresh registry and costs
|
||||
await llm_registry.refresh_llm_registry()
|
||||
refresh_llm_costs()
|
||||
|
||||
# Clear block schema caches so they regenerate with new model options
|
||||
BlockSchema.clear_all_schema_caches()
|
||||
|
||||
logger.info("[GraphExecutor] LLM registry refreshed from notification")
|
||||
except Exception as exc:
|
||||
logger.error(
|
||||
"[GraphExecutor] Failed to refresh LLM registry from notification: %s",
|
||||
exc,
|
||||
exc_info=True,
|
||||
)
|
||||
|
||||
|
||||
async def subscribe_to_registry_updates() -> None:
|
||||
"""Subscribe to Redis pub/sub for LLM registry refresh notifications."""
|
||||
await subscribe_to_registry_refresh(refresh_registry_on_notification)
|
||||
@@ -236,7 +236,14 @@ async def execute_node(
|
||||
input_size = len(input_data_str)
|
||||
log_metadata.debug("Executed node with input", input=input_data_str)
|
||||
|
||||
# Create node-specific execution context to avoid race conditions
|
||||
# (multiple nodes can execute concurrently and would otherwise mutate shared state)
|
||||
execution_context = execution_context.model_copy(
|
||||
update={"node_id": node_id, "node_exec_id": node_exec_id}
|
||||
)
|
||||
|
||||
# Inject extra execution arguments for the blocks via kwargs
|
||||
# Keep individual kwargs for backwards compatibility with existing blocks
|
||||
extra_exec_kwargs: dict = {
|
||||
"graph_id": graph_id,
|
||||
"graph_version": graph_version,
|
||||
@@ -702,20 +709,6 @@ class ExecutionProcessor:
|
||||
)
|
||||
self.node_execution_thread.start()
|
||||
self.node_evaluation_thread.start()
|
||||
|
||||
# Initialize LLM registry and subscribe to updates
|
||||
from backend.executor.llm_registry_init import (
|
||||
initialize_registry_for_executor,
|
||||
subscribe_to_registry_updates,
|
||||
)
|
||||
|
||||
asyncio.run_coroutine_threadsafe(
|
||||
initialize_registry_for_executor(), self.node_execution_loop
|
||||
)
|
||||
asyncio.run_coroutine_threadsafe(
|
||||
subscribe_to_registry_updates(), self.node_execution_loop
|
||||
)
|
||||
|
||||
logger.info(f"[GraphExecutor] {self.tid} started")
|
||||
|
||||
@error_logged(swallow=False)
|
||||
|
||||
@@ -24,11 +24,9 @@ from dotenv import load_dotenv
|
||||
from pydantic import BaseModel, Field, ValidationError
|
||||
from sqlalchemy import MetaData, create_engine
|
||||
|
||||
from backend.data.auth.oauth import cleanup_expired_oauth_tokens
|
||||
from backend.data.block import BlockInput
|
||||
from backend.data.execution import GraphExecutionWithNodes
|
||||
from backend.data.model import CredentialsMetaInput
|
||||
from backend.data.onboarding import increment_onboarding_runs
|
||||
from backend.executor import utils as execution_utils
|
||||
from backend.monitoring import (
|
||||
NotificationJobArgs,
|
||||
@@ -38,7 +36,11 @@ from backend.monitoring import (
|
||||
report_execution_accuracy_alerts,
|
||||
report_late_executions,
|
||||
)
|
||||
from backend.util.clients import get_database_manager_client, get_scheduler_client
|
||||
from backend.util.clients import (
|
||||
get_database_manager_async_client,
|
||||
get_database_manager_client,
|
||||
get_scheduler_client,
|
||||
)
|
||||
from backend.util.cloud_storage import cleanup_expired_files_async
|
||||
from backend.util.exceptions import (
|
||||
GraphNotFoundError,
|
||||
@@ -148,6 +150,7 @@ def execute_graph(**kwargs):
|
||||
async def _execute_graph(**kwargs):
|
||||
args = GraphExecutionJobArgs(**kwargs)
|
||||
start_time = asyncio.get_event_loop().time()
|
||||
db = get_database_manager_async_client()
|
||||
try:
|
||||
logger.info(f"Executing recurring job for graph #{args.graph_id}")
|
||||
graph_exec: GraphExecutionWithNodes = await execution_utils.add_graph_execution(
|
||||
@@ -157,7 +160,7 @@ async def _execute_graph(**kwargs):
|
||||
inputs=args.input_data,
|
||||
graph_credentials_inputs=args.input_credentials,
|
||||
)
|
||||
await increment_onboarding_runs(args.user_id)
|
||||
await db.increment_onboarding_runs(args.user_id)
|
||||
elapsed = asyncio.get_event_loop().time() - start_time
|
||||
logger.info(
|
||||
f"Graph execution started with ID {graph_exec.id} for graph {args.graph_id} "
|
||||
@@ -246,8 +249,13 @@ def cleanup_expired_files():
|
||||
|
||||
def cleanup_oauth_tokens():
|
||||
"""Clean up expired OAuth tokens from the database."""
|
||||
|
||||
# Wait for completion
|
||||
run_async(cleanup_expired_oauth_tokens())
|
||||
async def _cleanup():
|
||||
db = get_database_manager_async_client()
|
||||
return await db.cleanup_expired_oauth_tokens()
|
||||
|
||||
run_async(_cleanup())
|
||||
|
||||
|
||||
def execution_accuracy_alerts():
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user