mirror of
https://github.com/Significant-Gravitas/AutoGPT.git
synced 2026-01-29 17:08:01 -05:00
Compare commits
18 Commits
add-llm-ma
...
update-bra
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
5c008780e6 | ||
|
|
1407efcbc0 | ||
|
|
4cd5da678d | ||
|
|
b94c83aacc | ||
|
|
7668c17d9c | ||
|
|
e0dfae5732 | ||
|
|
7df867d645 | ||
|
|
d855f79874 | ||
|
|
dac99694fe | ||
|
|
0953983944 | ||
|
|
0058cd3ba6 | ||
|
|
ea035224bc | ||
|
|
62813a1ea6 | ||
|
|
67405f7eb9 | ||
|
|
171ff6e776 | ||
|
|
349b1f9c79 | ||
|
|
277b0537e9 | ||
|
|
071b3bb5cd |
@@ -29,8 +29,7 @@
|
||||
"postCreateCmd": [
|
||||
"cd autogpt_platform/autogpt_libs && poetry install",
|
||||
"cd autogpt_platform/backend && poetry install && poetry run prisma generate",
|
||||
"cd autogpt_platform/frontend && pnpm install",
|
||||
"cd docs && pip install -r requirements.txt"
|
||||
"cd autogpt_platform/frontend && pnpm install"
|
||||
],
|
||||
"terminalCommand": "code .",
|
||||
"deleteBranchWithWorktree": false
|
||||
|
||||
6
.github/copilot-instructions.md
vendored
6
.github/copilot-instructions.md
vendored
@@ -160,7 +160,7 @@ pnpm storybook # Start component development server
|
||||
|
||||
**Backend Entry Points:**
|
||||
|
||||
- `backend/backend/server/server.py` - FastAPI application setup
|
||||
- `backend/backend/api/rest_api.py` - FastAPI application setup
|
||||
- `backend/backend/data/` - Database models and user management
|
||||
- `backend/blocks/` - Agent execution blocks and logic
|
||||
|
||||
@@ -219,7 +219,7 @@ Agents are built using a visual block-based system where each block performs a s
|
||||
|
||||
### API Development
|
||||
|
||||
1. Update routes in `/backend/backend/server/routers/`
|
||||
1. Update routes in `/backend/backend/api/features/`
|
||||
2. Add/update Pydantic models in same directory
|
||||
3. Write tests alongside route files
|
||||
4. For `data/*.py` changes, validate user ID checks
|
||||
@@ -285,7 +285,7 @@ Agents are built using a visual block-based system where each block performs a s
|
||||
|
||||
### Security Guidelines
|
||||
|
||||
**Cache Protection Middleware** (`/backend/backend/server/middleware/security.py`):
|
||||
**Cache Protection Middleware** (`/backend/backend/api/middleware/security.py`):
|
||||
|
||||
- Default: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
|
||||
- Uses allow list approach for cacheable paths (static assets, health checks, public pages)
|
||||
|
||||
1
.gitignore
vendored
1
.gitignore
vendored
@@ -178,4 +178,5 @@ autogpt_platform/backend/settings.py
|
||||
*.ign.*
|
||||
.test-contents
|
||||
.claude/settings.local.json
|
||||
CLAUDE.local.md
|
||||
/autogpt_platform/backend/logs
|
||||
|
||||
24
AGENTS.md
24
AGENTS.md
@@ -16,7 +16,6 @@ See `docs/content/platform/getting-started.md` for setup instructions.
|
||||
- Format Python code with `poetry run format`.
|
||||
- Format frontend code using `pnpm format`.
|
||||
|
||||
|
||||
## Frontend guidelines:
|
||||
|
||||
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
|
||||
@@ -33,14 +32,17 @@ See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
|
||||
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
|
||||
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
|
||||
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
|
||||
|
||||
- Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component
|
||||
- Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts)
|
||||
- Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible
|
||||
- Avoid large hooks, abstract logic into `helpers.ts` files when sensible
|
||||
- Use function declarations for components, arrow functions only for callbacks
|
||||
- No barrel files or `index.ts` re-exports
|
||||
- Do not use `useCallback` or `useMemo` unless strictly needed
|
||||
- Avoid comments at all times unless the code is very complex
|
||||
- Do not use `useCallback` or `useMemo` unless asked to optimise a given function
|
||||
- Do not type hook returns, let Typescript infer as much as possible
|
||||
- Never type with `any`, if not types available use `unknown`
|
||||
|
||||
## Testing
|
||||
|
||||
@@ -49,22 +51,8 @@ See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
|
||||
|
||||
Always run the relevant linters and tests before committing.
|
||||
Use conventional commit messages for all commits (e.g. `feat(backend): add API`).
|
||||
Types:
|
||||
- feat
|
||||
- fix
|
||||
- refactor
|
||||
- ci
|
||||
- dx (developer experience)
|
||||
Scopes:
|
||||
- platform
|
||||
- platform/library
|
||||
- platform/marketplace
|
||||
- backend
|
||||
- backend/executor
|
||||
- frontend
|
||||
- frontend/library
|
||||
- frontend/marketplace
|
||||
- blocks
|
||||
Types: - feat - fix - refactor - ci - dx (developer experience)
|
||||
Scopes: - platform - platform/library - platform/marketplace - backend - backend/executor - frontend - frontend/library - frontend/marketplace - blocks
|
||||
|
||||
## Pull requests
|
||||
|
||||
|
||||
@@ -6,152 +6,30 @@ This file provides guidance to Claude Code (claude.ai/code) when working with co
|
||||
|
||||
AutoGPT Platform is a monorepo containing:
|
||||
|
||||
- **Backend** (`/backend`): Python FastAPI server with async support
|
||||
- **Frontend** (`/frontend`): Next.js React application
|
||||
- **Shared Libraries** (`/autogpt_libs`): Common Python utilities
|
||||
- **Backend** (`backend`): Python FastAPI server with async support
|
||||
- **Frontend** (`frontend`): Next.js React application
|
||||
- **Shared Libraries** (`autogpt_libs`): Common Python utilities
|
||||
|
||||
## Essential Commands
|
||||
## Component Documentation
|
||||
|
||||
### Backend Development
|
||||
- **Backend**: See @backend/CLAUDE.md for backend-specific commands, architecture, and development tasks
|
||||
- **Frontend**: See @frontend/CLAUDE.md for frontend-specific commands, architecture, and development patterns
|
||||
|
||||
```bash
|
||||
# Install dependencies
|
||||
cd backend && poetry install
|
||||
|
||||
# Run database migrations
|
||||
poetry run prisma migrate dev
|
||||
|
||||
# Start all services (database, redis, rabbitmq, clamav)
|
||||
docker compose up -d
|
||||
|
||||
# Run the backend server
|
||||
poetry run serve
|
||||
|
||||
# Run tests
|
||||
poetry run test
|
||||
|
||||
# Run specific test
|
||||
poetry run pytest path/to/test_file.py::test_function_name
|
||||
|
||||
# Run block tests (tests that validate all blocks work correctly)
|
||||
poetry run pytest backend/blocks/test/test_block.py -xvs
|
||||
|
||||
# Run tests for a specific block (e.g., GetCurrentTimeBlock)
|
||||
poetry run pytest 'backend/blocks/test/test_block.py::test_available_blocks[GetCurrentTimeBlock]' -xvs
|
||||
|
||||
# Lint and format
|
||||
# prefer format if you want to just "fix" it and only get the errors that can't be autofixed
|
||||
poetry run format # Black + isort
|
||||
poetry run lint # ruff
|
||||
```
|
||||
|
||||
More details can be found in TESTING.md
|
||||
|
||||
#### Creating/Updating Snapshots
|
||||
|
||||
When you first write a test or when the expected output changes:
|
||||
|
||||
```bash
|
||||
poetry run pytest path/to/test.py --snapshot-update
|
||||
```
|
||||
|
||||
⚠️ **Important**: Always review snapshot changes before committing! Use `git diff` to verify the changes are expected.
|
||||
|
||||
### Frontend Development
|
||||
|
||||
```bash
|
||||
# Install dependencies
|
||||
cd frontend && pnpm i
|
||||
|
||||
# Generate API client from OpenAPI spec
|
||||
pnpm generate:api
|
||||
|
||||
# Start development server
|
||||
pnpm dev
|
||||
|
||||
# Run E2E tests
|
||||
pnpm test
|
||||
|
||||
# Run Storybook for component development
|
||||
pnpm storybook
|
||||
|
||||
# Build production
|
||||
pnpm build
|
||||
|
||||
# Format and lint
|
||||
pnpm format
|
||||
|
||||
# Type checking
|
||||
pnpm types
|
||||
```
|
||||
|
||||
**📖 Complete Guide**: See `/frontend/CONTRIBUTING.md` and `/frontend/.cursorrules` for comprehensive frontend patterns.
|
||||
|
||||
**Key Frontend Conventions:**
|
||||
|
||||
- Separate render logic from data/behavior in components
|
||||
- Use generated API hooks from `@/app/api/__generated__/endpoints/`
|
||||
- Use function declarations (not arrow functions) for components/handlers
|
||||
- Use design system components from `src/components/` (atoms, molecules, organisms)
|
||||
- Only use Phosphor Icons
|
||||
- Never use `src/components/__legacy__/*` or deprecated `BackendAPI`
|
||||
|
||||
## Architecture Overview
|
||||
|
||||
### Backend Architecture
|
||||
|
||||
- **API Layer**: FastAPI with REST and WebSocket endpoints
|
||||
- **Database**: PostgreSQL with Prisma ORM, includes pgvector for embeddings
|
||||
- **Queue System**: RabbitMQ for async task processing
|
||||
- **Execution Engine**: Separate executor service processes agent workflows
|
||||
- **Authentication**: JWT-based with Supabase integration
|
||||
- **Security**: Cache protection middleware prevents sensitive data caching in browsers/proxies
|
||||
|
||||
### Frontend Architecture
|
||||
|
||||
- **Framework**: Next.js 15 App Router (client-first approach)
|
||||
- **Data Fetching**: Type-safe generated API hooks via Orval + React Query
|
||||
- **State Management**: React Query for server state, co-located UI state in components/hooks
|
||||
- **Component Structure**: Separate render logic (`.tsx`) from business logic (`use*.ts` hooks)
|
||||
- **Workflow Builder**: Visual graph editor using @xyflow/react
|
||||
- **UI Components**: shadcn/ui (Radix UI primitives) with Tailwind CSS styling
|
||||
- **Icons**: Phosphor Icons only
|
||||
- **Feature Flags**: LaunchDarkly integration
|
||||
- **Error Handling**: ErrorCard for render errors, toast for mutations, Sentry for exceptions
|
||||
- **Testing**: Playwright for E2E, Storybook for component development
|
||||
|
||||
### Key Concepts
|
||||
## Key Concepts
|
||||
|
||||
1. **Agent Graphs**: Workflow definitions stored as JSON, executed by the backend
|
||||
2. **Blocks**: Reusable components in `/backend/blocks/` that perform specific tasks
|
||||
2. **Blocks**: Reusable components in `backend/backend/blocks/` that perform specific tasks
|
||||
3. **Integrations**: OAuth and API connections stored per user
|
||||
4. **Store**: Marketplace for sharing agent templates
|
||||
5. **Virus Scanning**: ClamAV integration for file upload security
|
||||
|
||||
### Testing Approach
|
||||
|
||||
- Backend uses pytest with snapshot testing for API responses
|
||||
- Test files are colocated with source files (`*_test.py`)
|
||||
- Frontend uses Playwright for E2E tests
|
||||
- Component testing via Storybook
|
||||
|
||||
### Database Schema
|
||||
|
||||
Key models (defined in `/backend/schema.prisma`):
|
||||
|
||||
- `User`: Authentication and profile data
|
||||
- `AgentGraph`: Workflow definitions with version control
|
||||
- `AgentGraphExecution`: Execution history and results
|
||||
- `AgentNode`: Individual nodes in a workflow
|
||||
- `StoreListing`: Marketplace listings for sharing agents
|
||||
|
||||
### Environment Configuration
|
||||
|
||||
#### Configuration Files
|
||||
|
||||
- **Backend**: `/backend/.env.default` (defaults) → `/backend/.env` (user overrides)
|
||||
- **Frontend**: `/frontend/.env.default` (defaults) → `/frontend/.env` (user overrides)
|
||||
- **Platform**: `/.env.default` (Supabase/shared defaults) → `/.env` (user overrides)
|
||||
- **Backend**: `backend/.env.default` (defaults) → `backend/.env` (user overrides)
|
||||
- **Frontend**: `frontend/.env.default` (defaults) → `frontend/.env` (user overrides)
|
||||
- **Platform**: `.env.default` (Supabase/shared defaults) → `.env` (user overrides)
|
||||
|
||||
#### Docker Environment Loading Order
|
||||
|
||||
@@ -167,83 +45,12 @@ Key models (defined in `/backend/schema.prisma`):
|
||||
- Backend/Frontend services use YAML anchors for consistent configuration
|
||||
- Supabase services (`db/docker/docker-compose.yml`) follow the same pattern
|
||||
|
||||
### Common Development Tasks
|
||||
|
||||
**Adding a new block:**
|
||||
|
||||
Follow the comprehensive [Block SDK Guide](../../../docs/content/platform/block-sdk-guide.md) which covers:
|
||||
|
||||
- Provider configuration with `ProviderBuilder`
|
||||
- Block schema definition
|
||||
- Authentication (API keys, OAuth, webhooks)
|
||||
- Testing and validation
|
||||
- File organization
|
||||
|
||||
Quick steps:
|
||||
|
||||
1. Create new file in `/backend/backend/blocks/`
|
||||
2. Configure provider using `ProviderBuilder` in `_config.py`
|
||||
3. Inherit from `Block` base class
|
||||
4. Define input/output schemas using `BlockSchema`
|
||||
5. Implement async `run` method
|
||||
6. Generate unique block ID using `uuid.uuid4()`
|
||||
7. Test with `poetry run pytest backend/blocks/test/test_block.py`
|
||||
|
||||
Note: when making many new blocks analyze the interfaces for each of these blocks and picture if they would go well together in a graph based editor or would they struggle to connect productively?
|
||||
ex: do the inputs and outputs tie well together?
|
||||
|
||||
If you get any pushback or hit complex block conditions check the new_blocks guide in the docs.
|
||||
|
||||
**Modifying the API:**
|
||||
|
||||
1. Update route in `/backend/backend/server/routers/`
|
||||
2. Add/update Pydantic models in same directory
|
||||
3. Write tests alongside the route file
|
||||
4. Run `poetry run test` to verify
|
||||
|
||||
### Frontend guidelines:
|
||||
|
||||
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
|
||||
|
||||
1. **Pages**: Create in `src/app/(platform)/feature-name/page.tsx`
|
||||
- Add `usePageName.ts` hook for logic
|
||||
- Put sub-components in local `components/` folder
|
||||
2. **Components**: Structure as `ComponentName/ComponentName.tsx` + `useComponentName.ts` + `helpers.ts`
|
||||
- Use design system components from `src/components/` (atoms, molecules, organisms)
|
||||
- Never use `src/components/__legacy__/*`
|
||||
3. **Data fetching**: Use generated API hooks from `@/app/api/__generated__/endpoints/`
|
||||
- Regenerate with `pnpm generate:api`
|
||||
- Pattern: `use{Method}{Version}{OperationName}`
|
||||
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
|
||||
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
|
||||
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
|
||||
- Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component
|
||||
- Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts)
|
||||
- Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible
|
||||
- Avoid large hooks, abstract logic into `helpers.ts` files when sensible
|
||||
- Use function declarations for components, arrow functions only for callbacks
|
||||
- No barrel files or `index.ts` re-exports
|
||||
- Do not use `useCallback` or `useMemo` unless strictly needed
|
||||
- Avoid comments at all times unless the code is very complex
|
||||
|
||||
### Security Implementation
|
||||
|
||||
**Cache Protection Middleware:**
|
||||
|
||||
- Located in `/backend/backend/server/middleware/security.py`
|
||||
- Default behavior: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
|
||||
- Uses an allow list approach - only explicitly permitted paths can be cached
|
||||
- Cacheable paths include: static assets (`/static/*`, `/_next/static/*`), health checks, public store pages, documentation
|
||||
- Prevents sensitive data (auth tokens, API keys, user data) from being cached by browsers/proxies
|
||||
- To allow caching for a new endpoint, add it to `CACHEABLE_PATHS` in the middleware
|
||||
- Applied to both main API server and external API applications
|
||||
|
||||
### Creating Pull Requests
|
||||
|
||||
- Create the PR aginst the `dev` branch of the repository.
|
||||
- Ensure the branch name is descriptive (e.g., `feature/add-new-block`)/
|
||||
- Use conventional commit messages (see below)/
|
||||
- Fill out the .github/PULL_REQUEST_TEMPLATE.md template as the PR description/
|
||||
- Create the PR against the `dev` branch of the repository.
|
||||
- Ensure the branch name is descriptive (e.g., `feature/add-new-block`)
|
||||
- Use conventional commit messages (see below)
|
||||
- Fill out the .github/PULL_REQUEST_TEMPLATE.md template as the PR description
|
||||
- Run the github pre-commit hooks to ensure code quality.
|
||||
|
||||
### Reviewing/Revising Pull Requests
|
||||
|
||||
170
autogpt_platform/backend/CLAUDE.md
Normal file
170
autogpt_platform/backend/CLAUDE.md
Normal file
@@ -0,0 +1,170 @@
|
||||
# CLAUDE.md - Backend
|
||||
|
||||
This file provides guidance to Claude Code when working with the backend.
|
||||
|
||||
## Essential Commands
|
||||
|
||||
To run something with Python package dependencies you MUST use `poetry run ...`.
|
||||
|
||||
```bash
|
||||
# Install dependencies
|
||||
poetry install
|
||||
|
||||
# Run database migrations
|
||||
poetry run prisma migrate dev
|
||||
|
||||
# Start all services (database, redis, rabbitmq, clamav)
|
||||
docker compose up -d
|
||||
|
||||
# Run the backend as a whole
|
||||
poetry run app
|
||||
|
||||
# Run tests
|
||||
poetry run test
|
||||
|
||||
# Run specific test
|
||||
poetry run pytest path/to/test_file.py::test_function_name
|
||||
|
||||
# Run block tests (tests that validate all blocks work correctly)
|
||||
poetry run pytest backend/blocks/test/test_block.py -xvs
|
||||
|
||||
# Run tests for a specific block (e.g., GetCurrentTimeBlock)
|
||||
poetry run pytest 'backend/blocks/test/test_block.py::test_available_blocks[GetCurrentTimeBlock]' -xvs
|
||||
|
||||
# Lint and format
|
||||
# prefer format if you want to just "fix" it and only get the errors that can't be autofixed
|
||||
poetry run format # Black + isort
|
||||
poetry run lint # ruff
|
||||
```
|
||||
|
||||
More details can be found in @TESTING.md
|
||||
|
||||
### Creating/Updating Snapshots
|
||||
|
||||
When you first write a test or when the expected output changes:
|
||||
|
||||
```bash
|
||||
poetry run pytest path/to/test.py --snapshot-update
|
||||
```
|
||||
|
||||
⚠️ **Important**: Always review snapshot changes before committing! Use `git diff` to verify the changes are expected.
|
||||
|
||||
## Architecture
|
||||
|
||||
- **API Layer**: FastAPI with REST and WebSocket endpoints
|
||||
- **Database**: PostgreSQL with Prisma ORM, includes pgvector for embeddings
|
||||
- **Queue System**: RabbitMQ for async task processing
|
||||
- **Execution Engine**: Separate executor service processes agent workflows
|
||||
- **Authentication**: JWT-based with Supabase integration
|
||||
- **Security**: Cache protection middleware prevents sensitive data caching in browsers/proxies
|
||||
|
||||
## Testing Approach
|
||||
|
||||
- Uses pytest with snapshot testing for API responses
|
||||
- Test files are colocated with source files (`*_test.py`)
|
||||
|
||||
## Database Schema
|
||||
|
||||
Key models (defined in `schema.prisma`):
|
||||
|
||||
- `User`: Authentication and profile data
|
||||
- `AgentGraph`: Workflow definitions with version control
|
||||
- `AgentGraphExecution`: Execution history and results
|
||||
- `AgentNode`: Individual nodes in a workflow
|
||||
- `StoreListing`: Marketplace listings for sharing agents
|
||||
|
||||
## Environment Configuration
|
||||
|
||||
- **Backend**: `.env.default` (defaults) → `.env` (user overrides)
|
||||
|
||||
## Common Development Tasks
|
||||
|
||||
### Adding a new block
|
||||
|
||||
Follow the comprehensive [Block SDK Guide](@../../docs/content/platform/block-sdk-guide.md) which covers:
|
||||
|
||||
- Provider configuration with `ProviderBuilder`
|
||||
- Block schema definition
|
||||
- Authentication (API keys, OAuth, webhooks)
|
||||
- Testing and validation
|
||||
- File organization
|
||||
|
||||
Quick steps:
|
||||
|
||||
1. Create new file in `backend/blocks/`
|
||||
2. Configure provider using `ProviderBuilder` in `_config.py`
|
||||
3. Inherit from `Block` base class
|
||||
4. Define input/output schemas using `BlockSchema`
|
||||
5. Implement async `run` method
|
||||
6. Generate unique block ID using `uuid.uuid4()`
|
||||
7. Test with `poetry run pytest backend/blocks/test/test_block.py`
|
||||
|
||||
Note: when making many new blocks analyze the interfaces for each of these blocks and picture if they would go well together in a graph-based editor or would they struggle to connect productively?
|
||||
ex: do the inputs and outputs tie well together?
|
||||
|
||||
If you get any pushback or hit complex block conditions check the new_blocks guide in the docs.
|
||||
|
||||
#### Handling files in blocks with `store_media_file()`
|
||||
|
||||
When blocks need to work with files (images, videos, documents), use `store_media_file()` from `backend.util.file`. The `return_format` parameter determines what you get back:
|
||||
|
||||
| Format | Use When | Returns |
|
||||
|--------|----------|---------|
|
||||
| `"for_local_processing"` | Processing with local tools (ffmpeg, MoviePy, PIL) | Local file path (e.g., `"image.png"`) |
|
||||
| `"for_external_api"` | Sending content to external APIs (Replicate, OpenAI) | Data URI (e.g., `"data:image/png;base64,..."`) |
|
||||
| `"for_block_output"` | Returning output from your block | Smart: `workspace://` in CoPilot, data URI in graphs |
|
||||
|
||||
**Examples:**
|
||||
|
||||
```python
|
||||
# INPUT: Need to process file locally with ffmpeg
|
||||
local_path = await store_media_file(
|
||||
file=input_data.video,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
# local_path = "video.mp4" - use with Path/ffmpeg/etc
|
||||
|
||||
# INPUT: Need to send to external API like Replicate
|
||||
image_b64 = await store_media_file(
|
||||
file=input_data.image,
|
||||
execution_context=execution_context,
|
||||
return_format="for_external_api",
|
||||
)
|
||||
# image_b64 = "..." - send to API
|
||||
|
||||
# OUTPUT: Returning result from block
|
||||
result_url = await store_media_file(
|
||||
file=generated_image_url,
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "image_url", result_url
|
||||
# In CoPilot: result_url = "workspace://abc123"
|
||||
# In graphs: result_url = "data:image/png;base64,..."
|
||||
```
|
||||
|
||||
**Key points:**
|
||||
|
||||
- `for_block_output` is the ONLY format that auto-adapts to execution context
|
||||
- Always use `for_block_output` for block outputs unless you have a specific reason not to
|
||||
- Never hardcode workspace checks - let `for_block_output` handle it
|
||||
|
||||
### Modifying the API
|
||||
|
||||
1. Update route in `backend/api/features/`
|
||||
2. Add/update Pydantic models in same directory
|
||||
3. Write tests alongside the route file
|
||||
4. Run `poetry run test` to verify
|
||||
|
||||
## Security Implementation
|
||||
|
||||
### Cache Protection Middleware
|
||||
|
||||
- Located in `backend/api/middleware/security.py`
|
||||
- Default behavior: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
|
||||
- Uses an allow list approach - only explicitly permitted paths can be cached
|
||||
- Cacheable paths include: static assets (`static/*`, `_next/static/*`), health checks, public store pages, documentation
|
||||
- Prevents sensitive data (auth tokens, API keys, user data) from being cached by browsers/proxies
|
||||
- To allow caching for a new endpoint, add it to `CACHEABLE_PATHS` in the middleware
|
||||
- Applied to both main API server and external API applications
|
||||
@@ -138,7 +138,7 @@ If the test doesn't need the `user_id` specifically, mocking is not necessary as
|
||||
|
||||
#### Using Global Auth Fixtures
|
||||
|
||||
Two global auth fixtures are provided by `backend/server/conftest.py`:
|
||||
Two global auth fixtures are provided by `backend/api/conftest.py`:
|
||||
|
||||
- `mock_jwt_user` - Regular user with `test_user_id` ("test-user-id")
|
||||
- `mock_jwt_admin` - Admin user with `admin_user_id` ("admin-user-id")
|
||||
|
||||
@@ -122,24 +122,6 @@ class ConnectionManager:
|
||||
|
||||
return len(connections)
|
||||
|
||||
async def broadcast_to_all(self, *, method: WSMethod, data: dict) -> int:
|
||||
"""Broadcast a message to all active websocket connections."""
|
||||
message = WSMessage(
|
||||
method=method,
|
||||
data=data,
|
||||
).model_dump_json()
|
||||
|
||||
connections = tuple(self.active_connections)
|
||||
if not connections:
|
||||
return 0
|
||||
|
||||
await asyncio.gather(
|
||||
*(connection.send_text(message) for connection in connections),
|
||||
return_exceptions=True,
|
||||
)
|
||||
|
||||
return len(connections)
|
||||
|
||||
async def _subscribe(self, channel_key: str, websocket: WebSocket) -> str:
|
||||
if channel_key not in self.subscriptions:
|
||||
self.subscriptions[channel_key] = set()
|
||||
|
||||
@@ -176,64 +176,30 @@ async def get_execution_analytics_config(
|
||||
# Return with provider prefix for clarity
|
||||
return f"{provider_name}: {model_name}"
|
||||
|
||||
# Get all models from the registry (dynamic, not hardcoded enum)
|
||||
from backend.data import llm_registry
|
||||
from backend.server.v2.llm import db as llm_db
|
||||
|
||||
# Get the recommended model from the database (configurable via admin UI)
|
||||
recommended_model_slug = await llm_db.get_recommended_model_slug()
|
||||
|
||||
# Build the available models list
|
||||
first_enabled_slug = None
|
||||
for registry_model in llm_registry.iter_dynamic_models():
|
||||
# Only include enabled models in the list
|
||||
if not registry_model.is_enabled:
|
||||
continue
|
||||
|
||||
# Track first enabled model as fallback
|
||||
if first_enabled_slug is None:
|
||||
first_enabled_slug = registry_model.slug
|
||||
|
||||
model_enum = LlmModel(registry_model.slug) # Create enum instance from slug
|
||||
label = generate_model_label(model_enum)
|
||||
# Include all LlmModel values (no more filtering by hardcoded list)
|
||||
recommended_model = LlmModel.GPT4O_MINI.value
|
||||
for model in LlmModel:
|
||||
label = generate_model_label(model)
|
||||
# Add "(Recommended)" suffix to the recommended model
|
||||
if registry_model.slug == recommended_model_slug:
|
||||
if model.value == recommended_model:
|
||||
label += " (Recommended)"
|
||||
|
||||
available_models.append(
|
||||
ModelInfo(
|
||||
value=registry_model.slug,
|
||||
value=model.value,
|
||||
label=label,
|
||||
provider=registry_model.metadata.provider,
|
||||
provider=model.provider,
|
||||
)
|
||||
)
|
||||
|
||||
# Sort models by provider and name for better UX
|
||||
available_models.sort(key=lambda x: (x.provider, x.label))
|
||||
|
||||
# Handle case where no models are available
|
||||
if not available_models:
|
||||
logger.warning(
|
||||
"No enabled LLM models found in registry. "
|
||||
"Ensure models are configured and enabled in the LLM Registry."
|
||||
)
|
||||
# Provide a placeholder entry so admins see meaningful feedback
|
||||
available_models.append(
|
||||
ModelInfo(
|
||||
value="",
|
||||
label="No models available - configure in LLM Registry",
|
||||
provider="none",
|
||||
)
|
||||
)
|
||||
|
||||
# Use the DB recommended model, or fallback to first enabled model
|
||||
final_recommended = recommended_model_slug or first_enabled_slug or ""
|
||||
|
||||
return ExecutionAnalyticsConfig(
|
||||
available_models=available_models,
|
||||
default_system_prompt=DEFAULT_SYSTEM_PROMPT,
|
||||
default_user_prompt=DEFAULT_USER_PROMPT,
|
||||
recommended_model=final_recommended,
|
||||
recommended_model=recommended_model,
|
||||
)
|
||||
|
||||
|
||||
|
||||
@@ -1,595 +0,0 @@
|
||||
import logging
|
||||
|
||||
import autogpt_libs.auth
|
||||
import fastapi
|
||||
|
||||
from backend.data import llm_registry
|
||||
from backend.data.block_cost_config import refresh_llm_costs
|
||||
from backend.server.v2.llm import db as llm_db
|
||||
from backend.server.v2.llm import model as llm_model
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
router = fastapi.APIRouter(
|
||||
tags=["llm", "admin"],
|
||||
dependencies=[fastapi.Security(autogpt_libs.auth.requires_admin_user)],
|
||||
)
|
||||
|
||||
|
||||
async def _refresh_runtime_state() -> None:
|
||||
"""Refresh the LLM registry and clear all related caches to ensure real-time updates."""
|
||||
logger.info("Refreshing LLM registry runtime state...")
|
||||
try:
|
||||
# Refresh registry from database
|
||||
await llm_registry.refresh_llm_registry()
|
||||
refresh_llm_costs()
|
||||
|
||||
# Clear block schema caches so they're regenerated with updated model options
|
||||
from backend.data.block import BlockSchema
|
||||
|
||||
BlockSchema.clear_all_schema_caches()
|
||||
logger.info("Cleared all block schema caches")
|
||||
|
||||
# Clear the /blocks endpoint cache so frontend gets updated schemas
|
||||
try:
|
||||
from backend.api.features.v1 import _get_cached_blocks
|
||||
|
||||
_get_cached_blocks.cache_clear()
|
||||
logger.info("Cleared /blocks endpoint cache")
|
||||
except Exception as e:
|
||||
logger.warning("Failed to clear /blocks cache: %s", e)
|
||||
|
||||
# Clear the v2 builder caches (if they exist)
|
||||
try:
|
||||
from backend.api.features.builder import db as builder_db
|
||||
|
||||
if hasattr(builder_db, "_get_all_providers"):
|
||||
builder_db._get_all_providers.cache_clear()
|
||||
logger.info("Cleared v2 builder providers cache")
|
||||
if hasattr(builder_db, "_build_cached_search_results"):
|
||||
builder_db._build_cached_search_results.cache_clear()
|
||||
logger.info("Cleared v2 builder search results cache")
|
||||
except Exception as e:
|
||||
logger.debug("Could not clear v2 builder cache: %s", e)
|
||||
|
||||
# Notify all executor services to refresh their registry cache
|
||||
from backend.data.llm_registry import publish_registry_refresh_notification
|
||||
|
||||
await publish_registry_refresh_notification()
|
||||
logger.info("Published registry refresh notification")
|
||||
except Exception as exc:
|
||||
logger.exception(
|
||||
"LLM runtime state refresh failed; caches may be stale: %s", exc
|
||||
)
|
||||
|
||||
|
||||
@router.get(
|
||||
"/providers",
|
||||
summary="List LLM providers",
|
||||
response_model=llm_model.LlmProvidersResponse,
|
||||
)
|
||||
async def list_llm_providers(include_models: bool = True):
|
||||
providers = await llm_db.list_providers(include_models=include_models)
|
||||
return llm_model.LlmProvidersResponse(providers=providers)
|
||||
|
||||
|
||||
@router.post(
|
||||
"/providers",
|
||||
summary="Create LLM provider",
|
||||
response_model=llm_model.LlmProvider,
|
||||
)
|
||||
async def create_llm_provider(request: llm_model.UpsertLlmProviderRequest):
|
||||
provider = await llm_db.upsert_provider(request=request)
|
||||
await _refresh_runtime_state()
|
||||
return provider
|
||||
|
||||
|
||||
@router.patch(
|
||||
"/providers/{provider_id}",
|
||||
summary="Update LLM provider",
|
||||
response_model=llm_model.LlmProvider,
|
||||
)
|
||||
async def update_llm_provider(
|
||||
provider_id: str,
|
||||
request: llm_model.UpsertLlmProviderRequest,
|
||||
):
|
||||
provider = await llm_db.upsert_provider(request=request, provider_id=provider_id)
|
||||
await _refresh_runtime_state()
|
||||
return provider
|
||||
|
||||
|
||||
@router.delete(
|
||||
"/providers/{provider_id}",
|
||||
summary="Delete LLM provider",
|
||||
response_model=dict,
|
||||
)
|
||||
async def delete_llm_provider(provider_id: str):
|
||||
"""
|
||||
Delete an LLM provider.
|
||||
|
||||
A provider can only be deleted if it has no associated models.
|
||||
Delete all models from the provider first before deleting the provider.
|
||||
"""
|
||||
try:
|
||||
await llm_db.delete_provider(provider_id)
|
||||
await _refresh_runtime_state()
|
||||
logger.info("Deleted LLM provider '%s'", provider_id)
|
||||
return {"success": True, "message": "Provider deleted successfully"}
|
||||
except ValueError as e:
|
||||
logger.warning("Failed to delete provider '%s': %s", provider_id, e)
|
||||
raise fastapi.HTTPException(status_code=400, detail=str(e))
|
||||
except Exception as e:
|
||||
logger.exception("Failed to delete provider '%s': %s", provider_id, e)
|
||||
raise fastapi.HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
@router.get(
|
||||
"/models",
|
||||
summary="List LLM models",
|
||||
response_model=llm_model.LlmModelsResponse,
|
||||
)
|
||||
async def list_llm_models(
|
||||
provider_id: str | None = fastapi.Query(default=None),
|
||||
page: int = fastapi.Query(default=1, ge=1, description="Page number (1-indexed)"),
|
||||
page_size: int = fastapi.Query(
|
||||
default=50, ge=1, le=100, description="Number of models per page"
|
||||
),
|
||||
):
|
||||
return await llm_db.list_models(
|
||||
provider_id=provider_id, page=page, page_size=page_size
|
||||
)
|
||||
|
||||
|
||||
@router.post(
|
||||
"/models",
|
||||
summary="Create LLM model",
|
||||
response_model=llm_model.LlmModel,
|
||||
)
|
||||
async def create_llm_model(request: llm_model.CreateLlmModelRequest):
|
||||
model = await llm_db.create_model(request=request)
|
||||
await _refresh_runtime_state()
|
||||
return model
|
||||
|
||||
|
||||
@router.patch(
|
||||
"/models/{model_id}",
|
||||
summary="Update LLM model",
|
||||
response_model=llm_model.LlmModel,
|
||||
)
|
||||
async def update_llm_model(
|
||||
model_id: str,
|
||||
request: llm_model.UpdateLlmModelRequest,
|
||||
):
|
||||
model = await llm_db.update_model(model_id=model_id, request=request)
|
||||
await _refresh_runtime_state()
|
||||
return model
|
||||
|
||||
|
||||
@router.patch(
|
||||
"/models/{model_id}/toggle",
|
||||
summary="Toggle LLM model availability",
|
||||
response_model=llm_model.ToggleLlmModelResponse,
|
||||
)
|
||||
async def toggle_llm_model(
|
||||
model_id: str,
|
||||
request: llm_model.ToggleLlmModelRequest,
|
||||
):
|
||||
"""
|
||||
Toggle a model's enabled status, optionally migrating workflows when disabling.
|
||||
|
||||
If disabling a model and `migrate_to_slug` is provided, all workflows using
|
||||
this model will be migrated to the specified replacement model before disabling.
|
||||
A migration record is created which can be reverted later using the revert endpoint.
|
||||
|
||||
Optional fields:
|
||||
- `migration_reason`: Reason for the migration (e.g., "Provider outage")
|
||||
- `custom_credit_cost`: Custom pricing override for billing during migration
|
||||
"""
|
||||
try:
|
||||
result = await llm_db.toggle_model(
|
||||
model_id=model_id,
|
||||
is_enabled=request.is_enabled,
|
||||
migrate_to_slug=request.migrate_to_slug,
|
||||
migration_reason=request.migration_reason,
|
||||
custom_credit_cost=request.custom_credit_cost,
|
||||
)
|
||||
await _refresh_runtime_state()
|
||||
if result.nodes_migrated > 0:
|
||||
logger.info(
|
||||
"Toggled model '%s' to %s and migrated %d nodes to '%s' (migration_id=%s)",
|
||||
result.model.slug,
|
||||
"enabled" if request.is_enabled else "disabled",
|
||||
result.nodes_migrated,
|
||||
result.migrated_to_slug,
|
||||
result.migration_id,
|
||||
)
|
||||
return result
|
||||
except ValueError as exc:
|
||||
logger.warning("Model toggle validation failed: %s", exc)
|
||||
raise fastapi.HTTPException(status_code=400, detail=str(exc)) from exc
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to toggle LLM model %s: %s", model_id, exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to toggle model availability",
|
||||
) from exc
|
||||
|
||||
|
||||
@router.get(
|
||||
"/models/{model_id}/usage",
|
||||
summary="Get model usage count",
|
||||
response_model=llm_model.LlmModelUsageResponse,
|
||||
)
|
||||
async def get_llm_model_usage(model_id: str):
|
||||
"""Get the number of workflow nodes using this model."""
|
||||
try:
|
||||
return await llm_db.get_model_usage(model_id=model_id)
|
||||
except ValueError as exc:
|
||||
raise fastapi.HTTPException(status_code=404, detail=str(exc)) from exc
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to get model usage %s: %s", model_id, exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to get model usage",
|
||||
) from exc
|
||||
|
||||
|
||||
@router.delete(
|
||||
"/models/{model_id}",
|
||||
summary="Delete LLM model and migrate workflows",
|
||||
response_model=llm_model.DeleteLlmModelResponse,
|
||||
)
|
||||
async def delete_llm_model(
|
||||
model_id: str,
|
||||
replacement_model_slug: str | None = fastapi.Query(
|
||||
default=None,
|
||||
description="Slug of the model to migrate existing workflows to (required only if workflows use this model)",
|
||||
),
|
||||
):
|
||||
"""
|
||||
Delete a model and optionally migrate workflows using it to a replacement model.
|
||||
|
||||
If no workflows are using this model, it can be deleted without providing a
|
||||
replacement. If workflows exist, replacement_model_slug is required.
|
||||
|
||||
This endpoint:
|
||||
1. Counts how many workflow nodes use the model being deleted
|
||||
2. If nodes exist, validates the replacement model and migrates them
|
||||
3. Deletes the model record
|
||||
4. Refreshes all caches and notifies executors
|
||||
|
||||
Example: DELETE /admin/llm/models/{id}?replacement_model_slug=gpt-4o
|
||||
Example (no usage): DELETE /admin/llm/models/{id}
|
||||
"""
|
||||
try:
|
||||
result = await llm_db.delete_model(
|
||||
model_id=model_id, replacement_model_slug=replacement_model_slug
|
||||
)
|
||||
await _refresh_runtime_state()
|
||||
logger.info(
|
||||
"Deleted model '%s' and migrated %d nodes to '%s'",
|
||||
result.deleted_model_slug,
|
||||
result.nodes_migrated,
|
||||
result.replacement_model_slug,
|
||||
)
|
||||
return result
|
||||
except ValueError as exc:
|
||||
# Validation errors (model not found, replacement invalid, etc.)
|
||||
logger.warning("Model deletion validation failed: %s", exc)
|
||||
raise fastapi.HTTPException(status_code=400, detail=str(exc)) from exc
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to delete LLM model %s: %s", model_id, exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to delete model and migrate workflows",
|
||||
) from exc
|
||||
|
||||
|
||||
# ============================================================================
|
||||
# Migration Management Endpoints
|
||||
# ============================================================================
|
||||
|
||||
|
||||
@router.get(
|
||||
"/migrations",
|
||||
summary="List model migrations",
|
||||
response_model=llm_model.LlmMigrationsResponse,
|
||||
)
|
||||
async def list_llm_migrations(
|
||||
include_reverted: bool = fastapi.Query(
|
||||
default=False, description="Include reverted migrations in the list"
|
||||
),
|
||||
):
|
||||
"""
|
||||
List all model migrations.
|
||||
|
||||
Migrations are created when disabling a model with the migrate_to_slug option.
|
||||
They can be reverted to restore the original model configuration.
|
||||
"""
|
||||
try:
|
||||
migrations = await llm_db.list_migrations(include_reverted=include_reverted)
|
||||
return llm_model.LlmMigrationsResponse(migrations=migrations)
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to list migrations: %s", exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to list migrations",
|
||||
) from exc
|
||||
|
||||
|
||||
@router.get(
|
||||
"/migrations/{migration_id}",
|
||||
summary="Get migration details",
|
||||
response_model=llm_model.LlmModelMigration,
|
||||
)
|
||||
async def get_llm_migration(migration_id: str):
|
||||
"""Get details of a specific migration."""
|
||||
try:
|
||||
migration = await llm_db.get_migration(migration_id)
|
||||
if not migration:
|
||||
raise fastapi.HTTPException(
|
||||
status_code=404, detail=f"Migration '{migration_id}' not found"
|
||||
)
|
||||
return migration
|
||||
except fastapi.HTTPException:
|
||||
raise
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to get migration %s: %s", migration_id, exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to get migration",
|
||||
) from exc
|
||||
|
||||
|
||||
@router.post(
|
||||
"/migrations/{migration_id}/revert",
|
||||
summary="Revert a model migration",
|
||||
response_model=llm_model.RevertMigrationResponse,
|
||||
)
|
||||
async def revert_llm_migration(
|
||||
migration_id: str,
|
||||
request: llm_model.RevertMigrationRequest | None = None,
|
||||
):
|
||||
"""
|
||||
Revert a model migration, restoring affected workflows to their original model.
|
||||
|
||||
This only reverts the specific nodes that were part of the migration.
|
||||
The source model must exist for the revert to succeed.
|
||||
|
||||
Options:
|
||||
- `re_enable_source_model`: Whether to re-enable the source model if disabled (default: True)
|
||||
|
||||
Response includes:
|
||||
- `nodes_reverted`: Number of nodes successfully reverted
|
||||
- `nodes_already_changed`: Number of nodes that were modified since migration (not reverted)
|
||||
- `source_model_re_enabled`: Whether the source model was re-enabled
|
||||
|
||||
Requirements:
|
||||
- Migration must not already be reverted
|
||||
- Source model must exist
|
||||
"""
|
||||
try:
|
||||
re_enable = request.re_enable_source_model if request else True
|
||||
result = await llm_db.revert_migration(
|
||||
migration_id,
|
||||
re_enable_source_model=re_enable,
|
||||
)
|
||||
await _refresh_runtime_state()
|
||||
logger.info(
|
||||
"Reverted migration '%s': %d nodes restored from '%s' to '%s' "
|
||||
"(%d already changed, source re-enabled=%s)",
|
||||
migration_id,
|
||||
result.nodes_reverted,
|
||||
result.target_model_slug,
|
||||
result.source_model_slug,
|
||||
result.nodes_already_changed,
|
||||
result.source_model_re_enabled,
|
||||
)
|
||||
return result
|
||||
except ValueError as exc:
|
||||
logger.warning("Migration revert validation failed: %s", exc)
|
||||
raise fastapi.HTTPException(status_code=400, detail=str(exc)) from exc
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to revert migration %s: %s", migration_id, exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to revert migration",
|
||||
) from exc
|
||||
|
||||
|
||||
# ============================================================================
|
||||
# Creator Management Endpoints
|
||||
# ============================================================================
|
||||
|
||||
|
||||
@router.get(
|
||||
"/creators",
|
||||
summary="List model creators",
|
||||
response_model=llm_model.LlmCreatorsResponse,
|
||||
)
|
||||
async def list_llm_creators():
|
||||
"""
|
||||
List all model creators.
|
||||
|
||||
Creators are organizations that create/train models (e.g., OpenAI, Meta, Anthropic).
|
||||
This is distinct from providers who host/serve the models (e.g., OpenRouter).
|
||||
"""
|
||||
try:
|
||||
creators = await llm_db.list_creators()
|
||||
return llm_model.LlmCreatorsResponse(creators=creators)
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to list creators: %s", exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to list creators",
|
||||
) from exc
|
||||
|
||||
|
||||
@router.get(
|
||||
"/creators/{creator_id}",
|
||||
summary="Get creator details",
|
||||
response_model=llm_model.LlmModelCreator,
|
||||
)
|
||||
async def get_llm_creator(creator_id: str):
|
||||
"""Get details of a specific model creator."""
|
||||
try:
|
||||
creator = await llm_db.get_creator(creator_id)
|
||||
if not creator:
|
||||
raise fastapi.HTTPException(
|
||||
status_code=404, detail=f"Creator '{creator_id}' not found"
|
||||
)
|
||||
return creator
|
||||
except fastapi.HTTPException:
|
||||
raise
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to get creator %s: %s", creator_id, exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to get creator",
|
||||
) from exc
|
||||
|
||||
|
||||
@router.post(
|
||||
"/creators",
|
||||
summary="Create model creator",
|
||||
response_model=llm_model.LlmModelCreator,
|
||||
)
|
||||
async def create_llm_creator(request: llm_model.UpsertLlmCreatorRequest):
|
||||
"""
|
||||
Create a new model creator.
|
||||
|
||||
A creator represents an organization that creates/trains AI models,
|
||||
such as OpenAI, Anthropic, Meta, or Google.
|
||||
"""
|
||||
try:
|
||||
creator = await llm_db.upsert_creator(request=request)
|
||||
await _refresh_runtime_state()
|
||||
logger.info("Created model creator '%s' (%s)", creator.display_name, creator.id)
|
||||
return creator
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to create creator: %s", exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to create creator",
|
||||
) from exc
|
||||
|
||||
|
||||
@router.patch(
|
||||
"/creators/{creator_id}",
|
||||
summary="Update model creator",
|
||||
response_model=llm_model.LlmModelCreator,
|
||||
)
|
||||
async def update_llm_creator(
|
||||
creator_id: str,
|
||||
request: llm_model.UpsertLlmCreatorRequest,
|
||||
):
|
||||
"""Update an existing model creator."""
|
||||
try:
|
||||
creator = await llm_db.upsert_creator(request=request, creator_id=creator_id)
|
||||
await _refresh_runtime_state()
|
||||
logger.info("Updated model creator '%s' (%s)", creator.display_name, creator_id)
|
||||
return creator
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to update creator %s: %s", creator_id, exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to update creator",
|
||||
) from exc
|
||||
|
||||
|
||||
@router.delete(
|
||||
"/creators/{creator_id}",
|
||||
summary="Delete model creator",
|
||||
response_model=dict,
|
||||
)
|
||||
async def delete_llm_creator(creator_id: str):
|
||||
"""
|
||||
Delete a model creator.
|
||||
|
||||
This will remove the creator association from all models that reference it
|
||||
(sets creatorId to NULL), but will not delete the models themselves.
|
||||
"""
|
||||
try:
|
||||
await llm_db.delete_creator(creator_id)
|
||||
await _refresh_runtime_state()
|
||||
logger.info("Deleted model creator '%s'", creator_id)
|
||||
return {"success": True, "message": f"Creator '{creator_id}' deleted"}
|
||||
except ValueError as exc:
|
||||
logger.warning("Creator deletion validation failed: %s", exc)
|
||||
raise fastapi.HTTPException(status_code=404, detail=str(exc)) from exc
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to delete creator %s: %s", creator_id, exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to delete creator",
|
||||
) from exc
|
||||
|
||||
|
||||
# ============================================================================
|
||||
# Recommended Model Endpoints
|
||||
# ============================================================================
|
||||
|
||||
|
||||
@router.get(
|
||||
"/recommended-model",
|
||||
summary="Get recommended model",
|
||||
response_model=llm_model.RecommendedModelResponse,
|
||||
)
|
||||
async def get_recommended_model():
|
||||
"""
|
||||
Get the currently recommended LLM model.
|
||||
|
||||
The recommended model is shown to users as the default/suggested option
|
||||
in model selection dropdowns.
|
||||
"""
|
||||
try:
|
||||
model = await llm_db.get_recommended_model()
|
||||
return llm_model.RecommendedModelResponse(
|
||||
model=model,
|
||||
slug=model.slug if model else None,
|
||||
)
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to get recommended model: %s", exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to get recommended model",
|
||||
) from exc
|
||||
|
||||
|
||||
@router.post(
|
||||
"/recommended-model",
|
||||
summary="Set recommended model",
|
||||
response_model=llm_model.SetRecommendedModelResponse,
|
||||
)
|
||||
async def set_recommended_model(request: llm_model.SetRecommendedModelRequest):
|
||||
"""
|
||||
Set a model as the recommended model.
|
||||
|
||||
This clears the recommended flag from any other model and sets it on
|
||||
the specified model. The model must be enabled to be set as recommended.
|
||||
|
||||
The recommended model is displayed to users as the default/suggested
|
||||
option in model selection dropdowns throughout the platform.
|
||||
"""
|
||||
try:
|
||||
model, previous_slug = await llm_db.set_recommended_model(request.model_id)
|
||||
await _refresh_runtime_state()
|
||||
logger.info(
|
||||
"Set recommended model to '%s' (previous: %s)",
|
||||
model.slug,
|
||||
previous_slug or "none",
|
||||
)
|
||||
return llm_model.SetRecommendedModelResponse(
|
||||
model=model,
|
||||
previous_recommended_slug=previous_slug,
|
||||
message=f"Model '{model.display_name}' is now the recommended model",
|
||||
)
|
||||
except ValueError as exc:
|
||||
logger.warning("Set recommended model validation failed: %s", exc)
|
||||
raise fastapi.HTTPException(status_code=400, detail=str(exc)) from exc
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to set recommended model: %s", exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to set recommended model",
|
||||
) from exc
|
||||
@@ -1,491 +0,0 @@
|
||||
import json
|
||||
from unittest.mock import AsyncMock
|
||||
|
||||
import fastapi
|
||||
import fastapi.testclient
|
||||
import pytest
|
||||
import pytest_mock
|
||||
from autogpt_libs.auth.jwt_utils import get_jwt_payload
|
||||
from pytest_snapshot.plugin import Snapshot
|
||||
|
||||
import backend.api.features.admin.llm_routes as llm_routes
|
||||
from backend.server.v2.llm import model as llm_model
|
||||
from backend.util.models import Pagination
|
||||
|
||||
app = fastapi.FastAPI()
|
||||
app.include_router(llm_routes.router, prefix="/admin/llm")
|
||||
|
||||
client = fastapi.testclient.TestClient(app)
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def setup_app_admin_auth(mock_jwt_admin):
|
||||
"""Setup admin auth overrides for all tests in this module"""
|
||||
app.dependency_overrides[get_jwt_payload] = mock_jwt_admin["get_jwt_payload"]
|
||||
yield
|
||||
app.dependency_overrides.clear()
|
||||
|
||||
|
||||
def test_list_llm_providers_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
configured_snapshot: Snapshot,
|
||||
) -> None:
|
||||
"""Test successful listing of LLM providers"""
|
||||
# Mock the database function
|
||||
mock_providers = [
|
||||
{
|
||||
"id": "provider-1",
|
||||
"name": "openai",
|
||||
"display_name": "OpenAI",
|
||||
"description": "OpenAI LLM provider",
|
||||
"supports_tools": True,
|
||||
"supports_json_output": True,
|
||||
"supports_reasoning": False,
|
||||
"supports_parallel_tool": True,
|
||||
"metadata": {},
|
||||
"models": [],
|
||||
},
|
||||
{
|
||||
"id": "provider-2",
|
||||
"name": "anthropic",
|
||||
"display_name": "Anthropic",
|
||||
"description": "Anthropic LLM provider",
|
||||
"supports_tools": True,
|
||||
"supports_json_output": True,
|
||||
"supports_reasoning": False,
|
||||
"supports_parallel_tool": True,
|
||||
"metadata": {},
|
||||
"models": [],
|
||||
},
|
||||
]
|
||||
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.list_providers",
|
||||
new=AsyncMock(return_value=mock_providers),
|
||||
)
|
||||
|
||||
response = client.get("/admin/llm/providers")
|
||||
|
||||
assert response.status_code == 200
|
||||
response_data = response.json()
|
||||
assert len(response_data["providers"]) == 2
|
||||
assert response_data["providers"][0]["name"] == "openai"
|
||||
|
||||
# Snapshot test the response (must be string)
|
||||
configured_snapshot.assert_match(
|
||||
json.dumps(response_data, indent=2, sort_keys=True),
|
||||
"list_llm_providers_success.json",
|
||||
)
|
||||
|
||||
|
||||
def test_list_llm_models_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
configured_snapshot: Snapshot,
|
||||
) -> None:
|
||||
"""Test successful listing of LLM models with pagination"""
|
||||
# Mock the database function - now returns LlmModelsResponse
|
||||
mock_model = llm_model.LlmModel(
|
||||
id="model-1",
|
||||
slug="gpt-4o",
|
||||
display_name="GPT-4o",
|
||||
description="GPT-4 Optimized",
|
||||
provider_id="provider-1",
|
||||
context_window=128000,
|
||||
max_output_tokens=16384,
|
||||
is_enabled=True,
|
||||
capabilities={},
|
||||
metadata={},
|
||||
costs=[
|
||||
llm_model.LlmModelCost(
|
||||
id="cost-1",
|
||||
credit_cost=10,
|
||||
credential_provider="openai",
|
||||
metadata={},
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
mock_response = llm_model.LlmModelsResponse(
|
||||
models=[mock_model],
|
||||
pagination=Pagination(
|
||||
total_items=1,
|
||||
total_pages=1,
|
||||
current_page=1,
|
||||
page_size=50,
|
||||
),
|
||||
)
|
||||
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.list_models",
|
||||
new=AsyncMock(return_value=mock_response),
|
||||
)
|
||||
|
||||
response = client.get("/admin/llm/models")
|
||||
|
||||
assert response.status_code == 200
|
||||
response_data = response.json()
|
||||
assert len(response_data["models"]) == 1
|
||||
assert response_data["models"][0]["slug"] == "gpt-4o"
|
||||
assert response_data["pagination"]["total_items"] == 1
|
||||
assert response_data["pagination"]["page_size"] == 50
|
||||
|
||||
# Snapshot test the response (must be string)
|
||||
configured_snapshot.assert_match(
|
||||
json.dumps(response_data, indent=2, sort_keys=True),
|
||||
"list_llm_models_success.json",
|
||||
)
|
||||
|
||||
|
||||
def test_create_llm_provider_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
configured_snapshot: Snapshot,
|
||||
) -> None:
|
||||
"""Test successful creation of LLM provider"""
|
||||
mock_provider = {
|
||||
"id": "new-provider-id",
|
||||
"name": "groq",
|
||||
"display_name": "Groq",
|
||||
"description": "Groq LLM provider",
|
||||
"supports_tools": True,
|
||||
"supports_json_output": True,
|
||||
"supports_reasoning": False,
|
||||
"supports_parallel_tool": False,
|
||||
"metadata": {},
|
||||
}
|
||||
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.upsert_provider",
|
||||
new=AsyncMock(return_value=mock_provider),
|
||||
)
|
||||
|
||||
mock_refresh = mocker.patch(
|
||||
"backend.api.features.admin.llm_routes._refresh_runtime_state",
|
||||
new=AsyncMock(),
|
||||
)
|
||||
|
||||
request_data = {
|
||||
"name": "groq",
|
||||
"display_name": "Groq",
|
||||
"description": "Groq LLM provider",
|
||||
"supports_tools": True,
|
||||
"supports_json_output": True,
|
||||
"supports_reasoning": False,
|
||||
"supports_parallel_tool": False,
|
||||
"metadata": {},
|
||||
}
|
||||
|
||||
response = client.post("/admin/llm/providers", json=request_data)
|
||||
|
||||
assert response.status_code == 200
|
||||
response_data = response.json()
|
||||
assert response_data["name"] == "groq"
|
||||
assert response_data["display_name"] == "Groq"
|
||||
|
||||
# Verify refresh was called
|
||||
mock_refresh.assert_called_once()
|
||||
|
||||
# Snapshot test the response (must be string)
|
||||
configured_snapshot.assert_match(
|
||||
json.dumps(response_data, indent=2, sort_keys=True),
|
||||
"create_llm_provider_success.json",
|
||||
)
|
||||
|
||||
|
||||
def test_create_llm_model_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
configured_snapshot: Snapshot,
|
||||
) -> None:
|
||||
"""Test successful creation of LLM model"""
|
||||
mock_model = {
|
||||
"id": "new-model-id",
|
||||
"slug": "gpt-4.1-mini",
|
||||
"display_name": "GPT-4.1 Mini",
|
||||
"description": "Latest GPT-4.1 Mini model",
|
||||
"provider_id": "provider-1",
|
||||
"context_window": 128000,
|
||||
"max_output_tokens": 16384,
|
||||
"is_enabled": True,
|
||||
"capabilities": {},
|
||||
"metadata": {},
|
||||
"costs": [
|
||||
{
|
||||
"id": "cost-id",
|
||||
"credit_cost": 5,
|
||||
"credential_provider": "openai",
|
||||
"metadata": {},
|
||||
}
|
||||
],
|
||||
}
|
||||
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.create_model",
|
||||
new=AsyncMock(return_value=mock_model),
|
||||
)
|
||||
|
||||
mock_refresh = mocker.patch(
|
||||
"backend.api.features.admin.llm_routes._refresh_runtime_state",
|
||||
new=AsyncMock(),
|
||||
)
|
||||
|
||||
request_data = {
|
||||
"slug": "gpt-4.1-mini",
|
||||
"display_name": "GPT-4.1 Mini",
|
||||
"description": "Latest GPT-4.1 Mini model",
|
||||
"provider_id": "provider-1",
|
||||
"context_window": 128000,
|
||||
"max_output_tokens": 16384,
|
||||
"is_enabled": True,
|
||||
"capabilities": {},
|
||||
"metadata": {},
|
||||
"costs": [
|
||||
{
|
||||
"credit_cost": 5,
|
||||
"credential_provider": "openai",
|
||||
"metadata": {},
|
||||
}
|
||||
],
|
||||
}
|
||||
|
||||
response = client.post("/admin/llm/models", json=request_data)
|
||||
|
||||
assert response.status_code == 200
|
||||
response_data = response.json()
|
||||
assert response_data["slug"] == "gpt-4.1-mini"
|
||||
assert response_data["is_enabled"] is True
|
||||
|
||||
# Verify refresh was called
|
||||
mock_refresh.assert_called_once()
|
||||
|
||||
# Snapshot test the response (must be string)
|
||||
configured_snapshot.assert_match(
|
||||
json.dumps(response_data, indent=2, sort_keys=True),
|
||||
"create_llm_model_success.json",
|
||||
)
|
||||
|
||||
|
||||
def test_update_llm_model_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
configured_snapshot: Snapshot,
|
||||
) -> None:
|
||||
"""Test successful update of LLM model"""
|
||||
mock_model = {
|
||||
"id": "model-1",
|
||||
"slug": "gpt-4o",
|
||||
"display_name": "GPT-4o Updated",
|
||||
"description": "Updated description",
|
||||
"provider_id": "provider-1",
|
||||
"context_window": 256000,
|
||||
"max_output_tokens": 32768,
|
||||
"is_enabled": True,
|
||||
"capabilities": {},
|
||||
"metadata": {},
|
||||
"costs": [
|
||||
{
|
||||
"id": "cost-1",
|
||||
"credit_cost": 15,
|
||||
"credential_provider": "openai",
|
||||
"metadata": {},
|
||||
}
|
||||
],
|
||||
}
|
||||
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.update_model",
|
||||
new=AsyncMock(return_value=mock_model),
|
||||
)
|
||||
|
||||
mock_refresh = mocker.patch(
|
||||
"backend.api.features.admin.llm_routes._refresh_runtime_state",
|
||||
new=AsyncMock(),
|
||||
)
|
||||
|
||||
request_data = {
|
||||
"display_name": "GPT-4o Updated",
|
||||
"description": "Updated description",
|
||||
"context_window": 256000,
|
||||
"max_output_tokens": 32768,
|
||||
}
|
||||
|
||||
response = client.patch("/admin/llm/models/model-1", json=request_data)
|
||||
|
||||
assert response.status_code == 200
|
||||
response_data = response.json()
|
||||
assert response_data["display_name"] == "GPT-4o Updated"
|
||||
assert response_data["context_window"] == 256000
|
||||
|
||||
# Verify refresh was called
|
||||
mock_refresh.assert_called_once()
|
||||
|
||||
# Snapshot test the response (must be string)
|
||||
configured_snapshot.assert_match(
|
||||
json.dumps(response_data, indent=2, sort_keys=True),
|
||||
"update_llm_model_success.json",
|
||||
)
|
||||
|
||||
|
||||
def test_toggle_llm_model_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
configured_snapshot: Snapshot,
|
||||
) -> None:
|
||||
"""Test successful toggling of LLM model enabled status"""
|
||||
# Create a proper mock model object
|
||||
mock_model = llm_model.LlmModel(
|
||||
id="model-1",
|
||||
slug="gpt-4o",
|
||||
display_name="GPT-4o",
|
||||
description="GPT-4 Optimized",
|
||||
provider_id="provider-1",
|
||||
context_window=128000,
|
||||
max_output_tokens=16384,
|
||||
is_enabled=False,
|
||||
capabilities={},
|
||||
metadata={},
|
||||
costs=[],
|
||||
)
|
||||
|
||||
# Create a proper ToggleLlmModelResponse
|
||||
mock_response = llm_model.ToggleLlmModelResponse(
|
||||
model=mock_model,
|
||||
nodes_migrated=0,
|
||||
migrated_to_slug=None,
|
||||
migration_id=None,
|
||||
)
|
||||
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.toggle_model",
|
||||
new=AsyncMock(return_value=mock_response),
|
||||
)
|
||||
|
||||
mock_refresh = mocker.patch(
|
||||
"backend.api.features.admin.llm_routes._refresh_runtime_state",
|
||||
new=AsyncMock(),
|
||||
)
|
||||
|
||||
request_data = {"is_enabled": False}
|
||||
|
||||
response = client.patch("/admin/llm/models/model-1/toggle", json=request_data)
|
||||
|
||||
assert response.status_code == 200
|
||||
response_data = response.json()
|
||||
assert response_data["model"]["is_enabled"] is False
|
||||
|
||||
# Verify refresh was called
|
||||
mock_refresh.assert_called_once()
|
||||
|
||||
# Snapshot test the response (must be string)
|
||||
configured_snapshot.assert_match(
|
||||
json.dumps(response_data, indent=2, sort_keys=True),
|
||||
"toggle_llm_model_success.json",
|
||||
)
|
||||
|
||||
|
||||
def test_delete_llm_model_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
configured_snapshot: Snapshot,
|
||||
) -> None:
|
||||
"""Test successful deletion of LLM model with migration"""
|
||||
# Create a proper DeleteLlmModelResponse
|
||||
mock_response = llm_model.DeleteLlmModelResponse(
|
||||
deleted_model_slug="gpt-3.5-turbo",
|
||||
deleted_model_display_name="GPT-3.5 Turbo",
|
||||
replacement_model_slug="gpt-4o-mini",
|
||||
nodes_migrated=42,
|
||||
message="Successfully deleted model 'GPT-3.5 Turbo' (gpt-3.5-turbo) "
|
||||
"and migrated 42 workflow node(s) to 'gpt-4o-mini'.",
|
||||
)
|
||||
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.delete_model",
|
||||
new=AsyncMock(return_value=mock_response),
|
||||
)
|
||||
|
||||
mock_refresh = mocker.patch(
|
||||
"backend.api.features.admin.llm_routes._refresh_runtime_state",
|
||||
new=AsyncMock(),
|
||||
)
|
||||
|
||||
response = client.delete(
|
||||
"/admin/llm/models/model-1?replacement_model_slug=gpt-4o-mini"
|
||||
)
|
||||
|
||||
assert response.status_code == 200
|
||||
response_data = response.json()
|
||||
assert response_data["deleted_model_slug"] == "gpt-3.5-turbo"
|
||||
assert response_data["nodes_migrated"] == 42
|
||||
assert response_data["replacement_model_slug"] == "gpt-4o-mini"
|
||||
|
||||
# Verify refresh was called
|
||||
mock_refresh.assert_called_once()
|
||||
|
||||
# Snapshot test the response (must be string)
|
||||
configured_snapshot.assert_match(
|
||||
json.dumps(response_data, indent=2, sort_keys=True),
|
||||
"delete_llm_model_success.json",
|
||||
)
|
||||
|
||||
|
||||
def test_delete_llm_model_validation_error(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
) -> None:
|
||||
"""Test deletion fails with proper error when validation fails"""
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.delete_model",
|
||||
new=AsyncMock(side_effect=ValueError("Replacement model 'invalid' not found")),
|
||||
)
|
||||
|
||||
response = client.delete("/admin/llm/models/model-1?replacement_model_slug=invalid")
|
||||
|
||||
assert response.status_code == 400
|
||||
assert "Replacement model 'invalid' not found" in response.json()["detail"]
|
||||
|
||||
|
||||
def test_delete_llm_model_no_replacement_with_usage(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
) -> None:
|
||||
"""Test deletion fails when nodes exist but no replacement is provided"""
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.delete_model",
|
||||
new=AsyncMock(
|
||||
side_effect=ValueError(
|
||||
"Cannot delete model 'test-model': 5 workflow node(s) are using it. "
|
||||
"Please provide a replacement_model_slug to migrate them."
|
||||
)
|
||||
),
|
||||
)
|
||||
|
||||
response = client.delete("/admin/llm/models/model-1")
|
||||
|
||||
assert response.status_code == 400
|
||||
assert "workflow node(s) are using it" in response.json()["detail"]
|
||||
|
||||
|
||||
def test_delete_llm_model_no_replacement_no_usage(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
) -> None:
|
||||
"""Test deletion succeeds when no nodes use the model and no replacement is provided"""
|
||||
mock_response = llm_model.DeleteLlmModelResponse(
|
||||
deleted_model_slug="unused-model",
|
||||
deleted_model_display_name="Unused Model",
|
||||
replacement_model_slug=None,
|
||||
nodes_migrated=0,
|
||||
message="Successfully deleted model 'Unused Model' (unused-model). No workflows were using this model.",
|
||||
)
|
||||
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.delete_model",
|
||||
new=AsyncMock(return_value=mock_response),
|
||||
)
|
||||
|
||||
mock_refresh = mocker.patch(
|
||||
"backend.api.features.admin.llm_routes._refresh_runtime_state",
|
||||
new=AsyncMock(),
|
||||
)
|
||||
|
||||
response = client.delete("/admin/llm/models/model-1")
|
||||
|
||||
assert response.status_code == 200
|
||||
response_data = response.json()
|
||||
assert response_data["deleted_model_slug"] == "unused-model"
|
||||
assert response_data["nodes_migrated"] == 0
|
||||
assert response_data["replacement_model_slug"] is None
|
||||
mock_refresh.assert_called_once()
|
||||
@@ -15,7 +15,6 @@ from backend.blocks import load_all_blocks
|
||||
from backend.blocks.llm import LlmModel
|
||||
from backend.data.block import AnyBlockSchema, BlockCategory, BlockInfo, BlockSchema
|
||||
from backend.data.db import query_raw_with_schema
|
||||
from backend.data.llm_registry import get_all_model_slugs_for_validation
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.cache import cached
|
||||
from backend.util.models import Pagination
|
||||
@@ -32,14 +31,7 @@ from .model import (
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _get_llm_models() -> list[str]:
|
||||
"""Get LLM model names for search matching from the registry."""
|
||||
return [
|
||||
slug.lower().replace("-", " ") for slug in get_all_model_slugs_for_validation()
|
||||
]
|
||||
|
||||
llm_models = [name.name.lower().replace("_", " ") for name in LlmModel]
|
||||
|
||||
MAX_LIBRARY_AGENT_RESULTS = 100
|
||||
MAX_MARKETPLACE_AGENT_RESULTS = 100
|
||||
@@ -504,8 +496,8 @@ async def _get_static_counts():
|
||||
def _matches_llm_model(schema_cls: type[BlockSchema], query: str) -> bool:
|
||||
for field in schema_cls.model_fields.values():
|
||||
if field.annotation == LlmModel:
|
||||
# Check if query matches any value in llm_models from registry
|
||||
if any(query in name for name in _get_llm_models()):
|
||||
# Check if query matches any value in llm_models
|
||||
if any(query in name for name in llm_models):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
@@ -17,7 +17,7 @@ router = fastapi.APIRouter(
|
||||
)
|
||||
|
||||
|
||||
# Taken from backend/server/v2/store/db.py
|
||||
# Taken from backend/api/features/store/db.py
|
||||
def sanitize_query(query: str | None) -> str | None:
|
||||
if query is None:
|
||||
return query
|
||||
|
||||
@@ -33,9 +33,15 @@ class ChatConfig(BaseSettings):
|
||||
|
||||
stream_timeout: int = Field(default=300, description="Stream timeout in seconds")
|
||||
max_retries: int = Field(default=3, description="Maximum number of retries")
|
||||
max_agent_runs: int = Field(default=3, description="Maximum number of agent runs")
|
||||
max_agent_runs: int = Field(default=30, description="Maximum number of agent runs")
|
||||
max_agent_schedules: int = Field(
|
||||
default=3, description="Maximum number of agent schedules"
|
||||
default=30, description="Maximum number of agent schedules"
|
||||
)
|
||||
|
||||
# Long-running operation configuration
|
||||
long_running_operation_ttl: int = Field(
|
||||
default=600,
|
||||
description="TTL in seconds for long-running operation tracking in Redis (safety net if pod dies)",
|
||||
)
|
||||
|
||||
# Langfuse Prompt Management Configuration
|
||||
|
||||
@@ -247,3 +247,45 @@ async def get_chat_session_message_count(session_id: str) -> int:
|
||||
"""Get the number of messages in a chat session."""
|
||||
count = await PrismaChatMessage.prisma().count(where={"sessionId": session_id})
|
||||
return count
|
||||
|
||||
|
||||
async def update_tool_message_content(
|
||||
session_id: str,
|
||||
tool_call_id: str,
|
||||
new_content: str,
|
||||
) -> bool:
|
||||
"""Update the content of a tool message in chat history.
|
||||
|
||||
Used by background tasks to update pending operation messages with final results.
|
||||
|
||||
Args:
|
||||
session_id: The chat session ID.
|
||||
tool_call_id: The tool call ID to find the message.
|
||||
new_content: The new content to set.
|
||||
|
||||
Returns:
|
||||
True if a message was updated, False otherwise.
|
||||
"""
|
||||
try:
|
||||
result = await PrismaChatMessage.prisma().update_many(
|
||||
where={
|
||||
"sessionId": session_id,
|
||||
"toolCallId": tool_call_id,
|
||||
},
|
||||
data={
|
||||
"content": new_content,
|
||||
},
|
||||
)
|
||||
if result == 0:
|
||||
logger.warning(
|
||||
f"No message found to update for session {session_id}, "
|
||||
f"tool_call_id {tool_call_id}"
|
||||
)
|
||||
return False
|
||||
return True
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Failed to update tool message for session {session_id}, "
|
||||
f"tool_call_id {tool_call_id}: {e}"
|
||||
)
|
||||
return False
|
||||
|
||||
@@ -295,6 +295,21 @@ async def cache_chat_session(session: ChatSession) -> None:
|
||||
await _cache_session(session)
|
||||
|
||||
|
||||
async def invalidate_session_cache(session_id: str) -> None:
|
||||
"""Invalidate a chat session from Redis cache.
|
||||
|
||||
Used by background tasks to ensure fresh data is loaded on next access.
|
||||
This is best-effort - Redis failures are logged but don't fail the operation.
|
||||
"""
|
||||
try:
|
||||
redis_key = _get_session_cache_key(session_id)
|
||||
async_redis = await get_redis_async()
|
||||
await async_redis.delete(redis_key)
|
||||
except Exception as e:
|
||||
# Best-effort: log but don't fail - cache will expire naturally
|
||||
logger.warning(f"Failed to invalidate session cache for {session_id}: {e}")
|
||||
|
||||
|
||||
async def _get_session_from_db(session_id: str) -> ChatSession | None:
|
||||
"""Get a chat session from the database."""
|
||||
prisma_session = await chat_db.get_chat_session(session_id)
|
||||
|
||||
@@ -17,6 +17,7 @@ from openai import (
|
||||
)
|
||||
from openai.types.chat import ChatCompletionChunk, ChatCompletionToolParam
|
||||
|
||||
from backend.data.redis_client import get_redis_async
|
||||
from backend.data.understanding import (
|
||||
format_understanding_for_prompt,
|
||||
get_business_understanding,
|
||||
@@ -24,6 +25,7 @@ from backend.data.understanding import (
|
||||
from backend.util.exceptions import NotFoundError
|
||||
from backend.util.settings import Settings
|
||||
|
||||
from . import db as chat_db
|
||||
from .config import ChatConfig
|
||||
from .model import (
|
||||
ChatMessage,
|
||||
@@ -31,6 +33,7 @@ from .model import (
|
||||
Usage,
|
||||
cache_chat_session,
|
||||
get_chat_session,
|
||||
invalidate_session_cache,
|
||||
update_session_title,
|
||||
upsert_chat_session,
|
||||
)
|
||||
@@ -48,8 +51,13 @@ from .response_model import (
|
||||
StreamToolOutputAvailable,
|
||||
StreamUsage,
|
||||
)
|
||||
from .tools import execute_tool, tools
|
||||
from .tools.models import ErrorResponse
|
||||
from .tools import execute_tool, get_tool, tools
|
||||
from .tools.models import (
|
||||
ErrorResponse,
|
||||
OperationInProgressResponse,
|
||||
OperationPendingResponse,
|
||||
OperationStartedResponse,
|
||||
)
|
||||
from .tracking import track_user_message
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -61,11 +69,126 @@ client = openai.AsyncOpenAI(api_key=config.api_key, base_url=config.base_url)
|
||||
|
||||
langfuse = get_client()
|
||||
|
||||
# Redis key prefix for tracking running long-running operations
|
||||
# Used for idempotency across Kubernetes pods - prevents duplicate executions on browser refresh
|
||||
RUNNING_OPERATION_PREFIX = "chat:running_operation:"
|
||||
|
||||
class LangfuseNotConfiguredError(Exception):
|
||||
"""Raised when Langfuse is required but not configured."""
|
||||
# Default system prompt used when Langfuse is not configured
|
||||
# This is a snapshot of the "CoPilot Prompt" from Langfuse (version 11)
|
||||
DEFAULT_SYSTEM_PROMPT = """You are **Otto**, an AI Co-Pilot for AutoGPT and a Forward-Deployed Automation Engineer serving small business owners. Your mission is to help users automate business tasks with AI by delivering tangible value through working automations—not through documentation or lengthy explanations.
|
||||
|
||||
pass
|
||||
Here is everything you know about the current user from previous interactions:
|
||||
|
||||
<users_information>
|
||||
{users_information}
|
||||
</users_information>
|
||||
|
||||
## YOUR CORE MANDATE
|
||||
|
||||
You are action-oriented. Your success is measured by:
|
||||
- **Value Delivery**: Does the user think "wow, that was amazing" or "what was the point"?
|
||||
- **Demonstrable Proof**: Show working automations, not descriptions of what's possible
|
||||
- **Time Saved**: Focus on tangible efficiency gains
|
||||
- **Quality Output**: Deliver results that meet or exceed expectations
|
||||
|
||||
## YOUR WORKFLOW
|
||||
|
||||
Adapt flexibly to the conversation context. Not every interaction requires all stages:
|
||||
|
||||
1. **Explore & Understand**: Learn about the user's business, tasks, and goals. Use `add_understanding` to capture important context that will improve future conversations.
|
||||
|
||||
2. **Assess Automation Potential**: Help the user understand whether and how AI can automate their task.
|
||||
|
||||
3. **Prepare for AI**: Provide brief, actionable guidance on prerequisites (data, access, etc.).
|
||||
|
||||
4. **Discover or Create Agents**:
|
||||
- **Always check the user's library first** with `find_library_agent` (these may be customized to their needs)
|
||||
- Search the marketplace with `find_agent` for pre-built automations
|
||||
- Find reusable components with `find_block`
|
||||
- Create custom solutions with `create_agent` if nothing suitable exists
|
||||
- Modify existing library agents with `edit_agent`
|
||||
|
||||
5. **Execute**: Run automations immediately, schedule them, or set up webhooks using `run_agent`. Test specific components with `run_block`.
|
||||
|
||||
6. **Show Results**: Display outputs using `agent_output`.
|
||||
|
||||
## AVAILABLE TOOLS
|
||||
|
||||
**Understanding & Discovery:**
|
||||
- `add_understanding`: Create a memory about the user's business or use cases for future sessions
|
||||
- `search_docs`: Search platform documentation for specific technical information
|
||||
- `get_doc_page`: Retrieve full text of a specific documentation page
|
||||
|
||||
**Agent Discovery:**
|
||||
- `find_library_agent`: Search the user's existing agents (CHECK HERE FIRST—these may be customized)
|
||||
- `find_agent`: Search the marketplace for pre-built automations
|
||||
- `find_block`: Find pre-written code units that perform specific tasks (agents are built from blocks)
|
||||
|
||||
**Agent Creation & Editing:**
|
||||
- `create_agent`: Create a new automation agent
|
||||
- `edit_agent`: Modify an agent in the user's library
|
||||
|
||||
**Execution & Output:**
|
||||
- `run_agent`: Run an agent now, schedule it, or set up a webhook trigger
|
||||
- `run_block`: Test or run a specific block independently
|
||||
- `agent_output`: View results from previous agent runs
|
||||
|
||||
## BEHAVIORAL GUIDELINES
|
||||
|
||||
**Be Concise:**
|
||||
- Target 2-5 short lines maximum
|
||||
- Make every word count—no repetition or filler
|
||||
- Use lightweight structure for scannability (bullets, numbered lists, short prompts)
|
||||
- Avoid jargon (blocks, slugs, cron) unless the user asks
|
||||
|
||||
**Be Proactive:**
|
||||
- Suggest next steps before being asked
|
||||
- Anticipate needs based on conversation context and user information
|
||||
- Look for opportunities to expand scope when relevant
|
||||
- Reveal capabilities through action, not explanation
|
||||
|
||||
**Use Tools Effectively:**
|
||||
- Select the right tool for each task
|
||||
- **Always check `find_library_agent` before searching the marketplace**
|
||||
- Use `add_understanding` to capture valuable business context
|
||||
- When tool calls fail, try alternative approaches
|
||||
|
||||
## CRITICAL REMINDER
|
||||
|
||||
You are NOT a chatbot. You are NOT documentation. You are a partner who helps busy business owners get value quickly by showing proof through working automations. Bias toward action over explanation."""
|
||||
|
||||
# Module-level set to hold strong references to background tasks.
|
||||
# This prevents asyncio from garbage collecting tasks before they complete.
|
||||
# Tasks are automatically removed on completion via done_callback.
|
||||
_background_tasks: set[asyncio.Task] = set()
|
||||
|
||||
|
||||
async def _mark_operation_started(tool_call_id: str) -> bool:
|
||||
"""Mark a long-running operation as started (Redis-based).
|
||||
|
||||
Returns True if successfully marked (operation was not already running),
|
||||
False if operation was already running (lost race condition).
|
||||
Raises exception if Redis is unavailable (fail-closed).
|
||||
"""
|
||||
redis = await get_redis_async()
|
||||
key = f"{RUNNING_OPERATION_PREFIX}{tool_call_id}"
|
||||
# SETNX with TTL - atomic "set if not exists"
|
||||
result = await redis.set(key, "1", ex=config.long_running_operation_ttl, nx=True)
|
||||
return result is not None
|
||||
|
||||
|
||||
async def _mark_operation_completed(tool_call_id: str) -> None:
|
||||
"""Mark a long-running operation as completed (remove Redis key).
|
||||
|
||||
This is best-effort - if Redis fails, the TTL will eventually clean up.
|
||||
"""
|
||||
try:
|
||||
redis = await get_redis_async()
|
||||
key = f"{RUNNING_OPERATION_PREFIX}{tool_call_id}"
|
||||
await redis.delete(key)
|
||||
except Exception as e:
|
||||
# Non-critical: TTL will clean up eventually
|
||||
logger.warning(f"Failed to delete running operation key {tool_call_id}: {e}")
|
||||
|
||||
|
||||
def _is_langfuse_configured() -> bool:
|
||||
@@ -75,6 +198,30 @@ def _is_langfuse_configured() -> bool:
|
||||
)
|
||||
|
||||
|
||||
async def _get_system_prompt_template(context: str) -> str:
|
||||
"""Get the system prompt, trying Langfuse first with fallback to default.
|
||||
|
||||
Args:
|
||||
context: The user context/information to compile into the prompt.
|
||||
|
||||
Returns:
|
||||
The compiled system prompt string.
|
||||
"""
|
||||
if _is_langfuse_configured():
|
||||
try:
|
||||
# cache_ttl_seconds=0 disables SDK caching to always get the latest prompt
|
||||
# Use asyncio.to_thread to avoid blocking the event loop
|
||||
prompt = await asyncio.to_thread(
|
||||
langfuse.get_prompt, config.langfuse_prompt_name, cache_ttl_seconds=0
|
||||
)
|
||||
return prompt.compile(users_information=context)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to fetch prompt from Langfuse, using default: {e}")
|
||||
|
||||
# Fallback to default prompt
|
||||
return DEFAULT_SYSTEM_PROMPT.format(users_information=context)
|
||||
|
||||
|
||||
async def _build_system_prompt(user_id: str | None) -> tuple[str, Any]:
|
||||
"""Build the full system prompt including business understanding if available.
|
||||
|
||||
@@ -83,12 +230,8 @@ async def _build_system_prompt(user_id: str | None) -> tuple[str, Any]:
|
||||
If "default" and this is the user's first session, will use "onboarding" instead.
|
||||
|
||||
Returns:
|
||||
Tuple of (compiled prompt string, Langfuse prompt object for tracing)
|
||||
Tuple of (compiled prompt string, business understanding object)
|
||||
"""
|
||||
|
||||
# cache_ttl_seconds=0 disables SDK caching to always get the latest prompt
|
||||
prompt = langfuse.get_prompt(config.langfuse_prompt_name, cache_ttl_seconds=0)
|
||||
|
||||
# If user is authenticated, try to fetch their business understanding
|
||||
understanding = None
|
||||
if user_id:
|
||||
@@ -97,12 +240,13 @@ async def _build_system_prompt(user_id: str | None) -> tuple[str, Any]:
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to fetch business understanding: {e}")
|
||||
understanding = None
|
||||
|
||||
if understanding:
|
||||
context = format_understanding_for_prompt(understanding)
|
||||
else:
|
||||
context = "This is the first time you are meeting the user. Greet them and introduce them to the platform"
|
||||
|
||||
compiled = prompt.compile(users_information=context)
|
||||
compiled = await _get_system_prompt_template(context)
|
||||
return compiled, understanding
|
||||
|
||||
|
||||
@@ -210,16 +354,6 @@ async def stream_chat_completion(
|
||||
f"Streaming chat completion for session {session_id} for message {message} and user id {user_id}. Message is user message: {is_user_message}"
|
||||
)
|
||||
|
||||
# Check if Langfuse is configured - required for chat functionality
|
||||
if not _is_langfuse_configured():
|
||||
logger.error("Chat request failed: Langfuse is not configured")
|
||||
yield StreamError(
|
||||
errorText="Chat service is not available. Langfuse must be configured "
|
||||
"with LANGFUSE_PUBLIC_KEY and LANGFUSE_SECRET_KEY environment variables."
|
||||
)
|
||||
yield StreamFinish()
|
||||
return
|
||||
|
||||
# Only fetch from Redis if session not provided (initial call)
|
||||
if session is None:
|
||||
session = await get_chat_session(session_id, user_id)
|
||||
@@ -315,6 +449,7 @@ async def stream_chat_completion(
|
||||
has_yielded_end = False
|
||||
has_yielded_error = False
|
||||
has_done_tool_call = False
|
||||
has_long_running_tool_call = False # Track if we had a long-running tool call
|
||||
has_received_text = False
|
||||
text_streaming_ended = False
|
||||
tool_response_messages: list[ChatMessage] = []
|
||||
@@ -336,7 +471,6 @@ async def stream_chat_completion(
|
||||
system_prompt=system_prompt,
|
||||
text_block_id=text_block_id,
|
||||
):
|
||||
|
||||
if isinstance(chunk, StreamTextStart):
|
||||
# Emit text-start before first text delta
|
||||
if not has_received_text:
|
||||
@@ -394,13 +528,34 @@ async def stream_chat_completion(
|
||||
if isinstance(chunk.output, str)
|
||||
else orjson.dumps(chunk.output).decode("utf-8")
|
||||
)
|
||||
tool_response_messages.append(
|
||||
ChatMessage(
|
||||
role="tool",
|
||||
content=result_content,
|
||||
tool_call_id=chunk.toolCallId,
|
||||
# Skip saving long-running operation responses - messages already saved in _yield_tool_call
|
||||
# Use JSON parsing instead of substring matching to avoid false positives
|
||||
is_long_running_response = False
|
||||
try:
|
||||
parsed = orjson.loads(result_content)
|
||||
if isinstance(parsed, dict) and parsed.get("type") in (
|
||||
"operation_started",
|
||||
"operation_in_progress",
|
||||
):
|
||||
is_long_running_response = True
|
||||
except (orjson.JSONDecodeError, TypeError):
|
||||
pass # Not JSON or not a dict - treat as regular response
|
||||
if is_long_running_response:
|
||||
# Remove from accumulated_tool_calls since assistant message was already saved
|
||||
accumulated_tool_calls[:] = [
|
||||
tc
|
||||
for tc in accumulated_tool_calls
|
||||
if tc["id"] != chunk.toolCallId
|
||||
]
|
||||
has_long_running_tool_call = True
|
||||
else:
|
||||
tool_response_messages.append(
|
||||
ChatMessage(
|
||||
role="tool",
|
||||
content=result_content,
|
||||
tool_call_id=chunk.toolCallId,
|
||||
)
|
||||
)
|
||||
)
|
||||
has_done_tool_call = True
|
||||
# Track if any tool execution failed
|
||||
if not chunk.success:
|
||||
@@ -576,7 +731,14 @@ async def stream_chat_completion(
|
||||
logger.info(
|
||||
f"Extended session messages, new message_count={len(session.messages)}"
|
||||
)
|
||||
if messages_to_save or has_appended_streaming_message:
|
||||
# Save if there are regular (non-long-running) tool responses or streaming message.
|
||||
# Long-running tools save their own state, but we still need to save regular tools
|
||||
# that may be in the same response.
|
||||
has_regular_tool_responses = len(tool_response_messages) > 0
|
||||
if has_regular_tool_responses or (
|
||||
not has_long_running_tool_call
|
||||
and (messages_to_save or has_appended_streaming_message)
|
||||
):
|
||||
await upsert_chat_session(session)
|
||||
else:
|
||||
logger.info(
|
||||
@@ -585,7 +747,9 @@ async def stream_chat_completion(
|
||||
)
|
||||
|
||||
# If we did a tool call, stream the chat completion again to get the next response
|
||||
if has_done_tool_call:
|
||||
# Skip only if ALL tools were long-running (they handle their own completion)
|
||||
has_regular_tools = len(tool_response_messages) > 0
|
||||
if has_done_tool_call and (has_regular_tools or not has_long_running_tool_call):
|
||||
logger.info(
|
||||
"Tool call executed, streaming chat completion again to get assistant response"
|
||||
)
|
||||
@@ -725,6 +889,114 @@ async def _summarize_messages(
|
||||
return summary or "No summary available."
|
||||
|
||||
|
||||
def _ensure_tool_pairs_intact(
|
||||
recent_messages: list[dict],
|
||||
all_messages: list[dict],
|
||||
start_index: int,
|
||||
) -> list[dict]:
|
||||
"""
|
||||
Ensure tool_call/tool_response pairs stay together after slicing.
|
||||
|
||||
When slicing messages for context compaction, a naive slice can separate
|
||||
an assistant message containing tool_calls from its corresponding tool
|
||||
response messages. This causes API validation errors (e.g., Anthropic's
|
||||
"unexpected tool_use_id found in tool_result blocks").
|
||||
|
||||
This function checks for orphan tool responses in the slice and extends
|
||||
backwards to include their corresponding assistant messages.
|
||||
|
||||
Args:
|
||||
recent_messages: The sliced messages to validate
|
||||
all_messages: The complete message list (for looking up missing assistants)
|
||||
start_index: The index in all_messages where recent_messages begins
|
||||
|
||||
Returns:
|
||||
A potentially extended list of messages with tool pairs intact
|
||||
"""
|
||||
if not recent_messages:
|
||||
return recent_messages
|
||||
|
||||
# Collect all tool_call_ids from assistant messages in the slice
|
||||
available_tool_call_ids: set[str] = set()
|
||||
for msg in recent_messages:
|
||||
if msg.get("role") == "assistant" and msg.get("tool_calls"):
|
||||
for tc in msg["tool_calls"]:
|
||||
tc_id = tc.get("id")
|
||||
if tc_id:
|
||||
available_tool_call_ids.add(tc_id)
|
||||
|
||||
# Find orphan tool responses (tool messages whose tool_call_id is missing)
|
||||
orphan_tool_call_ids: set[str] = set()
|
||||
for msg in recent_messages:
|
||||
if msg.get("role") == "tool":
|
||||
tc_id = msg.get("tool_call_id")
|
||||
if tc_id and tc_id not in available_tool_call_ids:
|
||||
orphan_tool_call_ids.add(tc_id)
|
||||
|
||||
if not orphan_tool_call_ids:
|
||||
# No orphans, slice is valid
|
||||
return recent_messages
|
||||
|
||||
# Find the assistant messages that contain the orphan tool_call_ids
|
||||
# Search backwards from start_index in all_messages
|
||||
messages_to_prepend: list[dict] = []
|
||||
for i in range(start_index - 1, -1, -1):
|
||||
msg = all_messages[i]
|
||||
if msg.get("role") == "assistant" and msg.get("tool_calls"):
|
||||
msg_tool_ids = {tc.get("id") for tc in msg["tool_calls"] if tc.get("id")}
|
||||
if msg_tool_ids & orphan_tool_call_ids:
|
||||
# This assistant message has tool_calls we need
|
||||
# Also collect its contiguous tool responses that follow it
|
||||
assistant_and_responses: list[dict] = [msg]
|
||||
|
||||
# Scan forward from this assistant to collect tool responses
|
||||
for j in range(i + 1, start_index):
|
||||
following_msg = all_messages[j]
|
||||
if following_msg.get("role") == "tool":
|
||||
tool_id = following_msg.get("tool_call_id")
|
||||
if tool_id and tool_id in msg_tool_ids:
|
||||
assistant_and_responses.append(following_msg)
|
||||
else:
|
||||
# Stop at first non-tool message
|
||||
break
|
||||
|
||||
# Prepend the assistant and its tool responses (maintain order)
|
||||
messages_to_prepend = assistant_and_responses + messages_to_prepend
|
||||
# Mark these as found
|
||||
orphan_tool_call_ids -= msg_tool_ids
|
||||
# Also add this assistant's tool_call_ids to available set
|
||||
available_tool_call_ids |= msg_tool_ids
|
||||
|
||||
if not orphan_tool_call_ids:
|
||||
# Found all missing assistants
|
||||
break
|
||||
|
||||
if orphan_tool_call_ids:
|
||||
# Some tool_call_ids couldn't be resolved - remove those tool responses
|
||||
# This shouldn't happen in normal operation but handles edge cases
|
||||
logger.warning(
|
||||
f"Could not find assistant messages for tool_call_ids: {orphan_tool_call_ids}. "
|
||||
"Removing orphan tool responses."
|
||||
)
|
||||
recent_messages = [
|
||||
msg
|
||||
for msg in recent_messages
|
||||
if not (
|
||||
msg.get("role") == "tool"
|
||||
and msg.get("tool_call_id") in orphan_tool_call_ids
|
||||
)
|
||||
]
|
||||
|
||||
if messages_to_prepend:
|
||||
logger.info(
|
||||
f"Extended recent messages by {len(messages_to_prepend)} to preserve "
|
||||
f"tool_call/tool_response pairs"
|
||||
)
|
||||
return messages_to_prepend + recent_messages
|
||||
|
||||
return recent_messages
|
||||
|
||||
|
||||
async def _stream_chat_chunks(
|
||||
session: ChatSession,
|
||||
tools: list[ChatCompletionToolParam],
|
||||
@@ -816,7 +1088,15 @@ async def _stream_chat_chunks(
|
||||
# Always attempt mitigation when over limit, even with few messages
|
||||
if messages:
|
||||
# Split messages based on whether system prompt exists
|
||||
recent_messages = messages[-KEEP_RECENT:]
|
||||
# Calculate start index for the slice
|
||||
slice_start = max(0, len(messages_dict) - KEEP_RECENT)
|
||||
recent_messages = messages_dict[-KEEP_RECENT:]
|
||||
|
||||
# Ensure tool_call/tool_response pairs stay together
|
||||
# This prevents API errors from orphan tool responses
|
||||
recent_messages = _ensure_tool_pairs_intact(
|
||||
recent_messages, messages_dict, slice_start
|
||||
)
|
||||
|
||||
if has_system_prompt:
|
||||
# Keep system prompt separate, summarize everything between system and recent
|
||||
@@ -903,6 +1183,13 @@ async def _stream_chat_chunks(
|
||||
if len(recent_messages) >= keep_count
|
||||
else recent_messages
|
||||
)
|
||||
# Ensure tool pairs stay intact in the reduced slice
|
||||
reduced_slice_start = max(
|
||||
0, len(recent_messages) - keep_count
|
||||
)
|
||||
reduced_recent = _ensure_tool_pairs_intact(
|
||||
reduced_recent, recent_messages, reduced_slice_start
|
||||
)
|
||||
if has_system_prompt:
|
||||
messages = [
|
||||
system_msg,
|
||||
@@ -961,7 +1248,10 @@ async def _stream_chat_chunks(
|
||||
|
||||
# Create a base list excluding system prompt to avoid duplication
|
||||
# This is the pool of messages we'll slice from in the loop
|
||||
base_msgs = messages[1:] if has_system_prompt else messages
|
||||
# Use messages_dict for type consistency with _ensure_tool_pairs_intact
|
||||
base_msgs = (
|
||||
messages_dict[1:] if has_system_prompt else messages_dict
|
||||
)
|
||||
|
||||
# Try progressively smaller keep counts
|
||||
new_token_count = token_count # Initialize with current count
|
||||
@@ -984,6 +1274,12 @@ async def _stream_chat_chunks(
|
||||
# Slice from base_msgs to get recent messages (without system prompt)
|
||||
recent_messages = base_msgs[-keep_count:]
|
||||
|
||||
# Ensure tool pairs stay intact in the reduced slice
|
||||
reduced_slice_start = max(0, len(base_msgs) - keep_count)
|
||||
recent_messages = _ensure_tool_pairs_intact(
|
||||
recent_messages, base_msgs, reduced_slice_start
|
||||
)
|
||||
|
||||
if has_system_prompt:
|
||||
messages = [system_msg] + recent_messages
|
||||
else:
|
||||
@@ -1260,17 +1556,19 @@ async def _yield_tool_call(
|
||||
"""
|
||||
Yield a tool call and its execution result.
|
||||
|
||||
For long-running tools, yields heartbeat events every 15 seconds to keep
|
||||
the SSE connection alive through proxies and load balancers.
|
||||
For tools marked with `is_long_running=True` (like agent generation), spawns a
|
||||
background task so the operation survives SSE disconnections. For other tools,
|
||||
yields heartbeat events every 15 seconds to keep the SSE connection alive.
|
||||
|
||||
Raises:
|
||||
orjson.JSONDecodeError: If tool call arguments cannot be parsed as JSON
|
||||
KeyError: If expected tool call fields are missing
|
||||
TypeError: If tool call structure is invalid
|
||||
"""
|
||||
import uuid as uuid_module
|
||||
|
||||
tool_name = tool_calls[yield_idx]["function"]["name"]
|
||||
tool_call_id = tool_calls[yield_idx]["id"]
|
||||
logger.info(f"Yielding tool call: {tool_calls[yield_idx]}")
|
||||
|
||||
# Parse tool call arguments - handle empty arguments gracefully
|
||||
raw_arguments = tool_calls[yield_idx]["function"]["arguments"]
|
||||
@@ -1285,7 +1583,151 @@ async def _yield_tool_call(
|
||||
input=arguments,
|
||||
)
|
||||
|
||||
# Run tool execution in background task with heartbeats to keep connection alive
|
||||
# Check if this tool is long-running (survives SSE disconnection)
|
||||
tool = get_tool(tool_name)
|
||||
if tool and tool.is_long_running:
|
||||
# Atomic check-and-set: returns False if operation already running (lost race)
|
||||
if not await _mark_operation_started(tool_call_id):
|
||||
logger.info(
|
||||
f"Tool call {tool_call_id} already in progress, returning status"
|
||||
)
|
||||
# Build dynamic message based on tool name
|
||||
if tool_name == "create_agent":
|
||||
in_progress_msg = "Agent creation already in progress. Please wait..."
|
||||
elif tool_name == "edit_agent":
|
||||
in_progress_msg = "Agent edit already in progress. Please wait..."
|
||||
else:
|
||||
in_progress_msg = f"{tool_name} already in progress. Please wait..."
|
||||
|
||||
yield StreamToolOutputAvailable(
|
||||
toolCallId=tool_call_id,
|
||||
toolName=tool_name,
|
||||
output=OperationInProgressResponse(
|
||||
message=in_progress_msg,
|
||||
tool_call_id=tool_call_id,
|
||||
).model_dump_json(),
|
||||
success=True,
|
||||
)
|
||||
return
|
||||
|
||||
# Generate operation ID
|
||||
operation_id = str(uuid_module.uuid4())
|
||||
|
||||
# Build a user-friendly message based on tool and arguments
|
||||
if tool_name == "create_agent":
|
||||
agent_desc = arguments.get("description", "")
|
||||
# Truncate long descriptions for the message
|
||||
desc_preview = (
|
||||
(agent_desc[:100] + "...") if len(agent_desc) > 100 else agent_desc
|
||||
)
|
||||
pending_msg = (
|
||||
f"Creating your agent: {desc_preview}"
|
||||
if desc_preview
|
||||
else "Creating agent... This may take a few minutes."
|
||||
)
|
||||
started_msg = (
|
||||
"Agent creation started. You can close this tab - "
|
||||
"check your library in a few minutes."
|
||||
)
|
||||
elif tool_name == "edit_agent":
|
||||
changes = arguments.get("changes", "")
|
||||
changes_preview = (changes[:100] + "...") if len(changes) > 100 else changes
|
||||
pending_msg = (
|
||||
f"Editing agent: {changes_preview}"
|
||||
if changes_preview
|
||||
else "Editing agent... This may take a few minutes."
|
||||
)
|
||||
started_msg = (
|
||||
"Agent edit started. You can close this tab - "
|
||||
"check your library in a few minutes."
|
||||
)
|
||||
else:
|
||||
pending_msg = f"Running {tool_name}... This may take a few minutes."
|
||||
started_msg = (
|
||||
f"{tool_name} started. You can close this tab - "
|
||||
"check back in a few minutes."
|
||||
)
|
||||
|
||||
# Track appended messages for rollback on failure
|
||||
assistant_message: ChatMessage | None = None
|
||||
pending_message: ChatMessage | None = None
|
||||
|
||||
# Wrap session save and task creation in try-except to release lock on failure
|
||||
try:
|
||||
# Save assistant message with tool_call FIRST (required by LLM)
|
||||
assistant_message = ChatMessage(
|
||||
role="assistant",
|
||||
content="",
|
||||
tool_calls=[tool_calls[yield_idx]],
|
||||
)
|
||||
session.messages.append(assistant_message)
|
||||
|
||||
# Then save pending tool result
|
||||
pending_message = ChatMessage(
|
||||
role="tool",
|
||||
content=OperationPendingResponse(
|
||||
message=pending_msg,
|
||||
operation_id=operation_id,
|
||||
tool_name=tool_name,
|
||||
).model_dump_json(),
|
||||
tool_call_id=tool_call_id,
|
||||
)
|
||||
session.messages.append(pending_message)
|
||||
await upsert_chat_session(session)
|
||||
logger.info(
|
||||
f"Saved pending operation {operation_id} for tool {tool_name} "
|
||||
f"in session {session.session_id}"
|
||||
)
|
||||
|
||||
# Store task reference in module-level set to prevent GC before completion
|
||||
task = asyncio.create_task(
|
||||
_execute_long_running_tool(
|
||||
tool_name=tool_name,
|
||||
parameters=arguments,
|
||||
tool_call_id=tool_call_id,
|
||||
operation_id=operation_id,
|
||||
session_id=session.session_id,
|
||||
user_id=session.user_id,
|
||||
)
|
||||
)
|
||||
_background_tasks.add(task)
|
||||
task.add_done_callback(_background_tasks.discard)
|
||||
except Exception as e:
|
||||
# Roll back appended messages to prevent data corruption on subsequent saves
|
||||
if (
|
||||
pending_message
|
||||
and session.messages
|
||||
and session.messages[-1] == pending_message
|
||||
):
|
||||
session.messages.pop()
|
||||
if (
|
||||
assistant_message
|
||||
and session.messages
|
||||
and session.messages[-1] == assistant_message
|
||||
):
|
||||
session.messages.pop()
|
||||
|
||||
# Release the Redis lock since the background task won't be spawned
|
||||
await _mark_operation_completed(tool_call_id)
|
||||
logger.error(
|
||||
f"Failed to setup long-running tool {tool_name}: {e}", exc_info=True
|
||||
)
|
||||
raise
|
||||
|
||||
# Return immediately - don't wait for completion
|
||||
yield StreamToolOutputAvailable(
|
||||
toolCallId=tool_call_id,
|
||||
toolName=tool_name,
|
||||
output=OperationStartedResponse(
|
||||
message=started_msg,
|
||||
operation_id=operation_id,
|
||||
tool_name=tool_name,
|
||||
).model_dump_json(),
|
||||
success=True,
|
||||
)
|
||||
return
|
||||
|
||||
# Normal flow: Run tool execution in background task with heartbeats
|
||||
tool_task = asyncio.create_task(
|
||||
execute_tool(
|
||||
tool_name=tool_name,
|
||||
@@ -1335,3 +1777,190 @@ async def _yield_tool_call(
|
||||
)
|
||||
|
||||
yield tool_execution_response
|
||||
|
||||
|
||||
async def _execute_long_running_tool(
|
||||
tool_name: str,
|
||||
parameters: dict[str, Any],
|
||||
tool_call_id: str,
|
||||
operation_id: str,
|
||||
session_id: str,
|
||||
user_id: str | None,
|
||||
) -> None:
|
||||
"""Execute a long-running tool in background and update chat history with result.
|
||||
|
||||
This function runs independently of the SSE connection, so the operation
|
||||
survives if the user closes their browser tab.
|
||||
"""
|
||||
try:
|
||||
# Load fresh session (not stale reference)
|
||||
session = await get_chat_session(session_id, user_id)
|
||||
if not session:
|
||||
logger.error(f"Session {session_id} not found for background tool")
|
||||
return
|
||||
|
||||
# Execute the actual tool
|
||||
result = await execute_tool(
|
||||
tool_name=tool_name,
|
||||
parameters=parameters,
|
||||
tool_call_id=tool_call_id,
|
||||
user_id=user_id,
|
||||
session=session,
|
||||
)
|
||||
|
||||
# Update the pending message with result
|
||||
await _update_pending_operation(
|
||||
session_id=session_id,
|
||||
tool_call_id=tool_call_id,
|
||||
result=(
|
||||
result.output
|
||||
if isinstance(result.output, str)
|
||||
else orjson.dumps(result.output).decode("utf-8")
|
||||
),
|
||||
)
|
||||
|
||||
logger.info(f"Background tool {tool_name} completed for session {session_id}")
|
||||
|
||||
# Generate LLM continuation so user sees response when they poll/refresh
|
||||
await _generate_llm_continuation(session_id=session_id, user_id=user_id)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Background tool {tool_name} failed: {e}", exc_info=True)
|
||||
error_response = ErrorResponse(
|
||||
message=f"Tool {tool_name} failed: {str(e)}",
|
||||
)
|
||||
await _update_pending_operation(
|
||||
session_id=session_id,
|
||||
tool_call_id=tool_call_id,
|
||||
result=error_response.model_dump_json(),
|
||||
)
|
||||
finally:
|
||||
await _mark_operation_completed(tool_call_id)
|
||||
|
||||
|
||||
async def _update_pending_operation(
|
||||
session_id: str,
|
||||
tool_call_id: str,
|
||||
result: str,
|
||||
) -> None:
|
||||
"""Update the pending tool message with final result.
|
||||
|
||||
This is called by background tasks when long-running operations complete.
|
||||
"""
|
||||
# Update the message in database
|
||||
updated = await chat_db.update_tool_message_content(
|
||||
session_id=session_id,
|
||||
tool_call_id=tool_call_id,
|
||||
new_content=result,
|
||||
)
|
||||
|
||||
if updated:
|
||||
# Invalidate Redis cache so next load gets fresh data
|
||||
# Wrap in try/except to prevent cache failures from triggering error handling
|
||||
# that would overwrite our successful DB update
|
||||
try:
|
||||
await invalidate_session_cache(session_id)
|
||||
except Exception as e:
|
||||
# Non-critical: cache will eventually be refreshed on next load
|
||||
logger.warning(f"Failed to invalidate cache for session {session_id}: {e}")
|
||||
logger.info(
|
||||
f"Updated pending operation for tool_call_id {tool_call_id} "
|
||||
f"in session {session_id}"
|
||||
)
|
||||
else:
|
||||
logger.warning(
|
||||
f"Failed to update pending operation for tool_call_id {tool_call_id} "
|
||||
f"in session {session_id}"
|
||||
)
|
||||
|
||||
|
||||
async def _generate_llm_continuation(
|
||||
session_id: str,
|
||||
user_id: str | None,
|
||||
) -> None:
|
||||
"""Generate an LLM response after a long-running tool completes.
|
||||
|
||||
This is called by background tasks to continue the conversation
|
||||
after a tool result is saved. The response is saved to the database
|
||||
so users see it when they refresh or poll.
|
||||
"""
|
||||
try:
|
||||
# Load fresh session from DB (bypass cache to get the updated tool result)
|
||||
await invalidate_session_cache(session_id)
|
||||
session = await get_chat_session(session_id, user_id)
|
||||
if not session:
|
||||
logger.error(f"Session {session_id} not found for LLM continuation")
|
||||
return
|
||||
|
||||
# Build system prompt
|
||||
system_prompt, _ = await _build_system_prompt(user_id)
|
||||
|
||||
# Build messages in OpenAI format
|
||||
messages = session.to_openai_messages()
|
||||
if system_prompt:
|
||||
from openai.types.chat import ChatCompletionSystemMessageParam
|
||||
|
||||
system_message = ChatCompletionSystemMessageParam(
|
||||
role="system",
|
||||
content=system_prompt,
|
||||
)
|
||||
messages = [system_message] + messages
|
||||
|
||||
# Build extra_body for tracing
|
||||
extra_body: dict[str, Any] = {
|
||||
"posthogProperties": {
|
||||
"environment": settings.config.app_env.value,
|
||||
},
|
||||
}
|
||||
if user_id:
|
||||
extra_body["user"] = user_id[:128]
|
||||
extra_body["posthogDistinctId"] = user_id
|
||||
if session_id:
|
||||
extra_body["session_id"] = session_id[:128]
|
||||
|
||||
# Make non-streaming LLM call (no tools - just text response)
|
||||
from typing import cast
|
||||
|
||||
from openai.types.chat import ChatCompletionMessageParam
|
||||
|
||||
# No tools parameter = text-only response (no tool calls)
|
||||
response = await client.chat.completions.create(
|
||||
model=config.model,
|
||||
messages=cast(list[ChatCompletionMessageParam], messages),
|
||||
extra_body=extra_body,
|
||||
)
|
||||
|
||||
if response.choices and response.choices[0].message.content:
|
||||
assistant_content = response.choices[0].message.content
|
||||
|
||||
# Reload session from DB to avoid race condition with user messages
|
||||
# that may have been sent while we were generating the LLM response
|
||||
fresh_session = await get_chat_session(session_id, user_id)
|
||||
if not fresh_session:
|
||||
logger.error(
|
||||
f"Session {session_id} disappeared during LLM continuation"
|
||||
)
|
||||
return
|
||||
|
||||
# Save assistant message to database
|
||||
assistant_message = ChatMessage(
|
||||
role="assistant",
|
||||
content=assistant_content,
|
||||
)
|
||||
fresh_session.messages.append(assistant_message)
|
||||
|
||||
# Save to database (not cache) to persist the response
|
||||
await upsert_chat_session(fresh_session)
|
||||
|
||||
# Invalidate cache so next poll/refresh gets fresh data
|
||||
await invalidate_session_cache(session_id)
|
||||
|
||||
logger.info(
|
||||
f"Generated LLM continuation for session {session_id}, "
|
||||
f"response length: {len(assistant_content)}"
|
||||
)
|
||||
else:
|
||||
logger.warning(f"LLM continuation returned empty response for {session_id}")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to generate LLM continuation: {e}", exc_info=True)
|
||||
|
||||
@@ -0,0 +1,79 @@
|
||||
# CoPilot Tools - Future Ideas
|
||||
|
||||
## Multimodal Image Support for CoPilot
|
||||
|
||||
**Problem:** CoPilot uses a vision-capable model but can't "see" workspace images. When a block generates an image and returns `workspace://abc123`, CoPilot can't evaluate it (e.g., checking blog thumbnail quality).
|
||||
|
||||
**Backend Solution:**
|
||||
When preparing messages for the LLM, detect `workspace://` image references and convert them to proper image content blocks:
|
||||
|
||||
```python
|
||||
# Before sending to LLM, scan for workspace image references
|
||||
# and inject them as image content parts
|
||||
|
||||
# Example message transformation:
|
||||
# FROM: {"role": "assistant", "content": "Generated image: workspace://abc123"}
|
||||
# TO: {"role": "assistant", "content": [
|
||||
# {"type": "text", "text": "Generated image: workspace://abc123"},
|
||||
# {"type": "image_url", "image_url": {"url": "data:image/png;base64,..."}}
|
||||
# ]}
|
||||
```
|
||||
|
||||
**Where to implement:**
|
||||
- In the chat stream handler before calling the LLM
|
||||
- Or in a message preprocessing step
|
||||
- Need to fetch image from workspace, convert to base64, add as image content
|
||||
|
||||
**Considerations:**
|
||||
- Only do this for image MIME types (image/png, image/jpeg, etc.)
|
||||
- May want a size limit (don't pass 10MB images)
|
||||
- Track which images were "shown" to the AI for frontend indicator
|
||||
- Cost implications - vision API calls are more expensive
|
||||
|
||||
**Frontend Solution:**
|
||||
Show visual indicator on workspace files in chat:
|
||||
- If AI saw the image: normal display
|
||||
- If AI didn't see it: overlay icon saying "AI can't see this image"
|
||||
|
||||
Requires response metadata indicating which `workspace://` refs were passed to the model.
|
||||
|
||||
---
|
||||
|
||||
## Output Post-Processing Layer for run_block
|
||||
|
||||
**Problem:** Many blocks produce large outputs that:
|
||||
- Consume massive context (100KB base64 image = ~133KB tokens)
|
||||
- Can't fit in conversation
|
||||
- Break things and cause high LLM costs
|
||||
|
||||
**Proposed Solution:** Instead of modifying individual blocks or `store_media_file()`, implement a centralized output processor in `run_block.py` that handles outputs before they're returned to CoPilot.
|
||||
|
||||
**Benefits:**
|
||||
1. **Centralized** - one place to handle all output processing
|
||||
2. **Future-proof** - new blocks automatically get output processing
|
||||
3. **Keeps blocks pure** - they don't need to know about context constraints
|
||||
4. **Handles all large outputs** - not just images
|
||||
|
||||
**Processing Rules:**
|
||||
- Detect base64 data URIs → save to workspace, return `workspace://` reference
|
||||
- Truncate very long strings (>N chars) with truncation note
|
||||
- Summarize large arrays/lists (e.g., "Array with 1000 items, first 5: [...]")
|
||||
- Handle nested large outputs in dicts recursively
|
||||
- Cap total output size
|
||||
|
||||
**Implementation Location:** `run_block.py` after block execution, before returning `BlockOutputResponse`
|
||||
|
||||
**Example:**
|
||||
```python
|
||||
def _process_outputs_for_context(
|
||||
outputs: dict[str, list[Any]],
|
||||
workspace_manager: WorkspaceManager,
|
||||
max_string_length: int = 10000,
|
||||
max_array_preview: int = 5,
|
||||
) -> dict[str, list[Any]]:
|
||||
"""Process block outputs to prevent context bloat."""
|
||||
processed = {}
|
||||
for name, values in outputs.items():
|
||||
processed[name] = [_process_value(v, workspace_manager) for v in values]
|
||||
return processed
|
||||
```
|
||||
@@ -18,6 +18,12 @@ from .get_doc_page import GetDocPageTool
|
||||
from .run_agent import RunAgentTool
|
||||
from .run_block import RunBlockTool
|
||||
from .search_docs import SearchDocsTool
|
||||
from .workspace_files import (
|
||||
DeleteWorkspaceFileTool,
|
||||
ListWorkspaceFilesTool,
|
||||
ReadWorkspaceFileTool,
|
||||
WriteWorkspaceFileTool,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from backend.api.features.chat.response_model import StreamToolOutputAvailable
|
||||
@@ -37,6 +43,11 @@ TOOL_REGISTRY: dict[str, BaseTool] = {
|
||||
"view_agent_output": AgentOutputTool(),
|
||||
"search_docs": SearchDocsTool(),
|
||||
"get_doc_page": GetDocPageTool(),
|
||||
# Workspace tools for CoPilot file operations
|
||||
"list_workspace_files": ListWorkspaceFilesTool(),
|
||||
"read_workspace_file": ReadWorkspaceFileTool(),
|
||||
"write_workspace_file": WriteWorkspaceFileTool(),
|
||||
"delete_workspace_file": DeleteWorkspaceFileTool(),
|
||||
}
|
||||
|
||||
# Export individual tool instances for backwards compatibility
|
||||
@@ -49,6 +60,11 @@ tools: list[ChatCompletionToolParam] = [
|
||||
]
|
||||
|
||||
|
||||
def get_tool(tool_name: str) -> BaseTool | None:
|
||||
"""Get a tool instance by name."""
|
||||
return TOOL_REGISTRY.get(tool_name)
|
||||
|
||||
|
||||
async def execute_tool(
|
||||
tool_name: str,
|
||||
parameters: dict[str, Any],
|
||||
@@ -57,7 +73,7 @@ async def execute_tool(
|
||||
tool_call_id: str,
|
||||
) -> "StreamToolOutputAvailable":
|
||||
"""Execute a tool by name."""
|
||||
tool = TOOL_REGISTRY.get(tool_name)
|
||||
tool = get_tool(tool_name)
|
||||
if not tool:
|
||||
raise ValueError(f"Tool {tool_name} not found")
|
||||
|
||||
|
||||
@@ -36,6 +36,16 @@ class BaseTool:
|
||||
"""Whether this tool requires authentication."""
|
||||
return False
|
||||
|
||||
@property
|
||||
def is_long_running(self) -> bool:
|
||||
"""Whether this tool is long-running and should execute in background.
|
||||
|
||||
Long-running tools (like agent generation) are executed via background
|
||||
tasks to survive SSE disconnections. The result is persisted to chat
|
||||
history and visible when the user refreshes.
|
||||
"""
|
||||
return False
|
||||
|
||||
def as_openai_tool(self) -> ChatCompletionToolParam:
|
||||
"""Convert to OpenAI tool format."""
|
||||
return ChatCompletionToolParam(
|
||||
|
||||
@@ -42,6 +42,10 @@ class CreateAgentTool(BaseTool):
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
@property
|
||||
def is_long_running(self) -> bool:
|
||||
return True
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
|
||||
@@ -42,6 +42,10 @@ class EditAgentTool(BaseTool):
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
@property
|
||||
def is_long_running(self) -> bool:
|
||||
return True
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
|
||||
@@ -28,6 +28,16 @@ class ResponseType(str, Enum):
|
||||
BLOCK_OUTPUT = "block_output"
|
||||
DOC_SEARCH_RESULTS = "doc_search_results"
|
||||
DOC_PAGE = "doc_page"
|
||||
# Workspace response types
|
||||
WORKSPACE_FILE_LIST = "workspace_file_list"
|
||||
WORKSPACE_FILE_CONTENT = "workspace_file_content"
|
||||
WORKSPACE_FILE_METADATA = "workspace_file_metadata"
|
||||
WORKSPACE_FILE_WRITTEN = "workspace_file_written"
|
||||
WORKSPACE_FILE_DELETED = "workspace_file_deleted"
|
||||
# Long-running operation types
|
||||
OPERATION_STARTED = "operation_started"
|
||||
OPERATION_PENDING = "operation_pending"
|
||||
OPERATION_IN_PROGRESS = "operation_in_progress"
|
||||
|
||||
|
||||
# Base response model
|
||||
@@ -334,3 +344,39 @@ class BlockOutputResponse(ToolResponseBase):
|
||||
block_name: str
|
||||
outputs: dict[str, list[Any]]
|
||||
success: bool = True
|
||||
|
||||
|
||||
# Long-running operation models
|
||||
class OperationStartedResponse(ToolResponseBase):
|
||||
"""Response when a long-running operation has been started in the background.
|
||||
|
||||
This is returned immediately to the client while the operation continues
|
||||
to execute. The user can close the tab and check back later.
|
||||
"""
|
||||
|
||||
type: ResponseType = ResponseType.OPERATION_STARTED
|
||||
operation_id: str
|
||||
tool_name: str
|
||||
|
||||
|
||||
class OperationPendingResponse(ToolResponseBase):
|
||||
"""Response stored in chat history while a long-running operation is executing.
|
||||
|
||||
This is persisted to the database so users see a pending state when they
|
||||
refresh before the operation completes.
|
||||
"""
|
||||
|
||||
type: ResponseType = ResponseType.OPERATION_PENDING
|
||||
operation_id: str
|
||||
tool_name: str
|
||||
|
||||
|
||||
class OperationInProgressResponse(ToolResponseBase):
|
||||
"""Response when an operation is already in progress.
|
||||
|
||||
Returned for idempotency when the same tool_call_id is requested again
|
||||
while the background task is still running.
|
||||
"""
|
||||
|
||||
type: ResponseType = ResponseType.OPERATION_IN_PROGRESS
|
||||
tool_call_id: str
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
"""Tool for executing blocks directly."""
|
||||
|
||||
import logging
|
||||
import uuid
|
||||
from collections import defaultdict
|
||||
from typing import Any
|
||||
|
||||
@@ -8,6 +9,7 @@ from backend.api.features.chat.model import ChatSession
|
||||
from backend.data.block import get_block
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import CredentialsMetaInput
|
||||
from backend.data.workspace import get_or_create_workspace
|
||||
from backend.integrations.creds_manager import IntegrationCredentialsManager
|
||||
from backend.util.exceptions import BlockError
|
||||
|
||||
@@ -223,11 +225,48 @@ class RunBlockTool(BaseTool):
|
||||
)
|
||||
|
||||
try:
|
||||
# Fetch actual credentials and prepare kwargs for block execution
|
||||
# Create execution context with defaults (blocks may require it)
|
||||
# Get or create user's workspace for CoPilot file operations
|
||||
workspace = await get_or_create_workspace(user_id)
|
||||
|
||||
# Generate synthetic IDs for CoPilot context
|
||||
# Each chat session is treated as its own agent with one continuous run
|
||||
# This means:
|
||||
# - graph_id (agent) = session (memories scoped to session when limit_to_agent=True)
|
||||
# - graph_exec_id (run) = session (memories scoped to session when limit_to_run=True)
|
||||
# - node_exec_id = unique per block execution
|
||||
synthetic_graph_id = f"copilot-session-{session.session_id}"
|
||||
synthetic_graph_exec_id = f"copilot-session-{session.session_id}"
|
||||
synthetic_node_id = f"copilot-node-{block_id}"
|
||||
synthetic_node_exec_id = (
|
||||
f"copilot-{session.session_id}-{uuid.uuid4().hex[:8]}"
|
||||
)
|
||||
|
||||
# Create unified execution context with all required fields
|
||||
execution_context = ExecutionContext(
|
||||
# Execution identity
|
||||
user_id=user_id,
|
||||
graph_id=synthetic_graph_id,
|
||||
graph_exec_id=synthetic_graph_exec_id,
|
||||
graph_version=1, # Versions are 1-indexed
|
||||
node_id=synthetic_node_id,
|
||||
node_exec_id=synthetic_node_exec_id,
|
||||
# Workspace with session scoping
|
||||
workspace_id=workspace.id,
|
||||
session_id=session.session_id,
|
||||
)
|
||||
|
||||
# Prepare kwargs for block execution
|
||||
# Keep individual kwargs for backwards compatibility with existing blocks
|
||||
exec_kwargs: dict[str, Any] = {
|
||||
"user_id": user_id,
|
||||
"execution_context": ExecutionContext(),
|
||||
"execution_context": execution_context,
|
||||
# Legacy: individual kwargs for blocks not yet using execution_context
|
||||
"workspace_id": workspace.id,
|
||||
"graph_exec_id": synthetic_graph_exec_id,
|
||||
"node_exec_id": synthetic_node_exec_id,
|
||||
"node_id": synthetic_node_id,
|
||||
"graph_version": 1, # Versions are 1-indexed
|
||||
"graph_id": synthetic_graph_id,
|
||||
}
|
||||
|
||||
for field_name, cred_meta in matched_credentials.items():
|
||||
|
||||
@@ -0,0 +1,620 @@
|
||||
"""CoPilot tools for workspace file operations."""
|
||||
|
||||
import base64
|
||||
import logging
|
||||
from typing import Any, Optional
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.data.workspace import get_or_create_workspace
|
||||
from backend.util.settings import Config
|
||||
from backend.util.virus_scanner import scan_content_safe
|
||||
from backend.util.workspace import WorkspaceManager
|
||||
|
||||
from .base import BaseTool
|
||||
from .models import ErrorResponse, ResponseType, ToolResponseBase
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class WorkspaceFileInfoData(BaseModel):
|
||||
"""Data model for workspace file information (not a response itself)."""
|
||||
|
||||
file_id: str
|
||||
name: str
|
||||
path: str
|
||||
mime_type: str
|
||||
size_bytes: int
|
||||
|
||||
|
||||
class WorkspaceFileListResponse(ToolResponseBase):
|
||||
"""Response containing list of workspace files."""
|
||||
|
||||
type: ResponseType = ResponseType.WORKSPACE_FILE_LIST
|
||||
files: list[WorkspaceFileInfoData]
|
||||
total_count: int
|
||||
|
||||
|
||||
class WorkspaceFileContentResponse(ToolResponseBase):
|
||||
"""Response containing workspace file content (legacy, for small text files)."""
|
||||
|
||||
type: ResponseType = ResponseType.WORKSPACE_FILE_CONTENT
|
||||
file_id: str
|
||||
name: str
|
||||
path: str
|
||||
mime_type: str
|
||||
content_base64: str
|
||||
|
||||
|
||||
class WorkspaceFileMetadataResponse(ToolResponseBase):
|
||||
"""Response containing workspace file metadata and download URL (prevents context bloat)."""
|
||||
|
||||
type: ResponseType = ResponseType.WORKSPACE_FILE_METADATA
|
||||
file_id: str
|
||||
name: str
|
||||
path: str
|
||||
mime_type: str
|
||||
size_bytes: int
|
||||
download_url: str
|
||||
preview: str | None = None # First 500 chars for text files
|
||||
|
||||
|
||||
class WorkspaceWriteResponse(ToolResponseBase):
|
||||
"""Response after writing a file to workspace."""
|
||||
|
||||
type: ResponseType = ResponseType.WORKSPACE_FILE_WRITTEN
|
||||
file_id: str
|
||||
name: str
|
||||
path: str
|
||||
size_bytes: int
|
||||
|
||||
|
||||
class WorkspaceDeleteResponse(ToolResponseBase):
|
||||
"""Response after deleting a file from workspace."""
|
||||
|
||||
type: ResponseType = ResponseType.WORKSPACE_FILE_DELETED
|
||||
file_id: str
|
||||
success: bool
|
||||
|
||||
|
||||
class ListWorkspaceFilesTool(BaseTool):
|
||||
"""Tool for listing files in user's workspace."""
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "list_workspace_files"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"List files in the user's workspace. "
|
||||
"Returns file names, paths, sizes, and metadata. "
|
||||
"Optionally filter by path prefix."
|
||||
)
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"path_prefix": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"Optional path prefix to filter files "
|
||||
"(e.g., '/documents/' to list only files in documents folder). "
|
||||
"By default, only files from the current session are listed."
|
||||
),
|
||||
},
|
||||
"limit": {
|
||||
"type": "integer",
|
||||
"description": "Maximum number of files to return (default 50, max 100)",
|
||||
"minimum": 1,
|
||||
"maximum": 100,
|
||||
},
|
||||
"include_all_sessions": {
|
||||
"type": "boolean",
|
||||
"description": (
|
||||
"If true, list files from all sessions. "
|
||||
"Default is false (only current session's files)."
|
||||
),
|
||||
},
|
||||
},
|
||||
"required": [],
|
||||
}
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs,
|
||||
) -> ToolResponseBase:
|
||||
session_id = session.session_id
|
||||
|
||||
if not user_id:
|
||||
return ErrorResponse(
|
||||
message="Authentication required",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
path_prefix: Optional[str] = kwargs.get("path_prefix")
|
||||
limit = min(kwargs.get("limit", 50), 100)
|
||||
include_all_sessions: bool = kwargs.get("include_all_sessions", False)
|
||||
|
||||
try:
|
||||
workspace = await get_or_create_workspace(user_id)
|
||||
# Pass session_id for session-scoped file access
|
||||
manager = WorkspaceManager(user_id, workspace.id, session_id)
|
||||
|
||||
files = await manager.list_files(
|
||||
path=path_prefix,
|
||||
limit=limit,
|
||||
include_all_sessions=include_all_sessions,
|
||||
)
|
||||
total = await manager.get_file_count(
|
||||
path=path_prefix,
|
||||
include_all_sessions=include_all_sessions,
|
||||
)
|
||||
|
||||
file_infos = [
|
||||
WorkspaceFileInfoData(
|
||||
file_id=f.id,
|
||||
name=f.name,
|
||||
path=f.path,
|
||||
mime_type=f.mimeType,
|
||||
size_bytes=f.sizeBytes,
|
||||
)
|
||||
for f in files
|
||||
]
|
||||
|
||||
scope_msg = "all sessions" if include_all_sessions else "current session"
|
||||
return WorkspaceFileListResponse(
|
||||
files=file_infos,
|
||||
total_count=total,
|
||||
message=f"Found {len(files)} files in workspace ({scope_msg})",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error listing workspace files: {e}", exc_info=True)
|
||||
return ErrorResponse(
|
||||
message=f"Failed to list workspace files: {str(e)}",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
|
||||
class ReadWorkspaceFileTool(BaseTool):
|
||||
"""Tool for reading file content from workspace."""
|
||||
|
||||
# Size threshold for returning full content vs metadata+URL
|
||||
# Files larger than this return metadata with download URL to prevent context bloat
|
||||
MAX_INLINE_SIZE_BYTES = 32 * 1024 # 32KB
|
||||
# Preview size for text files
|
||||
PREVIEW_SIZE = 500
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "read_workspace_file"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Read a file from the user's workspace. "
|
||||
"Specify either file_id or path to identify the file. "
|
||||
"For small text files, returns content directly. "
|
||||
"For large or binary files, returns metadata and a download URL. "
|
||||
"Paths are scoped to the current session by default. "
|
||||
"Use /sessions/<session_id>/... for cross-session access."
|
||||
)
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"file_id": {
|
||||
"type": "string",
|
||||
"description": "The file's unique ID (from list_workspace_files)",
|
||||
},
|
||||
"path": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"The virtual file path (e.g., '/documents/report.pdf'). "
|
||||
"Scoped to current session by default."
|
||||
),
|
||||
},
|
||||
"force_download_url": {
|
||||
"type": "boolean",
|
||||
"description": (
|
||||
"If true, always return metadata+URL instead of inline content. "
|
||||
"Default is false (auto-selects based on file size/type)."
|
||||
),
|
||||
},
|
||||
},
|
||||
"required": [], # At least one must be provided
|
||||
}
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
def _is_text_mime_type(self, mime_type: str) -> bool:
|
||||
"""Check if the MIME type is a text-based type."""
|
||||
text_types = [
|
||||
"text/",
|
||||
"application/json",
|
||||
"application/xml",
|
||||
"application/javascript",
|
||||
"application/x-python",
|
||||
"application/x-sh",
|
||||
]
|
||||
return any(mime_type.startswith(t) for t in text_types)
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs,
|
||||
) -> ToolResponseBase:
|
||||
session_id = session.session_id
|
||||
|
||||
if not user_id:
|
||||
return ErrorResponse(
|
||||
message="Authentication required",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
file_id: Optional[str] = kwargs.get("file_id")
|
||||
path: Optional[str] = kwargs.get("path")
|
||||
force_download_url: bool = kwargs.get("force_download_url", False)
|
||||
|
||||
if not file_id and not path:
|
||||
return ErrorResponse(
|
||||
message="Please provide either file_id or path",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
try:
|
||||
workspace = await get_or_create_workspace(user_id)
|
||||
# Pass session_id for session-scoped file access
|
||||
manager = WorkspaceManager(user_id, workspace.id, session_id)
|
||||
|
||||
# Get file info
|
||||
if file_id:
|
||||
file_info = await manager.get_file_info(file_id)
|
||||
if file_info is None:
|
||||
return ErrorResponse(
|
||||
message=f"File not found: {file_id}",
|
||||
session_id=session_id,
|
||||
)
|
||||
target_file_id = file_id
|
||||
else:
|
||||
# path is guaranteed to be non-None here due to the check above
|
||||
assert path is not None
|
||||
file_info = await manager.get_file_info_by_path(path)
|
||||
if file_info is None:
|
||||
return ErrorResponse(
|
||||
message=f"File not found at path: {path}",
|
||||
session_id=session_id,
|
||||
)
|
||||
target_file_id = file_info.id
|
||||
|
||||
# Decide whether to return inline content or metadata+URL
|
||||
is_small_file = file_info.sizeBytes <= self.MAX_INLINE_SIZE_BYTES
|
||||
is_text_file = self._is_text_mime_type(file_info.mimeType)
|
||||
|
||||
# Return inline content for small text files (unless force_download_url)
|
||||
if is_small_file and is_text_file and not force_download_url:
|
||||
content = await manager.read_file_by_id(target_file_id)
|
||||
content_b64 = base64.b64encode(content).decode("utf-8")
|
||||
|
||||
return WorkspaceFileContentResponse(
|
||||
file_id=file_info.id,
|
||||
name=file_info.name,
|
||||
path=file_info.path,
|
||||
mime_type=file_info.mimeType,
|
||||
content_base64=content_b64,
|
||||
message=f"Successfully read file: {file_info.name}",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Return metadata + workspace:// reference for large or binary files
|
||||
# This prevents context bloat (100KB file = ~133KB as base64)
|
||||
# Use workspace:// format so frontend urlTransform can add proxy prefix
|
||||
download_url = f"workspace://{target_file_id}"
|
||||
|
||||
# Generate preview for text files
|
||||
preview: str | None = None
|
||||
if is_text_file:
|
||||
try:
|
||||
content = await manager.read_file_by_id(target_file_id)
|
||||
preview_text = content[: self.PREVIEW_SIZE].decode(
|
||||
"utf-8", errors="replace"
|
||||
)
|
||||
if len(content) > self.PREVIEW_SIZE:
|
||||
preview_text += "..."
|
||||
preview = preview_text
|
||||
except Exception:
|
||||
pass # Preview is optional
|
||||
|
||||
return WorkspaceFileMetadataResponse(
|
||||
file_id=file_info.id,
|
||||
name=file_info.name,
|
||||
path=file_info.path,
|
||||
mime_type=file_info.mimeType,
|
||||
size_bytes=file_info.sizeBytes,
|
||||
download_url=download_url,
|
||||
preview=preview,
|
||||
message=f"File: {file_info.name} ({file_info.sizeBytes} bytes). Use download_url to retrieve content.",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
except FileNotFoundError as e:
|
||||
return ErrorResponse(
|
||||
message=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error reading workspace file: {e}", exc_info=True)
|
||||
return ErrorResponse(
|
||||
message=f"Failed to read workspace file: {str(e)}",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
|
||||
class WriteWorkspaceFileTool(BaseTool):
|
||||
"""Tool for writing files to workspace."""
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "write_workspace_file"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Write or create a file in the user's workspace. "
|
||||
"Provide the content as a base64-encoded string. "
|
||||
f"Maximum file size is {Config().max_file_size_mb}MB. "
|
||||
"Files are saved to the current session's folder by default. "
|
||||
"Use /sessions/<session_id>/... for cross-session access."
|
||||
)
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"filename": {
|
||||
"type": "string",
|
||||
"description": "Name for the file (e.g., 'report.pdf')",
|
||||
},
|
||||
"content_base64": {
|
||||
"type": "string",
|
||||
"description": "Base64-encoded file content",
|
||||
},
|
||||
"path": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"Optional virtual path where to save the file "
|
||||
"(e.g., '/documents/report.pdf'). "
|
||||
"Defaults to '/{filename}'. Scoped to current session."
|
||||
),
|
||||
},
|
||||
"mime_type": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"Optional MIME type of the file. "
|
||||
"Auto-detected from filename if not provided."
|
||||
),
|
||||
},
|
||||
"overwrite": {
|
||||
"type": "boolean",
|
||||
"description": "Whether to overwrite if file exists at path (default: false)",
|
||||
},
|
||||
},
|
||||
"required": ["filename", "content_base64"],
|
||||
}
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs,
|
||||
) -> ToolResponseBase:
|
||||
session_id = session.session_id
|
||||
|
||||
if not user_id:
|
||||
return ErrorResponse(
|
||||
message="Authentication required",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
filename: str = kwargs.get("filename", "")
|
||||
content_b64: str = kwargs.get("content_base64", "")
|
||||
path: Optional[str] = kwargs.get("path")
|
||||
mime_type: Optional[str] = kwargs.get("mime_type")
|
||||
overwrite: bool = kwargs.get("overwrite", False)
|
||||
|
||||
if not filename:
|
||||
return ErrorResponse(
|
||||
message="Please provide a filename",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if not content_b64:
|
||||
return ErrorResponse(
|
||||
message="Please provide content_base64",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Decode content
|
||||
try:
|
||||
content = base64.b64decode(content_b64)
|
||||
except Exception:
|
||||
return ErrorResponse(
|
||||
message="Invalid base64-encoded content",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Check size
|
||||
max_file_size = Config().max_file_size_mb * 1024 * 1024
|
||||
if len(content) > max_file_size:
|
||||
return ErrorResponse(
|
||||
message=f"File too large. Maximum size is {Config().max_file_size_mb}MB",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
try:
|
||||
# Virus scan
|
||||
await scan_content_safe(content, filename=filename)
|
||||
|
||||
workspace = await get_or_create_workspace(user_id)
|
||||
# Pass session_id for session-scoped file access
|
||||
manager = WorkspaceManager(user_id, workspace.id, session_id)
|
||||
|
||||
file_record = await manager.write_file(
|
||||
content=content,
|
||||
filename=filename,
|
||||
path=path,
|
||||
mime_type=mime_type,
|
||||
overwrite=overwrite,
|
||||
)
|
||||
|
||||
return WorkspaceWriteResponse(
|
||||
file_id=file_record.id,
|
||||
name=file_record.name,
|
||||
path=file_record.path,
|
||||
size_bytes=file_record.sizeBytes,
|
||||
message=f"Successfully wrote file: {file_record.name}",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
except ValueError as e:
|
||||
return ErrorResponse(
|
||||
message=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error writing workspace file: {e}", exc_info=True)
|
||||
return ErrorResponse(
|
||||
message=f"Failed to write workspace file: {str(e)}",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
|
||||
class DeleteWorkspaceFileTool(BaseTool):
|
||||
"""Tool for deleting files from workspace."""
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "delete_workspace_file"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Delete a file from the user's workspace. "
|
||||
"Specify either file_id or path to identify the file. "
|
||||
"Paths are scoped to the current session by default. "
|
||||
"Use /sessions/<session_id>/... for cross-session access."
|
||||
)
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"file_id": {
|
||||
"type": "string",
|
||||
"description": "The file's unique ID (from list_workspace_files)",
|
||||
},
|
||||
"path": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"The virtual file path (e.g., '/documents/report.pdf'). "
|
||||
"Scoped to current session by default."
|
||||
),
|
||||
},
|
||||
},
|
||||
"required": [], # At least one must be provided
|
||||
}
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs,
|
||||
) -> ToolResponseBase:
|
||||
session_id = session.session_id
|
||||
|
||||
if not user_id:
|
||||
return ErrorResponse(
|
||||
message="Authentication required",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
file_id: Optional[str] = kwargs.get("file_id")
|
||||
path: Optional[str] = kwargs.get("path")
|
||||
|
||||
if not file_id and not path:
|
||||
return ErrorResponse(
|
||||
message="Please provide either file_id or path",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
try:
|
||||
workspace = await get_or_create_workspace(user_id)
|
||||
# Pass session_id for session-scoped file access
|
||||
manager = WorkspaceManager(user_id, workspace.id, session_id)
|
||||
|
||||
# Determine the file_id to delete
|
||||
target_file_id: str
|
||||
if file_id:
|
||||
target_file_id = file_id
|
||||
else:
|
||||
# path is guaranteed to be non-None here due to the check above
|
||||
assert path is not None
|
||||
file_info = await manager.get_file_info_by_path(path)
|
||||
if file_info is None:
|
||||
return ErrorResponse(
|
||||
message=f"File not found at path: {path}",
|
||||
session_id=session_id,
|
||||
)
|
||||
target_file_id = file_info.id
|
||||
|
||||
success = await manager.delete_file(target_file_id)
|
||||
|
||||
if not success:
|
||||
return ErrorResponse(
|
||||
message=f"File not found: {target_file_id}",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
return WorkspaceDeleteResponse(
|
||||
file_id=target_file_id,
|
||||
success=True,
|
||||
message="File deleted successfully",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting workspace file: {e}", exc_info=True)
|
||||
return ErrorResponse(
|
||||
message=f"Failed to delete workspace file: {str(e)}",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
@@ -21,7 +21,7 @@ from backend.data.model import CredentialsMetaInput
|
||||
from backend.integrations.creds_manager import IntegrationCredentialsManager
|
||||
from backend.integrations.webhooks.graph_lifecycle_hooks import on_graph_activate
|
||||
from backend.util.clients import get_scheduler_client
|
||||
from backend.util.exceptions import DatabaseError, NotFoundError
|
||||
from backend.util.exceptions import DatabaseError, InvalidInputError, NotFoundError
|
||||
from backend.util.json import SafeJson
|
||||
from backend.util.models import Pagination
|
||||
from backend.util.settings import Config
|
||||
@@ -64,11 +64,11 @@ async def list_library_agents(
|
||||
|
||||
if page < 1 or page_size < 1:
|
||||
logger.warning(f"Invalid pagination: page={page}, page_size={page_size}")
|
||||
raise DatabaseError("Invalid pagination input")
|
||||
raise InvalidInputError("Invalid pagination input")
|
||||
|
||||
if search_term and len(search_term.strip()) > 100:
|
||||
logger.warning(f"Search term too long: {repr(search_term)}")
|
||||
raise DatabaseError("Search term is too long")
|
||||
raise InvalidInputError("Search term is too long")
|
||||
|
||||
where_clause: prisma.types.LibraryAgentWhereInput = {
|
||||
"userId": user_id,
|
||||
@@ -175,7 +175,7 @@ async def list_favorite_library_agents(
|
||||
|
||||
if page < 1 or page_size < 1:
|
||||
logger.warning(f"Invalid pagination: page={page}, page_size={page_size}")
|
||||
raise DatabaseError("Invalid pagination input")
|
||||
raise InvalidInputError("Invalid pagination input")
|
||||
|
||||
where_clause: prisma.types.LibraryAgentWhereInput = {
|
||||
"userId": user_id,
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
import logging
|
||||
from typing import Literal, Optional
|
||||
|
||||
import autogpt_libs.auth as autogpt_auth_lib
|
||||
@@ -6,15 +5,11 @@ from fastapi import APIRouter, Body, HTTPException, Query, Security, status
|
||||
from fastapi.responses import Response
|
||||
from prisma.enums import OnboardingStep
|
||||
|
||||
import backend.api.features.store.exceptions as store_exceptions
|
||||
from backend.data.onboarding import complete_onboarding_step
|
||||
from backend.util.exceptions import DatabaseError, NotFoundError
|
||||
|
||||
from .. import db as library_db
|
||||
from .. import model as library_model
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
router = APIRouter(
|
||||
prefix="/agents",
|
||||
tags=["library", "private"],
|
||||
@@ -26,10 +21,6 @@ router = APIRouter(
|
||||
"",
|
||||
summary="List Library Agents",
|
||||
response_model=library_model.LibraryAgentResponse,
|
||||
responses={
|
||||
200: {"description": "List of library agents"},
|
||||
500: {"description": "Server error", "content": {"application/json": {}}},
|
||||
},
|
||||
)
|
||||
async def list_library_agents(
|
||||
user_id: str = Security(autogpt_auth_lib.get_user_id),
|
||||
@@ -53,43 +44,19 @@ async def list_library_agents(
|
||||
) -> library_model.LibraryAgentResponse:
|
||||
"""
|
||||
Get all agents in the user's library (both created and saved).
|
||||
|
||||
Args:
|
||||
user_id: ID of the authenticated user.
|
||||
search_term: Optional search term to filter agents by name/description.
|
||||
filter_by: List of filters to apply (favorites, created by user).
|
||||
sort_by: List of sorting criteria (created date, updated date).
|
||||
page: Page number to retrieve.
|
||||
page_size: Number of agents per page.
|
||||
|
||||
Returns:
|
||||
A LibraryAgentResponse containing agents and pagination metadata.
|
||||
|
||||
Raises:
|
||||
HTTPException: If a server/database error occurs.
|
||||
"""
|
||||
try:
|
||||
return await library_db.list_library_agents(
|
||||
user_id=user_id,
|
||||
search_term=search_term,
|
||||
sort_by=sort_by,
|
||||
page=page,
|
||||
page_size=page_size,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Could not list library agents for user #{user_id}: {e}")
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
||||
detail=str(e),
|
||||
) from e
|
||||
return await library_db.list_library_agents(
|
||||
user_id=user_id,
|
||||
search_term=search_term,
|
||||
sort_by=sort_by,
|
||||
page=page,
|
||||
page_size=page_size,
|
||||
)
|
||||
|
||||
|
||||
@router.get(
|
||||
"/favorites",
|
||||
summary="List Favorite Library Agents",
|
||||
responses={
|
||||
500: {"description": "Server error", "content": {"application/json": {}}},
|
||||
},
|
||||
)
|
||||
async def list_favorite_library_agents(
|
||||
user_id: str = Security(autogpt_auth_lib.get_user_id),
|
||||
@@ -106,30 +73,12 @@ async def list_favorite_library_agents(
|
||||
) -> library_model.LibraryAgentResponse:
|
||||
"""
|
||||
Get all favorite agents in the user's library.
|
||||
|
||||
Args:
|
||||
user_id: ID of the authenticated user.
|
||||
page: Page number to retrieve.
|
||||
page_size: Number of agents per page.
|
||||
|
||||
Returns:
|
||||
A LibraryAgentResponse containing favorite agents and pagination metadata.
|
||||
|
||||
Raises:
|
||||
HTTPException: If a server/database error occurs.
|
||||
"""
|
||||
try:
|
||||
return await library_db.list_favorite_library_agents(
|
||||
user_id=user_id,
|
||||
page=page,
|
||||
page_size=page_size,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Could not list favorite library agents for user #{user_id}: {e}")
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
||||
detail=str(e),
|
||||
) from e
|
||||
return await library_db.list_favorite_library_agents(
|
||||
user_id=user_id,
|
||||
page=page,
|
||||
page_size=page_size,
|
||||
)
|
||||
|
||||
|
||||
@router.get("/{library_agent_id}", summary="Get Library Agent")
|
||||
@@ -162,10 +111,6 @@ async def get_library_agent_by_graph_id(
|
||||
summary="Get Agent By Store ID",
|
||||
tags=["store", "library"],
|
||||
response_model=library_model.LibraryAgent | None,
|
||||
responses={
|
||||
200: {"description": "Library agent found"},
|
||||
404: {"description": "Agent not found"},
|
||||
},
|
||||
)
|
||||
async def get_library_agent_by_store_listing_version_id(
|
||||
store_listing_version_id: str,
|
||||
@@ -174,32 +119,15 @@ async def get_library_agent_by_store_listing_version_id(
|
||||
"""
|
||||
Get Library Agent from Store Listing Version ID.
|
||||
"""
|
||||
try:
|
||||
return await library_db.get_library_agent_by_store_version_id(
|
||||
store_listing_version_id, user_id
|
||||
)
|
||||
except NotFoundError as e:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_404_NOT_FOUND,
|
||||
detail=str(e),
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Could not fetch library agent from store version ID: {e}")
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
||||
detail=str(e),
|
||||
) from e
|
||||
return await library_db.get_library_agent_by_store_version_id(
|
||||
store_listing_version_id, user_id
|
||||
)
|
||||
|
||||
|
||||
@router.post(
|
||||
"",
|
||||
summary="Add Marketplace Agent",
|
||||
status_code=status.HTTP_201_CREATED,
|
||||
responses={
|
||||
201: {"description": "Agent added successfully"},
|
||||
404: {"description": "Store listing version not found"},
|
||||
500: {"description": "Server error"},
|
||||
},
|
||||
)
|
||||
async def add_marketplace_agent_to_library(
|
||||
store_listing_version_id: str = Body(embed=True),
|
||||
@@ -210,59 +138,19 @@ async def add_marketplace_agent_to_library(
|
||||
) -> library_model.LibraryAgent:
|
||||
"""
|
||||
Add an agent from the marketplace to the user's library.
|
||||
|
||||
Args:
|
||||
store_listing_version_id: ID of the store listing version to add.
|
||||
user_id: ID of the authenticated user.
|
||||
|
||||
Returns:
|
||||
library_model.LibraryAgent: Agent added to the library
|
||||
|
||||
Raises:
|
||||
HTTPException(404): If the listing version is not found.
|
||||
HTTPException(500): If a server/database error occurs.
|
||||
"""
|
||||
try:
|
||||
agent = await library_db.add_store_agent_to_library(
|
||||
store_listing_version_id=store_listing_version_id,
|
||||
user_id=user_id,
|
||||
)
|
||||
if source != "onboarding":
|
||||
await complete_onboarding_step(
|
||||
user_id, OnboardingStep.MARKETPLACE_ADD_AGENT
|
||||
)
|
||||
return agent
|
||||
|
||||
except store_exceptions.AgentNotFoundError as e:
|
||||
logger.warning(
|
||||
f"Could not find store listing version {store_listing_version_id} "
|
||||
"to add to library"
|
||||
)
|
||||
raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail=str(e))
|
||||
except DatabaseError as e:
|
||||
logger.error(f"Database error while adding agent to library: {e}", e)
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
||||
detail={"message": str(e), "hint": "Inspect DB logs for details."},
|
||||
) from e
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error while adding agent to library: {e}")
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
||||
detail={
|
||||
"message": str(e),
|
||||
"hint": "Check server logs for more information.",
|
||||
},
|
||||
) from e
|
||||
agent = await library_db.add_store_agent_to_library(
|
||||
store_listing_version_id=store_listing_version_id,
|
||||
user_id=user_id,
|
||||
)
|
||||
if source != "onboarding":
|
||||
await complete_onboarding_step(user_id, OnboardingStep.MARKETPLACE_ADD_AGENT)
|
||||
return agent
|
||||
|
||||
|
||||
@router.patch(
|
||||
"/{library_agent_id}",
|
||||
summary="Update Library Agent",
|
||||
responses={
|
||||
200: {"description": "Agent updated successfully"},
|
||||
500: {"description": "Server error"},
|
||||
},
|
||||
)
|
||||
async def update_library_agent(
|
||||
library_agent_id: str,
|
||||
@@ -271,52 +159,21 @@ async def update_library_agent(
|
||||
) -> library_model.LibraryAgent:
|
||||
"""
|
||||
Update the library agent with the given fields.
|
||||
|
||||
Args:
|
||||
library_agent_id: ID of the library agent to update.
|
||||
payload: Fields to update (auto_update_version, is_favorite, etc.).
|
||||
user_id: ID of the authenticated user.
|
||||
|
||||
Raises:
|
||||
HTTPException(500): If a server/database error occurs.
|
||||
"""
|
||||
try:
|
||||
return await library_db.update_library_agent(
|
||||
library_agent_id=library_agent_id,
|
||||
user_id=user_id,
|
||||
auto_update_version=payload.auto_update_version,
|
||||
graph_version=payload.graph_version,
|
||||
is_favorite=payload.is_favorite,
|
||||
is_archived=payload.is_archived,
|
||||
settings=payload.settings,
|
||||
)
|
||||
except NotFoundError as e:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_404_NOT_FOUND,
|
||||
detail=str(e),
|
||||
) from e
|
||||
except DatabaseError as e:
|
||||
logger.error(f"Database error while updating library agent: {e}")
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
||||
detail={"message": str(e), "hint": "Verify DB connection."},
|
||||
) from e
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error while updating library agent: {e}")
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
||||
detail={"message": str(e), "hint": "Check server logs."},
|
||||
) from e
|
||||
return await library_db.update_library_agent(
|
||||
library_agent_id=library_agent_id,
|
||||
user_id=user_id,
|
||||
auto_update_version=payload.auto_update_version,
|
||||
graph_version=payload.graph_version,
|
||||
is_favorite=payload.is_favorite,
|
||||
is_archived=payload.is_archived,
|
||||
settings=payload.settings,
|
||||
)
|
||||
|
||||
|
||||
@router.delete(
|
||||
"/{library_agent_id}",
|
||||
summary="Delete Library Agent",
|
||||
responses={
|
||||
204: {"description": "Agent deleted successfully"},
|
||||
404: {"description": "Agent not found"},
|
||||
500: {"description": "Server error"},
|
||||
},
|
||||
)
|
||||
async def delete_library_agent(
|
||||
library_agent_id: str,
|
||||
@@ -324,28 +181,11 @@ async def delete_library_agent(
|
||||
) -> Response:
|
||||
"""
|
||||
Soft-delete the specified library agent.
|
||||
|
||||
Args:
|
||||
library_agent_id: ID of the library agent to delete.
|
||||
user_id: ID of the authenticated user.
|
||||
|
||||
Returns:
|
||||
204 No Content if successful.
|
||||
|
||||
Raises:
|
||||
HTTPException(404): If the agent does not exist.
|
||||
HTTPException(500): If a server/database error occurs.
|
||||
"""
|
||||
try:
|
||||
await library_db.delete_library_agent(
|
||||
library_agent_id=library_agent_id, user_id=user_id
|
||||
)
|
||||
return Response(status_code=status.HTTP_204_NO_CONTENT)
|
||||
except NotFoundError as e:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_404_NOT_FOUND,
|
||||
detail=str(e),
|
||||
) from e
|
||||
await library_db.delete_library_agent(
|
||||
library_agent_id=library_agent_id, user_id=user_id
|
||||
)
|
||||
return Response(status_code=status.HTTP_204_NO_CONTENT)
|
||||
|
||||
|
||||
@router.post("/{library_agent_id}/fork", summary="Fork Library Agent")
|
||||
|
||||
@@ -118,21 +118,6 @@ async def test_get_library_agents_success(
|
||||
)
|
||||
|
||||
|
||||
def test_get_library_agents_error(mocker: pytest_mock.MockFixture, test_user_id: str):
|
||||
mock_db_call = mocker.patch("backend.api.features.library.db.list_library_agents")
|
||||
mock_db_call.side_effect = Exception("Test error")
|
||||
|
||||
response = client.get("/agents?search_term=test")
|
||||
assert response.status_code == 500
|
||||
mock_db_call.assert_called_once_with(
|
||||
user_id=test_user_id,
|
||||
search_term="test",
|
||||
sort_by=library_model.LibraryAgentSort.UPDATED_AT,
|
||||
page=1,
|
||||
page_size=15,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_get_favorite_library_agents_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
@@ -190,23 +175,6 @@ async def test_get_favorite_library_agents_success(
|
||||
)
|
||||
|
||||
|
||||
def test_get_favorite_library_agents_error(
|
||||
mocker: pytest_mock.MockFixture, test_user_id: str
|
||||
):
|
||||
mock_db_call = mocker.patch(
|
||||
"backend.api.features.library.db.list_favorite_library_agents"
|
||||
)
|
||||
mock_db_call.side_effect = Exception("Test error")
|
||||
|
||||
response = client.get("/agents/favorites")
|
||||
assert response.status_code == 500
|
||||
mock_db_call.assert_called_once_with(
|
||||
user_id=test_user_id,
|
||||
page=1,
|
||||
page_size=15,
|
||||
)
|
||||
|
||||
|
||||
def test_add_agent_to_library_success(
|
||||
mocker: pytest_mock.MockFixture, test_user_id: str
|
||||
):
|
||||
@@ -258,19 +226,3 @@ def test_add_agent_to_library_success(
|
||||
store_listing_version_id="test-version-id", user_id=test_user_id
|
||||
)
|
||||
mock_complete_onboarding.assert_awaited_once()
|
||||
|
||||
|
||||
def test_add_agent_to_library_error(mocker: pytest_mock.MockFixture, test_user_id: str):
|
||||
mock_db_call = mocker.patch(
|
||||
"backend.api.features.library.db.add_store_agent_to_library"
|
||||
)
|
||||
mock_db_call.side_effect = Exception("Test error")
|
||||
|
||||
response = client.post(
|
||||
"/agents", json={"store_listing_version_id": "test-version-id"}
|
||||
)
|
||||
assert response.status_code == 500
|
||||
assert "detail" in response.json() # Verify error response structure
|
||||
mock_db_call.assert_called_once_with(
|
||||
store_listing_version_id="test-version-id", user_id=test_user_id
|
||||
)
|
||||
|
||||
@@ -454,6 +454,7 @@ async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
|
||||
total_processed = 0
|
||||
total_success = 0
|
||||
total_failed = 0
|
||||
all_errors: dict[str, int] = {} # Aggregate errors across all content types
|
||||
|
||||
# Process content types in explicit order
|
||||
processing_order = [
|
||||
@@ -499,23 +500,12 @@ async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
|
||||
success = sum(1 for result in results if result is True)
|
||||
failed = len(results) - success
|
||||
|
||||
# Aggregate unique errors to avoid Sentry spam
|
||||
# Aggregate errors across all content types
|
||||
if failed > 0:
|
||||
# Group errors by type and message
|
||||
error_summary: dict[str, int] = {}
|
||||
for result in results:
|
||||
if isinstance(result, Exception):
|
||||
error_key = f"{type(result).__name__}: {str(result)}"
|
||||
error_summary[error_key] = error_summary.get(error_key, 0) + 1
|
||||
|
||||
# Log aggregated error summary
|
||||
error_details = ", ".join(
|
||||
f"{error} ({count}x)" for error, count in error_summary.items()
|
||||
)
|
||||
logger.error(
|
||||
f"{content_type.value}: {failed}/{len(results)} embeddings failed. "
|
||||
f"Errors: {error_details}"
|
||||
)
|
||||
all_errors[error_key] = all_errors.get(error_key, 0) + 1
|
||||
|
||||
results_by_type[content_type.value] = {
|
||||
"processed": len(missing_items),
|
||||
@@ -542,6 +532,13 @@ async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
|
||||
"error": str(e),
|
||||
}
|
||||
|
||||
# Log aggregated errors once at the end
|
||||
if all_errors:
|
||||
error_details = ", ".join(
|
||||
f"{error} ({count}x)" for error, count in all_errors.items()
|
||||
)
|
||||
logger.error(f"Embedding backfill errors: {error_details}")
|
||||
|
||||
return {
|
||||
"by_type": results_by_type,
|
||||
"totals": {
|
||||
|
||||
@@ -393,7 +393,6 @@ async def get_creators(
|
||||
@router.get(
|
||||
"/creator/{username}",
|
||||
summary="Get creator details",
|
||||
operation_id="getV2GetCreatorDetails",
|
||||
tags=["store", "public"],
|
||||
response_model=store_model.CreatorDetails,
|
||||
)
|
||||
|
||||
@@ -261,14 +261,36 @@ async def get_onboarding_agents(
|
||||
return await get_recommended_agents(user_id)
|
||||
|
||||
|
||||
class OnboardingStatusResponse(pydantic.BaseModel):
|
||||
"""Response for onboarding status check."""
|
||||
|
||||
is_onboarding_enabled: bool
|
||||
is_chat_enabled: bool
|
||||
|
||||
|
||||
@v1_router.get(
|
||||
"/onboarding/enabled",
|
||||
summary="Is onboarding enabled",
|
||||
tags=["onboarding", "public"],
|
||||
dependencies=[Security(requires_user)],
|
||||
response_model=OnboardingStatusResponse,
|
||||
)
|
||||
async def is_onboarding_enabled() -> bool:
|
||||
return await onboarding_enabled()
|
||||
async def is_onboarding_enabled(
|
||||
user_id: Annotated[str, Security(get_user_id)],
|
||||
) -> OnboardingStatusResponse:
|
||||
# Check if chat is enabled for user
|
||||
is_chat_enabled = await is_feature_enabled(Flag.CHAT, user_id, False)
|
||||
|
||||
# If chat is enabled, skip legacy onboarding
|
||||
if is_chat_enabled:
|
||||
return OnboardingStatusResponse(
|
||||
is_onboarding_enabled=False,
|
||||
is_chat_enabled=True,
|
||||
)
|
||||
|
||||
return OnboardingStatusResponse(
|
||||
is_onboarding_enabled=await onboarding_enabled(),
|
||||
is_chat_enabled=False,
|
||||
)
|
||||
|
||||
|
||||
@v1_router.post(
|
||||
|
||||
@@ -0,0 +1 @@
|
||||
# Workspace API feature module
|
||||
@@ -0,0 +1,122 @@
|
||||
"""
|
||||
Workspace API routes for managing user file storage.
|
||||
"""
|
||||
|
||||
import logging
|
||||
import re
|
||||
from typing import Annotated
|
||||
from urllib.parse import quote
|
||||
|
||||
import fastapi
|
||||
from autogpt_libs.auth.dependencies import get_user_id, requires_user
|
||||
from fastapi.responses import Response
|
||||
|
||||
from backend.data.workspace import get_workspace, get_workspace_file
|
||||
from backend.util.workspace_storage import get_workspace_storage
|
||||
|
||||
|
||||
def _sanitize_filename_for_header(filename: str) -> str:
|
||||
"""
|
||||
Sanitize filename for Content-Disposition header to prevent header injection.
|
||||
|
||||
Removes/replaces characters that could break the header or inject new headers.
|
||||
Uses RFC5987 encoding for non-ASCII characters.
|
||||
"""
|
||||
# Remove CR, LF, and null bytes (header injection prevention)
|
||||
sanitized = re.sub(r"[\r\n\x00]", "", filename)
|
||||
# Escape quotes
|
||||
sanitized = sanitized.replace('"', '\\"')
|
||||
# For non-ASCII, use RFC5987 filename* parameter
|
||||
# Check if filename has non-ASCII characters
|
||||
try:
|
||||
sanitized.encode("ascii")
|
||||
return f'attachment; filename="{sanitized}"'
|
||||
except UnicodeEncodeError:
|
||||
# Use RFC5987 encoding for UTF-8 filenames
|
||||
encoded = quote(sanitized, safe="")
|
||||
return f"attachment; filename*=UTF-8''{encoded}"
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
router = fastapi.APIRouter(
|
||||
dependencies=[fastapi.Security(requires_user)],
|
||||
)
|
||||
|
||||
|
||||
def _create_streaming_response(content: bytes, file) -> Response:
|
||||
"""Create a streaming response for file content."""
|
||||
return Response(
|
||||
content=content,
|
||||
media_type=file.mimeType,
|
||||
headers={
|
||||
"Content-Disposition": _sanitize_filename_for_header(file.name),
|
||||
"Content-Length": str(len(content)),
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
async def _create_file_download_response(file) -> Response:
|
||||
"""
|
||||
Create a download response for a workspace file.
|
||||
|
||||
Handles both local storage (direct streaming) and GCS (signed URL redirect
|
||||
with fallback to streaming).
|
||||
"""
|
||||
storage = await get_workspace_storage()
|
||||
|
||||
# For local storage, stream the file directly
|
||||
if file.storagePath.startswith("local://"):
|
||||
content = await storage.retrieve(file.storagePath)
|
||||
return _create_streaming_response(content, file)
|
||||
|
||||
# For GCS, try to redirect to signed URL, fall back to streaming
|
||||
try:
|
||||
url = await storage.get_download_url(file.storagePath, expires_in=300)
|
||||
# If we got back an API path (fallback), stream directly instead
|
||||
if url.startswith("/api/"):
|
||||
content = await storage.retrieve(file.storagePath)
|
||||
return _create_streaming_response(content, file)
|
||||
return fastapi.responses.RedirectResponse(url=url, status_code=302)
|
||||
except Exception as e:
|
||||
# Log the signed URL failure with context
|
||||
logger.error(
|
||||
f"Failed to get signed URL for file {file.id} "
|
||||
f"(storagePath={file.storagePath}): {e}",
|
||||
exc_info=True,
|
||||
)
|
||||
# Fall back to streaming directly from GCS
|
||||
try:
|
||||
content = await storage.retrieve(file.storagePath)
|
||||
return _create_streaming_response(content, file)
|
||||
except Exception as fallback_error:
|
||||
logger.error(
|
||||
f"Fallback streaming also failed for file {file.id} "
|
||||
f"(storagePath={file.storagePath}): {fallback_error}",
|
||||
exc_info=True,
|
||||
)
|
||||
raise
|
||||
|
||||
|
||||
@router.get(
|
||||
"/files/{file_id}/download",
|
||||
summary="Download file by ID",
|
||||
)
|
||||
async def download_file(
|
||||
user_id: Annotated[str, fastapi.Security(get_user_id)],
|
||||
file_id: str,
|
||||
) -> Response:
|
||||
"""
|
||||
Download a file by its ID.
|
||||
|
||||
Returns the file content directly or redirects to a signed URL for GCS.
|
||||
"""
|
||||
workspace = await get_workspace(user_id)
|
||||
if workspace is None:
|
||||
raise fastapi.HTTPException(status_code=404, detail="Workspace not found")
|
||||
|
||||
file = await get_workspace_file(file_id, workspace.id)
|
||||
if file is None:
|
||||
raise fastapi.HTTPException(status_code=404, detail="File not found")
|
||||
|
||||
return await _create_file_download_response(file)
|
||||
@@ -18,7 +18,6 @@ from prisma.errors import PrismaError
|
||||
|
||||
import backend.api.features.admin.credit_admin_routes
|
||||
import backend.api.features.admin.execution_analytics_routes
|
||||
import backend.api.features.admin.llm_routes
|
||||
import backend.api.features.admin.store_admin_routes
|
||||
import backend.api.features.builder
|
||||
import backend.api.features.builder.routes
|
||||
@@ -33,16 +32,15 @@ import backend.api.features.postmark.postmark
|
||||
import backend.api.features.store.model
|
||||
import backend.api.features.store.routes
|
||||
import backend.api.features.v1
|
||||
import backend.api.features.workspace.routes as workspace_routes
|
||||
import backend.data.block
|
||||
import backend.data.db
|
||||
import backend.data.graph
|
||||
import backend.data.user
|
||||
import backend.integrations.webhooks.utils
|
||||
import backend.server.v2.llm.routes as public_llm_routes
|
||||
import backend.util.service
|
||||
import backend.util.settings
|
||||
from backend.data import llm_registry
|
||||
from backend.data.block_cost_config import refresh_llm_costs
|
||||
from backend.blocks.llm import DEFAULT_LLM_MODEL
|
||||
from backend.data.model import Credentials
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.monitoring.instrumentation import instrument_fastapi
|
||||
@@ -55,6 +53,7 @@ from backend.util.exceptions import (
|
||||
)
|
||||
from backend.util.feature_flag import initialize_launchdarkly, shutdown_launchdarkly
|
||||
from backend.util.service import UnhealthyServiceError
|
||||
from backend.util.workspace_storage import shutdown_workspace_storage
|
||||
|
||||
from .external.fastapi_app import external_api
|
||||
from .features.analytics import router as analytics_router
|
||||
@@ -112,27 +111,11 @@ async def lifespan_context(app: fastapi.FastAPI):
|
||||
|
||||
AutoRegistry.patch_integrations()
|
||||
|
||||
# Refresh LLM registry before initializing blocks so blocks can use registry data
|
||||
await llm_registry.refresh_llm_registry()
|
||||
refresh_llm_costs()
|
||||
|
||||
# Clear block schema caches so they're regenerated with updated discriminator_mapping
|
||||
from backend.data.block import BlockSchema
|
||||
|
||||
BlockSchema.clear_all_schema_caches()
|
||||
|
||||
await backend.data.block.initialize_blocks()
|
||||
|
||||
await backend.data.user.migrate_and_encrypt_user_integrations()
|
||||
await backend.data.graph.fix_llm_provider_credentials()
|
||||
# migrate_llm_models uses registry default model
|
||||
from backend.blocks.llm import LlmModel
|
||||
|
||||
default_model_slug = llm_registry.get_default_model_slug()
|
||||
if default_model_slug:
|
||||
await backend.data.graph.migrate_llm_models(LlmModel(default_model_slug))
|
||||
else:
|
||||
logger.warning("Skipping LLM model migration: no default model available")
|
||||
await backend.data.graph.migrate_llm_models(DEFAULT_LLM_MODEL)
|
||||
await backend.integrations.webhooks.utils.migrate_legacy_triggered_graphs()
|
||||
|
||||
with launch_darkly_context():
|
||||
@@ -143,6 +126,11 @@ async def lifespan_context(app: fastapi.FastAPI):
|
||||
except Exception as e:
|
||||
logger.warning(f"Error shutting down cloud storage handler: {e}")
|
||||
|
||||
try:
|
||||
await shutdown_workspace_storage()
|
||||
except Exception as e:
|
||||
logger.warning(f"Error shutting down workspace storage: {e}")
|
||||
|
||||
await backend.data.db.disconnect()
|
||||
|
||||
|
||||
@@ -317,16 +305,6 @@ app.include_router(
|
||||
tags=["v2", "executions", "review"],
|
||||
prefix="/api/review",
|
||||
)
|
||||
app.include_router(
|
||||
backend.api.features.admin.llm_routes.router,
|
||||
tags=["v2", "admin", "llm"],
|
||||
prefix="/api/llm/admin",
|
||||
)
|
||||
app.include_router(
|
||||
public_llm_routes.router,
|
||||
tags=["v2", "llm"],
|
||||
prefix="/api",
|
||||
)
|
||||
app.include_router(
|
||||
backend.api.features.library.routes.router, tags=["v2"], prefix="/api/library"
|
||||
)
|
||||
@@ -344,6 +322,11 @@ app.include_router(
|
||||
tags=["v2", "chat"],
|
||||
prefix="/api/chat",
|
||||
)
|
||||
app.include_router(
|
||||
workspace_routes.router,
|
||||
tags=["workspace"],
|
||||
prefix="/api/workspace",
|
||||
)
|
||||
app.include_router(
|
||||
backend.api.features.oauth.router,
|
||||
tags=["oauth"],
|
||||
|
||||
@@ -77,39 +77,7 @@ async def event_broadcaster(manager: ConnectionManager):
|
||||
payload=notification.payload,
|
||||
)
|
||||
|
||||
async def registry_refresh_worker():
|
||||
"""Listen for LLM registry refresh notifications and broadcast to all clients."""
|
||||
from backend.data.llm_registry import REGISTRY_REFRESH_CHANNEL
|
||||
from backend.data.redis_client import connect_async
|
||||
|
||||
redis = await connect_async()
|
||||
pubsub = redis.pubsub()
|
||||
await pubsub.subscribe(REGISTRY_REFRESH_CHANNEL)
|
||||
logger.info(
|
||||
"Subscribed to LLM registry refresh notifications for WebSocket broadcast"
|
||||
)
|
||||
|
||||
async for message in pubsub.listen():
|
||||
if (
|
||||
message["type"] == "message"
|
||||
and message["channel"] == REGISTRY_REFRESH_CHANNEL
|
||||
):
|
||||
logger.info(
|
||||
"Broadcasting LLM registry refresh to all WebSocket clients"
|
||||
)
|
||||
await manager.broadcast_to_all(
|
||||
method=WSMethod.NOTIFICATION,
|
||||
data={
|
||||
"type": "LLM_REGISTRY_REFRESH",
|
||||
"event": "registry_updated",
|
||||
},
|
||||
)
|
||||
|
||||
await asyncio.gather(
|
||||
execution_worker(),
|
||||
notification_worker(),
|
||||
registry_refresh_worker(),
|
||||
)
|
||||
await asyncio.gather(execution_worker(), notification_worker())
|
||||
|
||||
|
||||
async def authenticate_websocket(websocket: WebSocket) -> str:
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
from typing import Any
|
||||
|
||||
from backend.blocks.llm import (
|
||||
DEFAULT_LLM_MODEL,
|
||||
TEST_CREDENTIALS,
|
||||
TEST_CREDENTIALS_INPUT,
|
||||
AIBlockBase,
|
||||
@@ -9,7 +10,6 @@ from backend.blocks.llm import (
|
||||
LlmModel,
|
||||
LLMResponse,
|
||||
llm_call,
|
||||
llm_model_schema_extra,
|
||||
)
|
||||
from backend.data.block import (
|
||||
BlockCategory,
|
||||
@@ -50,10 +50,9 @@ class AIConditionBlock(AIBlockBase):
|
||||
)
|
||||
model: LlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
default_factory=LlmModel.default,
|
||||
default=DEFAULT_LLM_MODEL,
|
||||
description="The language model to use for evaluating the condition.",
|
||||
advanced=False,
|
||||
json_schema_extra=llm_model_schema_extra(),
|
||||
)
|
||||
credentials: AICredentials = AICredentialsField()
|
||||
|
||||
@@ -83,7 +82,7 @@ class AIConditionBlock(AIBlockBase):
|
||||
"condition": "the input is an email address",
|
||||
"yes_value": "Valid email",
|
||||
"no_value": "Not an email",
|
||||
"model": "gpt-4o", # Using string value - enum accepts any model slug dynamically
|
||||
"model": DEFAULT_LLM_MODEL,
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
|
||||
@@ -13,6 +13,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import (
|
||||
APIKeyCredentials,
|
||||
CredentialsField,
|
||||
@@ -117,11 +118,13 @@ class AIImageCustomizerBlock(Block):
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
},
|
||||
test_output=[
|
||||
("image_url", "https://replicate.delivery/generated-image.jpg"),
|
||||
# Output will be a workspace ref or data URI depending on context
|
||||
("image_url", lambda x: x.startswith(("workspace://", "data:"))),
|
||||
],
|
||||
test_mock={
|
||||
# Use data URI to avoid HTTP requests during tests
|
||||
"run_model": lambda *args, **kwargs: MediaFileType(
|
||||
"https://replicate.delivery/generated-image.jpg"
|
||||
""
|
||||
),
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
@@ -132,8 +135,7 @@ class AIImageCustomizerBlock(Block):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
try:
|
||||
@@ -141,10 +143,9 @@ class AIImageCustomizerBlock(Block):
|
||||
processed_images = await asyncio.gather(
|
||||
*(
|
||||
store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=img,
|
||||
user_id=user_id,
|
||||
return_content=True,
|
||||
execution_context=execution_context,
|
||||
return_format="for_external_api", # Get content for Replicate API
|
||||
)
|
||||
for img in input_data.images
|
||||
)
|
||||
@@ -158,7 +159,14 @@ class AIImageCustomizerBlock(Block):
|
||||
aspect_ratio=input_data.aspect_ratio.value,
|
||||
output_format=input_data.output_format.value,
|
||||
)
|
||||
yield "image_url", result
|
||||
|
||||
# Store the generated image to the user's workspace for persistence
|
||||
stored_url = await store_media_file(
|
||||
file=result,
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "image_url", stored_url
|
||||
except Exception as e:
|
||||
yield "error", str(e)
|
||||
|
||||
|
||||
@@ -6,6 +6,7 @@ from replicate.client import Client as ReplicateClient
|
||||
from replicate.helpers import FileOutput
|
||||
|
||||
from backend.data.block import Block, BlockCategory, BlockSchemaInput, BlockSchemaOutput
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import (
|
||||
APIKeyCredentials,
|
||||
CredentialsField,
|
||||
@@ -13,6 +14,8 @@ from backend.data.model import (
|
||||
SchemaField,
|
||||
)
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.type import MediaFileType
|
||||
|
||||
|
||||
class ImageSize(str, Enum):
|
||||
@@ -165,11 +168,13 @@ class AIImageGeneratorBlock(Block):
|
||||
test_output=[
|
||||
(
|
||||
"image_url",
|
||||
"https://replicate.delivery/generated-image.webp",
|
||||
# Test output is a data URI since we now store images
|
||||
lambda x: x.startswith(""
|
||||
},
|
||||
)
|
||||
|
||||
@@ -318,11 +323,24 @@ class AIImageGeneratorBlock(Block):
|
||||
style_text = style_map.get(style, "")
|
||||
return f"{style_text} of" if style_text else ""
|
||||
|
||||
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
):
|
||||
try:
|
||||
url = await self.generate_image(input_data, credentials)
|
||||
if url:
|
||||
yield "image_url", url
|
||||
# Store the generated image to the user's workspace/execution folder
|
||||
stored_url = await store_media_file(
|
||||
file=MediaFileType(url),
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "image_url", stored_url
|
||||
else:
|
||||
yield "error", "Image generation returned an empty result."
|
||||
except Exception as e:
|
||||
|
||||
@@ -13,6 +13,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import (
|
||||
APIKeyCredentials,
|
||||
CredentialsField,
|
||||
@@ -21,7 +22,9 @@ from backend.data.model import (
|
||||
)
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.exceptions import BlockExecutionError
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.request import Requests
|
||||
from backend.util.type import MediaFileType
|
||||
|
||||
TEST_CREDENTIALS = APIKeyCredentials(
|
||||
id="01234567-89ab-cdef-0123-456789abcdef",
|
||||
@@ -271,7 +274,10 @@ class AIShortformVideoCreatorBlock(Block):
|
||||
"voice": Voice.LILY,
|
||||
"video_style": VisualMediaType.STOCK_VIDEOS,
|
||||
},
|
||||
test_output=("video_url", "https://example.com/video.mp4"),
|
||||
test_output=(
|
||||
"video_url",
|
||||
lambda x: x.startswith(("workspace://", "data:")),
|
||||
),
|
||||
test_mock={
|
||||
"create_webhook": lambda *args, **kwargs: (
|
||||
"test_uuid",
|
||||
@@ -280,15 +286,21 @@ class AIShortformVideoCreatorBlock(Block):
|
||||
"create_video": lambda *args, **kwargs: {"pid": "test_pid"},
|
||||
"check_video_status": lambda *args, **kwargs: {
|
||||
"status": "ready",
|
||||
"videoUrl": "https://example.com/video.mp4",
|
||||
"videoUrl": "data:video/mp4;base64,AAAA",
|
||||
},
|
||||
"wait_for_video": lambda *args, **kwargs: "https://example.com/video.mp4",
|
||||
# Use data URI to avoid HTTP requests during tests
|
||||
"wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA",
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
)
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
# Create a new Webhook.site URL
|
||||
webhook_token, webhook_url = await self.create_webhook()
|
||||
@@ -340,7 +352,13 @@ class AIShortformVideoCreatorBlock(Block):
|
||||
)
|
||||
video_url = await self.wait_for_video(credentials.api_key, pid)
|
||||
logger.debug(f"Video ready: {video_url}")
|
||||
yield "video_url", video_url
|
||||
# Store the generated video to the user's workspace for persistence
|
||||
stored_url = await store_media_file(
|
||||
file=MediaFileType(video_url),
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "video_url", stored_url
|
||||
|
||||
|
||||
class AIAdMakerVideoCreatorBlock(Block):
|
||||
@@ -447,7 +465,10 @@ class AIAdMakerVideoCreatorBlock(Block):
|
||||
"https://cdn.revid.ai/uploads/1747076315114-image.png",
|
||||
],
|
||||
},
|
||||
test_output=("video_url", "https://example.com/ad.mp4"),
|
||||
test_output=(
|
||||
"video_url",
|
||||
lambda x: x.startswith(("workspace://", "data:")),
|
||||
),
|
||||
test_mock={
|
||||
"create_webhook": lambda *args, **kwargs: (
|
||||
"test_uuid",
|
||||
@@ -456,14 +477,21 @@ class AIAdMakerVideoCreatorBlock(Block):
|
||||
"create_video": lambda *args, **kwargs: {"pid": "test_pid"},
|
||||
"check_video_status": lambda *args, **kwargs: {
|
||||
"status": "ready",
|
||||
"videoUrl": "https://example.com/ad.mp4",
|
||||
"videoUrl": "data:video/mp4;base64,AAAA",
|
||||
},
|
||||
"wait_for_video": lambda *args, **kwargs: "https://example.com/ad.mp4",
|
||||
"wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA",
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
)
|
||||
|
||||
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
):
|
||||
webhook_token, webhook_url = await self.create_webhook()
|
||||
|
||||
payload = {
|
||||
@@ -531,7 +559,13 @@ class AIAdMakerVideoCreatorBlock(Block):
|
||||
raise RuntimeError("Failed to create video: No project ID returned")
|
||||
|
||||
video_url = await self.wait_for_video(credentials.api_key, pid)
|
||||
yield "video_url", video_url
|
||||
# Store the generated video to the user's workspace for persistence
|
||||
stored_url = await store_media_file(
|
||||
file=MediaFileType(video_url),
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "video_url", stored_url
|
||||
|
||||
|
||||
class AIScreenshotToVideoAdBlock(Block):
|
||||
@@ -626,7 +660,10 @@ class AIScreenshotToVideoAdBlock(Block):
|
||||
"script": "Amazing numbers!",
|
||||
"screenshot_url": "https://cdn.revid.ai/uploads/1747080376028-image.png",
|
||||
},
|
||||
test_output=("video_url", "https://example.com/screenshot.mp4"),
|
||||
test_output=(
|
||||
"video_url",
|
||||
lambda x: x.startswith(("workspace://", "data:")),
|
||||
),
|
||||
test_mock={
|
||||
"create_webhook": lambda *args, **kwargs: (
|
||||
"test_uuid",
|
||||
@@ -635,14 +672,21 @@ class AIScreenshotToVideoAdBlock(Block):
|
||||
"create_video": lambda *args, **kwargs: {"pid": "test_pid"},
|
||||
"check_video_status": lambda *args, **kwargs: {
|
||||
"status": "ready",
|
||||
"videoUrl": "https://example.com/screenshot.mp4",
|
||||
"videoUrl": "data:video/mp4;base64,AAAA",
|
||||
},
|
||||
"wait_for_video": lambda *args, **kwargs: "https://example.com/screenshot.mp4",
|
||||
"wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA",
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
)
|
||||
|
||||
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
):
|
||||
webhook_token, webhook_url = await self.create_webhook()
|
||||
|
||||
payload = {
|
||||
@@ -710,4 +754,10 @@ class AIScreenshotToVideoAdBlock(Block):
|
||||
raise RuntimeError("Failed to create video: No project ID returned")
|
||||
|
||||
video_url = await self.wait_for_video(credentials.api_key, pid)
|
||||
yield "video_url", video_url
|
||||
# Store the generated video to the user's workspace for persistence
|
||||
stored_url = await store_media_file(
|
||||
file=MediaFileType(video_url),
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "video_url", stored_url
|
||||
|
||||
@@ -6,6 +6,7 @@ if TYPE_CHECKING:
|
||||
|
||||
from pydantic import SecretStr
|
||||
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.sdk import (
|
||||
APIKeyCredentials,
|
||||
Block,
|
||||
@@ -17,6 +18,8 @@ from backend.sdk import (
|
||||
Requests,
|
||||
SchemaField,
|
||||
)
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.type import MediaFileType
|
||||
|
||||
from ._config import bannerbear
|
||||
|
||||
@@ -135,15 +138,17 @@ class BannerbearTextOverlayBlock(Block):
|
||||
},
|
||||
test_output=[
|
||||
("success", True),
|
||||
("image_url", "https://cdn.bannerbear.com/test-image.jpg"),
|
||||
# Output will be a workspace ref or data URI depending on context
|
||||
("image_url", lambda x: x.startswith(("workspace://", "data:"))),
|
||||
("uid", "test-uid-123"),
|
||||
("status", "completed"),
|
||||
],
|
||||
test_mock={
|
||||
# Use data URI to avoid HTTP requests during tests
|
||||
"_make_api_request": lambda *args, **kwargs: {
|
||||
"uid": "test-uid-123",
|
||||
"status": "completed",
|
||||
"image_url": "https://cdn.bannerbear.com/test-image.jpg",
|
||||
"image_url": "",
|
||||
}
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
@@ -177,7 +182,12 @@ class BannerbearTextOverlayBlock(Block):
|
||||
raise Exception(error_msg)
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
# Build the modifications array
|
||||
modifications = []
|
||||
@@ -234,6 +244,18 @@ class BannerbearTextOverlayBlock(Block):
|
||||
|
||||
# Synchronous request - image should be ready
|
||||
yield "success", True
|
||||
yield "image_url", data.get("image_url", "")
|
||||
|
||||
# Store the generated image to workspace for persistence
|
||||
image_url = data.get("image_url", "")
|
||||
if image_url:
|
||||
stored_url = await store_media_file(
|
||||
file=MediaFileType(image_url),
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "image_url", stored_url
|
||||
else:
|
||||
yield "image_url", ""
|
||||
|
||||
yield "uid", data.get("uid", "")
|
||||
yield "status", data.get("status", "completed")
|
||||
|
||||
@@ -9,6 +9,7 @@ from backend.data.block import (
|
||||
BlockSchemaOutput,
|
||||
BlockType,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.type import MediaFileType, convert
|
||||
@@ -17,10 +18,10 @@ from backend.util.type import MediaFileType, convert
|
||||
class FileStoreBlock(Block):
|
||||
class Input(BlockSchemaInput):
|
||||
file_in: MediaFileType = SchemaField(
|
||||
description="The file to store in the temporary directory, it can be a URL, data URI, or local path."
|
||||
description="The file to download and store. Can be a URL (https://...), data URI, or local path."
|
||||
)
|
||||
base_64: bool = SchemaField(
|
||||
description="Whether produce an output in base64 format (not recommended, you can pass the string path just fine accross blocks).",
|
||||
description="Whether to produce output in base64 format (not recommended, you can pass the file reference across blocks).",
|
||||
default=False,
|
||||
advanced=True,
|
||||
title="Produce Base64 Output",
|
||||
@@ -28,13 +29,18 @@ class FileStoreBlock(Block):
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
file_out: MediaFileType = SchemaField(
|
||||
description="The relative path to the stored file in the temporary directory."
|
||||
description="Reference to the stored file. In CoPilot: workspace:// URI (visible in list_workspace_files). In graphs: data URI for passing to other blocks."
|
||||
)
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="cbb50872-625b-42f0-8203-a2ae78242d8a",
|
||||
description="Stores the input file in the temporary directory.",
|
||||
description=(
|
||||
"Downloads and stores a file from a URL, data URI, or local path. "
|
||||
"Use this to fetch images, documents, or other files for processing. "
|
||||
"In CoPilot: saves to workspace (use list_workspace_files to see it). "
|
||||
"In graphs: outputs a data URI to pass to other blocks."
|
||||
),
|
||||
categories={BlockCategory.BASIC, BlockCategory.MULTIMEDIA},
|
||||
input_schema=FileStoreBlock.Input,
|
||||
output_schema=FileStoreBlock.Output,
|
||||
@@ -45,15 +51,18 @@ class FileStoreBlock(Block):
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
# Determine return format based on user preference
|
||||
# for_external_api: always returns data URI (base64) - honors "Produce Base64 Output"
|
||||
# for_block_output: smart format - workspace:// in CoPilot, data URI in graphs
|
||||
return_format = "for_external_api" if input_data.base_64 else "for_block_output"
|
||||
|
||||
yield "file_out", await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.file_in,
|
||||
user_id=user_id,
|
||||
return_content=input_data.base_64,
|
||||
execution_context=execution_context,
|
||||
return_format=return_format,
|
||||
)
|
||||
|
||||
|
||||
|
||||
@@ -15,6 +15,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import APIKeyCredentials, SchemaField
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.request import Requests
|
||||
@@ -666,8 +667,7 @@ class SendDiscordFileBlock(Block):
|
||||
file: MediaFileType,
|
||||
filename: str,
|
||||
message_content: str,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
) -> dict:
|
||||
intents = discord.Intents.default()
|
||||
intents.guilds = True
|
||||
@@ -731,10 +731,9 @@ class SendDiscordFileBlock(Block):
|
||||
# Local file path - read from stored media file
|
||||
# This would be a path from a previous block's output
|
||||
stored_file = await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=file,
|
||||
user_id=user_id,
|
||||
return_content=True, # Get as data URI
|
||||
execution_context=execution_context,
|
||||
return_format="for_external_api", # Get content to send to Discord
|
||||
)
|
||||
# Now process as data URI
|
||||
header, encoded = stored_file.split(",", 1)
|
||||
@@ -781,8 +780,7 @@ class SendDiscordFileBlock(Block):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
try:
|
||||
@@ -793,8 +791,7 @@ class SendDiscordFileBlock(Block):
|
||||
file=input_data.file,
|
||||
filename=input_data.filename,
|
||||
message_content=input_data.message_content,
|
||||
graph_exec_id=graph_exec_id,
|
||||
user_id=user_id,
|
||||
execution_context=execution_context,
|
||||
)
|
||||
|
||||
yield "status", result.get("status", "Unknown error")
|
||||
|
||||
@@ -17,8 +17,11 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.request import ClientResponseError, Requests
|
||||
from backend.util.type import MediaFileType
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -64,9 +67,13 @@ class AIVideoGeneratorBlock(Block):
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
test_output=[("video_url", "https://fal.media/files/example/video.mp4")],
|
||||
test_output=[
|
||||
# Output will be a workspace ref or data URI depending on context
|
||||
("video_url", lambda x: x.startswith(("workspace://", "data:"))),
|
||||
],
|
||||
test_mock={
|
||||
"generate_video": lambda *args, **kwargs: "https://fal.media/files/example/video.mp4"
|
||||
# Use data URI to avoid HTTP requests during tests
|
||||
"generate_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA"
|
||||
},
|
||||
)
|
||||
|
||||
@@ -208,11 +215,22 @@ class AIVideoGeneratorBlock(Block):
|
||||
raise RuntimeError(f"API request failed: {str(e)}")
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, credentials: FalCredentials, **kwargs
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: FalCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
try:
|
||||
video_url = await self.generate_video(input_data, credentials)
|
||||
yield "video_url", video_url
|
||||
# Store the generated video to the user's workspace for persistence
|
||||
stored_url = await store_media_file(
|
||||
file=MediaFileType(video_url),
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "video_url", stored_url
|
||||
except Exception as e:
|
||||
error_message = str(e)
|
||||
yield "error", error_message
|
||||
|
||||
@@ -12,6 +12,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import (
|
||||
APIKeyCredentials,
|
||||
CredentialsField,
|
||||
@@ -121,10 +122,12 @@ class AIImageEditorBlock(Block):
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
},
|
||||
test_output=[
|
||||
("output_image", "https://replicate.com/output/edited-image.png"),
|
||||
# Output will be a workspace ref or data URI depending on context
|
||||
("output_image", lambda x: x.startswith(("workspace://", "data:"))),
|
||||
],
|
||||
test_mock={
|
||||
"run_model": lambda *args, **kwargs: "https://replicate.com/output/edited-image.png",
|
||||
# Use data URI to avoid HTTP requests during tests
|
||||
"run_model": lambda *args, **kwargs: "",
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
)
|
||||
@@ -134,8 +137,7 @@ class AIImageEditorBlock(Block):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
result = await self.run_model(
|
||||
@@ -144,20 +146,25 @@ class AIImageEditorBlock(Block):
|
||||
prompt=input_data.prompt,
|
||||
input_image_b64=(
|
||||
await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.input_image,
|
||||
user_id=user_id,
|
||||
return_content=True,
|
||||
execution_context=execution_context,
|
||||
return_format="for_external_api", # Get content for Replicate API
|
||||
)
|
||||
if input_data.input_image
|
||||
else None
|
||||
),
|
||||
aspect_ratio=input_data.aspect_ratio.value,
|
||||
seed=input_data.seed,
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
user_id=execution_context.user_id or "",
|
||||
graph_exec_id=execution_context.graph_exec_id or "",
|
||||
)
|
||||
yield "output_image", result
|
||||
# Store the generated image to the user's workspace for persistence
|
||||
stored_url = await store_media_file(
|
||||
file=result,
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "output_image", stored_url
|
||||
|
||||
async def run_model(
|
||||
self,
|
||||
|
||||
@@ -21,6 +21,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
|
||||
from backend.util.settings import Settings
|
||||
@@ -95,8 +96,7 @@ def _make_mime_text(
|
||||
|
||||
async def create_mime_message(
|
||||
input_data,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
) -> str:
|
||||
"""Create a MIME message with attachments and return base64-encoded raw message."""
|
||||
|
||||
@@ -117,12 +117,12 @@ async def create_mime_message(
|
||||
if input_data.attachments:
|
||||
for attach in input_data.attachments:
|
||||
local_path = await store_media_file(
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=attach,
|
||||
return_content=False,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
abs_path = get_exec_file_path(graph_exec_id, local_path)
|
||||
assert execution_context.graph_exec_id # Validated by store_media_file
|
||||
abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
|
||||
part = MIMEBase("application", "octet-stream")
|
||||
with open(abs_path, "rb") as f:
|
||||
part.set_payload(f.read())
|
||||
@@ -582,27 +582,25 @@ class GmailSendBlock(GmailBase):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: GoogleCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
service = self._build_service(credentials, **kwargs)
|
||||
result = await self._send_email(
|
||||
service,
|
||||
input_data,
|
||||
graph_exec_id,
|
||||
user_id,
|
||||
execution_context,
|
||||
)
|
||||
yield "result", result
|
||||
|
||||
async def _send_email(
|
||||
self, service, input_data: Input, graph_exec_id: str, user_id: str
|
||||
self, service, input_data: Input, execution_context: ExecutionContext
|
||||
) -> dict:
|
||||
if not input_data.to or not input_data.subject or not input_data.body:
|
||||
raise ValueError(
|
||||
"At least one recipient, subject, and body are required for sending an email"
|
||||
)
|
||||
raw_message = await create_mime_message(input_data, graph_exec_id, user_id)
|
||||
raw_message = await create_mime_message(input_data, execution_context)
|
||||
sent_message = await asyncio.to_thread(
|
||||
lambda: service.users()
|
||||
.messages()
|
||||
@@ -692,30 +690,28 @@ class GmailCreateDraftBlock(GmailBase):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: GoogleCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
service = self._build_service(credentials, **kwargs)
|
||||
result = await self._create_draft(
|
||||
service,
|
||||
input_data,
|
||||
graph_exec_id,
|
||||
user_id,
|
||||
execution_context,
|
||||
)
|
||||
yield "result", GmailDraftResult(
|
||||
id=result["id"], message_id=result["message"]["id"], status="draft_created"
|
||||
)
|
||||
|
||||
async def _create_draft(
|
||||
self, service, input_data: Input, graph_exec_id: str, user_id: str
|
||||
self, service, input_data: Input, execution_context: ExecutionContext
|
||||
) -> dict:
|
||||
if not input_data.to or not input_data.subject:
|
||||
raise ValueError(
|
||||
"At least one recipient and subject are required for creating a draft"
|
||||
)
|
||||
|
||||
raw_message = await create_mime_message(input_data, graph_exec_id, user_id)
|
||||
raw_message = await create_mime_message(input_data, execution_context)
|
||||
draft = await asyncio.to_thread(
|
||||
lambda: service.users()
|
||||
.drafts()
|
||||
@@ -1100,7 +1096,7 @@ class GmailGetThreadBlock(GmailBase):
|
||||
|
||||
|
||||
async def _build_reply_message(
|
||||
service, input_data, graph_exec_id: str, user_id: str
|
||||
service, input_data, execution_context: ExecutionContext
|
||||
) -> tuple[str, str]:
|
||||
"""
|
||||
Builds a reply MIME message for Gmail threads.
|
||||
@@ -1190,12 +1186,12 @@ async def _build_reply_message(
|
||||
# Handle attachments
|
||||
for attach in input_data.attachments:
|
||||
local_path = await store_media_file(
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=attach,
|
||||
return_content=False,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
abs_path = get_exec_file_path(graph_exec_id, local_path)
|
||||
assert execution_context.graph_exec_id # Validated by store_media_file
|
||||
abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
|
||||
part = MIMEBase("application", "octet-stream")
|
||||
with open(abs_path, "rb") as f:
|
||||
part.set_payload(f.read())
|
||||
@@ -1311,16 +1307,14 @@ class GmailReplyBlock(GmailBase):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: GoogleCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
service = self._build_service(credentials, **kwargs)
|
||||
message = await self._reply(
|
||||
service,
|
||||
input_data,
|
||||
graph_exec_id,
|
||||
user_id,
|
||||
execution_context,
|
||||
)
|
||||
yield "messageId", message["id"]
|
||||
yield "threadId", message.get("threadId", input_data.threadId)
|
||||
@@ -1343,11 +1337,11 @@ class GmailReplyBlock(GmailBase):
|
||||
yield "email", email
|
||||
|
||||
async def _reply(
|
||||
self, service, input_data: Input, graph_exec_id: str, user_id: str
|
||||
self, service, input_data: Input, execution_context: ExecutionContext
|
||||
) -> dict:
|
||||
# Build the reply message using the shared helper
|
||||
raw, thread_id = await _build_reply_message(
|
||||
service, input_data, graph_exec_id, user_id
|
||||
service, input_data, execution_context
|
||||
)
|
||||
|
||||
# Send the message
|
||||
@@ -1441,16 +1435,14 @@ class GmailDraftReplyBlock(GmailBase):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: GoogleCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
service = self._build_service(credentials, **kwargs)
|
||||
draft = await self._create_draft_reply(
|
||||
service,
|
||||
input_data,
|
||||
graph_exec_id,
|
||||
user_id,
|
||||
execution_context,
|
||||
)
|
||||
yield "draftId", draft["id"]
|
||||
yield "messageId", draft["message"]["id"]
|
||||
@@ -1458,11 +1450,11 @@ class GmailDraftReplyBlock(GmailBase):
|
||||
yield "status", "draft_created"
|
||||
|
||||
async def _create_draft_reply(
|
||||
self, service, input_data: Input, graph_exec_id: str, user_id: str
|
||||
self, service, input_data: Input, execution_context: ExecutionContext
|
||||
) -> dict:
|
||||
# Build the reply message using the shared helper
|
||||
raw, thread_id = await _build_reply_message(
|
||||
service, input_data, graph_exec_id, user_id
|
||||
service, input_data, execution_context
|
||||
)
|
||||
|
||||
# Create draft with proper thread association
|
||||
@@ -1629,23 +1621,21 @@ class GmailForwardBlock(GmailBase):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: GoogleCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
service = self._build_service(credentials, **kwargs)
|
||||
result = await self._forward_message(
|
||||
service,
|
||||
input_data,
|
||||
graph_exec_id,
|
||||
user_id,
|
||||
execution_context,
|
||||
)
|
||||
yield "messageId", result["id"]
|
||||
yield "threadId", result.get("threadId", "")
|
||||
yield "status", "forwarded"
|
||||
|
||||
async def _forward_message(
|
||||
self, service, input_data: Input, graph_exec_id: str, user_id: str
|
||||
self, service, input_data: Input, execution_context: ExecutionContext
|
||||
) -> dict:
|
||||
if not input_data.to:
|
||||
raise ValueError("At least one recipient is required for forwarding")
|
||||
@@ -1727,12 +1717,12 @@ To: {original_to}
|
||||
# Add any additional attachments
|
||||
for attach in input_data.additionalAttachments:
|
||||
local_path = await store_media_file(
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=attach,
|
||||
return_content=False,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
abs_path = get_exec_file_path(graph_exec_id, local_path)
|
||||
assert execution_context.graph_exec_id # Validated by store_media_file
|
||||
abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
|
||||
part = MIMEBase("application", "octet-stream")
|
||||
with open(abs_path, "rb") as f:
|
||||
part.set_payload(f.read())
|
||||
|
||||
@@ -15,6 +15,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import (
|
||||
CredentialsField,
|
||||
CredentialsMetaInput,
|
||||
@@ -116,10 +117,9 @@ class SendWebRequestBlock(Block):
|
||||
|
||||
@staticmethod
|
||||
async def _prepare_files(
|
||||
graph_exec_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
files_name: str,
|
||||
files: list[MediaFileType],
|
||||
user_id: str,
|
||||
) -> list[tuple[str, tuple[str, BytesIO, str]]]:
|
||||
"""
|
||||
Prepare files for the request by storing them and reading their content.
|
||||
@@ -127,11 +127,16 @@ class SendWebRequestBlock(Block):
|
||||
(files_name, (filename, BytesIO, mime_type))
|
||||
"""
|
||||
files_payload: list[tuple[str, tuple[str, BytesIO, str]]] = []
|
||||
graph_exec_id = execution_context.graph_exec_id
|
||||
if graph_exec_id is None:
|
||||
raise ValueError("graph_exec_id is required for file operations")
|
||||
|
||||
for media in files:
|
||||
# Normalise to a list so we can repeat the same key
|
||||
rel_path = await store_media_file(
|
||||
graph_exec_id, media, user_id, return_content=False
|
||||
file=media,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
abs_path = get_exec_file_path(graph_exec_id, rel_path)
|
||||
async with aiofiles.open(abs_path, "rb") as f:
|
||||
@@ -143,7 +148,7 @@ class SendWebRequestBlock(Block):
|
||||
return files_payload
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, graph_exec_id: str, user_id: str, **kwargs
|
||||
self, input_data: Input, *, execution_context: ExecutionContext, **kwargs
|
||||
) -> BlockOutput:
|
||||
# ─── Parse/normalise body ────────────────────────────────────
|
||||
body = input_data.body
|
||||
@@ -174,7 +179,7 @@ class SendWebRequestBlock(Block):
|
||||
files_payload: list[tuple[str, tuple[str, BytesIO, str]]] = []
|
||||
if use_files:
|
||||
files_payload = await self._prepare_files(
|
||||
graph_exec_id, input_data.files_name, input_data.files, user_id
|
||||
execution_context, input_data.files_name, input_data.files
|
||||
)
|
||||
|
||||
# Enforce body format rules
|
||||
@@ -238,9 +243,8 @@ class SendAuthenticatedWebRequestBlock(SendWebRequestBlock):
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
graph_exec_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
credentials: HostScopedCredentials,
|
||||
user_id: str,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
# Create SendWebRequestBlock.Input from our input (removing credentials field)
|
||||
@@ -271,6 +275,6 @@ class SendAuthenticatedWebRequestBlock(SendWebRequestBlock):
|
||||
|
||||
# Use parent class run method
|
||||
async for output_name, output_data in super().run(
|
||||
base_input, graph_exec_id=graph_exec_id, user_id=user_id, **kwargs
|
||||
base_input, execution_context=execution_context, **kwargs
|
||||
):
|
||||
yield output_name, output_data
|
||||
|
||||
@@ -12,6 +12,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockType,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.mock import MockObject
|
||||
@@ -462,18 +463,21 @@ class AgentFileInputBlock(AgentInputBlock):
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
if not input_data.value:
|
||||
return
|
||||
|
||||
# Determine return format based on user preference
|
||||
# for_external_api: always returns data URI (base64) - honors "Produce Base64 Output"
|
||||
# for_block_output: smart format - workspace:// in CoPilot, data URI in graphs
|
||||
return_format = "for_external_api" if input_data.base_64 else "for_block_output"
|
||||
|
||||
yield "result", await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.value,
|
||||
user_id=user_id,
|
||||
return_content=input_data.base_64,
|
||||
execution_context=execution_context,
|
||||
return_format=return_format,
|
||||
)
|
||||
|
||||
|
||||
|
||||
@@ -4,19 +4,17 @@ import logging
|
||||
import re
|
||||
import secrets
|
||||
from abc import ABC
|
||||
from enum import Enum
|
||||
from enum import Enum, EnumMeta
|
||||
from json import JSONDecodeError
|
||||
from typing import Any, Iterable, List, Literal, Optional
|
||||
from typing import Any, Iterable, List, Literal, NamedTuple, Optional
|
||||
|
||||
import anthropic
|
||||
import ollama
|
||||
import openai
|
||||
from anthropic.types import ToolParam
|
||||
from groq import AsyncGroq
|
||||
from pydantic import BaseModel, GetCoreSchemaHandler, SecretStr
|
||||
from pydantic_core import CoreSchema, core_schema
|
||||
from pydantic import BaseModel, SecretStr
|
||||
|
||||
from backend.data import llm_registry
|
||||
from backend.data.block import (
|
||||
Block,
|
||||
BlockCategory,
|
||||
@@ -24,7 +22,6 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.llm_registry import ModelMetadata
|
||||
from backend.data.model import (
|
||||
APIKeyCredentials,
|
||||
CredentialsField,
|
||||
@@ -69,123 +66,114 @@ TEST_CREDENTIALS_INPUT = {
|
||||
|
||||
|
||||
def AICredentialsField() -> AICredentials:
|
||||
"""
|
||||
Returns a CredentialsField for LLM providers.
|
||||
The discriminator_mapping will be refreshed when the schema is generated
|
||||
if it's empty, ensuring the LLM registry is loaded.
|
||||
"""
|
||||
# Get the mapping now - it may be empty initially, but will be refreshed
|
||||
# when the schema is generated via CredentialsMetaInput._add_json_schema_extra
|
||||
mapping = llm_registry.get_llm_discriminator_mapping()
|
||||
|
||||
return CredentialsField(
|
||||
description="API key for the LLM provider.",
|
||||
discriminator="model",
|
||||
discriminator_mapping=mapping, # May be empty initially, refreshed later
|
||||
discriminator_mapping={
|
||||
model.value: model.metadata.provider for model in LlmModel
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def llm_model_schema_extra() -> dict[str, Any]:
|
||||
return {"options": llm_registry.get_llm_model_schema_options()}
|
||||
class ModelMetadata(NamedTuple):
|
||||
provider: str
|
||||
context_window: int
|
||||
max_output_tokens: int | None
|
||||
display_name: str
|
||||
provider_name: str
|
||||
creator_name: str
|
||||
price_tier: Literal[1, 2, 3]
|
||||
|
||||
|
||||
class LlmModelMeta(type):
|
||||
"""
|
||||
Metaclass for LlmModel that enables attribute-style access to dynamic models.
|
||||
|
||||
This allows code like `LlmModel.GPT4O` to work by converting the attribute
|
||||
name to a slug format:
|
||||
- GPT4O -> gpt-4o
|
||||
- GPT4O_MINI -> gpt-4o-mini
|
||||
- CLAUDE_3_5_SONNET -> claude-3-5-sonnet
|
||||
"""
|
||||
|
||||
def __getattr__(cls, name: str):
|
||||
# Don't intercept private/dunder attributes
|
||||
if name.startswith("_"):
|
||||
raise AttributeError(f"type object 'LlmModel' has no attribute '{name}'")
|
||||
|
||||
# Convert attribute name to slug format:
|
||||
# 1. Lowercase: GPT4O -> gpt4o
|
||||
# 2. Underscores to hyphens: GPT4O_MINI -> gpt4o-mini
|
||||
slug = name.lower().replace("_", "-")
|
||||
|
||||
# Check for exact match in registry first (e.g., "o1" stays "o1")
|
||||
registry_slugs = llm_registry.get_dynamic_model_slugs()
|
||||
if slug in registry_slugs:
|
||||
return cls(slug)
|
||||
|
||||
# If no exact match, try inserting hyphen between letter and digit
|
||||
# e.g., gpt4o -> gpt-4o
|
||||
transformed_slug = re.sub(r"([a-z])(\d)", r"\1-\2", slug)
|
||||
return cls(transformed_slug)
|
||||
|
||||
def __iter__(cls):
|
||||
"""Iterate over all models from the registry.
|
||||
|
||||
Yields LlmModel instances for each model in the dynamic registry.
|
||||
Used by __get_pydantic_json_schema__ to build model metadata.
|
||||
"""
|
||||
for model in llm_registry.iter_dynamic_models():
|
||||
yield cls(model.slug)
|
||||
class LlmModelMeta(EnumMeta):
|
||||
pass
|
||||
|
||||
|
||||
class LlmModel(str, metaclass=LlmModelMeta):
|
||||
"""
|
||||
Dynamic LLM model type that accepts any model slug from the registry.
|
||||
|
||||
This is a string subclass (not an Enum) that allows any model slug value.
|
||||
All models are managed via the LLM Registry in the database.
|
||||
|
||||
Usage:
|
||||
model = LlmModel("gpt-4o") # Direct construction
|
||||
model = LlmModel.GPT4O # Attribute access (converted to "gpt-4o")
|
||||
model.value # Returns the slug string
|
||||
model.provider # Returns the provider from registry
|
||||
"""
|
||||
|
||||
def __new__(cls, value: str):
|
||||
if isinstance(value, LlmModel):
|
||||
return value
|
||||
return str.__new__(cls, value)
|
||||
|
||||
@classmethod
|
||||
def __get_pydantic_core_schema__(
|
||||
cls, source_type: Any, handler: GetCoreSchemaHandler
|
||||
) -> CoreSchema:
|
||||
"""
|
||||
Tell Pydantic how to validate LlmModel.
|
||||
|
||||
Accepts strings and converts them to LlmModel instances.
|
||||
"""
|
||||
return core_schema.no_info_after_validator_function(
|
||||
cls, # The validator function (LlmModel constructor)
|
||||
core_schema.str_schema(), # Accept string input
|
||||
serialization=core_schema.to_string_ser_schema(), # Serialize as string
|
||||
)
|
||||
|
||||
@property
|
||||
def value(self) -> str:
|
||||
"""Return the model slug (for compatibility with enum-style access)."""
|
||||
return str(self)
|
||||
|
||||
@classmethod
|
||||
def default(cls) -> "LlmModel":
|
||||
"""
|
||||
Get the default model from the registry.
|
||||
|
||||
Returns the recommended model if set, otherwise gpt-4o if available
|
||||
and enabled, otherwise the first enabled model from the registry.
|
||||
Falls back to "gpt-4o" if registry is empty (e.g., at module import time).
|
||||
"""
|
||||
from backend.data.llm_registry import get_default_model_slug
|
||||
|
||||
slug = get_default_model_slug()
|
||||
if slug is None:
|
||||
# Registry is empty (e.g., at module import time before DB connection).
|
||||
# Fall back to gpt-4o for backward compatibility.
|
||||
slug = "gpt-4o"
|
||||
return cls(slug)
|
||||
class LlmModel(str, Enum, metaclass=LlmModelMeta):
|
||||
# OpenAI models
|
||||
O3_MINI = "o3-mini"
|
||||
O3 = "o3-2025-04-16"
|
||||
O1 = "o1"
|
||||
O1_MINI = "o1-mini"
|
||||
# GPT-5 models
|
||||
GPT5_2 = "gpt-5.2-2025-12-11"
|
||||
GPT5_1 = "gpt-5.1-2025-11-13"
|
||||
GPT5 = "gpt-5-2025-08-07"
|
||||
GPT5_MINI = "gpt-5-mini-2025-08-07"
|
||||
GPT5_NANO = "gpt-5-nano-2025-08-07"
|
||||
GPT5_CHAT = "gpt-5-chat-latest"
|
||||
GPT41 = "gpt-4.1-2025-04-14"
|
||||
GPT41_MINI = "gpt-4.1-mini-2025-04-14"
|
||||
GPT4O_MINI = "gpt-4o-mini"
|
||||
GPT4O = "gpt-4o"
|
||||
GPT4_TURBO = "gpt-4-turbo"
|
||||
GPT3_5_TURBO = "gpt-3.5-turbo"
|
||||
# Anthropic models
|
||||
CLAUDE_4_1_OPUS = "claude-opus-4-1-20250805"
|
||||
CLAUDE_4_OPUS = "claude-opus-4-20250514"
|
||||
CLAUDE_4_SONNET = "claude-sonnet-4-20250514"
|
||||
CLAUDE_4_5_OPUS = "claude-opus-4-5-20251101"
|
||||
CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
|
||||
CLAUDE_4_5_HAIKU = "claude-haiku-4-5-20251001"
|
||||
CLAUDE_3_7_SONNET = "claude-3-7-sonnet-20250219"
|
||||
CLAUDE_3_HAIKU = "claude-3-haiku-20240307"
|
||||
# AI/ML API models
|
||||
AIML_API_QWEN2_5_72B = "Qwen/Qwen2.5-72B-Instruct-Turbo"
|
||||
AIML_API_LLAMA3_1_70B = "nvidia/llama-3.1-nemotron-70b-instruct"
|
||||
AIML_API_LLAMA3_3_70B = "meta-llama/Llama-3.3-70B-Instruct-Turbo"
|
||||
AIML_API_META_LLAMA_3_1_70B = "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo"
|
||||
AIML_API_LLAMA_3_2_3B = "meta-llama/Llama-3.2-3B-Instruct-Turbo"
|
||||
# Groq models
|
||||
LLAMA3_3_70B = "llama-3.3-70b-versatile"
|
||||
LLAMA3_1_8B = "llama-3.1-8b-instant"
|
||||
# Ollama models
|
||||
OLLAMA_LLAMA3_3 = "llama3.3"
|
||||
OLLAMA_LLAMA3_2 = "llama3.2"
|
||||
OLLAMA_LLAMA3_8B = "llama3"
|
||||
OLLAMA_LLAMA3_405B = "llama3.1:405b"
|
||||
OLLAMA_DOLPHIN = "dolphin-mistral:latest"
|
||||
# OpenRouter models
|
||||
OPENAI_GPT_OSS_120B = "openai/gpt-oss-120b"
|
||||
OPENAI_GPT_OSS_20B = "openai/gpt-oss-20b"
|
||||
GEMINI_2_5_PRO = "google/gemini-2.5-pro-preview-03-25"
|
||||
GEMINI_3_PRO_PREVIEW = "google/gemini-3-pro-preview"
|
||||
GEMINI_2_5_FLASH = "google/gemini-2.5-flash"
|
||||
GEMINI_2_0_FLASH = "google/gemini-2.0-flash-001"
|
||||
GEMINI_2_5_FLASH_LITE_PREVIEW = "google/gemini-2.5-flash-lite-preview-06-17"
|
||||
GEMINI_2_0_FLASH_LITE = "google/gemini-2.0-flash-lite-001"
|
||||
MISTRAL_NEMO = "mistralai/mistral-nemo"
|
||||
COHERE_COMMAND_R_08_2024 = "cohere/command-r-08-2024"
|
||||
COHERE_COMMAND_R_PLUS_08_2024 = "cohere/command-r-plus-08-2024"
|
||||
DEEPSEEK_CHAT = "deepseek/deepseek-chat" # Actually: DeepSeek V3
|
||||
DEEPSEEK_R1_0528 = "deepseek/deepseek-r1-0528"
|
||||
PERPLEXITY_SONAR = "perplexity/sonar"
|
||||
PERPLEXITY_SONAR_PRO = "perplexity/sonar-pro"
|
||||
PERPLEXITY_SONAR_DEEP_RESEARCH = "perplexity/sonar-deep-research"
|
||||
NOUSRESEARCH_HERMES_3_LLAMA_3_1_405B = "nousresearch/hermes-3-llama-3.1-405b"
|
||||
NOUSRESEARCH_HERMES_3_LLAMA_3_1_70B = "nousresearch/hermes-3-llama-3.1-70b"
|
||||
AMAZON_NOVA_LITE_V1 = "amazon/nova-lite-v1"
|
||||
AMAZON_NOVA_MICRO_V1 = "amazon/nova-micro-v1"
|
||||
AMAZON_NOVA_PRO_V1 = "amazon/nova-pro-v1"
|
||||
MICROSOFT_WIZARDLM_2_8X22B = "microsoft/wizardlm-2-8x22b"
|
||||
GRYPHE_MYTHOMAX_L2_13B = "gryphe/mythomax-l2-13b"
|
||||
META_LLAMA_4_SCOUT = "meta-llama/llama-4-scout"
|
||||
META_LLAMA_4_MAVERICK = "meta-llama/llama-4-maverick"
|
||||
GROK_4 = "x-ai/grok-4"
|
||||
GROK_4_FAST = "x-ai/grok-4-fast"
|
||||
GROK_4_1_FAST = "x-ai/grok-4.1-fast"
|
||||
GROK_CODE_FAST_1 = "x-ai/grok-code-fast-1"
|
||||
KIMI_K2 = "moonshotai/kimi-k2"
|
||||
QWEN3_235B_A22B_THINKING = "qwen/qwen3-235b-a22b-thinking-2507"
|
||||
QWEN3_CODER = "qwen/qwen3-coder"
|
||||
# Llama API models
|
||||
LLAMA_API_LLAMA_4_SCOUT = "Llama-4-Scout-17B-16E-Instruct-FP8"
|
||||
LLAMA_API_LLAMA4_MAVERICK = "Llama-4-Maverick-17B-128E-Instruct-FP8"
|
||||
LLAMA_API_LLAMA3_3_8B = "Llama-3.3-8B-Instruct"
|
||||
LLAMA_API_LLAMA3_3_70B = "Llama-3.3-70B-Instruct"
|
||||
# v0 by Vercel models
|
||||
V0_1_5_MD = "v0-1.5-md"
|
||||
V0_1_5_LG = "v0-1.5-lg"
|
||||
V0_1_0_MD = "v0-1.0-md"
|
||||
|
||||
@classmethod
|
||||
def __get_pydantic_json_schema__(cls, schema, handler):
|
||||
@@ -193,15 +181,7 @@ class LlmModel(str, metaclass=LlmModelMeta):
|
||||
llm_model_metadata = {}
|
||||
for model in cls:
|
||||
model_name = model.value
|
||||
# Skip disabled models - only show enabled models in the picker
|
||||
if not llm_registry.is_model_enabled(model_name):
|
||||
continue
|
||||
# Use registry directly with None check to gracefully handle
|
||||
# missing metadata during startup/import before registry is populated
|
||||
metadata = llm_registry.get_llm_model_metadata(model_name)
|
||||
if metadata is None:
|
||||
# Skip models without metadata (registry not yet populated)
|
||||
continue
|
||||
metadata = model.metadata
|
||||
llm_model_metadata[model_name] = {
|
||||
"creator": metadata.creator_name,
|
||||
"creator_name": metadata.creator_name,
|
||||
@@ -217,12 +197,7 @@ class LlmModel(str, metaclass=LlmModelMeta):
|
||||
|
||||
@property
|
||||
def metadata(self) -> ModelMetadata:
|
||||
metadata = llm_registry.get_llm_model_metadata(self.value)
|
||||
if metadata:
|
||||
return metadata
|
||||
raise ValueError(
|
||||
f"Missing metadata for model: {self.value}. Model not found in LLM registry."
|
||||
)
|
||||
return MODEL_METADATA[self]
|
||||
|
||||
@property
|
||||
def provider(self) -> str:
|
||||
@@ -237,11 +212,300 @@ class LlmModel(str, metaclass=LlmModelMeta):
|
||||
return self.metadata.max_output_tokens
|
||||
|
||||
|
||||
# MODEL_METADATA removed - all models now come from the database via llm_registry
|
||||
MODEL_METADATA = {
|
||||
# https://platform.openai.com/docs/models
|
||||
LlmModel.O3: ModelMetadata("openai", 200000, 100000, "O3", "OpenAI", "OpenAI", 2),
|
||||
LlmModel.O3_MINI: ModelMetadata(
|
||||
"openai", 200000, 100000, "O3 Mini", "OpenAI", "OpenAI", 1
|
||||
), # o3-mini-2025-01-31
|
||||
LlmModel.O1: ModelMetadata(
|
||||
"openai", 200000, 100000, "O1", "OpenAI", "OpenAI", 3
|
||||
), # o1-2024-12-17
|
||||
LlmModel.O1_MINI: ModelMetadata(
|
||||
"openai", 128000, 65536, "O1 Mini", "OpenAI", "OpenAI", 2
|
||||
), # o1-mini-2024-09-12
|
||||
# GPT-5 models
|
||||
LlmModel.GPT5_2: ModelMetadata(
|
||||
"openai", 400000, 128000, "GPT-5.2", "OpenAI", "OpenAI", 3
|
||||
),
|
||||
LlmModel.GPT5_1: ModelMetadata(
|
||||
"openai", 400000, 128000, "GPT-5.1", "OpenAI", "OpenAI", 2
|
||||
),
|
||||
LlmModel.GPT5: ModelMetadata(
|
||||
"openai", 400000, 128000, "GPT-5", "OpenAI", "OpenAI", 1
|
||||
),
|
||||
LlmModel.GPT5_MINI: ModelMetadata(
|
||||
"openai", 400000, 128000, "GPT-5 Mini", "OpenAI", "OpenAI", 1
|
||||
),
|
||||
LlmModel.GPT5_NANO: ModelMetadata(
|
||||
"openai", 400000, 128000, "GPT-5 Nano", "OpenAI", "OpenAI", 1
|
||||
),
|
||||
LlmModel.GPT5_CHAT: ModelMetadata(
|
||||
"openai", 400000, 16384, "GPT-5 Chat Latest", "OpenAI", "OpenAI", 2
|
||||
),
|
||||
LlmModel.GPT41: ModelMetadata(
|
||||
"openai", 1047576, 32768, "GPT-4.1", "OpenAI", "OpenAI", 1
|
||||
),
|
||||
LlmModel.GPT41_MINI: ModelMetadata(
|
||||
"openai", 1047576, 32768, "GPT-4.1 Mini", "OpenAI", "OpenAI", 1
|
||||
),
|
||||
LlmModel.GPT4O_MINI: ModelMetadata(
|
||||
"openai", 128000, 16384, "GPT-4o Mini", "OpenAI", "OpenAI", 1
|
||||
), # gpt-4o-mini-2024-07-18
|
||||
LlmModel.GPT4O: ModelMetadata(
|
||||
"openai", 128000, 16384, "GPT-4o", "OpenAI", "OpenAI", 2
|
||||
), # gpt-4o-2024-08-06
|
||||
LlmModel.GPT4_TURBO: ModelMetadata(
|
||||
"openai", 128000, 4096, "GPT-4 Turbo", "OpenAI", "OpenAI", 3
|
||||
), # gpt-4-turbo-2024-04-09
|
||||
LlmModel.GPT3_5_TURBO: ModelMetadata(
|
||||
"openai", 16385, 4096, "GPT-3.5 Turbo", "OpenAI", "OpenAI", 1
|
||||
), # gpt-3.5-turbo-0125
|
||||
# https://docs.anthropic.com/en/docs/about-claude/models
|
||||
LlmModel.CLAUDE_4_1_OPUS: ModelMetadata(
|
||||
"anthropic", 200000, 32000, "Claude Opus 4.1", "Anthropic", "Anthropic", 3
|
||||
), # claude-opus-4-1-20250805
|
||||
LlmModel.CLAUDE_4_OPUS: ModelMetadata(
|
||||
"anthropic", 200000, 32000, "Claude Opus 4", "Anthropic", "Anthropic", 3
|
||||
), # claude-4-opus-20250514
|
||||
LlmModel.CLAUDE_4_SONNET: ModelMetadata(
|
||||
"anthropic", 200000, 64000, "Claude Sonnet 4", "Anthropic", "Anthropic", 2
|
||||
), # claude-4-sonnet-20250514
|
||||
LlmModel.CLAUDE_4_5_OPUS: ModelMetadata(
|
||||
"anthropic", 200000, 64000, "Claude Opus 4.5", "Anthropic", "Anthropic", 3
|
||||
), # claude-opus-4-5-20251101
|
||||
LlmModel.CLAUDE_4_5_SONNET: ModelMetadata(
|
||||
"anthropic", 200000, 64000, "Claude Sonnet 4.5", "Anthropic", "Anthropic", 3
|
||||
), # claude-sonnet-4-5-20250929
|
||||
LlmModel.CLAUDE_4_5_HAIKU: ModelMetadata(
|
||||
"anthropic", 200000, 64000, "Claude Haiku 4.5", "Anthropic", "Anthropic", 2
|
||||
), # claude-haiku-4-5-20251001
|
||||
LlmModel.CLAUDE_3_7_SONNET: ModelMetadata(
|
||||
"anthropic", 200000, 64000, "Claude 3.7 Sonnet", "Anthropic", "Anthropic", 2
|
||||
), # claude-3-7-sonnet-20250219
|
||||
LlmModel.CLAUDE_3_HAIKU: ModelMetadata(
|
||||
"anthropic", 200000, 4096, "Claude 3 Haiku", "Anthropic", "Anthropic", 1
|
||||
), # claude-3-haiku-20240307
|
||||
# https://docs.aimlapi.com/api-overview/model-database/text-models
|
||||
LlmModel.AIML_API_QWEN2_5_72B: ModelMetadata(
|
||||
"aiml_api", 32000, 8000, "Qwen 2.5 72B Instruct Turbo", "AI/ML", "Qwen", 1
|
||||
),
|
||||
LlmModel.AIML_API_LLAMA3_1_70B: ModelMetadata(
|
||||
"aiml_api",
|
||||
128000,
|
||||
40000,
|
||||
"Llama 3.1 Nemotron 70B Instruct",
|
||||
"AI/ML",
|
||||
"Nvidia",
|
||||
1,
|
||||
),
|
||||
LlmModel.AIML_API_LLAMA3_3_70B: ModelMetadata(
|
||||
"aiml_api", 128000, None, "Llama 3.3 70B Instruct Turbo", "AI/ML", "Meta", 1
|
||||
),
|
||||
LlmModel.AIML_API_META_LLAMA_3_1_70B: ModelMetadata(
|
||||
"aiml_api", 131000, 2000, "Llama 3.1 70B Instruct Turbo", "AI/ML", "Meta", 1
|
||||
),
|
||||
LlmModel.AIML_API_LLAMA_3_2_3B: ModelMetadata(
|
||||
"aiml_api", 128000, None, "Llama 3.2 3B Instruct Turbo", "AI/ML", "Meta", 1
|
||||
),
|
||||
# https://console.groq.com/docs/models
|
||||
LlmModel.LLAMA3_3_70B: ModelMetadata(
|
||||
"groq", 128000, 32768, "Llama 3.3 70B Versatile", "Groq", "Meta", 1
|
||||
),
|
||||
LlmModel.LLAMA3_1_8B: ModelMetadata(
|
||||
"groq", 128000, 8192, "Llama 3.1 8B Instant", "Groq", "Meta", 1
|
||||
),
|
||||
# https://ollama.com/library
|
||||
LlmModel.OLLAMA_LLAMA3_3: ModelMetadata(
|
||||
"ollama", 8192, None, "Llama 3.3", "Ollama", "Meta", 1
|
||||
),
|
||||
LlmModel.OLLAMA_LLAMA3_2: ModelMetadata(
|
||||
"ollama", 8192, None, "Llama 3.2", "Ollama", "Meta", 1
|
||||
),
|
||||
LlmModel.OLLAMA_LLAMA3_8B: ModelMetadata(
|
||||
"ollama", 8192, None, "Llama 3", "Ollama", "Meta", 1
|
||||
),
|
||||
LlmModel.OLLAMA_LLAMA3_405B: ModelMetadata(
|
||||
"ollama", 8192, None, "Llama 3.1 405B", "Ollama", "Meta", 1
|
||||
),
|
||||
LlmModel.OLLAMA_DOLPHIN: ModelMetadata(
|
||||
"ollama", 32768, None, "Dolphin Mistral Latest", "Ollama", "Mistral AI", 1
|
||||
),
|
||||
# https://openrouter.ai/models
|
||||
LlmModel.GEMINI_2_5_PRO: ModelMetadata(
|
||||
"open_router",
|
||||
1050000,
|
||||
8192,
|
||||
"Gemini 2.5 Pro Preview 03.25",
|
||||
"OpenRouter",
|
||||
"Google",
|
||||
2,
|
||||
),
|
||||
LlmModel.GEMINI_3_PRO_PREVIEW: ModelMetadata(
|
||||
"open_router", 1048576, 65535, "Gemini 3 Pro Preview", "OpenRouter", "Google", 2
|
||||
),
|
||||
LlmModel.GEMINI_2_5_FLASH: ModelMetadata(
|
||||
"open_router", 1048576, 65535, "Gemini 2.5 Flash", "OpenRouter", "Google", 1
|
||||
),
|
||||
LlmModel.GEMINI_2_0_FLASH: ModelMetadata(
|
||||
"open_router", 1048576, 8192, "Gemini 2.0 Flash 001", "OpenRouter", "Google", 1
|
||||
),
|
||||
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: ModelMetadata(
|
||||
"open_router",
|
||||
1048576,
|
||||
65535,
|
||||
"Gemini 2.5 Flash Lite Preview 06.17",
|
||||
"OpenRouter",
|
||||
"Google",
|
||||
1,
|
||||
),
|
||||
LlmModel.GEMINI_2_0_FLASH_LITE: ModelMetadata(
|
||||
"open_router",
|
||||
1048576,
|
||||
8192,
|
||||
"Gemini 2.0 Flash Lite 001",
|
||||
"OpenRouter",
|
||||
"Google",
|
||||
1,
|
||||
),
|
||||
LlmModel.MISTRAL_NEMO: ModelMetadata(
|
||||
"open_router", 128000, 4096, "Mistral Nemo", "OpenRouter", "Mistral AI", 1
|
||||
),
|
||||
LlmModel.COHERE_COMMAND_R_08_2024: ModelMetadata(
|
||||
"open_router", 128000, 4096, "Command R 08.2024", "OpenRouter", "Cohere", 1
|
||||
),
|
||||
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: ModelMetadata(
|
||||
"open_router", 128000, 4096, "Command R Plus 08.2024", "OpenRouter", "Cohere", 2
|
||||
),
|
||||
LlmModel.DEEPSEEK_CHAT: ModelMetadata(
|
||||
"open_router", 64000, 2048, "DeepSeek Chat", "OpenRouter", "DeepSeek", 1
|
||||
),
|
||||
LlmModel.DEEPSEEK_R1_0528: ModelMetadata(
|
||||
"open_router", 163840, 163840, "DeepSeek R1 0528", "OpenRouter", "DeepSeek", 1
|
||||
),
|
||||
LlmModel.PERPLEXITY_SONAR: ModelMetadata(
|
||||
"open_router", 127000, 8000, "Sonar", "OpenRouter", "Perplexity", 1
|
||||
),
|
||||
LlmModel.PERPLEXITY_SONAR_PRO: ModelMetadata(
|
||||
"open_router", 200000, 8000, "Sonar Pro", "OpenRouter", "Perplexity", 2
|
||||
),
|
||||
LlmModel.PERPLEXITY_SONAR_DEEP_RESEARCH: ModelMetadata(
|
||||
"open_router",
|
||||
128000,
|
||||
16000,
|
||||
"Sonar Deep Research",
|
||||
"OpenRouter",
|
||||
"Perplexity",
|
||||
3,
|
||||
),
|
||||
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_405B: ModelMetadata(
|
||||
"open_router",
|
||||
131000,
|
||||
4096,
|
||||
"Hermes 3 Llama 3.1 405B",
|
||||
"OpenRouter",
|
||||
"Nous Research",
|
||||
1,
|
||||
),
|
||||
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_70B: ModelMetadata(
|
||||
"open_router",
|
||||
12288,
|
||||
12288,
|
||||
"Hermes 3 Llama 3.1 70B",
|
||||
"OpenRouter",
|
||||
"Nous Research",
|
||||
1,
|
||||
),
|
||||
LlmModel.OPENAI_GPT_OSS_120B: ModelMetadata(
|
||||
"open_router", 131072, 131072, "GPT-OSS 120B", "OpenRouter", "OpenAI", 1
|
||||
),
|
||||
LlmModel.OPENAI_GPT_OSS_20B: ModelMetadata(
|
||||
"open_router", 131072, 32768, "GPT-OSS 20B", "OpenRouter", "OpenAI", 1
|
||||
),
|
||||
LlmModel.AMAZON_NOVA_LITE_V1: ModelMetadata(
|
||||
"open_router", 300000, 5120, "Nova Lite V1", "OpenRouter", "Amazon", 1
|
||||
),
|
||||
LlmModel.AMAZON_NOVA_MICRO_V1: ModelMetadata(
|
||||
"open_router", 128000, 5120, "Nova Micro V1", "OpenRouter", "Amazon", 1
|
||||
),
|
||||
LlmModel.AMAZON_NOVA_PRO_V1: ModelMetadata(
|
||||
"open_router", 300000, 5120, "Nova Pro V1", "OpenRouter", "Amazon", 1
|
||||
),
|
||||
LlmModel.MICROSOFT_WIZARDLM_2_8X22B: ModelMetadata(
|
||||
"open_router", 65536, 4096, "WizardLM 2 8x22B", "OpenRouter", "Microsoft", 1
|
||||
),
|
||||
LlmModel.GRYPHE_MYTHOMAX_L2_13B: ModelMetadata(
|
||||
"open_router", 4096, 4096, "MythoMax L2 13B", "OpenRouter", "Gryphe", 1
|
||||
),
|
||||
LlmModel.META_LLAMA_4_SCOUT: ModelMetadata(
|
||||
"open_router", 131072, 131072, "Llama 4 Scout", "OpenRouter", "Meta", 1
|
||||
),
|
||||
LlmModel.META_LLAMA_4_MAVERICK: ModelMetadata(
|
||||
"open_router", 1048576, 1000000, "Llama 4 Maverick", "OpenRouter", "Meta", 1
|
||||
),
|
||||
LlmModel.GROK_4: ModelMetadata(
|
||||
"open_router", 256000, 256000, "Grok 4", "OpenRouter", "xAI", 3
|
||||
),
|
||||
LlmModel.GROK_4_FAST: ModelMetadata(
|
||||
"open_router", 2000000, 30000, "Grok 4 Fast", "OpenRouter", "xAI", 1
|
||||
),
|
||||
LlmModel.GROK_4_1_FAST: ModelMetadata(
|
||||
"open_router", 2000000, 30000, "Grok 4.1 Fast", "OpenRouter", "xAI", 1
|
||||
),
|
||||
LlmModel.GROK_CODE_FAST_1: ModelMetadata(
|
||||
"open_router", 256000, 10000, "Grok Code Fast 1", "OpenRouter", "xAI", 1
|
||||
),
|
||||
LlmModel.KIMI_K2: ModelMetadata(
|
||||
"open_router", 131000, 131000, "Kimi K2", "OpenRouter", "Moonshot AI", 1
|
||||
),
|
||||
LlmModel.QWEN3_235B_A22B_THINKING: ModelMetadata(
|
||||
"open_router",
|
||||
262144,
|
||||
262144,
|
||||
"Qwen 3 235B A22B Thinking 2507",
|
||||
"OpenRouter",
|
||||
"Qwen",
|
||||
1,
|
||||
),
|
||||
LlmModel.QWEN3_CODER: ModelMetadata(
|
||||
"open_router", 262144, 262144, "Qwen 3 Coder", "OpenRouter", "Qwen", 3
|
||||
),
|
||||
# Llama API models
|
||||
LlmModel.LLAMA_API_LLAMA_4_SCOUT: ModelMetadata(
|
||||
"llama_api",
|
||||
128000,
|
||||
4028,
|
||||
"Llama 4 Scout 17B 16E Instruct FP8",
|
||||
"Llama API",
|
||||
"Meta",
|
||||
1,
|
||||
),
|
||||
LlmModel.LLAMA_API_LLAMA4_MAVERICK: ModelMetadata(
|
||||
"llama_api",
|
||||
128000,
|
||||
4028,
|
||||
"Llama 4 Maverick 17B 128E Instruct FP8",
|
||||
"Llama API",
|
||||
"Meta",
|
||||
1,
|
||||
),
|
||||
LlmModel.LLAMA_API_LLAMA3_3_8B: ModelMetadata(
|
||||
"llama_api", 128000, 4028, "Llama 3.3 8B Instruct", "Llama API", "Meta", 1
|
||||
),
|
||||
LlmModel.LLAMA_API_LLAMA3_3_70B: ModelMetadata(
|
||||
"llama_api", 128000, 4028, "Llama 3.3 70B Instruct", "Llama API", "Meta", 1
|
||||
),
|
||||
# v0 by Vercel models
|
||||
LlmModel.V0_1_5_MD: ModelMetadata("v0", 128000, 64000, "v0 1.5 MD", "V0", "V0", 1),
|
||||
LlmModel.V0_1_5_LG: ModelMetadata("v0", 512000, 64000, "v0 1.5 LG", "V0", "V0", 1),
|
||||
LlmModel.V0_1_0_MD: ModelMetadata("v0", 128000, 64000, "v0 1.0 MD", "V0", "V0", 1),
|
||||
}
|
||||
|
||||
# Default model constant for backward compatibility
|
||||
# Uses the dynamic registry to get the default model
|
||||
DEFAULT_LLM_MODEL = LlmModel.default()
|
||||
DEFAULT_LLM_MODEL = LlmModel.GPT5_2
|
||||
|
||||
for model in LlmModel:
|
||||
if model not in MODEL_METADATA:
|
||||
raise ValueError(f"Missing MODEL_METADATA metadata for model: {model}")
|
||||
|
||||
|
||||
class ToolCall(BaseModel):
|
||||
@@ -334,10 +598,7 @@ def get_parallel_tool_calls_param(
|
||||
llm_model: LlmModel, parallel_tool_calls: bool | None
|
||||
):
|
||||
"""Get the appropriate parallel_tool_calls parameter for OpenAI-compatible APIs."""
|
||||
# Check for o-series models (o1, o1-mini, o3-mini, etc.) which don't support
|
||||
# parallel tool calls. Use regex to avoid false positives like "openai/gpt-oss".
|
||||
is_o_series = re.match(r"^o\d", llm_model) is not None
|
||||
if is_o_series or parallel_tool_calls is None:
|
||||
if llm_model.startswith("o") or parallel_tool_calls is None:
|
||||
return openai.NOT_GIVEN
|
||||
return parallel_tool_calls
|
||||
|
||||
@@ -373,98 +634,19 @@ async def llm_call(
|
||||
- prompt_tokens: The number of tokens used in the prompt.
|
||||
- completion_tokens: The number of tokens used in the completion.
|
||||
"""
|
||||
# Get model metadata and check if enabled - with fallback support
|
||||
# The model we'll actually use (may differ if original is disabled)
|
||||
model_to_use = llm_model.value
|
||||
|
||||
# Check if model is in registry and if it's enabled
|
||||
from backend.data.llm_registry import (
|
||||
get_fallback_model_for_disabled,
|
||||
get_model_info,
|
||||
)
|
||||
|
||||
model_info = get_model_info(llm_model.value)
|
||||
|
||||
if model_info and not model_info.is_enabled:
|
||||
# Model is disabled - try to find a fallback from the same provider
|
||||
fallback = get_fallback_model_for_disabled(llm_model.value)
|
||||
if fallback:
|
||||
logger.warning(
|
||||
f"Model '{llm_model.value}' is disabled. Using fallback model '{fallback.slug}' from the same provider ({fallback.metadata.provider})."
|
||||
)
|
||||
model_to_use = fallback.slug
|
||||
# Use fallback model's metadata
|
||||
provider = fallback.metadata.provider
|
||||
context_window = fallback.metadata.context_window
|
||||
model_max_output = fallback.metadata.max_output_tokens or int(2**15)
|
||||
else:
|
||||
# No fallback available - raise error
|
||||
raise ValueError(
|
||||
f"LLM model '{llm_model.value}' is disabled and no fallback model "
|
||||
f"from the same provider is available. Please enable the model or "
|
||||
f"select a different model in the block configuration."
|
||||
)
|
||||
else:
|
||||
# Model is enabled or not in registry (legacy/static model)
|
||||
try:
|
||||
provider = llm_model.metadata.provider
|
||||
context_window = llm_model.context_window
|
||||
model_max_output = llm_model.max_output_tokens or int(2**15)
|
||||
except ValueError:
|
||||
# Model not in cache - try refreshing the registry once if we have DB access
|
||||
logger.warning(f"Model {llm_model.value} not found in registry cache")
|
||||
|
||||
# Try refreshing the registry if we have database access
|
||||
from backend.data.db import is_connected
|
||||
|
||||
if is_connected():
|
||||
try:
|
||||
logger.info(
|
||||
f"Refreshing LLM registry and retrying lookup for {llm_model.value}"
|
||||
)
|
||||
await llm_registry.refresh_llm_registry()
|
||||
# Try again after refresh
|
||||
try:
|
||||
provider = llm_model.metadata.provider
|
||||
context_window = llm_model.context_window
|
||||
model_max_output = llm_model.max_output_tokens or int(2**15)
|
||||
logger.info(
|
||||
f"Successfully loaded model {llm_model.value} metadata after registry refresh"
|
||||
)
|
||||
except ValueError:
|
||||
# Still not found after refresh
|
||||
raise ValueError(
|
||||
f"LLM model '{llm_model.value}' not found in registry after refresh. "
|
||||
"Please ensure the model is added and enabled in the LLM registry via the admin UI."
|
||||
)
|
||||
except Exception as refresh_exc:
|
||||
logger.error(f"Failed to refresh LLM registry: {refresh_exc}")
|
||||
raise ValueError(
|
||||
f"LLM model '{llm_model.value}' not found in registry and failed to refresh. "
|
||||
"Please ensure the model is added to the LLM registry via the admin UI."
|
||||
) from refresh_exc
|
||||
else:
|
||||
# No DB access (e.g., in executor without direct DB connection)
|
||||
# The registry should have been loaded on startup
|
||||
raise ValueError(
|
||||
f"LLM model '{llm_model.value}' not found in registry cache. "
|
||||
"The registry may need to be refreshed. Please contact support or try again later."
|
||||
)
|
||||
|
||||
# Create effective model for model-specific parameter resolution (e.g., o-series check)
|
||||
# This uses the resolved model_to_use which may differ from llm_model if fallback occurred
|
||||
effective_model = LlmModel(model_to_use)
|
||||
provider = llm_model.metadata.provider
|
||||
context_window = llm_model.context_window
|
||||
|
||||
if compress_prompt_to_fit:
|
||||
prompt = compress_prompt(
|
||||
messages=prompt,
|
||||
target_tokens=context_window // 2,
|
||||
target_tokens=llm_model.context_window // 2,
|
||||
lossy_ok=True,
|
||||
)
|
||||
|
||||
# Calculate available tokens based on context window and input length
|
||||
estimated_input_tokens = estimate_token_count(prompt)
|
||||
# model_max_output already set above
|
||||
model_max_output = llm_model.max_output_tokens or int(2**15)
|
||||
user_max = max_tokens or model_max_output
|
||||
available_tokens = max(context_window - estimated_input_tokens, 0)
|
||||
max_tokens = max(min(available_tokens, model_max_output, user_max), 1)
|
||||
@@ -475,14 +657,14 @@ async def llm_call(
|
||||
response_format = None
|
||||
|
||||
parallel_tool_calls = get_parallel_tool_calls_param(
|
||||
effective_model, parallel_tool_calls
|
||||
llm_model, parallel_tool_calls
|
||||
)
|
||||
|
||||
if force_json_output:
|
||||
response_format = {"type": "json_object"}
|
||||
|
||||
response = await oai_client.chat.completions.create(
|
||||
model=model_to_use,
|
||||
model=llm_model.value,
|
||||
messages=prompt, # type: ignore
|
||||
response_format=response_format, # type: ignore
|
||||
max_completion_tokens=max_tokens,
|
||||
@@ -529,7 +711,7 @@ async def llm_call(
|
||||
)
|
||||
try:
|
||||
resp = await client.messages.create(
|
||||
model=model_to_use,
|
||||
model=llm_model.value,
|
||||
system=sysprompt,
|
||||
messages=messages,
|
||||
max_tokens=max_tokens,
|
||||
@@ -593,7 +775,7 @@ async def llm_call(
|
||||
client = AsyncGroq(api_key=credentials.api_key.get_secret_value())
|
||||
response_format = {"type": "json_object"} if force_json_output else None
|
||||
response = await client.chat.completions.create(
|
||||
model=model_to_use,
|
||||
model=llm_model.value,
|
||||
messages=prompt, # type: ignore
|
||||
response_format=response_format, # type: ignore
|
||||
max_tokens=max_tokens,
|
||||
@@ -615,7 +797,7 @@ async def llm_call(
|
||||
sys_messages = [p["content"] for p in prompt if p["role"] == "system"]
|
||||
usr_messages = [p["content"] for p in prompt if p["role"] != "system"]
|
||||
response = await client.generate(
|
||||
model=model_to_use,
|
||||
model=llm_model.value,
|
||||
prompt=f"{sys_messages}\n\n{usr_messages}",
|
||||
stream=False,
|
||||
options={"num_ctx": max_tokens},
|
||||
@@ -637,7 +819,7 @@ async def llm_call(
|
||||
)
|
||||
|
||||
parallel_tool_calls_param = get_parallel_tool_calls_param(
|
||||
effective_model, parallel_tool_calls
|
||||
llm_model, parallel_tool_calls
|
||||
)
|
||||
|
||||
response = await client.chat.completions.create(
|
||||
@@ -645,7 +827,7 @@ async def llm_call(
|
||||
"HTTP-Referer": "https://agpt.co",
|
||||
"X-Title": "AutoGPT",
|
||||
},
|
||||
model=model_to_use,
|
||||
model=llm_model.value,
|
||||
messages=prompt, # type: ignore
|
||||
max_tokens=max_tokens,
|
||||
tools=tools_param, # type: ignore
|
||||
@@ -679,7 +861,7 @@ async def llm_call(
|
||||
)
|
||||
|
||||
parallel_tool_calls_param = get_parallel_tool_calls_param(
|
||||
effective_model, parallel_tool_calls
|
||||
llm_model, parallel_tool_calls
|
||||
)
|
||||
|
||||
response = await client.chat.completions.create(
|
||||
@@ -687,7 +869,7 @@ async def llm_call(
|
||||
"HTTP-Referer": "https://agpt.co",
|
||||
"X-Title": "AutoGPT",
|
||||
},
|
||||
model=model_to_use,
|
||||
model=llm_model.value,
|
||||
messages=prompt, # type: ignore
|
||||
max_tokens=max_tokens,
|
||||
tools=tools_param, # type: ignore
|
||||
@@ -714,7 +896,7 @@ async def llm_call(
|
||||
reasoning=reasoning,
|
||||
)
|
||||
elif provider == "aiml_api":
|
||||
client = openai.AsyncOpenAI(
|
||||
client = openai.OpenAI(
|
||||
base_url="https://api.aimlapi.com/v2",
|
||||
api_key=credentials.api_key.get_secret_value(),
|
||||
default_headers={
|
||||
@@ -724,8 +906,8 @@ async def llm_call(
|
||||
},
|
||||
)
|
||||
|
||||
completion = await client.chat.completions.create(
|
||||
model=model_to_use,
|
||||
completion = client.chat.completions.create(
|
||||
model=llm_model.value,
|
||||
messages=prompt, # type: ignore
|
||||
max_tokens=max_tokens,
|
||||
)
|
||||
@@ -753,11 +935,11 @@ async def llm_call(
|
||||
response_format = {"type": "json_object"}
|
||||
|
||||
parallel_tool_calls_param = get_parallel_tool_calls_param(
|
||||
effective_model, parallel_tool_calls
|
||||
llm_model, parallel_tool_calls
|
||||
)
|
||||
|
||||
response = await client.chat.completions.create(
|
||||
model=model_to_use,
|
||||
model=llm_model.value,
|
||||
messages=prompt, # type: ignore
|
||||
response_format=response_format, # type: ignore
|
||||
max_tokens=max_tokens,
|
||||
@@ -808,10 +990,9 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
|
||||
)
|
||||
model: LlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
default_factory=LlmModel.default,
|
||||
default=DEFAULT_LLM_MODEL,
|
||||
description="The language model to use for answering the prompt.",
|
||||
advanced=False,
|
||||
json_schema_extra=llm_model_schema_extra(),
|
||||
)
|
||||
force_json_output: bool = SchemaField(
|
||||
title="Restrict LLM to pure JSON output",
|
||||
@@ -874,7 +1055,7 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
|
||||
input_schema=AIStructuredResponseGeneratorBlock.Input,
|
||||
output_schema=AIStructuredResponseGeneratorBlock.Output,
|
||||
test_input={
|
||||
"model": "gpt-4o", # Using string value - enum accepts any model slug dynamically
|
||||
"model": DEFAULT_LLM_MODEL,
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
"expected_format": {
|
||||
"key1": "value1",
|
||||
@@ -1240,10 +1421,9 @@ class AITextGeneratorBlock(AIBlockBase):
|
||||
)
|
||||
model: LlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
default_factory=LlmModel.default,
|
||||
default=DEFAULT_LLM_MODEL,
|
||||
description="The language model to use for answering the prompt.",
|
||||
advanced=False,
|
||||
json_schema_extra=llm_model_schema_extra(),
|
||||
)
|
||||
credentials: AICredentials = AICredentialsField()
|
||||
sys_prompt: str = SchemaField(
|
||||
@@ -1337,9 +1517,8 @@ class AITextSummarizerBlock(AIBlockBase):
|
||||
)
|
||||
model: LlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
default_factory=LlmModel.default,
|
||||
default=DEFAULT_LLM_MODEL,
|
||||
description="The language model to use for summarizing the text.",
|
||||
json_schema_extra=llm_model_schema_extra(),
|
||||
)
|
||||
focus: str = SchemaField(
|
||||
title="Focus",
|
||||
@@ -1555,9 +1734,8 @@ class AIConversationBlock(AIBlockBase):
|
||||
)
|
||||
model: LlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
default_factory=LlmModel.default,
|
||||
default=DEFAULT_LLM_MODEL,
|
||||
description="The language model to use for the conversation.",
|
||||
json_schema_extra=llm_model_schema_extra(),
|
||||
)
|
||||
credentials: AICredentials = AICredentialsField()
|
||||
max_tokens: int | None = SchemaField(
|
||||
@@ -1594,7 +1772,7 @@ class AIConversationBlock(AIBlockBase):
|
||||
},
|
||||
{"role": "user", "content": "Where was it played?"},
|
||||
],
|
||||
"model": "gpt-4o", # Using string value - enum accepts any model slug dynamically
|
||||
"model": DEFAULT_LLM_MODEL,
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
@@ -1657,10 +1835,9 @@ class AIListGeneratorBlock(AIBlockBase):
|
||||
)
|
||||
model: LlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
default_factory=LlmModel.default,
|
||||
default=DEFAULT_LLM_MODEL,
|
||||
description="The language model to use for generating the list.",
|
||||
advanced=True,
|
||||
json_schema_extra=llm_model_schema_extra(),
|
||||
)
|
||||
credentials: AICredentials = AICredentialsField()
|
||||
max_retries: int = SchemaField(
|
||||
@@ -1715,7 +1892,7 @@ class AIListGeneratorBlock(AIBlockBase):
|
||||
"drawing explorers to uncover its mysteries. Each planet showcases the limitless possibilities of "
|
||||
"fictional worlds."
|
||||
),
|
||||
"model": "gpt-4o", # Using string value - enum accepts any model slug dynamically
|
||||
"model": DEFAULT_LLM_MODEL,
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
"max_retries": 3,
|
||||
"force_json_output": False,
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import os
|
||||
import tempfile
|
||||
from typing import Literal, Optional
|
||||
from typing import Optional
|
||||
|
||||
from moviepy.audio.io.AudioFileClip import AudioFileClip
|
||||
from moviepy.video.fx.Loop import Loop
|
||||
@@ -13,6 +13,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
|
||||
|
||||
@@ -46,18 +47,19 @@ class MediaDurationBlock(Block):
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
# 1) Store the input media locally
|
||||
local_media_path = await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.media_in,
|
||||
user_id=user_id,
|
||||
return_content=False,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
assert execution_context.graph_exec_id is not None
|
||||
media_abspath = get_exec_file_path(
|
||||
execution_context.graph_exec_id, local_media_path
|
||||
)
|
||||
media_abspath = get_exec_file_path(graph_exec_id, local_media_path)
|
||||
|
||||
# 2) Load the clip
|
||||
if input_data.is_video:
|
||||
@@ -88,10 +90,6 @@ class LoopVideoBlock(Block):
|
||||
default=None,
|
||||
ge=1,
|
||||
)
|
||||
output_return_type: Literal["file_path", "data_uri"] = SchemaField(
|
||||
description="How to return the output video. Either a relative path or base64 data URI.",
|
||||
default="file_path",
|
||||
)
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
video_out: str = SchemaField(
|
||||
@@ -111,17 +109,19 @@ class LoopVideoBlock(Block):
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
node_exec_id: str,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
assert execution_context.graph_exec_id is not None
|
||||
assert execution_context.node_exec_id is not None
|
||||
graph_exec_id = execution_context.graph_exec_id
|
||||
node_exec_id = execution_context.node_exec_id
|
||||
|
||||
# 1) Store the input video locally
|
||||
local_video_path = await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.video_in,
|
||||
user_id=user_id,
|
||||
return_content=False,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
input_abspath = get_exec_file_path(graph_exec_id, local_video_path)
|
||||
|
||||
@@ -149,12 +149,11 @@ class LoopVideoBlock(Block):
|
||||
looped_clip = looped_clip.with_audio(clip.audio)
|
||||
looped_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac")
|
||||
|
||||
# Return as data URI
|
||||
# Return output - for_block_output returns workspace:// if available, else data URI
|
||||
video_out = await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=output_filename,
|
||||
user_id=user_id,
|
||||
return_content=input_data.output_return_type == "data_uri",
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
|
||||
yield "video_out", video_out
|
||||
@@ -177,10 +176,6 @@ class AddAudioToVideoBlock(Block):
|
||||
description="Volume scale for the newly attached audio track (1.0 = original).",
|
||||
default=1.0,
|
||||
)
|
||||
output_return_type: Literal["file_path", "data_uri"] = SchemaField(
|
||||
description="Return the final output as a relative path or base64 data URI.",
|
||||
default="file_path",
|
||||
)
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
video_out: MediaFileType = SchemaField(
|
||||
@@ -200,23 +195,24 @@ class AddAudioToVideoBlock(Block):
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
node_exec_id: str,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
assert execution_context.graph_exec_id is not None
|
||||
assert execution_context.node_exec_id is not None
|
||||
graph_exec_id = execution_context.graph_exec_id
|
||||
node_exec_id = execution_context.node_exec_id
|
||||
|
||||
# 1) Store the inputs locally
|
||||
local_video_path = await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.video_in,
|
||||
user_id=user_id,
|
||||
return_content=False,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
local_audio_path = await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.audio_in,
|
||||
user_id=user_id,
|
||||
return_content=False,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
|
||||
abs_temp_dir = os.path.join(tempfile.gettempdir(), "exec_file", graph_exec_id)
|
||||
@@ -240,12 +236,11 @@ class AddAudioToVideoBlock(Block):
|
||||
output_abspath = os.path.join(abs_temp_dir, output_filename)
|
||||
final_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac")
|
||||
|
||||
# 5) Return either path or data URI
|
||||
# 5) Return output - for_block_output returns workspace:// if available, else data URI
|
||||
video_out = await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=output_filename,
|
||||
user_id=user_id,
|
||||
return_content=input_data.output_return_type == "data_uri",
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
|
||||
yield "video_out", video_out
|
||||
|
||||
@@ -11,6 +11,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import (
|
||||
APIKeyCredentials,
|
||||
CredentialsField,
|
||||
@@ -112,8 +113,7 @@ class ScreenshotWebPageBlock(Block):
|
||||
@staticmethod
|
||||
async def take_screenshot(
|
||||
credentials: APIKeyCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
url: str,
|
||||
viewport_width: int,
|
||||
viewport_height: int,
|
||||
@@ -155,12 +155,11 @@ class ScreenshotWebPageBlock(Block):
|
||||
|
||||
return {
|
||||
"image": await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=MediaFileType(
|
||||
f"data:image/{format.value};base64,{b64encode(content).decode('utf-8')}"
|
||||
),
|
||||
user_id=user_id,
|
||||
return_content=True,
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
}
|
||||
|
||||
@@ -169,15 +168,13 @@ class ScreenshotWebPageBlock(Block):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
try:
|
||||
screenshot_data = await self.take_screenshot(
|
||||
credentials=credentials,
|
||||
graph_exec_id=graph_exec_id,
|
||||
user_id=user_id,
|
||||
execution_context=execution_context,
|
||||
url=input_data.url,
|
||||
viewport_width=input_data.viewport_width,
|
||||
viewport_height=input_data.viewport_height,
|
||||
|
||||
@@ -226,10 +226,9 @@ class SmartDecisionMakerBlock(Block):
|
||||
)
|
||||
model: llm.LlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
default_factory=llm.LlmModel.default,
|
||||
default=llm.DEFAULT_LLM_MODEL,
|
||||
description="The language model to use for answering the prompt.",
|
||||
advanced=False,
|
||||
json_schema_extra=llm.llm_model_schema_extra(),
|
||||
)
|
||||
credentials: llm.AICredentials = llm.AICredentialsField()
|
||||
multiple_tool_calls: bool = SchemaField(
|
||||
|
||||
@@ -7,6 +7,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import ContributorDetails, SchemaField
|
||||
from backend.util.file import get_exec_file_path, store_media_file
|
||||
from backend.util.type import MediaFileType
|
||||
@@ -98,7 +99,7 @@ class ReadSpreadsheetBlock(Block):
|
||||
)
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, graph_exec_id: str, user_id: str, **_kwargs
|
||||
self, input_data: Input, *, execution_context: ExecutionContext, **_kwargs
|
||||
) -> BlockOutput:
|
||||
import csv
|
||||
from io import StringIO
|
||||
@@ -106,14 +107,16 @@ class ReadSpreadsheetBlock(Block):
|
||||
# Determine data source - prefer file_input if provided, otherwise use contents
|
||||
if input_data.file_input:
|
||||
stored_file_path = await store_media_file(
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.file_input,
|
||||
return_content=False,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
|
||||
# Get full file path
|
||||
file_path = get_exec_file_path(graph_exec_id, stored_file_path)
|
||||
assert execution_context.graph_exec_id # Validated by store_media_file
|
||||
file_path = get_exec_file_path(
|
||||
execution_context.graph_exec_id, stored_file_path
|
||||
)
|
||||
if not Path(file_path).exists():
|
||||
raise ValueError(f"File does not exist: {file_path}")
|
||||
|
||||
|
||||
@@ -10,13 +10,13 @@ import stagehand.main
|
||||
from stagehand import Stagehand
|
||||
|
||||
from backend.blocks.llm import (
|
||||
MODEL_METADATA,
|
||||
AICredentials,
|
||||
AICredentialsField,
|
||||
LlmModel,
|
||||
ModelMetadata,
|
||||
)
|
||||
from backend.blocks.stagehand._config import stagehand as stagehand_provider
|
||||
from backend.data import llm_registry
|
||||
from backend.sdk import (
|
||||
APIKeyCredentials,
|
||||
Block,
|
||||
@@ -91,7 +91,7 @@ class StagehandRecommendedLlmModel(str, Enum):
|
||||
Returns the provider name for the model in the required format for Stagehand:
|
||||
provider/model_name
|
||||
"""
|
||||
model_metadata = self.metadata
|
||||
model_metadata = MODEL_METADATA[LlmModel(self.value)]
|
||||
model_name = self.value
|
||||
|
||||
if len(model_name.split("/")) == 1 and not self.value.startswith(
|
||||
@@ -107,23 +107,19 @@ class StagehandRecommendedLlmModel(str, Enum):
|
||||
|
||||
@property
|
||||
def provider(self) -> str:
|
||||
return self.metadata.provider
|
||||
return MODEL_METADATA[LlmModel(self.value)].provider
|
||||
|
||||
@property
|
||||
def metadata(self) -> ModelMetadata:
|
||||
metadata = llm_registry.get_llm_model_metadata(self.value)
|
||||
if metadata:
|
||||
return metadata
|
||||
# Fallback to LlmModel enum if registry lookup fails
|
||||
return LlmModel(self.value).metadata
|
||||
return MODEL_METADATA[LlmModel(self.value)]
|
||||
|
||||
@property
|
||||
def context_window(self) -> int:
|
||||
return self.metadata.context_window
|
||||
return MODEL_METADATA[LlmModel(self.value)].context_window
|
||||
|
||||
@property
|
||||
def max_output_tokens(self) -> int | None:
|
||||
return self.metadata.max_output_tokens
|
||||
return MODEL_METADATA[LlmModel(self.value)].max_output_tokens
|
||||
|
||||
|
||||
class StagehandObserveBlock(Block):
|
||||
|
||||
@@ -10,6 +10,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import (
|
||||
APIKeyCredentials,
|
||||
CredentialsField,
|
||||
@@ -17,7 +18,9 @@ from backend.data.model import (
|
||||
SchemaField,
|
||||
)
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.request import Requests
|
||||
from backend.util.type import MediaFileType
|
||||
|
||||
TEST_CREDENTIALS = APIKeyCredentials(
|
||||
id="01234567-89ab-cdef-0123-456789abcdef",
|
||||
@@ -102,7 +105,7 @@ class CreateTalkingAvatarVideoBlock(Block):
|
||||
test_output=[
|
||||
(
|
||||
"video_url",
|
||||
"https://d-id.com/api/clips/abcd1234-5678-efgh-ijkl-mnopqrstuvwx/video",
|
||||
lambda x: x.startswith(("workspace://", "data:")),
|
||||
),
|
||||
],
|
||||
test_mock={
|
||||
@@ -110,9 +113,10 @@ class CreateTalkingAvatarVideoBlock(Block):
|
||||
"id": "abcd1234-5678-efgh-ijkl-mnopqrstuvwx",
|
||||
"status": "created",
|
||||
},
|
||||
# Use data URI to avoid HTTP requests during tests
|
||||
"get_clip_status": lambda *args, **kwargs: {
|
||||
"status": "done",
|
||||
"result_url": "https://d-id.com/api/clips/abcd1234-5678-efgh-ijkl-mnopqrstuvwx/video",
|
||||
"result_url": "data:video/mp4;base64,AAAA",
|
||||
},
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
@@ -138,7 +142,12 @@ class CreateTalkingAvatarVideoBlock(Block):
|
||||
return response.json()
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
# Create the clip
|
||||
payload = {
|
||||
@@ -165,7 +174,14 @@ class CreateTalkingAvatarVideoBlock(Block):
|
||||
for _ in range(input_data.max_polling_attempts):
|
||||
status_response = await self.get_clip_status(credentials.api_key, clip_id)
|
||||
if status_response["status"] == "done":
|
||||
yield "video_url", status_response["result_url"]
|
||||
# Store the generated video to the user's workspace for persistence
|
||||
video_url = status_response["result_url"]
|
||||
stored_url = await store_media_file(
|
||||
file=MediaFileType(video_url),
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "video_url", stored_url
|
||||
return
|
||||
elif status_response["status"] == "error":
|
||||
raise RuntimeError(
|
||||
|
||||
@@ -12,6 +12,7 @@ from backend.blocks.iteration import StepThroughItemsBlock
|
||||
from backend.blocks.llm import AITextSummarizerBlock
|
||||
from backend.blocks.text import ExtractTextInformationBlock
|
||||
from backend.blocks.xml_parser import XMLParserBlock
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.type import MediaFileType
|
||||
|
||||
@@ -233,9 +234,12 @@ class TestStoreMediaFileSecurity:
|
||||
|
||||
with pytest.raises(ValueError, match="File too large"):
|
||||
await store_media_file(
|
||||
graph_exec_id="test",
|
||||
file=MediaFileType(large_data_uri),
|
||||
user_id="test_user",
|
||||
execution_context=ExecutionContext(
|
||||
user_id="test_user",
|
||||
graph_exec_id="test",
|
||||
),
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
|
||||
@patch("backend.util.file.Path")
|
||||
@@ -270,9 +274,12 @@ class TestStoreMediaFileSecurity:
|
||||
# Should raise an error when directory size exceeds limit
|
||||
with pytest.raises(ValueError, match="Disk usage limit exceeded"):
|
||||
await store_media_file(
|
||||
graph_exec_id="test",
|
||||
file=MediaFileType(
|
||||
"data:text/plain;base64,dGVzdA=="
|
||||
), # Small test file
|
||||
user_id="test_user",
|
||||
execution_context=ExecutionContext(
|
||||
user_id="test_user",
|
||||
graph_exec_id="test",
|
||||
),
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
|
||||
@@ -11,10 +11,22 @@ from backend.blocks.http import (
|
||||
HttpMethod,
|
||||
SendAuthenticatedWebRequestBlock,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import HostScopedCredentials
|
||||
from backend.util.request import Response
|
||||
|
||||
|
||||
def make_test_context(
|
||||
graph_exec_id: str = "test-exec-id",
|
||||
user_id: str = "test-user-id",
|
||||
) -> ExecutionContext:
|
||||
"""Helper to create test ExecutionContext."""
|
||||
return ExecutionContext(
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
)
|
||||
|
||||
|
||||
class TestHttpBlockWithHostScopedCredentials:
|
||||
"""Test suite for HTTP block integration with HostScopedCredentials."""
|
||||
|
||||
@@ -105,8 +117,7 @@ class TestHttpBlockWithHostScopedCredentials:
|
||||
async for output_name, output_data in http_block.run(
|
||||
input_data,
|
||||
credentials=exact_match_credentials,
|
||||
graph_exec_id="test-exec-id",
|
||||
user_id="test-user-id",
|
||||
execution_context=make_test_context(),
|
||||
):
|
||||
result.append((output_name, output_data))
|
||||
|
||||
@@ -161,8 +172,7 @@ class TestHttpBlockWithHostScopedCredentials:
|
||||
async for output_name, output_data in http_block.run(
|
||||
input_data,
|
||||
credentials=wildcard_credentials,
|
||||
graph_exec_id="test-exec-id",
|
||||
user_id="test-user-id",
|
||||
execution_context=make_test_context(),
|
||||
):
|
||||
result.append((output_name, output_data))
|
||||
|
||||
@@ -208,8 +218,7 @@ class TestHttpBlockWithHostScopedCredentials:
|
||||
async for output_name, output_data in http_block.run(
|
||||
input_data,
|
||||
credentials=non_matching_credentials,
|
||||
graph_exec_id="test-exec-id",
|
||||
user_id="test-user-id",
|
||||
execution_context=make_test_context(),
|
||||
):
|
||||
result.append((output_name, output_data))
|
||||
|
||||
@@ -258,8 +267,7 @@ class TestHttpBlockWithHostScopedCredentials:
|
||||
async for output_name, output_data in http_block.run(
|
||||
input_data,
|
||||
credentials=exact_match_credentials,
|
||||
graph_exec_id="test-exec-id",
|
||||
user_id="test-user-id",
|
||||
execution_context=make_test_context(),
|
||||
):
|
||||
result.append((output_name, output_data))
|
||||
|
||||
@@ -318,8 +326,7 @@ class TestHttpBlockWithHostScopedCredentials:
|
||||
async for output_name, output_data in http_block.run(
|
||||
input_data,
|
||||
credentials=auto_discovered_creds, # Execution manager found these
|
||||
graph_exec_id="test-exec-id",
|
||||
user_id="test-user-id",
|
||||
execution_context=make_test_context(),
|
||||
):
|
||||
result.append((output_name, output_data))
|
||||
|
||||
@@ -382,8 +389,7 @@ class TestHttpBlockWithHostScopedCredentials:
|
||||
async for output_name, output_data in http_block.run(
|
||||
input_data,
|
||||
credentials=multi_header_creds,
|
||||
graph_exec_id="test-exec-id",
|
||||
user_id="test-user-id",
|
||||
execution_context=make_test_context(),
|
||||
):
|
||||
result.append((output_name, output_data))
|
||||
|
||||
@@ -471,8 +477,7 @@ class TestHttpBlockWithHostScopedCredentials:
|
||||
async for output_name, output_data in http_block.run(
|
||||
input_data,
|
||||
credentials=test_creds,
|
||||
graph_exec_id="test-exec-id",
|
||||
user_id="test-user-id",
|
||||
execution_context=make_test_context(),
|
||||
):
|
||||
result.append((output_name, output_data))
|
||||
|
||||
|
||||
@@ -11,6 +11,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util import json, text
|
||||
from backend.util.file import get_exec_file_path, store_media_file
|
||||
@@ -444,18 +445,21 @@ class FileReadBlock(Block):
|
||||
)
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, graph_exec_id: str, user_id: str, **_kwargs
|
||||
self, input_data: Input, *, execution_context: ExecutionContext, **_kwargs
|
||||
) -> BlockOutput:
|
||||
# Store the media file properly (handles URLs, data URIs, etc.)
|
||||
stored_file_path = await store_media_file(
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.file_input,
|
||||
return_content=False,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
|
||||
# Get full file path
|
||||
file_path = get_exec_file_path(graph_exec_id, stored_file_path)
|
||||
# Get full file path (graph_exec_id validated by store_media_file above)
|
||||
if not execution_context.graph_exec_id:
|
||||
raise ValueError("execution_context.graph_exec_id is required")
|
||||
file_path = get_exec_file_path(
|
||||
execution_context.graph_exec_id, stored_file_path
|
||||
)
|
||||
|
||||
if not Path(file_path).exists():
|
||||
raise ValueError(f"File does not exist: {file_path}")
|
||||
|
||||
@@ -25,7 +25,6 @@ from prisma.models import AgentBlock
|
||||
from prisma.types import AgentBlockCreateInput
|
||||
from pydantic import BaseModel
|
||||
|
||||
from backend.data.llm_registry import update_schema_with_llm_registry
|
||||
from backend.data.model import NodeExecutionStats
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util import json
|
||||
@@ -144,59 +143,35 @@ class BlockInfo(BaseModel):
|
||||
|
||||
|
||||
class BlockSchema(BaseModel):
|
||||
cached_jsonschema: ClassVar[dict[str, Any] | None] = None
|
||||
|
||||
@classmethod
|
||||
def clear_schema_cache(cls) -> None:
|
||||
"""Clear the cached JSON schema for this class."""
|
||||
# Use None instead of {} because {} is truthy and would prevent regeneration
|
||||
cls.cached_jsonschema = None # type: ignore
|
||||
|
||||
@staticmethod
|
||||
def clear_all_schema_caches() -> None:
|
||||
"""Clear cached JSON schemas for all BlockSchema subclasses."""
|
||||
|
||||
def clear_recursive(cls: type) -> None:
|
||||
"""Recursively clear cache for class and all subclasses."""
|
||||
if hasattr(cls, "clear_schema_cache"):
|
||||
cls.clear_schema_cache()
|
||||
for subclass in cls.__subclasses__():
|
||||
clear_recursive(subclass)
|
||||
|
||||
clear_recursive(BlockSchema)
|
||||
cached_jsonschema: ClassVar[dict[str, Any]]
|
||||
|
||||
@classmethod
|
||||
def jsonschema(cls) -> dict[str, Any]:
|
||||
# Generate schema if not cached
|
||||
if not cls.cached_jsonschema:
|
||||
model = jsonref.replace_refs(cls.model_json_schema(), merge_props=True)
|
||||
if cls.cached_jsonschema:
|
||||
return cls.cached_jsonschema
|
||||
|
||||
def ref_to_dict(obj):
|
||||
if isinstance(obj, dict):
|
||||
# OpenAPI <3.1 does not support sibling fields that has a $ref key
|
||||
# So sometimes, the schema has an "allOf"/"anyOf"/"oneOf" with 1 item.
|
||||
keys = {"allOf", "anyOf", "oneOf"}
|
||||
one_key = next(
|
||||
(k for k in keys if k in obj and len(obj[k]) == 1), None
|
||||
)
|
||||
if one_key:
|
||||
obj.update(obj[one_key][0])
|
||||
model = jsonref.replace_refs(cls.model_json_schema(), merge_props=True)
|
||||
|
||||
return {
|
||||
key: ref_to_dict(value)
|
||||
for key, value in obj.items()
|
||||
if not key.startswith("$") and key != one_key
|
||||
}
|
||||
elif isinstance(obj, list):
|
||||
return [ref_to_dict(item) for item in obj]
|
||||
def ref_to_dict(obj):
|
||||
if isinstance(obj, dict):
|
||||
# OpenAPI <3.1 does not support sibling fields that has a $ref key
|
||||
# So sometimes, the schema has an "allOf"/"anyOf"/"oneOf" with 1 item.
|
||||
keys = {"allOf", "anyOf", "oneOf"}
|
||||
one_key = next((k for k in keys if k in obj and len(obj[k]) == 1), None)
|
||||
if one_key:
|
||||
obj.update(obj[one_key][0])
|
||||
|
||||
return obj
|
||||
return {
|
||||
key: ref_to_dict(value)
|
||||
for key, value in obj.items()
|
||||
if not key.startswith("$") and key != one_key
|
||||
}
|
||||
elif isinstance(obj, list):
|
||||
return [ref_to_dict(item) for item in obj]
|
||||
|
||||
cls.cached_jsonschema = cast(dict[str, Any], ref_to_dict(model))
|
||||
return obj
|
||||
|
||||
# Always post-process to ensure LLM registry data is up-to-date
|
||||
# This refreshes model options and discriminator mappings even if schema was cached
|
||||
update_schema_with_llm_registry(cls.cached_jsonschema, cls)
|
||||
cls.cached_jsonschema = cast(dict[str, Any], ref_to_dict(model))
|
||||
|
||||
return cls.cached_jsonschema
|
||||
|
||||
@@ -259,7 +234,7 @@ class BlockSchema(BaseModel):
|
||||
super().__pydantic_init_subclass__(**kwargs)
|
||||
|
||||
# Reset cached JSON schema to prevent inheriting it from parent class
|
||||
cls.cached_jsonschema = None
|
||||
cls.cached_jsonschema = {}
|
||||
|
||||
credentials_fields = cls.get_credentials_fields()
|
||||
|
||||
@@ -898,28 +873,6 @@ def is_block_auth_configured(
|
||||
|
||||
|
||||
async def initialize_blocks() -> None:
|
||||
# Refresh LLM registry before initializing blocks so blocks can use registry data
|
||||
# This ensures the registry cache is populated even in executor context
|
||||
try:
|
||||
from backend.data import llm_registry
|
||||
from backend.data.block_cost_config import refresh_llm_costs
|
||||
|
||||
# Only refresh if we have DB access (check if Prisma is connected)
|
||||
from backend.data.db import is_connected
|
||||
|
||||
if is_connected():
|
||||
await llm_registry.refresh_llm_registry()
|
||||
refresh_llm_costs()
|
||||
logger.info("LLM registry refreshed during block initialization")
|
||||
else:
|
||||
logger.warning(
|
||||
"Prisma not connected, skipping LLM registry refresh during block initialization"
|
||||
)
|
||||
except Exception as exc:
|
||||
logger.warning(
|
||||
"Failed to refresh LLM registry during block initialization: %s", exc
|
||||
)
|
||||
|
||||
# First, sync all provider costs to blocks
|
||||
# Imported here to avoid circular import
|
||||
from backend.sdk.cost_integration import sync_all_provider_costs
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
import logging
|
||||
from typing import Type
|
||||
|
||||
from backend.blocks.ai_image_customizer import AIImageCustomizerBlock, GeminiImageModel
|
||||
@@ -24,18 +23,19 @@ from backend.blocks.ideogram import IdeogramModelBlock
|
||||
from backend.blocks.jina.embeddings import JinaEmbeddingBlock
|
||||
from backend.blocks.jina.search import ExtractWebsiteContentBlock, SearchTheWebBlock
|
||||
from backend.blocks.llm import (
|
||||
MODEL_METADATA,
|
||||
AIConversationBlock,
|
||||
AIListGeneratorBlock,
|
||||
AIStructuredResponseGeneratorBlock,
|
||||
AITextGeneratorBlock,
|
||||
AITextSummarizerBlock,
|
||||
LlmModel,
|
||||
)
|
||||
from backend.blocks.replicate.flux_advanced import ReplicateFluxAdvancedModelBlock
|
||||
from backend.blocks.replicate.replicate_block import ReplicateModelBlock
|
||||
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
|
||||
from backend.blocks.talking_head import CreateTalkingAvatarVideoBlock
|
||||
from backend.blocks.text_to_speech_block import UnrealTextToSpeechBlock
|
||||
from backend.data import llm_registry
|
||||
from backend.data.block import Block, BlockCost, BlockCostType
|
||||
from backend.integrations.credentials_store import (
|
||||
aiml_api_credentials,
|
||||
@@ -55,63 +55,210 @@ from backend.integrations.credentials_store import (
|
||||
v0_credentials,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
# =============== Configure the cost for each LLM Model call =============== #
|
||||
|
||||
PROVIDER_CREDENTIALS = {
|
||||
"openai": openai_credentials,
|
||||
"anthropic": anthropic_credentials,
|
||||
"groq": groq_credentials,
|
||||
"open_router": open_router_credentials,
|
||||
"llama_api": llama_api_credentials,
|
||||
"aiml_api": aiml_api_credentials,
|
||||
"v0": v0_credentials,
|
||||
MODEL_COST: dict[LlmModel, int] = {
|
||||
LlmModel.O3: 4,
|
||||
LlmModel.O3_MINI: 2,
|
||||
LlmModel.O1: 16,
|
||||
LlmModel.O1_MINI: 4,
|
||||
# GPT-5 models
|
||||
LlmModel.GPT5_2: 6,
|
||||
LlmModel.GPT5_1: 5,
|
||||
LlmModel.GPT5: 2,
|
||||
LlmModel.GPT5_MINI: 1,
|
||||
LlmModel.GPT5_NANO: 1,
|
||||
LlmModel.GPT5_CHAT: 5,
|
||||
LlmModel.GPT41: 2,
|
||||
LlmModel.GPT41_MINI: 1,
|
||||
LlmModel.GPT4O_MINI: 1,
|
||||
LlmModel.GPT4O: 3,
|
||||
LlmModel.GPT4_TURBO: 10,
|
||||
LlmModel.GPT3_5_TURBO: 1,
|
||||
LlmModel.CLAUDE_4_1_OPUS: 21,
|
||||
LlmModel.CLAUDE_4_OPUS: 21,
|
||||
LlmModel.CLAUDE_4_SONNET: 5,
|
||||
LlmModel.CLAUDE_4_5_HAIKU: 4,
|
||||
LlmModel.CLAUDE_4_5_OPUS: 14,
|
||||
LlmModel.CLAUDE_4_5_SONNET: 9,
|
||||
LlmModel.CLAUDE_3_7_SONNET: 5,
|
||||
LlmModel.CLAUDE_3_HAIKU: 1,
|
||||
LlmModel.AIML_API_QWEN2_5_72B: 1,
|
||||
LlmModel.AIML_API_LLAMA3_1_70B: 1,
|
||||
LlmModel.AIML_API_LLAMA3_3_70B: 1,
|
||||
LlmModel.AIML_API_META_LLAMA_3_1_70B: 1,
|
||||
LlmModel.AIML_API_LLAMA_3_2_3B: 1,
|
||||
LlmModel.LLAMA3_3_70B: 1,
|
||||
LlmModel.LLAMA3_1_8B: 1,
|
||||
LlmModel.OLLAMA_LLAMA3_3: 1,
|
||||
LlmModel.OLLAMA_LLAMA3_2: 1,
|
||||
LlmModel.OLLAMA_LLAMA3_8B: 1,
|
||||
LlmModel.OLLAMA_LLAMA3_405B: 1,
|
||||
LlmModel.OLLAMA_DOLPHIN: 1,
|
||||
LlmModel.OPENAI_GPT_OSS_120B: 1,
|
||||
LlmModel.OPENAI_GPT_OSS_20B: 1,
|
||||
LlmModel.GEMINI_2_5_PRO: 4,
|
||||
LlmModel.GEMINI_3_PRO_PREVIEW: 5,
|
||||
LlmModel.GEMINI_2_5_FLASH: 1,
|
||||
LlmModel.GEMINI_2_0_FLASH: 1,
|
||||
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: 1,
|
||||
LlmModel.GEMINI_2_0_FLASH_LITE: 1,
|
||||
LlmModel.MISTRAL_NEMO: 1,
|
||||
LlmModel.COHERE_COMMAND_R_08_2024: 1,
|
||||
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: 3,
|
||||
LlmModel.DEEPSEEK_CHAT: 2,
|
||||
LlmModel.DEEPSEEK_R1_0528: 1,
|
||||
LlmModel.PERPLEXITY_SONAR: 1,
|
||||
LlmModel.PERPLEXITY_SONAR_PRO: 5,
|
||||
LlmModel.PERPLEXITY_SONAR_DEEP_RESEARCH: 10,
|
||||
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_405B: 1,
|
||||
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_70B: 1,
|
||||
LlmModel.AMAZON_NOVA_LITE_V1: 1,
|
||||
LlmModel.AMAZON_NOVA_MICRO_V1: 1,
|
||||
LlmModel.AMAZON_NOVA_PRO_V1: 1,
|
||||
LlmModel.MICROSOFT_WIZARDLM_2_8X22B: 1,
|
||||
LlmModel.GRYPHE_MYTHOMAX_L2_13B: 1,
|
||||
LlmModel.META_LLAMA_4_SCOUT: 1,
|
||||
LlmModel.META_LLAMA_4_MAVERICK: 1,
|
||||
LlmModel.LLAMA_API_LLAMA_4_SCOUT: 1,
|
||||
LlmModel.LLAMA_API_LLAMA4_MAVERICK: 1,
|
||||
LlmModel.LLAMA_API_LLAMA3_3_8B: 1,
|
||||
LlmModel.LLAMA_API_LLAMA3_3_70B: 1,
|
||||
LlmModel.GROK_4: 9,
|
||||
LlmModel.GROK_4_FAST: 1,
|
||||
LlmModel.GROK_4_1_FAST: 1,
|
||||
LlmModel.GROK_CODE_FAST_1: 1,
|
||||
LlmModel.KIMI_K2: 1,
|
||||
LlmModel.QWEN3_235B_A22B_THINKING: 1,
|
||||
LlmModel.QWEN3_CODER: 9,
|
||||
# v0 by Vercel models
|
||||
LlmModel.V0_1_5_MD: 1,
|
||||
LlmModel.V0_1_5_LG: 2,
|
||||
LlmModel.V0_1_0_MD: 1,
|
||||
}
|
||||
|
||||
# =============== Configure the cost for each LLM Model call =============== #
|
||||
# All LLM costs now come from the database via llm_registry
|
||||
|
||||
LLM_COST: list[BlockCost] = []
|
||||
for model in LlmModel:
|
||||
if model not in MODEL_COST:
|
||||
raise ValueError(f"Missing MODEL_COST for model: {model}")
|
||||
|
||||
|
||||
def _build_llm_costs_from_registry() -> list[BlockCost]:
|
||||
"""Build BlockCost list from all models in the LLM registry."""
|
||||
costs: list[BlockCost] = []
|
||||
for model in llm_registry.iter_dynamic_models():
|
||||
for cost in model.costs:
|
||||
credentials = PROVIDER_CREDENTIALS.get(cost.credential_provider)
|
||||
if not credentials:
|
||||
logger.warning(
|
||||
"Skipping cost entry for %s due to unknown credentials provider %s",
|
||||
model.slug,
|
||||
cost.credential_provider,
|
||||
)
|
||||
continue
|
||||
cost_filter = {
|
||||
"model": model.slug,
|
||||
LLM_COST = (
|
||||
# Anthropic Models
|
||||
[
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter={
|
||||
"model": model,
|
||||
"credentials": {
|
||||
"id": credentials.id,
|
||||
"provider": credentials.provider,
|
||||
"type": credentials.type,
|
||||
"id": anthropic_credentials.id,
|
||||
"provider": anthropic_credentials.provider,
|
||||
"type": anthropic_credentials.type,
|
||||
},
|
||||
}
|
||||
costs.append(
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter=cost_filter,
|
||||
cost_amount=cost.credit_cost,
|
||||
)
|
||||
)
|
||||
return costs
|
||||
|
||||
|
||||
def refresh_llm_costs() -> None:
|
||||
"""Refresh LLM costs from the registry. All costs now come from the database."""
|
||||
LLM_COST.clear()
|
||||
LLM_COST.extend(_build_llm_costs_from_registry())
|
||||
|
||||
|
||||
# Initial load will happen after registry is refreshed at startup
|
||||
# Don't call refresh_llm_costs() here - it will be called after registry refresh
|
||||
},
|
||||
cost_amount=cost,
|
||||
)
|
||||
for model, cost in MODEL_COST.items()
|
||||
if MODEL_METADATA[model].provider == "anthropic"
|
||||
]
|
||||
# OpenAI Models
|
||||
+ [
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter={
|
||||
"model": model,
|
||||
"credentials": {
|
||||
"id": openai_credentials.id,
|
||||
"provider": openai_credentials.provider,
|
||||
"type": openai_credentials.type,
|
||||
},
|
||||
},
|
||||
cost_amount=cost,
|
||||
)
|
||||
for model, cost in MODEL_COST.items()
|
||||
if MODEL_METADATA[model].provider == "openai"
|
||||
]
|
||||
# Groq Models
|
||||
+ [
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter={
|
||||
"model": model,
|
||||
"credentials": {"id": groq_credentials.id},
|
||||
},
|
||||
cost_amount=cost,
|
||||
)
|
||||
for model, cost in MODEL_COST.items()
|
||||
if MODEL_METADATA[model].provider == "groq"
|
||||
]
|
||||
# Open Router Models
|
||||
+ [
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter={
|
||||
"model": model,
|
||||
"credentials": {
|
||||
"id": open_router_credentials.id,
|
||||
"provider": open_router_credentials.provider,
|
||||
"type": open_router_credentials.type,
|
||||
},
|
||||
},
|
||||
cost_amount=cost,
|
||||
)
|
||||
for model, cost in MODEL_COST.items()
|
||||
if MODEL_METADATA[model].provider == "open_router"
|
||||
]
|
||||
# Llama API Models
|
||||
+ [
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter={
|
||||
"model": model,
|
||||
"credentials": {
|
||||
"id": llama_api_credentials.id,
|
||||
"provider": llama_api_credentials.provider,
|
||||
"type": llama_api_credentials.type,
|
||||
},
|
||||
},
|
||||
cost_amount=cost,
|
||||
)
|
||||
for model, cost in MODEL_COST.items()
|
||||
if MODEL_METADATA[model].provider == "llama_api"
|
||||
]
|
||||
# v0 by Vercel Models
|
||||
+ [
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter={
|
||||
"model": model,
|
||||
"credentials": {
|
||||
"id": v0_credentials.id,
|
||||
"provider": v0_credentials.provider,
|
||||
"type": v0_credentials.type,
|
||||
},
|
||||
},
|
||||
cost_amount=cost,
|
||||
)
|
||||
for model, cost in MODEL_COST.items()
|
||||
if MODEL_METADATA[model].provider == "v0"
|
||||
]
|
||||
# AI/ML Api Models
|
||||
+ [
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter={
|
||||
"model": model,
|
||||
"credentials": {
|
||||
"id": aiml_api_credentials.id,
|
||||
"provider": aiml_api_credentials.provider,
|
||||
"type": aiml_api_credentials.type,
|
||||
},
|
||||
},
|
||||
cost_amount=cost,
|
||||
)
|
||||
for model, cost in MODEL_COST.items()
|
||||
if MODEL_METADATA[model].provider == "aiml_api"
|
||||
]
|
||||
)
|
||||
|
||||
# =============== This is the exhaustive list of cost for each Block =============== #
|
||||
|
||||
|
||||
@@ -83,12 +83,29 @@ class ExecutionContext(BaseModel):
|
||||
|
||||
model_config = {"extra": "ignore"}
|
||||
|
||||
# Execution identity
|
||||
user_id: Optional[str] = None
|
||||
graph_id: Optional[str] = None
|
||||
graph_exec_id: Optional[str] = None
|
||||
graph_version: Optional[int] = None
|
||||
node_id: Optional[str] = None
|
||||
node_exec_id: Optional[str] = None
|
||||
|
||||
# Safety settings
|
||||
human_in_the_loop_safe_mode: bool = True
|
||||
sensitive_action_safe_mode: bool = False
|
||||
|
||||
# User settings
|
||||
user_timezone: str = "UTC"
|
||||
|
||||
# Execution hierarchy
|
||||
root_execution_id: Optional[str] = None
|
||||
parent_execution_id: Optional[str] = None
|
||||
|
||||
# Workspace
|
||||
workspace_id: Optional[str] = None
|
||||
session_id: Optional[str] = None
|
||||
|
||||
|
||||
# -------------------------- Models -------------------------- #
|
||||
|
||||
|
||||
@@ -1511,10 +1511,8 @@ async def migrate_llm_models(migrate_to: LlmModel):
|
||||
if field.annotation == LlmModel:
|
||||
llm_model_fields[block.id] = field_name
|
||||
|
||||
# Get all model slugs from the registry (dynamic, not hardcoded enum)
|
||||
from backend.data import llm_registry
|
||||
|
||||
enum_values = list(llm_registry.get_all_model_slugs_for_validation())
|
||||
# Convert enum values to a list of strings for the SQL query
|
||||
enum_values = [v.value for v in LlmModel]
|
||||
escaped_enum_values = repr(tuple(enum_values)) # hack but works
|
||||
|
||||
# Update each block
|
||||
|
||||
@@ -1,72 +0,0 @@
|
||||
"""
|
||||
LLM Registry module for managing LLM models, providers, and costs dynamically.
|
||||
|
||||
This module provides a database-driven registry system for LLM models,
|
||||
replacing hardcoded model configurations with a flexible admin-managed system.
|
||||
"""
|
||||
|
||||
from backend.data.llm_registry.model import ModelMetadata
|
||||
|
||||
# Re-export for backwards compatibility
|
||||
from backend.data.llm_registry.notifications import (
|
||||
REGISTRY_REFRESH_CHANNEL,
|
||||
publish_registry_refresh_notification,
|
||||
subscribe_to_registry_refresh,
|
||||
)
|
||||
from backend.data.llm_registry.registry import (
|
||||
RegistryModel,
|
||||
RegistryModelCost,
|
||||
RegistryModelCreator,
|
||||
get_all_model_slugs_for_validation,
|
||||
get_default_model_slug,
|
||||
get_dynamic_model_slugs,
|
||||
get_fallback_model_for_disabled,
|
||||
get_llm_discriminator_mapping,
|
||||
get_llm_model_cost,
|
||||
get_llm_model_metadata,
|
||||
get_llm_model_schema_options,
|
||||
get_model_info,
|
||||
is_model_enabled,
|
||||
iter_dynamic_models,
|
||||
refresh_llm_registry,
|
||||
register_static_costs,
|
||||
register_static_metadata,
|
||||
)
|
||||
from backend.data.llm_registry.schema_utils import (
|
||||
is_llm_model_field,
|
||||
refresh_llm_discriminator_mapping,
|
||||
refresh_llm_model_options,
|
||||
update_schema_with_llm_registry,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
# Types
|
||||
"ModelMetadata",
|
||||
"RegistryModel",
|
||||
"RegistryModelCost",
|
||||
"RegistryModelCreator",
|
||||
# Registry functions
|
||||
"get_all_model_slugs_for_validation",
|
||||
"get_default_model_slug",
|
||||
"get_dynamic_model_slugs",
|
||||
"get_fallback_model_for_disabled",
|
||||
"get_llm_discriminator_mapping",
|
||||
"get_llm_model_cost",
|
||||
"get_llm_model_metadata",
|
||||
"get_llm_model_schema_options",
|
||||
"get_model_info",
|
||||
"is_model_enabled",
|
||||
"iter_dynamic_models",
|
||||
"refresh_llm_registry",
|
||||
"register_static_costs",
|
||||
"register_static_metadata",
|
||||
# Notifications
|
||||
"REGISTRY_REFRESH_CHANNEL",
|
||||
"publish_registry_refresh_notification",
|
||||
"subscribe_to_registry_refresh",
|
||||
# Schema utilities
|
||||
"is_llm_model_field",
|
||||
"refresh_llm_discriminator_mapping",
|
||||
"refresh_llm_model_options",
|
||||
"update_schema_with_llm_registry",
|
||||
]
|
||||
@@ -1,25 +0,0 @@
|
||||
"""Type definitions for LLM model metadata."""
|
||||
|
||||
from typing import Literal, NamedTuple
|
||||
|
||||
|
||||
class ModelMetadata(NamedTuple):
|
||||
"""Metadata for an LLM model.
|
||||
|
||||
Attributes:
|
||||
provider: The provider identifier (e.g., "openai", "anthropic")
|
||||
context_window: Maximum context window size in tokens
|
||||
max_output_tokens: Maximum output tokens (None if unlimited)
|
||||
display_name: Human-readable name for the model
|
||||
provider_name: Human-readable provider name (e.g., "OpenAI", "Anthropic")
|
||||
creator_name: Name of the organization that created the model
|
||||
price_tier: Relative cost tier (1=cheapest, 2=medium, 3=expensive)
|
||||
"""
|
||||
|
||||
provider: str
|
||||
context_window: int
|
||||
max_output_tokens: int | None
|
||||
display_name: str
|
||||
provider_name: str
|
||||
creator_name: str
|
||||
price_tier: Literal[1, 2, 3]
|
||||
@@ -1,89 +0,0 @@
|
||||
"""
|
||||
Redis pub/sub notifications for LLM registry updates.
|
||||
|
||||
When models are added/updated/removed via the admin UI, this module
|
||||
publishes notifications to Redis that all executor services subscribe to,
|
||||
ensuring they refresh their registry cache in real-time.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from backend.data.redis_client import connect_async
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Redis channel name for LLM registry refresh notifications
|
||||
REGISTRY_REFRESH_CHANNEL = "llm_registry:refresh"
|
||||
|
||||
|
||||
async def publish_registry_refresh_notification() -> None:
|
||||
"""
|
||||
Publish a notification to Redis that the LLM registry has been updated.
|
||||
All executor services subscribed to this channel will refresh their registry.
|
||||
"""
|
||||
try:
|
||||
redis = await connect_async()
|
||||
await redis.publish(REGISTRY_REFRESH_CHANNEL, "refresh")
|
||||
logger.info("Published LLM registry refresh notification to Redis")
|
||||
except Exception as exc:
|
||||
logger.warning(
|
||||
"Failed to publish LLM registry refresh notification: %s",
|
||||
exc,
|
||||
exc_info=True,
|
||||
)
|
||||
|
||||
|
||||
async def subscribe_to_registry_refresh(
|
||||
on_refresh: Any, # Async callable that takes no args
|
||||
) -> None:
|
||||
"""
|
||||
Subscribe to Redis notifications for LLM registry updates.
|
||||
This runs in a loop and processes messages as they arrive.
|
||||
|
||||
Args:
|
||||
on_refresh: Async callable to execute when a refresh notification is received
|
||||
"""
|
||||
try:
|
||||
redis = await connect_async()
|
||||
pubsub = redis.pubsub()
|
||||
await pubsub.subscribe(REGISTRY_REFRESH_CHANNEL)
|
||||
logger.info(
|
||||
"Subscribed to LLM registry refresh notifications on channel: %s",
|
||||
REGISTRY_REFRESH_CHANNEL,
|
||||
)
|
||||
|
||||
# Process messages in a loop
|
||||
while True:
|
||||
try:
|
||||
message = await pubsub.get_message(
|
||||
ignore_subscribe_messages=True, timeout=1.0
|
||||
)
|
||||
if (
|
||||
message
|
||||
and message["type"] == "message"
|
||||
and message["channel"] == REGISTRY_REFRESH_CHANNEL
|
||||
):
|
||||
logger.info("Received LLM registry refresh notification")
|
||||
try:
|
||||
await on_refresh()
|
||||
except Exception as exc:
|
||||
logger.error(
|
||||
"Error refreshing LLM registry from notification: %s",
|
||||
exc,
|
||||
exc_info=True,
|
||||
)
|
||||
except Exception as exc:
|
||||
logger.warning(
|
||||
"Error processing registry refresh message: %s", exc, exc_info=True
|
||||
)
|
||||
# Continue listening even if one message fails
|
||||
await asyncio.sleep(1)
|
||||
except Exception as exc:
|
||||
logger.error(
|
||||
"Failed to subscribe to LLM registry refresh notifications: %s",
|
||||
exc,
|
||||
exc_info=True,
|
||||
)
|
||||
raise
|
||||
@@ -1,388 +0,0 @@
|
||||
"""Core LLM registry implementation for managing models dynamically."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Any, Iterable
|
||||
|
||||
import prisma.models
|
||||
|
||||
from backend.data.llm_registry.model import ModelMetadata
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _json_to_dict(value: Any) -> dict[str, Any]:
|
||||
"""Convert Prisma Json type to dict, with fallback to empty dict."""
|
||||
if value is None:
|
||||
return {}
|
||||
if isinstance(value, dict):
|
||||
return value
|
||||
# Prisma Json type should always be a dict at runtime
|
||||
return dict(value) if value else {}
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class RegistryModelCost:
|
||||
"""Cost configuration for an LLM model."""
|
||||
|
||||
credit_cost: int
|
||||
credential_provider: str
|
||||
credential_id: str | None
|
||||
credential_type: str | None
|
||||
currency: str | None
|
||||
metadata: dict[str, Any]
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class RegistryModelCreator:
|
||||
"""Creator information for an LLM model."""
|
||||
|
||||
id: str
|
||||
name: str
|
||||
display_name: str
|
||||
description: str | None
|
||||
website_url: str | None
|
||||
logo_url: str | None
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class RegistryModel:
|
||||
"""Represents a model in the LLM registry."""
|
||||
|
||||
slug: str
|
||||
display_name: str
|
||||
description: str | None
|
||||
metadata: ModelMetadata
|
||||
capabilities: dict[str, Any]
|
||||
extra_metadata: dict[str, Any]
|
||||
provider_display_name: str
|
||||
is_enabled: bool
|
||||
is_recommended: bool = False
|
||||
costs: tuple[RegistryModelCost, ...] = field(default_factory=tuple)
|
||||
creator: RegistryModelCreator | None = None
|
||||
|
||||
|
||||
_static_metadata: dict[str, ModelMetadata] = {}
|
||||
_static_costs: dict[str, int] = {}
|
||||
_dynamic_models: dict[str, RegistryModel] = {}
|
||||
_schema_options: list[dict[str, str]] = []
|
||||
_discriminator_mapping: dict[str, str] = {}
|
||||
_lock = asyncio.Lock()
|
||||
|
||||
|
||||
def register_static_metadata(metadata: dict[Any, ModelMetadata]) -> None:
|
||||
"""Register static metadata for legacy models (deprecated)."""
|
||||
_static_metadata.update({str(key): value for key, value in metadata.items()})
|
||||
_refresh_cached_schema()
|
||||
|
||||
|
||||
def register_static_costs(costs: dict[Any, int]) -> None:
|
||||
"""Register static costs for legacy models (deprecated)."""
|
||||
_static_costs.update({str(key): value for key, value in costs.items()})
|
||||
|
||||
|
||||
def _build_schema_options() -> list[dict[str, str]]:
|
||||
"""Build schema options for model selection dropdown. Only includes enabled models."""
|
||||
options: list[dict[str, str]] = []
|
||||
# Only include enabled models in the dropdown options
|
||||
for model in sorted(_dynamic_models.values(), key=lambda m: m.display_name.lower()):
|
||||
if model.is_enabled:
|
||||
options.append(
|
||||
{
|
||||
"label": model.display_name,
|
||||
"value": model.slug,
|
||||
"group": model.metadata.provider,
|
||||
"description": model.description or "",
|
||||
}
|
||||
)
|
||||
|
||||
for slug, metadata in _static_metadata.items():
|
||||
if slug in _dynamic_models:
|
||||
continue
|
||||
options.append(
|
||||
{
|
||||
"label": slug,
|
||||
"value": slug,
|
||||
"group": metadata.provider,
|
||||
"description": "",
|
||||
}
|
||||
)
|
||||
return options
|
||||
|
||||
|
||||
async def refresh_llm_registry() -> None:
|
||||
"""Refresh the LLM registry from the database. Loads all models (enabled and disabled)."""
|
||||
async with _lock:
|
||||
try:
|
||||
records = await prisma.models.LlmModel.prisma().find_many(
|
||||
include={
|
||||
"Provider": True,
|
||||
"Costs": True,
|
||||
"Creator": True,
|
||||
}
|
||||
)
|
||||
logger.debug("Found %d LLM model records in database", len(records))
|
||||
except Exception as exc:
|
||||
logger.error(
|
||||
"Failed to refresh LLM registry from DB: %s", exc, exc_info=True
|
||||
)
|
||||
return
|
||||
|
||||
dynamic: dict[str, RegistryModel] = {}
|
||||
for record in records:
|
||||
provider_name = (
|
||||
record.Provider.name if record.Provider else record.providerId
|
||||
)
|
||||
provider_display_name = (
|
||||
record.Provider.displayName if record.Provider else record.providerId
|
||||
)
|
||||
# Creator name: prefer Creator.name, fallback to provider display name
|
||||
creator_name = (
|
||||
record.Creator.name if record.Creator else provider_display_name
|
||||
)
|
||||
# Price tier: default to 1 (cheapest) if not set
|
||||
price_tier = getattr(record, "priceTier", 1) or 1
|
||||
# Clamp to valid range 1-3
|
||||
price_tier = max(1, min(3, price_tier))
|
||||
|
||||
metadata = ModelMetadata(
|
||||
provider=provider_name,
|
||||
context_window=record.contextWindow,
|
||||
max_output_tokens=record.maxOutputTokens,
|
||||
display_name=record.displayName,
|
||||
provider_name=provider_display_name,
|
||||
creator_name=creator_name,
|
||||
price_tier=price_tier, # type: ignore[arg-type]
|
||||
)
|
||||
costs = tuple(
|
||||
RegistryModelCost(
|
||||
credit_cost=cost.creditCost,
|
||||
credential_provider=cost.credentialProvider,
|
||||
credential_id=cost.credentialId,
|
||||
credential_type=cost.credentialType,
|
||||
currency=cost.currency,
|
||||
metadata=_json_to_dict(cost.metadata),
|
||||
)
|
||||
for cost in (record.Costs or [])
|
||||
)
|
||||
|
||||
# Map creator if present
|
||||
creator = None
|
||||
if record.Creator:
|
||||
creator = RegistryModelCreator(
|
||||
id=record.Creator.id,
|
||||
name=record.Creator.name,
|
||||
display_name=record.Creator.displayName,
|
||||
description=record.Creator.description,
|
||||
website_url=record.Creator.websiteUrl,
|
||||
logo_url=record.Creator.logoUrl,
|
||||
)
|
||||
|
||||
dynamic[record.slug] = RegistryModel(
|
||||
slug=record.slug,
|
||||
display_name=record.displayName,
|
||||
description=record.description,
|
||||
metadata=metadata,
|
||||
capabilities=_json_to_dict(record.capabilities),
|
||||
extra_metadata=_json_to_dict(record.metadata),
|
||||
provider_display_name=(
|
||||
record.Provider.displayName
|
||||
if record.Provider
|
||||
else record.providerId
|
||||
),
|
||||
is_enabled=record.isEnabled,
|
||||
is_recommended=record.isRecommended,
|
||||
costs=costs,
|
||||
creator=creator,
|
||||
)
|
||||
|
||||
# Atomic swap - build new structures then replace references
|
||||
# This ensures readers never see partially updated state
|
||||
global _dynamic_models
|
||||
_dynamic_models = dynamic
|
||||
_refresh_cached_schema()
|
||||
logger.info(
|
||||
"LLM registry refreshed with %s dynamic models (enabled: %s, disabled: %s)",
|
||||
len(dynamic),
|
||||
sum(1 for m in dynamic.values() if m.is_enabled),
|
||||
sum(1 for m in dynamic.values() if not m.is_enabled),
|
||||
)
|
||||
|
||||
|
||||
def _refresh_cached_schema() -> None:
|
||||
"""Refresh cached schema options and discriminator mapping."""
|
||||
global _schema_options, _discriminator_mapping
|
||||
|
||||
# Build new structures
|
||||
new_options = _build_schema_options()
|
||||
new_mapping = {
|
||||
slug: entry.metadata.provider for slug, entry in _dynamic_models.items()
|
||||
}
|
||||
for slug, metadata in _static_metadata.items():
|
||||
new_mapping.setdefault(slug, metadata.provider)
|
||||
|
||||
# Atomic swap - replace references to ensure readers see consistent state
|
||||
_schema_options = new_options
|
||||
_discriminator_mapping = new_mapping
|
||||
|
||||
|
||||
def get_llm_model_metadata(slug: str) -> ModelMetadata | None:
|
||||
"""Get model metadata by slug. Checks dynamic models first, then static metadata."""
|
||||
if slug in _dynamic_models:
|
||||
return _dynamic_models[slug].metadata
|
||||
return _static_metadata.get(slug)
|
||||
|
||||
|
||||
def get_llm_model_cost(slug: str) -> tuple[RegistryModelCost, ...]:
|
||||
"""Get model cost configuration by slug."""
|
||||
if slug in _dynamic_models:
|
||||
return _dynamic_models[slug].costs
|
||||
cost_value = _static_costs.get(slug)
|
||||
if cost_value is None:
|
||||
return tuple()
|
||||
return (
|
||||
RegistryModelCost(
|
||||
credit_cost=cost_value,
|
||||
credential_provider="static",
|
||||
credential_id=None,
|
||||
credential_type=None,
|
||||
currency=None,
|
||||
metadata={},
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def get_llm_model_schema_options() -> list[dict[str, str]]:
|
||||
"""
|
||||
Get schema options for LLM model selection dropdown.
|
||||
|
||||
Returns a copy of cached schema options that are refreshed when the registry is
|
||||
updated via refresh_llm_registry() (called on startup and via Redis pub/sub).
|
||||
"""
|
||||
# Return a copy to prevent external mutation
|
||||
return list(_schema_options)
|
||||
|
||||
|
||||
def get_llm_discriminator_mapping() -> dict[str, str]:
|
||||
"""
|
||||
Get discriminator mapping for LLM models.
|
||||
|
||||
Returns a copy of cached discriminator mapping that is refreshed when the registry
|
||||
is updated via refresh_llm_registry() (called on startup and via Redis pub/sub).
|
||||
"""
|
||||
# Return a copy to prevent external mutation
|
||||
return dict(_discriminator_mapping)
|
||||
|
||||
|
||||
def get_dynamic_model_slugs() -> set[str]:
|
||||
"""Get all dynamic model slugs from the registry."""
|
||||
return set(_dynamic_models.keys())
|
||||
|
||||
|
||||
def get_all_model_slugs_for_validation() -> set[str]:
|
||||
"""
|
||||
Get ALL model slugs (both enabled and disabled) for validation purposes.
|
||||
|
||||
This is used for JSON schema enum validation - we need to accept any known
|
||||
model value (even disabled ones) so that existing graphs don't fail validation.
|
||||
The actual fallback/enforcement happens at runtime in llm_call().
|
||||
"""
|
||||
all_slugs = set(_dynamic_models.keys())
|
||||
all_slugs.update(_static_metadata.keys())
|
||||
return all_slugs
|
||||
|
||||
|
||||
def iter_dynamic_models() -> Iterable[RegistryModel]:
|
||||
"""Iterate over all dynamic models in the registry."""
|
||||
return tuple(_dynamic_models.values())
|
||||
|
||||
|
||||
def get_fallback_model_for_disabled(disabled_model_slug: str) -> RegistryModel | None:
|
||||
"""
|
||||
Find a fallback model when the requested model is disabled.
|
||||
|
||||
Looks for an enabled model from the same provider. Prefers models with
|
||||
similar names or capabilities if possible.
|
||||
|
||||
Args:
|
||||
disabled_model_slug: The slug of the disabled model
|
||||
|
||||
Returns:
|
||||
An enabled RegistryModel from the same provider, or None if no fallback found
|
||||
"""
|
||||
disabled_model = _dynamic_models.get(disabled_model_slug)
|
||||
if not disabled_model:
|
||||
return None
|
||||
|
||||
provider = disabled_model.metadata.provider
|
||||
|
||||
# Find all enabled models from the same provider
|
||||
candidates = [
|
||||
model
|
||||
for model in _dynamic_models.values()
|
||||
if model.is_enabled and model.metadata.provider == provider
|
||||
]
|
||||
|
||||
if not candidates:
|
||||
return None
|
||||
|
||||
# Sort by: prefer models with similar context window, then by name
|
||||
candidates.sort(
|
||||
key=lambda m: (
|
||||
abs(m.metadata.context_window - disabled_model.metadata.context_window),
|
||||
m.display_name.lower(),
|
||||
)
|
||||
)
|
||||
|
||||
return candidates[0]
|
||||
|
||||
|
||||
def is_model_enabled(model_slug: str) -> bool:
|
||||
"""Check if a model is enabled in the registry."""
|
||||
model = _dynamic_models.get(model_slug)
|
||||
if not model:
|
||||
# Model not in registry - assume it's a static/legacy model and allow it
|
||||
return True
|
||||
return model.is_enabled
|
||||
|
||||
|
||||
def get_model_info(model_slug: str) -> RegistryModel | None:
|
||||
"""Get model info from the registry."""
|
||||
return _dynamic_models.get(model_slug)
|
||||
|
||||
|
||||
def get_default_model_slug() -> str | None:
|
||||
"""
|
||||
Get the default model slug to use for block defaults.
|
||||
|
||||
Returns the recommended model if set (configured via admin UI),
|
||||
otherwise returns the first enabled model alphabetically.
|
||||
Returns None if no models are available or enabled.
|
||||
"""
|
||||
# Return the recommended model if one is set and enabled
|
||||
for model in _dynamic_models.values():
|
||||
if model.is_recommended and model.is_enabled:
|
||||
return model.slug
|
||||
|
||||
# No recommended model set - find first enabled model alphabetically
|
||||
for model in sorted(_dynamic_models.values(), key=lambda m: m.display_name.lower()):
|
||||
if model.is_enabled:
|
||||
logger.warning(
|
||||
"No recommended model set, using '%s' as default",
|
||||
model.slug,
|
||||
)
|
||||
return model.slug
|
||||
|
||||
# No enabled models available
|
||||
if _dynamic_models:
|
||||
logger.error(
|
||||
"No enabled models found in registry (%d models registered but all disabled)",
|
||||
len(_dynamic_models),
|
||||
)
|
||||
else:
|
||||
logger.error("No models registered in LLM registry")
|
||||
|
||||
return None
|
||||
@@ -1,130 +0,0 @@
|
||||
"""
|
||||
Helper utilities for LLM registry integration with block schemas.
|
||||
|
||||
This module handles the dynamic injection of discriminator mappings
|
||||
and model options from the LLM registry into block schemas.
|
||||
"""
|
||||
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from backend.data.llm_registry.registry import (
|
||||
get_all_model_slugs_for_validation,
|
||||
get_default_model_slug,
|
||||
get_llm_discriminator_mapping,
|
||||
get_llm_model_schema_options,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def is_llm_model_field(field_name: str, field_info: Any) -> bool:
|
||||
"""
|
||||
Check if a field is an LLM model selection field.
|
||||
|
||||
Returns True if the field has 'options' in json_schema_extra
|
||||
(set by llm_model_schema_extra() in blocks/llm.py).
|
||||
"""
|
||||
if not hasattr(field_info, "json_schema_extra"):
|
||||
return False
|
||||
|
||||
extra = field_info.json_schema_extra
|
||||
if isinstance(extra, dict):
|
||||
return "options" in extra
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def refresh_llm_model_options(field_schema: dict[str, Any]) -> None:
|
||||
"""
|
||||
Refresh LLM model options from the registry.
|
||||
|
||||
Updates 'options' (for frontend dropdown) to show only enabled models,
|
||||
but keeps the 'enum' (for validation) inclusive of ALL known models.
|
||||
|
||||
This is important because:
|
||||
- Options: What users see in the dropdown (enabled models only)
|
||||
- Enum: What values pass validation (all known models, including disabled)
|
||||
|
||||
Existing graphs may have disabled models selected - they should pass validation
|
||||
and the fallback logic in llm_call() will handle using an alternative model.
|
||||
"""
|
||||
fresh_options = get_llm_model_schema_options()
|
||||
if not fresh_options:
|
||||
return
|
||||
|
||||
# Update options array (UI dropdown) - only enabled models
|
||||
if "options" in field_schema:
|
||||
field_schema["options"] = fresh_options
|
||||
|
||||
all_known_slugs = get_all_model_slugs_for_validation()
|
||||
if all_known_slugs and "enum" in field_schema:
|
||||
existing_enum = set(field_schema.get("enum", []))
|
||||
combined_enum = existing_enum | all_known_slugs
|
||||
field_schema["enum"] = sorted(combined_enum)
|
||||
|
||||
# Set the default value from the registry (gpt-4o if available, else first enabled)
|
||||
# This ensures new blocks have a sensible default pre-selected
|
||||
default_slug = get_default_model_slug()
|
||||
if default_slug:
|
||||
field_schema["default"] = default_slug
|
||||
|
||||
|
||||
def refresh_llm_discriminator_mapping(field_schema: dict[str, Any]) -> None:
|
||||
"""
|
||||
Refresh discriminator_mapping for fields that use model-based discrimination.
|
||||
|
||||
The discriminator is already set when AICredentialsField() creates the field.
|
||||
We only need to refresh the mapping when models are added/removed.
|
||||
"""
|
||||
if field_schema.get("discriminator") != "model":
|
||||
return
|
||||
|
||||
# Always refresh the mapping to get latest models
|
||||
fresh_mapping = get_llm_discriminator_mapping()
|
||||
if fresh_mapping is not None:
|
||||
field_schema["discriminator_mapping"] = fresh_mapping
|
||||
|
||||
|
||||
def update_schema_with_llm_registry(
|
||||
schema: dict[str, Any], model_class: type | None = None
|
||||
) -> None:
|
||||
"""
|
||||
Update a JSON schema with current LLM registry data.
|
||||
|
||||
Refreshes:
|
||||
1. Model options for LLM model selection fields (dropdown choices)
|
||||
2. Discriminator mappings for credentials fields (model → provider)
|
||||
|
||||
Args:
|
||||
schema: The JSON schema to update (mutated in-place)
|
||||
model_class: The Pydantic model class (optional, for field introspection)
|
||||
"""
|
||||
properties = schema.get("properties", {})
|
||||
|
||||
for field_name, field_schema in properties.items():
|
||||
if not isinstance(field_schema, dict):
|
||||
continue
|
||||
|
||||
# Refresh model options for LLM model fields
|
||||
if model_class and hasattr(model_class, "model_fields"):
|
||||
field_info = model_class.model_fields.get(field_name)
|
||||
if field_info and is_llm_model_field(field_name, field_info):
|
||||
try:
|
||||
refresh_llm_model_options(field_schema)
|
||||
except Exception as exc:
|
||||
logger.warning(
|
||||
"Failed to refresh LLM options for field %s: %s",
|
||||
field_name,
|
||||
exc,
|
||||
)
|
||||
|
||||
# Refresh discriminator mapping for fields that use model discrimination
|
||||
try:
|
||||
refresh_llm_discriminator_mapping(field_schema)
|
||||
except Exception as exc:
|
||||
logger.warning(
|
||||
"Failed to refresh discriminator mapping for field %s: %s",
|
||||
field_name,
|
||||
exc,
|
||||
)
|
||||
@@ -40,7 +40,6 @@ from pydantic_core import (
|
||||
)
|
||||
from typing_extensions import TypedDict
|
||||
|
||||
from backend.data.llm_registry import update_schema_with_llm_registry
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.json import loads as json_loads
|
||||
from backend.util.settings import Secrets
|
||||
@@ -545,9 +544,7 @@ class CredentialsMetaInput(BaseModel, Generic[CP, CT]):
|
||||
else:
|
||||
schema["credentials_provider"] = allowed_providers
|
||||
schema["credentials_types"] = model_class.allowed_cred_types()
|
||||
|
||||
# Ensure LLM discriminators are populated (delegates to shared helper)
|
||||
update_schema_with_llm_registry(schema, model_class)
|
||||
# Do not return anything, just mutate schema in place
|
||||
|
||||
model_config = ConfigDict(
|
||||
json_schema_extra=_add_json_schema_extra, # type: ignore
|
||||
@@ -696,20 +693,16 @@ def CredentialsField(
|
||||
This is enforced by the `BlockSchema` base class.
|
||||
"""
|
||||
|
||||
# Build field_schema_extra - always include discriminator and mapping if discriminator is set
|
||||
field_schema_extra: dict[str, Any] = {}
|
||||
|
||||
# Always include discriminator if provided
|
||||
if discriminator is not None:
|
||||
field_schema_extra["discriminator"] = discriminator
|
||||
# Always include discriminator_mapping when discriminator is set (even if empty initially)
|
||||
field_schema_extra["discriminator_mapping"] = discriminator_mapping or {}
|
||||
|
||||
# Include other optional fields (only if not None)
|
||||
if required_scopes:
|
||||
field_schema_extra["credentials_scopes"] = list(required_scopes)
|
||||
if discriminator_values:
|
||||
field_schema_extra["discriminator_values"] = discriminator_values
|
||||
field_schema_extra = {
|
||||
k: v
|
||||
for k, v in {
|
||||
"credentials_scopes": list(required_scopes) or None,
|
||||
"discriminator": discriminator,
|
||||
"discriminator_mapping": discriminator_mapping,
|
||||
"discriminator_values": discriminator_values,
|
||||
}.items()
|
||||
if v is not None
|
||||
}
|
||||
|
||||
# Merge any json_schema_extra passed in kwargs
|
||||
if "json_schema_extra" in kwargs:
|
||||
|
||||
@@ -41,6 +41,7 @@ FrontendOnboardingStep = Literal[
|
||||
OnboardingStep.AGENT_NEW_RUN,
|
||||
OnboardingStep.AGENT_INPUT,
|
||||
OnboardingStep.CONGRATS,
|
||||
OnboardingStep.VISIT_COPILOT,
|
||||
OnboardingStep.MARKETPLACE_VISIT,
|
||||
OnboardingStep.BUILDER_OPEN,
|
||||
]
|
||||
@@ -122,6 +123,9 @@ async def update_user_onboarding(user_id: str, data: UserOnboardingUpdate):
|
||||
async def _reward_user(user_id: str, onboarding: UserOnboarding, step: OnboardingStep):
|
||||
reward = 0
|
||||
match step:
|
||||
# Welcome bonus for visiting copilot ($5 = 500 credits)
|
||||
case OnboardingStep.VISIT_COPILOT:
|
||||
reward = 500
|
||||
# Reward user when they clicked New Run during onboarding
|
||||
# This is because they need credits before scheduling a run (next step)
|
||||
# This is seen as a reward for the GET_RESULTS step in the wallet
|
||||
|
||||
276
autogpt_platform/backend/backend/data/workspace.py
Normal file
276
autogpt_platform/backend/backend/data/workspace.py
Normal file
@@ -0,0 +1,276 @@
|
||||
"""
|
||||
Database CRUD operations for User Workspace.
|
||||
|
||||
This module provides functions for managing user workspaces and workspace files.
|
||||
"""
|
||||
|
||||
import logging
|
||||
from datetime import datetime, timezone
|
||||
from typing import Optional
|
||||
|
||||
from prisma.models import UserWorkspace, UserWorkspaceFile
|
||||
from prisma.types import UserWorkspaceFileWhereInput
|
||||
|
||||
from backend.util.json import SafeJson
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
async def get_or_create_workspace(user_id: str) -> UserWorkspace:
|
||||
"""
|
||||
Get user's workspace, creating one if it doesn't exist.
|
||||
|
||||
Uses upsert to handle race conditions when multiple concurrent requests
|
||||
attempt to create a workspace for the same user.
|
||||
|
||||
Args:
|
||||
user_id: The user's ID
|
||||
|
||||
Returns:
|
||||
UserWorkspace instance
|
||||
"""
|
||||
workspace = await UserWorkspace.prisma().upsert(
|
||||
where={"userId": user_id},
|
||||
data={
|
||||
"create": {"userId": user_id},
|
||||
"update": {}, # No updates needed if exists
|
||||
},
|
||||
)
|
||||
|
||||
return workspace
|
||||
|
||||
|
||||
async def get_workspace(user_id: str) -> Optional[UserWorkspace]:
|
||||
"""
|
||||
Get user's workspace if it exists.
|
||||
|
||||
Args:
|
||||
user_id: The user's ID
|
||||
|
||||
Returns:
|
||||
UserWorkspace instance or None
|
||||
"""
|
||||
return await UserWorkspace.prisma().find_unique(where={"userId": user_id})
|
||||
|
||||
|
||||
async def create_workspace_file(
|
||||
workspace_id: str,
|
||||
file_id: str,
|
||||
name: str,
|
||||
path: str,
|
||||
storage_path: str,
|
||||
mime_type: str,
|
||||
size_bytes: int,
|
||||
checksum: Optional[str] = None,
|
||||
metadata: Optional[dict] = None,
|
||||
) -> UserWorkspaceFile:
|
||||
"""
|
||||
Create a new workspace file record.
|
||||
|
||||
Args:
|
||||
workspace_id: The workspace ID
|
||||
file_id: The file ID (same as used in storage path for consistency)
|
||||
name: User-visible filename
|
||||
path: Virtual path (e.g., "/documents/report.pdf")
|
||||
storage_path: Actual storage path (GCS or local)
|
||||
mime_type: MIME type of the file
|
||||
size_bytes: File size in bytes
|
||||
checksum: Optional SHA256 checksum
|
||||
metadata: Optional additional metadata
|
||||
|
||||
Returns:
|
||||
Created UserWorkspaceFile instance
|
||||
"""
|
||||
# Normalize path to start with /
|
||||
if not path.startswith("/"):
|
||||
path = f"/{path}"
|
||||
|
||||
file = await UserWorkspaceFile.prisma().create(
|
||||
data={
|
||||
"id": file_id,
|
||||
"workspaceId": workspace_id,
|
||||
"name": name,
|
||||
"path": path,
|
||||
"storagePath": storage_path,
|
||||
"mimeType": mime_type,
|
||||
"sizeBytes": size_bytes,
|
||||
"checksum": checksum,
|
||||
"metadata": SafeJson(metadata or {}),
|
||||
}
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"Created workspace file {file.id} at path {path} "
|
||||
f"in workspace {workspace_id}"
|
||||
)
|
||||
return file
|
||||
|
||||
|
||||
async def get_workspace_file(
|
||||
file_id: str,
|
||||
workspace_id: Optional[str] = None,
|
||||
) -> Optional[UserWorkspaceFile]:
|
||||
"""
|
||||
Get a workspace file by ID.
|
||||
|
||||
Args:
|
||||
file_id: The file ID
|
||||
workspace_id: Optional workspace ID for validation
|
||||
|
||||
Returns:
|
||||
UserWorkspaceFile instance or None
|
||||
"""
|
||||
where_clause: dict = {"id": file_id, "isDeleted": False}
|
||||
if workspace_id:
|
||||
where_clause["workspaceId"] = workspace_id
|
||||
|
||||
return await UserWorkspaceFile.prisma().find_first(where=where_clause)
|
||||
|
||||
|
||||
async def get_workspace_file_by_path(
|
||||
workspace_id: str,
|
||||
path: str,
|
||||
) -> Optional[UserWorkspaceFile]:
|
||||
"""
|
||||
Get a workspace file by its virtual path.
|
||||
|
||||
Args:
|
||||
workspace_id: The workspace ID
|
||||
path: Virtual path
|
||||
|
||||
Returns:
|
||||
UserWorkspaceFile instance or None
|
||||
"""
|
||||
# Normalize path
|
||||
if not path.startswith("/"):
|
||||
path = f"/{path}"
|
||||
|
||||
return await UserWorkspaceFile.prisma().find_first(
|
||||
where={
|
||||
"workspaceId": workspace_id,
|
||||
"path": path,
|
||||
"isDeleted": False,
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
async def list_workspace_files(
|
||||
workspace_id: str,
|
||||
path_prefix: Optional[str] = None,
|
||||
include_deleted: bool = False,
|
||||
limit: Optional[int] = None,
|
||||
offset: int = 0,
|
||||
) -> list[UserWorkspaceFile]:
|
||||
"""
|
||||
List files in a workspace.
|
||||
|
||||
Args:
|
||||
workspace_id: The workspace ID
|
||||
path_prefix: Optional path prefix to filter (e.g., "/documents/")
|
||||
include_deleted: Whether to include soft-deleted files
|
||||
limit: Maximum number of files to return
|
||||
offset: Number of files to skip
|
||||
|
||||
Returns:
|
||||
List of UserWorkspaceFile instances
|
||||
"""
|
||||
where_clause: UserWorkspaceFileWhereInput = {"workspaceId": workspace_id}
|
||||
|
||||
if not include_deleted:
|
||||
where_clause["isDeleted"] = False
|
||||
|
||||
if path_prefix:
|
||||
# Normalize prefix
|
||||
if not path_prefix.startswith("/"):
|
||||
path_prefix = f"/{path_prefix}"
|
||||
where_clause["path"] = {"startswith": path_prefix}
|
||||
|
||||
return await UserWorkspaceFile.prisma().find_many(
|
||||
where=where_clause,
|
||||
order={"createdAt": "desc"},
|
||||
take=limit,
|
||||
skip=offset,
|
||||
)
|
||||
|
||||
|
||||
async def count_workspace_files(
|
||||
workspace_id: str,
|
||||
path_prefix: Optional[str] = None,
|
||||
include_deleted: bool = False,
|
||||
) -> int:
|
||||
"""
|
||||
Count files in a workspace.
|
||||
|
||||
Args:
|
||||
workspace_id: The workspace ID
|
||||
path_prefix: Optional path prefix to filter (e.g., "/sessions/abc123/")
|
||||
include_deleted: Whether to include soft-deleted files
|
||||
|
||||
Returns:
|
||||
Number of files
|
||||
"""
|
||||
where_clause: dict = {"workspaceId": workspace_id}
|
||||
if not include_deleted:
|
||||
where_clause["isDeleted"] = False
|
||||
|
||||
if path_prefix:
|
||||
# Normalize prefix
|
||||
if not path_prefix.startswith("/"):
|
||||
path_prefix = f"/{path_prefix}"
|
||||
where_clause["path"] = {"startswith": path_prefix}
|
||||
|
||||
return await UserWorkspaceFile.prisma().count(where=where_clause)
|
||||
|
||||
|
||||
async def soft_delete_workspace_file(
|
||||
file_id: str,
|
||||
workspace_id: Optional[str] = None,
|
||||
) -> Optional[UserWorkspaceFile]:
|
||||
"""
|
||||
Soft-delete a workspace file.
|
||||
|
||||
The path is modified to include a deletion timestamp to free up the original
|
||||
path for new files while preserving the record for potential recovery.
|
||||
|
||||
Args:
|
||||
file_id: The file ID
|
||||
workspace_id: Optional workspace ID for validation
|
||||
|
||||
Returns:
|
||||
Updated UserWorkspaceFile instance or None if not found
|
||||
"""
|
||||
# First verify the file exists and belongs to workspace
|
||||
file = await get_workspace_file(file_id, workspace_id)
|
||||
if file is None:
|
||||
return None
|
||||
|
||||
deleted_at = datetime.now(timezone.utc)
|
||||
# Modify path to free up the unique constraint for new files at original path
|
||||
# Format: {original_path}__deleted__{timestamp}
|
||||
deleted_path = f"{file.path}__deleted__{int(deleted_at.timestamp())}"
|
||||
|
||||
updated = await UserWorkspaceFile.prisma().update(
|
||||
where={"id": file_id},
|
||||
data={
|
||||
"isDeleted": True,
|
||||
"deletedAt": deleted_at,
|
||||
"path": deleted_path,
|
||||
},
|
||||
)
|
||||
|
||||
logger.info(f"Soft-deleted workspace file {file_id}")
|
||||
return updated
|
||||
|
||||
|
||||
async def get_workspace_total_size(workspace_id: str) -> int:
|
||||
"""
|
||||
Get the total size of all files in a workspace.
|
||||
|
||||
Args:
|
||||
workspace_id: The workspace ID
|
||||
|
||||
Returns:
|
||||
Total size in bytes
|
||||
"""
|
||||
files = await list_workspace_files(workspace_id)
|
||||
return sum(file.sizeBytes for file in files)
|
||||
@@ -1,66 +0,0 @@
|
||||
"""
|
||||
Helper functions for LLM registry initialization in executor context.
|
||||
|
||||
These functions handle refreshing the LLM registry when the executor starts
|
||||
and subscribing to real-time updates via Redis pub/sub.
|
||||
"""
|
||||
|
||||
import logging
|
||||
|
||||
from backend.data import db, llm_registry
|
||||
from backend.data.block import BlockSchema, initialize_blocks
|
||||
from backend.data.block_cost_config import refresh_llm_costs
|
||||
from backend.data.llm_registry import subscribe_to_registry_refresh
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
async def initialize_registry_for_executor() -> None:
|
||||
"""
|
||||
Initialize blocks and refresh LLM registry in the executor context.
|
||||
|
||||
This must run in the executor's event loop to have access to the database.
|
||||
"""
|
||||
try:
|
||||
# Connect to database if not already connected
|
||||
if not db.is_connected():
|
||||
await db.connect()
|
||||
logger.info("[GraphExecutor] Connected to database for registry refresh")
|
||||
|
||||
# Initialize blocks (internally refreshes LLM registry and costs)
|
||||
await initialize_blocks()
|
||||
logger.info("[GraphExecutor] Blocks initialized")
|
||||
except Exception as exc:
|
||||
logger.warning(
|
||||
"[GraphExecutor] Failed to refresh LLM registry on startup: %s",
|
||||
exc,
|
||||
exc_info=True,
|
||||
)
|
||||
|
||||
|
||||
async def refresh_registry_on_notification() -> None:
|
||||
"""Refresh LLM registry when notified via Redis pub/sub."""
|
||||
try:
|
||||
# Ensure DB is connected
|
||||
if not db.is_connected():
|
||||
await db.connect()
|
||||
|
||||
# Refresh registry and costs
|
||||
await llm_registry.refresh_llm_registry()
|
||||
refresh_llm_costs()
|
||||
|
||||
# Clear block schema caches so they regenerate with new model options
|
||||
BlockSchema.clear_all_schema_caches()
|
||||
|
||||
logger.info("[GraphExecutor] LLM registry refreshed from notification")
|
||||
except Exception as exc:
|
||||
logger.error(
|
||||
"[GraphExecutor] Failed to refresh LLM registry from notification: %s",
|
||||
exc,
|
||||
exc_info=True,
|
||||
)
|
||||
|
||||
|
||||
async def subscribe_to_registry_updates() -> None:
|
||||
"""Subscribe to Redis pub/sub for LLM registry refresh notifications."""
|
||||
await subscribe_to_registry_refresh(refresh_registry_on_notification)
|
||||
@@ -236,7 +236,14 @@ async def execute_node(
|
||||
input_size = len(input_data_str)
|
||||
log_metadata.debug("Executed node with input", input=input_data_str)
|
||||
|
||||
# Create node-specific execution context to avoid race conditions
|
||||
# (multiple nodes can execute concurrently and would otherwise mutate shared state)
|
||||
execution_context = execution_context.model_copy(
|
||||
update={"node_id": node_id, "node_exec_id": node_exec_id}
|
||||
)
|
||||
|
||||
# Inject extra execution arguments for the blocks via kwargs
|
||||
# Keep individual kwargs for backwards compatibility with existing blocks
|
||||
extra_exec_kwargs: dict = {
|
||||
"graph_id": graph_id,
|
||||
"graph_version": graph_version,
|
||||
@@ -702,20 +709,6 @@ class ExecutionProcessor:
|
||||
)
|
||||
self.node_execution_thread.start()
|
||||
self.node_evaluation_thread.start()
|
||||
|
||||
# Initialize LLM registry and subscribe to updates
|
||||
from backend.executor.llm_registry_init import (
|
||||
initialize_registry_for_executor,
|
||||
subscribe_to_registry_updates,
|
||||
)
|
||||
|
||||
asyncio.run_coroutine_threadsafe(
|
||||
initialize_registry_for_executor(), self.node_execution_loop
|
||||
)
|
||||
asyncio.run_coroutine_threadsafe(
|
||||
subscribe_to_registry_updates(), self.node_execution_loop
|
||||
)
|
||||
|
||||
logger.info(f"[GraphExecutor] {self.tid} started")
|
||||
|
||||
@error_logged(swallow=False)
|
||||
|
||||
@@ -892,11 +892,19 @@ async def add_graph_execution(
|
||||
settings = await gdb.get_graph_settings(user_id=user_id, graph_id=graph_id)
|
||||
|
||||
execution_context = ExecutionContext(
|
||||
# Execution identity
|
||||
user_id=user_id,
|
||||
graph_id=graph_id,
|
||||
graph_exec_id=graph_exec.id,
|
||||
graph_version=graph_exec.graph_version,
|
||||
# Safety settings
|
||||
human_in_the_loop_safe_mode=settings.human_in_the_loop_safe_mode,
|
||||
sensitive_action_safe_mode=settings.sensitive_action_safe_mode,
|
||||
# User settings
|
||||
user_timezone=(
|
||||
user.timezone if user.timezone != USER_TIMEZONE_NOT_SET else "UTC"
|
||||
),
|
||||
# Execution hierarchy
|
||||
root_execution_id=graph_exec.id,
|
||||
)
|
||||
|
||||
|
||||
@@ -348,6 +348,7 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
|
||||
mock_graph_exec.id = "execution-id-123"
|
||||
mock_graph_exec.node_executions = [] # Add this to avoid AttributeError
|
||||
mock_graph_exec.status = ExecutionStatus.QUEUED # Required for race condition check
|
||||
mock_graph_exec.graph_version = graph_version
|
||||
mock_graph_exec.to_graph_execution_entry.return_value = mocker.MagicMock()
|
||||
|
||||
# Mock the queue and event bus
|
||||
@@ -434,6 +435,9 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
|
||||
# Create a second mock execution for the sanity check
|
||||
mock_graph_exec_2 = mocker.MagicMock(spec=GraphExecutionWithNodes)
|
||||
mock_graph_exec_2.id = "execution-id-456"
|
||||
mock_graph_exec_2.node_executions = []
|
||||
mock_graph_exec_2.status = ExecutionStatus.QUEUED
|
||||
mock_graph_exec_2.graph_version = graph_version
|
||||
mock_graph_exec_2.to_graph_execution_entry.return_value = mocker.MagicMock()
|
||||
|
||||
# Reset mocks and set up for second call
|
||||
@@ -614,6 +618,7 @@ async def test_add_graph_execution_with_nodes_to_skip(mocker: MockerFixture):
|
||||
mock_graph_exec.id = "execution-id-123"
|
||||
mock_graph_exec.node_executions = []
|
||||
mock_graph_exec.status = ExecutionStatus.QUEUED # Required for race condition check
|
||||
mock_graph_exec.graph_version = graph_version
|
||||
|
||||
# Track what's passed to to_graph_execution_entry
|
||||
captured_kwargs = {}
|
||||
|
||||
@@ -1,935 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Any, Iterable, Sequence, cast
|
||||
|
||||
import prisma
|
||||
import prisma.models
|
||||
|
||||
from backend.data.db import transaction
|
||||
from backend.server.v2.llm import model as llm_model
|
||||
from backend.util.models import Pagination
|
||||
|
||||
|
||||
def _json_dict(value: Any | None) -> dict[str, Any]:
|
||||
if not value:
|
||||
return {}
|
||||
if isinstance(value, dict):
|
||||
return value
|
||||
return {}
|
||||
|
||||
|
||||
def _map_cost(record: prisma.models.LlmModelCost) -> llm_model.LlmModelCost:
|
||||
return llm_model.LlmModelCost(
|
||||
id=record.id,
|
||||
unit=record.unit,
|
||||
credit_cost=record.creditCost,
|
||||
credential_provider=record.credentialProvider,
|
||||
credential_id=record.credentialId,
|
||||
credential_type=record.credentialType,
|
||||
currency=record.currency,
|
||||
metadata=_json_dict(record.metadata),
|
||||
)
|
||||
|
||||
|
||||
def _map_creator(
|
||||
record: prisma.models.LlmModelCreator,
|
||||
) -> llm_model.LlmModelCreator:
|
||||
return llm_model.LlmModelCreator(
|
||||
id=record.id,
|
||||
name=record.name,
|
||||
display_name=record.displayName,
|
||||
description=record.description,
|
||||
website_url=record.websiteUrl,
|
||||
logo_url=record.logoUrl,
|
||||
metadata=_json_dict(record.metadata),
|
||||
)
|
||||
|
||||
|
||||
def _map_model(record: prisma.models.LlmModel) -> llm_model.LlmModel:
|
||||
costs = []
|
||||
if record.Costs:
|
||||
costs = [_map_cost(cost) for cost in record.Costs]
|
||||
|
||||
creator = None
|
||||
if hasattr(record, "Creator") and record.Creator:
|
||||
creator = _map_creator(record.Creator)
|
||||
|
||||
return llm_model.LlmModel(
|
||||
id=record.id,
|
||||
slug=record.slug,
|
||||
display_name=record.displayName,
|
||||
description=record.description,
|
||||
provider_id=record.providerId,
|
||||
creator_id=record.creatorId,
|
||||
creator=creator,
|
||||
context_window=record.contextWindow,
|
||||
max_output_tokens=record.maxOutputTokens,
|
||||
is_enabled=record.isEnabled,
|
||||
is_recommended=record.isRecommended,
|
||||
capabilities=_json_dict(record.capabilities),
|
||||
metadata=_json_dict(record.metadata),
|
||||
costs=costs,
|
||||
)
|
||||
|
||||
|
||||
def _map_provider(record: prisma.models.LlmProvider) -> llm_model.LlmProvider:
|
||||
models: list[llm_model.LlmModel] = []
|
||||
if record.Models:
|
||||
models = [_map_model(model) for model in record.Models]
|
||||
|
||||
return llm_model.LlmProvider(
|
||||
id=record.id,
|
||||
name=record.name,
|
||||
display_name=record.displayName,
|
||||
description=record.description,
|
||||
default_credential_provider=record.defaultCredentialProvider,
|
||||
default_credential_id=record.defaultCredentialId,
|
||||
default_credential_type=record.defaultCredentialType,
|
||||
supports_tools=record.supportsTools,
|
||||
supports_json_output=record.supportsJsonOutput,
|
||||
supports_reasoning=record.supportsReasoning,
|
||||
supports_parallel_tool=record.supportsParallelTool,
|
||||
metadata=_json_dict(record.metadata),
|
||||
models=models,
|
||||
)
|
||||
|
||||
|
||||
async def list_providers(
|
||||
include_models: bool = True, enabled_only: bool = False
|
||||
) -> list[llm_model.LlmProvider]:
|
||||
"""
|
||||
List all LLM providers.
|
||||
|
||||
Args:
|
||||
include_models: Whether to include models for each provider
|
||||
enabled_only: If True, only include enabled models (for public routes)
|
||||
"""
|
||||
include: Any = None
|
||||
if include_models:
|
||||
model_where = {"isEnabled": True} if enabled_only else None
|
||||
include = {
|
||||
"Models": {
|
||||
"include": {"Costs": True, "Creator": True},
|
||||
"where": model_where,
|
||||
}
|
||||
}
|
||||
records = await prisma.models.LlmProvider.prisma().find_many(include=include)
|
||||
return [_map_provider(record) for record in records]
|
||||
|
||||
|
||||
async def upsert_provider(
|
||||
request: llm_model.UpsertLlmProviderRequest,
|
||||
provider_id: str | None = None,
|
||||
) -> llm_model.LlmProvider:
|
||||
data: Any = {
|
||||
"name": request.name,
|
||||
"displayName": request.display_name,
|
||||
"description": request.description,
|
||||
"defaultCredentialProvider": request.default_credential_provider,
|
||||
"defaultCredentialId": request.default_credential_id,
|
||||
"defaultCredentialType": request.default_credential_type,
|
||||
"supportsTools": request.supports_tools,
|
||||
"supportsJsonOutput": request.supports_json_output,
|
||||
"supportsReasoning": request.supports_reasoning,
|
||||
"supportsParallelTool": request.supports_parallel_tool,
|
||||
"metadata": prisma.Json(request.metadata or {}),
|
||||
}
|
||||
include: Any = {"Models": {"include": {"Costs": True, "Creator": True}}}
|
||||
if provider_id:
|
||||
record = await prisma.models.LlmProvider.prisma().update(
|
||||
where={"id": provider_id},
|
||||
data=data,
|
||||
include=include,
|
||||
)
|
||||
else:
|
||||
record = await prisma.models.LlmProvider.prisma().create(
|
||||
data=data,
|
||||
include=include,
|
||||
)
|
||||
if record is None:
|
||||
raise ValueError("Failed to create/update provider")
|
||||
return _map_provider(record)
|
||||
|
||||
|
||||
async def delete_provider(provider_id: str) -> bool:
|
||||
"""
|
||||
Delete an LLM provider.
|
||||
|
||||
A provider can only be deleted if it has no associated models.
|
||||
Due to onDelete: Restrict on LlmModel.Provider, the database will
|
||||
block deletion if models exist.
|
||||
|
||||
Args:
|
||||
provider_id: UUID of the provider to delete
|
||||
|
||||
Returns:
|
||||
True if deleted successfully
|
||||
|
||||
Raises:
|
||||
ValueError: If provider not found or has associated models
|
||||
"""
|
||||
# Check if provider exists
|
||||
provider = await prisma.models.LlmProvider.prisma().find_unique(
|
||||
where={"id": provider_id},
|
||||
include={"Models": True},
|
||||
)
|
||||
if not provider:
|
||||
raise ValueError(f"Provider with id '{provider_id}' not found")
|
||||
|
||||
# Check if provider has any models
|
||||
model_count = len(provider.Models) if provider.Models else 0
|
||||
if model_count > 0:
|
||||
raise ValueError(
|
||||
f"Cannot delete provider '{provider.displayName}' because it has "
|
||||
f"{model_count} model(s). Delete all models first."
|
||||
)
|
||||
|
||||
# Safe to delete
|
||||
await prisma.models.LlmProvider.prisma().delete(where={"id": provider_id})
|
||||
return True
|
||||
|
||||
|
||||
async def list_models(
|
||||
provider_id: str | None = None,
|
||||
enabled_only: bool = False,
|
||||
page: int = 1,
|
||||
page_size: int = 50,
|
||||
) -> llm_model.LlmModelsResponse:
|
||||
"""
|
||||
List LLM models with pagination.
|
||||
|
||||
Args:
|
||||
provider_id: Optional filter by provider ID
|
||||
enabled_only: If True, only return enabled models (for public routes)
|
||||
page: Page number (1-indexed)
|
||||
page_size: Number of models per page
|
||||
"""
|
||||
where: Any = {}
|
||||
if provider_id:
|
||||
where["providerId"] = provider_id
|
||||
if enabled_only:
|
||||
where["isEnabled"] = True
|
||||
|
||||
# Get total count for pagination
|
||||
total_items = await prisma.models.LlmModel.prisma().count(
|
||||
where=where if where else None
|
||||
)
|
||||
|
||||
# Calculate pagination
|
||||
skip = (page - 1) * page_size
|
||||
total_pages = (total_items + page_size - 1) // page_size if total_items > 0 else 0
|
||||
|
||||
records = await prisma.models.LlmModel.prisma().find_many(
|
||||
where=where if where else None,
|
||||
include={"Costs": True, "Creator": True},
|
||||
skip=skip,
|
||||
take=page_size,
|
||||
)
|
||||
models = [_map_model(record) for record in records]
|
||||
|
||||
return llm_model.LlmModelsResponse(
|
||||
models=models,
|
||||
pagination=Pagination(
|
||||
total_items=total_items,
|
||||
total_pages=total_pages,
|
||||
current_page=page,
|
||||
page_size=page_size,
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def _cost_create_payload(
|
||||
costs: Sequence[llm_model.LlmModelCostInput],
|
||||
) -> dict[str, Iterable[dict[str, Any]]]:
|
||||
|
||||
create_items = []
|
||||
for cost in costs:
|
||||
item: dict[str, Any] = {
|
||||
"unit": cost.unit,
|
||||
"creditCost": cost.credit_cost,
|
||||
"credentialProvider": cost.credential_provider,
|
||||
}
|
||||
# Only include optional fields if they have values
|
||||
if cost.credential_id:
|
||||
item["credentialId"] = cost.credential_id
|
||||
if cost.credential_type:
|
||||
item["credentialType"] = cost.credential_type
|
||||
if cost.currency:
|
||||
item["currency"] = cost.currency
|
||||
# Handle metadata - use Prisma Json type
|
||||
if cost.metadata is not None and cost.metadata != {}:
|
||||
item["metadata"] = prisma.Json(cost.metadata)
|
||||
create_items.append(item)
|
||||
return {"create": create_items}
|
||||
|
||||
|
||||
async def create_model(
|
||||
request: llm_model.CreateLlmModelRequest,
|
||||
) -> llm_model.LlmModel:
|
||||
data: Any = {
|
||||
"slug": request.slug,
|
||||
"displayName": request.display_name,
|
||||
"description": request.description,
|
||||
"Provider": {"connect": {"id": request.provider_id}},
|
||||
"contextWindow": request.context_window,
|
||||
"maxOutputTokens": request.max_output_tokens,
|
||||
"isEnabled": request.is_enabled,
|
||||
"capabilities": prisma.Json(request.capabilities or {}),
|
||||
"metadata": prisma.Json(request.metadata or {}),
|
||||
"Costs": _cost_create_payload(request.costs),
|
||||
}
|
||||
if request.creator_id:
|
||||
data["Creator"] = {"connect": {"id": request.creator_id}}
|
||||
|
||||
record = await prisma.models.LlmModel.prisma().create(
|
||||
data=data,
|
||||
include={"Costs": True, "Creator": True, "Provider": True},
|
||||
)
|
||||
return _map_model(record)
|
||||
|
||||
|
||||
async def update_model(
|
||||
model_id: str,
|
||||
request: llm_model.UpdateLlmModelRequest,
|
||||
) -> llm_model.LlmModel:
|
||||
# Build scalar field updates (non-relation fields)
|
||||
scalar_data: Any = {}
|
||||
if request.display_name is not None:
|
||||
scalar_data["displayName"] = request.display_name
|
||||
if request.description is not None:
|
||||
scalar_data["description"] = request.description
|
||||
if request.context_window is not None:
|
||||
scalar_data["contextWindow"] = request.context_window
|
||||
if request.max_output_tokens is not None:
|
||||
scalar_data["maxOutputTokens"] = request.max_output_tokens
|
||||
if request.is_enabled is not None:
|
||||
scalar_data["isEnabled"] = request.is_enabled
|
||||
if request.capabilities is not None:
|
||||
scalar_data["capabilities"] = request.capabilities
|
||||
if request.metadata is not None:
|
||||
scalar_data["metadata"] = request.metadata
|
||||
# Foreign keys can be updated directly as scalar fields
|
||||
if request.provider_id is not None:
|
||||
scalar_data["providerId"] = request.provider_id
|
||||
if request.creator_id is not None:
|
||||
# Empty string means remove the creator
|
||||
scalar_data["creatorId"] = request.creator_id if request.creator_id else None
|
||||
|
||||
# If we have costs to update, we need to handle them separately
|
||||
# because nested writes have different constraints
|
||||
if request.costs is not None:
|
||||
# Wrap cost replacement in a transaction for atomicity
|
||||
async with transaction() as tx:
|
||||
# First update scalar fields
|
||||
if scalar_data:
|
||||
await tx.llmmodel.update(
|
||||
where={"id": model_id},
|
||||
data=scalar_data,
|
||||
)
|
||||
# Then handle costs: delete existing and create new
|
||||
await tx.llmmodelcost.delete_many(where={"llmModelId": model_id})
|
||||
if request.costs:
|
||||
cost_payload = _cost_create_payload(request.costs)
|
||||
for cost_item in cost_payload["create"]:
|
||||
cost_item["llmModelId"] = model_id
|
||||
await tx.llmmodelcost.create(data=cast(Any, cost_item))
|
||||
# Fetch the updated record (outside transaction)
|
||||
record = await prisma.models.LlmModel.prisma().find_unique(
|
||||
where={"id": model_id},
|
||||
include={"Costs": True, "Creator": True},
|
||||
)
|
||||
else:
|
||||
# No costs update - simple update
|
||||
record = await prisma.models.LlmModel.prisma().update(
|
||||
where={"id": model_id},
|
||||
data=scalar_data,
|
||||
include={"Costs": True, "Creator": True},
|
||||
)
|
||||
|
||||
if not record:
|
||||
raise ValueError(f"Model with id '{model_id}' not found")
|
||||
return _map_model(record)
|
||||
|
||||
|
||||
async def toggle_model(
|
||||
model_id: str,
|
||||
is_enabled: bool,
|
||||
migrate_to_slug: str | None = None,
|
||||
migration_reason: str | None = None,
|
||||
custom_credit_cost: int | None = None,
|
||||
) -> llm_model.ToggleLlmModelResponse:
|
||||
"""
|
||||
Toggle a model's enabled status, optionally migrating workflows when disabling.
|
||||
|
||||
Args:
|
||||
model_id: UUID of the model to toggle
|
||||
is_enabled: New enabled status
|
||||
migrate_to_slug: If disabling and this is provided, migrate all workflows
|
||||
using this model to the specified replacement model
|
||||
migration_reason: Optional reason for the migration (e.g., "Provider outage")
|
||||
custom_credit_cost: Optional custom pricing override for migrated workflows.
|
||||
When set, the billing system should use this cost instead
|
||||
of the target model's cost for affected nodes.
|
||||
|
||||
Returns:
|
||||
ToggleLlmModelResponse with the updated model and optional migration stats
|
||||
"""
|
||||
import json
|
||||
|
||||
# Get the model being toggled
|
||||
model = await prisma.models.LlmModel.prisma().find_unique(
|
||||
where={"id": model_id}, include={"Costs": True}
|
||||
)
|
||||
if not model:
|
||||
raise ValueError(f"Model with id '{model_id}' not found")
|
||||
|
||||
nodes_migrated = 0
|
||||
migration_id: str | None = None
|
||||
|
||||
# If disabling with migration, perform migration first
|
||||
if not is_enabled and migrate_to_slug:
|
||||
# Validate replacement model exists and is enabled
|
||||
replacement = await prisma.models.LlmModel.prisma().find_unique(
|
||||
where={"slug": migrate_to_slug}
|
||||
)
|
||||
if not replacement:
|
||||
raise ValueError(f"Replacement model '{migrate_to_slug}' not found")
|
||||
if not replacement.isEnabled:
|
||||
raise ValueError(
|
||||
f"Replacement model '{migrate_to_slug}' is disabled. "
|
||||
f"Please enable it before using it as a replacement."
|
||||
)
|
||||
|
||||
# Perform all operations atomically within a single transaction
|
||||
# This ensures no nodes are missed between query and update
|
||||
async with transaction() as tx:
|
||||
# Get the IDs of nodes that will be migrated (inside transaction for consistency)
|
||||
node_ids_result = await tx.query_raw(
|
||||
"""
|
||||
SELECT id
|
||||
FROM "AgentNode"
|
||||
WHERE "constantInput"::jsonb->>'model' = $1
|
||||
FOR UPDATE
|
||||
""",
|
||||
model.slug,
|
||||
)
|
||||
migrated_node_ids = (
|
||||
[row["id"] for row in node_ids_result] if node_ids_result else []
|
||||
)
|
||||
nodes_migrated = len(migrated_node_ids)
|
||||
|
||||
if nodes_migrated > 0:
|
||||
# Update by IDs to ensure we only update the exact nodes we queried
|
||||
# Use JSON array and jsonb_array_elements_text for safe parameterization
|
||||
node_ids_json = json.dumps(migrated_node_ids)
|
||||
await tx.execute_raw(
|
||||
"""
|
||||
UPDATE "AgentNode"
|
||||
SET "constantInput" = JSONB_SET(
|
||||
"constantInput"::jsonb,
|
||||
'{model}',
|
||||
to_jsonb($1::text)
|
||||
)
|
||||
WHERE id::text IN (
|
||||
SELECT jsonb_array_elements_text($2::jsonb)
|
||||
)
|
||||
""",
|
||||
migrate_to_slug,
|
||||
node_ids_json,
|
||||
)
|
||||
|
||||
record = await tx.llmmodel.update(
|
||||
where={"id": model_id},
|
||||
data={"isEnabled": is_enabled},
|
||||
include={"Costs": True},
|
||||
)
|
||||
|
||||
# Create migration record for revert capability
|
||||
if nodes_migrated > 0:
|
||||
migration_data: Any = {
|
||||
"sourceModelSlug": model.slug,
|
||||
"targetModelSlug": migrate_to_slug,
|
||||
"reason": migration_reason,
|
||||
"migratedNodeIds": json.dumps(migrated_node_ids),
|
||||
"nodeCount": nodes_migrated,
|
||||
"customCreditCost": custom_credit_cost,
|
||||
}
|
||||
migration_record = await tx.llmmodelmigration.create(
|
||||
data=migration_data
|
||||
)
|
||||
migration_id = migration_record.id
|
||||
else:
|
||||
# Simple toggle without migration
|
||||
record = await prisma.models.LlmModel.prisma().update(
|
||||
where={"id": model_id},
|
||||
data={"isEnabled": is_enabled},
|
||||
include={"Costs": True},
|
||||
)
|
||||
|
||||
if record is None:
|
||||
raise ValueError(f"Model with id '{model_id}' not found")
|
||||
return llm_model.ToggleLlmModelResponse(
|
||||
model=_map_model(record),
|
||||
nodes_migrated=nodes_migrated,
|
||||
migrated_to_slug=migrate_to_slug if nodes_migrated > 0 else None,
|
||||
migration_id=migration_id,
|
||||
)
|
||||
|
||||
|
||||
async def get_model_usage(model_id: str) -> llm_model.LlmModelUsageResponse:
|
||||
"""Get usage count for a model."""
|
||||
import prisma as prisma_module
|
||||
|
||||
model = await prisma.models.LlmModel.prisma().find_unique(where={"id": model_id})
|
||||
if not model:
|
||||
raise ValueError(f"Model with id '{model_id}' not found")
|
||||
|
||||
count_result = await prisma_module.get_client().query_raw(
|
||||
"""
|
||||
SELECT COUNT(*) as count
|
||||
FROM "AgentNode"
|
||||
WHERE "constantInput"::jsonb->>'model' = $1
|
||||
""",
|
||||
model.slug,
|
||||
)
|
||||
node_count = int(count_result[0]["count"]) if count_result else 0
|
||||
|
||||
return llm_model.LlmModelUsageResponse(model_slug=model.slug, node_count=node_count)
|
||||
|
||||
|
||||
async def delete_model(
|
||||
model_id: str, replacement_model_slug: str | None = None
|
||||
) -> llm_model.DeleteLlmModelResponse:
|
||||
"""
|
||||
Delete a model and optionally migrate all AgentNodes using it to a replacement model.
|
||||
|
||||
This performs an atomic operation within a database transaction:
|
||||
1. Validates the model exists
|
||||
2. Counts affected nodes
|
||||
3. If nodes exist, validates replacement model and migrates them
|
||||
4. Deletes the LlmModel record (CASCADE deletes costs)
|
||||
|
||||
Args:
|
||||
model_id: UUID of the model to delete
|
||||
replacement_model_slug: Slug of the model to migrate to (required only if nodes use this model)
|
||||
|
||||
Returns:
|
||||
DeleteLlmModelResponse with migration stats
|
||||
|
||||
Raises:
|
||||
ValueError: If model not found, nodes exist but no replacement provided,
|
||||
replacement not found, or replacement is disabled
|
||||
"""
|
||||
# 1. Get the model being deleted (validation - outside transaction)
|
||||
model = await prisma.models.LlmModel.prisma().find_unique(
|
||||
where={"id": model_id}, include={"Costs": True}
|
||||
)
|
||||
if not model:
|
||||
raise ValueError(f"Model with id '{model_id}' not found")
|
||||
|
||||
deleted_slug = model.slug
|
||||
deleted_display_name = model.displayName
|
||||
|
||||
# 2. Count affected nodes first to determine if replacement is needed
|
||||
import prisma as prisma_module
|
||||
|
||||
count_result = await prisma_module.get_client().query_raw(
|
||||
"""
|
||||
SELECT COUNT(*) as count
|
||||
FROM "AgentNode"
|
||||
WHERE "constantInput"::jsonb->>'model' = $1
|
||||
""",
|
||||
deleted_slug,
|
||||
)
|
||||
nodes_to_migrate = int(count_result[0]["count"]) if count_result else 0
|
||||
|
||||
# 3. Validate replacement model only if there are nodes to migrate
|
||||
if nodes_to_migrate > 0:
|
||||
if not replacement_model_slug:
|
||||
raise ValueError(
|
||||
f"Cannot delete model '{deleted_slug}': {nodes_to_migrate} workflow node(s) "
|
||||
f"are using it. Please provide a replacement_model_slug to migrate them."
|
||||
)
|
||||
replacement = await prisma.models.LlmModel.prisma().find_unique(
|
||||
where={"slug": replacement_model_slug}
|
||||
)
|
||||
if not replacement:
|
||||
raise ValueError(f"Replacement model '{replacement_model_slug}' not found")
|
||||
if not replacement.isEnabled:
|
||||
raise ValueError(
|
||||
f"Replacement model '{replacement_model_slug}' is disabled. "
|
||||
f"Please enable it before using it as a replacement."
|
||||
)
|
||||
|
||||
# 4. Perform migration (if needed) and deletion atomically within a transaction
|
||||
async with transaction() as tx:
|
||||
# Migrate all AgentNode.constantInput->model to replacement
|
||||
if nodes_to_migrate > 0 and replacement_model_slug:
|
||||
await tx.execute_raw(
|
||||
"""
|
||||
UPDATE "AgentNode"
|
||||
SET "constantInput" = JSONB_SET(
|
||||
"constantInput"::jsonb,
|
||||
'{model}',
|
||||
to_jsonb($1::text)
|
||||
)
|
||||
WHERE "constantInput"::jsonb->>'model' = $2
|
||||
""",
|
||||
replacement_model_slug,
|
||||
deleted_slug,
|
||||
)
|
||||
|
||||
# Delete the model (CASCADE will delete costs automatically)
|
||||
await tx.llmmodel.delete(where={"id": model_id})
|
||||
|
||||
# Build appropriate message based on whether migration happened
|
||||
if nodes_to_migrate > 0:
|
||||
message = (
|
||||
f"Successfully deleted model '{deleted_display_name}' ({deleted_slug}) "
|
||||
f"and migrated {nodes_to_migrate} workflow node(s) to '{replacement_model_slug}'."
|
||||
)
|
||||
else:
|
||||
message = (
|
||||
f"Successfully deleted model '{deleted_display_name}' ({deleted_slug}). "
|
||||
f"No workflows were using this model."
|
||||
)
|
||||
|
||||
return llm_model.DeleteLlmModelResponse(
|
||||
deleted_model_slug=deleted_slug,
|
||||
deleted_model_display_name=deleted_display_name,
|
||||
replacement_model_slug=replacement_model_slug,
|
||||
nodes_migrated=nodes_to_migrate,
|
||||
message=message,
|
||||
)
|
||||
|
||||
|
||||
def _map_migration(
|
||||
record: prisma.models.LlmModelMigration,
|
||||
) -> llm_model.LlmModelMigration:
|
||||
return llm_model.LlmModelMigration(
|
||||
id=record.id,
|
||||
source_model_slug=record.sourceModelSlug,
|
||||
target_model_slug=record.targetModelSlug,
|
||||
reason=record.reason,
|
||||
node_count=record.nodeCount,
|
||||
custom_credit_cost=record.customCreditCost,
|
||||
is_reverted=record.isReverted,
|
||||
created_at=record.createdAt.isoformat(),
|
||||
reverted_at=record.revertedAt.isoformat() if record.revertedAt else None,
|
||||
)
|
||||
|
||||
|
||||
async def list_migrations(
|
||||
include_reverted: bool = False,
|
||||
) -> list[llm_model.LlmModelMigration]:
|
||||
"""
|
||||
List model migrations, optionally including reverted ones.
|
||||
|
||||
Args:
|
||||
include_reverted: If True, include reverted migrations. Default is False.
|
||||
|
||||
Returns:
|
||||
List of LlmModelMigration records
|
||||
"""
|
||||
where: Any = None if include_reverted else {"isReverted": False}
|
||||
records = await prisma.models.LlmModelMigration.prisma().find_many(
|
||||
where=where,
|
||||
order={"createdAt": "desc"},
|
||||
)
|
||||
return [_map_migration(record) for record in records]
|
||||
|
||||
|
||||
async def get_migration(migration_id: str) -> llm_model.LlmModelMigration | None:
|
||||
"""Get a specific migration by ID."""
|
||||
record = await prisma.models.LlmModelMigration.prisma().find_unique(
|
||||
where={"id": migration_id}
|
||||
)
|
||||
return _map_migration(record) if record else None
|
||||
|
||||
|
||||
async def revert_migration(
|
||||
migration_id: str,
|
||||
re_enable_source_model: bool = True,
|
||||
) -> llm_model.RevertMigrationResponse:
|
||||
"""
|
||||
Revert a model migration, restoring affected nodes to their original model.
|
||||
|
||||
This only reverts the specific nodes that were migrated, not all nodes
|
||||
currently using the target model.
|
||||
|
||||
Args:
|
||||
migration_id: UUID of the migration to revert
|
||||
re_enable_source_model: Whether to re-enable the source model if it's disabled
|
||||
|
||||
Returns:
|
||||
RevertMigrationResponse with revert stats
|
||||
|
||||
Raises:
|
||||
ValueError: If migration not found, already reverted, or source model not available
|
||||
"""
|
||||
import json
|
||||
from datetime import datetime, timezone
|
||||
|
||||
# Get the migration record
|
||||
migration = await prisma.models.LlmModelMigration.prisma().find_unique(
|
||||
where={"id": migration_id}
|
||||
)
|
||||
if not migration:
|
||||
raise ValueError(f"Migration with id '{migration_id}' not found")
|
||||
|
||||
if migration.isReverted:
|
||||
raise ValueError(
|
||||
f"Migration '{migration_id}' has already been reverted "
|
||||
f"on {migration.revertedAt.isoformat() if migration.revertedAt else 'unknown date'}"
|
||||
)
|
||||
|
||||
# Check if source model exists
|
||||
source_model = await prisma.models.LlmModel.prisma().find_unique(
|
||||
where={"slug": migration.sourceModelSlug}
|
||||
)
|
||||
if not source_model:
|
||||
raise ValueError(
|
||||
f"Source model '{migration.sourceModelSlug}' no longer exists. "
|
||||
f"Cannot revert migration."
|
||||
)
|
||||
|
||||
# Get the migrated node IDs (Prisma auto-parses JSONB to list)
|
||||
migrated_node_ids: list[str] = (
|
||||
migration.migratedNodeIds
|
||||
if isinstance(migration.migratedNodeIds, list)
|
||||
else json.loads(migration.migratedNodeIds) # type: ignore
|
||||
)
|
||||
if not migrated_node_ids:
|
||||
raise ValueError("No nodes to revert in this migration")
|
||||
|
||||
# Track if we need to re-enable the source model
|
||||
source_model_was_disabled = not source_model.isEnabled
|
||||
should_re_enable = source_model_was_disabled and re_enable_source_model
|
||||
source_model_re_enabled = False
|
||||
|
||||
# Perform revert atomically
|
||||
async with transaction() as tx:
|
||||
# Re-enable the source model if requested and it was disabled
|
||||
if should_re_enable:
|
||||
await tx.llmmodel.update(
|
||||
where={"id": source_model.id},
|
||||
data={"isEnabled": True},
|
||||
)
|
||||
source_model_re_enabled = True
|
||||
|
||||
# Update only the specific nodes that were migrated
|
||||
# We need to check that they still have the target model (haven't been changed since)
|
||||
# Use a single batch update for efficiency
|
||||
# Use JSON array and jsonb_array_elements_text for safe parameterization
|
||||
node_ids_json = json.dumps(migrated_node_ids)
|
||||
result = await tx.execute_raw(
|
||||
"""
|
||||
UPDATE "AgentNode"
|
||||
SET "constantInput" = JSONB_SET(
|
||||
"constantInput"::jsonb,
|
||||
'{model}',
|
||||
to_jsonb($1::text)
|
||||
)
|
||||
WHERE id::text IN (
|
||||
SELECT jsonb_array_elements_text($2::jsonb)
|
||||
)
|
||||
AND "constantInput"::jsonb->>'model' = $3
|
||||
""",
|
||||
migration.sourceModelSlug,
|
||||
node_ids_json,
|
||||
migration.targetModelSlug,
|
||||
)
|
||||
nodes_reverted = result if result else 0
|
||||
|
||||
# Mark migration as reverted
|
||||
await tx.llmmodelmigration.update(
|
||||
where={"id": migration_id},
|
||||
data={
|
||||
"isReverted": True,
|
||||
"revertedAt": datetime.now(timezone.utc),
|
||||
},
|
||||
)
|
||||
|
||||
# Calculate nodes that were already changed since migration
|
||||
nodes_already_changed = len(migrated_node_ids) - nodes_reverted
|
||||
|
||||
# Build appropriate message
|
||||
message_parts = [
|
||||
f"Successfully reverted migration: {nodes_reverted} node(s) restored "
|
||||
f"from '{migration.targetModelSlug}' to '{migration.sourceModelSlug}'."
|
||||
]
|
||||
if nodes_already_changed > 0:
|
||||
message_parts.append(
|
||||
f" {nodes_already_changed} node(s) were already changed and not reverted."
|
||||
)
|
||||
if source_model_re_enabled:
|
||||
message_parts.append(
|
||||
f" Model '{migration.sourceModelSlug}' has been re-enabled."
|
||||
)
|
||||
|
||||
return llm_model.RevertMigrationResponse(
|
||||
migration_id=migration_id,
|
||||
source_model_slug=migration.sourceModelSlug,
|
||||
target_model_slug=migration.targetModelSlug,
|
||||
nodes_reverted=nodes_reverted,
|
||||
nodes_already_changed=nodes_already_changed,
|
||||
source_model_re_enabled=source_model_re_enabled,
|
||||
message="".join(message_parts),
|
||||
)
|
||||
|
||||
|
||||
# ============================================================================
|
||||
# Creator CRUD operations
|
||||
# ============================================================================
|
||||
|
||||
|
||||
async def list_creators() -> list[llm_model.LlmModelCreator]:
|
||||
"""List all LLM model creators."""
|
||||
records = await prisma.models.LlmModelCreator.prisma().find_many(
|
||||
order={"displayName": "asc"}
|
||||
)
|
||||
return [_map_creator(record) for record in records]
|
||||
|
||||
|
||||
async def get_creator(creator_id: str) -> llm_model.LlmModelCreator | None:
|
||||
"""Get a specific creator by ID."""
|
||||
record = await prisma.models.LlmModelCreator.prisma().find_unique(
|
||||
where={"id": creator_id}
|
||||
)
|
||||
return _map_creator(record) if record else None
|
||||
|
||||
|
||||
async def upsert_creator(
|
||||
request: llm_model.UpsertLlmCreatorRequest,
|
||||
creator_id: str | None = None,
|
||||
) -> llm_model.LlmModelCreator:
|
||||
"""Create or update a model creator."""
|
||||
data: Any = {
|
||||
"name": request.name,
|
||||
"displayName": request.display_name,
|
||||
"description": request.description,
|
||||
"websiteUrl": request.website_url,
|
||||
"logoUrl": request.logo_url,
|
||||
"metadata": prisma.Json(request.metadata or {}),
|
||||
}
|
||||
if creator_id:
|
||||
record = await prisma.models.LlmModelCreator.prisma().update(
|
||||
where={"id": creator_id},
|
||||
data=data,
|
||||
)
|
||||
else:
|
||||
record = await prisma.models.LlmModelCreator.prisma().create(data=data)
|
||||
if record is None:
|
||||
raise ValueError("Failed to create/update creator")
|
||||
return _map_creator(record)
|
||||
|
||||
|
||||
async def delete_creator(creator_id: str) -> bool:
|
||||
"""
|
||||
Delete a model creator.
|
||||
|
||||
This will set creatorId to NULL on all associated models (due to onDelete: SetNull).
|
||||
|
||||
Args:
|
||||
creator_id: UUID of the creator to delete
|
||||
|
||||
Returns:
|
||||
True if deleted successfully
|
||||
|
||||
Raises:
|
||||
ValueError: If creator not found
|
||||
"""
|
||||
creator = await prisma.models.LlmModelCreator.prisma().find_unique(
|
||||
where={"id": creator_id}
|
||||
)
|
||||
if not creator:
|
||||
raise ValueError(f"Creator with id '{creator_id}' not found")
|
||||
|
||||
await prisma.models.LlmModelCreator.prisma().delete(where={"id": creator_id})
|
||||
return True
|
||||
|
||||
|
||||
async def get_recommended_model() -> llm_model.LlmModel | None:
|
||||
"""
|
||||
Get the currently recommended LLM model.
|
||||
|
||||
Returns:
|
||||
The recommended model, or None if no model is marked as recommended.
|
||||
"""
|
||||
record = await prisma.models.LlmModel.prisma().find_first(
|
||||
where={"isRecommended": True, "isEnabled": True},
|
||||
include={"Costs": True, "Creator": True},
|
||||
)
|
||||
return _map_model(record) if record else None
|
||||
|
||||
|
||||
async def set_recommended_model(
|
||||
model_id: str,
|
||||
) -> tuple[llm_model.LlmModel, str | None]:
|
||||
"""
|
||||
Set a model as the recommended model.
|
||||
|
||||
This will clear the isRecommended flag from any other model and set it
|
||||
on the specified model. The model must be enabled.
|
||||
|
||||
Args:
|
||||
model_id: UUID of the model to set as recommended
|
||||
|
||||
Returns:
|
||||
Tuple of (the updated model, previous recommended model slug or None)
|
||||
|
||||
Raises:
|
||||
ValueError: If model not found or not enabled
|
||||
"""
|
||||
# First, verify the model exists and is enabled
|
||||
target_model = await prisma.models.LlmModel.prisma().find_unique(
|
||||
where={"id": model_id}
|
||||
)
|
||||
if not target_model:
|
||||
raise ValueError(f"Model with id '{model_id}' not found")
|
||||
if not target_model.isEnabled:
|
||||
raise ValueError(
|
||||
f"Cannot set disabled model '{target_model.slug}' as recommended"
|
||||
)
|
||||
|
||||
# Get the current recommended model (if any)
|
||||
current_recommended = await prisma.models.LlmModel.prisma().find_first(
|
||||
where={"isRecommended": True}
|
||||
)
|
||||
previous_slug = current_recommended.slug if current_recommended else None
|
||||
|
||||
# Use a transaction to ensure atomicity
|
||||
async with transaction() as tx:
|
||||
# Clear isRecommended from all models
|
||||
await tx.llmmodel.update_many(
|
||||
where={"isRecommended": True},
|
||||
data={"isRecommended": False},
|
||||
)
|
||||
# Set the new recommended model
|
||||
await tx.llmmodel.update(
|
||||
where={"id": model_id},
|
||||
data={"isRecommended": True},
|
||||
)
|
||||
|
||||
# Fetch and return the updated model
|
||||
updated_record = await prisma.models.LlmModel.prisma().find_unique(
|
||||
where={"id": model_id},
|
||||
include={"Costs": True, "Creator": True},
|
||||
)
|
||||
if not updated_record:
|
||||
raise ValueError("Failed to fetch updated model")
|
||||
|
||||
return _map_model(updated_record), previous_slug
|
||||
|
||||
|
||||
async def get_recommended_model_slug() -> str | None:
|
||||
"""
|
||||
Get the slug of the currently recommended LLM model.
|
||||
|
||||
Returns:
|
||||
The slug of the recommended model, or None if no model is marked as recommended.
|
||||
"""
|
||||
record = await prisma.models.LlmModel.prisma().find_first(
|
||||
where={"isRecommended": True, "isEnabled": True},
|
||||
)
|
||||
return record.slug if record else None
|
||||
@@ -1,235 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import re
|
||||
from datetime import datetime
|
||||
from typing import Any, Optional
|
||||
|
||||
import prisma.enums
|
||||
import pydantic
|
||||
|
||||
from backend.util.models import Pagination
|
||||
|
||||
# Pattern for valid model slugs: alphanumeric start, then alphanumeric, dots, underscores, slashes, hyphens
|
||||
SLUG_PATTERN = re.compile(r"^[a-zA-Z0-9][a-zA-Z0-9._/-]*$")
|
||||
|
||||
|
||||
class LlmModelCost(pydantic.BaseModel):
|
||||
id: str
|
||||
unit: prisma.enums.LlmCostUnit = prisma.enums.LlmCostUnit.RUN
|
||||
credit_cost: int
|
||||
credential_provider: str
|
||||
credential_id: Optional[str] = None
|
||||
credential_type: Optional[str] = None
|
||||
currency: Optional[str] = None
|
||||
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
|
||||
|
||||
|
||||
class LlmModelCreator(pydantic.BaseModel):
|
||||
"""Represents the organization that created/trained the model (e.g., OpenAI, Meta)."""
|
||||
|
||||
id: str
|
||||
name: str
|
||||
display_name: str
|
||||
description: Optional[str] = None
|
||||
website_url: Optional[str] = None
|
||||
logo_url: Optional[str] = None
|
||||
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
|
||||
|
||||
|
||||
class LlmModel(pydantic.BaseModel):
|
||||
id: str
|
||||
slug: str
|
||||
display_name: str
|
||||
description: Optional[str] = None
|
||||
provider_id: str
|
||||
creator_id: Optional[str] = None
|
||||
creator: Optional[LlmModelCreator] = None
|
||||
context_window: int
|
||||
max_output_tokens: Optional[int] = None
|
||||
is_enabled: bool = True
|
||||
is_recommended: bool = False
|
||||
capabilities: dict[str, Any] = pydantic.Field(default_factory=dict)
|
||||
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
|
||||
costs: list[LlmModelCost] = pydantic.Field(default_factory=list)
|
||||
|
||||
|
||||
class LlmProvider(pydantic.BaseModel):
|
||||
id: str
|
||||
name: str
|
||||
display_name: str
|
||||
description: Optional[str] = None
|
||||
default_credential_provider: Optional[str] = None
|
||||
default_credential_id: Optional[str] = None
|
||||
default_credential_type: Optional[str] = None
|
||||
supports_tools: bool = True
|
||||
supports_json_output: bool = True
|
||||
supports_reasoning: bool = False
|
||||
supports_parallel_tool: bool = False
|
||||
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
|
||||
models: list[LlmModel] = pydantic.Field(default_factory=list)
|
||||
|
||||
|
||||
class LlmProvidersResponse(pydantic.BaseModel):
|
||||
providers: list[LlmProvider]
|
||||
|
||||
|
||||
class LlmModelsResponse(pydantic.BaseModel):
|
||||
models: list[LlmModel]
|
||||
pagination: Optional[Pagination] = None
|
||||
|
||||
|
||||
class LlmCreatorsResponse(pydantic.BaseModel):
|
||||
creators: list[LlmModelCreator]
|
||||
|
||||
|
||||
class UpsertLlmProviderRequest(pydantic.BaseModel):
|
||||
name: str
|
||||
display_name: str
|
||||
description: Optional[str] = None
|
||||
default_credential_provider: Optional[str] = None
|
||||
default_credential_id: Optional[str] = None
|
||||
default_credential_type: Optional[str] = "api_key"
|
||||
supports_tools: bool = True
|
||||
supports_json_output: bool = True
|
||||
supports_reasoning: bool = False
|
||||
supports_parallel_tool: bool = False
|
||||
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
|
||||
|
||||
|
||||
class UpsertLlmCreatorRequest(pydantic.BaseModel):
|
||||
name: str
|
||||
display_name: str
|
||||
description: Optional[str] = None
|
||||
website_url: Optional[str] = None
|
||||
logo_url: Optional[str] = None
|
||||
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
|
||||
|
||||
|
||||
class LlmModelCostInput(pydantic.BaseModel):
|
||||
unit: prisma.enums.LlmCostUnit = prisma.enums.LlmCostUnit.RUN
|
||||
credit_cost: int
|
||||
credential_provider: str
|
||||
credential_id: Optional[str] = None
|
||||
credential_type: Optional[str] = "api_key"
|
||||
currency: Optional[str] = None
|
||||
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
|
||||
|
||||
|
||||
class CreateLlmModelRequest(pydantic.BaseModel):
|
||||
slug: str
|
||||
display_name: str
|
||||
description: Optional[str] = None
|
||||
provider_id: str
|
||||
creator_id: Optional[str] = None
|
||||
context_window: int
|
||||
max_output_tokens: Optional[int] = None
|
||||
is_enabled: bool = True
|
||||
capabilities: dict[str, Any] = pydantic.Field(default_factory=dict)
|
||||
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
|
||||
costs: list[LlmModelCostInput]
|
||||
|
||||
@pydantic.field_validator("slug")
|
||||
@classmethod
|
||||
def validate_slug(cls, v: str) -> str:
|
||||
if not v or len(v) > 100:
|
||||
raise ValueError("Slug must be 1-100 characters")
|
||||
if not SLUG_PATTERN.match(v):
|
||||
raise ValueError(
|
||||
"Slug must start with alphanumeric and contain only "
|
||||
"alphanumeric characters, dots, underscores, slashes, or hyphens"
|
||||
)
|
||||
return v
|
||||
|
||||
|
||||
class UpdateLlmModelRequest(pydantic.BaseModel):
|
||||
display_name: Optional[str] = None
|
||||
description: Optional[str] = None
|
||||
context_window: Optional[int] = None
|
||||
max_output_tokens: Optional[int] = None
|
||||
is_enabled: Optional[bool] = None
|
||||
capabilities: Optional[dict[str, Any]] = None
|
||||
metadata: Optional[dict[str, Any]] = None
|
||||
provider_id: Optional[str] = None
|
||||
creator_id: Optional[str] = None
|
||||
costs: Optional[list[LlmModelCostInput]] = None
|
||||
|
||||
|
||||
class ToggleLlmModelRequest(pydantic.BaseModel):
|
||||
is_enabled: bool
|
||||
migrate_to_slug: Optional[str] = None
|
||||
migration_reason: Optional[str] = None # e.g., "Provider outage"
|
||||
# Custom pricing override for migrated workflows. When set, billing should use
|
||||
# this cost instead of the target model's cost for affected nodes.
|
||||
# See LlmModelMigration in schema.prisma for full documentation.
|
||||
custom_credit_cost: Optional[int] = None
|
||||
|
||||
|
||||
class ToggleLlmModelResponse(pydantic.BaseModel):
|
||||
model: LlmModel
|
||||
nodes_migrated: int = 0
|
||||
migrated_to_slug: Optional[str] = None
|
||||
migration_id: Optional[str] = None # ID of the migration record for revert
|
||||
|
||||
|
||||
class DeleteLlmModelResponse(pydantic.BaseModel):
|
||||
deleted_model_slug: str
|
||||
deleted_model_display_name: str
|
||||
replacement_model_slug: Optional[str] = None
|
||||
nodes_migrated: int
|
||||
message: str
|
||||
|
||||
|
||||
class LlmModelUsageResponse(pydantic.BaseModel):
|
||||
model_slug: str
|
||||
node_count: int
|
||||
|
||||
|
||||
# Migration tracking models
|
||||
class LlmModelMigration(pydantic.BaseModel):
|
||||
id: str
|
||||
source_model_slug: str
|
||||
target_model_slug: str
|
||||
reason: Optional[str] = None
|
||||
node_count: int
|
||||
# Custom pricing override - billing should use this instead of target model's cost
|
||||
custom_credit_cost: Optional[int] = None
|
||||
is_reverted: bool = False
|
||||
created_at: datetime
|
||||
reverted_at: Optional[datetime] = None
|
||||
|
||||
|
||||
class LlmMigrationsResponse(pydantic.BaseModel):
|
||||
migrations: list[LlmModelMigration]
|
||||
|
||||
|
||||
class RevertMigrationRequest(pydantic.BaseModel):
|
||||
re_enable_source_model: bool = (
|
||||
True # Whether to re-enable the source model if disabled
|
||||
)
|
||||
|
||||
|
||||
class RevertMigrationResponse(pydantic.BaseModel):
|
||||
migration_id: str
|
||||
source_model_slug: str
|
||||
target_model_slug: str
|
||||
nodes_reverted: int
|
||||
nodes_already_changed: int = (
|
||||
0 # Nodes that were modified since migration (not reverted)
|
||||
)
|
||||
source_model_re_enabled: bool = False # Whether the source model was re-enabled
|
||||
message: str
|
||||
|
||||
|
||||
class SetRecommendedModelRequest(pydantic.BaseModel):
|
||||
model_id: str
|
||||
|
||||
|
||||
class SetRecommendedModelResponse(pydantic.BaseModel):
|
||||
model: LlmModel
|
||||
previous_recommended_slug: Optional[str] = None
|
||||
message: str
|
||||
|
||||
|
||||
class RecommendedModelResponse(pydantic.BaseModel):
|
||||
model: Optional[LlmModel] = None
|
||||
slug: Optional[str] = None
|
||||
@@ -1,29 +0,0 @@
|
||||
import autogpt_libs.auth
|
||||
import fastapi
|
||||
|
||||
from backend.server.v2.llm import db as llm_db
|
||||
from backend.server.v2.llm import model as llm_model
|
||||
|
||||
router = fastapi.APIRouter(
|
||||
prefix="/llm",
|
||||
tags=["llm"],
|
||||
dependencies=[fastapi.Security(autogpt_libs.auth.requires_user)],
|
||||
)
|
||||
|
||||
|
||||
@router.get("/models", response_model=llm_model.LlmModelsResponse)
|
||||
async def list_models(
|
||||
page: int = fastapi.Query(default=1, ge=1, description="Page number (1-indexed)"),
|
||||
page_size: int = fastapi.Query(
|
||||
default=50, ge=1, le=100, description="Number of models per page"
|
||||
),
|
||||
):
|
||||
"""List all enabled LLM models available to users."""
|
||||
return await llm_db.list_models(enabled_only=True, page=page, page_size=page_size)
|
||||
|
||||
|
||||
@router.get("/providers", response_model=llm_model.LlmProvidersResponse)
|
||||
async def list_providers():
|
||||
"""List all LLM providers with their enabled models."""
|
||||
providers = await llm_db.list_providers(include_models=True, enabled_only=True)
|
||||
return llm_model.LlmProvidersResponse(providers=providers)
|
||||
@@ -13,6 +13,7 @@ import aiohttp
|
||||
from gcloud.aio import storage as async_gcs_storage
|
||||
from google.cloud import storage as gcs_storage
|
||||
|
||||
from backend.util.gcs_utils import download_with_fresh_session, generate_signed_url
|
||||
from backend.util.settings import Config
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -251,7 +252,7 @@ class CloudStorageHandler:
|
||||
f"in_task: {current_task is not None}"
|
||||
)
|
||||
|
||||
# Parse bucket and blob name from path
|
||||
# Parse bucket and blob name from path (path already has gcs:// prefix removed)
|
||||
parts = path.split("/", 1)
|
||||
if len(parts) != 2:
|
||||
raise ValueError(f"Invalid GCS path: {path}")
|
||||
@@ -261,50 +262,19 @@ class CloudStorageHandler:
|
||||
# Authorization check
|
||||
self._validate_file_access(blob_name, user_id, graph_exec_id)
|
||||
|
||||
# Use a fresh client for each download to avoid session issues
|
||||
# This is less efficient but more reliable with the executor's event loop
|
||||
logger.info("[CloudStorage] Creating fresh GCS client for download")
|
||||
|
||||
# Create a new session specifically for this download
|
||||
session = aiohttp.ClientSession(
|
||||
connector=aiohttp.TCPConnector(limit=10, force_close=True)
|
||||
logger.info(
|
||||
f"[CloudStorage] About to download from GCS - bucket: {bucket_name}, blob: {blob_name}"
|
||||
)
|
||||
|
||||
async_client = None
|
||||
try:
|
||||
# Create a new GCS client with the fresh session
|
||||
async_client = async_gcs_storage.Storage(session=session)
|
||||
|
||||
logger.info(
|
||||
f"[CloudStorage] About to download from GCS - bucket: {bucket_name}, blob: {blob_name}"
|
||||
)
|
||||
|
||||
# Download content using the fresh client
|
||||
content = await async_client.download(bucket_name, blob_name)
|
||||
content = await download_with_fresh_session(bucket_name, blob_name)
|
||||
logger.info(
|
||||
f"[CloudStorage] GCS download successful - size: {len(content)} bytes"
|
||||
)
|
||||
|
||||
# Clean up
|
||||
await async_client.close()
|
||||
await session.close()
|
||||
|
||||
return content
|
||||
|
||||
except FileNotFoundError:
|
||||
raise
|
||||
except Exception as e:
|
||||
# Always try to clean up
|
||||
if async_client is not None:
|
||||
try:
|
||||
await async_client.close()
|
||||
except Exception as cleanup_error:
|
||||
logger.warning(
|
||||
f"[CloudStorage] Error closing GCS client: {cleanup_error}"
|
||||
)
|
||||
try:
|
||||
await session.close()
|
||||
except Exception as cleanup_error:
|
||||
logger.warning(f"[CloudStorage] Error closing session: {cleanup_error}")
|
||||
|
||||
# Log the specific error for debugging
|
||||
logger.error(
|
||||
f"[CloudStorage] GCS download failed - error: {str(e)}, "
|
||||
@@ -319,10 +289,6 @@ class CloudStorageHandler:
|
||||
f"current_task: {current_task}, "
|
||||
f"bucket: {bucket_name}, blob: redacted for privacy"
|
||||
)
|
||||
|
||||
# Convert gcloud-aio exceptions to standard ones
|
||||
if "404" in str(e) or "Not Found" in str(e):
|
||||
raise FileNotFoundError(f"File not found: gcs://{path}")
|
||||
raise
|
||||
|
||||
def _validate_file_access(
|
||||
@@ -445,8 +411,7 @@ class CloudStorageHandler:
|
||||
graph_exec_id: str | None = None,
|
||||
) -> str:
|
||||
"""Generate signed URL for GCS with authorization."""
|
||||
|
||||
# Parse bucket and blob name from path
|
||||
# Parse bucket and blob name from path (path already has gcs:// prefix removed)
|
||||
parts = path.split("/", 1)
|
||||
if len(parts) != 2:
|
||||
raise ValueError(f"Invalid GCS path: {path}")
|
||||
@@ -456,21 +421,11 @@ class CloudStorageHandler:
|
||||
# Authorization check
|
||||
self._validate_file_access(blob_name, user_id, graph_exec_id)
|
||||
|
||||
# Use sync client for signed URLs since gcloud-aio doesn't support them
|
||||
sync_client = self._get_sync_gcs_client()
|
||||
bucket = sync_client.bucket(bucket_name)
|
||||
blob = bucket.blob(blob_name)
|
||||
|
||||
# Generate signed URL asynchronously using sync client
|
||||
url = await asyncio.to_thread(
|
||||
blob.generate_signed_url,
|
||||
version="v4",
|
||||
expiration=datetime.now(timezone.utc) + timedelta(hours=expiration_hours),
|
||||
method="GET",
|
||||
return await generate_signed_url(
|
||||
sync_client, bucket_name, blob_name, expiration_hours * 3600
|
||||
)
|
||||
|
||||
return url
|
||||
|
||||
async def delete_expired_files(self, provider: str = "gcs") -> int:
|
||||
"""
|
||||
Delete files that have passed their expiration time.
|
||||
|
||||
@@ -135,6 +135,12 @@ class GraphValidationError(ValueError):
|
||||
)
|
||||
|
||||
|
||||
class InvalidInputError(ValueError):
|
||||
"""Raised when user input validation fails (e.g., search term too long)"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class DatabaseError(Exception):
|
||||
"""Raised when there is an error interacting with the database"""
|
||||
|
||||
|
||||
@@ -5,13 +5,26 @@ import shutil
|
||||
import tempfile
|
||||
import uuid
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Literal
|
||||
from urllib.parse import urlparse
|
||||
|
||||
from backend.util.cloud_storage import get_cloud_storage_handler
|
||||
from backend.util.request import Requests
|
||||
from backend.util.settings import Config
|
||||
from backend.util.type import MediaFileType
|
||||
from backend.util.virus_scanner import scan_content_safe
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from backend.data.execution import ExecutionContext
|
||||
|
||||
# Return format options for store_media_file
|
||||
# - "for_local_processing": Returns local file path - use with ffmpeg, MoviePy, PIL, etc.
|
||||
# - "for_external_api": Returns data URI (base64) - use when sending content to external APIs
|
||||
# - "for_block_output": Returns best format for output - workspace:// in CoPilot, data URI in graphs
|
||||
MediaReturnFormat = Literal[
|
||||
"for_local_processing", "for_external_api", "for_block_output"
|
||||
]
|
||||
|
||||
TEMP_DIR = Path(tempfile.gettempdir()).resolve()
|
||||
|
||||
# Maximum filename length (conservative limit for most filesystems)
|
||||
@@ -67,42 +80,56 @@ def clean_exec_files(graph_exec_id: str, file: str = "") -> None:
|
||||
|
||||
|
||||
async def store_media_file(
|
||||
graph_exec_id: str,
|
||||
file: MediaFileType,
|
||||
user_id: str,
|
||||
return_content: bool = False,
|
||||
execution_context: "ExecutionContext",
|
||||
*,
|
||||
return_format: MediaReturnFormat,
|
||||
) -> MediaFileType:
|
||||
"""
|
||||
Safely handle 'file' (a data URI, a URL, or a local path relative to {temp}/exec_file/{exec_id}),
|
||||
placing or verifying it under:
|
||||
Safely handle 'file' (a data URI, a URL, a workspace:// reference, or a local path
|
||||
relative to {temp}/exec_file/{exec_id}), placing or verifying it under:
|
||||
{tempdir}/exec_file/{exec_id}/...
|
||||
|
||||
If 'return_content=True', return a data URI (data:<mime>;base64,<content>).
|
||||
Otherwise, returns the file media path relative to the exec_id folder.
|
||||
For each MediaFileType input:
|
||||
- Data URI: decode and store locally
|
||||
- URL: download and store locally
|
||||
- workspace:// reference: read from workspace, store locally
|
||||
- Local path: verify it exists in exec_file directory
|
||||
|
||||
For each MediaFileType type:
|
||||
- Data URI:
|
||||
-> decode and store in a new random file in that folder
|
||||
- URL:
|
||||
-> download and store in that folder
|
||||
- Local path:
|
||||
-> interpret as relative to that folder; verify it exists
|
||||
(no copying, as it's presumably already there).
|
||||
We realpath-check so no symlink or '..' can escape the folder.
|
||||
Return format options:
|
||||
- "for_local_processing": Returns local file path - use with ffmpeg, MoviePy, PIL, etc.
|
||||
- "for_external_api": Returns data URI (base64) - use when sending to external APIs
|
||||
- "for_block_output": Returns best format for output - workspace:// in CoPilot, data URI in graphs
|
||||
|
||||
|
||||
:param graph_exec_id: The unique ID of the graph execution.
|
||||
:param file: Data URI, URL, or local (relative) path.
|
||||
:param return_content: If True, return a data URI of the file content.
|
||||
If False, return the *relative* path inside the exec_id folder.
|
||||
:return: The requested result: data URI or relative path of the media.
|
||||
:param file: Data URI, URL, workspace://, or local (relative) path.
|
||||
:param execution_context: ExecutionContext with user_id, graph_exec_id, workspace_id.
|
||||
:param return_format: What to return: "for_local_processing", "for_external_api", or "for_block_output".
|
||||
:return: The requested result based on return_format.
|
||||
"""
|
||||
# Extract values from execution_context
|
||||
graph_exec_id = execution_context.graph_exec_id
|
||||
user_id = execution_context.user_id
|
||||
|
||||
if not graph_exec_id:
|
||||
raise ValueError("execution_context.graph_exec_id is required")
|
||||
if not user_id:
|
||||
raise ValueError("execution_context.user_id is required")
|
||||
|
||||
# Create workspace_manager if we have workspace_id (with session scoping)
|
||||
# Import here to avoid circular import (file.py → workspace.py → data → blocks → file.py)
|
||||
from backend.util.workspace import WorkspaceManager
|
||||
|
||||
workspace_manager: WorkspaceManager | None = None
|
||||
if execution_context.workspace_id:
|
||||
workspace_manager = WorkspaceManager(
|
||||
user_id, execution_context.workspace_id, execution_context.session_id
|
||||
)
|
||||
# Build base path
|
||||
base_path = Path(get_exec_file_path(graph_exec_id, ""))
|
||||
base_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Security fix: Add disk space limits to prevent DoS
|
||||
MAX_FILE_SIZE = 100 * 1024 * 1024 # 100MB per file
|
||||
MAX_FILE_SIZE_BYTES = Config().max_file_size_mb * 1024 * 1024
|
||||
MAX_TOTAL_DISK_USAGE = 1024 * 1024 * 1024 # 1GB total per execution directory
|
||||
|
||||
# Check total disk usage in base_path
|
||||
@@ -142,9 +169,57 @@ async def store_media_file(
|
||||
"""
|
||||
return str(absolute_path.relative_to(base))
|
||||
|
||||
# Check if this is a cloud storage path
|
||||
# Get cloud storage handler for checking cloud paths
|
||||
cloud_storage = await get_cloud_storage_handler()
|
||||
if cloud_storage.is_cloud_path(file):
|
||||
|
||||
# Track if the input came from workspace (don't re-save it)
|
||||
is_from_workspace = file.startswith("workspace://")
|
||||
|
||||
# Check if this is a workspace file reference
|
||||
if is_from_workspace:
|
||||
if workspace_manager is None:
|
||||
raise ValueError(
|
||||
"Workspace file reference requires workspace context. "
|
||||
"This file type is only available in CoPilot sessions."
|
||||
)
|
||||
|
||||
# Parse workspace reference
|
||||
# workspace://abc123 - by file ID
|
||||
# workspace:///path/to/file.txt - by virtual path
|
||||
file_ref = file[12:] # Remove "workspace://"
|
||||
|
||||
if file_ref.startswith("/"):
|
||||
# Path reference
|
||||
workspace_content = await workspace_manager.read_file(file_ref)
|
||||
file_info = await workspace_manager.get_file_info_by_path(file_ref)
|
||||
filename = sanitize_filename(
|
||||
file_info.name if file_info else f"{uuid.uuid4()}.bin"
|
||||
)
|
||||
else:
|
||||
# ID reference
|
||||
workspace_content = await workspace_manager.read_file_by_id(file_ref)
|
||||
file_info = await workspace_manager.get_file_info(file_ref)
|
||||
filename = sanitize_filename(
|
||||
file_info.name if file_info else f"{uuid.uuid4()}.bin"
|
||||
)
|
||||
|
||||
try:
|
||||
target_path = _ensure_inside_base(base_path / filename, base_path)
|
||||
except OSError as e:
|
||||
raise ValueError(f"Invalid file path '{filename}': {e}") from e
|
||||
|
||||
# Check file size limit
|
||||
if len(workspace_content) > MAX_FILE_SIZE_BYTES:
|
||||
raise ValueError(
|
||||
f"File too large: {len(workspace_content)} bytes > {MAX_FILE_SIZE_BYTES} bytes"
|
||||
)
|
||||
|
||||
# Virus scan the workspace content before writing locally
|
||||
await scan_content_safe(workspace_content, filename=filename)
|
||||
target_path.write_bytes(workspace_content)
|
||||
|
||||
# Check if this is a cloud storage path
|
||||
elif cloud_storage.is_cloud_path(file):
|
||||
# Download from cloud storage and store locally
|
||||
cloud_content = await cloud_storage.retrieve_file(
|
||||
file, user_id=user_id, graph_exec_id=graph_exec_id
|
||||
@@ -159,9 +234,9 @@ async def store_media_file(
|
||||
raise ValueError(f"Invalid file path '{filename}': {e}") from e
|
||||
|
||||
# Check file size limit
|
||||
if len(cloud_content) > MAX_FILE_SIZE:
|
||||
if len(cloud_content) > MAX_FILE_SIZE_BYTES:
|
||||
raise ValueError(
|
||||
f"File too large: {len(cloud_content)} bytes > {MAX_FILE_SIZE} bytes"
|
||||
f"File too large: {len(cloud_content)} bytes > {MAX_FILE_SIZE_BYTES} bytes"
|
||||
)
|
||||
|
||||
# Virus scan the cloud content before writing locally
|
||||
@@ -189,9 +264,9 @@ async def store_media_file(
|
||||
content = base64.b64decode(b64_content)
|
||||
|
||||
# Check file size limit
|
||||
if len(content) > MAX_FILE_SIZE:
|
||||
if len(content) > MAX_FILE_SIZE_BYTES:
|
||||
raise ValueError(
|
||||
f"File too large: {len(content)} bytes > {MAX_FILE_SIZE} bytes"
|
||||
f"File too large: {len(content)} bytes > {MAX_FILE_SIZE_BYTES} bytes"
|
||||
)
|
||||
|
||||
# Virus scan the base64 content before writing
|
||||
@@ -199,23 +274,31 @@ async def store_media_file(
|
||||
target_path.write_bytes(content)
|
||||
|
||||
elif file.startswith(("http://", "https://")):
|
||||
# URL
|
||||
# URL - download first to get Content-Type header
|
||||
resp = await Requests().get(file)
|
||||
|
||||
# Check file size limit
|
||||
if len(resp.content) > MAX_FILE_SIZE_BYTES:
|
||||
raise ValueError(
|
||||
f"File too large: {len(resp.content)} bytes > {MAX_FILE_SIZE_BYTES} bytes"
|
||||
)
|
||||
|
||||
# Extract filename from URL path
|
||||
parsed_url = urlparse(file)
|
||||
filename = sanitize_filename(Path(parsed_url.path).name or f"{uuid.uuid4()}")
|
||||
|
||||
# If filename lacks extension, add one from Content-Type header
|
||||
if "." not in filename:
|
||||
content_type = resp.headers.get("Content-Type", "").split(";")[0].strip()
|
||||
if content_type:
|
||||
ext = _extension_from_mime(content_type)
|
||||
filename = f"{filename}{ext}"
|
||||
|
||||
try:
|
||||
target_path = _ensure_inside_base(base_path / filename, base_path)
|
||||
except OSError as e:
|
||||
raise ValueError(f"Invalid file path '{filename}': {e}") from e
|
||||
|
||||
# Download and save
|
||||
resp = await Requests().get(file)
|
||||
|
||||
# Check file size limit
|
||||
if len(resp.content) > MAX_FILE_SIZE:
|
||||
raise ValueError(
|
||||
f"File too large: {len(resp.content)} bytes > {MAX_FILE_SIZE} bytes"
|
||||
)
|
||||
|
||||
# Virus scan the downloaded content before writing
|
||||
await scan_content_safe(resp.content, filename=filename)
|
||||
target_path.write_bytes(resp.content)
|
||||
@@ -230,12 +313,44 @@ async def store_media_file(
|
||||
if not target_path.is_file():
|
||||
raise ValueError(f"Local file does not exist: {target_path}")
|
||||
|
||||
# Return result
|
||||
if return_content:
|
||||
return MediaFileType(_file_to_data_uri(target_path))
|
||||
else:
|
||||
# Return based on requested format
|
||||
if return_format == "for_local_processing":
|
||||
# Use when processing files locally with tools like ffmpeg, MoviePy, PIL
|
||||
# Returns: relative path in exec_file directory (e.g., "image.png")
|
||||
return MediaFileType(_strip_base_prefix(target_path, base_path))
|
||||
|
||||
elif return_format == "for_external_api":
|
||||
# Use when sending content to external APIs that need base64
|
||||
# Returns: data URI (e.g., "...")
|
||||
return MediaFileType(_file_to_data_uri(target_path))
|
||||
|
||||
elif return_format == "for_block_output":
|
||||
# Use when returning output from a block to user/next block
|
||||
# Returns: workspace:// ref (CoPilot) or data URI (graph execution)
|
||||
if workspace_manager is None:
|
||||
# No workspace available (graph execution without CoPilot)
|
||||
# Fallback to data URI so the content can still be used/displayed
|
||||
return MediaFileType(_file_to_data_uri(target_path))
|
||||
|
||||
# Don't re-save if input was already from workspace
|
||||
if is_from_workspace:
|
||||
# Return original workspace reference
|
||||
return MediaFileType(file)
|
||||
|
||||
# Save new content to workspace
|
||||
content = target_path.read_bytes()
|
||||
filename = target_path.name
|
||||
|
||||
file_record = await workspace_manager.write_file(
|
||||
content=content,
|
||||
filename=filename,
|
||||
overwrite=True,
|
||||
)
|
||||
return MediaFileType(f"workspace://{file_record.id}")
|
||||
|
||||
else:
|
||||
raise ValueError(f"Invalid return_format: {return_format}")
|
||||
|
||||
|
||||
def get_dir_size(path: Path) -> int:
|
||||
"""Get total size of directory."""
|
||||
|
||||
@@ -7,10 +7,22 @@ from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.type import MediaFileType
|
||||
|
||||
|
||||
def make_test_context(
|
||||
graph_exec_id: str = "test-exec-123",
|
||||
user_id: str = "test-user-123",
|
||||
) -> ExecutionContext:
|
||||
"""Helper to create test ExecutionContext."""
|
||||
return ExecutionContext(
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
)
|
||||
|
||||
|
||||
class TestFileCloudIntegration:
|
||||
"""Test cases for cloud storage integration in file utilities."""
|
||||
|
||||
@@ -70,10 +82,9 @@ class TestFileCloudIntegration:
|
||||
mock_path_class.side_effect = path_constructor
|
||||
|
||||
result = await store_media_file(
|
||||
graph_exec_id,
|
||||
MediaFileType(cloud_path),
|
||||
"test-user-123",
|
||||
return_content=False,
|
||||
file=MediaFileType(cloud_path),
|
||||
execution_context=make_test_context(graph_exec_id=graph_exec_id),
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
|
||||
# Verify cloud storage operations
|
||||
@@ -144,10 +155,9 @@ class TestFileCloudIntegration:
|
||||
mock_path_obj.name = "image.png"
|
||||
with patch("backend.util.file.Path", return_value=mock_path_obj):
|
||||
result = await store_media_file(
|
||||
graph_exec_id,
|
||||
MediaFileType(cloud_path),
|
||||
"test-user-123",
|
||||
return_content=True,
|
||||
file=MediaFileType(cloud_path),
|
||||
execution_context=make_test_context(graph_exec_id=graph_exec_id),
|
||||
return_format="for_external_api",
|
||||
)
|
||||
|
||||
# Verify result is a data URI
|
||||
@@ -198,10 +208,9 @@ class TestFileCloudIntegration:
|
||||
mock_resolved_path.relative_to.return_value = Path("test-uuid-789.txt")
|
||||
|
||||
await store_media_file(
|
||||
graph_exec_id,
|
||||
MediaFileType(data_uri),
|
||||
"test-user-123",
|
||||
return_content=False,
|
||||
file=MediaFileType(data_uri),
|
||||
execution_context=make_test_context(graph_exec_id=graph_exec_id),
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
|
||||
# Verify cloud handler was checked but not used for retrieval
|
||||
@@ -234,5 +243,7 @@ class TestFileCloudIntegration:
|
||||
FileNotFoundError, match="File not found in cloud storage"
|
||||
):
|
||||
await store_media_file(
|
||||
graph_exec_id, MediaFileType(cloud_path), "test-user-123"
|
||||
file=MediaFileType(cloud_path),
|
||||
execution_context=make_test_context(graph_exec_id=graph_exec_id),
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
|
||||
108
autogpt_platform/backend/backend/util/gcs_utils.py
Normal file
108
autogpt_platform/backend/backend/util/gcs_utils.py
Normal file
@@ -0,0 +1,108 @@
|
||||
"""
|
||||
Shared GCS utilities for workspace and cloud storage backends.
|
||||
|
||||
This module provides common functionality for working with Google Cloud Storage,
|
||||
including path parsing, client management, and signed URL generation.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
from datetime import datetime, timedelta, timezone
|
||||
|
||||
import aiohttp
|
||||
from gcloud.aio import storage as async_gcs_storage
|
||||
from google.cloud import storage as gcs_storage
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def parse_gcs_path(path: str) -> tuple[str, str]:
|
||||
"""
|
||||
Parse a GCS path in the format 'gcs://bucket/blob' to (bucket, blob).
|
||||
|
||||
Args:
|
||||
path: GCS path string (e.g., "gcs://my-bucket/path/to/file")
|
||||
|
||||
Returns:
|
||||
Tuple of (bucket_name, blob_name)
|
||||
|
||||
Raises:
|
||||
ValueError: If the path format is invalid
|
||||
"""
|
||||
if not path.startswith("gcs://"):
|
||||
raise ValueError(f"Invalid GCS path: {path}")
|
||||
|
||||
path_without_prefix = path[6:] # Remove "gcs://"
|
||||
parts = path_without_prefix.split("/", 1)
|
||||
if len(parts) != 2:
|
||||
raise ValueError(f"Invalid GCS path format: {path}")
|
||||
|
||||
return parts[0], parts[1]
|
||||
|
||||
|
||||
async def download_with_fresh_session(bucket: str, blob: str) -> bytes:
|
||||
"""
|
||||
Download file content using a fresh session.
|
||||
|
||||
This approach avoids event loop issues that can occur when reusing
|
||||
sessions across different async contexts (e.g., in executors).
|
||||
|
||||
Args:
|
||||
bucket: GCS bucket name
|
||||
blob: Blob path within the bucket
|
||||
|
||||
Returns:
|
||||
File content as bytes
|
||||
|
||||
Raises:
|
||||
FileNotFoundError: If the file doesn't exist
|
||||
"""
|
||||
session = aiohttp.ClientSession(
|
||||
connector=aiohttp.TCPConnector(limit=10, force_close=True)
|
||||
)
|
||||
client: async_gcs_storage.Storage | None = None
|
||||
try:
|
||||
client = async_gcs_storage.Storage(session=session)
|
||||
content = await client.download(bucket, blob)
|
||||
return content
|
||||
except Exception as e:
|
||||
if "404" in str(e) or "Not Found" in str(e):
|
||||
raise FileNotFoundError(f"File not found: gcs://{bucket}/{blob}")
|
||||
raise
|
||||
finally:
|
||||
if client:
|
||||
try:
|
||||
await client.close()
|
||||
except Exception:
|
||||
pass # Best-effort cleanup
|
||||
await session.close()
|
||||
|
||||
|
||||
async def generate_signed_url(
|
||||
sync_client: gcs_storage.Client,
|
||||
bucket_name: str,
|
||||
blob_name: str,
|
||||
expires_in: int,
|
||||
) -> str:
|
||||
"""
|
||||
Generate a signed URL for temporary access to a GCS file.
|
||||
|
||||
Uses asyncio.to_thread() to run the sync operation without blocking.
|
||||
|
||||
Args:
|
||||
sync_client: Sync GCS client with service account credentials
|
||||
bucket_name: GCS bucket name
|
||||
blob_name: Blob path within the bucket
|
||||
expires_in: URL expiration time in seconds
|
||||
|
||||
Returns:
|
||||
Signed URL string
|
||||
"""
|
||||
bucket = sync_client.bucket(bucket_name)
|
||||
blob = bucket.blob(blob_name)
|
||||
return await asyncio.to_thread(
|
||||
blob.generate_signed_url,
|
||||
version="v4",
|
||||
expiration=datetime.now(timezone.utc) + timedelta(seconds=expires_in),
|
||||
method="GET",
|
||||
)
|
||||
@@ -263,6 +263,12 @@ class Config(UpdateTrackingModel["Config"], BaseSettings):
|
||||
description="The name of the Google Cloud Storage bucket for media files",
|
||||
)
|
||||
|
||||
workspace_storage_dir: str = Field(
|
||||
default="",
|
||||
description="Local directory for workspace file storage when GCS is not configured. "
|
||||
"If empty, defaults to {app_data}/workspaces. Used for self-hosted deployments.",
|
||||
)
|
||||
|
||||
reddit_user_agent: str = Field(
|
||||
default="web:AutoGPT:v0.6.0 (by /u/autogpt)",
|
||||
description="The user agent for the Reddit API",
|
||||
@@ -359,8 +365,8 @@ class Config(UpdateTrackingModel["Config"], BaseSettings):
|
||||
description="The port for the Agent Generator service",
|
||||
)
|
||||
agentgenerator_timeout: int = Field(
|
||||
default=120,
|
||||
description="The timeout in seconds for Agent Generator service requests",
|
||||
default=600,
|
||||
description="The timeout in seconds for Agent Generator service requests (includes retries for rate limits)",
|
||||
)
|
||||
|
||||
enable_example_blocks: bool = Field(
|
||||
@@ -389,6 +395,13 @@ class Config(UpdateTrackingModel["Config"], BaseSettings):
|
||||
description="Maximum file size in MB for file uploads (1-1024 MB)",
|
||||
)
|
||||
|
||||
max_file_size_mb: int = Field(
|
||||
default=100,
|
||||
ge=1,
|
||||
le=1024,
|
||||
description="Maximum file size in MB for workspace files (1-1024 MB)",
|
||||
)
|
||||
|
||||
# AutoMod configuration
|
||||
automod_enabled: bool = Field(
|
||||
default=False,
|
||||
|
||||
@@ -140,14 +140,29 @@ async def execute_block_test(block: Block):
|
||||
setattr(block, mock_name, mock_obj)
|
||||
|
||||
# Populate credentials argument(s)
|
||||
# Generate IDs for execution context
|
||||
graph_id = str(uuid.uuid4())
|
||||
node_id = str(uuid.uuid4())
|
||||
graph_exec_id = str(uuid.uuid4())
|
||||
node_exec_id = str(uuid.uuid4())
|
||||
user_id = str(uuid.uuid4())
|
||||
graph_version = 1 # Default version for tests
|
||||
|
||||
extra_exec_kwargs: dict = {
|
||||
"graph_id": str(uuid.uuid4()),
|
||||
"node_id": str(uuid.uuid4()),
|
||||
"graph_exec_id": str(uuid.uuid4()),
|
||||
"node_exec_id": str(uuid.uuid4()),
|
||||
"user_id": str(uuid.uuid4()),
|
||||
"graph_version": 1, # Default version for tests
|
||||
"execution_context": ExecutionContext(),
|
||||
"graph_id": graph_id,
|
||||
"node_id": node_id,
|
||||
"graph_exec_id": graph_exec_id,
|
||||
"node_exec_id": node_exec_id,
|
||||
"user_id": user_id,
|
||||
"graph_version": graph_version,
|
||||
"execution_context": ExecutionContext(
|
||||
user_id=user_id,
|
||||
graph_id=graph_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
graph_version=graph_version,
|
||||
node_id=node_id,
|
||||
node_exec_id=node_exec_id,
|
||||
),
|
||||
}
|
||||
input_model = cast(type[BlockSchema], block.input_schema)
|
||||
|
||||
|
||||
419
autogpt_platform/backend/backend/util/workspace.py
Normal file
419
autogpt_platform/backend/backend/util/workspace.py
Normal file
@@ -0,0 +1,419 @@
|
||||
"""
|
||||
WorkspaceManager for managing user workspace file operations.
|
||||
|
||||
This module provides a high-level interface for workspace file operations,
|
||||
combining the storage backend and database layer.
|
||||
"""
|
||||
|
||||
import logging
|
||||
import mimetypes
|
||||
import uuid
|
||||
from typing import Optional
|
||||
|
||||
from prisma.errors import UniqueViolationError
|
||||
from prisma.models import UserWorkspaceFile
|
||||
|
||||
from backend.data.workspace import (
|
||||
count_workspace_files,
|
||||
create_workspace_file,
|
||||
get_workspace_file,
|
||||
get_workspace_file_by_path,
|
||||
list_workspace_files,
|
||||
soft_delete_workspace_file,
|
||||
)
|
||||
from backend.util.settings import Config
|
||||
from backend.util.workspace_storage import compute_file_checksum, get_workspace_storage
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class WorkspaceManager:
|
||||
"""
|
||||
Manages workspace file operations.
|
||||
|
||||
Combines storage backend operations with database record management.
|
||||
Supports session-scoped file segmentation where files are stored in
|
||||
session-specific virtual paths: /sessions/{session_id}/{filename}
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, user_id: str, workspace_id: str, session_id: Optional[str] = None
|
||||
):
|
||||
"""
|
||||
Initialize WorkspaceManager.
|
||||
|
||||
Args:
|
||||
user_id: The user's ID
|
||||
workspace_id: The workspace ID
|
||||
session_id: Optional session ID for session-scoped file access
|
||||
"""
|
||||
self.user_id = user_id
|
||||
self.workspace_id = workspace_id
|
||||
self.session_id = session_id
|
||||
# Session path prefix for file isolation
|
||||
self.session_path = f"/sessions/{session_id}" if session_id else ""
|
||||
|
||||
def _resolve_path(self, path: str) -> str:
|
||||
"""
|
||||
Resolve a path, defaulting to session folder if session_id is set.
|
||||
|
||||
Cross-session access is allowed by explicitly using /sessions/other-session-id/...
|
||||
|
||||
Args:
|
||||
path: Virtual path (e.g., "/file.txt" or "/sessions/abc123/file.txt")
|
||||
|
||||
Returns:
|
||||
Resolved path with session prefix if applicable
|
||||
"""
|
||||
# If path explicitly references a session folder, use it as-is
|
||||
if path.startswith("/sessions/"):
|
||||
return path
|
||||
|
||||
# If we have a session context, prepend session path
|
||||
if self.session_path:
|
||||
# Normalize the path
|
||||
if not path.startswith("/"):
|
||||
path = f"/{path}"
|
||||
return f"{self.session_path}{path}"
|
||||
|
||||
# No session context, use path as-is
|
||||
return path if path.startswith("/") else f"/{path}"
|
||||
|
||||
def _get_effective_path(
|
||||
self, path: Optional[str], include_all_sessions: bool
|
||||
) -> Optional[str]:
|
||||
"""
|
||||
Get effective path for list/count operations based on session context.
|
||||
|
||||
Args:
|
||||
path: Optional path prefix to filter
|
||||
include_all_sessions: If True, don't apply session scoping
|
||||
|
||||
Returns:
|
||||
Effective path prefix for database query
|
||||
"""
|
||||
if include_all_sessions:
|
||||
# Normalize path to ensure leading slash (stored paths are normalized)
|
||||
if path is not None and not path.startswith("/"):
|
||||
return f"/{path}"
|
||||
return path
|
||||
elif path is not None:
|
||||
# Resolve the provided path with session scoping
|
||||
return self._resolve_path(path)
|
||||
elif self.session_path:
|
||||
# Default to session folder with trailing slash to prevent prefix collisions
|
||||
# e.g., "/sessions/abc" should not match "/sessions/abc123"
|
||||
return self.session_path.rstrip("/") + "/"
|
||||
else:
|
||||
# No session context, use path as-is
|
||||
return path
|
||||
|
||||
async def read_file(self, path: str) -> bytes:
|
||||
"""
|
||||
Read file from workspace by virtual path.
|
||||
|
||||
When session_id is set, paths are resolved relative to the session folder
|
||||
unless they explicitly reference /sessions/...
|
||||
|
||||
Args:
|
||||
path: Virtual path (e.g., "/documents/report.pdf")
|
||||
|
||||
Returns:
|
||||
File content as bytes
|
||||
|
||||
Raises:
|
||||
FileNotFoundError: If file doesn't exist
|
||||
"""
|
||||
resolved_path = self._resolve_path(path)
|
||||
file = await get_workspace_file_by_path(self.workspace_id, resolved_path)
|
||||
if file is None:
|
||||
raise FileNotFoundError(f"File not found at path: {resolved_path}")
|
||||
|
||||
storage = await get_workspace_storage()
|
||||
return await storage.retrieve(file.storagePath)
|
||||
|
||||
async def read_file_by_id(self, file_id: str) -> bytes:
|
||||
"""
|
||||
Read file from workspace by file ID.
|
||||
|
||||
Args:
|
||||
file_id: The file's ID
|
||||
|
||||
Returns:
|
||||
File content as bytes
|
||||
|
||||
Raises:
|
||||
FileNotFoundError: If file doesn't exist
|
||||
"""
|
||||
file = await get_workspace_file(file_id, self.workspace_id)
|
||||
if file is None:
|
||||
raise FileNotFoundError(f"File not found: {file_id}")
|
||||
|
||||
storage = await get_workspace_storage()
|
||||
return await storage.retrieve(file.storagePath)
|
||||
|
||||
async def write_file(
|
||||
self,
|
||||
content: bytes,
|
||||
filename: str,
|
||||
path: Optional[str] = None,
|
||||
mime_type: Optional[str] = None,
|
||||
overwrite: bool = False,
|
||||
) -> UserWorkspaceFile:
|
||||
"""
|
||||
Write file to workspace.
|
||||
|
||||
When session_id is set, files are written to /sessions/{session_id}/...
|
||||
by default. Use explicit /sessions/... paths for cross-session access.
|
||||
|
||||
Args:
|
||||
content: File content as bytes
|
||||
filename: Filename for the file
|
||||
path: Virtual path (defaults to "/{filename}", session-scoped if session_id set)
|
||||
mime_type: MIME type (auto-detected if not provided)
|
||||
overwrite: Whether to overwrite existing file at path
|
||||
|
||||
Returns:
|
||||
Created UserWorkspaceFile instance
|
||||
|
||||
Raises:
|
||||
ValueError: If file exceeds size limit or path already exists
|
||||
"""
|
||||
# Enforce file size limit
|
||||
max_file_size = Config().max_file_size_mb * 1024 * 1024
|
||||
if len(content) > max_file_size:
|
||||
raise ValueError(
|
||||
f"File too large: {len(content)} bytes exceeds "
|
||||
f"{Config().max_file_size_mb}MB limit"
|
||||
)
|
||||
|
||||
# Determine path with session scoping
|
||||
if path is None:
|
||||
path = f"/{filename}"
|
||||
elif not path.startswith("/"):
|
||||
path = f"/{path}"
|
||||
|
||||
# Resolve path with session prefix
|
||||
path = self._resolve_path(path)
|
||||
|
||||
# Check if file exists at path (only error for non-overwrite case)
|
||||
# For overwrite=True, we let the write proceed and handle via UniqueViolationError
|
||||
# This ensures the new file is written to storage BEFORE the old one is deleted,
|
||||
# preventing data loss if the new write fails
|
||||
if not overwrite:
|
||||
existing = await get_workspace_file_by_path(self.workspace_id, path)
|
||||
if existing is not None:
|
||||
raise ValueError(f"File already exists at path: {path}")
|
||||
|
||||
# Auto-detect MIME type if not provided
|
||||
if mime_type is None:
|
||||
mime_type, _ = mimetypes.guess_type(filename)
|
||||
mime_type = mime_type or "application/octet-stream"
|
||||
|
||||
# Compute checksum
|
||||
checksum = compute_file_checksum(content)
|
||||
|
||||
# Generate unique file ID for storage
|
||||
file_id = str(uuid.uuid4())
|
||||
|
||||
# Store file in storage backend
|
||||
storage = await get_workspace_storage()
|
||||
storage_path = await storage.store(
|
||||
workspace_id=self.workspace_id,
|
||||
file_id=file_id,
|
||||
filename=filename,
|
||||
content=content,
|
||||
)
|
||||
|
||||
# Create database record - handle race condition where another request
|
||||
# created a file at the same path between our check and create
|
||||
try:
|
||||
file = await create_workspace_file(
|
||||
workspace_id=self.workspace_id,
|
||||
file_id=file_id,
|
||||
name=filename,
|
||||
path=path,
|
||||
storage_path=storage_path,
|
||||
mime_type=mime_type,
|
||||
size_bytes=len(content),
|
||||
checksum=checksum,
|
||||
)
|
||||
except UniqueViolationError:
|
||||
# Race condition: another request created a file at this path
|
||||
if overwrite:
|
||||
# Re-fetch and delete the conflicting file, then retry
|
||||
existing = await get_workspace_file_by_path(self.workspace_id, path)
|
||||
if existing:
|
||||
await self.delete_file(existing.id)
|
||||
# Retry the create - if this also fails, clean up storage file
|
||||
try:
|
||||
file = await create_workspace_file(
|
||||
workspace_id=self.workspace_id,
|
||||
file_id=file_id,
|
||||
name=filename,
|
||||
path=path,
|
||||
storage_path=storage_path,
|
||||
mime_type=mime_type,
|
||||
size_bytes=len(content),
|
||||
checksum=checksum,
|
||||
)
|
||||
except Exception:
|
||||
# Clean up orphaned storage file on retry failure
|
||||
try:
|
||||
await storage.delete(storage_path)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to clean up orphaned storage file: {e}")
|
||||
raise
|
||||
else:
|
||||
# Clean up the orphaned storage file before raising
|
||||
try:
|
||||
await storage.delete(storage_path)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to clean up orphaned storage file: {e}")
|
||||
raise ValueError(f"File already exists at path: {path}")
|
||||
except Exception:
|
||||
# Any other database error (connection, validation, etc.) - clean up storage
|
||||
try:
|
||||
await storage.delete(storage_path)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to clean up orphaned storage file: {e}")
|
||||
raise
|
||||
|
||||
logger.info(
|
||||
f"Wrote file {file.id} ({filename}) to workspace {self.workspace_id} "
|
||||
f"at path {path}, size={len(content)} bytes"
|
||||
)
|
||||
|
||||
return file
|
||||
|
||||
async def list_files(
|
||||
self,
|
||||
path: Optional[str] = None,
|
||||
limit: Optional[int] = None,
|
||||
offset: int = 0,
|
||||
include_all_sessions: bool = False,
|
||||
) -> list[UserWorkspaceFile]:
|
||||
"""
|
||||
List files in workspace.
|
||||
|
||||
When session_id is set and include_all_sessions is False (default),
|
||||
only files in the current session's folder are listed.
|
||||
|
||||
Args:
|
||||
path: Optional path prefix to filter (e.g., "/documents/")
|
||||
limit: Maximum number of files to return
|
||||
offset: Number of files to skip
|
||||
include_all_sessions: If True, list files from all sessions.
|
||||
If False (default), only list current session's files.
|
||||
|
||||
Returns:
|
||||
List of UserWorkspaceFile instances
|
||||
"""
|
||||
effective_path = self._get_effective_path(path, include_all_sessions)
|
||||
|
||||
return await list_workspace_files(
|
||||
workspace_id=self.workspace_id,
|
||||
path_prefix=effective_path,
|
||||
limit=limit,
|
||||
offset=offset,
|
||||
)
|
||||
|
||||
async def delete_file(self, file_id: str) -> bool:
|
||||
"""
|
||||
Delete a file (soft-delete).
|
||||
|
||||
Args:
|
||||
file_id: The file's ID
|
||||
|
||||
Returns:
|
||||
True if deleted, False if not found
|
||||
"""
|
||||
file = await get_workspace_file(file_id, self.workspace_id)
|
||||
if file is None:
|
||||
return False
|
||||
|
||||
# Delete from storage
|
||||
storage = await get_workspace_storage()
|
||||
try:
|
||||
await storage.delete(file.storagePath)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to delete file from storage: {e}")
|
||||
# Continue with database soft-delete even if storage delete fails
|
||||
|
||||
# Soft-delete database record
|
||||
result = await soft_delete_workspace_file(file_id, self.workspace_id)
|
||||
return result is not None
|
||||
|
||||
async def get_download_url(self, file_id: str, expires_in: int = 3600) -> str:
|
||||
"""
|
||||
Get download URL for a file.
|
||||
|
||||
Args:
|
||||
file_id: The file's ID
|
||||
expires_in: URL expiration in seconds (default 1 hour)
|
||||
|
||||
Returns:
|
||||
Download URL (signed URL for GCS, API endpoint for local)
|
||||
|
||||
Raises:
|
||||
FileNotFoundError: If file doesn't exist
|
||||
"""
|
||||
file = await get_workspace_file(file_id, self.workspace_id)
|
||||
if file is None:
|
||||
raise FileNotFoundError(f"File not found: {file_id}")
|
||||
|
||||
storage = await get_workspace_storage()
|
||||
return await storage.get_download_url(file.storagePath, expires_in)
|
||||
|
||||
async def get_file_info(self, file_id: str) -> Optional[UserWorkspaceFile]:
|
||||
"""
|
||||
Get file metadata.
|
||||
|
||||
Args:
|
||||
file_id: The file's ID
|
||||
|
||||
Returns:
|
||||
UserWorkspaceFile instance or None
|
||||
"""
|
||||
return await get_workspace_file(file_id, self.workspace_id)
|
||||
|
||||
async def get_file_info_by_path(self, path: str) -> Optional[UserWorkspaceFile]:
|
||||
"""
|
||||
Get file metadata by path.
|
||||
|
||||
When session_id is set, paths are resolved relative to the session folder
|
||||
unless they explicitly reference /sessions/...
|
||||
|
||||
Args:
|
||||
path: Virtual path
|
||||
|
||||
Returns:
|
||||
UserWorkspaceFile instance or None
|
||||
"""
|
||||
resolved_path = self._resolve_path(path)
|
||||
return await get_workspace_file_by_path(self.workspace_id, resolved_path)
|
||||
|
||||
async def get_file_count(
|
||||
self,
|
||||
path: Optional[str] = None,
|
||||
include_all_sessions: bool = False,
|
||||
) -> int:
|
||||
"""
|
||||
Get number of files in workspace.
|
||||
|
||||
When session_id is set and include_all_sessions is False (default),
|
||||
only counts files in the current session's folder.
|
||||
|
||||
Args:
|
||||
path: Optional path prefix to filter (e.g., "/documents/")
|
||||
include_all_sessions: If True, count all files in workspace.
|
||||
If False (default), only count current session's files.
|
||||
|
||||
Returns:
|
||||
Number of files
|
||||
"""
|
||||
effective_path = self._get_effective_path(path, include_all_sessions)
|
||||
|
||||
return await count_workspace_files(
|
||||
self.workspace_id, path_prefix=effective_path
|
||||
)
|
||||
398
autogpt_platform/backend/backend/util/workspace_storage.py
Normal file
398
autogpt_platform/backend/backend/util/workspace_storage.py
Normal file
@@ -0,0 +1,398 @@
|
||||
"""
|
||||
Workspace storage backend abstraction for supporting both cloud and local deployments.
|
||||
|
||||
This module provides a unified interface for storing workspace files, with implementations
|
||||
for Google Cloud Storage (cloud deployments) and local filesystem (self-hosted deployments).
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import hashlib
|
||||
import logging
|
||||
from abc import ABC, abstractmethod
|
||||
from datetime import datetime, timezone
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
import aiofiles
|
||||
import aiohttp
|
||||
from gcloud.aio import storage as async_gcs_storage
|
||||
from google.cloud import storage as gcs_storage
|
||||
|
||||
from backend.util.data import get_data_path
|
||||
from backend.util.gcs_utils import (
|
||||
download_with_fresh_session,
|
||||
generate_signed_url,
|
||||
parse_gcs_path,
|
||||
)
|
||||
from backend.util.settings import Config
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class WorkspaceStorageBackend(ABC):
|
||||
"""Abstract interface for workspace file storage."""
|
||||
|
||||
@abstractmethod
|
||||
async def store(
|
||||
self,
|
||||
workspace_id: str,
|
||||
file_id: str,
|
||||
filename: str,
|
||||
content: bytes,
|
||||
) -> str:
|
||||
"""
|
||||
Store file content, return storage path.
|
||||
|
||||
Args:
|
||||
workspace_id: The workspace ID
|
||||
file_id: Unique file ID for storage
|
||||
filename: Original filename
|
||||
content: File content as bytes
|
||||
|
||||
Returns:
|
||||
Storage path string (cloud path or local path)
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def retrieve(self, storage_path: str) -> bytes:
|
||||
"""
|
||||
Retrieve file content from storage.
|
||||
|
||||
Args:
|
||||
storage_path: The storage path returned from store()
|
||||
|
||||
Returns:
|
||||
File content as bytes
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def delete(self, storage_path: str) -> None:
|
||||
"""
|
||||
Delete file from storage.
|
||||
|
||||
Args:
|
||||
storage_path: The storage path to delete
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def get_download_url(self, storage_path: str, expires_in: int = 3600) -> str:
|
||||
"""
|
||||
Get URL for downloading the file.
|
||||
|
||||
Args:
|
||||
storage_path: The storage path
|
||||
expires_in: URL expiration time in seconds (default 1 hour)
|
||||
|
||||
Returns:
|
||||
Download URL (signed URL for GCS, direct API path for local)
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class GCSWorkspaceStorage(WorkspaceStorageBackend):
|
||||
"""Google Cloud Storage implementation for workspace storage."""
|
||||
|
||||
def __init__(self, bucket_name: str):
|
||||
self.bucket_name = bucket_name
|
||||
self._async_client: Optional[async_gcs_storage.Storage] = None
|
||||
self._sync_client: Optional[gcs_storage.Client] = None
|
||||
self._session: Optional[aiohttp.ClientSession] = None
|
||||
|
||||
async def _get_async_client(self) -> async_gcs_storage.Storage:
|
||||
"""Get or create async GCS client."""
|
||||
if self._async_client is None:
|
||||
self._session = aiohttp.ClientSession(
|
||||
connector=aiohttp.TCPConnector(limit=100, force_close=False)
|
||||
)
|
||||
self._async_client = async_gcs_storage.Storage(session=self._session)
|
||||
return self._async_client
|
||||
|
||||
def _get_sync_client(self) -> gcs_storage.Client:
|
||||
"""Get or create sync GCS client (for signed URLs)."""
|
||||
if self._sync_client is None:
|
||||
self._sync_client = gcs_storage.Client()
|
||||
return self._sync_client
|
||||
|
||||
async def close(self) -> None:
|
||||
"""Close all client connections."""
|
||||
if self._async_client is not None:
|
||||
try:
|
||||
await self._async_client.close()
|
||||
except Exception as e:
|
||||
logger.warning(f"Error closing GCS client: {e}")
|
||||
self._async_client = None
|
||||
|
||||
if self._session is not None:
|
||||
try:
|
||||
await self._session.close()
|
||||
except Exception as e:
|
||||
logger.warning(f"Error closing session: {e}")
|
||||
self._session = None
|
||||
|
||||
def _build_blob_name(self, workspace_id: str, file_id: str, filename: str) -> str:
|
||||
"""Build the blob path for workspace files."""
|
||||
return f"workspaces/{workspace_id}/{file_id}/{filename}"
|
||||
|
||||
async def store(
|
||||
self,
|
||||
workspace_id: str,
|
||||
file_id: str,
|
||||
filename: str,
|
||||
content: bytes,
|
||||
) -> str:
|
||||
"""Store file in GCS."""
|
||||
client = await self._get_async_client()
|
||||
blob_name = self._build_blob_name(workspace_id, file_id, filename)
|
||||
|
||||
# Upload with metadata
|
||||
upload_time = datetime.now(timezone.utc)
|
||||
await client.upload(
|
||||
self.bucket_name,
|
||||
blob_name,
|
||||
content,
|
||||
metadata={
|
||||
"uploaded_at": upload_time.isoformat(),
|
||||
"workspace_id": workspace_id,
|
||||
"file_id": file_id,
|
||||
},
|
||||
)
|
||||
|
||||
return f"gcs://{self.bucket_name}/{blob_name}"
|
||||
|
||||
async def retrieve(self, storage_path: str) -> bytes:
|
||||
"""Retrieve file from GCS."""
|
||||
bucket_name, blob_name = parse_gcs_path(storage_path)
|
||||
return await download_with_fresh_session(bucket_name, blob_name)
|
||||
|
||||
async def delete(self, storage_path: str) -> None:
|
||||
"""Delete file from GCS."""
|
||||
bucket_name, blob_name = parse_gcs_path(storage_path)
|
||||
client = await self._get_async_client()
|
||||
|
||||
try:
|
||||
await client.delete(bucket_name, blob_name)
|
||||
except Exception as e:
|
||||
if "404" not in str(e) and "Not Found" not in str(e):
|
||||
raise
|
||||
# File already deleted, that's fine
|
||||
|
||||
async def get_download_url(self, storage_path: str, expires_in: int = 3600) -> str:
|
||||
"""
|
||||
Generate download URL for GCS file.
|
||||
|
||||
Attempts to generate a signed URL if running with service account credentials.
|
||||
Falls back to an API proxy endpoint if signed URL generation fails
|
||||
(e.g., when running locally with user OAuth credentials).
|
||||
"""
|
||||
bucket_name, blob_name = parse_gcs_path(storage_path)
|
||||
|
||||
# Extract file_id from blob_name for fallback: workspaces/{workspace_id}/{file_id}/{filename}
|
||||
blob_parts = blob_name.split("/")
|
||||
file_id = blob_parts[2] if len(blob_parts) >= 3 else None
|
||||
|
||||
# Try to generate signed URL (requires service account credentials)
|
||||
try:
|
||||
sync_client = self._get_sync_client()
|
||||
return await generate_signed_url(
|
||||
sync_client, bucket_name, blob_name, expires_in
|
||||
)
|
||||
except AttributeError as e:
|
||||
# Signed URL generation requires service account with private key.
|
||||
# When running with user OAuth credentials, fall back to API proxy.
|
||||
if "private key" in str(e) and file_id:
|
||||
logger.debug(
|
||||
"Cannot generate signed URL (no service account credentials), "
|
||||
"falling back to API proxy endpoint"
|
||||
)
|
||||
return f"/api/workspace/files/{file_id}/download"
|
||||
raise
|
||||
|
||||
|
||||
class LocalWorkspaceStorage(WorkspaceStorageBackend):
|
||||
"""Local filesystem implementation for workspace storage (self-hosted deployments)."""
|
||||
|
||||
def __init__(self, base_dir: Optional[str] = None):
|
||||
"""
|
||||
Initialize local storage backend.
|
||||
|
||||
Args:
|
||||
base_dir: Base directory for workspace storage.
|
||||
If None, defaults to {app_data}/workspaces
|
||||
"""
|
||||
if base_dir:
|
||||
self.base_dir = Path(base_dir)
|
||||
else:
|
||||
self.base_dir = Path(get_data_path()) / "workspaces"
|
||||
|
||||
# Ensure base directory exists
|
||||
self.base_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
def _build_file_path(self, workspace_id: str, file_id: str, filename: str) -> Path:
|
||||
"""Build the local file path with path traversal protection."""
|
||||
# Import here to avoid circular import
|
||||
# (file.py imports workspace.py which imports workspace_storage.py)
|
||||
from backend.util.file import sanitize_filename
|
||||
|
||||
# Sanitize filename to prevent path traversal (removes / and \ among others)
|
||||
safe_filename = sanitize_filename(filename)
|
||||
file_path = (self.base_dir / workspace_id / file_id / safe_filename).resolve()
|
||||
|
||||
# Verify the resolved path is still under base_dir
|
||||
if not file_path.is_relative_to(self.base_dir.resolve()):
|
||||
raise ValueError("Invalid filename: path traversal detected")
|
||||
|
||||
return file_path
|
||||
|
||||
def _parse_storage_path(self, storage_path: str) -> Path:
|
||||
"""Parse local storage path to filesystem path."""
|
||||
if storage_path.startswith("local://"):
|
||||
relative_path = storage_path[8:] # Remove "local://"
|
||||
else:
|
||||
relative_path = storage_path
|
||||
|
||||
full_path = (self.base_dir / relative_path).resolve()
|
||||
|
||||
# Security check: ensure path is under base_dir
|
||||
# Use is_relative_to() for robust path containment check
|
||||
# (handles case-insensitive filesystems and edge cases)
|
||||
if not full_path.is_relative_to(self.base_dir.resolve()):
|
||||
raise ValueError("Invalid storage path: path traversal detected")
|
||||
|
||||
return full_path
|
||||
|
||||
async def store(
|
||||
self,
|
||||
workspace_id: str,
|
||||
file_id: str,
|
||||
filename: str,
|
||||
content: bytes,
|
||||
) -> str:
|
||||
"""Store file locally."""
|
||||
file_path = self._build_file_path(workspace_id, file_id, filename)
|
||||
|
||||
# Create parent directories
|
||||
file_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Write file asynchronously
|
||||
async with aiofiles.open(file_path, "wb") as f:
|
||||
await f.write(content)
|
||||
|
||||
# Return relative path as storage path
|
||||
relative_path = file_path.relative_to(self.base_dir)
|
||||
return f"local://{relative_path}"
|
||||
|
||||
async def retrieve(self, storage_path: str) -> bytes:
|
||||
"""Retrieve file from local storage."""
|
||||
file_path = self._parse_storage_path(storage_path)
|
||||
|
||||
if not file_path.exists():
|
||||
raise FileNotFoundError(f"File not found: {storage_path}")
|
||||
|
||||
async with aiofiles.open(file_path, "rb") as f:
|
||||
return await f.read()
|
||||
|
||||
async def delete(self, storage_path: str) -> None:
|
||||
"""Delete file from local storage."""
|
||||
file_path = self._parse_storage_path(storage_path)
|
||||
|
||||
if file_path.exists():
|
||||
# Remove file
|
||||
file_path.unlink()
|
||||
|
||||
# Clean up empty parent directories
|
||||
parent = file_path.parent
|
||||
while parent != self.base_dir:
|
||||
try:
|
||||
if parent.exists() and not any(parent.iterdir()):
|
||||
parent.rmdir()
|
||||
else:
|
||||
break
|
||||
except OSError:
|
||||
break
|
||||
parent = parent.parent
|
||||
|
||||
async def get_download_url(self, storage_path: str, expires_in: int = 3600) -> str:
|
||||
"""
|
||||
Get download URL for local file.
|
||||
|
||||
For local storage, this returns an API endpoint path.
|
||||
The actual serving is handled by the API layer.
|
||||
"""
|
||||
# Parse the storage path to get the components
|
||||
if storage_path.startswith("local://"):
|
||||
relative_path = storage_path[8:]
|
||||
else:
|
||||
relative_path = storage_path
|
||||
|
||||
# Return the API endpoint for downloading
|
||||
# The file_id is extracted from the path: {workspace_id}/{file_id}/{filename}
|
||||
parts = relative_path.split("/")
|
||||
if len(parts) >= 2:
|
||||
file_id = parts[1] # Second component is file_id
|
||||
return f"/api/workspace/files/{file_id}/download"
|
||||
else:
|
||||
raise ValueError(f"Invalid storage path format: {storage_path}")
|
||||
|
||||
|
||||
# Global storage backend instance
|
||||
_workspace_storage: Optional[WorkspaceStorageBackend] = None
|
||||
_storage_lock = asyncio.Lock()
|
||||
|
||||
|
||||
async def get_workspace_storage() -> WorkspaceStorageBackend:
|
||||
"""
|
||||
Get the workspace storage backend instance.
|
||||
|
||||
Uses GCS if media_gcs_bucket_name is configured, otherwise uses local storage.
|
||||
"""
|
||||
global _workspace_storage
|
||||
|
||||
if _workspace_storage is None:
|
||||
async with _storage_lock:
|
||||
if _workspace_storage is None:
|
||||
config = Config()
|
||||
|
||||
if config.media_gcs_bucket_name:
|
||||
logger.info(
|
||||
f"Using GCS workspace storage: {config.media_gcs_bucket_name}"
|
||||
)
|
||||
_workspace_storage = GCSWorkspaceStorage(
|
||||
config.media_gcs_bucket_name
|
||||
)
|
||||
else:
|
||||
storage_dir = (
|
||||
config.workspace_storage_dir
|
||||
if config.workspace_storage_dir
|
||||
else None
|
||||
)
|
||||
logger.info(
|
||||
f"Using local workspace storage: {storage_dir or 'default'}"
|
||||
)
|
||||
_workspace_storage = LocalWorkspaceStorage(storage_dir)
|
||||
|
||||
return _workspace_storage
|
||||
|
||||
|
||||
async def shutdown_workspace_storage() -> None:
|
||||
"""
|
||||
Properly shutdown the global workspace storage backend.
|
||||
|
||||
Closes aiohttp sessions and other resources for GCS backend.
|
||||
Should be called during application shutdown.
|
||||
"""
|
||||
global _workspace_storage
|
||||
|
||||
if _workspace_storage is not None:
|
||||
async with _storage_lock:
|
||||
if _workspace_storage is not None:
|
||||
if isinstance(_workspace_storage, GCSWorkspaceStorage):
|
||||
await _workspace_storage.close()
|
||||
_workspace_storage = None
|
||||
|
||||
|
||||
def compute_file_checksum(content: bytes) -> str:
|
||||
"""Compute SHA256 checksum of file content."""
|
||||
return hashlib.sha256(content).hexdigest()
|
||||
@@ -1,81 +0,0 @@
|
||||
-- CreateEnum
|
||||
CREATE TYPE "LlmCostUnit" AS ENUM ('RUN', 'TOKENS');
|
||||
|
||||
-- CreateTable
|
||||
CREATE TABLE "LlmProvider" (
|
||||
"id" TEXT NOT NULL,
|
||||
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"updatedAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"name" TEXT NOT NULL,
|
||||
"displayName" TEXT NOT NULL,
|
||||
"description" TEXT,
|
||||
"defaultCredentialProvider" TEXT,
|
||||
"defaultCredentialId" TEXT,
|
||||
"defaultCredentialType" TEXT,
|
||||
"supportsTools" BOOLEAN NOT NULL DEFAULT TRUE,
|
||||
"supportsJsonOutput" BOOLEAN NOT NULL DEFAULT TRUE,
|
||||
"supportsReasoning" BOOLEAN NOT NULL DEFAULT FALSE,
|
||||
"supportsParallelTool" BOOLEAN NOT NULL DEFAULT FALSE,
|
||||
"metadata" JSONB NOT NULL DEFAULT '{}'::jsonb,
|
||||
|
||||
CONSTRAINT "LlmProvider_pkey" PRIMARY KEY ("id"),
|
||||
CONSTRAINT "LlmProvider_name_key" UNIQUE ("name")
|
||||
);
|
||||
|
||||
-- CreateTable
|
||||
CREATE TABLE "LlmModel" (
|
||||
"id" TEXT NOT NULL,
|
||||
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"updatedAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"slug" TEXT NOT NULL,
|
||||
"displayName" TEXT NOT NULL,
|
||||
"description" TEXT,
|
||||
"providerId" TEXT NOT NULL,
|
||||
"contextWindow" INTEGER NOT NULL,
|
||||
"maxOutputTokens" INTEGER,
|
||||
"isEnabled" BOOLEAN NOT NULL DEFAULT TRUE,
|
||||
"capabilities" JSONB NOT NULL DEFAULT '{}'::jsonb,
|
||||
"metadata" JSONB NOT NULL DEFAULT '{}'::jsonb,
|
||||
|
||||
CONSTRAINT "LlmModel_pkey" PRIMARY KEY ("id"),
|
||||
CONSTRAINT "LlmModel_slug_key" UNIQUE ("slug")
|
||||
);
|
||||
|
||||
-- CreateTable
|
||||
CREATE TABLE "LlmModelCost" (
|
||||
"id" TEXT NOT NULL,
|
||||
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"updatedAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"unit" "LlmCostUnit" NOT NULL DEFAULT 'RUN',
|
||||
"creditCost" INTEGER NOT NULL,
|
||||
"credentialProvider" TEXT NOT NULL,
|
||||
"credentialId" TEXT,
|
||||
"credentialType" TEXT,
|
||||
"currency" TEXT,
|
||||
"metadata" JSONB NOT NULL DEFAULT '{}'::jsonb,
|
||||
"llmModelId" TEXT NOT NULL,
|
||||
|
||||
CONSTRAINT "LlmModelCost_pkey" PRIMARY KEY ("id")
|
||||
);
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "LlmModel_providerId_isEnabled_idx" ON "LlmModel"("providerId", "isEnabled");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "LlmModel_slug_idx" ON "LlmModel"("slug");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "LlmModelCost_llmModelId_idx" ON "LlmModelCost"("llmModelId");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "LlmModelCost_credentialProvider_idx" ON "LlmModelCost"("credentialProvider");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE UNIQUE INDEX "LlmModelCost_llmModelId_credentialProvider_unit_key" ON "LlmModelCost"("llmModelId", "credentialProvider", "unit");
|
||||
|
||||
-- AddForeignKey
|
||||
ALTER TABLE "LlmModel" ADD CONSTRAINT "LlmModel_providerId_fkey" FOREIGN KEY ("providerId") REFERENCES "LlmProvider"("id") ON DELETE RESTRICT ON UPDATE CASCADE;
|
||||
|
||||
-- AddForeignKey
|
||||
ALTER TABLE "LlmModelCost" ADD CONSTRAINT "LlmModelCost_llmModelId_fkey" FOREIGN KEY ("llmModelId") REFERENCES "LlmModel"("id") ON DELETE CASCADE ON UPDATE CASCADE;
|
||||
|
||||
@@ -1,226 +0,0 @@
|
||||
-- Seed LLM Registry from existing hard-coded data
|
||||
-- This migration populates the LlmProvider, LlmModel, and LlmModelCost tables
|
||||
-- with data from the existing MODEL_METADATA and MODEL_COST dictionaries
|
||||
|
||||
-- Insert Providers
|
||||
INSERT INTO "LlmProvider" ("id", "name", "displayName", "description", "defaultCredentialProvider", "defaultCredentialType", "supportsTools", "supportsJsonOutput", "supportsReasoning", "supportsParallelTool", "metadata")
|
||||
VALUES
|
||||
(gen_random_uuid(), 'openai', 'OpenAI', 'OpenAI language models', 'openai', 'api_key', true, true, true, true, '{}'::jsonb),
|
||||
(gen_random_uuid(), 'anthropic', 'Anthropic', 'Anthropic Claude models', 'anthropic', 'api_key', true, true, true, false, '{}'::jsonb),
|
||||
(gen_random_uuid(), 'groq', 'Groq', 'Groq inference API', 'groq', 'api_key', false, true, false, false, '{}'::jsonb),
|
||||
(gen_random_uuid(), 'open_router', 'OpenRouter', 'OpenRouter unified API', 'open_router', 'api_key', true, true, false, false, '{}'::jsonb),
|
||||
(gen_random_uuid(), 'aiml_api', 'AI/ML API', 'AI/ML API models', 'aiml_api', 'api_key', false, true, false, false, '{}'::jsonb),
|
||||
(gen_random_uuid(), 'ollama', 'Ollama', 'Ollama local models', 'ollama', 'api_key', false, true, false, false, '{}'::jsonb),
|
||||
(gen_random_uuid(), 'llama_api', 'Llama API', 'Llama API models', 'llama_api', 'api_key', false, true, false, false, '{}'::jsonb),
|
||||
(gen_random_uuid(), 'v0', 'v0', 'v0 by Vercel models', 'v0', 'api_key', true, true, false, false, '{}'::jsonb)
|
||||
ON CONFLICT ("name") DO NOTHING;
|
||||
|
||||
-- Insert Models (using CTEs to reference provider IDs)
|
||||
WITH provider_ids AS (
|
||||
SELECT "id", "name" FROM "LlmProvider"
|
||||
)
|
||||
INSERT INTO "LlmModel" ("id", "slug", "displayName", "description", "providerId", "contextWindow", "maxOutputTokens", "isEnabled", "capabilities", "metadata")
|
||||
SELECT
|
||||
gen_random_uuid(),
|
||||
model_slug,
|
||||
model_display_name,
|
||||
NULL,
|
||||
p."id",
|
||||
context_window,
|
||||
max_output_tokens,
|
||||
true,
|
||||
'{}'::jsonb,
|
||||
'{}'::jsonb
|
||||
FROM (VALUES
|
||||
-- OpenAI models
|
||||
('o3', 'O3', 'openai', 200000, 100000),
|
||||
('o3-mini', 'O3 Mini', 'openai', 200000, 100000),
|
||||
('o1', 'O1', 'openai', 200000, 100000),
|
||||
('o1-mini', 'O1 Mini', 'openai', 128000, 65536),
|
||||
('gpt-5-2025-08-07', 'GPT 5', 'openai', 400000, 128000),
|
||||
('gpt-5.1-2025-11-13', 'GPT 5.1', 'openai', 400000, 128000),
|
||||
('gpt-5-mini-2025-08-07', 'GPT 5 Mini', 'openai', 400000, 128000),
|
||||
('gpt-5-nano-2025-08-07', 'GPT 5 Nano', 'openai', 400000, 128000),
|
||||
('gpt-5-chat-latest', 'GPT 5 Chat', 'openai', 400000, 16384),
|
||||
('gpt-4.1-2025-04-14', 'GPT 4.1', 'openai', 1000000, 32768),
|
||||
('gpt-4.1-mini-2025-04-14', 'GPT 4.1 Mini', 'openai', 1047576, 32768),
|
||||
('gpt-4o-mini', 'GPT 4o Mini', 'openai', 128000, 16384),
|
||||
('gpt-4o', 'GPT 4o', 'openai', 128000, 16384),
|
||||
('gpt-4-turbo', 'GPT 4 Turbo', 'openai', 128000, 4096),
|
||||
('gpt-3.5-turbo', 'GPT 3.5 Turbo', 'openai', 16385, 4096),
|
||||
-- Anthropic models
|
||||
('claude-opus-4-1-20250805', 'Claude 4.1 Opus', 'anthropic', 200000, 32000),
|
||||
('claude-opus-4-20250514', 'Claude 4 Opus', 'anthropic', 200000, 32000),
|
||||
('claude-sonnet-4-20250514', 'Claude 4 Sonnet', 'anthropic', 200000, 64000),
|
||||
('claude-opus-4-5-20251101', 'Claude 4.5 Opus', 'anthropic', 200000, 64000),
|
||||
('claude-sonnet-4-5-20250929', 'Claude 4.5 Sonnet', 'anthropic', 200000, 64000),
|
||||
('claude-haiku-4-5-20251001', 'Claude 4.5 Haiku', 'anthropic', 200000, 64000),
|
||||
('claude-3-7-sonnet-20250219', 'Claude 3.7 Sonnet', 'anthropic', 200000, 64000),
|
||||
('claude-3-haiku-20240307', 'Claude 3 Haiku', 'anthropic', 200000, 4096),
|
||||
-- AI/ML API models
|
||||
('Qwen/Qwen2.5-72B-Instruct-Turbo', 'Qwen 2.5 72B', 'aiml_api', 32000, 8000),
|
||||
('nvidia/llama-3.1-nemotron-70b-instruct', 'Llama 3.1 Nemotron 70B', 'aiml_api', 128000, 40000),
|
||||
('meta-llama/Llama-3.3-70B-Instruct-Turbo', 'Llama 3.3 70B', 'aiml_api', 128000, NULL),
|
||||
('meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo', 'Meta Llama 3.1 70B', 'aiml_api', 131000, 2000),
|
||||
('meta-llama/Llama-3.2-3B-Instruct-Turbo', 'Llama 3.2 3B', 'aiml_api', 128000, NULL),
|
||||
-- Groq models
|
||||
('llama-3.3-70b-versatile', 'Llama 3.3 70B', 'groq', 128000, 32768),
|
||||
('llama-3.1-8b-instant', 'Llama 3.1 8B', 'groq', 128000, 8192),
|
||||
-- Ollama models
|
||||
('llama3.3', 'Llama 3.3', 'ollama', 8192, NULL),
|
||||
('llama3.2', 'Llama 3.2', 'ollama', 8192, NULL),
|
||||
('llama3', 'Llama 3', 'ollama', 8192, NULL),
|
||||
('llama3.1:405b', 'Llama 3.1 405B', 'ollama', 8192, NULL),
|
||||
('dolphin-mistral:latest', 'Dolphin Mistral', 'ollama', 32768, NULL),
|
||||
-- OpenRouter models
|
||||
('google/gemini-2.5-pro-preview-03-25', 'Gemini 2.5 Pro', 'open_router', 1050000, 8192),
|
||||
('google/gemini-3-pro-preview', 'Gemini 3 Pro Preview', 'open_router', 1048576, 65535),
|
||||
('google/gemini-2.5-flash', 'Gemini 2.5 Flash', 'open_router', 1048576, 65535),
|
||||
('google/gemini-2.0-flash-001', 'Gemini 2.0 Flash', 'open_router', 1048576, 8192),
|
||||
('google/gemini-2.5-flash-lite-preview-06-17', 'Gemini 2.5 Flash Lite Preview', 'open_router', 1048576, 65535),
|
||||
('google/gemini-2.0-flash-lite-001', 'Gemini 2.0 Flash Lite', 'open_router', 1048576, 8192),
|
||||
('mistralai/mistral-nemo', 'Mistral Nemo', 'open_router', 128000, 4096),
|
||||
('cohere/command-r-08-2024', 'Command R', 'open_router', 128000, 4096),
|
||||
('cohere/command-r-plus-08-2024', 'Command R Plus', 'open_router', 128000, 4096),
|
||||
('deepseek/deepseek-chat', 'DeepSeek Chat', 'open_router', 64000, 2048),
|
||||
('deepseek/deepseek-r1-0528', 'DeepSeek R1', 'open_router', 163840, 163840),
|
||||
('perplexity/sonar', 'Perplexity Sonar', 'open_router', 127000, 8000),
|
||||
('perplexity/sonar-pro', 'Perplexity Sonar Pro', 'open_router', 200000, 8000),
|
||||
('perplexity/sonar-deep-research', 'Perplexity Sonar Deep Research', 'open_router', 128000, 16000),
|
||||
('nousresearch/hermes-3-llama-3.1-405b', 'Hermes 3 Llama 3.1 405B', 'open_router', 131000, 4096),
|
||||
('nousresearch/hermes-3-llama-3.1-70b', 'Hermes 3 Llama 3.1 70B', 'open_router', 12288, 12288),
|
||||
('openai/gpt-oss-120b', 'GPT OSS 120B', 'open_router', 131072, 131072),
|
||||
('openai/gpt-oss-20b', 'GPT OSS 20B', 'open_router', 131072, 32768),
|
||||
('amazon/nova-lite-v1', 'Amazon Nova Lite', 'open_router', 300000, 5120),
|
||||
('amazon/nova-micro-v1', 'Amazon Nova Micro', 'open_router', 128000, 5120),
|
||||
('amazon/nova-pro-v1', 'Amazon Nova Pro', 'open_router', 300000, 5120),
|
||||
('microsoft/wizardlm-2-8x22b', 'WizardLM 2 8x22B', 'open_router', 65536, 4096),
|
||||
('gryphe/mythomax-l2-13b', 'MythoMax L2 13B', 'open_router', 4096, 4096),
|
||||
('meta-llama/llama-4-scout', 'Llama 4 Scout', 'open_router', 131072, 131072),
|
||||
('meta-llama/llama-4-maverick', 'Llama 4 Maverick', 'open_router', 1048576, 1000000),
|
||||
('x-ai/grok-4', 'Grok 4', 'open_router', 256000, 256000),
|
||||
('x-ai/grok-4-fast', 'Grok 4 Fast', 'open_router', 2000000, 30000),
|
||||
('x-ai/grok-4.1-fast', 'Grok 4.1 Fast', 'open_router', 2000000, 30000),
|
||||
('x-ai/grok-code-fast-1', 'Grok Code Fast 1', 'open_router', 256000, 10000),
|
||||
('moonshotai/kimi-k2', 'Kimi K2', 'open_router', 131000, 131000),
|
||||
('qwen/qwen3-235b-a22b-thinking-2507', 'Qwen 3 235B Thinking', 'open_router', 262144, 262144),
|
||||
('qwen/qwen3-coder', 'Qwen 3 Coder', 'open_router', 262144, 262144),
|
||||
-- Llama API models
|
||||
('Llama-4-Scout-17B-16E-Instruct-FP8', 'Llama 4 Scout', 'llama_api', 128000, 4028),
|
||||
('Llama-4-Maverick-17B-128E-Instruct-FP8', 'Llama 4 Maverick', 'llama_api', 128000, 4028),
|
||||
('Llama-3.3-8B-Instruct', 'Llama 3.3 8B', 'llama_api', 128000, 4028),
|
||||
('Llama-3.3-70B-Instruct', 'Llama 3.3 70B', 'llama_api', 128000, 4028),
|
||||
-- v0 models
|
||||
('v0-1.5-md', 'v0 1.5 MD', 'v0', 128000, 64000),
|
||||
('v0-1.5-lg', 'v0 1.5 LG', 'v0', 512000, 64000),
|
||||
('v0-1.0-md', 'v0 1.0 MD', 'v0', 128000, 64000)
|
||||
) AS models(model_slug, model_display_name, provider_name, context_window, max_output_tokens)
|
||||
JOIN provider_ids p ON p."name" = models.provider_name
|
||||
ON CONFLICT ("slug") DO NOTHING;
|
||||
|
||||
-- Insert Costs (using CTEs to reference model IDs)
|
||||
WITH model_ids AS (
|
||||
SELECT "id", "slug", "providerId" FROM "LlmModel"
|
||||
),
|
||||
provider_ids AS (
|
||||
SELECT "id", "name" FROM "LlmProvider"
|
||||
)
|
||||
INSERT INTO "LlmModelCost" ("id", "unit", "creditCost", "credentialProvider", "credentialId", "credentialType", "currency", "metadata", "llmModelId")
|
||||
SELECT
|
||||
gen_random_uuid(),
|
||||
'RUN'::"LlmCostUnit",
|
||||
cost,
|
||||
p."name",
|
||||
NULL,
|
||||
'api_key',
|
||||
NULL,
|
||||
'{}'::jsonb,
|
||||
m."id"
|
||||
FROM (VALUES
|
||||
-- OpenAI costs
|
||||
('o3', 4),
|
||||
('o3-mini', 2),
|
||||
('o1', 16),
|
||||
('o1-mini', 4),
|
||||
('gpt-5-2025-08-07', 2),
|
||||
('gpt-5.1-2025-11-13', 5),
|
||||
('gpt-5-mini-2025-08-07', 1),
|
||||
('gpt-5-nano-2025-08-07', 1),
|
||||
('gpt-5-chat-latest', 5),
|
||||
('gpt-4.1-2025-04-14', 2),
|
||||
('gpt-4.1-mini-2025-04-14', 1),
|
||||
('gpt-4o-mini', 1),
|
||||
('gpt-4o', 3),
|
||||
('gpt-4-turbo', 10),
|
||||
('gpt-3.5-turbo', 1),
|
||||
-- Anthropic costs
|
||||
('claude-opus-4-1-20250805', 21),
|
||||
('claude-opus-4-20250514', 21),
|
||||
('claude-sonnet-4-20250514', 5),
|
||||
('claude-haiku-4-5-20251001', 4),
|
||||
('claude-opus-4-5-20251101', 14),
|
||||
('claude-sonnet-4-5-20250929', 9),
|
||||
('claude-3-7-sonnet-20250219', 5),
|
||||
('claude-3-haiku-20240307', 1),
|
||||
-- AI/ML API costs
|
||||
('Qwen/Qwen2.5-72B-Instruct-Turbo', 1),
|
||||
('nvidia/llama-3.1-nemotron-70b-instruct', 1),
|
||||
('meta-llama/Llama-3.3-70B-Instruct-Turbo', 1),
|
||||
('meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo', 1),
|
||||
('meta-llama/Llama-3.2-3B-Instruct-Turbo', 1),
|
||||
-- Groq costs
|
||||
('llama-3.3-70b-versatile', 1),
|
||||
('llama-3.1-8b-instant', 1),
|
||||
-- Ollama costs
|
||||
('llama3.3', 1),
|
||||
('llama3.2', 1),
|
||||
('llama3', 1),
|
||||
('llama3.1:405b', 1),
|
||||
('dolphin-mistral:latest', 1),
|
||||
-- OpenRouter costs
|
||||
('google/gemini-2.5-pro-preview-03-25', 4),
|
||||
('google/gemini-3-pro-preview', 5),
|
||||
('mistralai/mistral-nemo', 1),
|
||||
('cohere/command-r-08-2024', 1),
|
||||
('cohere/command-r-plus-08-2024', 3),
|
||||
('deepseek/deepseek-chat', 2),
|
||||
('perplexity/sonar', 1),
|
||||
('perplexity/sonar-pro', 5),
|
||||
('perplexity/sonar-deep-research', 10),
|
||||
('nousresearch/hermes-3-llama-3.1-405b', 1),
|
||||
('nousresearch/hermes-3-llama-3.1-70b', 1),
|
||||
('amazon/nova-lite-v1', 1),
|
||||
('amazon/nova-micro-v1', 1),
|
||||
('amazon/nova-pro-v1', 1),
|
||||
('microsoft/wizardlm-2-8x22b', 1),
|
||||
('gryphe/mythomax-l2-13b', 1),
|
||||
('meta-llama/llama-4-scout', 1),
|
||||
('meta-llama/llama-4-maverick', 1),
|
||||
('x-ai/grok-4', 9),
|
||||
('x-ai/grok-4-fast', 1),
|
||||
('x-ai/grok-4.1-fast', 1),
|
||||
('x-ai/grok-code-fast-1', 1),
|
||||
('moonshotai/kimi-k2', 1),
|
||||
('qwen/qwen3-235b-a22b-thinking-2507', 1),
|
||||
('qwen/qwen3-coder', 9),
|
||||
('google/gemini-2.5-flash', 1),
|
||||
('google/gemini-2.0-flash-001', 1),
|
||||
('google/gemini-2.5-flash-lite-preview-06-17', 1),
|
||||
('google/gemini-2.0-flash-lite-001', 1),
|
||||
('deepseek/deepseek-r1-0528', 1),
|
||||
('openai/gpt-oss-120b', 1),
|
||||
('openai/gpt-oss-20b', 1),
|
||||
-- Llama API costs
|
||||
('Llama-4-Scout-17B-16E-Instruct-FP8', 1),
|
||||
('Llama-4-Maverick-17B-128E-Instruct-FP8', 1),
|
||||
('Llama-3.3-8B-Instruct', 1),
|
||||
('Llama-3.3-70B-Instruct', 1),
|
||||
-- v0 costs
|
||||
('v0-1.5-md', 1),
|
||||
('v0-1.5-lg', 2),
|
||||
('v0-1.0-md', 1)
|
||||
) AS costs(model_slug, cost)
|
||||
JOIN model_ids m ON m."slug" = costs.model_slug
|
||||
JOIN provider_ids p ON p."id" = m."providerId"
|
||||
ON CONFLICT ("llmModelId", "credentialProvider", "unit") DO NOTHING;
|
||||
|
||||
@@ -1,25 +0,0 @@
|
||||
-- CreateTable
|
||||
CREATE TABLE "LlmModelMigration" (
|
||||
"id" TEXT NOT NULL,
|
||||
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"updatedAt" TIMESTAMP(3) NOT NULL,
|
||||
"sourceModelSlug" TEXT NOT NULL,
|
||||
"targetModelSlug" TEXT NOT NULL,
|
||||
"reason" TEXT,
|
||||
"migratedNodeIds" JSONB NOT NULL DEFAULT '[]',
|
||||
"nodeCount" INTEGER NOT NULL,
|
||||
"customCreditCost" INTEGER,
|
||||
"isReverted" BOOLEAN NOT NULL DEFAULT false,
|
||||
"revertedAt" TIMESTAMP(3),
|
||||
|
||||
CONSTRAINT "LlmModelMigration_pkey" PRIMARY KEY ("id")
|
||||
);
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "LlmModelMigration_sourceModelSlug_idx" ON "LlmModelMigration"("sourceModelSlug");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "LlmModelMigration_targetModelSlug_idx" ON "LlmModelMigration"("targetModelSlug");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "LlmModelMigration_isReverted_idx" ON "LlmModelMigration"("isReverted");
|
||||
@@ -1,127 +0,0 @@
|
||||
-- Add LlmModelCreator table
|
||||
-- Creator represents who made/trained the model (e.g., OpenAI, Meta)
|
||||
-- This is distinct from Provider who hosts/serves the model (e.g., OpenRouter)
|
||||
|
||||
-- Create the LlmModelCreator table
|
||||
CREATE TABLE "LlmModelCreator" (
|
||||
"id" TEXT NOT NULL,
|
||||
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"updatedAt" TIMESTAMP(3) NOT NULL,
|
||||
"name" TEXT NOT NULL,
|
||||
"displayName" TEXT NOT NULL,
|
||||
"description" TEXT,
|
||||
"websiteUrl" TEXT,
|
||||
"logoUrl" TEXT,
|
||||
"metadata" JSONB NOT NULL DEFAULT '{}',
|
||||
|
||||
CONSTRAINT "LlmModelCreator_pkey" PRIMARY KEY ("id")
|
||||
);
|
||||
|
||||
-- Create unique index on name
|
||||
CREATE UNIQUE INDEX "LlmModelCreator_name_key" ON "LlmModelCreator"("name");
|
||||
|
||||
-- Add creatorId column to LlmModel
|
||||
ALTER TABLE "LlmModel" ADD COLUMN "creatorId" TEXT;
|
||||
|
||||
-- Add foreign key constraint
|
||||
ALTER TABLE "LlmModel" ADD CONSTRAINT "LlmModel_creatorId_fkey"
|
||||
FOREIGN KEY ("creatorId") REFERENCES "LlmModelCreator"("id") ON DELETE SET NULL ON UPDATE CASCADE;
|
||||
|
||||
-- Create index on creatorId
|
||||
CREATE INDEX "LlmModel_creatorId_idx" ON "LlmModel"("creatorId");
|
||||
|
||||
-- Seed creators based on known model creators
|
||||
INSERT INTO "LlmModelCreator" ("id", "updatedAt", "name", "displayName", "description", "websiteUrl", "metadata")
|
||||
VALUES
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'openai', 'OpenAI', 'Creator of GPT models', 'https://openai.com', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'anthropic', 'Anthropic', 'Creator of Claude models', 'https://anthropic.com', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'meta', 'Meta', 'Creator of Llama models', 'https://ai.meta.com', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'google', 'Google', 'Creator of Gemini models', 'https://deepmind.google', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'mistral', 'Mistral AI', 'Creator of Mistral models', 'https://mistral.ai', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'cohere', 'Cohere', 'Creator of Command models', 'https://cohere.com', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'deepseek', 'DeepSeek', 'Creator of DeepSeek models', 'https://deepseek.com', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'perplexity', 'Perplexity AI', 'Creator of Sonar models', 'https://perplexity.ai', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'qwen', 'Qwen (Alibaba)', 'Creator of Qwen models', 'https://qwenlm.github.io', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'xai', 'xAI', 'Creator of Grok models', 'https://x.ai', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'amazon', 'Amazon', 'Creator of Nova models', 'https://aws.amazon.com/bedrock', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'microsoft', 'Microsoft', 'Creator of WizardLM models', 'https://microsoft.com', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'moonshot', 'Moonshot AI', 'Creator of Kimi models', 'https://moonshot.cn', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'nvidia', 'NVIDIA', 'Creator of Nemotron models', 'https://nvidia.com', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'nous_research', 'Nous Research', 'Creator of Hermes models', 'https://nousresearch.com', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'vercel', 'Vercel', 'Creator of v0 models', 'https://vercel.com', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'cognitive_computations', 'Cognitive Computations', 'Creator of Dolphin models', 'https://erichartford.com', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'gryphe', 'Gryphe', 'Creator of MythoMax models', 'https://huggingface.co/Gryphe', '{}')
|
||||
ON CONFLICT ("name") DO NOTHING;
|
||||
|
||||
-- Update existing models with their creators
|
||||
-- OpenAI models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'openai')
|
||||
WHERE "slug" LIKE 'gpt-%' OR "slug" LIKE 'o1%' OR "slug" LIKE 'o3%' OR "slug" LIKE 'openai/%';
|
||||
|
||||
-- Anthropic models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'anthropic')
|
||||
WHERE "slug" LIKE 'claude-%';
|
||||
|
||||
-- Meta/Llama models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'meta')
|
||||
WHERE "slug" LIKE 'llama%' OR "slug" LIKE 'Llama%' OR "slug" LIKE 'meta-llama/%' OR "slug" LIKE '%/llama-%';
|
||||
|
||||
-- Google models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'google')
|
||||
WHERE "slug" LIKE 'google/%' OR "slug" LIKE 'gemini%';
|
||||
|
||||
-- Mistral models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'mistral')
|
||||
WHERE "slug" LIKE 'mistral%' OR "slug" LIKE 'mistralai/%';
|
||||
|
||||
-- Cohere models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'cohere')
|
||||
WHERE "slug" LIKE 'cohere/%' OR "slug" LIKE 'command-%';
|
||||
|
||||
-- DeepSeek models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'deepseek')
|
||||
WHERE "slug" LIKE 'deepseek/%' OR "slug" LIKE 'deepseek-%';
|
||||
|
||||
-- Perplexity models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'perplexity')
|
||||
WHERE "slug" LIKE 'perplexity/%' OR "slug" LIKE 'sonar%';
|
||||
|
||||
-- Qwen models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'qwen')
|
||||
WHERE "slug" LIKE 'Qwen/%' OR "slug" LIKE 'qwen/%';
|
||||
|
||||
-- xAI/Grok models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'xai')
|
||||
WHERE "slug" LIKE 'x-ai/%' OR "slug" LIKE 'grok%';
|
||||
|
||||
-- Amazon models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'amazon')
|
||||
WHERE "slug" LIKE 'amazon/%' OR "slug" LIKE 'nova-%';
|
||||
|
||||
-- Microsoft models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'microsoft')
|
||||
WHERE "slug" LIKE 'microsoft/%' OR "slug" LIKE 'wizardlm%';
|
||||
|
||||
-- Moonshot models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'moonshot')
|
||||
WHERE "slug" LIKE 'moonshotai/%' OR "slug" LIKE 'kimi%';
|
||||
|
||||
-- NVIDIA models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'nvidia')
|
||||
WHERE "slug" LIKE 'nvidia/%' OR "slug" LIKE '%nemotron%';
|
||||
|
||||
-- Nous Research models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'nous_research')
|
||||
WHERE "slug" LIKE 'nousresearch/%' OR "slug" LIKE 'hermes%';
|
||||
|
||||
-- Vercel/v0 models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'vercel')
|
||||
WHERE "slug" LIKE 'v0-%';
|
||||
|
||||
-- Dolphin models (Cognitive Computations / Eric Hartford)
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'cognitive_computations')
|
||||
WHERE "slug" LIKE 'dolphin-%';
|
||||
|
||||
-- Gryphe models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'gryphe')
|
||||
WHERE "slug" LIKE 'gryphe/%' OR "slug" LIKE 'mythomax%';
|
||||
@@ -1,4 +0,0 @@
|
||||
-- CreateIndex
|
||||
-- Index for efficient LLM model lookups on AgentNode.constantInput->>'model'
|
||||
-- This improves performance of model migration queries in the LLM registry
|
||||
CREATE INDEX "AgentNode_constantInput_model_idx" ON "AgentNode" ((("constantInput"->>'model')));
|
||||
@@ -1,52 +0,0 @@
|
||||
-- Add GPT-5.2 model and update O3 slug
|
||||
-- This migration adds the new GPT-5.2 model added in dev branch
|
||||
|
||||
-- Update O3 slug to match dev branch format
|
||||
UPDATE "LlmModel"
|
||||
SET "slug" = 'o3-2025-04-16'
|
||||
WHERE "slug" = 'o3';
|
||||
|
||||
-- Update cost reference for O3 if needed
|
||||
-- (costs are linked by model ID, so no update needed)
|
||||
|
||||
-- Add GPT-5.2 model
|
||||
WITH provider_id AS (
|
||||
SELECT "id" FROM "LlmProvider" WHERE "name" = 'openai'
|
||||
)
|
||||
INSERT INTO "LlmModel" ("id", "slug", "displayName", "description", "providerId", "contextWindow", "maxOutputTokens", "isEnabled", "capabilities", "metadata")
|
||||
SELECT
|
||||
gen_random_uuid(),
|
||||
'gpt-5.2-2025-12-11',
|
||||
'GPT 5.2',
|
||||
'OpenAI GPT-5.2 model',
|
||||
p."id",
|
||||
400000,
|
||||
128000,
|
||||
true,
|
||||
'{}'::jsonb,
|
||||
'{}'::jsonb
|
||||
FROM provider_id p
|
||||
ON CONFLICT ("slug") DO NOTHING;
|
||||
|
||||
-- Add cost for GPT-5.2
|
||||
WITH model_id AS (
|
||||
SELECT m."id", p."name" as provider_name
|
||||
FROM "LlmModel" m
|
||||
JOIN "LlmProvider" p ON p."id" = m."providerId"
|
||||
WHERE m."slug" = 'gpt-5.2-2025-12-11'
|
||||
)
|
||||
INSERT INTO "LlmModelCost" ("id", "unit", "creditCost", "credentialProvider", "credentialId", "credentialType", "currency", "metadata", "llmModelId")
|
||||
SELECT
|
||||
gen_random_uuid(),
|
||||
'RUN'::"LlmCostUnit",
|
||||
3, -- Same cost tier as GPT-5.1
|
||||
m.provider_name,
|
||||
NULL,
|
||||
'api_key',
|
||||
NULL,
|
||||
'{}'::jsonb,
|
||||
m."id"
|
||||
FROM model_id m
|
||||
WHERE NOT EXISTS (
|
||||
SELECT 1 FROM "LlmModelCost" c WHERE c."llmModelId" = m."id"
|
||||
);
|
||||
@@ -1,11 +0,0 @@
|
||||
-- Add isRecommended field to LlmModel table
|
||||
-- This allows admins to mark a model as the recommended default
|
||||
|
||||
ALTER TABLE "LlmModel" ADD COLUMN "isRecommended" BOOLEAN NOT NULL DEFAULT false;
|
||||
|
||||
-- Set gpt-4o-mini as the default recommended model (if it exists)
|
||||
UPDATE "LlmModel" SET "isRecommended" = true WHERE "slug" = 'gpt-4o-mini' AND "isEnabled" = true;
|
||||
|
||||
-- Create unique partial index to enforce only one recommended model at the database level
|
||||
-- This prevents multiple rows from having isRecommended = true
|
||||
CREATE UNIQUE INDEX "LlmModel_single_recommended_idx" ON "LlmModel" ("isRecommended") WHERE "isRecommended" = true;
|
||||
@@ -1,61 +0,0 @@
|
||||
-- Add new columns to LlmModel table for extended model metadata
|
||||
-- These columns support the LLM Picker UI enhancements
|
||||
|
||||
-- Add priceTier column: 1=cheapest, 2=medium, 3=expensive
|
||||
ALTER TABLE "LlmModel" ADD COLUMN IF NOT EXISTS "priceTier" INTEGER NOT NULL DEFAULT 1;
|
||||
|
||||
-- Add creatorId column for model creator relationship (if not exists)
|
||||
ALTER TABLE "LlmModel" ADD COLUMN IF NOT EXISTS "creatorId" TEXT;
|
||||
|
||||
-- Add isRecommended column (if not exists)
|
||||
ALTER TABLE "LlmModel" ADD COLUMN IF NOT EXISTS "isRecommended" BOOLEAN NOT NULL DEFAULT FALSE;
|
||||
|
||||
-- Add index on creatorId if not exists
|
||||
CREATE INDEX IF NOT EXISTS "LlmModel_creatorId_idx" ON "LlmModel"("creatorId");
|
||||
|
||||
-- Add foreign key for creatorId if not exists
|
||||
DO $$
|
||||
BEGIN
|
||||
IF NOT EXISTS (SELECT 1 FROM pg_constraint WHERE conname = 'LlmModel_creatorId_fkey') THEN
|
||||
-- Only add FK if LlmModelCreator table exists
|
||||
IF EXISTS (SELECT 1 FROM information_schema.tables WHERE table_name = 'LlmModelCreator') THEN
|
||||
ALTER TABLE "LlmModel" ADD CONSTRAINT "LlmModel_creatorId_fkey"
|
||||
FOREIGN KEY ("creatorId") REFERENCES "LlmModelCreator"("id") ON DELETE SET NULL ON UPDATE CASCADE;
|
||||
END IF;
|
||||
END IF;
|
||||
END $$;
|
||||
|
||||
-- Update priceTier values for existing models based on original MODEL_METADATA
|
||||
-- Tier 1 = cheapest, Tier 2 = medium, Tier 3 = expensive
|
||||
|
||||
-- OpenAI models
|
||||
UPDATE "LlmModel" SET "priceTier" = 2 WHERE "slug" = 'o3';
|
||||
UPDATE "LlmModel" SET "priceTier" = 1 WHERE "slug" = 'o3-mini';
|
||||
UPDATE "LlmModel" SET "priceTier" = 3 WHERE "slug" = 'o1';
|
||||
UPDATE "LlmModel" SET "priceTier" = 2 WHERE "slug" = 'o1-mini';
|
||||
UPDATE "LlmModel" SET "priceTier" = 3 WHERE "slug" = 'gpt-5.2';
|
||||
UPDATE "LlmModel" SET "priceTier" = 2 WHERE "slug" = 'gpt-5.1';
|
||||
UPDATE "LlmModel" SET "priceTier" = 1 WHERE "slug" = 'gpt-5';
|
||||
UPDATE "LlmModel" SET "priceTier" = 1 WHERE "slug" = 'gpt-5-mini';
|
||||
UPDATE "LlmModel" SET "priceTier" = 1 WHERE "slug" = 'gpt-5-nano';
|
||||
UPDATE "LlmModel" SET "priceTier" = 2 WHERE "slug" = 'gpt-5-chat-latest';
|
||||
UPDATE "LlmModel" SET "priceTier" = 1 WHERE "slug" LIKE 'gpt-4.1%';
|
||||
UPDATE "LlmModel" SET "priceTier" = 1 WHERE "slug" = 'gpt-4o-mini';
|
||||
UPDATE "LlmModel" SET "priceTier" = 2 WHERE "slug" = 'gpt-4o';
|
||||
UPDATE "LlmModel" SET "priceTier" = 3 WHERE "slug" = 'gpt-4-turbo';
|
||||
UPDATE "LlmModel" SET "priceTier" = 1 WHERE "slug" = 'gpt-3.5-turbo';
|
||||
|
||||
-- Anthropic models
|
||||
UPDATE "LlmModel" SET "priceTier" = 3 WHERE "slug" LIKE 'claude-opus%';
|
||||
UPDATE "LlmModel" SET "priceTier" = 2 WHERE "slug" LIKE 'claude-sonnet%';
|
||||
UPDATE "LlmModel" SET "priceTier" = 3 WHERE "slug" LIKE 'claude%-4-5-sonnet%';
|
||||
UPDATE "LlmModel" SET "priceTier" = 2 WHERE "slug" LIKE 'claude%-haiku%';
|
||||
UPDATE "LlmModel" SET "priceTier" = 1 WHERE "slug" = 'claude-3-haiku-20240307';
|
||||
|
||||
-- OpenRouter models - Pro/expensive tiers
|
||||
UPDATE "LlmModel" SET "priceTier" = 2 WHERE "slug" LIKE 'google/gemini%-pro%';
|
||||
UPDATE "LlmModel" SET "priceTier" = 2 WHERE "slug" LIKE '%command-r-plus%';
|
||||
UPDATE "LlmModel" SET "priceTier" = 2 WHERE "slug" LIKE '%sonar-pro%';
|
||||
UPDATE "LlmModel" SET "priceTier" = 3 WHERE "slug" LIKE '%sonar-deep-research%';
|
||||
UPDATE "LlmModel" SET "priceTier" = 3 WHERE "slug" = 'x-ai/grok-4';
|
||||
UPDATE "LlmModel" SET "priceTier" = 3 WHERE "slug" LIKE '%qwen3-coder%';
|
||||
@@ -0,0 +1,2 @@
|
||||
-- AlterEnum
|
||||
ALTER TYPE "OnboardingStep" ADD VALUE 'VISIT_COPILOT';
|
||||
@@ -0,0 +1,52 @@
|
||||
-- CreateEnum
|
||||
CREATE TYPE "WorkspaceFileSource" AS ENUM ('UPLOAD', 'EXECUTION', 'COPILOT', 'IMPORT');
|
||||
|
||||
-- CreateTable
|
||||
CREATE TABLE "UserWorkspace" (
|
||||
"id" TEXT NOT NULL,
|
||||
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"updatedAt" TIMESTAMP(3) NOT NULL,
|
||||
"userId" TEXT NOT NULL,
|
||||
|
||||
CONSTRAINT "UserWorkspace_pkey" PRIMARY KEY ("id")
|
||||
);
|
||||
|
||||
-- CreateTable
|
||||
CREATE TABLE "UserWorkspaceFile" (
|
||||
"id" TEXT NOT NULL,
|
||||
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"updatedAt" TIMESTAMP(3) NOT NULL,
|
||||
"workspaceId" TEXT NOT NULL,
|
||||
"name" TEXT NOT NULL,
|
||||
"path" TEXT NOT NULL,
|
||||
"storagePath" TEXT NOT NULL,
|
||||
"mimeType" TEXT NOT NULL,
|
||||
"sizeBytes" BIGINT NOT NULL,
|
||||
"checksum" TEXT,
|
||||
"isDeleted" BOOLEAN NOT NULL DEFAULT false,
|
||||
"deletedAt" TIMESTAMP(3),
|
||||
"source" "WorkspaceFileSource" NOT NULL DEFAULT 'UPLOAD',
|
||||
"sourceExecId" TEXT,
|
||||
"sourceSessionId" TEXT,
|
||||
"metadata" JSONB NOT NULL DEFAULT '{}',
|
||||
|
||||
CONSTRAINT "UserWorkspaceFile_pkey" PRIMARY KEY ("id")
|
||||
);
|
||||
|
||||
-- CreateIndex
|
||||
CREATE UNIQUE INDEX "UserWorkspace_userId_key" ON "UserWorkspace"("userId");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "UserWorkspace_userId_idx" ON "UserWorkspace"("userId");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "UserWorkspaceFile_workspaceId_isDeleted_idx" ON "UserWorkspaceFile"("workspaceId", "isDeleted");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE UNIQUE INDEX "UserWorkspaceFile_workspaceId_path_key" ON "UserWorkspaceFile"("workspaceId", "path");
|
||||
|
||||
-- AddForeignKey
|
||||
ALTER TABLE "UserWorkspace" ADD CONSTRAINT "UserWorkspace_userId_fkey" FOREIGN KEY ("userId") REFERENCES "User"("id") ON DELETE CASCADE ON UPDATE CASCADE;
|
||||
|
||||
-- AddForeignKey
|
||||
ALTER TABLE "UserWorkspaceFile" ADD CONSTRAINT "UserWorkspaceFile_workspaceId_fkey" FOREIGN KEY ("workspaceId") REFERENCES "UserWorkspace"("id") ON DELETE CASCADE ON UPDATE CASCADE;
|
||||
@@ -0,0 +1,16 @@
|
||||
/*
|
||||
Warnings:
|
||||
|
||||
- You are about to drop the column `source` on the `UserWorkspaceFile` table. All the data in the column will be lost.
|
||||
- You are about to drop the column `sourceExecId` on the `UserWorkspaceFile` table. All the data in the column will be lost.
|
||||
- You are about to drop the column `sourceSessionId` on the `UserWorkspaceFile` table. All the data in the column will be lost.
|
||||
|
||||
*/
|
||||
|
||||
-- AlterTable
|
||||
ALTER TABLE "UserWorkspaceFile" DROP COLUMN "source",
|
||||
DROP COLUMN "sourceExecId",
|
||||
DROP COLUMN "sourceSessionId";
|
||||
|
||||
-- DropEnum
|
||||
DROP TYPE "WorkspaceFileSource";
|
||||
@@ -63,6 +63,7 @@ model User {
|
||||
IntegrationWebhooks IntegrationWebhook[]
|
||||
NotificationBatches UserNotificationBatch[]
|
||||
PendingHumanReviews PendingHumanReview[]
|
||||
Workspace UserWorkspace?
|
||||
|
||||
// OAuth Provider relations
|
||||
OAuthApplications OAuthApplication[]
|
||||
@@ -81,6 +82,7 @@ enum OnboardingStep {
|
||||
AGENT_INPUT
|
||||
CONGRATS
|
||||
// First Wins
|
||||
VISIT_COPILOT
|
||||
GET_RESULTS
|
||||
MARKETPLACE_VISIT
|
||||
MARKETPLACE_ADD_AGENT
|
||||
@@ -136,6 +138,53 @@ model CoPilotUnderstanding {
|
||||
@@index([userId])
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
////////////////////////////////////////////////////////////
|
||||
//////////////// USER WORKSPACE TABLES /////////////////
|
||||
////////////////////////////////////////////////////////////
|
||||
////////////////////////////////////////////////////////////
|
||||
|
||||
// User's persistent file storage workspace
|
||||
model UserWorkspace {
|
||||
id String @id @default(uuid())
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
|
||||
userId String @unique
|
||||
User User @relation(fields: [userId], references: [id], onDelete: Cascade)
|
||||
|
||||
Files UserWorkspaceFile[]
|
||||
|
||||
@@index([userId])
|
||||
}
|
||||
|
||||
// Individual files in a user's workspace
|
||||
model UserWorkspaceFile {
|
||||
id String @id @default(uuid())
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
|
||||
workspaceId String
|
||||
Workspace UserWorkspace @relation(fields: [workspaceId], references: [id], onDelete: Cascade)
|
||||
|
||||
// File metadata
|
||||
name String // User-visible filename
|
||||
path String // Virtual path (e.g., "/documents/report.pdf")
|
||||
storagePath String // Actual GCS or local storage path
|
||||
mimeType String
|
||||
sizeBytes BigInt
|
||||
checksum String? // SHA256 for integrity
|
||||
|
||||
// File state
|
||||
isDeleted Boolean @default(false)
|
||||
deletedAt DateTime?
|
||||
|
||||
metadata Json @default("{}")
|
||||
|
||||
@@unique([workspaceId, path])
|
||||
@@index([workspaceId, isDeleted])
|
||||
}
|
||||
|
||||
model BuilderSearchHistory {
|
||||
id String @id @default(uuid())
|
||||
createdAt DateTime @default(now())
|
||||
@@ -1094,153 +1143,6 @@ enum APIKeyStatus {
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
////////////////////////////////////////////////////////////
|
||||
///////////// LLM REGISTRY AND BILLING DATA /////////////
|
||||
////////////////////////////////////////////////////////////
|
||||
////////////////////////////////////////////////////////////
|
||||
|
||||
// LlmCostUnit: Defines how LLM MODEL costs are calculated (per run or per token).
|
||||
// This is distinct from BlockCostType (in backend/data/block.py) which defines
|
||||
// how BLOCK EXECUTION costs are calculated (per run, per byte, or per second).
|
||||
// LlmCostUnit is for pricing individual LLM model API calls in the registry,
|
||||
// while BlockCostType is for billing platform block executions.
|
||||
enum LlmCostUnit {
|
||||
RUN
|
||||
TOKENS
|
||||
}
|
||||
|
||||
model LlmModelCreator {
|
||||
id String @id @default(uuid())
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
|
||||
name String @unique // e.g., "openai", "anthropic", "meta"
|
||||
displayName String // e.g., "OpenAI", "Anthropic", "Meta"
|
||||
description String?
|
||||
websiteUrl String? // Link to creator's website
|
||||
logoUrl String? // URL to creator's logo
|
||||
|
||||
metadata Json @default("{}")
|
||||
|
||||
Models LlmModel[]
|
||||
}
|
||||
|
||||
model LlmProvider {
|
||||
id String @id @default(uuid())
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
|
||||
name String @unique
|
||||
displayName String
|
||||
description String?
|
||||
|
||||
defaultCredentialProvider String?
|
||||
defaultCredentialId String?
|
||||
defaultCredentialType String?
|
||||
|
||||
supportsTools Boolean @default(true)
|
||||
supportsJsonOutput Boolean @default(true)
|
||||
supportsReasoning Boolean @default(false)
|
||||
supportsParallelTool Boolean @default(false)
|
||||
|
||||
metadata Json @default("{}")
|
||||
|
||||
Models LlmModel[]
|
||||
}
|
||||
|
||||
model LlmModel {
|
||||
id String @id @default(uuid())
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
|
||||
slug String @unique
|
||||
displayName String
|
||||
description String?
|
||||
|
||||
providerId String
|
||||
Provider LlmProvider @relation(fields: [providerId], references: [id], onDelete: Restrict)
|
||||
|
||||
// Creator is the organization that created/trained the model (e.g., OpenAI, Meta)
|
||||
// This is distinct from the provider who hosts/serves the model (e.g., OpenRouter)
|
||||
creatorId String?
|
||||
Creator LlmModelCreator? @relation(fields: [creatorId], references: [id], onDelete: SetNull)
|
||||
|
||||
contextWindow Int
|
||||
maxOutputTokens Int?
|
||||
priceTier Int @default(1) // 1=cheapest, 2=medium, 3=expensive
|
||||
isEnabled Boolean @default(true)
|
||||
isRecommended Boolean @default(false)
|
||||
|
||||
capabilities Json @default("{}")
|
||||
metadata Json @default("{}")
|
||||
|
||||
Costs LlmModelCost[]
|
||||
|
||||
@@index([providerId, isEnabled])
|
||||
@@index([creatorId])
|
||||
@@index([slug])
|
||||
}
|
||||
|
||||
model LlmModelCost {
|
||||
id String @id @default(uuid())
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
unit LlmCostUnit @default(RUN)
|
||||
|
||||
creditCost Int
|
||||
|
||||
credentialProvider String
|
||||
credentialId String?
|
||||
credentialType String?
|
||||
currency String?
|
||||
|
||||
metadata Json @default("{}")
|
||||
|
||||
llmModelId String
|
||||
Model LlmModel @relation(fields: [llmModelId], references: [id], onDelete: Cascade)
|
||||
|
||||
@@unique([llmModelId, credentialProvider, unit])
|
||||
@@index([llmModelId])
|
||||
@@index([credentialProvider])
|
||||
}
|
||||
|
||||
// Tracks model migrations for revert capability
|
||||
// When a model is disabled with migration, we record which nodes were affected
|
||||
// so they can be reverted when the original model is back online
|
||||
model LlmModelMigration {
|
||||
id String @id @default(uuid())
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
|
||||
sourceModelSlug String // The original model that was disabled
|
||||
targetModelSlug String // The model workflows were migrated to
|
||||
reason String? // Why the migration happened (e.g., "Provider outage")
|
||||
|
||||
// Track affected nodes as JSON array of node IDs
|
||||
// Format: ["node-uuid-1", "node-uuid-2", ...]
|
||||
migratedNodeIds Json @default("[]")
|
||||
nodeCount Int // Number of nodes migrated
|
||||
|
||||
// Custom pricing override for migrated workflows during the migration period.
|
||||
// Use case: When migrating users from an expensive model (e.g., GPT-4) to a cheaper
|
||||
// one (e.g., GPT-3.5), you may want to temporarily maintain the original pricing
|
||||
// to avoid billing surprises, or offer a discount during the transition.
|
||||
//
|
||||
// IMPORTANT: This field is intended for integration with the billing system.
|
||||
// When billing calculates costs for nodes affected by this migration, it should
|
||||
// check if customCreditCost is set and use it instead of the target model's cost.
|
||||
// If null, the target model's normal cost applies.
|
||||
//
|
||||
// TODO: Integrate with billing system to apply this override during cost calculation.
|
||||
customCreditCost Int?
|
||||
|
||||
// Revert tracking
|
||||
isReverted Boolean @default(false)
|
||||
revertedAt DateTime?
|
||||
|
||||
@@index([sourceModelSlug])
|
||||
@@index([targetModelSlug])
|
||||
@@index([isReverted])
|
||||
}
|
||||
////////////// OAUTH PROVIDER TABLES //////////////////
|
||||
////////////////////////////////////////////////////////////
|
||||
////////////////////////////////////////////////////////////
|
||||
|
||||
@@ -34,3 +34,6 @@ NEXT_PUBLIC_PREVIEW_STEALING_DEV=
|
||||
# PostHog Analytics
|
||||
NEXT_PUBLIC_POSTHOG_KEY=
|
||||
NEXT_PUBLIC_POSTHOG_HOST=https://eu.i.posthog.com
|
||||
|
||||
# OpenAI (for voice transcription)
|
||||
OPENAI_API_KEY=
|
||||
|
||||
76
autogpt_platform/frontend/CLAUDE.md
Normal file
76
autogpt_platform/frontend/CLAUDE.md
Normal file
@@ -0,0 +1,76 @@
|
||||
# CLAUDE.md - Frontend
|
||||
|
||||
This file provides guidance to Claude Code when working with the frontend.
|
||||
|
||||
## Essential Commands
|
||||
|
||||
```bash
|
||||
# Install dependencies
|
||||
pnpm i
|
||||
|
||||
# Generate API client from OpenAPI spec
|
||||
pnpm generate:api
|
||||
|
||||
# Start development server
|
||||
pnpm dev
|
||||
|
||||
# Run E2E tests
|
||||
pnpm test
|
||||
|
||||
# Run Storybook for component development
|
||||
pnpm storybook
|
||||
|
||||
# Build production
|
||||
pnpm build
|
||||
|
||||
# Format and lint
|
||||
pnpm format
|
||||
|
||||
# Type checking
|
||||
pnpm types
|
||||
```
|
||||
|
||||
### Code Style
|
||||
|
||||
- Fully capitalize acronyms in symbols, e.g. `graphID`, `useBackendAPI`
|
||||
- Use function declarations (not arrow functions) for components/handlers
|
||||
|
||||
## Architecture
|
||||
|
||||
- **Framework**: Next.js 15 App Router (client-first approach)
|
||||
- **Data Fetching**: Type-safe generated API hooks via Orval + React Query
|
||||
- **State Management**: React Query for server state, co-located UI state in components/hooks
|
||||
- **Component Structure**: Separate render logic (`.tsx`) from business logic (`use*.ts` hooks)
|
||||
- **Workflow Builder**: Visual graph editor using @xyflow/react
|
||||
- **UI Components**: shadcn/ui (Radix UI primitives) with Tailwind CSS styling
|
||||
- **Icons**: Phosphor Icons only
|
||||
- **Feature Flags**: LaunchDarkly integration
|
||||
- **Error Handling**: ErrorCard for render errors, toast for mutations, Sentry for exceptions
|
||||
- **Testing**: Playwright for E2E, Storybook for component development
|
||||
|
||||
## Environment Configuration
|
||||
|
||||
`.env.default` (defaults) → `.env` (user overrides)
|
||||
|
||||
## Feature Development
|
||||
|
||||
See @CONTRIBUTING.md for complete patterns. Quick reference:
|
||||
|
||||
1. **Pages**: Create in `src/app/(platform)/feature-name/page.tsx`
|
||||
- Extract component logic into custom hooks grouped by concern, not by component. Each hook should represent a cohesive domain of functionality (e.g., useSearch, useFilters, usePagination) rather than bundling all state into one useComponentState hook.
|
||||
- Put each hook in its own `.ts` file
|
||||
- Put sub-components in local `components/` folder
|
||||
- Component props should be `type Props = { ... }` (not exported) unless it needs to be used outside the component
|
||||
2. **Components**: Structure as `ComponentName/ComponentName.tsx` + `useComponentName.ts` + `helpers.ts`
|
||||
- Use design system components from `src/components/` (atoms, molecules, organisms)
|
||||
- Never use `src/components/__legacy__/*`
|
||||
3. **Data fetching**: Use generated API hooks from `@/app/api/__generated__/endpoints/`
|
||||
- Regenerate with `pnpm generate:api`
|
||||
- Pattern: `use{Method}{Version}{OperationName}`
|
||||
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
|
||||
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
|
||||
6. **Code conventions**:
|
||||
- Use function declarations (not arrow functions) for components/handlers
|
||||
- Do not use `useCallback` or `useMemo` unless asked to optimise a given function
|
||||
- Do not type hook returns, let Typescript infer as much as possible
|
||||
- Never type with `any` unless a variable/attribute can ACTUALLY be of any type
|
||||
@@ -2,8 +2,9 @@
|
||||
import { LoadingSpinner } from "@/components/atoms/LoadingSpinner/LoadingSpinner";
|
||||
import { useRouter } from "next/navigation";
|
||||
import { useEffect } from "react";
|
||||
import { resolveResponse, shouldShowOnboarding } from "@/app/api/helpers";
|
||||
import { resolveResponse, getOnboardingStatus } from "@/app/api/helpers";
|
||||
import { getV1OnboardingState } from "@/app/api/__generated__/endpoints/onboarding/onboarding";
|
||||
import { getHomepageRoute } from "@/lib/constants";
|
||||
|
||||
export default function OnboardingPage() {
|
||||
const router = useRouter();
|
||||
@@ -11,10 +12,13 @@ export default function OnboardingPage() {
|
||||
useEffect(() => {
|
||||
async function redirectToStep() {
|
||||
try {
|
||||
// Check if onboarding is enabled
|
||||
const isEnabled = await shouldShowOnboarding();
|
||||
if (!isEnabled) {
|
||||
router.replace("/");
|
||||
// Check if onboarding is enabled (also gets chat flag for redirect)
|
||||
const { shouldShowOnboarding, isChatEnabled } =
|
||||
await getOnboardingStatus();
|
||||
const homepageRoute = getHomepageRoute(isChatEnabled);
|
||||
|
||||
if (!shouldShowOnboarding) {
|
||||
router.replace(homepageRoute);
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -22,7 +26,7 @@ export default function OnboardingPage() {
|
||||
|
||||
// Handle completed onboarding
|
||||
if (onboarding.completedSteps.includes("GET_RESULTS")) {
|
||||
router.replace("/");
|
||||
router.replace(homepageRoute);
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user