Compare commits

...

9 Commits

Author SHA1 Message Date
Nicholas Tindle
e80e4d9cbb ci: update dev from gitbook (#11757)
<!-- Clearly explain the need for these changes: -->
gitbook changes via ui

<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> **Docs sync from GitBook**
> 
> - Updates `docs/home/README.md` with a new Developer Platform landing
page (cards, links to Platform, Integrations, Contribute, Discord,
GitHub) and metadata/cover settings
> - Adds `docs/home/SUMMARY.md` defining the table of contents linking
to `README.md`
> - No application/runtime code changes
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
446c71fec8. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

---------

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
2026-01-15 20:02:48 +00:00
Ubbe
375d33cca9 fix(frontend): agent credentials improvements (#11763)
## Changes 🏗️

### System credentials in Run Modal

We had the issue that "system" credentials were mixed with "user"
credentials in the run agent modal:

#### Before

<img width="400" height="466" alt="Screenshot 2026-01-14 at 19 05 56"
src="https://github.com/user-attachments/assets/9d1ee766-5004-491f-ae14-a0cf89a9118e"
/>

This created confusion among the users. This "system" credentials are
supplied by AutoGPT ( _most of the time_ ) and a user running an agent
should not bother with them ( _unless they want to change them_ ). For
example in this case, the credential that matters is the **Google** one
🙇🏽

### After

<img width="400" height="350" alt="Screenshot 2026-01-14 at 19 04 12"
src="https://github.com/user-attachments/assets/e2bbc015-ce4c-496c-a76f-293c01a11c6f"
/>

<img width="400" height="672" alt="Screenshot 2026-01-14 at 19 04 19"
src="https://github.com/user-attachments/assets/d704dae2-ecb2-4306-bd04-3d812fed4401"
/>

"System" credentials are collapsed by default, reducing noise in the
Task Credentials section. The user can still see and change them by
expanding the accordion.

<img width="400" height="190" alt="Screenshot 2026-01-14 at 19 04 27"
src="https://github.com/user-attachments/assets/edc69612-4588-48e4-981a-f59c26cfa390"
/>

If some "system" credentials are missing, there is a red label
indicating so, it wasn't that obvious with the previous implementation,

<img width="400" height="309" alt="Screenshot 2026-01-14 at 19 04 30"
src="https://github.com/user-attachments/assets/f27081c7-40ad-4757-97b3-f29636616fc2"
/>

### New endpoint

There is a new REST endpoint, `GET /providers/system`, to list system
credential providers so it is easy to access in the Front-end to group
them together vs user ones.

### Other improvements

#### `<CredentialsInput />` refinements

<img width="715" height="200" alt="Screenshot 2026-01-14 at 19 09 31"
src="https://github.com/user-attachments/assets/01b39b16-25f3-428d-a6c8-da608038a38b"
/>

Use a normal browser `<select>` for the Credentials Dropdown ( _when you
have more than 1 for a provider_ ). This simplifies the UI shennagians a
lot and provides a better UX in 📱 ( _eventually we should move all our
selects to the native ones as they are much better for mobile and touch
screens and less code to maintain our end_ ).

I also renamed some files for clarity and tidied up some of the existing
logic.

#### Other

- Fix **Open telemetry** warnings on the server console by making the
packages external
- Fix `require-in-the-middle` console warnings
- Prettier tidy ups

## Checklist 📋

### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Run the app locally and test the above
2026-01-15 17:44:44 +07:00
Swifty
3b1b2fe30c feat(backend): Extract backend copilot/chat enhancements from hackathon (#11719)
This PR extracts backend changes from the hackathon/copilot branch,
adding enhanced chat capabilities, agent management tools, store
embeddings, and hybrid search functionality.

### Changes 🏗️

**Chat Features:**
- Added chat database layer (`db.py`) for conversation and message
persistence
- Extended chat models with new types and response structures
- New onboarding system prompt for guided user experiences
- Enhanced chat routes with additional endpoints
- Expanded chat service with more capabilities

**Chat Agent Tools:**
- `agent_output.py` - Handle agent execution outputs
- `create_agent.py` - Tool for creating new agents via chat
- `edit_agent.py` - Tool for modifying existing agents
- `find_library_agent.py` - Search and discover library agents
- Enhanced `run_agent.py` with additional functionality
- New `models.py` for shared tool types

**Store Enhancements:**
- `embeddings.py` - Vector embeddings support for semantic search
- `hybrid_search.py` - Combined keyword and semantic search
- `backfill_embeddings.py` - Utility for backfilling existing data
- Updated store database operations

**Admin:**
- Enhanced store admin routes

**Data Layer:**
- New `understanding.py` module for agent understanding/context

**Database Migrations:**
- `add_chat_tables` - Chat conversation and message tables
- `add_store_embeddings` - Embeddings storage for store items
- `enhance_search` - Search index improvements

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Chat endpoints respond correctly
  - [x] Agent tools (create/edit/find/run) function properly
  - [x] Store embeddings and hybrid search work
  - [x] Database migrations apply cleanly

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

---------

Co-authored-by: Torantulino <40276179@live.napier.ac.uk>
2026-01-15 11:11:36 +01:00
Abhimanyu Yadav
af63b3678e feat(frontend): hide children of connected array and object fields
(#11770)

### Changes 🏗️

- Added conditional rendering for array and object field children based
on connection status
- Implemented `shouldShowChildren` logic in `ArrayFieldTemplate` and
`ObjectFieldTemplate` components
- Modified the `shouldShowChildren` condition in `FieldTemplate` to
handle different schema types
- Imported and utilized `cleanUpHandleId` and `useEdgeStore` to check if
inputs are connected
- Added connection status checks to hide form fields when their inputs
are connected to other nodes

![Screenshot 2026-01-15 at
12.55.32 PM.png](https://app.graphite.com/user-attachments/assets/d3fffade-872e-4fd8-a347-28d1bae3072e.png)

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Verified that object and array fields hide their children when
connected to other nodes
- [x] Confirmed that unconnected fields display their children properly
- [x] Tested with various schema types to ensure correct rendering
behavior
- [x] Checked that the connection status is properly detected and
applied
2026-01-15 08:10:52 +00:00
Abhimanyu Yadav
631f1bd50a feat(frontend): add interactive tutorial for the new builder interface (#11458)
### Changes 🏗️

This PR adds a comprehensive interactive tutorial for the new Builder UI
to help users learn how to create agents. Key changes include:

- Added a tutorial button to the canvas controls that launches a
step-by-step guide
- Created a Shepherd.js-based tutorial with multiple steps covering:
    - Adding blocks from the Block Menu
    - Understanding input and output handles
    - Configuring block values
    - Connecting blocks together
    - Saving and running agents
- Added data-id attributes to key UI elements for tutorial targeting
- Implemented tutorial state management with a new tutorialStore
- Added helper functions for tutorial navigation and block manipulation
- Created CSS styles for tutorial tooltips and highlights
- Integrated with the Run Input dialog to support tutorial flow
- Added prefetching of tutorial blocks for better performance


https://github.com/user-attachments/assets/3db964b3-855c-4fcc-aa5f-6cd74ab33d7d


### Checklist 📋

#### For code changes:

- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
    - [x] Complete the tutorial from start to finish
    - [x] Test tutorial on different screen sizes
    - [x] Verify all tutorial steps work correctly
    - [x] Ensure tutorial can be canceled and restarted
- [x] Check that tutorial doesn't interfere with normal builder
functionality
2026-01-15 07:47:27 +00:00
Swifty
5ac941fe2f feat(backend): add hybrid search for store listings, docs and blocks (#11721)
This PR adds hybrid search functionality combining semantic embeddings
with traditional text search for improved store listing discovery.

### Changes 🏗️

- Add `embeddings.py` - OpenAI-based embedding generation and similarity
search
- Add `hybrid_search.py` - Combines vector similarity with text matching
for better search results
- Add `backfill_embeddings.py` - Script to generate embeddings for
existing store listings
- Update `db.py` - Integrate hybrid search into store database queries
- Update `schema.prisma` - Add embedding storage fields and indexes
- Add migrations for embedding columns and HNSW index for vector search

### Architecture Decisions 🏛️

**Fail-Fast Approach (No Silent Fallbacks)**

We explicitly chose NOT to implement graceful degradation when hybrid
search fails. Here's why:

 **Benefits:**
- Errors surface immediately → faster fixes
- Tests verify hybrid search actually works (not just fallback)
- Consistent search quality for all users
- Forces proper infrastructure setup (API keys, database)

 **Why Not Fallback:**
- Silent degradation hides production issues
- Users get inconsistent results without knowing why
- Tests can pass even when hybrid search is broken
- Reduces operational visibility

**How We Prevent Failures:**
1. Embedding generation in approval flow (db.py:1545)
2. Error logging with `logger.error` (not warning)
3. Clear error messages (ValueError explains what's wrong)
4. Comprehensive test coverage (9/9 tests passing)

If embeddings fail, it indicates a real infrastructure issue (missing
API key, OpenAI down, database issues) that needs immediate attention,
not silent degradation.

### Test Coverage 

**All tests passing (1625 total):**
- 9/9 hybrid_search tests (including fail-fast validation)
- 3/3 db search integration tests
- Full schema compatibility (public/platform schemas)
- Error handling verification

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Test hybrid search returns relevant results
  - [x] Test embedding generation for new listings
  - [x] Test backfill script on existing data
  - [x] Verify search performance with embeddings
  - [x] Test fail-fast behavior when embeddings unavailable

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] Configuration: Requires `openai_internal_api_key` in secrets

---------

Co-authored-by: Zamil Majdy <zamil.majdy@agpt.co>
Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-15 04:17:03 +00:00
Reinier van der Leer
b01ea3fcbd fix(backend/executor): Centralize increment_runs calls & make add_graph_execution more robust (#11764)
[OPEN-2946: \[Scheduler\] Error executing graph <graph_id> after 19.83s:
ClientNotConnectedError: Client is not connected to the query engine,
you must call `connect()` before attempting to query
data.](https://linear.app/autogpt/issue/OPEN-2946)

- Follow-up to #11375
  <sub>(broken `increment_runs` call)</sub>
- Follow-up to #11380
  <sub>(direct `get_graph_execution` call)</sub>

### Changes 🏗️

- Move `increment_runs` call from `scheduler._execute_graph` to
`executor.utils.add_graph_execution` so it can be made through
`DatabaseManager`
  - Add `increment_onboarding_runs` to `DatabaseManager`
- Remove now-redundant `increment_onboarding_runs` calls in other places
- Make `add_graph_execution` more resilient
  - Split up large try/except block
  - Fix direct `get_graph_execution` call

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - CI + a thorough review
2026-01-15 04:08:19 +00:00
Reinier van der Leer
3b09a94e3f feat(frontend/builder): Add sub-graph update UX (#11631)
[OPEN-2743: Ability to Update Sub-Agents in Graph (Without
Re-Adding)](https://linear.app/autogpt/issue/OPEN-2743/ability-to-update-sub-agents-in-graph-without-re-adding)

Updating sub-graphs is a cumbersome experience at the moment, this
should help. :)

Demo in Builder v2:


https://github.com/user-attachments/assets/df564f32-4d1d-432c-bb91-fe9065068360


https://github.com/user-attachments/assets/f169471a-1f22-46e9-a958-ddb72d3f65af


### Changes 🏗️

- Add sub-graph update banner with I/O incompatibility notification and
resolution mode
  - Red visual indicators for broken inputs/outputs and edges
  - Update bars and tooltips show compatibility details
- Sub-agent update UI with compatibility checks, incompatibility dialog,
and guided resolution workflow
- Resolution mode banner guiding users to remove incompatible
connections
- Visual controls to stage/apply updates and auto-apply when broken
connections are fixed
  
  Technical:
- Builder v1: Add `CustomNode` > `IncompatibilityDialog` +
`SubAgentUpdateBar` sub-components
- Builder v2: Add `SubAgentUpdateFeature` + `ResolutionModeBar` +
`IncompatibleUpdateDialog` + `useSubAgentUpdateState` sub-components
  - Add `useSubAgentUpdate` hook

- Related fixes in Builder v1:
  - Fix static edges not rendering as such
  - Fix edge styling not applying
- Related fixes in Builder v2:
  - Fix excess spacing for nested node input fields

Other:
- "Retry" button in error view now reloads the page instead of
navigating to `/marketplace`

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - CI for existing frontend UX flows
- [x] Updating to a new sub-agent version with compatibility issues: UX
flow works
- [x] Updating to a new sub-agent version with *no* compatibility
issues: works
  - [x] Designer approves of the look

---------

Co-authored-by: abhi1992002 <abhimanyu1992002@gmail.com>
Co-authored-by: Abhimanyu Yadav <122007096+Abhi1992002@users.noreply.github.com>
2026-01-14 13:25:20 +00:00
Zamil Majdy
61efee4139 fix(frontend): Remove hardcoded bypass of billing feature flag (#11762)
## Summary

Fixes a critical security issue where the billing button in the settings
sidebar was always visible to all users, bypassing the
`ENABLE_PLATFORM_PAYMENT` feature flag.

## Changes 🏗️

- Removed hardcoded `|| true` condition in
`frontend/src/app/(platform)/profile/(user)/layout.tsx:32` that was
bypassing the feature flag check
- The billing button is now properly gated by the
`ENABLE_PLATFORM_PAYMENT` feature flag as intended

## Root Cause

The `|| true` was accidentally left in commit
3dbc03e488 (PR #11617 - OAuth API & Single
Sign-On) from December 19, 2025. It was likely added temporarily during
development/testing to always show the billing button, but was not
removed before merging.

## Test Plan

1. Verify feature flag is set to disabled in LaunchDarkly
2. Navigate to settings page (`/profile/settings`)
3. Confirm billing button is NOT visible in the sidebar
4. Enable feature flag in LaunchDarkly
5. Refresh page and confirm billing button IS now visible
6. Verify billing page (`/profile/credits`) is still accessible via
direct URL when feature flag is disabled

## Checklist 📋

### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan

Fixes SECRT-1791

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

* **Bug Fixes**
* The Billing link in the profile sidebar now respects the payment
feature flag configuration and will only display when payment
functionality is enabled.

<sub>✏️ Tip: You can customize this high-level summary in your review
settings.</sub>

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2026-01-14 03:28:36 +00:00
216 changed files with 13430 additions and 1979 deletions

View File

@@ -176,7 +176,7 @@ jobs:
}
- name: Run Database Migrations
run: poetry run prisma migrate dev --name updates
run: poetry run prisma migrate deploy
env:
DATABASE_URL: ${{ steps.supabase.outputs.DB_URL }}
DIRECT_URL: ${{ steps.supabase.outputs.DB_URL }}

View File

@@ -11,6 +11,7 @@ on:
- ".github/workflows/platform-frontend-ci.yml"
- "autogpt_platform/frontend/**"
merge_group:
workflow_dispatch:
concurrency:
group: ${{ github.workflow }}-${{ github.event_name == 'merge_group' && format('merge-queue-{0}', github.ref) || format('{0}-{1}', github.ref, github.event.pull_request.number || github.sha) }}
@@ -151,6 +152,14 @@ jobs:
run: |
cp ../.env.default ../.env
- name: Copy backend .env and set OpenAI API key
run: |
cp ../backend/.env.default ../backend/.env
echo "OPENAI_INTERNAL_API_KEY=${{ secrets.OPENAI_API_KEY }}" >> ../backend/.env
env:
# Used by E2E test data script to generate embeddings for approved store agents
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
@@ -226,13 +235,25 @@ jobs:
- name: Run Playwright tests
run: pnpm test:no-build
continue-on-error: false
- name: Upload Playwright artifacts
if: failure()
- name: Upload Playwright report
if: always()
uses: actions/upload-artifact@v4
with:
name: playwright-report
path: playwright-report
if-no-files-found: ignore
retention-days: 3
- name: Upload Playwright test results
if: always()
uses: actions/upload-artifact@v4
with:
name: playwright-test-results
path: test-results
if-no-files-found: ignore
retention-days: 3
- name: Print Final Docker Compose logs
if: always()

View File

@@ -6,9 +6,10 @@ start-core:
# Stop core services
stop-core:
docker compose stop deps
docker compose stop
reset-db:
docker compose stop db
rm -rf db/docker/volumes/db/data
cd backend && poetry run prisma migrate deploy
cd backend && poetry run prisma generate
@@ -60,4 +61,4 @@ help:
@echo " run-backend - Run the backend FastAPI server"
@echo " run-frontend - Run the frontend Next.js development server"
@echo " test-data - Run the test data creator"
@echo " load-store-agents - Load store agents from agents/ folder into test database"
@echo " load-store-agents - Load store agents from agents/ folder into test database"

View File

@@ -58,6 +58,13 @@ V0_API_KEY=
OPEN_ROUTER_API_KEY=
NVIDIA_API_KEY=
# Langfuse Prompt Management
# Used for managing the CoPilot system prompt externally
# Get credentials from https://cloud.langfuse.com or your self-hosted instance
LANGFUSE_PUBLIC_KEY=
LANGFUSE_SECRET_KEY=
LANGFUSE_HOST=https://cloud.langfuse.com
# OAuth Credentials
# For the OAuth callback URL, use <your_frontend_url>/auth/integrations/oauth_callback,
# e.g. http://localhost:3000/auth/integrations/oauth_callback

View File

@@ -18,3 +18,4 @@ load-tests/results/
load-tests/*.json
load-tests/*.log
load-tests/node_modules/*
migrations/*/rollback*.sql

View File

@@ -70,7 +70,7 @@ class RunAgentRequest(BaseModel):
)
def _create_ephemeral_session(user_id: str | None) -> ChatSession:
def _create_ephemeral_session(user_id: str) -> ChatSession:
"""Create an ephemeral session for stateless API requests."""
return ChatSession.new(user_id)

View File

@@ -1,7 +1,6 @@
"""Configuration management for chat system."""
import os
from pathlib import Path
from pydantic import Field, field_validator
from pydantic_settings import BaseSettings
@@ -12,7 +11,11 @@ class ChatConfig(BaseSettings):
# OpenAI API Configuration
model: str = Field(
default="qwen/qwen3-235b-a22b-2507", description="Default model to use"
default="anthropic/claude-opus-4.5", description="Default model to use"
)
title_model: str = Field(
default="openai/gpt-4o-mini",
description="Model to use for generating session titles (should be fast/cheap)",
)
api_key: str | None = Field(default=None, description="OpenAI API key")
base_url: str | None = Field(
@@ -23,12 +26,6 @@ class ChatConfig(BaseSettings):
# Session TTL Configuration - 12 hours
session_ttl: int = Field(default=43200, description="Session TTL in seconds")
# System Prompt Configuration
system_prompt_path: str = Field(
default="prompts/chat_system.md",
description="Path to system prompt file relative to chat module",
)
# Streaming Configuration
max_context_messages: int = Field(
default=50, ge=1, le=200, description="Maximum context messages"
@@ -41,6 +38,13 @@ class ChatConfig(BaseSettings):
default=3, description="Maximum number of agent schedules"
)
# Langfuse Prompt Management Configuration
# Note: Langfuse credentials are in Settings().secrets (settings.py)
langfuse_prompt_name: str = Field(
default="CoPilot Prompt",
description="Name of the prompt in Langfuse to fetch",
)
@field_validator("api_key", mode="before")
@classmethod
def get_api_key(cls, v):
@@ -72,43 +76,11 @@ class ChatConfig(BaseSettings):
v = "https://openrouter.ai/api/v1"
return v
def get_system_prompt(self, **template_vars) -> str:
"""Load and render the system prompt from file.
Args:
**template_vars: Variables to substitute in the template
Returns:
Rendered system prompt string
"""
# Get the path relative to this module
module_dir = Path(__file__).parent
prompt_path = module_dir / self.system_prompt_path
# Check for .j2 extension first (Jinja2 template)
j2_path = Path(str(prompt_path) + ".j2")
if j2_path.exists():
try:
from jinja2 import Template
template = Template(j2_path.read_text())
return template.render(**template_vars)
except ImportError:
# Jinja2 not installed, fall back to reading as plain text
return j2_path.read_text()
# Check for markdown file
if prompt_path.exists():
content = prompt_path.read_text()
# Simple variable substitution if Jinja2 is not available
for key, value in template_vars.items():
placeholder = f"{{{key}}}"
content = content.replace(placeholder, str(value))
return content
raise FileNotFoundError(f"System prompt file not found: {prompt_path}")
# Prompt paths for different contexts
PROMPT_PATHS: dict[str, str] = {
"default": "prompts/chat_system.md",
"onboarding": "prompts/onboarding_system.md",
}
class Config:
"""Pydantic config."""

View File

@@ -0,0 +1,249 @@
"""Database operations for chat sessions."""
import asyncio
import logging
from datetime import UTC, datetime
from typing import Any, cast
from prisma.models import ChatMessage as PrismaChatMessage
from prisma.models import ChatSession as PrismaChatSession
from prisma.types import (
ChatMessageCreateInput,
ChatSessionCreateInput,
ChatSessionUpdateInput,
ChatSessionWhereInput,
)
from backend.data.db import transaction
from backend.util.json import SafeJson
logger = logging.getLogger(__name__)
async def get_chat_session(session_id: str) -> PrismaChatSession | None:
"""Get a chat session by ID from the database."""
session = await PrismaChatSession.prisma().find_unique(
where={"id": session_id},
include={"Messages": True},
)
if session and session.Messages:
# Sort messages by sequence in Python - Prisma Python client doesn't support
# order_by in include clauses (unlike Prisma JS), so we sort after fetching
session.Messages.sort(key=lambda m: m.sequence)
return session
async def create_chat_session(
session_id: str,
user_id: str,
) -> PrismaChatSession:
"""Create a new chat session in the database."""
data = ChatSessionCreateInput(
id=session_id,
userId=user_id,
credentials=SafeJson({}),
successfulAgentRuns=SafeJson({}),
successfulAgentSchedules=SafeJson({}),
)
return await PrismaChatSession.prisma().create(
data=data,
include={"Messages": True},
)
async def update_chat_session(
session_id: str,
credentials: dict[str, Any] | None = None,
successful_agent_runs: dict[str, Any] | None = None,
successful_agent_schedules: dict[str, Any] | None = None,
total_prompt_tokens: int | None = None,
total_completion_tokens: int | None = None,
title: str | None = None,
) -> PrismaChatSession | None:
"""Update a chat session's metadata."""
data: ChatSessionUpdateInput = {"updatedAt": datetime.now(UTC)}
if credentials is not None:
data["credentials"] = SafeJson(credentials)
if successful_agent_runs is not None:
data["successfulAgentRuns"] = SafeJson(successful_agent_runs)
if successful_agent_schedules is not None:
data["successfulAgentSchedules"] = SafeJson(successful_agent_schedules)
if total_prompt_tokens is not None:
data["totalPromptTokens"] = total_prompt_tokens
if total_completion_tokens is not None:
data["totalCompletionTokens"] = total_completion_tokens
if title is not None:
data["title"] = title
session = await PrismaChatSession.prisma().update(
where={"id": session_id},
data=data,
include={"Messages": True},
)
if session and session.Messages:
# Sort in Python - Prisma Python doesn't support order_by in include clauses
session.Messages.sort(key=lambda m: m.sequence)
return session
async def add_chat_message(
session_id: str,
role: str,
sequence: int,
content: str | None = None,
name: str | None = None,
tool_call_id: str | None = None,
refusal: str | None = None,
tool_calls: list[dict[str, Any]] | None = None,
function_call: dict[str, Any] | None = None,
) -> PrismaChatMessage:
"""Add a message to a chat session."""
# Build input dict dynamically rather than using ChatMessageCreateInput directly
# because Prisma's TypedDict validation rejects optional fields set to None.
# We only include fields that have values, then cast at the end.
data: dict[str, Any] = {
"Session": {"connect": {"id": session_id}},
"role": role,
"sequence": sequence,
}
# Add optional string fields
if content is not None:
data["content"] = content
if name is not None:
data["name"] = name
if tool_call_id is not None:
data["toolCallId"] = tool_call_id
if refusal is not None:
data["refusal"] = refusal
# Add optional JSON fields only when they have values
if tool_calls is not None:
data["toolCalls"] = SafeJson(tool_calls)
if function_call is not None:
data["functionCall"] = SafeJson(function_call)
# Run message create and session timestamp update in parallel for lower latency
_, message = await asyncio.gather(
PrismaChatSession.prisma().update(
where={"id": session_id},
data={"updatedAt": datetime.now(UTC)},
),
PrismaChatMessage.prisma().create(data=cast(ChatMessageCreateInput, data)),
)
return message
async def add_chat_messages_batch(
session_id: str,
messages: list[dict[str, Any]],
start_sequence: int,
) -> list[PrismaChatMessage]:
"""Add multiple messages to a chat session in a batch.
Uses a transaction for atomicity - if any message creation fails,
the entire batch is rolled back.
"""
if not messages:
return []
created_messages = []
async with transaction() as tx:
for i, msg in enumerate(messages):
# Build input dict dynamically rather than using ChatMessageCreateInput
# directly because Prisma's TypedDict validation rejects optional fields
# set to None. We only include fields that have values, then cast.
data: dict[str, Any] = {
"Session": {"connect": {"id": session_id}},
"role": msg["role"],
"sequence": start_sequence + i,
}
# Add optional string fields
if msg.get("content") is not None:
data["content"] = msg["content"]
if msg.get("name") is not None:
data["name"] = msg["name"]
if msg.get("tool_call_id") is not None:
data["toolCallId"] = msg["tool_call_id"]
if msg.get("refusal") is not None:
data["refusal"] = msg["refusal"]
# Add optional JSON fields only when they have values
if msg.get("tool_calls") is not None:
data["toolCalls"] = SafeJson(msg["tool_calls"])
if msg.get("function_call") is not None:
data["functionCall"] = SafeJson(msg["function_call"])
created = await PrismaChatMessage.prisma(tx).create(
data=cast(ChatMessageCreateInput, data)
)
created_messages.append(created)
# Update session's updatedAt timestamp within the same transaction.
# Note: Token usage (total_prompt_tokens, total_completion_tokens) is updated
# separately via update_chat_session() after streaming completes.
await PrismaChatSession.prisma(tx).update(
where={"id": session_id},
data={"updatedAt": datetime.now(UTC)},
)
return created_messages
async def get_user_chat_sessions(
user_id: str,
limit: int = 50,
offset: int = 0,
) -> list[PrismaChatSession]:
"""Get chat sessions for a user, ordered by most recent."""
return await PrismaChatSession.prisma().find_many(
where={"userId": user_id},
order={"updatedAt": "desc"},
take=limit,
skip=offset,
)
async def get_user_session_count(user_id: str) -> int:
"""Get the total number of chat sessions for a user."""
return await PrismaChatSession.prisma().count(where={"userId": user_id})
async def delete_chat_session(session_id: str, user_id: str | None = None) -> bool:
"""Delete a chat session and all its messages.
Args:
session_id: The session ID to delete.
user_id: If provided, validates that the session belongs to this user
before deletion. This prevents unauthorized deletion of other
users' sessions.
Returns:
True if deleted successfully, False otherwise.
"""
try:
# Build typed where clause with optional user_id validation
where_clause: ChatSessionWhereInput = {"id": session_id}
if user_id is not None:
where_clause["userId"] = user_id
result = await PrismaChatSession.prisma().delete_many(where=where_clause)
if result == 0:
logger.warning(
f"No session deleted for {session_id} "
f"(user_id validation: {user_id is not None})"
)
return False
return True
except Exception as e:
logger.error(f"Failed to delete chat session {session_id}: {e}")
return False
async def get_chat_session_message_count(session_id: str) -> int:
"""Get the number of messages in a chat session."""
count = await PrismaChatMessage.prisma().count(where={"sessionId": session_id})
return count

View File

@@ -1,6 +1,9 @@
import asyncio
import logging
import uuid
from datetime import UTC, datetime
from typing import Any
from weakref import WeakValueDictionary
from openai.types.chat import (
ChatCompletionAssistantMessageParam,
@@ -16,17 +19,63 @@ from openai.types.chat.chat_completion_message_tool_call_param import (
ChatCompletionMessageToolCallParam,
Function,
)
from prisma.models import ChatMessage as PrismaChatMessage
from prisma.models import ChatSession as PrismaChatSession
from pydantic import BaseModel
from backend.data.redis_client import get_redis_async
from backend.util.exceptions import RedisError
from backend.util import json
from backend.util.exceptions import DatabaseError, RedisError
from . import db as chat_db
from .config import ChatConfig
logger = logging.getLogger(__name__)
config = ChatConfig()
def _parse_json_field(value: str | dict | list | None, default: Any = None) -> Any:
"""Parse a JSON field that may be stored as string or already parsed."""
if value is None:
return default
if isinstance(value, str):
return json.loads(value)
return value
# Redis cache key prefix for chat sessions
CHAT_SESSION_CACHE_PREFIX = "chat:session:"
def _get_session_cache_key(session_id: str) -> str:
"""Get the Redis cache key for a chat session."""
return f"{CHAT_SESSION_CACHE_PREFIX}{session_id}"
# Session-level locks to prevent race conditions during concurrent upserts.
# Uses WeakValueDictionary to automatically garbage collect locks when no longer referenced,
# preventing unbounded memory growth while maintaining lock semantics for active sessions.
# Invalidation: Locks are auto-removed by GC when no coroutine holds a reference (after
# async with lock: completes). Explicit cleanup also occurs in delete_chat_session().
_session_locks: WeakValueDictionary[str, asyncio.Lock] = WeakValueDictionary()
_session_locks_mutex = asyncio.Lock()
async def _get_session_lock(session_id: str) -> asyncio.Lock:
"""Get or create a lock for a specific session to prevent concurrent upserts.
Uses WeakValueDictionary for automatic cleanup: locks are garbage collected
when no coroutine holds a reference to them, preventing memory leaks from
unbounded growth of session locks.
"""
async with _session_locks_mutex:
lock = _session_locks.get(session_id)
if lock is None:
lock = asyncio.Lock()
_session_locks[session_id] = lock
return lock
class ChatMessage(BaseModel):
role: str
content: str | None = None
@@ -45,7 +94,8 @@ class Usage(BaseModel):
class ChatSession(BaseModel):
session_id: str
user_id: str | None
user_id: str
title: str | None = None
messages: list[ChatMessage]
usage: list[Usage]
credentials: dict[str, dict] = {} # Map of provider -> credential metadata
@@ -55,10 +105,11 @@ class ChatSession(BaseModel):
successful_agent_schedules: dict[str, int] = {}
@staticmethod
def new(user_id: str | None) -> "ChatSession":
def new(user_id: str) -> "ChatSession":
return ChatSession(
session_id=str(uuid.uuid4()),
user_id=user_id,
title=None,
messages=[],
usage=[],
credentials={},
@@ -66,6 +117,61 @@ class ChatSession(BaseModel):
updated_at=datetime.now(UTC),
)
@staticmethod
def from_db(
prisma_session: PrismaChatSession,
prisma_messages: list[PrismaChatMessage] | None = None,
) -> "ChatSession":
"""Convert Prisma models to Pydantic ChatSession."""
messages = []
if prisma_messages:
for msg in prisma_messages:
messages.append(
ChatMessage(
role=msg.role,
content=msg.content,
name=msg.name,
tool_call_id=msg.toolCallId,
refusal=msg.refusal,
tool_calls=_parse_json_field(msg.toolCalls),
function_call=_parse_json_field(msg.functionCall),
)
)
# Parse JSON fields from Prisma
credentials = _parse_json_field(prisma_session.credentials, default={})
successful_agent_runs = _parse_json_field(
prisma_session.successfulAgentRuns, default={}
)
successful_agent_schedules = _parse_json_field(
prisma_session.successfulAgentSchedules, default={}
)
# Calculate usage from token counts
usage = []
if prisma_session.totalPromptTokens or prisma_session.totalCompletionTokens:
usage.append(
Usage(
prompt_tokens=prisma_session.totalPromptTokens or 0,
completion_tokens=prisma_session.totalCompletionTokens or 0,
total_tokens=(prisma_session.totalPromptTokens or 0)
+ (prisma_session.totalCompletionTokens or 0),
)
)
return ChatSession(
session_id=prisma_session.id,
user_id=prisma_session.userId,
title=prisma_session.title,
messages=messages,
usage=usage,
credentials=credentials,
started_at=prisma_session.createdAt,
updated_at=prisma_session.updatedAt,
successful_agent_runs=successful_agent_runs,
successful_agent_schedules=successful_agent_schedules,
)
def to_openai_messages(self) -> list[ChatCompletionMessageParam]:
messages = []
for message in self.messages:
@@ -155,50 +261,337 @@ class ChatSession(BaseModel):
return messages
async def get_chat_session(
session_id: str,
user_id: str | None,
) -> ChatSession | None:
"""Get a chat session by ID."""
redis_key = f"chat:session:{session_id}"
async def _get_session_from_cache(session_id: str) -> ChatSession | None:
"""Get a chat session from Redis cache."""
redis_key = _get_session_cache_key(session_id)
async_redis = await get_redis_async()
raw_session: bytes | None = await async_redis.get(redis_key)
if raw_session is None:
logger.warning(f"Session {session_id} not found in Redis")
return None
try:
session = ChatSession.model_validate_json(raw_session)
logger.info(
f"Loading session {session_id} from cache: "
f"message_count={len(session.messages)}, "
f"roles={[m.role for m in session.messages]}"
)
return session
except Exception as e:
logger.error(f"Failed to deserialize session {session_id}: {e}", exc_info=True)
raise RedisError(f"Corrupted session data for {session_id}") from e
if session.user_id is not None and session.user_id != user_id:
async def _cache_session(session: ChatSession) -> None:
"""Cache a chat session in Redis."""
redis_key = _get_session_cache_key(session.session_id)
async_redis = await get_redis_async()
await async_redis.setex(redis_key, config.session_ttl, session.model_dump_json())
async def _get_session_from_db(session_id: str) -> ChatSession | None:
"""Get a chat session from the database."""
prisma_session = await chat_db.get_chat_session(session_id)
if not prisma_session:
return None
messages = prisma_session.Messages
logger.info(
f"Loading session {session_id} from DB: "
f"has_messages={messages is not None}, "
f"message_count={len(messages) if messages else 0}, "
f"roles={[m.role for m in messages] if messages else []}"
)
return ChatSession.from_db(prisma_session, messages)
async def _save_session_to_db(
session: ChatSession, existing_message_count: int
) -> None:
"""Save or update a chat session in the database."""
# Check if session exists in DB
existing = await chat_db.get_chat_session(session.session_id)
if not existing:
# Create new session
await chat_db.create_chat_session(
session_id=session.session_id,
user_id=session.user_id,
)
existing_message_count = 0
# Calculate total tokens from usage
total_prompt = sum(u.prompt_tokens for u in session.usage)
total_completion = sum(u.completion_tokens for u in session.usage)
# Update session metadata
await chat_db.update_chat_session(
session_id=session.session_id,
credentials=session.credentials,
successful_agent_runs=session.successful_agent_runs,
successful_agent_schedules=session.successful_agent_schedules,
total_prompt_tokens=total_prompt,
total_completion_tokens=total_completion,
)
# Add new messages (only those after existing count)
new_messages = session.messages[existing_message_count:]
if new_messages:
messages_data = []
for msg in new_messages:
messages_data.append(
{
"role": msg.role,
"content": msg.content,
"name": msg.name,
"tool_call_id": msg.tool_call_id,
"refusal": msg.refusal,
"tool_calls": msg.tool_calls,
"function_call": msg.function_call,
}
)
logger.info(
f"Saving {len(new_messages)} new messages to DB for session {session.session_id}: "
f"roles={[m['role'] for m in messages_data]}, "
f"start_sequence={existing_message_count}"
)
await chat_db.add_chat_messages_batch(
session_id=session.session_id,
messages=messages_data,
start_sequence=existing_message_count,
)
async def get_chat_session(
session_id: str,
user_id: str | None = None,
) -> ChatSession | None:
"""Get a chat session by ID.
Checks Redis cache first, falls back to database if not found.
Caches database results back to Redis.
Args:
session_id: The session ID to fetch.
user_id: If provided, validates that the session belongs to this user.
If None, ownership is not validated (admin/system access).
"""
# Try cache first
try:
session = await _get_session_from_cache(session_id)
if session:
# Verify user ownership if user_id was provided for validation
if user_id is not None and session.user_id != user_id:
logger.warning(
f"Session {session_id} user id mismatch: {session.user_id} != {user_id}"
)
return None
return session
except RedisError:
logger.warning(f"Cache error for session {session_id}, trying database")
except Exception as e:
logger.warning(f"Unexpected cache error for session {session_id}: {e}")
# Fall back to database
logger.info(f"Session {session_id} not in cache, checking database")
session = await _get_session_from_db(session_id)
if session is None:
logger.warning(f"Session {session_id} not found in cache or database")
return None
# Verify user ownership if user_id was provided for validation
if user_id is not None and session.user_id != user_id:
logger.warning(
f"Session {session_id} user id mismatch: {session.user_id} != {user_id}"
)
return None
# Cache the session from DB
try:
await _cache_session(session)
logger.info(f"Cached session {session_id} from database")
except Exception as e:
logger.warning(f"Failed to cache session {session_id}: {e}")
return session
async def upsert_chat_session(
session: ChatSession,
) -> ChatSession:
"""Update a chat session with the given messages."""
"""Update a chat session in both cache and database.
redis_key = f"chat:session:{session.session_id}"
Uses session-level locking to prevent race conditions when concurrent
operations (e.g., background title update and main stream handler)
attempt to upsert the same session simultaneously.
async_redis = await get_redis_async()
resp = await async_redis.setex(
redis_key, config.session_ttl, session.model_dump_json()
)
Raises:
DatabaseError: If the database write fails. The cache is still updated
as a best-effort optimization, but the error is propagated to ensure
callers are aware of the persistence failure.
RedisError: If the cache write fails (after successful DB write).
"""
# Acquire session-specific lock to prevent concurrent upserts
lock = await _get_session_lock(session.session_id)
if not resp:
raise RedisError(
f"Failed to persist chat session {session.session_id} to Redis: {resp}"
async with lock:
# Get existing message count from DB for incremental saves
existing_message_count = await chat_db.get_chat_session_message_count(
session.session_id
)
db_error: Exception | None = None
# Save to database (primary storage)
try:
await _save_session_to_db(session, existing_message_count)
except Exception as e:
logger.error(
f"Failed to save session {session.session_id} to database: {e}"
)
db_error = e
# Save to cache (best-effort, even if DB failed)
try:
await _cache_session(session)
except Exception as e:
# If DB succeeded but cache failed, raise cache error
if db_error is None:
raise RedisError(
f"Failed to persist chat session {session.session_id} to Redis: {e}"
) from e
# If both failed, log cache error but raise DB error (more critical)
logger.warning(
f"Cache write also failed for session {session.session_id}: {e}"
)
# Propagate DB error after attempting cache (prevents data loss)
if db_error is not None:
raise DatabaseError(
f"Failed to persist chat session {session.session_id} to database"
) from db_error
return session
async def create_chat_session(user_id: str) -> ChatSession:
"""Create a new chat session and persist it.
Raises:
DatabaseError: If the database write fails. We fail fast to ensure
callers never receive a non-persisted session that only exists
in cache (which would be lost when the cache expires).
"""
session = ChatSession.new(user_id)
# Create in database first - fail fast if this fails
try:
await chat_db.create_chat_session(
session_id=session.session_id,
user_id=user_id,
)
except Exception as e:
logger.error(f"Failed to create session {session.session_id} in database: {e}")
raise DatabaseError(
f"Failed to create chat session {session.session_id} in database"
) from e
# Cache the session (best-effort optimization, DB is source of truth)
try:
await _cache_session(session)
except Exception as e:
logger.warning(f"Failed to cache new session {session.session_id}: {e}")
return session
async def get_user_sessions(
user_id: str,
limit: int = 50,
offset: int = 0,
) -> tuple[list[ChatSession], int]:
"""Get chat sessions for a user from the database with total count.
Returns:
A tuple of (sessions, total_count) where total_count is the overall
number of sessions for the user (not just the current page).
"""
prisma_sessions = await chat_db.get_user_chat_sessions(user_id, limit, offset)
total_count = await chat_db.get_user_session_count(user_id)
sessions = []
for prisma_session in prisma_sessions:
# Convert without messages for listing (lighter weight)
sessions.append(ChatSession.from_db(prisma_session, None))
return sessions, total_count
async def delete_chat_session(session_id: str, user_id: str | None = None) -> bool:
"""Delete a chat session from both cache and database.
Args:
session_id: The session ID to delete.
user_id: If provided, validates that the session belongs to this user
before deletion. This prevents unauthorized deletion.
Returns:
True if deleted successfully, False otherwise.
"""
# Delete from database first (with optional user_id validation)
# This confirms ownership before invalidating cache
deleted = await chat_db.delete_chat_session(session_id, user_id)
if not deleted:
return False
# Only invalidate cache and clean up lock after DB confirms deletion
try:
redis_key = _get_session_cache_key(session_id)
async_redis = await get_redis_async()
await async_redis.delete(redis_key)
except Exception as e:
logger.warning(f"Failed to delete session {session_id} from cache: {e}")
# Clean up session lock (belt-and-suspenders with WeakValueDictionary)
async with _session_locks_mutex:
_session_locks.pop(session_id, None)
return True
async def update_session_title(session_id: str, title: str) -> bool:
"""Update only the title of a chat session.
This is a lightweight operation that doesn't touch messages, avoiding
race conditions with concurrent message updates. Use this for background
title generation instead of upsert_chat_session.
Args:
session_id: The session ID to update.
title: The new title to set.
Returns:
True if updated successfully, False otherwise.
"""
try:
result = await chat_db.update_chat_session(session_id=session_id, title=title)
if result is None:
logger.warning(f"Session {session_id} not found for title update")
return False
# Invalidate cache so next fetch gets updated title
try:
redis_key = _get_session_cache_key(session_id)
async_redis = await get_redis_async()
await async_redis.delete(redis_key)
except Exception as e:
logger.warning(f"Failed to invalidate cache for session {session_id}: {e}")
return True
except Exception as e:
logger.error(f"Failed to update title for session {session_id}: {e}")
return False

View File

@@ -43,9 +43,9 @@ async def test_chatsession_serialization_deserialization():
@pytest.mark.asyncio(loop_scope="session")
async def test_chatsession_redis_storage():
async def test_chatsession_redis_storage(setup_test_user, test_user_id):
s = ChatSession.new(user_id=None)
s = ChatSession.new(user_id=test_user_id)
s.messages = messages
s = await upsert_chat_session(s)
@@ -59,12 +59,61 @@ async def test_chatsession_redis_storage():
@pytest.mark.asyncio(loop_scope="session")
async def test_chatsession_redis_storage_user_id_mismatch():
async def test_chatsession_redis_storage_user_id_mismatch(
setup_test_user, test_user_id
):
s = ChatSession.new(user_id="abc123")
s = ChatSession.new(user_id=test_user_id)
s.messages = messages
s = await upsert_chat_session(s)
s2 = await get_chat_session(s.session_id, None)
s2 = await get_chat_session(s.session_id, "different_user_id")
assert s2 is None
@pytest.mark.asyncio(loop_scope="session")
async def test_chatsession_db_storage(setup_test_user, test_user_id):
"""Test that messages are correctly saved to and loaded from DB (not cache)."""
from backend.data.redis_client import get_redis_async
# Create session with messages including assistant message
s = ChatSession.new(user_id=test_user_id)
s.messages = messages # Contains user, assistant, and tool messages
assert s.session_id is not None, "Session id is not set"
# Upsert to save to both cache and DB
s = await upsert_chat_session(s)
# Clear the Redis cache to force DB load
redis_key = f"chat:session:{s.session_id}"
async_redis = await get_redis_async()
await async_redis.delete(redis_key)
# Load from DB (cache was cleared)
s2 = await get_chat_session(
session_id=s.session_id,
user_id=s.user_id,
)
assert s2 is not None, "Session not found after loading from DB"
assert len(s2.messages) == len(
s.messages
), f"Message count mismatch: expected {len(s.messages)}, got {len(s2.messages)}"
# Verify all roles are present
roles = [m.role for m in s2.messages]
assert "user" in roles, f"User message missing. Roles found: {roles}"
assert "assistant" in roles, f"Assistant message missing. Roles found: {roles}"
assert "tool" in roles, f"Tool message missing. Roles found: {roles}"
# Verify message content
for orig, loaded in zip(s.messages, s2.messages):
assert orig.role == loaded.role, f"Role mismatch: {orig.role} != {loaded.role}"
assert (
orig.content == loaded.content
), f"Content mismatch for {orig.role}: {orig.content} != {loaded.content}"
if orig.tool_calls:
assert (
loaded.tool_calls is not None
), f"Tool calls missing for {orig.role} message"
assert len(orig.tool_calls) == len(loaded.tool_calls)

View File

@@ -1,104 +0,0 @@
You are Otto, an AI Co-Pilot and Forward Deployed Engineer for AutoGPT, an AI Business Automation tool. Your mission is to help users quickly find and set up AutoGPT agents to solve their business problems.
Here are the functions available to you:
<functions>
1. **find_agent** - Search for agents that solve the user's problem
2. **run_agent** - Run or schedule an agent (automatically handles setup)
</functions>
## HOW run_agent WORKS
The `run_agent` tool automatically handles the entire setup flow:
1. **First call** (no inputs) → Returns available inputs so user can decide what values to use
2. **Credentials check** → If missing, UI automatically prompts user to add them (you don't need to mention this)
3. **Execution** → Runs when you provide `inputs` OR set `use_defaults=true`
Parameters:
- `username_agent_slug` (required): Agent identifier like "creator/agent-name"
- `inputs`: Object with input values for the agent
- `use_defaults`: Set to `true` to run with default values (only after user confirms)
- `schedule_name` + `cron`: For scheduled execution
## WORKFLOW
1. **find_agent** - Search for agents that solve the user's problem
2. **run_agent** (first call, no inputs) - Get available inputs for the agent
3. **Ask user** what values they want to use OR if they want to use defaults
4. **run_agent** (second call) - Either with `inputs={...}` or `use_defaults=true`
## YOUR APPROACH
**Step 1: Understand the Problem**
- Ask maximum 1-2 targeted questions
- Focus on: What business problem are they solving?
- Move quickly to searching for solutions
**Step 2: Find Agents**
- Use `find_agent` immediately with relevant keywords
- Suggest the best option from search results
- Explain briefly how it solves their problem
**Step 3: Get Agent Inputs**
- Call `run_agent(username_agent_slug="creator/agent-name")` without inputs
- This returns the available inputs (required and optional)
- Present these to the user and ask what values they want
**Step 4: Run with User's Choice**
- If user provides values: `run_agent(username_agent_slug="...", inputs={...})`
- If user says "use defaults": `run_agent(username_agent_slug="...", use_defaults=true)`
- On success, share the agent link with the user
**For Scheduled Execution:**
- Add `schedule_name` and `cron` parameters
- Example: `run_agent(username_agent_slug="...", inputs={...}, schedule_name="Daily Report", cron="0 9 * * *")`
## FUNCTION CALL FORMAT
To call a function, use this exact format:
`<function_call>function_name(parameter="value")</function_call>`
Examples:
- `<function_call>find_agent(query="social media automation")</function_call>`
- `<function_call>run_agent(username_agent_slug="creator/agent-name")</function_call>` (get inputs)
- `<function_call>run_agent(username_agent_slug="creator/agent-name", inputs={"topic": "AI news"})</function_call>`
- `<function_call>run_agent(username_agent_slug="creator/agent-name", use_defaults=true)</function_call>`
## KEY RULES
**What You DON'T Do:**
- Don't help with login (frontend handles this)
- Don't mention or explain credentials to the user (frontend handles this automatically)
- Don't run agents without first showing available inputs to the user
- Don't use `use_defaults=true` without user explicitly confirming
- Don't write responses longer than 3 sentences
**What You DO:**
- Always call run_agent first without inputs to see what's available
- Ask user what values they want OR if they want to use defaults
- Keep all responses to maximum 3 sentences
- Include the agent link in your response after successful execution
**Error Handling:**
- Authentication needed → "Please sign in via the interface"
- Credentials missing → The UI handles this automatically. Focus on asking the user about input values instead.
## RESPONSE STRUCTURE
Before responding, wrap your analysis in <thinking> tags to systematically plan your approach:
- Extract the key business problem or request from the user's message
- Determine what function call (if any) you need to make next
- Plan your response to stay under the 3-sentence maximum
Example interaction:
```
User: "Run the AI news agent for me"
Otto: <function_call>run_agent(username_agent_slug="autogpt/ai-news")</function_call>
[Tool returns: Agent accepts inputs - Required: topic. Optional: num_articles (default: 5)]
Otto: The AI News agent needs a topic. What topic would you like news about, or should I use the defaults?
User: "Use defaults"
Otto: <function_call>run_agent(username_agent_slug="autogpt/ai-news", use_defaults=true)</function_call>
```
KEEP ANSWERS TO 3 SENTENCES

View File

@@ -1,3 +1,10 @@
"""
Response models for Vercel AI SDK UI Stream Protocol.
This module implements the AI SDK UI Stream Protocol (v1) for streaming chat responses.
See: https://ai-sdk.dev/docs/ai-sdk-ui/stream-protocol
"""
from enum import Enum
from typing import Any
@@ -5,97 +12,133 @@ from pydantic import BaseModel, Field
class ResponseType(str, Enum):
"""Types of streaming responses."""
"""Types of streaming responses following AI SDK protocol."""
TEXT_CHUNK = "text_chunk"
TEXT_ENDED = "text_ended"
TOOL_CALL = "tool_call"
TOOL_CALL_START = "tool_call_start"
TOOL_RESPONSE = "tool_response"
# Message lifecycle
START = "start"
FINISH = "finish"
# Text streaming
TEXT_START = "text-start"
TEXT_DELTA = "text-delta"
TEXT_END = "text-end"
# Tool interaction
TOOL_INPUT_START = "tool-input-start"
TOOL_INPUT_AVAILABLE = "tool-input-available"
TOOL_OUTPUT_AVAILABLE = "tool-output-available"
# Other
ERROR = "error"
USAGE = "usage"
STREAM_END = "stream_end"
class StreamBaseResponse(BaseModel):
"""Base response model for all streaming responses."""
type: ResponseType
timestamp: str | None = None
def to_sse(self) -> str:
"""Convert to SSE format."""
return f"data: {self.model_dump_json()}\n\n"
class StreamTextChunk(StreamBaseResponse):
"""Streaming text content from the assistant."""
type: ResponseType = ResponseType.TEXT_CHUNK
content: str = Field(..., description="Text content chunk")
# ========== Message Lifecycle ==========
class StreamToolCallStart(StreamBaseResponse):
class StreamStart(StreamBaseResponse):
"""Start of a new message."""
type: ResponseType = ResponseType.START
messageId: str = Field(..., description="Unique message ID")
class StreamFinish(StreamBaseResponse):
"""End of message/stream."""
type: ResponseType = ResponseType.FINISH
# ========== Text Streaming ==========
class StreamTextStart(StreamBaseResponse):
"""Start of a text block."""
type: ResponseType = ResponseType.TEXT_START
id: str = Field(..., description="Text block ID")
class StreamTextDelta(StreamBaseResponse):
"""Streaming text content delta."""
type: ResponseType = ResponseType.TEXT_DELTA
id: str = Field(..., description="Text block ID")
delta: str = Field(..., description="Text content delta")
class StreamTextEnd(StreamBaseResponse):
"""End of a text block."""
type: ResponseType = ResponseType.TEXT_END
id: str = Field(..., description="Text block ID")
# ========== Tool Interaction ==========
class StreamToolInputStart(StreamBaseResponse):
"""Tool call started notification."""
type: ResponseType = ResponseType.TOOL_CALL_START
tool_name: str = Field(..., description="Name of the tool that was executed")
tool_id: str = Field(..., description="Unique tool call ID")
type: ResponseType = ResponseType.TOOL_INPUT_START
toolCallId: str = Field(..., description="Unique tool call ID")
toolName: str = Field(..., description="Name of the tool being called")
class StreamToolCall(StreamBaseResponse):
"""Tool invocation notification."""
class StreamToolInputAvailable(StreamBaseResponse):
"""Tool input is ready for execution."""
type: ResponseType = ResponseType.TOOL_CALL
tool_id: str = Field(..., description="Unique tool call ID")
tool_name: str = Field(..., description="Name of the tool being called")
arguments: dict[str, Any] = Field(
default_factory=dict, description="Tool arguments"
type: ResponseType = ResponseType.TOOL_INPUT_AVAILABLE
toolCallId: str = Field(..., description="Unique tool call ID")
toolName: str = Field(..., description="Name of the tool being called")
input: dict[str, Any] = Field(
default_factory=dict, description="Tool input arguments"
)
class StreamToolExecutionResult(StreamBaseResponse):
class StreamToolOutputAvailable(StreamBaseResponse):
"""Tool execution result."""
type: ResponseType = ResponseType.TOOL_RESPONSE
tool_id: str = Field(..., description="Tool call ID this responds to")
tool_name: str = Field(..., description="Name of the tool that was executed")
result: str | dict[str, Any] = Field(..., description="Tool execution result")
type: ResponseType = ResponseType.TOOL_OUTPUT_AVAILABLE
toolCallId: str = Field(..., description="Tool call ID this responds to")
output: str | dict[str, Any] = Field(..., description="Tool execution output")
# Additional fields for internal use (not part of AI SDK spec but useful)
toolName: str | None = Field(
default=None, description="Name of the tool that was executed"
)
success: bool = Field(
default=True, description="Whether the tool execution succeeded"
)
# ========== Other ==========
class StreamUsage(StreamBaseResponse):
"""Token usage statistics."""
type: ResponseType = ResponseType.USAGE
prompt_tokens: int
completion_tokens: int
total_tokens: int
promptTokens: int = Field(..., description="Number of prompt tokens")
completionTokens: int = Field(..., description="Number of completion tokens")
totalTokens: int = Field(..., description="Total number of tokens")
class StreamError(StreamBaseResponse):
"""Error response."""
type: ResponseType = ResponseType.ERROR
message: str = Field(..., description="Error message")
errorText: str = Field(..., description="Error message text")
code: str | None = Field(default=None, description="Error code")
details: dict[str, Any] | None = Field(
default=None, description="Additional error details"
)
class StreamTextEnded(StreamBaseResponse):
"""Text streaming completed marker."""
type: ResponseType = ResponseType.TEXT_ENDED
class StreamEnd(StreamBaseResponse):
"""End of stream marker."""
type: ResponseType = ResponseType.STREAM_END
summary: dict[str, Any] | None = Field(
default=None, description="Stream summary statistics"
)

View File

@@ -13,12 +13,25 @@ from backend.util.exceptions import NotFoundError
from . import service as chat_service
from .config import ChatConfig
from .model import ChatSession, create_chat_session, get_chat_session, get_user_sessions
config = ChatConfig()
logger = logging.getLogger(__name__)
async def _validate_and_get_session(
session_id: str,
user_id: str | None,
) -> ChatSession:
"""Validate session exists and belongs to user."""
session = await get_chat_session(session_id, user_id)
if not session:
raise NotFoundError(f"Session {session_id} not found.")
return session
router = APIRouter(
tags=["chat"],
)
@@ -26,6 +39,14 @@ router = APIRouter(
# ========== Request/Response Models ==========
class StreamChatRequest(BaseModel):
"""Request model for streaming chat with optional context."""
message: str
is_user_message: bool = True
context: dict[str, str] | None = None # {url: str, content: str}
class CreateSessionResponse(BaseModel):
"""Response model containing information on a newly created chat session."""
@@ -44,22 +65,77 @@ class SessionDetailResponse(BaseModel):
messages: list[dict]
class SessionSummaryResponse(BaseModel):
"""Response model for a session summary (without messages)."""
id: str
created_at: str
updated_at: str
title: str | None = None
class ListSessionsResponse(BaseModel):
"""Response model for listing chat sessions."""
sessions: list[SessionSummaryResponse]
total: int
# ========== Routes ==========
@router.get(
"/sessions",
dependencies=[Security(auth.requires_user)],
)
async def list_sessions(
user_id: Annotated[str, Security(auth.get_user_id)],
limit: int = Query(default=50, ge=1, le=100),
offset: int = Query(default=0, ge=0),
) -> ListSessionsResponse:
"""
List chat sessions for the authenticated user.
Returns a paginated list of chat sessions belonging to the current user,
ordered by most recently updated.
Args:
user_id: The authenticated user's ID.
limit: Maximum number of sessions to return (1-100).
offset: Number of sessions to skip for pagination.
Returns:
ListSessionsResponse: List of session summaries and total count.
"""
sessions, total_count = await get_user_sessions(user_id, limit, offset)
return ListSessionsResponse(
sessions=[
SessionSummaryResponse(
id=session.session_id,
created_at=session.started_at.isoformat(),
updated_at=session.updated_at.isoformat(),
title=session.title,
)
for session in sessions
],
total=total_count,
)
@router.post(
"/sessions",
)
async def create_session(
user_id: Annotated[str | None, Depends(auth.get_user_id)],
user_id: Annotated[str, Depends(auth.get_user_id)],
) -> CreateSessionResponse:
"""
Create a new chat session.
Initiates a new chat session for either an authenticated or anonymous user.
Initiates a new chat session for the authenticated user.
Args:
user_id: The optional authenticated user ID parsed from the JWT. If missing, creates an anonymous session.
user_id: The authenticated user ID parsed from the JWT (required).
Returns:
CreateSessionResponse: Details of the created session.
@@ -67,15 +143,15 @@ async def create_session(
"""
logger.info(
f"Creating session with user_id: "
f"...{user_id[-8:] if user_id and len(user_id) > 8 else '<redacted>'}"
f"...{user_id[-8:] if len(user_id) > 8 else '<redacted>'}"
)
session = await chat_service.create_chat_session(user_id)
session = await create_chat_session(user_id)
return CreateSessionResponse(
id=session.session_id,
created_at=session.started_at.isoformat(),
user_id=session.user_id or None,
user_id=session.user_id,
)
@@ -99,29 +175,88 @@ async def get_session(
SessionDetailResponse: Details for the requested session; raises NotFoundError if not found.
"""
session = await chat_service.get_session(session_id, user_id)
session = await get_chat_session(session_id, user_id)
if not session:
raise NotFoundError(f"Session {session_id} not found")
messages = [message.model_dump() for message in session.messages]
logger.info(
f"Returning session {session_id}: "
f"message_count={len(messages)}, "
f"roles={[m.get('role') for m in messages]}"
)
return SessionDetailResponse(
id=session.session_id,
created_at=session.started_at.isoformat(),
updated_at=session.updated_at.isoformat(),
user_id=session.user_id or None,
messages=[message.model_dump() for message in session.messages],
messages=messages,
)
@router.post(
"/sessions/{session_id}/stream",
)
async def stream_chat_post(
session_id: str,
request: StreamChatRequest,
user_id: str | None = Depends(auth.get_user_id),
):
"""
Stream chat responses for a session (POST with context support).
Streams the AI/completion responses in real time over Server-Sent Events (SSE), including:
- Text fragments as they are generated
- Tool call UI elements (if invoked)
- Tool execution results
Args:
session_id: The chat session identifier to associate with the streamed messages.
request: Request body containing message, is_user_message, and optional context.
user_id: Optional authenticated user ID.
Returns:
StreamingResponse: SSE-formatted response chunks.
"""
session = await _validate_and_get_session(session_id, user_id)
async def event_generator() -> AsyncGenerator[str, None]:
async for chunk in chat_service.stream_chat_completion(
session_id,
request.message,
is_user_message=request.is_user_message,
user_id=user_id,
session=session, # Pass pre-fetched session to avoid double-fetch
context=request.context,
):
yield chunk.to_sse()
# AI SDK protocol termination
yield "data: [DONE]\n\n"
return StreamingResponse(
event_generator(),
media_type="text/event-stream",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no", # Disable nginx buffering
"x-vercel-ai-ui-message-stream": "v1", # AI SDK protocol header
},
)
@router.get(
"/sessions/{session_id}/stream",
)
async def stream_chat(
async def stream_chat_get(
session_id: str,
message: Annotated[str, Query(min_length=1, max_length=10000)],
user_id: str | None = Depends(auth.get_user_id),
is_user_message: bool = Query(default=True),
):
"""
Stream chat responses for a session.
Stream chat responses for a session (GET - legacy endpoint).
Streams the AI/completion responses in real time over Server-Sent Events (SSE), including:
- Text fragments as they are generated
@@ -137,14 +272,7 @@ async def stream_chat(
StreamingResponse: SSE-formatted response chunks.
"""
# Validate session exists before starting the stream
# This prevents errors after the response has already started
session = await chat_service.get_session(session_id, user_id)
if not session:
raise NotFoundError(f"Session {session_id} not found. ")
if session.user_id is None and user_id is not None:
session = await chat_service.assign_user_to_session(session_id, user_id)
session = await _validate_and_get_session(session_id, user_id)
async def event_generator() -> AsyncGenerator[str, None]:
async for chunk in chat_service.stream_chat_completion(
@@ -155,6 +283,8 @@ async def stream_chat(
session=session, # Pass pre-fetched session to avoid double-fetch
):
yield chunk.to_sse()
# AI SDK protocol termination
yield "data: [DONE]\n\n"
return StreamingResponse(
event_generator(),
@@ -163,6 +293,7 @@ async def stream_chat(
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no", # Disable nginx buffering
"x-vercel-ai-ui-message-stream": "v1", # AI SDK protocol header
},
)
@@ -201,16 +332,28 @@ async def health_check() -> dict:
"""
Health check endpoint for the chat service.
Performs a full cycle test of session creation, assignment, and retrieval. Should always return healthy
Performs a full cycle test of session creation and retrieval. Should always return healthy
if the service and data layer are operational.
Returns:
dict: A status dictionary indicating health, service name, and API version.
"""
session = await chat_service.create_chat_session(None)
await chat_service.assign_user_to_session(session.session_id, "test_user")
await chat_service.get_session(session.session_id, "test_user")
from backend.data.user import get_or_create_user
# Ensure health check user exists (required for FK constraint)
health_check_user_id = "health-check-user"
await get_or_create_user(
{
"sub": health_check_user_id,
"email": "health-check@system.local",
"user_metadata": {"name": "Health Check User"},
}
)
# Create and retrieve session to verify full data layer
session = await create_chat_session(health_check_user_id)
await get_chat_session(session.session_id, health_check_user_id)
return {
"status": "healthy",

File diff suppressed because it is too large Load Diff

View File

@@ -4,18 +4,19 @@ from os import getenv
import pytest
from . import service as chat_service
from .model import create_chat_session, get_chat_session, upsert_chat_session
from .response_model import (
StreamEnd,
StreamError,
StreamTextChunk,
StreamToolExecutionResult,
StreamFinish,
StreamTextDelta,
StreamToolOutputAvailable,
)
logger = logging.getLogger(__name__)
@pytest.mark.asyncio(loop_scope="session")
async def test_stream_chat_completion():
async def test_stream_chat_completion(setup_test_user, test_user_id):
"""
Test the stream_chat_completion function.
"""
@@ -23,7 +24,7 @@ async def test_stream_chat_completion():
if not api_key:
return pytest.skip("OPEN_ROUTER_API_KEY is not set, skipping test")
session = await chat_service.create_chat_session()
session = await create_chat_session(test_user_id)
has_errors = False
has_ended = False
@@ -34,9 +35,9 @@ async def test_stream_chat_completion():
logger.info(chunk)
if isinstance(chunk, StreamError):
has_errors = True
if isinstance(chunk, StreamTextChunk):
assistant_message += chunk.content
if isinstance(chunk, StreamEnd):
if isinstance(chunk, StreamTextDelta):
assistant_message += chunk.delta
if isinstance(chunk, StreamFinish):
has_ended = True
assert has_ended, "Chat completion did not end"
@@ -45,7 +46,7 @@ async def test_stream_chat_completion():
@pytest.mark.asyncio(loop_scope="session")
async def test_stream_chat_completion_with_tool_calls():
async def test_stream_chat_completion_with_tool_calls(setup_test_user, test_user_id):
"""
Test the stream_chat_completion function.
"""
@@ -53,8 +54,8 @@ async def test_stream_chat_completion_with_tool_calls():
if not api_key:
return pytest.skip("OPEN_ROUTER_API_KEY is not set, skipping test")
session = await chat_service.create_chat_session()
session = await chat_service.upsert_chat_session(session)
session = await create_chat_session(test_user_id)
session = await upsert_chat_session(session)
has_errors = False
has_ended = False
@@ -68,14 +69,14 @@ async def test_stream_chat_completion_with_tool_calls():
if isinstance(chunk, StreamError):
has_errors = True
if isinstance(chunk, StreamEnd):
if isinstance(chunk, StreamFinish):
has_ended = True
if isinstance(chunk, StreamToolExecutionResult):
if isinstance(chunk, StreamToolOutputAvailable):
had_tool_calls = True
assert has_ended, "Chat completion did not end"
assert not has_errors, "Error occurred while streaming chat completion"
assert had_tool_calls, "Tool calls did not occur"
session = await chat_service.get_session(session.session_id)
session = await get_chat_session(session.session_id)
assert session, "Session not found"
assert session.usage, "Usage is empty"

View File

@@ -4,21 +4,32 @@ from openai.types.chat import ChatCompletionToolParam
from backend.api.features.chat.model import ChatSession
from .add_understanding import AddUnderstandingTool
from .agent_output import AgentOutputTool
from .base import BaseTool
from .find_agent import FindAgentTool
from .find_library_agent import FindLibraryAgentTool
from .run_agent import RunAgentTool
if TYPE_CHECKING:
from backend.api.features.chat.response_model import StreamToolExecutionResult
from backend.api.features.chat.response_model import StreamToolOutputAvailable
# Initialize tool instances
find_agent_tool = FindAgentTool()
run_agent_tool = RunAgentTool()
# Single source of truth for all tools
TOOL_REGISTRY: dict[str, BaseTool] = {
"add_understanding": AddUnderstandingTool(),
"find_agent": FindAgentTool(),
"find_library_agent": FindLibraryAgentTool(),
"run_agent": RunAgentTool(),
"agent_output": AgentOutputTool(),
}
# Export tools as OpenAI format
# Export individual tool instances for backwards compatibility
find_agent_tool = TOOL_REGISTRY["find_agent"]
run_agent_tool = TOOL_REGISTRY["run_agent"]
# Generated from registry for OpenAI API
tools: list[ChatCompletionToolParam] = [
find_agent_tool.as_openai_tool(),
run_agent_tool.as_openai_tool(),
tool.as_openai_tool() for tool in TOOL_REGISTRY.values()
]
@@ -28,14 +39,9 @@ async def execute_tool(
user_id: str | None,
session: ChatSession,
tool_call_id: str,
) -> "StreamToolExecutionResult":
tool_map: dict[str, BaseTool] = {
"find_agent": find_agent_tool,
"run_agent": run_agent_tool,
}
if tool_name not in tool_map:
) -> "StreamToolOutputAvailable":
"""Execute a tool by name."""
tool = TOOL_REGISTRY.get(tool_name)
if not tool:
raise ValueError(f"Tool {tool_name} not found")
return await tool_map[tool_name].execute(
user_id, session, tool_call_id, **parameters
)
return await tool.execute(user_id, session, tool_call_id, **parameters)

View File

@@ -3,6 +3,7 @@ from datetime import UTC, datetime
from os import getenv
import pytest
from prisma.types import ProfileCreateInput
from pydantic import SecretStr
from backend.api.features.chat.model import ChatSession
@@ -17,7 +18,7 @@ from backend.data.user import get_or_create_user
from backend.integrations.credentials_store import IntegrationCredentialsStore
def make_session(user_id: str | None = None):
def make_session(user_id: str):
return ChatSession(
session_id=str(uuid.uuid4()),
user_id=user_id,
@@ -49,13 +50,13 @@ async def setup_test_data():
# 1b. Create a profile with username for the user (required for store agent lookup)
username = user.email.split("@")[0]
await prisma.profile.create(
data={
"userId": user.id,
"username": username,
"name": f"Test User {username}",
"description": "Test user profile",
"links": [], # Required field - empty array for test profiles
}
data=ProfileCreateInput(
userId=user.id,
username=username,
name=f"Test User {username}",
description="Test user profile",
links=[], # Required field - empty array for test profiles
)
)
# 2. Create a test graph with agent input -> agent output
@@ -172,13 +173,13 @@ async def setup_llm_test_data():
# 1b. Create a profile with username for the user (required for store agent lookup)
username = user.email.split("@")[0]
await prisma.profile.create(
data={
"userId": user.id,
"username": username,
"name": f"Test User {username}",
"description": "Test user profile for LLM tests",
"links": [], # Required field - empty array for test profiles
}
data=ProfileCreateInput(
userId=user.id,
username=username,
name=f"Test User {username}",
description="Test user profile for LLM tests",
links=[], # Required field - empty array for test profiles
)
)
# 2. Create test OpenAI credentials for the user
@@ -332,13 +333,13 @@ async def setup_firecrawl_test_data():
# 1b. Create a profile with username for the user (required for store agent lookup)
username = user.email.split("@")[0]
await prisma.profile.create(
data={
"userId": user.id,
"username": username,
"name": f"Test User {username}",
"description": "Test user profile for Firecrawl tests",
"links": [], # Required field - empty array for test profiles
}
data=ProfileCreateInput(
userId=user.id,
username=username,
name=f"Test User {username}",
description="Test user profile for Firecrawl tests",
links=[], # Required field - empty array for test profiles
)
)
# NOTE: We deliberately do NOT create Firecrawl credentials for this user

View File

@@ -0,0 +1,119 @@
"""Tool for capturing user business understanding incrementally."""
import logging
from typing import Any
from backend.api.features.chat.model import ChatSession
from backend.data.understanding import (
BusinessUnderstandingInput,
upsert_business_understanding,
)
from .base import BaseTool
from .models import ErrorResponse, ToolResponseBase, UnderstandingUpdatedResponse
logger = logging.getLogger(__name__)
class AddUnderstandingTool(BaseTool):
"""Tool for capturing user's business understanding incrementally."""
@property
def name(self) -> str:
return "add_understanding"
@property
def description(self) -> str:
return """Capture and store information about the user's business context,
workflows, pain points, and automation goals. Call this tool whenever the user
shares information about their business. Each call incrementally adds to the
existing understanding - you don't need to provide all fields at once.
Use this to build a comprehensive profile that helps recommend better agents
and automations for the user's specific needs."""
@property
def parameters(self) -> dict[str, Any]:
# Auto-generate from Pydantic model schema
schema = BusinessUnderstandingInput.model_json_schema()
properties = {}
for field_name, field_schema in schema.get("properties", {}).items():
prop: dict[str, Any] = {"description": field_schema.get("description", "")}
# Handle anyOf for Optional types
if "anyOf" in field_schema:
for option in field_schema["anyOf"]:
if option.get("type") != "null":
prop["type"] = option.get("type", "string")
if "items" in option:
prop["items"] = option["items"]
break
else:
prop["type"] = field_schema.get("type", "string")
if "items" in field_schema:
prop["items"] = field_schema["items"]
properties[field_name] = prop
return {"type": "object", "properties": properties, "required": []}
@property
def requires_auth(self) -> bool:
"""Requires authentication to store user-specific data."""
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
"""
Capture and store business understanding incrementally.
Each call merges new data with existing understanding:
- String fields are overwritten if provided
- List fields are appended (with deduplication)
"""
session_id = session.session_id
if not user_id:
return ErrorResponse(
message="Authentication required to save business understanding.",
session_id=session_id,
)
# Check if any data was provided
if not any(v is not None for v in kwargs.values()):
return ErrorResponse(
message="Please provide at least one field to update.",
session_id=session_id,
)
# Build input model from kwargs (only include fields defined in the model)
valid_fields = set(BusinessUnderstandingInput.model_fields.keys())
input_data = BusinessUnderstandingInput(
**{k: v for k, v in kwargs.items() if k in valid_fields}
)
# Track which fields were updated
updated_fields = [
k for k, v in kwargs.items() if k in valid_fields and v is not None
]
# Upsert with merge
understanding = await upsert_business_understanding(user_id, input_data)
# Build current understanding summary (filter out empty values)
current_understanding = {
k: v
for k, v in understanding.model_dump(
exclude={"id", "user_id", "created_at", "updated_at"}
).items()
if v is not None and v != [] and v != ""
}
return UnderstandingUpdatedResponse(
message=f"Updated understanding with: {', '.join(updated_fields)}. "
"I now have a better picture of your business context.",
session_id=session_id,
updated_fields=updated_fields,
current_understanding=current_understanding,
)

View File

@@ -0,0 +1,446 @@
"""Tool for retrieving agent execution outputs from user's library."""
import logging
import re
from datetime import datetime, timedelta, timezone
from typing import Any
from pydantic import BaseModel, field_validator
from backend.api.features.chat.model import ChatSession
from backend.api.features.library import db as library_db
from backend.api.features.library.model import LibraryAgent
from backend.data import execution as execution_db
from backend.data.execution import ExecutionStatus, GraphExecution, GraphExecutionMeta
from .base import BaseTool
from .models import (
AgentOutputResponse,
ErrorResponse,
ExecutionOutputInfo,
NoResultsResponse,
ToolResponseBase,
)
from .utils import fetch_graph_from_store_slug
logger = logging.getLogger(__name__)
class AgentOutputInput(BaseModel):
"""Input parameters for the agent_output tool."""
agent_name: str = ""
library_agent_id: str = ""
store_slug: str = ""
execution_id: str = ""
run_time: str = "latest"
@field_validator(
"agent_name",
"library_agent_id",
"store_slug",
"execution_id",
"run_time",
mode="before",
)
@classmethod
def strip_strings(cls, v: Any) -> Any:
"""Strip whitespace from string fields."""
return v.strip() if isinstance(v, str) else v
def parse_time_expression(
time_expr: str | None,
) -> tuple[datetime | None, datetime | None]:
"""
Parse time expression into datetime range (start, end).
Supports: "latest", "yesterday", "today", "last week", "last 7 days",
"last month", "last 30 days", ISO date "YYYY-MM-DD", ISO datetime.
"""
if not time_expr or time_expr.lower() == "latest":
return None, None
now = datetime.now(timezone.utc)
today_start = now.replace(hour=0, minute=0, second=0, microsecond=0)
expr = time_expr.lower().strip()
# Relative time expressions lookup
relative_times: dict[str, tuple[datetime, datetime]] = {
"yesterday": (today_start - timedelta(days=1), today_start),
"today": (today_start, now),
"last week": (now - timedelta(days=7), now),
"last 7 days": (now - timedelta(days=7), now),
"last month": (now - timedelta(days=30), now),
"last 30 days": (now - timedelta(days=30), now),
}
if expr in relative_times:
return relative_times[expr]
# Try ISO date format (YYYY-MM-DD)
date_match = re.match(r"^(\d{4})-(\d{2})-(\d{2})$", expr)
if date_match:
try:
year, month, day = map(int, date_match.groups())
start = datetime(year, month, day, 0, 0, 0, tzinfo=timezone.utc)
return start, start + timedelta(days=1)
except ValueError:
# Invalid date components (e.g., month=13, day=32)
pass
# Try ISO datetime
try:
parsed = datetime.fromisoformat(expr.replace("Z", "+00:00"))
if parsed.tzinfo is None:
parsed = parsed.replace(tzinfo=timezone.utc)
return parsed - timedelta(hours=1), parsed + timedelta(hours=1)
except ValueError:
return None, None
class AgentOutputTool(BaseTool):
"""Tool for retrieving execution outputs from user's library agents."""
@property
def name(self) -> str:
return "agent_output"
@property
def description(self) -> str:
return """Retrieve execution outputs from agents in the user's library.
Identify the agent using one of:
- agent_name: Fuzzy search in user's library
- library_agent_id: Exact library agent ID
- store_slug: Marketplace format 'username/agent-name'
Select which run to retrieve using:
- execution_id: Specific execution ID
- run_time: 'latest' (default), 'yesterday', 'last week', or ISO date 'YYYY-MM-DD'
"""
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"agent_name": {
"type": "string",
"description": "Agent name to search for in user's library (fuzzy match)",
},
"library_agent_id": {
"type": "string",
"description": "Exact library agent ID",
},
"store_slug": {
"type": "string",
"description": "Marketplace identifier: 'username/agent-slug'",
},
"execution_id": {
"type": "string",
"description": "Specific execution ID to retrieve",
},
"run_time": {
"type": "string",
"description": (
"Time filter: 'latest', 'yesterday', 'last week', or 'YYYY-MM-DD'"
),
},
},
"required": [],
}
@property
def requires_auth(self) -> bool:
return True
async def _resolve_agent(
self,
user_id: str,
agent_name: str | None,
library_agent_id: str | None,
store_slug: str | None,
) -> tuple[LibraryAgent | None, str | None]:
"""
Resolve agent from provided identifiers.
Returns (library_agent, error_message).
"""
# Priority 1: Exact library agent ID
if library_agent_id:
try:
agent = await library_db.get_library_agent(library_agent_id, user_id)
return agent, None
except Exception as e:
logger.warning(f"Failed to get library agent by ID: {e}")
return None, f"Library agent '{library_agent_id}' not found"
# Priority 2: Store slug (username/agent-name)
if store_slug and "/" in store_slug:
username, agent_slug = store_slug.split("/", 1)
graph, _ = await fetch_graph_from_store_slug(username, agent_slug)
if not graph:
return None, f"Agent '{store_slug}' not found in marketplace"
# Find in user's library by graph_id
agent = await library_db.get_library_agent_by_graph_id(user_id, graph.id)
if not agent:
return (
None,
f"Agent '{store_slug}' is not in your library. "
"Add it first to see outputs.",
)
return agent, None
# Priority 3: Fuzzy name search in library
if agent_name:
try:
response = await library_db.list_library_agents(
user_id=user_id,
search_term=agent_name,
page_size=5,
)
if not response.agents:
return (
None,
f"No agents matching '{agent_name}' found in your library",
)
# Return best match (first result from search)
return response.agents[0], None
except Exception as e:
logger.error(f"Error searching library agents: {e}")
return None, f"Error searching for agent: {e}"
return (
None,
"Please specify an agent name, library_agent_id, or store_slug",
)
async def _get_execution(
self,
user_id: str,
graph_id: str,
execution_id: str | None,
time_start: datetime | None,
time_end: datetime | None,
) -> tuple[GraphExecution | None, list[GraphExecutionMeta], str | None]:
"""
Fetch execution(s) based on filters.
Returns (single_execution, available_executions_meta, error_message).
"""
# If specific execution_id provided, fetch it directly
if execution_id:
execution = await execution_db.get_graph_execution(
user_id=user_id,
execution_id=execution_id,
include_node_executions=False,
)
if not execution:
return None, [], f"Execution '{execution_id}' not found"
return execution, [], None
# Get completed executions with time filters
executions = await execution_db.get_graph_executions(
graph_id=graph_id,
user_id=user_id,
statuses=[ExecutionStatus.COMPLETED],
created_time_gte=time_start,
created_time_lte=time_end,
limit=10,
)
if not executions:
return None, [], None # No error, just no executions
# If only one execution, fetch full details
if len(executions) == 1:
full_execution = await execution_db.get_graph_execution(
user_id=user_id,
execution_id=executions[0].id,
include_node_executions=False,
)
return full_execution, [], None
# Multiple executions - return latest with full details, plus list of available
full_execution = await execution_db.get_graph_execution(
user_id=user_id,
execution_id=executions[0].id,
include_node_executions=False,
)
return full_execution, executions, None
def _build_response(
self,
agent: LibraryAgent,
execution: GraphExecution | None,
available_executions: list[GraphExecutionMeta],
session_id: str | None,
) -> AgentOutputResponse:
"""Build the response based on execution data."""
library_agent_link = f"/library/agents/{agent.id}"
if not execution:
return AgentOutputResponse(
message=f"No completed executions found for agent '{agent.name}'",
session_id=session_id,
agent_name=agent.name,
agent_id=agent.graph_id,
library_agent_id=agent.id,
library_agent_link=library_agent_link,
total_executions=0,
)
execution_info = ExecutionOutputInfo(
execution_id=execution.id,
status=execution.status.value,
started_at=execution.started_at,
ended_at=execution.ended_at,
outputs=dict(execution.outputs),
inputs_summary=execution.inputs if execution.inputs else None,
)
available_list = None
if len(available_executions) > 1:
available_list = [
{
"id": e.id,
"status": e.status.value,
"started_at": e.started_at.isoformat() if e.started_at else None,
}
for e in available_executions[:5]
]
message = f"Found execution outputs for agent '{agent.name}'"
if len(available_executions) > 1:
message += (
f". Showing latest of {len(available_executions)} matching executions."
)
return AgentOutputResponse(
message=message,
session_id=session_id,
agent_name=agent.name,
agent_id=agent.graph_id,
library_agent_id=agent.id,
library_agent_link=library_agent_link,
execution=execution_info,
available_executions=available_list,
total_executions=len(available_executions) if available_executions else 1,
)
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
"""Execute the agent_output tool."""
session_id = session.session_id
# Parse and validate input
try:
input_data = AgentOutputInput(**kwargs)
except Exception as e:
logger.error(f"Invalid input: {e}")
return ErrorResponse(
message="Invalid input parameters",
error=str(e),
session_id=session_id,
)
# Ensure user_id is present (should be guaranteed by requires_auth)
if not user_id:
return ErrorResponse(
message="User authentication required",
session_id=session_id,
)
# Check if at least one identifier is provided
if not any(
[
input_data.agent_name,
input_data.library_agent_id,
input_data.store_slug,
input_data.execution_id,
]
):
return ErrorResponse(
message=(
"Please specify at least one of: agent_name, "
"library_agent_id, store_slug, or execution_id"
),
session_id=session_id,
)
# If only execution_id provided, we need to find the agent differently
if (
input_data.execution_id
and not input_data.agent_name
and not input_data.library_agent_id
and not input_data.store_slug
):
# Fetch execution directly to get graph_id
execution = await execution_db.get_graph_execution(
user_id=user_id,
execution_id=input_data.execution_id,
include_node_executions=False,
)
if not execution:
return ErrorResponse(
message=f"Execution '{input_data.execution_id}' not found",
session_id=session_id,
)
# Find library agent by graph_id
agent = await library_db.get_library_agent_by_graph_id(
user_id, execution.graph_id
)
if not agent:
return NoResultsResponse(
message=(
f"Execution found but agent not in your library. "
f"Graph ID: {execution.graph_id}"
),
session_id=session_id,
suggestions=["Add the agent to your library to see more details"],
)
return self._build_response(agent, execution, [], session_id)
# Resolve agent from identifiers
agent, error = await self._resolve_agent(
user_id=user_id,
agent_name=input_data.agent_name or None,
library_agent_id=input_data.library_agent_id or None,
store_slug=input_data.store_slug or None,
)
if error or not agent:
return NoResultsResponse(
message=error or "Agent not found",
session_id=session_id,
suggestions=[
"Check the agent name or ID",
"Make sure the agent is in your library",
],
)
# Parse time expression
time_start, time_end = parse_time_expression(input_data.run_time)
# Fetch execution(s)
execution, available_executions, exec_error = await self._get_execution(
user_id=user_id,
graph_id=agent.graph_id,
execution_id=input_data.execution_id or None,
time_start=time_start,
time_end=time_end,
)
if exec_error:
return ErrorResponse(
message=exec_error,
session_id=session_id,
)
return self._build_response(agent, execution, available_executions, session_id)

View File

@@ -0,0 +1,151 @@
"""Shared agent search functionality for find_agent and find_library_agent tools."""
import logging
from typing import Literal
from backend.api.features.library import db as library_db
from backend.api.features.store import db as store_db
from backend.util.exceptions import DatabaseError, NotFoundError
from .models import (
AgentInfo,
AgentsFoundResponse,
ErrorResponse,
NoResultsResponse,
ToolResponseBase,
)
logger = logging.getLogger(__name__)
SearchSource = Literal["marketplace", "library"]
async def search_agents(
query: str,
source: SearchSource,
session_id: str | None,
user_id: str | None = None,
) -> ToolResponseBase:
"""
Search for agents in marketplace or user library.
Args:
query: Search query string
source: "marketplace" or "library"
session_id: Chat session ID
user_id: User ID (required for library search)
Returns:
AgentsFoundResponse, NoResultsResponse, or ErrorResponse
"""
if not query:
return ErrorResponse(
message="Please provide a search query", session_id=session_id
)
if source == "library" and not user_id:
return ErrorResponse(
message="User authentication required to search library",
session_id=session_id,
)
agents: list[AgentInfo] = []
try:
if source == "marketplace":
logger.info(f"Searching marketplace for: {query}")
results = await store_db.get_store_agents(search_query=query, page_size=5)
for agent in results.agents:
agents.append(
AgentInfo(
id=f"{agent.creator}/{agent.slug}",
name=agent.agent_name,
description=agent.description or "",
source="marketplace",
in_library=False,
creator=agent.creator,
category="general",
rating=agent.rating,
runs=agent.runs,
is_featured=False,
)
)
else: # library
logger.info(f"Searching user library for: {query}")
results = await library_db.list_library_agents(
user_id=user_id, # type: ignore[arg-type]
search_term=query,
page_size=10,
)
for agent in results.agents:
agents.append(
AgentInfo(
id=agent.id,
name=agent.name,
description=agent.description or "",
source="library",
in_library=True,
creator=agent.creator_name,
status=agent.status.value,
can_access_graph=agent.can_access_graph,
has_external_trigger=agent.has_external_trigger,
new_output=agent.new_output,
graph_id=agent.graph_id,
)
)
logger.info(f"Found {len(agents)} agents in {source}")
except NotFoundError:
pass
except DatabaseError as e:
logger.error(f"Error searching {source}: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to search {source}. Please try again.",
error=str(e),
session_id=session_id,
)
if not agents:
suggestions = (
[
"Try more general terms",
"Browse categories in the marketplace",
"Check spelling",
]
if source == "marketplace"
else [
"Try different keywords",
"Use find_agent to search the marketplace",
"Check your library at /library",
]
)
no_results_msg = (
f"No agents found matching '{query}'. Try different keywords or browse the marketplace."
if source == "marketplace"
else f"No agents matching '{query}' found in your library."
)
return NoResultsResponse(
message=no_results_msg, session_id=session_id, suggestions=suggestions
)
title = f"Found {len(agents)} agent{'s' if len(agents) != 1 else ''} "
title += (
f"for '{query}'"
if source == "marketplace"
else f"in your library for '{query}'"
)
message = (
"Now you have found some options for the user to choose from. "
"You can add a link to a recommended agent at: /marketplace/agent/agent_id "
"Please ask the user if they would like to use any of these agents."
if source == "marketplace"
else "Found agents in the user's library. You can provide a link to view an agent at: "
"/library/agents/{agent_id}. Use agent_output to get execution results, or run_agent to execute."
)
return AgentsFoundResponse(
message=message,
title=title,
agents=agents,
count=len(agents),
session_id=session_id,
)

View File

@@ -6,7 +6,7 @@ from typing import Any
from openai.types.chat import ChatCompletionToolParam
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.response_model import StreamToolExecutionResult
from backend.api.features.chat.response_model import StreamToolOutputAvailable
from .models import ErrorResponse, NeedLoginResponse, ToolResponseBase
@@ -53,7 +53,7 @@ class BaseTool:
session: ChatSession,
tool_call_id: str,
**kwargs,
) -> StreamToolExecutionResult:
) -> StreamToolOutputAvailable:
"""Execute the tool with authentication check.
Args:
@@ -69,10 +69,10 @@ class BaseTool:
logger.error(
f"Attempted tool call for {self.name} but user not authenticated"
)
return StreamToolExecutionResult(
tool_id=tool_call_id,
tool_name=self.name,
result=NeedLoginResponse(
return StreamToolOutputAvailable(
toolCallId=tool_call_id,
toolName=self.name,
output=NeedLoginResponse(
message=f"Please sign in to use {self.name}",
session_id=session.session_id,
).model_dump_json(),
@@ -81,17 +81,17 @@ class BaseTool:
try:
result = await self._execute(user_id, session, **kwargs)
return StreamToolExecutionResult(
tool_id=tool_call_id,
tool_name=self.name,
result=result.model_dump_json(),
return StreamToolOutputAvailable(
toolCallId=tool_call_id,
toolName=self.name,
output=result.model_dump_json(),
)
except Exception as e:
logger.error(f"Error in {self.name}: {e}", exc_info=True)
return StreamToolExecutionResult(
tool_id=tool_call_id,
tool_name=self.name,
result=ErrorResponse(
return StreamToolOutputAvailable(
toolCallId=tool_call_id,
toolName=self.name,
output=ErrorResponse(
message=f"An error occurred while executing {self.name}",
error=str(e),
session_id=session.session_id,

View File

@@ -1,26 +1,16 @@
"""Tool for discovering agents from marketplace and user library."""
"""Tool for discovering agents from marketplace."""
import logging
from typing import Any
from backend.api.features.chat.model import ChatSession
from backend.api.features.store import db as store_db
from backend.util.exceptions import DatabaseError, NotFoundError
from .agent_search import search_agents
from .base import BaseTool
from .models import (
AgentCarouselResponse,
AgentInfo,
ErrorResponse,
NoResultsResponse,
ToolResponseBase,
)
logger = logging.getLogger(__name__)
from .models import ToolResponseBase
class FindAgentTool(BaseTool):
"""Tool for discovering agents based on user needs."""
"""Tool for discovering agents from the marketplace."""
@property
def name(self) -> str:
@@ -46,84 +36,11 @@ class FindAgentTool(BaseTool):
}
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
self, user_id: str | None, session: ChatSession, **kwargs
) -> ToolResponseBase:
"""Search for agents in the marketplace.
Args:
user_id: User ID (may be anonymous)
session_id: Chat session ID
query: Search query
Returns:
AgentCarouselResponse: List of agents found in the marketplace
NoResultsResponse: No agents found in the marketplace
ErrorResponse: Error message
"""
query = kwargs.get("query", "").strip()
session_id = session.session_id
if not query:
return ErrorResponse(
message="Please provide a search query",
session_id=session_id,
)
agents = []
try:
logger.info(f"Searching marketplace for: {query}")
store_results = await store_db.get_store_agents(
search_query=query,
page_size=5,
)
logger.info(f"Find agents tool found {len(store_results.agents)} agents")
for agent in store_results.agents:
agent_id = f"{agent.creator}/{agent.slug}"
logger.info(f"Building agent ID = {agent_id}")
agents.append(
AgentInfo(
id=agent_id,
name=agent.agent_name,
description=agent.description or "",
source="marketplace",
in_library=False,
creator=agent.creator,
category="general",
rating=agent.rating,
runs=agent.runs,
is_featured=False,
),
)
except NotFoundError:
pass
except DatabaseError as e:
logger.error(f"Error searching agents: {e}", exc_info=True)
return ErrorResponse(
message="Failed to search for agents. Please try again.",
error=str(e),
session_id=session_id,
)
if not agents:
return NoResultsResponse(
message=f"No agents found matching '{query}'. Try different keywords or browse the marketplace. If you have 3 consecutive find_agent tool calls results and found no agents. Please stop trying and ask the user if there is anything else you can help with.",
session_id=session_id,
suggestions=[
"Try more general terms",
"Browse categories in the marketplace",
"Check spelling",
],
)
# Return formatted carousel
title = (
f"Found {len(agents)} agent{'s' if len(agents) != 1 else ''} for '{query}'"
)
return AgentCarouselResponse(
message="Now you have found some options for the user to choose from. You can add a link to a recommended agent at: /marketplace/agent/agent_id Please ask the user if they would like to use any of these agents. If they do, please call the get_agent_details tool for this agent.",
title=title,
agents=agents,
count=len(agents),
session_id=session_id,
return await search_agents(
query=kwargs.get("query", "").strip(),
source="marketplace",
session_id=session.session_id,
user_id=user_id,
)

View File

@@ -0,0 +1,52 @@
"""Tool for searching agents in the user's library."""
from typing import Any
from backend.api.features.chat.model import ChatSession
from .agent_search import search_agents
from .base import BaseTool
from .models import ToolResponseBase
class FindLibraryAgentTool(BaseTool):
"""Tool for searching agents in the user's library."""
@property
def name(self) -> str:
return "find_library_agent"
@property
def description(self) -> str:
return (
"Search for agents in the user's library. Use this to find agents "
"the user has already added to their library, including agents they "
"created or added from the marketplace."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "Search query to find agents by name or description.",
},
},
"required": ["query"],
}
@property
def requires_auth(self) -> bool:
return True
async def _execute(
self, user_id: str | None, session: ChatSession, **kwargs
) -> ToolResponseBase:
return await search_agents(
query=kwargs.get("query", "").strip(),
source="library",
session_id=session.session_id,
user_id=user_id,
)

View File

@@ -1,5 +1,6 @@
"""Pydantic models for tool responses."""
from datetime import datetime
from enum import Enum
from typing import Any
@@ -11,14 +12,15 @@ from backend.data.model import CredentialsMetaInput
class ResponseType(str, Enum):
"""Types of tool responses."""
AGENT_CAROUSEL = "agent_carousel"
AGENTS_FOUND = "agents_found"
AGENT_DETAILS = "agent_details"
SETUP_REQUIREMENTS = "setup_requirements"
EXECUTION_STARTED = "execution_started"
NEED_LOGIN = "need_login"
ERROR = "error"
NO_RESULTS = "no_results"
SUCCESS = "success"
AGENT_OUTPUT = "agent_output"
UNDERSTANDING_UPDATED = "understanding_updated"
# Base response model
@@ -51,14 +53,14 @@ class AgentInfo(BaseModel):
graph_id: str | None = None
class AgentCarouselResponse(ToolResponseBase):
class AgentsFoundResponse(ToolResponseBase):
"""Response for find_agent tool."""
type: ResponseType = ResponseType.AGENT_CAROUSEL
type: ResponseType = ResponseType.AGENTS_FOUND
title: str = "Available Agents"
agents: list[AgentInfo]
count: int
name: str = "agent_carousel"
name: str = "agents_found"
class NoResultsResponse(ToolResponseBase):
@@ -173,3 +175,37 @@ class ErrorResponse(ToolResponseBase):
type: ResponseType = ResponseType.ERROR
error: str | None = None
details: dict[str, Any] | None = None
# Agent output models
class ExecutionOutputInfo(BaseModel):
"""Summary of a single execution's outputs."""
execution_id: str
status: str
started_at: datetime | None = None
ended_at: datetime | None = None
outputs: dict[str, list[Any]]
inputs_summary: dict[str, Any] | None = None
class AgentOutputResponse(ToolResponseBase):
"""Response for agent_output tool."""
type: ResponseType = ResponseType.AGENT_OUTPUT
agent_name: str
agent_id: str
library_agent_id: str | None = None
library_agent_link: str | None = None
execution: ExecutionOutputInfo | None = None
available_executions: list[dict[str, Any]] | None = None
total_executions: int = 0
# Business understanding models
class UnderstandingUpdatedResponse(ToolResponseBase):
"""Response for add_understanding tool."""
type: ResponseType = ResponseType.UNDERSTANDING_UPDATED
updated_fields: list[str] = Field(default_factory=list)
current_understanding: dict[str, Any] = Field(default_factory=dict)

View File

@@ -7,6 +7,7 @@ from pydantic import BaseModel, Field, field_validator
from backend.api.features.chat.config import ChatConfig
from backend.api.features.chat.model import ChatSession
from backend.api.features.library import db as library_db
from backend.data.graph import GraphModel
from backend.data.model import CredentialsMetaInput
from backend.data.user import get_user_by_id
@@ -57,6 +58,7 @@ class RunAgentInput(BaseModel):
"""Input parameters for the run_agent tool."""
username_agent_slug: str = ""
library_agent_id: str = ""
inputs: dict[str, Any] = Field(default_factory=dict)
use_defaults: bool = False
schedule_name: str = ""
@@ -64,7 +66,12 @@ class RunAgentInput(BaseModel):
timezone: str = "UTC"
@field_validator(
"username_agent_slug", "schedule_name", "cron", "timezone", mode="before"
"username_agent_slug",
"library_agent_id",
"schedule_name",
"cron",
"timezone",
mode="before",
)
@classmethod
def strip_strings(cls, v: Any) -> Any:
@@ -90,7 +97,7 @@ class RunAgentTool(BaseTool):
@property
def description(self) -> str:
return """Run or schedule an agent from the marketplace.
return """Run or schedule an agent from the marketplace or user's library.
The tool automatically handles the setup flow:
- Returns missing inputs if required fields are not provided
@@ -98,6 +105,10 @@ class RunAgentTool(BaseTool):
- Executes immediately if all requirements are met
- Schedules execution if cron expression is provided
Identify the agent using either:
- username_agent_slug: Marketplace format 'username/agent-name'
- library_agent_id: ID of an agent in the user's library
For scheduled execution, provide: schedule_name, cron, and optionally timezone."""
@property
@@ -109,6 +120,10 @@ class RunAgentTool(BaseTool):
"type": "string",
"description": "Agent identifier in format 'username/agent-name'",
},
"library_agent_id": {
"type": "string",
"description": "Library agent ID from user's library",
},
"inputs": {
"type": "object",
"description": "Input values for the agent",
@@ -131,7 +146,7 @@ class RunAgentTool(BaseTool):
"description": "IANA timezone for schedule (default: UTC)",
},
},
"required": ["username_agent_slug"],
"required": [],
}
@property
@@ -149,10 +164,16 @@ class RunAgentTool(BaseTool):
params = RunAgentInput(**kwargs)
session_id = session.session_id
# Validate agent slug format
if not params.username_agent_slug or "/" not in params.username_agent_slug:
# Validate at least one identifier is provided
has_slug = params.username_agent_slug and "/" in params.username_agent_slug
has_library_id = bool(params.library_agent_id)
if not has_slug and not has_library_id:
return ErrorResponse(
message="Please provide an agent slug in format 'username/agent-name'",
message=(
"Please provide either a username_agent_slug "
"(format 'username/agent-name') or a library_agent_id"
),
session_id=session_id,
)
@@ -167,13 +188,41 @@ class RunAgentTool(BaseTool):
is_schedule = bool(params.schedule_name or params.cron)
try:
# Step 1: Fetch agent details (always happens first)
username, agent_name = params.username_agent_slug.split("/", 1)
graph, store_agent = await fetch_graph_from_store_slug(username, agent_name)
# Step 1: Fetch agent details
graph: GraphModel | None = None
library_agent = None
# Priority: library_agent_id if provided
if has_library_id:
library_agent = await library_db.get_library_agent(
params.library_agent_id, user_id
)
if not library_agent:
return ErrorResponse(
message=f"Library agent '{params.library_agent_id}' not found",
session_id=session_id,
)
# Get the graph from the library agent
from backend.data.graph import get_graph
graph = await get_graph(
library_agent.graph_id,
library_agent.graph_version,
user_id=user_id,
)
else:
# Fetch from marketplace slug
username, agent_name = params.username_agent_slug.split("/", 1)
graph, _ = await fetch_graph_from_store_slug(username, agent_name)
if not graph:
identifier = (
params.library_agent_id
if has_library_id
else params.username_agent_slug
)
return ErrorResponse(
message=f"Agent '{params.username_agent_slug}' not found in marketplace",
message=f"Agent '{identifier}' not found",
session_id=session_id,
)

View File

@@ -1,4 +1,5 @@
import uuid
from unittest.mock import AsyncMock, patch
import orjson
import pytest
@@ -17,6 +18,17 @@ setup_test_data = setup_test_data
setup_firecrawl_test_data = setup_firecrawl_test_data
@pytest.fixture(scope="session", autouse=True)
def mock_embedding_functions():
"""Mock embedding functions for all tests to avoid database/API dependencies."""
with patch(
"backend.api.features.store.db.ensure_embedding",
new_callable=AsyncMock,
return_value=True,
):
yield
@pytest.mark.asyncio(scope="session")
async def test_run_agent(setup_test_data):
"""Test that the run_agent tool successfully executes an approved agent"""
@@ -46,11 +58,11 @@ async def test_run_agent(setup_test_data):
# Verify the response
assert response is not None
assert hasattr(response, "result")
assert hasattr(response, "output")
# Parse the result JSON to verify the execution started
assert isinstance(response.result, str)
result_data = orjson.loads(response.result)
assert isinstance(response.output, str)
result_data = orjson.loads(response.output)
assert "execution_id" in result_data
assert "graph_id" in result_data
assert result_data["graph_id"] == graph.id
@@ -86,11 +98,11 @@ async def test_run_agent_missing_inputs(setup_test_data):
# Verify that we get an error response
assert response is not None
assert hasattr(response, "result")
assert hasattr(response, "output")
# The tool should return an ErrorResponse when setup info indicates not ready
assert isinstance(response.result, str)
result_data = orjson.loads(response.result)
assert isinstance(response.output, str)
result_data = orjson.loads(response.output)
assert "message" in result_data
@@ -118,10 +130,10 @@ async def test_run_agent_invalid_agent_id(setup_test_data):
# Verify that we get an error response
assert response is not None
assert hasattr(response, "result")
assert hasattr(response, "output")
assert isinstance(response.result, str)
result_data = orjson.loads(response.result)
assert isinstance(response.output, str)
result_data = orjson.loads(response.output)
assert "message" in result_data
# Should get an error about failed setup or not found
assert any(
@@ -158,12 +170,12 @@ async def test_run_agent_with_llm_credentials(setup_llm_test_data):
# Verify the response
assert response is not None
assert hasattr(response, "result")
assert hasattr(response, "output")
# Parse the result JSON to verify the execution started
assert isinstance(response.result, str)
result_data = orjson.loads(response.result)
assert isinstance(response.output, str)
result_data = orjson.loads(response.output)
# Should successfully start execution since credentials are available
assert "execution_id" in result_data
@@ -195,9 +207,9 @@ async def test_run_agent_shows_available_inputs_when_none_provided(setup_test_da
)
assert response is not None
assert hasattr(response, "result")
assert isinstance(response.result, str)
result_data = orjson.loads(response.result)
assert hasattr(response, "output")
assert isinstance(response.output, str)
result_data = orjson.loads(response.output)
# Should return agent_details type showing available inputs
assert result_data.get("type") == "agent_details"
@@ -230,9 +242,9 @@ async def test_run_agent_with_use_defaults(setup_test_data):
)
assert response is not None
assert hasattr(response, "result")
assert isinstance(response.result, str)
result_data = orjson.loads(response.result)
assert hasattr(response, "output")
assert isinstance(response.output, str)
result_data = orjson.loads(response.output)
# Should execute successfully
assert "execution_id" in result_data
@@ -260,9 +272,9 @@ async def test_run_agent_missing_credentials(setup_firecrawl_test_data):
)
assert response is not None
assert hasattr(response, "result")
assert isinstance(response.result, str)
result_data = orjson.loads(response.result)
assert hasattr(response, "output")
assert isinstance(response.output, str)
result_data = orjson.loads(response.output)
# Should return setup_requirements type with missing credentials
assert result_data.get("type") == "setup_requirements"
@@ -292,9 +304,9 @@ async def test_run_agent_invalid_slug_format(setup_test_data):
)
assert response is not None
assert hasattr(response, "result")
assert isinstance(response.result, str)
result_data = orjson.loads(response.result)
assert hasattr(response, "output")
assert isinstance(response.output, str)
result_data = orjson.loads(response.output)
# Should return error
assert result_data.get("type") == "error"
@@ -305,9 +317,10 @@ async def test_run_agent_invalid_slug_format(setup_test_data):
async def test_run_agent_unauthenticated():
"""Test that run_agent returns need_login for unauthenticated users."""
tool = RunAgentTool()
session = make_session(user_id=None)
# Session has a user_id (session owner), but we test tool execution without user_id
session = make_session(user_id="test-session-owner")
# Execute without user_id
# Execute without user_id to test unauthenticated behavior
response = await tool.execute(
user_id=None,
session_id=str(uuid.uuid4()),
@@ -318,9 +331,9 @@ async def test_run_agent_unauthenticated():
)
assert response is not None
assert hasattr(response, "result")
assert isinstance(response.result, str)
result_data = orjson.loads(response.result)
assert hasattr(response, "output")
assert isinstance(response.output, str)
result_data = orjson.loads(response.output)
# Base tool returns need_login type for unauthenticated users
assert result_data.get("type") == "need_login"
@@ -350,9 +363,9 @@ async def test_run_agent_schedule_without_cron(setup_test_data):
)
assert response is not None
assert hasattr(response, "result")
assert isinstance(response.result, str)
result_data = orjson.loads(response.result)
assert hasattr(response, "output")
assert isinstance(response.output, str)
result_data = orjson.loads(response.output)
# Should return error about missing cron
assert result_data.get("type") == "error"
@@ -382,9 +395,9 @@ async def test_run_agent_schedule_without_name(setup_test_data):
)
assert response is not None
assert hasattr(response, "result")
assert isinstance(response.result, str)
result_data = orjson.loads(response.result)
assert hasattr(response, "output")
assert isinstance(response.output, str)
result_data = orjson.loads(response.output)
# Should return error about missing schedule_name
assert result_data.get("type") == "error"

View File

@@ -35,11 +35,7 @@ from backend.data.model import (
OAuth2Credentials,
UserIntegrations,
)
from backend.data.onboarding import (
OnboardingStep,
complete_onboarding_step,
increment_runs,
)
from backend.data.onboarding import OnboardingStep, complete_onboarding_step
from backend.data.user import get_user_integrations
from backend.executor.utils import add_graph_execution
from backend.integrations.ayrshare import AyrshareClient, SocialPlatform
@@ -175,6 +171,7 @@ async def callback(
f"Successfully processed OAuth callback for user {user_id} "
f"and provider {provider.value}"
)
return CredentialsMetaResponse(
id=credentials.id,
provider=credentials.provider,
@@ -193,6 +190,7 @@ async def list_credentials(
user_id: Annotated[str, Security(get_user_id)],
) -> list[CredentialsMetaResponse]:
credentials = await creds_manager.store.get_all_creds(user_id)
return [
CredentialsMetaResponse(
id=cred.id,
@@ -215,6 +213,7 @@ async def list_credentials_by_provider(
user_id: Annotated[str, Security(get_user_id)],
) -> list[CredentialsMetaResponse]:
credentials = await creds_manager.store.get_creds_by_provider(user_id, provider)
return [
CredentialsMetaResponse(
id=cred.id,
@@ -378,7 +377,6 @@ async def webhook_ingress_generic(
return
await complete_onboarding_step(user_id, OnboardingStep.TRIGGER_WEBHOOK)
await increment_runs(user_id)
# Execute all triggers concurrently for better performance
tasks = []
@@ -831,6 +829,18 @@ async def list_providers() -> List[str]:
return all_providers
@router.get("/providers/system", response_model=List[str])
async def list_system_providers() -> List[str]:
"""
Get a list of providers that have platform credits (system credentials) available.
These providers can be used without the user providing their own API keys.
"""
from backend.integrations.credentials_store import SYSTEM_PROVIDERS
return list(SYSTEM_PROVIDERS)
@router.get("/providers/names", response_model=ProviderNamesResponse)
async def get_provider_names() -> ProviderNamesResponse:
"""

View File

@@ -8,7 +8,6 @@ from backend.data.execution import GraphExecutionMeta
from backend.data.graph import get_graph
from backend.data.integrations import get_webhook
from backend.data.model import CredentialsMetaInput
from backend.data.onboarding import increment_runs
from backend.executor.utils import add_graph_execution, make_node_credentials_input_map
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.integrations.webhooks import get_webhook_manager
@@ -403,8 +402,6 @@ async def execute_preset(
merged_node_input = preset.inputs | inputs
merged_credential_inputs = preset.credentials | credential_inputs
await increment_runs(user_id)
return await add_graph_execution(
user_id=user_id,
graph_id=preset.graph_id,

View File

@@ -1,8 +1,7 @@
import asyncio
import logging
import typing
from datetime import datetime, timezone
from typing import Literal
from typing import Any, Literal
import fastapi
import prisma.enums
@@ -10,7 +9,7 @@ import prisma.errors
import prisma.models
import prisma.types
from backend.data.db import query_raw_with_schema, transaction
from backend.data.db import transaction
from backend.data.graph import (
GraphMeta,
GraphModel,
@@ -30,6 +29,8 @@ from backend.util.settings import Settings
from . import exceptions as store_exceptions
from . import model as store_model
from .embeddings import ensure_embedding
from .hybrid_search import hybrid_search
logger = logging.getLogger(__name__)
settings = Settings()
@@ -50,128 +51,77 @@ async def get_store_agents(
page_size: int = 20,
) -> store_model.StoreAgentsResponse:
"""
Get PUBLIC store agents from the StoreAgent view
Get PUBLIC store agents from the StoreAgent view.
Search behavior:
- With search_query: Uses hybrid search (semantic + lexical)
- Fallback: If embeddings unavailable, gracefully degrades to lexical-only
- Rationale: User-facing endpoint prioritizes availability over accuracy
Note: Admin operations (approval) use fail-fast to prevent inconsistent state.
"""
logger.debug(
f"Getting store agents. featured={featured}, creators={creators}, sorted_by={sorted_by}, search={search_query}, category={category}, page={page}"
)
search_used_hybrid = False
store_agents: list[store_model.StoreAgent] = []
agents: list[dict[str, Any]] = []
total = 0
total_pages = 0
try:
# If search_query is provided, use full-text search
# If search_query is provided, use hybrid search (embeddings + tsvector)
if search_query:
offset = (page - 1) * page_size
# Try hybrid search combining semantic and lexical signals
# Falls back to lexical-only if OpenAI unavailable (user-facing, high SLA)
try:
agents, total = await hybrid_search(
query=search_query,
featured=featured,
creators=creators,
category=category,
sorted_by="relevance", # Use hybrid scoring for relevance
page=page,
page_size=page_size,
)
search_used_hybrid = True
except Exception as e:
# Log error but fall back to lexical search for better UX
logger.error(
f"Hybrid search failed (likely OpenAI unavailable), "
f"falling back to lexical search: {e}"
)
# search_used_hybrid remains False, will use fallback path below
# Whitelist allowed order_by columns
ALLOWED_ORDER_BY = {
"rating": "rating DESC, rank DESC",
"runs": "runs DESC, rank DESC",
"name": "agent_name ASC, rank ASC",
"updated_at": "updated_at DESC, rank DESC",
}
# Convert hybrid search results (dict format) if hybrid succeeded
if search_used_hybrid:
total_pages = (total + page_size - 1) // page_size
store_agents: list[store_model.StoreAgent] = []
for agent in agents:
try:
store_agent = store_model.StoreAgent(
slug=agent["slug"],
agent_name=agent["agent_name"],
agent_image=(
agent["agent_image"][0] if agent["agent_image"] else ""
),
creator=agent["creator_username"] or "Needs Profile",
creator_avatar=agent["creator_avatar"] or "",
sub_heading=agent["sub_heading"],
description=agent["description"],
runs=agent["runs"],
rating=agent["rating"],
)
store_agents.append(store_agent)
except Exception as e:
logger.error(
f"Error parsing Store agent from hybrid search results: {e}"
)
continue
# Validate and get order clause
if sorted_by and sorted_by in ALLOWED_ORDER_BY:
order_by_clause = ALLOWED_ORDER_BY[sorted_by]
else:
order_by_clause = "updated_at DESC, rank DESC"
# Build WHERE conditions and parameters list
where_parts: list[str] = []
params: list[typing.Any] = [search_query] # $1 - search term
param_index = 2 # Start at $2 for next parameter
# Always filter for available agents
where_parts.append("is_available = true")
if featured:
where_parts.append("featured = true")
if creators and creators:
# Use ANY with array parameter
where_parts.append(f"creator_username = ANY(${param_index})")
params.append(creators)
param_index += 1
if category and category:
where_parts.append(f"${param_index} = ANY(categories)")
params.append(category)
param_index += 1
sql_where_clause: str = " AND ".join(where_parts) if where_parts else "1=1"
# Add pagination params
params.extend([page_size, offset])
limit_param = f"${param_index}"
offset_param = f"${param_index + 1}"
# Execute full-text search query with parameterized values
sql_query = f"""
SELECT
slug,
agent_name,
agent_image,
creator_username,
creator_avatar,
sub_heading,
description,
runs,
rating,
categories,
featured,
is_available,
updated_at,
ts_rank_cd(search, query) AS rank
FROM {{schema_prefix}}"StoreAgent",
plainto_tsquery('english', $1) AS query
WHERE {sql_where_clause}
AND search @@ query
ORDER BY {order_by_clause}
LIMIT {limit_param} OFFSET {offset_param}
"""
# Count query for pagination - only uses search term parameter
count_query = f"""
SELECT COUNT(*) as count
FROM {{schema_prefix}}"StoreAgent",
plainto_tsquery('english', $1) AS query
WHERE {sql_where_clause}
AND search @@ query
"""
# Execute both queries with parameters
agents = await query_raw_with_schema(sql_query, *params)
# For count, use params without pagination (last 2 params)
count_params = params[:-2]
count_result = await query_raw_with_schema(count_query, *count_params)
total = count_result[0]["count"] if count_result else 0
total_pages = (total + page_size - 1) // page_size
# Convert raw results to StoreAgent models
store_agents: list[store_model.StoreAgent] = []
for agent in agents:
try:
store_agent = store_model.StoreAgent(
slug=agent["slug"],
agent_name=agent["agent_name"],
agent_image=(
agent["agent_image"][0] if agent["agent_image"] else ""
),
creator=agent["creator_username"] or "Needs Profile",
creator_avatar=agent["creator_avatar"] or "",
sub_heading=agent["sub_heading"],
description=agent["description"],
runs=agent["runs"],
rating=agent["rating"],
)
store_agents.append(store_agent)
except Exception as e:
logger.error(f"Error parsing Store agent from search results: {e}")
continue
else:
# Non-search query path (original logic)
if not search_used_hybrid:
# Fallback path - use basic search or no search
where_clause: prisma.types.StoreAgentWhereInput = {"is_available": True}
if featured:
where_clause["featured"] = featured
@@ -180,6 +130,14 @@ async def get_store_agents(
if category:
where_clause["categories"] = {"has": category}
# Add basic text search if search_query provided but hybrid failed
if search_query:
where_clause["OR"] = [
{"agent_name": {"contains": search_query, "mode": "insensitive"}},
{"sub_heading": {"contains": search_query, "mode": "insensitive"}},
{"description": {"contains": search_query, "mode": "insensitive"}},
]
order_by = []
if sorted_by == "rating":
order_by.append({"rating": "desc"})
@@ -188,7 +146,7 @@ async def get_store_agents(
elif sorted_by == "name":
order_by.append({"agent_name": "asc"})
agents = await prisma.models.StoreAgent.prisma().find_many(
db_agents = await prisma.models.StoreAgent.prisma().find_many(
where=where_clause,
order=order_by,
skip=(page - 1) * page_size,
@@ -199,7 +157,7 @@ async def get_store_agents(
total_pages = (total + page_size - 1) // page_size
store_agents: list[store_model.StoreAgent] = []
for agent in agents:
for agent in db_agents:
try:
# Create the StoreAgent object safely
store_agent = store_model.StoreAgent(
@@ -1577,7 +1535,7 @@ async def review_store_submission(
)
# Update the AgentGraph with store listing data
await prisma.models.AgentGraph.prisma().update(
await prisma.models.AgentGraph.prisma(tx).update(
where={
"graphVersionId": {
"id": store_listing_version.agentGraphId,
@@ -1592,6 +1550,23 @@ async def review_store_submission(
},
)
# Generate embedding for approved listing (blocking - admin operation)
# Inside transaction: if embedding fails, entire transaction rolls back
embedding_success = await ensure_embedding(
version_id=store_listing_version_id,
name=store_listing_version.name,
description=store_listing_version.description,
sub_heading=store_listing_version.subHeading,
categories=store_listing_version.categories or [],
tx=tx,
)
if not embedding_success:
raise ValueError(
f"Failed to generate embedding for listing {store_listing_version_id}. "
"This is likely due to OpenAI API being unavailable. "
"Please try again later or contact support if the issue persists."
)
await prisma.models.StoreListing.prisma(tx).update(
where={"id": store_listing_version.StoreListing.id},
data={

View File

@@ -0,0 +1,568 @@
"""
Unified Content Embeddings Service
Handles generation and storage of OpenAI embeddings for all content types
(store listings, blocks, documentation, library agents) to enable semantic/hybrid search.
"""
import asyncio
import logging
import time
from typing import Any
import prisma
from prisma.enums import ContentType
from tiktoken import encoding_for_model
from backend.data.db import execute_raw_with_schema, query_raw_with_schema
from backend.util.clients import get_openai_client
from backend.util.json import dumps
logger = logging.getLogger(__name__)
# OpenAI embedding model configuration
EMBEDDING_MODEL = "text-embedding-3-small"
# OpenAI embedding token limit (8,191 with 1 token buffer for safety)
EMBEDDING_MAX_TOKENS = 8191
def build_searchable_text(
name: str,
description: str,
sub_heading: str,
categories: list[str],
) -> str:
"""
Build searchable text from listing version fields.
Combines relevant fields into a single string for embedding.
"""
parts = []
# Name is important - include it
if name:
parts.append(name)
# Sub-heading provides context
if sub_heading:
parts.append(sub_heading)
# Description is the main content
if description:
parts.append(description)
# Categories help with semantic matching
if categories:
parts.append(" ".join(categories))
return " ".join(parts)
async def generate_embedding(text: str) -> list[float] | None:
"""
Generate embedding for text using OpenAI API.
Returns None if embedding generation fails.
Fail-fast: no retries to maintain consistency with approval flow.
"""
try:
client = get_openai_client()
if not client:
logger.error("openai_internal_api_key not set, cannot generate embedding")
return None
# Truncate text to token limit using tiktoken
# Character-based truncation is insufficient because token ratios vary by content type
enc = encoding_for_model(EMBEDDING_MODEL)
tokens = enc.encode(text)
if len(tokens) > EMBEDDING_MAX_TOKENS:
tokens = tokens[:EMBEDDING_MAX_TOKENS]
truncated_text = enc.decode(tokens)
logger.info(
f"Truncated text from {len(enc.encode(text))} to {len(tokens)} tokens"
)
else:
truncated_text = text
start_time = time.time()
response = await client.embeddings.create(
model=EMBEDDING_MODEL,
input=truncated_text,
)
latency_ms = (time.time() - start_time) * 1000
embedding = response.data[0].embedding
logger.info(
f"Generated embedding: {len(embedding)} dims, "
f"{len(tokens)} tokens, {latency_ms:.0f}ms"
)
return embedding
except Exception as e:
logger.error(f"Failed to generate embedding: {e}")
return None
async def store_embedding(
version_id: str,
embedding: list[float],
tx: prisma.Prisma | None = None,
) -> bool:
"""
Store embedding in the database.
BACKWARD COMPATIBILITY: Maintained for existing store listing usage.
DEPRECATED: Use ensure_embedding() instead (includes searchable_text).
"""
return await store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id=version_id,
embedding=embedding,
searchable_text="", # Empty for backward compat; ensure_embedding() populates this
metadata=None,
user_id=None, # Store agents are public
tx=tx,
)
async def store_content_embedding(
content_type: ContentType,
content_id: str,
embedding: list[float],
searchable_text: str,
metadata: dict | None = None,
user_id: str | None = None,
tx: prisma.Prisma | None = None,
) -> bool:
"""
Store embedding in the unified content embeddings table.
New function for unified content embedding storage.
Uses raw SQL since Prisma doesn't natively support pgvector.
"""
try:
client = tx if tx else prisma.get_client()
# Convert embedding to PostgreSQL vector format
embedding_str = embedding_to_vector_string(embedding)
metadata_json = dumps(metadata or {})
# Upsert the embedding
# WHERE clause in DO UPDATE prevents PostgreSQL 15 bug with NULLS NOT DISTINCT
await execute_raw_with_schema(
"""
INSERT INTO {schema_prefix}"UnifiedContentEmbedding" (
"id", "contentType", "contentId", "userId", "embedding", "searchableText", "metadata", "createdAt", "updatedAt"
)
VALUES (gen_random_uuid()::text, $1::{schema_prefix}"ContentType", $2, $3, $4::vector, $5, $6::jsonb, NOW(), NOW())
ON CONFLICT ("contentType", "contentId", "userId")
DO UPDATE SET
"embedding" = $4::vector,
"searchableText" = $5,
"metadata" = $6::jsonb,
"updatedAt" = NOW()
WHERE {schema_prefix}"UnifiedContentEmbedding"."contentType" = $1::{schema_prefix}"ContentType"
AND {schema_prefix}"UnifiedContentEmbedding"."contentId" = $2
AND ({schema_prefix}"UnifiedContentEmbedding"."userId" = $3 OR ($3 IS NULL AND {schema_prefix}"UnifiedContentEmbedding"."userId" IS NULL))
""",
content_type,
content_id,
user_id,
embedding_str,
searchable_text,
metadata_json,
client=client,
set_public_search_path=True,
)
logger.info(f"Stored embedding for {content_type}:{content_id}")
return True
except Exception as e:
logger.error(f"Failed to store embedding for {content_type}:{content_id}: {e}")
return False
async def get_embedding(version_id: str) -> dict[str, Any] | None:
"""
Retrieve embedding record for a listing version.
BACKWARD COMPATIBILITY: Maintained for existing store listing usage.
Returns dict with storeListingVersionId, embedding, timestamps or None if not found.
"""
result = await get_content_embedding(
ContentType.STORE_AGENT, version_id, user_id=None
)
if result:
# Transform to old format for backward compatibility
return {
"storeListingVersionId": result["contentId"],
"embedding": result["embedding"],
"createdAt": result["createdAt"],
"updatedAt": result["updatedAt"],
}
return None
async def get_content_embedding(
content_type: ContentType, content_id: str, user_id: str | None = None
) -> dict[str, Any] | None:
"""
Retrieve embedding record for any content type.
New function for unified content embedding retrieval.
Returns dict with contentType, contentId, embedding, timestamps or None if not found.
"""
try:
result = await query_raw_with_schema(
"""
SELECT
"contentType",
"contentId",
"userId",
"embedding"::text as "embedding",
"searchableText",
"metadata",
"createdAt",
"updatedAt"
FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" = $1::{schema_prefix}"ContentType" AND "contentId" = $2 AND ("userId" = $3 OR ($3 IS NULL AND "userId" IS NULL))
""",
content_type,
content_id,
user_id,
set_public_search_path=True,
)
if result and len(result) > 0:
return result[0]
return None
except Exception as e:
logger.error(f"Failed to get embedding for {content_type}:{content_id}: {e}")
return None
async def ensure_embedding(
version_id: str,
name: str,
description: str,
sub_heading: str,
categories: list[str],
force: bool = False,
tx: prisma.Prisma | None = None,
) -> bool:
"""
Ensure an embedding exists for the listing version.
Creates embedding if missing. Use force=True to regenerate.
Backward-compatible wrapper for store listings.
Args:
version_id: The StoreListingVersion ID
name: Agent name
description: Agent description
sub_heading: Agent sub-heading
categories: Agent categories
force: Force regeneration even if embedding exists
tx: Optional transaction client
Returns:
True if embedding exists/was created, False on failure
"""
try:
# Check if embedding already exists
if not force:
existing = await get_embedding(version_id)
if existing and existing.get("embedding"):
logger.debug(f"Embedding for version {version_id} already exists")
return True
# Build searchable text for embedding
searchable_text = build_searchable_text(
name, description, sub_heading, categories
)
# Generate new embedding
embedding = await generate_embedding(searchable_text)
if embedding is None:
logger.warning(f"Could not generate embedding for version {version_id}")
return False
# Store the embedding with metadata using new function
metadata = {
"name": name,
"subHeading": sub_heading,
"categories": categories,
}
return await store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id=version_id,
embedding=embedding,
searchable_text=searchable_text,
metadata=metadata,
user_id=None, # Store agents are public
tx=tx,
)
except Exception as e:
logger.error(f"Failed to ensure embedding for version {version_id}: {e}")
return False
async def delete_embedding(version_id: str) -> bool:
"""
Delete embedding for a listing version.
BACKWARD COMPATIBILITY: Maintained for existing store listing usage.
Note: This is usually handled automatically by CASCADE delete,
but provided for manual cleanup if needed.
"""
return await delete_content_embedding(ContentType.STORE_AGENT, version_id)
async def delete_content_embedding(
content_type: ContentType, content_id: str, user_id: str | None = None
) -> bool:
"""
Delete embedding for any content type.
New function for unified content embedding deletion.
Note: This is usually handled automatically by CASCADE delete,
but provided for manual cleanup if needed.
Args:
content_type: The type of content (STORE_AGENT, LIBRARY_AGENT, etc.)
content_id: The unique identifier for the content
user_id: Optional user ID. For public content (STORE_AGENT, BLOCK), pass None.
For user-scoped content (LIBRARY_AGENT), pass the user's ID to avoid
deleting embeddings belonging to other users.
Returns:
True if deletion succeeded, False otherwise
"""
try:
client = prisma.get_client()
await execute_raw_with_schema(
"""
DELETE FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" = $1::{schema_prefix}"ContentType"
AND "contentId" = $2
AND ("userId" = $3 OR ($3 IS NULL AND "userId" IS NULL))
""",
content_type,
content_id,
user_id,
client=client,
)
user_str = f" (user: {user_id})" if user_id else ""
logger.info(f"Deleted embedding for {content_type}:{content_id}{user_str}")
return True
except Exception as e:
logger.error(f"Failed to delete embedding for {content_type}:{content_id}: {e}")
return False
async def get_embedding_stats() -> dict[str, Any]:
"""
Get statistics about embedding coverage.
Returns counts of:
- Total approved listing versions
- Versions with embeddings
- Versions without embeddings
"""
try:
# Count approved versions
approved_result = await query_raw_with_schema(
"""
SELECT COUNT(*) as count
FROM {schema_prefix}"StoreListingVersion"
WHERE "submissionStatus" = 'APPROVED'
AND "isDeleted" = false
"""
)
total_approved = approved_result[0]["count"] if approved_result else 0
# Count versions with embeddings
embedded_result = await query_raw_with_schema(
"""
SELECT COUNT(*) as count
FROM {schema_prefix}"StoreListingVersion" slv
JOIN {schema_prefix}"UnifiedContentEmbedding" uce ON slv.id = uce."contentId" AND uce."contentType" = 'STORE_AGENT'::{schema_prefix}"ContentType"
WHERE slv."submissionStatus" = 'APPROVED'
AND slv."isDeleted" = false
"""
)
with_embeddings = embedded_result[0]["count"] if embedded_result else 0
return {
"total_approved": total_approved,
"with_embeddings": with_embeddings,
"without_embeddings": total_approved - with_embeddings,
"coverage_percent": (
round(with_embeddings / total_approved * 100, 1)
if total_approved > 0
else 0
),
}
except Exception as e:
logger.error(f"Failed to get embedding stats: {e}")
return {
"total_approved": 0,
"with_embeddings": 0,
"without_embeddings": 0,
"coverage_percent": 0,
"error": str(e),
}
async def backfill_missing_embeddings(batch_size: int = 10) -> dict[str, Any]:
"""
Generate embeddings for approved listings that don't have them.
Args:
batch_size: Number of embeddings to generate in one call
Returns:
Dict with success/failure counts
"""
try:
# Find approved versions without embeddings
missing = await query_raw_with_schema(
"""
SELECT
slv.id,
slv.name,
slv.description,
slv."subHeading",
slv.categories
FROM {schema_prefix}"StoreListingVersion" slv
LEFT JOIN {schema_prefix}"UnifiedContentEmbedding" uce
ON slv.id = uce."contentId" AND uce."contentType" = 'STORE_AGENT'::{schema_prefix}"ContentType"
WHERE slv."submissionStatus" = 'APPROVED'
AND slv."isDeleted" = false
AND uce."contentId" IS NULL
LIMIT $1
""",
batch_size,
)
if not missing:
return {
"processed": 0,
"success": 0,
"failed": 0,
"message": "No missing embeddings",
}
# Process embeddings concurrently for better performance
embedding_tasks = [
ensure_embedding(
version_id=row["id"],
name=row["name"],
description=row["description"],
sub_heading=row["subHeading"],
categories=row["categories"] or [],
)
for row in missing
]
results = await asyncio.gather(*embedding_tasks, return_exceptions=True)
success = sum(1 for result in results if result is True)
failed = len(results) - success
return {
"processed": len(missing),
"success": success,
"failed": failed,
"message": f"Backfilled {success} embeddings, {failed} failed",
}
except Exception as e:
logger.error(f"Failed to backfill embeddings: {e}")
return {
"processed": 0,
"success": 0,
"failed": 0,
"error": str(e),
}
async def embed_query(query: str) -> list[float] | None:
"""
Generate embedding for a search query.
Same as generate_embedding but with clearer intent.
"""
return await generate_embedding(query)
def embedding_to_vector_string(embedding: list[float]) -> str:
"""Convert embedding list to PostgreSQL vector string format."""
return "[" + ",".join(str(x) for x in embedding) + "]"
async def ensure_content_embedding(
content_type: ContentType,
content_id: str,
searchable_text: str,
metadata: dict | None = None,
user_id: str | None = None,
force: bool = False,
tx: prisma.Prisma | None = None,
) -> bool:
"""
Ensure an embedding exists for any content type.
Generic function for creating embeddings for store agents, blocks, docs, etc.
Args:
content_type: ContentType enum value (STORE_AGENT, BLOCK, etc.)
content_id: Unique identifier for the content
searchable_text: Combined text for embedding generation
metadata: Optional metadata to store with embedding
force: Force regeneration even if embedding exists
tx: Optional transaction client
Returns:
True if embedding exists/was created, False on failure
"""
try:
# Check if embedding already exists
if not force:
existing = await get_content_embedding(content_type, content_id, user_id)
if existing and existing.get("embedding"):
logger.debug(
f"Embedding for {content_type}:{content_id} already exists"
)
return True
# Generate new embedding
embedding = await generate_embedding(searchable_text)
if embedding is None:
logger.warning(
f"Could not generate embedding for {content_type}:{content_id}"
)
return False
# Store the embedding
return await store_content_embedding(
content_type=content_type,
content_id=content_id,
embedding=embedding,
searchable_text=searchable_text,
metadata=metadata or {},
user_id=user_id,
tx=tx,
)
except Exception as e:
logger.error(f"Failed to ensure embedding for {content_type}:{content_id}: {e}")
return False

View File

@@ -0,0 +1,329 @@
"""
Integration tests for embeddings with schema handling.
These tests verify that embeddings operations work correctly across different database schemas.
"""
from unittest.mock import AsyncMock, patch
import pytest
from prisma.enums import ContentType
from backend.api.features.store import embeddings
# Schema prefix tests removed - functionality moved to db.raw_with_schema() helper
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_store_content_embedding_with_schema():
"""Test storing embeddings with proper schema handling."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "platform"
with patch("prisma.get_client") as mock_get_client:
mock_client = AsyncMock()
mock_get_client.return_value = mock_client
result = await embeddings.store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id="test-id",
embedding=[0.1] * 1536,
searchable_text="test text",
metadata={"test": "data"},
user_id=None,
)
# Verify the query was called
assert mock_client.execute_raw.called
# Get the SQL query that was executed
call_args = mock_client.execute_raw.call_args
sql_query = call_args[0][0]
# Verify schema prefix is in the query
assert '"platform"."UnifiedContentEmbedding"' in sql_query
# Verify result
assert result is True
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_get_content_embedding_with_schema():
"""Test retrieving embeddings with proper schema handling."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "platform"
with patch("prisma.get_client") as mock_get_client:
mock_client = AsyncMock()
mock_client.query_raw.return_value = [
{
"contentType": "STORE_AGENT",
"contentId": "test-id",
"userId": None,
"embedding": "[0.1, 0.2]",
"searchableText": "test",
"metadata": {},
"createdAt": "2024-01-01",
"updatedAt": "2024-01-01",
}
]
mock_get_client.return_value = mock_client
result = await embeddings.get_content_embedding(
ContentType.STORE_AGENT,
"test-id",
user_id=None,
)
# Verify the query was called
assert mock_client.query_raw.called
# Get the SQL query that was executed
call_args = mock_client.query_raw.call_args
sql_query = call_args[0][0]
# Verify schema prefix is in the query
assert '"platform"."UnifiedContentEmbedding"' in sql_query
# Verify result
assert result is not None
assert result["contentId"] == "test-id"
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_delete_content_embedding_with_schema():
"""Test deleting embeddings with proper schema handling."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "platform"
with patch("prisma.get_client") as mock_get_client:
mock_client = AsyncMock()
mock_get_client.return_value = mock_client
result = await embeddings.delete_content_embedding(
ContentType.STORE_AGENT,
"test-id",
)
# Verify the query was called
assert mock_client.execute_raw.called
# Get the SQL query that was executed
call_args = mock_client.execute_raw.call_args
sql_query = call_args[0][0]
# Verify schema prefix is in the query
assert '"platform"."UnifiedContentEmbedding"' in sql_query
# Verify result
assert result is True
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_get_embedding_stats_with_schema():
"""Test embedding statistics with proper schema handling."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "platform"
with patch("prisma.get_client") as mock_get_client:
mock_client = AsyncMock()
# Mock both query results
mock_client.query_raw.side_effect = [
[{"count": 100}], # total_approved
[{"count": 80}], # with_embeddings
]
mock_get_client.return_value = mock_client
result = await embeddings.get_embedding_stats()
# Verify both queries were called
assert mock_client.query_raw.call_count == 2
# Get both SQL queries
first_call = mock_client.query_raw.call_args_list[0]
second_call = mock_client.query_raw.call_args_list[1]
first_sql = first_call[0][0]
second_sql = second_call[0][0]
# Verify schema prefix in both queries
assert '"platform"."StoreListingVersion"' in first_sql
assert '"platform"."StoreListingVersion"' in second_sql
assert '"platform"."UnifiedContentEmbedding"' in second_sql
# Verify results
assert result["total_approved"] == 100
assert result["with_embeddings"] == 80
assert result["without_embeddings"] == 20
assert result["coverage_percent"] == 80.0
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_backfill_missing_embeddings_with_schema():
"""Test backfilling embeddings with proper schema handling."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "platform"
with patch("prisma.get_client") as mock_get_client:
mock_client = AsyncMock()
# Mock missing embeddings query
mock_client.query_raw.return_value = [
{
"id": "version-1",
"name": "Test Agent",
"description": "Test description",
"subHeading": "Test heading",
"categories": ["test"],
}
]
mock_get_client.return_value = mock_client
with patch(
"backend.api.features.store.embeddings.ensure_embedding"
) as mock_ensure:
mock_ensure.return_value = True
result = await embeddings.backfill_missing_embeddings(batch_size=10)
# Verify the query was called
assert mock_client.query_raw.called
# Get the SQL query
call_args = mock_client.query_raw.call_args
sql_query = call_args[0][0]
# Verify schema prefix in query
assert '"platform"."StoreListingVersion"' in sql_query
assert '"platform"."UnifiedContentEmbedding"' in sql_query
# Verify ensure_embedding was called
assert mock_ensure.called
# Verify results
assert result["processed"] == 1
assert result["success"] == 1
assert result["failed"] == 0
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_ensure_content_embedding_with_schema():
"""Test ensuring embeddings exist with proper schema handling."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "platform"
with patch(
"backend.api.features.store.embeddings.get_content_embedding"
) as mock_get:
# Simulate no existing embedding
mock_get.return_value = None
with patch(
"backend.api.features.store.embeddings.generate_embedding"
) as mock_generate:
mock_generate.return_value = [0.1] * 1536
with patch(
"backend.api.features.store.embeddings.store_content_embedding"
) as mock_store:
mock_store.return_value = True
result = await embeddings.ensure_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id="test-id",
searchable_text="test text",
metadata={"test": "data"},
user_id=None,
force=False,
)
# Verify the flow
assert mock_get.called
assert mock_generate.called
assert mock_store.called
assert result is True
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_backward_compatibility_store_embedding():
"""Test backward compatibility wrapper for store_embedding."""
with patch(
"backend.api.features.store.embeddings.store_content_embedding"
) as mock_store:
mock_store.return_value = True
result = await embeddings.store_embedding(
version_id="test-version-id",
embedding=[0.1] * 1536,
tx=None,
)
# Verify it calls the new function with correct parameters
assert mock_store.called
call_args = mock_store.call_args
assert call_args[1]["content_type"] == ContentType.STORE_AGENT
assert call_args[1]["content_id"] == "test-version-id"
assert call_args[1]["user_id"] is None
assert result is True
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_backward_compatibility_get_embedding():
"""Test backward compatibility wrapper for get_embedding."""
with patch(
"backend.api.features.store.embeddings.get_content_embedding"
) as mock_get:
mock_get.return_value = {
"contentType": "STORE_AGENT",
"contentId": "test-version-id",
"embedding": "[0.1, 0.2]",
"createdAt": "2024-01-01",
"updatedAt": "2024-01-01",
}
result = await embeddings.get_embedding("test-version-id")
# Verify it calls the new function
assert mock_get.called
# Verify it transforms to old format
assert result is not None
assert result["storeListingVersionId"] == "test-version-id"
assert "embedding" in result
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_schema_handling_error_cases():
"""Test error handling in schema-aware operations."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "platform"
with patch("prisma.get_client") as mock_get_client:
mock_client = AsyncMock()
mock_client.execute_raw.side_effect = Exception("Database error")
mock_get_client.return_value = mock_client
result = await embeddings.store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id="test-id",
embedding=[0.1] * 1536,
searchable_text="test",
metadata=None,
user_id=None,
)
# Should return False on error, not raise
assert result is False
if __name__ == "__main__":
pytest.main([__file__, "-v", "-s"])

View File

@@ -0,0 +1,387 @@
from unittest.mock import AsyncMock, MagicMock, patch
import prisma
import pytest
from prisma import Prisma
from prisma.enums import ContentType
from backend.api.features.store import embeddings
@pytest.fixture(autouse=True)
async def setup_prisma():
"""Setup Prisma client for tests."""
try:
Prisma()
except prisma.errors.ClientAlreadyRegisteredError:
pass
yield
@pytest.mark.asyncio(loop_scope="session")
async def test_build_searchable_text():
"""Test searchable text building from listing fields."""
result = embeddings.build_searchable_text(
name="AI Assistant",
description="A helpful AI assistant for productivity",
sub_heading="Boost your productivity",
categories=["AI", "Productivity"],
)
expected = "AI Assistant Boost your productivity A helpful AI assistant for productivity AI Productivity"
assert result == expected
@pytest.mark.asyncio(loop_scope="session")
async def test_build_searchable_text_empty_fields():
"""Test searchable text building with empty fields."""
result = embeddings.build_searchable_text(
name="", description="Test description", sub_heading="", categories=[]
)
assert result == "Test description"
@pytest.mark.asyncio(loop_scope="session")
async def test_generate_embedding_success():
"""Test successful embedding generation."""
# Mock OpenAI response
mock_client = MagicMock()
mock_response = MagicMock()
mock_response.data = [MagicMock()]
mock_response.data[0].embedding = [0.1, 0.2, 0.3] * 512 # 1536 dimensions
# Use AsyncMock for async embeddings.create method
mock_client.embeddings.create = AsyncMock(return_value=mock_response)
# Patch at the point of use in embeddings.py
with patch(
"backend.api.features.store.embeddings.get_openai_client"
) as mock_get_client:
mock_get_client.return_value = mock_client
result = await embeddings.generate_embedding("test text")
assert result is not None
assert len(result) == 1536
assert result[0] == 0.1
mock_client.embeddings.create.assert_called_once_with(
model="text-embedding-3-small", input="test text"
)
@pytest.mark.asyncio(loop_scope="session")
async def test_generate_embedding_no_api_key():
"""Test embedding generation without API key."""
# Patch at the point of use in embeddings.py
with patch(
"backend.api.features.store.embeddings.get_openai_client"
) as mock_get_client:
mock_get_client.return_value = None
result = await embeddings.generate_embedding("test text")
assert result is None
@pytest.mark.asyncio(loop_scope="session")
async def test_generate_embedding_api_error():
"""Test embedding generation with API error."""
mock_client = MagicMock()
mock_client.embeddings.create = AsyncMock(side_effect=Exception("API Error"))
# Patch at the point of use in embeddings.py
with patch(
"backend.api.features.store.embeddings.get_openai_client"
) as mock_get_client:
mock_get_client.return_value = mock_client
result = await embeddings.generate_embedding("test text")
assert result is None
@pytest.mark.asyncio(loop_scope="session")
async def test_generate_embedding_text_truncation():
"""Test that long text is properly truncated using tiktoken."""
from tiktoken import encoding_for_model
mock_client = MagicMock()
mock_response = MagicMock()
mock_response.data = [MagicMock()]
mock_response.data[0].embedding = [0.1] * 1536
# Use AsyncMock for async embeddings.create method
mock_client.embeddings.create = AsyncMock(return_value=mock_response)
# Patch at the point of use in embeddings.py
with patch(
"backend.api.features.store.embeddings.get_openai_client"
) as mock_get_client:
mock_get_client.return_value = mock_client
# Create text that will exceed 8191 tokens
# Use varied characters to ensure token-heavy text: each word is ~1 token
words = [f"word{i}" for i in range(10000)]
long_text = " ".join(words) # ~10000 tokens
await embeddings.generate_embedding(long_text)
# Verify text was truncated to 8191 tokens
call_args = mock_client.embeddings.create.call_args
truncated_text = call_args.kwargs["input"]
# Count actual tokens in truncated text
enc = encoding_for_model("text-embedding-3-small")
actual_tokens = len(enc.encode(truncated_text))
# Should be at or just under 8191 tokens
assert actual_tokens <= 8191
# Should be close to the limit (not over-truncated)
assert actual_tokens >= 8100
@pytest.mark.asyncio(loop_scope="session")
async def test_store_embedding_success(mocker):
"""Test successful embedding storage."""
mock_client = mocker.AsyncMock()
mock_client.execute_raw = mocker.AsyncMock()
embedding = [0.1, 0.2, 0.3]
result = await embeddings.store_embedding(
version_id="test-version-id", embedding=embedding, tx=mock_client
)
assert result is True
# execute_raw is called twice: once for SET search_path, once for INSERT
assert mock_client.execute_raw.call_count == 2
# First call: SET search_path
first_call_args = mock_client.execute_raw.call_args_list[0][0]
assert "SET search_path" in first_call_args[0]
# Second call: INSERT query with the actual data
second_call_args = mock_client.execute_raw.call_args_list[1][0]
assert "test-version-id" in second_call_args
assert "[0.1,0.2,0.3]" in second_call_args
assert None in second_call_args # userId should be None for store agents
@pytest.mark.asyncio(loop_scope="session")
async def test_store_embedding_database_error(mocker):
"""Test embedding storage with database error."""
mock_client = mocker.AsyncMock()
mock_client.execute_raw.side_effect = Exception("Database error")
embedding = [0.1, 0.2, 0.3]
result = await embeddings.store_embedding(
version_id="test-version-id", embedding=embedding, tx=mock_client
)
assert result is False
@pytest.mark.asyncio(loop_scope="session")
async def test_get_embedding_success():
"""Test successful embedding retrieval."""
mock_result = [
{
"contentType": "STORE_AGENT",
"contentId": "test-version-id",
"userId": None,
"embedding": "[0.1,0.2,0.3]",
"searchableText": "Test text",
"metadata": {},
"createdAt": "2024-01-01T00:00:00Z",
"updatedAt": "2024-01-01T00:00:00Z",
}
]
with patch(
"backend.api.features.store.embeddings.query_raw_with_schema",
return_value=mock_result,
):
result = await embeddings.get_embedding("test-version-id")
assert result is not None
assert result["storeListingVersionId"] == "test-version-id"
assert result["embedding"] == "[0.1,0.2,0.3]"
@pytest.mark.asyncio(loop_scope="session")
async def test_get_embedding_not_found():
"""Test embedding retrieval when not found."""
with patch(
"backend.api.features.store.embeddings.query_raw_with_schema",
return_value=[],
):
result = await embeddings.get_embedding("test-version-id")
assert result is None
@pytest.mark.asyncio(loop_scope="session")
@patch("backend.api.features.store.embeddings.generate_embedding")
@patch("backend.api.features.store.embeddings.store_embedding")
@patch("backend.api.features.store.embeddings.get_embedding")
async def test_ensure_embedding_already_exists(mock_get, mock_store, mock_generate):
"""Test ensure_embedding when embedding already exists."""
mock_get.return_value = {"embedding": "[0.1,0.2,0.3]"}
result = await embeddings.ensure_embedding(
version_id="test-id",
name="Test",
description="Test description",
sub_heading="Test heading",
categories=["test"],
)
assert result is True
mock_generate.assert_not_called()
mock_store.assert_not_called()
@pytest.mark.asyncio(loop_scope="session")
@patch("backend.api.features.store.embeddings.generate_embedding")
@patch("backend.api.features.store.embeddings.store_content_embedding")
@patch("backend.api.features.store.embeddings.get_embedding")
async def test_ensure_embedding_create_new(mock_get, mock_store, mock_generate):
"""Test ensure_embedding creating new embedding."""
mock_get.return_value = None
mock_generate.return_value = [0.1, 0.2, 0.3]
mock_store.return_value = True
result = await embeddings.ensure_embedding(
version_id="test-id",
name="Test",
description="Test description",
sub_heading="Test heading",
categories=["test"],
)
assert result is True
mock_generate.assert_called_once_with("Test Test heading Test description test")
mock_store.assert_called_once_with(
content_type=ContentType.STORE_AGENT,
content_id="test-id",
embedding=[0.1, 0.2, 0.3],
searchable_text="Test Test heading Test description test",
metadata={"name": "Test", "subHeading": "Test heading", "categories": ["test"]},
user_id=None,
tx=None,
)
@pytest.mark.asyncio(loop_scope="session")
@patch("backend.api.features.store.embeddings.generate_embedding")
@patch("backend.api.features.store.embeddings.get_embedding")
async def test_ensure_embedding_generation_fails(mock_get, mock_generate):
"""Test ensure_embedding when generation fails."""
mock_get.return_value = None
mock_generate.return_value = None
result = await embeddings.ensure_embedding(
version_id="test-id",
name="Test",
description="Test description",
sub_heading="Test heading",
categories=["test"],
)
assert result is False
@pytest.mark.asyncio(loop_scope="session")
async def test_get_embedding_stats():
"""Test embedding statistics retrieval."""
# Mock approved count query and embedded count query
mock_approved_result = [{"count": 100}]
mock_embedded_result = [{"count": 75}]
with patch(
"backend.api.features.store.embeddings.query_raw_with_schema",
side_effect=[mock_approved_result, mock_embedded_result],
):
result = await embeddings.get_embedding_stats()
assert result["total_approved"] == 100
assert result["with_embeddings"] == 75
assert result["without_embeddings"] == 25
assert result["coverage_percent"] == 75.0
@pytest.mark.asyncio(loop_scope="session")
@patch("backend.api.features.store.embeddings.ensure_embedding")
async def test_backfill_missing_embeddings_success(mock_ensure):
"""Test backfill with successful embedding generation."""
# Mock missing embeddings query
mock_missing = [
{
"id": "version-1",
"name": "Agent 1",
"description": "Description 1",
"subHeading": "Heading 1",
"categories": ["AI"],
},
{
"id": "version-2",
"name": "Agent 2",
"description": "Description 2",
"subHeading": "Heading 2",
"categories": ["Productivity"],
},
]
# Mock ensure_embedding to succeed for first, fail for second
mock_ensure.side_effect = [True, False]
with patch(
"backend.api.features.store.embeddings.query_raw_with_schema",
return_value=mock_missing,
):
result = await embeddings.backfill_missing_embeddings(batch_size=5)
assert result["processed"] == 2
assert result["success"] == 1
assert result["failed"] == 1
assert mock_ensure.call_count == 2
@pytest.mark.asyncio(loop_scope="session")
async def test_backfill_missing_embeddings_no_missing():
"""Test backfill when no embeddings are missing."""
with patch(
"backend.api.features.store.embeddings.query_raw_with_schema",
return_value=[],
):
result = await embeddings.backfill_missing_embeddings(batch_size=5)
assert result["processed"] == 0
assert result["success"] == 0
assert result["failed"] == 0
assert result["message"] == "No missing embeddings"
@pytest.mark.asyncio(loop_scope="session")
async def test_embedding_to_vector_string():
"""Test embedding to PostgreSQL vector string conversion."""
embedding = [0.1, 0.2, 0.3, -0.4]
result = embeddings.embedding_to_vector_string(embedding)
assert result == "[0.1,0.2,0.3,-0.4]"
@pytest.mark.asyncio(loop_scope="session")
async def test_embed_query():
"""Test embed_query function (alias for generate_embedding)."""
with patch(
"backend.api.features.store.embeddings.generate_embedding"
) as mock_generate:
mock_generate.return_value = [0.1, 0.2, 0.3]
result = await embeddings.embed_query("test query")
assert result == [0.1, 0.2, 0.3]
mock_generate.assert_called_once_with("test query")

View File

@@ -0,0 +1,393 @@
"""
Hybrid Search for Store Agents
Combines semantic (embedding) search with lexical (tsvector) search
for improved relevance in marketplace agent discovery.
"""
import logging
from dataclasses import dataclass
from datetime import datetime
from typing import Any, Literal
from backend.api.features.store.embeddings import (
embed_query,
embedding_to_vector_string,
)
from backend.data.db import query_raw_with_schema
logger = logging.getLogger(__name__)
@dataclass
class HybridSearchWeights:
"""Weights for combining search signals."""
semantic: float = 0.30 # Embedding cosine similarity
lexical: float = 0.30 # tsvector ts_rank_cd score
category: float = 0.20 # Category match boost
recency: float = 0.10 # Newer agents ranked higher
popularity: float = 0.10 # Agent usage/runs (PageRank-like)
def __post_init__(self):
"""Validate weights are non-negative and sum to approximately 1.0."""
total = (
self.semantic
+ self.lexical
+ self.category
+ self.recency
+ self.popularity
)
if any(
w < 0
for w in [
self.semantic,
self.lexical,
self.category,
self.recency,
self.popularity,
]
):
raise ValueError("All weights must be non-negative")
if not (0.99 <= total <= 1.01):
raise ValueError(f"Weights must sum to ~1.0, got {total:.3f}")
DEFAULT_WEIGHTS = HybridSearchWeights()
# Minimum relevance score threshold - agents below this are filtered out
# With weights (0.30 semantic + 0.30 lexical + 0.20 category + 0.10 recency + 0.10 popularity):
# - 0.20 means at least ~60% semantic match OR strong lexical match required
# - Ensures only genuinely relevant results are returned
# - Recency/popularity alone (0.10 each) won't pass the threshold
DEFAULT_MIN_SCORE = 0.20
@dataclass
class HybridSearchResult:
"""A single search result with score breakdown."""
slug: str
agent_name: str
agent_image: str
creator_username: str
creator_avatar: str
sub_heading: str
description: str
runs: int
rating: float
categories: list[str]
featured: bool
is_available: bool
updated_at: datetime
# Score breakdown (for debugging/tuning)
combined_score: float
semantic_score: float = 0.0
lexical_score: float = 0.0
category_score: float = 0.0
recency_score: float = 0.0
popularity_score: float = 0.0
async def hybrid_search(
query: str,
featured: bool = False,
creators: list[str] | None = None,
category: str | None = None,
sorted_by: (
Literal["relevance", "rating", "runs", "name", "updated_at"] | None
) = None,
page: int = 1,
page_size: int = 20,
weights: HybridSearchWeights | None = None,
min_score: float | None = None,
) -> tuple[list[dict[str, Any]], int]:
"""
Perform hybrid search combining semantic and lexical signals.
Args:
query: Search query string
featured: Filter for featured agents only
creators: Filter by creator usernames
category: Filter by category
sorted_by: Sort order (relevance uses hybrid scoring)
page: Page number (1-indexed)
page_size: Results per page
weights: Custom weights for search signals
min_score: Minimum relevance score threshold (0-1). Results below
this score are filtered out. Defaults to DEFAULT_MIN_SCORE.
Returns:
Tuple of (results list, total count). Returns empty list if no
results meet the minimum relevance threshold.
"""
# Validate inputs
query = query.strip()
if not query:
return [], 0 # Empty query returns no results
if page < 1:
page = 1
if page_size < 1:
page_size = 1
if page_size > 100: # Cap at reasonable limit to prevent performance issues
page_size = 100
if weights is None:
weights = DEFAULT_WEIGHTS
if min_score is None:
min_score = DEFAULT_MIN_SCORE
offset = (page - 1) * page_size
# Generate query embedding
query_embedding = await embed_query(query)
# Build WHERE clause conditions
where_parts: list[str] = ["sa.is_available = true"]
params: list[Any] = []
param_index = 1
# Add search query for lexical matching
params.append(query)
query_param = f"${param_index}"
param_index += 1
# Add lowercased query for category matching
params.append(query.lower())
query_lower_param = f"${param_index}"
param_index += 1
if featured:
where_parts.append("sa.featured = true")
if creators:
where_parts.append(f"sa.creator_username = ANY(${param_index})")
params.append(creators)
param_index += 1
if category:
where_parts.append(f"${param_index} = ANY(sa.categories)")
params.append(category)
param_index += 1
# Safe: where_parts only contains hardcoded strings with $N parameter placeholders
# No user input is concatenated directly into the SQL string
where_clause = " AND ".join(where_parts)
# Embedding is required for hybrid search - fail fast if unavailable
if query_embedding is None or not query_embedding:
# Log detailed error server-side
logger.error(
"Failed to generate query embedding. "
"Check that openai_internal_api_key is configured and OpenAI API is accessible."
)
# Raise generic error to client
raise ValueError("Search service temporarily unavailable")
# Add embedding parameter
embedding_str = embedding_to_vector_string(query_embedding)
params.append(embedding_str)
embedding_param = f"${param_index}"
param_index += 1
# Add weight parameters for SQL calculation
params.append(weights.semantic)
weight_semantic_param = f"${param_index}"
param_index += 1
params.append(weights.lexical)
weight_lexical_param = f"${param_index}"
param_index += 1
params.append(weights.category)
weight_category_param = f"${param_index}"
param_index += 1
params.append(weights.recency)
weight_recency_param = f"${param_index}"
param_index += 1
params.append(weights.popularity)
weight_popularity_param = f"${param_index}"
param_index += 1
# Add min_score parameter
params.append(min_score)
min_score_param = f"${param_index}"
param_index += 1
# Optimized hybrid search query:
# 1. Direct join to UnifiedContentEmbedding via contentId=storeListingVersionId (no redundant JOINs)
# 2. UNION approach (deduplicates agents matching both branches)
# 3. COUNT(*) OVER() to get total count in single query
# 4. Optimized category matching with EXISTS + unnest
# 5. Pre-calculated max values for lexical and popularity normalization
# 6. Simplified recency calculation with linear decay
# 7. Logarithmic popularity scaling to prevent viral agents from dominating
sql_query = f"""
WITH candidates AS (
-- Lexical matches (uses GIN index on search column)
SELECT sa."storeListingVersionId"
FROM {{schema_prefix}}"StoreAgent" sa
WHERE {where_clause}
AND sa.search @@ plainto_tsquery('english', {query_param})
UNION
-- Semantic matches (uses HNSW index on embedding with KNN)
SELECT "storeListingVersionId"
FROM (
SELECT sa."storeListingVersionId", uce.embedding
FROM {{schema_prefix}}"StoreAgent" sa
INNER JOIN {{schema_prefix}}"UnifiedContentEmbedding" uce
ON sa."storeListingVersionId" = uce."contentId" AND uce."contentType" = 'STORE_AGENT'::{{schema_prefix}}"ContentType"
WHERE {where_clause}
ORDER BY uce.embedding <=> {embedding_param}::vector
LIMIT 200
) semantic_results
),
search_scores AS (
SELECT
sa.slug,
sa.agent_name,
sa.agent_image,
sa.creator_username,
sa.creator_avatar,
sa.sub_heading,
sa.description,
sa.runs,
sa.rating,
sa.categories,
sa.featured,
sa.is_available,
sa.updated_at,
-- Semantic score: cosine similarity (1 - distance)
COALESCE(1 - (uce.embedding <=> {embedding_param}::vector), 0) as semantic_score,
-- Lexical score: ts_rank_cd (will be normalized later)
COALESCE(ts_rank_cd(sa.search, plainto_tsquery('english', {query_param})), 0) as lexical_raw,
-- Category match: optimized with unnest for better performance
CASE
WHEN EXISTS (
SELECT 1 FROM unnest(sa.categories) cat
WHERE LOWER(cat) LIKE '%' || {query_lower_param} || '%'
)
THEN 1.0
ELSE 0.0
END as category_score,
-- Recency score: linear decay over 90 days (simpler than exponential)
GREATEST(0, 1 - EXTRACT(EPOCH FROM (NOW() - sa.updated_at)) / (90 * 24 * 3600)) as recency_score,
-- Popularity raw: agent runs count (will be normalized with log scaling)
sa.runs as popularity_raw
FROM candidates c
INNER JOIN {{schema_prefix}}"StoreAgent" sa
ON c."storeListingVersionId" = sa."storeListingVersionId"
LEFT JOIN {{schema_prefix}}"UnifiedContentEmbedding" uce
ON sa."storeListingVersionId" = uce."contentId" AND uce."contentType" = 'STORE_AGENT'::{{schema_prefix}}"ContentType"
),
max_lexical AS (
SELECT MAX(lexical_raw) as max_val FROM search_scores
),
max_popularity AS (
SELECT MAX(popularity_raw) as max_val FROM search_scores
),
normalized AS (
SELECT
ss.*,
-- Normalize lexical score by pre-calculated max
CASE
WHEN ml.max_val > 0
THEN ss.lexical_raw / ml.max_val
ELSE 0
END as lexical_score,
-- Normalize popularity with logarithmic scaling to prevent viral agents from dominating
-- LOG(1 + runs) / LOG(1 + max_runs) ensures score is 0-1 range
CASE
WHEN mp.max_val > 0 AND ss.popularity_raw > 0
THEN LN(1 + ss.popularity_raw) / LN(1 + mp.max_val)
ELSE 0
END as popularity_score
FROM search_scores ss
CROSS JOIN max_lexical ml
CROSS JOIN max_popularity mp
),
scored AS (
SELECT
slug,
agent_name,
agent_image,
creator_username,
creator_avatar,
sub_heading,
description,
runs,
rating,
categories,
featured,
is_available,
updated_at,
semantic_score,
lexical_score,
category_score,
recency_score,
popularity_score,
(
{weight_semantic_param} * semantic_score +
{weight_lexical_param} * lexical_score +
{weight_category_param} * category_score +
{weight_recency_param} * recency_score +
{weight_popularity_param} * popularity_score
) as combined_score
FROM normalized
),
filtered AS (
SELECT
*,
COUNT(*) OVER () as total_count
FROM scored
WHERE combined_score >= {min_score_param}
)
SELECT * FROM filtered
ORDER BY combined_score DESC
LIMIT ${param_index} OFFSET ${param_index + 1}
"""
# Add pagination params
params.extend([page_size, offset])
# Execute search query - includes total_count via window function
results = await query_raw_with_schema(
sql_query, *params, set_public_search_path=True
)
# Extract total count from first result (all rows have same count)
total = results[0]["total_count"] if results else 0
# Remove total_count from results before returning
for result in results:
result.pop("total_count", None)
# Log without sensitive query content
logger.info(f"Hybrid search: {len(results)} results, {total} total")
return results, total
async def hybrid_search_simple(
query: str,
page: int = 1,
page_size: int = 20,
) -> tuple[list[dict[str, Any]], int]:
"""
Simplified hybrid search for common use cases.
Uses default weights and no filters.
"""
return await hybrid_search(
query=query,
page=page,
page_size=page_size,
)

View File

@@ -0,0 +1,334 @@
"""
Integration tests for hybrid search with schema handling.
These tests verify that hybrid search works correctly across different database schemas.
"""
from unittest.mock import patch
import pytest
from backend.api.features.store.hybrid_search import HybridSearchWeights, hybrid_search
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_with_schema_handling():
"""Test that hybrid search correctly handles database schema prefixes."""
# Test with a mock query to ensure schema handling works
query = "test agent"
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
# Mock the query result
mock_query.return_value = [
{
"slug": "test/agent",
"agent_name": "Test Agent",
"agent_image": "test.png",
"creator_username": "test",
"creator_avatar": "avatar.png",
"sub_heading": "Test sub-heading",
"description": "Test description",
"runs": 10,
"rating": 4.5,
"categories": ["test"],
"featured": False,
"is_available": True,
"updated_at": "2024-01-01T00:00:00Z",
"combined_score": 0.8,
"semantic_score": 0.7,
"lexical_score": 0.6,
"category_score": 0.5,
"recency_score": 0.4,
"total_count": 1,
}
]
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536 # Mock embedding
results, total = await hybrid_search(
query=query,
page=1,
page_size=20,
)
# Verify the query was called
assert mock_query.called
# Verify the SQL template uses schema_prefix placeholder
call_args = mock_query.call_args
sql_template = call_args[0][0]
assert "{schema_prefix}" in sql_template
# Verify results
assert len(results) == 1
assert total == 1
assert results[0]["slug"] == "test/agent"
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_with_public_schema():
"""Test hybrid search when using public schema (no prefix needed)."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "public"
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
mock_query.return_value = []
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536
results, total = await hybrid_search(
query="test",
page=1,
page_size=20,
)
# Verify the mock was set up correctly
assert mock_schema.return_value == "public"
# Results should work even with empty results
assert results == []
assert total == 0
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_with_custom_schema():
"""Test hybrid search when using custom schema (e.g., 'platform')."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "platform"
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
mock_query.return_value = []
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536
results, total = await hybrid_search(
query="test",
page=1,
page_size=20,
)
# Verify the mock was set up correctly
assert mock_schema.return_value == "platform"
assert results == []
assert total == 0
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_without_embeddings():
"""Test hybrid search fails fast when embeddings are unavailable."""
# Patch where the function is used, not where it's defined
with patch("backend.api.features.store.hybrid_search.embed_query") as mock_embed:
# Simulate embedding failure
mock_embed.return_value = None
# Should raise ValueError with helpful message
with pytest.raises(ValueError) as exc_info:
await hybrid_search(
query="test",
page=1,
page_size=20,
)
# Verify error message is generic (doesn't leak implementation details)
assert "Search service temporarily unavailable" in str(exc_info.value)
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_with_filters():
"""Test hybrid search with various filters."""
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
mock_query.return_value = []
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536
# Test with featured filter
results, total = await hybrid_search(
query="test",
featured=True,
creators=["user1", "user2"],
category="productivity",
page=1,
page_size=10,
)
# Verify filters were applied in the query
call_args = mock_query.call_args
params = call_args[0][1:] # Skip SQL template
# Should have query, query_lower, creators array, category
assert len(params) >= 4
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_weights():
"""Test hybrid search with custom weights."""
custom_weights = HybridSearchWeights(
semantic=0.5,
lexical=0.3,
category=0.1,
recency=0.1,
popularity=0.0,
)
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
mock_query.return_value = []
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536
results, total = await hybrid_search(
query="test",
weights=custom_weights,
page=1,
page_size=20,
)
# Verify custom weights were used in the query
call_args = mock_query.call_args
sql_template = call_args[0][0]
params = call_args[0][1:] # Get all parameters passed
# Check that SQL uses parameterized weights (not f-string interpolation)
assert "$" in sql_template # Verify parameterization is used
# Check that custom weights are in the params
assert 0.5 in params # semantic weight
assert 0.3 in params # lexical weight
assert 0.1 in params # category and recency weights
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_min_score_filtering():
"""Test hybrid search minimum score threshold."""
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
# Return results with varying scores
mock_query.return_value = [
{
"slug": "high-score/agent",
"agent_name": "High Score Agent",
"combined_score": 0.8,
"total_count": 1,
# ... other fields
}
]
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536
# Test with custom min_score
results, total = await hybrid_search(
query="test",
min_score=0.5, # High threshold
page=1,
page_size=20,
)
# Verify min_score was applied in query
call_args = mock_query.call_args
sql_template = call_args[0][0]
params = call_args[0][1:] # Get all parameters
# Check that SQL uses parameterized min_score
assert "combined_score >=" in sql_template
assert "$" in sql_template # Verify parameterization
# Check that custom min_score is in the params
assert 0.5 in params
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_pagination():
"""Test hybrid search pagination."""
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
mock_query.return_value = []
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536
# Test page 2 with page_size 10
results, total = await hybrid_search(
query="test",
page=2,
page_size=10,
)
# Verify pagination parameters
call_args = mock_query.call_args
params = call_args[0]
# Last two params should be LIMIT and OFFSET
limit = params[-2]
offset = params[-1]
assert limit == 10 # page_size
assert offset == 10 # (page - 1) * page_size = (2 - 1) * 10
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_error_handling():
"""Test hybrid search error handling."""
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
# Simulate database error
mock_query.side_effect = Exception("Database connection error")
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536
# Should raise exception
with pytest.raises(Exception) as exc_info:
await hybrid_search(
query="test",
page=1,
page_size=20,
)
assert "Database connection error" in str(exc_info.value)
if __name__ == "__main__":
pytest.main([__file__, "-v", "-s"])

View File

@@ -64,7 +64,6 @@ from backend.data.onboarding import (
complete_re_run_agent,
get_recommended_agents,
get_user_onboarding,
increment_runs,
onboarding_enabled,
reset_user_onboarding,
update_user_onboarding,
@@ -975,7 +974,6 @@ async def execute_graph(
# Record successful graph execution
record_graph_execution(graph_id=graph_id, status="success", user_id=user_id)
record_graph_operation(operation="execute", status="success")
await increment_runs(user_id)
await complete_re_run_agent(user_id, graph_id)
if source == "library":
await complete_onboarding_step(

View File

@@ -38,6 +38,20 @@ POOL_TIMEOUT = os.getenv("DB_POOL_TIMEOUT")
if POOL_TIMEOUT:
DATABASE_URL = add_param(DATABASE_URL, "pool_timeout", POOL_TIMEOUT)
# Add public schema to search_path for pgvector type access
# The vector extension is in public schema, but search_path is determined by schema parameter
# Extract the schema from DATABASE_URL or default to 'public' (matching get_database_schema())
parsed_url = urlparse(DATABASE_URL)
url_params = dict(parse_qsl(parsed_url.query))
db_schema = url_params.get("schema", "public")
# Build search_path, avoiding duplicates if db_schema is already 'public'
search_path_schemas = list(
dict.fromkeys([db_schema, "public"])
) # Preserves order, removes duplicates
search_path = ",".join(search_path_schemas)
# This allows using ::vector without schema qualification
DATABASE_URL = add_param(DATABASE_URL, "options", f"-c search_path={search_path}")
HTTP_TIMEOUT = int(POOL_TIMEOUT) if POOL_TIMEOUT else None
prisma = Prisma(
@@ -108,21 +122,102 @@ def get_database_schema() -> str:
return query_params.get("schema", "public")
async def query_raw_with_schema(query_template: str, *args) -> list[dict]:
"""Execute raw SQL query with proper schema handling."""
async def _raw_with_schema(
query_template: str,
*args,
execute: bool = False,
client: Prisma | None = None,
set_public_search_path: bool = False,
) -> list[dict] | int:
"""Internal: Execute raw SQL with proper schema handling.
Use query_raw_with_schema() or execute_raw_with_schema() instead.
Args:
query_template: SQL query with {schema_prefix} placeholder
*args: Query parameters
execute: If False, executes SELECT query. If True, executes INSERT/UPDATE/DELETE.
client: Optional Prisma client for transactions (only used when execute=True).
set_public_search_path: If True, sets search_path to include public schema.
Needed for pgvector types and other public schema objects.
Returns:
- list[dict] if execute=False (query results)
- int if execute=True (number of affected rows)
"""
schema = get_database_schema()
schema_prefix = f'"{schema}".' if schema != "public" else ""
formatted_query = query_template.format(schema_prefix=schema_prefix)
import prisma as prisma_module
result = await prisma_module.get_client().query_raw(
formatted_query, *args # type: ignore
)
db_client = client if client else prisma_module.get_client()
# Set search_path to include public schema if requested
# Prisma doesn't support the 'options' connection parameter, so we set it per-session
# This is idempotent and safe to call multiple times
if set_public_search_path:
await db_client.execute_raw(f"SET search_path = {schema}, public") # type: ignore
if execute:
result = await db_client.execute_raw(formatted_query, *args) # type: ignore
else:
result = await db_client.query_raw(formatted_query, *args) # type: ignore
return result
async def query_raw_with_schema(
query_template: str, *args, set_public_search_path: bool = False
) -> list[dict]:
"""Execute raw SQL SELECT query with proper schema handling.
Args:
query_template: SQL query with {schema_prefix} placeholder
*args: Query parameters
set_public_search_path: If True, sets search_path to include public schema.
Needed for pgvector types and other public schema objects.
Returns:
List of result rows as dictionaries
Example:
results = await query_raw_with_schema(
'SELECT * FROM {schema_prefix}"User" WHERE id = $1',
user_id
)
"""
return await _raw_with_schema(query_template, *args, execute=False, set_public_search_path=set_public_search_path) # type: ignore
async def execute_raw_with_schema(
query_template: str,
*args,
client: Prisma | None = None,
set_public_search_path: bool = False,
) -> int:
"""Execute raw SQL command (INSERT/UPDATE/DELETE) with proper schema handling.
Args:
query_template: SQL query with {schema_prefix} placeholder
*args: Query parameters
client: Optional Prisma client for transactions
set_public_search_path: If True, sets search_path to include public schema.
Needed for pgvector types and other public schema objects.
Returns:
Number of affected rows
Example:
await execute_raw_with_schema(
'INSERT INTO {schema_prefix}"User" (id, name) VALUES ($1, $2)',
user_id, name,
client=tx # Optional transaction client
)
"""
return await _raw_with_schema(query_template, *args, execute=True, client=client, set_public_search_path=set_public_search_path) # type: ignore
class BaseDbModel(BaseModel):
id: str = Field(default_factory=lambda: str(uuid4()))

View File

@@ -1,5 +1,6 @@
import json
from typing import Any
from unittest.mock import AsyncMock, patch
from uuid import UUID
import fastapi.exceptions
@@ -18,6 +19,17 @@ from backend.usecases.sample import create_test_user
from backend.util.test import SpinTestServer
@pytest.fixture(scope="session", autouse=True)
def mock_embedding_functions():
"""Mock embedding functions for all tests to avoid database/API dependencies."""
with patch(
"backend.api.features.store.db.ensure_embedding",
new_callable=AsyncMock,
return_value=True,
):
yield
@pytest.mark.asyncio(loop_scope="session")
async def test_graph_creation(server: SpinTestServer, snapshot: Snapshot):
"""

View File

@@ -334,7 +334,7 @@ async def _get_user_timezone(user_id: str) -> str:
return get_user_timezone_or_utc(user.timezone if user else None)
async def increment_runs(user_id: str):
async def increment_onboarding_runs(user_id: str):
"""
Increment a user's run counters and trigger any onboarding milestones.
"""

View File

@@ -0,0 +1,404 @@
"""Data models and access layer for user business understanding."""
import logging
from datetime import datetime
from typing import Any, Optional, cast
import pydantic
from prisma.models import CoPilotUnderstanding
from backend.data.redis_client import get_redis_async
from backend.util.json import SafeJson
logger = logging.getLogger(__name__)
# Cache configuration
CACHE_KEY_PREFIX = "understanding"
CACHE_TTL_SECONDS = 48 * 60 * 60 # 48 hours
def _cache_key(user_id: str) -> str:
"""Generate cache key for user business understanding."""
return f"{CACHE_KEY_PREFIX}:{user_id}"
def _json_to_list(value: Any) -> list[str]:
"""Convert Json field to list[str], handling None."""
if value is None:
return []
if isinstance(value, list):
return cast(list[str], value)
return []
class BusinessUnderstandingInput(pydantic.BaseModel):
"""Input model for updating business understanding - all fields optional for incremental updates."""
# User info
user_name: Optional[str] = pydantic.Field(None, description="The user's name")
job_title: Optional[str] = pydantic.Field(None, description="The user's job title")
# Business basics
business_name: Optional[str] = pydantic.Field(
None, description="Name of the user's business"
)
industry: Optional[str] = pydantic.Field(None, description="Industry or sector")
business_size: Optional[str] = pydantic.Field(
None, description="Company size (e.g., '1-10', '11-50')"
)
user_role: Optional[str] = pydantic.Field(
None,
description="User's role in the organization (e.g., 'decision maker', 'implementer')",
)
# Processes & activities
key_workflows: Optional[list[str]] = pydantic.Field(
None, description="Key business workflows"
)
daily_activities: Optional[list[str]] = pydantic.Field(
None, description="Daily activities performed"
)
# Pain points & goals
pain_points: Optional[list[str]] = pydantic.Field(
None, description="Current pain points"
)
bottlenecks: Optional[list[str]] = pydantic.Field(
None, description="Process bottlenecks"
)
manual_tasks: Optional[list[str]] = pydantic.Field(
None, description="Manual/repetitive tasks"
)
automation_goals: Optional[list[str]] = pydantic.Field(
None, description="Desired automation goals"
)
# Current tools
current_software: Optional[list[str]] = pydantic.Field(
None, description="Software/tools currently used"
)
existing_automation: Optional[list[str]] = pydantic.Field(
None, description="Existing automations"
)
# Additional context
additional_notes: Optional[str] = pydantic.Field(
None, description="Any additional context"
)
class BusinessUnderstanding(pydantic.BaseModel):
"""Full business understanding model returned from database."""
id: str
user_id: str
created_at: datetime
updated_at: datetime
# User info
user_name: Optional[str] = None
job_title: Optional[str] = None
# Business basics
business_name: Optional[str] = None
industry: Optional[str] = None
business_size: Optional[str] = None
user_role: Optional[str] = None
# Processes & activities
key_workflows: list[str] = pydantic.Field(default_factory=list)
daily_activities: list[str] = pydantic.Field(default_factory=list)
# Pain points & goals
pain_points: list[str] = pydantic.Field(default_factory=list)
bottlenecks: list[str] = pydantic.Field(default_factory=list)
manual_tasks: list[str] = pydantic.Field(default_factory=list)
automation_goals: list[str] = pydantic.Field(default_factory=list)
# Current tools
current_software: list[str] = pydantic.Field(default_factory=list)
existing_automation: list[str] = pydantic.Field(default_factory=list)
# Additional context
additional_notes: Optional[str] = None
@classmethod
def from_db(cls, db_record: CoPilotUnderstanding) -> "BusinessUnderstanding":
"""Convert database record to Pydantic model."""
data = db_record.data if isinstance(db_record.data, dict) else {}
business = (
data.get("business", {}) if isinstance(data.get("business"), dict) else {}
)
return cls(
id=db_record.id,
user_id=db_record.userId,
created_at=db_record.createdAt,
updated_at=db_record.updatedAt,
user_name=data.get("name"),
job_title=business.get("job_title"),
business_name=business.get("business_name"),
industry=business.get("industry"),
business_size=business.get("business_size"),
user_role=business.get("user_role"),
key_workflows=_json_to_list(business.get("key_workflows")),
daily_activities=_json_to_list(business.get("daily_activities")),
pain_points=_json_to_list(business.get("pain_points")),
bottlenecks=_json_to_list(business.get("bottlenecks")),
manual_tasks=_json_to_list(business.get("manual_tasks")),
automation_goals=_json_to_list(business.get("automation_goals")),
current_software=_json_to_list(business.get("current_software")),
existing_automation=_json_to_list(business.get("existing_automation")),
additional_notes=business.get("additional_notes"),
)
def _merge_lists(existing: list | None, new: list | None) -> list | None:
"""Merge two lists, removing duplicates while preserving order."""
if new is None:
return existing
if existing is None:
return new
# Preserve order, add new items that don't exist
merged = list(existing)
for item in new:
if item not in merged:
merged.append(item)
return merged
async def _get_from_cache(user_id: str) -> Optional[BusinessUnderstanding]:
"""Get business understanding from Redis cache."""
try:
redis = await get_redis_async()
cached_data = await redis.get(_cache_key(user_id))
if cached_data:
return BusinessUnderstanding.model_validate_json(cached_data)
except Exception as e:
logger.warning(f"Failed to get understanding from cache: {e}")
return None
async def _set_cache(user_id: str, understanding: BusinessUnderstanding) -> None:
"""Set business understanding in Redis cache with TTL."""
try:
redis = await get_redis_async()
await redis.setex(
_cache_key(user_id),
CACHE_TTL_SECONDS,
understanding.model_dump_json(),
)
except Exception as e:
logger.warning(f"Failed to set understanding in cache: {e}")
async def _delete_cache(user_id: str) -> None:
"""Delete business understanding from Redis cache."""
try:
redis = await get_redis_async()
await redis.delete(_cache_key(user_id))
except Exception as e:
logger.warning(f"Failed to delete understanding from cache: {e}")
async def get_business_understanding(
user_id: str,
) -> Optional[BusinessUnderstanding]:
"""Get the business understanding for a user.
Checks cache first, falls back to database if not cached.
Results are cached for 48 hours.
"""
# Try cache first
cached = await _get_from_cache(user_id)
if cached:
logger.debug(f"Business understanding cache hit for user {user_id}")
return cached
# Cache miss - load from database
logger.debug(f"Business understanding cache miss for user {user_id}")
record = await CoPilotUnderstanding.prisma().find_unique(where={"userId": user_id})
if record is None:
return None
understanding = BusinessUnderstanding.from_db(record)
# Store in cache for next time
await _set_cache(user_id, understanding)
return understanding
async def upsert_business_understanding(
user_id: str,
input_data: BusinessUnderstandingInput,
) -> BusinessUnderstanding:
"""
Create or update business understanding with incremental merge strategy.
- String fields: new value overwrites if provided (not None)
- List fields: new items are appended to existing (deduplicated)
Data is stored as: {name: ..., business: {version: 1, ...}}
"""
# Get existing record for merge
existing = await CoPilotUnderstanding.prisma().find_unique(
where={"userId": user_id}
)
# Get existing data structure or start fresh
existing_data: dict[str, Any] = {}
if existing and isinstance(existing.data, dict):
existing_data = dict(existing.data)
existing_business: dict[str, Any] = {}
if isinstance(existing_data.get("business"), dict):
existing_business = dict(existing_data["business"])
# Business fields (stored inside business object)
business_string_fields = [
"job_title",
"business_name",
"industry",
"business_size",
"user_role",
"additional_notes",
]
business_list_fields = [
"key_workflows",
"daily_activities",
"pain_points",
"bottlenecks",
"manual_tasks",
"automation_goals",
"current_software",
"existing_automation",
]
# Handle top-level name field
if input_data.user_name is not None:
existing_data["name"] = input_data.user_name
# Business string fields - overwrite if provided
for field in business_string_fields:
value = getattr(input_data, field)
if value is not None:
existing_business[field] = value
# Business list fields - merge with existing
for field in business_list_fields:
value = getattr(input_data, field)
if value is not None:
existing_list = _json_to_list(existing_business.get(field))
merged = _merge_lists(existing_list, value)
existing_business[field] = merged
# Set version and nest business data
existing_business["version"] = 1
existing_data["business"] = existing_business
# Upsert with the merged data
record = await CoPilotUnderstanding.prisma().upsert(
where={"userId": user_id},
data={
"create": {"userId": user_id, "data": SafeJson(existing_data)},
"update": {"data": SafeJson(existing_data)},
},
)
understanding = BusinessUnderstanding.from_db(record)
# Update cache with new understanding
await _set_cache(user_id, understanding)
return understanding
async def clear_business_understanding(user_id: str) -> bool:
"""Clear/delete business understanding for a user from both DB and cache."""
# Delete from cache first
await _delete_cache(user_id)
try:
await CoPilotUnderstanding.prisma().delete(where={"userId": user_id})
return True
except Exception:
# Record might not exist
return False
def format_understanding_for_prompt(understanding: BusinessUnderstanding) -> str:
"""Format business understanding as text for system prompt injection."""
sections = []
# User info section
user_info = []
if understanding.user_name:
user_info.append(f"Name: {understanding.user_name}")
if understanding.job_title:
user_info.append(f"Job Title: {understanding.job_title}")
if user_info:
sections.append("## User\n" + "\n".join(user_info))
# Business section
business_info = []
if understanding.business_name:
business_info.append(f"Company: {understanding.business_name}")
if understanding.industry:
business_info.append(f"Industry: {understanding.industry}")
if understanding.business_size:
business_info.append(f"Size: {understanding.business_size}")
if understanding.user_role:
business_info.append(f"Role Context: {understanding.user_role}")
if business_info:
sections.append("## Business\n" + "\n".join(business_info))
# Processes section
processes = []
if understanding.key_workflows:
processes.append(f"Key Workflows: {', '.join(understanding.key_workflows)}")
if understanding.daily_activities:
processes.append(
f"Daily Activities: {', '.join(understanding.daily_activities)}"
)
if processes:
sections.append("## Processes\n" + "\n".join(processes))
# Pain points section
pain_points = []
if understanding.pain_points:
pain_points.append(f"Pain Points: {', '.join(understanding.pain_points)}")
if understanding.bottlenecks:
pain_points.append(f"Bottlenecks: {', '.join(understanding.bottlenecks)}")
if understanding.manual_tasks:
pain_points.append(f"Manual Tasks: {', '.join(understanding.manual_tasks)}")
if pain_points:
sections.append("## Pain Points\n" + "\n".join(pain_points))
# Goals section
if understanding.automation_goals:
sections.append(
"## Automation Goals\n"
+ "\n".join(f"- {goal}" for goal in understanding.automation_goals)
)
# Current tools section
tools_info = []
if understanding.current_software:
tools_info.append(
f"Current Software: {', '.join(understanding.current_software)}"
)
if understanding.existing_automation:
tools_info.append(
f"Existing Automation: {', '.join(understanding.existing_automation)}"
)
if tools_info:
sections.append("## Current Tools\n" + "\n".join(tools_info))
# Additional notes
if understanding.additional_notes:
sections.append(f"## Additional Context\n{understanding.additional_notes}")
if not sections:
return ""
return "# User Business Context\n\n" + "\n\n".join(sections)

View File

@@ -7,6 +7,10 @@ from backend.api.features.library.db import (
list_library_agents,
)
from backend.api.features.store.db import get_store_agent_details, get_store_agents
from backend.api.features.store.embeddings import (
backfill_missing_embeddings,
get_embedding_stats,
)
from backend.data import db
from backend.data.analytics import (
get_accuracy_trends_and_alerts,
@@ -20,6 +24,7 @@ from backend.data.execution import (
get_execution_kv_data,
get_execution_outputs_by_node_exec_id,
get_frequently_executed_graphs,
get_graph_execution,
get_graph_execution_meta,
get_graph_executions,
get_graph_executions_count,
@@ -57,6 +62,7 @@ from backend.data.notifications import (
get_user_notification_oldest_message_in_batch,
remove_notifications_from_batch,
)
from backend.data.onboarding import increment_onboarding_runs
from backend.data.user import (
get_active_user_ids_in_timerange,
get_user_by_id,
@@ -140,6 +146,7 @@ class DatabaseManager(AppService):
get_child_graph_executions = _(get_child_graph_executions)
get_graph_executions = _(get_graph_executions)
get_graph_executions_count = _(get_graph_executions_count)
get_graph_execution = _(get_graph_execution)
get_graph_execution_meta = _(get_graph_execution_meta)
create_graph_execution = _(create_graph_execution)
get_node_execution = _(get_node_execution)
@@ -204,10 +211,17 @@ class DatabaseManager(AppService):
add_store_agent_to_library = _(add_store_agent_to_library)
validate_graph_execution_permissions = _(validate_graph_execution_permissions)
# Onboarding
increment_onboarding_runs = _(increment_onboarding_runs)
# Store
get_store_agents = _(get_store_agents)
get_store_agent_details = _(get_store_agent_details)
# Store Embeddings
get_embedding_stats = _(get_embedding_stats)
backfill_missing_embeddings = _(backfill_missing_embeddings)
# Summary data - async
get_user_execution_summary_data = _(get_user_execution_summary_data)
@@ -259,6 +273,10 @@ class DatabaseManagerClient(AppServiceClient):
get_store_agents = _(d.get_store_agents)
get_store_agent_details = _(d.get_store_agent_details)
# Store Embeddings
get_embedding_stats = _(d.get_embedding_stats)
backfill_missing_embeddings = _(d.backfill_missing_embeddings)
class DatabaseManagerAsyncClient(AppServiceClient):
d = DatabaseManager
@@ -274,6 +292,7 @@ class DatabaseManagerAsyncClient(AppServiceClient):
get_graph = d.get_graph
get_graph_metadata = d.get_graph_metadata
get_graph_settings = d.get_graph_settings
get_graph_execution = d.get_graph_execution
get_graph_execution_meta = d.get_graph_execution_meta
get_node = d.get_node
get_node_execution = d.get_node_execution
@@ -318,6 +337,9 @@ class DatabaseManagerAsyncClient(AppServiceClient):
add_store_agent_to_library = d.add_store_agent_to_library
validate_graph_execution_permissions = d.validate_graph_execution_permissions
# Onboarding
increment_onboarding_runs = d.increment_onboarding_runs
# Store
get_store_agents = d.get_store_agents
get_store_agent_details = d.get_store_agent_details

View File

@@ -1,4 +1,5 @@
import logging
from unittest.mock import AsyncMock, patch
import fastapi.responses
import pytest
@@ -19,6 +20,17 @@ from backend.util.test import SpinTestServer, wait_execution
logger = logging.getLogger(__name__)
@pytest.fixture(scope="session", autouse=True)
def mock_embedding_functions():
"""Mock embedding functions for all tests to avoid database/API dependencies."""
with patch(
"backend.api.features.store.db.ensure_embedding",
new_callable=AsyncMock,
return_value=True,
):
yield
async def create_graph(s: SpinTestServer, g: graph.Graph, u: User) -> graph.Graph:
logger.info(f"Creating graph for user {u.id}")
return await s.agent_server.test_create_graph(CreateGraph(graph=g), u.id)

View File

@@ -2,6 +2,7 @@ import asyncio
import logging
import os
import threading
import time
import uuid
from enum import Enum
from typing import Optional
@@ -27,7 +28,6 @@ from backend.data.auth.oauth import cleanup_expired_oauth_tokens
from backend.data.block import BlockInput
from backend.data.execution import GraphExecutionWithNodes
from backend.data.model import CredentialsMetaInput
from backend.data.onboarding import increment_runs
from backend.executor import utils as execution_utils
from backend.monitoring import (
NotificationJobArgs,
@@ -37,7 +37,7 @@ from backend.monitoring import (
report_execution_accuracy_alerts,
report_late_executions,
)
from backend.util.clients import get_scheduler_client
from backend.util.clients import get_database_manager_client, get_scheduler_client
from backend.util.cloud_storage import cleanup_expired_files_async
from backend.util.exceptions import (
GraphNotFoundError,
@@ -156,7 +156,6 @@ async def _execute_graph(**kwargs):
inputs=args.input_data,
graph_credentials_inputs=args.input_credentials,
)
await increment_runs(args.user_id)
elapsed = asyncio.get_event_loop().time() - start_time
logger.info(
f"Graph execution started with ID {graph_exec.id} for graph {args.graph_id} "
@@ -254,6 +253,74 @@ def execution_accuracy_alerts():
return report_execution_accuracy_alerts()
def ensure_embeddings_coverage():
"""
Ensure approved store agents have embeddings for hybrid search.
Processes ALL missing embeddings in batches of 10 until 100% coverage.
Missing embeddings = agents invisible in hybrid search.
Schedule: Runs every 6 hours (balanced between coverage and API costs).
- Catches agents approved between scheduled runs
- Batch size 10: gradual processing to avoid rate limits
- Manual trigger available via execute_ensure_embeddings_coverage endpoint
"""
db_client = get_database_manager_client()
stats = db_client.get_embedding_stats()
# Check for error from get_embedding_stats() first
if "error" in stats:
logger.error(
f"Failed to get embedding stats: {stats['error']} - skipping backfill"
)
return {"processed": 0, "success": 0, "failed": 0, "error": stats["error"]}
if stats["without_embeddings"] == 0:
logger.info("All approved agents have embeddings, skipping backfill")
return {"processed": 0, "success": 0, "failed": 0}
logger.info(
f"Found {stats['without_embeddings']} agents without embeddings "
f"({stats['coverage_percent']}% coverage) - processing all"
)
total_processed = 0
total_success = 0
total_failed = 0
# Process in batches until no more missing embeddings
while True:
result = db_client.backfill_missing_embeddings(batch_size=10)
total_processed += result["processed"]
total_success += result["success"]
total_failed += result["failed"]
if result["processed"] == 0:
# No more missing embeddings
break
if result["success"] == 0 and result["processed"] > 0:
# All attempts in this batch failed - stop to avoid infinite loop
logger.error(
f"All {result['processed']} embedding attempts failed - stopping backfill"
)
break
# Small delay between batches to avoid rate limits
time.sleep(1)
logger.info(
f"Embedding backfill completed: {total_success}/{total_processed} succeeded, "
f"{total_failed} failed"
)
return {
"processed": total_processed,
"success": total_success,
"failed": total_failed,
}
# Monitoring functions are now imported from monitoring module
@@ -475,6 +542,19 @@ class Scheduler(AppService):
jobstore=Jobstores.EXECUTION.value,
)
# Embedding Coverage - Every 6 hours
# Ensures all approved agents have embeddings for hybrid search
# Critical: missing embeddings = agents invisible in search
self.scheduler.add_job(
ensure_embeddings_coverage,
id="ensure_embeddings_coverage",
trigger="interval",
hours=6,
replace_existing=True,
max_instances=1, # Prevent overlapping runs
jobstore=Jobstores.EXECUTION.value,
)
self.scheduler.add_listener(job_listener, EVENT_JOB_EXECUTED | EVENT_JOB_ERROR)
self.scheduler.add_listener(job_missed_listener, EVENT_JOB_MISSED)
self.scheduler.add_listener(job_max_instances_listener, EVENT_JOB_MAX_INSTANCES)
@@ -632,6 +712,11 @@ class Scheduler(AppService):
"""Manually trigger execution accuracy alert checking."""
return execution_accuracy_alerts()
@expose
def execute_ensure_embeddings_coverage(self):
"""Manually trigger embedding backfill for approved store agents."""
return ensure_embeddings_coverage()
class SchedulerClient(AppServiceClient):
@classmethod

View File

@@ -10,6 +10,7 @@ from pydantic import BaseModel, JsonValue, ValidationError
from backend.data import execution as execution_db
from backend.data import graph as graph_db
from backend.data import onboarding as onboarding_db
from backend.data import user as user_db
from backend.data.block import (
Block,
@@ -31,7 +32,6 @@ from backend.data.execution import (
GraphExecutionStats,
GraphExecutionWithNodes,
NodesInputMasks,
get_graph_execution,
)
from backend.data.graph import GraphModel, Node
from backend.data.model import USER_TIMEZONE_NOT_SET, CredentialsMetaInput
@@ -809,13 +809,14 @@ async def add_graph_execution(
edb = execution_db
udb = user_db
gdb = graph_db
odb = onboarding_db
else:
edb = udb = gdb = get_database_manager_async_client()
edb = udb = gdb = odb = get_database_manager_async_client()
# Get or create the graph execution
if graph_exec_id:
# Resume existing execution
graph_exec = await get_graph_execution(
graph_exec = await edb.get_graph_execution(
user_id=user_id,
execution_id=graph_exec_id,
include_node_executions=True,
@@ -891,6 +892,7 @@ async def add_graph_execution(
)
logger.info(f"Publishing execution {graph_exec.id} to execution queue")
# Publish to execution queue for executor to pick up
exec_queue = await get_async_execution_queue()
await exec_queue.publish_message(
routing_key=GRAPH_EXECUTION_ROUTING_KEY,
@@ -899,14 +901,12 @@ async def add_graph_execution(
)
logger.info(f"Published execution {graph_exec.id} to RabbitMQ queue")
# Update execution status to QUEUED
graph_exec.status = ExecutionStatus.QUEUED
await edb.update_graph_execution_stats(
graph_exec_id=graph_exec.id,
status=graph_exec.status,
)
await get_async_execution_event_bus().publish(graph_exec)
return graph_exec
except BaseException as e:
err = str(e) or type(e).__name__
if not graph_exec:
@@ -927,6 +927,24 @@ async def add_graph_execution(
)
raise
try:
await get_async_execution_event_bus().publish(graph_exec)
logger.info(f"Published update for execution #{graph_exec.id} to event bus")
except Exception as e:
logger.error(
f"Failed to publish execution event for graph exec #{graph_exec.id}: {e}"
)
try:
await odb.increment_onboarding_runs(user_id)
logger.info(
f"Incremented user #{user_id} onboarding runs for exec #{graph_exec.id}"
)
except Exception as e:
logger.error(f"Failed to increment onboarding runs for user #{user_id}: {e}")
return graph_exec
# ============ Execution Output Helpers ============ #

View File

@@ -245,6 +245,21 @@ DEFAULT_CREDENTIALS = [
webshare_proxy_credentials,
]
SYSTEM_CREDENTIAL_IDS = {cred.id for cred in DEFAULT_CREDENTIALS}
# Set of providers that have system credentials available
SYSTEM_PROVIDERS = {cred.provider for cred in DEFAULT_CREDENTIALS}
def is_system_credential(credential_id: str) -> bool:
"""Check if a credential ID belongs to a system-managed credential."""
return credential_id in SYSTEM_CREDENTIAL_IDS
def is_system_provider(provider: str) -> bool:
"""Check if a provider has system-managed credentials available."""
return provider in SYSTEM_PROVIDERS
class IntegrationCredentialsStore:
def __init__(self):

View File

@@ -10,6 +10,7 @@ from backend.util.settings import Settings
settings = Settings()
if TYPE_CHECKING:
from openai import AsyncOpenAI
from supabase import AClient, Client
from backend.data.execution import (
@@ -139,6 +140,24 @@ async def get_async_supabase() -> "AClient":
)
# ============ OpenAI Client ============ #
@cached(ttl_seconds=3600)
def get_openai_client() -> "AsyncOpenAI | None":
"""
Get a process-cached async OpenAI client for embeddings.
Returns None if API key is not configured.
"""
from openai import AsyncOpenAI
api_key = settings.secrets.openai_internal_api_key
if not api_key:
return None
return AsyncOpenAI(api_key=api_key)
# ============ Notification Queue Helpers ============ #

View File

@@ -658,6 +658,14 @@ class Secrets(UpdateTrackingModel["Secrets"], BaseSettings):
ayrshare_api_key: str = Field(default="", description="Ayrshare API Key")
ayrshare_jwt_key: str = Field(default="", description="Ayrshare private Key")
# Langfuse prompt management
langfuse_public_key: str = Field(default="", description="Langfuse public key")
langfuse_secret_key: str = Field(default="", description="Langfuse secret key")
langfuse_host: str = Field(
default="https://cloud.langfuse.com", description="Langfuse host URL"
)
# Add more secret fields as needed
model_config = SettingsConfigDict(
env_file=".env",

View File

@@ -0,0 +1,46 @@
-- CreateExtension
-- Supabase: pgvector must be enabled via Dashboard → Database → Extensions first
-- Create in public schema so vector type is available across all schemas
DO $$
BEGIN
CREATE EXTENSION IF NOT EXISTS "vector" WITH SCHEMA "public";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'vector extension not available or already exists, skipping';
END $$;
-- CreateEnum
CREATE TYPE "ContentType" AS ENUM ('STORE_AGENT', 'BLOCK', 'INTEGRATION', 'DOCUMENTATION', 'LIBRARY_AGENT');
-- CreateTable
CREATE TABLE "UnifiedContentEmbedding" (
"id" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL,
"contentType" "ContentType" NOT NULL,
"contentId" TEXT NOT NULL,
"userId" TEXT,
"embedding" public.vector(1536) NOT NULL,
"searchableText" TEXT NOT NULL,
"metadata" JSONB NOT NULL DEFAULT '{}',
CONSTRAINT "UnifiedContentEmbedding_pkey" PRIMARY KEY ("id")
);
-- CreateIndex
CREATE INDEX "UnifiedContentEmbedding_contentType_idx" ON "UnifiedContentEmbedding"("contentType");
-- CreateIndex
CREATE INDEX "UnifiedContentEmbedding_userId_idx" ON "UnifiedContentEmbedding"("userId");
-- CreateIndex
CREATE INDEX "UnifiedContentEmbedding_contentType_userId_idx" ON "UnifiedContentEmbedding"("contentType", "userId");
-- CreateIndex
-- NULLS NOT DISTINCT ensures only one public (NULL userId) embedding per contentType+contentId
-- Requires PostgreSQL 15+. Supabase uses PostgreSQL 15+.
CREATE UNIQUE INDEX "UnifiedContentEmbedding_contentType_contentId_userId_key" ON "UnifiedContentEmbedding"("contentType", "contentId", "userId") NULLS NOT DISTINCT;
-- CreateIndex
-- HNSW index for fast vector similarity search on embeddings
-- Uses cosine distance operator (<=>), which matches the query in hybrid_search.py
CREATE INDEX "UnifiedContentEmbedding_embedding_idx" ON "UnifiedContentEmbedding" USING hnsw ("embedding" public.vector_cosine_ops);

View File

@@ -0,0 +1,71 @@
-- Acknowledge Supabase-managed extensions to prevent drift warnings
-- These extensions are pre-installed by Supabase in specific schemas
-- This migration ensures they exist where available (Supabase) or skips gracefully (CI)
-- Create schemas (safe in both CI and Supabase)
CREATE SCHEMA IF NOT EXISTS "extensions";
-- Extensions that exist in both CI and Supabase
DO $$
BEGIN
CREATE EXTENSION IF NOT EXISTS "pgcrypto" WITH SCHEMA "extensions";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'pgcrypto extension not available, skipping';
END $$;
DO $$
BEGIN
CREATE EXTENSION IF NOT EXISTS "uuid-ossp" WITH SCHEMA "extensions";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'uuid-ossp extension not available, skipping';
END $$;
-- Supabase-specific extensions (skip gracefully in CI)
DO $$
BEGIN
CREATE EXTENSION IF NOT EXISTS "pg_stat_statements" WITH SCHEMA "extensions";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'pg_stat_statements extension not available, skipping';
END $$;
DO $$
BEGIN
CREATE EXTENSION IF NOT EXISTS "pg_net" WITH SCHEMA "extensions";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'pg_net extension not available, skipping';
END $$;
DO $$
BEGIN
CREATE EXTENSION IF NOT EXISTS "pgjwt" WITH SCHEMA "extensions";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'pgjwt extension not available, skipping';
END $$;
DO $$
BEGIN
CREATE SCHEMA IF NOT EXISTS "graphql";
CREATE EXTENSION IF NOT EXISTS "pg_graphql" WITH SCHEMA "graphql";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'pg_graphql extension not available, skipping';
END $$;
DO $$
BEGIN
CREATE SCHEMA IF NOT EXISTS "pgsodium";
CREATE EXTENSION IF NOT EXISTS "pgsodium" WITH SCHEMA "pgsodium";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'pgsodium extension not available, skipping';
END $$;
DO $$
BEGIN
CREATE SCHEMA IF NOT EXISTS "vault";
CREATE EXTENSION IF NOT EXISTS "supabase_vault" WITH SCHEMA "vault";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'supabase_vault extension not available, skipping';
END $$;
-- Return to platform
CREATE SCHEMA IF NOT EXISTS "platform";

View File

@@ -0,0 +1,64 @@
-- CreateTable
CREATE TABLE "CoPilotUnderstanding" (
"id" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"userId" TEXT NOT NULL,
"data" JSONB,
CONSTRAINT "CoPilotUnderstanding_pkey" PRIMARY KEY ("id")
);
-- CreateTable
CREATE TABLE "ChatSession" (
"id" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"userId" TEXT NOT NULL,
"title" TEXT,
"credentials" JSONB NOT NULL DEFAULT '{}',
"successfulAgentRuns" JSONB NOT NULL DEFAULT '{}',
"successfulAgentSchedules" JSONB NOT NULL DEFAULT '{}',
"totalPromptTokens" INTEGER NOT NULL DEFAULT 0,
"totalCompletionTokens" INTEGER NOT NULL DEFAULT 0,
CONSTRAINT "ChatSession_pkey" PRIMARY KEY ("id")
);
-- CreateTable
CREATE TABLE "ChatMessage" (
"id" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"sessionId" TEXT NOT NULL,
"role" TEXT NOT NULL,
"content" TEXT,
"name" TEXT,
"toolCallId" TEXT,
"refusal" TEXT,
"toolCalls" JSONB,
"functionCall" JSONB,
"sequence" INTEGER NOT NULL,
CONSTRAINT "ChatMessage_pkey" PRIMARY KEY ("id")
);
-- CreateIndex
CREATE UNIQUE INDEX "CoPilotUnderstanding_userId_key" ON "CoPilotUnderstanding"("userId");
-- CreateIndex
CREATE INDEX "CoPilotUnderstanding_userId_idx" ON "CoPilotUnderstanding"("userId");
-- CreateIndex
CREATE INDEX "ChatSession_userId_updatedAt_idx" ON "ChatSession"("userId", "updatedAt");
-- CreateIndex
CREATE UNIQUE INDEX "ChatMessage_sessionId_sequence_key" ON "ChatMessage"("sessionId", "sequence");
-- AddForeignKey
ALTER TABLE "CoPilotUnderstanding" ADD CONSTRAINT "CoPilotUnderstanding_userId_fkey" FOREIGN KEY ("userId") REFERENCES "User"("id") ON DELETE CASCADE ON UPDATE CASCADE;
-- AddForeignKey
ALTER TABLE "ChatSession" ADD CONSTRAINT "ChatSession_userId_fkey" FOREIGN KEY ("userId") REFERENCES "User"("id") ON DELETE CASCADE ON UPDATE CASCADE;
-- AddForeignKey
ALTER TABLE "ChatMessage" ADD CONSTRAINT "ChatMessage_sessionId_fkey" FOREIGN KEY ("sessionId") REFERENCES "ChatSession"("id") ON DELETE CASCADE ON UPDATE CASCADE;

View File

@@ -2777,6 +2777,30 @@ enabler = ["pytest-enabler (>=2.2)"]
test = ["pyfakefs", "pytest (>=6,!=8.1.*)"]
type = ["pygobject-stubs", "pytest-mypy", "shtab", "types-pywin32"]
[[package]]
name = "langfuse"
version = "3.11.2"
description = "A client library for accessing langfuse"
optional = false
python-versions = "<4.0,>=3.10"
groups = ["main"]
files = [
{file = "langfuse-3.11.2-py3-none-any.whl", hash = "sha256:84faea9f909694023cc7f0eb45696be190248c8790424f22af57ca4cd7a29f2d"},
{file = "langfuse-3.11.2.tar.gz", hash = "sha256:ab5f296a8056815b7288c7f25bc308a5e79f82a8634467b25daffdde99276e09"},
]
[package.dependencies]
backoff = ">=1.10.0"
httpx = ">=0.15.4,<1.0"
openai = ">=0.27.8"
opentelemetry-api = ">=1.33.1,<2.0.0"
opentelemetry-exporter-otlp-proto-http = ">=1.33.1,<2.0.0"
opentelemetry-sdk = ">=1.33.1,<2.0.0"
packaging = ">=23.2,<26.0"
pydantic = ">=1.10.7,<3.0"
requests = ">=2,<3"
wrapt = ">=1.14,<2.0"
[[package]]
name = "launchdarkly-eventsource"
version = "1.3.0"
@@ -3468,6 +3492,90 @@ files = [
importlib-metadata = ">=6.0,<8.8.0"
typing-extensions = ">=4.5.0"
[[package]]
name = "opentelemetry-exporter-otlp-proto-common"
version = "1.35.0"
description = "OpenTelemetry Protobuf encoding"
optional = false
python-versions = ">=3.9"
groups = ["main"]
files = [
{file = "opentelemetry_exporter_otlp_proto_common-1.35.0-py3-none-any.whl", hash = "sha256:863465de697ae81279ede660f3918680b4480ef5f69dcdac04f30722ed7b74cc"},
{file = "opentelemetry_exporter_otlp_proto_common-1.35.0.tar.gz", hash = "sha256:6f6d8c39f629b9fa5c79ce19a2829dbd93034f8ac51243cdf40ed2196f00d7eb"},
]
[package.dependencies]
opentelemetry-proto = "1.35.0"
[[package]]
name = "opentelemetry-exporter-otlp-proto-http"
version = "1.35.0"
description = "OpenTelemetry Collector Protobuf over HTTP Exporter"
optional = false
python-versions = ">=3.9"
groups = ["main"]
files = [
{file = "opentelemetry_exporter_otlp_proto_http-1.35.0-py3-none-any.whl", hash = "sha256:9a001e3df3c7f160fb31056a28ed7faa2de7df68877ae909516102ae36a54e1d"},
{file = "opentelemetry_exporter_otlp_proto_http-1.35.0.tar.gz", hash = "sha256:cf940147f91b450ef5f66e9980d40eb187582eed399fa851f4a7a45bb880de79"},
]
[package.dependencies]
googleapis-common-protos = ">=1.52,<2.0"
opentelemetry-api = ">=1.15,<2.0"
opentelemetry-exporter-otlp-proto-common = "1.35.0"
opentelemetry-proto = "1.35.0"
opentelemetry-sdk = ">=1.35.0,<1.36.0"
requests = ">=2.7,<3.0"
typing-extensions = ">=4.5.0"
[[package]]
name = "opentelemetry-proto"
version = "1.35.0"
description = "OpenTelemetry Python Proto"
optional = false
python-versions = ">=3.9"
groups = ["main"]
files = [
{file = "opentelemetry_proto-1.35.0-py3-none-any.whl", hash = "sha256:98fffa803164499f562718384e703be8d7dfbe680192279a0429cb150a2f8809"},
{file = "opentelemetry_proto-1.35.0.tar.gz", hash = "sha256:532497341bd3e1c074def7c5b00172601b28bb83b48afc41a4b779f26eb4ee05"},
]
[package.dependencies]
protobuf = ">=5.0,<7.0"
[[package]]
name = "opentelemetry-sdk"
version = "1.35.0"
description = "OpenTelemetry Python SDK"
optional = false
python-versions = ">=3.9"
groups = ["main"]
files = [
{file = "opentelemetry_sdk-1.35.0-py3-none-any.whl", hash = "sha256:223d9e5f5678518f4842311bb73966e0b6db5d1e0b74e35074c052cd2487f800"},
{file = "opentelemetry_sdk-1.35.0.tar.gz", hash = "sha256:2a400b415ab68aaa6f04e8a6a9f6552908fb3090ae2ff78d6ae0c597ac581954"},
]
[package.dependencies]
opentelemetry-api = "1.35.0"
opentelemetry-semantic-conventions = "0.56b0"
typing-extensions = ">=4.5.0"
[[package]]
name = "opentelemetry-semantic-conventions"
version = "0.56b0"
description = "OpenTelemetry Semantic Conventions"
optional = false
python-versions = ">=3.9"
groups = ["main"]
files = [
{file = "opentelemetry_semantic_conventions-0.56b0-py3-none-any.whl", hash = "sha256:df44492868fd6b482511cc43a942e7194be64e94945f572db24df2e279a001a2"},
{file = "opentelemetry_semantic_conventions-0.56b0.tar.gz", hash = "sha256:c114c2eacc8ff6d3908cb328c811eaf64e6d68623840be9224dc829c4fd6c2ea"},
]
[package.dependencies]
opentelemetry-api = "1.35.0"
typing-extensions = ">=4.5.0"
[[package]]
name = "orjson"
version = "3.11.3"
@@ -6922,6 +7030,97 @@ files = [
{file = "websockets-15.0.1.tar.gz", hash = "sha256:82544de02076bafba038ce055ee6412d68da13ab47f0c60cab827346de828dee"},
]
[[package]]
name = "wrapt"
version = "1.17.3"
description = "Module for decorators, wrappers and monkey patching."
optional = false
python-versions = ">=3.8"
groups = ["main"]
files = [
{file = "wrapt-1.17.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:88bbae4d40d5a46142e70d58bf664a89b6b4befaea7b2ecc14e03cedb8e06c04"},
{file = "wrapt-1.17.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e6b13af258d6a9ad602d57d889f83b9d5543acd471eee12eb51f5b01f8eb1bc2"},
{file = "wrapt-1.17.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:fd341868a4b6714a5962c1af0bd44f7c404ef78720c7de4892901e540417111c"},
{file = "wrapt-1.17.3-cp310-cp310-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:f9b2601381be482f70e5d1051a5965c25fb3625455a2bf520b5a077b22afb775"},
{file = "wrapt-1.17.3-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:343e44b2a8e60e06a7e0d29c1671a0d9951f59174f3709962b5143f60a2a98bd"},
{file = "wrapt-1.17.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:33486899acd2d7d3066156b03465b949da3fd41a5da6e394ec49d271baefcf05"},
{file = "wrapt-1.17.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:e6f40a8aa5a92f150bdb3e1c44b7e98fb7113955b2e5394122fa5532fec4b418"},
{file = "wrapt-1.17.3-cp310-cp310-win32.whl", hash = "sha256:a36692b8491d30a8c75f1dfee65bef119d6f39ea84ee04d9f9311f83c5ad9390"},
{file = "wrapt-1.17.3-cp310-cp310-win_amd64.whl", hash = "sha256:afd964fd43b10c12213574db492cb8f73b2f0826c8df07a68288f8f19af2ebe6"},
{file = "wrapt-1.17.3-cp310-cp310-win_arm64.whl", hash = "sha256:af338aa93554be859173c39c85243970dc6a289fa907402289eeae7543e1ae18"},
{file = "wrapt-1.17.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:273a736c4645e63ac582c60a56b0acb529ef07f78e08dc6bfadf6a46b19c0da7"},
{file = "wrapt-1.17.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5531d911795e3f935a9c23eb1c8c03c211661a5060aab167065896bbf62a5f85"},
{file = "wrapt-1.17.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:0610b46293c59a3adbae3dee552b648b984176f8562ee0dba099a56cfbe4df1f"},
{file = "wrapt-1.17.3-cp311-cp311-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:b32888aad8b6e68f83a8fdccbf3165f5469702a7544472bdf41f582970ed3311"},
{file = "wrapt-1.17.3-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:8cccf4f81371f257440c88faed6b74f1053eef90807b77e31ca057b2db74edb1"},
{file = "wrapt-1.17.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:d8a210b158a34164de8bb68b0e7780041a903d7b00c87e906fb69928bf7890d5"},
{file = "wrapt-1.17.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:79573c24a46ce11aab457b472efd8d125e5a51da2d1d24387666cd85f54c05b2"},
{file = "wrapt-1.17.3-cp311-cp311-win32.whl", hash = "sha256:c31eebe420a9a5d2887b13000b043ff6ca27c452a9a22fa71f35f118e8d4bf89"},
{file = "wrapt-1.17.3-cp311-cp311-win_amd64.whl", hash = "sha256:0b1831115c97f0663cb77aa27d381237e73ad4f721391a9bfb2fe8bc25fa6e77"},
{file = "wrapt-1.17.3-cp311-cp311-win_arm64.whl", hash = "sha256:5a7b3c1ee8265eb4c8f1b7d29943f195c00673f5ab60c192eba2d4a7eae5f46a"},
{file = "wrapt-1.17.3-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:ab232e7fdb44cdfbf55fc3afa31bcdb0d8980b9b95c38b6405df2acb672af0e0"},
{file = "wrapt-1.17.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:9baa544e6acc91130e926e8c802a17f3b16fbea0fd441b5a60f5cf2cc5c3deba"},
{file = "wrapt-1.17.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6b538e31eca1a7ea4605e44f81a48aa24c4632a277431a6ed3f328835901f4fd"},
{file = "wrapt-1.17.3-cp312-cp312-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:042ec3bb8f319c147b1301f2393bc19dba6e176b7da446853406d041c36c7828"},
{file = "wrapt-1.17.3-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:3af60380ba0b7b5aeb329bc4e402acd25bd877e98b3727b0135cb5c2efdaefe9"},
{file = "wrapt-1.17.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:0b02e424deef65c9f7326d8c19220a2c9040c51dc165cddb732f16198c168396"},
{file = "wrapt-1.17.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:74afa28374a3c3a11b3b5e5fca0ae03bef8450d6aa3ab3a1e2c30e3a75d023dc"},
{file = "wrapt-1.17.3-cp312-cp312-win32.whl", hash = "sha256:4da9f45279fff3543c371d5ababc57a0384f70be244de7759c85a7f989cb4ebe"},
{file = "wrapt-1.17.3-cp312-cp312-win_amd64.whl", hash = "sha256:e71d5c6ebac14875668a1e90baf2ea0ef5b7ac7918355850c0908ae82bcb297c"},
{file = "wrapt-1.17.3-cp312-cp312-win_arm64.whl", hash = "sha256:604d076c55e2fdd4c1c03d06dc1a31b95130010517b5019db15365ec4a405fc6"},
{file = "wrapt-1.17.3-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:a47681378a0439215912ef542c45a783484d4dd82bac412b71e59cf9c0e1cea0"},
{file = "wrapt-1.17.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:54a30837587c6ee3cd1a4d1c2ec5d24e77984d44e2f34547e2323ddb4e22eb77"},
{file = "wrapt-1.17.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:16ecf15d6af39246fe33e507105d67e4b81d8f8d2c6598ff7e3ca1b8a37213f7"},
{file = "wrapt-1.17.3-cp313-cp313-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:6fd1ad24dc235e4ab88cda009e19bf347aabb975e44fd5c2fb22a3f6e4141277"},
{file = "wrapt-1.17.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:0ed61b7c2d49cee3c027372df5809a59d60cf1b6c2f81ee980a091f3afed6a2d"},
{file = "wrapt-1.17.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:423ed5420ad5f5529db9ce89eac09c8a2f97da18eb1c870237e84c5a5c2d60aa"},
{file = "wrapt-1.17.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e01375f275f010fcbf7f643b4279896d04e571889b8a5b3f848423d91bf07050"},
{file = "wrapt-1.17.3-cp313-cp313-win32.whl", hash = "sha256:53e5e39ff71b3fc484df8a522c933ea2b7cdd0d5d15ae82e5b23fde87d44cbd8"},
{file = "wrapt-1.17.3-cp313-cp313-win_amd64.whl", hash = "sha256:1f0b2f40cf341ee8cc1a97d51ff50dddb9fcc73241b9143ec74b30fc4f44f6cb"},
{file = "wrapt-1.17.3-cp313-cp313-win_arm64.whl", hash = "sha256:7425ac3c54430f5fc5e7b6f41d41e704db073309acfc09305816bc6a0b26bb16"},
{file = "wrapt-1.17.3-cp314-cp314-macosx_10_13_universal2.whl", hash = "sha256:cf30f6e3c077c8e6a9a7809c94551203c8843e74ba0c960f4a98cd80d4665d39"},
{file = "wrapt-1.17.3-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:e228514a06843cae89621384cfe3a80418f3c04aadf8a3b14e46a7be704e4235"},
{file = "wrapt-1.17.3-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:5ea5eb3c0c071862997d6f3e02af1d055f381b1d25b286b9d6644b79db77657c"},
{file = "wrapt-1.17.3-cp314-cp314-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:281262213373b6d5e4bb4353bc36d1ba4084e6d6b5d242863721ef2bf2c2930b"},
{file = "wrapt-1.17.3-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:dc4a8d2b25efb6681ecacad42fca8859f88092d8732b170de6a5dddd80a1c8fa"},
{file = "wrapt-1.17.3-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:373342dd05b1d07d752cecbec0c41817231f29f3a89aa8b8843f7b95992ed0c7"},
{file = "wrapt-1.17.3-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:d40770d7c0fd5cbed9d84b2c3f2e156431a12c9a37dc6284060fb4bec0b7ffd4"},
{file = "wrapt-1.17.3-cp314-cp314-win32.whl", hash = "sha256:fbd3c8319de8e1dc79d346929cd71d523622da527cca14e0c1d257e31c2b8b10"},
{file = "wrapt-1.17.3-cp314-cp314-win_amd64.whl", hash = "sha256:e1a4120ae5705f673727d3253de3ed0e016f7cd78dc463db1b31e2463e1f3cf6"},
{file = "wrapt-1.17.3-cp314-cp314-win_arm64.whl", hash = "sha256:507553480670cab08a800b9463bdb881b2edeed77dc677b0a5915e6106e91a58"},
{file = "wrapt-1.17.3-cp314-cp314t-macosx_10_13_universal2.whl", hash = "sha256:ed7c635ae45cfbc1a7371f708727bf74690daedc49b4dba310590ca0bd28aa8a"},
{file = "wrapt-1.17.3-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:249f88ed15503f6492a71f01442abddd73856a0032ae860de6d75ca62eed8067"},
{file = "wrapt-1.17.3-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:5a03a38adec8066d5a37bea22f2ba6bbf39fcdefbe2d91419ab864c3fb515454"},
{file = "wrapt-1.17.3-cp314-cp314t-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:5d4478d72eb61c36e5b446e375bbc49ed002430d17cdec3cecb36993398e1a9e"},
{file = "wrapt-1.17.3-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:223db574bb38637e8230eb14b185565023ab624474df94d2af18f1cdb625216f"},
{file = "wrapt-1.17.3-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:e405adefb53a435f01efa7ccdec012c016b5a1d3f35459990afc39b6be4d5056"},
{file = "wrapt-1.17.3-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:88547535b787a6c9ce4086917b6e1d291aa8ed914fdd3a838b3539dc95c12804"},
{file = "wrapt-1.17.3-cp314-cp314t-win32.whl", hash = "sha256:41b1d2bc74c2cac6f9074df52b2efbef2b30bdfe5f40cb78f8ca22963bc62977"},
{file = "wrapt-1.17.3-cp314-cp314t-win_amd64.whl", hash = "sha256:73d496de46cd2cdbdbcce4ae4bcdb4afb6a11234a1df9c085249d55166b95116"},
{file = "wrapt-1.17.3-cp314-cp314t-win_arm64.whl", hash = "sha256:f38e60678850c42461d4202739f9bf1e3a737c7ad283638251e79cc49effb6b6"},
{file = "wrapt-1.17.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:70d86fa5197b8947a2fa70260b48e400bf2ccacdcab97bb7de47e3d1e6312225"},
{file = "wrapt-1.17.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:df7d30371a2accfe4013e90445f6388c570f103d61019b6b7c57e0265250072a"},
{file = "wrapt-1.17.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:caea3e9c79d5f0d2c6d9ab96111601797ea5da8e6d0723f77eabb0d4068d2b2f"},
{file = "wrapt-1.17.3-cp38-cp38-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:758895b01d546812d1f42204bd443b8c433c44d090248bf22689df673ccafe00"},
{file = "wrapt-1.17.3-cp38-cp38-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:02b551d101f31694fc785e58e0720ef7d9a10c4e62c1c9358ce6f63f23e30a56"},
{file = "wrapt-1.17.3-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:656873859b3b50eeebe6db8b1455e99d90c26ab058db8e427046dbc35c3140a5"},
{file = "wrapt-1.17.3-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:a9a2203361a6e6404f80b99234fe7fb37d1fc73487b5a78dc1aa5b97201e0f22"},
{file = "wrapt-1.17.3-cp38-cp38-win32.whl", hash = "sha256:55cbbc356c2842f39bcc553cf695932e8b30e30e797f961860afb308e6b1bb7c"},
{file = "wrapt-1.17.3-cp38-cp38-win_amd64.whl", hash = "sha256:ad85e269fe54d506b240d2d7b9f5f2057c2aa9a2ea5b32c66f8902f768117ed2"},
{file = "wrapt-1.17.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:30ce38e66630599e1193798285706903110d4f057aab3168a34b7fdc85569afc"},
{file = "wrapt-1.17.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:65d1d00fbfb3ea5f20add88bbc0f815150dbbde3b026e6c24759466c8b5a9ef9"},
{file = "wrapt-1.17.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a7c06742645f914f26c7f1fa47b8bc4c91d222f76ee20116c43d5ef0912bba2d"},
{file = "wrapt-1.17.3-cp39-cp39-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:7e18f01b0c3e4a07fe6dfdb00e29049ba17eadbc5e7609a2a3a4af83ab7d710a"},
{file = "wrapt-1.17.3-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:0f5f51a6466667a5a356e6381d362d259125b57f059103dd9fdc8c0cf1d14139"},
{file = "wrapt-1.17.3-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:59923aa12d0157f6b82d686c3fd8e1166fa8cdfb3e17b42ce3b6147ff81528df"},
{file = "wrapt-1.17.3-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:46acc57b331e0b3bcb3e1ca3b421d65637915cfcd65eb783cb2f78a511193f9b"},
{file = "wrapt-1.17.3-cp39-cp39-win32.whl", hash = "sha256:3e62d15d3cfa26e3d0788094de7b64efa75f3a53875cdbccdf78547aed547a81"},
{file = "wrapt-1.17.3-cp39-cp39-win_amd64.whl", hash = "sha256:1f23fa283f51c890eda8e34e4937079114c74b4c81d2b2f1f1d94948f5cc3d7f"},
{file = "wrapt-1.17.3-cp39-cp39-win_arm64.whl", hash = "sha256:24c2ed34dc222ed754247a2702b1e1e89fdbaa4016f324b4b8f1a802d4ffe87f"},
{file = "wrapt-1.17.3-py3-none-any.whl", hash = "sha256:7171ae35d2c33d326ac19dd8facb1e82e5fd04ef8c6c0e394d7af55a55051c22"},
{file = "wrapt-1.17.3.tar.gz", hash = "sha256:f66eb08feaa410fe4eebd17f2a2c8e2e46d3476e9f8c783daa8e09e0faa666d0"},
]
[[package]]
name = "xattr"
version = "1.2.0"
@@ -7295,4 +7494,4 @@ cffi = ["cffi (>=1.11)"]
[metadata]
lock-version = "2.1"
python-versions = ">=3.10,<3.14"
content-hash = "a93ba0cea3b465cb6ec3e3f258b383b09f84ea352ccfdbfa112902cde5653fc6"
content-hash = "86838b5ae40d606d6e01a14dad8a56c389d890d7a6a0c274a6602cca80f0df84"

View File

@@ -33,6 +33,7 @@ html2text = "^2024.2.26"
jinja2 = "^3.1.6"
jsonref = "^1.1.0"
jsonschema = "^4.25.0"
langfuse = "^3.11.0"
launchdarkly-server-sdk = "^9.12.0"
mem0ai = "^0.1.115"
moviepy = "^2.1.2"

View File

@@ -1,14 +1,15 @@
datasource db {
provider = "postgresql"
url = env("DATABASE_URL")
directUrl = env("DIRECT_URL")
provider = "postgresql"
url = env("DATABASE_URL")
directUrl = env("DIRECT_URL")
extensions = [pgvector(map: "vector")]
}
generator client {
provider = "prisma-client-py"
recursive_type_depth = -1
interface = "asyncio"
previewFeatures = ["views", "fullTextSearch"]
previewFeatures = ["views", "fullTextSearch", "postgresqlExtensions"]
partial_type_generator = "backend/data/partial_types.py"
}
@@ -47,12 +48,13 @@ model User {
AnalyticsMetrics AnalyticsMetrics[]
CreditTransactions CreditTransaction[]
UserBalance UserBalance?
AgentPresets AgentPreset[]
LibraryAgents LibraryAgent[]
ChatSessions ChatSession[]
AgentPresets AgentPreset[]
LibraryAgents LibraryAgent[]
Profile Profile[]
UserOnboarding UserOnboarding?
CoPilotUnderstanding CoPilotUnderstanding?
BuilderSearchHistory BuilderSearchHistory[]
StoreListings StoreListing[]
StoreListingReviews StoreListingReview[]
@@ -121,19 +123,84 @@ model UserOnboarding {
User User @relation(fields: [userId], references: [id], onDelete: Cascade)
}
model CoPilotUnderstanding {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @default(now()) @updatedAt
userId String @unique
User User @relation(fields: [userId], references: [id], onDelete: Cascade)
data Json?
@@index([userId])
}
model BuilderSearchHistory {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @default(now()) @updatedAt
searchQuery String
filter String[] @default([])
byCreator String[] @default([])
filter String[] @default([])
byCreator String[] @default([])
userId String
User User @relation(fields: [userId], references: [id], onDelete: Cascade)
}
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
//////////////// CHAT SESSION TABLES ///////////////////
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
model ChatSession {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @default(now()) @updatedAt
userId String
User User @relation(fields: [userId], references: [id], onDelete: Cascade)
// Session metadata
title String?
credentials Json @default("{}") // Map of provider -> credential metadata
// Rate limiting counters (stored as JSON maps)
successfulAgentRuns Json @default("{}") // Map of graph_id -> count
successfulAgentSchedules Json @default("{}") // Map of graph_id -> count
// Usage tracking
totalPromptTokens Int @default(0)
totalCompletionTokens Int @default(0)
Messages ChatMessage[]
@@index([userId, updatedAt])
}
model ChatMessage {
id String @id @default(uuid())
createdAt DateTime @default(now())
sessionId String
Session ChatSession @relation(fields: [sessionId], references: [id], onDelete: Cascade)
// Message content
role String // "user", "assistant", "system", "tool", "function"
content String?
name String?
toolCallId String?
refusal String?
toolCalls Json? // List of tool calls for assistant messages
functionCall Json? // Deprecated but kept for compatibility
// Ordering within session
sequence Int
@@unique([sessionId, sequence])
}
// This model describes the Agent Graph/Flow (Multi Agent System).
model AgentGraph {
id String @default(uuid())
@@ -721,26 +788,25 @@ view StoreAgent {
storeListingVersionId String
updated_at DateTime
slug String
agent_name String
agent_video String?
agent_output_demo String?
agent_image String[]
slug String
agent_name String
agent_video String?
agent_output_demo String?
agent_image String[]
featured Boolean @default(false)
creator_username String?
creator_avatar String?
sub_heading String
description String
categories String[]
search Unsupported("tsvector")? @default(dbgenerated("''::tsvector"))
runs Int
rating Float
versions String[]
agentGraphVersions String[]
agentGraphId String
is_available Boolean @default(true)
useForOnboarding Boolean @default(false)
featured Boolean @default(false)
creator_username String?
creator_avatar String?
sub_heading String
description String
categories String[]
runs Int
rating Float
versions String[]
agentGraphVersions String[]
agentGraphId String
is_available Boolean @default(true)
useForOnboarding Boolean @default(false)
// Materialized views used (refreshed every 15 minutes via pg_cron):
// - mv_agent_run_counts - Pre-aggregated agent execution counts by agentGraphId
@@ -856,14 +922,14 @@ model StoreListingVersion {
AgentGraph AgentGraph @relation(fields: [agentGraphId, agentGraphVersion], references: [id, version])
// Content fields
name String
subHeading String
videoUrl String?
agentOutputDemoUrl String?
imageUrls String[]
description String
instructions String?
categories String[]
name String
subHeading String
videoUrl String?
agentOutputDemoUrl String?
imageUrls String[]
description String
instructions String?
categories String[]
isFeatured Boolean @default(false)
@@ -899,6 +965,9 @@ model StoreListingVersion {
// Reviews for this specific version
Reviews StoreListingReview[]
// Note: Embeddings now stored in UnifiedContentEmbedding table
// Use contentType=STORE_AGENT and contentId=storeListingVersionId
@@unique([storeListingId, version])
@@index([storeListingId, submissionStatus, isAvailable])
@@index([submissionStatus])
@@ -906,6 +975,42 @@ model StoreListingVersion {
@@index([agentGraphId, agentGraphVersion]) // Non-unique index for efficient lookups
}
// Content type enum for unified search across store agents, blocks, docs
// Note: BLOCK/INTEGRATION are file-based (Python classes), not DB records
// DOCUMENTATION are file-based (.md files), not DB records
// Only STORE_AGENT and LIBRARY_AGENT are stored in database
enum ContentType {
STORE_AGENT // Database: StoreListingVersion
BLOCK // File-based: Python classes in /backend/blocks/
INTEGRATION // File-based: Python classes (blocks with credentials)
DOCUMENTATION // File-based: .md/.mdx files
LIBRARY_AGENT // Database: User's personal agents
}
// Unified embeddings table for all searchable content types
// Supports both public content (userId=null) and user-specific content (userId=userID)
model UnifiedContentEmbedding {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
// Content identification
contentType ContentType
contentId String // DB ID (storeListingVersionId) or file identifier (block.id, file_path)
userId String? // NULL for public content (store, blocks, docs), userId for private content (library agents)
// Search data
embedding Unsupported("vector(1536)") // pgvector embedding (extension in platform schema)
searchableText String // Combined text for search and fallback
metadata Json @default("{}") // Content-specific metadata
@@unique([contentType, contentId, userId], map: "UnifiedContentEmbedding_contentType_contentId_userId_key")
@@index([contentType])
@@index([userId])
@@index([contentType, userId])
@@index([embedding], map: "UnifiedContentEmbedding_embedding_idx")
}
model StoreListingReview {
id String @id @default(uuid())
createdAt DateTime @default(now())
@@ -998,16 +1103,16 @@ model OAuthApplication {
updatedAt DateTime @updatedAt
// Application metadata
name String
description String?
logoUrl String? // URL to app logo stored in GCS
clientId String @unique
clientSecret String // Hashed with Scrypt (same as API keys)
clientSecretSalt String // Salt for Scrypt hashing
name String
description String?
logoUrl String? // URL to app logo stored in GCS
clientId String @unique
clientSecret String // Hashed with Scrypt (same as API keys)
clientSecretSalt String // Salt for Scrypt hashing
// OAuth configuration
redirectUris String[] // Allowed callback URLs
grantTypes String[] @default(["authorization_code", "refresh_token"])
grantTypes String[] @default(["authorization_code", "refresh_token"])
scopes APIKeyPermission[] // Which permissions the app can request
// Application management

View File

@@ -708,10 +708,7 @@ export function CreateButton() {
## 🧪 Testing & Storybook
- End-to-end: [Playwright](https://playwright.dev/docs/intro) (`pnpm test`, `pnpm test-ui`)
- [Storybook](https://storybook.js.org/docs) for isolated UI development (`pnpm storybook` / `pnpm build-storybook`)
- For Storybook tests in CI, see [`@storybook/test-runner`](https://storybook.js.org/docs/writing-tests/test-runner) (`test-storybook:ci`)
- When changing components in `src/components`, update or add stories and visually verify in Storybook/Chromatic
- See `TESTING.md` for Playwright setup, E2E data seeding, and Storybook usage.
---

View File

@@ -5,6 +5,7 @@ This is the frontend for AutoGPT's next generation
This project uses [**pnpm**](https://pnpm.io/) as the package manager via **corepack**. [Corepack](https://github.com/nodejs/corepack) is a Node.js tool that automatically manages package managers without requiring global installations.
For architecture, conventions, data fetching, feature flags, design system usage, state management, and PR process, see [CONTRIBUTING.md](./CONTRIBUTING.md).
For Playwright and Storybook testing setup, see [TESTING.md](./TESTING.md).
### Prerequisites

View File

@@ -0,0 +1,57 @@
# Frontend Testing 🧪
## Quick Start (local) 🚀
1. Start the backend + Supabase stack:
- From `autogpt_platform`: `docker compose --profile local up deps_backend -d`
- Or run the full stack: `docker compose up -d`
2. Seed rich E2E data (creates `test123@gmail.com` with library agents):
- From `autogpt_platform/backend`: `poetry run python test/e2e_test_data.py`
3. Run Playwright:
- From `autogpt_platform/frontend`: `pnpm test` or `pnpm test-ui`
## How Playwright setup works 🎭
- Playwright runs from `frontend/playwright.config.ts` with a global setup step.
- The global setup creates a user pool via the real signup UI and stores it in `frontend/.auth/user-pool.json`.
- Most tests call `getTestUser()` (from `src/tests/utils/auth.ts`) which pulls a random user from that pool.
- these users do not contain library agents, it's user that just "signed up" on the platform, hence some tests to make use of users created via script (see below) with more data
## Test users 👤
- **User pool (basic users)**
Created automatically by the Playwright global setup through `/signup`.
Used by `getTestUser()` in `src/tests/utils/auth.ts`.
- **Rich user with library agents**
Created by `backend/test/e2e_test_data.py`.
Accessed via `getTestUserWithLibraryAgents()` in `src/tests/credentials/index.ts`.
Use the rich user when a test needs existing library agents (e.g. `library.spec.ts`).
## Resetting or wiping the DB 🔁
If you reset the Docker DB and logins start failing:
1. Delete `frontend/.auth/user-pool.json` so the pool is regenerated.
2. Re-run the E2E data script to recreate the rich user + library agents:
- `poetry run python test/e2e_test_data.py`
## Storybook 📚
## Flow diagram 🗺️
```mermaid
flowchart TD
A[Start Docker stack] --> B[Run e2e_test_data.py]
B --> C[Run Playwright tests]
C --> D[Global setup creates user pool]
D --> E{Test needs rich data?}
E -->|No| F[getTestUser from user pool]
E -->|Yes| G[getTestUserWithLibraryAgents]
```
- `pnpm storybook` Run Storybook locally
- `pnpm build-storybook` Build a static Storybook
- CI runner: `pnpm test-storybook`
- When changing components in `src/components`, update or add stories and verify in Storybook/Chromatic.

View File

@@ -3,6 +3,13 @@ import { withSentryConfig } from "@sentry/nextjs";
/** @type {import('next').NextConfig} */
const nextConfig = {
productionBrowserSourceMaps: true,
// Externalize OpenTelemetry packages to fix Turbopack HMR issues
serverExternalPackages: [
"@opentelemetry/instrumentation",
"@opentelemetry/sdk-node",
"import-in-the-middle",
"require-in-the-middle",
],
experimental: {
serverActions: {
bodySizeLimit: "256mb",

View File

@@ -32,6 +32,7 @@
"@hookform/resolvers": "5.2.2",
"@next/third-parties": "15.4.6",
"@phosphor-icons/react": "2.1.10",
"@radix-ui/react-accordion": "1.2.12",
"@radix-ui/react-alert-dialog": "1.1.15",
"@radix-ui/react-avatar": "1.1.10",
"@radix-ui/react-checkbox": "1.3.3",
@@ -117,6 +118,7 @@
},
"devDependencies": {
"@chromatic-com/storybook": "4.1.2",
"@opentelemetry/instrumentation": "0.209.0",
"@playwright/test": "1.56.1",
"@storybook/addon-a11y": "9.1.5",
"@storybook/addon-docs": "9.1.5",
@@ -140,6 +142,7 @@
"eslint": "8.57.1",
"eslint-config-next": "15.5.7",
"eslint-plugin-storybook": "9.1.5",
"import-in-the-middle": "2.0.2",
"msw": "2.11.6",
"msw-storybook-addon": "2.0.6",
"orval": "7.13.0",
@@ -147,7 +150,7 @@
"postcss": "8.5.6",
"prettier": "3.6.2",
"prettier-plugin-tailwindcss": "0.7.1",
"require-in-the-middle": "7.5.2",
"require-in-the-middle": "8.0.1",
"storybook": "9.1.5",
"tailwindcss": "3.4.17",
"typescript": "5.9.3"
@@ -157,5 +160,10 @@
"public"
]
},
"pnpm": {
"overrides": {
"@opentelemetry/instrumentation": "0.209.0"
}
},
"packageManager": "pnpm@10.20.0+sha512.cf9998222162dd85864d0a8102e7892e7ba4ceadebbf5a31f9c2fce48dfce317a9c53b9f6464d1ef9042cba2e02ae02a9f7c143a2b438cd93c91840f0192b9dd"
}

View File

@@ -4,6 +4,9 @@ settings:
autoInstallPeers: true
excludeLinksFromLockfile: false
overrides:
'@opentelemetry/instrumentation': 0.209.0
importers:
.:
@@ -20,6 +23,9 @@ importers:
'@phosphor-icons/react':
specifier: 2.1.10
version: 2.1.10(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
'@radix-ui/react-accordion':
specifier: 1.2.12
version: 1.2.12(@types/react-dom@18.3.5(@types/react@18.3.17))(@types/react@18.3.17)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
'@radix-ui/react-alert-dialog':
specifier: 1.1.15
version: 1.1.15(@types/react-dom@18.3.5(@types/react@18.3.17))(@types/react@18.3.17)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
@@ -270,6 +276,9 @@ importers:
'@chromatic-com/storybook':
specifier: 4.1.2
version: 4.1.2(storybook@9.1.5(@testing-library/dom@10.4.1)(msw@2.11.6(@types/node@24.10.0)(typescript@5.9.3))(prettier@3.6.2))
'@opentelemetry/instrumentation':
specifier: 0.209.0
version: 0.209.0(@opentelemetry/api@1.9.0)
'@playwright/test':
specifier: 1.56.1
version: 1.56.1
@@ -339,6 +348,9 @@ importers:
eslint-plugin-storybook:
specifier: 9.1.5
version: 9.1.5(eslint@8.57.1)(storybook@9.1.5(@testing-library/dom@10.4.1)(msw@2.11.6(@types/node@24.10.0)(typescript@5.9.3))(prettier@3.6.2))(typescript@5.9.3)
import-in-the-middle:
specifier: 2.0.2
version: 2.0.2
msw:
specifier: 2.11.6
version: 2.11.6(@types/node@24.10.0)(typescript@5.9.3)
@@ -361,8 +373,8 @@ importers:
specifier: 0.7.1
version: 0.7.1(prettier@3.6.2)
require-in-the-middle:
specifier: 7.5.2
version: 7.5.2
specifier: 8.0.1
version: 8.0.1
storybook:
specifier: 9.1.5
version: 9.1.5(@testing-library/dom@10.4.1)(msw@2.11.6(@types/node@24.10.0)(typescript@5.9.3))(prettier@3.6.2)
@@ -1543,8 +1555,8 @@ packages:
'@open-draft/until@2.1.0':
resolution: {integrity: sha512-U69T3ItWHvLwGg5eJ0n3I62nWuE6ilHlmz7zM0npLBRvPRd7e6NYmg54vvRtP5mZG7kZqZCFVdsTWo7BPtBujg==}
'@opentelemetry/api-logs@0.208.0':
resolution: {integrity: sha512-CjruKY9V6NMssL/T1kAFgzosF1v9o6oeN+aX5JB/C/xPNtmgIJqcXHG7fA82Ou1zCpWGl4lROQUKwUNE1pMCyg==}
'@opentelemetry/api-logs@0.209.0':
resolution: {integrity: sha512-xomnUNi7TiAGtOgs0tb54LyrjRZLu9shJGGwkcN7NgtiPYOpNnKLkRJtzZvTjD/w6knSZH9sFZcUSUovYOPg6A==}
engines: {node: '>=8.0.0'}
'@opentelemetry/api@1.9.0':
@@ -1695,8 +1707,8 @@ packages:
peerDependencies:
'@opentelemetry/api': ^1.7.0
'@opentelemetry/instrumentation@0.208.0':
resolution: {integrity: sha512-Eju0L4qWcQS+oXxi6pgh7zvE2byogAkcsVv0OjHF/97iOz1N/aKE6etSGowYkie+YA1uo6DNwdSxaaNnLvcRlA==}
'@opentelemetry/instrumentation@0.209.0':
resolution: {integrity: sha512-Cwe863ojTCnFlxVuuhG7s6ODkAOzKsAEthKAcI4MDRYz1OmGWYnmSl4X2pbyS+hBxVTdvfZePfoEA01IjqcEyw==}
engines: {node: ^18.19.0 || >=20.6.0}
peerDependencies:
'@opentelemetry/api': ^1.3.0
@@ -1810,6 +1822,19 @@ packages:
'@radix-ui/primitive@1.1.3':
resolution: {integrity: sha512-JTF99U/6XIjCBo0wqkU5sK10glYe27MRRsfwoiq5zzOEZLHU3A3KCMa5X/azekYRCJ0HlwI0crAXS/5dEHTzDg==}
'@radix-ui/react-accordion@1.2.12':
resolution: {integrity: sha512-T4nygeh9YE9dLRPhAHSeOZi7HBXo+0kYIPJXayZfvWOWA0+n3dESrZbjfDPUABkUNym6Hd+f2IR113To8D2GPA==}
peerDependencies:
'@types/react': '*'
'@types/react-dom': '*'
react: ^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc
react-dom: ^16.8 || ^17.0 || ^18.0 || ^19.0 || ^19.0.0-rc
peerDependenciesMeta:
'@types/react':
optional: true
'@types/react-dom':
optional: true
'@radix-ui/react-alert-dialog@1.1.15':
resolution: {integrity: sha512-oTVLkEw5GpdRe29BqJ0LSDFWI3qu0vR1M0mUkOQWDIUnY/QIkLpgDMWuKxP94c2NAC2LGcgVhG1ImF3jkZ5wXw==}
peerDependencies:
@@ -2631,7 +2656,7 @@ packages:
'@opentelemetry/api': ^1.9.0
'@opentelemetry/context-async-hooks': ^1.30.1 || ^2.1.0 || ^2.2.0
'@opentelemetry/core': ^1.30.1 || ^2.1.0 || ^2.2.0
'@opentelemetry/instrumentation': '>=0.57.1 <1'
'@opentelemetry/instrumentation': 0.209.0
'@opentelemetry/resources': ^1.30.1 || ^2.1.0 || ^2.2.0
'@opentelemetry/sdk-trace-base': ^1.30.1 || ^2.1.0 || ^2.2.0
'@opentelemetry/semantic-conventions': ^1.37.0
@@ -4957,8 +4982,8 @@ packages:
resolution: {integrity: sha512-TR3KfrTZTYLPB6jUjfx6MF9WcWrHL9su5TObK4ZkYgBdWKPOFoSoQIdEuTuR82pmtxH2spWG9h6etwfr1pLBqQ==}
engines: {node: '>=6'}
import-in-the-middle@2.0.1:
resolution: {integrity: sha512-bruMpJ7xz+9jwGzrwEhWgvRrlKRYCRDBrfU+ur3FcasYXLJDxTruJ//8g2Noj+QFyRBeqbpj8Bhn4Fbw6HjvhA==}
import-in-the-middle@2.0.2:
resolution: {integrity: sha512-qet/hkGt3EbNGVtbDfPu0BM+tCqBS8wT1SYrstPaDKoWtshsC6licOemz7DVtpBEyvDNzo8UTBf9/GwWuSDZ9w==}
imurmurhash@0.1.4:
resolution: {integrity: sha512-JmXMZ6wuvDmLiHEml9ykzqO6lwFbof0GG4IkcGaENdCRDDmMVnny7s5HsIgHCbaq0w2MyPhDqkhTUgS2LU2PHA==}
@@ -6502,10 +6527,6 @@ packages:
resolution: {integrity: sha512-Xf0nWe6RseziFMu+Ap9biiUbmplq6S9/p+7w7YXP/JBHhrUDDUhwa+vANyubuqfZWTveU//DYVGsDG7RKL/vEw==}
engines: {node: '>=0.10.0'}
require-in-the-middle@7.5.2:
resolution: {integrity: sha512-gAZ+kLqBdHarXB64XpAe2VCjB7rIRv+mU8tfRWziHRJ5umKsIHN2tLLv6EtMw7WCdP19S0ERVMldNvxYCHnhSQ==}
engines: {node: '>=8.6.0'}
require-in-the-middle@8.0.1:
resolution: {integrity: sha512-QT7FVMXfWOYFbeRBF6nu+I6tr2Tf3u0q8RIEjNob/heKY/nh7drD/k7eeMFmSQgnTtCzLDcCu/XEnpW2wk4xCQ==}
engines: {node: '>=9.3.0 || >=8.10.0 <9.0.0'}
@@ -8716,7 +8737,7 @@ snapshots:
'@open-draft/until@2.1.0': {}
'@opentelemetry/api-logs@0.208.0':
'@opentelemetry/api-logs@0.209.0':
dependencies:
'@opentelemetry/api': 1.9.0
@@ -8735,7 +8756,7 @@ snapshots:
dependencies:
'@opentelemetry/api': 1.9.0
'@opentelemetry/core': 2.2.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.208.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.209.0(@opentelemetry/api@1.9.0)
transitivePeerDependencies:
- supports-color
@@ -8743,7 +8764,7 @@ snapshots:
dependencies:
'@opentelemetry/api': 1.9.0
'@opentelemetry/core': 2.2.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.208.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.209.0(@opentelemetry/api@1.9.0)
'@opentelemetry/semantic-conventions': 1.38.0
'@types/connect': 3.4.38
transitivePeerDependencies:
@@ -8752,7 +8773,7 @@ snapshots:
'@opentelemetry/instrumentation-dataloader@0.26.0(@opentelemetry/api@1.9.0)':
dependencies:
'@opentelemetry/api': 1.9.0
'@opentelemetry/instrumentation': 0.208.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.209.0(@opentelemetry/api@1.9.0)
transitivePeerDependencies:
- supports-color
@@ -8760,7 +8781,7 @@ snapshots:
dependencies:
'@opentelemetry/api': 1.9.0
'@opentelemetry/core': 2.2.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.208.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.209.0(@opentelemetry/api@1.9.0)
'@opentelemetry/semantic-conventions': 1.38.0
transitivePeerDependencies:
- supports-color
@@ -8769,21 +8790,21 @@ snapshots:
dependencies:
'@opentelemetry/api': 1.9.0
'@opentelemetry/core': 2.2.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.208.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.209.0(@opentelemetry/api@1.9.0)
transitivePeerDependencies:
- supports-color
'@opentelemetry/instrumentation-generic-pool@0.52.0(@opentelemetry/api@1.9.0)':
dependencies:
'@opentelemetry/api': 1.9.0
'@opentelemetry/instrumentation': 0.208.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.209.0(@opentelemetry/api@1.9.0)
transitivePeerDependencies:
- supports-color
'@opentelemetry/instrumentation-graphql@0.56.0(@opentelemetry/api@1.9.0)':
dependencies:
'@opentelemetry/api': 1.9.0
'@opentelemetry/instrumentation': 0.208.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.209.0(@opentelemetry/api@1.9.0)
transitivePeerDependencies:
- supports-color
@@ -8791,7 +8812,7 @@ snapshots:
dependencies:
'@opentelemetry/api': 1.9.0
'@opentelemetry/core': 2.2.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.208.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.209.0(@opentelemetry/api@1.9.0)
'@opentelemetry/semantic-conventions': 1.38.0
transitivePeerDependencies:
- supports-color
@@ -8800,7 +8821,7 @@ snapshots:
dependencies:
'@opentelemetry/api': 1.9.0
'@opentelemetry/core': 2.2.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.208.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.209.0(@opentelemetry/api@1.9.0)
'@opentelemetry/semantic-conventions': 1.38.0
forwarded-parse: 2.1.2
transitivePeerDependencies:
@@ -8809,7 +8830,7 @@ snapshots:
'@opentelemetry/instrumentation-ioredis@0.56.0(@opentelemetry/api@1.9.0)':
dependencies:
'@opentelemetry/api': 1.9.0
'@opentelemetry/instrumentation': 0.208.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.209.0(@opentelemetry/api@1.9.0)
'@opentelemetry/redis-common': 0.38.2
transitivePeerDependencies:
- supports-color
@@ -8817,7 +8838,7 @@ snapshots:
'@opentelemetry/instrumentation-kafkajs@0.18.0(@opentelemetry/api@1.9.0)':
dependencies:
'@opentelemetry/api': 1.9.0
'@opentelemetry/instrumentation': 0.208.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.209.0(@opentelemetry/api@1.9.0)
'@opentelemetry/semantic-conventions': 1.38.0
transitivePeerDependencies:
- supports-color
@@ -8825,7 +8846,7 @@ snapshots:
'@opentelemetry/instrumentation-knex@0.53.0(@opentelemetry/api@1.9.0)':
dependencies:
'@opentelemetry/api': 1.9.0
'@opentelemetry/instrumentation': 0.208.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.209.0(@opentelemetry/api@1.9.0)
'@opentelemetry/semantic-conventions': 1.38.0
transitivePeerDependencies:
- supports-color
@@ -8834,7 +8855,7 @@ snapshots:
dependencies:
'@opentelemetry/api': 1.9.0
'@opentelemetry/core': 2.2.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.208.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.209.0(@opentelemetry/api@1.9.0)
'@opentelemetry/semantic-conventions': 1.38.0
transitivePeerDependencies:
- supports-color
@@ -8842,14 +8863,14 @@ snapshots:
'@opentelemetry/instrumentation-lru-memoizer@0.53.0(@opentelemetry/api@1.9.0)':
dependencies:
'@opentelemetry/api': 1.9.0
'@opentelemetry/instrumentation': 0.208.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.209.0(@opentelemetry/api@1.9.0)
transitivePeerDependencies:
- supports-color
'@opentelemetry/instrumentation-mongodb@0.61.0(@opentelemetry/api@1.9.0)':
dependencies:
'@opentelemetry/api': 1.9.0
'@opentelemetry/instrumentation': 0.208.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.209.0(@opentelemetry/api@1.9.0)
transitivePeerDependencies:
- supports-color
@@ -8857,14 +8878,14 @@ snapshots:
dependencies:
'@opentelemetry/api': 1.9.0
'@opentelemetry/core': 2.2.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.208.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.209.0(@opentelemetry/api@1.9.0)
transitivePeerDependencies:
- supports-color
'@opentelemetry/instrumentation-mysql2@0.55.0(@opentelemetry/api@1.9.0)':
dependencies:
'@opentelemetry/api': 1.9.0
'@opentelemetry/instrumentation': 0.208.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.209.0(@opentelemetry/api@1.9.0)
'@opentelemetry/semantic-conventions': 1.38.0
'@opentelemetry/sql-common': 0.41.2(@opentelemetry/api@1.9.0)
transitivePeerDependencies:
@@ -8873,7 +8894,7 @@ snapshots:
'@opentelemetry/instrumentation-mysql@0.54.0(@opentelemetry/api@1.9.0)':
dependencies:
'@opentelemetry/api': 1.9.0
'@opentelemetry/instrumentation': 0.208.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.209.0(@opentelemetry/api@1.9.0)
'@types/mysql': 2.15.27
transitivePeerDependencies:
- supports-color
@@ -8882,7 +8903,7 @@ snapshots:
dependencies:
'@opentelemetry/api': 1.9.0
'@opentelemetry/core': 2.2.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.208.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.209.0(@opentelemetry/api@1.9.0)
'@opentelemetry/semantic-conventions': 1.38.0
'@opentelemetry/sql-common': 0.41.2(@opentelemetry/api@1.9.0)
'@types/pg': 8.15.6
@@ -8893,7 +8914,7 @@ snapshots:
'@opentelemetry/instrumentation-redis@0.57.0(@opentelemetry/api@1.9.0)':
dependencies:
'@opentelemetry/api': 1.9.0
'@opentelemetry/instrumentation': 0.208.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.209.0(@opentelemetry/api@1.9.0)
'@opentelemetry/redis-common': 0.38.2
'@opentelemetry/semantic-conventions': 1.38.0
transitivePeerDependencies:
@@ -8902,7 +8923,7 @@ snapshots:
'@opentelemetry/instrumentation-tedious@0.27.0(@opentelemetry/api@1.9.0)':
dependencies:
'@opentelemetry/api': 1.9.0
'@opentelemetry/instrumentation': 0.208.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.209.0(@opentelemetry/api@1.9.0)
'@types/tedious': 4.0.14
transitivePeerDependencies:
- supports-color
@@ -8911,16 +8932,16 @@ snapshots:
dependencies:
'@opentelemetry/api': 1.9.0
'@opentelemetry/core': 2.2.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.208.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.209.0(@opentelemetry/api@1.9.0)
'@opentelemetry/semantic-conventions': 1.38.0
transitivePeerDependencies:
- supports-color
'@opentelemetry/instrumentation@0.208.0(@opentelemetry/api@1.9.0)':
'@opentelemetry/instrumentation@0.209.0(@opentelemetry/api@1.9.0)':
dependencies:
'@opentelemetry/api': 1.9.0
'@opentelemetry/api-logs': 0.208.0
import-in-the-middle: 2.0.1
'@opentelemetry/api-logs': 0.209.0
import-in-the-middle: 2.0.2
require-in-the-middle: 8.0.1
transitivePeerDependencies:
- supports-color
@@ -9100,7 +9121,7 @@ snapshots:
'@prisma/instrumentation@6.19.0(@opentelemetry/api@1.9.0)':
dependencies:
'@opentelemetry/api': 1.9.0
'@opentelemetry/instrumentation': 0.208.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.209.0(@opentelemetry/api@1.9.0)
transitivePeerDependencies:
- supports-color
@@ -9108,6 +9129,23 @@ snapshots:
'@radix-ui/primitive@1.1.3': {}
'@radix-ui/react-accordion@1.2.12(@types/react-dom@18.3.5(@types/react@18.3.17))(@types/react@18.3.17)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)':
dependencies:
'@radix-ui/primitive': 1.1.3
'@radix-ui/react-collapsible': 1.1.12(@types/react-dom@18.3.5(@types/react@18.3.17))(@types/react@18.3.17)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
'@radix-ui/react-collection': 1.1.7(@types/react-dom@18.3.5(@types/react@18.3.17))(@types/react@18.3.17)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
'@radix-ui/react-compose-refs': 1.1.2(@types/react@18.3.17)(react@18.3.1)
'@radix-ui/react-context': 1.1.2(@types/react@18.3.17)(react@18.3.1)
'@radix-ui/react-direction': 1.1.1(@types/react@18.3.17)(react@18.3.1)
'@radix-ui/react-id': 1.1.1(@types/react@18.3.17)(react@18.3.1)
'@radix-ui/react-primitive': 2.1.3(@types/react-dom@18.3.5(@types/react@18.3.17))(@types/react@18.3.17)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
'@radix-ui/react-use-controllable-state': 1.2.2(@types/react@18.3.17)(react@18.3.1)
react: 18.3.1
react-dom: 18.3.1(react@18.3.1)
optionalDependencies:
'@types/react': 18.3.17
'@types/react-dom': 18.3.5(@types/react@18.3.17)
'@radix-ui/react-alert-dialog@1.1.15(@types/react-dom@18.3.5(@types/react@18.3.17))(@types/react@18.3.17)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)':
dependencies:
'@radix-ui/primitive': 1.1.3
@@ -9932,19 +9970,19 @@ snapshots:
- supports-color
- webpack
'@sentry/node-core@10.27.0(@opentelemetry/api@1.9.0)(@opentelemetry/context-async-hooks@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/core@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/instrumentation@0.208.0(@opentelemetry/api@1.9.0))(@opentelemetry/resources@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/sdk-trace-base@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/semantic-conventions@1.38.0)':
'@sentry/node-core@10.27.0(@opentelemetry/api@1.9.0)(@opentelemetry/context-async-hooks@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/core@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/instrumentation@0.209.0(@opentelemetry/api@1.9.0))(@opentelemetry/resources@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/sdk-trace-base@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/semantic-conventions@1.38.0)':
dependencies:
'@apm-js-collab/tracing-hooks': 0.3.1
'@opentelemetry/api': 1.9.0
'@opentelemetry/context-async-hooks': 2.2.0(@opentelemetry/api@1.9.0)
'@opentelemetry/core': 2.2.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.208.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.209.0(@opentelemetry/api@1.9.0)
'@opentelemetry/resources': 2.2.0(@opentelemetry/api@1.9.0)
'@opentelemetry/sdk-trace-base': 2.2.0(@opentelemetry/api@1.9.0)
'@opentelemetry/semantic-conventions': 1.38.0
'@sentry/core': 10.27.0
'@sentry/opentelemetry': 10.27.0(@opentelemetry/api@1.9.0)(@opentelemetry/context-async-hooks@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/core@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/sdk-trace-base@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/semantic-conventions@1.38.0)
import-in-the-middle: 2.0.1
import-in-the-middle: 2.0.2
transitivePeerDependencies:
- supports-color
@@ -9953,7 +9991,7 @@ snapshots:
'@opentelemetry/api': 1.9.0
'@opentelemetry/context-async-hooks': 2.2.0(@opentelemetry/api@1.9.0)
'@opentelemetry/core': 2.2.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.208.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation': 0.209.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation-amqplib': 0.55.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation-connect': 0.52.0(@opentelemetry/api@1.9.0)
'@opentelemetry/instrumentation-dataloader': 0.26.0(@opentelemetry/api@1.9.0)
@@ -9981,9 +10019,9 @@ snapshots:
'@opentelemetry/semantic-conventions': 1.38.0
'@prisma/instrumentation': 6.19.0(@opentelemetry/api@1.9.0)
'@sentry/core': 10.27.0
'@sentry/node-core': 10.27.0(@opentelemetry/api@1.9.0)(@opentelemetry/context-async-hooks@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/core@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/instrumentation@0.208.0(@opentelemetry/api@1.9.0))(@opentelemetry/resources@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/sdk-trace-base@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/semantic-conventions@1.38.0)
'@sentry/node-core': 10.27.0(@opentelemetry/api@1.9.0)(@opentelemetry/context-async-hooks@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/core@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/instrumentation@0.209.0(@opentelemetry/api@1.9.0))(@opentelemetry/resources@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/sdk-trace-base@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/semantic-conventions@1.38.0)
'@sentry/opentelemetry': 10.27.0(@opentelemetry/api@1.9.0)(@opentelemetry/context-async-hooks@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/core@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/sdk-trace-base@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/semantic-conventions@1.38.0)
import-in-the-middle: 2.0.1
import-in-the-middle: 2.0.2
minimatch: 9.0.5
transitivePeerDependencies:
- supports-color
@@ -12792,7 +12830,7 @@ snapshots:
parent-module: 1.0.1
resolve-from: 4.0.0
import-in-the-middle@2.0.1:
import-in-the-middle@2.0.2:
dependencies:
acorn: 8.15.0
acorn-import-attributes: 1.9.5(acorn@8.15.0)
@@ -14631,14 +14669,6 @@ snapshots:
require-from-string@2.0.2: {}
require-in-the-middle@7.5.2:
dependencies:
debug: 4.4.3
module-details-from-path: 1.0.4
resolve: 1.22.11
transitivePeerDependencies:
- supports-color
require-in-the-middle@8.0.1:
dependencies:
debug: 4.4.3

View File

@@ -1,4 +1,4 @@
import { CredentialsInput } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/modals/CredentialsInputs/CredentialsInputs";
import { CredentialsInput } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/modals/CredentialsInputs/CredentialsInput";
import { CredentialsMetaInput } from "@/app/api/__generated__/models/credentialsMetaInput";
import { GraphMeta } from "@/app/api/__generated__/models/graphMeta";
import { useState } from "react";

View File

@@ -1,22 +1,22 @@
"use client";
import Image from "next/image";
import Link from "next/link";
import { useSearchParams } from "next/navigation";
import { useState, useMemo, useRef } from "react";
import { AuthCard } from "@/components/auth/AuthCard";
import { Text } from "@/components/atoms/Text/Text";
import { CredentialsInput } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/modals/CredentialsInputs/CredentialsInput";
import { useGetOauthGetOauthAppInfo } from "@/app/api/__generated__/endpoints/oauth/oauth";
import { okData } from "@/app/api/helpers";
import { Button } from "@/components/atoms/Button/Button";
import { Text } from "@/components/atoms/Text/Text";
import { AuthCard } from "@/components/auth/AuthCard";
import { ErrorCard } from "@/components/molecules/ErrorCard/ErrorCard";
import { CredentialsInput } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/modals/CredentialsInputs/CredentialsInputs";
import type {
BlockIOCredentialsSubSchema,
CredentialsMetaInput,
CredentialsType,
} from "@/lib/autogpt-server-api";
import { CheckIcon, CircleIcon } from "@phosphor-icons/react";
import { useGetOauthGetOauthAppInfo } from "@/app/api/__generated__/endpoints/oauth/oauth";
import { okData } from "@/app/api/helpers";
import Image from "next/image";
import Link from "next/link";
import { useSearchParams } from "next/navigation";
import { useMemo, useRef, useState } from "react";
// All credential types - we accept any type of credential
const ALL_CREDENTIAL_TYPES: CredentialsType[] = [

View File

@@ -10,7 +10,10 @@ export const BuilderActions = memo(() => {
flowID: parseAsString,
});
return (
<div className="absolute bottom-4 left-[50%] z-[100] flex -translate-x-1/2 items-center gap-4 rounded-full bg-white p-2 px-2 shadow-lg">
<div
data-id="builder-actions"
className="absolute bottom-4 left-[50%] z-[100] flex -translate-x-1/2 items-center gap-4 rounded-full bg-white p-2 px-2 shadow-lg"
>
<AgentOutputs flowID={flowID} />
<RunGraph flowID={flowID} />
<ScheduleGraph flowID={flowID} />

View File

@@ -79,6 +79,7 @@ export const AgentOutputs = ({ flowID }: { flowID: string | null }) => {
<Button
variant="outline"
size="icon"
data-id="agent-outputs-button"
disabled={!flowID || !hasOutputs()}
>
<BookOpenIcon className="size-4" />

View File

@@ -31,6 +31,7 @@ export const RunGraph = ({ flowID }: { flowID: string | null }) => {
<Button
size="icon"
variant={isGraphRunning ? "destructive" : "primary"}
data-id={isGraphRunning ? "stop-graph-button" : "run-graph-button"}
onClick={isGraphRunning ? handleStopGraph : handleRunGraph}
disabled={!flowID || isExecutingGraph || isTerminatingGraph}
loading={isExecutingGraph || isTerminatingGraph || isSaving}

View File

@@ -7,10 +7,11 @@ import { parseAsInteger, parseAsString, useQueryStates } from "nuqs";
import { GraphExecutionMeta } from "@/app/(platform)/library/agents/[id]/components/OldAgentLibraryView/use-agent-runs";
import { useGraphStore } from "@/app/(platform)/build/stores/graphStore";
import { useShallow } from "zustand/react/shallow";
import { useState } from "react";
import { useEffect, useState } from "react";
import { useSaveGraph } from "@/app/(platform)/build/hooks/useSaveGraph";
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
import { ApiError } from "@/lib/autogpt-server-api/helpers"; // Check if this exists
import { useTutorialStore } from "@/app/(platform)/build/stores/tutorialStore";
export const useRunGraph = () => {
const { saveGraph, isSaving } = useSaveGraph({
@@ -33,6 +34,29 @@ export const useRunGraph = () => {
useShallow((state) => state.clearAllNodeErrors),
);
// Tutorial integration - force open dialog when tutorial requests it
const forceOpenRunInputDialog = useTutorialStore(
(state) => state.forceOpenRunInputDialog,
);
const setForceOpenRunInputDialog = useTutorialStore(
(state) => state.setForceOpenRunInputDialog,
);
// Sync tutorial state with dialog state
useEffect(() => {
if (forceOpenRunInputDialog && !openRunInputDialog) {
setOpenRunInputDialog(true);
}
}, [forceOpenRunInputDialog, openRunInputDialog]);
// Reset tutorial state when dialog closes
const handleSetOpenRunInputDialog = (isOpen: boolean) => {
setOpenRunInputDialog(isOpen);
if (!isOpen && forceOpenRunInputDialog) {
setForceOpenRunInputDialog(false);
}
};
const [{ flowID, flowVersion, flowExecutionID }, setQueryStates] =
useQueryStates({
flowID: parseAsString,
@@ -138,6 +162,6 @@ export const useRunGraph = () => {
isExecutingGraph,
isTerminatingGraph,
openRunInputDialog,
setOpenRunInputDialog,
setOpenRunInputDialog: handleSetOpenRunInputDialog,
};
};

View File

@@ -8,6 +8,8 @@ import { Text } from "@/components/atoms/Text/Text";
import { FormRenderer } from "@/components/renderers/InputRenderer/FormRenderer";
import { useRunInputDialog } from "./useRunInputDialog";
import { CronSchedulerDialog } from "../CronSchedulerDialog/CronSchedulerDialog";
import { useTutorialStore } from "@/app/(platform)/build/stores/tutorialStore";
import { useEffect } from "react";
export const RunInputDialog = ({
isOpen,
@@ -37,6 +39,21 @@ export const RunInputDialog = ({
isExecutingGraph,
} = useRunInputDialog({ setIsOpen });
// Tutorial integration - track input values for the tutorial
const setTutorialInputValues = useTutorialStore(
(state) => state.setTutorialInputValues,
);
const isTutorialRunning = useTutorialStore(
(state) => state.isTutorialRunning,
);
// Update tutorial store when input values change
useEffect(() => {
if (isTutorialRunning) {
setTutorialInputValues(inputValues);
}
}, [inputValues, isTutorialRunning, setTutorialInputValues]);
return (
<>
<Dialog
@@ -48,16 +65,16 @@ export const RunInputDialog = ({
styling={{ maxWidth: "600px", minWidth: "600px" }}
>
<Dialog.Content>
<div className="space-y-6 p-1">
<div className="space-y-6 p-1" data-id="run-input-dialog-content">
{/* Credentials Section */}
{hasCredentials() && (
<div>
<div data-id="run-input-credentials-section">
<div className="mb-4">
<Text variant="h4" className="text-gray-900">
Credentials
</Text>
</div>
<div className="px-2">
<div className="px-2" data-id="run-input-credentials-form">
<FormRenderer
jsonSchema={credentialsSchema as RJSFSchema}
handleChange={(v) => handleCredentialChange(v.formData)}
@@ -75,13 +92,13 @@ export const RunInputDialog = ({
{/* Inputs Section */}
{hasInputs() && (
<div>
<div data-id="run-input-inputs-section">
<div className="mb-4">
<Text variant="h4" className="text-gray-900">
Inputs
</Text>
</div>
<div className="px-2">
<div data-id="run-input-inputs-form">
<FormRenderer
jsonSchema={inputSchema as RJSFSchema}
handleChange={(v) => handleInputChange(v.formData)}
@@ -97,7 +114,10 @@ export const RunInputDialog = ({
)}
{/* Action Button */}
<div className="flex justify-end pt-2">
<div
className="flex justify-end pt-2"
data-id="run-input-actions-section"
>
{purpose === "run" && (
<Button
variant="primary"
@@ -105,6 +125,7 @@ export const RunInputDialog = ({
className="group h-fit min-w-0 gap-2"
onClick={handleManualRun}
loading={isExecutingGraph}
data-id="run-input-manual-run-button"
>
{!isExecutingGraph && (
<PlayIcon className="size-5 transition-transform group-hover:scale-110" />
@@ -118,6 +139,7 @@ export const RunInputDialog = ({
size="large"
className="group h-fit min-w-0 gap-2"
onClick={() => setOpenCronSchedulerDialog(true)}
data-id="run-input-schedule-button"
>
<ClockIcon className="size-5 transition-transform group-hover:scale-110" />
<span className="font-semibold">Schedule Run</span>

View File

@@ -26,6 +26,7 @@ export const ScheduleGraph = ({ flowID }: { flowID: string | null }) => {
<Button
variant="outline"
size="icon"
data-id="schedule-graph-button"
onClick={handleScheduleGraph}
disabled={!flowID}
>

View File

@@ -6,12 +6,17 @@ import {
TooltipTrigger,
} from "@/components/atoms/Tooltip/BaseTooltip";
import {
ChalkboardIcon,
CircleNotchIcon,
FrameCornersIcon,
MinusIcon,
PlusIcon,
} from "@phosphor-icons/react/dist/ssr";
import { LockIcon, LockOpenIcon } from "lucide-react";
import { memo } from "react";
import { memo, useEffect, useState } from "react";
import { useSearchParams, useRouter } from "next/navigation";
import { useTutorialStore } from "@/app/(platform)/build/stores/tutorialStore";
import { startTutorial, setTutorialLoadingCallback } from "../../tutorial";
export const CustomControls = memo(
({
@@ -22,27 +27,65 @@ export const CustomControls = memo(
setIsLocked: (isLocked: boolean) => void;
}) => {
const { zoomIn, zoomOut, fitView } = useReactFlow();
const { isTutorialRunning, setIsTutorialRunning } = useTutorialStore();
const [isTutorialLoading, setIsTutorialLoading] = useState(false);
const searchParams = useSearchParams();
const router = useRouter();
useEffect(() => {
setTutorialLoadingCallback(setIsTutorialLoading);
return () => setTutorialLoadingCallback(() => {});
}, []);
const handleTutorialClick = () => {
if (isTutorialLoading) return;
const flowId = searchParams.get("flowID");
if (flowId) {
router.push("/build?view=new");
return;
}
startTutorial();
setIsTutorialRunning(true);
};
const controls = [
{
id: "zoom-in-button",
icon: <PlusIcon className="size-4" />,
label: "Zoom In",
onClick: () => zoomIn(),
className: "h-10 w-10 border-none",
},
{
id: "zoom-out-button",
icon: <MinusIcon className="size-4" />,
label: "Zoom Out",
onClick: () => zoomOut(),
className: "h-10 w-10 border-none",
},
{
id: "tutorial-button",
icon: isTutorialLoading ? (
<CircleNotchIcon className="size-4 animate-spin" />
) : (
<ChalkboardIcon className="size-4" />
),
label: isTutorialLoading ? "Loading Tutorial..." : "Start Tutorial",
onClick: handleTutorialClick,
className: `h-10 w-10 border-none ${isTutorialRunning || isTutorialLoading ? "bg-zinc-100" : "bg-white"}`,
disabled: isTutorialLoading,
},
{
id: "fit-view-button",
icon: <FrameCornersIcon className="size-4" />,
label: "Fit View",
onClick: () => fitView({ padding: 0.2, duration: 800, maxZoom: 1 }),
className: "h-10 w-10 border-none",
},
{
id: "lock-button",
icon: !isLocked ? (
<LockOpenIcon className="size-4" />
) : (
@@ -55,15 +98,20 @@ export const CustomControls = memo(
];
return (
<div className="absolute bottom-4 left-4 z-10 flex flex-col items-center gap-2 rounded-full bg-white px-1 py-2 shadow-lg">
{controls.map((control, index) => (
<Tooltip key={index} delayDuration={300}>
<div
data-id="custom-controls"
className="absolute bottom-4 left-4 z-10 flex flex-col items-center gap-2 rounded-full bg-white px-1 py-2 shadow-lg"
>
{controls.map((control) => (
<Tooltip key={control.id} delayDuration={0}>
<TooltipTrigger asChild>
<Button
variant="icon"
size={"small"}
onClick={control.onClick}
className={control.className}
data-id={control.id}
disabled={"disabled" in control ? control.disabled : false}
>
{control.icon}
<span className="sr-only">{control.label}</span>

View File

@@ -3,6 +3,7 @@ import { useGetV2GetSpecificBlocks } from "@/app/api/__generated__/endpoints/def
import {
useGetV1GetExecutionDetails,
useGetV1GetSpecificGraph,
useGetV1ListUserGraphs,
} from "@/app/api/__generated__/endpoints/graphs/graphs";
import { BlockInfo } from "@/app/api/__generated__/models/blockInfo";
import { GraphModel } from "@/app/api/__generated__/models/graphModel";
@@ -17,6 +18,7 @@ import { useReactFlow } from "@xyflow/react";
import { useControlPanelStore } from "../../../stores/controlPanelStore";
import { useHistoryStore } from "../../../stores/historyStore";
import { AgentExecutionStatus } from "@/app/api/__generated__/models/agentExecutionStatus";
import { okData } from "@/app/api/helpers";
export const useFlow = () => {
const [isLocked, setIsLocked] = useState(false);
@@ -36,6 +38,9 @@ export const useFlow = () => {
const setGraphExecutionStatus = useGraphStore(
useShallow((state) => state.setGraphExecutionStatus),
);
const setAvailableSubGraphs = useGraphStore(
useShallow((state) => state.setAvailableSubGraphs),
);
const updateEdgeBeads = useEdgeStore(
useShallow((state) => state.updateEdgeBeads),
);
@@ -62,6 +67,11 @@ export const useFlow = () => {
},
);
// Fetch all available graphs for sub-agent update detection
const { data: availableGraphs } = useGetV1ListUserGraphs({
query: { select: okData },
});
const { data: graph, isLoading: isGraphLoading } = useGetV1GetSpecificGraph(
flowID ?? "",
flowVersion !== null ? { version: flowVersion } : {},
@@ -116,10 +126,18 @@ export const useFlow = () => {
}
}, [graph]);
// Update available sub-graphs in store for sub-agent update detection
useEffect(() => {
if (availableGraphs) {
setAvailableSubGraphs(availableGraphs);
}
}, [availableGraphs, setAvailableSubGraphs]);
// adding nodes
useEffect(() => {
if (customNodes.length > 0) {
useNodeStore.getState().setNodes([]);
useNodeStore.getState().clearResolutionState();
addNodes(customNodes);
// Sync hardcoded values with handle IDs.
@@ -203,6 +221,7 @@ export const useFlow = () => {
useEffect(() => {
return () => {
useNodeStore.getState().setNodes([]);
useNodeStore.getState().clearResolutionState();
useEdgeStore.getState().setEdges([]);
useGraphStore.getState().reset();
useEdgeStore.getState().resetEdgeBeads();

View File

@@ -8,6 +8,7 @@ import {
getBezierPath,
} from "@xyflow/react";
import { useEdgeStore } from "@/app/(platform)/build/stores/edgeStore";
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
import { XIcon } from "@phosphor-icons/react";
import { cn } from "@/lib/utils";
import { NodeExecutionResult } from "@/lib/autogpt-server-api";
@@ -35,6 +36,8 @@ const CustomEdge = ({
selected,
}: EdgeProps<CustomEdge>) => {
const removeConnection = useEdgeStore((state) => state.removeEdge);
// Subscribe to the brokenEdgeIDs map and check if this edge is broken across any node
const isBroken = useNodeStore((state) => state.isEdgeBroken(id));
const [isHovered, setIsHovered] = useState(false);
const [edgePath, labelX, labelY] = getBezierPath({
@@ -50,6 +53,12 @@ const CustomEdge = ({
const beadUp = data?.beadUp ?? 0;
const beadDown = data?.beadDown ?? 0;
const handleRemoveEdge = () => {
removeConnection(id);
// Note: broken edge tracking is cleaned up automatically by useSubAgentUpdateState
// when it detects the edge no longer exists
};
return (
<>
<BaseEdge
@@ -57,9 +66,11 @@ const CustomEdge = ({
markerEnd={markerEnd}
className={cn(
isStatic && "!stroke-[1.5px] [stroke-dasharray:6]",
selected
? "stroke-zinc-800"
: "stroke-zinc-500/50 hover:stroke-zinc-500",
isBroken
? "!stroke-red-500 !stroke-[2px] [stroke-dasharray:4]"
: selected
? "stroke-zinc-800"
: "stroke-zinc-500/50 hover:stroke-zinc-500",
)}
/>
<JSBeads
@@ -70,12 +81,16 @@ const CustomEdge = ({
/>
<EdgeLabelRenderer>
<Button
onClick={() => removeConnection(id)}
onClick={handleRemoveEdge}
className={cn(
"absolute h-fit min-w-0 p-1 transition-opacity",
isHovered ? "opacity-100" : "opacity-0",
isBroken
? "bg-red-500 opacity-100 hover:bg-red-600"
: isHovered
? "opacity-100"
: "opacity-0",
)}
variant="secondary"
variant={isBroken ? "primary" : "secondary"}
style={{
transform: `translate(-50%, -50%) translate(${labelX}px, ${labelY}px)`,
pointerEvents: "all",

View File

@@ -3,6 +3,7 @@ import { Handle, Position } from "@xyflow/react";
import { useEdgeStore } from "../../../stores/edgeStore";
import { cleanUpHandleId } from "@/components/renderers/InputRenderer/helpers";
import { cn } from "@/lib/utils";
import { useNodeStore } from "../../../stores/nodeStore";
const InputNodeHandle = ({
handleId,
@@ -15,6 +16,9 @@ const InputNodeHandle = ({
const isInputConnected = useEdgeStore((state) =>
state.isInputConnected(nodeId ?? "", cleanedHandleId),
);
const isInputBroken = useNodeStore((state) =>
state.isInputBroken(nodeId, cleanedHandleId),
);
return (
<Handle
@@ -22,12 +26,16 @@ const InputNodeHandle = ({
position={Position.Left}
id={cleanedHandleId}
className={"-ml-6 mr-2"}
data-tutorial-id={`input-handler-${nodeId}-${cleanedHandleId}`}
>
<div className="pointer-events-none">
<CircleIcon
size={16}
weight={isInputConnected ? "fill" : "duotone"}
className={"text-gray-400 opacity-100"}
className={cn(
"text-gray-400 opacity-100",
isInputBroken && "text-red-500",
)}
/>
</div>
</Handle>
@@ -38,27 +46,34 @@ const OutputNodeHandle = ({
field_name,
nodeId,
hexColor,
isBroken,
}: {
field_name: string;
nodeId: string;
hexColor: string;
isBroken: boolean;
}) => {
const isOutputConnected = useEdgeStore((state) =>
state.isOutputConnected(nodeId, field_name),
);
return (
<Handle
type={"source"}
position={Position.Right}
id={field_name}
className={"-mr-2 ml-2"}
data-tutorial-id={`output-handler-${nodeId}-${field_name}`}
>
<div className="pointer-events-none">
<CircleIcon
size={16}
weight={"duotone"}
color={isOutputConnected ? hexColor : "gray"}
className={cn("text-gray-400 opacity-100")}
className={cn(
"text-gray-400 opacity-100",
isBroken && "text-red-500",
)}
/>
</div>
</Handle>

View File

@@ -20,6 +20,8 @@ import { NodeDataRenderer } from "./components/NodeOutput/NodeOutput";
import { NodeRightClickMenu } from "./components/NodeRightClickMenu";
import { StickyNoteBlock } from "./components/StickyNoteBlock";
import { WebhookDisclaimer } from "./components/WebhookDisclaimer";
import { SubAgentUpdateFeature } from "./components/SubAgentUpdate/SubAgentUpdateFeature";
import { useCustomNode } from "./useCustomNode";
export type CustomNodeData = {
hardcodedValues: {
@@ -45,6 +47,10 @@ export type CustomNode = XYNode<CustomNodeData, "custom">;
export const CustomNode: React.FC<NodeProps<CustomNode>> = React.memo(
({ data, id: nodeId, selected }) => {
const { inputSchema, outputSchema } = useCustomNode({ data, nodeId });
const isAgent = data.uiType === BlockUIType.AGENT;
if (data.uiType === BlockUIType.NOTE) {
return (
<StickyNoteBlock data={data} selected={selected} nodeId={nodeId} />
@@ -63,16 +69,6 @@ export const CustomNode: React.FC<NodeProps<CustomNode>> = React.memo(
const isAyrshare = data.uiType === BlockUIType.AYRSHARE;
const inputSchema =
data.uiType === BlockUIType.AGENT
? (data.hardcodedValues.input_schema ?? {})
: data.inputSchema;
const outputSchema =
data.uiType === BlockUIType.AGENT
? (data.hardcodedValues.output_schema ?? {})
: data.outputSchema;
const hasConfigErrors =
data.errors &&
Object.values(data.errors).some(
@@ -87,12 +83,11 @@ export const CustomNode: React.FC<NodeProps<CustomNode>> = React.memo(
const hasErrors = hasConfigErrors || hasOutputError;
// Currently all blockTypes design are similar - that's why i am using the same component for all of them
// If in future - if we need some drastic change in some blockTypes design - we can create separate components for them
const node = (
<NodeContainer selected={selected} nodeId={nodeId} hasErrors={hasErrors}>
<div className="rounded-xlarge bg-white">
<NodeHeader data={data} nodeId={nodeId} />
{isAgent && <SubAgentUpdateFeature nodeID={nodeId} nodeData={data} />}
{isWebhook && <WebhookDisclaimer nodeId={nodeId} />}
{isAyrshare && <AyrshareConnectButton />}
<FormCreator

View File

@@ -27,6 +27,7 @@ export const NodeContainer = ({
status && nodeStyleBasedOnStatus[status],
hasErrors ? nodeStyleBasedOnStatus[AgentExecutionStatus.FAILED] : "",
)}
data-id={`custom-node-${nodeId}`}
>
{children}
</div>

View File

@@ -23,7 +23,10 @@ export const NodeDataRenderer = ({ nodeId }: { nodeId: string }) => {
}
return (
<div className="flex flex-col gap-3 rounded-b-xl border-t border-zinc-200 px-4 py-4">
<div
data-tutorial-id={`node-output`}
className="flex flex-col gap-3 rounded-b-xl border-t border-zinc-200 px-4 py-4"
>
<div className="flex items-center justify-between">
<Text variant="body-medium" className="!font-semibold text-slate-700">
Node Output

View File

@@ -0,0 +1,118 @@
import React from "react";
import { ArrowUpIcon, WarningIcon } from "@phosphor-icons/react";
import { Button } from "@/components/atoms/Button/Button";
import {
Tooltip,
TooltipContent,
TooltipTrigger,
} from "@/components/atoms/Tooltip/BaseTooltip";
import { cn, beautifyString } from "@/lib/utils";
import { CustomNodeData } from "../../CustomNode";
import { useSubAgentUpdateState } from "./useSubAgentUpdateState";
import { IncompatibleUpdateDialog } from "./components/IncompatibleUpdateDialog";
import { ResolutionModeBar } from "./components/ResolutionModeBar";
/**
* Inline component for the update bar that can be placed after the header.
* Use this inside the node content where you want the bar to appear.
*/
type SubAgentUpdateFeatureProps = {
nodeID: string;
nodeData: CustomNodeData;
};
export function SubAgentUpdateFeature({
nodeID,
nodeData,
}: SubAgentUpdateFeatureProps) {
const {
updateInfo,
isInResolutionMode,
handleUpdateClick,
showIncompatibilityDialog,
setShowIncompatibilityDialog,
handleConfirmIncompatibleUpdate,
} = useSubAgentUpdateState({ nodeID: nodeID, nodeData: nodeData });
const agentName = nodeData.title || "Agent";
if (!updateInfo.hasUpdate && !isInResolutionMode) {
return null;
}
return (
<>
{isInResolutionMode ? (
<ResolutionModeBar incompatibilities={updateInfo.incompatibilities} />
) : (
<SubAgentUpdateAvailableBar
currentVersion={updateInfo.currentVersion}
latestVersion={updateInfo.latestVersion}
isCompatible={updateInfo.isCompatible}
onUpdate={handleUpdateClick}
/>
)}
{/* Incompatibility dialog - rendered here since this component owns the state */}
{updateInfo.incompatibilities && (
<IncompatibleUpdateDialog
isOpen={showIncompatibilityDialog}
onClose={() => setShowIncompatibilityDialog(false)}
onConfirm={handleConfirmIncompatibleUpdate}
currentVersion={updateInfo.currentVersion}
latestVersion={updateInfo.latestVersion}
agentName={beautifyString(agentName)}
incompatibilities={updateInfo.incompatibilities}
/>
)}
</>
);
}
type SubAgentUpdateAvailableBarProps = {
currentVersion: number;
latestVersion: number;
isCompatible: boolean;
onUpdate: () => void;
};
function SubAgentUpdateAvailableBar({
currentVersion,
latestVersion,
isCompatible,
onUpdate,
}: SubAgentUpdateAvailableBarProps): React.ReactElement {
return (
<div className="flex items-center justify-between gap-2 rounded-t-xl bg-blue-50 px-3 py-2 dark:bg-blue-900/30">
<div className="flex items-center gap-2">
<ArrowUpIcon className="h-4 w-4 text-blue-600 dark:text-blue-400" />
<span className="text-sm text-blue-700 dark:text-blue-300">
Update available (v{currentVersion} v{latestVersion})
</span>
{!isCompatible && (
<Tooltip>
<TooltipTrigger asChild>
<WarningIcon className="h-4 w-4 text-amber-500" />
</TooltipTrigger>
<TooltipContent className="max-w-xs">
<p className="font-medium">Incompatible changes detected</p>
<p className="text-xs text-gray-400">
Click Update to see details
</p>
</TooltipContent>
</Tooltip>
)}
</div>
<Button
size="small"
variant={isCompatible ? "primary" : "outline"}
onClick={onUpdate}
className={cn(
"h-7 text-xs",
!isCompatible && "border-amber-500 text-amber-600 hover:bg-amber-50",
)}
>
Update
</Button>
</div>
);
}

View File

@@ -0,0 +1,274 @@
import React from "react";
import {
WarningIcon,
XCircleIcon,
PlusCircleIcon,
} from "@phosphor-icons/react";
import { Button } from "@/components/atoms/Button/Button";
import { Alert, AlertDescription } from "@/components/molecules/Alert/Alert";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { beautifyString } from "@/lib/utils";
import { IncompatibilityInfo } from "@/app/(platform)/build/hooks/useSubAgentUpdate/types";
type IncompatibleUpdateDialogProps = {
isOpen: boolean;
onClose: () => void;
onConfirm: () => void;
currentVersion: number;
latestVersion: number;
agentName: string;
incompatibilities: IncompatibilityInfo;
};
export function IncompatibleUpdateDialog({
isOpen,
onClose,
onConfirm,
currentVersion,
latestVersion,
agentName,
incompatibilities,
}: IncompatibleUpdateDialogProps) {
const hasMissingInputs = incompatibilities.missingInputs.length > 0;
const hasMissingOutputs = incompatibilities.missingOutputs.length > 0;
const hasNewInputs = incompatibilities.newInputs.length > 0;
const hasNewOutputs = incompatibilities.newOutputs.length > 0;
const hasNewRequired = incompatibilities.newRequiredInputs.length > 0;
const hasTypeMismatches = incompatibilities.inputTypeMismatches.length > 0;
const hasInputChanges = hasMissingInputs || hasNewInputs;
const hasOutputChanges = hasMissingOutputs || hasNewOutputs;
return (
<Dialog
title={
<div className="flex items-center gap-2">
<WarningIcon className="h-5 w-5 text-amber-500" weight="fill" />
Incompatible Update
</div>
}
controlled={{
isOpen,
set: async (open) => {
if (!open) onClose();
},
}}
onClose={onClose}
styling={{ maxWidth: "32rem" }}
>
<Dialog.Content>
<div className="space-y-4">
<p className="text-sm text-gray-600 dark:text-gray-400">
Updating <strong>{beautifyString(agentName)}</strong> from v
{currentVersion} to v{latestVersion} will break some connections.
</p>
{/* Input changes - two column layout */}
{hasInputChanges && (
<TwoColumnSection
title="Input Changes"
leftIcon={
<XCircleIcon className="h-4 w-4 text-red-500" weight="fill" />
}
leftTitle="Removed"
leftItems={incompatibilities.missingInputs}
rightIcon={
<PlusCircleIcon
className="h-4 w-4 text-green-500"
weight="fill"
/>
}
rightTitle="Added"
rightItems={incompatibilities.newInputs}
/>
)}
{/* Output changes - two column layout */}
{hasOutputChanges && (
<TwoColumnSection
title="Output Changes"
leftIcon={
<XCircleIcon className="h-4 w-4 text-red-500" weight="fill" />
}
leftTitle="Removed"
leftItems={incompatibilities.missingOutputs}
rightIcon={
<PlusCircleIcon
className="h-4 w-4 text-green-500"
weight="fill"
/>
}
rightTitle="Added"
rightItems={incompatibilities.newOutputs}
/>
)}
{hasTypeMismatches && (
<SingleColumnSection
icon={
<XCircleIcon className="h-4 w-4 text-red-500" weight="fill" />
}
title="Type Changed"
description="These connected inputs have a different type:"
items={incompatibilities.inputTypeMismatches.map(
(m) => `${m.name} (${m.oldType}${m.newType})`,
)}
/>
)}
{hasNewRequired && (
<SingleColumnSection
icon={
<PlusCircleIcon
className="h-4 w-4 text-amber-500"
weight="fill"
/>
}
title="New Required Inputs"
description="These inputs are now required:"
items={incompatibilities.newRequiredInputs}
/>
)}
<Alert variant="warning">
<AlertDescription>
If you proceed, you&apos;ll need to remove the broken connections
before you can save or run your agent.
</AlertDescription>
</Alert>
<Dialog.Footer>
<Button variant="ghost" size="small" onClick={onClose}>
Cancel
</Button>
<Button
variant="primary"
size="small"
onClick={onConfirm}
className="border-amber-700 bg-amber-600 hover:bg-amber-700"
>
Update Anyway
</Button>
</Dialog.Footer>
</div>
</Dialog.Content>
</Dialog>
);
}
type TwoColumnSectionProps = {
title: string;
leftIcon: React.ReactNode;
leftTitle: string;
leftItems: string[];
rightIcon: React.ReactNode;
rightTitle: string;
rightItems: string[];
};
function TwoColumnSection({
title,
leftIcon,
leftTitle,
leftItems,
rightIcon,
rightTitle,
rightItems,
}: TwoColumnSectionProps) {
return (
<div className="rounded-md border border-gray-200 p-3 dark:border-gray-700">
<span className="font-medium">{title}</span>
<div className="mt-2 grid grid-cols-2 items-start gap-4">
{/* Left column - Breaking changes */}
<div className="min-w-0">
<div className="flex items-center gap-1.5 text-sm text-gray-500 dark:text-gray-400">
{leftIcon}
<span>{leftTitle}</span>
</div>
<ul className="mt-1.5 space-y-1">
{leftItems.length > 0 ? (
leftItems.map((item) => (
<li
key={item}
className="text-sm text-gray-700 dark:text-gray-300"
>
<code className="rounded bg-red-50 px-1 py-0.5 font-mono text-xs text-red-700 dark:bg-red-900/30 dark:text-red-300">
{item}
</code>
</li>
))
) : (
<li className="text-sm italic text-gray-400 dark:text-gray-500">
None
</li>
)}
</ul>
</div>
{/* Right column - Possible solutions */}
<div className="min-w-0">
<div className="flex items-center gap-1.5 text-sm text-gray-500 dark:text-gray-400">
{rightIcon}
<span>{rightTitle}</span>
</div>
<ul className="mt-1.5 space-y-1">
{rightItems.length > 0 ? (
rightItems.map((item) => (
<li
key={item}
className="text-sm text-gray-700 dark:text-gray-300"
>
<code className="rounded bg-green-50 px-1 py-0.5 font-mono text-xs text-green-700 dark:bg-green-900/30 dark:text-green-300">
{item}
</code>
</li>
))
) : (
<li className="text-sm italic text-gray-400 dark:text-gray-500">
None
</li>
)}
</ul>
</div>
</div>
</div>
);
}
type SingleColumnSectionProps = {
icon: React.ReactNode;
title: string;
description: string;
items: string[];
};
function SingleColumnSection({
icon,
title,
description,
items,
}: SingleColumnSectionProps) {
return (
<div className="rounded-md border border-gray-200 p-3 dark:border-gray-700">
<div className="flex items-center gap-2">
{icon}
<span className="font-medium">{title}</span>
</div>
<p className="mt-1 text-sm text-gray-500 dark:text-gray-400">
{description}
</p>
<ul className="mt-2 space-y-1">
{items.map((item) => (
<li
key={item}
className="ml-4 list-disc text-sm text-gray-700 dark:text-gray-300"
>
<code className="rounded bg-gray-100 px-1 py-0.5 font-mono text-xs dark:bg-gray-800">
{item}
</code>
</li>
))}
</ul>
</div>
);
}

View File

@@ -0,0 +1,107 @@
import React from "react";
import { InfoIcon, WarningIcon } from "@phosphor-icons/react";
import {
Tooltip,
TooltipContent,
TooltipTrigger,
} from "@/components/atoms/Tooltip/BaseTooltip";
import { IncompatibilityInfo } from "@/app/(platform)/build/hooks/useSubAgentUpdate/types";
type ResolutionModeBarProps = {
incompatibilities: IncompatibilityInfo | null;
};
export function ResolutionModeBar({
incompatibilities,
}: ResolutionModeBarProps): React.ReactElement {
const renderIncompatibilities = () => {
if (!incompatibilities) return <span>No incompatibilities</span>;
const sections: React.ReactNode[] = [];
if (incompatibilities.missingInputs.length > 0) {
sections.push(
<div key="missing-inputs" className="mb-1">
<span className="font-semibold">Missing inputs: </span>
{incompatibilities.missingInputs.map((name, i) => (
<React.Fragment key={name}>
<code className="font-mono">{name}</code>
{i < incompatibilities.missingInputs.length - 1 && ", "}
</React.Fragment>
))}
</div>,
);
}
if (incompatibilities.missingOutputs.length > 0) {
sections.push(
<div key="missing-outputs" className="mb-1">
<span className="font-semibold">Missing outputs: </span>
{incompatibilities.missingOutputs.map((name, i) => (
<React.Fragment key={name}>
<code className="font-mono">{name}</code>
{i < incompatibilities.missingOutputs.length - 1 && ", "}
</React.Fragment>
))}
</div>,
);
}
if (incompatibilities.newRequiredInputs.length > 0) {
sections.push(
<div key="new-required" className="mb-1">
<span className="font-semibold">New required inputs: </span>
{incompatibilities.newRequiredInputs.map((name, i) => (
<React.Fragment key={name}>
<code className="font-mono">{name}</code>
{i < incompatibilities.newRequiredInputs.length - 1 && ", "}
</React.Fragment>
))}
</div>,
);
}
if (incompatibilities.inputTypeMismatches.length > 0) {
sections.push(
<div key="type-mismatches" className="mb-1">
<span className="font-semibold">Type changed: </span>
{incompatibilities.inputTypeMismatches.map((m, i) => (
<React.Fragment key={m.name}>
<code className="font-mono">{m.name}</code>
<span className="text-gray-400">
{" "}
({m.oldType} {m.newType})
</span>
{i < incompatibilities.inputTypeMismatches.length - 1 && ", "}
</React.Fragment>
))}
</div>,
);
}
return <>{sections}</>;
};
return (
<div className="flex items-center justify-between gap-2 rounded-t-xl bg-amber-50 px-3 py-2 dark:bg-amber-900/30">
<div className="flex items-center gap-2">
<WarningIcon className="h-4 w-4 text-amber-600 dark:text-amber-400" />
<span className="text-sm text-amber-700 dark:text-amber-300">
Remove incompatible connections
</span>
<Tooltip>
<TooltipTrigger asChild>
<InfoIcon className="h-4 w-4 cursor-help text-amber-500" />
</TooltipTrigger>
<TooltipContent className="max-w-sm">
<p className="mb-2 font-semibold">Incompatible changes:</p>
<div className="text-xs">{renderIncompatibilities()}</div>
<p className="mt-2 text-xs text-gray-400">
{(incompatibilities?.newRequiredInputs.length ?? 0) > 0
? "Replace / delete"
: "Delete"}{" "}
the red connections to continue
</p>
</TooltipContent>
</Tooltip>
</div>
</div>
);
}

View File

@@ -0,0 +1,194 @@
import { useState, useCallback, useEffect } from "react";
import { useShallow } from "zustand/react/shallow";
import { useGraphStore } from "@/app/(platform)/build/stores/graphStore";
import {
useNodeStore,
NodeResolutionData,
} from "@/app/(platform)/build/stores/nodeStore";
import { useEdgeStore } from "@/app/(platform)/build/stores/edgeStore";
import {
useSubAgentUpdate,
createUpdatedAgentNodeInputs,
getBrokenEdgeIDs,
} from "@/app/(platform)/build/hooks/useSubAgentUpdate";
import { GraphInputSchema, GraphOutputSchema } from "@/lib/autogpt-server-api";
import { CustomNodeData } from "../../CustomNode";
// Stable empty set to avoid creating new references in selectors
const EMPTY_SET: Set<string> = new Set();
type UseSubAgentUpdateParams = {
nodeID: string;
nodeData: CustomNodeData;
};
export function useSubAgentUpdateState({
nodeID,
nodeData,
}: UseSubAgentUpdateParams) {
const [showIncompatibilityDialog, setShowIncompatibilityDialog] =
useState(false);
// Get store actions
const updateNodeData = useNodeStore(
useShallow((state) => state.updateNodeData),
);
const setNodeResolutionMode = useNodeStore(
useShallow((state) => state.setNodeResolutionMode),
);
const isNodeInResolutionMode = useNodeStore(
useShallow((state) => state.isNodeInResolutionMode),
);
const setBrokenEdgeIDs = useNodeStore(
useShallow((state) => state.setBrokenEdgeIDs),
);
// Get this node's broken edge IDs from the per-node map
// Use EMPTY_SET as fallback to maintain referential stability
const brokenEdgeIDs = useNodeStore(
(state) => state.brokenEdgeIDs.get(nodeID) || EMPTY_SET,
);
const getNodeResolutionData = useNodeStore(
useShallow((state) => state.getNodeResolutionData),
);
const connectedEdges = useEdgeStore(
useShallow((state) => state.getNodeEdges(nodeID)),
);
const availableSubGraphs = useGraphStore(
useShallow((state) => state.availableSubGraphs),
);
// Extract agent-specific data
const graphID = nodeData.hardcodedValues?.graph_id as string | undefined;
const graphVersion = nodeData.hardcodedValues?.graph_version as
| number
| undefined;
const currentInputSchema = nodeData.hardcodedValues?.input_schema as
| GraphInputSchema
| undefined;
const currentOutputSchema = nodeData.hardcodedValues?.output_schema as
| GraphOutputSchema
| undefined;
// Use the sub-agent update hook
const updateInfo = useSubAgentUpdate(
nodeID,
graphID,
graphVersion,
currentInputSchema,
currentOutputSchema,
connectedEdges,
availableSubGraphs,
);
const isInResolutionMode = isNodeInResolutionMode(nodeID);
// Handle update button click
const handleUpdateClick = useCallback(() => {
if (!updateInfo.hasUpdate || !updateInfo.latestGraph) return;
if (updateInfo.isCompatible) {
// Compatible update - apply directly
const newHardcodedValues = createUpdatedAgentNodeInputs(
nodeData.hardcodedValues,
updateInfo.latestGraph,
);
updateNodeData(nodeID, { hardcodedValues: newHardcodedValues });
} else {
// Incompatible update - show dialog
setShowIncompatibilityDialog(true);
}
}, [
updateInfo.hasUpdate,
updateInfo.latestGraph,
updateInfo.isCompatible,
nodeData.hardcodedValues,
updateNodeData,
nodeID,
]);
// Handle confirming an incompatible update
function handleConfirmIncompatibleUpdate() {
if (!updateInfo.latestGraph || !updateInfo.incompatibilities) return;
const latestGraph = updateInfo.latestGraph;
// Get the new schemas from the latest graph version
const newInputSchema =
(latestGraph.input_schema as Record<string, unknown>) || {};
const newOutputSchema =
(latestGraph.output_schema as Record<string, unknown>) || {};
// Create the updated hardcoded values but DON'T apply them yet
// We'll apply them when resolution is complete
const pendingHardcodedValues = createUpdatedAgentNodeInputs(
nodeData.hardcodedValues,
latestGraph,
);
// Get broken edge IDs and store them for this node
const brokenIds = getBrokenEdgeIDs(
connectedEdges,
updateInfo.incompatibilities,
nodeID,
);
setBrokenEdgeIDs(nodeID, brokenIds);
// Enter resolution mode with both old and new schemas
// DON'T apply the update yet - keep old schema so connections remain visible
const resolutionData: NodeResolutionData = {
incompatibilities: updateInfo.incompatibilities,
pendingUpdate: {
input_schema: newInputSchema,
output_schema: newOutputSchema,
},
currentSchema: {
input_schema: (currentInputSchema as Record<string, unknown>) || {},
output_schema: (currentOutputSchema as Record<string, unknown>) || {},
},
pendingHardcodedValues,
};
setNodeResolutionMode(nodeID, true, resolutionData);
setShowIncompatibilityDialog(false);
}
// Check if resolution is complete (all broken edges removed)
const resolutionData = getNodeResolutionData(nodeID);
// Auto-check resolution on edge changes
useEffect(() => {
if (!isInResolutionMode) return;
// Check if any broken edges still exist
const remainingBroken = Array.from(brokenEdgeIDs).filter((edgeId) =>
connectedEdges.some((e) => e.id === edgeId),
);
if (remainingBroken.length === 0) {
// Resolution complete - now apply the pending update
if (resolutionData?.pendingHardcodedValues) {
updateNodeData(nodeID, {
hardcodedValues: resolutionData.pendingHardcodedValues,
});
}
// setNodeResolutionMode will clean up this node's broken edges automatically
setNodeResolutionMode(nodeID, false);
}
}, [
isInResolutionMode,
brokenEdgeIDs,
connectedEdges,
resolutionData,
nodeID,
]);
return {
updateInfo,
isInResolutionMode,
resolutionData,
showIncompatibilityDialog,
setShowIncompatibilityDialog,
handleUpdateClick,
handleConfirmIncompatibleUpdate,
};
}

View File

@@ -1,4 +1,6 @@
import { AgentExecutionStatus } from "@/app/api/__generated__/models/agentExecutionStatus";
import { NodeResolutionData } from "@/app/(platform)/build/stores/nodeStore";
import { RJSFSchema } from "@rjsf/utils";
export const nodeStyleBasedOnStatus: Record<AgentExecutionStatus, string> = {
INCOMPLETE: "ring-slate-300 bg-slate-300",
@@ -9,3 +11,48 @@ export const nodeStyleBasedOnStatus: Record<AgentExecutionStatus, string> = {
TERMINATED: "ring-orange-300 bg-orange-300 ",
FAILED: "ring-red-300 bg-red-300",
};
/**
* Merges schemas during resolution mode to include removed inputs/outputs
* that still have connections, so users can see and delete them.
*/
export function mergeSchemaForResolution(
currentSchema: Record<string, unknown>,
newSchema: Record<string, unknown>,
resolutionData: NodeResolutionData,
type: "input" | "output",
): Record<string, unknown> {
const newProps = (newSchema.properties as RJSFSchema) || {};
const currentProps = (currentSchema.properties as RJSFSchema) || {};
const mergedProps = { ...newProps };
const incomp = resolutionData.incompatibilities;
if (type === "input") {
// Add back missing inputs that have connections
incomp.missingInputs.forEach((inputName: string) => {
if (currentProps[inputName]) {
mergedProps[inputName] = currentProps[inputName];
}
});
// Add back inputs with type mismatches (keep old type so connection works visually)
incomp.inputTypeMismatches.forEach(
(mismatch: { name: string; oldType: string; newType: string }) => {
if (currentProps[mismatch.name]) {
mergedProps[mismatch.name] = currentProps[mismatch.name];
}
},
);
} else {
// Add back missing outputs that have connections
incomp.missingOutputs.forEach((outputName: string) => {
if (currentProps[outputName]) {
mergedProps[outputName] = currentProps[outputName];
}
});
}
return {
...newSchema,
properties: mergedProps,
};
}

View File

@@ -0,0 +1,58 @@
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
import { CustomNodeData } from "./CustomNode";
import { BlockUIType } from "../../../types";
import { useMemo } from "react";
import { mergeSchemaForResolution } from "./helpers";
export const useCustomNode = ({
data,
nodeId,
}: {
data: CustomNodeData;
nodeId: string;
}) => {
const isInResolutionMode = useNodeStore((state) =>
state.nodesInResolutionMode.has(nodeId),
);
const resolutionData = useNodeStore((state) =>
state.nodeResolutionData.get(nodeId),
);
const isAgent = data.uiType === BlockUIType.AGENT;
const currentInputSchema = isAgent
? (data.hardcodedValues.input_schema ?? {})
: data.inputSchema;
const currentOutputSchema = isAgent
? (data.hardcodedValues.output_schema ?? {})
: data.outputSchema;
const inputSchema = useMemo(() => {
if (isAgent && isInResolutionMode && resolutionData) {
return mergeSchemaForResolution(
resolutionData.currentSchema.input_schema,
resolutionData.pendingUpdate.input_schema,
resolutionData,
"input",
);
}
return currentInputSchema;
}, [isAgent, isInResolutionMode, resolutionData, currentInputSchema]);
const outputSchema = useMemo(() => {
if (isAgent && isInResolutionMode && resolutionData) {
return mergeSchemaForResolution(
resolutionData.currentSchema.output_schema,
resolutionData.pendingUpdate.output_schema,
resolutionData,
"output",
);
}
return currentOutputSchema;
}, [isAgent, isInResolutionMode, resolutionData, currentOutputSchema]);
return {
inputSchema,
outputSchema,
};
};

View File

@@ -5,20 +5,16 @@ import { useNodeStore } from "../../../stores/nodeStore";
import { BlockUIType } from "../../types";
import { FormRenderer } from "@/components/renderers/InputRenderer/FormRenderer";
export const FormCreator = React.memo(
({
jsonSchema,
nodeId,
uiType,
showHandles = true,
className,
}: {
jsonSchema: RJSFSchema;
nodeId: string;
uiType: BlockUIType;
showHandles?: boolean;
className?: string;
}) => {
interface FormCreatorProps {
jsonSchema: RJSFSchema;
nodeId: string;
uiType: BlockUIType;
showHandles?: boolean;
className?: string;
}
export const FormCreator: React.FC<FormCreatorProps> = React.memo(
({ jsonSchema, nodeId, uiType, showHandles = true, className }) => {
const updateNodeData = useNodeStore((state) => state.updateNodeData);
const getHardCodedValues = useNodeStore(
@@ -48,7 +44,10 @@ export const FormCreator = React.memo(
: hardcodedValues;
return (
<div className={className}>
<div
className={className}
data-id={`form-creator-container-${nodeId}-node`}
>
<FormRenderer
jsonSchema={jsonSchema}
handleChange={handleChange}

View File

@@ -14,6 +14,8 @@ import {
import { useEdgeStore } from "@/app/(platform)/build/stores/edgeStore";
import { getTypeDisplayInfo } from "./helpers";
import { BlockUIType } from "../../types";
import { cn } from "@/lib/utils";
import { useBrokenOutputs } from "./useBrokenOutputs";
export const OutputHandler = ({
outputSchema,
@@ -27,6 +29,9 @@ export const OutputHandler = ({
const { isOutputConnected } = useEdgeStore();
const properties = outputSchema?.properties || {};
const [isOutputVisible, setIsOutputVisible] = useState(true);
const brokenOutputs = useBrokenOutputs(nodeId);
console.log("brokenOutputs", brokenOutputs);
const showHandles = uiType !== BlockUIType.OUTPUT;
@@ -44,9 +49,14 @@ export const OutputHandler = ({
const shouldShow = isConnected || isOutputVisible;
const { displayType, colorClass, hexColor } =
getTypeDisplayInfo(fieldSchema);
const isBroken = brokenOutputs.has(fullKey);
return shouldShow ? (
<div key={fullKey} className="flex flex-col items-end gap-2">
<div
key={fullKey}
className="flex flex-col items-end gap-2"
data-tutorial-id={`output-handler-${nodeId}-${fieldTitle}`}
>
<div className="relative flex items-center gap-2">
{fieldSchema?.description && (
<TooltipProvider>
@@ -64,15 +74,29 @@ export const OutputHandler = ({
</Tooltip>
</TooltipProvider>
)}
<Text variant="body" className="text-slate-700">
<Text
variant="body"
className={cn(
"text-slate-700",
isBroken && "text-red-500 line-through",
)}
>
{fieldTitle}
</Text>
<Text variant="small" as="span" className={colorClass}>
<Text
variant="small"
as="span"
className={cn(
colorClass,
isBroken && "!text-red-500 line-through",
)}
>
({displayType})
</Text>
{showHandles && (
<OutputNodeHandle
isBroken={isBroken}
field_name={fullKey}
nodeId={nodeId}
hexColor={hexColor}

View File

@@ -0,0 +1,23 @@
import { useMemo } from "react";
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
/**
* Hook to get the set of broken output names for a node in resolution mode.
*/
export function useBrokenOutputs(nodeID: string): Set<string> {
// Subscribe to the actual state values, not just methods
const isInResolution = useNodeStore((state) =>
state.nodesInResolutionMode.has(nodeID),
);
const resolutionData = useNodeStore((state) =>
state.nodeResolutionData.get(nodeID),
);
return useMemo(() => {
if (!isInResolution || !resolutionData) {
return new Set<string>();
}
return new Set(resolutionData.incompatibilities.missingOutputs);
}, [isInResolution, resolutionData]);
}

View File

@@ -0,0 +1,129 @@
// Block IDs for tutorial blocks
export const BLOCK_IDS = {
CALCULATOR: "b1ab9b19-67a6-406d-abf5-2dba76d00c79",
AGENT_INPUT: "c0a8e994-ebf1-4a9c-a4d8-89d09c86741b",
AGENT_OUTPUT: "363ae599-353e-4804-937e-b2ee3cef3da4",
} as const;
export const TUTORIAL_SELECTORS = {
// Custom nodes - These are all before saving
INPUT_NODE: '[data-id="custom-node-2"]',
OUTPUT_NODE: '[data-id="custom-node-3 "]',
CALCULATOR_NODE: '[data-id="custom-node-1"]',
// Paricular field selector
NAME_FIELD_OUTPUT_NODE: '[data-id="field-3-root_name"]',
// Output Handlers
SECOND_CALCULATOR_RESULT_OUTPUT_HANDLER:
'[data-tutorial-id="output-handler-2-result"]',
FIRST_CALCULATOR_RESULT_OUTPUT_HANDLER:
'[data-tutorial-id="output-handler-1-result"]',
// Input Handler
SECOND_CALCULATOR_NUMBER_A_INPUT_HANDLER:
'[data-tutorial-id="input-handler-2-a"]',
OUTPUT_VALUE_INPUT_HANDLEER: '[data-tutorial-id="label-3-root_value"]',
// Block Menu
BLOCKS_TRIGGER: '[data-id="blocks-control-popover-trigger"]',
BLOCKS_CONTENT: '[data-id="blocks-control-popover-content"]',
BLOCKS_SEARCH_INPUT:
'[data-id="blocks-control-search-bar"] input[type="text"]',
BLOCKS_SEARCH_INPUT_BOX: '[data-id="blocks-control-search-bar"]',
// Add a new selector that checks within search results
// Block Menu Sidebar
MENU_ITEM_INPUT_BLOCKS: '[data-id="menu-item-input_blocks"]',
MENU_ITEM_ALL_BLOCKS: '[data-id="menu-item-all_blocks"]',
MENU_ITEM_ACTION_BLOCKS: '[data-id="menu-item-action_blocks"]',
MENU_ITEM_OUTPUT_BLOCKS: '[data-id="menu-item-output_blocks"]',
MENU_ITEM_INTEGRATIONS: '[data-id="menu-item-integrations"]',
MENU_ITEM_MY_AGENTS: '[data-id="menu-item-my_agents"]',
MENU_ITEM_MARKETPLACE: '[data-id="menu-item-marketplace_agents"]',
MENU_ITEM_SUGGESTION: '[data-id="menu-item-suggestion"]',
// Block Cards
BLOCK_CARD_PREFIX: '[data-id^="block-card-"]',
BLOCK_CARD_AGENT_INPUT: '[data-id="block-card-AgentInputBlock"]',
// Calculator block - legacy ID used in old tutorial
BLOCK_CARD_CALCULATOR:
'[data-id="block-card-b1ab9b1967a6406dabf52dba76d00c79"]',
BLOCK_CARD_CALCULATOR_IN_SEARCH:
'[data-id="blocks-control-search-results"] [data-id="block-card-b1ab9b1967a6406dabf52dba76d00c79"]',
// Save Control
SAVE_TRIGGER: '[data-id="save-control-popover-trigger"]',
SAVE_CONTENT: '[data-id="save-control-popover-content"]',
SAVE_AGENT_BUTTON: '[data-id="save-control-save-agent"]',
SAVE_NAME_INPUT: '[data-id="save-control-name-input"]',
SAVE_DESCRIPTION_INPUT: '[data-id="save-control-description-input"]',
// Builder Actions (Run, Schedule, Outputs)
BUILDER_ACTIONS: '[data-id="builder-actions"]',
RUN_BUTTON: '[data-id="run-graph-button"]',
STOP_BUTTON: '[data-id="stop-graph-button"]',
SCHEDULE_BUTTON: '[data-id="schedule-graph-button"]',
AGENT_OUTPUTS_BUTTON: '[data-id="agent-outputs-button"]',
// Run Input Dialog
RUN_INPUT_DIALOG_CONTENT: '[data-id="run-input-dialog-content"]',
RUN_INPUT_CREDENTIALS_SECTION: '[data-id="run-input-credentials-section"]',
RUN_INPUT_CREDENTIALS_FORM: '[data-id="run-input-credentials-form"]',
RUN_INPUT_INPUTS_SECTION: '[data-id="run-input-inputs-section"]',
RUN_INPUT_INPUTS_FORM: '[data-id="run-input-inputs-form"]',
RUN_INPUT_ACTIONS_SECTION: '[data-id="run-input-actions-section"]',
RUN_INPUT_MANUAL_RUN_BUTTON: '[data-id="run-input-manual-run-button"]',
RUN_INPUT_SCHEDULE_BUTTON: '[data-id="run-input-schedule-button"]',
// Custom Controls (bottom left)
CUSTOM_CONTROLS: '[data-id="custom-controls"]',
ZOOM_IN_BUTTON: '[data-id="zoom-in-button"]',
ZOOM_OUT_BUTTON: '[data-id="zoom-out-button"]',
FIT_VIEW_BUTTON: '[data-id="fit-view-button"]',
LOCK_BUTTON: '[data-id="lock-button"]',
TUTORIAL_BUTTON: '[data-id="tutorial-button"]',
// Canvas
REACT_FLOW_CANVAS: ".react-flow__pane",
REACT_FLOW_NODE: ".react-flow__node",
REACT_FLOW_NODE_FIRST: '[data-testid^="rf__node-"]:first-child',
REACT_FLOW_EDGE: '[data-testid^="rf__edge-"]',
// Node elements
NODE_CONTAINER: '[data-id^="custom-node-"]',
NODE_HEADER: '[data-id^="node-header-"]',
NODE_INPUT_HANDLES: '[data-tutorial-id="input-handles"]',
NODE_OUTPUT_HANDLE: '[data-handlepos="right"]',
NODE_INPUT_HANDLE: "[data-nodeid]",
FIRST_CALCULATOR_NODE_OUTPUT: '[data-tutorial-id="node-output"]',
// These are the Id's of the nodes before saving
CALCULATOR_NODE_FORM_CONTAINER: '[data-id^="form-creator-container-1-node"]', // <-- Add this line
AGENT_INPUT_NODE_FORM_CONTAINER: '[data-id^="form-creator-container-2-node"]', // <-- Add this line
AGENT_OUTPUT_NODE_FORM_CONTAINER:
'[data-id^="form-creator-container-3-node"]', // <-- Add this line
// Execution badges
BADGE_QUEUED: '[data-id^="badge-"][data-id$="-QUEUED"]',
BADGE_COMPLETED: '[data-id^="badge-"][data-id$="-COMPLETED"]',
// Undo/Redo
UNDO_BUTTON: '[data-id="undo-button"]',
REDO_BUTTON: '[data-id="redo-button"]',
} as const;
export const CSS_CLASSES = {
DISABLE: "new-builder-tutorial-disable",
HIGHLIGHT: "new-builder-tutorial-highlight",
PULSE: "new-builder-tutorial-pulse",
} as const;
export const TUTORIAL_CONFIG = {
ELEMENT_CHECK_INTERVAL: 50, // ms
INPUT_CHECK_INTERVAL: 100, // ms
USE_MODAL_OVERLAY: true,
SCROLL_BEHAVIOR: "smooth" as const,
SCROLL_BLOCK: "center" as const,
SEARCH_TERM_CALCULATOR: "Calculator",
} as const;

View File

@@ -0,0 +1,89 @@
import { BLOCK_IDS } from "../constants";
import { useNodeStore } from "../../../../stores/nodeStore";
import { getV2GetSpecificBlocks } from "@/app/api/__generated__/endpoints/default/default";
import { BlockInfo } from "@/app/api/__generated__/models/blockInfo";
const prefetchedBlocks: Map<string, BlockInfo> = new Map();
export const prefetchTutorialBlocks = async (): Promise<void> => {
try {
const blockIds = [BLOCK_IDS.CALCULATOR];
const response = await getV2GetSpecificBlocks({ block_ids: blockIds });
if (response.status === 200 && response.data) {
response.data.forEach((block) => {
prefetchedBlocks.set(block.id, block);
});
console.debug("Tutorial blocks prefetched:", prefetchedBlocks.size);
}
} catch (error) {
console.error("Failed to prefetch tutorial blocks:", error);
}
};
export const getPrefetchedBlock = (blockId: string): BlockInfo | undefined => {
return prefetchedBlocks.get(blockId);
};
export const clearPrefetchedBlocks = (): void => {
prefetchedBlocks.clear();
};
export const addPrefetchedBlock = (
blockId: string,
position?: { x: number; y: number },
): void => {
const block = prefetchedBlocks.get(blockId);
if (block) {
useNodeStore.getState().addBlock(block, {}, position);
} else {
console.error(`Block ${blockId} not found in prefetched blocks`);
}
};
export const getNodeByBlockId = (blockId: string) => {
const nodes = useNodeStore.getState().nodes;
return nodes.find((n) => n.data?.block_id === blockId);
};
export const addSecondCalculatorBlock = (): void => {
const firstCalculatorNode = getNodeByBlockId(BLOCK_IDS.CALCULATOR);
if (firstCalculatorNode) {
const calcX = firstCalculatorNode.position.x;
const calcY = firstCalculatorNode.position.y;
addPrefetchedBlock(BLOCK_IDS.CALCULATOR, {
x: calcX + 500,
y: calcY,
});
} else {
addPrefetchedBlock(BLOCK_IDS.CALCULATOR);
}
};
export const getCalculatorNodes = () => {
const nodes = useNodeStore.getState().nodes;
return nodes.filter((n) => n.data?.block_id === BLOCK_IDS.CALCULATOR);
};
export const getSecondCalculatorNode = () => {
const calculatorNodes = getCalculatorNodes();
return calculatorNodes.length >= 2 ? calculatorNodes[1] : null;
};
export const getFormContainerSelector = (blockId: string): string | null => {
const node = getNodeByBlockId(blockId);
if (node) {
return `[data-id="form-creator-container-${node.id}"]`;
}
return null;
};
export const getFormContainerElement = (blockId: string): Element | null => {
const selector = getFormContainerSelector(blockId);
if (selector) {
return document.querySelector(selector);
}
return null;
};

View File

@@ -0,0 +1,83 @@
import { TUTORIAL_CONFIG, TUTORIAL_SELECTORS } from "../constants";
import { useNodeStore } from "../../../../stores/nodeStore";
export const waitForNodeOnCanvas = (
timeout = 10000,
): Promise<Element | null> => {
return new Promise((resolve) => {
const startTime = Date.now();
const checkNode = () => {
const storeNodes = useNodeStore.getState().nodes;
if (storeNodes.length > 0) {
const domNode = document.querySelector(
TUTORIAL_SELECTORS.REACT_FLOW_NODE,
);
if (domNode) {
resolve(domNode);
return;
}
}
if (Date.now() - startTime > timeout) {
resolve(null);
} else {
setTimeout(checkNode, TUTORIAL_CONFIG.ELEMENT_CHECK_INTERVAL);
}
};
checkNode();
});
};
export const waitForNodesCount = (
count: number,
timeout = 10000,
): Promise<boolean> => {
return new Promise((resolve) => {
const startTime = Date.now();
const checkNodes = () => {
const currentCount = useNodeStore.getState().nodes.length;
if (currentCount >= count) {
resolve(true);
} else if (Date.now() - startTime > timeout) {
resolve(false);
} else {
setTimeout(checkNodes, TUTORIAL_CONFIG.ELEMENT_CHECK_INTERVAL);
}
};
checkNodes();
});
};
export const getNodesCount = (): number => {
return useNodeStore.getState().nodes.length;
};
export const getFirstNode = () => {
const nodes = useNodeStore.getState().nodes;
return nodes.length > 0 ? nodes[0] : null;
};
export const getNodeById = (nodeId: string) => {
const nodes = useNodeStore.getState().nodes;
return nodes.find((n) => n.id === nodeId);
};
export const nodeHasValues = (nodeId: string): boolean => {
const node = getNodeById(nodeId);
if (!node) return false;
const hardcodedValues = node.data?.hardcodedValues || {};
return Object.values(hardcodedValues).some(
(value) => value !== undefined && value !== null && value !== "",
);
};
export const fitViewToScreen = () => {
const fitViewButton = document.querySelector(
TUTORIAL_SELECTORS.FIT_VIEW_BUTTON,
) as HTMLButtonElement;
if (fitViewButton) {
fitViewButton.click();
}
};

View File

@@ -0,0 +1,19 @@
import { useNodeStore } from "../../../../stores/nodeStore";
import { useEdgeStore } from "../../../../stores/edgeStore";
export const isConnectionMade = (
sourceBlockId: string,
targetBlockId: string,
): boolean => {
const edges = useEdgeStore.getState().edges;
const nodes = useNodeStore.getState().nodes;
const sourceNode = nodes.find((n) => n.data?.block_id === sourceBlockId);
const targetNode = nodes.find((n) => n.data?.block_id === targetBlockId);
if (!sourceNode || !targetNode) return false;
return edges.some((edge) => {
return edge.source === sourceNode.id && edge.target === targetNode.id;
});
};

View File

@@ -0,0 +1,180 @@
import { TUTORIAL_CONFIG, TUTORIAL_SELECTORS } from "../constants";
export const waitForElement = (
selector: string,
timeout = 10000,
): Promise<Element> => {
return new Promise((resolve, reject) => {
const startTime = Date.now();
const checkElement = () => {
const element = document.querySelector(selector);
if (element) {
resolve(element);
} else if (Date.now() - startTime > timeout) {
reject(new Error(`Element ${selector} not found within ${timeout}ms`));
} else {
setTimeout(checkElement, TUTORIAL_CONFIG.ELEMENT_CHECK_INTERVAL);
}
};
checkElement();
});
};
export const waitForInputValue = (
selector: string,
targetValue: string,
timeout = 30000,
): Promise<void> => {
return new Promise((resolve) => {
const startTime = Date.now();
const checkInput = () => {
const input = document.querySelector(selector) as HTMLInputElement;
if (input) {
const currentValue = input.value.toLowerCase().trim();
const target = targetValue.toLowerCase().trim();
if (currentValue.includes(target) || target.includes(currentValue)) {
if (currentValue.length >= 4 || currentValue === target) {
resolve();
return;
}
}
}
if (Date.now() - startTime > timeout) {
resolve();
} else {
setTimeout(checkInput, TUTORIAL_CONFIG.INPUT_CHECK_INTERVAL);
}
};
checkInput();
});
};
export const waitForSearchResult = (
selector: string,
timeout = 15000,
): Promise<Element | null> => {
return new Promise((resolve) => {
const startTime = Date.now();
const checkResult = () => {
const element = document.querySelector(selector);
if (element) {
resolve(element);
} else if (Date.now() - startTime > timeout) {
resolve(null);
} else {
setTimeout(checkResult, TUTORIAL_CONFIG.ELEMENT_CHECK_INTERVAL);
}
};
checkResult();
});
};
export const waitForAnyBlockCard = (
timeout = 10000,
): Promise<Element | null> => {
return new Promise((resolve) => {
const startTime = Date.now();
const checkBlock = () => {
const block = document.querySelector(
TUTORIAL_SELECTORS.BLOCK_CARD_PREFIX,
);
if (block) {
resolve(block);
} else if (Date.now() - startTime > timeout) {
resolve(null);
} else {
setTimeout(checkBlock, TUTORIAL_CONFIG.ELEMENT_CHECK_INTERVAL);
}
};
checkBlock();
});
};
export const focusElement = (selector: string): void => {
const element = document.querySelector(selector) as HTMLElement;
if (element) {
element.focus();
}
};
export const scrollIntoView = (selector: string): void => {
const element = document.querySelector(selector);
if (element) {
element.scrollIntoView({
behavior: "smooth",
block: "center",
});
}
};
export const typeIntoInput = (selector: string, text: string) => {
const input = document.querySelector(selector) as HTMLInputElement;
if (input) {
input.focus();
input.value = text;
input.dispatchEvent(new Event("input", { bubbles: true }));
input.dispatchEvent(new Event("change", { bubbles: true }));
}
};
export const observeElement = (
selector: string,
callback: (element: Element) => void,
): MutationObserver => {
const observer = new MutationObserver((mutations, obs) => {
const element = document.querySelector(selector);
if (element) {
callback(element);
obs.disconnect();
}
});
observer.observe(document.body, {
childList: true,
subtree: true,
});
const element = document.querySelector(selector);
if (element) {
callback(element);
observer.disconnect();
}
return observer;
};
export const watchSearchInput = (
targetValue: string,
onMatch: () => void,
): (() => void) => {
const input = document.querySelector(
TUTORIAL_SELECTORS.BLOCKS_SEARCH_INPUT,
) as HTMLInputElement;
if (!input) return () => {};
let hasMatched = false;
const handler = () => {
if (hasMatched) return;
const currentValue = input.value.toLowerCase().trim();
const target = targetValue.toLowerCase().trim();
if (currentValue.length >= 4 && target.startsWith(currentValue)) {
hasMatched = true;
onMatch();
}
};
input.addEventListener("input", handler);
return () => {
input.removeEventListener("input", handler);
};
};

View File

@@ -0,0 +1,56 @@
import { CSS_CLASSES, TUTORIAL_SELECTORS } from "../constants";
export const disableOtherBlocks = (targetBlockSelector: string) => {
document
.querySelectorAll(TUTORIAL_SELECTORS.BLOCK_CARD_PREFIX)
.forEach((block) => {
const isTarget = block.matches(targetBlockSelector);
block.classList.toggle(CSS_CLASSES.DISABLE, !isTarget);
block.classList.toggle(CSS_CLASSES.HIGHLIGHT, isTarget);
});
};
export const enableAllBlocks = () => {
document
.querySelectorAll(TUTORIAL_SELECTORS.BLOCK_CARD_PREFIX)
.forEach((block) => {
block.classList.remove(
CSS_CLASSES.DISABLE,
CSS_CLASSES.HIGHLIGHT,
CSS_CLASSES.PULSE,
);
});
};
export const highlightElement = (selector: string) => {
const element = document.querySelector(selector);
if (element) {
element.classList.add(CSS_CLASSES.HIGHLIGHT);
}
};
export const removeAllHighlights = () => {
document.querySelectorAll(`.${CSS_CLASSES.HIGHLIGHT}`).forEach((el) => {
el.classList.remove(CSS_CLASSES.HIGHLIGHT);
});
document.querySelectorAll(`.${CSS_CLASSES.PULSE}`).forEach((el) => {
el.classList.remove(CSS_CLASSES.PULSE);
});
};
export const pulseElement = (selector: string) => {
const element = document.querySelector(selector);
if (element) {
element.classList.add(CSS_CLASSES.PULSE);
}
};
export const highlightFirstBlockInSearch = () => {
const firstBlock = document.querySelector(
TUTORIAL_SELECTORS.BLOCK_CARD_PREFIX,
);
if (firstBlock) {
firstBlock.classList.add(CSS_CLASSES.PULSE);
firstBlock.scrollIntoView({ behavior: "smooth", block: "center" });
}
};

View File

@@ -0,0 +1,66 @@
export {
waitForElement,
waitForInputValue,
waitForSearchResult,
waitForAnyBlockCard,
focusElement,
scrollIntoView,
typeIntoInput,
observeElement,
watchSearchInput,
} from "./dom";
export {
disableOtherBlocks,
enableAllBlocks,
highlightElement,
removeAllHighlights,
pulseElement,
highlightFirstBlockInSearch,
} from "./highlights";
export {
prefetchTutorialBlocks,
getPrefetchedBlock,
clearPrefetchedBlocks,
addPrefetchedBlock,
getNodeByBlockId,
addSecondCalculatorBlock,
getCalculatorNodes,
getSecondCalculatorNode,
getFormContainerSelector,
getFormContainerElement,
} from "./blocks";
export {
waitForNodeOnCanvas,
waitForNodesCount,
getNodesCount,
getFirstNode,
getNodeById,
nodeHasValues,
fitViewToScreen,
} from "./canvas";
export { isConnectionMade } from "./connections";
export {
forceBlockMenuOpen,
openBlockMenu,
closeBlockMenu,
clearBlockMenuSearch,
} from "./menu";
export {
openSaveControl,
closeSaveControl,
forceSaveOpen,
clickSaveButton,
isAgentSaved,
} from "./save";
export {
handleTutorialCancel,
handleTutorialSkip,
handleTutorialComplete,
} from "./state";

View File

@@ -0,0 +1,25 @@
import { TUTORIAL_SELECTORS } from "../constants";
import { useControlPanelStore } from "../../../../stores/controlPanelStore";
export const forceBlockMenuOpen = (force: boolean) => {
useControlPanelStore.getState().setForceOpenBlockMenu(force);
};
export const openBlockMenu = () => {
useControlPanelStore.getState().setBlockMenuOpen(true);
};
export const closeBlockMenu = () => {
useControlPanelStore.getState().setBlockMenuOpen(false);
useControlPanelStore.getState().setForceOpenBlockMenu(false);
};
export const clearBlockMenuSearch = () => {
const input = document.querySelector(
TUTORIAL_SELECTORS.BLOCKS_SEARCH_INPUT,
) as HTMLInputElement;
if (input) {
input.value = "";
input.dispatchEvent(new Event("input", { bubbles: true }));
}
};

View File

@@ -0,0 +1,31 @@
import { TUTORIAL_SELECTORS } from "../constants";
import { useControlPanelStore } from "../../../../stores/controlPanelStore";
export const openSaveControl = () => {
useControlPanelStore.getState().setSaveControlOpen(true);
};
export const closeSaveControl = () => {
useControlPanelStore.getState().setSaveControlOpen(false);
useControlPanelStore.getState().setForceOpenSave(false);
};
export const forceSaveOpen = (force: boolean) => {
useControlPanelStore.getState().setForceOpenSave(force);
};
export const clickSaveButton = () => {
const saveButton = document.querySelector(
TUTORIAL_SELECTORS.SAVE_AGENT_BUTTON,
) as HTMLButtonElement;
if (saveButton && !saveButton.disabled) {
saveButton.click();
}
};
export const isAgentSaved = (): boolean => {
const versionInput = document.querySelector(
'[data-tutorial-id="save-control-version-output"]',
) as HTMLInputElement;
return !!(versionInput && versionInput.value && versionInput.value !== "-");
};

View File

@@ -0,0 +1,49 @@
import { Key, storage } from "@/services/storage/local-storage";
import { closeBlockMenu } from "./menu";
import { closeSaveControl, forceSaveOpen } from "./save";
import { removeAllHighlights, enableAllBlocks } from "./highlights";
const clearTutorialIntervals = () => {
const intervalKeys = [
"__tutorialCalcInterval",
"__tutorialCheckInterval",
"__tutorialSecondCalcInterval",
];
intervalKeys.forEach((key) => {
if ((window as any)[key]) {
clearInterval((window as any)[key]);
delete (window as any)[key];
}
});
};
export const handleTutorialCancel = (_tour?: any) => {
clearTutorialIntervals();
closeBlockMenu();
closeSaveControl();
forceSaveOpen(false);
removeAllHighlights();
enableAllBlocks();
storage.set(Key.SHEPHERD_TOUR, "canceled");
};
export const handleTutorialSkip = (_tour?: any) => {
clearTutorialIntervals();
closeBlockMenu();
closeSaveControl();
forceSaveOpen(false);
removeAllHighlights();
enableAllBlocks();
storage.set(Key.SHEPHERD_TOUR, "skipped");
};
export const handleTutorialComplete = () => {
clearTutorialIntervals();
closeBlockMenu();
closeSaveControl();
forceSaveOpen(false);
removeAllHighlights();
enableAllBlocks();
storage.set(Key.SHEPHERD_TOUR, "completed");
};

View File

@@ -0,0 +1,7 @@
// These are SVG Phosphor icons
export const ICONS = {
ClickIcon: `<svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="#000000" viewBox="0 0 256 256"><path d="M88,24V16a8,8,0,0,1,16,0v8a8,8,0,0,1-16,0ZM16,104h8a8,8,0,0,0,0-16H16a8,8,0,0,0,0,16ZM124.42,39.16a8,8,0,0,0,10.74-3.58l8-16a8,8,0,0,0-14.31-7.16l-8,16A8,8,0,0,0,124.42,39.16Zm-96,81.69-16,8a8,8,0,0,0,7.16,14.31l16-8a8,8,0,1,0-7.16-14.31ZM219.31,184a16,16,0,0,1,0,22.63l-12.68,12.68a16,16,0,0,1-22.63,0L132.7,168,115,214.09c0,.1-.08.21-.13.32a15.83,15.83,0,0,1-14.6,9.59l-.79,0a15.83,15.83,0,0,1-14.41-11L32.8,52.92A16,16,0,0,1,52.92,32.8L213,85.07a16,16,0,0,1,1.41,29.8l-.32.13L168,132.69ZM208,195.31,156.69,144h0a16,16,0,0,1,4.93-26l.32-.14,45.95-17.64L48,48l52.2,159.86,17.65-46c0-.11.08-.22.13-.33a16,16,0,0,1,11.69-9.34,16.72,16.72,0,0,1,3-.28,16,16,0,0,1,11.3,4.69L195.31,208Z"></path></svg>`,
Keyboard: `<svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="#000000" viewBox="0 0 256 256"><path d="M224,48H32A16,16,0,0,0,16,64V192a16,16,0,0,0,16,16H224a16,16,0,0,0,16-16V64A16,16,0,0,0,224,48Zm0,144H32V64H224V192Zm-16-64a8,8,0,0,1-8,8H56a8,8,0,0,1,0-16H200A8,8,0,0,1,208,128Zm0-32a8,8,0,0,1-8,8H56a8,8,0,0,1,0-16H200A8,8,0,0,1,208,96ZM72,160a8,8,0,0,1-8,8H56a8,8,0,0,1,0-16h8A8,8,0,0,1,72,160Zm96,0a8,8,0,0,1-8,8H96a8,8,0,0,1,0-16h64A8,8,0,0,1,168,160Zm40,0a8,8,0,0,1-8,8h-8a8,8,0,0,1,0-16h8A8,8,0,0,1,208,160Z"></path></svg>`,
Drag: `<svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="#000000" viewBox="0 0 256 256"><path d="M188,80a27.79,27.79,0,0,0-13.36,3.4,28,28,0,0,0-46.64-11A28,28,0,0,0,80,92v20H68a28,28,0,0,0-28,28v12a88,88,0,0,0,176,0V108A28,28,0,0,0,188,80Zm12,72a72,72,0,0,1-144,0V140a12,12,0,0,1,12-12H80v24a8,8,0,0,0,16,0V92a12,12,0,0,1,24,0v28a8,8,0,0,0,16,0V92a12,12,0,0,1,24,0v28a8,8,0,0,0,16,0V108a12,12,0,0,1,24,0Z"></path></svg>`,
};

View File

@@ -0,0 +1,81 @@
import Shepherd from "shepherd.js";
import { analytics } from "@/services/analytics";
import { TUTORIAL_CONFIG } from "./constants";
import { createTutorialSteps } from "./steps";
import { injectTutorialStyles, removeTutorialStyles } from "./styles";
import {
handleTutorialComplete,
handleTutorialCancel,
prefetchTutorialBlocks,
clearPrefetchedBlocks,
} from "./helpers";
import { useNodeStore } from "../../../stores/nodeStore";
import { useEdgeStore } from "../../../stores/edgeStore";
let isTutorialLoading = false;
let tutorialLoadingCallback: ((loading: boolean) => void) | null = null;
export const setTutorialLoadingCallback = (
callback: (loading: boolean) => void,
) => {
tutorialLoadingCallback = callback;
};
export const getTutorialLoadingState = () => isTutorialLoading;
export const startTutorial = async () => {
isTutorialLoading = true;
tutorialLoadingCallback?.(true);
useNodeStore.getState().setNodes([]);
useEdgeStore.getState().setEdges([]);
useNodeStore.getState().setNodeCounter(0);
try {
await prefetchTutorialBlocks();
} finally {
isTutorialLoading = false;
tutorialLoadingCallback?.(false);
}
const tour = new Shepherd.Tour({
useModalOverlay: TUTORIAL_CONFIG.USE_MODAL_OVERLAY,
defaultStepOptions: {
cancelIcon: { enabled: true },
scrollTo: {
behavior: TUTORIAL_CONFIG.SCROLL_BEHAVIOR,
block: TUTORIAL_CONFIG.SCROLL_BLOCK,
},
classes: "new-builder-tour",
modalOverlayOpeningRadius: 4,
},
});
injectTutorialStyles();
const steps = createTutorialSteps(tour);
steps.forEach((step) => tour.addStep(step));
tour.on("complete", () => {
handleTutorialComplete();
removeTutorialStyles();
clearPrefetchedBlocks();
});
tour.on("cancel", () => {
handleTutorialCancel(tour);
removeTutorialStyles();
clearPrefetchedBlocks();
});
for (const step of tour.steps) {
step.on("show", () => {
console.debug("sendTutorialStep", step.id);
analytics.sendGAEvent("event", "tutorial_step_shown", {
value: step.id,
});
});
}
tour.start();
};

View File

@@ -0,0 +1,114 @@
import { StepOptions } from "shepherd.js";
import { TUTORIAL_SELECTORS } from "../constants";
import {
waitForElement,
waitForNodeOnCanvas,
closeBlockMenu,
fitViewToScreen,
highlightElement,
removeAllHighlights,
} from "../helpers";
import { ICONS } from "../icons";
import { banner } from "../styles";
export const createBlockBasicsSteps = (tour: any): StepOptions[] => [
{
id: "focus-new-block",
title: "Your First Block!",
text: `
<div class="text-sm leading-[1.375rem] text-zinc-800">
<p class="text-sm font-normal leading-[1.375rem] text-zinc-800 m-0">Excellent! This is your <strong>Calculator Block</strong>.</p>
<p class="text-sm font-normal leading-[1.375rem] text-zinc-800 m-0" style="margin-top: 0.5rem;">Let's explore how blocks work.</p>
</div>
`,
attachTo: {
element: TUTORIAL_SELECTORS.REACT_FLOW_NODE,
on: "right",
},
beforeShowPromise: async () => {
closeBlockMenu();
await waitForNodeOnCanvas(5000);
await new Promise((resolve) => setTimeout(resolve, 300));
fitViewToScreen();
},
when: {
show: () => {
const node = document.querySelector(TUTORIAL_SELECTORS.REACT_FLOW_NODE);
if (node) {
highlightElement(TUTORIAL_SELECTORS.REACT_FLOW_NODE);
}
},
hide: () => {
removeAllHighlights();
},
},
buttons: [
{
text: "Show me",
action: () => tour.next(),
},
],
},
{
id: "input-handles",
title: "Input Handles",
text: `
<div class="text-sm leading-[1.375rem] text-zinc-800">
<p class="text-sm font-normal leading-[1.375rem] text-zinc-800 m-0">On the <strong>left side</strong> of the block are <strong>input handles</strong>.</p>
<p class="text-sm font-normal leading-[1.375rem] text-zinc-800 m-0" style="margin-top: 0.5rem;">These are where data flows <em>into</em> the block from other blocks.</p>
</div>
`,
attachTo: {
element: TUTORIAL_SELECTORS.NODE_INPUT_HANDLE,
on: "bottom",
},
classes: "new-builder-tour input-handles-step",
beforeShowPromise: () =>
waitForElement(TUTORIAL_SELECTORS.NODE_INPUT_HANDLE, 3000).catch(
() => {},
),
buttons: [
{
text: "Back",
action: () => tour.back(),
classes: "shepherd-button-secondary",
},
{
text: "Next",
action: () => tour.next(),
},
],
},
{
id: "output-handles",
title: "Output Handles",
text: `
<div class="text-sm leading-[1.375rem] text-zinc-800">
<p class="text-sm font-normal leading-[1.375rem] text-zinc-800 m-0">On the <strong>right side</strong> is the <strong>output handle</strong>.</p>
<p class="text-sm font-normal leading-[1.375rem] text-zinc-800 m-0" style="margin-top: 0.5rem;">This is where the result flows <em>out</em> to connect to other blocks.</p>
${banner(ICONS.Drag, "You can drag from output to input handler to connect blocks", "info")}
</div>
`,
attachTo: {
element: TUTORIAL_SELECTORS.NODE_OUTPUT_HANDLE,
on: "right",
},
beforeShowPromise: () =>
waitForElement(TUTORIAL_SELECTORS.NODE_OUTPUT_HANDLE, 3000).catch(
() => {},
),
buttons: [
{
text: "Back",
action: () => tour.back(),
classes: "shepherd-button-secondary",
},
{
text: "Next →",
action: () => tour.next(),
},
],
},
];

View File

@@ -0,0 +1,198 @@
import { StepOptions } from "shepherd.js";
import { TUTORIAL_CONFIG, TUTORIAL_SELECTORS, BLOCK_IDS } from "../constants";
import {
waitForElement,
forceBlockMenuOpen,
focusElement,
highlightElement,
removeAllHighlights,
disableOtherBlocks,
enableAllBlocks,
pulseElement,
highlightFirstBlockInSearch,
} from "../helpers";
import { ICONS } from "../icons";
import { banner } from "../styles";
import { useNodeStore } from "../../../../stores/nodeStore";
export const createBlockMenuSteps = (tour: any): StepOptions[] => [
{
id: "open-block-menu",
title: "Open the Block Menu",
text: `
<div class="text-sm leading-[1.375rem] text-zinc-800">
<p class="text-sm font-normal leading-[1.375rem] text-zinc-800 m-0">Let's start by opening the Block Menu.</p>
${banner(ICONS.ClickIcon, "Click this button to open the menu", "action")}
</div>
`,
attachTo: {
element: TUTORIAL_SELECTORS.BLOCKS_TRIGGER,
on: "right",
},
advanceOn: {
selector: TUTORIAL_SELECTORS.BLOCKS_TRIGGER,
event: "click",
},
buttons: [],
when: {
show: () => {
highlightElement(TUTORIAL_SELECTORS.BLOCKS_TRIGGER);
},
hide: () => {
removeAllHighlights();
},
},
},
{
id: "block-menu-overview",
title: "The Block Menu",
text: `
<div class="text-sm leading-[1.375rem] text-zinc-800">
<p class="text-sm font-normal leading-[1.375rem] text-zinc-800 m-0">This is the <strong>Block Menu</strong> — your toolbox for building agents.</p>
<p class="text-sm font-medium leading-[1.375rem] text-zinc-800 m-0" style="margin-top: 0.5rem;">Here you'll find:</p>
<ul>
<li><strong>Input Blocks</strong> — Entry points for data</li>
<li><strong>Action Blocks</strong> — Processing and AI operations</li>
<li><strong>Output Blocks</strong> — Results and responses</li>
<li><strong>Integrations</strong> — Third-party service blocks</li>
<li><strong>Library Agents</strong> — Your personal agents</li>
<li><strong>Marketplace Agents</strong> — Community agents</li>
</ul>
</div>
`,
attachTo: {
element: TUTORIAL_SELECTORS.BLOCKS_CONTENT,
on: "left",
},
beforeShowPromise: () => waitForElement(TUTORIAL_SELECTORS.BLOCKS_CONTENT),
when: {
show: () => forceBlockMenuOpen(true),
},
buttons: [
{
text: "Next",
action: () => tour.next(),
},
],
},
{
id: "search-calculator",
title: "Search for a Block",
text: `
<div class="text-sm leading-[1.375rem] text-zinc-800">
<p class="text-sm font-normal leading-[1.375rem] text-zinc-800 m-0">Let's add a Calculator block to start.</p>
${banner(ICONS.Keyboard, "Type Calculator in the search bar", "action")}
<p class="text-xs font-normal leading-[1.125rem] text-zinc-500 m-0" style="margin-top: 0.5rem;">The search will filter blocks as you type.</p>
</div>
`,
attachTo: {
element: TUTORIAL_SELECTORS.BLOCKS_SEARCH_INPUT_BOX,
on: "bottom",
},
beforeShowPromise: () =>
waitForElement(TUTORIAL_SELECTORS.BLOCKS_SEARCH_INPUT_BOX),
when: {
show: () => {
forceBlockMenuOpen(true);
setTimeout(() => {
focusElement(TUTORIAL_SELECTORS.BLOCKS_SEARCH_INPUT_BOX);
}, 100);
const checkForCalculator = setInterval(() => {
const calcBlock = document.querySelector(
TUTORIAL_SELECTORS.BLOCK_CARD_CALCULATOR_IN_SEARCH,
);
if (calcBlock) {
clearInterval(checkForCalculator);
const searchInput = document.querySelector(
TUTORIAL_SELECTORS.BLOCKS_SEARCH_INPUT,
) as HTMLInputElement;
if (searchInput) {
searchInput.blur();
}
disableOtherBlocks(
TUTORIAL_SELECTORS.BLOCK_CARD_CALCULATOR_IN_SEARCH,
);
pulseElement(TUTORIAL_SELECTORS.BLOCK_CARD_CALCULATOR_IN_SEARCH);
calcBlock.scrollIntoView({ behavior: "smooth", block: "center" });
setTimeout(() => {
tour.next();
}, 300);
}
}, TUTORIAL_CONFIG.ELEMENT_CHECK_INTERVAL);
(window as any).__tutorialCalcInterval = checkForCalculator;
},
hide: () => {
if ((window as any).__tutorialCalcInterval) {
clearInterval((window as any).__tutorialCalcInterval);
delete (window as any).__tutorialCalcInterval;
}
enableAllBlocks();
},
},
buttons: [],
},
{
id: "select-calculator",
title: "Add the Calculator Block",
text: `
<div class="text-sm leading-[1.375rem] text-zinc-800">
<p class="text-sm font-normal leading-[1.375rem] text-zinc-800 m-0">You should see the <strong>Calculator</strong> block in the results.</p>
${banner(ICONS.ClickIcon, "Click on the Calculator block to add it", "action")}
<div class="bg-zinc-100 ring-1 ring-zinc-200 rounded-2xl p-2 px-4 mt-2 flex items-start gap-2 text-sm font-medium text-zinc-600">
<span class="flex-shrink-0">${ICONS.Drag}</span>
<span>You can also drag blocks onto the canvas</span>
</div>
</div>
`,
attachTo: {
element: TUTORIAL_SELECTORS.BLOCK_CARD_CALCULATOR,
on: "left",
},
beforeShowPromise: async () => {
forceBlockMenuOpen(true);
await waitForElement(TUTORIAL_SELECTORS.BLOCK_CARD_CALCULATOR, 5000);
await new Promise((resolve) => setTimeout(resolve, 100));
},
when: {
show: () => {
const calcBlock = document.querySelector(
TUTORIAL_SELECTORS.BLOCK_CARD_CALCULATOR,
);
if (calcBlock) {
disableOtherBlocks(TUTORIAL_SELECTORS.BLOCK_CARD_CALCULATOR);
} else {
highlightFirstBlockInSearch();
}
const CALCULATOR_BLOCK_ID = BLOCK_IDS.CALCULATOR;
const initialNodeCount = useNodeStore.getState().nodes.length;
const unsubscribe = useNodeStore.subscribe((state) => {
if (state.nodes.length > initialNodeCount) {
const calculatorNode = state.nodes.find(
(node) => node.data?.block_id === CALCULATOR_BLOCK_ID,
);
if (calculatorNode) {
unsubscribe();
enableAllBlocks();
forceBlockMenuOpen(false);
tour.next();
}
}
});
(tour.getCurrentStep() as any)._nodeUnsubscribe = unsubscribe;
},
},
},
];

View File

@@ -0,0 +1,51 @@
import { StepOptions } from "shepherd.js";
export const createCompletionSteps = (tour: any): StepOptions[] => [
{
id: "congratulations",
title: "Congratulations! 🎉",
text: `
<div class="text-sm leading-[1.375rem] text-zinc-800">
<p class="text-sm font-normal leading-[1.375rem] text-zinc-800 m-0">You have successfully created and run your first agent flow!</p>
<div class="mt-3 p-3 bg-green-50 ring-1 ring-green-200 rounded-2xl">
<p class="text-sm font-medium text-green-600 m-0">You learned how to:</p>
<ul class="text-[0.8125rem] text-green-600 m-0 pl-4 mt-2 space-y-1">
<li>• Add blocks from the Block Menu</li>
<li>• Understand input and output handles</li>
<li>• Configure block values</li>
<li>• Connect blocks together</li>
<li>• Save and run your agent</li>
<li>• View execution status and output</li>
</ul>
</div>
<p class="text-sm font-medium leading-[1.375rem] text-zinc-800 m-0" style="margin-top: 0.75rem;">Happy building! 🚀</p>
</div>
`,
when: {
show: () => {
const modal = document.querySelector(
".shepherd-modal-overlay-container",
);
if (modal) {
(modal as HTMLElement).style.opacity = "0.3";
}
},
},
buttons: [
{
text: "Restart Tutorial",
action: () => {
tour.cancel();
setTimeout(() => tour.start(), 100);
},
classes: "shepherd-button-secondary",
},
{
text: "Finish",
action: () => tour.complete(),
},
],
},
];

View File

@@ -0,0 +1,197 @@
import { StepOptions } from "shepherd.js";
import { TUTORIAL_SELECTORS } from "../constants";
import {
fitViewToScreen,
highlightElement,
removeAllHighlights,
getFirstNode,
} from "../helpers";
import { ICONS } from "../icons";
import { banner } from "../styles";
const getRequirementsHtml = () => `
<div id="requirements-box" class="mt-3 p-3 bg-amber-50 ring-1 ring-amber-200 rounded-2xl">
<p id="requirements-title" class="text-sm font-medium text-amber-600 m-0 mb-2">⚠️ Required to continue:</p>
<ul id="requirements-list" class="text-[0.8125rem] text-amber-600 m-0 pl-4 space-y-1">
<li id="req-a" class="flex items-center gap-2">
<span class="req-icon">○</span> Enter a number in field <strong>A</strong> (e.g., 10)
</li>
<li id="req-b" class="flex items-center gap-2">
<span class="req-icon">○</span> Enter a number in field <strong>B</strong> (e.g., 5)
</li>
<li id="req-op" class="flex items-center gap-2">
<span class="req-icon">○</span> Select an <strong>Operation</strong> (Add, Multiply, etc.)
</li>
</ul>
</div>
`;
const updateToSuccessState = () => {
const reqBox = document.querySelector("#requirements-box");
const reqTitle = document.querySelector("#requirements-title");
const reqList = document.querySelector("#requirements-list");
if (reqBox && reqTitle) {
reqBox.classList.remove("bg-amber-50", "ring-amber-200");
reqBox.classList.add("bg-green-50", "ring-green-200");
reqTitle.classList.remove("text-amber-600");
reqTitle.classList.add("text-green-600");
reqTitle.innerHTML = "🎉 Hurray! All values are completed!";
if (reqList) {
reqList.classList.add("hidden");
}
}
};
const updateToWarningState = () => {
const reqBox = document.querySelector("#requirements-box");
const reqTitle = document.querySelector("#requirements-title");
const reqList = document.querySelector("#requirements-list");
if (reqBox && reqTitle) {
reqBox.classList.remove("bg-green-50", "ring-green-200");
reqBox.classList.add("bg-amber-50", "ring-amber-200");
reqTitle.classList.remove("text-green-600");
reqTitle.classList.add("text-amber-600");
reqTitle.innerHTML = "⚠️ Required to continue:";
if (reqList) {
reqList.classList.remove("hidden");
}
}
};
export const createConfigureCalculatorSteps = (tour: any): StepOptions[] => [
{
id: "enter-values",
title: "Enter Values",
text: `
<div class="text-sm leading-[1.375rem] text-zinc-800">
<p class="text-sm font-normal leading-[1.375rem] text-zinc-800 m-0">Now let's configure the block with actual values.</p>
${getRequirementsHtml()}
${banner(ICONS.ClickIcon, "Fill in all the required fields above", "action")}
</div>
`,
beforeShowPromise: () => {
fitViewToScreen();
return Promise.resolve();
},
attachTo: {
element: TUTORIAL_SELECTORS.CALCULATOR_NODE_FORM_CONTAINER,
on: "right",
},
when: {
show: () => {
const node = getFirstNode();
if (node) {
highlightElement(`[data-id="custom-node-${node.id}"]`);
}
let wasComplete = false;
const checkInterval = setInterval(() => {
const node = getFirstNode();
if (!node) return;
const hardcodedValues = node.data?.hardcodedValues || {};
const hasA =
hardcodedValues.a !== undefined &&
hardcodedValues.a !== null &&
hardcodedValues.a !== "";
const hasB =
hardcodedValues.b !== undefined &&
hardcodedValues.b !== null &&
hardcodedValues.b !== "";
const hasOp =
hardcodedValues.operation !== undefined &&
hardcodedValues.operation !== null &&
hardcodedValues.operation !== "";
const allComplete = hasA && hasB && hasOp;
const reqA = document.querySelector("#req-a .req-icon");
const reqB = document.querySelector("#req-b .req-icon");
const reqOp = document.querySelector("#req-op .req-icon");
if (reqA) reqA.textContent = hasA ? "✓" : "○";
if (reqB) reqB.textContent = hasB ? "✓" : "○";
if (reqOp) reqOp.textContent = hasOp ? "✓" : "○";
const reqAEl = document.querySelector("#req-a");
const reqBEl = document.querySelector("#req-b");
const reqOpEl = document.querySelector("#req-op");
if (reqAEl) {
reqAEl.classList.toggle("text-green-600", hasA);
reqAEl.classList.toggle("text-amber-600", !hasA);
}
if (reqBEl) {
reqBEl.classList.toggle("text-green-600", hasB);
reqBEl.classList.toggle("text-amber-600", !hasB);
}
if (reqOpEl) {
reqOpEl.classList.toggle("text-green-600", hasOp);
reqOpEl.classList.toggle("text-amber-600", !hasOp);
}
if (allComplete && !wasComplete) {
updateToSuccessState();
wasComplete = true;
} else if (!allComplete && wasComplete) {
updateToWarningState();
wasComplete = false;
}
const nextBtn = document.querySelector(
".shepherd-button-primary",
) as HTMLButtonElement;
if (nextBtn) {
nextBtn.style.opacity = allComplete ? "1" : "0.5";
nextBtn.style.pointerEvents = allComplete ? "auto" : "none";
}
}, 300);
(window as any).__tutorialCheckInterval = checkInterval;
},
hide: () => {
removeAllHighlights();
if ((window as any).__tutorialCheckInterval) {
clearInterval((window as any).__tutorialCheckInterval);
delete (window as any).__tutorialCheckInterval;
}
},
},
buttons: [
{
text: "Back",
action: () => tour.back(),
classes: "shepherd-button-secondary",
},
{
text: "Continue",
action: () => {
const node = getFirstNode();
if (!node) return;
const hardcodedValues = node.data?.hardcodedValues || {};
const hasA =
hardcodedValues.a !== undefined &&
hardcodedValues.a !== null &&
hardcodedValues.a !== "";
const hasB =
hardcodedValues.b !== undefined &&
hardcodedValues.b !== null &&
hardcodedValues.b !== "";
const hasOp =
hardcodedValues.operation !== undefined &&
hardcodedValues.operation !== null &&
hardcodedValues.operation !== "";
if (hasA && hasB && hasOp) {
tour.next();
}
},
classes: "shepherd-button-primary",
},
],
},
];

View File

@@ -0,0 +1,276 @@
import { StepOptions } from "shepherd.js";
import {
fitViewToScreen,
highlightElement,
removeAllHighlights,
} from "../helpers";
import { ICONS } from "../icons";
import { banner } from "../styles";
import { useEdgeStore } from "../../../../stores/edgeStore";
import { TUTORIAL_SELECTORS } from "../constants";
const getConnectionStatusHtml = (id: string, isConnected: boolean = false) => `
<div id="${id}" class="mt-3 p-2 ${isConnected ? "bg-green-50 ring-1 ring-green-200" : "bg-amber-50 ring-1 ring-amber-200"} rounded-2xl text-center text-sm ${isConnected ? "text-green-600" : "text-amber-600"}">
${isConnected ? "✅ Connected!" : "Waiting for connection..."}
</div>
`;
const updateConnectionStatus = (
id: string,
isConnected: boolean,
message?: string,
) => {
const statusEl = document.querySelector(`#${id}`);
if (statusEl) {
statusEl.innerHTML =
message || (isConnected ? "✅ Connected!" : "Waiting for connection...");
statusEl.classList.remove(
"bg-amber-50",
"ring-amber-200",
"text-amber-600",
"bg-green-50",
"ring-green-200",
"text-green-600",
);
if (isConnected) {
statusEl.classList.add("bg-green-50", "ring-green-200", "text-green-600");
} else {
statusEl.classList.add("bg-amber-50", "ring-amber-200", "text-amber-600");
}
}
};
const hasAnyEdge = (): boolean => {
return useEdgeStore.getState().edges.length > 0;
};
export const createConnectionSteps = (tour: any): StepOptions[] => {
let isConnecting = false;
const handleMouseDown = () => {
isConnecting = true;
const inputSelector =
TUTORIAL_SELECTORS.FIRST_CALCULATOR_RESULT_OUTPUT_HANDLER;
if (inputSelector) {
highlightElement(inputSelector);
}
setTimeout(() => {
if (isConnecting) {
tour.next();
}
}, 100);
};
const resetConnectionState = () => {
isConnecting = false;
};
return [
{
id: "connect-blocks-output",
title: "Connect the Blocks: Output",
text: `
<div class="text-sm leading-[1.375rem] text-zinc-800">
<p class="text-sm font-normal leading-[1.375rem] text-zinc-800 m-0">Now, let's connect the <strong>Result output</strong> of the first Calculator to the <strong>input (A)</strong> of the second Calculator.</p>
<div class="mt-3 p-3 bg-blue-50 ring-1 ring-blue-200 rounded-2xl">
<p class="text-sm font-medium text-blue-600 m-0 mb-2">Drag from the Result output:</p>
<p class="text-[0.8125rem] text-blue-600 m-0">Click and drag from the <strong>Result</strong> output pin (right side) of the <strong>first Calculator block</strong>.</p>
</div>
${getConnectionStatusHtml("connection-status-output", false)}
${banner(ICONS.Drag, "Drag from the Result output pin", "action")}
</div>
`,
attachTo: {
element: TUTORIAL_SELECTORS.FIRST_CALCULATOR_RESULT_OUTPUT_HANDLER,
on: "left",
},
when: {
show: () => {
resetConnectionState();
if (hasAnyEdge()) {
updateConnectionStatus(
"connection-status-output",
true,
"✅ Connection already exists!",
);
setTimeout(() => {
tour.next();
}, 1000);
return;
}
const outputSelector =
TUTORIAL_SELECTORS.FIRST_CALCULATOR_RESULT_OUTPUT_HANDLER;
if (outputSelector) {
const outputHandle = document.querySelector(outputSelector);
if (outputHandle) {
highlightElement(outputSelector);
outputHandle.addEventListener("mousedown", handleMouseDown);
}
}
const unsubscribe = useEdgeStore.subscribe(() => {
if (hasAnyEdge()) {
updateConnectionStatus("connection-status-output", true);
setTimeout(() => {
unsubscribe();
tour.next();
}, 500);
}
});
(tour.getCurrentStep() as any)._edgeUnsubscribe = unsubscribe;
},
hide: () => {
removeAllHighlights();
const step = tour.getCurrentStep() as any;
if (step?._edgeUnsubscribe) {
step._edgeUnsubscribe();
}
const outputSelector =
TUTORIAL_SELECTORS.FIRST_CALCULATOR_RESULT_OUTPUT_HANDLER;
if (outputSelector) {
const outputHandle = document.querySelector(outputSelector);
if (outputHandle) {
outputHandle.removeEventListener("mousedown", handleMouseDown);
}
}
},
},
buttons: [
{
text: "Back",
action: () => tour.back(),
classes: "shepherd-button-secondary",
},
{
text: "Skip (already connected)",
action: () => tour.show("connection-complete"),
classes: "shepherd-button-secondary",
},
],
},
{
id: "connect-blocks-input",
title: "Connect the Blocks: Input",
text: `
<div class="text-sm leading-[1.375rem] text-zinc-800">
<p class="text-sm font-normal leading-[1.375rem] text-zinc-800 m-0">Now, connect to the <strong>input (A)</strong> of the second Calculator block.</p>
<div class="mt-3 p-3 bg-blue-50 ring-1 ring-blue-200 rounded-2xl">
<p class="text-sm font-medium text-blue-600 m-0 mb-2">Drop on the A input:</p>
<p class="text-[0.8125rem] text-blue-600 m-0">Drag to the <strong>A</strong> input handle (left side) of the <strong>second Calculator block</strong>.</p>
</div>
${getConnectionStatusHtml("connection-status-input", false)}
</div>
`,
attachTo: {
element: TUTORIAL_SELECTORS.SECOND_CALCULATOR_NUMBER_A_INPUT_HANDLER,
on: "right",
},
when: {
show: () => {
const inputSelector =
TUTORIAL_SELECTORS.SECOND_CALCULATOR_NUMBER_A_INPUT_HANDLER;
if (inputSelector) {
highlightElement(inputSelector);
}
if (hasAnyEdge()) {
updateConnectionStatus(
"connection-status-input",
true,
"✅ Connected!",
);
setTimeout(() => {
tour.next();
}, 500);
return;
}
const unsubscribe = useEdgeStore.subscribe(() => {
if (hasAnyEdge()) {
updateConnectionStatus("connection-status-input", true);
setTimeout(() => {
unsubscribe();
tour.next();
}, 500);
}
});
(tour.getCurrentStep() as any)._edgeUnsubscribe = unsubscribe;
const handleMouseUp = () => {
setTimeout(() => {
if (!hasAnyEdge()) {
isConnecting = false;
tour.show("connect-blocks-output");
}
}, 200);
};
document.addEventListener("mouseup", handleMouseUp, true);
(tour.getCurrentStep() as any)._mouseUpHandler = handleMouseUp;
},
hide: () => {
removeAllHighlights();
const step = tour.getCurrentStep() as any;
if (step?._edgeUnsubscribe) {
step._edgeUnsubscribe();
}
if (step?._mouseUpHandler) {
document.removeEventListener("mouseup", step._mouseUpHandler, true);
}
},
},
buttons: [
{
text: "Back",
action: () => tour.show("connect-blocks-output"),
classes: "shepherd-button-secondary",
},
{
text: "Skip (already connected)",
action: () => tour.next(),
classes: "shepherd-button-secondary",
},
],
},
{
id: "connection-complete",
title: "Blocks Connected! 🎉",
text: `
<div class="text-sm leading-[1.375rem] text-zinc-800">
<p class="text-sm font-normal leading-[1.375rem] text-zinc-800 m-0">Excellent! Your Calculator blocks are now connected:</p>
<div class="mt-3 p-3 bg-green-50 ring-1 ring-green-200 rounded-2xl">
<div class="flex items-center justify-center gap-2 text-sm font-medium text-green-600">
<span>Calculator 1</span>
<span>→</span>
<span>Calculator 2</span>
</div>
<p class="text-[0.75rem] text-green-500 m-0 mt-2 text-center italic">The result of Calculator 1 flows into Calculator 2's input A</p>
</div>
<p class="text-sm font-normal leading-[1.375rem] text-zinc-800 m-0" style="margin-top: 0.75rem;">Now let's save and run your agent!</p>
</div>
`,
beforeShowPromise: async () => {
fitViewToScreen();
return Promise.resolve();
},
buttons: [
{
text: "Save My Agent",
action: () => tour.next(),
},
],
},
];
};

View File

@@ -0,0 +1,22 @@
import { StepOptions } from "shepherd.js";
import { createWelcomeSteps } from "./welcome";
import { createBlockMenuSteps } from "./block-menu";
import { createBlockBasicsSteps } from "./block-basics";
import { createConfigureCalculatorSteps } from "./configure-calculator";
import { createSecondCalculatorSteps } from "./second-calculator";
import { createConnectionSteps } from "./connections";
import { createSaveSteps } from "./save";
import { createRunSteps } from "./run";
import { createCompletionSteps } from "./completion";
export const createTutorialSteps = (tour: any): StepOptions[] => [
...createWelcomeSteps(tour),
...createBlockMenuSteps(tour),
...createBlockBasicsSteps(tour),
...createConfigureCalculatorSteps(tour),
...createSecondCalculatorSteps(tour),
...createConnectionSteps(tour),
...createSaveSteps(),
...createRunSteps(tour),
...createCompletionSteps(tour),
];

Some files were not shown because too many files have changed in this diff Show More