Compare commits

...

9 Commits

Author SHA1 Message Date
Swifty
e55f05c7a8 feat(backend): add chat search tools and BM25 reranking (#11782)
This PR adds new chat tools for searching blocks and documentation,
along with BM25 reranking for improved search relevance.

### Changes 🏗️

**New Chat Tools:**
- `find_block` - Search for available blocks by name/description using
hybrid search
- `run_block` - Execute a block directly with provided inputs and
credentials
- `search_docs` - Search documentation with section-level granularity  
- `get_doc_page` - Retrieve full documentation page content

**Search Improvements:**
- Added BM25 reranking to hybrid search for better lexical relevance
- Documentation handler now chunks markdown by headings (##) for
finer-grained embeddings
- Section-based content IDs (`doc_path::section_index`) for precise doc
retrieval
- Startup embedding backfill in scheduler for immediate searchability

**Other Changes:**
- New response models for block and documentation search results
- Updated orphan cleanup to handle section-based doc embeddings
- Added `rank-bm25` dependency for BM25 scoring
- Removed max message limit check in chat service

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Run find_block tool to search for blocks (e.g., "current time")
  - [x] Run run_block tool to execute a found block
  - [x] Run search_docs tool to search documentation
  - [x] Run get_doc_page tool to retrieve full doc content
- [x] Verify BM25 reranking improves search relevance for exact term
matches
  - [x] Verify documentation sections are properly chunked and embedded

#### For configuration changes:
- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

**Dependencies added:** `rank-bm25` for BM25 scoring algorithm
2026-01-16 16:18:10 +01:00
Swifty
4a9b13acb6 feat(frontend): extract frontend changes from hackathon/copilot branch (#11717)
Frontend changes extracted from the hackathon/copilot branch for the
copilot feature development.

### Changes 🏗️

- New Chat system with contextual components (`Chat`, `ChatDrawer`,
`ChatContainer`, `ChatMessage`, etc.)
- Form renderer system with RJSF v6 integration and new input renderers
- Enhanced credentials management with improved OAuth flow and
credential selection
- New output renderers for various content types (Code, Image, JSON,
Markdown, Text, Video)
- Scrollable tabs component for better UI organization
- Marketplace update notifications and publishing workflow improvements
- Draft recovery feature with IndexedDB persistence
- Safe mode toggle functionality
- Various UI/UX improvements across the platform

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [ ] Test new Chat components functionality
  - [ ] Verify form renderer with various input types
  - [ ] Test credential management flows
  - [ ] Verify output renderers display correctly
  - [ ] Test draft recovery feature

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

---------

Co-authored-by: Lluis Agusti <hi@llu.lu>
2026-01-16 22:15:39 +07:00
Zamil Majdy
5ff669e999 fix(backend): Make Redis connection lazy in cache module (#11775)
## Summary
- Makes Redis connection lazy in the cache module - connection is only
established when `shared_cache=True` is actually used
- Fixes DatabaseManager failing to start because it imports
`onboarding.py` which imports `cache.py`, triggering Redis connection at
module load time even though it only uses in-memory caching

## Root Cause
Commit `b01ea3fcb` (merged today) added `increment_onboarding_runs` to
DatabaseManager, which imports from `onboarding.py`. That module imports
`@cached` decorator from `cache.py`, which was creating a Redis
connection at module import time:

```python
# Old code - ran at import time!
redis = Redis(connection_pool=_get_cache_pool())
```

Since `onboarding.py` only uses `@cached(shared_cache=False)` (in-memory
caching), it doesn't actually need Redis. But the import triggered the
connection attempt.

## Changes
- Wrapped Redis connection in a singleton class with lazy initialization
- Connection is only established when `_get_redis()` is first called
(i.e., when `shared_cache=True` is used)
- Services using only in-memory caching can now import `cache.py`
without Redis configuration

## Test plan
- [ ] Services using `shared_cache=False` work without Redis configured
- [ ] Services using `shared_cache=True` still work correctly with Redis
- [ ] Existing cache tests pass

🤖 Generated with [Claude Code](https://claude.com/claude-code)

---------

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-16 14:28:36 +00:00
Abhimanyu Yadav
ec03a13e26 fix(frontend): improve history tracking, error handling (#11786)
### Changes 🏗️

- **Improved Error Handling**: Enhanced error handling in
`useRunInputDialog.ts` to properly handle cases where node errors are
empty or undefined
- **Fixed Node Collision Resolution**: Updated `Flow.tsx` to use the
current state from the store instead of stale props
- **Enhanced History Management**:
    - Added proper state tracking for edge removal operations
    - Improved undo/redo functionality to prevent duplicate states
- Fixed edge case where history wasn't properly tracked during node
dragging
- **UI Improvements**:
- Fixed potential null reference in NodeHeader when accessing agent_name
    - Added placeholder for GoogleDrivePicker in INPUT mode
    - Fixed spacing in ArrayFieldTemplate
- **Bug Fixes**:
    - Added proper state tracking before modifying nodes/edges
    - Fixed history tracking to avoid redundant states
    - Improved collision detection and resolution

### Checklist ���

#### For code changes:

- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Test undo/redo functionality after adding, removing, and moving
nodes
    - [x] Test edge creation and deletion with history tracking
    - [x] Verify error handling when graph validation fails
    - [x] Test Google Drive picker in different UI modes
    - [x] Verify node collision resolution works correctly
2026-01-16 13:34:57 +00:00
Abhimanyu Yadav
b08851f5d7 feat(frontend): improve GoogleDrivePickerField with input mode support and array field spacing (#11780)
### Changes 🏗️

- Added a placeholder UI for Google Drive Picker in INPUT block type
- Improved detection of Google Drive file objects in schema validation
- Extracted `isGoogleDrivePickerSchema` function for better code
organization
- Added spacing between array field elements with a gap-2 class
- Added debug logging for preprocessed schema in FormRenderer

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Verified Google Drive Picker shows placeholder in INPUT blocks
  - [x] Confirmed array field elements have proper spacing
  - [x] Tested that Google Drive file objects are properly detected
2026-01-16 13:02:36 +00:00
Abhimanyu Yadav
8b1720e61d feat(frontend): improve graph validation error handling and node navigation (#11779)
### Changes 🏗️

- Enhanced error handling for graph validation failures with detailed
user feedback
- Added automatic viewport navigation to the first node with errors when
validation fails
- Improved node title display to prioritize agent_name from hardcoded
values
- Removed console.log debugging statement from OutputHandler
- Added ApiError import and improved error type handling
- Reorganized imports for better code organization

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Create a graph with intentional validation errors and verify error
messages display correctly
- [x] Verify the viewport automatically navigates to the first node with
errors
- [x] Check that node titles correctly display customized names or agent
names
- [x] Test error recovery by fixing validation errors and successfully
running the graph
2026-01-16 11:14:00 +00:00
Abhimanyu Yadav
aa5a039c5e feat(frontend): add special rendering for NOTE UI type in FieldTemplate (#11771)
### Changes 🏗️

Added support for Note blocks in the FieldTemplate component by:
- Importing the BlockUIType enum from the build components types
- Extracting the uiType from the registry.formContext
- Adding a conditional rendering check that returns children directly
when the uiType is BlockUIType.NOTE

This change allows Note blocks to render without the standard field
template wrapper, providing a cleaner display for note-type content.


![Screenshot 2026-01-15 at
1.01.03 PM.png](https://app.graphite.com/user-attachments/assets/7d654eed-abbe-4ec3-9c80-24a77a8373e3.png)

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Created a Note block and verified it renders correctly without
field template wrapper
- [x] Confirmed other block types still render with proper field
template
- [x] Verified that Note blocks maintain proper functionality in the
node graph
2026-01-16 11:10:21 +00:00
Zamil Majdy
8b83bb8647 feat(backend): unified hybrid search with embedding backfill for all content types (#11767)
## Summary

This PR extends the embedding system to support **blocks** and
**documentation** content types in addition to store agents, and
introduces **unified hybrid search** across all content types using a
single `UnifiedContentEmbedding` table.

### Key Changes

1. **Unified Hybrid Search Architecture**
   - Added `search` tsvector column to `UnifiedContentEmbedding` table
- New `unified_hybrid_search()` function searches across all content
types (agents, blocks, docs)
- Updated `hybrid_search()` for store agents to use
`UnifiedContentEmbedding.search`
   - Removed deprecated `search` column from `StoreListingVersion` table

2. **Pluggable Content Handler Architecture**
   - Created abstract `ContentHandler` base class for extensibility
- Implemented handlers: `StoreAgentHandler`, `BlockHandler`,
`DocumentationHandler`
   - Registry pattern for easy addition of new content types

3. **Block Embeddings**
   - Discovers all blocks using `get_blocks()`
- Extracts searchable text from: name, description, categories,
input/output schemas

4. **Documentation Embeddings**
   - Scans `/docs/` directory for `.md` and `.mdx` files
   - Extracts title from first `#` heading or uses filename as fallback

5. **Hybrid Search Graceful Degradation**
- Falls back to lexical-only search if query embedding generation fails
   - Redistributes semantic weight proportionally to other components
   - Logs warning instead of throwing error

6. **Database Migrations**
- `20260115200000_add_unified_search_tsvector`: Adds search column to
UnifiedContentEmbedding with auto-update trigger
- `20260115210000_remove_storelistingversion_search`: Removes deprecated
search column and updates StoreAgent view

7. **Orphan Cleanup**
- `cleanup_orphaned_embeddings()` removes embeddings for deleted content
   - Always runs after backfill, even at 100% coverage

### Review Comments Addressed

-  SQL parameter index bug when user_id provided (embeddings.py)
-  Early return skipping cleanup at 100% coverage (scheduler.py)
-  Inconsistent return structure across code paths (scheduler.py)
-  SQL UNION syntax error - added parentheses for ORDER BY/LIMIT
(hybrid_search.py)
-  Version numeric ordering in aggregations (migration)
-  Embedding dimension uses EMBEDDING_DIM constant

### Files Changed

- `backend/api/features/store/content_handlers.py` (NEW): Handler
architecture
- `backend/api/features/store/embeddings.py`: Refactored to use handlers
- `backend/api/features/store/hybrid_search.py`: Unified search +
graceful degradation
- `backend/executor/scheduler.py`: Process all content types, consistent
returns
- `migrations/20260115200000_add_unified_search_tsvector/`: Add tsvector
to unified table
- `migrations/20260115210000_remove_storelistingversion_search/`: Remove
old search column
- `schema.prisma`: Updated UnifiedContentEmbedding and
StoreListingVersion models
- `*_test.py`: Added tests for unified_hybrid_search

## Test Plan

1.  All tests passing on Python 3.11, 3.12, 3.13
2.  Types check passing
3.  CodeRabbit and Sentry reviews addressed
4. Deploy to staging and verify:
   - Backfill job processes all content types
   - Search results include blocks and docs
   - Search works without OpenAI API (graceful degradation)

🤖 Generated with [Claude Code](https://claude.ai/code)

---------

Co-authored-by: Swifty <craigswift13@gmail.com>
Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-16 09:47:19 +01:00
Nicholas Tindle
e80e4d9cbb ci: update dev from gitbook (#11757)
<!-- Clearly explain the need for these changes: -->
gitbook changes via ui

<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> **Docs sync from GitBook**
> 
> - Updates `docs/home/README.md` with a new Developer Platform landing
page (cards, links to Platform, Integrations, Contribute, Discord,
GitHub) and metadata/cover settings
> - Adds `docs/home/SUMMARY.md` defining the table of contents linking
to `README.md`
> - No application/runtime code changes
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
446c71fec8. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

---------

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
2026-01-15 20:02:48 +00:00
164 changed files with 10650 additions and 2062 deletions

View File

@@ -1,6 +1,9 @@
# Ignore everything by default, selectively add things to context
*
# Documentation (for embeddings/search)
!docs/
# Platform - Libs
!autogpt_platform/autogpt_libs/autogpt_libs/
!autogpt_platform/autogpt_libs/pyproject.toml

View File

@@ -100,6 +100,7 @@ COPY autogpt_platform/backend/migrations /app/autogpt_platform/backend/migration
FROM server_dependencies AS server
COPY autogpt_platform/backend /app/autogpt_platform/backend
COPY docs /app/docs
RUN poetry install --no-ansi --only-root
ENV PORT=8000

View File

@@ -299,9 +299,6 @@ async def stream_chat_completion(
f"new message_count={len(session.messages)}"
)
if len(session.messages) > config.max_context_messages:
raise ValueError(f"Max messages exceeded: {config.max_context_messages}")
logger.info(
f"Upserting session: {session.session_id} with user id {session.user_id}, "
f"message_count={len(session.messages)}"

View File

@@ -8,8 +8,12 @@ from .add_understanding import AddUnderstandingTool
from .agent_output import AgentOutputTool
from .base import BaseTool
from .find_agent import FindAgentTool
from .find_block import FindBlockTool
from .find_library_agent import FindLibraryAgentTool
from .get_doc_page import GetDocPageTool
from .run_agent import RunAgentTool
from .run_block import RunBlockTool
from .search_docs import SearchDocsTool
if TYPE_CHECKING:
from backend.api.features.chat.response_model import StreamToolOutputAvailable
@@ -18,9 +22,13 @@ if TYPE_CHECKING:
TOOL_REGISTRY: dict[str, BaseTool] = {
"add_understanding": AddUnderstandingTool(),
"find_agent": FindAgentTool(),
"find_block": FindBlockTool(),
"find_library_agent": FindLibraryAgentTool(),
"run_agent": RunAgentTool(),
"run_block": RunBlockTool(),
"agent_output": AgentOutputTool(),
"search_docs": SearchDocsTool(),
"get_doc_page": GetDocPageTool(),
}
# Export individual tool instances for backwards compatibility

View File

@@ -0,0 +1,192 @@
import logging
from typing import Any
from prisma.enums import ContentType
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool, ToolResponseBase
from backend.api.features.chat.tools.models import (
BlockInfoSummary,
BlockInputFieldInfo,
BlockListResponse,
ErrorResponse,
NoResultsResponse,
)
from backend.api.features.store.hybrid_search import unified_hybrid_search
from backend.data.block import get_block
logger = logging.getLogger(__name__)
class FindBlockTool(BaseTool):
"""Tool for searching available blocks."""
@property
def name(self) -> str:
return "find_block"
@property
def description(self) -> str:
return (
"Search for available blocks by name or description. "
"Blocks are reusable components that perform specific tasks like "
"sending emails, making API calls, processing text, etc. "
"IMPORTANT: Use this tool FIRST to get the block's 'id' before calling run_block. "
"The response includes each block's id, required_inputs, and input_schema."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": (
"Search query to find blocks by name or description. "
"Use keywords like 'email', 'http', 'text', 'ai', etc."
),
},
},
"required": ["query"],
}
@property
def requires_auth(self) -> bool:
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
"""Search for blocks matching the query.
Args:
user_id: User ID (required)
session: Chat session
query: Search query
Returns:
BlockListResponse: List of matching blocks
NoResultsResponse: No blocks found
ErrorResponse: Error message
"""
query = kwargs.get("query", "").strip()
session_id = session.session_id
if not query:
return ErrorResponse(
message="Please provide a search query",
session_id=session_id,
)
try:
# Search for blocks using hybrid search
results, total = await unified_hybrid_search(
query=query,
content_types=[ContentType.BLOCK],
page=1,
page_size=10,
)
if not results:
return NoResultsResponse(
message=f"No blocks found for '{query}'",
suggestions=[
"Try broader keywords like 'email', 'http', 'text', 'ai'",
"Check spelling of technical terms",
],
session_id=session_id,
)
# Enrich results with full block information
blocks: list[BlockInfoSummary] = []
for result in results:
block_id = result["content_id"]
block = get_block(block_id)
if block:
# Get input/output schemas
input_schema = {}
output_schema = {}
try:
input_schema = block.input_schema.jsonschema()
except Exception:
pass
try:
output_schema = block.output_schema.jsonschema()
except Exception:
pass
# Get categories from block instance
categories = []
if hasattr(block, "categories") and block.categories:
categories = [cat.value for cat in block.categories]
# Extract required inputs for easier use
required_inputs: list[BlockInputFieldInfo] = []
if input_schema:
properties = input_schema.get("properties", {})
required_fields = set(input_schema.get("required", []))
# Get credential field names to exclude from required inputs
credentials_fields = set(
block.input_schema.get_credentials_fields().keys()
)
for field_name, field_schema in properties.items():
# Skip credential fields - they're handled separately
if field_name in credentials_fields:
continue
required_inputs.append(
BlockInputFieldInfo(
name=field_name,
type=field_schema.get("type", "string"),
description=field_schema.get("description", ""),
required=field_name in required_fields,
default=field_schema.get("default"),
)
)
blocks.append(
BlockInfoSummary(
id=block_id,
name=block.name,
description=block.description or "",
categories=categories,
input_schema=input_schema,
output_schema=output_schema,
required_inputs=required_inputs,
)
)
if not blocks:
return NoResultsResponse(
message=f"No blocks found for '{query}'",
suggestions=[
"Try broader keywords like 'email', 'http', 'text', 'ai'",
],
session_id=session_id,
)
return BlockListResponse(
message=(
f"Found {len(blocks)} block(s) matching '{query}'. "
"To execute a block, use run_block with the block's 'id' field "
"and provide 'input_data' matching the block's input_schema."
),
blocks=blocks,
count=len(blocks),
query=query,
session_id=session_id,
)
except Exception as e:
logger.error(f"Error searching blocks: {e}", exc_info=True)
return ErrorResponse(
message="Failed to search blocks",
error=str(e),
session_id=session_id,
)

View File

@@ -0,0 +1,148 @@
"""GetDocPageTool - Fetch full content of a documentation page."""
import logging
from pathlib import Path
from typing import Any
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
DocPageResponse,
ErrorResponse,
ToolResponseBase,
)
logger = logging.getLogger(__name__)
# Base URL for documentation (can be configured)
DOCS_BASE_URL = "https://docs.agpt.co"
class GetDocPageTool(BaseTool):
"""Tool for fetching full content of a documentation page."""
@property
def name(self) -> str:
return "get_doc_page"
@property
def description(self) -> str:
return (
"Get the full content of a documentation page by its path. "
"Use this after search_docs to read the complete content of a relevant page."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": (
"The path to the documentation file, as returned by search_docs. "
"Example: 'platform/block-sdk-guide.md'"
),
},
},
"required": ["path"],
}
@property
def requires_auth(self) -> bool:
return False # Documentation is public
def _get_docs_root(self) -> Path:
"""Get the documentation root directory."""
this_file = Path(__file__)
project_root = this_file.parent.parent.parent.parent.parent.parent.parent.parent
return project_root / "docs"
def _extract_title(self, content: str, fallback: str) -> str:
"""Extract title from markdown content."""
lines = content.split("\n")
for line in lines:
if line.startswith("# "):
return line[2:].strip()
return fallback
def _make_doc_url(self, path: str) -> str:
"""Create a URL for a documentation page."""
url_path = path.rsplit(".", 1)[0] if "." in path else path
return f"{DOCS_BASE_URL}/{url_path}"
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
"""Fetch full content of a documentation page.
Args:
user_id: User ID (not required for docs)
session: Chat session
path: Path to the documentation file
Returns:
DocPageResponse: Full document content
ErrorResponse: Error message
"""
path = kwargs.get("path", "").strip()
session_id = session.session_id if session else None
if not path:
return ErrorResponse(
message="Please provide a documentation path.",
error="Missing path parameter",
session_id=session_id,
)
# Sanitize path to prevent directory traversal
if ".." in path or path.startswith("/"):
return ErrorResponse(
message="Invalid documentation path.",
error="invalid_path",
session_id=session_id,
)
docs_root = self._get_docs_root()
full_path = docs_root / path
if not full_path.exists():
return ErrorResponse(
message=f"Documentation page not found: {path}",
error="not_found",
session_id=session_id,
)
# Ensure the path is within docs root
try:
full_path.resolve().relative_to(docs_root.resolve())
except ValueError:
return ErrorResponse(
message="Invalid documentation path.",
error="invalid_path",
session_id=session_id,
)
try:
content = full_path.read_text(encoding="utf-8")
title = self._extract_title(content, path)
return DocPageResponse(
message=f"Retrieved documentation page: {title}",
title=title,
path=path,
content=content,
doc_url=self._make_doc_url(path),
session_id=session_id,
)
except Exception as e:
logger.error(f"Failed to read documentation page {path}: {e}")
return ErrorResponse(
message=f"Failed to read documentation page: {str(e)}",
error="read_failed",
session_id=session_id,
)

View File

@@ -21,6 +21,10 @@ class ResponseType(str, Enum):
NO_RESULTS = "no_results"
AGENT_OUTPUT = "agent_output"
UNDERSTANDING_UPDATED = "understanding_updated"
BLOCK_LIST = "block_list"
BLOCK_OUTPUT = "block_output"
DOC_SEARCH_RESULTS = "doc_search_results"
DOC_PAGE = "doc_page"
# Base response model
@@ -209,3 +213,83 @@ class UnderstandingUpdatedResponse(ToolResponseBase):
type: ResponseType = ResponseType.UNDERSTANDING_UPDATED
updated_fields: list[str] = Field(default_factory=list)
current_understanding: dict[str, Any] = Field(default_factory=dict)
# Documentation search models
class DocSearchResult(BaseModel):
"""A single documentation search result."""
title: str
path: str
section: str
snippet: str # Short excerpt for UI display
score: float
doc_url: str | None = None
class DocSearchResultsResponse(ToolResponseBase):
"""Response for search_docs tool."""
type: ResponseType = ResponseType.DOC_SEARCH_RESULTS
results: list[DocSearchResult]
count: int
query: str
class DocPageResponse(ToolResponseBase):
"""Response for get_doc_page tool."""
type: ResponseType = ResponseType.DOC_PAGE
title: str
path: str
content: str # Full document content
doc_url: str | None = None
# Block models
class BlockInputFieldInfo(BaseModel):
"""Information about a block input field."""
name: str
type: str
description: str = ""
required: bool = False
default: Any | None = None
class BlockInfoSummary(BaseModel):
"""Summary of a block for search results."""
id: str
name: str
description: str
categories: list[str]
input_schema: dict[str, Any]
output_schema: dict[str, Any]
required_inputs: list[BlockInputFieldInfo] = Field(
default_factory=list,
description="List of required input fields for this block",
)
class BlockListResponse(ToolResponseBase):
"""Response for find_block tool."""
type: ResponseType = ResponseType.BLOCK_LIST
blocks: list[BlockInfoSummary]
count: int
query: str
usage_hint: str = Field(
default="To execute a block, call run_block with block_id set to the block's "
"'id' field and input_data containing the required fields from input_schema."
)
class BlockOutputResponse(ToolResponseBase):
"""Response for run_block tool."""
type: ResponseType = ResponseType.BLOCK_OUTPUT
block_id: str
block_name: str
outputs: dict[str, list[Any]]
success: bool = True

View File

@@ -0,0 +1,297 @@
"""Tool for executing blocks directly."""
import logging
from collections import defaultdict
from typing import Any
from backend.api.features.chat.model import ChatSession
from backend.data.block import get_block
from backend.data.execution import ExecutionContext
from backend.data.model import CredentialsMetaInput
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.util.exceptions import BlockError
from .base import BaseTool
from .models import (
BlockOutputResponse,
ErrorResponse,
SetupInfo,
SetupRequirementsResponse,
ToolResponseBase,
UserReadiness,
)
logger = logging.getLogger(__name__)
class RunBlockTool(BaseTool):
"""Tool for executing a block and returning its outputs."""
@property
def name(self) -> str:
return "run_block"
@property
def description(self) -> str:
return (
"Execute a specific block with the provided input data. "
"IMPORTANT: You MUST call find_block first to get the block's 'id' - "
"do NOT guess or make up block IDs. "
"Use the 'id' from find_block results and provide input_data "
"matching the block's required_inputs."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"block_id": {
"type": "string",
"description": (
"The block's 'id' field from find_block results. "
"NEVER guess this - always get it from find_block first."
),
},
"input_data": {
"type": "object",
"description": (
"Input values for the block. Use the 'required_inputs' field "
"from find_block to see what fields are needed."
),
},
},
"required": ["block_id", "input_data"],
}
@property
def requires_auth(self) -> bool:
return True
async def _check_block_credentials(
self,
user_id: str,
block: Any,
) -> tuple[dict[str, CredentialsMetaInput], list[CredentialsMetaInput]]:
"""
Check if user has required credentials for a block.
Returns:
tuple[matched_credentials, missing_credentials]
"""
matched_credentials: dict[str, CredentialsMetaInput] = {}
missing_credentials: list[CredentialsMetaInput] = []
# Get credential field info from block's input schema
credentials_fields_info = block.input_schema.get_credentials_fields_info()
if not credentials_fields_info:
return matched_credentials, missing_credentials
# Get user's available credentials
creds_manager = IntegrationCredentialsManager()
available_creds = await creds_manager.store.get_all_creds(user_id)
for field_name, field_info in credentials_fields_info.items():
# field_info.provider is a frozenset of acceptable providers
# field_info.supported_types is a frozenset of acceptable types
matching_cred = next(
(
cred
for cred in available_creds
if cred.provider in field_info.provider
and cred.type in field_info.supported_types
),
None,
)
if matching_cred:
matched_credentials[field_name] = CredentialsMetaInput(
id=matching_cred.id,
provider=matching_cred.provider, # type: ignore
type=matching_cred.type,
title=matching_cred.title,
)
else:
# Create a placeholder for the missing credential
provider = next(iter(field_info.provider), "unknown")
cred_type = next(iter(field_info.supported_types), "api_key")
missing_credentials.append(
CredentialsMetaInput(
id=field_name,
provider=provider, # type: ignore
type=cred_type, # type: ignore
title=field_name.replace("_", " ").title(),
)
)
return matched_credentials, missing_credentials
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
"""Execute a block with the given input data.
Args:
user_id: User ID (required)
session: Chat session
block_id: Block UUID to execute
input_data: Input values for the block
Returns:
BlockOutputResponse: Block execution outputs
SetupRequirementsResponse: Missing credentials
ErrorResponse: Error message
"""
block_id = kwargs.get("block_id", "").strip()
input_data = kwargs.get("input_data", {})
session_id = session.session_id
if not block_id:
return ErrorResponse(
message="Please provide a block_id",
session_id=session_id,
)
if not isinstance(input_data, dict):
return ErrorResponse(
message="input_data must be an object",
session_id=session_id,
)
if not user_id:
return ErrorResponse(
message="Authentication required",
session_id=session_id,
)
# Get the block
block = get_block(block_id)
if not block:
return ErrorResponse(
message=f"Block '{block_id}' not found",
session_id=session_id,
)
logger.info(f"Executing block {block.name} ({block_id}) for user {user_id}")
# Check credentials
creds_manager = IntegrationCredentialsManager()
matched_credentials, missing_credentials = await self._check_block_credentials(
user_id, block
)
if missing_credentials:
# Return setup requirements response with missing credentials
missing_creds_dict = {c.id: c.model_dump() for c in missing_credentials}
return SetupRequirementsResponse(
message=(
f"Block '{block.name}' requires credentials that are not configured. "
"Please set up the required credentials before running this block."
),
session_id=session_id,
setup_info=SetupInfo(
agent_id=block_id,
agent_name=block.name,
user_readiness=UserReadiness(
has_all_credentials=False,
missing_credentials=missing_creds_dict,
ready_to_run=False,
),
requirements={
"credentials": [c.model_dump() for c in missing_credentials],
"inputs": self._get_inputs_list(block),
"execution_modes": ["immediate"],
},
),
graph_id=None,
graph_version=None,
)
try:
# Fetch actual credentials and prepare kwargs for block execution
# Create execution context with defaults (blocks may require it)
exec_kwargs: dict[str, Any] = {
"user_id": user_id,
"execution_context": ExecutionContext(),
}
for field_name, cred_meta in matched_credentials.items():
# Inject metadata into input_data (for validation)
if field_name not in input_data:
input_data[field_name] = cred_meta.model_dump()
# Fetch actual credentials and pass as kwargs (for execution)
actual_credentials = await creds_manager.get(
user_id, cred_meta.id, lock=False
)
if actual_credentials:
exec_kwargs[field_name] = actual_credentials
else:
return ErrorResponse(
message=f"Failed to retrieve credentials for {field_name}",
session_id=session_id,
)
# Execute the block and collect outputs
outputs: dict[str, list[Any]] = defaultdict(list)
async for output_name, output_data in block.execute(
input_data,
**exec_kwargs,
):
outputs[output_name].append(output_data)
return BlockOutputResponse(
message=f"Block '{block.name}' executed successfully",
block_id=block_id,
block_name=block.name,
outputs=dict(outputs),
success=True,
session_id=session_id,
)
except BlockError as e:
logger.warning(f"Block execution failed: {e}")
return ErrorResponse(
message=f"Block execution failed: {e}",
error=str(e),
session_id=session_id,
)
except Exception as e:
logger.error(f"Unexpected error executing block: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to execute block: {str(e)}",
error=str(e),
session_id=session_id,
)
def _get_inputs_list(self, block: Any) -> list[dict[str, Any]]:
"""Extract non-credential inputs from block schema."""
inputs_list = []
schema = block.input_schema.jsonschema()
properties = schema.get("properties", {})
required_fields = set(schema.get("required", []))
# Get credential field names to exclude
credentials_fields = set(block.input_schema.get_credentials_fields().keys())
for field_name, field_schema in properties.items():
# Skip credential fields
if field_name in credentials_fields:
continue
inputs_list.append(
{
"name": field_name,
"title": field_schema.get("title", field_name),
"type": field_schema.get("type", "string"),
"description": field_schema.get("description", ""),
"required": field_name in required_fields,
}
)
return inputs_list

View File

@@ -0,0 +1,208 @@
"""SearchDocsTool - Search documentation using hybrid search."""
import logging
from typing import Any
from prisma.enums import ContentType
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
DocSearchResult,
DocSearchResultsResponse,
ErrorResponse,
NoResultsResponse,
ToolResponseBase,
)
from backend.api.features.store.hybrid_search import unified_hybrid_search
logger = logging.getLogger(__name__)
# Base URL for documentation (can be configured)
DOCS_BASE_URL = "https://docs.agpt.co"
# Maximum number of results to return
MAX_RESULTS = 5
# Snippet length for preview
SNIPPET_LENGTH = 200
class SearchDocsTool(BaseTool):
"""Tool for searching AutoGPT platform documentation."""
@property
def name(self) -> str:
return "search_docs"
@property
def description(self) -> str:
return (
"Search the AutoGPT platform documentation for information about "
"how to use the platform, build agents, configure blocks, and more. "
"Returns relevant documentation sections. Use get_doc_page to read full content."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": (
"Search query to find relevant documentation. "
"Use natural language to describe what you're looking for."
),
},
},
"required": ["query"],
}
@property
def requires_auth(self) -> bool:
return False # Documentation is public
def _create_snippet(self, content: str, max_length: int = SNIPPET_LENGTH) -> str:
"""Create a short snippet from content for preview."""
# Remove markdown formatting for cleaner snippet
clean_content = content.replace("#", "").replace("*", "").replace("`", "")
# Remove extra whitespace
clean_content = " ".join(clean_content.split())
if len(clean_content) <= max_length:
return clean_content
# Truncate at word boundary
truncated = clean_content[:max_length]
last_space = truncated.rfind(" ")
if last_space > max_length // 2:
truncated = truncated[:last_space]
return truncated + "..."
def _make_doc_url(self, path: str) -> str:
"""Create a URL for a documentation page."""
# Remove file extension for URL
url_path = path.rsplit(".", 1)[0] if "." in path else path
return f"{DOCS_BASE_URL}/{url_path}"
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
"""Search documentation and return relevant sections.
Args:
user_id: User ID (not required for docs)
session: Chat session
query: Search query
Returns:
DocSearchResultsResponse: List of matching documentation sections
NoResultsResponse: No results found
ErrorResponse: Error message
"""
query = kwargs.get("query", "").strip()
session_id = session.session_id if session else None
if not query:
return ErrorResponse(
message="Please provide a search query.",
error="Missing query parameter",
session_id=session_id,
)
try:
# Search using hybrid search for DOCUMENTATION content type only
results, total = await unified_hybrid_search(
query=query,
content_types=[ContentType.DOCUMENTATION],
page=1,
page_size=MAX_RESULTS * 2, # Fetch extra for deduplication
min_score=0.1, # Lower threshold for docs
)
if not results:
return NoResultsResponse(
message=f"No documentation found for '{query}'.",
suggestions=[
"Try different keywords",
"Use more general terms",
"Check for typos in your query",
],
session_id=session_id,
)
# Deduplicate by document path (keep highest scoring section per doc)
seen_docs: dict[str, dict[str, Any]] = {}
for result in results:
metadata = result.get("metadata", {})
doc_path = metadata.get("path", "")
if not doc_path:
continue
# Keep the highest scoring result for each document
if doc_path not in seen_docs:
seen_docs[doc_path] = result
elif result.get("combined_score", 0) > seen_docs[doc_path].get(
"combined_score", 0
):
seen_docs[doc_path] = result
# Sort by score and take top MAX_RESULTS
deduplicated = sorted(
seen_docs.values(),
key=lambda x: x.get("combined_score", 0),
reverse=True,
)[:MAX_RESULTS]
if not deduplicated:
return NoResultsResponse(
message=f"No documentation found for '{query}'.",
suggestions=[
"Try different keywords",
"Use more general terms",
],
session_id=session_id,
)
# Build response
doc_results: list[DocSearchResult] = []
for result in deduplicated:
metadata = result.get("metadata", {})
doc_path = metadata.get("path", "")
doc_title = metadata.get("doc_title", "")
section_title = metadata.get("section_title", "")
searchable_text = result.get("searchable_text", "")
score = result.get("combined_score", 0)
doc_results.append(
DocSearchResult(
title=doc_title or section_title or doc_path,
path=doc_path,
section=section_title,
snippet=self._create_snippet(searchable_text),
score=round(score, 3),
doc_url=self._make_doc_url(doc_path),
)
)
return DocSearchResultsResponse(
message=f"Found {len(doc_results)} relevant documentation sections.",
results=doc_results,
count=len(doc_results),
query=query,
session_id=session_id,
)
except Exception as e:
logger.error(f"Documentation search failed: {e}")
return ErrorResponse(
message=f"Failed to search documentation: {str(e)}",
error="search_failed",
session_id=session_id,
)

View File

@@ -0,0 +1,610 @@
"""
Content Type Handlers for Unified Embeddings
Pluggable system for different content sources (store agents, blocks, docs).
Each handler knows how to fetch and process its content type for embedding.
"""
import logging
from abc import ABC, abstractmethod
from dataclasses import dataclass
from pathlib import Path
from typing import Any
from prisma.enums import ContentType
from backend.data.db import query_raw_with_schema
logger = logging.getLogger(__name__)
@dataclass
class ContentItem:
"""Represents a piece of content to be embedded."""
content_id: str # Unique identifier (DB ID or file path)
content_type: ContentType
searchable_text: str # Combined text for embedding
metadata: dict[str, Any] # Content-specific metadata
user_id: str | None = None # For user-scoped content
class ContentHandler(ABC):
"""Base handler for fetching and processing content for embeddings."""
@property
@abstractmethod
def content_type(self) -> ContentType:
"""The ContentType this handler manages."""
pass
@abstractmethod
async def get_missing_items(self, batch_size: int) -> list[ContentItem]:
"""
Fetch items that don't have embeddings yet.
Args:
batch_size: Maximum number of items to return
Returns:
List of ContentItem objects ready for embedding
"""
pass
@abstractmethod
async def get_stats(self) -> dict[str, int]:
"""
Get statistics about embedding coverage.
Returns:
Dict with keys: total, with_embeddings, without_embeddings
"""
pass
class StoreAgentHandler(ContentHandler):
"""Handler for marketplace store agent listings."""
@property
def content_type(self) -> ContentType:
return ContentType.STORE_AGENT
async def get_missing_items(self, batch_size: int) -> list[ContentItem]:
"""Fetch approved store listings without embeddings."""
from backend.api.features.store.embeddings import build_searchable_text
missing = await query_raw_with_schema(
"""
SELECT
slv.id,
slv.name,
slv.description,
slv."subHeading",
slv.categories
FROM {schema_prefix}"StoreListingVersion" slv
LEFT JOIN {schema_prefix}"UnifiedContentEmbedding" uce
ON slv.id = uce."contentId" AND uce."contentType" = 'STORE_AGENT'::{schema_prefix}"ContentType"
WHERE slv."submissionStatus" = 'APPROVED'
AND slv."isDeleted" = false
AND uce."contentId" IS NULL
LIMIT $1
""",
batch_size,
)
return [
ContentItem(
content_id=row["id"],
content_type=ContentType.STORE_AGENT,
searchable_text=build_searchable_text(
name=row["name"],
description=row["description"],
sub_heading=row["subHeading"],
categories=row["categories"] or [],
),
metadata={
"name": row["name"],
"categories": row["categories"] or [],
},
user_id=None, # Store agents are public
)
for row in missing
]
async def get_stats(self) -> dict[str, int]:
"""Get statistics about store agent embedding coverage."""
# Count approved versions
approved_result = await query_raw_with_schema(
"""
SELECT COUNT(*) as count
FROM {schema_prefix}"StoreListingVersion"
WHERE "submissionStatus" = 'APPROVED'
AND "isDeleted" = false
"""
)
total_approved = approved_result[0]["count"] if approved_result else 0
# Count versions with embeddings
embedded_result = await query_raw_with_schema(
"""
SELECT COUNT(*) as count
FROM {schema_prefix}"StoreListingVersion" slv
JOIN {schema_prefix}"UnifiedContentEmbedding" uce ON slv.id = uce."contentId" AND uce."contentType" = 'STORE_AGENT'::{schema_prefix}"ContentType"
WHERE slv."submissionStatus" = 'APPROVED'
AND slv."isDeleted" = false
"""
)
with_embeddings = embedded_result[0]["count"] if embedded_result else 0
return {
"total": total_approved,
"with_embeddings": with_embeddings,
"without_embeddings": total_approved - with_embeddings,
}
class BlockHandler(ContentHandler):
"""Handler for block definitions (Python classes)."""
@property
def content_type(self) -> ContentType:
return ContentType.BLOCK
async def get_missing_items(self, batch_size: int) -> list[ContentItem]:
"""Fetch blocks without embeddings."""
from backend.data.block import get_blocks
# Get all available blocks
all_blocks = get_blocks()
# Check which ones have embeddings
if not all_blocks:
return []
block_ids = list(all_blocks.keys())
# Query for existing embeddings
placeholders = ",".join([f"${i+1}" for i in range(len(block_ids))])
existing_result = await query_raw_with_schema(
f"""
SELECT "contentId"
FROM {{schema_prefix}}"UnifiedContentEmbedding"
WHERE "contentType" = 'BLOCK'::{{schema_prefix}}"ContentType"
AND "contentId" = ANY(ARRAY[{placeholders}])
""",
*block_ids,
)
existing_ids = {row["contentId"] for row in existing_result}
missing_blocks = [
(block_id, block_cls)
for block_id, block_cls in all_blocks.items()
if block_id not in existing_ids
]
# Convert to ContentItem
items = []
for block_id, block_cls in missing_blocks[:batch_size]:
try:
block_instance = block_cls()
# Build searchable text from block metadata
parts = []
if hasattr(block_instance, "name") and block_instance.name:
parts.append(block_instance.name)
if (
hasattr(block_instance, "description")
and block_instance.description
):
parts.append(block_instance.description)
if hasattr(block_instance, "categories") and block_instance.categories:
# Convert BlockCategory enum to strings
parts.append(
" ".join(str(cat.value) for cat in block_instance.categories)
)
# Add input/output schema info
if hasattr(block_instance, "input_schema"):
schema = block_instance.input_schema
if hasattr(schema, "model_json_schema"):
schema_dict = schema.model_json_schema()
if "properties" in schema_dict:
for prop_name, prop_info in schema_dict[
"properties"
].items():
if "description" in prop_info:
parts.append(
f"{prop_name}: {prop_info['description']}"
)
searchable_text = " ".join(parts)
# Convert categories set of enums to list of strings for JSON serialization
categories = getattr(block_instance, "categories", set())
categories_list = (
[cat.value for cat in categories] if categories else []
)
items.append(
ContentItem(
content_id=block_id,
content_type=ContentType.BLOCK,
searchable_text=searchable_text,
metadata={
"name": getattr(block_instance, "name", ""),
"categories": categories_list,
},
user_id=None, # Blocks are public
)
)
except Exception as e:
logger.warning(f"Failed to process block {block_id}: {e}")
continue
return items
async def get_stats(self) -> dict[str, int]:
"""Get statistics about block embedding coverage."""
from backend.data.block import get_blocks
all_blocks = get_blocks()
total_blocks = len(all_blocks)
if total_blocks == 0:
return {"total": 0, "with_embeddings": 0, "without_embeddings": 0}
block_ids = list(all_blocks.keys())
placeholders = ",".join([f"${i+1}" for i in range(len(block_ids))])
embedded_result = await query_raw_with_schema(
f"""
SELECT COUNT(*) as count
FROM {{schema_prefix}}"UnifiedContentEmbedding"
WHERE "contentType" = 'BLOCK'::{{schema_prefix}}"ContentType"
AND "contentId" = ANY(ARRAY[{placeholders}])
""",
*block_ids,
)
with_embeddings = embedded_result[0]["count"] if embedded_result else 0
return {
"total": total_blocks,
"with_embeddings": with_embeddings,
"without_embeddings": total_blocks - with_embeddings,
}
@dataclass
class MarkdownSection:
"""Represents a section of a markdown document."""
title: str # Section heading text
content: str # Section content (including the heading line)
level: int # Heading level (1 for #, 2 for ##, etc.)
index: int # Section index within the document
class DocumentationHandler(ContentHandler):
"""Handler for documentation files (.md/.mdx).
Chunks documents by markdown headings to create multiple embeddings per file.
Each section (## heading) becomes a separate embedding for better retrieval.
"""
@property
def content_type(self) -> ContentType:
return ContentType.DOCUMENTATION
def _get_docs_root(self) -> Path:
"""Get the documentation root directory."""
# content_handlers.py is at: backend/backend/api/features/store/content_handlers.py
# Need to go up to project root then into docs/
# In container: /app/autogpt_platform/backend/backend/api/features/store -> /app/docs
# In development: /repo/autogpt_platform/backend/backend/api/features/store -> /repo/docs
this_file = Path(
__file__
) # .../backend/backend/api/features/store/content_handlers.py
project_root = (
this_file.parent.parent.parent.parent.parent.parent.parent
) # -> /app or /repo
docs_root = project_root / "docs"
return docs_root
def _extract_doc_title(self, file_path: Path) -> str:
"""Extract the document title from a markdown file."""
try:
content = file_path.read_text(encoding="utf-8")
lines = content.split("\n")
# Try to extract title from first # heading
for line in lines:
if line.startswith("# "):
return line[2:].strip()
# If no title found, use filename
return file_path.stem.replace("-", " ").replace("_", " ").title()
except Exception as e:
logger.warning(f"Failed to read title from {file_path}: {e}")
return file_path.stem.replace("-", " ").replace("_", " ").title()
def _chunk_markdown_by_headings(
self, file_path: Path, min_heading_level: int = 2
) -> list[MarkdownSection]:
"""
Split a markdown file into sections based on headings.
Args:
file_path: Path to the markdown file
min_heading_level: Minimum heading level to split on (default: 2 for ##)
Returns:
List of MarkdownSection objects, one per section.
If no headings found, returns a single section with all content.
"""
try:
content = file_path.read_text(encoding="utf-8")
except Exception as e:
logger.warning(f"Failed to read {file_path}: {e}")
return []
lines = content.split("\n")
sections: list[MarkdownSection] = []
current_section_lines: list[str] = []
current_title = ""
current_level = 0
section_index = 0
doc_title = ""
for line in lines:
# Check if line is a heading
if line.startswith("#"):
# Count heading level
level = 0
for char in line:
if char == "#":
level += 1
else:
break
heading_text = line[level:].strip()
# Track document title (level 1 heading)
if level == 1 and not doc_title:
doc_title = heading_text
# Don't create a section for just the title - add it to first section
current_section_lines.append(line)
continue
# Check if this heading should start a new section
if level >= min_heading_level:
# Save previous section if it has content
if current_section_lines:
section_content = "\n".join(current_section_lines).strip()
if section_content:
# Use doc title for first section if no specific title
title = current_title if current_title else doc_title
if not title:
title = file_path.stem.replace("-", " ").replace(
"_", " "
)
sections.append(
MarkdownSection(
title=title,
content=section_content,
level=current_level if current_level else 1,
index=section_index,
)
)
section_index += 1
# Start new section
current_section_lines = [line]
current_title = heading_text
current_level = level
else:
# Lower level heading (e.g., # when splitting on ##)
current_section_lines.append(line)
else:
current_section_lines.append(line)
# Don't forget the last section
if current_section_lines:
section_content = "\n".join(current_section_lines).strip()
if section_content:
title = current_title if current_title else doc_title
if not title:
title = file_path.stem.replace("-", " ").replace("_", " ")
sections.append(
MarkdownSection(
title=title,
content=section_content,
level=current_level if current_level else 1,
index=section_index,
)
)
# If no sections were created (no headings found), create one section with all content
if not sections and content.strip():
title = (
doc_title
if doc_title
else file_path.stem.replace("-", " ").replace("_", " ")
)
sections.append(
MarkdownSection(
title=title,
content=content.strip(),
level=1,
index=0,
)
)
return sections
def _make_section_content_id(self, doc_path: str, section_index: int) -> str:
"""Create a unique content ID for a document section.
Format: doc_path::section_index
Example: 'platform/getting-started.md::0'
"""
return f"{doc_path}::{section_index}"
def _parse_section_content_id(self, content_id: str) -> tuple[str, int]:
"""Parse a section content ID back into doc_path and section_index.
Returns: (doc_path, section_index)
"""
if "::" in content_id:
parts = content_id.rsplit("::", 1)
return parts[0], int(parts[1])
# Legacy format (whole document)
return content_id, 0
async def get_missing_items(self, batch_size: int) -> list[ContentItem]:
"""Fetch documentation sections without embeddings.
Chunks each document by markdown headings and creates embeddings for each section.
Content IDs use the format: 'path/to/doc.md::section_index'
"""
docs_root = self._get_docs_root()
if not docs_root.exists():
logger.warning(f"Documentation root not found: {docs_root}")
return []
# Find all .md and .mdx files
all_docs = list(docs_root.rglob("*.md")) + list(docs_root.rglob("*.mdx"))
if not all_docs:
return []
# Build list of all sections from all documents
all_sections: list[tuple[str, Path, MarkdownSection]] = []
for doc_file in all_docs:
doc_path = str(doc_file.relative_to(docs_root))
sections = self._chunk_markdown_by_headings(doc_file)
for section in sections:
all_sections.append((doc_path, doc_file, section))
if not all_sections:
return []
# Generate content IDs for all sections
section_content_ids = [
self._make_section_content_id(doc_path, section.index)
for doc_path, _, section in all_sections
]
# Check which ones have embeddings
placeholders = ",".join([f"${i+1}" for i in range(len(section_content_ids))])
existing_result = await query_raw_with_schema(
f"""
SELECT "contentId"
FROM {{schema_prefix}}"UnifiedContentEmbedding"
WHERE "contentType" = 'DOCUMENTATION'::{{schema_prefix}}"ContentType"
AND "contentId" = ANY(ARRAY[{placeholders}])
""",
*section_content_ids,
)
existing_ids = {row["contentId"] for row in existing_result}
# Filter to missing sections
missing_sections = [
(doc_path, doc_file, section, content_id)
for (doc_path, doc_file, section), content_id in zip(
all_sections, section_content_ids
)
if content_id not in existing_ids
]
# Convert to ContentItem (up to batch_size)
items = []
for doc_path, doc_file, section, content_id in missing_sections[:batch_size]:
try:
# Get document title for context
doc_title = self._extract_doc_title(doc_file)
# Build searchable text with context
# Include doc title and section title for better search relevance
searchable_text = f"{doc_title} - {section.title}\n\n{section.content}"
items.append(
ContentItem(
content_id=content_id,
content_type=ContentType.DOCUMENTATION,
searchable_text=searchable_text,
metadata={
"doc_title": doc_title,
"section_title": section.title,
"section_index": section.index,
"heading_level": section.level,
"path": doc_path,
},
user_id=None, # Documentation is public
)
)
except Exception as e:
logger.warning(f"Failed to process section {content_id}: {e}")
continue
return items
def _get_all_section_content_ids(self, docs_root: Path) -> set[str]:
"""Get all current section content IDs from the docs directory.
Used for stats and cleanup to know what sections should exist.
"""
all_docs = list(docs_root.rglob("*.md")) + list(docs_root.rglob("*.mdx"))
content_ids = set()
for doc_file in all_docs:
doc_path = str(doc_file.relative_to(docs_root))
sections = self._chunk_markdown_by_headings(doc_file)
for section in sections:
content_ids.add(self._make_section_content_id(doc_path, section.index))
return content_ids
async def get_stats(self) -> dict[str, int]:
"""Get statistics about documentation embedding coverage.
Counts sections (not documents) since each section gets its own embedding.
"""
docs_root = self._get_docs_root()
if not docs_root.exists():
return {"total": 0, "with_embeddings": 0, "without_embeddings": 0}
# Get all section content IDs
all_section_ids = self._get_all_section_content_ids(docs_root)
total_sections = len(all_section_ids)
if total_sections == 0:
return {"total": 0, "with_embeddings": 0, "without_embeddings": 0}
# Count embeddings in database for DOCUMENTATION type
embedded_result = await query_raw_with_schema(
"""
SELECT COUNT(*) as count
FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" = 'DOCUMENTATION'::{schema_prefix}"ContentType"
"""
)
with_embeddings = embedded_result[0]["count"] if embedded_result else 0
return {
"total": total_sections,
"with_embeddings": with_embeddings,
"without_embeddings": total_sections - with_embeddings,
}
# Content handler registry
CONTENT_HANDLERS: dict[ContentType, ContentHandler] = {
ContentType.STORE_AGENT: StoreAgentHandler(),
ContentType.BLOCK: BlockHandler(),
ContentType.DOCUMENTATION: DocumentationHandler(),
}

View File

@@ -0,0 +1,215 @@
"""
Integration tests for content handlers using real DB.
Run with: poetry run pytest backend/api/features/store/content_handlers_integration_test.py -xvs
These tests use the real database but mock OpenAI calls.
"""
from unittest.mock import patch
import pytest
from backend.api.features.store.content_handlers import (
CONTENT_HANDLERS,
BlockHandler,
DocumentationHandler,
StoreAgentHandler,
)
from backend.api.features.store.embeddings import (
EMBEDDING_DIM,
backfill_all_content_types,
ensure_content_embedding,
get_embedding_stats,
)
@pytest.mark.asyncio(loop_scope="session")
async def test_store_agent_handler_real_db():
"""Test StoreAgentHandler with real database queries."""
handler = StoreAgentHandler()
# Get stats from real DB
stats = await handler.get_stats()
# Stats should have correct structure
assert "total" in stats
assert "with_embeddings" in stats
assert "without_embeddings" in stats
assert stats["total"] >= 0
assert stats["with_embeddings"] >= 0
assert stats["without_embeddings"] >= 0
# Get missing items (max 1 to keep test fast)
items = await handler.get_missing_items(batch_size=1)
# Items should be list (may be empty if all have embeddings)
assert isinstance(items, list)
if items:
item = items[0]
assert item.content_id is not None
assert item.content_type.value == "STORE_AGENT"
assert item.searchable_text != ""
assert item.user_id is None
@pytest.mark.asyncio(loop_scope="session")
async def test_block_handler_real_db():
"""Test BlockHandler with real database queries."""
handler = BlockHandler()
# Get stats from real DB
stats = await handler.get_stats()
# Stats should have correct structure
assert "total" in stats
assert "with_embeddings" in stats
assert "without_embeddings" in stats
assert stats["total"] >= 0 # Should have at least some blocks
assert stats["with_embeddings"] >= 0
assert stats["without_embeddings"] >= 0
# Get missing items (max 1 to keep test fast)
items = await handler.get_missing_items(batch_size=1)
# Items should be list
assert isinstance(items, list)
if items:
item = items[0]
assert item.content_id is not None # Should be block UUID
assert item.content_type.value == "BLOCK"
assert item.searchable_text != ""
assert item.user_id is None
@pytest.mark.asyncio(loop_scope="session")
async def test_documentation_handler_real_fs():
"""Test DocumentationHandler with real filesystem."""
handler = DocumentationHandler()
# Get stats from real filesystem
stats = await handler.get_stats()
# Stats should have correct structure
assert "total" in stats
assert "with_embeddings" in stats
assert "without_embeddings" in stats
assert stats["total"] >= 0
assert stats["with_embeddings"] >= 0
assert stats["without_embeddings"] >= 0
# Get missing items (max 1 to keep test fast)
items = await handler.get_missing_items(batch_size=1)
# Items should be list
assert isinstance(items, list)
if items:
item = items[0]
assert item.content_id is not None # Should be relative path
assert item.content_type.value == "DOCUMENTATION"
assert item.searchable_text != ""
assert item.user_id is None
@pytest.mark.asyncio(loop_scope="session")
async def test_get_embedding_stats_all_types():
"""Test get_embedding_stats aggregates all content types."""
stats = await get_embedding_stats()
# Should have structure with by_type and totals
assert "by_type" in stats
assert "totals" in stats
# Check each content type is present
by_type = stats["by_type"]
assert "STORE_AGENT" in by_type
assert "BLOCK" in by_type
assert "DOCUMENTATION" in by_type
# Check totals are aggregated
totals = stats["totals"]
assert totals["total"] >= 0
assert totals["with_embeddings"] >= 0
assert totals["without_embeddings"] >= 0
assert "coverage_percent" in totals
@pytest.mark.asyncio(loop_scope="session")
@patch("backend.api.features.store.embeddings.generate_embedding")
async def test_ensure_content_embedding_blocks(mock_generate):
"""Test creating embeddings for blocks (mocked OpenAI)."""
# Mock OpenAI to return fake embedding
mock_generate.return_value = [0.1] * EMBEDDING_DIM
# Get one block without embedding
handler = BlockHandler()
items = await handler.get_missing_items(batch_size=1)
if not items:
pytest.skip("No blocks without embeddings")
item = items[0]
# Try to create embedding (OpenAI mocked)
result = await ensure_content_embedding(
content_type=item.content_type,
content_id=item.content_id,
searchable_text=item.searchable_text,
metadata=item.metadata,
user_id=item.user_id,
)
# Should succeed with mocked OpenAI
assert result is True
mock_generate.assert_called_once()
@pytest.mark.asyncio(loop_scope="session")
@patch("backend.api.features.store.embeddings.generate_embedding")
async def test_backfill_all_content_types_dry_run(mock_generate):
"""Test backfill_all_content_types processes all handlers in order."""
# Mock OpenAI to return fake embedding
mock_generate.return_value = [0.1] * EMBEDDING_DIM
# Run backfill with batch_size=1 to process max 1 per type
result = await backfill_all_content_types(batch_size=1)
# Should have results for all content types
assert "by_type" in result
assert "totals" in result
by_type = result["by_type"]
assert "BLOCK" in by_type
assert "STORE_AGENT" in by_type
assert "DOCUMENTATION" in by_type
# Each type should have correct structure
for content_type, type_result in by_type.items():
assert "processed" in type_result
assert "success" in type_result
assert "failed" in type_result
# Totals should aggregate
totals = result["totals"]
assert totals["processed"] >= 0
assert totals["success"] >= 0
assert totals["failed"] >= 0
@pytest.mark.asyncio(loop_scope="session")
async def test_content_handler_registry():
"""Test all handlers are registered in correct order."""
from prisma.enums import ContentType
# All three types should be registered
assert ContentType.STORE_AGENT in CONTENT_HANDLERS
assert ContentType.BLOCK in CONTENT_HANDLERS
assert ContentType.DOCUMENTATION in CONTENT_HANDLERS
# Check handler types
assert isinstance(CONTENT_HANDLERS[ContentType.STORE_AGENT], StoreAgentHandler)
assert isinstance(CONTENT_HANDLERS[ContentType.BLOCK], BlockHandler)
assert isinstance(CONTENT_HANDLERS[ContentType.DOCUMENTATION], DocumentationHandler)

View File

@@ -0,0 +1,381 @@
"""
E2E tests for content handlers (blocks, store agents, documentation).
Tests the full flow: discovering content → generating embeddings → storing.
"""
from pathlib import Path
from unittest.mock import MagicMock, patch
import pytest
from prisma.enums import ContentType
from backend.api.features.store.content_handlers import (
CONTENT_HANDLERS,
BlockHandler,
DocumentationHandler,
StoreAgentHandler,
)
@pytest.mark.asyncio(loop_scope="session")
async def test_store_agent_handler_get_missing_items(mocker):
"""Test StoreAgentHandler fetches approved agents without embeddings."""
handler = StoreAgentHandler()
# Mock database query
mock_missing = [
{
"id": "agent-1",
"name": "Test Agent",
"description": "A test agent",
"subHeading": "Test heading",
"categories": ["AI", "Testing"],
}
]
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
return_value=mock_missing,
):
items = await handler.get_missing_items(batch_size=10)
assert len(items) == 1
assert items[0].content_id == "agent-1"
assert items[0].content_type == ContentType.STORE_AGENT
assert "Test Agent" in items[0].searchable_text
assert "A test agent" in items[0].searchable_text
assert items[0].metadata["name"] == "Test Agent"
assert items[0].user_id is None
@pytest.mark.asyncio(loop_scope="session")
async def test_store_agent_handler_get_stats(mocker):
"""Test StoreAgentHandler returns correct stats."""
handler = StoreAgentHandler()
# Mock approved count query
mock_approved = [{"count": 50}]
# Mock embedded count query
mock_embedded = [{"count": 30}]
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
side_effect=[mock_approved, mock_embedded],
):
stats = await handler.get_stats()
assert stats["total"] == 50
assert stats["with_embeddings"] == 30
assert stats["without_embeddings"] == 20
@pytest.mark.asyncio(loop_scope="session")
async def test_block_handler_get_missing_items(mocker):
"""Test BlockHandler discovers blocks without embeddings."""
handler = BlockHandler()
# Mock get_blocks to return test blocks
mock_block_class = MagicMock()
mock_block_instance = MagicMock()
mock_block_instance.name = "Calculator Block"
mock_block_instance.description = "Performs calculations"
mock_block_instance.categories = [MagicMock(value="MATH")]
mock_block_instance.input_schema.model_json_schema.return_value = {
"properties": {"expression": {"description": "Math expression to evaluate"}}
}
mock_block_class.return_value = mock_block_instance
mock_blocks = {"block-uuid-1": mock_block_class}
# Mock existing embeddings query (no embeddings exist)
mock_existing = []
with patch(
"backend.data.block.get_blocks",
return_value=mock_blocks,
):
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
return_value=mock_existing,
):
items = await handler.get_missing_items(batch_size=10)
assert len(items) == 1
assert items[0].content_id == "block-uuid-1"
assert items[0].content_type == ContentType.BLOCK
assert "Calculator Block" in items[0].searchable_text
assert "Performs calculations" in items[0].searchable_text
assert "MATH" in items[0].searchable_text
assert "expression: Math expression" in items[0].searchable_text
assert items[0].user_id is None
@pytest.mark.asyncio(loop_scope="session")
async def test_block_handler_get_stats(mocker):
"""Test BlockHandler returns correct stats."""
handler = BlockHandler()
# Mock get_blocks
mock_blocks = {
"block-1": MagicMock(),
"block-2": MagicMock(),
"block-3": MagicMock(),
}
# Mock embedded count query (2 blocks have embeddings)
mock_embedded = [{"count": 2}]
with patch(
"backend.data.block.get_blocks",
return_value=mock_blocks,
):
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
return_value=mock_embedded,
):
stats = await handler.get_stats()
assert stats["total"] == 3
assert stats["with_embeddings"] == 2
assert stats["without_embeddings"] == 1
@pytest.mark.asyncio(loop_scope="session")
async def test_documentation_handler_get_missing_items(tmp_path, mocker):
"""Test DocumentationHandler discovers docs without embeddings."""
handler = DocumentationHandler()
# Create temporary docs directory with test files
docs_root = tmp_path / "docs"
docs_root.mkdir()
(docs_root / "guide.md").write_text("# Getting Started\n\nThis is a guide.")
(docs_root / "api.mdx").write_text("# API Reference\n\nAPI documentation.")
# Mock _get_docs_root to return temp dir
with patch.object(handler, "_get_docs_root", return_value=docs_root):
# Mock existing embeddings query (no embeddings exist)
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
return_value=[],
):
items = await handler.get_missing_items(batch_size=10)
assert len(items) == 2
# Check guide.md (content_id format: doc_path::section_index)
guide_item = next(
(item for item in items if item.content_id == "guide.md::0"), None
)
assert guide_item is not None
assert guide_item.content_type == ContentType.DOCUMENTATION
assert "Getting Started" in guide_item.searchable_text
assert "This is a guide" in guide_item.searchable_text
assert guide_item.metadata["doc_title"] == "Getting Started"
assert guide_item.user_id is None
# Check api.mdx (content_id format: doc_path::section_index)
api_item = next(
(item for item in items if item.content_id == "api.mdx::0"), None
)
assert api_item is not None
assert "API Reference" in api_item.searchable_text
@pytest.mark.asyncio(loop_scope="session")
async def test_documentation_handler_get_stats(tmp_path, mocker):
"""Test DocumentationHandler returns correct stats."""
handler = DocumentationHandler()
# Create temporary docs directory
docs_root = tmp_path / "docs"
docs_root.mkdir()
(docs_root / "doc1.md").write_text("# Doc 1")
(docs_root / "doc2.md").write_text("# Doc 2")
(docs_root / "doc3.mdx").write_text("# Doc 3")
# Mock embedded count query (1 doc has embedding)
mock_embedded = [{"count": 1}]
with patch.object(handler, "_get_docs_root", return_value=docs_root):
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
return_value=mock_embedded,
):
stats = await handler.get_stats()
assert stats["total"] == 3
assert stats["with_embeddings"] == 1
assert stats["without_embeddings"] == 2
@pytest.mark.asyncio(loop_scope="session")
async def test_documentation_handler_title_extraction(tmp_path):
"""Test DocumentationHandler extracts title from markdown heading."""
handler = DocumentationHandler()
# Test with heading
doc_with_heading = tmp_path / "with_heading.md"
doc_with_heading.write_text("# My Title\n\nContent here")
title = handler._extract_doc_title(doc_with_heading)
assert title == "My Title"
# Test without heading
doc_without_heading = tmp_path / "no-heading.md"
doc_without_heading.write_text("Just content, no heading")
title = handler._extract_doc_title(doc_without_heading)
assert title == "No Heading" # Uses filename
@pytest.mark.asyncio(loop_scope="session")
async def test_documentation_handler_markdown_chunking(tmp_path):
"""Test DocumentationHandler chunks markdown by headings."""
handler = DocumentationHandler()
# Test document with multiple sections
doc_with_sections = tmp_path / "sections.md"
doc_with_sections.write_text(
"# Document Title\n\n"
"Intro paragraph.\n\n"
"## Section One\n\n"
"Content for section one.\n\n"
"## Section Two\n\n"
"Content for section two.\n"
)
sections = handler._chunk_markdown_by_headings(doc_with_sections)
# Should have 3 sections: intro (with doc title), section one, section two
assert len(sections) == 3
assert sections[0].title == "Document Title"
assert sections[0].index == 0
assert "Intro paragraph" in sections[0].content
assert sections[1].title == "Section One"
assert sections[1].index == 1
assert "Content for section one" in sections[1].content
assert sections[2].title == "Section Two"
assert sections[2].index == 2
assert "Content for section two" in sections[2].content
# Test document without headings
doc_no_sections = tmp_path / "no-sections.md"
doc_no_sections.write_text("Just plain content without any headings.")
sections = handler._chunk_markdown_by_headings(doc_no_sections)
assert len(sections) == 1
assert sections[0].index == 0
assert "Just plain content" in sections[0].content
@pytest.mark.asyncio(loop_scope="session")
async def test_documentation_handler_section_content_ids():
"""Test DocumentationHandler creates and parses section content IDs."""
handler = DocumentationHandler()
# Test making content ID
content_id = handler._make_section_content_id("docs/guide.md", 2)
assert content_id == "docs/guide.md::2"
# Test parsing content ID
doc_path, section_index = handler._parse_section_content_id("docs/guide.md::2")
assert doc_path == "docs/guide.md"
assert section_index == 2
# Test parsing legacy format (no section index)
doc_path, section_index = handler._parse_section_content_id("docs/old-format.md")
assert doc_path == "docs/old-format.md"
assert section_index == 0
@pytest.mark.asyncio(loop_scope="session")
async def test_content_handlers_registry():
"""Test all content types are registered."""
assert ContentType.STORE_AGENT in CONTENT_HANDLERS
assert ContentType.BLOCK in CONTENT_HANDLERS
assert ContentType.DOCUMENTATION in CONTENT_HANDLERS
assert isinstance(CONTENT_HANDLERS[ContentType.STORE_AGENT], StoreAgentHandler)
assert isinstance(CONTENT_HANDLERS[ContentType.BLOCK], BlockHandler)
assert isinstance(CONTENT_HANDLERS[ContentType.DOCUMENTATION], DocumentationHandler)
@pytest.mark.asyncio(loop_scope="session")
async def test_block_handler_handles_missing_attributes():
"""Test BlockHandler gracefully handles blocks with missing attributes."""
handler = BlockHandler()
# Mock block with minimal attributes
mock_block_class = MagicMock()
mock_block_instance = MagicMock()
mock_block_instance.name = "Minimal Block"
# No description, categories, or schema
del mock_block_instance.description
del mock_block_instance.categories
del mock_block_instance.input_schema
mock_block_class.return_value = mock_block_instance
mock_blocks = {"block-minimal": mock_block_class}
with patch(
"backend.data.block.get_blocks",
return_value=mock_blocks,
):
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
return_value=[],
):
items = await handler.get_missing_items(batch_size=10)
assert len(items) == 1
assert items[0].searchable_text == "Minimal Block"
@pytest.mark.asyncio(loop_scope="session")
async def test_block_handler_skips_failed_blocks():
"""Test BlockHandler skips blocks that fail to instantiate."""
handler = BlockHandler()
# Mock one good block and one bad block
good_block = MagicMock()
good_instance = MagicMock()
good_instance.name = "Good Block"
good_instance.description = "Works fine"
good_instance.categories = []
good_block.return_value = good_instance
bad_block = MagicMock()
bad_block.side_effect = Exception("Instantiation failed")
mock_blocks = {"good-block": good_block, "bad-block": bad_block}
with patch(
"backend.data.block.get_blocks",
return_value=mock_blocks,
):
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
return_value=[],
):
items = await handler.get_missing_items(batch_size=10)
# Should only get the good block
assert len(items) == 1
assert items[0].content_id == "good-block"
@pytest.mark.asyncio(loop_scope="session")
async def test_documentation_handler_missing_docs_directory():
"""Test DocumentationHandler handles missing docs directory gracefully."""
handler = DocumentationHandler()
# Mock _get_docs_root to return non-existent path
fake_path = Path("/nonexistent/docs")
with patch.object(handler, "_get_docs_root", return_value=fake_path):
items = await handler.get_missing_items(batch_size=10)
assert items == []
stats = await handler.get_stats()
assert stats["total"] == 0
assert stats["with_embeddings"] == 0
assert stats["without_embeddings"] == 0

View File

@@ -14,6 +14,7 @@ import prisma
from prisma.enums import ContentType
from tiktoken import encoding_for_model
from backend.api.features.store.content_handlers import CONTENT_HANDLERS
from backend.data.db import execute_raw_with_schema, query_raw_with_schema
from backend.util.clients import get_openai_client
from backend.util.json import dumps
@@ -23,6 +24,9 @@ logger = logging.getLogger(__name__)
# OpenAI embedding model configuration
EMBEDDING_MODEL = "text-embedding-3-small"
# Embedding dimension for the model above
# text-embedding-3-small: 1536, text-embedding-3-large: 3072
EMBEDDING_DIM = 1536
# OpenAI embedding token limit (8,191 with 1 token buffer for safety)
EMBEDDING_MAX_TOKENS = 8191
@@ -369,55 +373,69 @@ async def delete_content_embedding(
async def get_embedding_stats() -> dict[str, Any]:
"""
Get statistics about embedding coverage.
Get statistics about embedding coverage for all content types.
Returns counts of:
- Total approved listing versions
- Versions with embeddings
- Versions without embeddings
Returns stats per content type and overall totals.
"""
try:
# Count approved versions
approved_result = await query_raw_with_schema(
"""
SELECT COUNT(*) as count
FROM {schema_prefix}"StoreListingVersion"
WHERE "submissionStatus" = 'APPROVED'
AND "isDeleted" = false
"""
)
total_approved = approved_result[0]["count"] if approved_result else 0
stats_by_type = {}
total_items = 0
total_with_embeddings = 0
total_without_embeddings = 0
# Count versions with embeddings
embedded_result = await query_raw_with_schema(
"""
SELECT COUNT(*) as count
FROM {schema_prefix}"StoreListingVersion" slv
JOIN {schema_prefix}"UnifiedContentEmbedding" uce ON slv.id = uce."contentId" AND uce."contentType" = 'STORE_AGENT'::{schema_prefix}"ContentType"
WHERE slv."submissionStatus" = 'APPROVED'
AND slv."isDeleted" = false
"""
)
with_embeddings = embedded_result[0]["count"] if embedded_result else 0
# Aggregate stats from all handlers
for content_type, handler in CONTENT_HANDLERS.items():
try:
stats = await handler.get_stats()
stats_by_type[content_type.value] = {
"total": stats["total"],
"with_embeddings": stats["with_embeddings"],
"without_embeddings": stats["without_embeddings"],
"coverage_percent": (
round(stats["with_embeddings"] / stats["total"] * 100, 1)
if stats["total"] > 0
else 0
),
}
total_items += stats["total"]
total_with_embeddings += stats["with_embeddings"]
total_without_embeddings += stats["without_embeddings"]
except Exception as e:
logger.error(f"Failed to get stats for {content_type.value}: {e}")
stats_by_type[content_type.value] = {
"total": 0,
"with_embeddings": 0,
"without_embeddings": 0,
"coverage_percent": 0,
"error": str(e),
}
return {
"total_approved": total_approved,
"with_embeddings": with_embeddings,
"without_embeddings": total_approved - with_embeddings,
"coverage_percent": (
round(with_embeddings / total_approved * 100, 1)
if total_approved > 0
else 0
),
"by_type": stats_by_type,
"totals": {
"total": total_items,
"with_embeddings": total_with_embeddings,
"without_embeddings": total_without_embeddings,
"coverage_percent": (
round(total_with_embeddings / total_items * 100, 1)
if total_items > 0
else 0
),
},
}
except Exception as e:
logger.error(f"Failed to get embedding stats: {e}")
return {
"total_approved": 0,
"with_embeddings": 0,
"without_embeddings": 0,
"coverage_percent": 0,
"by_type": {},
"totals": {
"total": 0,
"with_embeddings": 0,
"without_embeddings": 0,
"coverage_percent": 0,
},
"error": str(e),
}
@@ -426,73 +444,118 @@ async def backfill_missing_embeddings(batch_size: int = 10) -> dict[str, Any]:
"""
Generate embeddings for approved listings that don't have them.
BACKWARD COMPATIBILITY: Maintained for existing usage.
This now delegates to backfill_all_content_types() to process all content types.
Args:
batch_size: Number of embeddings to generate in one call
batch_size: Number of embeddings to generate per content type
Returns:
Dict with success/failure counts
Dict with success/failure counts aggregated across all content types
"""
try:
# Find approved versions without embeddings
missing = await query_raw_with_schema(
"""
SELECT
slv.id,
slv.name,
slv.description,
slv."subHeading",
slv.categories
FROM {schema_prefix}"StoreListingVersion" slv
LEFT JOIN {schema_prefix}"UnifiedContentEmbedding" uce
ON slv.id = uce."contentId" AND uce."contentType" = 'STORE_AGENT'::{schema_prefix}"ContentType"
WHERE slv."submissionStatus" = 'APPROVED'
AND slv."isDeleted" = false
AND uce."contentId" IS NULL
LIMIT $1
""",
batch_size,
)
# Delegate to the new generic backfill system
result = await backfill_all_content_types(batch_size)
if not missing:
return {
# Return in the old format for backward compatibility
return result["totals"]
async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
"""
Generate embeddings for all content types using registered handlers.
Processes content types in order: BLOCK → STORE_AGENT → DOCUMENTATION.
This ensures foundational content (blocks) are searchable first.
Args:
batch_size: Number of embeddings to generate per content type
Returns:
Dict with stats per content type and overall totals
"""
results_by_type = {}
total_processed = 0
total_success = 0
total_failed = 0
# Process content types in explicit order
processing_order = [
ContentType.BLOCK,
ContentType.STORE_AGENT,
ContentType.DOCUMENTATION,
]
for content_type in processing_order:
handler = CONTENT_HANDLERS.get(content_type)
if not handler:
logger.warning(f"No handler registered for {content_type.value}")
continue
try:
logger.info(f"Processing {content_type.value} content type...")
# Get missing items from handler
missing_items = await handler.get_missing_items(batch_size)
if not missing_items:
results_by_type[content_type.value] = {
"processed": 0,
"success": 0,
"failed": 0,
"message": "No missing embeddings",
}
continue
# Process embeddings concurrently for better performance
embedding_tasks = [
ensure_content_embedding(
content_type=item.content_type,
content_id=item.content_id,
searchable_text=item.searchable_text,
metadata=item.metadata,
user_id=item.user_id,
)
for item in missing_items
]
results = await asyncio.gather(*embedding_tasks, return_exceptions=True)
success = sum(1 for result in results if result is True)
failed = len(results) - success
results_by_type[content_type.value] = {
"processed": len(missing_items),
"success": success,
"failed": failed,
"message": f"Backfilled {success} embeddings, {failed} failed",
}
total_processed += len(missing_items)
total_success += success
total_failed += failed
logger.info(
f"{content_type.value}: processed {len(missing_items)}, "
f"success {success}, failed {failed}"
)
except Exception as e:
logger.error(f"Failed to process {content_type.value}: {e}")
results_by_type[content_type.value] = {
"processed": 0,
"success": 0,
"failed": 0,
"message": "No missing embeddings",
"error": str(e),
}
# Process embeddings concurrently for better performance
embedding_tasks = [
ensure_embedding(
version_id=row["id"],
name=row["name"],
description=row["description"],
sub_heading=row["subHeading"],
categories=row["categories"] or [],
)
for row in missing
]
results = await asyncio.gather(*embedding_tasks, return_exceptions=True)
success = sum(1 for result in results if result is True)
failed = len(results) - success
return {
"processed": len(missing),
"success": success,
"failed": failed,
"message": f"Backfilled {success} embeddings, {failed} failed",
}
except Exception as e:
logger.error(f"Failed to backfill embeddings: {e}")
return {
"processed": 0,
"success": 0,
"failed": 0,
"error": str(e),
}
return {
"by_type": results_by_type,
"totals": {
"processed": total_processed,
"success": total_success,
"failed": total_failed,
"message": f"Overall: {total_success} succeeded, {total_failed} failed",
},
}
async def embed_query(query: str) -> list[float] | None:
@@ -566,3 +629,334 @@ async def ensure_content_embedding(
except Exception as e:
logger.error(f"Failed to ensure embedding for {content_type}:{content_id}: {e}")
return False
async def cleanup_orphaned_embeddings() -> dict[str, Any]:
"""
Clean up embeddings for content that no longer exists or is no longer valid.
Compares current content with embeddings in database and removes orphaned records:
- STORE_AGENT: Removes embeddings for rejected/deleted store listings
- BLOCK: Removes embeddings for blocks no longer registered
- DOCUMENTATION: Removes embeddings for deleted doc files
Returns:
Dict with cleanup statistics per content type
"""
results_by_type = {}
total_deleted = 0
# Cleanup orphaned embeddings for all content types
cleanup_types = [
ContentType.STORE_AGENT,
ContentType.BLOCK,
ContentType.DOCUMENTATION,
]
for content_type in cleanup_types:
try:
handler = CONTENT_HANDLERS.get(content_type)
if not handler:
logger.warning(f"No handler registered for {content_type}")
results_by_type[content_type.value] = {
"deleted": 0,
"error": "No handler registered",
}
continue
# Get all current content IDs from handler
if content_type == ContentType.STORE_AGENT:
# Get IDs of approved store listing versions from non-deleted listings
valid_agents = await query_raw_with_schema(
"""
SELECT slv.id
FROM {schema_prefix}"StoreListingVersion" slv
JOIN {schema_prefix}"StoreListing" sl ON slv."storeListingId" = sl.id
WHERE slv."submissionStatus" = 'APPROVED'
AND slv."isDeleted" = false
AND sl."isDeleted" = false
""",
)
current_ids = {row["id"] for row in valid_agents}
elif content_type == ContentType.BLOCK:
from backend.data.block import get_blocks
current_ids = set(get_blocks().keys())
elif content_type == ContentType.DOCUMENTATION:
# Use DocumentationHandler to get section-based content IDs
from backend.api.features.store.content_handlers import (
DocumentationHandler,
)
doc_handler = CONTENT_HANDLERS.get(ContentType.DOCUMENTATION)
if isinstance(doc_handler, DocumentationHandler):
docs_root = doc_handler._get_docs_root()
if docs_root.exists():
current_ids = doc_handler._get_all_section_content_ids(
docs_root
)
else:
current_ids = set()
else:
current_ids = set()
else:
# Skip unknown content types to avoid accidental deletion
logger.warning(
f"Skipping cleanup for unknown content type: {content_type}"
)
results_by_type[content_type.value] = {
"deleted": 0,
"error": "Unknown content type - skipped for safety",
}
continue
# Get all embedding IDs from database
db_embeddings = await query_raw_with_schema(
"""
SELECT "contentId"
FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" = $1::{schema_prefix}"ContentType"
""",
content_type,
)
db_ids = {row["contentId"] for row in db_embeddings}
# Find orphaned embeddings (in DB but not in current content)
orphaned_ids = db_ids - current_ids
if not orphaned_ids:
logger.info(f"{content_type.value}: No orphaned embeddings found")
results_by_type[content_type.value] = {
"deleted": 0,
"message": "No orphaned embeddings",
}
continue
# Delete orphaned embeddings in batch for better performance
orphaned_list = list(orphaned_ids)
try:
await execute_raw_with_schema(
"""
DELETE FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" = $1::{schema_prefix}"ContentType"
AND "contentId" = ANY($2::text[])
""",
content_type,
orphaned_list,
)
deleted = len(orphaned_list)
except Exception as e:
logger.error(f"Failed to batch delete orphaned embeddings: {e}")
deleted = 0
logger.info(
f"{content_type.value}: Deleted {deleted}/{len(orphaned_ids)} orphaned embeddings"
)
results_by_type[content_type.value] = {
"deleted": deleted,
"orphaned": len(orphaned_ids),
"message": f"Deleted {deleted} orphaned embeddings",
}
total_deleted += deleted
except Exception as e:
logger.error(f"Failed to cleanup {content_type.value}: {e}")
results_by_type[content_type.value] = {
"deleted": 0,
"error": str(e),
}
return {
"by_type": results_by_type,
"totals": {
"deleted": total_deleted,
"message": f"Deleted {total_deleted} orphaned embeddings",
},
}
async def semantic_search(
query: str,
content_types: list[ContentType] | None = None,
user_id: str | None = None,
limit: int = 20,
min_similarity: float = 0.5,
) -> list[dict[str, Any]]:
"""
Semantic search across content types using embeddings.
Performs vector similarity search on UnifiedContentEmbedding table.
Used directly for blocks/docs/library agents, or as the semantic component
within hybrid_search for store agents.
If embedding generation fails, falls back to lexical search on searchableText.
Args:
query: Search query string
content_types: List of ContentType to search. Defaults to [BLOCK, STORE_AGENT, DOCUMENTATION]
user_id: Optional user ID for searching private content (library agents)
limit: Maximum number of results to return (default: 20)
min_similarity: Minimum cosine similarity threshold (0-1, default: 0.5)
Returns:
List of search results with the following structure:
[
{
"content_id": str,
"content_type": str, # "BLOCK", "STORE_AGENT", "DOCUMENTATION", or "LIBRARY_AGENT"
"searchable_text": str,
"metadata": dict,
"similarity": float, # Cosine similarity score (0-1)
},
...
]
Examples:
# Search blocks only
results = await semantic_search("calculate", content_types=[ContentType.BLOCK])
# Search blocks and documentation
results = await semantic_search(
"how to use API",
content_types=[ContentType.BLOCK, ContentType.DOCUMENTATION]
)
# Search all public content (default)
results = await semantic_search("AI agent")
# Search user's library agents
results = await semantic_search(
"my custom agent",
content_types=[ContentType.LIBRARY_AGENT],
user_id="user123"
)
"""
# Default to searching all public content types
if content_types is None:
content_types = [
ContentType.BLOCK,
ContentType.STORE_AGENT,
ContentType.DOCUMENTATION,
]
# Validate inputs
if not content_types:
return [] # Empty content_types would cause invalid SQL (IN ())
query = query.strip()
if not query:
return []
if limit < 1:
limit = 1
if limit > 100:
limit = 100
# Generate query embedding
query_embedding = await embed_query(query)
if query_embedding is not None:
# Semantic search with embeddings
embedding_str = embedding_to_vector_string(query_embedding)
# Build params in order: limit, then user_id (if provided), then content types
params: list[Any] = [limit]
user_filter = ""
if user_id is not None:
user_filter = 'AND "userId" = ${}'.format(len(params) + 1)
params.append(user_id)
# Add content type parameters and build placeholders dynamically
content_type_start_idx = len(params) + 1
content_type_placeholders = ", ".join(
f'${content_type_start_idx + i}::{{{{schema_prefix}}}}"ContentType"'
for i in range(len(content_types))
)
params.extend([ct.value for ct in content_types])
sql = f"""
SELECT
"contentId" as content_id,
"contentType" as content_type,
"searchableText" as searchable_text,
metadata,
1 - (embedding <=> '{embedding_str}'::vector) as similarity
FROM {{{{schema_prefix}}}}"UnifiedContentEmbedding"
WHERE "contentType" IN ({content_type_placeholders})
{user_filter}
AND 1 - (embedding <=> '{embedding_str}'::vector) >= ${len(params) + 1}
ORDER BY similarity DESC
LIMIT $1
"""
params.append(min_similarity)
try:
results = await query_raw_with_schema(
sql, *params, set_public_search_path=True
)
return [
{
"content_id": row["content_id"],
"content_type": row["content_type"],
"searchable_text": row["searchable_text"],
"metadata": row["metadata"],
"similarity": float(row["similarity"]),
}
for row in results
]
except Exception as e:
logger.error(f"Semantic search failed: {e}")
# Fall through to lexical search below
# Fallback to lexical search if embeddings unavailable
logger.warning("Falling back to lexical search (embeddings unavailable)")
params_lexical: list[Any] = [limit]
user_filter = ""
if user_id is not None:
user_filter = 'AND "userId" = ${}'.format(len(params_lexical) + 1)
params_lexical.append(user_id)
# Add content type parameters and build placeholders dynamically
content_type_start_idx = len(params_lexical) + 1
content_type_placeholders_lexical = ", ".join(
f'${content_type_start_idx + i}::{{{{schema_prefix}}}}"ContentType"'
for i in range(len(content_types))
)
params_lexical.extend([ct.value for ct in content_types])
sql_lexical = f"""
SELECT
"contentId" as content_id,
"contentType" as content_type,
"searchableText" as searchable_text,
metadata,
0.0 as similarity
FROM {{{{schema_prefix}}}}"UnifiedContentEmbedding"
WHERE "contentType" IN ({content_type_placeholders_lexical})
{user_filter}
AND "searchableText" ILIKE ${len(params_lexical) + 1}
ORDER BY "updatedAt" DESC
LIMIT $1
"""
params_lexical.append(f"%{query}%")
try:
results = await query_raw_with_schema(
sql_lexical, *params_lexical, set_public_search_path=True
)
return [
{
"content_id": row["content_id"],
"content_type": row["content_type"],
"searchable_text": row["searchable_text"],
"metadata": row["metadata"],
"similarity": 0.0, # Lexical search doesn't provide similarity
}
for row in results
]
except Exception as e:
logger.error(f"Lexical search failed: {e}")
return []

View File

@@ -0,0 +1,666 @@
"""
End-to-end database tests for embeddings and hybrid search.
These tests hit the actual database to verify SQL queries work correctly.
Tests cover:
1. Embedding storage (store_content_embedding)
2. Embedding retrieval (get_content_embedding)
3. Embedding deletion (delete_content_embedding)
4. Unified hybrid search across content types
5. Store agent hybrid search
"""
import uuid
from typing import AsyncGenerator
import pytest
from prisma.enums import ContentType
from backend.api.features.store import embeddings
from backend.api.features.store.embeddings import EMBEDDING_DIM
from backend.api.features.store.hybrid_search import (
hybrid_search,
unified_hybrid_search,
)
# ============================================================================
# Test Fixtures
# ============================================================================
@pytest.fixture
def test_content_id() -> str:
"""Generate unique content ID for test isolation."""
return f"test-content-{uuid.uuid4()}"
@pytest.fixture
def test_user_id() -> str:
"""Generate unique user ID for test isolation."""
return f"test-user-{uuid.uuid4()}"
@pytest.fixture
def mock_embedding() -> list[float]:
"""Generate a mock embedding vector."""
# Create a normalized embedding vector
import math
raw = [float(i % 10) / 10.0 for i in range(EMBEDDING_DIM)]
# Normalize to unit length (required for cosine similarity)
magnitude = math.sqrt(sum(x * x for x in raw))
return [x / magnitude for x in raw]
@pytest.fixture
def similar_embedding() -> list[float]:
"""Generate an embedding similar to mock_embedding."""
import math
# Similar but slightly different values
raw = [float(i % 10) / 10.0 + 0.01 for i in range(EMBEDDING_DIM)]
magnitude = math.sqrt(sum(x * x for x in raw))
return [x / magnitude for x in raw]
@pytest.fixture
def different_embedding() -> list[float]:
"""Generate an embedding very different from mock_embedding."""
import math
# Reversed pattern to be maximally different
raw = [float((EMBEDDING_DIM - i) % 10) / 10.0 for i in range(EMBEDDING_DIM)]
magnitude = math.sqrt(sum(x * x for x in raw))
return [x / magnitude for x in raw]
@pytest.fixture
async def cleanup_embeddings(
server,
) -> AsyncGenerator[list[tuple[ContentType, str, str | None]], None]:
"""
Fixture that tracks created embeddings and cleans them up after tests.
Yields a list to which tests can append (content_type, content_id, user_id) tuples.
"""
created_embeddings: list[tuple[ContentType, str, str | None]] = []
yield created_embeddings
# Cleanup all created embeddings
for content_type, content_id, user_id in created_embeddings:
try:
await embeddings.delete_content_embedding(content_type, content_id, user_id)
except Exception:
pass # Ignore cleanup errors
# ============================================================================
# store_content_embedding Tests
# ============================================================================
@pytest.mark.asyncio(loop_scope="session")
async def test_store_content_embedding_store_agent(
server,
test_content_id: str,
mock_embedding: list[float],
cleanup_embeddings: list,
):
"""Test storing embedding for STORE_AGENT content type."""
# Track for cleanup
cleanup_embeddings.append((ContentType.STORE_AGENT, test_content_id, None))
result = await embeddings.store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id=test_content_id,
embedding=mock_embedding,
searchable_text="AI assistant for productivity tasks",
metadata={"name": "Test Agent", "categories": ["productivity"]},
user_id=None, # Store agents are public
)
assert result is True
# Verify it was stored
stored = await embeddings.get_content_embedding(
ContentType.STORE_AGENT, test_content_id, user_id=None
)
assert stored is not None
assert stored["contentId"] == test_content_id
assert stored["contentType"] == "STORE_AGENT"
assert stored["searchableText"] == "AI assistant for productivity tasks"
@pytest.mark.asyncio(loop_scope="session")
async def test_store_content_embedding_block(
server,
test_content_id: str,
mock_embedding: list[float],
cleanup_embeddings: list,
):
"""Test storing embedding for BLOCK content type."""
cleanup_embeddings.append((ContentType.BLOCK, test_content_id, None))
result = await embeddings.store_content_embedding(
content_type=ContentType.BLOCK,
content_id=test_content_id,
embedding=mock_embedding,
searchable_text="HTTP request block for API calls",
metadata={"name": "HTTP Request Block"},
user_id=None, # Blocks are public
)
assert result is True
stored = await embeddings.get_content_embedding(
ContentType.BLOCK, test_content_id, user_id=None
)
assert stored is not None
assert stored["contentType"] == "BLOCK"
@pytest.mark.asyncio(loop_scope="session")
async def test_store_content_embedding_documentation(
server,
test_content_id: str,
mock_embedding: list[float],
cleanup_embeddings: list,
):
"""Test storing embedding for DOCUMENTATION content type."""
cleanup_embeddings.append((ContentType.DOCUMENTATION, test_content_id, None))
result = await embeddings.store_content_embedding(
content_type=ContentType.DOCUMENTATION,
content_id=test_content_id,
embedding=mock_embedding,
searchable_text="Getting started guide for AutoGPT platform",
metadata={"title": "Getting Started", "url": "/docs/getting-started"},
user_id=None, # Docs are public
)
assert result is True
stored = await embeddings.get_content_embedding(
ContentType.DOCUMENTATION, test_content_id, user_id=None
)
assert stored is not None
assert stored["contentType"] == "DOCUMENTATION"
@pytest.mark.asyncio(loop_scope="session")
async def test_store_content_embedding_upsert(
server,
test_content_id: str,
mock_embedding: list[float],
cleanup_embeddings: list,
):
"""Test that storing embedding twice updates instead of duplicates."""
cleanup_embeddings.append((ContentType.BLOCK, test_content_id, None))
# Store first time
result1 = await embeddings.store_content_embedding(
content_type=ContentType.BLOCK,
content_id=test_content_id,
embedding=mock_embedding,
searchable_text="Original text",
metadata={"version": 1},
user_id=None,
)
assert result1 is True
# Store again with different text (upsert)
result2 = await embeddings.store_content_embedding(
content_type=ContentType.BLOCK,
content_id=test_content_id,
embedding=mock_embedding,
searchable_text="Updated text",
metadata={"version": 2},
user_id=None,
)
assert result2 is True
# Verify only one record with updated text
stored = await embeddings.get_content_embedding(
ContentType.BLOCK, test_content_id, user_id=None
)
assert stored is not None
assert stored["searchableText"] == "Updated text"
# ============================================================================
# get_content_embedding Tests
# ============================================================================
@pytest.mark.asyncio(loop_scope="session")
async def test_get_content_embedding_not_found(server):
"""Test retrieving non-existent embedding returns None."""
result = await embeddings.get_content_embedding(
ContentType.STORE_AGENT, "non-existent-id", user_id=None
)
assert result is None
@pytest.mark.asyncio(loop_scope="session")
async def test_get_content_embedding_with_metadata(
server,
test_content_id: str,
mock_embedding: list[float],
cleanup_embeddings: list,
):
"""Test that metadata is correctly stored and retrieved."""
cleanup_embeddings.append((ContentType.STORE_AGENT, test_content_id, None))
metadata = {
"name": "Test Agent",
"subHeading": "A test agent",
"categories": ["ai", "productivity"],
"customField": 123,
}
await embeddings.store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id=test_content_id,
embedding=mock_embedding,
searchable_text="test",
metadata=metadata,
user_id=None,
)
stored = await embeddings.get_content_embedding(
ContentType.STORE_AGENT, test_content_id, user_id=None
)
assert stored is not None
assert stored["metadata"]["name"] == "Test Agent"
assert stored["metadata"]["categories"] == ["ai", "productivity"]
assert stored["metadata"]["customField"] == 123
# ============================================================================
# delete_content_embedding Tests
# ============================================================================
@pytest.mark.asyncio(loop_scope="session")
async def test_delete_content_embedding(
server,
test_content_id: str,
mock_embedding: list[float],
):
"""Test deleting embedding removes it from database."""
# Store embedding
await embeddings.store_content_embedding(
content_type=ContentType.BLOCK,
content_id=test_content_id,
embedding=mock_embedding,
searchable_text="To be deleted",
metadata=None,
user_id=None,
)
# Verify it exists
stored = await embeddings.get_content_embedding(
ContentType.BLOCK, test_content_id, user_id=None
)
assert stored is not None
# Delete it
result = await embeddings.delete_content_embedding(
ContentType.BLOCK, test_content_id, user_id=None
)
assert result is True
# Verify it's gone
stored = await embeddings.get_content_embedding(
ContentType.BLOCK, test_content_id, user_id=None
)
assert stored is None
@pytest.mark.asyncio(loop_scope="session")
async def test_delete_content_embedding_not_found(server):
"""Test deleting non-existent embedding doesn't error."""
result = await embeddings.delete_content_embedding(
ContentType.BLOCK, "non-existent-id", user_id=None
)
# Should succeed even if nothing to delete
assert result is True
# ============================================================================
# unified_hybrid_search Tests
# ============================================================================
@pytest.mark.asyncio(loop_scope="session")
async def test_unified_hybrid_search_finds_matching_content(
server,
mock_embedding: list[float],
cleanup_embeddings: list,
):
"""Test unified search finds content matching the query."""
# Create unique content IDs
agent_id = f"test-agent-{uuid.uuid4()}"
block_id = f"test-block-{uuid.uuid4()}"
doc_id = f"test-doc-{uuid.uuid4()}"
cleanup_embeddings.append((ContentType.STORE_AGENT, agent_id, None))
cleanup_embeddings.append((ContentType.BLOCK, block_id, None))
cleanup_embeddings.append((ContentType.DOCUMENTATION, doc_id, None))
# Store embeddings for different content types
await embeddings.store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id=agent_id,
embedding=mock_embedding,
searchable_text="AI writing assistant for blog posts",
metadata={"name": "Writing Assistant"},
user_id=None,
)
await embeddings.store_content_embedding(
content_type=ContentType.BLOCK,
content_id=block_id,
embedding=mock_embedding,
searchable_text="Text generation block for creative writing",
metadata={"name": "Text Generator"},
user_id=None,
)
await embeddings.store_content_embedding(
content_type=ContentType.DOCUMENTATION,
content_id=doc_id,
embedding=mock_embedding,
searchable_text="How to use writing blocks in AutoGPT",
metadata={"title": "Writing Guide"},
user_id=None,
)
# Search for "writing" - should find all three
results, total = await unified_hybrid_search(
query="writing",
page=1,
page_size=20,
)
# Should find at least our test content (may find others too)
content_ids = [r["content_id"] for r in results]
assert agent_id in content_ids or total >= 1 # Lexical search should find it
@pytest.mark.asyncio(loop_scope="session")
async def test_unified_hybrid_search_filter_by_content_type(
server,
mock_embedding: list[float],
cleanup_embeddings: list,
):
"""Test unified search can filter by content type."""
agent_id = f"test-agent-{uuid.uuid4()}"
block_id = f"test-block-{uuid.uuid4()}"
cleanup_embeddings.append((ContentType.STORE_AGENT, agent_id, None))
cleanup_embeddings.append((ContentType.BLOCK, block_id, None))
# Store both types with same searchable text
await embeddings.store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id=agent_id,
embedding=mock_embedding,
searchable_text="unique_search_term_xyz123",
metadata={},
user_id=None,
)
await embeddings.store_content_embedding(
content_type=ContentType.BLOCK,
content_id=block_id,
embedding=mock_embedding,
searchable_text="unique_search_term_xyz123",
metadata={},
user_id=None,
)
# Search only for BLOCK type
results, total = await unified_hybrid_search(
query="unique_search_term_xyz123",
content_types=[ContentType.BLOCK],
page=1,
page_size=20,
)
# All results should be BLOCK type
for r in results:
assert r["content_type"] == "BLOCK"
@pytest.mark.asyncio(loop_scope="session")
async def test_unified_hybrid_search_empty_query(server):
"""Test unified search with empty query returns empty results."""
results, total = await unified_hybrid_search(
query="",
page=1,
page_size=20,
)
assert results == []
assert total == 0
@pytest.mark.asyncio(loop_scope="session")
async def test_unified_hybrid_search_pagination(
server,
mock_embedding: list[float],
cleanup_embeddings: list,
):
"""Test unified search pagination works correctly."""
# Create multiple items
content_ids = []
for i in range(5):
content_id = f"test-pagination-{uuid.uuid4()}"
content_ids.append(content_id)
cleanup_embeddings.append((ContentType.BLOCK, content_id, None))
await embeddings.store_content_embedding(
content_type=ContentType.BLOCK,
content_id=content_id,
embedding=mock_embedding,
searchable_text=f"pagination test item number {i}",
metadata={"index": i},
user_id=None,
)
# Get first page
page1_results, total1 = await unified_hybrid_search(
query="pagination test",
content_types=[ContentType.BLOCK],
page=1,
page_size=2,
)
# Get second page
page2_results, total2 = await unified_hybrid_search(
query="pagination test",
content_types=[ContentType.BLOCK],
page=2,
page_size=2,
)
# Total should be consistent
assert total1 == total2
# Pages should have different content (if we have enough results)
if len(page1_results) > 0 and len(page2_results) > 0:
page1_ids = {r["content_id"] for r in page1_results}
page2_ids = {r["content_id"] for r in page2_results}
# No overlap between pages
assert page1_ids.isdisjoint(page2_ids)
@pytest.mark.asyncio(loop_scope="session")
async def test_unified_hybrid_search_min_score_filtering(
server,
mock_embedding: list[float],
cleanup_embeddings: list,
):
"""Test unified search respects min_score threshold."""
content_id = f"test-minscore-{uuid.uuid4()}"
cleanup_embeddings.append((ContentType.BLOCK, content_id, None))
await embeddings.store_content_embedding(
content_type=ContentType.BLOCK,
content_id=content_id,
embedding=mock_embedding,
searchable_text="completely unrelated content about bananas",
metadata={},
user_id=None,
)
# Search with very high min_score - should filter out low relevance
results_high, _ = await unified_hybrid_search(
query="quantum computing algorithms",
content_types=[ContentType.BLOCK],
min_score=0.9, # Very high threshold
page=1,
page_size=20,
)
# Search with low min_score
results_low, _ = await unified_hybrid_search(
query="quantum computing algorithms",
content_types=[ContentType.BLOCK],
min_score=0.01, # Very low threshold
page=1,
page_size=20,
)
# High threshold should have fewer or equal results
assert len(results_high) <= len(results_low)
# ============================================================================
# hybrid_search (Store Agents) Tests
# ============================================================================
@pytest.mark.asyncio(loop_scope="session")
async def test_hybrid_search_store_agents_sql_valid(server):
"""Test that hybrid_search SQL executes without errors."""
# This test verifies the SQL is syntactically correct
# even if no results are found
results, total = await hybrid_search(
query="test agent",
page=1,
page_size=20,
)
# Should not raise - verifies SQL is valid
assert isinstance(results, list)
assert isinstance(total, int)
assert total >= 0
@pytest.mark.asyncio(loop_scope="session")
async def test_hybrid_search_with_filters(server):
"""Test hybrid_search with various filter options."""
# Test with all filter types
results, total = await hybrid_search(
query="productivity",
featured=True,
creators=["test-creator"],
category="productivity",
page=1,
page_size=10,
)
# Should not raise - verifies filter SQL is valid
assert isinstance(results, list)
assert isinstance(total, int)
@pytest.mark.asyncio(loop_scope="session")
async def test_hybrid_search_pagination(server):
"""Test hybrid_search pagination."""
# Page 1
results1, total1 = await hybrid_search(
query="agent",
page=1,
page_size=5,
)
# Page 2
results2, total2 = await hybrid_search(
query="agent",
page=2,
page_size=5,
)
# Verify SQL executes without error
assert isinstance(results1, list)
assert isinstance(results2, list)
assert isinstance(total1, int)
assert isinstance(total2, int)
# If page 1 has results, total should be > 0
# Note: total from page 2 may be 0 if no results on that page (COUNT(*) OVER limitation)
if results1:
assert total1 > 0
# ============================================================================
# SQL Validity Tests (verify queries don't break)
# ============================================================================
@pytest.mark.asyncio(loop_scope="session")
async def test_all_content_types_searchable(server):
"""Test that all content types can be searched without SQL errors."""
for content_type in [
ContentType.STORE_AGENT,
ContentType.BLOCK,
ContentType.DOCUMENTATION,
]:
results, total = await unified_hybrid_search(
query="test",
content_types=[content_type],
page=1,
page_size=10,
)
# Should not raise
assert isinstance(results, list)
assert isinstance(total, int)
@pytest.mark.asyncio(loop_scope="session")
async def test_multiple_content_types_searchable(server):
"""Test searching multiple content types at once."""
results, total = await unified_hybrid_search(
query="test",
content_types=[ContentType.BLOCK, ContentType.DOCUMENTATION],
page=1,
page_size=20,
)
# Should not raise
assert isinstance(results, list)
assert isinstance(total, int)
@pytest.mark.asyncio(loop_scope="session")
async def test_search_all_content_types_default(server):
"""Test searching all content types (default behavior)."""
results, total = await unified_hybrid_search(
query="test",
content_types=None, # Should search all
page=1,
page_size=20,
)
# Should not raise
assert isinstance(results, list)
assert isinstance(total, int)
if __name__ == "__main__":
pytest.main([__file__, "-v", "-s"])

View File

@@ -4,12 +4,13 @@ Integration tests for embeddings with schema handling.
These tests verify that embeddings operations work correctly across different database schemas.
"""
from unittest.mock import AsyncMock, patch
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from prisma.enums import ContentType
from backend.api.features.store import embeddings
from backend.api.features.store.embeddings import EMBEDDING_DIM
# Schema prefix tests removed - functionality moved to db.raw_with_schema() helper
@@ -28,7 +29,7 @@ async def test_store_content_embedding_with_schema():
result = await embeddings.store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id="test-id",
embedding=[0.1] * 1536,
embedding=[0.1] * EMBEDDING_DIM,
searchable_text="test text",
metadata={"test": "data"},
user_id=None,
@@ -125,84 +126,69 @@ async def test_delete_content_embedding_with_schema():
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_get_embedding_stats_with_schema():
"""Test embedding statistics with proper schema handling."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "platform"
"""Test embedding statistics with proper schema handling via content handlers."""
# Mock handler to return stats
mock_handler = MagicMock()
mock_handler.get_stats = AsyncMock(
return_value={
"total": 100,
"with_embeddings": 80,
"without_embeddings": 20,
}
)
with patch("prisma.get_client") as mock_get_client:
mock_client = AsyncMock()
# Mock both query results
mock_client.query_raw.side_effect = [
[{"count": 100}], # total_approved
[{"count": 80}], # with_embeddings
]
mock_get_client.return_value = mock_client
with patch(
"backend.api.features.store.embeddings.CONTENT_HANDLERS",
{ContentType.STORE_AGENT: mock_handler},
):
result = await embeddings.get_embedding_stats()
result = await embeddings.get_embedding_stats()
# Verify handler was called
mock_handler.get_stats.assert_called_once()
# Verify both queries were called
assert mock_client.query_raw.call_count == 2
# Get both SQL queries
first_call = mock_client.query_raw.call_args_list[0]
second_call = mock_client.query_raw.call_args_list[1]
first_sql = first_call[0][0]
second_sql = second_call[0][0]
# Verify schema prefix in both queries
assert '"platform"."StoreListingVersion"' in first_sql
assert '"platform"."StoreListingVersion"' in second_sql
assert '"platform"."UnifiedContentEmbedding"' in second_sql
# Verify results
assert result["total_approved"] == 100
assert result["with_embeddings"] == 80
assert result["without_embeddings"] == 20
assert result["coverage_percent"] == 80.0
# Verify new result structure
assert "by_type" in result
assert "totals" in result
assert result["totals"]["total"] == 100
assert result["totals"]["with_embeddings"] == 80
assert result["totals"]["without_embeddings"] == 20
assert result["totals"]["coverage_percent"] == 80.0
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_backfill_missing_embeddings_with_schema():
"""Test backfilling embeddings with proper schema handling."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "platform"
"""Test backfilling embeddings via content handlers."""
from backend.api.features.store.content_handlers import ContentItem
with patch("prisma.get_client") as mock_get_client:
mock_client = AsyncMock()
# Mock missing embeddings query
mock_client.query_raw.return_value = [
{
"id": "version-1",
"name": "Test Agent",
"description": "Test description",
"subHeading": "Test heading",
"categories": ["test"],
}
]
mock_get_client.return_value = mock_client
# Create mock content item
mock_item = ContentItem(
content_id="version-1",
content_type=ContentType.STORE_AGENT,
searchable_text="Test Agent Test description",
metadata={"name": "Test Agent"},
)
# Mock handler
mock_handler = MagicMock()
mock_handler.get_missing_items = AsyncMock(return_value=[mock_item])
with patch(
"backend.api.features.store.embeddings.CONTENT_HANDLERS",
{ContentType.STORE_AGENT: mock_handler},
):
with patch(
"backend.api.features.store.embeddings.generate_embedding",
return_value=[0.1] * EMBEDDING_DIM,
):
with patch(
"backend.api.features.store.embeddings.ensure_embedding"
) as mock_ensure:
mock_ensure.return_value = True
"backend.api.features.store.embeddings.store_content_embedding",
return_value=True,
):
result = await embeddings.backfill_missing_embeddings(batch_size=10)
# Verify the query was called
assert mock_client.query_raw.called
# Get the SQL query
call_args = mock_client.query_raw.call_args
sql_query = call_args[0][0]
# Verify schema prefix in query
assert '"platform"."StoreListingVersion"' in sql_query
assert '"platform"."UnifiedContentEmbedding"' in sql_query
# Verify ensure_embedding was called
assert mock_ensure.called
# Verify handler was called
mock_handler.get_missing_items.assert_called_once_with(10)
# Verify results
assert result["processed"] == 1
@@ -226,7 +212,7 @@ async def test_ensure_content_embedding_with_schema():
with patch(
"backend.api.features.store.embeddings.generate_embedding"
) as mock_generate:
mock_generate.return_value = [0.1] * 1536
mock_generate.return_value = [0.1] * EMBEDDING_DIM
with patch(
"backend.api.features.store.embeddings.store_content_embedding"
@@ -260,7 +246,7 @@ async def test_backward_compatibility_store_embedding():
result = await embeddings.store_embedding(
version_id="test-version-id",
embedding=[0.1] * 1536,
embedding=[0.1] * EMBEDDING_DIM,
tx=None,
)
@@ -315,7 +301,7 @@ async def test_schema_handling_error_cases():
result = await embeddings.store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id="test-id",
embedding=[0.1] * 1536,
embedding=[0.1] * EMBEDDING_DIM,
searchable_text="test",
metadata=None,
user_id=None,

View File

@@ -63,7 +63,7 @@ async def test_generate_embedding_success():
result = await embeddings.generate_embedding("test text")
assert result is not None
assert len(result) == 1536
assert len(result) == embeddings.EMBEDDING_DIM
assert result[0] == 0.1
mock_client.embeddings.create.assert_called_once_with(
@@ -110,7 +110,7 @@ async def test_generate_embedding_text_truncation():
mock_client = MagicMock()
mock_response = MagicMock()
mock_response.data = [MagicMock()]
mock_response.data[0].embedding = [0.1] * 1536
mock_response.data[0].embedding = [0.1] * embeddings.EMBEDDING_DIM
# Use AsyncMock for async embeddings.create method
mock_client.embeddings.create = AsyncMock(return_value=mock_response)
@@ -297,72 +297,92 @@ async def test_ensure_embedding_generation_fails(mock_get, mock_generate):
@pytest.mark.asyncio(loop_scope="session")
async def test_get_embedding_stats():
"""Test embedding statistics retrieval."""
# Mock approved count query and embedded count query
mock_approved_result = [{"count": 100}]
mock_embedded_result = [{"count": 75}]
# Mock handler stats for each content type
mock_handler = MagicMock()
mock_handler.get_stats = AsyncMock(
return_value={
"total": 100,
"with_embeddings": 75,
"without_embeddings": 25,
}
)
# Patch the CONTENT_HANDLERS where it's used (in embeddings module)
with patch(
"backend.api.features.store.embeddings.query_raw_with_schema",
side_effect=[mock_approved_result, mock_embedded_result],
"backend.api.features.store.embeddings.CONTENT_HANDLERS",
{ContentType.STORE_AGENT: mock_handler},
):
result = await embeddings.get_embedding_stats()
assert result["total_approved"] == 100
assert result["with_embeddings"] == 75
assert result["without_embeddings"] == 25
assert result["coverage_percent"] == 75.0
assert "by_type" in result
assert "totals" in result
assert result["totals"]["total"] == 100
assert result["totals"]["with_embeddings"] == 75
assert result["totals"]["without_embeddings"] == 25
assert result["totals"]["coverage_percent"] == 75.0
@pytest.mark.asyncio(loop_scope="session")
@patch("backend.api.features.store.embeddings.ensure_embedding")
async def test_backfill_missing_embeddings_success(mock_ensure):
@patch("backend.api.features.store.embeddings.store_content_embedding")
async def test_backfill_missing_embeddings_success(mock_store):
"""Test backfill with successful embedding generation."""
# Mock missing embeddings query
mock_missing = [
{
"id": "version-1",
"name": "Agent 1",
"description": "Description 1",
"subHeading": "Heading 1",
"categories": ["AI"],
},
{
"id": "version-2",
"name": "Agent 2",
"description": "Description 2",
"subHeading": "Heading 2",
"categories": ["Productivity"],
},
# Mock ContentItem from handlers
from backend.api.features.store.content_handlers import ContentItem
mock_items = [
ContentItem(
content_id="version-1",
content_type=ContentType.STORE_AGENT,
searchable_text="Agent 1 Description 1",
metadata={"name": "Agent 1"},
),
ContentItem(
content_id="version-2",
content_type=ContentType.STORE_AGENT,
searchable_text="Agent 2 Description 2",
metadata={"name": "Agent 2"},
),
]
# Mock ensure_embedding to succeed for first, fail for second
mock_ensure.side_effect = [True, False]
# Mock handler to return missing items
mock_handler = MagicMock()
mock_handler.get_missing_items = AsyncMock(return_value=mock_items)
# Mock store_content_embedding to succeed for first, fail for second
mock_store.side_effect = [True, False]
with patch(
"backend.api.features.store.embeddings.query_raw_with_schema",
return_value=mock_missing,
"backend.api.features.store.embeddings.CONTENT_HANDLERS",
{ContentType.STORE_AGENT: mock_handler},
):
result = await embeddings.backfill_missing_embeddings(batch_size=5)
with patch(
"backend.api.features.store.embeddings.generate_embedding",
return_value=[0.1] * embeddings.EMBEDDING_DIM,
):
result = await embeddings.backfill_missing_embeddings(batch_size=5)
assert result["processed"] == 2
assert result["success"] == 1
assert result["failed"] == 1
assert mock_ensure.call_count == 2
assert result["processed"] == 2
assert result["success"] == 1
assert result["failed"] == 1
assert mock_store.call_count == 2
@pytest.mark.asyncio(loop_scope="session")
async def test_backfill_missing_embeddings_no_missing():
"""Test backfill when no embeddings are missing."""
# Mock handler to return no missing items
mock_handler = MagicMock()
mock_handler.get_missing_items = AsyncMock(return_value=[])
with patch(
"backend.api.features.store.embeddings.query_raw_with_schema",
return_value=[],
"backend.api.features.store.embeddings.CONTENT_HANDLERS",
{ContentType.STORE_AGENT: mock_handler},
):
result = await embeddings.backfill_missing_embeddings(batch_size=5)
assert result["processed"] == 0
assert result["success"] == 0
assert result["failed"] == 0
assert result["message"] == "No missing embeddings"
@pytest.mark.asyncio(loop_scope="session")

View File

@@ -1,16 +1,21 @@
"""
Hybrid Search for Store Agents
Unified Hybrid Search
Combines semantic (embedding) search with lexical (tsvector) search
for improved relevance in marketplace agent discovery.
for improved relevance across all content types (agents, blocks, docs).
Includes BM25 reranking for improved lexical relevance.
"""
import logging
import re
from dataclasses import dataclass
from datetime import datetime
from typing import Any, Literal
from prisma.enums import ContentType
from rank_bm25 import BM25Okapi
from backend.api.features.store.embeddings import (
EMBEDDING_DIM,
embed_query,
embedding_to_vector_string,
)
@@ -19,18 +24,385 @@ from backend.data.db import query_raw_with_schema
logger = logging.getLogger(__name__)
@dataclass
class HybridSearchWeights:
"""Weights for combining search signals."""
# ============================================================================
# BM25 Reranking
# ============================================================================
semantic: float = 0.30 # Embedding cosine similarity
lexical: float = 0.30 # tsvector ts_rank_cd score
category: float = 0.20 # Category match boost
recency: float = 0.10 # Newer agents ranked higher
popularity: float = 0.10 # Agent usage/runs (PageRank-like)
def tokenize(text: str) -> list[str]:
"""Simple tokenizer for BM25 - lowercase and split on non-alphanumeric."""
if not text:
return []
# Lowercase and split on non-alphanumeric characters
tokens = re.findall(r"\b\w+\b", text.lower())
return tokens
def bm25_rerank(
query: str,
results: list[dict[str, Any]],
text_field: str = "searchable_text",
bm25_weight: float = 0.3,
original_score_field: str = "combined_score",
) -> list[dict[str, Any]]:
"""
Rerank search results using BM25.
Combines the original combined_score with BM25 score for improved
lexical relevance, especially for exact term matches.
Args:
query: The search query
results: List of result dicts with text_field and original_score_field
text_field: Field name containing the text to score
bm25_weight: Weight for BM25 score (0-1). Original score gets (1 - bm25_weight)
original_score_field: Field name containing the original score
Returns:
Results list sorted by combined score (BM25 + original)
"""
if not results or not query:
return results
# Extract texts and tokenize
corpus = [tokenize(r.get(text_field, "") or "") for r in results]
# Handle edge case where all documents are empty
if all(len(doc) == 0 for doc in corpus):
return results
# Build BM25 index
bm25 = BM25Okapi(corpus)
# Score query against corpus
query_tokens = tokenize(query)
if not query_tokens:
return results
bm25_scores = bm25.get_scores(query_tokens)
# Normalize BM25 scores to 0-1 range
max_bm25 = max(bm25_scores) if max(bm25_scores) > 0 else 1.0
normalized_bm25 = [s / max_bm25 for s in bm25_scores]
# Combine scores
original_weight = 1.0 - bm25_weight
for i, result in enumerate(results):
original_score = result.get(original_score_field, 0) or 0
result["bm25_score"] = normalized_bm25[i]
final_score = (
original_weight * original_score + bm25_weight * normalized_bm25[i]
)
result["final_score"] = final_score
result["relevance"] = final_score
# Sort by relevance descending
results.sort(key=lambda x: x.get("relevance", 0), reverse=True)
return results
@dataclass
class UnifiedSearchWeights:
"""Weights for unified search (no popularity signal)."""
semantic: float = 0.40 # Embedding cosine similarity
lexical: float = 0.40 # tsvector ts_rank_cd score
category: float = 0.10 # Category match boost (for types that have categories)
recency: float = 0.10 # Newer content ranked higher
def __post_init__(self):
"""Validate weights are non-negative and sum to approximately 1.0."""
total = self.semantic + self.lexical + self.category + self.recency
if any(
w < 0 for w in [self.semantic, self.lexical, self.category, self.recency]
):
raise ValueError("All weights must be non-negative")
if not (0.99 <= total <= 1.01):
raise ValueError(f"Weights must sum to ~1.0, got {total:.3f}")
# Default weights for unified search
DEFAULT_UNIFIED_WEIGHTS = UnifiedSearchWeights()
# Minimum relevance score thresholds
DEFAULT_MIN_SCORE = 0.15 # For unified search (more permissive)
DEFAULT_STORE_AGENT_MIN_SCORE = 0.20 # For store agent search (original threshold)
async def unified_hybrid_search(
query: str,
content_types: list[ContentType] | None = None,
category: str | None = None,
page: int = 1,
page_size: int = 20,
weights: UnifiedSearchWeights | None = None,
min_score: float | None = None,
user_id: str | None = None,
) -> tuple[list[dict[str, Any]], int]:
"""
Unified hybrid search across all content types.
Searches UnifiedContentEmbedding using both semantic (vector) and lexical (tsvector) signals.
Args:
query: Search query string
content_types: List of content types to search. Defaults to all public types.
category: Filter by category (for content types that support it)
page: Page number (1-indexed)
page_size: Results per page
weights: Custom weights for search signals
min_score: Minimum relevance score threshold (0-1)
user_id: User ID for searching private content (library agents)
Returns:
Tuple of (results list, total count)
"""
# Validate inputs
query = query.strip()
if not query:
return [], 0
if page < 1:
page = 1
if page_size < 1:
page_size = 1
if page_size > 100:
page_size = 100
if content_types is None:
content_types = [
ContentType.STORE_AGENT,
ContentType.BLOCK,
ContentType.DOCUMENTATION,
]
if weights is None:
weights = DEFAULT_UNIFIED_WEIGHTS
if min_score is None:
min_score = DEFAULT_MIN_SCORE
offset = (page - 1) * page_size
# Generate query embedding
query_embedding = await embed_query(query)
# Graceful degradation if embedding unavailable
if query_embedding is None or not query_embedding:
logger.warning(
"Failed to generate query embedding - falling back to lexical-only search. "
"Check that openai_internal_api_key is configured and OpenAI API is accessible."
)
query_embedding = [0.0] * EMBEDDING_DIM
# Redistribute semantic weight to lexical
total_non_semantic = weights.lexical + weights.category + weights.recency
if total_non_semantic > 0:
factor = 1.0 / total_non_semantic
weights = UnifiedSearchWeights(
semantic=0.0,
lexical=weights.lexical * factor,
category=weights.category * factor,
recency=weights.recency * factor,
)
else:
weights = UnifiedSearchWeights(
semantic=0.0, lexical=1.0, category=0.0, recency=0.0
)
# Build parameters
params: list[Any] = []
param_idx = 1
# Query for lexical search
params.append(query)
query_param = f"${param_idx}"
param_idx += 1
# Query lowercase for category matching
params.append(query.lower())
query_lower_param = f"${param_idx}"
param_idx += 1
# Embedding
embedding_str = embedding_to_vector_string(query_embedding)
params.append(embedding_str)
embedding_param = f"${param_idx}"
param_idx += 1
# Content types
content_type_values = [ct.value for ct in content_types]
params.append(content_type_values)
content_types_param = f"${param_idx}"
param_idx += 1
# User ID filter (for private content)
user_filter = ""
if user_id is not None:
params.append(user_id)
user_filter = f'AND (uce."userId" = ${param_idx} OR uce."userId" IS NULL)'
param_idx += 1
else:
user_filter = 'AND uce."userId" IS NULL'
# Weights
params.append(weights.semantic)
w_semantic = f"${param_idx}"
param_idx += 1
params.append(weights.lexical)
w_lexical = f"${param_idx}"
param_idx += 1
params.append(weights.category)
w_category = f"${param_idx}"
param_idx += 1
params.append(weights.recency)
w_recency = f"${param_idx}"
param_idx += 1
# Min score
params.append(min_score)
min_score_param = f"${param_idx}"
param_idx += 1
# Pagination
params.append(page_size)
limit_param = f"${param_idx}"
param_idx += 1
params.append(offset)
offset_param = f"${param_idx}"
param_idx += 1
# Unified search query on UnifiedContentEmbedding
sql_query = f"""
WITH candidates AS (
-- Lexical matches (uses GIN index on search column)
SELECT uce.id, uce."contentType", uce."contentId"
FROM {{schema_prefix}}"UnifiedContentEmbedding" uce
WHERE uce."contentType" = ANY({content_types_param}::{{schema_prefix}}"ContentType"[])
{user_filter}
AND uce.search @@ plainto_tsquery('english', {query_param})
UNION
-- Semantic matches (uses HNSW index on embedding)
(
SELECT uce.id, uce."contentType", uce."contentId"
FROM {{schema_prefix}}"UnifiedContentEmbedding" uce
WHERE uce."contentType" = ANY({content_types_param}::{{schema_prefix}}"ContentType"[])
{user_filter}
ORDER BY uce.embedding <=> {embedding_param}::vector
LIMIT 200
)
),
search_scores AS (
SELECT
uce."contentType" as content_type,
uce."contentId" as content_id,
uce."searchableText" as searchable_text,
uce.metadata,
uce."updatedAt" as updated_at,
-- Semantic score: cosine similarity (1 - distance)
COALESCE(1 - (uce.embedding <=> {embedding_param}::vector), 0) as semantic_score,
-- Lexical score: ts_rank_cd
COALESCE(ts_rank_cd(uce.search, plainto_tsquery('english', {query_param})), 0) as lexical_raw,
-- Category match from metadata
CASE
WHEN uce.metadata ? 'categories' AND EXISTS (
SELECT 1 FROM jsonb_array_elements_text(uce.metadata->'categories') cat
WHERE LOWER(cat) LIKE '%' || {query_lower_param} || '%'
)
THEN 1.0
ELSE 0.0
END as category_score,
-- Recency score: linear decay over 90 days
GREATEST(0, 1 - EXTRACT(EPOCH FROM (NOW() - uce."updatedAt")) / (90 * 24 * 3600)) as recency_score
FROM candidates c
INNER JOIN {{schema_prefix}}"UnifiedContentEmbedding" uce ON c.id = uce.id
),
max_lexical AS (
SELECT GREATEST(MAX(lexical_raw), 0.001) as max_val FROM search_scores
),
normalized AS (
SELECT
ss.*,
ss.lexical_raw / ml.max_val as lexical_score
FROM search_scores ss
CROSS JOIN max_lexical ml
),
scored AS (
SELECT
content_type,
content_id,
searchable_text,
metadata,
updated_at,
semantic_score,
lexical_score,
category_score,
recency_score,
(
{w_semantic} * semantic_score +
{w_lexical} * lexical_score +
{w_category} * category_score +
{w_recency} * recency_score
) as combined_score
FROM normalized
),
filtered AS (
SELECT *, COUNT(*) OVER () as total_count
FROM scored
WHERE combined_score >= {min_score_param}
)
SELECT * FROM filtered
ORDER BY combined_score DESC
LIMIT {limit_param} OFFSET {offset_param}
"""
results = await query_raw_with_schema(
sql_query, *params, set_public_search_path=True
)
total = results[0]["total_count"] if results else 0
# Apply BM25 reranking
if results:
results = bm25_rerank(
query=query,
results=results,
text_field="searchable_text",
bm25_weight=0.3,
original_score_field="combined_score",
)
# Clean up results
for result in results:
result.pop("total_count", None)
logger.info(f"Unified hybrid search: {len(results)} results, {total} total")
return results, total
# ============================================================================
# Store Agent specific search (with full metadata)
# ============================================================================
@dataclass
class StoreAgentSearchWeights:
"""Weights for store agent search including popularity."""
semantic: float = 0.30
lexical: float = 0.30
category: float = 0.20
recency: float = 0.10
popularity: float = 0.10
def __post_init__(self):
total = (
self.semantic
+ self.lexical
@@ -38,7 +410,6 @@ class HybridSearchWeights:
+ self.recency
+ self.popularity
)
if any(
w < 0
for w in [
@@ -50,46 +421,11 @@ class HybridSearchWeights:
]
):
raise ValueError("All weights must be non-negative")
if not (0.99 <= total <= 1.01):
raise ValueError(f"Weights must sum to ~1.0, got {total:.3f}")
DEFAULT_WEIGHTS = HybridSearchWeights()
# Minimum relevance score threshold - agents below this are filtered out
# With weights (0.30 semantic + 0.30 lexical + 0.20 category + 0.10 recency + 0.10 popularity):
# - 0.20 means at least ~60% semantic match OR strong lexical match required
# - Ensures only genuinely relevant results are returned
# - Recency/popularity alone (0.10 each) won't pass the threshold
DEFAULT_MIN_SCORE = 0.20
@dataclass
class HybridSearchResult:
"""A single search result with score breakdown."""
slug: str
agent_name: str
agent_image: str
creator_username: str
creator_avatar: str
sub_heading: str
description: str
runs: int
rating: float
categories: list[str]
featured: bool
is_available: bool
updated_at: datetime
# Score breakdown (for debugging/tuning)
combined_score: float
semantic_score: float = 0.0
lexical_score: float = 0.0
category_score: float = 0.0
recency_score: float = 0.0
popularity_score: float = 0.0
DEFAULT_STORE_AGENT_WEIGHTS = StoreAgentSearchWeights()
async def hybrid_search(
@@ -102,276 +438,277 @@ async def hybrid_search(
) = None,
page: int = 1,
page_size: int = 20,
weights: HybridSearchWeights | None = None,
weights: StoreAgentSearchWeights | None = None,
min_score: float | None = None,
) -> tuple[list[dict[str, Any]], int]:
"""
Perform hybrid search combining semantic and lexical signals.
Hybrid search for store agents with full metadata.
Args:
query: Search query string
featured: Filter for featured agents only
creators: Filter by creator usernames
category: Filter by category
sorted_by: Sort order (relevance uses hybrid scoring)
page: Page number (1-indexed)
page_size: Results per page
weights: Custom weights for search signals
min_score: Minimum relevance score threshold (0-1). Results below
this score are filtered out. Defaults to DEFAULT_MIN_SCORE.
Returns:
Tuple of (results list, total count). Returns empty list if no
results meet the minimum relevance threshold.
Uses UnifiedContentEmbedding for search, joins to StoreAgent for metadata.
"""
# Validate inputs
query = query.strip()
if not query:
return [], 0 # Empty query returns no results
return [], 0
if page < 1:
page = 1
if page_size < 1:
page_size = 1
if page_size > 100: # Cap at reasonable limit to prevent performance issues
if page_size > 100:
page_size = 100
if weights is None:
weights = DEFAULT_WEIGHTS
weights = DEFAULT_STORE_AGENT_WEIGHTS
if min_score is None:
min_score = DEFAULT_MIN_SCORE
min_score = (
DEFAULT_STORE_AGENT_MIN_SCORE # Use original threshold for store agents
)
offset = (page - 1) * page_size
# Generate query embedding
query_embedding = await embed_query(query)
# Build WHERE clause conditions
where_parts: list[str] = ["sa.is_available = true"]
# Graceful degradation
if query_embedding is None or not query_embedding:
logger.warning(
"Failed to generate query embedding - falling back to lexical-only search."
)
query_embedding = [0.0] * EMBEDDING_DIM
total_non_semantic = (
weights.lexical + weights.category + weights.recency + weights.popularity
)
if total_non_semantic > 0:
factor = 1.0 / total_non_semantic
weights = StoreAgentSearchWeights(
semantic=0.0,
lexical=weights.lexical * factor,
category=weights.category * factor,
recency=weights.recency * factor,
popularity=weights.popularity * factor,
)
else:
weights = StoreAgentSearchWeights(
semantic=0.0, lexical=1.0, category=0.0, recency=0.0, popularity=0.0
)
# Build parameters
params: list[Any] = []
param_index = 1
param_idx = 1
# Add search query for lexical matching
params.append(query)
query_param = f"${param_index}"
param_index += 1
query_param = f"${param_idx}"
param_idx += 1
# Add lowercased query for category matching
params.append(query.lower())
query_lower_param = f"${param_index}"
param_index += 1
query_lower_param = f"${param_idx}"
param_idx += 1
embedding_str = embedding_to_vector_string(query_embedding)
params.append(embedding_str)
embedding_param = f"${param_idx}"
param_idx += 1
# Build WHERE clause for StoreAgent filters
where_parts = ["sa.is_available = true"]
if featured:
where_parts.append("sa.featured = true")
if creators:
where_parts.append(f"sa.creator_username = ANY(${param_index})")
params.append(creators)
param_index += 1
where_parts.append(f"sa.creator_username = ANY(${param_idx})")
param_idx += 1
if category:
where_parts.append(f"${param_index} = ANY(sa.categories)")
params.append(category)
param_index += 1
where_parts.append(f"${param_idx} = ANY(sa.categories)")
param_idx += 1
# Safe: where_parts only contains hardcoded strings with $N parameter placeholders
# No user input is concatenated directly into the SQL string
where_clause = " AND ".join(where_parts)
# Embedding is required for hybrid search - fail fast if unavailable
if query_embedding is None or not query_embedding:
# Log detailed error server-side
logger.error(
"Failed to generate query embedding. "
"Check that openai_internal_api_key is configured and OpenAI API is accessible."
)
# Raise generic error to client
raise ValueError("Search service temporarily unavailable")
# Add embedding parameter
embedding_str = embedding_to_vector_string(query_embedding)
params.append(embedding_str)
embedding_param = f"${param_index}"
param_index += 1
# Add weight parameters for SQL calculation
# Weights
params.append(weights.semantic)
weight_semantic_param = f"${param_index}"
param_index += 1
w_semantic = f"${param_idx}"
param_idx += 1
params.append(weights.lexical)
weight_lexical_param = f"${param_index}"
param_index += 1
w_lexical = f"${param_idx}"
param_idx += 1
params.append(weights.category)
weight_category_param = f"${param_index}"
param_index += 1
w_category = f"${param_idx}"
param_idx += 1
params.append(weights.recency)
weight_recency_param = f"${param_index}"
param_index += 1
w_recency = f"${param_idx}"
param_idx += 1
params.append(weights.popularity)
weight_popularity_param = f"${param_index}"
param_index += 1
w_popularity = f"${param_idx}"
param_idx += 1
# Add min_score parameter
params.append(min_score)
min_score_param = f"${param_index}"
param_index += 1
min_score_param = f"${param_idx}"
param_idx += 1
# Optimized hybrid search query:
# 1. Direct join to UnifiedContentEmbedding via contentId=storeListingVersionId (no redundant JOINs)
# 2. UNION approach (deduplicates agents matching both branches)
# 3. COUNT(*) OVER() to get total count in single query
# 4. Optimized category matching with EXISTS + unnest
# 5. Pre-calculated max values for lexical and popularity normalization
# 6. Simplified recency calculation with linear decay
# 7. Logarithmic popularity scaling to prevent viral agents from dominating
params.append(page_size)
limit_param = f"${param_idx}"
param_idx += 1
params.append(offset)
offset_param = f"${param_idx}"
param_idx += 1
# Query using UnifiedContentEmbedding for search, StoreAgent for metadata
sql_query = f"""
WITH candidates AS (
-- Lexical matches (uses GIN index on search column)
SELECT sa."storeListingVersionId"
FROM {{schema_prefix}}"StoreAgent" sa
WHERE {where_clause}
AND sa.search @@ plainto_tsquery('english', {query_param})
WITH candidates AS (
-- Lexical matches via UnifiedContentEmbedding.search
SELECT uce."contentId" as "storeListingVersionId"
FROM {{schema_prefix}}"UnifiedContentEmbedding" uce
INNER JOIN {{schema_prefix}}"StoreAgent" sa
ON uce."contentId" = sa."storeListingVersionId"
WHERE uce."contentType" = 'STORE_AGENT'::{{schema_prefix}}"ContentType"
AND uce."userId" IS NULL
AND uce.search @@ plainto_tsquery('english', {query_param})
AND {where_clause}
UNION
UNION
-- Semantic matches (uses HNSW index on embedding with KNN)
SELECT "storeListingVersionId"
FROM (
SELECT sa."storeListingVersionId", uce.embedding
FROM {{schema_prefix}}"StoreAgent" sa
INNER JOIN {{schema_prefix}}"UnifiedContentEmbedding" uce
ON sa."storeListingVersionId" = uce."contentId" AND uce."contentType" = 'STORE_AGENT'::{{schema_prefix}}"ContentType"
WHERE {where_clause}
ORDER BY uce.embedding <=> {embedding_param}::vector
LIMIT 200
) semantic_results
),
search_scores AS (
SELECT
sa.slug,
sa.agent_name,
sa.agent_image,
sa.creator_username,
sa.creator_avatar,
sa.sub_heading,
sa.description,
sa.runs,
sa.rating,
sa.categories,
sa.featured,
sa.is_available,
sa.updated_at,
-- Semantic score: cosine similarity (1 - distance)
COALESCE(1 - (uce.embedding <=> {embedding_param}::vector), 0) as semantic_score,
-- Lexical score: ts_rank_cd (will be normalized later)
COALESCE(ts_rank_cd(sa.search, plainto_tsquery('english', {query_param})), 0) as lexical_raw,
-- Category match: optimized with unnest for better performance
CASE
WHEN EXISTS (
SELECT 1 FROM unnest(sa.categories) cat
WHERE LOWER(cat) LIKE '%' || {query_lower_param} || '%'
)
THEN 1.0
ELSE 0.0
END as category_score,
-- Recency score: linear decay over 90 days (simpler than exponential)
GREATEST(0, 1 - EXTRACT(EPOCH FROM (NOW() - sa.updated_at)) / (90 * 24 * 3600)) as recency_score,
-- Popularity raw: agent runs count (will be normalized with log scaling)
sa.runs as popularity_raw
FROM candidates c
-- Semantic matches via UnifiedContentEmbedding.embedding
SELECT uce."contentId" as "storeListingVersionId"
FROM (
SELECT uce."contentId", uce.embedding
FROM {{schema_prefix}}"UnifiedContentEmbedding" uce
INNER JOIN {{schema_prefix}}"StoreAgent" sa
ON c."storeListingVersionId" = sa."storeListingVersionId"
LEFT JOIN {{schema_prefix}}"UnifiedContentEmbedding" uce
ON sa."storeListingVersionId" = uce."contentId" AND uce."contentType" = 'STORE_AGENT'::{{schema_prefix}}"ContentType"
),
max_lexical AS (
SELECT MAX(lexical_raw) as max_val FROM search_scores
),
max_popularity AS (
SELECT MAX(popularity_raw) as max_val FROM search_scores
),
normalized AS (
SELECT
ss.*,
-- Normalize lexical score by pre-calculated max
CASE
WHEN ml.max_val > 0
THEN ss.lexical_raw / ml.max_val
ELSE 0
END as lexical_score,
-- Normalize popularity with logarithmic scaling to prevent viral agents from dominating
-- LOG(1 + runs) / LOG(1 + max_runs) ensures score is 0-1 range
CASE
WHEN mp.max_val > 0 AND ss.popularity_raw > 0
THEN LN(1 + ss.popularity_raw) / LN(1 + mp.max_val)
ELSE 0
END as popularity_score
FROM search_scores ss
CROSS JOIN max_lexical ml
CROSS JOIN max_popularity mp
),
scored AS (
SELECT
slug,
agent_name,
agent_image,
creator_username,
creator_avatar,
sub_heading,
description,
runs,
rating,
categories,
featured,
is_available,
updated_at,
semantic_score,
lexical_score,
category_score,
recency_score,
popularity_score,
(
{weight_semantic_param} * semantic_score +
{weight_lexical_param} * lexical_score +
{weight_category_param} * category_score +
{weight_recency_param} * recency_score +
{weight_popularity_param} * popularity_score
) as combined_score
FROM normalized
),
filtered AS (
SELECT
*,
COUNT(*) OVER () as total_count
FROM scored
WHERE combined_score >= {min_score_param}
)
SELECT * FROM filtered
ORDER BY combined_score DESC
LIMIT ${param_index} OFFSET ${param_index + 1}
ON uce."contentId" = sa."storeListingVersionId"
WHERE uce."contentType" = 'STORE_AGENT'::{{schema_prefix}}"ContentType"
AND uce."userId" IS NULL
AND {where_clause}
ORDER BY uce.embedding <=> {embedding_param}::vector
LIMIT 200
) uce
),
search_scores AS (
SELECT
sa.slug,
sa.agent_name,
sa.agent_image,
sa.creator_username,
sa.creator_avatar,
sa.sub_heading,
sa.description,
sa.runs,
sa.rating,
sa.categories,
sa.featured,
sa.is_available,
sa.updated_at,
-- Searchable text for BM25 reranking
COALESCE(sa.agent_name, '') || ' ' || COALESCE(sa.sub_heading, '') || ' ' || COALESCE(sa.description, '') as searchable_text,
-- Semantic score
COALESCE(1 - (uce.embedding <=> {embedding_param}::vector), 0) as semantic_score,
-- Lexical score (raw, will normalize)
COALESCE(ts_rank_cd(uce.search, plainto_tsquery('english', {query_param})), 0) as lexical_raw,
-- Category match
CASE
WHEN EXISTS (
SELECT 1 FROM unnest(sa.categories) cat
WHERE LOWER(cat) LIKE '%' || {query_lower_param} || '%'
)
THEN 1.0
ELSE 0.0
END as category_score,
-- Recency
GREATEST(0, 1 - EXTRACT(EPOCH FROM (NOW() - sa.updated_at)) / (90 * 24 * 3600)) as recency_score,
-- Popularity (raw)
sa.runs as popularity_raw
FROM candidates c
INNER JOIN {{schema_prefix}}"StoreAgent" sa
ON c."storeListingVersionId" = sa."storeListingVersionId"
INNER JOIN {{schema_prefix}}"UnifiedContentEmbedding" uce
ON sa."storeListingVersionId" = uce."contentId"
AND uce."contentType" = 'STORE_AGENT'::{{schema_prefix}}"ContentType"
),
max_vals AS (
SELECT
GREATEST(MAX(lexical_raw), 0.001) as max_lexical,
GREATEST(MAX(popularity_raw), 1) as max_popularity
FROM search_scores
),
normalized AS (
SELECT
ss.*,
ss.lexical_raw / mv.max_lexical as lexical_score,
CASE
WHEN ss.popularity_raw > 0
THEN LN(1 + ss.popularity_raw) / LN(1 + mv.max_popularity)
ELSE 0
END as popularity_score
FROM search_scores ss
CROSS JOIN max_vals mv
),
scored AS (
SELECT
slug,
agent_name,
agent_image,
creator_username,
creator_avatar,
sub_heading,
description,
runs,
rating,
categories,
featured,
is_available,
updated_at,
searchable_text,
semantic_score,
lexical_score,
category_score,
recency_score,
popularity_score,
(
{w_semantic} * semantic_score +
{w_lexical} * lexical_score +
{w_category} * category_score +
{w_recency} * recency_score +
{w_popularity} * popularity_score
) as combined_score
FROM normalized
),
filtered AS (
SELECT *, COUNT(*) OVER () as total_count
FROM scored
WHERE combined_score >= {min_score_param}
)
SELECT * FROM filtered
ORDER BY combined_score DESC
LIMIT {limit_param} OFFSET {offset_param}
"""
# Add pagination params
params.extend([page_size, offset])
# Execute search query - includes total_count via window function
results = await query_raw_with_schema(
sql_query, *params, set_public_search_path=True
)
# Extract total count from first result (all rows have same count)
total = results[0]["total_count"] if results else 0
# Remove total_count from results before returning
# Apply BM25 reranking
if results:
results = bm25_rerank(
query=query,
results=results,
text_field="searchable_text",
bm25_weight=0.3,
original_score_field="combined_score",
)
for result in results:
result.pop("total_count", None)
result.pop("searchable_text", None)
# Log without sensitive query content
logger.info(f"Hybrid search: {len(results)} results, {total} total")
logger.info(f"Hybrid search (store agents): {len(results)} results, {total} total")
return results, total
@@ -381,13 +718,10 @@ async def hybrid_search_simple(
page: int = 1,
page_size: int = 20,
) -> tuple[list[dict[str, Any]], int]:
"""
Simplified hybrid search for common use cases.
"""Simplified hybrid search for store agents."""
return await hybrid_search(query=query, page=page, page_size=page_size)
Uses default weights and no filters.
"""
return await hybrid_search(
query=query,
page=page,
page_size=page_size,
)
# Backward compatibility alias - HybridSearchWeights maps to StoreAgentSearchWeights
# for existing code that expects the popularity parameter
HybridSearchWeights = StoreAgentSearchWeights

View File

@@ -7,8 +7,15 @@ These tests verify that hybrid search works correctly across different database
from unittest.mock import patch
import pytest
from prisma.enums import ContentType
from backend.api.features.store.hybrid_search import HybridSearchWeights, hybrid_search
from backend.api.features.store import embeddings
from backend.api.features.store.hybrid_search import (
HybridSearchWeights,
UnifiedSearchWeights,
hybrid_search,
unified_hybrid_search,
)
@pytest.mark.asyncio(loop_scope="session")
@@ -49,7 +56,7 @@ async def test_hybrid_search_with_schema_handling():
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536 # Mock embedding
mock_embed.return_value = [0.1] * embeddings.EMBEDDING_DIM # Mock embedding
results, total = await hybrid_search(
query=query,
@@ -85,7 +92,7 @@ async def test_hybrid_search_with_public_schema():
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536
mock_embed.return_value = [0.1] * embeddings.EMBEDDING_DIM
results, total = await hybrid_search(
query="test",
@@ -116,7 +123,7 @@ async def test_hybrid_search_with_custom_schema():
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536
mock_embed.return_value = [0.1] * embeddings.EMBEDDING_DIM
results, total = await hybrid_search(
query="test",
@@ -134,22 +141,52 @@ async def test_hybrid_search_with_custom_schema():
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_without_embeddings():
"""Test hybrid search fails fast when embeddings are unavailable."""
# Patch where the function is used, not where it's defined
with patch("backend.api.features.store.hybrid_search.embed_query") as mock_embed:
# Simulate embedding failure
mock_embed.return_value = None
"""Test hybrid search gracefully degrades when embeddings are unavailable."""
# Mock database to return some results
mock_results = [
{
"slug": "test-agent",
"agent_name": "Test Agent",
"agent_image": "test.png",
"creator_username": "creator",
"creator_avatar": "avatar.png",
"sub_heading": "Test heading",
"description": "Test description",
"runs": 100,
"rating": 4.5,
"categories": ["AI"],
"featured": False,
"is_available": True,
"updated_at": "2025-01-01T00:00:00Z",
"semantic_score": 0.0, # Zero because no embedding
"lexical_score": 0.5,
"category_score": 0.0,
"recency_score": 0.1,
"popularity_score": 0.2,
"combined_score": 0.3,
"total_count": 1,
}
]
# Should raise ValueError with helpful message
with pytest.raises(ValueError) as exc_info:
await hybrid_search(
with patch("backend.api.features.store.hybrid_search.embed_query") as mock_embed:
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
# Simulate embedding failure
mock_embed.return_value = None
mock_query.return_value = mock_results
# Should NOT raise - graceful degradation
results, total = await hybrid_search(
query="test",
page=1,
page_size=20,
)
# Verify error message is generic (doesn't leak implementation details)
assert "Search service temporarily unavailable" in str(exc_info.value)
# Verify it returns results even without embeddings
assert len(results) == 1
assert results[0]["slug"] == "test-agent"
assert total == 1
@pytest.mark.asyncio(loop_scope="session")
@@ -164,7 +201,7 @@ async def test_hybrid_search_with_filters():
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536
mock_embed.return_value = [0.1] * embeddings.EMBEDDING_DIM
# Test with featured filter
results, total = await hybrid_search(
@@ -204,7 +241,7 @@ async def test_hybrid_search_weights():
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536
mock_embed.return_value = [0.1] * embeddings.EMBEDDING_DIM
results, total = await hybrid_search(
query="test",
@@ -248,7 +285,7 @@ async def test_hybrid_search_min_score_filtering():
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536
mock_embed.return_value = [0.1] * embeddings.EMBEDDING_DIM
# Test with custom min_score
results, total = await hybrid_search(
@@ -274,16 +311,48 @@ async def test_hybrid_search_min_score_filtering():
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_pagination():
"""Test hybrid search pagination."""
"""Test hybrid search pagination.
Pagination happens in SQL (LIMIT/OFFSET), then BM25 reranking is applied
to the paginated results.
"""
# Create mock results that SQL would return for a page
mock_results = [
{
"slug": f"agent-{i}",
"agent_name": f"Agent {i}",
"agent_image": "test.png",
"creator_username": "test",
"creator_avatar": "avatar.png",
"sub_heading": "Test",
"description": "Test description",
"runs": 100 - i,
"rating": 4.5,
"categories": ["test"],
"featured": False,
"is_available": True,
"updated_at": "2024-01-01T00:00:00Z",
"searchable_text": f"Agent {i} test description",
"combined_score": 0.9 - (i * 0.01),
"semantic_score": 0.7,
"lexical_score": 0.6,
"category_score": 0.5,
"recency_score": 0.4,
"popularity_score": 0.3,
"total_count": 25,
}
for i in range(10) # SQL returns page_size results
]
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
mock_query.return_value = []
mock_query.return_value = mock_results
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536
mock_embed.return_value = [0.1] * embeddings.EMBEDDING_DIM
# Test page 2 with page_size 10
results, total = await hybrid_search(
@@ -292,16 +361,18 @@ async def test_hybrid_search_pagination():
page_size=10,
)
# Verify pagination parameters
# Verify results returned
assert len(results) == 10
assert total == 25 # Total from SQL COUNT(*) OVER()
# Verify the SQL query uses page_size and offset
call_args = mock_query.call_args
params = call_args[0]
# Last two params should be LIMIT and OFFSET
limit = params[-2]
offset = params[-1]
assert limit == 10 # page_size
assert offset == 10 # (page - 1) * page_size = (2 - 1) * 10
# Last two params are page_size and offset
page_size_param = params[-2]
offset_param = params[-1]
assert page_size_param == 10
assert offset_param == 10 # (page 2 - 1) * 10
@pytest.mark.asyncio(loop_scope="session")
@@ -317,7 +388,7 @@ async def test_hybrid_search_error_handling():
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536
mock_embed.return_value = [0.1] * embeddings.EMBEDDING_DIM
# Should raise exception
with pytest.raises(Exception) as exc_info:
@@ -330,5 +401,326 @@ async def test_hybrid_search_error_handling():
assert "Database connection error" in str(exc_info.value)
# =============================================================================
# Unified Hybrid Search Tests
# =============================================================================
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_unified_hybrid_search_basic():
"""Test basic unified hybrid search across all content types."""
mock_results = [
{
"content_type": "STORE_AGENT",
"content_id": "agent-1",
"searchable_text": "Test Agent Description",
"metadata": {"name": "Test Agent"},
"updated_at": "2025-01-01T00:00:00Z",
"semantic_score": 0.7,
"lexical_score": 0.8,
"category_score": 0.5,
"recency_score": 0.3,
"combined_score": 0.6,
"total_count": 2,
},
{
"content_type": "BLOCK",
"content_id": "block-1",
"searchable_text": "Test Block Description",
"metadata": {"name": "Test Block"},
"updated_at": "2025-01-01T00:00:00Z",
"semantic_score": 0.6,
"lexical_score": 0.7,
"category_score": 0.4,
"recency_score": 0.2,
"combined_score": 0.5,
"total_count": 2,
},
]
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_query.return_value = mock_results
mock_embed.return_value = [0.1] * embeddings.EMBEDDING_DIM
results, total = await unified_hybrid_search(
query="test",
page=1,
page_size=20,
)
assert len(results) == 2
assert total == 2
assert results[0]["content_type"] == "STORE_AGENT"
assert results[1]["content_type"] == "BLOCK"
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_unified_hybrid_search_filter_by_content_type():
"""Test unified search filtering by specific content types."""
mock_results = [
{
"content_type": "BLOCK",
"content_id": "block-1",
"searchable_text": "Test Block",
"metadata": {},
"updated_at": "2025-01-01T00:00:00Z",
"semantic_score": 0.7,
"lexical_score": 0.8,
"category_score": 0.0,
"recency_score": 0.3,
"combined_score": 0.5,
"total_count": 1,
},
]
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_query.return_value = mock_results
mock_embed.return_value = [0.1] * embeddings.EMBEDDING_DIM
results, total = await unified_hybrid_search(
query="test",
content_types=[ContentType.BLOCK],
page=1,
page_size=20,
)
# Verify content_types parameter was passed correctly
call_args = mock_query.call_args
params = call_args[0][1:]
# The content types should be in the params as a list
assert ["BLOCK"] in params
assert len(results) == 1
assert total == 1
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_unified_hybrid_search_with_user_id():
"""Test unified search with user_id for private content."""
mock_results = [
{
"content_type": "STORE_AGENT",
"content_id": "agent-1",
"searchable_text": "My Private Agent",
"metadata": {},
"updated_at": "2025-01-01T00:00:00Z",
"semantic_score": 0.7,
"lexical_score": 0.8,
"category_score": 0.0,
"recency_score": 0.3,
"combined_score": 0.6,
"total_count": 1,
},
]
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_query.return_value = mock_results
mock_embed.return_value = [0.1] * embeddings.EMBEDDING_DIM
results, total = await unified_hybrid_search(
query="test",
user_id="user-123",
page=1,
page_size=20,
)
# Verify SQL contains user_id filter
call_args = mock_query.call_args
sql_template = call_args[0][0]
params = call_args[0][1:]
assert 'uce."userId"' in sql_template
assert "user-123" in params
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_unified_hybrid_search_custom_weights():
"""Test unified search with custom weights."""
custom_weights = UnifiedSearchWeights(
semantic=0.6,
lexical=0.2,
category=0.1,
recency=0.1,
)
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_query.return_value = []
mock_embed.return_value = [0.1] * embeddings.EMBEDDING_DIM
results, total = await unified_hybrid_search(
query="test",
weights=custom_weights,
page=1,
page_size=20,
)
# Verify custom weights are in parameters
call_args = mock_query.call_args
params = call_args[0][1:]
assert 0.6 in params # semantic weight
assert 0.2 in params # lexical weight
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_unified_hybrid_search_graceful_degradation():
"""Test unified search gracefully degrades when embeddings unavailable."""
mock_results = [
{
"content_type": "DOCUMENTATION",
"content_id": "doc-1",
"searchable_text": "API Documentation",
"metadata": {},
"updated_at": "2025-01-01T00:00:00Z",
"semantic_score": 0.0, # Zero because no embedding
"lexical_score": 0.8,
"category_score": 0.0,
"recency_score": 0.2,
"combined_score": 0.5,
"total_count": 1,
},
]
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_query.return_value = mock_results
mock_embed.return_value = None # Embedding failure
# Should NOT raise - graceful degradation
results, total = await unified_hybrid_search(
query="test",
page=1,
page_size=20,
)
assert len(results) == 1
assert total == 1
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_unified_hybrid_search_empty_query():
"""Test unified search with empty query returns empty results."""
results, total = await unified_hybrid_search(
query="",
page=1,
page_size=20,
)
assert results == []
assert total == 0
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_unified_hybrid_search_pagination():
"""Test unified search pagination with BM25 reranking.
Pagination happens in SQL (LIMIT/OFFSET), then BM25 reranking is applied
to the paginated results.
"""
# Create mock results that SQL would return for a page
mock_results = [
{
"content_type": "STORE_AGENT",
"content_id": f"agent-{i}",
"searchable_text": f"Agent {i} description",
"metadata": {"name": f"Agent {i}"},
"updated_at": "2025-01-01T00:00:00Z",
"semantic_score": 0.7,
"lexical_score": 0.8 - (i * 0.01),
"category_score": 0.5,
"recency_score": 0.3,
"combined_score": 0.6 - (i * 0.01),
"total_count": 50,
}
for i in range(15) # SQL returns page_size results
]
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_query.return_value = mock_results
mock_embed.return_value = [0.1] * embeddings.EMBEDDING_DIM
results, total = await unified_hybrid_search(
query="test",
page=3,
page_size=15,
)
# Verify results returned
assert len(results) == 15
assert total == 50 # Total from SQL COUNT(*) OVER()
# Verify the SQL query uses page_size and offset
call_args = mock_query.call_args
params = call_args[0]
# Last two params are page_size and offset
page_size_param = params[-2]
offset_param = params[-1]
assert page_size_param == 15
assert offset_param == 30 # (page 3 - 1) * 15
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_unified_hybrid_search_schema_prefix():
"""Test unified search uses schema_prefix placeholder."""
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_query.return_value = []
mock_embed.return_value = [0.1] * embeddings.EMBEDDING_DIM
await unified_hybrid_search(
query="test",
page=1,
page_size=20,
)
call_args = mock_query.call_args
sql_template = call_args[0][0]
# Verify schema_prefix placeholder is used for table references
assert "{schema_prefix}" in sql_template
assert '"UnifiedContentEmbedding"' in sql_template
if __name__ == "__main__":
pytest.main([__file__, "-v", "-s"])

View File

@@ -221,3 +221,23 @@ class ReviewSubmissionRequest(pydantic.BaseModel):
is_approved: bool
comments: str # External comments visible to creator
internal_comments: str | None = None # Private admin notes
class UnifiedSearchResult(pydantic.BaseModel):
"""A single result from unified hybrid search across all content types."""
content_type: str # STORE_AGENT, BLOCK, DOCUMENTATION
content_id: str
searchable_text: str
metadata: dict | None = None
updated_at: datetime.datetime | None = None
combined_score: float | None = None
semantic_score: float | None = None
lexical_score: float | None = None
class UnifiedSearchResponse(pydantic.BaseModel):
"""Response model for unified search across all content types."""
results: list[UnifiedSearchResult]
pagination: Pagination

View File

@@ -7,12 +7,15 @@ from typing import Literal
import autogpt_libs.auth
import fastapi
import fastapi.responses
import prisma.enums
import backend.data.graph
import backend.util.json
from backend.util.models import Pagination
from . import cache as store_cache
from . import db as store_db
from . import hybrid_search as store_hybrid_search
from . import image_gen as store_image_gen
from . import media as store_media
from . import model as store_model
@@ -146,6 +149,102 @@ async def get_agents(
return agents
##############################################
############### Search Endpoints #############
##############################################
@router.get(
"/search",
summary="Unified search across all content types",
tags=["store", "public"],
response_model=store_model.UnifiedSearchResponse,
)
async def unified_search(
query: str,
content_types: list[str] | None = fastapi.Query(
default=None,
description="Content types to search: STORE_AGENT, BLOCK, DOCUMENTATION. If not specified, searches all.",
),
page: int = 1,
page_size: int = 20,
user_id: str | None = fastapi.Security(
autogpt_libs.auth.get_optional_user_id, use_cache=False
),
):
"""
Search across all content types (store agents, blocks, documentation) using hybrid search.
Combines semantic (embedding-based) and lexical (text-based) search for best results.
Args:
query: The search query string
content_types: Optional list of content types to filter by (STORE_AGENT, BLOCK, DOCUMENTATION)
page: Page number for pagination (default 1)
page_size: Number of results per page (default 20)
user_id: Optional authenticated user ID (for user-scoped content in future)
Returns:
UnifiedSearchResponse: Paginated list of search results with relevance scores
"""
if page < 1:
raise fastapi.HTTPException(
status_code=422, detail="Page must be greater than 0"
)
if page_size < 1:
raise fastapi.HTTPException(
status_code=422, detail="Page size must be greater than 0"
)
# Convert string content types to enum
content_type_enums: list[prisma.enums.ContentType] | None = None
if content_types:
try:
content_type_enums = [prisma.enums.ContentType(ct) for ct in content_types]
except ValueError as e:
raise fastapi.HTTPException(
status_code=422,
detail=f"Invalid content type. Valid values: STORE_AGENT, BLOCK, DOCUMENTATION. Error: {e}",
)
# Perform unified hybrid search
results, total = await store_hybrid_search.unified_hybrid_search(
query=query,
content_types=content_type_enums,
user_id=user_id,
page=page,
page_size=page_size,
)
# Convert results to response model
search_results = [
store_model.UnifiedSearchResult(
content_type=r["content_type"],
content_id=r["content_id"],
searchable_text=r.get("searchable_text", ""),
metadata=r.get("metadata"),
updated_at=r.get("updated_at"),
combined_score=r.get("combined_score"),
semantic_score=r.get("semantic_score"),
lexical_score=r.get("lexical_score"),
)
for r in results
]
total_pages = (total + page_size - 1) // page_size if total > 0 else 0
return store_model.UnifiedSearchResponse(
results=search_results,
pagination=Pagination(
total_items=total,
total_pages=total_pages,
current_page=page,
page_size=page_size,
),
)
@router.get(
"/agents/{username}/{agent_name}",
summary="Get specific agent",

View File

@@ -0,0 +1,272 @@
"""Tests for the semantic_search function."""
import pytest
from prisma.enums import ContentType
from backend.api.features.store.embeddings import EMBEDDING_DIM, semantic_search
@pytest.mark.asyncio
async def test_search_blocks_only(mocker):
"""Test searching only BLOCK content type."""
# Mock embed_query to return a test embedding
mock_embedding = [0.1] * EMBEDDING_DIM
mocker.patch(
"backend.api.features.store.embeddings.embed_query",
return_value=mock_embedding,
)
# Mock query_raw_with_schema to return test results
mock_results = [
{
"content_id": "block-123",
"content_type": "BLOCK",
"searchable_text": "Calculator Block - Performs arithmetic operations",
"metadata": {"name": "Calculator", "categories": ["Math"]},
"similarity": 0.85,
}
]
mocker.patch(
"backend.api.features.store.embeddings.query_raw_with_schema",
return_value=mock_results,
)
results = await semantic_search(
query="calculate numbers",
content_types=[ContentType.BLOCK],
)
assert len(results) == 1
assert results[0]["content_type"] == "BLOCK"
assert results[0]["content_id"] == "block-123"
assert results[0]["similarity"] == 0.85
@pytest.mark.asyncio
async def test_search_multiple_content_types(mocker):
"""Test searching multiple content types simultaneously."""
mock_embedding = [0.1] * EMBEDDING_DIM
mocker.patch(
"backend.api.features.store.embeddings.embed_query",
return_value=mock_embedding,
)
mock_results = [
{
"content_id": "block-123",
"content_type": "BLOCK",
"searchable_text": "Calculator Block",
"metadata": {},
"similarity": 0.85,
},
{
"content_id": "doc-456",
"content_type": "DOCUMENTATION",
"searchable_text": "How to use Calculator",
"metadata": {},
"similarity": 0.75,
},
]
mocker.patch(
"backend.api.features.store.embeddings.query_raw_with_schema",
return_value=mock_results,
)
results = await semantic_search(
query="calculator",
content_types=[ContentType.BLOCK, ContentType.DOCUMENTATION],
)
assert len(results) == 2
assert results[0]["content_type"] == "BLOCK"
assert results[1]["content_type"] == "DOCUMENTATION"
@pytest.mark.asyncio
async def test_search_with_min_similarity_threshold(mocker):
"""Test that results below min_similarity are filtered out."""
mock_embedding = [0.1] * EMBEDDING_DIM
mocker.patch(
"backend.api.features.store.embeddings.embed_query",
return_value=mock_embedding,
)
# Only return results above 0.7 similarity
mock_results = [
{
"content_id": "block-123",
"content_type": "BLOCK",
"searchable_text": "Calculator Block",
"metadata": {},
"similarity": 0.85,
}
]
mocker.patch(
"backend.api.features.store.embeddings.query_raw_with_schema",
return_value=mock_results,
)
results = await semantic_search(
query="calculate",
content_types=[ContentType.BLOCK],
min_similarity=0.7,
)
assert len(results) == 1
assert results[0]["similarity"] >= 0.7
@pytest.mark.asyncio
async def test_search_fallback_to_lexical(mocker):
"""Test fallback to lexical search when embeddings fail."""
# Mock embed_query to return None (embeddings unavailable)
mocker.patch(
"backend.api.features.store.embeddings.embed_query",
return_value=None,
)
mock_lexical_results = [
{
"content_id": "block-123",
"content_type": "BLOCK",
"searchable_text": "Calculator Block performs calculations",
"metadata": {},
"similarity": 0.0,
}
]
mocker.patch(
"backend.api.features.store.embeddings.query_raw_with_schema",
return_value=mock_lexical_results,
)
results = await semantic_search(
query="calculator",
content_types=[ContentType.BLOCK],
)
assert len(results) == 1
assert results[0]["similarity"] == 0.0 # Lexical search returns 0 similarity
@pytest.mark.asyncio
async def test_search_empty_query():
"""Test that empty query returns no results."""
results = await semantic_search(query="")
assert results == []
results = await semantic_search(query=" ")
assert results == []
@pytest.mark.asyncio
async def test_search_with_user_id_filter(mocker):
"""Test searching with user_id filter for private content."""
mock_embedding = [0.1] * EMBEDDING_DIM
mocker.patch(
"backend.api.features.store.embeddings.embed_query",
return_value=mock_embedding,
)
mock_results = [
{
"content_id": "agent-789",
"content_type": "LIBRARY_AGENT",
"searchable_text": "My Custom Agent",
"metadata": {},
"similarity": 0.9,
}
]
mocker.patch(
"backend.api.features.store.embeddings.query_raw_with_schema",
return_value=mock_results,
)
results = await semantic_search(
query="custom agent",
content_types=[ContentType.LIBRARY_AGENT],
user_id="user-123",
)
assert len(results) == 1
assert results[0]["content_type"] == "LIBRARY_AGENT"
@pytest.mark.asyncio
async def test_search_limit_parameter(mocker):
"""Test that limit parameter correctly limits results."""
mock_embedding = [0.1] * EMBEDDING_DIM
mocker.patch(
"backend.api.features.store.embeddings.embed_query",
return_value=mock_embedding,
)
# Return 5 results
mock_results = [
{
"content_id": f"block-{i}",
"content_type": "BLOCK",
"searchable_text": f"Block {i}",
"metadata": {},
"similarity": 0.8,
}
for i in range(5)
]
mocker.patch(
"backend.api.features.store.embeddings.query_raw_with_schema",
return_value=mock_results,
)
results = await semantic_search(
query="block",
content_types=[ContentType.BLOCK],
limit=5,
)
assert len(results) == 5
@pytest.mark.asyncio
async def test_search_default_content_types(mocker):
"""Test that default content_types includes BLOCK, STORE_AGENT, and DOCUMENTATION."""
mock_embedding = [0.1] * EMBEDDING_DIM
mocker.patch(
"backend.api.features.store.embeddings.embed_query",
return_value=mock_embedding,
)
mock_query_raw = mocker.patch(
"backend.api.features.store.embeddings.query_raw_with_schema",
return_value=[],
)
await semantic_search(query="test")
# Check that the SQL query includes all three default content types
call_args = mock_query_raw.call_args
assert "BLOCK" in str(call_args)
assert "STORE_AGENT" in str(call_args)
assert "DOCUMENTATION" in str(call_args)
@pytest.mark.asyncio
async def test_search_handles_database_error(mocker):
"""Test that database errors are handled gracefully."""
mock_embedding = [0.1] * EMBEDDING_DIM
mocker.patch(
"backend.api.features.store.embeddings.embed_query",
return_value=mock_embedding,
)
# Simulate database error
mocker.patch(
"backend.api.features.store.embeddings.query_raw_with_schema",
side_effect=Exception("Database connection failed"),
)
results = await semantic_search(
query="test",
content_types=[ContentType.BLOCK],
)
# Should return empty list on error
assert results == []

View File

@@ -680,12 +680,23 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
return False, reviewed_data
async def _execute(self, input_data: BlockInput, **kwargs) -> BlockOutput:
# Check for review requirement and get potentially modified input data
should_pause, input_data = await self.is_block_exec_need_review(
input_data, **kwargs
# Check for review requirement only if running within a graph execution context
# Direct block execution (e.g., from chat) skips the review process
has_graph_context = all(
key in kwargs
for key in (
"node_exec_id",
"graph_exec_id",
"graph_id",
"execution_context",
)
)
if should_pause:
return
if has_graph_context:
should_pause, input_data = await self.is_block_exec_need_review(
input_data, **kwargs
)
if should_pause:
return
# Validate the input data (original or reviewer-modified) once
if error := self.input_schema.validate_data(input_data):

View File

@@ -9,6 +9,7 @@ from backend.api.features.library.db import (
from backend.api.features.store.db import get_store_agent_details, get_store_agents
from backend.api.features.store.embeddings import (
backfill_missing_embeddings,
cleanup_orphaned_embeddings,
get_embedding_stats,
)
from backend.data import db
@@ -221,6 +222,7 @@ class DatabaseManager(AppService):
# Store Embeddings
get_embedding_stats = _(get_embedding_stats)
backfill_missing_embeddings = _(backfill_missing_embeddings)
cleanup_orphaned_embeddings = _(cleanup_orphaned_embeddings)
# Summary data - async
get_user_execution_summary_data = _(get_user_execution_summary_data)
@@ -276,6 +278,7 @@ class DatabaseManagerClient(AppServiceClient):
# Store Embeddings
get_embedding_stats = _(d.get_embedding_stats)
backfill_missing_embeddings = _(d.backfill_missing_embeddings)
cleanup_orphaned_embeddings = _(d.cleanup_orphaned_embeddings)
class DatabaseManagerAsyncClient(AppServiceClient):

View File

@@ -28,6 +28,7 @@ from backend.data.auth.oauth import cleanup_expired_oauth_tokens
from backend.data.block import BlockInput
from backend.data.execution import GraphExecutionWithNodes
from backend.data.model import CredentialsMetaInput
from backend.data.onboarding import increment_onboarding_runs
from backend.executor import utils as execution_utils
from backend.monitoring import (
NotificationJobArgs,
@@ -156,6 +157,7 @@ async def _execute_graph(**kwargs):
inputs=args.input_data,
graph_credentials_inputs=args.input_credentials,
)
await increment_onboarding_runs(args.user_id)
elapsed = asyncio.get_event_loop().time() - start_time
logger.info(
f"Graph execution started with ID {graph_exec.id} for graph {args.graph_id} "
@@ -255,14 +257,14 @@ def execution_accuracy_alerts():
def ensure_embeddings_coverage():
"""
Ensure approved store agents have embeddings for hybrid search.
Ensure all content types (store agents, blocks, docs) have embeddings for search.
Processes ALL missing embeddings in batches of 10 until 100% coverage.
Missing embeddings = agents invisible in hybrid search.
Processes ALL missing embeddings in batches of 10 per content type until 100% coverage.
Missing embeddings = content invisible in hybrid search.
Schedule: Runs every 6 hours (balanced between coverage and API costs).
- Catches agents approved between scheduled runs
- Batch size 10: gradual processing to avoid rate limits
- Catches new content added between scheduled runs
- Batch size 10 per content type: gradual processing to avoid rate limits
- Manual trigger available via execute_ensure_embeddings_coverage endpoint
"""
db_client = get_database_manager_client()
@@ -273,51 +275,91 @@ def ensure_embeddings_coverage():
logger.error(
f"Failed to get embedding stats: {stats['error']} - skipping backfill"
)
return {"processed": 0, "success": 0, "failed": 0, "error": stats["error"]}
return {
"backfill": {"processed": 0, "success": 0, "failed": 0},
"cleanup": {"deleted": 0},
"error": stats["error"],
}
if stats["without_embeddings"] == 0:
logger.info("All approved agents have embeddings, skipping backfill")
return {"processed": 0, "success": 0, "failed": 0}
logger.info(
f"Found {stats['without_embeddings']} agents without embeddings "
f"({stats['coverage_percent']}% coverage) - processing all"
)
# Extract totals from new stats structure
totals = stats.get("totals", {})
without_embeddings = totals.get("without_embeddings", 0)
coverage_percent = totals.get("coverage_percent", 0)
total_processed = 0
total_success = 0
total_failed = 0
# Process in batches until no more missing embeddings
while True:
result = db_client.backfill_missing_embeddings(batch_size=10)
if without_embeddings == 0:
logger.info("All content has embeddings, skipping backfill")
else:
# Log per-content-type stats for visibility
by_type = stats.get("by_type", {})
for content_type, type_stats in by_type.items():
if type_stats.get("without_embeddings", 0) > 0:
logger.info(
f"{content_type}: {type_stats['without_embeddings']} items without embeddings "
f"({type_stats['coverage_percent']}% coverage)"
)
total_processed += result["processed"]
total_success += result["success"]
total_failed += result["failed"]
logger.info(
f"Total: {without_embeddings} items without embeddings "
f"({coverage_percent}% coverage) - processing all"
)
if result["processed"] == 0:
# No more missing embeddings
break
# Process in batches until no more missing embeddings
while True:
result = db_client.backfill_missing_embeddings(batch_size=10)
if result["success"] == 0 and result["processed"] > 0:
# All attempts in this batch failed - stop to avoid infinite loop
logger.error(
f"All {result['processed']} embedding attempts failed - stopping backfill"
)
break
total_processed += result["processed"]
total_success += result["success"]
total_failed += result["failed"]
# Small delay between batches to avoid rate limits
time.sleep(1)
if result["processed"] == 0:
# No more missing embeddings
break
if result["success"] == 0 and result["processed"] > 0:
# All attempts in this batch failed - stop to avoid infinite loop
logger.error(
f"All {result['processed']} embedding attempts failed - stopping backfill"
)
break
# Small delay between batches to avoid rate limits
time.sleep(1)
logger.info(
f"Embedding backfill completed: {total_success}/{total_processed} succeeded, "
f"{total_failed} failed"
)
# Clean up orphaned embeddings for blocks and docs
logger.info("Running cleanup for orphaned embeddings (blocks/docs)...")
cleanup_result = db_client.cleanup_orphaned_embeddings()
cleanup_totals = cleanup_result.get("totals", {})
cleanup_deleted = cleanup_totals.get("deleted", 0)
if cleanup_deleted > 0:
logger.info(f"Cleanup completed: deleted {cleanup_deleted} orphaned embeddings")
by_type = cleanup_result.get("by_type", {})
for content_type, type_result in by_type.items():
if type_result.get("deleted", 0) > 0:
logger.info(
f"{content_type}: deleted {type_result['deleted']} orphaned embeddings"
)
else:
logger.info("Cleanup completed: no orphaned embeddings found")
logger.info(
f"Embedding backfill completed: {total_success}/{total_processed} succeeded, "
f"{total_failed} failed"
)
return {
"processed": total_processed,
"success": total_success,
"failed": total_failed,
"backfill": {
"processed": total_processed,
"success": total_success,
"failed": total_failed,
},
"cleanup": {
"deleted": cleanup_deleted,
},
}
@@ -560,6 +602,18 @@ class Scheduler(AppService):
self.scheduler.add_listener(job_max_instances_listener, EVENT_JOB_MAX_INSTANCES)
self.scheduler.start()
# Run embedding backfill immediately on startup
# This ensures blocks/docs are searchable right away, not after 6 hours
# Safe to run on multiple pods - uses upserts and checks for existing embeddings
if self.register_system_tasks:
logger.info("Running embedding backfill on startup...")
try:
result = ensure_embeddings_coverage()
logger.info(f"Startup embedding backfill complete: {result}")
except Exception as e:
logger.error(f"Startup embedding backfill failed: {e}")
# Don't fail startup - the scheduled job will retry later
# Keep the service running since BackgroundScheduler doesn't block
super().run_service()

View File

@@ -16,7 +16,7 @@ import pickle
import threading
import time
from dataclasses import dataclass
from functools import wraps
from functools import cache, wraps
from typing import Any, Callable, ParamSpec, Protocol, TypeVar, cast, runtime_checkable
from redis import ConnectionPool, Redis
@@ -38,29 +38,34 @@ settings = Settings()
# maxmemory 2gb # Set memory limit (adjust based on your needs)
# save "" # Disable persistence if using Redis purely for caching
# Create a dedicated Redis connection pool for caching (binary mode for pickle)
_cache_pool: ConnectionPool | None = None
@conn_retry("Redis", "Acquiring cache connection pool")
@cache
def _get_cache_pool() -> ConnectionPool:
"""Get or create a connection pool for cache operations."""
global _cache_pool
if _cache_pool is None:
_cache_pool = ConnectionPool(
host=settings.config.redis_host,
port=settings.config.redis_port,
password=settings.config.redis_password or None,
decode_responses=False, # Binary mode for pickle
max_connections=50,
socket_keepalive=True,
socket_connect_timeout=5,
retry_on_timeout=True,
)
return _cache_pool
"""Get or create a connection pool for cache operations (lazy, thread-safe)."""
return ConnectionPool(
host=settings.config.redis_host,
port=settings.config.redis_port,
password=settings.config.redis_password or None,
decode_responses=False, # Binary mode for pickle
max_connections=50,
socket_keepalive=True,
socket_connect_timeout=5,
retry_on_timeout=True,
)
redis = Redis(connection_pool=_get_cache_pool())
@cache
@conn_retry("Redis", "Acquiring cache connection")
def _get_redis() -> Redis:
"""
Get the lazily-initialized Redis client for shared cache operations.
Uses @cache for thread-safe singleton behavior - connection is only
established when first accessed, allowing services that only use
in-memory caching to work without Redis configuration.
"""
r = Redis(connection_pool=_get_cache_pool())
r.ping() # Verify connection
return r
@dataclass
@@ -179,9 +184,9 @@ def cached(
try:
if refresh_ttl_on_get:
# Use GETEX to get value and refresh expiry atomically
cached_bytes = redis.getex(redis_key, ex=ttl_seconds)
cached_bytes = _get_redis().getex(redis_key, ex=ttl_seconds)
else:
cached_bytes = redis.get(redis_key)
cached_bytes = _get_redis().get(redis_key)
if cached_bytes and isinstance(cached_bytes, bytes):
return pickle.loads(cached_bytes)
@@ -195,7 +200,7 @@ def cached(
"""Set value in Redis with TTL."""
try:
pickled_value = pickle.dumps(value, protocol=pickle.HIGHEST_PROTOCOL)
redis.setex(redis_key, ttl_seconds, pickled_value)
_get_redis().setex(redis_key, ttl_seconds, pickled_value)
except Exception as e:
logger.error(
f"Redis error storing cache for {target_func.__name__}: {e}"
@@ -333,14 +338,18 @@ def cached(
if pattern:
# Clear entries matching pattern
keys = list(
redis.scan_iter(f"cache:{target_func.__name__}:{pattern}")
_get_redis().scan_iter(
f"cache:{target_func.__name__}:{pattern}"
)
)
else:
# Clear all cache keys
keys = list(redis.scan_iter(f"cache:{target_func.__name__}:*"))
keys = list(
_get_redis().scan_iter(f"cache:{target_func.__name__}:*")
)
if keys:
pipeline = redis.pipeline()
pipeline = _get_redis().pipeline()
for key in keys:
pipeline.delete(key)
pipeline.execute()
@@ -355,7 +364,9 @@ def cached(
def cache_info() -> dict[str, int | None]:
if shared_cache:
cache_keys = list(redis.scan_iter(f"cache:{target_func.__name__}:*"))
cache_keys = list(
_get_redis().scan_iter(f"cache:{target_func.__name__}:*")
)
return {
"size": len(cache_keys),
"maxsize": None, # Redis manages its own size
@@ -373,10 +384,8 @@ def cached(
key = _make_hashable_key(args, kwargs)
if shared_cache:
redis_key = _make_redis_key(key, target_func.__name__)
if redis.exists(redis_key):
redis.delete(redis_key)
return True
return False
deleted_count = cast(int, _get_redis().delete(redis_key))
return deleted_count > 0
else:
if key in cache_storage:
del cache_storage[key]

View File

@@ -43,4 +43,6 @@ CREATE UNIQUE INDEX "UnifiedContentEmbedding_contentType_contentId_userId_key" O
-- CreateIndex
-- HNSW index for fast vector similarity search on embeddings
-- Uses cosine distance operator (<=>), which matches the query in hybrid_search.py
-- Note: Drop first in case Prisma created a btree index (Prisma doesn't support HNSW)
DROP INDEX IF EXISTS "UnifiedContentEmbedding_embedding_idx";
CREATE INDEX "UnifiedContentEmbedding_embedding_idx" ON "UnifiedContentEmbedding" USING hnsw ("embedding" public.vector_cosine_ops);

View File

@@ -0,0 +1,35 @@
-- Add tsvector search column to UnifiedContentEmbedding for unified full-text search
-- This enables hybrid search (semantic + lexical) across all content types
-- Add search column (IF NOT EXISTS for idempotency)
ALTER TABLE "UnifiedContentEmbedding" ADD COLUMN IF NOT EXISTS "search" tsvector DEFAULT ''::tsvector;
-- Create GIN index for fast full-text search
-- No @@index in schema.prisma - Prisma may generate DROP INDEX on migrate dev
-- If that happens, just let it drop and this migration will recreate it, or manually re-run:
-- CREATE INDEX IF NOT EXISTS "UnifiedContentEmbedding_search_idx" ON "UnifiedContentEmbedding" USING GIN ("search");
DROP INDEX IF EXISTS "UnifiedContentEmbedding_search_idx";
CREATE INDEX "UnifiedContentEmbedding_search_idx" ON "UnifiedContentEmbedding" USING GIN ("search");
-- Drop existing trigger/function if exists
DROP TRIGGER IF EXISTS "update_unified_tsvector" ON "UnifiedContentEmbedding";
DROP FUNCTION IF EXISTS update_unified_tsvector_column();
-- Create function to auto-update tsvector from searchableText
CREATE OR REPLACE FUNCTION update_unified_tsvector_column() RETURNS TRIGGER AS $$
BEGIN
NEW.search := to_tsvector('english', COALESCE(NEW."searchableText", ''));
RETURN NEW;
END;
$$ LANGUAGE plpgsql SECURITY DEFINER SET search_path = platform, pg_temp;
-- Create trigger to auto-update search column on insert/update
CREATE TRIGGER "update_unified_tsvector"
BEFORE INSERT OR UPDATE ON "UnifiedContentEmbedding"
FOR EACH ROW
EXECUTE FUNCTION update_unified_tsvector_column();
-- Backfill existing rows
UPDATE "UnifiedContentEmbedding"
SET search = to_tsvector('english', COALESCE("searchableText", ''))
WHERE search IS NULL OR search = ''::tsvector;

View File

@@ -0,0 +1,90 @@
-- Remove the old search column from StoreListingVersion
-- This column has been replaced by UnifiedContentEmbedding.search
-- which provides unified hybrid search across all content types
-- First drop the dependent view
DROP VIEW IF EXISTS "StoreAgent";
-- Drop the trigger and function for old search column
-- The original trigger was created in 20251016093049_add_full_text_search
DROP TRIGGER IF EXISTS "update_tsvector" ON "StoreListingVersion";
DROP FUNCTION IF EXISTS update_tsvector_column();
-- Drop the index
DROP INDEX IF EXISTS "StoreListingVersion_search_idx";
-- NOTE: Keeping search column for now to allow easy revert if needed
-- Uncomment to fully remove once migration is verified in production:
-- ALTER TABLE "StoreListingVersion" DROP COLUMN IF EXISTS "search";
-- Recreate the StoreAgent view WITHOUT the search column
-- (Search now handled by UnifiedContentEmbedding)
CREATE OR REPLACE VIEW "StoreAgent" AS
WITH latest_versions AS (
SELECT
"storeListingId",
MAX(version) AS max_version
FROM "StoreListingVersion"
WHERE "submissionStatus" = 'APPROVED'
GROUP BY "storeListingId"
),
agent_versions AS (
SELECT
"storeListingId",
array_agg(DISTINCT version::text ORDER BY version::text) AS versions
FROM "StoreListingVersion"
WHERE "submissionStatus" = 'APPROVED'
GROUP BY "storeListingId"
),
agent_graph_versions AS (
SELECT
"storeListingId",
array_agg(DISTINCT "agentGraphVersion"::text ORDER BY "agentGraphVersion"::text) AS graph_versions
FROM "StoreListingVersion"
WHERE "submissionStatus" = 'APPROVED'
GROUP BY "storeListingId"
)
SELECT
sl.id AS listing_id,
slv.id AS "storeListingVersionId",
slv."createdAt" AS updated_at,
sl.slug,
COALESCE(slv.name, '') AS agent_name,
slv."videoUrl" AS agent_video,
slv."agentOutputDemoUrl" AS agent_output_demo,
COALESCE(slv."imageUrls", ARRAY[]::text[]) AS agent_image,
slv."isFeatured" AS featured,
p.username AS creator_username,
p."avatarUrl" AS creator_avatar,
slv."subHeading" AS sub_heading,
slv.description,
slv.categories,
COALESCE(ar.run_count, 0::bigint) AS runs,
COALESCE(rs.avg_rating, 0.0)::double precision AS rating,
COALESCE(av.versions, ARRAY[slv.version::text]) AS versions,
COALESCE(agv.graph_versions, ARRAY[slv."agentGraphVersion"::text]) AS "agentGraphVersions",
slv."agentGraphId",
slv."isAvailable" AS is_available,
COALESCE(sl."useForOnboarding", false) AS "useForOnboarding"
FROM "StoreListing" sl
JOIN latest_versions lv
ON sl.id = lv."storeListingId"
JOIN "StoreListingVersion" slv
ON slv."storeListingId" = lv."storeListingId"
AND slv.version = lv.max_version
AND slv."submissionStatus" = 'APPROVED'
JOIN "AgentGraph" a
ON slv."agentGraphId" = a.id
AND slv."agentGraphVersion" = a.version
LEFT JOIN "Profile" p
ON sl."owningUserId" = p."userId"
LEFT JOIN "mv_review_stats" rs
ON sl.id = rs."storeListingId"
LEFT JOIN "mv_agent_run_counts" ar
ON a.id = ar."agentGraphId"
LEFT JOIN agent_versions av
ON sl.id = av."storeListingId"
LEFT JOIN agent_graph_versions agv
ON sl.id = agv."storeListingId"
WHERE sl."isDeleted" = false
AND sl."hasApprovedVersion" = true;

View File

@@ -5339,6 +5339,24 @@ urllib3 = ">=1.26.14,<3"
fastembed = ["fastembed (>=0.7,<0.8)"]
fastembed-gpu = ["fastembed-gpu (>=0.7,<0.8)"]
[[package]]
name = "rank-bm25"
version = "0.2.2"
description = "Various BM25 algorithms for document ranking"
optional = false
python-versions = "*"
groups = ["main"]
files = [
{file = "rank_bm25-0.2.2-py3-none-any.whl", hash = "sha256:7bd4a95571adadfc271746fa146a4bcfd89c0cf731e49c3d1ad863290adbe8ae"},
{file = "rank_bm25-0.2.2.tar.gz", hash = "sha256:096ccef76f8188563419aaf384a02f0ea459503fdf77901378d4fd9d87e5e51d"},
]
[package.dependencies]
numpy = "*"
[package.extras]
dev = ["pytest"]
[[package]]
name = "rapidfuzz"
version = "3.13.0"
@@ -7494,4 +7512,4 @@ cffi = ["cffi (>=1.11)"]
[metadata]
lock-version = "2.1"
python-versions = ">=3.10,<3.14"
content-hash = "86838b5ae40d606d6e01a14dad8a56c389d890d7a6a0c274a6602cca80f0df84"
content-hash = "18b92e09596298c82432e4d0a85cb6d80a40b4229bee0a0c15f0529fd6cb21a4"

View File

@@ -46,6 +46,7 @@ poetry = "2.1.1" # CHECK DEPENDABOT SUPPORT BEFORE UPGRADING
postmarker = "^1.0"
praw = "~7.8.1"
prisma = "^0.15.0"
rank-bm25 = "^0.2.2"
prometheus-client = "^0.22.1"
prometheus-fastapi-instrumentator = "^7.0.0"
psutil = "^7.0.0"

View File

@@ -937,7 +937,7 @@ model StoreListingVersion {
// Old versions can be made unavailable by the author if desired
isAvailable Boolean @default(true)
search Unsupported("tsvector")? @default(dbgenerated("''::tsvector"))
// Note: search column removed - now using UnifiedContentEmbedding.search
// Version workflow state
submissionStatus SubmissionStatus @default(DRAFT)
@@ -1002,6 +1002,7 @@ model UnifiedContentEmbedding {
// Search data
embedding Unsupported("vector(1536)") // pgvector embedding (extension in platform schema)
searchableText String // Combined text for search and fallback
search Unsupported("tsvector")? @default(dbgenerated("''::tsvector")) // Full-text search (auto-populated by trigger)
metadata Json @default("{}") // Content-specific metadata
@@unique([contentType, contentId, userId], map: "UnifiedContentEmbedding_contentType_contentId_userId_key")
@@ -1009,6 +1010,8 @@ model UnifiedContentEmbedding {
@@index([userId])
@@index([contentType, userId])
@@index([embedding], map: "UnifiedContentEmbedding_embedding_idx")
// NO @@index for search - GIN index "UnifiedContentEmbedding_search_idx" created via SQL migration
// Prisma may generate DROP INDEX on migrate dev - that's okay, migration recreates it
}
model StoreListingReview {

View File

@@ -1,6 +1,6 @@
import { CredentialsInput } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/modals/CredentialsInputs/CredentialsInput";
import { CredentialsMetaInput } from "@/app/api/__generated__/models/credentialsMetaInput";
import { GraphMeta } from "@/app/api/__generated__/models/graphMeta";
import { CredentialsInput } from "@/components/contextual/CredentialsInput/CredentialsInput";
import { useState } from "react";
import { getSchemaDefaultCredentials } from "../../helpers";
import { areAllCredentialsSet, getCredentialFields } from "./helpers";

View File

@@ -1,12 +1,12 @@
"use client";
import { RunAgentInputs } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/modals/RunAgentInputs/RunAgentInputs";
import {
Card,
CardContent,
CardHeader,
CardTitle,
} from "@/components/__legacy__/ui/card";
import { RunAgentInputs } from "@/components/contextual/RunAgentInputs/RunAgentInputs";
import { ErrorCard } from "@/components/molecules/ErrorCard/ErrorCard";
import { CircleNotchIcon } from "@phosphor-icons/react/dist/ssr";
import { Play } from "lucide-react";

View File

@@ -1,11 +1,11 @@
"use client";
import { CredentialsInput } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/modals/CredentialsInputs/CredentialsInput";
import { useGetOauthGetOauthAppInfo } from "@/app/api/__generated__/endpoints/oauth/oauth";
import { okData } from "@/app/api/helpers";
import { Button } from "@/components/atoms/Button/Button";
import { Text } from "@/components/atoms/Text/Text";
import { AuthCard } from "@/components/auth/AuthCard";
import { CredentialsInput } from "@/components/contextual/CredentialsInput/CredentialsInput";
import { ErrorCard } from "@/components/molecules/ErrorCard/ErrorCard";
import type {
BlockIOCredentialsSubSchema,

View File

@@ -1,11 +1,6 @@
import { BlockUIType } from "@/app/(platform)/build/components/types";
import { useGraphStore } from "@/app/(platform)/build/stores/graphStore";
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
import {
globalRegistry,
OutputActions,
OutputItem,
} from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/selected-views/OutputRenderers";
import { Label } from "@/components/__legacy__/ui/label";
import { ScrollArea } from "@/components/__legacy__/ui/scroll-area";
import {
@@ -23,6 +18,11 @@ import {
TooltipProvider,
TooltipTrigger,
} from "@/components/atoms/Tooltip/BaseTooltip";
import {
globalRegistry,
OutputActions,
OutputItem,
} from "@/components/contextual/OutputRenderers";
import { BookOpenIcon } from "@phosphor-icons/react";
import { useMemo } from "react";
import { useShallow } from "zustand/react/shallow";

View File

@@ -1,7 +1,8 @@
import { useGraphStore } from "@/app/(platform)/build/stores/graphStore";
import { usePostV1ExecuteGraphAgent } from "@/app/api/__generated__/endpoints/graphs/graphs";
import { useToast } from "@/components/molecules/Toast/use-toast";
import {
ApiError,
CredentialsMetaInput,
GraphExecutionMeta,
} from "@/lib/autogpt-server-api";
@@ -9,6 +10,9 @@ import { parseAsInteger, parseAsString, useQueryStates } from "nuqs";
import { useMemo, useState } from "react";
import { uiSchema } from "../../../FlowEditor/nodes/uiSchema";
import { isCredentialFieldSchema } from "@/components/renderers/InputRenderer/custom/CredentialField/helpers";
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
import { useToast } from "@/components/molecules/Toast/use-toast";
import { useReactFlow } from "@xyflow/react";
export const useRunInputDialog = ({
setIsOpen,
@@ -31,6 +35,7 @@ export const useRunInputDialog = ({
flowVersion: parseAsInteger,
});
const { toast } = useToast();
const { setViewport } = useReactFlow();
const { mutateAsync: executeGraph, isPending: isExecutingGraph } =
usePostV1ExecuteGraphAgent({
@@ -42,13 +47,75 @@ export const useRunInputDialog = ({
});
},
onError: (error) => {
// Reset running state on error
if (error instanceof ApiError && error.isGraphValidationError()) {
const errorData = error.response?.detail || {
node_errors: {},
message: undefined,
};
const nodeErrors = errorData.node_errors || {};
if (Object.keys(nodeErrors).length > 0) {
Object.entries(nodeErrors).forEach(
([nodeId, nodeErrorsForNode]) => {
useNodeStore
.getState()
.updateNodeErrors(
nodeId,
nodeErrorsForNode as { [key: string]: string },
);
},
);
} else {
useNodeStore.getState().nodes.forEach((node) => {
useNodeStore.getState().updateNodeErrors(node.id, {});
});
}
toast({
title: errorData?.message || "Graph validation failed",
description:
"Please fix the validation errors on the highlighted nodes and try again.",
variant: "destructive",
});
setIsOpen(false);
const firstBackendId = Object.keys(nodeErrors)[0];
if (firstBackendId) {
const firstErrorNode = useNodeStore
.getState()
.nodes.find(
(n) =>
n.data.metadata?.backend_id === firstBackendId ||
n.id === firstBackendId,
);
if (firstErrorNode) {
setTimeout(() => {
setViewport(
{
x:
-firstErrorNode.position.x * 0.8 +
window.innerWidth / 2 -
150,
y: -firstErrorNode.position.y * 0.8 + 50,
zoom: 0.8,
},
{ duration: 500 },
);
}, 50);
}
}
} else {
toast({
title: "Error running graph",
description:
(error as Error).message || "An unexpected error occurred.",
variant: "destructive",
});
setIsOpen(false);
}
setIsGraphRunning(false);
toast({
title: (error.detail as string) ?? "An unexpected error occurred.",
description: "An unexpected error occurred.",
variant: "destructive",
});
},
},
});

View File

@@ -55,14 +55,16 @@ export const Flow = () => {
const edgeTypes = useMemo(() => ({ custom: CustomEdge }), []);
const onNodeDragStop = useCallback(() => {
const currentNodes = useNodeStore.getState().nodes;
setNodes(
resolveCollisions(nodes, {
resolveCollisions(currentNodes, {
maxIterations: Infinity,
overlapThreshold: 0.5,
margin: 15,
}),
);
}, [setNodes, nodes]);
}, [setNodes]);
const { edges, onConnect, onEdgesChange } = useCustomEdge();
// for loading purpose

View File

@@ -6,6 +6,7 @@ import {
import { useEdgeStore } from "@/app/(platform)/build/stores/edgeStore";
import { useCallback } from "react";
import { useNodeStore } from "../../../stores/nodeStore";
import { useHistoryStore } from "../../../stores/historyStore";
import { CustomEdge } from "./CustomEdge";
export const useCustomEdge = () => {
@@ -51,7 +52,20 @@ export const useCustomEdge = () => {
const onEdgesChange = useCallback(
(changes: EdgeChange<CustomEdge>[]) => {
const hasRemoval = changes.some((change) => change.type === "remove");
const prevState = hasRemoval
? {
nodes: useNodeStore.getState().nodes,
edges: edges,
}
: null;
setEdges(applyEdgeChanges(changes, edges));
if (prevState) {
useHistoryStore.getState().pushState(prevState);
}
},
[edges, setEdges],
);

View File

@@ -20,11 +20,13 @@ type Props = {
export const NodeHeader = ({ data, nodeId }: Props) => {
const updateNodeData = useNodeStore((state) => state.updateNodeData);
const title = (data.metadata?.customized_name as string) || data.title;
const title =
(data.metadata?.customized_name as string) ||
data.hardcodedValues?.agent_name ||
data.title;
const [isEditingTitle, setIsEditingTitle] = useState(false);
const [editedTitle, setEditedTitle] = useState(
beautifyString(title).replace("Block", "").trim(),
);
const [editedTitle, setEditedTitle] = useState(title);
const handleTitleEdit = () => {
updateNodeData(nodeId, {

View File

@@ -1,7 +1,7 @@
"use client";
import type { OutputMetadata } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/selected-views/OutputRenderers";
import { globalRegistry } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/selected-views/OutputRenderers";
import type { OutputMetadata } from "@/components/contextual/OutputRenderers";
import { globalRegistry } from "@/components/contextual/OutputRenderers";
export const TextRenderer: React.FC<{
value: any;

View File

@@ -1,7 +1,3 @@
import {
OutputActions,
OutputItem,
} from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/selected-views/OutputRenderers";
import { ScrollArea } from "@/components/__legacy__/ui/scroll-area";
import { Button } from "@/components/atoms/Button/Button";
import { Text } from "@/components/atoms/Text/Text";
@@ -11,6 +7,10 @@ import {
TooltipProvider,
TooltipTrigger,
} from "@/components/atoms/Tooltip/BaseTooltip";
import {
OutputActions,
OutputItem,
} from "@/components/contextual/OutputRenderers";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { beautifyString } from "@/lib/utils";
import {

View File

@@ -1,6 +1,6 @@
import type { OutputMetadata } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/selected-views/OutputRenderers";
import { globalRegistry } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/selected-views/OutputRenderers";
import { downloadOutputs } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/selected-views/OutputRenderers/utils/download";
import type { OutputMetadata } from "@/components/contextual/OutputRenderers";
import { globalRegistry } from "@/components/contextual/OutputRenderers";
import { downloadOutputs } from "@/components/contextual/OutputRenderers/utils/download";
import { useToast } from "@/components/molecules/Toast/use-toast";
import { beautifyString } from "@/lib/utils";
import React, { useMemo, useState } from "react";

View File

@@ -1,10 +1,10 @@
import { Alert, AlertDescription } from "@/components/molecules/Alert/Alert";
import { Text } from "@/components/atoms/Text/Text";
import Link from "next/link";
import { useGetV2GetLibraryAgentByGraphId } from "@/app/api/__generated__/endpoints/library/library";
import { LibraryAgent } from "@/app/api/__generated__/models/libraryAgent";
import { useQueryStates, parseAsString } from "nuqs";
import { isValidUUID } from "@/app/(platform)/chat/helpers";
import { Text } from "@/components/atoms/Text/Text";
import { Alert, AlertDescription } from "@/components/molecules/Alert/Alert";
import { isValidUUID } from "@/lib/utils";
import Link from "next/link";
import { parseAsString, useQueryStates } from "nuqs";
export const WebhookDisclaimer = ({ nodeId }: { nodeId: string }) => {
const [{ flowID }] = useQueryStates({

View File

@@ -31,8 +31,6 @@ export const OutputHandler = ({
const [isOutputVisible, setIsOutputVisible] = useState(true);
const brokenOutputs = useBrokenOutputs(nodeId);
console.log("brokenOutputs", brokenOutputs);
const showHandles = uiType !== BlockUIType.OUTPUT;
const renderOutputHandles = (

View File

@@ -1,9 +1,9 @@
import type { OutputMetadata } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/selected-views/OutputRenderers";
import type { OutputMetadata } from "@/components/contextual/OutputRenderers";
import {
globalRegistry,
OutputActions,
OutputItem,
} from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/selected-views/OutputRenderers";
} from "@/components/contextual/OutputRenderers";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { beautifyString } from "@/lib/utils";
import { Flag, useGetFlag } from "@/services/feature-flags/use-get-flag";

View File

@@ -3,7 +3,6 @@ import {
CustomNodeData,
} from "@/app/(platform)/build/components/legacy-builder/CustomNode/CustomNode";
import { NodeTableInput } from "@/app/(platform)/build/components/legacy-builder/NodeTableInput";
import { CredentialsInput } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/modals/CredentialsInputs/CredentialsInput";
import { Button } from "@/components/__legacy__/ui/button";
import { Calendar } from "@/components/__legacy__/ui/calendar";
import { LocalValuedInput } from "@/components/__legacy__/ui/input";
@@ -28,6 +27,7 @@ import {
SelectValue,
} from "@/components/__legacy__/ui/select";
import { Switch } from "@/components/atoms/Switch/Switch";
import { CredentialsInput } from "@/components/contextual/CredentialsInput/CredentialsInput";
import { GoogleDrivePickerInput } from "@/components/contextual/GoogleDrivePicker/GoogleDrivePickerInput";
import {
BlockIOArraySubSchema,

View File

@@ -5,6 +5,8 @@ import { customEdgeToLink, linkToCustomEdge } from "../components/helper";
import { MarkerType } from "@xyflow/react";
import { NodeExecutionResult } from "@/app/api/__generated__/models/nodeExecutionResult";
import { cleanUpHandleId } from "@/components/renderers/InputRenderer/helpers";
import { useHistoryStore } from "./historyStore";
import { useNodeStore } from "./nodeStore";
type EdgeStore = {
edges: CustomEdge[];
@@ -53,25 +55,36 @@ export const useEdgeStore = create<EdgeStore>((set, get) => ({
id,
};
set((state) => {
const exists = state.edges.some(
(e) =>
e.source === newEdge.source &&
e.target === newEdge.target &&
e.sourceHandle === newEdge.sourceHandle &&
e.targetHandle === newEdge.targetHandle,
);
if (exists) return state;
return { edges: [...state.edges, newEdge] };
});
const exists = get().edges.some(
(e) =>
e.source === newEdge.source &&
e.target === newEdge.target &&
e.sourceHandle === newEdge.sourceHandle &&
e.targetHandle === newEdge.targetHandle,
);
if (exists) return newEdge;
const prevState = {
nodes: useNodeStore.getState().nodes,
edges: get().edges,
};
set((state) => ({ edges: [...state.edges, newEdge] }));
useHistoryStore.getState().pushState(prevState);
return newEdge;
},
removeEdge: (edgeId) =>
removeEdge: (edgeId) => {
const prevState = {
nodes: useNodeStore.getState().nodes,
edges: get().edges,
};
set((state) => ({
edges: state.edges.filter((e) => e.id !== edgeId),
})),
}));
useHistoryStore.getState().pushState(prevState);
},
upsertMany: (edges) =>
set((state) => {

View File

@@ -37,6 +37,15 @@ export const useHistoryStore = create<HistoryStore>((set, get) => ({
return;
}
const actualCurrentState = {
nodes: useNodeStore.getState().nodes,
edges: useEdgeStore.getState().edges,
};
if (isEqual(state, actualCurrentState)) {
return;
}
set((prev) => ({
past: [...prev.past.slice(-MAX_HISTORY + 1), state],
future: [],
@@ -55,18 +64,25 @@ export const useHistoryStore = create<HistoryStore>((set, get) => ({
undo: () => {
const { past, future } = get();
if (past.length <= 1) return;
if (past.length === 0) return;
const currentState = past[past.length - 1];
const actualCurrentState = {
nodes: useNodeStore.getState().nodes,
edges: useEdgeStore.getState().edges,
};
const previousState = past[past.length - 2];
const previousState = past[past.length - 1];
if (isEqual(actualCurrentState, previousState)) {
return;
}
useNodeStore.getState().setNodes(previousState.nodes);
useEdgeStore.getState().setEdges(previousState.edges);
set({
past: past.slice(0, -1),
future: [currentState, ...future],
past: past.length > 1 ? past.slice(0, -1) : past,
future: [actualCurrentState, ...future],
});
},
@@ -74,18 +90,36 @@ export const useHistoryStore = create<HistoryStore>((set, get) => ({
const { past, future } = get();
if (future.length === 0) return;
const actualCurrentState = {
nodes: useNodeStore.getState().nodes,
edges: useEdgeStore.getState().edges,
};
const nextState = future[0];
useNodeStore.getState().setNodes(nextState.nodes);
useEdgeStore.getState().setEdges(nextState.edges);
const lastPast = past[past.length - 1];
const shouldPushToPast =
!lastPast || !isEqual(actualCurrentState, lastPast);
set({
past: [...past, nextState],
past: shouldPushToPast ? [...past, actualCurrentState] : past,
future: future.slice(1),
});
},
canUndo: () => get().past.length > 1,
canUndo: () => {
const { past } = get();
if (past.length === 0) return false;
const actualCurrentState = {
nodes: useNodeStore.getState().nodes,
edges: useEdgeStore.getState().edges,
};
return !isEqual(actualCurrentState, past[past.length - 1]);
},
canRedo: () => get().future.length > 0,
clear: () => set({ past: [{ nodes: [], edges: [] }], future: [] }),

View File

@@ -1,6 +1,7 @@
import { create } from "zustand";
import { NodeChange, XYPosition, applyNodeChanges } from "@xyflow/react";
import { CustomNode } from "../components/FlowEditor/nodes/CustomNode/CustomNode";
import { CustomEdge } from "../components/FlowEditor/edges/CustomEdge";
import { BlockInfo } from "@/app/api/__generated__/models/blockInfo";
import {
convertBlockInfoIntoCustomNodeData,
@@ -44,6 +45,8 @@ const MINIMUM_MOVE_BEFORE_LOG = 50;
// Track initial positions when drag starts (outside store to avoid re-renders)
const dragStartPositions: Record<string, XYPosition> = {};
let dragStartState: { nodes: CustomNode[]; edges: CustomEdge[] } | null = null;
type NodeStore = {
nodes: CustomNode[];
nodeCounter: number;
@@ -124,14 +127,20 @@ export const useNodeStore = create<NodeStore>((set, get) => ({
nodeCounter: state.nodeCounter + 1,
})),
onNodesChange: (changes) => {
const prevState = {
nodes: get().nodes,
edges: useEdgeStore.getState().edges,
};
// Track initial positions when drag starts
changes.forEach((change) => {
if (change.type === "position" && change.dragging === true) {
if (!dragStartState) {
const currentNodes = get().nodes;
const currentEdges = useEdgeStore.getState().edges;
dragStartState = {
nodes: currentNodes.map((n) => ({
...n,
position: { ...n.position },
data: { ...n.data },
})),
edges: currentEdges.map((e) => ({ ...e })),
};
}
if (!dragStartPositions[change.id]) {
const node = get().nodes.find((n) => n.id === change.id);
if (node) {
@@ -141,12 +150,17 @@ export const useNodeStore = create<NodeStore>((set, get) => ({
}
});
// Check if we should track this change in history
let shouldTrack = changes.some(
(change) => change.type === "remove" || change.type === "add",
);
let shouldTrack = changes.some((change) => change.type === "remove");
let stateToTrack: { nodes: CustomNode[]; edges: CustomEdge[] } | null =
null;
if (shouldTrack) {
stateToTrack = {
nodes: get().nodes,
edges: useEdgeStore.getState().edges,
};
}
// For position changes, only track if movement exceeds threshold
if (!shouldTrack) {
changes.forEach((change) => {
if (change.type === "position" && change.dragging === false) {
@@ -158,20 +172,23 @@ export const useNodeStore = create<NodeStore>((set, get) => ({
);
if (distanceMoved > MINIMUM_MOVE_BEFORE_LOG) {
shouldTrack = true;
stateToTrack = dragStartState;
}
}
// Clean up tracked position after drag ends
delete dragStartPositions[change.id];
}
});
if (Object.keys(dragStartPositions).length === 0) {
dragStartState = null;
}
}
set((state) => ({
nodes: applyNodeChanges(changes, state.nodes),
}));
if (shouldTrack) {
useHistoryStore.getState().pushState(prevState);
if (shouldTrack && stateToTrack) {
useHistoryStore.getState().pushState(stateToTrack);
}
},
@@ -185,6 +202,11 @@ export const useNodeStore = create<NodeStore>((set, get) => ({
hardcodedValues?: Record<string, any>,
position?: XYPosition,
) => {
const prevState = {
nodes: get().nodes,
edges: useEdgeStore.getState().edges,
};
const customNodeData = convertBlockInfoIntoCustomNodeData(
block,
hardcodedValues,
@@ -218,21 +240,24 @@ export const useNodeStore = create<NodeStore>((set, get) => ({
set((state) => ({
nodes: [...state.nodes, customNode],
}));
useHistoryStore.getState().pushState(prevState);
return customNode;
},
updateNodeData: (nodeId, data) => {
const prevState = {
nodes: get().nodes,
edges: useEdgeStore.getState().edges,
};
set((state) => ({
nodes: state.nodes.map((n) =>
n.id === nodeId ? { ...n, data: { ...n.data, ...data } } : n,
),
}));
const newState = {
nodes: get().nodes,
edges: useEdgeStore.getState().edges,
};
useHistoryStore.getState().pushState(newState);
useHistoryStore.getState().pushState(prevState);
},
toggleAdvanced: (nodeId: string) =>
set((state) => ({
@@ -391,6 +416,11 @@ export const useNodeStore = create<NodeStore>((set, get) => ({
},
setCredentialsOptional: (nodeId: string, optional: boolean) => {
const prevState = {
nodes: get().nodes,
edges: useEdgeStore.getState().edges,
};
set((state) => ({
nodes: state.nodes.map((n) =>
n.id === nodeId
@@ -408,12 +438,7 @@ export const useNodeStore = create<NodeStore>((set, get) => ({
),
}));
const newState = {
nodes: get().nodes,
edges: useEdgeStore.getState().edges,
};
useHistoryStore.getState().pushState(newState);
useHistoryStore.getState().pushState(prevState);
},
// Sub-agent resolution mode state

View File

@@ -0,0 +1,134 @@
"use client";
import { Button } from "@/components/atoms/Button/Button";
import { Text } from "@/components/atoms/Text/Text";
import { cn } from "@/lib/utils";
import { List } from "@phosphor-icons/react";
import React, { useState } from "react";
import { ChatContainer } from "./components/ChatContainer/ChatContainer";
import { ChatErrorState } from "./components/ChatErrorState/ChatErrorState";
import { ChatLoadingState } from "./components/ChatLoadingState/ChatLoadingState";
import { SessionsDrawer } from "./components/SessionsDrawer/SessionsDrawer";
import { useChat } from "./useChat";
export interface ChatProps {
className?: string;
headerTitle?: React.ReactNode;
showHeader?: boolean;
showSessionInfo?: boolean;
showNewChatButton?: boolean;
onNewChat?: () => void;
headerActions?: React.ReactNode;
}
export function Chat({
className,
headerTitle = "AutoGPT Copilot",
showHeader = true,
showSessionInfo = true,
showNewChatButton = true,
onNewChat,
headerActions,
}: ChatProps) {
const {
messages,
isLoading,
isCreating,
error,
sessionId,
createSession,
clearSession,
loadSession,
} = useChat();
const [isSessionsDrawerOpen, setIsSessionsDrawerOpen] = useState(false);
const handleNewChat = () => {
clearSession();
onNewChat?.();
};
const handleSelectSession = async (sessionId: string) => {
try {
await loadSession(sessionId);
} catch (err) {
console.error("Failed to load session:", err);
}
};
return (
<div className={cn("flex h-full flex-col", className)}>
{/* Header */}
{showHeader && (
<header className="shrink-0 border-t border-zinc-200 bg-white p-3">
<div className="flex items-center justify-between">
<div className="flex items-center gap-3">
<button
aria-label="View sessions"
onClick={() => setIsSessionsDrawerOpen(true)}
className="flex size-8 items-center justify-center rounded hover:bg-zinc-100"
>
<List width="1.25rem" height="1.25rem" />
</button>
{typeof headerTitle === "string" ? (
<Text variant="h2" className="text-lg font-semibold">
{headerTitle}
</Text>
) : (
headerTitle
)}
</div>
<div className="flex items-center gap-3">
{showSessionInfo && sessionId && (
<>
{showNewChatButton && (
<Button
variant="outline"
size="small"
onClick={handleNewChat}
>
New Chat
</Button>
)}
</>
)}
{headerActions}
</div>
</div>
</header>
)}
{/* Main Content */}
<main className="flex min-h-0 flex-1 flex-col overflow-hidden">
{/* Loading State - show when explicitly loading/creating OR when we don't have a session yet and no error */}
{(isLoading || isCreating || (!sessionId && !error)) && (
<ChatLoadingState
message={isCreating ? "Creating session..." : "Loading..."}
/>
)}
{/* Error State */}
{error && !isLoading && (
<ChatErrorState error={error} onRetry={createSession} />
)}
{/* Session Content */}
{sessionId && !isLoading && !error && (
<ChatContainer
sessionId={sessionId}
initialMessages={messages}
className="flex-1"
/>
)}
</main>
{/* Sessions Drawer */}
<SessionsDrawer
isOpen={isSessionsDrawerOpen}
onClose={() => setIsSessionsDrawerOpen(false)}
onSelectSession={handleSelectSession}
currentSessionId={sessionId}
/>
</div>
);
}

View File

@@ -1,15 +1,16 @@
import React from "react";
import { Text } from "@/components/atoms/Text/Text";
import { Button } from "@/components/atoms/Button/Button";
import { Card } from "@/components/atoms/Card/Card";
import { List, Robot, ArrowRight } from "@phosphor-icons/react";
import { Text } from "@/components/atoms/Text/Text";
import { cn } from "@/lib/utils";
import { ArrowRight, List, Robot } from "@phosphor-icons/react";
import Image from "next/image";
export interface Agent {
id: string;
name: string;
description: string;
version?: number;
image_url?: string;
}
export interface AgentCarouselMessageProps {
@@ -30,7 +31,7 @@ export function AgentCarouselMessage({
return (
<div
className={cn(
"mx-4 my-2 flex flex-col gap-4 rounded-lg border border-purple-200 bg-purple-50 p-6 dark:border-purple-900 dark:bg-purple-950",
"mx-4 my-2 flex flex-col gap-4 rounded-lg border border-purple-200 bg-purple-50 p-6",
className,
)}
>
@@ -40,13 +41,10 @@ export function AgentCarouselMessage({
<List size={24} weight="bold" className="text-white" />
</div>
<div>
<Text variant="h3" className="text-purple-900 dark:text-purple-100">
<Text variant="h3" className="text-purple-900">
Found {displayCount} {displayCount === 1 ? "Agent" : "Agents"}
</Text>
<Text
variant="small"
className="text-purple-700 dark:text-purple-300"
>
<Text variant="small" className="text-purple-700">
Select an agent to view details or run it
</Text>
</div>
@@ -57,40 +55,49 @@ export function AgentCarouselMessage({
{agents.map((agent) => (
<Card
key={agent.id}
className="border border-purple-200 bg-white p-4 dark:border-purple-800 dark:bg-purple-900"
className="border border-purple-200 bg-white p-4"
>
<div className="flex gap-3">
<div className="flex h-10 w-10 flex-shrink-0 items-center justify-center rounded-lg bg-purple-100 dark:bg-purple-800">
<Robot size={20} weight="bold" className="text-purple-600" />
<div className="relative h-10 w-10 flex-shrink-0 overflow-hidden rounded-lg bg-purple-100">
{agent.image_url ? (
<Image
src={agent.image_url}
alt={`${agent.name} preview image`}
fill
className="object-cover"
/>
) : (
<div className="flex h-full w-full items-center justify-center">
<Robot
size={20}
weight="bold"
className="text-purple-600"
/>
</div>
)}
</div>
<div className="flex-1 space-y-2">
<div>
<Text
variant="body"
className="font-semibold text-purple-900 dark:text-purple-100"
className="font-semibold text-purple-900"
>
{agent.name}
</Text>
{agent.version && (
<Text
variant="small"
className="text-purple-600 dark:text-purple-400"
>
<Text variant="small" className="text-purple-600">
v{agent.version}
</Text>
)}
</div>
<Text
variant="small"
className="line-clamp-2 text-purple-700 dark:text-purple-300"
>
<Text variant="small" className="line-clamp-2 text-purple-700">
{agent.description}
</Text>
{onSelectAgent && (
<Button
onClick={() => onSelectAgent(agent.id)}
variant="ghost"
className="mt-2 flex items-center gap-1 p-0 text-sm text-purple-600 hover:text-purple-800 dark:text-purple-400 dark:hover:text-purple-200"
className="mt-2 flex items-center gap-1 p-0 text-sm text-purple-600 hover:text-purple-800"
>
View details
<ArrowRight size={16} weight="bold" />
@@ -103,10 +110,7 @@ export function AgentCarouselMessage({
</div>
{totalCount && totalCount > agents.length && (
<Text
variant="small"
className="text-center text-purple-600 dark:text-purple-400"
>
<Text variant="small" className="text-center text-purple-600">
Showing {agents.length} of {totalCount} results
</Text>
)}

View File

@@ -0,0 +1,246 @@
"use client";
import { Button } from "@/components/atoms/Button/Button";
import { Card } from "@/components/atoms/Card/Card";
import { Text } from "@/components/atoms/Text/Text";
import { CredentialsInput } from "@/components/contextual/CredentialsInput/CredentialsInput";
import { RunAgentInputs } from "@/components/contextual/RunAgentInputs/RunAgentInputs";
import type { LibraryAgent } from "@/app/api/__generated__/models/libraryAgent";
import {
BlockIOCredentialsSubSchema,
BlockIOSubSchema,
} from "@/lib/autogpt-server-api/types";
import { cn, isEmpty } from "@/lib/utils";
import { PlayIcon, WarningIcon } from "@phosphor-icons/react";
import { useMemo } from "react";
import { useAgentInputsSetup } from "./useAgentInputsSetup";
type LibraryAgentInputSchemaProperties = LibraryAgent["input_schema"] extends {
properties: infer P;
}
? P extends Record<string, BlockIOSubSchema>
? P
: Record<string, BlockIOSubSchema>
: Record<string, BlockIOSubSchema>;
type LibraryAgentCredentialsInputSchemaProperties =
LibraryAgent["credentials_input_schema"] extends {
properties: infer P;
}
? P extends Record<string, BlockIOCredentialsSubSchema>
? P
: Record<string, BlockIOCredentialsSubSchema>
: Record<string, BlockIOCredentialsSubSchema>;
interface Props {
agentName?: string;
inputSchema: LibraryAgentInputSchemaProperties | Record<string, any>;
credentialsSchema?:
| LibraryAgentCredentialsInputSchemaProperties
| Record<string, any>;
message: string;
requiredFields?: string[];
onRun: (
inputs: Record<string, any>,
credentials: Record<string, any>,
) => void;
onCancel?: () => void;
className?: string;
}
export function AgentInputsSetup({
agentName,
inputSchema,
credentialsSchema,
message,
requiredFields,
onRun,
onCancel,
className,
}: Props) {
const { inputValues, setInputValue, credentialsValues, setCredentialsValue } =
useAgentInputsSetup();
const inputSchemaObj = useMemo(() => {
if (!inputSchema) return { properties: {}, required: [] };
if ("properties" in inputSchema && "type" in inputSchema) {
return inputSchema as {
properties: Record<string, any>;
required?: string[];
};
}
return { properties: inputSchema as Record<string, any>, required: [] };
}, [inputSchema]);
const credentialsSchemaObj = useMemo(() => {
if (!credentialsSchema) return { properties: {}, required: [] };
if ("properties" in credentialsSchema && "type" in credentialsSchema) {
return credentialsSchema as {
properties: Record<string, any>;
required?: string[];
};
}
return {
properties: credentialsSchema as Record<string, any>,
required: [],
};
}, [credentialsSchema]);
const agentInputFields = useMemo(() => {
const properties = inputSchemaObj.properties || {};
return Object.fromEntries(
Object.entries(properties).filter(
([_, subSchema]: [string, any]) => !subSchema.hidden,
),
);
}, [inputSchemaObj]);
const agentCredentialsInputFields = useMemo(() => {
return credentialsSchemaObj.properties || {};
}, [credentialsSchemaObj]);
const inputFields = Object.entries(agentInputFields);
const credentialFields = Object.entries(agentCredentialsInputFields);
const defaultsFromSchema = useMemo(() => {
const defaults: Record<string, any> = {};
Object.entries(agentInputFields).forEach(([key, schema]) => {
if ("default" in schema && schema.default !== undefined) {
defaults[key] = schema.default;
}
});
return defaults;
}, [agentInputFields]);
const defaultsFromCredentialsSchema = useMemo(() => {
const defaults: Record<string, any> = {};
Object.entries(agentCredentialsInputFields).forEach(([key, schema]) => {
if ("default" in schema && schema.default !== undefined) {
defaults[key] = schema.default;
}
});
return defaults;
}, [agentCredentialsInputFields]);
const mergedInputValues = useMemo(() => {
return { ...defaultsFromSchema, ...inputValues };
}, [defaultsFromSchema, inputValues]);
const mergedCredentialsValues = useMemo(() => {
return { ...defaultsFromCredentialsSchema, ...credentialsValues };
}, [defaultsFromCredentialsSchema, credentialsValues]);
const allRequiredInputsAreSet = useMemo(() => {
const requiredInputs = new Set(
requiredFields || (inputSchemaObj.required as string[]) || [],
);
const nonEmptyInputs = new Set(
Object.keys(mergedInputValues).filter(
(k) => !isEmpty(mergedInputValues[k]),
),
);
const missing = [...requiredInputs].filter(
(input) => !nonEmptyInputs.has(input),
);
return missing.length === 0;
}, [inputSchemaObj.required, mergedInputValues, requiredFields]);
const allCredentialsAreSet = useMemo(() => {
const requiredCredentials = new Set(
(credentialsSchemaObj.required as string[]) || [],
);
if (requiredCredentials.size === 0) {
return true;
}
const missing = [...requiredCredentials].filter((key) => {
const cred = mergedCredentialsValues[key];
return !cred || !cred.id;
});
return missing.length === 0;
}, [credentialsSchemaObj.required, mergedCredentialsValues]);
const canRun = allRequiredInputsAreSet && allCredentialsAreSet;
function handleRun() {
if (canRun) {
onRun(mergedInputValues, mergedCredentialsValues);
}
}
return (
<Card
className={cn(
"mx-4 my-2 overflow-hidden border-blue-200 bg-blue-50",
className,
)}
>
<div className="flex items-start gap-4 p-6">
<div className="flex h-12 w-12 flex-shrink-0 items-center justify-center rounded-full bg-blue-500">
<WarningIcon size={24} weight="bold" className="text-white" />
</div>
<div className="flex-1">
<Text variant="h3" className="mb-2 text-blue-900">
{agentName ? `Configure ${agentName}` : "Agent Configuration"}
</Text>
<Text variant="body" className="mb-4 text-blue-700">
{message}
</Text>
{inputFields.length > 0 && (
<div className="mb-4 space-y-4">
{inputFields.map(([key, inputSubSchema]) => (
<RunAgentInputs
key={key}
schema={inputSubSchema}
value={inputValues[key] ?? inputSubSchema.default}
placeholder={inputSubSchema.description}
onChange={(value) => setInputValue(key, value)}
/>
))}
</div>
)}
{credentialFields.length > 0 && (
<div className="mb-4 space-y-4">
{credentialFields.map(([key, schema]) => {
const requiredCredentials = new Set(
(credentialsSchemaObj.required as string[]) || [],
);
return (
<CredentialsInput
key={key}
schema={schema}
selectedCredentials={credentialsValues[key]}
onSelectCredentials={(value) =>
setCredentialsValue(key, value)
}
siblingInputs={mergedInputValues}
isOptional={!requiredCredentials.has(key)}
/>
);
})}
</div>
)}
<div className="flex gap-2">
<Button
variant="primary"
size="small"
onClick={handleRun}
disabled={!canRun}
>
<PlayIcon className="mr-2 h-4 w-4" weight="bold" />
Run Agent
</Button>
{onCancel && (
<Button variant="outline" size="small" onClick={onCancel}>
Cancel
</Button>
)}
</div>
</div>
</div>
</Card>
);
}

View File

@@ -0,0 +1,38 @@
import type { CredentialsMetaInput } from "@/lib/autogpt-server-api/types";
import { useState } from "react";
export function useAgentInputsSetup() {
const [inputValues, setInputValues] = useState<Record<string, any>>({});
const [credentialsValues, setCredentialsValues] = useState<
Record<string, CredentialsMetaInput>
>({});
function setInputValue(key: string, value: any) {
setInputValues((prev) => ({
...prev,
[key]: value,
}));
}
function setCredentialsValue(key: string, value?: CredentialsMetaInput) {
if (value) {
setCredentialsValues((prev) => ({
...prev,
[key]: value,
}));
} else {
setCredentialsValues((prev) => {
const next = { ...prev };
delete next[key];
return next;
});
}
}
return {
inputValues,
setInputValue,
credentialsValues,
setCredentialsValue,
};
}

View File

@@ -1,10 +1,9 @@
"use client";
import React from "react";
import { useRouter } from "next/navigation";
import { Button } from "@/components/atoms/Button/Button";
import { SignInIcon, UserPlusIcon, ShieldIcon } from "@phosphor-icons/react";
import { cn } from "@/lib/utils";
import { ShieldIcon, SignInIcon, UserPlusIcon } from "@phosphor-icons/react";
import { useRouter } from "next/navigation";
export interface AuthPromptWidgetProps {
message: string;
@@ -54,8 +53,8 @@ export function AuthPromptWidget({
return (
<div
className={cn(
"my-4 overflow-hidden rounded-lg border border-violet-200 dark:border-violet-800",
"bg-gradient-to-br from-violet-50 to-purple-50 dark:from-violet-950/30 dark:to-purple-950/30",
"my-4 overflow-hidden rounded-lg border border-violet-200",
"bg-gradient-to-br from-violet-50 to-purple-50",
"duration-500 animate-in fade-in-50 slide-in-from-bottom-2",
className,
)}
@@ -66,21 +65,19 @@ export function AuthPromptWidget({
<ShieldIcon size={20} weight="fill" className="text-white" />
</div>
<div>
<h3 className="text-lg font-semibold text-neutral-900 dark:text-neutral-100">
<h3 className="text-lg font-semibold text-neutral-900">
Authentication Required
</h3>
<p className="text-sm text-neutral-600 dark:text-neutral-400">
<p className="text-sm text-neutral-600">
Sign in to set up and manage agents
</p>
</div>
</div>
<div className="mb-5 rounded-md bg-white/50 p-4 dark:bg-neutral-900/50">
<p className="text-sm text-neutral-700 dark:text-neutral-300">
{message}
</p>
<div className="mb-5 rounded-md bg-white/50 p-4">
<p className="text-sm text-neutral-700">{message}</p>
{agentInfo && (
<div className="mt-3 text-xs text-neutral-600 dark:text-neutral-400">
<div className="mt-3 text-xs text-neutral-600">
<p>
Ready to set up:{" "}
<span className="font-medium">{agentInfo.name}</span>
@@ -114,7 +111,7 @@ export function AuthPromptWidget({
</Button>
</div>
<div className="mt-4 text-center text-xs text-neutral-500 dark:text-neutral-500">
<div className="mt-4 text-center text-xs text-neutral-500">
Your chat session will be preserved after signing in
</div>
</div>

View File

@@ -0,0 +1,88 @@
import type { SessionDetailResponse } from "@/app/api/__generated__/models/sessionDetailResponse";
import { cn } from "@/lib/utils";
import { useCallback } from "react";
import { usePageContext } from "../../usePageContext";
import { ChatInput } from "../ChatInput/ChatInput";
import { MessageList } from "../MessageList/MessageList";
import { QuickActionsWelcome } from "../QuickActionsWelcome/QuickActionsWelcome";
import { useChatContainer } from "./useChatContainer";
export interface ChatContainerProps {
sessionId: string | null;
initialMessages: SessionDetailResponse["messages"];
className?: string;
}
export function ChatContainer({
sessionId,
initialMessages,
className,
}: ChatContainerProps) {
const { messages, streamingChunks, isStreaming, sendMessage } =
useChatContainer({
sessionId,
initialMessages,
});
const { capturePageContext } = usePageContext();
// Wrap sendMessage to automatically capture page context
const sendMessageWithContext = useCallback(
async (content: string, isUserMessage: boolean = true) => {
const context = capturePageContext();
await sendMessage(content, isUserMessage, context);
},
[sendMessage, capturePageContext],
);
const quickActions = [
"Find agents for social media management",
"Show me agents for content creation",
"Help me automate my business",
"What can you help me with?",
];
return (
<div
className={cn("flex h-full min-h-0 flex-col", className)}
style={{
backgroundColor: "#ffffff",
backgroundImage:
"radial-gradient(#e5e5e5 0.5px, transparent 0.5px), radial-gradient(#e5e5e5 0.5px, #ffffff 0.5px)",
backgroundSize: "20px 20px",
backgroundPosition: "0 0, 10px 10px",
}}
>
{/* Messages or Welcome Screen */}
<div className="flex min-h-0 flex-1 flex-col overflow-hidden pb-24">
{messages.length === 0 ? (
<QuickActionsWelcome
title="Welcome to AutoGPT Copilot"
description="Start a conversation to discover and run AI agents."
actions={quickActions}
onActionClick={sendMessageWithContext}
disabled={isStreaming || !sessionId}
/>
) : (
<MessageList
messages={messages}
streamingChunks={streamingChunks}
isStreaming={isStreaming}
onSendMessage={sendMessageWithContext}
className="flex-1"
/>
)}
</div>
{/* Input - Always visible */}
<div className="fixed bottom-0 left-0 right-0 z-50 border-t border-zinc-200 bg-white p-4">
<ChatInput
onSend={sendMessageWithContext}
disabled={isStreaming || !sessionId}
placeholder={
sessionId ? "Type your message..." : "Creating session..."
}
/>
</div>
</div>
);
}

View File

@@ -1,14 +1,14 @@
import { toast } from "sonner";
import type { StreamChunk } from "@/app/(platform)/chat/useChatStream";
import { StreamChunk } from "../../useChatStream";
import type { HandlerDependencies } from "./useChatContainer.handlers";
import {
handleError,
handleLoginNeeded,
handleStreamEnd,
handleTextChunk,
handleTextEnded,
handleToolCallStart,
handleToolResponse,
handleLoginNeeded,
handleStreamEnd,
handleError,
} from "./useChatContainer.handlers";
export function createStreamEventDispatcher(

View File

@@ -1,5 +1,24 @@
import type { ChatMessageData } from "@/app/(platform)/chat/components/ChatMessage/useChatMessage";
import type { ToolResult } from "@/types/chat";
import type { ChatMessageData } from "../ChatMessage/useChatMessage";
export function removePageContext(content: string): string {
// Remove "Page URL: ..." pattern at start of line (case insensitive, handles various formats)
let cleaned = content.replace(/^\s*Page URL:\s*[^\n\r]*/gim, "");
// Find "User Message:" marker at start of line to preserve the actual user message
const userMessageMatch = cleaned.match(/^\s*User Message:\s*([\s\S]*)$/im);
if (userMessageMatch) {
// If we found "User Message:", extract everything after it
cleaned = userMessageMatch[1];
} else {
// If no "User Message:" marker, remove "Page Content:" and everything after it at start of line
cleaned = cleaned.replace(/^\s*Page Content:[\s\S]*$/gim, "");
}
// Clean up extra whitespace and newlines
cleaned = cleaned.replace(/\n\s*\n\s*\n+/g, "\n\n").trim();
return cleaned;
}
export function createUserMessage(content: string): ChatMessageData {
return {
@@ -63,6 +82,7 @@ export function isAgentArray(value: unknown): value is Array<{
name: string;
description: string;
version?: number;
image_url?: string;
}> {
if (!Array.isArray(value)) {
return false;
@@ -77,7 +97,8 @@ export function isAgentArray(value: unknown): value is Array<{
typeof item.name === "string" &&
"description" in item &&
typeof item.description === "string" &&
(!("version" in item) || typeof item.version === "number"),
(!("version" in item) || typeof item.version === "number") &&
(!("image_url" in item) || typeof item.image_url === "string"),
);
}
@@ -232,6 +253,7 @@ export function isSetupInfo(value: unknown): value is {
export function extractCredentialsNeeded(
parsedResult: Record<string, unknown>,
toolName: string = "run_agent",
): ChatMessageData | null {
try {
const setupInfo = parsedResult?.setup_info as
@@ -244,7 +266,7 @@ export function extractCredentialsNeeded(
| Record<string, Record<string, unknown>>
| undefined;
if (missingCreds && Object.keys(missingCreds).length > 0) {
const agentName = (setupInfo?.agent_name as string) || "this agent";
const agentName = (setupInfo?.agent_name as string) || "this block";
const credentials = Object.values(missingCreds).map((credInfo) => ({
provider: (credInfo.provider as string) || "unknown",
providerName:
@@ -264,7 +286,7 @@ export function extractCredentialsNeeded(
}));
return {
type: "credentials_needed",
toolName: "run_agent",
toolName,
credentials,
message: `To run ${agentName}, you need to add ${credentials.length === 1 ? "credentials" : `${credentials.length} credentials`}.`,
agentName,
@@ -277,3 +299,92 @@ export function extractCredentialsNeeded(
return null;
}
}
export function extractInputsNeeded(
parsedResult: Record<string, unknown>,
toolName: string = "run_agent",
): ChatMessageData | null {
try {
const setupInfo = parsedResult?.setup_info as
| Record<string, unknown>
| undefined;
const requirements = setupInfo?.requirements as
| Record<string, unknown>
| undefined;
const inputs = requirements?.inputs as
| Array<Record<string, unknown>>
| undefined;
const credentials = requirements?.credentials as
| Array<Record<string, unknown>>
| undefined;
if (!inputs || inputs.length === 0) {
return null;
}
const agentName = (setupInfo?.agent_name as string) || "this agent";
const agentId = parsedResult?.graph_id as string | undefined;
const graphVersion = parsedResult?.graph_version as number | undefined;
const properties: Record<string, any> = {};
const requiredProps: string[] = [];
inputs.forEach((input) => {
const name = input.name as string;
if (name) {
properties[name] = {
title: input.name as string,
description: (input.description as string) || "",
type: (input.type as string) || "string",
default: input.default,
enum: input.options,
format: input.format,
};
if ((input.required as boolean) === true) {
requiredProps.push(name);
}
}
});
const inputSchema: Record<string, any> = {
type: "object",
properties,
};
if (requiredProps.length > 0) {
inputSchema.required = requiredProps;
}
const credentialsSchema: Record<string, any> = {};
if (credentials && credentials.length > 0) {
credentials.forEach((cred) => {
const id = cred.id as string;
if (id) {
credentialsSchema[id] = {
type: "object",
properties: {},
credentials_provider: [cred.provider as string],
credentials_types: [(cred.type as string) || "api_key"],
credentials_scopes: cred.scopes as string[] | undefined,
};
}
});
}
return {
type: "inputs_needed",
toolName,
agentName,
agentId,
graphVersion,
inputSchema,
credentialsSchema:
Object.keys(credentialsSchema).length > 0
? credentialsSchema
: undefined,
message: `Please provide the required inputs to run ${agentName}.`,
timestamp: new Date(),
};
} catch (err) {
console.error("Failed to extract inputs from setup info:", err);
return null;
}
}

View File

@@ -1,13 +1,18 @@
import type { Dispatch, SetStateAction, MutableRefObject } from "react";
import type { StreamChunk } from "@/app/(platform)/chat/useChatStream";
import type { ChatMessageData } from "@/app/(platform)/chat/components/ChatMessage/useChatMessage";
import { parseToolResponse, extractCredentialsNeeded } from "./helpers";
import type { Dispatch, MutableRefObject, SetStateAction } from "react";
import { StreamChunk } from "../../useChatStream";
import type { ChatMessageData } from "../ChatMessage/useChatMessage";
import {
extractCredentialsNeeded,
extractInputsNeeded,
parseToolResponse,
} from "./helpers";
export interface HandlerDependencies {
setHasTextChunks: Dispatch<SetStateAction<boolean>>;
setStreamingChunks: Dispatch<SetStateAction<string[]>>;
streamingChunksRef: MutableRefObject<string[]>;
setMessages: Dispatch<SetStateAction<ChatMessageData[]>>;
setIsStreamingInitiated: Dispatch<SetStateAction<boolean>>;
sessionId: string;
}
@@ -100,11 +105,18 @@ export function handleToolResponse(
parsedResult = null;
}
if (
chunk.tool_name === "run_agent" &&
(chunk.tool_name === "run_agent" || chunk.tool_name === "run_block") &&
chunk.success &&
parsedResult?.type === "setup_requirements"
) {
const credentialsMessage = extractCredentialsNeeded(parsedResult);
const inputsMessage = extractInputsNeeded(parsedResult, chunk.tool_name);
if (inputsMessage) {
deps.setMessages((prev) => [...prev, inputsMessage]);
}
const credentialsMessage = extractCredentialsNeeded(
parsedResult,
chunk.tool_name,
);
if (credentialsMessage) {
deps.setMessages((prev) => [...prev, credentialsMessage]);
}
@@ -197,10 +209,15 @@ export function handleStreamEnd(
deps.setStreamingChunks([]);
deps.streamingChunksRef.current = [];
deps.setHasTextChunks(false);
deps.setIsStreamingInitiated(false);
console.log("[Stream End] Stream complete, messages in local state");
}
export function handleError(chunk: StreamChunk, _deps: HandlerDependencies) {
export function handleError(chunk: StreamChunk, deps: HandlerDependencies) {
const errorMessage = chunk.message || chunk.content || "An error occurred";
console.error("Stream error:", errorMessage);
deps.setIsStreamingInitiated(false);
deps.setHasTextChunks(false);
deps.setStreamingChunks([]);
deps.streamingChunksRef.current = [];
}

View File

@@ -0,0 +1,206 @@
import type { SessionDetailResponse } from "@/app/api/__generated__/models/sessionDetailResponse";
import { useCallback, useMemo, useRef, useState } from "react";
import { toast } from "sonner";
import { useChatStream } from "../../useChatStream";
import type { ChatMessageData } from "../ChatMessage/useChatMessage";
import { createStreamEventDispatcher } from "./createStreamEventDispatcher";
import {
createUserMessage,
filterAuthMessages,
isToolCallArray,
isValidMessage,
parseToolResponse,
removePageContext,
} from "./helpers";
interface Args {
sessionId: string | null;
initialMessages: SessionDetailResponse["messages"];
}
export function useChatContainer({ sessionId, initialMessages }: Args) {
const [messages, setMessages] = useState<ChatMessageData[]>([]);
const [streamingChunks, setStreamingChunks] = useState<string[]>([]);
const [hasTextChunks, setHasTextChunks] = useState(false);
const [isStreamingInitiated, setIsStreamingInitiated] = useState(false);
const streamingChunksRef = useRef<string[]>([]);
const { error, sendMessage: sendStreamMessage } = useChatStream();
const isStreaming = isStreamingInitiated || hasTextChunks;
const allMessages = useMemo(() => {
const processedInitialMessages: ChatMessageData[] = [];
// Map to track tool calls by their ID so we can look up tool names for tool responses
const toolCallMap = new Map<string, string>();
for (const msg of initialMessages) {
if (!isValidMessage(msg)) {
console.warn("Invalid message structure from backend:", msg);
continue;
}
let content = String(msg.content || "");
const role = String(msg.role || "assistant").toLowerCase();
const toolCalls = msg.tool_calls;
const timestamp = msg.timestamp
? new Date(msg.timestamp as string)
: undefined;
// Remove page context from user messages when loading existing sessions
if (role === "user") {
content = removePageContext(content);
// Skip user messages that become empty after removing page context
if (!content.trim()) {
continue;
}
processedInitialMessages.push({
type: "message",
role: "user",
content,
timestamp,
});
continue;
}
// Handle assistant messages first (before tool messages) to build tool call map
if (role === "assistant") {
// Strip <thinking> tags from content
content = content
.replace(/<thinking>[\s\S]*?<\/thinking>/gi, "")
.trim();
// If assistant has tool calls, create tool_call messages for each
if (toolCalls && isToolCallArray(toolCalls) && toolCalls.length > 0) {
for (const toolCall of toolCalls) {
const toolName = toolCall.function.name;
const toolId = toolCall.id;
// Store tool name for later lookup
toolCallMap.set(toolId, toolName);
try {
const args = JSON.parse(toolCall.function.arguments || "{}");
processedInitialMessages.push({
type: "tool_call",
toolId,
toolName,
arguments: args,
timestamp,
});
} catch (err) {
console.warn("Failed to parse tool call arguments:", err);
processedInitialMessages.push({
type: "tool_call",
toolId,
toolName,
arguments: {},
timestamp,
});
}
}
// Only add assistant message if there's content after stripping thinking tags
if (content.trim()) {
processedInitialMessages.push({
type: "message",
role: "assistant",
content,
timestamp,
});
}
} else if (content.trim()) {
// Assistant message without tool calls, but with content
processedInitialMessages.push({
type: "message",
role: "assistant",
content,
timestamp,
});
}
continue;
}
// Handle tool messages - look up tool name from tool call map
if (role === "tool") {
const toolCallId = (msg.tool_call_id as string) || "";
const toolName = toolCallMap.get(toolCallId) || "unknown";
const toolResponse = parseToolResponse(
content,
toolCallId,
toolName,
timestamp,
);
if (toolResponse) {
processedInitialMessages.push(toolResponse);
}
continue;
}
// Handle other message types (system, etc.)
if (content.trim()) {
processedInitialMessages.push({
type: "message",
role: role as "user" | "assistant" | "system",
content,
timestamp,
});
}
}
return [...processedInitialMessages, ...messages];
}, [initialMessages, messages]);
const sendMessage = useCallback(
async function sendMessage(
content: string,
isUserMessage: boolean = true,
context?: { url: string; content: string },
) {
if (!sessionId) {
console.error("Cannot send message: no session ID");
return;
}
if (isUserMessage) {
const userMessage = createUserMessage(content);
setMessages((prev) => [...filterAuthMessages(prev), userMessage]);
} else {
setMessages((prev) => filterAuthMessages(prev));
}
setStreamingChunks([]);
streamingChunksRef.current = [];
setHasTextChunks(false);
setIsStreamingInitiated(true);
const dispatcher = createStreamEventDispatcher({
setHasTextChunks,
setStreamingChunks,
streamingChunksRef,
setMessages,
sessionId,
setIsStreamingInitiated,
});
try {
await sendStreamMessage(
sessionId,
content,
dispatcher,
isUserMessage,
context,
);
} catch (err) {
console.error("Failed to send message:", err);
setIsStreamingInitiated(false);
const errorMessage =
err instanceof Error ? err.message : "Failed to send message";
toast.error("Failed to send message", {
description: errorMessage,
});
}
},
[sessionId, sendStreamMessage],
);
return {
messages: allMessages,
streamingChunks,
isStreaming,
error,
sendMessage,
};
}

View File

@@ -0,0 +1,149 @@
import { Text } from "@/components/atoms/Text/Text";
import { CredentialsInput } from "@/components/contextual/CredentialsInput/CredentialsInput";
import type { BlockIOCredentialsSubSchema } from "@/lib/autogpt-server-api";
import { cn } from "@/lib/utils";
import { CheckIcon, RobotIcon, WarningIcon } from "@phosphor-icons/react";
import { useEffect, useRef } from "react";
import { useChatCredentialsSetup } from "./useChatCredentialsSetup";
export interface CredentialInfo {
provider: string;
providerName: string;
credentialType: "api_key" | "oauth2" | "user_password" | "host_scoped";
title: string;
scopes?: string[];
}
interface Props {
credentials: CredentialInfo[];
agentName?: string;
message: string;
onAllCredentialsComplete: () => void;
onCancel: () => void;
className?: string;
}
function createSchemaFromCredentialInfo(
credential: CredentialInfo,
): BlockIOCredentialsSubSchema {
return {
type: "object",
properties: {},
credentials_provider: [credential.provider],
credentials_types: [credential.credentialType],
credentials_scopes: credential.scopes,
discriminator: undefined,
discriminator_mapping: undefined,
discriminator_values: undefined,
};
}
export function ChatCredentialsSetup({
credentials,
agentName: _agentName,
message,
onAllCredentialsComplete,
onCancel: _onCancel,
}: Props) {
const { selectedCredentials, isAllComplete, handleCredentialSelect } =
useChatCredentialsSetup(credentials);
// Track if we've already called completion to prevent double calls
const hasCalledCompleteRef = useRef(false);
// Reset the completion flag when credentials change (new credential setup flow)
useEffect(
function resetCompletionFlag() {
hasCalledCompleteRef.current = false;
},
[credentials],
);
// Auto-call completion when all credentials are configured
useEffect(
function autoCompleteWhenReady() {
if (isAllComplete && !hasCalledCompleteRef.current) {
hasCalledCompleteRef.current = true;
onAllCredentialsComplete();
}
},
[isAllComplete, onAllCredentialsComplete],
);
return (
<div className="group relative flex w-full justify-start gap-3 px-4 py-3">
<div className="flex w-full max-w-3xl gap-3">
<div className="flex-shrink-0">
<div className="flex h-7 w-7 items-center justify-center rounded-lg bg-indigo-500">
<RobotIcon className="h-4 w-4 text-indigo-50" />
</div>
</div>
<div className="flex min-w-0 flex-1 flex-col">
<div className="group relative min-w-20 overflow-hidden rounded-xl border border-slate-100 bg-slate-50/20 px-6 py-2.5 text-sm leading-relaxed backdrop-blur-xl">
<div className="absolute inset-0 bg-gradient-to-br from-slate-200/20 via-slate-300/10 to-transparent" />
<div className="relative z-10 space-y-3 text-slate-900">
<div>
<Text variant="h4" className="mb-1 text-slate-900">
Credentials Required
</Text>
<Text variant="small" className="text-slate-600">
{message}
</Text>
</div>
<div className="space-y-3">
{credentials.map((cred, index) => {
const schema = createSchemaFromCredentialInfo(cred);
const isSelected = !!selectedCredentials[cred.provider];
return (
<div
key={`${cred.provider}-${index}`}
className={cn(
"relative rounded-lg border p-3",
isSelected
? "border-green-500 bg-green-50/50"
: "border-slate-200 bg-white/50",
)}
>
<div className="mb-2 flex items-center gap-2">
{isSelected ? (
<CheckIcon
size={16}
className="text-green-500"
weight="bold"
/>
) : (
<WarningIcon
size={16}
className="text-slate-500"
weight="bold"
/>
)}
<Text
variant="small"
className="font-semibold text-slate-900"
>
{cred.providerName}
</Text>
</div>
<CredentialsInput
schema={schema}
selectedCredentials={selectedCredentials[cred.provider]}
onSelectCredentials={(credMeta) =>
handleCredentialSelect(cred.provider, credMeta)
}
/>
</div>
);
})}
</div>
</div>
</div>
</div>
</div>
</div>
);
}

View File

@@ -0,0 +1,64 @@
import { Input } from "@/components/atoms/Input/Input";
import { cn } from "@/lib/utils";
import { ArrowUpIcon } from "@phosphor-icons/react";
import { useChatInput } from "./useChatInput";
export interface ChatInputProps {
onSend: (message: string) => void;
disabled?: boolean;
placeholder?: string;
className?: string;
}
export function ChatInput({
onSend,
disabled = false,
placeholder = "Type your message...",
className,
}: ChatInputProps) {
const inputId = "chat-input";
const { value, setValue, handleKeyDown, handleSend } = useChatInput({
onSend,
disabled,
maxRows: 5,
inputId,
});
return (
<div className={cn("relative flex-1", className)}>
<Input
id={inputId}
label="Chat message input"
hideLabel
type="textarea"
value={value}
onChange={(e) => setValue(e.target.value)}
onKeyDown={handleKeyDown}
placeholder={placeholder}
disabled={disabled}
rows={1}
wrapperClassName="mb-0 relative"
className="pr-12"
/>
<span id="chat-input-hint" className="sr-only">
Press Enter to send, Shift+Enter for new line
</span>
<button
onClick={handleSend}
disabled={disabled || !value.trim()}
className={cn(
"absolute right-3 top-1/2 flex h-8 w-8 -translate-y-1/2 items-center justify-center rounded-full",
"border border-zinc-800 bg-zinc-800 text-white",
"hover:border-zinc-900 hover:bg-zinc-900",
"disabled:border-zinc-200 disabled:bg-zinc-200 disabled:text-white disabled:opacity-50",
"transition-colors focus-visible:outline-none focus-visible:ring-1 focus-visible:ring-neutral-950",
"disabled:pointer-events-none",
)}
aria-label="Send message"
>
<ArrowUpIcon className="h-3 w-3" weight="bold" />
</button>
</div>
);
}

View File

@@ -1,21 +1,22 @@
import { KeyboardEvent, useCallback, useState, useRef, useEffect } from "react";
import { KeyboardEvent, useCallback, useEffect, useState } from "react";
interface UseChatInputArgs {
onSend: (message: string) => void;
disabled?: boolean;
maxRows?: number;
inputId?: string;
}
export function useChatInput({
onSend,
disabled = false,
maxRows = 5,
inputId = "chat-input",
}: UseChatInputArgs) {
const [value, setValue] = useState("");
const textareaRef = useRef<HTMLTextAreaElement>(null);
useEffect(() => {
const textarea = textareaRef.current;
const textarea = document.getElementById(inputId) as HTMLTextAreaElement;
if (!textarea) return;
textarea.style.height = "auto";
const lineHeight = parseInt(
@@ -27,23 +28,25 @@ export function useChatInput({
textarea.style.height = `${newHeight}px`;
textarea.style.overflowY =
textarea.scrollHeight > maxHeight ? "auto" : "hidden";
}, [value, maxRows]);
}, [value, maxRows, inputId]);
const handleSend = useCallback(() => {
if (disabled || !value.trim()) return;
onSend(value.trim());
setValue("");
if (textareaRef.current) {
textareaRef.current.style.height = "auto";
const textarea = document.getElementById(inputId) as HTMLTextAreaElement;
if (textarea) {
textarea.style.height = "auto";
}
}, [value, onSend, disabled]);
}, [value, onSend, disabled, inputId]);
const handleKeyDown = useCallback(
(event: KeyboardEvent<HTMLTextAreaElement>) => {
(event: KeyboardEvent<HTMLInputElement | HTMLTextAreaElement>) => {
if (event.key === "Enter" && !event.shiftKey) {
event.preventDefault();
handleSend();
}
// Shift+Enter allows default behavior (new line) - no need to handle explicitly
},
[handleSend],
);
@@ -53,6 +56,5 @@ export function useChatInput({
setValue,
handleKeyDown,
handleSend,
textareaRef,
};
}

View File

@@ -0,0 +1,19 @@
import { LoadingSpinner } from "@/components/atoms/LoadingSpinner/LoadingSpinner";
import { cn } from "@/lib/utils";
export interface ChatLoadingStateProps {
message?: string;
className?: string;
}
export function ChatLoadingState({ className }: ChatLoadingStateProps) {
return (
<div
className={cn("flex flex-1 items-center justify-center p-6", className)}
>
<div className="flex flex-col items-center gap-4 text-center">
<LoadingSpinner />
</div>
</div>
);
}

View File

@@ -0,0 +1,341 @@
"use client";
import { useGetV2GetUserProfile } from "@/app/api/__generated__/endpoints/store/store";
import Avatar, {
AvatarFallback,
AvatarImage,
} from "@/components/atoms/Avatar/Avatar";
import { Button } from "@/components/atoms/Button/Button";
import { useSupabase } from "@/lib/supabase/hooks/useSupabase";
import { cn } from "@/lib/utils";
import {
ArrowClockwise,
CheckCircleIcon,
CheckIcon,
CopyIcon,
RobotIcon,
} from "@phosphor-icons/react";
import { useRouter } from "next/navigation";
import { useCallback, useState } from "react";
import { getToolActionPhrase } from "../../helpers";
import { AgentCarouselMessage } from "../AgentCarouselMessage/AgentCarouselMessage";
import { AuthPromptWidget } from "../AuthPromptWidget/AuthPromptWidget";
import { ChatCredentialsSetup } from "../ChatCredentialsSetup/ChatCredentialsSetup";
import { ExecutionStartedMessage } from "../ExecutionStartedMessage/ExecutionStartedMessage";
import { MarkdownContent } from "../MarkdownContent/MarkdownContent";
import { MessageBubble } from "../MessageBubble/MessageBubble";
import { NoResultsMessage } from "../NoResultsMessage/NoResultsMessage";
import { ToolCallMessage } from "../ToolCallMessage/ToolCallMessage";
import { ToolResponseMessage } from "../ToolResponseMessage/ToolResponseMessage";
import { useChatMessage, type ChatMessageData } from "./useChatMessage";
export interface ChatMessageProps {
message: ChatMessageData;
className?: string;
onDismissLogin?: () => void;
onDismissCredentials?: () => void;
onSendMessage?: (content: string, isUserMessage?: boolean) => void;
agentOutput?: ChatMessageData;
}
export function ChatMessage({
message,
className,
onDismissCredentials,
onSendMessage,
agentOutput,
}: ChatMessageProps) {
const { user } = useSupabase();
const router = useRouter();
const [copied, setCopied] = useState(false);
const {
isUser,
isToolCall,
isToolResponse,
isLoginNeeded,
isCredentialsNeeded,
} = useChatMessage(message);
const { data: profile } = useGetV2GetUserProfile({
query: {
select: (res) => (res.status === 200 ? res.data : null),
enabled: isUser && !!user,
queryKey: ["/api/store/profile", user?.id],
},
});
const handleAllCredentialsComplete = useCallback(
function handleAllCredentialsComplete() {
// Send a user message that explicitly asks to retry the setup
// This ensures the LLM calls get_required_setup_info again and proceeds with execution
if (onSendMessage) {
onSendMessage(
"I've configured the required credentials. Please check if everything is ready and proceed with setting up the agent.",
);
}
// Optionally dismiss the credentials prompt
if (onDismissCredentials) {
onDismissCredentials();
}
},
[onSendMessage, onDismissCredentials],
);
function handleCancelCredentials() {
// Dismiss the credentials prompt
if (onDismissCredentials) {
onDismissCredentials();
}
}
const handleCopy = useCallback(async () => {
if (message.type !== "message") return;
try {
await navigator.clipboard.writeText(message.content);
setCopied(true);
setTimeout(() => setCopied(false), 2000);
} catch (error) {
console.error("Failed to copy:", error);
}
}, [message]);
const handleTryAgain = useCallback(() => {
if (message.type !== "message" || !onSendMessage) return;
onSendMessage(message.content, message.role === "user");
}, [message, onSendMessage]);
const handleViewExecution = useCallback(() => {
if (message.type === "execution_started" && message.libraryAgentLink) {
router.push(message.libraryAgentLink);
}
}, [message, router]);
// Render credentials needed messages
if (isCredentialsNeeded && message.type === "credentials_needed") {
return (
<ChatCredentialsSetup
credentials={message.credentials}
agentName={message.agentName}
message={message.message}
onAllCredentialsComplete={handleAllCredentialsComplete}
onCancel={handleCancelCredentials}
className={className}
/>
);
}
// Render login needed messages
if (isLoginNeeded && message.type === "login_needed") {
// If user is already logged in, show success message instead of auth prompt
if (user) {
return (
<div className={cn("px-4 py-2", className)}>
<div className="my-4 overflow-hidden rounded-lg border border-green-200 bg-gradient-to-br from-green-50 to-emerald-50">
<div className="px-6 py-4">
<div className="flex items-center gap-3">
<div className="flex h-10 w-10 items-center justify-center rounded-full bg-green-600">
<CheckCircleIcon
size={20}
weight="fill"
className="text-white"
/>
</div>
<div>
<h3 className="text-lg font-semibold text-neutral-900">
Successfully Authenticated
</h3>
<p className="text-sm text-neutral-600">
You&apos;re now signed in and ready to continue
</p>
</div>
</div>
</div>
</div>
</div>
);
}
// Show auth prompt if not logged in
return (
<div className={cn("px-4 py-2", className)}>
<AuthPromptWidget
message={message.message}
sessionId={message.sessionId}
agentInfo={message.agentInfo}
/>
</div>
);
}
// Render tool call messages
if (isToolCall && message.type === "tool_call") {
return (
<div className={cn("px-4 py-2", className)}>
<ToolCallMessage toolName={message.toolName} />
</div>
);
}
// Render no_results messages - use dedicated component, not ToolResponseMessage
if (message.type === "no_results") {
return (
<div className={cn("px-4 py-2", className)}>
<NoResultsMessage
message={message.message}
suggestions={message.suggestions}
/>
</div>
);
}
// Render agent_carousel messages - use dedicated component, not ToolResponseMessage
if (message.type === "agent_carousel") {
return (
<div className={cn("px-4 py-2", className)}>
<AgentCarouselMessage
agents={message.agents}
totalCount={message.totalCount}
/>
</div>
);
}
// Render execution_started messages - use dedicated component, not ToolResponseMessage
if (message.type === "execution_started") {
return (
<div className={cn("px-4 py-2", className)}>
<ExecutionStartedMessage
executionId={message.executionId}
agentName={message.agentName}
message={message.message}
onViewExecution={
message.libraryAgentLink ? handleViewExecution : undefined
}
/>
</div>
);
}
// Render tool response messages (but skip agent_output if it's being rendered inside assistant message)
if (isToolResponse && message.type === "tool_response") {
// Check if this is an agent_output that should be rendered inside assistant message
if (message.result) {
let parsedResult: Record<string, unknown> | null = null;
try {
parsedResult =
typeof message.result === "string"
? JSON.parse(message.result)
: (message.result as Record<string, unknown>);
} catch {
parsedResult = null;
}
if (parsedResult?.type === "agent_output") {
// Skip rendering - this will be rendered inside the assistant message
return null;
}
}
return (
<div className={cn("px-4 py-2", className)}>
<ToolResponseMessage
toolName={getToolActionPhrase(message.toolName)}
result={message.result}
/>
</div>
);
}
// Render regular chat messages
if (message.type === "message") {
return (
<div
className={cn(
"group relative flex w-full gap-3 px-4 py-3",
isUser ? "justify-end" : "justify-start",
className,
)}
>
<div className="flex w-full max-w-3xl gap-3">
{!isUser && (
<div className="flex-shrink-0">
<div className="flex h-7 w-7 items-center justify-center rounded-lg bg-indigo-500">
<RobotIcon className="h-4 w-4 text-indigo-50" />
</div>
</div>
)}
<div
className={cn(
"flex min-w-0 flex-1 flex-col",
isUser && "items-end",
)}
>
<MessageBubble variant={isUser ? "user" : "assistant"}>
<MarkdownContent content={message.content} />
{agentOutput &&
agentOutput.type === "tool_response" &&
!isUser && (
<div className="mt-4">
<ToolResponseMessage
toolName={
agentOutput.toolName
? getToolActionPhrase(agentOutput.toolName)
: "Agent Output"
}
result={agentOutput.result}
/>
</div>
)}
</MessageBubble>
<div
className={cn(
"mt-1 flex gap-1",
isUser ? "justify-end" : "justify-start",
)}
>
{isUser && onSendMessage && (
<Button
variant="ghost"
size="icon"
onClick={handleTryAgain}
aria-label="Try again"
>
<ArrowClockwise className="size-3 text-neutral-500" />
</Button>
)}
<Button
variant="ghost"
size="icon"
onClick={handleCopy}
aria-label="Copy message"
>
{copied ? (
<CheckIcon className="size-3 text-green-600" />
) : (
<CopyIcon className="size-3 text-neutral-500" />
)}
</Button>
</div>
</div>
{isUser && (
<div className="flex-shrink-0">
<Avatar className="h-7 w-7">
<AvatarImage
src={profile?.avatar_url ?? ""}
alt={profile?.username ?? "User"}
/>
<AvatarFallback className="rounded-lg bg-neutral-200 text-neutral-600">
{profile?.username?.charAt(0)?.toUpperCase() || "U"}
</AvatarFallback>
</Avatar>
</div>
)}
</div>
</div>
);
}
// Fallback for unknown message types
return null;
}

View File

@@ -1,5 +1,5 @@
import { formatDistanceToNow } from "date-fns";
import type { ToolArguments, ToolResult } from "@/types/chat";
import { formatDistanceToNow } from "date-fns";
export type ChatMessageData =
| {
@@ -65,6 +65,7 @@ export type ChatMessageData =
name: string;
description: string;
version?: number;
image_url?: string;
}>;
totalCount?: number;
timestamp?: string | Date;
@@ -77,6 +78,17 @@ export type ChatMessageData =
message?: string;
libraryAgentLink?: string;
timestamp?: string | Date;
}
| {
type: "inputs_needed";
toolName: string;
agentName?: string;
agentId?: string;
graphVersion?: number;
inputSchema: Record<string, any>;
credentialsSchema?: Record<string, any>;
message: string;
timestamp?: string | Date;
};
export function useChatMessage(message: ChatMessageData) {
@@ -96,5 +108,6 @@ export function useChatMessage(message: ChatMessageData) {
isNoResults: message.type === "no_results",
isAgentCarousel: message.type === "agent_carousel",
isExecutionStarted: message.type === "execution_started",
isInputsNeeded: message.type === "inputs_needed",
};
}

View File

@@ -1,8 +1,7 @@
import React from "react";
import { Text } from "@/components/atoms/Text/Text";
import { Button } from "@/components/atoms/Button/Button";
import { CheckCircle, Play, ArrowSquareOut } from "@phosphor-icons/react";
import { Text } from "@/components/atoms/Text/Text";
import { cn } from "@/lib/utils";
import { ArrowSquareOut, CheckCircle, Play } from "@phosphor-icons/react";
export interface ExecutionStartedMessageProps {
executionId: string;
@@ -22,7 +21,7 @@ export function ExecutionStartedMessage({
return (
<div
className={cn(
"mx-4 my-2 flex flex-col gap-4 rounded-lg border border-green-200 bg-green-50 p-6 dark:border-green-900 dark:bg-green-950",
"mx-4 my-2 flex flex-col gap-4 rounded-lg border border-green-200 bg-green-50 p-6",
className,
)}
>
@@ -32,48 +31,33 @@ export function ExecutionStartedMessage({
<CheckCircle size={24} weight="bold" className="text-white" />
</div>
<div className="flex-1">
<Text
variant="h3"
className="mb-1 text-green-900 dark:text-green-100"
>
<Text variant="h3" className="mb-1 text-green-900">
Execution Started
</Text>
<Text variant="body" className="text-green-700 dark:text-green-300">
<Text variant="body" className="text-green-700">
{message}
</Text>
</div>
</div>
{/* Details */}
<div className="rounded-md bg-green-100 p-4 dark:bg-green-900">
<div className="rounded-md bg-green-100 p-4">
<div className="space-y-2">
{agentName && (
<div className="flex items-center justify-between">
<Text
variant="small"
className="font-semibold text-green-900 dark:text-green-100"
>
<Text variant="small" className="font-semibold text-green-900">
Agent:
</Text>
<Text
variant="body"
className="text-green-800 dark:text-green-200"
>
<Text variant="body" className="text-green-800">
{agentName}
</Text>
</div>
)}
<div className="flex items-center justify-between">
<Text
variant="small"
className="font-semibold text-green-900 dark:text-green-100"
>
<Text variant="small" className="font-semibold text-green-900">
Execution ID:
</Text>
<Text
variant="small"
className="font-mono text-green-800 dark:text-green-200"
>
<Text variant="small" className="font-mono text-green-800">
{executionId.slice(0, 16)}...
</Text>
</div>
@@ -94,7 +78,7 @@ export function ExecutionStartedMessage({
</div>
)}
<div className="flex items-center gap-2 text-green-600 dark:text-green-400">
<div className="flex items-center gap-2 text-green-600">
<Play size={16} weight="fill" />
<Text variant="small">
Your agent is now running. You can monitor its progress in the monitor

View File

@@ -1,9 +1,9 @@
"use client";
import { cn } from "@/lib/utils";
import React from "react";
import ReactMarkdown from "react-markdown";
import remarkGfm from "remark-gfm";
import { cn } from "@/lib/utils";
interface MarkdownContentProps {
content: string;
@@ -41,7 +41,7 @@ export function MarkdownContent({ content, className }: MarkdownContentProps) {
if (isInline) {
return (
<code
className="rounded bg-zinc-100 px-1.5 py-0.5 font-mono text-sm text-zinc-800 dark:bg-zinc-800 dark:text-zinc-200"
className="rounded bg-zinc-100 px-1.5 py-0.5 font-mono text-sm text-zinc-800"
{...props}
>
{children}
@@ -49,17 +49,14 @@ export function MarkdownContent({ content, className }: MarkdownContentProps) {
);
}
return (
<code
className="font-mono text-sm text-zinc-100 dark:text-zinc-200"
{...props}
>
<code className="font-mono text-sm text-zinc-100" {...props}>
{children}
</code>
);
},
pre: ({ children, ...props }) => (
<pre
className="my-2 overflow-x-auto rounded-md bg-zinc-900 p-3 dark:bg-zinc-950"
className="my-2 overflow-x-auto rounded-md bg-zinc-900 p-3"
{...props}
>
{children}
@@ -70,7 +67,7 @@ export function MarkdownContent({ content, className }: MarkdownContentProps) {
href={href}
target="_blank"
rel="noopener noreferrer"
className="text-purple-600 underline decoration-1 underline-offset-2 hover:text-purple-700 dark:text-purple-400 dark:hover:text-purple-300"
className="text-purple-600 underline decoration-1 underline-offset-2 hover:text-purple-700"
{...props}
>
{children}
@@ -126,7 +123,7 @@ export function MarkdownContent({ content, className }: MarkdownContentProps) {
return (
<input
type="checkbox"
className="mr-2 h-4 w-4 rounded border-zinc-300 text-purple-600 focus:ring-purple-500 disabled:cursor-not-allowed disabled:opacity-70 dark:border-zinc-600"
className="mr-2 h-4 w-4 rounded border-zinc-300 text-purple-600 focus:ring-purple-500 disabled:cursor-not-allowed disabled:opacity-70"
disabled
{...props}
/>
@@ -136,57 +133,42 @@ export function MarkdownContent({ content, className }: MarkdownContentProps) {
},
blockquote: ({ children, ...props }) => (
<blockquote
className="my-2 border-l-4 border-zinc-300 pl-3 italic text-zinc-700 dark:border-zinc-600 dark:text-zinc-300"
className="my-2 border-l-4 border-zinc-300 pl-3 italic text-zinc-700"
{...props}
>
{children}
</blockquote>
),
h1: ({ children, ...props }) => (
<h1
className="my-2 text-xl font-bold text-zinc-900 dark:text-zinc-100"
{...props}
>
<h1 className="my-2 text-xl font-bold text-zinc-900" {...props}>
{children}
</h1>
),
h2: ({ children, ...props }) => (
<h2
className="my-2 text-lg font-semibold text-zinc-800 dark:text-zinc-200"
{...props}
>
<h2 className="my-2 text-lg font-semibold text-zinc-800" {...props}>
{children}
</h2>
),
h3: ({ children, ...props }) => (
<h3
className="my-1 text-base font-semibold text-zinc-800 dark:text-zinc-200"
className="my-1 text-base font-semibold text-zinc-800"
{...props}
>
{children}
</h3>
),
h4: ({ children, ...props }) => (
<h4
className="my-1 text-sm font-medium text-zinc-700 dark:text-zinc-300"
{...props}
>
<h4 className="my-1 text-sm font-medium text-zinc-700" {...props}>
{children}
</h4>
),
h5: ({ children, ...props }) => (
<h5
className="my-1 text-sm font-medium text-zinc-700 dark:text-zinc-300"
{...props}
>
<h5 className="my-1 text-sm font-medium text-zinc-700" {...props}>
{children}
</h5>
),
h6: ({ children, ...props }) => (
<h6
className="my-1 text-xs font-medium text-zinc-600 dark:text-zinc-400"
{...props}
>
<h6 className="my-1 text-xs font-medium text-zinc-600" {...props}>
{children}
</h6>
),
@@ -196,15 +178,12 @@ export function MarkdownContent({ content, className }: MarkdownContentProps) {
</p>
),
hr: ({ ...props }) => (
<hr
className="my-3 border-zinc-300 dark:border-zinc-700"
{...props}
/>
<hr className="my-3 border-zinc-300" {...props} />
),
table: ({ children, ...props }) => (
<div className="my-2 overflow-x-auto">
<table
className="min-w-full divide-y divide-zinc-200 rounded border border-zinc-200 dark:divide-zinc-700 dark:border-zinc-700"
className="min-w-full divide-y divide-zinc-200 rounded border border-zinc-200"
{...props}
>
{children}
@@ -213,7 +192,7 @@ export function MarkdownContent({ content, className }: MarkdownContentProps) {
),
th: ({ children, ...props }) => (
<th
className="bg-zinc-50 px-3 py-2 text-left text-xs font-semibold text-zinc-700 dark:bg-zinc-800 dark:text-zinc-300"
className="bg-zinc-50 px-3 py-2 text-left text-xs font-semibold text-zinc-700"
{...props}
>
{children}
@@ -221,7 +200,7 @@ export function MarkdownContent({ content, className }: MarkdownContentProps) {
),
td: ({ children, ...props }) => (
<td
className="border-t border-zinc-200 px-3 py-2 text-sm dark:border-zinc-700"
className="border-t border-zinc-200 px-3 py-2 text-sm"
{...props}
>
{children}

View File

@@ -0,0 +1,56 @@
import { cn } from "@/lib/utils";
import { ReactNode } from "react";
export interface MessageBubbleProps {
children: ReactNode;
variant: "user" | "assistant";
className?: string;
}
export function MessageBubble({
children,
variant,
className,
}: MessageBubbleProps) {
const userTheme = {
bg: "bg-slate-900",
border: "border-slate-800",
gradient: "from-slate-900/30 via-slate-800/20 to-transparent",
text: "text-slate-50",
};
const assistantTheme = {
bg: "bg-slate-50/20",
border: "border-slate-100",
gradient: "from-slate-200/20 via-slate-300/10 to-transparent",
text: "text-slate-900",
};
const theme = variant === "user" ? userTheme : assistantTheme;
return (
<div
className={cn(
"group relative min-w-20 overflow-hidden rounded-xl border px-6 py-2.5 text-sm leading-relaxed backdrop-blur-xl transition-all duration-500 ease-in-out",
theme.bg,
theme.border,
variant === "user" && "text-right",
variant === "assistant" && "text-left",
className,
)}
>
{/* Gradient flare background */}
<div
className={cn("absolute inset-0 bg-gradient-to-br", theme.gradient)}
/>
<div
className={cn(
"relative z-10 transition-all duration-500 ease-in-out",
theme.text,
)}
>
{children}
</div>
</div>
);
}

View File

@@ -0,0 +1,121 @@
"use client";
import { cn } from "@/lib/utils";
import { ChatMessage } from "../ChatMessage/ChatMessage";
import type { ChatMessageData } from "../ChatMessage/useChatMessage";
import { StreamingMessage } from "../StreamingMessage/StreamingMessage";
import { ThinkingMessage } from "../ThinkingMessage/ThinkingMessage";
import { useMessageList } from "./useMessageList";
export interface MessageListProps {
messages: ChatMessageData[];
streamingChunks?: string[];
isStreaming?: boolean;
className?: string;
onStreamComplete?: () => void;
onSendMessage?: (content: string) => void;
}
export function MessageList({
messages,
streamingChunks = [],
isStreaming = false,
className,
onStreamComplete,
onSendMessage,
}: MessageListProps) {
const { messagesEndRef, messagesContainerRef } = useMessageList({
messageCount: messages.length,
isStreaming,
});
return (
<div
ref={messagesContainerRef}
className={cn(
"flex-1 overflow-y-auto",
"scrollbar-thin scrollbar-track-transparent scrollbar-thumb-zinc-300",
className,
)}
>
<div className="mx-auto flex max-w-3xl flex-col py-4">
{/* Render all persisted messages */}
{messages.map((message, index) => {
// Check if current message is an agent_output tool_response
// and if previous message is an assistant message
let agentOutput: ChatMessageData | undefined;
if (message.type === "tool_response" && message.result) {
let parsedResult: Record<string, unknown> | null = null;
try {
parsedResult =
typeof message.result === "string"
? JSON.parse(message.result)
: (message.result as Record<string, unknown>);
} catch {
parsedResult = null;
}
if (parsedResult?.type === "agent_output") {
const prevMessage = messages[index - 1];
if (
prevMessage &&
prevMessage.type === "message" &&
prevMessage.role === "assistant"
) {
// This agent output will be rendered inside the previous assistant message
// Skip rendering this message separately
return null;
}
}
}
// Check if next message is an agent_output tool_response to include in current assistant message
if (message.type === "message" && message.role === "assistant") {
const nextMessage = messages[index + 1];
if (
nextMessage &&
nextMessage.type === "tool_response" &&
nextMessage.result
) {
let parsedResult: Record<string, unknown> | null = null;
try {
parsedResult =
typeof nextMessage.result === "string"
? JSON.parse(nextMessage.result)
: (nextMessage.result as Record<string, unknown>);
} catch {
parsedResult = null;
}
if (parsedResult?.type === "agent_output") {
agentOutput = nextMessage;
}
}
}
return (
<ChatMessage
key={index}
message={message}
onSendMessage={onSendMessage}
agentOutput={agentOutput}
/>
);
})}
{/* Render thinking message when streaming but no chunks yet */}
{isStreaming && streamingChunks.length === 0 && <ThinkingMessage />}
{/* Render streaming message if active */}
{isStreaming && streamingChunks.length > 0 && (
<StreamingMessage
chunks={streamingChunks}
onComplete={onStreamComplete}
/>
)}
{/* Invisible div to scroll to */}
<div ref={messagesEndRef} />
</div>
</div>
);
}

View File

@@ -1,7 +1,6 @@
import React from "react";
import { Text } from "@/components/atoms/Text/Text";
import { MagnifyingGlass, X } from "@phosphor-icons/react";
import { cn } from "@/lib/utils";
import { MagnifyingGlass, X } from "@phosphor-icons/react";
export interface NoResultsMessageProps {
message: string;
@@ -17,26 +16,26 @@ export function NoResultsMessage({
return (
<div
className={cn(
"mx-4 my-2 flex flex-col items-center gap-4 rounded-lg border border-gray-200 bg-gray-50 p-6 dark:border-gray-800 dark:bg-gray-900",
"mx-4 my-2 flex flex-col items-center gap-4 rounded-lg border border-gray-200 bg-gray-50 p-6",
className,
)}
>
{/* Icon */}
<div className="relative flex h-16 w-16 items-center justify-center">
<div className="flex h-16 w-16 items-center justify-center rounded-full bg-gray-200 dark:bg-gray-700">
<div className="flex h-16 w-16 items-center justify-center rounded-full bg-gray-200">
<MagnifyingGlass size={32} weight="bold" className="text-gray-500" />
</div>
<div className="absolute -right-1 -top-1 flex h-8 w-8 items-center justify-center rounded-full bg-gray-400 dark:bg-gray-600">
<div className="absolute -right-1 -top-1 flex h-8 w-8 items-center justify-center rounded-full bg-gray-400">
<X size={20} weight="bold" className="text-white" />
</div>
</div>
{/* Content */}
<div className="text-center">
<Text variant="h3" className="mb-2 text-gray-900 dark:text-gray-100">
<Text variant="h3" className="mb-2 text-gray-900">
No Results Found
</Text>
<Text variant="body" className="text-gray-700 dark:text-gray-300">
<Text variant="body" className="text-gray-700">
{message}
</Text>
</div>
@@ -44,17 +43,14 @@ export function NoResultsMessage({
{/* Suggestions */}
{suggestions.length > 0 && (
<div className="w-full space-y-2">
<Text
variant="small"
className="font-semibold text-gray-900 dark:text-gray-100"
>
<Text variant="small" className="font-semibold text-gray-900">
Try these suggestions:
</Text>
<ul className="space-y-1 rounded-md bg-gray-100 p-4 dark:bg-gray-800">
<ul className="space-y-1 rounded-md bg-gray-100 p-4">
{suggestions.map((suggestion, index) => (
<li
key={index}
className="flex items-start gap-2 text-sm text-gray-700 dark:text-gray-300"
className="flex items-start gap-2 text-sm text-gray-700"
>
<span className="mt-1 text-gray-500"></span>
<span>{suggestion}</span>

View File

@@ -0,0 +1,94 @@
"use client";
import { Text } from "@/components/atoms/Text/Text";
import { cn } from "@/lib/utils";
export interface QuickActionsWelcomeProps {
title: string;
description: string;
actions: string[];
onActionClick: (action: string) => void;
disabled?: boolean;
className?: string;
}
export function QuickActionsWelcome({
title,
description,
actions,
onActionClick,
disabled = false,
className,
}: QuickActionsWelcomeProps) {
return (
<div
className={cn("flex flex-1 items-center justify-center p-8", className)}
>
<div className="w-full max-w-3xl">
<div className="mb-12 text-center">
<Text
variant="h2"
className="mb-3 text-2xl font-semibold text-zinc-900"
>
{title}
</Text>
<Text variant="body" className="text-zinc-500">
{description}
</Text>
</div>
<div className="grid gap-3 sm:grid-cols-2">
{actions.map((action) => {
// Use slate theme for all cards
const theme = {
bg: "bg-slate-50/10",
border: "border-slate-100",
hoverBg: "hover:bg-slate-50/20",
hoverBorder: "hover:border-slate-200",
gradient: "from-slate-200/20 via-slate-300/10 to-transparent",
text: "text-slate-900",
hoverText: "group-hover:text-slate-900",
};
return (
<button
key={action}
onClick={() => onActionClick(action)}
disabled={disabled}
className={cn(
"group relative overflow-hidden rounded-xl border p-5 text-left backdrop-blur-xl",
"transition-all duration-200",
theme.bg,
theme.border,
theme.hoverBg,
theme.hoverBorder,
"hover:shadow-sm",
"focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-white/50 focus-visible:ring-offset-2",
"disabled:cursor-not-allowed disabled:opacity-50 disabled:hover:shadow-none",
)}
>
{/* Gradient flare background */}
<div
className={cn(
"absolute inset-0 bg-gradient-to-br",
theme.gradient,
)}
/>
<Text
variant="body"
className={cn(
"relative z-10 font-medium",
theme.text,
theme.hoverText,
)}
>
{action}
</Text>
</button>
);
})}
</div>
</div>
</div>
);
}

View File

@@ -0,0 +1,136 @@
"use client";
import { useGetV2ListSessions } from "@/app/api/__generated__/endpoints/chat/chat";
import { Text } from "@/components/atoms/Text/Text";
import { scrollbarStyles } from "@/components/styles/scrollbars";
import { cn } from "@/lib/utils";
import { X } from "@phosphor-icons/react";
import { formatDistanceToNow } from "date-fns";
import { Drawer } from "vaul";
interface SessionsDrawerProps {
isOpen: boolean;
onClose: () => void;
onSelectSession: (sessionId: string) => void;
currentSessionId?: string | null;
}
export function SessionsDrawer({
isOpen,
onClose,
onSelectSession,
currentSessionId,
}: SessionsDrawerProps) {
const { data, isLoading } = useGetV2ListSessions(
{ limit: 100 },
{
query: {
enabled: isOpen,
},
},
);
const sessions =
data?.status === 200
? data.data.sessions.filter((session) => {
// Filter out sessions without messages (sessions that were never updated)
// If updated_at equals created_at, the session was created but never had messages
return session.updated_at !== session.created_at;
})
: [];
function handleSelectSession(sessionId: string) {
onSelectSession(sessionId);
onClose();
}
return (
<Drawer.Root
open={isOpen}
onOpenChange={(open) => !open && onClose()}
direction="right"
>
<Drawer.Portal>
<Drawer.Overlay className="fixed inset-0 z-[60] bg-black/10 backdrop-blur-sm" />
<Drawer.Content
className={cn(
"fixed right-0 top-0 z-[70] flex h-full w-96 flex-col border-l border-zinc-200 bg-white",
scrollbarStyles,
)}
>
<div className="shrink-0 p-4">
<div className="flex items-center justify-between">
<Drawer.Title className="text-lg font-semibold">
Chat Sessions
</Drawer.Title>
<button
aria-label="Close"
onClick={onClose}
className="flex size-8 items-center justify-center rounded hover:bg-zinc-100"
>
<X width="1.25rem" height="1.25rem" />
</button>
</div>
</div>
<div className="flex-1 overflow-y-auto p-4">
{isLoading ? (
<div className="flex items-center justify-center py-8">
<Text variant="body" className="text-zinc-500">
Loading sessions...
</Text>
</div>
) : sessions.length === 0 ? (
<div className="flex items-center justify-center py-8">
<Text variant="body" className="text-zinc-500">
No sessions found
</Text>
</div>
) : (
<div className="space-y-2">
{sessions.map((session) => {
const isActive = session.id === currentSessionId;
const updatedAt = session.updated_at
? formatDistanceToNow(new Date(session.updated_at), {
addSuffix: true,
})
: "";
return (
<button
key={session.id}
onClick={() => handleSelectSession(session.id)}
className={cn(
"w-full rounded-lg border p-3 text-left transition-colors",
isActive
? "border-indigo-500 bg-zinc-50"
: "border-zinc-200 bg-zinc-100/50 hover:border-zinc-300 hover:bg-zinc-50",
)}
>
<div className="flex flex-col gap-1">
<Text
variant="body"
className={cn(
"font-medium",
isActive ? "text-indigo-900" : "text-zinc-900",
)}
>
{session.title || "Untitled Chat"}
</Text>
<div className="flex items-center gap-2 text-xs text-zinc-500">
<span>{session.id.slice(0, 8)}...</span>
{updatedAt && <span></span>}
<span>{updatedAt}</span>
</div>
</div>
</button>
);
})}
</div>
)}
</div>
</Drawer.Content>
</Drawer.Portal>
</Drawer.Root>
);
}

View File

@@ -0,0 +1,42 @@
import { cn } from "@/lib/utils";
import { RobotIcon } from "@phosphor-icons/react";
import { MarkdownContent } from "../MarkdownContent/MarkdownContent";
import { MessageBubble } from "../MessageBubble/MessageBubble";
import { useStreamingMessage } from "./useStreamingMessage";
export interface StreamingMessageProps {
chunks: string[];
className?: string;
onComplete?: () => void;
}
export function StreamingMessage({
chunks,
className,
onComplete,
}: StreamingMessageProps) {
const { displayText } = useStreamingMessage({ chunks, onComplete });
return (
<div
className={cn(
"group relative flex w-full justify-start gap-3 px-4 py-3",
className,
)}
>
<div className="flex w-full max-w-3xl gap-3">
<div className="flex-shrink-0">
<div className="flex h-7 w-7 items-center justify-center rounded-lg bg-indigo-600">
<RobotIcon className="h-4 w-4 text-indigo-50" />
</div>
</div>
<div className="flex min-w-0 flex-1 flex-col">
<MessageBubble variant="assistant">
<MarkdownContent content={displayText} />
</MessageBubble>
</div>
</div>
</div>
);
}

View File

@@ -0,0 +1,70 @@
import { cn } from "@/lib/utils";
import { RobotIcon } from "@phosphor-icons/react";
import { useEffect, useRef, useState } from "react";
import { MessageBubble } from "../MessageBubble/MessageBubble";
export interface ThinkingMessageProps {
className?: string;
}
export function ThinkingMessage({ className }: ThinkingMessageProps) {
const [showSlowLoader, setShowSlowLoader] = useState(false);
const timerRef = useRef<NodeJS.Timeout | null>(null);
useEffect(() => {
if (timerRef.current === null) {
timerRef.current = setTimeout(() => {
setShowSlowLoader(true);
}, 8000);
}
return () => {
if (timerRef.current) {
clearTimeout(timerRef.current);
timerRef.current = null;
}
};
}, []);
return (
<div
className={cn(
"group relative flex w-full justify-start gap-3 px-4 py-3",
className,
)}
>
<div className="flex w-full max-w-3xl gap-3">
<div className="flex-shrink-0">
<div className="flex h-7 w-7 items-center justify-center rounded-lg bg-indigo-500">
<RobotIcon className="h-4 w-4 text-indigo-50" />
</div>
</div>
<div className="flex min-w-0 flex-1 flex-col">
<MessageBubble variant="assistant">
<div className="transition-all duration-500 ease-in-out">
{showSlowLoader ? (
<div className="flex flex-col items-center gap-3 py-2">
<div className="loader" style={{ flexShrink: 0 }} />
<p className="text-sm text-slate-700">
Taking a bit longer to think, wait a moment please
</p>
</div>
) : (
<span
className="inline-block bg-gradient-to-r from-neutral-400 via-neutral-600 to-neutral-400 bg-clip-text text-transparent"
style={{
backgroundSize: "200% 100%",
animation: "shimmer 2s ease-in-out infinite",
}}
>
Thinking...
</span>
)}
</div>
</MessageBubble>
</div>
</div>
</div>
);
}

View File

@@ -0,0 +1,24 @@
import { Text } from "@/components/atoms/Text/Text";
import { cn } from "@/lib/utils";
import { WrenchIcon } from "@phosphor-icons/react";
import { getToolActionPhrase } from "../../helpers";
export interface ToolCallMessageProps {
toolName: string;
className?: string;
}
export function ToolCallMessage({ toolName, className }: ToolCallMessageProps) {
return (
<div className={cn("flex items-center justify-center gap-2", className)}>
<WrenchIcon
size={14}
weight="bold"
className="flex-shrink-0 text-neutral-500"
/>
<Text variant="small" className="text-neutral-500">
{getToolActionPhrase(toolName)}...
</Text>
</div>
);
}

View File

@@ -0,0 +1,260 @@
import { Text } from "@/components/atoms/Text/Text";
import "@/components/contextual/OutputRenderers";
import {
globalRegistry,
OutputItem,
} from "@/components/contextual/OutputRenderers";
import { cn } from "@/lib/utils";
import type { ToolResult } from "@/types/chat";
import { WrenchIcon } from "@phosphor-icons/react";
import { getToolActionPhrase } from "../../helpers";
export interface ToolResponseMessageProps {
toolName: string;
result?: ToolResult;
success?: boolean;
className?: string;
}
export function ToolResponseMessage({
toolName,
result,
success: _success = true,
className,
}: ToolResponseMessageProps) {
if (!result) {
return (
<div className={cn("flex items-center justify-center gap-2", className)}>
<WrenchIcon
size={14}
weight="bold"
className="flex-shrink-0 text-neutral-500"
/>
<Text variant="small" className="text-neutral-500">
{getToolActionPhrase(toolName)}...
</Text>
</div>
);
}
let parsedResult: Record<string, unknown> | null = null;
try {
parsedResult =
typeof result === "string"
? JSON.parse(result)
: (result as Record<string, unknown>);
} catch {
parsedResult = null;
}
if (parsedResult && typeof parsedResult === "object") {
const responseType = parsedResult.type as string | undefined;
if (responseType === "agent_output") {
const execution = parsedResult.execution as
| {
outputs?: Record<string, unknown[]>;
}
| null
| undefined;
const outputs = execution?.outputs || {};
const message = parsedResult.message as string | undefined;
return (
<div className={cn("space-y-4 px-4 py-2", className)}>
<div className="flex items-center gap-2">
<WrenchIcon
size={14}
weight="bold"
className="flex-shrink-0 text-neutral-500"
/>
<Text variant="small" className="text-neutral-500">
{getToolActionPhrase(toolName)}
</Text>
</div>
{message && (
<div className="rounded border p-4">
<Text variant="small" className="text-neutral-600">
{message}
</Text>
</div>
)}
{Object.keys(outputs).length > 0 && (
<div className="space-y-4">
{Object.entries(outputs).map(([outputName, values]) =>
values.map((value, index) => {
const renderer = globalRegistry.getRenderer(value);
if (renderer) {
return (
<OutputItem
key={`${outputName}-${index}`}
value={value}
renderer={renderer}
label={outputName}
/>
);
}
return (
<div
key={`${outputName}-${index}`}
className="rounded border p-4"
>
<Text variant="large-medium" className="mb-2 capitalize">
{outputName}
</Text>
<pre className="overflow-auto text-sm">
{JSON.stringify(value, null, 2)}
</pre>
</div>
);
}),
)}
</div>
)}
</div>
);
}
if (responseType === "block_output" && parsedResult.outputs) {
const outputs = parsedResult.outputs as Record<string, unknown[]>;
return (
<div className={cn("space-y-4 px-4 py-2", className)}>
<div className="flex items-center gap-2">
<WrenchIcon
size={14}
weight="bold"
className="flex-shrink-0 text-neutral-500"
/>
<Text variant="small" className="text-neutral-500">
{getToolActionPhrase(toolName)}
</Text>
</div>
<div className="space-y-4">
{Object.entries(outputs).map(([outputName, values]) =>
values.map((value, index) => {
const renderer = globalRegistry.getRenderer(value);
if (renderer) {
return (
<OutputItem
key={`${outputName}-${index}`}
value={value}
renderer={renderer}
label={outputName}
/>
);
}
return (
<div
key={`${outputName}-${index}`}
className="rounded border p-4"
>
<Text variant="large-medium" className="mb-2 capitalize">
{outputName}
</Text>
<pre className="overflow-auto text-sm">
{JSON.stringify(value, null, 2)}
</pre>
</div>
);
}),
)}
</div>
</div>
);
}
// Handle other response types with a message field (e.g., understanding_updated)
if (parsedResult.message && typeof parsedResult.message === "string") {
// Format tool name from snake_case to Title Case
const formattedToolName = toolName
.split("_")
.map((word) => word.charAt(0).toUpperCase() + word.slice(1))
.join(" ");
// Clean up message - remove incomplete user_name references
let cleanedMessage = parsedResult.message;
// Remove "Updated understanding with: user_name" pattern if user_name is just a placeholder
cleanedMessage = cleanedMessage.replace(
/Updated understanding with:\s*user_name\.?\s*/gi,
"",
);
// Remove standalone user_name references
cleanedMessage = cleanedMessage.replace(/\buser_name\b\.?\s*/gi, "");
cleanedMessage = cleanedMessage.trim();
// Only show message if it has content after cleaning
if (!cleanedMessage) {
return (
<div
className={cn(
"flex items-center justify-center gap-2 px-4 py-2",
className,
)}
>
<WrenchIcon
size={14}
weight="bold"
className="flex-shrink-0 text-neutral-500"
/>
<Text variant="small" className="text-neutral-500">
{formattedToolName}
</Text>
</div>
);
}
return (
<div className={cn("space-y-2 px-4 py-2", className)}>
<div className="flex items-center justify-center gap-2">
<WrenchIcon
size={14}
weight="bold"
className="flex-shrink-0 text-neutral-500"
/>
<Text variant="small" className="text-neutral-500">
{formattedToolName}
</Text>
</div>
<div className="rounded border p-4">
<Text variant="small" className="text-neutral-600">
{cleanedMessage}
</Text>
</div>
</div>
);
}
}
const renderer = globalRegistry.getRenderer(result);
if (renderer) {
return (
<div className={cn("px-4 py-2", className)}>
<div className="mb-2 flex items-center gap-2">
<WrenchIcon
size={14}
weight="bold"
className="flex-shrink-0 text-neutral-500"
/>
<Text variant="small" className="text-neutral-500">
{getToolActionPhrase(toolName)}
</Text>
</div>
<OutputItem value={result} renderer={renderer} />
</div>
);
}
return (
<div className={cn("flex items-center justify-center gap-2", className)}>
<WrenchIcon
size={14}
weight="bold"
className="flex-shrink-0 text-neutral-500"
/>
<Text variant="small" className="text-neutral-500">
{getToolActionPhrase(toolName)}...
</Text>
</div>
);
}

View File

@@ -64,10 +64,3 @@ export function getToolCompletionPhrase(toolName: string): string {
`Finished ${toolName.replace(/_/g, " ").replace("...", "")}`
);
}
/** Validate UUID v4 format */
export function isValidUUID(value: string): boolean {
const uuidRegex =
/^[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}$/i;
return uuidRegex.test(value);
}

View File

@@ -1,17 +1,12 @@
"use client";
import { useEffect, useRef } from "react";
import { useRouter, useSearchParams } from "next/navigation";
import { toast } from "sonner";
import { useChatSession } from "@/app/(platform)/chat/useChatSession";
import { useSupabase } from "@/lib/supabase/hooks/useSupabase";
import { useChatStream } from "@/app/(platform)/chat/useChatStream";
import { useEffect, useRef } from "react";
import { toast } from "sonner";
import { useChatSession } from "./useChatSession";
import { useChatStream } from "./useChatStream";
export function useChatPage() {
const router = useRouter();
const searchParams = useSearchParams();
const urlSessionId =
searchParams.get("session_id") || searchParams.get("session");
export function useChat() {
const hasCreatedSessionRef = useRef(false);
const hasClaimedSessionRef = useRef(false);
const { user } = useSupabase();
@@ -25,29 +20,24 @@ export function useChatPage() {
isCreating,
error,
createSession,
refreshSession,
claimSession,
clearSession: clearSessionBase,
loadSession,
} = useChatSession({
urlSessionId,
urlSessionId: null,
autoCreate: false,
});
useEffect(
function autoCreateSession() {
if (
!urlSessionId &&
!hasCreatedSessionRef.current &&
!isCreating &&
!sessionIdFromHook
) {
if (!hasCreatedSessionRef.current && !isCreating && !sessionIdFromHook) {
hasCreatedSessionRef.current = true;
createSession().catch((_err) => {
hasCreatedSessionRef.current = false;
});
}
},
[urlSessionId, isCreating, sessionIdFromHook, createSession],
[isCreating, sessionIdFromHook, createSession],
);
useEffect(
@@ -111,7 +101,6 @@ export function useChatPage() {
clearSessionBase();
hasCreatedSessionRef.current = false;
hasClaimedSessionRef.current = false;
router.push("/chat");
}
return {
@@ -121,8 +110,8 @@ export function useChatPage() {
isCreating,
error,
createSession,
refreshSession,
clearSession,
loadSession,
sessionId: sessionIdFromHook,
};
}

View File

@@ -0,0 +1,17 @@
"use client";
import { create } from "zustand";
interface ChatDrawerState {
isOpen: boolean;
open: () => void;
close: () => void;
toggle: () => void;
}
export const useChatDrawer = create<ChatDrawerState>((set) => ({
isOpen: false,
open: () => set({ isOpen: true }),
close: () => set({ isOpen: false }),
toggle: () => set((state) => ({ isOpen: !state.isOpen })),
}));

View File

@@ -1,17 +1,18 @@
import { useCallback, useEffect, useState, useRef, useMemo } from "react";
import { useQueryClient } from "@tanstack/react-query";
import { toast } from "sonner";
import {
usePostV2CreateSession,
getGetV2GetSessionQueryKey,
getGetV2GetSessionQueryOptions,
postV2CreateSession,
useGetV2GetSession,
usePatchV2SessionAssignUser,
getGetV2GetSessionQueryKey,
usePostV2CreateSession,
} from "@/app/api/__generated__/endpoints/chat/chat";
import type { SessionDetailResponse } from "@/app/api/__generated__/models/sessionDetailResponse";
import { storage, Key } from "@/services/storage/local-storage";
import { isValidUUID } from "@/app/(platform)/chat/helpers";
import { okData } from "@/app/api/helpers";
import { isValidUUID } from "@/lib/utils";
import { Key, storage } from "@/services/storage/local-storage";
import { useQueryClient } from "@tanstack/react-query";
import { useCallback, useEffect, useMemo, useRef, useState } from "react";
import { toast } from "sonner";
interface UseChatSessionArgs {
urlSessionId?: string | null;
@@ -155,10 +156,22 @@ export function useChatSession({
async function loadSession(id: string) {
try {
setError(null);
// Invalidate the query cache for this session to force a fresh fetch
await queryClient.invalidateQueries({
queryKey: getGetV2GetSessionQueryKey(id),
});
// Set sessionId after invalidation to ensure the hook refetches
setSessionId(id);
storage.set(Key.CHAT_SESSION_ID, id);
const result = await refetch();
if (!result.data || result.isError) {
// Force fetch with fresh data (bypass cache)
const queryOptions = getGetV2GetSessionQueryOptions(id, {
query: {
staleTime: 0, // Force fresh fetch
retry: 1,
},
});
const result = await queryClient.fetchQuery(queryOptions);
if (!result || ("status" in result && result.status !== 200)) {
console.warn("Session not found on server, clearing local state");
storage.clean(Key.CHAT_SESSION_ID);
setSessionId(null);
@@ -171,7 +184,7 @@ export function useChatSession({
throw error;
}
},
[refetch],
[queryClient],
);
const refreshSession = useCallback(

View File

@@ -0,0 +1,371 @@
import type { ToolArguments, ToolResult } from "@/types/chat";
import { useCallback, useEffect, useRef, useState } from "react";
import { toast } from "sonner";
const MAX_RETRIES = 3;
const INITIAL_RETRY_DELAY = 1000;
export interface StreamChunk {
type:
| "text_chunk"
| "text_ended"
| "tool_call"
| "tool_call_start"
| "tool_response"
| "login_needed"
| "need_login"
| "credentials_needed"
| "error"
| "usage"
| "stream_end";
timestamp?: string;
content?: string;
message?: string;
tool_id?: string;
tool_name?: string;
arguments?: ToolArguments;
result?: ToolResult;
success?: boolean;
idx?: number;
session_id?: string;
agent_info?: {
graph_id: string;
name: string;
trigger_type: string;
};
provider?: string;
provider_name?: string;
credential_type?: string;
scopes?: string[];
title?: string;
[key: string]: unknown;
}
type VercelStreamChunk =
| { type: "start"; messageId: string }
| { type: "finish" }
| { type: "text-start"; id: string }
| { type: "text-delta"; id: string; delta: string }
| { type: "text-end"; id: string }
| { type: "tool-input-start"; toolCallId: string; toolName: string }
| {
type: "tool-input-available";
toolCallId: string;
toolName: string;
input: ToolArguments;
}
| {
type: "tool-output-available";
toolCallId: string;
toolName?: string;
output: ToolResult;
success?: boolean;
}
| {
type: "usage";
promptTokens: number;
completionTokens: number;
totalTokens: number;
}
| {
type: "error";
errorText: string;
code?: string;
details?: Record<string, unknown>;
};
const LEGACY_STREAM_TYPES = new Set<StreamChunk["type"]>([
"text_chunk",
"text_ended",
"tool_call",
"tool_call_start",
"tool_response",
"login_needed",
"need_login",
"credentials_needed",
"error",
"usage",
"stream_end",
]);
function isLegacyStreamChunk(
chunk: StreamChunk | VercelStreamChunk,
): chunk is StreamChunk {
return LEGACY_STREAM_TYPES.has(chunk.type as StreamChunk["type"]);
}
function normalizeStreamChunk(
chunk: StreamChunk | VercelStreamChunk,
): StreamChunk | null {
if (isLegacyStreamChunk(chunk)) {
return chunk;
}
switch (chunk.type) {
case "text-delta":
return { type: "text_chunk", content: chunk.delta };
case "text-end":
return { type: "text_ended" };
case "tool-input-available":
return {
type: "tool_call_start",
tool_id: chunk.toolCallId,
tool_name: chunk.toolName,
arguments: chunk.input,
};
case "tool-output-available":
return {
type: "tool_response",
tool_id: chunk.toolCallId,
tool_name: chunk.toolName,
result: chunk.output,
success: chunk.success ?? true,
};
case "usage":
return {
type: "usage",
promptTokens: chunk.promptTokens,
completionTokens: chunk.completionTokens,
totalTokens: chunk.totalTokens,
};
case "error":
return {
type: "error",
message: chunk.errorText,
code: chunk.code,
details: chunk.details,
};
case "finish":
return { type: "stream_end" };
case "start":
case "text-start":
case "tool-input-start":
return null;
}
}
export function useChatStream() {
const [isStreaming, setIsStreaming] = useState(false);
const [error, setError] = useState<Error | null>(null);
const retryCountRef = useRef<number>(0);
const retryTimeoutRef = useRef<NodeJS.Timeout | null>(null);
const abortControllerRef = useRef<AbortController | null>(null);
const stopStreaming = useCallback(() => {
if (abortControllerRef.current) {
abortControllerRef.current.abort();
abortControllerRef.current = null;
}
if (retryTimeoutRef.current) {
clearTimeout(retryTimeoutRef.current);
retryTimeoutRef.current = null;
}
setIsStreaming(false);
}, []);
useEffect(() => {
return () => {
stopStreaming();
};
}, [stopStreaming]);
const sendMessage = useCallback(
async (
sessionId: string,
message: string,
onChunk: (chunk: StreamChunk) => void,
isUserMessage: boolean = true,
context?: { url: string; content: string },
isRetry: boolean = false,
) => {
stopStreaming();
const abortController = new AbortController();
abortControllerRef.current = abortController;
if (abortController.signal.aborted) {
return Promise.reject(new Error("Request aborted"));
}
if (!isRetry) {
retryCountRef.current = 0;
}
setIsStreaming(true);
setError(null);
try {
const url = `/api/chat/sessions/${sessionId}/stream`;
const body = JSON.stringify({
message,
is_user_message: isUserMessage,
context: context || null,
});
const response = await fetch(url, {
method: "POST",
headers: {
"Content-Type": "application/json",
Accept: "text/event-stream",
},
body,
signal: abortController.signal,
});
if (!response.ok) {
const errorText = await response.text();
throw new Error(errorText || `HTTP ${response.status}`);
}
if (!response.body) {
throw new Error("Response body is null");
}
const reader = response.body.getReader();
const decoder = new TextDecoder();
let buffer = "";
return new Promise<void>((resolve, reject) => {
let didDispatchStreamEnd = false;
function dispatchStreamEnd() {
if (didDispatchStreamEnd) return;
didDispatchStreamEnd = true;
onChunk({ type: "stream_end" });
}
const cleanup = () => {
reader.cancel().catch(() => {
// Ignore cancel errors
});
};
async function readStream() {
try {
while (true) {
const { done, value } = await reader.read();
if (done) {
cleanup();
dispatchStreamEnd();
retryCountRef.current = 0;
stopStreaming();
resolve();
return;
}
buffer += decoder.decode(value, { stream: true });
const lines = buffer.split("\n");
buffer = lines.pop() || "";
for (const line of lines) {
if (line.startsWith("data: ")) {
const data = line.slice(6);
if (data === "[DONE]") {
cleanup();
dispatchStreamEnd();
retryCountRef.current = 0;
stopStreaming();
resolve();
return;
}
try {
const rawChunk = JSON.parse(data) as
| StreamChunk
| VercelStreamChunk;
const chunk = normalizeStreamChunk(rawChunk);
if (!chunk) {
continue;
}
// Call the chunk handler
onChunk(chunk);
// Handle stream lifecycle
if (chunk.type === "stream_end") {
didDispatchStreamEnd = true;
cleanup();
retryCountRef.current = 0;
stopStreaming();
resolve();
return;
} else if (chunk.type === "error") {
cleanup();
reject(
new Error(
chunk.message || chunk.content || "Stream error",
),
);
return;
}
} catch (err) {
// Skip invalid JSON lines
console.warn("Failed to parse SSE chunk:", err, data);
}
}
}
}
} catch (err) {
if (err instanceof Error && err.name === "AbortError") {
cleanup();
return;
}
const streamError =
err instanceof Error ? err : new Error("Failed to read stream");
if (retryCountRef.current < MAX_RETRIES) {
retryCountRef.current += 1;
const retryDelay =
INITIAL_RETRY_DELAY * Math.pow(2, retryCountRef.current - 1);
toast.info("Connection interrupted", {
description: `Retrying in ${retryDelay / 1000} seconds...`,
});
retryTimeoutRef.current = setTimeout(() => {
sendMessage(
sessionId,
message,
onChunk,
isUserMessage,
context,
true,
).catch((_err) => {
// Retry failed
});
}, retryDelay);
} else {
setError(streamError);
toast.error("Connection Failed", {
description:
"Unable to connect to chat service. Please try again.",
});
cleanup();
dispatchStreamEnd();
retryCountRef.current = 0;
stopStreaming();
reject(streamError);
}
}
}
readStream();
});
} catch (err) {
const streamError =
err instanceof Error ? err : new Error("Failed to start stream");
setError(streamError);
setIsStreaming(false);
throw streamError;
}
},
[stopStreaming],
);
return {
isStreaming,
error,
sendMessage,
stopStreaming,
};
}

View File

@@ -0,0 +1,98 @@
import { useCallback } from "react";
export interface PageContext {
url: string;
content: string;
}
const MAX_CONTENT_CHARS = 10000;
/**
* Hook to capture the current page context (URL + full page content)
* Privacy-hardened: removes sensitive inputs and enforces content size limits
*/
export function usePageContext() {
const capturePageContext = useCallback((): PageContext => {
if (typeof window === "undefined" || typeof document === "undefined") {
return { url: "", content: "" };
}
const url = window.location.href;
// Clone document to avoid modifying the original
const clone = document.cloneNode(true) as Document;
// Remove script, style, and noscript elements
const scripts = clone.querySelectorAll("script, style, noscript");
scripts.forEach((el) => el.remove());
// Remove sensitive elements and their content
const sensitiveSelectors = [
"input",
"textarea",
"[contenteditable]",
'input[type="password"]',
'input[type="email"]',
'input[type="tel"]',
'input[type="search"]',
'input[type="hidden"]',
"form",
"[data-sensitive]",
"[data-sensitive='true']",
];
sensitiveSelectors.forEach((selector) => {
const elements = clone.querySelectorAll(selector);
elements.forEach((el) => {
// For form elements, remove the entire element
if (el.tagName === "FORM") {
el.remove();
} else {
// For inputs and textareas, clear their values but keep the element structure
if (
el instanceof HTMLInputElement ||
el instanceof HTMLTextAreaElement
) {
el.value = "";
el.textContent = "";
} else {
// For other sensitive elements, remove them entirely
el.remove();
}
}
});
});
// Strip any remaining input values that might have been missed
const allInputs = clone.querySelectorAll("input, textarea");
allInputs.forEach((el) => {
if (el instanceof HTMLInputElement || el instanceof HTMLTextAreaElement) {
el.value = "";
el.textContent = "";
}
});
// Get text content from body
const body = clone.body;
const content = body?.textContent || body?.innerText || "";
// Clean up whitespace
let cleanedContent = content
.replace(/\s+/g, " ")
.replace(/\n\s*\n/g, "\n")
.trim();
// Enforce maximum content size
if (cleanedContent.length > MAX_CONTENT_CHARS) {
cleanedContent =
cleanedContent.substring(0, MAX_CONTENT_CHARS) + "... [truncated]";
}
return {
url,
content: cleanedContent,
};
}, []);
return { capturePageContext };
}

View File

@@ -1,68 +0,0 @@
import { cn } from "@/lib/utils";
import { ChatInput } from "@/app/(platform)/chat/components/ChatInput/ChatInput";
import { MessageList } from "@/app/(platform)/chat/components/MessageList/MessageList";
import { QuickActionsWelcome } from "@/app/(platform)/chat/components/QuickActionsWelcome/QuickActionsWelcome";
import { useChatContainer } from "./useChatContainer";
import type { SessionDetailResponse } from "@/app/api/__generated__/models/sessionDetailResponse";
export interface ChatContainerProps {
sessionId: string | null;
initialMessages: SessionDetailResponse["messages"];
onRefreshSession: () => Promise<void>;
className?: string;
}
export function ChatContainer({
sessionId,
initialMessages,
onRefreshSession,
className,
}: ChatContainerProps) {
const { messages, streamingChunks, isStreaming, sendMessage } =
useChatContainer({
sessionId,
initialMessages,
onRefreshSession,
});
const quickActions = [
"Find agents for social media management",
"Show me agents for content creation",
"Help me automate my business",
"What can you help me with?",
];
return (
<div className={cn("flex h-full flex-col", className)}>
{/* Messages or Welcome Screen */}
{messages.length === 0 ? (
<QuickActionsWelcome
title="Welcome to AutoGPT Chat"
description="Start a conversation to discover and run AI agents."
actions={quickActions}
onActionClick={sendMessage}
disabled={isStreaming || !sessionId}
/>
) : (
<MessageList
messages={messages}
streamingChunks={streamingChunks}
isStreaming={isStreaming}
onSendMessage={sendMessage}
className="flex-1"
/>
)}
{/* Input - Always visible */}
<div className="border-t border-zinc-200 p-4 dark:border-zinc-800">
<ChatInput
onSend={sendMessage}
disabled={isStreaming || !sessionId}
placeholder={
sessionId ? "Type your message..." : "Creating session..."
}
/>
</div>
</div>
);
}

View File

@@ -1,130 +0,0 @@
import { useState, useCallback, useRef, useMemo } from "react";
import { toast } from "sonner";
import { useChatStream } from "@/app/(platform)/chat/useChatStream";
import type { SessionDetailResponse } from "@/app/api/__generated__/models/sessionDetailResponse";
import type { ChatMessageData } from "@/app/(platform)/chat/components/ChatMessage/useChatMessage";
import {
parseToolResponse,
isValidMessage,
isToolCallArray,
createUserMessage,
filterAuthMessages,
} from "./helpers";
import { createStreamEventDispatcher } from "./createStreamEventDispatcher";
interface UseChatContainerArgs {
sessionId: string | null;
initialMessages: SessionDetailResponse["messages"];
onRefreshSession: () => Promise<void>;
}
export function useChatContainer({
sessionId,
initialMessages,
}: UseChatContainerArgs) {
const [messages, setMessages] = useState<ChatMessageData[]>([]);
const [streamingChunks, setStreamingChunks] = useState<string[]>([]);
const [hasTextChunks, setHasTextChunks] = useState(false);
const streamingChunksRef = useRef<string[]>([]);
const { error, sendMessage: sendStreamMessage } = useChatStream();
const isStreaming = hasTextChunks;
const allMessages = useMemo(() => {
const processedInitialMessages = initialMessages
.filter((msg: Record<string, unknown>) => {
if (!isValidMessage(msg)) {
console.warn("Invalid message structure from backend:", msg);
return false;
}
const content = String(msg.content || "").trim();
const toolCalls = msg.tool_calls;
return (
content.length > 0 ||
(toolCalls && Array.isArray(toolCalls) && toolCalls.length > 0)
);
})
.map((msg: Record<string, unknown>) => {
const content = String(msg.content || "");
const role = String(msg.role || "assistant").toLowerCase();
const toolCalls = msg.tool_calls;
if (
role === "assistant" &&
toolCalls &&
isToolCallArray(toolCalls) &&
toolCalls.length > 0
) {
return null;
}
if (role === "tool") {
const timestamp = msg.timestamp
? new Date(msg.timestamp as string)
: undefined;
const toolResponse = parseToolResponse(
content,
(msg.tool_call_id as string) || "",
"unknown",
timestamp,
);
if (!toolResponse) {
return null;
}
return toolResponse;
}
return {
type: "message",
role: role as "user" | "assistant" | "system",
content,
timestamp: msg.timestamp
? new Date(msg.timestamp as string)
: undefined,
};
})
.filter((msg): msg is ChatMessageData => msg !== null);
return [...processedInitialMessages, ...messages];
}, [initialMessages, messages]);
const sendMessage = useCallback(
async function sendMessage(content: string, isUserMessage: boolean = true) {
if (!sessionId) {
console.error("Cannot send message: no session ID");
return;
}
if (isUserMessage) {
const userMessage = createUserMessage(content);
setMessages((prev) => [...filterAuthMessages(prev), userMessage]);
} else {
setMessages((prev) => filterAuthMessages(prev));
}
setStreamingChunks([]);
streamingChunksRef.current = [];
setHasTextChunks(false);
const dispatcher = createStreamEventDispatcher({
setHasTextChunks,
setStreamingChunks,
streamingChunksRef,
setMessages,
sessionId,
});
try {
await sendStreamMessage(sessionId, content, dispatcher, isUserMessage);
} catch (err) {
console.error("Failed to send message:", err);
const errorMessage =
err instanceof Error ? err.message : "Failed to send message";
toast.error("Failed to send message", {
description: errorMessage,
});
}
},
[sessionId, sendStreamMessage],
);
return {
messages: allMessages,
streamingChunks,
isStreaming,
error,
sendMessage,
};
}

View File

@@ -1,153 +0,0 @@
import { CredentialsInput } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/modals/CredentialsInputs/CredentialsInput";
import { Card } from "@/components/atoms/Card/Card";
import { Text } from "@/components/atoms/Text/Text";
import type { BlockIOCredentialsSubSchema } from "@/lib/autogpt-server-api";
import { cn } from "@/lib/utils";
import { CheckIcon, KeyIcon, WarningIcon } from "@phosphor-icons/react";
import { useEffect, useRef } from "react";
import { useChatCredentialsSetup } from "./useChatCredentialsSetup";
export interface CredentialInfo {
provider: string;
providerName: string;
credentialType: "api_key" | "oauth2" | "user_password" | "host_scoped";
title: string;
scopes?: string[];
}
interface Props {
credentials: CredentialInfo[];
agentName?: string;
message: string;
onAllCredentialsComplete: () => void;
onCancel: () => void;
className?: string;
}
function createSchemaFromCredentialInfo(
credential: CredentialInfo,
): BlockIOCredentialsSubSchema {
return {
type: "object",
properties: {},
credentials_provider: [credential.provider],
credentials_types: [credential.credentialType],
credentials_scopes: credential.scopes,
discriminator: undefined,
discriminator_mapping: undefined,
discriminator_values: undefined,
};
}
export function ChatCredentialsSetup({
credentials,
agentName: _agentName,
message,
onAllCredentialsComplete,
onCancel: _onCancel,
className,
}: Props) {
const { selectedCredentials, isAllComplete, handleCredentialSelect } =
useChatCredentialsSetup(credentials);
// Track if we've already called completion to prevent double calls
const hasCalledCompleteRef = useRef(false);
// Reset the completion flag when credentials change (new credential setup flow)
useEffect(
function resetCompletionFlag() {
hasCalledCompleteRef.current = false;
},
[credentials],
);
// Auto-call completion when all credentials are configured
useEffect(
function autoCompleteWhenReady() {
if (isAllComplete && !hasCalledCompleteRef.current) {
hasCalledCompleteRef.current = true;
onAllCredentialsComplete();
}
},
[isAllComplete, onAllCredentialsComplete],
);
return (
<Card
className={cn(
"mx-4 my-2 overflow-hidden border-orange-200 bg-orange-50 dark:border-orange-900 dark:bg-orange-950",
className,
)}
>
<div className="flex items-start gap-4 p-6">
<div className="flex h-12 w-12 flex-shrink-0 items-center justify-center rounded-full bg-orange-500">
<KeyIcon size={24} weight="bold" className="text-white" />
</div>
<div className="flex-1">
<Text
variant="h3"
className="mb-2 text-orange-900 dark:text-orange-100"
>
Credentials Required
</Text>
<Text
variant="body"
className="mb-4 text-orange-700 dark:text-orange-300"
>
{message}
</Text>
<div className="space-y-3">
{credentials.map((cred, index) => {
const schema = createSchemaFromCredentialInfo(cred);
const isSelected = !!selectedCredentials[cred.provider];
return (
<div
key={`${cred.provider}-${index}`}
className={cn(
"relative rounded-lg border border-orange-200 bg-white p-4 dark:border-orange-800 dark:bg-orange-900/20",
isSelected &&
"border-green-500 bg-green-50 dark:border-green-700 dark:bg-green-950/30",
)}
>
<div className="mb-2 flex items-center justify-between">
<div className="flex items-center gap-2">
{isSelected ? (
<CheckIcon
size={20}
className="text-green-500"
weight="bold"
/>
) : (
<WarningIcon
size={20}
className="text-orange-500"
weight="bold"
/>
)}
<Text
variant="body"
className="font-semibold text-orange-900 dark:text-orange-100"
>
{cred.providerName}
</Text>
</div>
</div>
<CredentialsInput
schema={schema}
selectedCredentials={selectedCredentials[cred.provider]}
onSelectCredentials={(credMeta) =>
handleCredentialSelect(cred.provider, credMeta)
}
/>
</div>
);
})}
</div>
</div>
</div>
</Card>
);
}

View File

@@ -1,63 +0,0 @@
import { cn } from "@/lib/utils";
import { PaperPlaneRightIcon } from "@phosphor-icons/react";
import { Button } from "@/components/atoms/Button/Button";
import { useChatInput } from "./useChatInput";
export interface ChatInputProps {
onSend: (message: string) => void;
disabled?: boolean;
placeholder?: string;
className?: string;
}
export function ChatInput({
onSend,
disabled = false,
placeholder = "Type your message...",
className,
}: ChatInputProps) {
const { value, setValue, handleKeyDown, handleSend, textareaRef } =
useChatInput({
onSend,
disabled,
maxRows: 5,
});
return (
<div className={cn("flex gap-2", className)}>
<textarea
ref={textareaRef}
value={value}
onChange={(e) => setValue(e.target.value)}
onKeyDown={handleKeyDown}
placeholder={placeholder}
disabled={disabled}
rows={1}
autoComplete="off"
aria-label="Chat message input"
aria-describedby="chat-input-hint"
className={cn(
"flex-1 resize-none rounded-lg border border-neutral-200 bg-white px-4 py-2 text-sm",
"placeholder:text-neutral-400",
"focus:border-violet-600 focus:outline-none focus:ring-2 focus:ring-violet-600/20",
"dark:border-neutral-800 dark:bg-neutral-900 dark:text-neutral-100 dark:placeholder:text-neutral-500",
"disabled:cursor-not-allowed disabled:opacity-50",
)}
/>
<span id="chat-input-hint" className="sr-only">
Press Enter to send, Shift+Enter for new line
</span>
<Button
variant="primary"
size="small"
onClick={handleSend}
disabled={disabled || !value.trim()}
className="self-end"
aria-label="Send message"
>
<PaperPlaneRightIcon className="h-4 w-4" weight="fill" />
</Button>
</div>
);
}

View File

@@ -1,31 +0,0 @@
import React from "react";
import { Text } from "@/components/atoms/Text/Text";
import { ArrowClockwiseIcon } from "@phosphor-icons/react";
import { cn } from "@/lib/utils";
export interface ChatLoadingStateProps {
message?: string;
className?: string;
}
export function ChatLoadingState({
message = "Loading...",
className,
}: ChatLoadingStateProps) {
return (
<div
className={cn("flex flex-1 items-center justify-center p-6", className)}
>
<div className="flex flex-col items-center gap-4 text-center">
<ArrowClockwiseIcon
size={32}
weight="bold"
className="animate-spin text-purple-500"
/>
<Text variant="body" className="text-zinc-600 dark:text-zinc-400">
{message}
</Text>
</div>
</div>
);
}

View File

@@ -1,194 +0,0 @@
"use client";
import { cn } from "@/lib/utils";
import { RobotIcon, UserIcon, CheckCircleIcon } from "@phosphor-icons/react";
import { useCallback } from "react";
import { MessageBubble } from "@/app/(platform)/chat/components/MessageBubble/MessageBubble";
import { MarkdownContent } from "@/app/(platform)/chat/components/MarkdownContent/MarkdownContent";
import { ToolCallMessage } from "@/app/(platform)/chat/components/ToolCallMessage/ToolCallMessage";
import { ToolResponseMessage } from "@/app/(platform)/chat/components/ToolResponseMessage/ToolResponseMessage";
import { AuthPromptWidget } from "@/app/(platform)/chat/components/AuthPromptWidget/AuthPromptWidget";
import { ChatCredentialsSetup } from "@/app/(platform)/chat/components/ChatCredentialsSetup/ChatCredentialsSetup";
import { useSupabase } from "@/lib/supabase/hooks/useSupabase";
import { useChatMessage, type ChatMessageData } from "./useChatMessage";
import { getToolActionPhrase } from "@/app/(platform)/chat/helpers";
export interface ChatMessageProps {
message: ChatMessageData;
className?: string;
onDismissLogin?: () => void;
onDismissCredentials?: () => void;
onSendMessage?: (content: string, isUserMessage?: boolean) => void;
}
export function ChatMessage({
message,
className,
onDismissCredentials,
onSendMessage,
}: ChatMessageProps) {
const { user } = useSupabase();
const {
formattedTimestamp,
isUser,
isAssistant,
isToolCall,
isToolResponse,
isLoginNeeded,
isCredentialsNeeded,
} = useChatMessage(message);
const handleAllCredentialsComplete = useCallback(
function handleAllCredentialsComplete() {
// Send a user message that explicitly asks to retry the setup
// This ensures the LLM calls get_required_setup_info again and proceeds with execution
if (onSendMessage) {
onSendMessage(
"I've configured the required credentials. Please check if everything is ready and proceed with setting up the agent.",
);
}
// Optionally dismiss the credentials prompt
if (onDismissCredentials) {
onDismissCredentials();
}
},
[onSendMessage, onDismissCredentials],
);
function handleCancelCredentials() {
// Dismiss the credentials prompt
if (onDismissCredentials) {
onDismissCredentials();
}
}
// Render credentials needed messages
if (isCredentialsNeeded && message.type === "credentials_needed") {
return (
<ChatCredentialsSetup
credentials={message.credentials}
agentName={message.agentName}
message={message.message}
onAllCredentialsComplete={handleAllCredentialsComplete}
onCancel={handleCancelCredentials}
className={className}
/>
);
}
// Render login needed messages
if (isLoginNeeded && message.type === "login_needed") {
// If user is already logged in, show success message instead of auth prompt
if (user) {
return (
<div className={cn("px-4 py-2", className)}>
<div className="my-4 overflow-hidden rounded-lg border border-green-200 bg-gradient-to-br from-green-50 to-emerald-50 dark:border-green-800 dark:from-green-950/30 dark:to-emerald-950/30">
<div className="px-6 py-4">
<div className="flex items-center gap-3">
<div className="flex h-10 w-10 items-center justify-center rounded-full bg-green-600">
<CheckCircleIcon
size={20}
weight="fill"
className="text-white"
/>
</div>
<div>
<h3 className="text-lg font-semibold text-neutral-900 dark:text-neutral-100">
Successfully Authenticated
</h3>
<p className="text-sm text-neutral-600 dark:text-neutral-400">
You&apos;re now signed in and ready to continue
</p>
</div>
</div>
</div>
</div>
</div>
);
}
// Show auth prompt if not logged in
return (
<div className={cn("px-4 py-2", className)}>
<AuthPromptWidget
message={message.message}
sessionId={message.sessionId}
agentInfo={message.agentInfo}
returnUrl="/chat"
/>
</div>
);
}
// Render tool call messages
if (isToolCall && message.type === "tool_call") {
return (
<div className={cn("px-4 py-2", className)}>
<ToolCallMessage toolName={message.toolName} />
</div>
);
}
// Render tool response messages
if (
(isToolResponse && message.type === "tool_response") ||
message.type === "no_results" ||
message.type === "agent_carousel" ||
message.type === "execution_started"
) {
return (
<div className={cn("px-4 py-2", className)}>
<ToolResponseMessage toolName={getToolActionPhrase(message.toolName)} />
</div>
);
}
// Render regular chat messages
if (message.type === "message") {
return (
<div
className={cn(
"flex gap-3 px-4 py-4",
isUser && "flex-row-reverse",
className,
)}
>
{/* Avatar */}
<div className="flex-shrink-0">
<div
className={cn(
"flex h-8 w-8 items-center justify-center rounded-full",
isUser && "bg-zinc-200 dark:bg-zinc-700",
isAssistant && "bg-purple-600 dark:bg-purple-500",
)}
>
{isUser ? (
<UserIcon className="h-5 w-5 text-zinc-700 dark:text-zinc-200" />
) : (
<RobotIcon className="h-5 w-5 text-white" />
)}
</div>
</div>
{/* Message Content */}
<div className={cn("flex max-w-[70%] flex-col", isUser && "items-end")}>
<MessageBubble variant={isUser ? "user" : "assistant"}>
<MarkdownContent content={message.content} />
</MessageBubble>
{/* Timestamp */}
<span
className={cn(
"mt-1 text-xs text-zinc-500 dark:text-zinc-400",
isUser && "text-right",
)}
>
{formattedTimestamp}
</span>
</div>
</div>
);
}
// Fallback for unknown message types
return null;
}

View File

@@ -1,28 +0,0 @@
import { cn } from "@/lib/utils";
import { ReactNode } from "react";
export interface MessageBubbleProps {
children: ReactNode;
variant: "user" | "assistant";
className?: string;
}
export function MessageBubble({
children,
variant,
className,
}: MessageBubbleProps) {
return (
<div
className={cn(
"rounded-lg px-4 py-3 text-sm",
variant === "user" && "bg-violet-600 text-white dark:bg-violet-500",
variant === "assistant" &&
"border border-neutral-200 bg-white dark:border-neutral-700 dark:bg-neutral-900 dark:text-neutral-100",
className,
)}
>
{children}
</div>
);
}

View File

@@ -1,61 +0,0 @@
import { cn } from "@/lib/utils";
import { ChatMessage } from "../ChatMessage/ChatMessage";
import type { ChatMessageData } from "../ChatMessage/useChatMessage";
import { StreamingMessage } from "../StreamingMessage/StreamingMessage";
import { useMessageList } from "./useMessageList";
export interface MessageListProps {
messages: ChatMessageData[];
streamingChunks?: string[];
isStreaming?: boolean;
className?: string;
onStreamComplete?: () => void;
onSendMessage?: (content: string) => void;
}
export function MessageList({
messages,
streamingChunks = [],
isStreaming = false,
className,
onStreamComplete,
onSendMessage,
}: MessageListProps) {
const { messagesEndRef, messagesContainerRef } = useMessageList({
messageCount: messages.length,
isStreaming,
});
return (
<div
ref={messagesContainerRef}
className={cn(
"flex-1 overflow-y-auto",
"scrollbar-thin scrollbar-track-transparent scrollbar-thumb-zinc-300 dark:scrollbar-thumb-zinc-700",
className,
)}
>
<div className="space-y-0">
{/* Render all persisted messages */}
{messages.map((message, index) => (
<ChatMessage
key={index}
message={message}
onSendMessage={onSendMessage}
/>
))}
{/* Render streaming message if active */}
{isStreaming && streamingChunks.length > 0 && (
<StreamingMessage
chunks={streamingChunks}
onComplete={onStreamComplete}
/>
)}
{/* Invisible div to scroll to */}
<div ref={messagesEndRef} />
</div>
</div>
);
}

View File

@@ -1,51 +0,0 @@
import React from "react";
import { Text } from "@/components/atoms/Text/Text";
import { cn } from "@/lib/utils";
export interface QuickActionsWelcomeProps {
title: string;
description: string;
actions: string[];
onActionClick: (action: string) => void;
disabled?: boolean;
className?: string;
}
export function QuickActionsWelcome({
title,
description,
actions,
onActionClick,
disabled = false,
className,
}: QuickActionsWelcomeProps) {
return (
<div
className={cn("flex flex-1 items-center justify-center p-4", className)}
>
<div className="max-w-2xl text-center">
<Text
variant="h2"
className="mb-4 text-3xl font-bold text-zinc-900 dark:text-zinc-100"
>
{title}
</Text>
<Text variant="body" className="mb-8 text-zinc-600 dark:text-zinc-400">
{description}
</Text>
<div className="grid gap-2 sm:grid-cols-2">
{actions.map((action) => (
<button
key={action}
onClick={() => onActionClick(action)}
disabled={disabled}
className="rounded-lg border border-zinc-200 bg-white p-4 text-left text-sm hover:bg-zinc-50 disabled:cursor-not-allowed disabled:opacity-50 dark:border-zinc-800 dark:bg-zinc-900 dark:hover:bg-zinc-800"
>
{action}
</button>
))}
</div>
</div>
</div>
);
}

View File

@@ -1,42 +0,0 @@
import { cn } from "@/lib/utils";
import { Robot } from "@phosphor-icons/react";
import { MessageBubble } from "@/app/(platform)/chat/components/MessageBubble/MessageBubble";
import { MarkdownContent } from "@/app/(platform)/chat/components/MarkdownContent/MarkdownContent";
import { useStreamingMessage } from "./useStreamingMessage";
export interface StreamingMessageProps {
chunks: string[];
className?: string;
onComplete?: () => void;
}
export function StreamingMessage({
chunks,
className,
onComplete,
}: StreamingMessageProps) {
const { displayText } = useStreamingMessage({ chunks, onComplete });
return (
<div className={cn("flex gap-3 px-4 py-4", className)}>
{/* Avatar */}
<div className="flex-shrink-0">
<div className="flex h-8 w-8 items-center justify-center rounded-full bg-purple-600 dark:bg-purple-500">
<Robot className="h-5 w-5 text-white" />
</div>
</div>
{/* Message Content */}
<div className="flex max-w-[70%] flex-col">
<MessageBubble variant="assistant">
<MarkdownContent content={displayText} />
</MessageBubble>
{/* Timestamp */}
<span className="mt-1 text-xs text-neutral-500 dark:text-neutral-400">
Typing...
</span>
</div>
</div>
);
}

View File

@@ -1,49 +0,0 @@
import React from "react";
import { WrenchIcon } from "@phosphor-icons/react";
import { cn } from "@/lib/utils";
import { getToolActionPhrase } from "@/app/(platform)/chat/helpers";
export interface ToolCallMessageProps {
toolName: string;
className?: string;
}
export function ToolCallMessage({ toolName, className }: ToolCallMessageProps) {
return (
<div
className={cn(
"mx-10 max-w-[70%] overflow-hidden rounded-lg border transition-all duration-200",
"border-neutral-200 dark:border-neutral-700",
"bg-white dark:bg-neutral-900",
"animate-in fade-in-50 slide-in-from-top-1",
className,
)}
>
{/* Header */}
<div
className={cn(
"flex items-center justify-between px-3 py-2",
"bg-gradient-to-r from-neutral-50 to-neutral-100 dark:from-neutral-800/20 dark:to-neutral-700/20",
)}
>
<div className="flex items-center gap-2 overflow-hidden">
<WrenchIcon
size={16}
weight="bold"
className="flex-shrink-0 text-neutral-500 dark:text-neutral-400"
/>
<span className="relative inline-block overflow-hidden text-sm font-medium text-neutral-700 dark:text-neutral-300">
{getToolActionPhrase(toolName)}...
<span
className={cn(
"absolute inset-0 bg-gradient-to-r from-transparent via-white/50 to-transparent",
"dark:via-white/20",
"animate-shimmer",
)}
/>
</span>
</div>
</div>
</div>
);
}

View File

@@ -1,52 +0,0 @@
import React from "react";
import { WrenchIcon } from "@phosphor-icons/react";
import { cn } from "@/lib/utils";
import { getToolActionPhrase } from "@/app/(platform)/chat/helpers";
export interface ToolResponseMessageProps {
toolName: string;
success?: boolean;
className?: string;
}
export function ToolResponseMessage({
toolName,
success = true,
className,
}: ToolResponseMessageProps) {
return (
<div
className={cn(
"mx-10 max-w-[70%] overflow-hidden rounded-lg border transition-all duration-200",
success
? "border-neutral-200 dark:border-neutral-700"
: "border-red-200 dark:border-red-800",
"bg-white dark:bg-neutral-900",
"animate-in fade-in-50 slide-in-from-top-1",
className,
)}
>
{/* Header */}
<div
className={cn(
"flex items-center justify-between px-3 py-2",
"bg-gradient-to-r",
success
? "from-neutral-50 to-neutral-100 dark:from-neutral-800/20 dark:to-neutral-700/20"
: "from-red-50 to-red-100 dark:from-red-900/20 dark:to-red-800/20",
)}
>
<div className="flex items-center gap-2">
<WrenchIcon
size={16}
weight="bold"
className="text-neutral-500 dark:text-neutral-400"
/>
<span className="text-sm font-medium text-neutral-700 dark:text-neutral-300">
{getToolActionPhrase(toolName)}...
</span>
</div>
</div>
</div>
);
}

View File

@@ -1,30 +1,17 @@
"use client";
import { useChatPage } from "./useChatPage";
import { ChatContainer } from "./components/ChatContainer/ChatContainer";
import { ChatErrorState } from "./components/ChatErrorState/ChatErrorState";
import { ChatLoadingState } from "./components/ChatLoadingState/ChatLoadingState";
import { useGetFlag, Flag } from "@/services/feature-flags/use-get-flag";
import { Flag, useGetFlag } from "@/services/feature-flags/use-get-flag";
import { useRouter } from "next/navigation";
import { useEffect } from "react";
import { Chat } from "./components/Chat/Chat";
export default function ChatPage() {
const isChatEnabled = useGetFlag(Flag.CHAT);
const router = useRouter();
const {
messages,
isLoading,
isCreating,
error,
sessionId,
createSession,
clearSession,
refreshSession,
} = useChatPage();
useEffect(() => {
if (isChatEnabled === false) {
router.push("/404");
router.push("/marketplace");
}
}, [isChatEnabled, router]);
@@ -34,50 +21,7 @@ export default function ChatPage() {
return (
<div className="flex h-full flex-col">
{/* Header */}
<header className="border-b border-zinc-200 bg-white p-4 dark:border-zinc-800 dark:bg-zinc-900">
<div className="container mx-auto flex items-center justify-between">
<h1 className="text-xl font-semibold">Chat</h1>
{sessionId && (
<div className="flex items-center gap-4">
<span className="text-sm text-zinc-600 dark:text-zinc-400">
Session: {sessionId.slice(0, 8)}...
</span>
<button
onClick={clearSession}
className="text-sm text-zinc-600 hover:text-zinc-900 dark:text-zinc-400 dark:hover:text-zinc-100"
>
New Chat
</button>
</div>
)}
</div>
</header>
{/* Main Content */}
<main className="container mx-auto flex flex-1 flex-col overflow-hidden">
{/* Loading State - show when explicitly loading/creating OR when we don't have a session yet and no error */}
{(isLoading || isCreating || (!sessionId && !error)) && (
<ChatLoadingState
message={isCreating ? "Creating session..." : "Loading..."}
/>
)}
{/* Error State */}
{error && !isLoading && (
<ChatErrorState error={error} onRetry={createSession} />
)}
{/* Session Content */}
{sessionId && !isLoading && !error && (
<ChatContainer
sessionId={sessionId}
initialMessages={messages}
onRefreshSession={refreshSession}
className="flex-1"
/>
)}
</main>
<Chat className="flex-1" />
</div>
);
}

View File

@@ -1,204 +0,0 @@
import { useState, useCallback, useRef, useEffect } from "react";
import { toast } from "sonner";
import type { ToolArguments, ToolResult } from "@/types/chat";
const MAX_RETRIES = 3;
const INITIAL_RETRY_DELAY = 1000;
export interface StreamChunk {
type:
| "text_chunk"
| "text_ended"
| "tool_call"
| "tool_call_start"
| "tool_response"
| "login_needed"
| "need_login"
| "credentials_needed"
| "error"
| "usage"
| "stream_end";
timestamp?: string;
content?: string;
message?: string;
tool_id?: string;
tool_name?: string;
arguments?: ToolArguments;
result?: ToolResult;
success?: boolean;
idx?: number;
session_id?: string;
agent_info?: {
graph_id: string;
name: string;
trigger_type: string;
};
provider?: string;
provider_name?: string;
credential_type?: string;
scopes?: string[];
title?: string;
[key: string]: unknown;
}
export function useChatStream() {
const [isStreaming, setIsStreaming] = useState(false);
const [error, setError] = useState<Error | null>(null);
const eventSourceRef = useRef<EventSource | null>(null);
const retryCountRef = useRef<number>(0);
const retryTimeoutRef = useRef<NodeJS.Timeout | null>(null);
const abortControllerRef = useRef<AbortController | null>(null);
const stopStreaming = useCallback(() => {
if (abortControllerRef.current) {
abortControllerRef.current.abort();
abortControllerRef.current = null;
}
if (eventSourceRef.current) {
eventSourceRef.current.close();
eventSourceRef.current = null;
}
if (retryTimeoutRef.current) {
clearTimeout(retryTimeoutRef.current);
retryTimeoutRef.current = null;
}
retryCountRef.current = 0;
setIsStreaming(false);
}, []);
useEffect(() => {
return () => {
stopStreaming();
};
}, [stopStreaming]);
const sendMessage = useCallback(
async (
sessionId: string,
message: string,
onChunk: (chunk: StreamChunk) => void,
isUserMessage: boolean = true,
) => {
stopStreaming();
const abortController = new AbortController();
abortControllerRef.current = abortController;
if (abortController.signal.aborted) {
return Promise.reject(new Error("Request aborted"));
}
retryCountRef.current = 0;
setIsStreaming(true);
setError(null);
try {
const url = `/api/chat/sessions/${sessionId}/stream?message=${encodeURIComponent(
message,
)}&is_user_message=${isUserMessage}`;
const eventSource = new EventSource(url);
eventSourceRef.current = eventSource;
abortController.signal.addEventListener("abort", () => {
eventSource.close();
eventSourceRef.current = null;
});
return new Promise<void>((resolve, reject) => {
const cleanup = () => {
eventSource.removeEventListener("message", messageHandler);
eventSource.removeEventListener("error", errorHandler);
};
const messageHandler = (event: MessageEvent) => {
try {
const chunk = JSON.parse(event.data) as StreamChunk;
if (retryCountRef.current > 0) {
retryCountRef.current = 0;
}
// Call the chunk handler
onChunk(chunk);
// Handle stream lifecycle
if (chunk.type === "stream_end") {
cleanup();
stopStreaming();
resolve();
} else if (chunk.type === "error") {
cleanup();
reject(
new Error(chunk.message || chunk.content || "Stream error"),
);
}
} catch (err) {
const parseError =
err instanceof Error
? err
: new Error("Failed to parse stream chunk");
setError(parseError);
cleanup();
reject(parseError);
}
};
const errorHandler = () => {
if (eventSourceRef.current) {
eventSourceRef.current.close();
eventSourceRef.current = null;
}
if (retryCountRef.current < MAX_RETRIES) {
retryCountRef.current += 1;
const retryDelay =
INITIAL_RETRY_DELAY * Math.pow(2, retryCountRef.current - 1);
toast.info("Connection interrupted", {
description: `Retrying in ${retryDelay / 1000} seconds...`,
});
retryTimeoutRef.current = setTimeout(() => {
sendMessage(sessionId, message, onChunk, isUserMessage).catch(
(_err) => {
// Retry failed
},
);
}, retryDelay);
} else {
const streamError = new Error(
"Stream connection failed after multiple retries",
);
setError(streamError);
toast.error("Connection Failed", {
description:
"Unable to connect to chat service. Please try again.",
});
cleanup();
stopStreaming();
reject(streamError);
}
};
eventSource.addEventListener("message", messageHandler);
eventSource.addEventListener("error", errorHandler);
});
} catch (err) {
const streamError =
err instanceof Error ? err : new Error("Failed to start stream");
setError(streamError);
setIsStreaming(false);
throw streamError;
}
},
[stopStreaming],
);
return {
isStreaming,
error,
sendMessage,
stopStreaming,
};
}

Some files were not shown because too many files have changed in this diff Show More