mirror of
https://github.com/Significant-Gravitas/AutoGPT.git
synced 2026-02-12 07:45:14 -05:00
Compare commits
7 Commits
autogpt-pl
...
fix/edge-h
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
42b7b6ee37 | ||
|
|
a7f9bf3cb8 | ||
|
|
764070f6a7 | ||
|
|
a78145505b | ||
|
|
36aeb0b2b3 | ||
|
|
2a189c44c4 | ||
|
|
508759610f |
@@ -2,7 +2,7 @@ import asyncio
|
||||
import logging
|
||||
import uuid
|
||||
from datetime import UTC, datetime
|
||||
from typing import Any
|
||||
from typing import Any, cast
|
||||
from weakref import WeakValueDictionary
|
||||
|
||||
from openai.types.chat import (
|
||||
@@ -104,6 +104,26 @@ class ChatSession(BaseModel):
|
||||
successful_agent_runs: dict[str, int] = {}
|
||||
successful_agent_schedules: dict[str, int] = {}
|
||||
|
||||
def add_tool_call_to_current_turn(self, tool_call: dict) -> None:
|
||||
"""Attach a tool_call to the current turn's assistant message.
|
||||
|
||||
Searches backwards for the most recent assistant message (stopping at
|
||||
any user message boundary). If found, appends the tool_call to it.
|
||||
Otherwise creates a new assistant message with the tool_call.
|
||||
"""
|
||||
for msg in reversed(self.messages):
|
||||
if msg.role == "user":
|
||||
break
|
||||
if msg.role == "assistant":
|
||||
if not msg.tool_calls:
|
||||
msg.tool_calls = []
|
||||
msg.tool_calls.append(tool_call)
|
||||
return
|
||||
|
||||
self.messages.append(
|
||||
ChatMessage(role="assistant", content="", tool_calls=[tool_call])
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def new(user_id: str) -> "ChatSession":
|
||||
return ChatSession(
|
||||
@@ -172,6 +192,47 @@ class ChatSession(BaseModel):
|
||||
successful_agent_schedules=successful_agent_schedules,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _merge_consecutive_assistant_messages(
|
||||
messages: list[ChatCompletionMessageParam],
|
||||
) -> list[ChatCompletionMessageParam]:
|
||||
"""Merge consecutive assistant messages into single messages.
|
||||
|
||||
Long-running tool flows can create split assistant messages: one with
|
||||
text content and another with tool_calls. Anthropic's API requires
|
||||
tool_result blocks to reference a tool_use in the immediately preceding
|
||||
assistant message, so these splits cause 400 errors via OpenRouter.
|
||||
"""
|
||||
if len(messages) < 2:
|
||||
return messages
|
||||
|
||||
result: list[ChatCompletionMessageParam] = [messages[0]]
|
||||
for msg in messages[1:]:
|
||||
prev = result[-1]
|
||||
if prev.get("role") != "assistant" or msg.get("role") != "assistant":
|
||||
result.append(msg)
|
||||
continue
|
||||
|
||||
prev = cast(ChatCompletionAssistantMessageParam, prev)
|
||||
curr = cast(ChatCompletionAssistantMessageParam, msg)
|
||||
|
||||
curr_content = curr.get("content") or ""
|
||||
if curr_content:
|
||||
prev_content = prev.get("content") or ""
|
||||
prev["content"] = (
|
||||
f"{prev_content}\n{curr_content}" if prev_content else curr_content
|
||||
)
|
||||
|
||||
curr_tool_calls = curr.get("tool_calls")
|
||||
if curr_tool_calls:
|
||||
prev_tool_calls = prev.get("tool_calls")
|
||||
prev["tool_calls"] = (
|
||||
list(prev_tool_calls) + list(curr_tool_calls)
|
||||
if prev_tool_calls
|
||||
else list(curr_tool_calls)
|
||||
)
|
||||
return result
|
||||
|
||||
def to_openai_messages(self) -> list[ChatCompletionMessageParam]:
|
||||
messages = []
|
||||
for message in self.messages:
|
||||
@@ -258,7 +319,7 @@ class ChatSession(BaseModel):
|
||||
name=message.name or "",
|
||||
)
|
||||
)
|
||||
return messages
|
||||
return self._merge_consecutive_assistant_messages(messages)
|
||||
|
||||
|
||||
async def _get_session_from_cache(session_id: str) -> ChatSession | None:
|
||||
|
||||
@@ -1,4 +1,16 @@
|
||||
from typing import cast
|
||||
|
||||
import pytest
|
||||
from openai.types.chat import (
|
||||
ChatCompletionAssistantMessageParam,
|
||||
ChatCompletionMessageParam,
|
||||
ChatCompletionToolMessageParam,
|
||||
ChatCompletionUserMessageParam,
|
||||
)
|
||||
from openai.types.chat.chat_completion_message_tool_call_param import (
|
||||
ChatCompletionMessageToolCallParam,
|
||||
Function,
|
||||
)
|
||||
|
||||
from .model import (
|
||||
ChatMessage,
|
||||
@@ -117,3 +129,205 @@ async def test_chatsession_db_storage(setup_test_user, test_user_id):
|
||||
loaded.tool_calls is not None
|
||||
), f"Tool calls missing for {orig.role} message"
|
||||
assert len(orig.tool_calls) == len(loaded.tool_calls)
|
||||
|
||||
|
||||
# --------------------------------------------------------------------------- #
|
||||
# _merge_consecutive_assistant_messages #
|
||||
# --------------------------------------------------------------------------- #
|
||||
|
||||
_tc = ChatCompletionMessageToolCallParam(
|
||||
id="tc1", type="function", function=Function(name="do_stuff", arguments="{}")
|
||||
)
|
||||
_tc2 = ChatCompletionMessageToolCallParam(
|
||||
id="tc2", type="function", function=Function(name="other", arguments="{}")
|
||||
)
|
||||
|
||||
|
||||
def test_merge_noop_when_no_consecutive_assistants():
|
||||
"""Messages without consecutive assistants are returned unchanged."""
|
||||
msgs = [
|
||||
ChatCompletionUserMessageParam(role="user", content="hi"),
|
||||
ChatCompletionAssistantMessageParam(role="assistant", content="hello"),
|
||||
ChatCompletionUserMessageParam(role="user", content="bye"),
|
||||
]
|
||||
merged = ChatSession._merge_consecutive_assistant_messages(msgs)
|
||||
assert len(merged) == 3
|
||||
assert [m["role"] for m in merged] == ["user", "assistant", "user"]
|
||||
|
||||
|
||||
def test_merge_splits_text_and_tool_calls():
|
||||
"""The exact bug scenario: text-only assistant followed by tool_calls-only assistant."""
|
||||
msgs = [
|
||||
ChatCompletionUserMessageParam(role="user", content="build agent"),
|
||||
ChatCompletionAssistantMessageParam(
|
||||
role="assistant", content="Let me build that"
|
||||
),
|
||||
ChatCompletionAssistantMessageParam(
|
||||
role="assistant", content="", tool_calls=[_tc]
|
||||
),
|
||||
ChatCompletionToolMessageParam(role="tool", content="ok", tool_call_id="tc1"),
|
||||
]
|
||||
merged = ChatSession._merge_consecutive_assistant_messages(msgs)
|
||||
|
||||
assert len(merged) == 3
|
||||
assert merged[0]["role"] == "user"
|
||||
assert merged[2]["role"] == "tool"
|
||||
a = cast(ChatCompletionAssistantMessageParam, merged[1])
|
||||
assert a["role"] == "assistant"
|
||||
assert a.get("content") == "Let me build that"
|
||||
assert a.get("tool_calls") == [_tc]
|
||||
|
||||
|
||||
def test_merge_combines_tool_calls_from_both():
|
||||
"""Both consecutive assistants have tool_calls — they get merged."""
|
||||
msgs: list[ChatCompletionAssistantMessageParam] = [
|
||||
ChatCompletionAssistantMessageParam(
|
||||
role="assistant", content="text", tool_calls=[_tc]
|
||||
),
|
||||
ChatCompletionAssistantMessageParam(
|
||||
role="assistant", content="", tool_calls=[_tc2]
|
||||
),
|
||||
]
|
||||
merged = ChatSession._merge_consecutive_assistant_messages(msgs) # type: ignore[arg-type]
|
||||
|
||||
assert len(merged) == 1
|
||||
a = cast(ChatCompletionAssistantMessageParam, merged[0])
|
||||
assert a.get("tool_calls") == [_tc, _tc2]
|
||||
assert a.get("content") == "text"
|
||||
|
||||
|
||||
def test_merge_three_consecutive_assistants():
|
||||
"""Three consecutive assistants collapse into one."""
|
||||
msgs: list[ChatCompletionAssistantMessageParam] = [
|
||||
ChatCompletionAssistantMessageParam(role="assistant", content="a"),
|
||||
ChatCompletionAssistantMessageParam(role="assistant", content="b"),
|
||||
ChatCompletionAssistantMessageParam(
|
||||
role="assistant", content="", tool_calls=[_tc]
|
||||
),
|
||||
]
|
||||
merged = ChatSession._merge_consecutive_assistant_messages(msgs) # type: ignore[arg-type]
|
||||
|
||||
assert len(merged) == 1
|
||||
a = cast(ChatCompletionAssistantMessageParam, merged[0])
|
||||
assert a.get("content") == "a\nb"
|
||||
assert a.get("tool_calls") == [_tc]
|
||||
|
||||
|
||||
def test_merge_empty_and_single_message():
|
||||
"""Edge cases: empty list and single message."""
|
||||
assert ChatSession._merge_consecutive_assistant_messages([]) == []
|
||||
|
||||
single: list[ChatCompletionMessageParam] = [
|
||||
ChatCompletionUserMessageParam(role="user", content="hi")
|
||||
]
|
||||
assert ChatSession._merge_consecutive_assistant_messages(single) == single
|
||||
|
||||
|
||||
# --------------------------------------------------------------------------- #
|
||||
# add_tool_call_to_current_turn #
|
||||
# --------------------------------------------------------------------------- #
|
||||
|
||||
_raw_tc = {
|
||||
"id": "tc1",
|
||||
"type": "function",
|
||||
"function": {"name": "f", "arguments": "{}"},
|
||||
}
|
||||
_raw_tc2 = {
|
||||
"id": "tc2",
|
||||
"type": "function",
|
||||
"function": {"name": "g", "arguments": "{}"},
|
||||
}
|
||||
|
||||
|
||||
def test_add_tool_call_appends_to_existing_assistant():
|
||||
"""When the last assistant is from the current turn, tool_call is added to it."""
|
||||
session = ChatSession.new(user_id="u")
|
||||
session.messages = [
|
||||
ChatMessage(role="user", content="hi"),
|
||||
ChatMessage(role="assistant", content="working on it"),
|
||||
]
|
||||
session.add_tool_call_to_current_turn(_raw_tc)
|
||||
|
||||
assert len(session.messages) == 2 # no new message created
|
||||
assert session.messages[1].tool_calls == [_raw_tc]
|
||||
|
||||
|
||||
def test_add_tool_call_creates_assistant_when_none_exists():
|
||||
"""When there's no current-turn assistant, a new one is created."""
|
||||
session = ChatSession.new(user_id="u")
|
||||
session.messages = [
|
||||
ChatMessage(role="user", content="hi"),
|
||||
]
|
||||
session.add_tool_call_to_current_turn(_raw_tc)
|
||||
|
||||
assert len(session.messages) == 2
|
||||
assert session.messages[1].role == "assistant"
|
||||
assert session.messages[1].tool_calls == [_raw_tc]
|
||||
|
||||
|
||||
def test_add_tool_call_does_not_cross_user_boundary():
|
||||
"""A user message acts as a boundary — previous assistant is not modified."""
|
||||
session = ChatSession.new(user_id="u")
|
||||
session.messages = [
|
||||
ChatMessage(role="assistant", content="old turn"),
|
||||
ChatMessage(role="user", content="new message"),
|
||||
]
|
||||
session.add_tool_call_to_current_turn(_raw_tc)
|
||||
|
||||
assert len(session.messages) == 3 # new assistant was created
|
||||
assert session.messages[0].tool_calls is None # old assistant untouched
|
||||
assert session.messages[2].role == "assistant"
|
||||
assert session.messages[2].tool_calls == [_raw_tc]
|
||||
|
||||
|
||||
def test_add_tool_call_multiple_times():
|
||||
"""Multiple long-running tool calls accumulate on the same assistant."""
|
||||
session = ChatSession.new(user_id="u")
|
||||
session.messages = [
|
||||
ChatMessage(role="user", content="hi"),
|
||||
ChatMessage(role="assistant", content="doing stuff"),
|
||||
]
|
||||
session.add_tool_call_to_current_turn(_raw_tc)
|
||||
# Simulate a pending tool result in between (like _yield_tool_call does)
|
||||
session.messages.append(
|
||||
ChatMessage(role="tool", content="pending", tool_call_id="tc1")
|
||||
)
|
||||
session.add_tool_call_to_current_turn(_raw_tc2)
|
||||
|
||||
assert len(session.messages) == 3 # user, assistant, tool — no extra assistant
|
||||
assert session.messages[1].tool_calls == [_raw_tc, _raw_tc2]
|
||||
|
||||
|
||||
def test_to_openai_messages_merges_split_assistants():
|
||||
"""End-to-end: session with split assistants produces valid OpenAI messages."""
|
||||
session = ChatSession.new(user_id="u")
|
||||
session.messages = [
|
||||
ChatMessage(role="user", content="build agent"),
|
||||
ChatMessage(role="assistant", content="Let me build that"),
|
||||
ChatMessage(
|
||||
role="assistant",
|
||||
content="",
|
||||
tool_calls=[
|
||||
{
|
||||
"id": "tc1",
|
||||
"type": "function",
|
||||
"function": {"name": "create_agent", "arguments": "{}"},
|
||||
}
|
||||
],
|
||||
),
|
||||
ChatMessage(role="tool", content="done", tool_call_id="tc1"),
|
||||
ChatMessage(role="assistant", content="Saved!"),
|
||||
ChatMessage(role="user", content="show me an example run"),
|
||||
]
|
||||
openai_msgs = session.to_openai_messages()
|
||||
|
||||
# The two consecutive assistants at index 1,2 should be merged
|
||||
roles = [m["role"] for m in openai_msgs]
|
||||
assert roles == ["user", "assistant", "tool", "assistant", "user"]
|
||||
|
||||
# The merged assistant should have both content and tool_calls
|
||||
merged = cast(ChatCompletionAssistantMessageParam, openai_msgs[1])
|
||||
assert merged.get("content") == "Let me build that"
|
||||
tc_list = merged.get("tool_calls")
|
||||
assert tc_list is not None and len(list(tc_list)) == 1
|
||||
assert list(tc_list)[0]["id"] == "tc1"
|
||||
|
||||
@@ -10,6 +10,8 @@ from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from backend.util.json import dumps as json_dumps
|
||||
|
||||
|
||||
class ResponseType(str, Enum):
|
||||
"""Types of streaming responses following AI SDK protocol."""
|
||||
@@ -193,6 +195,18 @@ class StreamError(StreamBaseResponse):
|
||||
default=None, description="Additional error details"
|
||||
)
|
||||
|
||||
def to_sse(self) -> str:
|
||||
"""Convert to SSE format, only emitting fields required by AI SDK protocol.
|
||||
|
||||
The AI SDK uses z.strictObject({type, errorText}) which rejects
|
||||
any extra fields like `code` or `details`.
|
||||
"""
|
||||
data = {
|
||||
"type": self.type.value,
|
||||
"errorText": self.errorText,
|
||||
}
|
||||
return f"data: {json_dumps(data)}\n\n"
|
||||
|
||||
|
||||
class StreamHeartbeat(StreamBaseResponse):
|
||||
"""Heartbeat to keep SSE connection alive during long-running operations.
|
||||
|
||||
@@ -800,9 +800,13 @@ async def stream_chat_completion(
|
||||
# Build the messages list in the correct order
|
||||
messages_to_save: list[ChatMessage] = []
|
||||
|
||||
# Add assistant message with tool_calls if any
|
||||
# Add assistant message with tool_calls if any.
|
||||
# Use extend (not assign) to preserve tool_calls already added by
|
||||
# _yield_tool_call for long-running tools.
|
||||
if accumulated_tool_calls:
|
||||
assistant_response.tool_calls = accumulated_tool_calls
|
||||
if not assistant_response.tool_calls:
|
||||
assistant_response.tool_calls = []
|
||||
assistant_response.tool_calls.extend(accumulated_tool_calls)
|
||||
logger.info(
|
||||
f"Added {len(accumulated_tool_calls)} tool calls to assistant message"
|
||||
)
|
||||
@@ -1404,13 +1408,9 @@ async def _yield_tool_call(
|
||||
operation_id=operation_id,
|
||||
)
|
||||
|
||||
# Save assistant message with tool_call FIRST (required by LLM)
|
||||
assistant_message = ChatMessage(
|
||||
role="assistant",
|
||||
content="",
|
||||
tool_calls=[tool_calls[yield_idx]],
|
||||
)
|
||||
session.messages.append(assistant_message)
|
||||
# Attach the tool_call to the current turn's assistant message
|
||||
# (or create one if this is a tool-only response with no text).
|
||||
session.add_tool_call_to_current_turn(tool_calls[yield_idx])
|
||||
|
||||
# Then save pending tool result
|
||||
pending_message = ChatMessage(
|
||||
|
||||
@@ -21,43 +21,71 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
class HumanInTheLoopBlock(Block):
|
||||
"""
|
||||
This block pauses execution and waits for human approval or modification of the data.
|
||||
Pauses execution and waits for human approval or rejection of the data.
|
||||
|
||||
When executed, it creates a pending review entry and sets the node execution status
|
||||
to REVIEW. The execution will remain paused until a human user either:
|
||||
- Approves the data (with or without modifications)
|
||||
- Rejects the data
|
||||
When executed, this block creates a pending review entry and sets the node execution
|
||||
status to REVIEW. The execution remains paused until a human user either approves
|
||||
or rejects the data.
|
||||
|
||||
This is useful for workflows that require human validation or intervention before
|
||||
proceeding to the next steps.
|
||||
**How it works:**
|
||||
- The input data is presented to a human reviewer
|
||||
- The reviewer can approve or reject (and optionally modify the data if editable)
|
||||
- On approval: the data flows out through the `approved_data` output pin
|
||||
- On rejection: the data flows out through the `rejected_data` output pin
|
||||
|
||||
**Important:** The output pins yield the actual data itself, NOT status strings.
|
||||
The approval/rejection decision determines WHICH output pin fires, not the value.
|
||||
You do NOT need to compare the output to "APPROVED" or "REJECTED" - simply connect
|
||||
downstream blocks to the appropriate output pin for each case.
|
||||
|
||||
**Example usage:**
|
||||
- Connect `approved_data` → next step in your workflow (data was approved)
|
||||
- Connect `rejected_data` → error handling or notification (data was rejected)
|
||||
"""
|
||||
|
||||
class Input(BlockSchemaInput):
|
||||
data: Any = SchemaField(description="The data to be reviewed by a human user")
|
||||
data: Any = SchemaField(
|
||||
description="The data to be reviewed by a human user. "
|
||||
"This exact data will be passed through to either approved_data or "
|
||||
"rejected_data output based on the reviewer's decision."
|
||||
)
|
||||
name: str = SchemaField(
|
||||
description="A descriptive name for what this data represents",
|
||||
description="A descriptive name for what this data represents. "
|
||||
"This helps the reviewer understand what they are reviewing.",
|
||||
)
|
||||
editable: bool = SchemaField(
|
||||
description="Whether the human reviewer can edit the data",
|
||||
description="Whether the human reviewer can edit the data before "
|
||||
"approving or rejecting it",
|
||||
default=True,
|
||||
advanced=True,
|
||||
)
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
approved_data: Any = SchemaField(
|
||||
description="The data when approved (may be modified by reviewer)"
|
||||
description="Outputs the input data when the reviewer APPROVES it. "
|
||||
"The value is the actual data itself (not a status string like 'APPROVED'). "
|
||||
"If the reviewer edited the data, this contains the modified version. "
|
||||
"Connect downstream blocks here for the 'approved' workflow path."
|
||||
)
|
||||
rejected_data: Any = SchemaField(
|
||||
description="The data when rejected (may be modified by reviewer)"
|
||||
description="Outputs the input data when the reviewer REJECTS it. "
|
||||
"The value is the actual data itself (not a status string like 'REJECTED'). "
|
||||
"If the reviewer edited the data, this contains the modified version. "
|
||||
"Connect downstream blocks here for the 'rejected' workflow path."
|
||||
)
|
||||
review_message: str = SchemaField(
|
||||
description="Any message provided by the reviewer", default=""
|
||||
description="Optional message provided by the reviewer explaining their "
|
||||
"decision. Only outputs when the reviewer provides a message; "
|
||||
"this pin does not fire if no message was given.",
|
||||
default="",
|
||||
)
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="8b2a7b3c-6e9d-4a5f-8c1b-2e3f4a5b6c7d",
|
||||
description="Pause execution and wait for human approval or modification of data",
|
||||
description="Pause execution for human review. Data flows through "
|
||||
"approved_data or rejected_data output based on the reviewer's decision. "
|
||||
"Outputs contain the actual data, not status strings.",
|
||||
categories={BlockCategory.BASIC},
|
||||
input_schema=HumanInTheLoopBlock.Input,
|
||||
output_schema=HumanInTheLoopBlock.Output,
|
||||
|
||||
@@ -364,6 +364,44 @@ def _remove_orphan_tool_responses(
|
||||
return result
|
||||
|
||||
|
||||
def validate_and_remove_orphan_tool_responses(
|
||||
messages: list[dict],
|
||||
log_warning: bool = True,
|
||||
) -> list[dict]:
|
||||
"""
|
||||
Validate tool_call/tool_response pairs and remove orphaned responses.
|
||||
|
||||
Scans messages in order, tracking all tool_call IDs. Any tool response
|
||||
referencing an ID not seen in a preceding message is considered orphaned
|
||||
and removed. This prevents API errors like Anthropic's "unexpected tool_use_id".
|
||||
|
||||
Args:
|
||||
messages: List of messages to validate (OpenAI or Anthropic format)
|
||||
log_warning: Whether to log a warning when orphans are found
|
||||
|
||||
Returns:
|
||||
A new list with orphaned tool responses removed
|
||||
"""
|
||||
available_ids: set[str] = set()
|
||||
orphan_ids: set[str] = set()
|
||||
|
||||
for msg in messages:
|
||||
available_ids |= _extract_tool_call_ids_from_message(msg)
|
||||
for resp_id in _extract_tool_response_ids_from_message(msg):
|
||||
if resp_id not in available_ids:
|
||||
orphan_ids.add(resp_id)
|
||||
|
||||
if not orphan_ids:
|
||||
return messages
|
||||
|
||||
if log_warning:
|
||||
logger.warning(
|
||||
f"Removing {len(orphan_ids)} orphan tool response(s): {orphan_ids}"
|
||||
)
|
||||
|
||||
return _remove_orphan_tool_responses(messages, orphan_ids)
|
||||
|
||||
|
||||
def _ensure_tool_pairs_intact(
|
||||
recent_messages: list[dict],
|
||||
all_messages: list[dict],
|
||||
@@ -723,6 +761,13 @@ async def compress_context(
|
||||
|
||||
# Filter out any None values that may have been introduced
|
||||
final_msgs: list[dict] = [m for m in msgs if m is not None]
|
||||
|
||||
# ---- STEP 6: Final tool-pair validation ---------------------------------
|
||||
# After all compression steps, verify that every tool response has a
|
||||
# matching tool_call in a preceding assistant message. Remove orphans
|
||||
# to prevent API errors (e.g., Anthropic's "unexpected tool_use_id").
|
||||
final_msgs = validate_and_remove_orphan_tool_responses(final_msgs)
|
||||
|
||||
final_count = sum(_msg_tokens(m, enc) for m in final_msgs)
|
||||
error = None
|
||||
if final_count + reserve > target_tokens:
|
||||
|
||||
@@ -63,6 +63,17 @@ const CustomEdge = ({
|
||||
|
||||
return (
|
||||
<>
|
||||
{/* Invisible interaction path - wider hit area for hover detection */}
|
||||
<path
|
||||
d={edgePath}
|
||||
fill="none"
|
||||
stroke="black"
|
||||
strokeOpacity={0}
|
||||
strokeWidth={20}
|
||||
className="react-flow__edge-interaction cursor-pointer"
|
||||
onMouseEnter={() => setIsHovered(true)}
|
||||
onMouseLeave={() => setIsHovered(false)}
|
||||
/>
|
||||
<BaseEdge
|
||||
path={edgePath}
|
||||
markerEnd={markerEnd}
|
||||
|
||||
@@ -10,8 +10,9 @@ import {
|
||||
MessageResponse,
|
||||
} from "@/components/ai-elements/message";
|
||||
import { LoadingSpinner } from "@/components/atoms/LoadingSpinner/LoadingSpinner";
|
||||
import { toast } from "@/components/molecules/Toast/use-toast";
|
||||
import { ToolUIPart, UIDataTypes, UIMessage, UITools } from "ai";
|
||||
import { useEffect, useState } from "react";
|
||||
import { useEffect, useRef, useState } from "react";
|
||||
import { CreateAgentTool } from "../../tools/CreateAgent/CreateAgent";
|
||||
import { EditAgentTool } from "../../tools/EditAgent/EditAgent";
|
||||
import { FindAgentsTool } from "../../tools/FindAgents/FindAgents";
|
||||
@@ -121,6 +122,7 @@ export const ChatMessagesContainer = ({
|
||||
isLoading,
|
||||
}: ChatMessagesContainerProps) => {
|
||||
const [thinkingPhrase, setThinkingPhrase] = useState(getRandomPhrase);
|
||||
const lastToastTimeRef = useRef(0);
|
||||
|
||||
useEffect(() => {
|
||||
if (status === "submitted") {
|
||||
@@ -128,6 +130,20 @@ export const ChatMessagesContainer = ({
|
||||
}
|
||||
}, [status]);
|
||||
|
||||
// Show a toast when a new error occurs, debounced to avoid spam
|
||||
useEffect(() => {
|
||||
if (!error) return;
|
||||
const now = Date.now();
|
||||
if (now - lastToastTimeRef.current < 3_000) return;
|
||||
lastToastTimeRef.current = now;
|
||||
toast({
|
||||
variant: "destructive",
|
||||
title: "Something went wrong",
|
||||
description:
|
||||
"The assistant encountered an error. Please try sending your message again.",
|
||||
});
|
||||
}, [error]);
|
||||
|
||||
const lastMessage = messages[messages.length - 1];
|
||||
const lastAssistantHasVisibleContent =
|
||||
lastMessage?.role === "assistant" &&
|
||||
@@ -263,8 +279,12 @@ export const ChatMessagesContainer = ({
|
||||
</Message>
|
||||
)}
|
||||
{error && (
|
||||
<div className="rounded-lg bg-red-50 p-3 text-red-600">
|
||||
Error: {error.message}
|
||||
<div className="rounded-lg bg-red-50 p-4 text-sm text-red-700">
|
||||
<p className="font-medium">Something went wrong</p>
|
||||
<p className="mt-1 text-red-600">
|
||||
The assistant encountered an error. Please try sending your
|
||||
message again.
|
||||
</p>
|
||||
</div>
|
||||
)}
|
||||
</ConversationContent>
|
||||
|
||||
@@ -30,7 +30,7 @@ export function ContentCard({
|
||||
return (
|
||||
<div
|
||||
className={cn(
|
||||
"rounded-lg bg-gradient-to-r from-purple-500/30 to-blue-500/30 p-[1px]",
|
||||
"min-w-0 rounded-lg bg-gradient-to-r from-purple-500/30 to-blue-500/30 p-[1px]",
|
||||
className,
|
||||
)}
|
||||
>
|
||||
|
||||
@@ -4,7 +4,6 @@ import { WarningDiamondIcon } from "@phosphor-icons/react";
|
||||
import type { ToolUIPart } from "ai";
|
||||
import { useCopilotChatActions } from "../../components/CopilotChatActionsProvider/useCopilotChatActions";
|
||||
import { MorphingTextAnimation } from "../../components/MorphingTextAnimation/MorphingTextAnimation";
|
||||
import { OrbitLoader } from "../../components/OrbitLoader/OrbitLoader";
|
||||
import { ProgressBar } from "../../components/ProgressBar/ProgressBar";
|
||||
import {
|
||||
ContentCardDescription,
|
||||
@@ -77,7 +76,7 @@ function getAccordionMeta(output: CreateAgentToolOutput) {
|
||||
isOperationInProgressOutput(output)
|
||||
) {
|
||||
return {
|
||||
icon: <OrbitLoader size={32} />,
|
||||
icon,
|
||||
title: "Creating agent, this may take a few minutes. Sit back and relax.",
|
||||
};
|
||||
}
|
||||
|
||||
@@ -203,7 +203,7 @@ export function getAccordionMeta(output: RunAgentToolOutput): {
|
||||
? output.status.trim()
|
||||
: "started";
|
||||
return {
|
||||
icon: <OrbitLoader size={28} className="text-neutral-700" />,
|
||||
icon,
|
||||
title: output.graph_name,
|
||||
description: `Status: ${statusText}`,
|
||||
};
|
||||
|
||||
@@ -149,7 +149,7 @@ export function getAccordionMeta(output: RunBlockToolOutput): {
|
||||
if (isRunBlockBlockOutput(output)) {
|
||||
const keys = Object.keys(output.outputs ?? {});
|
||||
return {
|
||||
icon: <OrbitLoader size={24} className="text-neutral-700" />,
|
||||
icon,
|
||||
title: output.block_name,
|
||||
description:
|
||||
keys.length > 0
|
||||
|
||||
@@ -1,11 +1,8 @@
|
||||
import { environment } from "@/services/environment";
|
||||
import { getServerAuthToken } from "@/lib/autogpt-server-api/helpers";
|
||||
import { NextRequest } from "next/server";
|
||||
import { normalizeSSEStream, SSE_HEADERS } from "../../../sse-helpers";
|
||||
|
||||
/**
|
||||
* SSE Proxy for chat streaming.
|
||||
* Supports POST with context (page content + URL) in the request body.
|
||||
*/
|
||||
export async function POST(
|
||||
request: NextRequest,
|
||||
{ params }: { params: Promise<{ sessionId: string }> },
|
||||
@@ -23,17 +20,14 @@ export async function POST(
|
||||
);
|
||||
}
|
||||
|
||||
// Get auth token from server-side session
|
||||
const token = await getServerAuthToken();
|
||||
|
||||
// Build backend URL
|
||||
const backendUrl = environment.getAGPTServerBaseUrl();
|
||||
const streamUrl = new URL(
|
||||
`/api/chat/sessions/${sessionId}/stream`,
|
||||
backendUrl,
|
||||
);
|
||||
|
||||
// Forward request to backend with auth header
|
||||
const headers: Record<string, string> = {
|
||||
"Content-Type": "application/json",
|
||||
Accept: "text/event-stream",
|
||||
@@ -63,14 +57,15 @@ export async function POST(
|
||||
});
|
||||
}
|
||||
|
||||
// Return the SSE stream directly
|
||||
return new Response(response.body, {
|
||||
headers: {
|
||||
"Content-Type": "text/event-stream",
|
||||
"Cache-Control": "no-cache, no-transform",
|
||||
Connection: "keep-alive",
|
||||
"X-Accel-Buffering": "no",
|
||||
},
|
||||
if (!response.body) {
|
||||
return new Response(
|
||||
JSON.stringify({ error: "Empty response from chat service" }),
|
||||
{ status: 502, headers: { "Content-Type": "application/json" } },
|
||||
);
|
||||
}
|
||||
|
||||
return new Response(normalizeSSEStream(response.body), {
|
||||
headers: SSE_HEADERS,
|
||||
});
|
||||
} catch (error) {
|
||||
console.error("SSE proxy error:", error);
|
||||
@@ -87,13 +82,6 @@ export async function POST(
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Resume an active stream for a session.
|
||||
*
|
||||
* Called by the AI SDK's `useChat(resume: true)` on page load.
|
||||
* Proxies to the backend which checks for an active stream and either
|
||||
* replays it (200 + SSE) or returns 204 No Content.
|
||||
*/
|
||||
export async function GET(
|
||||
_request: NextRequest,
|
||||
{ params }: { params: Promise<{ sessionId: string }> },
|
||||
@@ -124,7 +112,6 @@ export async function GET(
|
||||
headers,
|
||||
});
|
||||
|
||||
// 204 = no active stream to resume
|
||||
if (response.status === 204) {
|
||||
return new Response(null, { status: 204 });
|
||||
}
|
||||
@@ -137,12 +124,13 @@ export async function GET(
|
||||
});
|
||||
}
|
||||
|
||||
return new Response(response.body, {
|
||||
if (!response.body) {
|
||||
return new Response(null, { status: 204 });
|
||||
}
|
||||
|
||||
return new Response(normalizeSSEStream(response.body), {
|
||||
headers: {
|
||||
"Content-Type": "text/event-stream",
|
||||
"Cache-Control": "no-cache, no-transform",
|
||||
Connection: "keep-alive",
|
||||
"X-Accel-Buffering": "no",
|
||||
...SSE_HEADERS,
|
||||
"x-vercel-ai-ui-message-stream": "v1",
|
||||
},
|
||||
});
|
||||
|
||||
72
autogpt_platform/frontend/src/app/api/chat/sse-helpers.ts
Normal file
72
autogpt_platform/frontend/src/app/api/chat/sse-helpers.ts
Normal file
@@ -0,0 +1,72 @@
|
||||
export const SSE_HEADERS = {
|
||||
"Content-Type": "text/event-stream",
|
||||
"Cache-Control": "no-cache, no-transform",
|
||||
Connection: "keep-alive",
|
||||
"X-Accel-Buffering": "no",
|
||||
} as const;
|
||||
|
||||
export function normalizeSSEStream(
|
||||
input: ReadableStream<Uint8Array>,
|
||||
): ReadableStream<Uint8Array> {
|
||||
const decoder = new TextDecoder();
|
||||
const encoder = new TextEncoder();
|
||||
let buffer = "";
|
||||
|
||||
return input.pipeThrough(
|
||||
new TransformStream<Uint8Array, Uint8Array>({
|
||||
transform(chunk, controller) {
|
||||
buffer += decoder.decode(chunk, { stream: true });
|
||||
|
||||
const parts = buffer.split("\n\n");
|
||||
buffer = parts.pop() ?? "";
|
||||
|
||||
for (const part of parts) {
|
||||
const normalized = normalizeSSEEvent(part);
|
||||
controller.enqueue(encoder.encode(normalized + "\n\n"));
|
||||
}
|
||||
},
|
||||
flush(controller) {
|
||||
if (buffer.trim()) {
|
||||
const normalized = normalizeSSEEvent(buffer);
|
||||
controller.enqueue(encoder.encode(normalized + "\n\n"));
|
||||
}
|
||||
},
|
||||
}),
|
||||
);
|
||||
}
|
||||
|
||||
function normalizeSSEEvent(event: string): string {
|
||||
const lines = event.split("\n");
|
||||
const dataLines: string[] = [];
|
||||
const otherLines: string[] = [];
|
||||
|
||||
for (const line of lines) {
|
||||
if (line.startsWith("data: ")) {
|
||||
dataLines.push(line.slice(6));
|
||||
} else {
|
||||
otherLines.push(line);
|
||||
}
|
||||
}
|
||||
|
||||
if (dataLines.length === 0) return event;
|
||||
|
||||
const dataStr = dataLines.join("\n");
|
||||
try {
|
||||
const parsed = JSON.parse(dataStr) as Record<string, unknown>;
|
||||
if (parsed.type === "error") {
|
||||
const normalized = {
|
||||
type: "error",
|
||||
errorText:
|
||||
typeof parsed.errorText === "string"
|
||||
? parsed.errorText
|
||||
: "An unexpected error occurred",
|
||||
};
|
||||
const newData = `data: ${JSON.stringify(normalized)}`;
|
||||
return [...otherLines.filter((l) => l.length > 0), newData].join("\n");
|
||||
}
|
||||
} catch {
|
||||
// Not valid JSON — pass through as-is
|
||||
}
|
||||
|
||||
return event;
|
||||
}
|
||||
@@ -1,20 +1,8 @@
|
||||
import { environment } from "@/services/environment";
|
||||
import { getServerAuthToken } from "@/lib/autogpt-server-api/helpers";
|
||||
import { NextRequest } from "next/server";
|
||||
import { normalizeSSEStream, SSE_HEADERS } from "../../../sse-helpers";
|
||||
|
||||
/**
|
||||
* SSE Proxy for task stream reconnection.
|
||||
*
|
||||
* This endpoint allows clients to reconnect to an ongoing or recently completed
|
||||
* background task's stream. It replays missed messages from Redis Streams and
|
||||
* subscribes to live updates if the task is still running.
|
||||
*
|
||||
* Client contract:
|
||||
* 1. When receiving an operation_started event, store the task_id
|
||||
* 2. To reconnect: GET /api/chat/tasks/{taskId}/stream?last_message_id={idx}
|
||||
* 3. Messages are replayed from the last_message_id position
|
||||
* 4. Stream ends when "finish" event is received
|
||||
*/
|
||||
export async function GET(
|
||||
request: NextRequest,
|
||||
{ params }: { params: Promise<{ taskId: string }> },
|
||||
@@ -24,15 +12,12 @@ export async function GET(
|
||||
const lastMessageId = searchParams.get("last_message_id") || "0-0";
|
||||
|
||||
try {
|
||||
// Get auth token from server-side session
|
||||
const token = await getServerAuthToken();
|
||||
|
||||
// Build backend URL
|
||||
const backendUrl = environment.getAGPTServerBaseUrl();
|
||||
const streamUrl = new URL(`/api/chat/tasks/${taskId}/stream`, backendUrl);
|
||||
streamUrl.searchParams.set("last_message_id", lastMessageId);
|
||||
|
||||
// Forward request to backend with auth header
|
||||
const headers: Record<string, string> = {
|
||||
Accept: "text/event-stream",
|
||||
"Cache-Control": "no-cache",
|
||||
@@ -56,14 +41,12 @@ export async function GET(
|
||||
});
|
||||
}
|
||||
|
||||
// Return the SSE stream directly
|
||||
return new Response(response.body, {
|
||||
headers: {
|
||||
"Content-Type": "text/event-stream",
|
||||
"Cache-Control": "no-cache, no-transform",
|
||||
Connection: "keep-alive",
|
||||
"X-Accel-Buffering": "no",
|
||||
},
|
||||
if (!response.body) {
|
||||
return new Response(null, { status: 204 });
|
||||
}
|
||||
|
||||
return new Response(normalizeSSEStream(response.body), {
|
||||
headers: SSE_HEADERS,
|
||||
});
|
||||
} catch (error) {
|
||||
console.error("Task stream proxy error:", error);
|
||||
|
||||
@@ -61,7 +61,7 @@ Below is a comprehensive list of all available blocks, categorized by their prim
|
||||
| [Get List Item](block-integrations/basic.md#get-list-item) | Returns the element at the given index |
|
||||
| [Get Store Agent Details](block-integrations/system/store_operations.md#get-store-agent-details) | Get detailed information about an agent from the store |
|
||||
| [Get Weather Information](block-integrations/basic.md#get-weather-information) | Retrieves weather information for a specified location using OpenWeatherMap API |
|
||||
| [Human In The Loop](block-integrations/basic.md#human-in-the-loop) | Pause execution and wait for human approval or modification of data |
|
||||
| [Human In The Loop](block-integrations/basic.md#human-in-the-loop) | Pause execution for human review |
|
||||
| [List Is Empty](block-integrations/basic.md#list-is-empty) | Checks if a list is empty |
|
||||
| [List Library Agents](block-integrations/system/library_operations.md#list-library-agents) | List all agents in your personal library |
|
||||
| [Note](block-integrations/basic.md#note) | A visual annotation block that displays a sticky note in the workflow editor for documentation and organization purposes |
|
||||
|
||||
@@ -975,7 +975,7 @@ A travel planning application could use this block to provide users with current
|
||||
## Human In The Loop
|
||||
|
||||
### What it is
|
||||
Pause execution and wait for human approval or modification of data
|
||||
Pause execution for human review. Data flows through approved_data or rejected_data output based on the reviewer's decision. Outputs contain the actual data, not status strings.
|
||||
|
||||
### How it works
|
||||
<!-- MANUAL: how_it_works -->
|
||||
@@ -988,18 +988,18 @@ This enables human oversight at critical points in automated workflows, ensuring
|
||||
|
||||
| Input | Description | Type | Required |
|
||||
|-------|-------------|------|----------|
|
||||
| data | The data to be reviewed by a human user | Data | Yes |
|
||||
| name | A descriptive name for what this data represents | str | Yes |
|
||||
| editable | Whether the human reviewer can edit the data | bool | No |
|
||||
| data | The data to be reviewed by a human user. This exact data will be passed through to either approved_data or rejected_data output based on the reviewer's decision. | Data | Yes |
|
||||
| name | A descriptive name for what this data represents. This helps the reviewer understand what they are reviewing. | str | Yes |
|
||||
| editable | Whether the human reviewer can edit the data before approving or rejecting it | bool | No |
|
||||
|
||||
### Outputs
|
||||
|
||||
| Output | Description | Type |
|
||||
|--------|-------------|------|
|
||||
| error | Error message if the operation failed | str |
|
||||
| approved_data | The data when approved (may be modified by reviewer) | Approved Data |
|
||||
| rejected_data | The data when rejected (may be modified by reviewer) | Rejected Data |
|
||||
| review_message | Any message provided by the reviewer | str |
|
||||
| approved_data | Outputs the input data when the reviewer APPROVES it. The value is the actual data itself (not a status string like 'APPROVED'). If the reviewer edited the data, this contains the modified version. Connect downstream blocks here for the 'approved' workflow path. | Approved Data |
|
||||
| rejected_data | Outputs the input data when the reviewer REJECTS it. The value is the actual data itself (not a status string like 'REJECTED'). If the reviewer edited the data, this contains the modified version. Connect downstream blocks here for the 'rejected' workflow path. | Rejected Data |
|
||||
| review_message | Optional message provided by the reviewer explaining their decision. Only outputs when the reviewer provides a message; this pin does not fire if no message was given. | str |
|
||||
|
||||
### Possible use case
|
||||
<!-- MANUAL: use_case -->
|
||||
|
||||
Reference in New Issue
Block a user