mirror of
https://github.com/Significant-Gravitas/AutoGPT.git
synced 2026-02-12 15:55:03 -05:00
Compare commits
4 Commits
feat/dummy
...
fix/edge-h
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
42b7b6ee37 | ||
|
|
a7f9bf3cb8 | ||
|
|
764070f6a7 | ||
|
|
a78145505b |
@@ -2,7 +2,7 @@ import asyncio
|
||||
import logging
|
||||
import uuid
|
||||
from datetime import UTC, datetime
|
||||
from typing import Any
|
||||
from typing import Any, cast
|
||||
from weakref import WeakValueDictionary
|
||||
|
||||
from openai.types.chat import (
|
||||
@@ -104,6 +104,26 @@ class ChatSession(BaseModel):
|
||||
successful_agent_runs: dict[str, int] = {}
|
||||
successful_agent_schedules: dict[str, int] = {}
|
||||
|
||||
def add_tool_call_to_current_turn(self, tool_call: dict) -> None:
|
||||
"""Attach a tool_call to the current turn's assistant message.
|
||||
|
||||
Searches backwards for the most recent assistant message (stopping at
|
||||
any user message boundary). If found, appends the tool_call to it.
|
||||
Otherwise creates a new assistant message with the tool_call.
|
||||
"""
|
||||
for msg in reversed(self.messages):
|
||||
if msg.role == "user":
|
||||
break
|
||||
if msg.role == "assistant":
|
||||
if not msg.tool_calls:
|
||||
msg.tool_calls = []
|
||||
msg.tool_calls.append(tool_call)
|
||||
return
|
||||
|
||||
self.messages.append(
|
||||
ChatMessage(role="assistant", content="", tool_calls=[tool_call])
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def new(user_id: str) -> "ChatSession":
|
||||
return ChatSession(
|
||||
@@ -172,6 +192,47 @@ class ChatSession(BaseModel):
|
||||
successful_agent_schedules=successful_agent_schedules,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _merge_consecutive_assistant_messages(
|
||||
messages: list[ChatCompletionMessageParam],
|
||||
) -> list[ChatCompletionMessageParam]:
|
||||
"""Merge consecutive assistant messages into single messages.
|
||||
|
||||
Long-running tool flows can create split assistant messages: one with
|
||||
text content and another with tool_calls. Anthropic's API requires
|
||||
tool_result blocks to reference a tool_use in the immediately preceding
|
||||
assistant message, so these splits cause 400 errors via OpenRouter.
|
||||
"""
|
||||
if len(messages) < 2:
|
||||
return messages
|
||||
|
||||
result: list[ChatCompletionMessageParam] = [messages[0]]
|
||||
for msg in messages[1:]:
|
||||
prev = result[-1]
|
||||
if prev.get("role") != "assistant" or msg.get("role") != "assistant":
|
||||
result.append(msg)
|
||||
continue
|
||||
|
||||
prev = cast(ChatCompletionAssistantMessageParam, prev)
|
||||
curr = cast(ChatCompletionAssistantMessageParam, msg)
|
||||
|
||||
curr_content = curr.get("content") or ""
|
||||
if curr_content:
|
||||
prev_content = prev.get("content") or ""
|
||||
prev["content"] = (
|
||||
f"{prev_content}\n{curr_content}" if prev_content else curr_content
|
||||
)
|
||||
|
||||
curr_tool_calls = curr.get("tool_calls")
|
||||
if curr_tool_calls:
|
||||
prev_tool_calls = prev.get("tool_calls")
|
||||
prev["tool_calls"] = (
|
||||
list(prev_tool_calls) + list(curr_tool_calls)
|
||||
if prev_tool_calls
|
||||
else list(curr_tool_calls)
|
||||
)
|
||||
return result
|
||||
|
||||
def to_openai_messages(self) -> list[ChatCompletionMessageParam]:
|
||||
messages = []
|
||||
for message in self.messages:
|
||||
@@ -258,7 +319,7 @@ class ChatSession(BaseModel):
|
||||
name=message.name or "",
|
||||
)
|
||||
)
|
||||
return messages
|
||||
return self._merge_consecutive_assistant_messages(messages)
|
||||
|
||||
|
||||
async def _get_session_from_cache(session_id: str) -> ChatSession | None:
|
||||
|
||||
@@ -1,4 +1,16 @@
|
||||
from typing import cast
|
||||
|
||||
import pytest
|
||||
from openai.types.chat import (
|
||||
ChatCompletionAssistantMessageParam,
|
||||
ChatCompletionMessageParam,
|
||||
ChatCompletionToolMessageParam,
|
||||
ChatCompletionUserMessageParam,
|
||||
)
|
||||
from openai.types.chat.chat_completion_message_tool_call_param import (
|
||||
ChatCompletionMessageToolCallParam,
|
||||
Function,
|
||||
)
|
||||
|
||||
from .model import (
|
||||
ChatMessage,
|
||||
@@ -117,3 +129,205 @@ async def test_chatsession_db_storage(setup_test_user, test_user_id):
|
||||
loaded.tool_calls is not None
|
||||
), f"Tool calls missing for {orig.role} message"
|
||||
assert len(orig.tool_calls) == len(loaded.tool_calls)
|
||||
|
||||
|
||||
# --------------------------------------------------------------------------- #
|
||||
# _merge_consecutive_assistant_messages #
|
||||
# --------------------------------------------------------------------------- #
|
||||
|
||||
_tc = ChatCompletionMessageToolCallParam(
|
||||
id="tc1", type="function", function=Function(name="do_stuff", arguments="{}")
|
||||
)
|
||||
_tc2 = ChatCompletionMessageToolCallParam(
|
||||
id="tc2", type="function", function=Function(name="other", arguments="{}")
|
||||
)
|
||||
|
||||
|
||||
def test_merge_noop_when_no_consecutive_assistants():
|
||||
"""Messages without consecutive assistants are returned unchanged."""
|
||||
msgs = [
|
||||
ChatCompletionUserMessageParam(role="user", content="hi"),
|
||||
ChatCompletionAssistantMessageParam(role="assistant", content="hello"),
|
||||
ChatCompletionUserMessageParam(role="user", content="bye"),
|
||||
]
|
||||
merged = ChatSession._merge_consecutive_assistant_messages(msgs)
|
||||
assert len(merged) == 3
|
||||
assert [m["role"] for m in merged] == ["user", "assistant", "user"]
|
||||
|
||||
|
||||
def test_merge_splits_text_and_tool_calls():
|
||||
"""The exact bug scenario: text-only assistant followed by tool_calls-only assistant."""
|
||||
msgs = [
|
||||
ChatCompletionUserMessageParam(role="user", content="build agent"),
|
||||
ChatCompletionAssistantMessageParam(
|
||||
role="assistant", content="Let me build that"
|
||||
),
|
||||
ChatCompletionAssistantMessageParam(
|
||||
role="assistant", content="", tool_calls=[_tc]
|
||||
),
|
||||
ChatCompletionToolMessageParam(role="tool", content="ok", tool_call_id="tc1"),
|
||||
]
|
||||
merged = ChatSession._merge_consecutive_assistant_messages(msgs)
|
||||
|
||||
assert len(merged) == 3
|
||||
assert merged[0]["role"] == "user"
|
||||
assert merged[2]["role"] == "tool"
|
||||
a = cast(ChatCompletionAssistantMessageParam, merged[1])
|
||||
assert a["role"] == "assistant"
|
||||
assert a.get("content") == "Let me build that"
|
||||
assert a.get("tool_calls") == [_tc]
|
||||
|
||||
|
||||
def test_merge_combines_tool_calls_from_both():
|
||||
"""Both consecutive assistants have tool_calls — they get merged."""
|
||||
msgs: list[ChatCompletionAssistantMessageParam] = [
|
||||
ChatCompletionAssistantMessageParam(
|
||||
role="assistant", content="text", tool_calls=[_tc]
|
||||
),
|
||||
ChatCompletionAssistantMessageParam(
|
||||
role="assistant", content="", tool_calls=[_tc2]
|
||||
),
|
||||
]
|
||||
merged = ChatSession._merge_consecutive_assistant_messages(msgs) # type: ignore[arg-type]
|
||||
|
||||
assert len(merged) == 1
|
||||
a = cast(ChatCompletionAssistantMessageParam, merged[0])
|
||||
assert a.get("tool_calls") == [_tc, _tc2]
|
||||
assert a.get("content") == "text"
|
||||
|
||||
|
||||
def test_merge_three_consecutive_assistants():
|
||||
"""Three consecutive assistants collapse into one."""
|
||||
msgs: list[ChatCompletionAssistantMessageParam] = [
|
||||
ChatCompletionAssistantMessageParam(role="assistant", content="a"),
|
||||
ChatCompletionAssistantMessageParam(role="assistant", content="b"),
|
||||
ChatCompletionAssistantMessageParam(
|
||||
role="assistant", content="", tool_calls=[_tc]
|
||||
),
|
||||
]
|
||||
merged = ChatSession._merge_consecutive_assistant_messages(msgs) # type: ignore[arg-type]
|
||||
|
||||
assert len(merged) == 1
|
||||
a = cast(ChatCompletionAssistantMessageParam, merged[0])
|
||||
assert a.get("content") == "a\nb"
|
||||
assert a.get("tool_calls") == [_tc]
|
||||
|
||||
|
||||
def test_merge_empty_and_single_message():
|
||||
"""Edge cases: empty list and single message."""
|
||||
assert ChatSession._merge_consecutive_assistant_messages([]) == []
|
||||
|
||||
single: list[ChatCompletionMessageParam] = [
|
||||
ChatCompletionUserMessageParam(role="user", content="hi")
|
||||
]
|
||||
assert ChatSession._merge_consecutive_assistant_messages(single) == single
|
||||
|
||||
|
||||
# --------------------------------------------------------------------------- #
|
||||
# add_tool_call_to_current_turn #
|
||||
# --------------------------------------------------------------------------- #
|
||||
|
||||
_raw_tc = {
|
||||
"id": "tc1",
|
||||
"type": "function",
|
||||
"function": {"name": "f", "arguments": "{}"},
|
||||
}
|
||||
_raw_tc2 = {
|
||||
"id": "tc2",
|
||||
"type": "function",
|
||||
"function": {"name": "g", "arguments": "{}"},
|
||||
}
|
||||
|
||||
|
||||
def test_add_tool_call_appends_to_existing_assistant():
|
||||
"""When the last assistant is from the current turn, tool_call is added to it."""
|
||||
session = ChatSession.new(user_id="u")
|
||||
session.messages = [
|
||||
ChatMessage(role="user", content="hi"),
|
||||
ChatMessage(role="assistant", content="working on it"),
|
||||
]
|
||||
session.add_tool_call_to_current_turn(_raw_tc)
|
||||
|
||||
assert len(session.messages) == 2 # no new message created
|
||||
assert session.messages[1].tool_calls == [_raw_tc]
|
||||
|
||||
|
||||
def test_add_tool_call_creates_assistant_when_none_exists():
|
||||
"""When there's no current-turn assistant, a new one is created."""
|
||||
session = ChatSession.new(user_id="u")
|
||||
session.messages = [
|
||||
ChatMessage(role="user", content="hi"),
|
||||
]
|
||||
session.add_tool_call_to_current_turn(_raw_tc)
|
||||
|
||||
assert len(session.messages) == 2
|
||||
assert session.messages[1].role == "assistant"
|
||||
assert session.messages[1].tool_calls == [_raw_tc]
|
||||
|
||||
|
||||
def test_add_tool_call_does_not_cross_user_boundary():
|
||||
"""A user message acts as a boundary — previous assistant is not modified."""
|
||||
session = ChatSession.new(user_id="u")
|
||||
session.messages = [
|
||||
ChatMessage(role="assistant", content="old turn"),
|
||||
ChatMessage(role="user", content="new message"),
|
||||
]
|
||||
session.add_tool_call_to_current_turn(_raw_tc)
|
||||
|
||||
assert len(session.messages) == 3 # new assistant was created
|
||||
assert session.messages[0].tool_calls is None # old assistant untouched
|
||||
assert session.messages[2].role == "assistant"
|
||||
assert session.messages[2].tool_calls == [_raw_tc]
|
||||
|
||||
|
||||
def test_add_tool_call_multiple_times():
|
||||
"""Multiple long-running tool calls accumulate on the same assistant."""
|
||||
session = ChatSession.new(user_id="u")
|
||||
session.messages = [
|
||||
ChatMessage(role="user", content="hi"),
|
||||
ChatMessage(role="assistant", content="doing stuff"),
|
||||
]
|
||||
session.add_tool_call_to_current_turn(_raw_tc)
|
||||
# Simulate a pending tool result in between (like _yield_tool_call does)
|
||||
session.messages.append(
|
||||
ChatMessage(role="tool", content="pending", tool_call_id="tc1")
|
||||
)
|
||||
session.add_tool_call_to_current_turn(_raw_tc2)
|
||||
|
||||
assert len(session.messages) == 3 # user, assistant, tool — no extra assistant
|
||||
assert session.messages[1].tool_calls == [_raw_tc, _raw_tc2]
|
||||
|
||||
|
||||
def test_to_openai_messages_merges_split_assistants():
|
||||
"""End-to-end: session with split assistants produces valid OpenAI messages."""
|
||||
session = ChatSession.new(user_id="u")
|
||||
session.messages = [
|
||||
ChatMessage(role="user", content="build agent"),
|
||||
ChatMessage(role="assistant", content="Let me build that"),
|
||||
ChatMessage(
|
||||
role="assistant",
|
||||
content="",
|
||||
tool_calls=[
|
||||
{
|
||||
"id": "tc1",
|
||||
"type": "function",
|
||||
"function": {"name": "create_agent", "arguments": "{}"},
|
||||
}
|
||||
],
|
||||
),
|
||||
ChatMessage(role="tool", content="done", tool_call_id="tc1"),
|
||||
ChatMessage(role="assistant", content="Saved!"),
|
||||
ChatMessage(role="user", content="show me an example run"),
|
||||
]
|
||||
openai_msgs = session.to_openai_messages()
|
||||
|
||||
# The two consecutive assistants at index 1,2 should be merged
|
||||
roles = [m["role"] for m in openai_msgs]
|
||||
assert roles == ["user", "assistant", "tool", "assistant", "user"]
|
||||
|
||||
# The merged assistant should have both content and tool_calls
|
||||
merged = cast(ChatCompletionAssistantMessageParam, openai_msgs[1])
|
||||
assert merged.get("content") == "Let me build that"
|
||||
tc_list = merged.get("tool_calls")
|
||||
assert tc_list is not None and len(list(tc_list)) == 1
|
||||
assert list(tc_list)[0]["id"] == "tc1"
|
||||
|
||||
@@ -800,9 +800,13 @@ async def stream_chat_completion(
|
||||
# Build the messages list in the correct order
|
||||
messages_to_save: list[ChatMessage] = []
|
||||
|
||||
# Add assistant message with tool_calls if any
|
||||
# Add assistant message with tool_calls if any.
|
||||
# Use extend (not assign) to preserve tool_calls already added by
|
||||
# _yield_tool_call for long-running tools.
|
||||
if accumulated_tool_calls:
|
||||
assistant_response.tool_calls = accumulated_tool_calls
|
||||
if not assistant_response.tool_calls:
|
||||
assistant_response.tool_calls = []
|
||||
assistant_response.tool_calls.extend(accumulated_tool_calls)
|
||||
logger.info(
|
||||
f"Added {len(accumulated_tool_calls)} tool calls to assistant message"
|
||||
)
|
||||
@@ -1404,13 +1408,9 @@ async def _yield_tool_call(
|
||||
operation_id=operation_id,
|
||||
)
|
||||
|
||||
# Save assistant message with tool_call FIRST (required by LLM)
|
||||
assistant_message = ChatMessage(
|
||||
role="assistant",
|
||||
content="",
|
||||
tool_calls=[tool_calls[yield_idx]],
|
||||
)
|
||||
session.messages.append(assistant_message)
|
||||
# Attach the tool_call to the current turn's assistant message
|
||||
# (or create one if this is a tool-only response with no text).
|
||||
session.add_tool_call_to_current_turn(tool_calls[yield_idx])
|
||||
|
||||
# Then save pending tool result
|
||||
pending_message = ChatMessage(
|
||||
|
||||
@@ -1,152 +0,0 @@
|
||||
"""Dummy Agent Generator for testing.
|
||||
|
||||
Returns mock responses matching the format expected from the external service.
|
||||
Enable via AGENTGENERATOR_USE_DUMMY=true in settings.
|
||||
|
||||
WARNING: This is for testing only. Do not use in production.
|
||||
"""
|
||||
|
||||
import logging
|
||||
import uuid
|
||||
from typing import Any
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Dummy decomposition result (instructions type)
|
||||
DUMMY_DECOMPOSITION_RESULT: dict[str, Any] = {
|
||||
"type": "instructions",
|
||||
"steps": [
|
||||
{
|
||||
"description": "Get input from user",
|
||||
"action": "input",
|
||||
"block_name": "AgentInputBlock",
|
||||
},
|
||||
{
|
||||
"description": "Process the input",
|
||||
"action": "process",
|
||||
"block_name": "TextFormatterBlock",
|
||||
},
|
||||
{
|
||||
"description": "Return output to user",
|
||||
"action": "output",
|
||||
"block_name": "AgentOutputBlock",
|
||||
},
|
||||
],
|
||||
}
|
||||
|
||||
# Block IDs from backend/blocks/io.py
|
||||
AGENT_INPUT_BLOCK_ID = "c0a8e994-ebf1-4a9c-a4d8-89d09c86741b"
|
||||
AGENT_OUTPUT_BLOCK_ID = "363ae599-353e-4804-937e-b2ee3cef3da4"
|
||||
|
||||
|
||||
def _generate_dummy_agent_json() -> dict[str, Any]:
|
||||
"""Generate a minimal valid agent JSON for testing."""
|
||||
input_node_id = str(uuid.uuid4())
|
||||
output_node_id = str(uuid.uuid4())
|
||||
|
||||
return {
|
||||
"id": str(uuid.uuid4()),
|
||||
"version": 1,
|
||||
"is_active": True,
|
||||
"name": "Dummy Test Agent",
|
||||
"description": "A dummy agent generated for testing purposes",
|
||||
"nodes": [
|
||||
{
|
||||
"id": input_node_id,
|
||||
"block_id": AGENT_INPUT_BLOCK_ID,
|
||||
"input_default": {
|
||||
"name": "input",
|
||||
"title": "Input",
|
||||
"description": "Enter your input",
|
||||
"placeholder_values": [],
|
||||
},
|
||||
"metadata": {"position": {"x": 0, "y": 0}},
|
||||
},
|
||||
{
|
||||
"id": output_node_id,
|
||||
"block_id": AGENT_OUTPUT_BLOCK_ID,
|
||||
"input_default": {
|
||||
"name": "output",
|
||||
"title": "Output",
|
||||
"description": "Agent output",
|
||||
"format": "{output}",
|
||||
},
|
||||
"metadata": {"position": {"x": 400, "y": 0}},
|
||||
},
|
||||
],
|
||||
"links": [
|
||||
{
|
||||
"id": str(uuid.uuid4()),
|
||||
"source_id": input_node_id,
|
||||
"sink_id": output_node_id,
|
||||
"source_name": "result",
|
||||
"sink_name": "value",
|
||||
"is_static": False,
|
||||
},
|
||||
],
|
||||
}
|
||||
|
||||
|
||||
async def decompose_goal_dummy(
|
||||
description: str,
|
||||
context: str = "",
|
||||
library_agents: list[dict[str, Any]] | None = None,
|
||||
) -> dict[str, Any]:
|
||||
"""Return dummy decomposition result."""
|
||||
logger.info("Using dummy agent generator for decompose_goal")
|
||||
return DUMMY_DECOMPOSITION_RESULT.copy()
|
||||
|
||||
|
||||
async def generate_agent_dummy(
|
||||
instructions: dict[str, Any],
|
||||
library_agents: list[dict[str, Any]] | None = None,
|
||||
operation_id: str | None = None,
|
||||
task_id: str | None = None,
|
||||
) -> dict[str, Any]:
|
||||
"""Return dummy agent JSON."""
|
||||
logger.info("Using dummy agent generator for generate_agent")
|
||||
return _generate_dummy_agent_json()
|
||||
|
||||
|
||||
async def generate_agent_patch_dummy(
|
||||
update_request: str,
|
||||
current_agent: dict[str, Any],
|
||||
library_agents: list[dict[str, Any]] | None = None,
|
||||
operation_id: str | None = None,
|
||||
task_id: str | None = None,
|
||||
) -> dict[str, Any]:
|
||||
"""Return dummy patched agent (returns the current agent with updated description)."""
|
||||
logger.info("Using dummy agent generator for generate_agent_patch")
|
||||
patched = current_agent.copy()
|
||||
patched["description"] = (
|
||||
f"{current_agent.get('description', '')} (updated: {update_request})"
|
||||
)
|
||||
return patched
|
||||
|
||||
|
||||
async def customize_template_dummy(
|
||||
template_agent: dict[str, Any],
|
||||
modification_request: str,
|
||||
context: str = "",
|
||||
) -> dict[str, Any]:
|
||||
"""Return dummy customized template (returns template with updated description)."""
|
||||
logger.info("Using dummy agent generator for customize_template")
|
||||
customized = template_agent.copy()
|
||||
customized["description"] = (
|
||||
f"{template_agent.get('description', '')} (customized: {modification_request})"
|
||||
)
|
||||
return customized
|
||||
|
||||
|
||||
async def get_blocks_dummy() -> list[dict[str, Any]]:
|
||||
"""Return dummy blocks list."""
|
||||
logger.info("Using dummy agent generator for get_blocks")
|
||||
return [
|
||||
{"id": AGENT_INPUT_BLOCK_ID, "name": "AgentInputBlock"},
|
||||
{"id": AGENT_OUTPUT_BLOCK_ID, "name": "AgentOutputBlock"},
|
||||
]
|
||||
|
||||
|
||||
async def health_check_dummy() -> bool:
|
||||
"""Always returns healthy for dummy service."""
|
||||
return True
|
||||
@@ -12,19 +12,8 @@ import httpx
|
||||
|
||||
from backend.util.settings import Settings
|
||||
|
||||
from .dummy import (
|
||||
customize_template_dummy,
|
||||
decompose_goal_dummy,
|
||||
generate_agent_dummy,
|
||||
generate_agent_patch_dummy,
|
||||
get_blocks_dummy,
|
||||
health_check_dummy,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
_dummy_mode_warned = False
|
||||
|
||||
|
||||
def _create_error_response(
|
||||
error_message: str,
|
||||
@@ -101,26 +90,10 @@ def _get_settings() -> Settings:
|
||||
return _settings
|
||||
|
||||
|
||||
def _is_dummy_mode() -> bool:
|
||||
"""Check if dummy mode is enabled for testing."""
|
||||
global _dummy_mode_warned
|
||||
settings = _get_settings()
|
||||
is_dummy = bool(settings.config.agentgenerator_use_dummy)
|
||||
if is_dummy and not _dummy_mode_warned:
|
||||
logger.warning(
|
||||
"Agent Generator running in DUMMY MODE - returning mock responses. "
|
||||
"Do not use in production!"
|
||||
)
|
||||
_dummy_mode_warned = True
|
||||
return is_dummy
|
||||
|
||||
|
||||
def is_external_service_configured() -> bool:
|
||||
"""Check if external Agent Generator service is configured (or dummy mode)."""
|
||||
"""Check if external Agent Generator service is configured."""
|
||||
settings = _get_settings()
|
||||
return bool(settings.config.agentgenerator_host) or bool(
|
||||
settings.config.agentgenerator_use_dummy
|
||||
)
|
||||
return bool(settings.config.agentgenerator_host)
|
||||
|
||||
|
||||
def _get_base_url() -> str:
|
||||
@@ -164,9 +137,6 @@ async def decompose_goal_external(
|
||||
- {"type": "error", "error": "...", "error_type": "..."} on error
|
||||
Or None on unexpected error
|
||||
"""
|
||||
if _is_dummy_mode():
|
||||
return await decompose_goal_dummy(description, context, library_agents)
|
||||
|
||||
client = _get_client()
|
||||
|
||||
if context:
|
||||
@@ -256,11 +226,6 @@ async def generate_agent_external(
|
||||
Returns:
|
||||
Agent JSON dict, {"status": "accepted"} for async, or error dict {"type": "error", ...} on error
|
||||
"""
|
||||
if _is_dummy_mode():
|
||||
return await generate_agent_dummy(
|
||||
instructions, library_agents, operation_id, task_id
|
||||
)
|
||||
|
||||
client = _get_client()
|
||||
|
||||
# Build request payload
|
||||
@@ -332,11 +297,6 @@ async def generate_agent_patch_external(
|
||||
Returns:
|
||||
Updated agent JSON, clarifying questions dict, {"status": "accepted"} for async, or error dict on error
|
||||
"""
|
||||
if _is_dummy_mode():
|
||||
return await generate_agent_patch_dummy(
|
||||
update_request, current_agent, library_agents, operation_id, task_id
|
||||
)
|
||||
|
||||
client = _get_client()
|
||||
|
||||
# Build request payload
|
||||
@@ -423,11 +383,6 @@ async def customize_template_external(
|
||||
Returns:
|
||||
Customized agent JSON, clarifying questions dict, or error dict on error
|
||||
"""
|
||||
if _is_dummy_mode():
|
||||
return await customize_template_dummy(
|
||||
template_agent, modification_request, context
|
||||
)
|
||||
|
||||
client = _get_client()
|
||||
|
||||
request = modification_request
|
||||
@@ -490,9 +445,6 @@ async def get_blocks_external() -> list[dict[str, Any]] | None:
|
||||
Returns:
|
||||
List of block info dicts or None on error
|
||||
"""
|
||||
if _is_dummy_mode():
|
||||
return await get_blocks_dummy()
|
||||
|
||||
client = _get_client()
|
||||
|
||||
try:
|
||||
@@ -526,9 +478,6 @@ async def health_check() -> bool:
|
||||
if not is_external_service_configured():
|
||||
return False
|
||||
|
||||
if _is_dummy_mode():
|
||||
return await health_check_dummy()
|
||||
|
||||
client = _get_client()
|
||||
|
||||
try:
|
||||
|
||||
@@ -368,10 +368,6 @@ class Config(UpdateTrackingModel["Config"], BaseSettings):
|
||||
default=600,
|
||||
description="The timeout in seconds for Agent Generator service requests (includes retries for rate limits)",
|
||||
)
|
||||
agentgenerator_use_dummy: bool = Field(
|
||||
default=False,
|
||||
description="Use dummy agent generator responses for testing (bypasses external service)",
|
||||
)
|
||||
|
||||
enable_example_blocks: bool = Field(
|
||||
default=False,
|
||||
|
||||
@@ -63,6 +63,17 @@ const CustomEdge = ({
|
||||
|
||||
return (
|
||||
<>
|
||||
{/* Invisible interaction path - wider hit area for hover detection */}
|
||||
<path
|
||||
d={edgePath}
|
||||
fill="none"
|
||||
stroke="black"
|
||||
strokeOpacity={0}
|
||||
strokeWidth={20}
|
||||
className="react-flow__edge-interaction cursor-pointer"
|
||||
onMouseEnter={() => setIsHovered(true)}
|
||||
onMouseLeave={() => setIsHovered(false)}
|
||||
/>
|
||||
<BaseEdge
|
||||
path={edgePath}
|
||||
markerEnd={markerEnd}
|
||||
|
||||
Reference in New Issue
Block a user