Compare commits

..

1 Commits

Author SHA1 Message Date
Otto
316822ac23 feat(copilot): add dummy agent generator for testing
Add optional dummy agent generator that returns mock responses matching
the expected format from the external Agent Generator service.

Enable via AGENTGENERATOR_USE_DUMMY=true in settings.

Changes:
- Add agentgenerator_use_dummy setting to settings.py (default: false)
- Create dummy.py with mock implementations of all service functions
- Modify service.py to route to dummy when enabled
- Add startup warning when dummy mode is active

This enables local CoPilot testing without needing the external
Agent Generator service running.
2026-02-11 16:09:47 +00:00
7 changed files with 221 additions and 300 deletions

View File

@@ -2,7 +2,7 @@ import asyncio
import logging
import uuid
from datetime import UTC, datetime
from typing import Any, cast
from typing import Any
from weakref import WeakValueDictionary
from openai.types.chat import (
@@ -104,26 +104,6 @@ class ChatSession(BaseModel):
successful_agent_runs: dict[str, int] = {}
successful_agent_schedules: dict[str, int] = {}
def add_tool_call_to_current_turn(self, tool_call: dict) -> None:
"""Attach a tool_call to the current turn's assistant message.
Searches backwards for the most recent assistant message (stopping at
any user message boundary). If found, appends the tool_call to it.
Otherwise creates a new assistant message with the tool_call.
"""
for msg in reversed(self.messages):
if msg.role == "user":
break
if msg.role == "assistant":
if not msg.tool_calls:
msg.tool_calls = []
msg.tool_calls.append(tool_call)
return
self.messages.append(
ChatMessage(role="assistant", content="", tool_calls=[tool_call])
)
@staticmethod
def new(user_id: str) -> "ChatSession":
return ChatSession(
@@ -192,47 +172,6 @@ class ChatSession(BaseModel):
successful_agent_schedules=successful_agent_schedules,
)
@staticmethod
def _merge_consecutive_assistant_messages(
messages: list[ChatCompletionMessageParam],
) -> list[ChatCompletionMessageParam]:
"""Merge consecutive assistant messages into single messages.
Long-running tool flows can create split assistant messages: one with
text content and another with tool_calls. Anthropic's API requires
tool_result blocks to reference a tool_use in the immediately preceding
assistant message, so these splits cause 400 errors via OpenRouter.
"""
if len(messages) < 2:
return messages
result: list[ChatCompletionMessageParam] = [messages[0]]
for msg in messages[1:]:
prev = result[-1]
if prev.get("role") != "assistant" or msg.get("role") != "assistant":
result.append(msg)
continue
prev = cast(ChatCompletionAssistantMessageParam, prev)
curr = cast(ChatCompletionAssistantMessageParam, msg)
curr_content = curr.get("content") or ""
if curr_content:
prev_content = prev.get("content") or ""
prev["content"] = (
f"{prev_content}\n{curr_content}" if prev_content else curr_content
)
curr_tool_calls = curr.get("tool_calls")
if curr_tool_calls:
prev_tool_calls = prev.get("tool_calls")
prev["tool_calls"] = (
list(prev_tool_calls) + list(curr_tool_calls)
if prev_tool_calls
else list(curr_tool_calls)
)
return result
def to_openai_messages(self) -> list[ChatCompletionMessageParam]:
messages = []
for message in self.messages:
@@ -319,7 +258,7 @@ class ChatSession(BaseModel):
name=message.name or "",
)
)
return self._merge_consecutive_assistant_messages(messages)
return messages
async def _get_session_from_cache(session_id: str) -> ChatSession | None:

View File

@@ -1,16 +1,4 @@
from typing import cast
import pytest
from openai.types.chat import (
ChatCompletionAssistantMessageParam,
ChatCompletionMessageParam,
ChatCompletionToolMessageParam,
ChatCompletionUserMessageParam,
)
from openai.types.chat.chat_completion_message_tool_call_param import (
ChatCompletionMessageToolCallParam,
Function,
)
from .model import (
ChatMessage,
@@ -129,205 +117,3 @@ async def test_chatsession_db_storage(setup_test_user, test_user_id):
loaded.tool_calls is not None
), f"Tool calls missing for {orig.role} message"
assert len(orig.tool_calls) == len(loaded.tool_calls)
# --------------------------------------------------------------------------- #
# _merge_consecutive_assistant_messages #
# --------------------------------------------------------------------------- #
_tc = ChatCompletionMessageToolCallParam(
id="tc1", type="function", function=Function(name="do_stuff", arguments="{}")
)
_tc2 = ChatCompletionMessageToolCallParam(
id="tc2", type="function", function=Function(name="other", arguments="{}")
)
def test_merge_noop_when_no_consecutive_assistants():
"""Messages without consecutive assistants are returned unchanged."""
msgs = [
ChatCompletionUserMessageParam(role="user", content="hi"),
ChatCompletionAssistantMessageParam(role="assistant", content="hello"),
ChatCompletionUserMessageParam(role="user", content="bye"),
]
merged = ChatSession._merge_consecutive_assistant_messages(msgs)
assert len(merged) == 3
assert [m["role"] for m in merged] == ["user", "assistant", "user"]
def test_merge_splits_text_and_tool_calls():
"""The exact bug scenario: text-only assistant followed by tool_calls-only assistant."""
msgs = [
ChatCompletionUserMessageParam(role="user", content="build agent"),
ChatCompletionAssistantMessageParam(
role="assistant", content="Let me build that"
),
ChatCompletionAssistantMessageParam(
role="assistant", content="", tool_calls=[_tc]
),
ChatCompletionToolMessageParam(role="tool", content="ok", tool_call_id="tc1"),
]
merged = ChatSession._merge_consecutive_assistant_messages(msgs)
assert len(merged) == 3
assert merged[0]["role"] == "user"
assert merged[2]["role"] == "tool"
a = cast(ChatCompletionAssistantMessageParam, merged[1])
assert a["role"] == "assistant"
assert a.get("content") == "Let me build that"
assert a.get("tool_calls") == [_tc]
def test_merge_combines_tool_calls_from_both():
"""Both consecutive assistants have tool_calls — they get merged."""
msgs: list[ChatCompletionAssistantMessageParam] = [
ChatCompletionAssistantMessageParam(
role="assistant", content="text", tool_calls=[_tc]
),
ChatCompletionAssistantMessageParam(
role="assistant", content="", tool_calls=[_tc2]
),
]
merged = ChatSession._merge_consecutive_assistant_messages(msgs) # type: ignore[arg-type]
assert len(merged) == 1
a = cast(ChatCompletionAssistantMessageParam, merged[0])
assert a.get("tool_calls") == [_tc, _tc2]
assert a.get("content") == "text"
def test_merge_three_consecutive_assistants():
"""Three consecutive assistants collapse into one."""
msgs: list[ChatCompletionAssistantMessageParam] = [
ChatCompletionAssistantMessageParam(role="assistant", content="a"),
ChatCompletionAssistantMessageParam(role="assistant", content="b"),
ChatCompletionAssistantMessageParam(
role="assistant", content="", tool_calls=[_tc]
),
]
merged = ChatSession._merge_consecutive_assistant_messages(msgs) # type: ignore[arg-type]
assert len(merged) == 1
a = cast(ChatCompletionAssistantMessageParam, merged[0])
assert a.get("content") == "a\nb"
assert a.get("tool_calls") == [_tc]
def test_merge_empty_and_single_message():
"""Edge cases: empty list and single message."""
assert ChatSession._merge_consecutive_assistant_messages([]) == []
single: list[ChatCompletionMessageParam] = [
ChatCompletionUserMessageParam(role="user", content="hi")
]
assert ChatSession._merge_consecutive_assistant_messages(single) == single
# --------------------------------------------------------------------------- #
# add_tool_call_to_current_turn #
# --------------------------------------------------------------------------- #
_raw_tc = {
"id": "tc1",
"type": "function",
"function": {"name": "f", "arguments": "{}"},
}
_raw_tc2 = {
"id": "tc2",
"type": "function",
"function": {"name": "g", "arguments": "{}"},
}
def test_add_tool_call_appends_to_existing_assistant():
"""When the last assistant is from the current turn, tool_call is added to it."""
session = ChatSession.new(user_id="u")
session.messages = [
ChatMessage(role="user", content="hi"),
ChatMessage(role="assistant", content="working on it"),
]
session.add_tool_call_to_current_turn(_raw_tc)
assert len(session.messages) == 2 # no new message created
assert session.messages[1].tool_calls == [_raw_tc]
def test_add_tool_call_creates_assistant_when_none_exists():
"""When there's no current-turn assistant, a new one is created."""
session = ChatSession.new(user_id="u")
session.messages = [
ChatMessage(role="user", content="hi"),
]
session.add_tool_call_to_current_turn(_raw_tc)
assert len(session.messages) == 2
assert session.messages[1].role == "assistant"
assert session.messages[1].tool_calls == [_raw_tc]
def test_add_tool_call_does_not_cross_user_boundary():
"""A user message acts as a boundary — previous assistant is not modified."""
session = ChatSession.new(user_id="u")
session.messages = [
ChatMessage(role="assistant", content="old turn"),
ChatMessage(role="user", content="new message"),
]
session.add_tool_call_to_current_turn(_raw_tc)
assert len(session.messages) == 3 # new assistant was created
assert session.messages[0].tool_calls is None # old assistant untouched
assert session.messages[2].role == "assistant"
assert session.messages[2].tool_calls == [_raw_tc]
def test_add_tool_call_multiple_times():
"""Multiple long-running tool calls accumulate on the same assistant."""
session = ChatSession.new(user_id="u")
session.messages = [
ChatMessage(role="user", content="hi"),
ChatMessage(role="assistant", content="doing stuff"),
]
session.add_tool_call_to_current_turn(_raw_tc)
# Simulate a pending tool result in between (like _yield_tool_call does)
session.messages.append(
ChatMessage(role="tool", content="pending", tool_call_id="tc1")
)
session.add_tool_call_to_current_turn(_raw_tc2)
assert len(session.messages) == 3 # user, assistant, tool — no extra assistant
assert session.messages[1].tool_calls == [_raw_tc, _raw_tc2]
def test_to_openai_messages_merges_split_assistants():
"""End-to-end: session with split assistants produces valid OpenAI messages."""
session = ChatSession.new(user_id="u")
session.messages = [
ChatMessage(role="user", content="build agent"),
ChatMessage(role="assistant", content="Let me build that"),
ChatMessage(
role="assistant",
content="",
tool_calls=[
{
"id": "tc1",
"type": "function",
"function": {"name": "create_agent", "arguments": "{}"},
}
],
),
ChatMessage(role="tool", content="done", tool_call_id="tc1"),
ChatMessage(role="assistant", content="Saved!"),
ChatMessage(role="user", content="show me an example run"),
]
openai_msgs = session.to_openai_messages()
# The two consecutive assistants at index 1,2 should be merged
roles = [m["role"] for m in openai_msgs]
assert roles == ["user", "assistant", "tool", "assistant", "user"]
# The merged assistant should have both content and tool_calls
merged = cast(ChatCompletionAssistantMessageParam, openai_msgs[1])
assert merged.get("content") == "Let me build that"
tc_list = merged.get("tool_calls")
assert tc_list is not None and len(list(tc_list)) == 1
assert list(tc_list)[0]["id"] == "tc1"

View File

@@ -800,13 +800,9 @@ async def stream_chat_completion(
# Build the messages list in the correct order
messages_to_save: list[ChatMessage] = []
# Add assistant message with tool_calls if any.
# Use extend (not assign) to preserve tool_calls already added by
# _yield_tool_call for long-running tools.
# Add assistant message with tool_calls if any
if accumulated_tool_calls:
if not assistant_response.tool_calls:
assistant_response.tool_calls = []
assistant_response.tool_calls.extend(accumulated_tool_calls)
assistant_response.tool_calls = accumulated_tool_calls
logger.info(
f"Added {len(accumulated_tool_calls)} tool calls to assistant message"
)
@@ -1408,9 +1404,13 @@ async def _yield_tool_call(
operation_id=operation_id,
)
# Attach the tool_call to the current turn's assistant message
# (or create one if this is a tool-only response with no text).
session.add_tool_call_to_current_turn(tool_calls[yield_idx])
# Save assistant message with tool_call FIRST (required by LLM)
assistant_message = ChatMessage(
role="assistant",
content="",
tool_calls=[tool_calls[yield_idx]],
)
session.messages.append(assistant_message)
# Then save pending tool result
pending_message = ChatMessage(

View File

@@ -0,0 +1,152 @@
"""Dummy Agent Generator for testing.
Returns mock responses matching the format expected from the external service.
Enable via AGENTGENERATOR_USE_DUMMY=true in settings.
WARNING: This is for testing only. Do not use in production.
"""
import logging
import uuid
from typing import Any
logger = logging.getLogger(__name__)
# Dummy decomposition result (instructions type)
DUMMY_DECOMPOSITION_RESULT: dict[str, Any] = {
"type": "instructions",
"steps": [
{
"description": "Get input from user",
"action": "input",
"block_name": "AgentInputBlock",
},
{
"description": "Process the input",
"action": "process",
"block_name": "TextFormatterBlock",
},
{
"description": "Return output to user",
"action": "output",
"block_name": "AgentOutputBlock",
},
],
}
# Block IDs from backend/blocks/io.py
AGENT_INPUT_BLOCK_ID = "c0a8e994-ebf1-4a9c-a4d8-89d09c86741b"
AGENT_OUTPUT_BLOCK_ID = "363ae599-353e-4804-937e-b2ee3cef3da4"
def _generate_dummy_agent_json() -> dict[str, Any]:
"""Generate a minimal valid agent JSON for testing."""
input_node_id = str(uuid.uuid4())
output_node_id = str(uuid.uuid4())
return {
"id": str(uuid.uuid4()),
"version": 1,
"is_active": True,
"name": "Dummy Test Agent",
"description": "A dummy agent generated for testing purposes",
"nodes": [
{
"id": input_node_id,
"block_id": AGENT_INPUT_BLOCK_ID,
"input_default": {
"name": "input",
"title": "Input",
"description": "Enter your input",
"placeholder_values": [],
},
"metadata": {"position": {"x": 0, "y": 0}},
},
{
"id": output_node_id,
"block_id": AGENT_OUTPUT_BLOCK_ID,
"input_default": {
"name": "output",
"title": "Output",
"description": "Agent output",
"format": "{output}",
},
"metadata": {"position": {"x": 400, "y": 0}},
},
],
"links": [
{
"id": str(uuid.uuid4()),
"source_id": input_node_id,
"sink_id": output_node_id,
"source_name": "result",
"sink_name": "value",
"is_static": False,
},
],
}
async def decompose_goal_dummy(
description: str,
context: str = "",
library_agents: list[dict[str, Any]] | None = None,
) -> dict[str, Any]:
"""Return dummy decomposition result."""
logger.info("Using dummy agent generator for decompose_goal")
return DUMMY_DECOMPOSITION_RESULT.copy()
async def generate_agent_dummy(
instructions: dict[str, Any],
library_agents: list[dict[str, Any]] | None = None,
operation_id: str | None = None,
task_id: str | None = None,
) -> dict[str, Any]:
"""Return dummy agent JSON."""
logger.info("Using dummy agent generator for generate_agent")
return _generate_dummy_agent_json()
async def generate_agent_patch_dummy(
update_request: str,
current_agent: dict[str, Any],
library_agents: list[dict[str, Any]] | None = None,
operation_id: str | None = None,
task_id: str | None = None,
) -> dict[str, Any]:
"""Return dummy patched agent (returns the current agent with updated description)."""
logger.info("Using dummy agent generator for generate_agent_patch")
patched = current_agent.copy()
patched["description"] = (
f"{current_agent.get('description', '')} (updated: {update_request})"
)
return patched
async def customize_template_dummy(
template_agent: dict[str, Any],
modification_request: str,
context: str = "",
) -> dict[str, Any]:
"""Return dummy customized template (returns template with updated description)."""
logger.info("Using dummy agent generator for customize_template")
customized = template_agent.copy()
customized["description"] = (
f"{template_agent.get('description', '')} (customized: {modification_request})"
)
return customized
async def get_blocks_dummy() -> list[dict[str, Any]]:
"""Return dummy blocks list."""
logger.info("Using dummy agent generator for get_blocks")
return [
{"id": AGENT_INPUT_BLOCK_ID, "name": "AgentInputBlock"},
{"id": AGENT_OUTPUT_BLOCK_ID, "name": "AgentOutputBlock"},
]
async def health_check_dummy() -> bool:
"""Always returns healthy for dummy service."""
return True

View File

@@ -12,8 +12,19 @@ import httpx
from backend.util.settings import Settings
from .dummy import (
customize_template_dummy,
decompose_goal_dummy,
generate_agent_dummy,
generate_agent_patch_dummy,
get_blocks_dummy,
health_check_dummy,
)
logger = logging.getLogger(__name__)
_dummy_mode_warned = False
def _create_error_response(
error_message: str,
@@ -90,10 +101,26 @@ def _get_settings() -> Settings:
return _settings
def is_external_service_configured() -> bool:
"""Check if external Agent Generator service is configured."""
def _is_dummy_mode() -> bool:
"""Check if dummy mode is enabled for testing."""
global _dummy_mode_warned
settings = _get_settings()
return bool(settings.config.agentgenerator_host)
is_dummy = bool(settings.config.agentgenerator_use_dummy)
if is_dummy and not _dummy_mode_warned:
logger.warning(
"Agent Generator running in DUMMY MODE - returning mock responses. "
"Do not use in production!"
)
_dummy_mode_warned = True
return is_dummy
def is_external_service_configured() -> bool:
"""Check if external Agent Generator service is configured (or dummy mode)."""
settings = _get_settings()
return bool(settings.config.agentgenerator_host) or bool(
settings.config.agentgenerator_use_dummy
)
def _get_base_url() -> str:
@@ -137,6 +164,9 @@ async def decompose_goal_external(
- {"type": "error", "error": "...", "error_type": "..."} on error
Or None on unexpected error
"""
if _is_dummy_mode():
return await decompose_goal_dummy(description, context, library_agents)
client = _get_client()
if context:
@@ -226,6 +256,11 @@ async def generate_agent_external(
Returns:
Agent JSON dict, {"status": "accepted"} for async, or error dict {"type": "error", ...} on error
"""
if _is_dummy_mode():
return await generate_agent_dummy(
instructions, library_agents, operation_id, task_id
)
client = _get_client()
# Build request payload
@@ -297,6 +332,11 @@ async def generate_agent_patch_external(
Returns:
Updated agent JSON, clarifying questions dict, {"status": "accepted"} for async, or error dict on error
"""
if _is_dummy_mode():
return await generate_agent_patch_dummy(
update_request, current_agent, library_agents, operation_id, task_id
)
client = _get_client()
# Build request payload
@@ -383,6 +423,11 @@ async def customize_template_external(
Returns:
Customized agent JSON, clarifying questions dict, or error dict on error
"""
if _is_dummy_mode():
return await customize_template_dummy(
template_agent, modification_request, context
)
client = _get_client()
request = modification_request
@@ -445,6 +490,9 @@ async def get_blocks_external() -> list[dict[str, Any]] | None:
Returns:
List of block info dicts or None on error
"""
if _is_dummy_mode():
return await get_blocks_dummy()
client = _get_client()
try:
@@ -478,6 +526,9 @@ async def health_check() -> bool:
if not is_external_service_configured():
return False
if _is_dummy_mode():
return await health_check_dummy()
client = _get_client()
try:

View File

@@ -368,6 +368,10 @@ class Config(UpdateTrackingModel["Config"], BaseSettings):
default=600,
description="The timeout in seconds for Agent Generator service requests (includes retries for rate limits)",
)
agentgenerator_use_dummy: bool = Field(
default=False,
description="Use dummy agent generator responses for testing (bypasses external service)",
)
enable_example_blocks: bool = Field(
default=False,

View File

@@ -63,17 +63,6 @@ const CustomEdge = ({
return (
<>
{/* Invisible interaction path - wider hit area for hover detection */}
<path
d={edgePath}
fill="none"
stroke="black"
strokeOpacity={0}
strokeWidth={20}
className="react-flow__edge-interaction cursor-pointer"
onMouseEnter={() => setIsHovered(true)}
onMouseLeave={() => setIsHovered(false)}
/>
<BaseEdge
path={edgePath}
markerEnd={markerEnd}