Compare commits

..

4 Commits

Author SHA1 Message Date
Otto-AGPT
cdeefb8621 fix(copilot): Use correct OpenRouter reasoning API format
Addresses review comments from CodeRabbit and Sentry:

- Change reasoning format from {"enabled": True} (invalid) to
  {"max_tokens": config.thinking_budget_tokens} per OpenRouter docs
- Add missing thinking_budget_tokens config field (default: 10000)
- Extract duplicate code into _apply_thinking_config() helper function
- Update description from 'adaptive' to 'extended' thinking for clarity

References:
- OpenRouter reasoning docs: https://openrouter.ai/docs/reasoning-tokens
2026-02-11 13:54:57 +00:00
Swifty
ba6d585170 update settings 2026-02-10 16:08:21 +01:00
Swifty
90eac56525 Merge branch 'dev' into fix/enable-extended-thinking 2026-02-10 15:26:40 +01:00
Otto
75f8772f8a feat(copilot): Enable extended thinking for Claude models
Adds configuration to enable Anthropic's extended thinking feature via
OpenRouter. This keeps the model's chain-of-thought reasoning internal
rather than outputting it to users.

Configuration:
- thinking_enabled: bool (default: True)
- thinking_budget_tokens: int (default: 10000)

The thinking config is only applied to Anthropic models (detected via
model name containing 'anthropic').

Fixes the issue where the CoPilot prompt expects thinking mode but it
wasn't enabled on the API side, causing internal reasoning to leak
into user-facing responses.
2026-02-10 13:58:57 +00:00
46 changed files with 195 additions and 654 deletions

View File

@@ -22,7 +22,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
ref: ${{ github.event.workflow_run.head_branch }}
fetch-depth: 0

View File

@@ -30,7 +30,7 @@ jobs:
actions: read # Required for CI access
steps:
- name: Checkout code
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
fetch-depth: 1

View File

@@ -40,7 +40,7 @@ jobs:
actions: read # Required for CI access
steps:
- name: Checkout code
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
fetch-depth: 1

View File

@@ -58,7 +58,7 @@ jobs:
# your codebase is analyzed, see https://docs.github.com/en/code-security/code-scanning/creating-an-advanced-setup-for-code-scanning/codeql-code-scanning-for-compiled-languages
steps:
- name: Checkout repository
uses: actions/checkout@v6
uses: actions/checkout@v4
# Initializes the CodeQL tools for scanning.
- name: Initialize CodeQL

View File

@@ -27,7 +27,7 @@ jobs:
# If you do not check out your code, Copilot will do this for you.
steps:
- name: Checkout code
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
fetch-depth: 0
submodules: true

View File

@@ -23,7 +23,7 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
fetch-depth: 1

View File

@@ -23,7 +23,7 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
fetch-depth: 0

View File

@@ -28,7 +28,7 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
fetch-depth: 1

View File

@@ -25,7 +25,7 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
ref: ${{ github.event.inputs.git_ref || github.ref_name }}
@@ -52,7 +52,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Trigger deploy workflow
uses: peter-evans/repository-dispatch@v4
uses: peter-evans/repository-dispatch@v3
with:
token: ${{ secrets.DEPLOY_TOKEN }}
repository: Significant-Gravitas/AutoGPT_cloud_infrastructure

View File

@@ -17,7 +17,7 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
ref: ${{ github.ref_name || 'master' }}
@@ -45,7 +45,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Trigger deploy workflow
uses: peter-evans/repository-dispatch@v4
uses: peter-evans/repository-dispatch@v3
with:
token: ${{ secrets.DEPLOY_TOKEN }}
repository: Significant-Gravitas/AutoGPT_cloud_infrastructure

View File

@@ -68,7 +68,7 @@ jobs:
steps:
- name: Checkout repository
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
fetch-depth: 0
submodules: true

View File

@@ -82,7 +82,7 @@ jobs:
- name: Dispatch Deploy Event
if: steps.check_status.outputs.should_deploy == 'true'
uses: peter-evans/repository-dispatch@v4
uses: peter-evans/repository-dispatch@v3
with:
token: ${{ secrets.DISPATCH_TOKEN }}
repository: Significant-Gravitas/AutoGPT_cloud_infrastructure
@@ -110,7 +110,7 @@ jobs:
- name: Dispatch Undeploy Event (from comment)
if: steps.check_status.outputs.should_undeploy == 'true'
uses: peter-evans/repository-dispatch@v4
uses: peter-evans/repository-dispatch@v3
with:
token: ${{ secrets.DISPATCH_TOKEN }}
repository: Significant-Gravitas/AutoGPT_cloud_infrastructure
@@ -168,7 +168,7 @@ jobs:
github.event_name == 'pull_request' &&
github.event.action == 'closed' &&
steps.check_pr_close.outputs.should_undeploy == 'true'
uses: peter-evans/repository-dispatch@v4
uses: peter-evans/repository-dispatch@v3
with:
token: ${{ secrets.DISPATCH_TOKEN }}
repository: Significant-Gravitas/AutoGPT_cloud_infrastructure

View File

@@ -31,7 +31,7 @@ jobs:
steps:
- name: Checkout repository
uses: actions/checkout@v6
uses: actions/checkout@v4
- name: Check for component changes
uses: dorny/paths-filter@v3
@@ -71,7 +71,7 @@ jobs:
steps:
- name: Checkout repository
uses: actions/checkout@v6
uses: actions/checkout@v4
- name: Set up Node.js
uses: actions/setup-node@v6
@@ -107,7 +107,7 @@ jobs:
steps:
- name: Checkout repository
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
fetch-depth: 0
@@ -148,7 +148,7 @@ jobs:
steps:
- name: Checkout repository
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
submodules: recursive
@@ -277,7 +277,7 @@ jobs:
steps:
- name: Checkout repository
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
submodules: recursive

View File

@@ -29,7 +29,7 @@ jobs:
steps:
- name: Checkout repository
uses: actions/checkout@v6
uses: actions/checkout@v4
- name: Set up Node.js
uses: actions/setup-node@v6
@@ -63,7 +63,7 @@ jobs:
steps:
- name: Checkout repository
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
submodules: recursive

View File

@@ -11,7 +11,7 @@ jobs:
steps:
# - name: Wait some time for all actions to start
# run: sleep 30
- uses: actions/checkout@v6
- uses: actions/checkout@v4
# with:
# fetch-depth: 0
- name: Set up Python

View File

@@ -96,7 +96,13 @@ class ChatConfig(BaseSettings):
# Extended thinking configuration for Claude models
thinking_enabled: bool = Field(
default=True,
description="Enable adaptive thinking for Claude models via OpenRouter",
description="Enable extended thinking for Claude models via OpenRouter",
)
thinking_budget_tokens: int = Field(
default=10000,
ge=1000,
le=100000,
description="Maximum tokens for extended thinking (budget_tokens for Claude)",
)
@field_validator("api_key", mode="before")

View File

@@ -2,7 +2,7 @@ import asyncio
import logging
import uuid
from datetime import UTC, datetime
from typing import Any, cast
from typing import Any
from weakref import WeakValueDictionary
from openai.types.chat import (
@@ -104,26 +104,6 @@ class ChatSession(BaseModel):
successful_agent_runs: dict[str, int] = {}
successful_agent_schedules: dict[str, int] = {}
def add_tool_call_to_current_turn(self, tool_call: dict) -> None:
"""Attach a tool_call to the current turn's assistant message.
Searches backwards for the most recent assistant message (stopping at
any user message boundary). If found, appends the tool_call to it.
Otherwise creates a new assistant message with the tool_call.
"""
for msg in reversed(self.messages):
if msg.role == "user":
break
if msg.role == "assistant":
if not msg.tool_calls:
msg.tool_calls = []
msg.tool_calls.append(tool_call)
return
self.messages.append(
ChatMessage(role="assistant", content="", tool_calls=[tool_call])
)
@staticmethod
def new(user_id: str) -> "ChatSession":
return ChatSession(
@@ -192,47 +172,6 @@ class ChatSession(BaseModel):
successful_agent_schedules=successful_agent_schedules,
)
@staticmethod
def _merge_consecutive_assistant_messages(
messages: list[ChatCompletionMessageParam],
) -> list[ChatCompletionMessageParam]:
"""Merge consecutive assistant messages into single messages.
Long-running tool flows can create split assistant messages: one with
text content and another with tool_calls. Anthropic's API requires
tool_result blocks to reference a tool_use in the immediately preceding
assistant message, so these splits cause 400 errors via OpenRouter.
"""
if len(messages) < 2:
return messages
result: list[ChatCompletionMessageParam] = [messages[0]]
for msg in messages[1:]:
prev = result[-1]
if prev.get("role") != "assistant" or msg.get("role") != "assistant":
result.append(msg)
continue
prev = cast(ChatCompletionAssistantMessageParam, prev)
curr = cast(ChatCompletionAssistantMessageParam, msg)
curr_content = curr.get("content") or ""
if curr_content:
prev_content = prev.get("content") or ""
prev["content"] = (
f"{prev_content}\n{curr_content}" if prev_content else curr_content
)
curr_tool_calls = curr.get("tool_calls")
if curr_tool_calls:
prev_tool_calls = prev.get("tool_calls")
prev["tool_calls"] = (
list(prev_tool_calls) + list(curr_tool_calls)
if prev_tool_calls
else list(curr_tool_calls)
)
return result
def to_openai_messages(self) -> list[ChatCompletionMessageParam]:
messages = []
for message in self.messages:
@@ -319,7 +258,7 @@ class ChatSession(BaseModel):
name=message.name or "",
)
)
return self._merge_consecutive_assistant_messages(messages)
return messages
async def _get_session_from_cache(session_id: str) -> ChatSession | None:

View File

@@ -1,16 +1,4 @@
from typing import cast
import pytest
from openai.types.chat import (
ChatCompletionAssistantMessageParam,
ChatCompletionMessageParam,
ChatCompletionToolMessageParam,
ChatCompletionUserMessageParam,
)
from openai.types.chat.chat_completion_message_tool_call_param import (
ChatCompletionMessageToolCallParam,
Function,
)
from .model import (
ChatMessage,
@@ -129,205 +117,3 @@ async def test_chatsession_db_storage(setup_test_user, test_user_id):
loaded.tool_calls is not None
), f"Tool calls missing for {orig.role} message"
assert len(orig.tool_calls) == len(loaded.tool_calls)
# --------------------------------------------------------------------------- #
# _merge_consecutive_assistant_messages #
# --------------------------------------------------------------------------- #
_tc = ChatCompletionMessageToolCallParam(
id="tc1", type="function", function=Function(name="do_stuff", arguments="{}")
)
_tc2 = ChatCompletionMessageToolCallParam(
id="tc2", type="function", function=Function(name="other", arguments="{}")
)
def test_merge_noop_when_no_consecutive_assistants():
"""Messages without consecutive assistants are returned unchanged."""
msgs = [
ChatCompletionUserMessageParam(role="user", content="hi"),
ChatCompletionAssistantMessageParam(role="assistant", content="hello"),
ChatCompletionUserMessageParam(role="user", content="bye"),
]
merged = ChatSession._merge_consecutive_assistant_messages(msgs)
assert len(merged) == 3
assert [m["role"] for m in merged] == ["user", "assistant", "user"]
def test_merge_splits_text_and_tool_calls():
"""The exact bug scenario: text-only assistant followed by tool_calls-only assistant."""
msgs = [
ChatCompletionUserMessageParam(role="user", content="build agent"),
ChatCompletionAssistantMessageParam(
role="assistant", content="Let me build that"
),
ChatCompletionAssistantMessageParam(
role="assistant", content="", tool_calls=[_tc]
),
ChatCompletionToolMessageParam(role="tool", content="ok", tool_call_id="tc1"),
]
merged = ChatSession._merge_consecutive_assistant_messages(msgs)
assert len(merged) == 3
assert merged[0]["role"] == "user"
assert merged[2]["role"] == "tool"
a = cast(ChatCompletionAssistantMessageParam, merged[1])
assert a["role"] == "assistant"
assert a.get("content") == "Let me build that"
assert a.get("tool_calls") == [_tc]
def test_merge_combines_tool_calls_from_both():
"""Both consecutive assistants have tool_calls — they get merged."""
msgs: list[ChatCompletionAssistantMessageParam] = [
ChatCompletionAssistantMessageParam(
role="assistant", content="text", tool_calls=[_tc]
),
ChatCompletionAssistantMessageParam(
role="assistant", content="", tool_calls=[_tc2]
),
]
merged = ChatSession._merge_consecutive_assistant_messages(msgs) # type: ignore[arg-type]
assert len(merged) == 1
a = cast(ChatCompletionAssistantMessageParam, merged[0])
assert a.get("tool_calls") == [_tc, _tc2]
assert a.get("content") == "text"
def test_merge_three_consecutive_assistants():
"""Three consecutive assistants collapse into one."""
msgs: list[ChatCompletionAssistantMessageParam] = [
ChatCompletionAssistantMessageParam(role="assistant", content="a"),
ChatCompletionAssistantMessageParam(role="assistant", content="b"),
ChatCompletionAssistantMessageParam(
role="assistant", content="", tool_calls=[_tc]
),
]
merged = ChatSession._merge_consecutive_assistant_messages(msgs) # type: ignore[arg-type]
assert len(merged) == 1
a = cast(ChatCompletionAssistantMessageParam, merged[0])
assert a.get("content") == "a\nb"
assert a.get("tool_calls") == [_tc]
def test_merge_empty_and_single_message():
"""Edge cases: empty list and single message."""
assert ChatSession._merge_consecutive_assistant_messages([]) == []
single: list[ChatCompletionMessageParam] = [
ChatCompletionUserMessageParam(role="user", content="hi")
]
assert ChatSession._merge_consecutive_assistant_messages(single) == single
# --------------------------------------------------------------------------- #
# add_tool_call_to_current_turn #
# --------------------------------------------------------------------------- #
_raw_tc = {
"id": "tc1",
"type": "function",
"function": {"name": "f", "arguments": "{}"},
}
_raw_tc2 = {
"id": "tc2",
"type": "function",
"function": {"name": "g", "arguments": "{}"},
}
def test_add_tool_call_appends_to_existing_assistant():
"""When the last assistant is from the current turn, tool_call is added to it."""
session = ChatSession.new(user_id="u")
session.messages = [
ChatMessage(role="user", content="hi"),
ChatMessage(role="assistant", content="working on it"),
]
session.add_tool_call_to_current_turn(_raw_tc)
assert len(session.messages) == 2 # no new message created
assert session.messages[1].tool_calls == [_raw_tc]
def test_add_tool_call_creates_assistant_when_none_exists():
"""When there's no current-turn assistant, a new one is created."""
session = ChatSession.new(user_id="u")
session.messages = [
ChatMessage(role="user", content="hi"),
]
session.add_tool_call_to_current_turn(_raw_tc)
assert len(session.messages) == 2
assert session.messages[1].role == "assistant"
assert session.messages[1].tool_calls == [_raw_tc]
def test_add_tool_call_does_not_cross_user_boundary():
"""A user message acts as a boundary — previous assistant is not modified."""
session = ChatSession.new(user_id="u")
session.messages = [
ChatMessage(role="assistant", content="old turn"),
ChatMessage(role="user", content="new message"),
]
session.add_tool_call_to_current_turn(_raw_tc)
assert len(session.messages) == 3 # new assistant was created
assert session.messages[0].tool_calls is None # old assistant untouched
assert session.messages[2].role == "assistant"
assert session.messages[2].tool_calls == [_raw_tc]
def test_add_tool_call_multiple_times():
"""Multiple long-running tool calls accumulate on the same assistant."""
session = ChatSession.new(user_id="u")
session.messages = [
ChatMessage(role="user", content="hi"),
ChatMessage(role="assistant", content="doing stuff"),
]
session.add_tool_call_to_current_turn(_raw_tc)
# Simulate a pending tool result in between (like _yield_tool_call does)
session.messages.append(
ChatMessage(role="tool", content="pending", tool_call_id="tc1")
)
session.add_tool_call_to_current_turn(_raw_tc2)
assert len(session.messages) == 3 # user, assistant, tool — no extra assistant
assert session.messages[1].tool_calls == [_raw_tc, _raw_tc2]
def test_to_openai_messages_merges_split_assistants():
"""End-to-end: session with split assistants produces valid OpenAI messages."""
session = ChatSession.new(user_id="u")
session.messages = [
ChatMessage(role="user", content="build agent"),
ChatMessage(role="assistant", content="Let me build that"),
ChatMessage(
role="assistant",
content="",
tool_calls=[
{
"id": "tc1",
"type": "function",
"function": {"name": "create_agent", "arguments": "{}"},
}
],
),
ChatMessage(role="tool", content="done", tool_call_id="tc1"),
ChatMessage(role="assistant", content="Saved!"),
ChatMessage(role="user", content="show me an example run"),
]
openai_msgs = session.to_openai_messages()
# The two consecutive assistants at index 1,2 should be merged
roles = [m["role"] for m in openai_msgs]
assert roles == ["user", "assistant", "tool", "assistant", "user"]
# The merged assistant should have both content and tool_calls
merged = cast(ChatCompletionAssistantMessageParam, openai_msgs[1])
assert merged.get("content") == "Let me build that"
tc_list = merged.get("tool_calls")
assert tc_list is not None and len(list(tc_list)) == 1
assert list(tc_list)[0]["id"] == "tc1"

View File

@@ -10,8 +10,6 @@ from typing import Any
from pydantic import BaseModel, Field
from backend.util.json import dumps as json_dumps
class ResponseType(str, Enum):
"""Types of streaming responses following AI SDK protocol."""
@@ -195,18 +193,6 @@ class StreamError(StreamBaseResponse):
default=None, description="Additional error details"
)
def to_sse(self) -> str:
"""Convert to SSE format, only emitting fields required by AI SDK protocol.
The AI SDK uses z.strictObject({type, errorText}) which rejects
any extra fields like `code` or `details`.
"""
data = {
"type": self.type.value,
"errorText": self.errorText,
}
return f"data: {json_dumps(data)}\n\n"
class StreamHeartbeat(StreamBaseResponse):
"""Heartbeat to keep SSE connection alive during long-running operations.

View File

@@ -80,6 +80,19 @@ settings = Settings()
client = openai.AsyncOpenAI(api_key=config.api_key, base_url=config.base_url)
def _apply_thinking_config(extra_body: dict[str, Any], model: str) -> None:
"""Apply extended thinking configuration for Anthropic models via OpenRouter.
OpenRouter's reasoning API expects either:
- {"max_tokens": N} for explicit token budget
- {"effort": "high"} for automatic budget
See: https://openrouter.ai/docs/reasoning-tokens
"""
if config.thinking_enabled and "anthropic" in model.lower():
extra_body["reasoning"] = {"max_tokens": config.thinking_budget_tokens}
langfuse = get_client()
# Redis key prefix for tracking running long-running operations
@@ -800,13 +813,9 @@ async def stream_chat_completion(
# Build the messages list in the correct order
messages_to_save: list[ChatMessage] = []
# Add assistant message with tool_calls if any.
# Use extend (not assign) to preserve tool_calls already added by
# _yield_tool_call for long-running tools.
# Add assistant message with tool_calls if any
if accumulated_tool_calls:
if not assistant_response.tool_calls:
assistant_response.tool_calls = []
assistant_response.tool_calls.extend(accumulated_tool_calls)
assistant_response.tool_calls = accumulated_tool_calls
logger.info(
f"Added {len(accumulated_tool_calls)} tool calls to assistant message"
)
@@ -1070,9 +1079,8 @@ async def _stream_chat_chunks(
:128
] # OpenRouter limit
# Enable adaptive thinking for Anthropic models via OpenRouter
if config.thinking_enabled and "anthropic" in model.lower():
extra_body["reasoning"] = {"enabled": True}
# Enable extended thinking for Anthropic models via OpenRouter
_apply_thinking_config(extra_body, model)
api_call_start = time_module.perf_counter()
stream = await client.chat.completions.create(
@@ -1408,9 +1416,13 @@ async def _yield_tool_call(
operation_id=operation_id,
)
# Attach the tool_call to the current turn's assistant message
# (or create one if this is a tool-only response with no text).
session.add_tool_call_to_current_turn(tool_calls[yield_idx])
# Save assistant message with tool_call FIRST (required by LLM)
assistant_message = ChatMessage(
role="assistant",
content="",
tool_calls=[tool_calls[yield_idx]],
)
session.messages.append(assistant_message)
# Then save pending tool result
pending_message = ChatMessage(
@@ -1833,9 +1845,8 @@ async def _generate_llm_continuation(
if session_id:
extra_body["session_id"] = session_id[:128]
# Enable adaptive thinking for Anthropic models via OpenRouter
if config.thinking_enabled and "anthropic" in config.model.lower():
extra_body["reasoning"] = {"enabled": True}
# Enable extended thinking for Anthropic models via OpenRouter
_apply_thinking_config(extra_body, config.model)
retry_count = 0
last_error: Exception | None = None
@@ -1967,9 +1978,8 @@ async def _generate_llm_continuation_with_streaming(
if session_id:
extra_body["session_id"] = session_id[:128]
# Enable adaptive thinking for Anthropic models via OpenRouter
if config.thinking_enabled and "anthropic" in config.model.lower():
extra_body["reasoning"] = {"enabled": True}
# Enable extended thinking for Anthropic models via OpenRouter
_apply_thinking_config(extra_body, config.model)
# Make streaming LLM call (no tools - just text response)
from typing import cast

View File

@@ -21,71 +21,43 @@ logger = logging.getLogger(__name__)
class HumanInTheLoopBlock(Block):
"""
Pauses execution and waits for human approval or rejection of the data.
This block pauses execution and waits for human approval or modification of the data.
When executed, this block creates a pending review entry and sets the node execution
status to REVIEW. The execution remains paused until a human user either approves
or rejects the data.
When executed, it creates a pending review entry and sets the node execution status
to REVIEW. The execution will remain paused until a human user either:
- Approves the data (with or without modifications)
- Rejects the data
**How it works:**
- The input data is presented to a human reviewer
- The reviewer can approve or reject (and optionally modify the data if editable)
- On approval: the data flows out through the `approved_data` output pin
- On rejection: the data flows out through the `rejected_data` output pin
**Important:** The output pins yield the actual data itself, NOT status strings.
The approval/rejection decision determines WHICH output pin fires, not the value.
You do NOT need to compare the output to "APPROVED" or "REJECTED" - simply connect
downstream blocks to the appropriate output pin for each case.
**Example usage:**
- Connect `approved_data` → next step in your workflow (data was approved)
- Connect `rejected_data` → error handling or notification (data was rejected)
This is useful for workflows that require human validation or intervention before
proceeding to the next steps.
"""
class Input(BlockSchemaInput):
data: Any = SchemaField(
description="The data to be reviewed by a human user. "
"This exact data will be passed through to either approved_data or "
"rejected_data output based on the reviewer's decision."
)
data: Any = SchemaField(description="The data to be reviewed by a human user")
name: str = SchemaField(
description="A descriptive name for what this data represents. "
"This helps the reviewer understand what they are reviewing.",
description="A descriptive name for what this data represents",
)
editable: bool = SchemaField(
description="Whether the human reviewer can edit the data before "
"approving or rejecting it",
description="Whether the human reviewer can edit the data",
default=True,
advanced=True,
)
class Output(BlockSchemaOutput):
approved_data: Any = SchemaField(
description="Outputs the input data when the reviewer APPROVES it. "
"The value is the actual data itself (not a status string like 'APPROVED'). "
"If the reviewer edited the data, this contains the modified version. "
"Connect downstream blocks here for the 'approved' workflow path."
description="The data when approved (may be modified by reviewer)"
)
rejected_data: Any = SchemaField(
description="Outputs the input data when the reviewer REJECTS it. "
"The value is the actual data itself (not a status string like 'REJECTED'). "
"If the reviewer edited the data, this contains the modified version. "
"Connect downstream blocks here for the 'rejected' workflow path."
description="The data when rejected (may be modified by reviewer)"
)
review_message: str = SchemaField(
description="Optional message provided by the reviewer explaining their "
"decision. Only outputs when the reviewer provides a message; "
"this pin does not fire if no message was given.",
default="",
description="Any message provided by the reviewer", default=""
)
def __init__(self):
super().__init__(
id="8b2a7b3c-6e9d-4a5f-8c1b-2e3f4a5b6c7d",
description="Pause execution for human review. Data flows through "
"approved_data or rejected_data output based on the reviewer's decision. "
"Outputs contain the actual data, not status strings.",
description="Pause execution and wait for human approval or modification of data",
categories={BlockCategory.BASIC},
input_schema=HumanInTheLoopBlock.Input,
output_schema=HumanInTheLoopBlock.Output,

View File

@@ -743,11 +743,6 @@ class GraphModel(Graph, GraphMeta):
# For invalid blocks, we still raise immediately as this is a structural issue
raise ValueError(f"Invalid block {node.block_id} for node #{node.id}")
if block.disabled:
raise ValueError(
f"Block {node.block_id} is disabled and cannot be used in graphs"
)
node_input_mask = (
nodes_input_masks.get(node.id, {}) if nodes_input_masks else {}
)

View File

@@ -213,9 +213,6 @@ async def execute_node(
block_name=node_block.name,
)
if node_block.disabled:
raise ValueError(f"Block {node_block.id} is disabled and cannot be executed")
# Sanity check: validate the execution input.
input_data, error = validate_exec(node, data.inputs, resolve_input=False)
if input_data is None:

View File

@@ -364,44 +364,6 @@ def _remove_orphan_tool_responses(
return result
def validate_and_remove_orphan_tool_responses(
messages: list[dict],
log_warning: bool = True,
) -> list[dict]:
"""
Validate tool_call/tool_response pairs and remove orphaned responses.
Scans messages in order, tracking all tool_call IDs. Any tool response
referencing an ID not seen in a preceding message is considered orphaned
and removed. This prevents API errors like Anthropic's "unexpected tool_use_id".
Args:
messages: List of messages to validate (OpenAI or Anthropic format)
log_warning: Whether to log a warning when orphans are found
Returns:
A new list with orphaned tool responses removed
"""
available_ids: set[str] = set()
orphan_ids: set[str] = set()
for msg in messages:
available_ids |= _extract_tool_call_ids_from_message(msg)
for resp_id in _extract_tool_response_ids_from_message(msg):
if resp_id not in available_ids:
orphan_ids.add(resp_id)
if not orphan_ids:
return messages
if log_warning:
logger.warning(
f"Removing {len(orphan_ids)} orphan tool response(s): {orphan_ids}"
)
return _remove_orphan_tool_responses(messages, orphan_ids)
def _ensure_tool_pairs_intact(
recent_messages: list[dict],
all_messages: list[dict],
@@ -761,13 +723,6 @@ async def compress_context(
# Filter out any None values that may have been introduced
final_msgs: list[dict] = [m for m in msgs if m is not None]
# ---- STEP 6: Final tool-pair validation ---------------------------------
# After all compression steps, verify that every tool response has a
# matching tool_call in a preceding assistant message. Remove orphans
# to prevent API errors (e.g., Anthropic's "unexpected tool_use_id").
final_msgs = validate_and_remove_orphan_tool_responses(final_msgs)
final_count = sum(_msg_tokens(m, enc) for m in final_msgs)
error = None
if final_count + reserve > target_tokens:

View File

@@ -46,14 +46,14 @@ pycares = ">=4.9.0,<5"
[[package]]
name = "aiofiles"
version = "25.1.0"
version = "24.1.0"
description = "File support for asyncio."
optional = false
python-versions = ">=3.9"
python-versions = ">=3.8"
groups = ["main"]
files = [
{file = "aiofiles-25.1.0-py3-none-any.whl", hash = "sha256:abe311e527c862958650f9438e859c1fa7568a141b22abcd015e120e86a85695"},
{file = "aiofiles-25.1.0.tar.gz", hash = "sha256:a8d728f0a29de45dc521f18f07297428d56992a742f0cd2701ba86e44d23d5b2"},
{file = "aiofiles-24.1.0-py3-none-any.whl", hash = "sha256:b4ec55f4195e3eb5d7abd1bf7e061763e864dd4954231fb8539a0ef8bb8260e5"},
{file = "aiofiles-24.1.0.tar.gz", hash = "sha256:22a075c9e5a3810f0c2e48f3008c94d68c65d763b9b03857924c99e57355166c"},
]
[[package]]
@@ -8440,4 +8440,4 @@ cffi = ["cffi (>=1.17,<2.0) ; platform_python_implementation != \"PyPy\" and pyt
[metadata]
lock-version = "2.1"
python-versions = ">=3.10,<3.14"
content-hash = "c06e96ad49388ba7a46786e9ea55ea2c1a57408e15613237b4bee40a592a12af"
content-hash = "fc135114e01de39c8adf70f6132045e7d44a19473c1279aee0978de65aad1655"

View File

@@ -76,7 +76,7 @@ yt-dlp = "2025.12.08"
zerobouncesdk = "^1.1.2"
# NOTE: please insert new dependencies in their alphabetical location
pytest-snapshot = "^0.9.0"
aiofiles = "^25.1.0"
aiofiles = "^24.1.0"
tiktoken = "^0.12.0"
aioclamd = "^1.0.0"
setuptools = "^80.9.0"

View File

@@ -63,17 +63,6 @@ const CustomEdge = ({
return (
<>
{/* Invisible interaction path - wider hit area for hover detection */}
<path
d={edgePath}
fill="none"
stroke="black"
strokeOpacity={0}
strokeWidth={20}
className="react-flow__edge-interaction cursor-pointer"
onMouseEnter={() => setIsHovered(true)}
onMouseLeave={() => setIsHovered(false)}
/>
<BaseEdge
path={edgePath}
markerEnd={markerEnd}

View File

@@ -1,11 +1,11 @@
"use client";
import { LoadingSpinner } from "@/components/atoms/LoadingSpinner/LoadingSpinner";
import { SidebarProvider } from "@/components/ui/sidebar";
import { ChatContainer } from "./components/ChatContainer/ChatContainer";
import { ChatSidebar } from "./components/ChatSidebar/ChatSidebar";
import { MobileDrawer } from "./components/MobileDrawer/MobileDrawer";
import { MobileHeader } from "./components/MobileHeader/MobileHeader";
import { ScaleLoader } from "./components/ScaleLoader/ScaleLoader";
import { useCopilotPage } from "./useCopilotPage";
export function CopilotPage() {
@@ -34,11 +34,7 @@ export function CopilotPage() {
} = useCopilotPage();
if (isUserLoading || !isLoggedIn) {
return (
<div className="fixed inset-0 z-50 flex items-center justify-center bg-[#f8f8f9]">
<ScaleLoader className="text-neutral-400" />
</div>
);
return <LoadingSpinner size="large" cover />;
}
return (

View File

@@ -10,9 +10,8 @@ import {
MessageResponse,
} from "@/components/ai-elements/message";
import { LoadingSpinner } from "@/components/atoms/LoadingSpinner/LoadingSpinner";
import { toast } from "@/components/molecules/Toast/use-toast";
import { ToolUIPart, UIDataTypes, UIMessage, UITools } from "ai";
import { useEffect, useRef, useState } from "react";
import { useEffect, useState } from "react";
import { CreateAgentTool } from "../../tools/CreateAgent/CreateAgent";
import { EditAgentTool } from "../../tools/EditAgent/EditAgent";
import { FindAgentsTool } from "../../tools/FindAgents/FindAgents";
@@ -122,7 +121,6 @@ export const ChatMessagesContainer = ({
isLoading,
}: ChatMessagesContainerProps) => {
const [thinkingPhrase, setThinkingPhrase] = useState(getRandomPhrase);
const lastToastTimeRef = useRef(0);
useEffect(() => {
if (status === "submitted") {
@@ -130,20 +128,6 @@ export const ChatMessagesContainer = ({
}
}, [status]);
// Show a toast when a new error occurs, debounced to avoid spam
useEffect(() => {
if (!error) return;
const now = Date.now();
if (now - lastToastTimeRef.current < 3_000) return;
lastToastTimeRef.current = now;
toast({
variant: "destructive",
title: "Something went wrong",
description:
"The assistant encountered an error. Please try sending your message again.",
});
}, [error]);
const lastMessage = messages[messages.length - 1];
const lastAssistantHasVisibleContent =
lastMessage?.role === "assistant" &&
@@ -159,10 +143,10 @@ export const ChatMessagesContainer = ({
return (
<Conversation className="min-h-0 flex-1">
<ConversationContent className="flex min-h-screen flex-1 flex-col gap-6 px-3 py-6">
<ConversationContent className="gap-6 px-3 py-6">
{isLoading && messages.length === 0 && (
<div className="flex min-h-full flex-1 items-center justify-center">
<LoadingSpinner className="text-neutral-600" />
<div className="flex flex-1 items-center justify-center">
<LoadingSpinner size="large" className="text-neutral-400" />
</div>
)}
{messages.map((message, messageIndex) => {
@@ -279,12 +263,8 @@ export const ChatMessagesContainer = ({
</Message>
)}
{error && (
<div className="rounded-lg bg-red-50 p-4 text-sm text-red-700">
<p className="font-medium">Something went wrong</p>
<p className="mt-1 text-red-600">
The assistant encountered an error. Please try sending your
message again.
</p>
<div className="rounded-lg bg-red-50 p-3 text-red-600">
Error: {error.message}
</div>
)}
</ConversationContent>

View File

@@ -121,8 +121,8 @@ export function ChatSidebar() {
className="mt-4 flex flex-col gap-1"
>
{isLoadingSessions ? (
<div className="flex min-h-[30rem] items-center justify-center py-4">
<LoadingSpinner size="small" className="text-neutral-600" />
<div className="flex items-center justify-center py-4">
<LoadingSpinner size="small" className="text-neutral-400" />
</div>
) : sessions.length === 0 ? (
<p className="py-4 text-center text-sm text-neutral-500">

View File

@@ -1,35 +0,0 @@
.loader {
width: 48px;
height: 48px;
display: inline-block;
position: relative;
}
.loader::after,
.loader::before {
content: "";
box-sizing: border-box;
width: 100%;
height: 100%;
border-radius: 50%;
background: currentColor;
position: absolute;
left: 0;
top: 0;
animation: animloader 2s linear infinite;
}
.loader::after {
animation-delay: 1s;
}
@keyframes animloader {
0% {
transform: scale(0);
opacity: 1;
}
100% {
transform: scale(1);
opacity: 0;
}
}

View File

@@ -1,16 +0,0 @@
import { cn } from "@/lib/utils";
import styles from "./ScaleLoader.module.css";
interface Props {
size?: number;
className?: string;
}
export function ScaleLoader({ size = 48, className }: Props) {
return (
<div
className={cn(styles.loader, className)}
style={{ width: size, height: size }}
/>
);
}

View File

@@ -30,7 +30,7 @@ export function ContentCard({
return (
<div
className={cn(
"min-w-0 rounded-lg bg-gradient-to-r from-purple-500/30 to-blue-500/30 p-[1px]",
"rounded-lg bg-gradient-to-r from-purple-500/30 to-blue-500/30 p-[1px]",
className,
)}
>

View File

@@ -4,6 +4,7 @@ import { WarningDiamondIcon } from "@phosphor-icons/react";
import type { ToolUIPart } from "ai";
import { useCopilotChatActions } from "../../components/CopilotChatActionsProvider/useCopilotChatActions";
import { MorphingTextAnimation } from "../../components/MorphingTextAnimation/MorphingTextAnimation";
import { OrbitLoader } from "../../components/OrbitLoader/OrbitLoader";
import { ProgressBar } from "../../components/ProgressBar/ProgressBar";
import {
ContentCardDescription,
@@ -48,7 +49,12 @@ interface Props {
part: CreateAgentToolPart;
}
function getAccordionMeta(output: CreateAgentToolOutput) {
function getAccordionMeta(output: CreateAgentToolOutput): {
icon: React.ReactNode;
title: React.ReactNode;
titleClassName?: string;
description?: string;
} {
const icon = <AccordionIcon />;
if (isAgentSavedOutput(output)) {
@@ -67,7 +73,6 @@ function getAccordionMeta(output: CreateAgentToolOutput) {
icon,
title: "Needs clarification",
description: `${questions.length} question${questions.length === 1 ? "" : "s"}`,
expanded: true,
};
}
if (
@@ -76,7 +81,7 @@ function getAccordionMeta(output: CreateAgentToolOutput) {
isOperationInProgressOutput(output)
) {
return {
icon,
icon: <OrbitLoader size={32} />,
title: "Creating agent, this may take a few minutes. Sit back and relax.",
};
}
@@ -92,23 +97,18 @@ function getAccordionMeta(output: CreateAgentToolOutput) {
export function CreateAgentTool({ part }: Props) {
const text = getAnimationText(part);
const { onSend } = useCopilotChatActions();
const isStreaming =
part.state === "input-streaming" || part.state === "input-available";
const output = getCreateAgentToolOutput(part);
const isError =
part.state === "output-error" || (!!output && isErrorOutput(output));
const isOperating =
!!output &&
(isOperationStartedOutput(output) ||
isOperationPendingOutput(output) ||
isOperationInProgressOutput(output));
const progress = useAsymptoticProgress(isOperating);
const hasExpandableContent =
part.state === "output-available" &&
!!output &&
@@ -149,7 +149,10 @@ export function CreateAgentTool({ part }: Props) {
</div>
{hasExpandableContent && output && (
<ToolAccordion {...getAccordionMeta(output)}>
<ToolAccordion
{...getAccordionMeta(output)}
defaultExpanded={isOperating || isClarificationNeededOutput(output)}
>
{isOperating && (
<ContentGrid>
<ProgressBar value={progress} className="max-w-[280px]" />

View File

@@ -146,7 +146,10 @@ export function EditAgentTool({ part }: Props) {
</div>
{hasExpandableContent && output && (
<ToolAccordion {...getAccordionMeta(output)}>
<ToolAccordion
{...getAccordionMeta(output)}
defaultExpanded={isOperating || isClarificationNeededOutput(output)}
>
{isOperating && (
<ContentGrid>
<ProgressBar value={progress} className="max-w-[280px]" />

View File

@@ -61,7 +61,14 @@ export function RunAgentTool({ part }: Props) {
</div>
{hasExpandableContent && output && (
<ToolAccordion {...getAccordionMeta(output)}>
<ToolAccordion
{...getAccordionMeta(output)}
defaultExpanded={
isRunAgentExecutionStartedOutput(output) ||
isRunAgentSetupRequirementsOutput(output) ||
isRunAgentAgentDetailsOutput(output)
}
>
{isRunAgentExecutionStartedOutput(output) && (
<ExecutionStartedCard output={output} />
)}

View File

@@ -10,7 +10,7 @@ import {
WarningDiamondIcon,
} from "@phosphor-icons/react";
import type { ToolUIPart } from "ai";
import { OrbitLoader } from "../../components/OrbitLoader/OrbitLoader";
import { SpinnerLoader } from "../../components/SpinnerLoader/SpinnerLoader";
export interface RunAgentInput {
username_agent_slug?: string;
@@ -171,7 +171,7 @@ export function ToolIcon({
);
}
if (isStreaming) {
return <OrbitLoader size={24} />;
return <SpinnerLoader size={40} className="text-neutral-700" />;
}
return <PlayIcon size={14} weight="regular" className="text-neutral-400" />;
}
@@ -203,7 +203,7 @@ export function getAccordionMeta(output: RunAgentToolOutput): {
? output.status.trim()
: "started";
return {
icon,
icon: <SpinnerLoader size={28} className="text-neutral-700" />,
title: output.graph_name,
description: `Status: ${statusText}`,
};

View File

@@ -55,7 +55,13 @@ export function RunBlockTool({ part }: Props) {
</div>
{hasExpandableContent && output && (
<ToolAccordion {...getAccordionMeta(output)}>
<ToolAccordion
{...getAccordionMeta(output)}
defaultExpanded={
isRunBlockBlockOutput(output) ||
isRunBlockSetupRequirementsOutput(output)
}
>
{isRunBlockBlockOutput(output) && <BlockOutputCard output={output} />}
{isRunBlockSetupRequirementsOutput(output) && (

View File

@@ -8,7 +8,7 @@ import {
WarningDiamondIcon,
} from "@phosphor-icons/react";
import type { ToolUIPart } from "ai";
import { OrbitLoader } from "../../components/OrbitLoader/OrbitLoader";
import { SpinnerLoader } from "../../components/SpinnerLoader/SpinnerLoader";
export interface RunBlockInput {
block_id?: string;
@@ -120,7 +120,7 @@ export function ToolIcon({
);
}
if (isStreaming) {
return <OrbitLoader size={24} />;
return <SpinnerLoader size={40} className="text-neutral-700" />;
}
return <PlayIcon size={14} weight="regular" className="text-neutral-400" />;
}
@@ -149,7 +149,7 @@ export function getAccordionMeta(output: RunBlockToolOutput): {
if (isRunBlockBlockOutput(output)) {
const keys = Object.keys(output.outputs ?? {});
return {
icon,
icon: <SpinnerLoader size={32} className="text-neutral-700" />,
title: output.block_name,
description:
keys.length > 0

View File

@@ -3,6 +3,7 @@ import { useBreakpoint } from "@/lib/hooks/useBreakpoint";
import { useSupabase } from "@/lib/supabase/hooks/useSupabase";
import { useChat } from "@ai-sdk/react";
import { DefaultChatTransport } from "ai";
import { useRouter } from "next/navigation";
import { useEffect, useMemo, useState } from "react";
import { useChatSession } from "./useChatSession";
@@ -10,6 +11,7 @@ export function useCopilotPage() {
const { isUserLoading, isLoggedIn } = useSupabase();
const [isDrawerOpen, setIsDrawerOpen] = useState(false);
const [pendingMessage, setPendingMessage] = useState<string | null>(null);
const router = useRouter();
const {
sessionId,
@@ -52,6 +54,10 @@ export function useCopilotPage() {
transport: transport ?? undefined,
});
useEffect(() => {
if (!isUserLoading && !isLoggedIn) router.replace("/login");
}, [isUserLoading, isLoggedIn]);
useEffect(() => {
if (!hydratedMessages || hydratedMessages.length === 0) return;
setMessages((prev) => {

View File

@@ -1,8 +1,11 @@
import { environment } from "@/services/environment";
import { getServerAuthToken } from "@/lib/autogpt-server-api/helpers";
import { NextRequest } from "next/server";
import { normalizeSSEStream, SSE_HEADERS } from "../../../sse-helpers";
/**
* SSE Proxy for chat streaming.
* Supports POST with context (page content + URL) in the request body.
*/
export async function POST(
request: NextRequest,
{ params }: { params: Promise<{ sessionId: string }> },
@@ -20,14 +23,17 @@ export async function POST(
);
}
// Get auth token from server-side session
const token = await getServerAuthToken();
// Build backend URL
const backendUrl = environment.getAGPTServerBaseUrl();
const streamUrl = new URL(
`/api/chat/sessions/${sessionId}/stream`,
backendUrl,
);
// Forward request to backend with auth header
const headers: Record<string, string> = {
"Content-Type": "application/json",
Accept: "text/event-stream",
@@ -57,15 +63,14 @@ export async function POST(
});
}
if (!response.body) {
return new Response(
JSON.stringify({ error: "Empty response from chat service" }),
{ status: 502, headers: { "Content-Type": "application/json" } },
);
}
return new Response(normalizeSSEStream(response.body), {
headers: SSE_HEADERS,
// Return the SSE stream directly
return new Response(response.body, {
headers: {
"Content-Type": "text/event-stream",
"Cache-Control": "no-cache, no-transform",
Connection: "keep-alive",
"X-Accel-Buffering": "no",
},
});
} catch (error) {
console.error("SSE proxy error:", error);
@@ -82,6 +87,13 @@ export async function POST(
}
}
/**
* Resume an active stream for a session.
*
* Called by the AI SDK's `useChat(resume: true)` on page load.
* Proxies to the backend which checks for an active stream and either
* replays it (200 + SSE) or returns 204 No Content.
*/
export async function GET(
_request: NextRequest,
{ params }: { params: Promise<{ sessionId: string }> },
@@ -112,6 +124,7 @@ export async function GET(
headers,
});
// 204 = no active stream to resume
if (response.status === 204) {
return new Response(null, { status: 204 });
}
@@ -124,13 +137,12 @@ export async function GET(
});
}
if (!response.body) {
return new Response(null, { status: 204 });
}
return new Response(normalizeSSEStream(response.body), {
return new Response(response.body, {
headers: {
...SSE_HEADERS,
"Content-Type": "text/event-stream",
"Cache-Control": "no-cache, no-transform",
Connection: "keep-alive",
"X-Accel-Buffering": "no",
"x-vercel-ai-ui-message-stream": "v1",
},
});

View File

@@ -1,72 +0,0 @@
export const SSE_HEADERS = {
"Content-Type": "text/event-stream",
"Cache-Control": "no-cache, no-transform",
Connection: "keep-alive",
"X-Accel-Buffering": "no",
} as const;
export function normalizeSSEStream(
input: ReadableStream<Uint8Array>,
): ReadableStream<Uint8Array> {
const decoder = new TextDecoder();
const encoder = new TextEncoder();
let buffer = "";
return input.pipeThrough(
new TransformStream<Uint8Array, Uint8Array>({
transform(chunk, controller) {
buffer += decoder.decode(chunk, { stream: true });
const parts = buffer.split("\n\n");
buffer = parts.pop() ?? "";
for (const part of parts) {
const normalized = normalizeSSEEvent(part);
controller.enqueue(encoder.encode(normalized + "\n\n"));
}
},
flush(controller) {
if (buffer.trim()) {
const normalized = normalizeSSEEvent(buffer);
controller.enqueue(encoder.encode(normalized + "\n\n"));
}
},
}),
);
}
function normalizeSSEEvent(event: string): string {
const lines = event.split("\n");
const dataLines: string[] = [];
const otherLines: string[] = [];
for (const line of lines) {
if (line.startsWith("data: ")) {
dataLines.push(line.slice(6));
} else {
otherLines.push(line);
}
}
if (dataLines.length === 0) return event;
const dataStr = dataLines.join("\n");
try {
const parsed = JSON.parse(dataStr) as Record<string, unknown>;
if (parsed.type === "error") {
const normalized = {
type: "error",
errorText:
typeof parsed.errorText === "string"
? parsed.errorText
: "An unexpected error occurred",
};
const newData = `data: ${JSON.stringify(normalized)}`;
return [...otherLines.filter((l) => l.length > 0), newData].join("\n");
}
} catch {
// Not valid JSON — pass through as-is
}
return event;
}

View File

@@ -1,8 +1,20 @@
import { environment } from "@/services/environment";
import { getServerAuthToken } from "@/lib/autogpt-server-api/helpers";
import { NextRequest } from "next/server";
import { normalizeSSEStream, SSE_HEADERS } from "../../../sse-helpers";
/**
* SSE Proxy for task stream reconnection.
*
* This endpoint allows clients to reconnect to an ongoing or recently completed
* background task's stream. It replays missed messages from Redis Streams and
* subscribes to live updates if the task is still running.
*
* Client contract:
* 1. When receiving an operation_started event, store the task_id
* 2. To reconnect: GET /api/chat/tasks/{taskId}/stream?last_message_id={idx}
* 3. Messages are replayed from the last_message_id position
* 4. Stream ends when "finish" event is received
*/
export async function GET(
request: NextRequest,
{ params }: { params: Promise<{ taskId: string }> },
@@ -12,12 +24,15 @@ export async function GET(
const lastMessageId = searchParams.get("last_message_id") || "0-0";
try {
// Get auth token from server-side session
const token = await getServerAuthToken();
// Build backend URL
const backendUrl = environment.getAGPTServerBaseUrl();
const streamUrl = new URL(`/api/chat/tasks/${taskId}/stream`, backendUrl);
streamUrl.searchParams.set("last_message_id", lastMessageId);
// Forward request to backend with auth header
const headers: Record<string, string> = {
Accept: "text/event-stream",
"Cache-Control": "no-cache",
@@ -41,12 +56,14 @@ export async function GET(
});
}
if (!response.body) {
return new Response(null, { status: 204 });
}
return new Response(normalizeSSEStream(response.body), {
headers: SSE_HEADERS,
// Return the SSE stream directly
return new Response(response.body, {
headers: {
"Content-Type": "text/event-stream",
"Cache-Control": "no-cache, no-transform",
Connection: "keep-alive",
"X-Accel-Buffering": "no",
},
});
} catch (error) {
console.error("Task stream proxy error:", error);

View File

@@ -6,7 +6,6 @@ import { SupabaseClient } from "@supabase/supabase-js";
export const PROTECTED_PAGES = [
"/auth/authorize",
"/auth/integrations",
"/copilot",
"/monitor",
"/build",
"/onboarding",

View File

@@ -61,7 +61,7 @@ Below is a comprehensive list of all available blocks, categorized by their prim
| [Get List Item](block-integrations/basic.md#get-list-item) | Returns the element at the given index |
| [Get Store Agent Details](block-integrations/system/store_operations.md#get-store-agent-details) | Get detailed information about an agent from the store |
| [Get Weather Information](block-integrations/basic.md#get-weather-information) | Retrieves weather information for a specified location using OpenWeatherMap API |
| [Human In The Loop](block-integrations/basic.md#human-in-the-loop) | Pause execution for human review |
| [Human In The Loop](block-integrations/basic.md#human-in-the-loop) | Pause execution and wait for human approval or modification of data |
| [List Is Empty](block-integrations/basic.md#list-is-empty) | Checks if a list is empty |
| [List Library Agents](block-integrations/system/library_operations.md#list-library-agents) | List all agents in your personal library |
| [Note](block-integrations/basic.md#note) | A visual annotation block that displays a sticky note in the workflow editor for documentation and organization purposes |

View File

@@ -975,7 +975,7 @@ A travel planning application could use this block to provide users with current
## Human In The Loop
### What it is
Pause execution for human review. Data flows through approved_data or rejected_data output based on the reviewer's decision. Outputs contain the actual data, not status strings.
Pause execution and wait for human approval or modification of data
### How it works
<!-- MANUAL: how_it_works -->
@@ -988,18 +988,18 @@ This enables human oversight at critical points in automated workflows, ensuring
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| data | The data to be reviewed by a human user. This exact data will be passed through to either approved_data or rejected_data output based on the reviewer's decision. | Data | Yes |
| name | A descriptive name for what this data represents. This helps the reviewer understand what they are reviewing. | str | Yes |
| editable | Whether the human reviewer can edit the data before approving or rejecting it | bool | No |
| data | The data to be reviewed by a human user | Data | Yes |
| name | A descriptive name for what this data represents | str | Yes |
| editable | Whether the human reviewer can edit the data | bool | No |
### Outputs
| Output | Description | Type |
|--------|-------------|------|
| error | Error message if the operation failed | str |
| approved_data | Outputs the input data when the reviewer APPROVES it. The value is the actual data itself (not a status string like 'APPROVED'). If the reviewer edited the data, this contains the modified version. Connect downstream blocks here for the 'approved' workflow path. | Approved Data |
| rejected_data | Outputs the input data when the reviewer REJECTS it. The value is the actual data itself (not a status string like 'REJECTED'). If the reviewer edited the data, this contains the modified version. Connect downstream blocks here for the 'rejected' workflow path. | Rejected Data |
| review_message | Optional message provided by the reviewer explaining their decision. Only outputs when the reviewer provides a message; this pin does not fire if no message was given. | str |
| approved_data | The data when approved (may be modified by reviewer) | Approved Data |
| rejected_data | The data when rejected (may be modified by reviewer) | Rejected Data |
| review_message | Any message provided by the reviewer | str |
### Possible use case
<!-- MANUAL: use_case -->