Compare commits

..

2 Commits

Author SHA1 Message Date
Zamil Majdy
c12894698e fix(platform/copilot): add SuggestedGoalResponse to ToolResponseUnion for OpenAPI schema
Adds SuggestedGoalResponse to the ToolResponseUnion in routes.py so it is
included in the generated OpenAPI schema. Regenerates openapi.json from the
live backend spec.
2026-02-17 12:22:16 +04:00
Zamil Majdy
2f37aeec12 feat(platform/copilot): add SuggestedGoalResponse for vague/unachievable goals
- Add SUGGESTED_GOAL response type and SuggestedGoalResponse model to backend
- Return SuggestedGoalResponse instead of ErrorResponse for vague/unachievable goals
- Update system prompt with guidance for suggested_goal and clarifying_questions feedback loops
- Add SuggestedGoalCard frontend component with amber styling and "Use this goal" button
- Add error recovery buttons ("Try again", "Simplify goal") to error output
- Update openapi.json and frontend helpers/type guards for the new response type
- Add create_agent_test.py covering all decomposition result types
2026-02-17 11:57:36 +04:00
59 changed files with 3035 additions and 1339 deletions

View File

@@ -41,18 +41,13 @@ jobs:
ports:
- 6379:6379
rabbitmq:
image: rabbitmq:4.1.4
image: rabbitmq:3.12-management
ports:
- 5672:5672
- 15672:15672
env:
RABBITMQ_DEFAULT_USER: ${{ env.RABBITMQ_DEFAULT_USER }}
RABBITMQ_DEFAULT_PASS: ${{ env.RABBITMQ_DEFAULT_PASS }}
options: >-
--health-cmd "rabbitmq-diagnostics -q ping"
--health-interval 30s
--health-timeout 10s
--health-retries 5
--health-start-period 10s
clamav:
image: clamav/clamav-debian:latest
ports:

View File

@@ -6,16 +6,10 @@ on:
paths:
- ".github/workflows/platform-frontend-ci.yml"
- "autogpt_platform/frontend/**"
- "autogpt_platform/backend/Dockerfile"
- "autogpt_platform/docker-compose.yml"
- "autogpt_platform/docker-compose.platform.yml"
pull_request:
paths:
- ".github/workflows/platform-frontend-ci.yml"
- "autogpt_platform/frontend/**"
- "autogpt_platform/backend/Dockerfile"
- "autogpt_platform/docker-compose.yml"
- "autogpt_platform/docker-compose.platform.yml"
merge_group:
workflow_dispatch:

View File

@@ -53,6 +53,63 @@ COPY autogpt_platform/backend/backend/data/partial_types.py ./backend/data/parti
COPY autogpt_platform/backend/gen_prisma_types_stub.py ./
RUN poetry run prisma generate && poetry run gen-prisma-stub
# ============================== BACKEND SERVER ============================== #
FROM debian:13-slim AS server
WORKDIR /app
ENV POETRY_HOME=/opt/poetry \
POETRY_NO_INTERACTION=1 \
POETRY_VIRTUALENVS_CREATE=true \
POETRY_VIRTUALENVS_IN_PROJECT=true \
DEBIAN_FRONTEND=noninteractive
ENV PATH=/opt/poetry/bin:$PATH
# Install Python, FFmpeg, ImageMagick, and CLI tools for agent use.
# bubblewrap provides OS-level sandbox (whitelist-only FS + no network)
# for the bash_exec MCP tool.
# Using --no-install-recommends saves ~650MB by skipping unnecessary deps like llvm, mesa, etc.
RUN apt-get update && apt-get install -y --no-install-recommends \
python3.13 \
python3-pip \
ffmpeg \
imagemagick \
jq \
ripgrep \
tree \
bubblewrap \
&& rm -rf /var/lib/apt/lists/*
COPY --from=builder /usr/local/lib/python3* /usr/local/lib/python3*
COPY --from=builder /usr/local/bin/poetry /usr/local/bin/poetry
# Copy Node.js installation for Prisma
COPY --from=builder /usr/bin/node /usr/bin/node
COPY --from=builder /usr/lib/node_modules /usr/lib/node_modules
COPY --from=builder /usr/bin/npm /usr/bin/npm
COPY --from=builder /usr/bin/npx /usr/bin/npx
COPY --from=builder /root/.cache/prisma-python/binaries /root/.cache/prisma-python/binaries
WORKDIR /app/autogpt_platform/backend
# Copy only the .venv from builder (not the entire /app directory)
# The .venv includes the generated Prisma client
COPY --from=builder /app/autogpt_platform/backend/.venv ./.venv
ENV PATH="/app/autogpt_platform/backend/.venv/bin:$PATH"
# Copy dependency files + autogpt_libs (path dependency)
COPY autogpt_platform/autogpt_libs /app/autogpt_platform/autogpt_libs
COPY autogpt_platform/backend/poetry.lock autogpt_platform/backend/pyproject.toml ./
# Copy backend code + docs (for Copilot docs search)
COPY autogpt_platform/backend ./
COPY docs /app/docs
RUN poetry install --no-ansi --only-root
ENV PORT=8000
CMD ["poetry", "run", "rest"]
# =============================== DB MIGRATOR =============================== #
# Lightweight migrate stage - only needs Prisma CLI, not full Python environment
@@ -84,59 +141,3 @@ COPY autogpt_platform/backend/schema.prisma ./
COPY autogpt_platform/backend/backend/data/partial_types.py ./backend/data/partial_types.py
COPY autogpt_platform/backend/gen_prisma_types_stub.py ./
COPY autogpt_platform/backend/migrations ./migrations
# ============================== BACKEND SERVER ============================== #
FROM debian:13-slim AS server
WORKDIR /app
ENV DEBIAN_FRONTEND=noninteractive
# Install Python, FFmpeg, ImageMagick, and CLI tools for agent use.
# bubblewrap provides OS-level sandbox (whitelist-only FS + no network)
# for the bash_exec MCP tool.
# Using --no-install-recommends saves ~650MB by skipping unnecessary deps like llvm, mesa, etc.
RUN apt-get update && apt-get install -y --no-install-recommends \
python3.13 \
python3-pip \
ffmpeg \
imagemagick \
jq \
ripgrep \
tree \
bubblewrap \
&& rm -rf /var/lib/apt/lists/*
# Copy poetry (build-time only, for `poetry install --only-root` to create entry points)
COPY --from=builder /usr/local/lib/python3* /usr/local/lib/python3*
COPY --from=builder /usr/local/bin/poetry /usr/local/bin/poetry
# Copy Node.js installation for Prisma
COPY --from=builder /usr/bin/node /usr/bin/node
COPY --from=builder /usr/lib/node_modules /usr/lib/node_modules
COPY --from=builder /usr/bin/npm /usr/bin/npm
COPY --from=builder /usr/bin/npx /usr/bin/npx
COPY --from=builder /root/.cache/prisma-python/binaries /root/.cache/prisma-python/binaries
WORKDIR /app/autogpt_platform/backend
# Copy only the .venv from builder (not the entire /app directory)
# The .venv includes the generated Prisma client
COPY --from=builder /app/autogpt_platform/backend/.venv ./.venv
ENV PATH="/app/autogpt_platform/backend/.venv/bin:$PATH"
# Copy dependency files + autogpt_libs (path dependency)
COPY autogpt_platform/autogpt_libs /app/autogpt_platform/autogpt_libs
COPY autogpt_platform/backend/poetry.lock autogpt_platform/backend/pyproject.toml ./
# Copy backend code + docs (for Copilot docs search)
COPY autogpt_platform/backend ./
COPY docs /app/docs
# Install the project package to create entry point scripts in .venv/bin/
# (e.g., rest, executor, ws, db, scheduler, notification - see [tool.poetry.scripts])
RUN POETRY_VIRTUALENVS_CREATE=true POETRY_VIRTUALENVS_IN_PROJECT=true \
poetry install --no-ansi --only-root
ENV PORT=8000
CMD ["rest"]

View File

@@ -23,7 +23,6 @@ from .model import (
ChatSession,
append_and_save_message,
create_chat_session,
delete_chat_session,
get_chat_session,
get_user_sessions,
)
@@ -50,6 +49,7 @@ from .tools.models import (
OperationPendingResponse,
OperationStartedResponse,
SetupRequirementsResponse,
SuggestedGoalResponse,
UnderstandingUpdatedResponse,
)
from .tracking import track_user_message
@@ -212,43 +212,6 @@ async def create_session(
)
@router.delete(
"/sessions/{session_id}",
dependencies=[Security(auth.requires_user)],
status_code=204,
responses={404: {"description": "Session not found or access denied"}},
)
async def delete_session(
session_id: str,
user_id: Annotated[str, Security(auth.get_user_id)],
) -> Response:
"""
Delete a chat session.
Permanently removes a chat session and all its messages.
Only the owner can delete their sessions.
Args:
session_id: The session ID to delete.
user_id: The authenticated user's ID.
Returns:
204 No Content on success.
Raises:
HTTPException: 404 if session not found or not owned by user.
"""
deleted = await delete_chat_session(session_id, user_id)
if not deleted:
raise HTTPException(
status_code=404,
detail=f"Session {session_id} not found or access denied",
)
return Response(status_code=204)
@router.get(
"/sessions/{session_id}",
)
@@ -1089,6 +1052,7 @@ ToolResponseUnion = (
| AgentPreviewResponse
| AgentSavedResponse
| ClarificationNeededResponse
| SuggestedGoalResponse
| BlockListResponse
| BlockDetailsResponse
| BlockOutputResponse

View File

@@ -120,6 +120,8 @@ Adapt flexibly to the conversation context. Not every interaction requires all s
- Find reusable components with `find_block`
- Create custom solutions with `create_agent` if nothing suitable exists
- Modify existing library agents with `edit_agent`
- **When `create_agent` returns `suggested_goal`**: Present the suggestion to the user and ask "Would you like me to proceed with this refined goal?" If they accept, call `create_agent` again with the suggested goal.
- **When `create_agent` returns `clarifying_questions`**: After the user answers, call `create_agent` again with the original description AND the answers in the `context` parameter.
5. **Execute**: Run automations immediately, schedule them, or set up webhooks using `run_agent`. Test specific components with `run_block`.
@@ -166,6 +168,11 @@ Adapt flexibly to the conversation context. Not every interaction requires all s
- Use `add_understanding` to capture valuable business context
- When tool calls fail, try alternative approaches
**Handle Feedback Loops:**
- When a tool returns a suggested alternative (like a refined goal), present it clearly and ask the user for confirmation before proceeding
- When clarifying questions are answered, immediately re-call the tool with the accumulated context
- Don't ask redundant questions if the user has already provided context in the conversation
## CRITICAL REMINDER
You are NOT a chatbot. You are NOT documentation. You are a partner who helps busy business owners get value quickly by showing proof through working automations. Bias toward action over explanation."""

View File

@@ -22,6 +22,7 @@ from .models import (
ClarificationNeededResponse,
ClarifyingQuestion,
ErrorResponse,
SuggestedGoalResponse,
ToolResponseBase,
)
@@ -186,26 +187,25 @@ class CreateAgentTool(BaseTool):
if decomposition_result.get("type") == "unachievable_goal":
suggested = decomposition_result.get("suggested_goal", "")
reason = decomposition_result.get("reason", "")
return ErrorResponse(
return SuggestedGoalResponse(
message=(
f"This goal cannot be accomplished with the available blocks. "
f"{reason} "
f"Suggestion: {suggested}"
f"This goal cannot be accomplished with the available blocks. {reason}"
),
error="unachievable_goal",
details={"suggested_goal": suggested, "reason": reason},
suggested_goal=suggested,
reason=reason,
original_goal=description,
goal_type="unachievable",
session_id=session_id,
)
if decomposition_result.get("type") == "vague_goal":
suggested = decomposition_result.get("suggested_goal", "")
return ErrorResponse(
message=(
f"The goal is too vague to create a specific workflow. "
f"Suggestion: {suggested}"
),
error="vague_goal",
details={"suggested_goal": suggested},
return SuggestedGoalResponse(
message="The goal is too vague to create a specific workflow.",
suggested_goal=suggested,
reason="The goal needs more specific details",
original_goal=description,
goal_type="vague",
session_id=session_id,
)

View File

@@ -0,0 +1,142 @@
"""Tests for CreateAgentTool response types."""
from unittest.mock import AsyncMock, patch
import pytest
from backend.api.features.chat.tools.create_agent import CreateAgentTool
from backend.api.features.chat.tools.models import (
ClarificationNeededResponse,
ErrorResponse,
SuggestedGoalResponse,
)
from ._test_data import make_session
_TEST_USER_ID = "test-user-create-agent"
@pytest.fixture
def tool():
return CreateAgentTool()
@pytest.fixture
def session():
return make_session(_TEST_USER_ID)
@pytest.mark.asyncio
async def test_missing_description_returns_error(tool, session):
"""Missing description returns ErrorResponse."""
result = await tool._execute(user_id=_TEST_USER_ID, session=session, description="")
assert isinstance(result, ErrorResponse)
assert result.error == "Missing description parameter"
@pytest.mark.asyncio
async def test_vague_goal_returns_suggested_goal_response(tool, session):
"""vague_goal decomposition result returns SuggestedGoalResponse, not ErrorResponse."""
vague_result = {
"type": "vague_goal",
"suggested_goal": "Monitor Twitter mentions for a specific keyword and send a daily digest email",
}
with (
patch(
"backend.api.features.chat.tools.create_agent.get_all_relevant_agents_for_generation",
new_callable=AsyncMock,
return_value=[],
),
patch(
"backend.api.features.chat.tools.create_agent.decompose_goal",
new_callable=AsyncMock,
return_value=vague_result,
),
):
result = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
description="monitor social media",
)
assert isinstance(result, SuggestedGoalResponse)
assert result.goal_type == "vague"
assert result.suggested_goal == vague_result["suggested_goal"]
assert result.original_goal == "monitor social media"
assert result.reason == "The goal needs more specific details"
assert not isinstance(result, ErrorResponse)
@pytest.mark.asyncio
async def test_unachievable_goal_returns_suggested_goal_response(tool, session):
"""unachievable_goal decomposition result returns SuggestedGoalResponse, not ErrorResponse."""
unachievable_result = {
"type": "unachievable_goal",
"suggested_goal": "Summarize the latest news articles on a topic and send them by email",
"reason": "There are no blocks for mind-reading.",
}
with (
patch(
"backend.api.features.chat.tools.create_agent.get_all_relevant_agents_for_generation",
new_callable=AsyncMock,
return_value=[],
),
patch(
"backend.api.features.chat.tools.create_agent.decompose_goal",
new_callable=AsyncMock,
return_value=unachievable_result,
),
):
result = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
description="read my mind",
)
assert isinstance(result, SuggestedGoalResponse)
assert result.goal_type == "unachievable"
assert result.suggested_goal == unachievable_result["suggested_goal"]
assert result.original_goal == "read my mind"
assert result.reason == unachievable_result["reason"]
assert not isinstance(result, ErrorResponse)
@pytest.mark.asyncio
async def test_clarifying_questions_returns_clarification_needed_response(
tool, session
):
"""clarifying_questions decomposition result returns ClarificationNeededResponse."""
clarifying_result = {
"type": "clarifying_questions",
"questions": [
{
"question": "What platform should be monitored?",
"keyword": "platform",
"example": "Twitter, Reddit",
}
],
}
with (
patch(
"backend.api.features.chat.tools.create_agent.get_all_relevant_agents_for_generation",
new_callable=AsyncMock,
return_value=[],
),
patch(
"backend.api.features.chat.tools.create_agent.decompose_goal",
new_callable=AsyncMock,
return_value=clarifying_result,
),
):
result = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
description="monitor social media and alert me",
)
assert isinstance(result, ClarificationNeededResponse)
assert len(result.questions) == 1
assert result.questions[0].keyword == "platform"

View File

@@ -50,6 +50,8 @@ class ResponseType(str, Enum):
# Feature request types
FEATURE_REQUEST_SEARCH = "feature_request_search"
FEATURE_REQUEST_CREATED = "feature_request_created"
# Goal refinement
SUGGESTED_GOAL = "suggested_goal"
# Base response model
@@ -296,6 +298,22 @@ class ClarificationNeededResponse(ToolResponseBase):
questions: list[ClarifyingQuestion] = Field(default_factory=list)
class SuggestedGoalResponse(ToolResponseBase):
"""Response when the goal needs refinement with a suggested alternative."""
type: ResponseType = ResponseType.SUGGESTED_GOAL
suggested_goal: str = Field(description="The suggested alternative goal")
reason: str = Field(
default="", description="Why the original goal needs refinement"
)
original_goal: str = Field(
default="", description="The user's original goal for context"
)
goal_type: str = Field(
default="vague", description="Type: 'vague' or 'unachievable'"
)
# Documentation search models
class DocSearchResult(BaseModel):
"""A single documentation search result."""

View File

@@ -106,6 +106,8 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
GPT41_MINI = "gpt-4.1-mini-2025-04-14"
GPT4O_MINI = "gpt-4o-mini"
GPT4O = "gpt-4o"
GPT4_TURBO = "gpt-4-turbo"
GPT3_5_TURBO = "gpt-3.5-turbo"
# Anthropic models
CLAUDE_4_1_OPUS = "claude-opus-4-1-20250805"
CLAUDE_4_OPUS = "claude-opus-4-20250514"
@@ -253,6 +255,12 @@ MODEL_METADATA = {
LlmModel.GPT4O: ModelMetadata(
"openai", 128000, 16384, "GPT-4o", "OpenAI", "OpenAI", 2
), # gpt-4o-2024-08-06
LlmModel.GPT4_TURBO: ModelMetadata(
"openai", 128000, 4096, "GPT-4 Turbo", "OpenAI", "OpenAI", 3
), # gpt-4-turbo-2024-04-09
LlmModel.GPT3_5_TURBO: ModelMetadata(
"openai", 16385, 4096, "GPT-3.5 Turbo", "OpenAI", "OpenAI", 1
), # gpt-3.5-turbo-0125
# https://docs.anthropic.com/en/docs/about-claude/models
LlmModel.CLAUDE_4_1_OPUS: ModelMetadata(
"anthropic", 200000, 32000, "Claude Opus 4.1", "Anthropic", "Anthropic", 3

View File

@@ -75,6 +75,8 @@ MODEL_COST: dict[LlmModel, int] = {
LlmModel.GPT41_MINI: 1,
LlmModel.GPT4O_MINI: 1,
LlmModel.GPT4O: 3,
LlmModel.GPT4_TURBO: 10,
LlmModel.GPT3_5_TURBO: 1,
LlmModel.CLAUDE_4_1_OPUS: 21,
LlmModel.CLAUDE_4_OPUS: 21,
LlmModel.CLAUDE_4_SONNET: 5,

View File

@@ -79,7 +79,7 @@ async def test_block_credit_usage(server: SpinTestServer):
node_exec_id="test_node_exec",
block_id=AITextGeneratorBlock().id,
inputs={
"model": "gpt-4o",
"model": "gpt-4-turbo",
"credentials": {
"id": openai_credentials.id,
"provider": openai_credentials.provider,
@@ -100,7 +100,7 @@ async def test_block_credit_usage(server: SpinTestServer):
graph_exec_id="test_graph_exec",
node_exec_id="test_node_exec",
block_id=AITextGeneratorBlock().id,
inputs={"model": "gpt-4o", "api_key": "owned_api_key"},
inputs={"model": "gpt-4-turbo", "api_key": "owned_api_key"},
execution_context=ExecutionContext(user_timezone="UTC"),
),
)

View File

@@ -53,7 +53,7 @@ services:
rabbitmq:
<<: *agpt-services
image: rabbitmq:4.1.4
image: rabbitmq:management
container_name: rabbitmq
healthcheck:
test: rabbitmq-diagnostics -q ping
@@ -66,6 +66,7 @@ services:
- RABBITMQ_DEFAULT_PASS=k0VMxyIJF9S35f3x2uaw5IWAl6Y536O7
ports:
- "5672:5672"
- "15672:15672"
clamav:
image: clamav/clamav-debian:latest
ports:

View File

@@ -1,42 +0,0 @@
-- Migrate deprecated OpenAI GPT-4-turbo and GPT-3.5-turbo models
-- This updates all AgentNode blocks that use deprecated models
-- OpenAI is retiring these models:
-- - gpt-4-turbo: March 26, 2026 -> migrate to gpt-4o
-- - gpt-3.5-turbo: September 28, 2026 -> migrate to gpt-4o-mini
-- Update gpt-4-turbo to gpt-4o (staying in same capability tier)
UPDATE "AgentNode"
SET "constantInput" = JSONB_SET(
"constantInput"::jsonb,
'{model}',
'"gpt-4o"'::jsonb
)
WHERE "constantInput"::jsonb->>'model' = 'gpt-4-turbo';
-- Update gpt-3.5-turbo to gpt-4o-mini (appropriate replacement for lightweight model)
UPDATE "AgentNode"
SET "constantInput" = JSONB_SET(
"constantInput"::jsonb,
'{model}',
'"gpt-4o-mini"'::jsonb
)
WHERE "constantInput"::jsonb->>'model' = 'gpt-3.5-turbo';
-- Update AgentPreset input overrides (stored in AgentNodeExecutionInputOutput)
UPDATE "AgentNodeExecutionInputOutput"
SET "data" = JSONB_SET(
"data"::jsonb,
'{model}',
'"gpt-4o"'::jsonb
)
WHERE "agentPresetId" IS NOT NULL
AND "data"::jsonb->>'model' = 'gpt-4-turbo';
UPDATE "AgentNodeExecutionInputOutput"
SET "data" = JSONB_SET(
"data"::jsonb,
'{model}',
'"gpt-4o-mini"'::jsonb
)
WHERE "agentPresetId" IS NOT NULL
AND "data"::jsonb->>'model' = 'gpt-3.5-turbo';

View File

@@ -75,7 +75,7 @@ services:
timeout: 5s
retries: 5
rabbitmq:
image: rabbitmq:4.1.4
image: rabbitmq:management
container_name: rabbitmq
healthcheck:
test: rabbitmq-diagnostics -q ping
@@ -88,13 +88,14 @@ services:
<<: *backend-env
ports:
- "5672:5672"
- "15672:15672"
rest_server:
build:
context: ../
dockerfile: autogpt_platform/backend/Dockerfile
target: server
command: ["rest"] # points to entry in [tool.poetry.scripts] in pyproject.toml
command: ["python", "-m", "backend.rest"]
develop:
watch:
- path: ./
@@ -127,7 +128,7 @@ services:
context: ../
dockerfile: autogpt_platform/backend/Dockerfile
target: server
command: ["executor"] # points to entry in [tool.poetry.scripts] in pyproject.toml
command: ["python", "-m", "backend.exec"]
develop:
watch:
- path: ./
@@ -162,7 +163,7 @@ services:
context: ../
dockerfile: autogpt_platform/backend/Dockerfile
target: server
command: ["ws"] # points to entry in [tool.poetry.scripts] in pyproject.toml
command: ["python", "-m", "backend.ws"]
develop:
watch:
- path: ./
@@ -195,7 +196,7 @@ services:
context: ../
dockerfile: autogpt_platform/backend/Dockerfile
target: server
command: ["db"] # points to entry in [tool.poetry.scripts] in pyproject.toml
command: ["python", "-m", "backend.db"]
develop:
watch:
- path: ./
@@ -224,7 +225,7 @@ services:
context: ../
dockerfile: autogpt_platform/backend/Dockerfile
target: server
command: ["scheduler"] # points to entry in [tool.poetry.scripts] in pyproject.toml
command: ["python", "-m", "backend.scheduler"]
develop:
watch:
- path: ./
@@ -272,7 +273,7 @@ services:
context: ../
dockerfile: autogpt_platform/backend/Dockerfile
target: server
command: ["notification"] # points to entry in [tool.poetry.scripts] in pyproject.toml
command: ["python", "-m", "backend.notification"]
develop:
watch:
- path: ./

View File

@@ -4,7 +4,7 @@ import {
} from "@/app/api/__generated__/endpoints/graphs/graphs";
import { useToast } from "@/components/molecules/Toast/use-toast";
import { parseAsInteger, parseAsString, useQueryStates } from "nuqs";
import { GraphExecutionMeta } from "@/app/api/__generated__/models/graphExecutionMeta";
import { GraphExecutionMeta } from "@/app/(platform)/library/agents/[id]/components/OldAgentLibraryView/use-agent-runs";
import { useGraphStore } from "@/app/(platform)/build/stores/graphStore";
import { useShallow } from "zustand/react/shallow";
import { useEffect, useState } from "react";

View File

@@ -1,6 +1,6 @@
import { useCallback } from "react";
import { AgentRunDraftView } from "@/app/(platform)/build/components/legacy-builder/agent-run-draft-view";
import { AgentRunDraftView } from "@/app/(platform)/library/agents/[id]/components/OldAgentLibraryView/components/agent-run-draft-view";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import type {
CredentialsMetaInput,

View File

@@ -18,7 +18,7 @@ import {
import { useToast } from "@/components/molecules/Toast/use-toast";
import { useQueryClient } from "@tanstack/react-query";
import { getGetV2ListMySubmissionsQueryKey } from "@/app/api/__generated__/endpoints/store/store";
import { CronExpressionDialog } from "@/components/contextual/CronScheduler/cron-scheduler-dialog";
import { CronExpressionDialog } from "@/app/(platform)/library/agents/[id]/components/OldAgentLibraryView/components/cron-scheduler-dialog";
import { humanizeCronExpression } from "@/lib/cron-expression-utils";
import { CalendarClockIcon } from "lucide-react";

View File

@@ -1,8 +1,6 @@
"use client";
import { SidebarProvider } from "@/components/ui/sidebar";
// TODO: Replace with modern Dialog component when available
import DeleteConfirmDialog from "@/components/__legacy__/delete-confirm-dialog";
import { ChatContainer } from "./components/ChatContainer/ChatContainer";
import { ChatSidebar } from "./components/ChatSidebar/ChatSidebar";
import { MobileDrawer } from "./components/MobileDrawer/MobileDrawer";
@@ -33,12 +31,6 @@ export function CopilotPage() {
handleDrawerOpenChange,
handleSelectSession,
handleNewChat,
// Delete functionality
sessionToDelete,
isDeleting,
handleDeleteClick,
handleConfirmDelete,
handleCancelDelete,
} = useCopilotPage();
if (isUserLoading || !isLoggedIn) {
@@ -56,19 +48,7 @@ export function CopilotPage() {
>
{!isMobile && <ChatSidebar />}
<div className="relative flex h-full w-full flex-col overflow-hidden bg-[#f8f8f9] px-0">
{isMobile && (
<MobileHeader
onOpenDrawer={handleOpenDrawer}
showDelete={!!sessionId}
isDeleting={isDeleting}
onDelete={() => {
const session = sessions.find((s) => s.id === sessionId);
if (session) {
handleDeleteClick(session.id, session.title);
}
}}
/>
)}
{isMobile && <MobileHeader onOpenDrawer={handleOpenDrawer} />}
<div className="flex-1 overflow-hidden">
<ChatContainer
messages={messages}
@@ -95,16 +75,6 @@ export function CopilotPage() {
onOpenChange={handleDrawerOpenChange}
/>
)}
{/* Delete confirmation dialog - rendered at top level for proper z-index on mobile */}
{isMobile && (
<DeleteConfirmDialog
entityType="chat"
entityName={sessionToDelete?.title || "Untitled chat"}
open={!!sessionToDelete}
onOpenChange={(open) => !open && handleCancelDelete()}
onDoDelete={handleConfirmDelete}
/>
)}
</SidebarProvider>
);
}

View File

@@ -1,15 +1,8 @@
"use client";
import {
getGetV2ListSessionsQueryKey,
useDeleteV2DeleteSession,
useGetV2ListSessions,
} from "@/app/api/__generated__/endpoints/chat/chat";
import { useGetV2ListSessions } from "@/app/api/__generated__/endpoints/chat/chat";
import { Button } from "@/components/atoms/Button/Button";
import { LoadingSpinner } from "@/components/atoms/LoadingSpinner/LoadingSpinner";
import { Text } from "@/components/atoms/Text/Text";
import { toast } from "@/components/molecules/Toast/use-toast";
// TODO: Replace with modern Dialog component when available
import DeleteConfirmDialog from "@/components/__legacy__/delete-confirm-dialog";
import {
Sidebar,
SidebarContent,
@@ -19,52 +12,18 @@ import {
useSidebar,
} from "@/components/ui/sidebar";
import { cn } from "@/lib/utils";
import { PlusCircleIcon, PlusIcon, TrashIcon } from "@phosphor-icons/react";
import { useQueryClient } from "@tanstack/react-query";
import { PlusCircleIcon, PlusIcon } from "@phosphor-icons/react";
import { motion } from "framer-motion";
import { useState } from "react";
import { parseAsString, useQueryState } from "nuqs";
export function ChatSidebar() {
const { state } = useSidebar();
const isCollapsed = state === "collapsed";
const [sessionId, setSessionId] = useQueryState("sessionId", parseAsString);
const [sessionToDelete, setSessionToDelete] = useState<{
id: string;
title: string | null | undefined;
} | null>(null);
const queryClient = useQueryClient();
const { data: sessionsResponse, isLoading: isLoadingSessions } =
useGetV2ListSessions({ limit: 50 });
const { mutate: deleteSession, isPending: isDeleting } =
useDeleteV2DeleteSession({
mutation: {
onSuccess: () => {
// Invalidate sessions list to refetch
queryClient.invalidateQueries({
queryKey: getGetV2ListSessionsQueryKey(),
});
// If we deleted the current session, clear selection
if (sessionToDelete?.id === sessionId) {
setSessionId(null);
}
setSessionToDelete(null);
},
onError: (error) => {
toast({
title: "Failed to delete chat",
description:
error instanceof Error ? error.message : "An error occurred",
variant: "destructive",
});
setSessionToDelete(null);
},
},
});
const sessions =
sessionsResponse?.status === 200 ? sessionsResponse.data.sessions : [];
@@ -76,22 +35,6 @@ export function ChatSidebar() {
setSessionId(id);
}
function handleDeleteClick(
e: React.MouseEvent,
id: string,
title: string | null | undefined,
) {
e.stopPropagation(); // Prevent session selection
if (isDeleting) return; // Prevent double-click during deletion
setSessionToDelete({ id, title });
}
function handleConfirmDelete() {
if (sessionToDelete) {
deleteSession({ sessionId: sessionToDelete.id });
}
}
function formatDate(dateString: string) {
const date = new Date(dateString);
const now = new Date();
@@ -118,152 +61,128 @@ export function ChatSidebar() {
}
return (
<>
<Sidebar
variant="inset"
collapsible="icon"
className="!top-[50px] !h-[calc(100vh-50px)] border-r border-zinc-100 px-0"
>
{isCollapsed && (
<SidebarHeader
className={cn(
"flex",
isCollapsed
? "flex-row items-center justify-between gap-y-4 md:flex-col md:items-start md:justify-start"
: "flex-row items-center justify-between",
)}
<Sidebar
variant="inset"
collapsible="icon"
className="!top-[50px] !h-[calc(100vh-50px)] border-r border-zinc-100 px-0"
>
{isCollapsed && (
<SidebarHeader
className={cn(
"flex",
isCollapsed
? "flex-row items-center justify-between gap-y-4 md:flex-col md:items-start md:justify-start"
: "flex-row items-center justify-between",
)}
>
<motion.div
key={isCollapsed ? "header-collapsed" : "header-expanded"}
className="flex flex-col items-center gap-3 pt-4"
initial={{ opacity: 0, filter: "blur(3px)" }}
animate={{ opacity: 1, filter: "blur(0px)" }}
transition={{ type: "spring", bounce: 0.2 }}
>
<motion.div
key={isCollapsed ? "header-collapsed" : "header-expanded"}
className="flex flex-col items-center gap-3 pt-4"
initial={{ opacity: 0, filter: "blur(3px)" }}
animate={{ opacity: 1, filter: "blur(0px)" }}
transition={{ type: "spring", bounce: 0.2 }}
>
<div className="flex flex-col items-center gap-2">
<SidebarTrigger />
<Button
variant="ghost"
onClick={handleNewChat}
style={{ minWidth: "auto", width: "auto" }}
>
<PlusCircleIcon className="!size-5" />
<span className="sr-only">New Chat</span>
</Button>
</div>
</motion.div>
</SidebarHeader>
)}
<SidebarContent className="gap-4 overflow-y-auto px-4 py-4 [-ms-overflow-style:none] [scrollbar-width:none] [&::-webkit-scrollbar]:hidden">
{!isCollapsed && (
<motion.div
initial={{ opacity: 0 }}
animate={{ opacity: 1 }}
transition={{ duration: 0.2, delay: 0.1 }}
className="flex items-center justify-between px-3"
>
<Text variant="h3" size="body-medium">
Your chats
</Text>
<div className="relative left-6">
<SidebarTrigger />
</div>
</motion.div>
)}
{!isCollapsed && (
<motion.div
initial={{ opacity: 0 }}
animate={{ opacity: 1 }}
transition={{ duration: 0.2, delay: 0.15 }}
className="mt-4 flex flex-col gap-1"
>
{isLoadingSessions ? (
<div className="flex min-h-[30rem] items-center justify-center py-4">
<LoadingSpinner size="small" className="text-neutral-600" />
</div>
) : sessions.length === 0 ? (
<p className="py-4 text-center text-sm text-neutral-500">
No conversations yet
</p>
) : (
sessions.map((session) => (
<div
key={session.id}
className={cn(
"group relative w-full rounded-lg transition-colors",
session.id === sessionId
? "bg-zinc-100"
: "hover:bg-zinc-50",
)}
>
<button
onClick={() => handleSelectSession(session.id)}
className="w-full px-3 py-2.5 pr-10 text-left"
>
<div className="flex min-w-0 max-w-full flex-col overflow-hidden">
<div className="min-w-0 max-w-full">
<Text
variant="body"
className={cn(
"truncate font-normal",
session.id === sessionId
? "text-zinc-600"
: "text-zinc-800",
)}
>
{session.title || `Untitled chat`}
</Text>
</div>
<Text variant="small" className="text-neutral-400">
{formatDate(session.updated_at)}
</Text>
</div>
</button>
<button
onClick={(e) =>
handleDeleteClick(e, session.id, session.title)
}
disabled={isDeleting}
className="absolute right-2 top-1/2 -translate-y-1/2 rounded p-1.5 text-zinc-400 opacity-0 transition-all group-hover:opacity-100 hover:bg-red-100 hover:text-red-600 focus-visible:opacity-100 disabled:cursor-not-allowed disabled:opacity-50"
aria-label="Delete chat"
>
<TrashIcon className="h-4 w-4" />
</button>
</div>
))
)}
</motion.div>
)}
</SidebarContent>
{!isCollapsed && sessionId && (
<SidebarFooter className="shrink-0 bg-zinc-50 p-3 pb-1 shadow-[0_-4px_6px_-1px_rgba(0,0,0,0.05)]">
<motion.div
initial={{ opacity: 0 }}
animate={{ opacity: 1 }}
transition={{ duration: 0.2, delay: 0.2 }}
>
<div className="flex flex-col items-center gap-2">
<SidebarTrigger />
<Button
variant="primary"
size="small"
variant="ghost"
onClick={handleNewChat}
className="w-full"
leftIcon={<PlusIcon className="h-4 w-4" weight="bold" />}
style={{ minWidth: "auto", width: "auto" }}
>
New Chat
<PlusCircleIcon className="!size-5" />
<span className="sr-only">New Chat</span>
</Button>
</motion.div>
</SidebarFooter>
</div>
</motion.div>
</SidebarHeader>
)}
<SidebarContent className="gap-4 overflow-y-auto px-4 py-4 [-ms-overflow-style:none] [scrollbar-width:none] [&::-webkit-scrollbar]:hidden">
{!isCollapsed && (
<motion.div
initial={{ opacity: 0 }}
animate={{ opacity: 1 }}
transition={{ duration: 0.2, delay: 0.1 }}
className="flex items-center justify-between px-3"
>
<Text variant="h3" size="body-medium">
Your chats
</Text>
<div className="relative left-6">
<SidebarTrigger />
</div>
</motion.div>
)}
</Sidebar>
<DeleteConfirmDialog
entityType="chat"
entityName={sessionToDelete?.title || "Untitled chat"}
open={!!sessionToDelete}
onOpenChange={(open) => !open && setSessionToDelete(null)}
onDoDelete={handleConfirmDelete}
/>
</>
{!isCollapsed && (
<motion.div
initial={{ opacity: 0 }}
animate={{ opacity: 1 }}
transition={{ duration: 0.2, delay: 0.15 }}
className="mt-4 flex flex-col gap-1"
>
{isLoadingSessions ? (
<div className="flex min-h-[30rem] items-center justify-center py-4">
<LoadingSpinner size="small" className="text-neutral-600" />
</div>
) : sessions.length === 0 ? (
<p className="py-4 text-center text-sm text-neutral-500">
No conversations yet
</p>
) : (
sessions.map((session) => (
<button
key={session.id}
onClick={() => handleSelectSession(session.id)}
className={cn(
"w-full rounded-lg px-3 py-2.5 text-left transition-colors",
session.id === sessionId
? "bg-zinc-100"
: "hover:bg-zinc-50",
)}
>
<div className="flex min-w-0 max-w-full flex-col overflow-hidden">
<div className="min-w-0 max-w-full">
<Text
variant="body"
className={cn(
"truncate font-normal",
session.id === sessionId
? "text-zinc-600"
: "text-zinc-800",
)}
>
{session.title || `Untitled chat`}
</Text>
</div>
<Text variant="small" className="text-neutral-400">
{formatDate(session.updated_at)}
</Text>
</div>
</button>
))
)}
</motion.div>
)}
</SidebarContent>
{!isCollapsed && sessionId && (
<SidebarFooter className="shrink-0 bg-zinc-50 p-3 pb-1 shadow-[0_-4px_6px_-1px_rgba(0,0,0,0.05)]">
<motion.div
initial={{ opacity: 0 }}
animate={{ opacity: 1 }}
transition={{ duration: 0.2, delay: 0.2 }}
>
<Button
variant="primary"
size="small"
onClick={handleNewChat}
className="w-full"
leftIcon={<PlusIcon className="h-4 w-4" weight="bold" />}
>
New Chat
</Button>
</motion.div>
</SidebarFooter>
)}
</Sidebar>
);
}

View File

@@ -1,46 +1,22 @@
import { Button } from "@/components/atoms/Button/Button";
import { NAVBAR_HEIGHT_PX } from "@/lib/constants";
import { ListIcon, TrashIcon } from "@phosphor-icons/react";
import { ListIcon } from "@phosphor-icons/react";
interface Props {
onOpenDrawer: () => void;
showDelete?: boolean;
isDeleting?: boolean;
onDelete?: () => void;
}
export function MobileHeader({
onOpenDrawer,
showDelete,
isDeleting,
onDelete,
}: Props) {
export function MobileHeader({ onOpenDrawer }: Props) {
return (
<div
className="fixed z-50 flex gap-2"
<Button
variant="icon"
size="icon"
aria-label="Open sessions"
onClick={onOpenDrawer}
className="fixed z-50 bg-white shadow-md"
style={{ left: "1rem", top: `${NAVBAR_HEIGHT_PX + 20}px` }}
>
<Button
variant="icon"
size="icon"
aria-label="Open sessions"
onClick={onOpenDrawer}
className="bg-white shadow-md"
>
<ListIcon width="1.25rem" height="1.25rem" />
</Button>
{showDelete && onDelete && (
<Button
variant="icon"
size="icon"
aria-label="Delete current chat"
onClick={onDelete}
disabled={isDeleting}
className="bg-white text-red-500 shadow-md hover:bg-red-50 hover:text-red-600 disabled:opacity-50"
>
<TrashIcon width="1.25rem" height="1.25rem" />
</Button>
)}
</div>
<ListIcon width="1.25rem" height="1.25rem" />
</Button>
);
}

View File

@@ -4,11 +4,11 @@ import { Button } from "@/components/atoms/Button/Button";
import { Text } from "@/components/atoms/Text/Text";
import {
BookOpenIcon,
CheckFatIcon,
PencilSimpleIcon,
WarningDiamondIcon,
} from "@phosphor-icons/react";
import type { ToolUIPart } from "ai";
import Image from "next/image";
import NextLink from "next/link";
import { useCopilotChatActions } from "../../components/CopilotChatActionsProvider/useCopilotChatActions";
import { MorphingTextAnimation } from "../../components/MorphingTextAnimation/MorphingTextAnimation";
@@ -24,8 +24,8 @@ import {
ClarificationQuestionsCard,
ClarifyingQuestion,
} from "./components/ClarificationQuestionsCard";
import sparklesImg from "./components/MiniGame/assets/sparkles.png";
import { MiniGame } from "./components/MiniGame/MiniGame";
import { SuggestedGoalCard } from "./components/SuggestedGoalCard";
import {
AccordionIcon,
formatMaybeJson,
@@ -38,6 +38,7 @@ import {
isOperationInProgressOutput,
isOperationPendingOutput,
isOperationStartedOutput,
isSuggestedGoalOutput,
ToolIcon,
truncateText,
type CreateAgentToolOutput,
@@ -77,6 +78,13 @@ function getAccordionMeta(output: CreateAgentToolOutput) {
expanded: true,
};
}
if (isSuggestedGoalOutput(output)) {
return {
icon,
title: "Goal needs refinement",
expanded: true,
};
}
if (
isOperationStartedOutput(output) ||
isOperationPendingOutput(output) ||
@@ -84,8 +92,7 @@ function getAccordionMeta(output: CreateAgentToolOutput) {
) {
return {
icon,
title:
"Creating agent, this may take a few minutes. Play while you wait.",
title: "Creating agent, this may take a few minutes. Sit back and relax.",
expanded: true,
};
}
@@ -125,8 +132,13 @@ export function CreateAgentTool({ part }: Props) {
isAgentPreviewOutput(output) ||
isAgentSavedOutput(output) ||
isClarificationNeededOutput(output) ||
isSuggestedGoalOutput(output) ||
isErrorOutput(output));
function handleUseSuggestedGoal(goal: string) {
onSend(`Please create an agent with this goal: ${goal}`);
}
function handleClarificationAnswers(answers: Record<string, string>) {
const questions =
output && isClarificationNeededOutput(output)
@@ -169,20 +181,16 @@ export function CreateAgentTool({ part }: Props) {
{isAgentSavedOutput(output) && (
<div className="rounded-xl border border-border/60 bg-card p-4 shadow-sm">
<div className="flex items-baseline gap-2">
<Image
src={sparklesImg}
alt="sparkles"
width={24}
height={24}
className="relative top-1"
<CheckFatIcon
size={18}
weight="regular"
className="relative top-1 text-green-500"
/>
<Text
variant="body-medium"
className="mb-2 text-[16px] text-black"
className="text-blacks mb-2 text-[16px]"
>
Agent{" "}
<span className="text-violet-600">{output.agent_name}</span>{" "}
has been saved to your library!
{output.message}
</Text>
</div>
<div className="mt-3 flex flex-wrap gap-4">
@@ -245,6 +253,15 @@ export function CreateAgentTool({ part }: Props) {
/>
)}
{isSuggestedGoalOutput(output) && (
<SuggestedGoalCard
message={output.message}
suggestedGoal={output.suggested_goal}
goalType={output.goal_type ?? "vague"}
onUseSuggestedGoal={handleUseSuggestedGoal}
/>
)}
{isErrorOutput(output) && (
<ContentGrid>
<ContentMessage>{output.message}</ContentMessage>
@@ -258,6 +275,22 @@ export function CreateAgentTool({ part }: Props) {
{formatMaybeJson(output.details)}
</ContentCodeBlock>
)}
<div className="flex gap-2">
<Button
variant="outline"
size="small"
onClick={() => onSend("Please try creating the agent again.")}
>
Try again
</Button>
<Button
variant="outline"
size="small"
onClick={() => onSend("Can you help me simplify this goal?")}
>
Simplify goal
</Button>
</div>
</ContentGrid>
)}
</ToolAccordion>

View File

@@ -2,65 +2,20 @@
import { useMiniGame } from "./useMiniGame";
function Key({ children }: { children: React.ReactNode }) {
return <strong>[{children}]</strong>;
}
export function MiniGame() {
const { canvasRef, activeMode, showOverlay, score, highScore, onContinue } =
useMiniGame();
const isRunActive =
activeMode === "run" || activeMode === "idle" || activeMode === "over";
let overlayText: string | undefined;
let buttonLabel = "Continue";
if (activeMode === "idle") {
buttonLabel = "Start";
} else if (activeMode === "boss-intro") {
overlayText = "Face the bandit!";
} else if (activeMode === "boss-defeated") {
overlayText = "Great job, keep on going";
} else if (activeMode === "over") {
overlayText = `Score: ${score} / Record: ${highScore}`;
buttonLabel = "Retry";
}
const { canvasRef } = useMiniGame();
return (
<div className="flex flex-col gap-2">
<p className="text-sm font-medium text-purple-500">
{isRunActive ? (
<>
Run mode: <Key>Space</Key> to jump
</>
) : (
<>
Duel mode: <Key></Key> to move · <Key>Z</Key> to attack ·{" "}
<Key>X</Key> to block · <Key>Space</Key> to jump
</>
)}
</p>
<div className="relative w-full overflow-hidden rounded-md border border-accent bg-background text-foreground">
<canvas
ref={canvasRef}
tabIndex={0}
className="block w-full outline-none"
/>
{showOverlay && (
<div className="absolute inset-0 flex flex-col items-center justify-center gap-3 bg-black/40">
{overlayText && (
<p className="text-lg font-bold text-white">{overlayText}</p>
)}
<button
type="button"
onClick={onContinue}
className="rounded-md bg-white px-4 py-2 text-sm font-semibold text-zinc-800 shadow-md transition-colors hover:bg-zinc-100"
>
{buttonLabel}
</button>
</div>
)}
</div>
<div
className="w-full overflow-hidden rounded-md bg-background text-foreground"
style={{ border: "1px solid #d17fff" }}
>
<canvas
ref={canvasRef}
tabIndex={0}
className="block w-full outline-none"
style={{ imageRendering: "pixelated" }}
/>
</div>
);
}

View File

@@ -0,0 +1,61 @@
"use client";
import { Button } from "@/components/atoms/Button/Button";
import { Text } from "@/components/atoms/Text/Text";
import { ArrowRightIcon, LightbulbIcon } from "@phosphor-icons/react";
interface Props {
message: string;
suggestedGoal: string;
goalType: string;
onUseSuggestedGoal: (goal: string) => void;
}
export function SuggestedGoalCard({
message,
suggestedGoal,
goalType,
onUseSuggestedGoal,
}: Props) {
return (
<div className="rounded-xl border border-amber-200 bg-amber-50/50 p-4">
<div className="flex items-start gap-3">
<LightbulbIcon
size={20}
weight="fill"
className="mt-0.5 text-amber-600"
/>
<div className="flex-1 space-y-3">
<div>
<Text variant="body-medium" className="font-medium text-slate-900">
{goalType === "unachievable"
? "Goal cannot be accomplished"
: "Goal needs more detail"}
</Text>
<Text variant="small" className="text-slate-600">
{message}
</Text>
</div>
<div className="rounded-lg border border-amber-300 bg-white p-3">
<Text variant="small" className="mb-1 font-semibold text-amber-800">
Suggested alternative:
</Text>
<Text variant="body-medium" className="text-slate-900">
{suggestedGoal}
</Text>
</div>
<Button
onClick={() => onUseSuggestedGoal(suggestedGoal)}
variant="primary"
>
<span className="inline-flex items-center gap-1.5">
Use this goal <ArrowRightIcon size={14} weight="bold" />
</span>
</Button>
</div>
</div>
</div>
);
}

View File

@@ -6,6 +6,7 @@ import type { OperationInProgressResponse } from "@/app/api/__generated__/models
import type { OperationPendingResponse } from "@/app/api/__generated__/models/operationPendingResponse";
import type { OperationStartedResponse } from "@/app/api/__generated__/models/operationStartedResponse";
import { ResponseType } from "@/app/api/__generated__/models/responseType";
import type { SuggestedGoalResponse } from "@/app/api/__generated__/models/suggestedGoalResponse";
import {
PlusCircleIcon,
PlusIcon,
@@ -21,6 +22,7 @@ export type CreateAgentToolOutput =
| AgentPreviewResponse
| AgentSavedResponse
| ClarificationNeededResponse
| SuggestedGoalResponse
| ErrorResponse;
function parseOutput(output: unknown): CreateAgentToolOutput | null {
@@ -43,6 +45,7 @@ function parseOutput(output: unknown): CreateAgentToolOutput | null {
type === ResponseType.agent_preview ||
type === ResponseType.agent_saved ||
type === ResponseType.clarification_needed ||
type === ResponseType.suggested_goal ||
type === ResponseType.error
) {
return output as CreateAgentToolOutput;
@@ -55,6 +58,7 @@ function parseOutput(output: unknown): CreateAgentToolOutput | null {
if ("agent_id" in output && "library_agent_id" in output)
return output as AgentSavedResponse;
if ("questions" in output) return output as ClarificationNeededResponse;
if ("suggested_goal" in output) return output as SuggestedGoalResponse;
if ("error" in output || "details" in output)
return output as ErrorResponse;
}
@@ -114,6 +118,14 @@ export function isClarificationNeededOutput(
);
}
export function isSuggestedGoalOutput(
output: CreateAgentToolOutput,
): output is SuggestedGoalResponse {
return (
output.type === ResponseType.suggested_goal || "suggested_goal" in output
);
}
export function isErrorOutput(
output: CreateAgentToolOutput,
): output is ErrorResponse {
@@ -136,9 +148,10 @@ export function getAnimationText(part: {
if (isOperationPendingOutput(output)) return "Agent creation in progress";
if (isOperationInProgressOutput(output))
return "Agent creation already in progress";
if (isAgentSavedOutput(output)) return `Saved ${output.agent_name}`;
if (isAgentSavedOutput(output)) return `Saved "${output.agent_name}"`;
if (isAgentPreviewOutput(output)) return `Preview "${output.agent_name}"`;
if (isClarificationNeededOutput(output)) return "Needs clarification";
if (isSuggestedGoalOutput(output)) return "Goal needs refinement";
return "Error creating agent";
}
case "output-error":

View File

@@ -5,6 +5,7 @@ import type { ToolUIPart } from "ai";
import { useCopilotChatActions } from "../../components/CopilotChatActionsProvider/useCopilotChatActions";
import { MorphingTextAnimation } from "../../components/MorphingTextAnimation/MorphingTextAnimation";
import { OrbitLoader } from "../../components/OrbitLoader/OrbitLoader";
import { ProgressBar } from "../../components/ProgressBar/ProgressBar";
import {
ContentCardDescription,
ContentCodeBlock,
@@ -14,7 +15,7 @@ import {
ContentMessage,
} from "../../components/ToolAccordion/AccordionContent";
import { ToolAccordion } from "../../components/ToolAccordion/ToolAccordion";
import { MiniGame } from "../CreateAgent/components/MiniGame/MiniGame";
import { useAsymptoticProgress } from "../../hooks/useAsymptoticProgress";
import {
ClarificationQuestionsCard,
ClarifyingQuestion,
@@ -53,7 +54,6 @@ function getAccordionMeta(output: EditAgentToolOutput): {
title: string;
titleClassName?: string;
description?: string;
expanded?: boolean;
} {
const icon = <AccordionIcon />;
@@ -80,11 +80,7 @@ function getAccordionMeta(output: EditAgentToolOutput): {
isOperationPendingOutput(output) ||
isOperationInProgressOutput(output)
) {
return {
icon: <OrbitLoader size={32} />,
title: "Editing agent, this may take a few minutes. Play while you wait.",
expanded: true,
};
return { icon: <OrbitLoader size={32} />, title: "Editing agent" };
}
return {
icon: (
@@ -109,6 +105,7 @@ export function EditAgentTool({ part }: Props) {
(isOperationStartedOutput(output) ||
isOperationPendingOutput(output) ||
isOperationInProgressOutput(output));
const progress = useAsymptoticProgress(isOperating);
const hasExpandableContent =
part.state === "output-available" &&
!!output &&
@@ -152,9 +149,9 @@ export function EditAgentTool({ part }: Props) {
<ToolAccordion {...getAccordionMeta(output)}>
{isOperating && (
<ContentGrid>
<MiniGame />
<ProgressBar value={progress} className="max-w-[280px]" />
<ContentHint>
This could take a few minutes play while you wait!
This could take a few minutes, grab a coffee
</ContentHint>
</ContentGrid>
)}

View File

@@ -2,14 +2,8 @@
import type { ToolUIPart } from "ai";
import { MorphingTextAnimation } from "../../components/MorphingTextAnimation/MorphingTextAnimation";
import { OrbitLoader } from "../../components/OrbitLoader/OrbitLoader";
import { ToolAccordion } from "../../components/ToolAccordion/ToolAccordion";
import {
ContentGrid,
ContentHint,
ContentMessage,
} from "../../components/ToolAccordion/AccordionContent";
import { MiniGame } from "../CreateAgent/components/MiniGame/MiniGame";
import { ContentMessage } from "../../components/ToolAccordion/AccordionContent";
import {
getAccordionMeta,
getAnimationText,
@@ -66,21 +60,6 @@ export function RunAgentTool({ part }: Props) {
/>
</div>
{isStreaming && !output && (
<ToolAccordion
icon={<OrbitLoader size={32} />}
title="Running agent, this may take a few minutes. Play while you wait."
expanded={true}
>
<ContentGrid>
<MiniGame />
<ContentHint>
This could take a few minutes play while you wait!
</ContentHint>
</ContentGrid>
</ToolAccordion>
)}
{hasExpandableContent && output && (
<ToolAccordion {...getAccordionMeta(output)}>
{isRunAgentExecutionStartedOutput(output) && (

View File

@@ -1,15 +1,10 @@
import {
getGetV2ListSessionsQueryKey,
useDeleteV2DeleteSession,
useGetV2ListSessions,
} from "@/app/api/__generated__/endpoints/chat/chat";
import { useGetV2ListSessions } from "@/app/api/__generated__/endpoints/chat/chat";
import { toast } from "@/components/molecules/Toast/use-toast";
import { useBreakpoint } from "@/lib/hooks/useBreakpoint";
import { useSupabase } from "@/lib/supabase/hooks/useSupabase";
import { useChat } from "@ai-sdk/react";
import { useQueryClient } from "@tanstack/react-query";
import { DefaultChatTransport } from "ai";
import { useCallback, useEffect, useMemo, useRef, useState } from "react";
import { useEffect, useMemo, useRef, useState } from "react";
import { useChatSession } from "./useChatSession";
import { useLongRunningToolPolling } from "./hooks/useLongRunningToolPolling";
@@ -19,11 +14,6 @@ export function useCopilotPage() {
const { isUserLoading, isLoggedIn } = useSupabase();
const [isDrawerOpen, setIsDrawerOpen] = useState(false);
const [pendingMessage, setPendingMessage] = useState<string | null>(null);
const [sessionToDelete, setSessionToDelete] = useState<{
id: string;
title: string | null | undefined;
} | null>(null);
const queryClient = useQueryClient();
const {
sessionId,
@@ -34,30 +24,6 @@ export function useCopilotPage() {
isCreatingSession,
} = useChatSession();
const { mutate: deleteSessionMutation, isPending: isDeleting } =
useDeleteV2DeleteSession({
mutation: {
onSuccess: () => {
queryClient.invalidateQueries({
queryKey: getGetV2ListSessionsQueryKey(),
});
if (sessionToDelete?.id === sessionId) {
setSessionId(null);
}
setSessionToDelete(null);
},
onError: (error) => {
toast({
title: "Failed to delete chat",
description:
error instanceof Error ? error.message : "An error occurred",
variant: "destructive",
});
setSessionToDelete(null);
},
},
});
const breakpoint = useBreakpoint();
const isMobile =
breakpoint === "base" || breakpoint === "sm" || breakpoint === "md";
@@ -177,24 +143,6 @@ export function useCopilotPage() {
if (isMobile) setIsDrawerOpen(false);
}
const handleDeleteClick = useCallback(
(id: string, title: string | null | undefined) => {
if (isDeleting) return;
setSessionToDelete({ id, title });
},
[isDeleting],
);
const handleConfirmDelete = useCallback(() => {
if (sessionToDelete) {
deleteSessionMutation({ sessionId: sessionToDelete.id });
}
}, [sessionToDelete, deleteSessionMutation]);
const handleCancelDelete = useCallback(() => {
setSessionToDelete(null);
}, []);
return {
sessionId,
messages,
@@ -217,11 +165,5 @@ export function useCopilotPage() {
handleDrawerOpenChange,
handleSelectSession,
handleNewChat,
// Delete functionality
sessionToDelete,
isDeleting,
handleDeleteClick,
handleConfirmDelete,
handleCancelDelete,
};
}

View File

@@ -0,0 +1,631 @@
"use client";
import { useParams, useRouter } from "next/navigation";
import { useQueryState } from "nuqs";
import React, {
useCallback,
useEffect,
useMemo,
useRef,
useState,
} from "react";
import {
Graph,
GraphExecution,
GraphExecutionID,
GraphExecutionMeta,
GraphID,
LibraryAgent,
LibraryAgentID,
LibraryAgentPreset,
LibraryAgentPresetID,
Schedule,
ScheduleID,
} from "@/lib/autogpt-server-api";
import { useBackendAPI } from "@/lib/autogpt-server-api/context";
import { exportAsJSONFile } from "@/lib/utils";
import DeleteConfirmDialog from "@/components/__legacy__/delete-confirm-dialog";
import type { ButtonAction } from "@/components/__legacy__/types";
import { Button } from "@/components/__legacy__/ui/button";
import {
Dialog,
DialogContent,
DialogDescription,
DialogFooter,
DialogHeader,
DialogTitle,
} from "@/components/__legacy__/ui/dialog";
import LoadingBox, { LoadingSpinner } from "@/components/__legacy__/ui/loading";
import {
useToast,
useToastOnFail,
} from "@/components/molecules/Toast/use-toast";
import { AgentRunDetailsView } from "./components/agent-run-details-view";
import { AgentRunDraftView } from "./components/agent-run-draft-view";
import { CreatePresetDialog } from "./components/create-preset-dialog";
import { useAgentRunsInfinite } from "./use-agent-runs";
import { AgentRunsSelectorList } from "./components/agent-runs-selector-list";
import { AgentScheduleDetailsView } from "./components/agent-schedule-details-view";
export function OldAgentLibraryView() {
const { id: agentID }: { id: LibraryAgentID } = useParams();
const [executionId, setExecutionId] = useQueryState("executionId");
const toastOnFail = useToastOnFail();
const { toast } = useToast();
const router = useRouter();
const api = useBackendAPI();
// ============================ STATE =============================
const [graph, setGraph] = useState<Graph | null>(null); // Graph version corresponding to LibraryAgent
const [agent, setAgent] = useState<LibraryAgent | null>(null);
const agentRunsQuery = useAgentRunsInfinite(graph?.id); // only runs once graph.id is known
const agentRuns = agentRunsQuery.agentRuns;
const [agentPresets, setAgentPresets] = useState<LibraryAgentPreset[]>([]);
const [schedules, setSchedules] = useState<Schedule[]>([]);
const [selectedView, selectView] = useState<
| { type: "run"; id?: GraphExecutionID }
| { type: "preset"; id: LibraryAgentPresetID }
| { type: "schedule"; id: ScheduleID }
>({ type: "run" });
const [selectedRun, setSelectedRun] = useState<
GraphExecution | GraphExecutionMeta | null
>(null);
const selectedSchedule =
selectedView.type == "schedule"
? schedules.find((s) => s.id == selectedView.id)
: null;
const [isFirstLoad, setIsFirstLoad] = useState<boolean>(true);
const [agentDeleteDialogOpen, setAgentDeleteDialogOpen] =
useState<boolean>(false);
const [confirmingDeleteAgentRun, setConfirmingDeleteAgentRun] =
useState<GraphExecutionMeta | null>(null);
const [confirmingDeleteAgentPreset, setConfirmingDeleteAgentPreset] =
useState<LibraryAgentPresetID | null>(null);
const [copyAgentDialogOpen, setCopyAgentDialogOpen] = useState(false);
const [creatingPresetFromExecutionID, setCreatingPresetFromExecutionID] =
useState<GraphExecutionID | null>(null);
// Set page title with agent name
useEffect(() => {
if (agent) {
document.title = `${agent.name} - Library - AutoGPT Platform`;
}
}, [agent]);
const openRunDraftView = useCallback(() => {
selectView({ type: "run" });
}, []);
const selectRun = useCallback((id: GraphExecutionID) => {
selectView({ type: "run", id });
}, []);
const selectPreset = useCallback((id: LibraryAgentPresetID) => {
selectView({ type: "preset", id });
}, []);
const selectSchedule = useCallback((id: ScheduleID) => {
selectView({ type: "schedule", id });
}, []);
const graphVersions = useRef<Record<number, Graph>>({});
const loadingGraphVersions = useRef<Record<number, Promise<Graph>>>({});
const getGraphVersion = useCallback(
async (graphID: GraphID, version: number) => {
if (version in graphVersions.current)
return graphVersions.current[version];
if (version in loadingGraphVersions.current)
return loadingGraphVersions.current[version];
const pendingGraph = api.getGraph(graphID, version).then((graph) => {
graphVersions.current[version] = graph;
return graph;
});
// Cache promise as well to avoid duplicate requests
loadingGraphVersions.current[version] = pendingGraph;
return pendingGraph;
},
[api, graphVersions, loadingGraphVersions],
);
const lastRefresh = useRef<number>(0);
const refreshPageData = useCallback(() => {
if (Date.now() - lastRefresh.current < 2e3) return; // 2 second debounce
lastRefresh.current = Date.now();
api.getLibraryAgent(agentID).then((agent) => {
setAgent(agent);
getGraphVersion(agent.graph_id, agent.graph_version).then(
(_graph) =>
(graph && graph.version == _graph.version) || setGraph(_graph),
);
Promise.all([
agentRunsQuery.refetchRuns(),
api.listLibraryAgentPresets({
graph_id: agent.graph_id,
page_size: 100,
}),
]).then(([runsQueryResult, presets]) => {
setAgentPresets(presets.presets);
const newestAgentRunsResponse = runsQueryResult.data?.pages[0];
if (!newestAgentRunsResponse || newestAgentRunsResponse.status != 200)
return;
const newestAgentRuns = newestAgentRunsResponse.data.executions;
// Preload the corresponding graph versions for the latest 10 runs
new Set(
newestAgentRuns.slice(0, 10).map((run) => run.graph_version),
).forEach((version) => getGraphVersion(agent.graph_id, version));
});
});
}, [api, agentID, getGraphVersion, graph]);
// On first load: select the latest run
useEffect(() => {
// Only for first load or first execution
if (selectedView.id || !isFirstLoad) return;
if (agentRuns.length == 0 && agentPresets.length == 0) return;
setIsFirstLoad(false);
if (agentRuns.length > 0) {
// select latest run
const latestRun = agentRuns.reduce((latest, current) => {
if (!latest.started_at && !current.started_at) return latest;
if (!latest.started_at) return current;
if (!current.started_at) return latest;
return latest.started_at > current.started_at ? latest : current;
}, agentRuns[0]);
selectRun(latestRun.id as GraphExecutionID);
} else {
// select top preset
const latestPreset = agentPresets.toSorted(
(a, b) => b.updated_at.getTime() - a.updated_at.getTime(),
)[0];
selectPreset(latestPreset.id);
}
}, [
isFirstLoad,
selectedView.id,
agentRuns,
agentPresets,
selectRun,
selectPreset,
]);
useEffect(() => {
if (executionId) {
selectRun(executionId as GraphExecutionID);
setExecutionId(null);
}
}, [executionId, selectRun, setExecutionId]);
// Initial load
useEffect(() => {
refreshPageData();
// Show a toast when the WebSocket connection disconnects
let connectionToast: ReturnType<typeof toast> | null = null;
const cancelDisconnectHandler = api.onWebSocketDisconnect(() => {
connectionToast ??= toast({
title: "Connection to server was lost",
variant: "destructive",
description: (
<div className="flex items-center">
Trying to reconnect...
<LoadingSpinner className="ml-1.5 size-3.5" />
</div>
),
duration: Infinity,
dismissable: true,
});
});
const cancelConnectHandler = api.onWebSocketConnect(() => {
if (connectionToast)
connectionToast.update({
id: connectionToast.id,
title: "✅ Connection re-established",
variant: "default",
description: (
<div className="flex items-center">
Refreshing data...
<LoadingSpinner className="ml-1.5 size-3.5" />
</div>
),
duration: 2000,
dismissable: true,
});
connectionToast = null;
});
return () => {
cancelDisconnectHandler();
cancelConnectHandler();
};
}, []);
// Subscribe to WebSocket updates for agent runs
useEffect(() => {
if (!agent?.graph_id) return;
return api.onWebSocketConnect(() => {
refreshPageData(); // Sync up on (re)connect
// Subscribe to all executions for this agent
api.subscribeToGraphExecutions(agent.graph_id);
});
}, [api, agent?.graph_id, refreshPageData]);
// Handle execution updates
useEffect(() => {
const detachExecUpdateHandler = api.onWebSocketMessage(
"graph_execution_event",
(data) => {
if (data.graph_id != agent?.graph_id) return;
agentRunsQuery.upsertAgentRun(data);
if (data.id === selectedView.id) {
// Update currently viewed run
setSelectedRun(data);
}
},
);
return () => {
detachExecUpdateHandler();
};
}, [api, agent?.graph_id, selectedView.id]);
// Pre-load selectedRun based on selectedView
useEffect(() => {
if (selectedView.type != "run" || !selectedView.id) return;
const newSelectedRun = agentRuns.find((run) => run.id == selectedView.id);
if (selectedView.id !== selectedRun?.id) {
// Pull partial data from "cache" while waiting for the rest to load
setSelectedRun((newSelectedRun as GraphExecutionMeta) ?? null);
}
}, [api, selectedView, agentRuns, selectedRun?.id]);
// Load selectedRun based on selectedView; refresh on agent refresh
useEffect(() => {
if (selectedView.type != "run" || !selectedView.id || !agent) return;
api
.getGraphExecutionInfo(agent.graph_id, selectedView.id)
.then(async (run) => {
// Ensure corresponding graph version is available before rendering I/O
await getGraphVersion(run.graph_id, run.graph_version);
setSelectedRun(run);
});
}, [api, selectedView, agent, getGraphVersion]);
const fetchSchedules = useCallback(async () => {
if (!agent) return;
setSchedules(await api.listGraphExecutionSchedules(agent.graph_id));
}, [api, agent?.graph_id]);
useEffect(() => {
fetchSchedules();
}, [fetchSchedules]);
// =========================== ACTIONS ============================
const deleteRun = useCallback(
async (run: GraphExecutionMeta) => {
if (run.status == "RUNNING" || run.status == "QUEUED") {
await api.stopGraphExecution(run.graph_id, run.id);
}
await api.deleteGraphExecution(run.id);
setConfirmingDeleteAgentRun(null);
if (selectedView.type == "run" && selectedView.id == run.id) {
openRunDraftView();
}
agentRunsQuery.removeAgentRun(run.id);
},
[api, selectedView, openRunDraftView],
);
const deletePreset = useCallback(
async (presetID: LibraryAgentPresetID) => {
await api.deleteLibraryAgentPreset(presetID);
setConfirmingDeleteAgentPreset(null);
if (selectedView.type == "preset" && selectedView.id == presetID) {
openRunDraftView();
}
setAgentPresets((presets) => presets.filter((p) => p.id !== presetID));
},
[api, selectedView, openRunDraftView],
);
const deleteSchedule = useCallback(
async (scheduleID: ScheduleID) => {
const removedSchedule =
await api.deleteGraphExecutionSchedule(scheduleID);
setSchedules((schedules) => {
const newSchedules = schedules.filter(
(s) => s.id !== removedSchedule.id,
);
if (
selectedView.type == "schedule" &&
selectedView.id == removedSchedule.id
) {
if (newSchedules.length > 0) {
// Select next schedule if available
selectSchedule(newSchedules[0].id);
} else {
// Reset to draft view if current schedule was deleted
openRunDraftView();
}
}
return newSchedules;
});
openRunDraftView();
},
[schedules, api],
);
const handleCreatePresetFromRun = useCallback(
async (name: string, description: string) => {
if (!creatingPresetFromExecutionID) return;
await api
.createLibraryAgentPreset({
name,
description,
graph_execution_id: creatingPresetFromExecutionID,
})
.then((preset) => {
setAgentPresets((prev) => [...prev, preset]);
selectPreset(preset.id);
setCreatingPresetFromExecutionID(null);
})
.catch(toastOnFail("create a preset"));
},
[api, creatingPresetFromExecutionID, selectPreset, toast],
);
const downloadGraph = useCallback(
async () =>
agent &&
// Export sanitized graph from backend
api
.getGraph(agent.graph_id, agent.graph_version, true)
.then((graph) =>
exportAsJSONFile(graph, `${graph.name}_v${graph.version}.json`),
),
[api, agent],
);
const copyAgent = useCallback(async () => {
setCopyAgentDialogOpen(false);
api
.forkLibraryAgent(agentID)
.then((newAgent) => {
router.push(`/library/agents/${newAgent.id}`);
})
.catch((error) => {
console.error("Error copying agent:", error);
toast({
title: "Error copying agent",
description: `An error occurred while copying the agent: ${error.message}`,
variant: "destructive",
});
});
}, [agentID, api, router, toast]);
const agentActions: ButtonAction[] = useMemo(
() => [
{
label: "Customize agent",
href: `/build?flowID=${agent?.graph_id}&flowVersion=${agent?.graph_version}`,
disabled: !agent?.can_access_graph,
},
{ label: "Export agent to file", callback: downloadGraph },
...(!agent?.can_access_graph
? [
{
label: "Edit a copy",
callback: () => setCopyAgentDialogOpen(true),
},
]
: []),
{
label: "Delete agent",
callback: () => setAgentDeleteDialogOpen(true),
},
],
[agent, downloadGraph],
);
const runGraph =
graphVersions.current[selectedRun?.graph_version ?? 0] ?? graph;
const onCreateSchedule = useCallback(
(schedule: Schedule) => {
setSchedules((prev) => [...prev, schedule]);
selectSchedule(schedule.id);
},
[selectView],
);
const onCreatePreset = useCallback(
(preset: LibraryAgentPreset) => {
setAgentPresets((prev) => [...prev, preset]);
selectPreset(preset.id);
},
[selectPreset],
);
const onUpdatePreset = useCallback(
(updated: LibraryAgentPreset) => {
setAgentPresets((prev) =>
prev.map((p) => (p.id === updated.id ? updated : p)),
);
selectPreset(updated.id);
},
[selectPreset],
);
if (!agent || !graph) {
return <LoadingBox className="h-[90vh]" />;
}
return (
<div className="container justify-stretch p-0 pt-16 lg:flex">
{/* Sidebar w/ list of runs */}
{/* TODO: render this below header in sm and md layouts */}
<AgentRunsSelectorList
className="agpt-div w-full border-b pb-2 lg:w-auto lg:border-b-0 lg:border-r lg:pb-0"
agent={agent}
agentRunsQuery={agentRunsQuery}
agentPresets={agentPresets}
schedules={schedules}
selectedView={selectedView}
onSelectRun={selectRun}
onSelectPreset={selectPreset}
onSelectSchedule={selectSchedule}
onSelectDraftNewRun={openRunDraftView}
doDeleteRun={setConfirmingDeleteAgentRun}
doDeletePreset={setConfirmingDeleteAgentPreset}
doDeleteSchedule={deleteSchedule}
doCreatePresetFromRun={setCreatingPresetFromExecutionID}
/>
<div className="flex-1">
{/* Header */}
<div className="agpt-div w-full border-b">
<h1
data-testid="agent-title"
className="font-poppins text-3xl font-medium"
>
{
agent.name /* TODO: use dynamic/custom run title - https://github.com/Significant-Gravitas/AutoGPT/issues/9184 */
}
</h1>
</div>
{/* Run / Schedule views */}
{(selectedView.type == "run" && selectedView.id ? (
selectedRun && runGraph ? (
<AgentRunDetailsView
agent={agent}
graph={runGraph}
run={selectedRun}
agentActions={agentActions}
onRun={selectRun}
doDeleteRun={() => setConfirmingDeleteAgentRun(selectedRun)}
doCreatePresetFromRun={() =>
setCreatingPresetFromExecutionID(selectedRun.id)
}
/>
) : null
) : selectedView.type == "run" ? (
/* Draft new runs / Create new presets */
<AgentRunDraftView
graph={graph}
onRun={selectRun}
onCreateSchedule={onCreateSchedule}
onCreatePreset={onCreatePreset}
agentActions={agentActions}
recommendedScheduleCron={agent?.recommended_schedule_cron || null}
/>
) : selectedView.type == "preset" ? (
/* Edit & update presets */
<AgentRunDraftView
graph={graph}
agentPreset={
agentPresets.find((preset) => preset.id == selectedView.id)!
}
onRun={selectRun}
recommendedScheduleCron={agent?.recommended_schedule_cron || null}
onCreateSchedule={onCreateSchedule}
onUpdatePreset={onUpdatePreset}
doDeletePreset={setConfirmingDeleteAgentPreset}
agentActions={agentActions}
/>
) : selectedView.type == "schedule" ? (
selectedSchedule &&
graph && (
<AgentScheduleDetailsView
graph={graph}
schedule={selectedSchedule}
// agent={agent}
agentActions={agentActions}
onForcedRun={selectRun}
doDeleteSchedule={deleteSchedule}
/>
)
) : null) || <LoadingBox className="h-[70vh]" />}
<DeleteConfirmDialog
entityType="agent"
open={agentDeleteDialogOpen}
onOpenChange={setAgentDeleteDialogOpen}
onDoDelete={() =>
agent &&
api.deleteLibraryAgent(agent.id).then(() => router.push("/library"))
}
/>
<DeleteConfirmDialog
entityType="agent run"
open={!!confirmingDeleteAgentRun}
onOpenChange={(open) => !open && setConfirmingDeleteAgentRun(null)}
onDoDelete={() =>
confirmingDeleteAgentRun && deleteRun(confirmingDeleteAgentRun)
}
/>
<DeleteConfirmDialog
entityType={agent.has_external_trigger ? "trigger" : "agent preset"}
open={!!confirmingDeleteAgentPreset}
onOpenChange={(open) => !open && setConfirmingDeleteAgentPreset(null)}
onDoDelete={() =>
confirmingDeleteAgentPreset &&
deletePreset(confirmingDeleteAgentPreset)
}
/>
{/* Copy agent confirmation dialog */}
<Dialog
onOpenChange={setCopyAgentDialogOpen}
open={copyAgentDialogOpen}
>
<DialogContent>
<DialogHeader>
<DialogTitle>You&apos;re making an editable copy</DialogTitle>
<DialogDescription className="pt-2">
The original Marketplace agent stays the same and cannot be
edited. We&apos;ll save a new version of this agent to your
Library. From there, you can customize it however you&apos;d
like by clicking &quot;Customize agent&quot; this will open
the builder where you can see and modify the inner workings.
</DialogDescription>
</DialogHeader>
<DialogFooter className="justify-end">
<Button
type="button"
variant="outline"
onClick={() => setCopyAgentDialogOpen(false)}
>
Cancel
</Button>
<Button type="button" onClick={copyAgent}>
Continue
</Button>
</DialogFooter>
</DialogContent>
</Dialog>
<CreatePresetDialog
open={!!creatingPresetFromExecutionID}
onOpenChange={() => setCreatingPresetFromExecutionID(null)}
onConfirm={handleCreatePresetFromRun}
/>
</div>
</div>
);
}

View File

@@ -0,0 +1,445 @@
"use client";
import { format, formatDistanceToNow, formatDistanceStrict } from "date-fns";
import React, { useCallback, useMemo, useEffect } from "react";
import {
Graph,
GraphExecution,
GraphExecutionID,
GraphExecutionMeta,
LibraryAgent,
} from "@/lib/autogpt-server-api";
import { useBackendAPI } from "@/lib/autogpt-server-api/context";
import ActionButtonGroup from "@/components/__legacy__/action-button-group";
import type { ButtonAction } from "@/components/__legacy__/types";
import {
Card,
CardContent,
CardHeader,
CardTitle,
} from "@/components/__legacy__/ui/card";
import {
IconRefresh,
IconSquare,
IconCircleAlert,
} from "@/components/__legacy__/ui/icons";
import { Input } from "@/components/__legacy__/ui/input";
import LoadingBox from "@/components/__legacy__/ui/loading";
import {
Tooltip,
TooltipContent,
TooltipProvider,
TooltipTrigger,
} from "@/components/atoms/Tooltip/BaseTooltip";
import { useToastOnFail } from "@/components/molecules/Toast/use-toast";
import { AgentRunStatus, agentRunStatusMap } from "./agent-run-status-chip";
import useCredits from "@/hooks/useCredits";
import { AgentRunOutputView } from "./agent-run-output-view";
import { analytics } from "@/services/analytics";
import { PendingReviewsList } from "@/components/organisms/PendingReviewsList/PendingReviewsList";
import { usePendingReviewsForExecution } from "@/hooks/usePendingReviews";
export function AgentRunDetailsView({
agent,
graph,
run,
agentActions,
onRun,
doDeleteRun,
doCreatePresetFromRun,
}: {
agent: LibraryAgent;
graph: Graph;
run: GraphExecution | GraphExecutionMeta;
agentActions: ButtonAction[];
onRun: (runID: GraphExecutionID) => void;
doDeleteRun: () => void;
doCreatePresetFromRun: () => void;
}): React.ReactNode {
const api = useBackendAPI();
const { formatCredits } = useCredits();
const runStatus: AgentRunStatus = useMemo(
() => agentRunStatusMap[run.status],
[run],
);
const {
pendingReviews,
isLoading: reviewsLoading,
refetch: refetchReviews,
} = usePendingReviewsForExecution(run.id);
const toastOnFail = useToastOnFail();
// Refetch pending reviews when execution status changes to REVIEW
useEffect(() => {
if (runStatus === "review" && run.id) {
refetchReviews();
}
}, [runStatus, run.id, refetchReviews]);
const infoStats: { label: string; value: React.ReactNode }[] = useMemo(() => {
if (!run) return [];
return [
{
label: "Status",
value: runStatus.charAt(0).toUpperCase() + runStatus.slice(1),
},
{
label: "Started",
value: run.started_at
? `${formatDistanceToNow(run.started_at, { addSuffix: true })}, ${format(run.started_at, "HH:mm")}`
: "—",
},
...(run.stats
? [
{
label: "Duration",
value: formatDistanceStrict(0, run.stats.duration * 1000),
},
{ label: "Steps", value: run.stats.node_exec_count },
{ label: "Cost", value: formatCredits(run.stats.cost) },
]
: []),
];
}, [run, runStatus, formatCredits]);
const agentRunInputs:
| Record<
string,
{
title?: string;
/* type: BlockIOSubType; */
value: string | number | undefined;
}
>
| undefined = useMemo(() => {
if (!run.inputs) return undefined;
// TODO: show (link to) preset - https://github.com/Significant-Gravitas/AutoGPT/issues/9168
// Add type info from agent input schema
return Object.fromEntries(
Object.entries(run.inputs).map(([k, v]) => [
k,
{
title: graph.input_schema.properties[k]?.title,
// type: graph.input_schema.properties[k].type, // TODO: implement typed graph inputs
value: typeof v == "object" ? JSON.stringify(v, undefined, 2) : v,
},
]),
);
}, [graph, run]);
const runAgain = useCallback(() => {
if (
!run.inputs ||
!(graph.credentials_input_schema?.required ?? []).every(
(k) => k in (run.credential_inputs ?? {}),
)
)
return;
if (run.preset_id) {
return api
.executeLibraryAgentPreset(
run.preset_id,
run.inputs!,
run.credential_inputs!,
)
.then(({ id }) => {
analytics.sendDatafastEvent("run_agent", {
name: graph.name,
id: graph.id,
});
onRun(id);
})
.catch(toastOnFail("execute agent preset"));
}
return api
.executeGraph(
graph.id,
graph.version,
run.inputs!,
run.credential_inputs!,
"library",
)
.then(({ id }) => {
analytics.sendDatafastEvent("run_agent", {
name: graph.name,
id: graph.id,
});
onRun(id);
})
.catch(toastOnFail("execute agent"));
}, [api, graph, run, onRun, toastOnFail]);
const stopRun = useCallback(
() => api.stopGraphExecution(graph.id, run.id),
[api, graph.id, run.id],
);
const agentRunOutputs:
| Record<
string,
{
title?: string;
/* type: BlockIOSubType; */
values: Array<React.ReactNode>;
}
>
| null
| undefined = useMemo(() => {
if (!("outputs" in run)) return undefined;
if (!["running", "success", "failed", "stopped"].includes(runStatus))
return null;
// Add type info from agent input schema
return Object.fromEntries(
Object.entries(run.outputs).map(([k, vv]) => [
k,
{
title: graph.output_schema.properties[k].title,
/* type: agent.output_schema.properties[k].type */
values: vv.map((v) =>
typeof v == "object" ? JSON.stringify(v, undefined, 2) : v,
),
},
]),
);
}, [graph, run, runStatus]);
const runActions: ButtonAction[] = useMemo(
() => [
...(["running", "queued"].includes(runStatus)
? ([
{
label: (
<>
<IconSquare className="mr-2 size-4" />
Stop run
</>
),
variant: "secondary",
callback: stopRun,
},
] satisfies ButtonAction[])
: []),
...(["success", "failed", "stopped"].includes(runStatus) &&
!graph.has_external_trigger &&
(graph.credentials_input_schema?.required ?? []).every(
(k) => k in (run.credential_inputs ?? {}),
)
? [
{
label: (
<>
<IconRefresh className="mr-2 size-4" />
Run again
</>
),
callback: runAgain,
dataTestId: "run-again-button",
},
]
: []),
...(agent.can_access_graph
? [
{
label: "Open run in builder",
href: `/build?flowID=${run.graph_id}&flowVersion=${run.graph_version}&flowExecutionID=${run.id}`,
},
]
: []),
{ label: "Create preset from run", callback: doCreatePresetFromRun },
{ label: "Delete run", variant: "secondary", callback: doDeleteRun },
],
[
runStatus,
runAgain,
stopRun,
doDeleteRun,
doCreatePresetFromRun,
graph.has_external_trigger,
graph.credentials_input_schema?.required,
agent.can_access_graph,
run.graph_id,
run.graph_version,
run.id,
],
);
return (
<div className="agpt-div flex gap-6">
<div className="flex flex-1 flex-col gap-4">
<Card className="agpt-box">
<CardHeader>
<CardTitle className="font-poppins text-lg">Info</CardTitle>
</CardHeader>
<CardContent>
<div className="flex justify-stretch gap-4">
{infoStats.map(({ label, value }) => (
<div key={label} className="flex-1">
<p className="text-sm font-medium text-black">{label}</p>
<p className="text-sm text-neutral-600">{value}</p>
</div>
))}
</div>
{run.status === "FAILED" && (
<div className="mt-4 rounded-md border border-red-200 bg-red-50 p-3 dark:border-red-800 dark:bg-red-900/20">
<p className="text-sm text-red-800 dark:text-red-200">
<strong>Error:</strong>{" "}
{run.stats?.error ||
"The execution failed due to an internal error. You can re-run the agent to retry."}
</p>
</div>
)}
</CardContent>
</Card>
{/* Smart Agent Execution Summary */}
{run.stats?.activity_status && (
<Card className="agpt-box">
<CardHeader>
<CardTitle className="flex items-center gap-2 font-poppins text-lg">
Task Summary
<TooltipProvider>
<Tooltip>
<TooltipTrigger asChild>
<IconCircleAlert className="size-4 cursor-help text-neutral-500 hover:text-neutral-700" />
</TooltipTrigger>
<TooltipContent>
<p className="max-w-xs">
This AI-generated summary describes how the agent
handled your task. Its an experimental feature and may
occasionally be inaccurate.
</p>
</TooltipContent>
</Tooltip>
</TooltipProvider>
</CardTitle>
</CardHeader>
<CardContent className="space-y-4">
<p className="text-sm leading-relaxed text-neutral-700">
{run.stats.activity_status}
</p>
{/* Correctness Score */}
{typeof run.stats.correctness_score === "number" && (
<div className="flex items-center gap-3 rounded-lg bg-neutral-50 p-3">
<div className="flex items-center gap-2">
<span className="text-sm font-medium text-neutral-600">
Success Estimate:
</span>
<div className="flex items-center gap-2">
<div className="relative h-2 w-16 overflow-hidden rounded-full bg-neutral-200">
<div
className={`h-full transition-all ${
run.stats.correctness_score >= 0.8
? "bg-green-500"
: run.stats.correctness_score >= 0.6
? "bg-yellow-500"
: run.stats.correctness_score >= 0.4
? "bg-orange-500"
: "bg-red-500"
}`}
style={{
width: `${Math.round(run.stats.correctness_score * 100)}%`,
}}
/>
</div>
<span className="text-sm font-medium">
{Math.round(run.stats.correctness_score * 100)}%
</span>
</div>
</div>
<TooltipProvider>
<Tooltip>
<TooltipTrigger asChild>
<IconCircleAlert className="size-4 cursor-help text-neutral-400 hover:text-neutral-600" />
</TooltipTrigger>
<TooltipContent>
<p className="max-w-xs">
AI-generated estimate of how well this execution
achieved its intended purpose. This score indicates
{run.stats.correctness_score >= 0.8
? " the agent was highly successful."
: run.stats.correctness_score >= 0.6
? " the agent was mostly successful with minor issues."
: run.stats.correctness_score >= 0.4
? " the agent was partially successful with some gaps."
: " the agent had limited success with significant issues."}
</p>
</TooltipContent>
</Tooltip>
</TooltipProvider>
</div>
)}
</CardContent>
</Card>
)}
{agentRunOutputs !== null && (
<AgentRunOutputView agentRunOutputs={agentRunOutputs} />
)}
{/* Pending Reviews Section */}
{runStatus === "review" && (
<Card className="agpt-box">
<CardHeader>
<CardTitle className="font-poppins text-lg">
Pending Reviews ({pendingReviews.length})
</CardTitle>
</CardHeader>
<CardContent>
{reviewsLoading ? (
<LoadingBox spinnerSize={12} className="h-24" />
) : pendingReviews.length > 0 ? (
<PendingReviewsList
reviews={pendingReviews}
onReviewComplete={refetchReviews}
emptyMessage="No pending reviews for this execution"
/>
) : (
<div className="py-4 text-neutral-600">
No pending reviews for this execution
</div>
)}
</CardContent>
</Card>
)}
<Card className="agpt-box">
<CardHeader>
<CardTitle className="font-poppins text-lg">Input</CardTitle>
</CardHeader>
<CardContent className="flex flex-col gap-4">
{agentRunInputs !== undefined ? (
Object.entries(agentRunInputs).map(([key, { title, value }]) => (
<div key={key} className="flex flex-col gap-1.5">
<label className="text-sm font-medium">{title || key}</label>
<Input value={value} className="rounded-full" disabled />
</div>
))
) : (
<LoadingBox spinnerSize={12} className="h-24" />
)}
</CardContent>
</Card>
</div>
{/* Run / Agent Actions */}
<aside className="w-48 xl:w-56">
<div className="flex flex-col gap-8">
<ActionButtonGroup title="Run actions" actions={runActions} />
<ActionButtonGroup title="Agent actions" actions={agentActions} />
</div>
</aside>
</div>
);
}

View File

@@ -20,7 +20,7 @@ import {
import { useBackendAPI } from "@/lib/autogpt-server-api/context";
import { RunAgentInputs } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/modals/RunAgentInputs/RunAgentInputs";
import { ScheduleTaskDialog } from "@/components/contextual/CronScheduler/cron-scheduler-dialog";
import { ScheduleTaskDialog } from "@/app/(platform)/library/agents/[id]/components/OldAgentLibraryView/components/cron-scheduler-dialog";
import ActionButtonGroup from "@/components/__legacy__/action-button-group";
import type { ButtonAction } from "@/components/__legacy__/types";
import {
@@ -53,10 +53,7 @@ import { ClockIcon, CopyIcon, InfoIcon } from "@phosphor-icons/react";
import { CalendarClockIcon, Trash2Icon } from "lucide-react";
import { analytics } from "@/services/analytics";
import {
AgentStatus,
AgentStatusChip,
} from "@/app/(platform)/build/components/legacy-builder/agent-status-chip";
import { AgentStatus, AgentStatusChip } from "./agent-status-chip";
export function AgentRunDraftView({
graph,

View File

@@ -0,0 +1,178 @@
"use client";
import { Flag, useGetFlag } from "@/services/feature-flags/use-get-flag";
import React, { useMemo } from "react";
import {
Card,
CardContent,
CardHeader,
CardTitle,
} from "@/components/__legacy__/ui/card";
import LoadingBox from "@/components/__legacy__/ui/loading";
import type { OutputMetadata } from "../../../../../../../../components/contextual/OutputRenderers";
import {
globalRegistry,
OutputActions,
OutputItem,
} from "../../../../../../../../components/contextual/OutputRenderers";
export function AgentRunOutputView({
agentRunOutputs,
}: {
agentRunOutputs:
| Record<
string,
{
title?: string;
/* type: BlockIOSubType; */
values: Array<React.ReactNode>;
}
>
| undefined;
}) {
const enableEnhancedOutputHandling = useGetFlag(
Flag.ENABLE_ENHANCED_OUTPUT_HANDLING,
);
// Prepare items for the renderer system
const outputItems = useMemo(() => {
if (!agentRunOutputs) return [];
const items: Array<{
key: string;
label: string;
value: unknown;
metadata?: OutputMetadata;
renderer: any;
}> = [];
Object.entries(agentRunOutputs).forEach(([key, { title, values }]) => {
values.forEach((value, index) => {
// Enhanced metadata extraction
const metadata: OutputMetadata = {};
// Type guard to safely access properties
if (
typeof value === "object" &&
value !== null &&
!React.isValidElement(value)
) {
const objValue = value as any;
if (objValue.type) metadata.type = objValue.type;
if (objValue.mimeType) metadata.mimeType = objValue.mimeType;
if (objValue.filename) metadata.filename = objValue.filename;
}
const renderer = globalRegistry.getRenderer(value, metadata);
if (renderer) {
items.push({
key: `${key}-${index}`,
label: index === 0 ? title || key : "",
value,
metadata,
renderer,
});
} else {
const textRenderer = globalRegistry
.getAllRenderers()
.find((r) => r.name === "TextRenderer");
if (textRenderer) {
items.push({
key: `${key}-${index}`,
label: index === 0 ? title || key : "",
value: JSON.stringify(value, null, 2),
metadata,
renderer: textRenderer,
});
}
}
});
});
return items;
}, [agentRunOutputs]);
return (
<>
{enableEnhancedOutputHandling ? (
<Card className="agpt-box" style={{ maxWidth: "950px" }}>
<CardHeader>
<div className="flex items-center justify-between">
<CardTitle className="font-poppins text-lg">Output</CardTitle>
{outputItems.length > 0 && (
<OutputActions
items={outputItems.map((item) => ({
value: item.value,
metadata: item.metadata,
renderer: item.renderer,
}))}
/>
)}
</div>
</CardHeader>
<CardContent
className="flex flex-col gap-4"
style={{ maxWidth: "660px" }}
>
{agentRunOutputs !== undefined ? (
outputItems.length > 0 ? (
outputItems.map((item) => (
<OutputItem
key={item.key}
value={item.value}
metadata={item.metadata}
renderer={item.renderer}
label={item.label}
/>
))
) : (
<p className="text-sm text-muted-foreground">
No outputs to display
</p>
)
) : (
<LoadingBox spinnerSize={12} className="h-24" />
)}
</CardContent>
</Card>
) : (
<Card className="agpt-box" style={{ maxWidth: "950px" }}>
<CardHeader>
<CardTitle className="font-poppins text-lg">Output</CardTitle>
</CardHeader>
<CardContent
className="flex flex-col gap-4"
style={{ maxWidth: "660px" }}
>
{agentRunOutputs !== undefined ? (
Object.entries(agentRunOutputs).map(
([key, { title, values }]) => (
<div key={key} className="flex flex-col gap-1.5">
<label className="text-sm font-medium">
{title || key}
</label>
{values.map((value, i) => (
<p
className="resize-none overflow-x-auto whitespace-pre-wrap break-words border-none text-sm text-neutral-700 disabled:cursor-not-allowed"
key={i}
>
{value}
</p>
))}
{/* TODO: pretty type-dependent rendering */}
</div>
),
)
) : (
<LoadingBox spinnerSize={12} className="h-24" />
)}
</CardContent>
</Card>
)}
</>
);
}

View File

@@ -0,0 +1,68 @@
import React from "react";
import { Badge } from "@/components/__legacy__/ui/badge";
import { GraphExecutionMeta } from "@/lib/autogpt-server-api/types";
export type AgentRunStatus =
| "success"
| "failed"
| "queued"
| "running"
| "stopped"
| "scheduled"
| "draft"
| "review";
export const agentRunStatusMap: Record<
GraphExecutionMeta["status"],
AgentRunStatus
> = {
INCOMPLETE: "draft",
COMPLETED: "success",
FAILED: "failed",
QUEUED: "queued",
RUNNING: "running",
TERMINATED: "stopped",
REVIEW: "review",
};
const statusData: Record<
AgentRunStatus,
{ label: string; variant: keyof typeof statusStyles }
> = {
success: { label: "Success", variant: "success" },
running: { label: "Running", variant: "info" },
failed: { label: "Failed", variant: "destructive" },
queued: { label: "Queued", variant: "warning" },
draft: { label: "Draft", variant: "secondary" },
stopped: { label: "Stopped", variant: "secondary" },
scheduled: { label: "Scheduled", variant: "secondary" },
review: { label: "In Review", variant: "warning" },
};
const statusStyles = {
success:
"bg-green-100 text-green-800 hover:bg-green-100 hover:text-green-800",
destructive: "bg-red-100 text-red-800 hover:bg-red-100 hover:text-red-800",
warning:
"bg-yellow-100 text-yellow-800 hover:bg-yellow-100 hover:text-yellow-800",
info: "bg-blue-100 text-blue-800 hover:bg-blue-100 hover:text-blue-800",
secondary:
"bg-slate-100 text-slate-800 hover:bg-slate-100 hover:text-slate-800",
};
export function AgentRunStatusChip({
status,
}: {
status: AgentRunStatus;
}): React.ReactElement {
return (
<Badge
variant="secondary"
className={`text-xs font-medium ${statusStyles[statusData[status]?.variant]} rounded-[45px] px-[9px] py-[3px]`}
>
{statusData[status]?.label}
</Badge>
);
}

View File

@@ -0,0 +1,130 @@
import React from "react";
import { formatDistanceToNow, isPast } from "date-fns";
import { cn } from "@/lib/utils";
import { Link2Icon, Link2OffIcon, MoreVertical } from "lucide-react";
import { Card, CardContent } from "@/components/__legacy__/ui/card";
import { Button } from "@/components/__legacy__/ui/button";
import {
DropdownMenu,
DropdownMenuContent,
DropdownMenuItem,
DropdownMenuTrigger,
} from "@/components/__legacy__/ui/dropdown-menu";
import { AgentStatus, AgentStatusChip } from "./agent-status-chip";
import { AgentRunStatus, AgentRunStatusChip } from "./agent-run-status-chip";
import { PushPinSimpleIcon } from "@phosphor-icons/react";
export type AgentRunSummaryProps = (
| {
type: "run";
status: AgentRunStatus;
}
| {
type: "preset";
status?: undefined;
}
| {
type: "preset.triggered";
status: AgentStatus;
}
| {
type: "schedule";
status: "scheduled";
}
) & {
title: string;
timestamp?: number | Date;
selected?: boolean;
onClick?: () => void;
// onRename: () => void;
onDelete: () => void;
onPinAsPreset?: () => void;
className?: string;
};
export function AgentRunSummaryCard({
type,
status,
title,
timestamp,
selected = false,
onClick,
// onRename,
onDelete,
onPinAsPreset,
className,
}: AgentRunSummaryProps): React.ReactElement {
return (
<Card
className={cn(
"agpt-rounded-card cursor-pointer border-zinc-300",
selected ? "agpt-card-selected" : "",
className,
)}
onClick={onClick}
>
<CardContent className="relative p-2.5 lg:p-4">
{(type == "run" || type == "schedule") && (
<AgentRunStatusChip status={status} />
)}
{type == "preset" && (
<div className="flex items-center text-sm font-medium text-neutral-700">
<PushPinSimpleIcon className="mr-1 size-4 text-foreground" /> Preset
</div>
)}
{type == "preset.triggered" && (
<div className="flex items-center justify-between">
<AgentStatusChip status={status} />
<div className="flex items-center text-sm font-medium text-neutral-700">
{status == "inactive" ? (
<Link2OffIcon className="mr-1 size-4 text-foreground" />
) : (
<Link2Icon className="mr-1 size-4 text-foreground" />
)}{" "}
Trigger
</div>
</div>
)}
<div className="mt-5 flex items-center justify-between">
<h3 className="truncate pr-2 text-base font-medium text-neutral-900">
{title}
</h3>
<DropdownMenu>
<DropdownMenuTrigger asChild>
<Button variant="ghost" className="h-5 w-5 p-0">
<MoreVertical className="h-5 w-5" />
</Button>
</DropdownMenuTrigger>
<DropdownMenuContent>
{onPinAsPreset && (
<DropdownMenuItem onClick={onPinAsPreset}>
Pin as a preset
</DropdownMenuItem>
)}
{/* <DropdownMenuItem onClick={onRename}>Rename</DropdownMenuItem> */}
<DropdownMenuItem onClick={onDelete}>Delete</DropdownMenuItem>
</DropdownMenuContent>
</DropdownMenu>
</div>
{timestamp && (
<p
className="mt-1 text-sm font-normal text-neutral-500"
title={new Date(timestamp).toString()}
>
{isPast(timestamp) ? "Ran" : "Runs in"}{" "}
{formatDistanceToNow(timestamp, { addSuffix: true })}
</p>
)}
</CardContent>
</Card>
);
}

View File

@@ -0,0 +1,237 @@
"use client";
import { Plus } from "lucide-react";
import React, { useEffect, useState } from "react";
import {
GraphExecutionID,
GraphExecutionMeta,
LibraryAgent,
LibraryAgentPreset,
LibraryAgentPresetID,
Schedule,
ScheduleID,
} from "@/lib/autogpt-server-api";
import { cn } from "@/lib/utils";
import { Badge } from "@/components/__legacy__/ui/badge";
import { Button } from "@/components/atoms/Button/Button";
import LoadingBox, { LoadingSpinner } from "@/components/__legacy__/ui/loading";
import { Separator } from "@/components/__legacy__/ui/separator";
import { ScrollArea } from "@/components/__legacy__/ui/scroll-area";
import { InfiniteScroll } from "@/components/contextual/InfiniteScroll/InfiniteScroll";
import { AgentRunsQuery } from "../use-agent-runs";
import { agentRunStatusMap } from "./agent-run-status-chip";
import { AgentRunSummaryCard } from "./agent-run-summary-card";
interface AgentRunsSelectorListProps {
agent: LibraryAgent;
agentRunsQuery: AgentRunsQuery;
agentPresets: LibraryAgentPreset[];
schedules: Schedule[];
selectedView: { type: "run" | "preset" | "schedule"; id?: string };
allowDraftNewRun?: boolean;
onSelectRun: (id: GraphExecutionID) => void;
onSelectPreset: (preset: LibraryAgentPresetID) => void;
onSelectSchedule: (id: ScheduleID) => void;
onSelectDraftNewRun: () => void;
doDeleteRun: (id: GraphExecutionMeta) => void;
doDeletePreset: (id: LibraryAgentPresetID) => void;
doDeleteSchedule: (id: ScheduleID) => void;
doCreatePresetFromRun?: (id: GraphExecutionID) => void;
className?: string;
}
export function AgentRunsSelectorList({
agent,
agentRunsQuery: {
agentRuns,
agentRunCount,
agentRunsLoading,
hasMoreRuns,
fetchMoreRuns,
isFetchingMoreRuns,
},
agentPresets,
schedules,
selectedView,
allowDraftNewRun = true,
onSelectRun,
onSelectPreset,
onSelectSchedule,
onSelectDraftNewRun,
doDeleteRun,
doDeletePreset,
doDeleteSchedule,
doCreatePresetFromRun,
className,
}: AgentRunsSelectorListProps): React.ReactElement {
const [activeListTab, setActiveListTab] = useState<"runs" | "scheduled">(
"runs",
);
useEffect(() => {
if (selectedView.type === "schedule") {
setActiveListTab("scheduled");
} else {
setActiveListTab("runs");
}
}, [selectedView]);
const listItemClasses = "h-28 w-72 lg:w-full lg:h-32";
return (
<aside className={cn("flex flex-col gap-4", className)}>
{allowDraftNewRun ? (
<Button
className={"mb-4 hidden lg:flex"}
onClick={onSelectDraftNewRun}
leftIcon={<Plus className="h-6 w-6" />}
>
New {agent.has_external_trigger ? "trigger" : "run"}
</Button>
) : null}
<div className="flex gap-2">
<Badge
variant={activeListTab === "runs" ? "secondary" : "outline"}
className="cursor-pointer gap-2 rounded-full text-base"
onClick={() => setActiveListTab("runs")}
>
<span>Runs</span>
<span className="text-neutral-600">
{agentRunCount ?? <LoadingSpinner className="size-4" />}
</span>
</Badge>
<Badge
variant={activeListTab === "scheduled" ? "secondary" : "outline"}
className="cursor-pointer gap-2 rounded-full text-base"
onClick={() => setActiveListTab("scheduled")}
>
<span>Scheduled</span>
<span className="text-neutral-600">{schedules.length}</span>
</Badge>
</div>
{/* Runs / Schedules list */}
{agentRunsLoading && activeListTab === "runs" ? (
<LoadingBox className="h-28 w-full lg:h-[calc(100vh-300px)] lg:w-72 xl:w-80" />
) : (
<ScrollArea
className="w-full lg:h-[calc(100vh-300px)] lg:w-72 xl:w-80"
orientation={window.innerWidth >= 1024 ? "vertical" : "horizontal"}
>
<InfiniteScroll
direction={window.innerWidth >= 1024 ? "vertical" : "horizontal"}
hasNextPage={hasMoreRuns}
fetchNextPage={fetchMoreRuns}
isFetchingNextPage={isFetchingMoreRuns}
>
<div className="flex items-center gap-2 lg:flex-col">
{/* New Run button - only in small layouts */}
{allowDraftNewRun && (
<Button
size="large"
className={
"flex h-12 w-40 items-center gap-2 py-6 lg:hidden " +
(selectedView.type == "run" && !selectedView.id
? "agpt-card-selected text-accent"
: "")
}
onClick={onSelectDraftNewRun}
leftIcon={<Plus className="h-6 w-6" />}
>
New {agent.has_external_trigger ? "trigger" : "run"}
</Button>
)}
{activeListTab === "runs" ? (
<>
{agentPresets
.filter((preset) => preset.webhook) // Triggers
.toSorted(
(a, b) => b.updated_at.getTime() - a.updated_at.getTime(),
)
.map((preset) => (
<AgentRunSummaryCard
className={cn(listItemClasses, "lg:h-auto")}
key={preset.id}
type="preset.triggered"
status={preset.is_active ? "active" : "inactive"}
title={preset.name}
// timestamp={preset.last_run_time} // TODO: implement this
selected={selectedView.id === preset.id}
onClick={() => onSelectPreset(preset.id)}
onDelete={() => doDeletePreset(preset.id)}
/>
))}
{agentPresets
.filter((preset) => !preset.webhook) // Presets
.toSorted(
(a, b) => b.updated_at.getTime() - a.updated_at.getTime(),
)
.map((preset) => (
<AgentRunSummaryCard
className={cn(listItemClasses, "lg:h-auto")}
key={preset.id}
type="preset"
title={preset.name}
// timestamp={preset.last_run_time} // TODO: implement this
selected={selectedView.id === preset.id}
onClick={() => onSelectPreset(preset.id)}
onDelete={() => doDeletePreset(preset.id)}
/>
))}
{agentPresets.length > 0 && <Separator className="my-1" />}
{agentRuns
.toSorted((a, b) => {
const aTime = a.started_at?.getTime() ?? 0;
const bTime = b.started_at?.getTime() ?? 0;
return bTime - aTime;
})
.map((run) => (
<AgentRunSummaryCard
className={listItemClasses}
key={run.id}
type="run"
status={agentRunStatusMap[run.status]}
title={
(run.preset_id
? agentPresets.find((p) => p.id == run.preset_id)
?.name
: null) ?? agent.name
}
timestamp={run.started_at ?? undefined}
selected={selectedView.id === run.id}
onClick={() => onSelectRun(run.id)}
onDelete={() => doDeleteRun(run as GraphExecutionMeta)}
onPinAsPreset={
doCreatePresetFromRun
? () => doCreatePresetFromRun(run.id)
: undefined
}
/>
))}
</>
) : (
schedules.map((schedule) => (
<AgentRunSummaryCard
className={listItemClasses}
key={schedule.id}
type="schedule"
status="scheduled" // TODO: implement active/inactive status for schedules
title={schedule.name}
timestamp={schedule.next_run_time}
selected={selectedView.id === schedule.id}
onClick={() => onSelectSchedule(schedule.id)}
onDelete={() => doDeleteSchedule(schedule.id)}
/>
))
)}
</div>
</InfiniteScroll>
</ScrollArea>
)}
</aside>
);
}

View File

@@ -0,0 +1,180 @@
"use client";
import React, { useCallback, useMemo } from "react";
import {
Graph,
GraphExecutionID,
Schedule,
ScheduleID,
} from "@/lib/autogpt-server-api";
import { useBackendAPI } from "@/lib/autogpt-server-api/context";
import ActionButtonGroup from "@/components/__legacy__/action-button-group";
import type { ButtonAction } from "@/components/__legacy__/types";
import {
Card,
CardContent,
CardHeader,
CardTitle,
} from "@/components/__legacy__/ui/card";
import { IconCross } from "@/components/__legacy__/ui/icons";
import { Input } from "@/components/__legacy__/ui/input";
import LoadingBox from "@/components/__legacy__/ui/loading";
import { useToastOnFail } from "@/components/molecules/Toast/use-toast";
import { humanizeCronExpression } from "@/lib/cron-expression-utils";
import { formatScheduleTime } from "@/lib/timezone-utils";
import { useUserTimezone } from "@/lib/hooks/useUserTimezone";
import { PlayIcon } from "lucide-react";
import { AgentRunStatus } from "./agent-run-status-chip";
export function AgentScheduleDetailsView({
graph,
schedule,
agentActions,
onForcedRun,
doDeleteSchedule,
}: {
graph: Graph;
schedule: Schedule;
agentActions: ButtonAction[];
onForcedRun: (runID: GraphExecutionID) => void;
doDeleteSchedule: (scheduleID: ScheduleID) => void;
}): React.ReactNode {
const api = useBackendAPI();
const selectedRunStatus: AgentRunStatus = "scheduled";
const toastOnFail = useToastOnFail();
// Get user's timezone for displaying schedule times
const userTimezone = useUserTimezone();
const infoStats: { label: string; value: React.ReactNode }[] = useMemo(() => {
return [
{
label: "Status",
value:
selectedRunStatus.charAt(0).toUpperCase() +
selectedRunStatus.slice(1),
},
{
label: "Schedule",
value: humanizeCronExpression(schedule.cron),
},
{
label: "Next run",
value: formatScheduleTime(schedule.next_run_time, userTimezone),
},
];
}, [schedule, selectedRunStatus, userTimezone]);
const agentRunInputs: Record<
string,
{ title?: string; /* type: BlockIOSubType; */ value: any }
> = useMemo(() => {
// TODO: show (link to) preset - https://github.com/Significant-Gravitas/AutoGPT/issues/9168
// Add type info from agent input schema
return Object.fromEntries(
Object.entries(schedule.input_data).map(([k, v]) => [
k,
{
title: graph.input_schema.properties[k].title,
/* TODO: type: agent.input_schema.properties[k].type */
value: v,
},
]),
);
}, [graph, schedule]);
const runNow = useCallback(
() =>
api
.executeGraph(
graph.id,
graph.version,
schedule.input_data,
schedule.input_credentials,
"library",
)
.then((run) => onForcedRun(run.id))
.catch(toastOnFail("execute agent")),
[api, graph, schedule, onForcedRun, toastOnFail],
);
const runActions: ButtonAction[] = useMemo(
() => [
{
label: (
<>
<PlayIcon className="mr-2 size-4" />
Run now
</>
),
callback: runNow,
},
{
label: (
<>
<IconCross className="mr-2 size-4 px-0.5" />
Delete schedule
</>
),
callback: () => doDeleteSchedule(schedule.id),
variant: "destructive",
},
],
[runNow],
);
return (
<div className="agpt-div flex gap-6">
<div className="flex flex-1 flex-col gap-4">
<Card className="agpt-box">
<CardHeader>
<CardTitle className="font-poppins text-lg">Info</CardTitle>
</CardHeader>
<CardContent>
<div className="flex justify-stretch gap-4">
{infoStats.map(({ label, value }) => (
<div key={label} className="flex-1">
<p className="text-sm font-medium text-black">{label}</p>
<p className="text-sm text-neutral-600">{value}</p>
</div>
))}
</div>
</CardContent>
</Card>
<Card className="agpt-box">
<CardHeader>
<CardTitle className="font-poppins text-lg">Input</CardTitle>
</CardHeader>
<CardContent className="flex flex-col gap-4">
{agentRunInputs !== undefined ? (
Object.entries(agentRunInputs).map(([key, { title, value }]) => (
<div key={key} className="flex flex-col gap-1.5">
<label className="text-sm font-medium">{title || key}</label>
<Input value={value} className="rounded-full" disabled />
</div>
))
) : (
<LoadingBox spinnerSize={12} className="h-24" />
)}
</CardContent>
</Card>
</div>
{/* Run / Agent Actions */}
<aside className="w-48 xl:w-56">
<div className="flex flex-col gap-8">
<ActionButtonGroup title="Run actions" actions={runActions} />
<ActionButtonGroup title="Agent actions" actions={agentActions} />
</div>
</aside>
</div>
);
}

View File

@@ -0,0 +1,100 @@
"use client";
import React, { useState } from "react";
import { Button } from "@/components/__legacy__/ui/button";
import {
Dialog,
DialogContent,
DialogDescription,
DialogFooter,
DialogHeader,
DialogTitle,
} from "@/components/__legacy__/ui/dialog";
import { Input } from "@/components/__legacy__/ui/input";
import { Textarea } from "@/components/__legacy__/ui/textarea";
interface CreatePresetDialogProps {
open: boolean;
onOpenChange: (open: boolean) => void;
onConfirm: (name: string, description: string) => Promise<void> | void;
}
export function CreatePresetDialog({
open,
onOpenChange,
onConfirm,
}: CreatePresetDialogProps) {
const [name, setName] = useState("");
const [description, setDescription] = useState("");
const handleSubmit = async () => {
if (name.trim()) {
await onConfirm(name.trim(), description.trim());
setName("");
setDescription("");
onOpenChange(false);
}
};
const handleCancel = () => {
setName("");
setDescription("");
onOpenChange(false);
};
const handleKeyDown = (e: React.KeyboardEvent) => {
if (e.key === "Enter" && (e.metaKey || e.ctrlKey)) {
e.preventDefault();
handleSubmit();
}
};
return (
<Dialog open={open} onOpenChange={onOpenChange}>
<DialogContent className="sm:max-w-[425px]">
<DialogHeader>
<DialogTitle>Create Preset</DialogTitle>
<DialogDescription>
Give your preset a name and description to help identify it later.
</DialogDescription>
</DialogHeader>
<div className="grid gap-4 py-4">
<div className="grid gap-2">
<label htmlFor="preset-name" className="text-sm font-medium">
Name *
</label>
<Input
id="preset-name"
placeholder="Enter preset name"
value={name}
onChange={(e) => setName(e.target.value)}
onKeyDown={handleKeyDown}
autoFocus
/>
</div>
<div className="grid gap-2">
<label htmlFor="preset-description" className="text-sm font-medium">
Description
</label>
<Textarea
id="preset-description"
placeholder="Optional description"
value={description}
onChange={(e) => setDescription(e.target.value)}
onKeyDown={handleKeyDown}
rows={3}
/>
</div>
</div>
<DialogFooter>
<Button variant="outline" onClick={handleCancel}>
Cancel
</Button>
<Button onClick={handleSubmit} disabled={!name.trim()}>
Create Preset
</Button>
</DialogFooter>
</DialogContent>
</Dialog>
);
}

View File

@@ -2,7 +2,7 @@ import { useEffect, useState } from "react";
import { Input } from "@/components/__legacy__/ui/input";
import { Button } from "@/components/__legacy__/ui/button";
import { useToast } from "@/components/molecules/Toast/use-toast";
import { CronScheduler } from "@/components/contextual/CronScheduler/cron-scheduler";
import { CronScheduler } from "@/app/(platform)/library/agents/[id]/components/OldAgentLibraryView/components/cron-scheduler";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { getTimezoneDisplayName } from "@/lib/timezone-utils";
import { useUserTimezone } from "@/lib/hooks/useUserTimezone";

View File

@@ -0,0 +1,210 @@
import {
GraphExecutionMeta as LegacyGraphExecutionMeta,
GraphID,
GraphExecutionID,
} from "@/lib/autogpt-server-api";
import { getQueryClient } from "@/lib/react-query/queryClient";
import {
getPaginatedTotalCount,
getPaginationNextPageNumber,
unpaginate,
} from "@/app/api/helpers";
import {
getV1ListGraphExecutionsResponse,
getV1ListGraphExecutionsResponse200,
useGetV1ListGraphExecutionsInfinite,
} from "@/app/api/__generated__/endpoints/graphs/graphs";
import { GraphExecutionsPaginated } from "@/app/api/__generated__/models/graphExecutionsPaginated";
import { GraphExecutionMeta as RawGraphExecutionMeta } from "@/app/api/__generated__/models/graphExecutionMeta";
export type GraphExecutionMeta = Omit<
RawGraphExecutionMeta,
"id" | "user_id" | "graph_id" | "preset_id" | "stats"
> &
Pick<
LegacyGraphExecutionMeta,
"id" | "user_id" | "graph_id" | "preset_id" | "stats"
>;
/** Hook to fetch runs for a specific graph, with support for infinite scroll.
*
* @param graphID - The ID of the graph to fetch agent runs for. This parameter is
* optional in the sense that the hook doesn't run unless it is passed.
* This way, it can be used in components where the graph ID is not
* immediately available.
*/
export const useAgentRunsInfinite = (graphID?: GraphID) => {
const queryClient = getQueryClient();
const {
data: queryResults,
refetch: refetchRuns,
isPending: agentRunsLoading,
isRefetching: agentRunsReloading,
hasNextPage: hasMoreRuns,
fetchNextPage: fetchMoreRuns,
isFetchingNextPage: isFetchingMoreRuns,
queryKey,
} = useGetV1ListGraphExecutionsInfinite(
graphID!,
{ page: 1, page_size: 20 },
{
query: {
getNextPageParam: getPaginationNextPageNumber,
// Prevent query from running if graphID is not available (yet)
...(!graphID
? {
enabled: false,
queryFn: () =>
// Fake empty response if graphID is not available (yet)
Promise.resolve({
status: 200,
data: {
executions: [],
pagination: {
current_page: 1,
page_size: 20,
total_items: 0,
total_pages: 0,
},
},
headers: new Headers(),
} satisfies getV1ListGraphExecutionsResponse),
}
: {}),
},
},
queryClient,
);
const agentRuns = queryResults ? unpaginate(queryResults, "executions") : [];
const agentRunCount = getPaginatedTotalCount(queryResults);
const upsertAgentRun = (newAgentRun: GraphExecutionMeta) => {
queryClient.setQueryData(
queryKey,
(currentQueryData: typeof queryResults) => {
if (!currentQueryData?.pages || agentRunCount === undefined)
return currentQueryData;
const exists = currentQueryData.pages.some((page) => {
if (page.status !== 200) return false;
const response = page.data;
return response.executions.some((run) => run.id === newAgentRun.id);
});
if (exists) {
// If the run already exists, we update it
return {
...currentQueryData,
pages: currentQueryData.pages.map((page) => {
if (page.status !== 200) return page;
const response = page.data;
const executions = response.executions;
const index = executions.findIndex(
(run) => run.id === newAgentRun.id,
);
if (index === -1) return page;
const newExecutions = [...executions];
newExecutions[index] = newAgentRun;
return {
...page,
data: {
...response,
executions: newExecutions,
},
} satisfies getV1ListGraphExecutionsResponse;
}),
};
}
// If the run does not exist, we add it to the first page
const page = currentQueryData
.pages[0] as getV1ListGraphExecutionsResponse200 & {
headers: Headers;
};
const updatedExecutions = [newAgentRun, ...page.data.executions];
const updatedPage = {
...page,
data: {
...page.data,
executions: updatedExecutions,
},
} satisfies getV1ListGraphExecutionsResponse;
const updatedPages = [updatedPage, ...currentQueryData.pages.slice(1)];
return {
...currentQueryData,
pages: updatedPages.map(
// Increment the total runs count in the pagination info of all pages
(page) =>
page.status === 200
? {
...page,
data: {
...page.data,
pagination: {
...page.data.pagination,
total_items: agentRunCount + 1,
},
},
}
: page,
),
};
},
);
};
const removeAgentRun = (runID: GraphExecutionID) => {
queryClient.setQueryData(
[queryKey, { page: 1, page_size: 20 }],
(currentQueryData: typeof queryResults) => {
if (!currentQueryData?.pages) return currentQueryData;
let found = false;
return {
...currentQueryData,
pages: currentQueryData.pages.map((page) => {
const response = page.data as GraphExecutionsPaginated;
const filteredExecutions = response.executions.filter(
(run) => run.id !== runID,
);
if (filteredExecutions.length < response.executions.length) {
found = true;
}
return {
...page,
data: {
...response,
executions: filteredExecutions,
pagination: {
...response.pagination,
total_items:
response.pagination.total_items - (found ? 1 : 0),
},
},
};
}),
};
},
);
};
return {
agentRuns: agentRuns as GraphExecutionMeta[],
refetchRuns,
agentRunCount,
agentRunsLoading: agentRunsLoading || agentRunsReloading,
hasMoreRuns,
fetchMoreRuns,
isFetchingMoreRuns,
upsertAgentRun,
removeAgentRun,
};
};
export type AgentRunsQuery = ReturnType<typeof useAgentRunsInfinite>;

View File

@@ -0,0 +1,7 @@
"use client";
import { OldAgentLibraryView } from "../../agents/[id]/components/OldAgentLibraryView/OldAgentLibraryView";
export default function OldAgentLibraryPage() {
return <OldAgentLibraryView />;
}

View File

@@ -1052,6 +1052,7 @@
{
"$ref": "#/components/schemas/ClarificationNeededResponse"
},
{ "$ref": "#/components/schemas/SuggestedGoalResponse" },
{ "$ref": "#/components/schemas/BlockListResponse" },
{ "$ref": "#/components/schemas/BlockDetailsResponse" },
{ "$ref": "#/components/schemas/BlockOutputResponse" },
@@ -1151,36 +1152,6 @@
}
},
"/api/chat/sessions/{session_id}": {
"delete": {
"tags": ["v2", "chat", "chat"],
"summary": "Delete Session",
"description": "Delete a chat session.\n\nPermanently removes a chat session and all its messages.\nOnly the owner can delete their sessions.\n\nArgs:\n session_id: The session ID to delete.\n user_id: The authenticated user's ID.\n\nReturns:\n 204 No Content on success.\n\nRaises:\n HTTPException: 404 if session not found or not owned by user.",
"operationId": "deleteV2DeleteSession",
"security": [{ "HTTPBearerJWT": [] }],
"parameters": [
{
"name": "session_id",
"in": "path",
"required": true,
"schema": { "type": "string", "title": "Session Id" }
}
],
"responses": {
"204": { "description": "Successful Response" },
"401": {
"$ref": "#/components/responses/HTTP401NotAuthenticatedError"
},
"404": { "description": "Session not found or access denied" },
"422": {
"description": "Validation Error",
"content": {
"application/json": {
"schema": { "$ref": "#/components/schemas/HTTPValidationError" }
}
}
}
}
},
"get": {
"tags": ["v2", "chat", "chat"],
"summary": "Get Session",
@@ -10796,7 +10767,8 @@
"bash_exec",
"operation_status",
"feature_request_search",
"feature_request_created"
"feature_request_created",
"suggested_goal"
],
"title": "ResponseType",
"description": "Types of tool responses."
@@ -11677,6 +11649,46 @@
"enum": ["DRAFT", "PENDING", "APPROVED", "REJECTED"],
"title": "SubmissionStatus"
},
"SuggestedGoalResponse": {
"properties": {
"type": {
"$ref": "#/components/schemas/ResponseType",
"default": "suggested_goal"
},
"message": { "type": "string", "title": "Message" },
"session_id": {
"anyOf": [{ "type": "string" }, { "type": "null" }],
"title": "Session Id"
},
"suggested_goal": {
"type": "string",
"title": "Suggested Goal",
"description": "The suggested alternative goal"
},
"reason": {
"type": "string",
"title": "Reason",
"description": "Why the original goal needs refinement",
"default": ""
},
"original_goal": {
"type": "string",
"title": "Original Goal",
"description": "The user's original goal for context",
"default": ""
},
"goal_type": {
"type": "string",
"title": "Goal Type",
"description": "Type: 'vague' or 'unachievable'",
"default": "vague"
}
},
"type": "object",
"required": ["message", "suggested_goal"],
"title": "SuggestedGoalResponse",
"description": "Response when the goal needs refinement with a suggested alternative."
},
"SuggestionsResponse": {
"properties": {
"otto_suggestions": {

View File

@@ -115,7 +115,7 @@ const DialogFooter = ({
}: React.HTMLAttributes<HTMLDivElement>) => (
<div
className={cn(
"flex flex-col-reverse gap-2 sm:flex-row sm:justify-end",
"flex flex-col-reverse sm:flex-row sm:justify-end sm:space-x-2",
className,
)}
{...props}

View File

@@ -1,6 +1,6 @@
"use client";
import { CronExpressionDialog } from "@/components/contextual/CronScheduler/cron-scheduler-dialog";
import { CronExpressionDialog } from "@/app/(platform)/library/agents/[id]/components/OldAgentLibraryView/components/cron-scheduler-dialog";
import { Form, FormField } from "@/components/__legacy__/ui/form";
import { Button } from "@/components/atoms/Button/Button";
import { Input } from "@/components/atoms/Input/Input";

View File

@@ -7,6 +7,7 @@ import { useFlags } from "launchdarkly-react-client-sdk";
export enum Flag {
BETA_BLOCKS = "beta-blocks",
NEW_BLOCK_MENU = "new-block-menu",
NEW_AGENT_RUNS = "new-agent-runs",
GRAPH_SEARCH = "graph-search",
ENABLE_ENHANCED_OUTPUT_HANDLING = "enable-enhanced-output-handling",
SHARE_EXECUTION_RESULTS = "share-execution-results",
@@ -21,6 +22,7 @@ const isPwMockEnabled = process.env.NEXT_PUBLIC_PW_TEST === "true";
const defaultFlags = {
[Flag.BETA_BLOCKS]: [],
[Flag.NEW_BLOCK_MENU]: false,
[Flag.NEW_AGENT_RUNS]: false,
[Flag.GRAPH_SEARCH]: false,
[Flag.ENABLE_ENHANCED_OUTPUT_HANDLING]: false,
[Flag.SHARE_EXECUTION_RESULTS]: false,

View File

@@ -1,4 +0,0 @@
declare module "*.png" {
const content: import("next/image").StaticImageData;
export default content;
}

View File

@@ -65,7 +65,7 @@ The result routes data to yes_output or no_output, enabling intelligent branchin
| condition | A plaintext English description of the condition to evaluate | str | Yes |
| yes_value | (Optional) Value to output if the condition is true. If not provided, input_value will be used. | Yes Value | No |
| no_value | (Optional) Value to output if the condition is false. If not provided, input_value will be used. | No Value | No |
| model | The language model to use for evaluating the condition. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-opus-4-6" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| model | The language model to use for evaluating the condition. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-opus-4-6" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
### Outputs
@@ -103,7 +103,7 @@ The block sends the entire conversation history to the chosen LLM, including sys
|-------|-------------|------|----------|
| prompt | The prompt to send to the language model. | str | No |
| messages | List of messages in the conversation. | List[Any] | Yes |
| model | The language model to use for the conversation. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-opus-4-6" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| model | The language model to use for the conversation. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-opus-4-6" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| max_tokens | The maximum number of tokens to generate in the chat completion. | int | No |
| ollama_host | Ollama host for local models | str | No |
@@ -257,7 +257,7 @@ The block formulates a prompt based on the given focus or source data, sends it
|-------|-------------|------|----------|
| focus | The focus of the list to generate. | str | No |
| source_data | The data to generate the list from. | str | No |
| model | The language model to use for generating the list. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-opus-4-6" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| model | The language model to use for generating the list. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-opus-4-6" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| max_retries | Maximum number of retries for generating a valid list. | int | No |
| force_json_output | Whether to force the LLM to produce a JSON-only response. This can increase the block's reliability, but may also reduce the quality of the response because it prohibits the LLM from reasoning before providing its JSON response. | bool | No |
| max_tokens | The maximum number of tokens to generate in the chat completion. | int | No |
@@ -424,7 +424,7 @@ The block sends the input prompt to a chosen LLM, along with any system prompts
| prompt | The prompt to send to the language model. | str | Yes |
| expected_format | Expected format of the response. If provided, the response will be validated against this format. The keys should be the expected fields in the response, and the values should be the description of the field. | Dict[str, str] | Yes |
| list_result | Whether the response should be a list of objects in the expected format. | bool | No |
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-opus-4-6" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-opus-4-6" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| force_json_output | Whether to force the LLM to produce a JSON-only response. This can increase the block's reliability, but may also reduce the quality of the response because it prohibits the LLM from reasoning before providing its JSON response. | bool | No |
| sys_prompt | The system prompt to provide additional context to the model. | str | No |
| conversation_history | The conversation history to provide context for the prompt. | List[Dict[str, Any]] | No |
@@ -464,7 +464,7 @@ The block sends the input prompt to a chosen LLM, processes the response, and re
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| prompt | The prompt to send to the language model. You can use any of the {keys} from Prompt Values to fill in the prompt with values from the prompt values dictionary by putting them in curly braces. | str | Yes |
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-opus-4-6" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-opus-4-6" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| sys_prompt | The system prompt to provide additional context to the model. | str | No |
| retry | Number of times to retry the LLM call if the response does not match the expected format. | int | No |
| prompt_values | Values used to fill in the prompt. The values can be used in the prompt by putting them in a double curly braces, e.g. {{variable_name}}. | Dict[str, str] | No |
@@ -501,7 +501,7 @@ The block splits the input text into smaller chunks, sends each chunk to an LLM
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| text | The text to summarize. | str | Yes |
| model | The language model to use for summarizing the text. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-opus-4-6" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| model | The language model to use for summarizing the text. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-opus-4-6" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| focus | The topic to focus on in the summary | str | No |
| style | The style of the summary to generate. | "concise" \| "detailed" \| "bullet points" \| "numbered list" | No |
| max_tokens | The maximum number of tokens to generate in the chat completion. | int | No |
@@ -763,7 +763,7 @@ Configure agent_mode_max_iterations to control loop behavior: 0 for single decis
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| prompt | The prompt to send to the language model. | str | Yes |
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-opus-4-6" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-opus-4-6" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| multiple_tool_calls | Whether to allow multiple tool calls in a single response. | bool | No |
| sys_prompt | The system prompt to provide additional context to the model. | str | No |
| conversation_history | The conversation history to provide context for the prompt. | List[Dict[str, Any]] | No |