Compare commits

..

2 Commits

Author SHA1 Message Date
Aarushi
3860a9b6e4 remove work dir 2024-09-22 12:22:46 +01:00
Aarushi
1414b83cf8 wip 2024-09-22 11:57:22 +01:00
1020 changed files with 23397 additions and 118561 deletions

View File

@@ -1,18 +0,0 @@
version = 1
test_patterns = ["**/*.spec.ts","**/*_test.py","**/*_tests.py","**/test_*.py"]
exclude_patterns = ["classic/**"]
[[analyzers]]
name = "javascript"
[analyzers.meta]
plugins = ["react"]
environment = ["nodejs"]
[[analyzers]]
name = "python"
[analyzers.meta]
runtime_version = "3.x.x"

View File

@@ -1,61 +0,0 @@
# Ignore everything by default, selectively add things to context
*
# Platform - Libs
!autogpt_platform/autogpt_libs/autogpt_libs/
!autogpt_platform/autogpt_libs/pyproject.toml
!autogpt_platform/autogpt_libs/poetry.lock
!autogpt_platform/autogpt_libs/README.md
# Platform - Backend
!autogpt_platform/backend/backend/
!autogpt_platform/backend/migrations/
!autogpt_platform/backend/schema.prisma
!autogpt_platform/backend/pyproject.toml
!autogpt_platform/backend/poetry.lock
!autogpt_platform/backend/README.md
# Platform - Market
!autogpt_platform/market/market/
!autogpt_platform/market/scripts.py
!autogpt_platform/market/schema.prisma
!autogpt_platform/market/pyproject.toml
!autogpt_platform/market/poetry.lock
!autogpt_platform/market/README.md
# Platform - Frontend
!autogpt_platform/frontend/src/
!autogpt_platform/frontend/public/
!autogpt_platform/frontend/package.json
!autogpt_platform/frontend/yarn.lock
!autogpt_platform/frontend/tsconfig.json
!autogpt_platform/frontend/README.md
## config
!autogpt_platform/frontend/*.config.*
!autogpt_platform/frontend/.env.*
# Classic - AutoGPT
!classic/original_autogpt/autogpt/
!classic/original_autogpt/pyproject.toml
!classic/original_autogpt/poetry.lock
!classic/original_autogpt/README.md
!classic/original_autogpt/tests/
# Classic - Benchmark
!classic/benchmark/agbenchmark/
!classic/benchmark/pyproject.toml
!classic/benchmark/poetry.lock
!classic/benchmark/README.md
# Classic - Forge
!classic/forge/
!classic/forge/pyproject.toml
!classic/forge/poetry.lock
!classic/forge/README.md
# Classic - Frontend
!classic/frontend/build/web/
# Explicitly re-ignore some folders
.*
**/__pycache__

View File

@@ -1,38 +1,23 @@
### Background
<!-- Clearly explain the need for these changes: -->
### Changes 🏗️
<!-- Concisely describe all of the changes made in this pull request: -->
### Checklist 📋
#### For code changes:
- [ ] I have clearly listed my changes in the PR description
- [ ] I have made a test plan
- [ ] I have tested my changes according to the test plan:
<!-- Put your test plan here: -->
- [ ] ...
### Testing 🔍
> [!NOTE]
Only for the new autogpt platform, currently in autogpt_platform/
<details>
<summary>Example test plan</summary>
- [ ] Create from scratch and execute an agent with at least 3 blocks
- [ ] Import an agent from file upload, and confirm it executes correctly
- [ ] Upload agent to marketplace
- [ ] Import an agent from marketplace and confirm it executes correctly
- [ ] Edit an agent from monitor, and confirm it executes correctly
</details>
<!--
Please make sure your changes have been tested and are in good working condition.
Here is a list of our critical paths, if you need some inspiration on what and how to test:
-->
#### For configuration changes:
- [ ] `.env.example` is updated or already compatible with my changes
- [ ] `docker-compose.yml` is updated or already compatible with my changes
- [ ] I have included a list of my configuration changes in the PR description (under **Changes**)
<details>
<summary>Examples of configuration changes</summary>
- Changing ports
- Adding new services that need to communicate with each other
- Secrets or environment variable changes
- New or infrastructure changes such as databases
</details>
- Create from scratch and execute an agent with at least 3 blocks
- Import an agent from file upload, and confirm it executes correctly
- Upload agent to marketplace
- Import an agent from marketplace and confirm it executes correctly
- Edit an agent from monitor, and confirm it executes correctly

151
.github/dependabot.yml vendored
View File

@@ -1,151 +0,0 @@
version: 2
updates:
# autogpt_libs (Poetry project)
- package-ecosystem: "pip"
directory: "autogpt_platform/autogpt_libs"
schedule:
interval: "weekly"
open-pull-requests-limit: 10
target-branch: "dev"
commit-message:
prefix: "chore(libs/deps)"
prefix-development: "chore(libs/deps-dev)"
groups:
production-dependencies:
dependency-type: "production"
update-types:
- "minor"
- "patch"
development-dependencies:
dependency-type: "development"
update-types:
- "minor"
- "patch"
# backend (Poetry project)
- package-ecosystem: "pip"
directory: "autogpt_platform/backend"
schedule:
interval: "weekly"
open-pull-requests-limit: 10
target-branch: "dev"
commit-message:
prefix: "chore(backend/deps)"
prefix-development: "chore(backend/deps-dev)"
groups:
production-dependencies:
dependency-type: "production"
update-types:
- "minor"
- "patch"
development-dependencies:
dependency-type: "development"
update-types:
- "minor"
- "patch"
# frontend (Next.js project)
- package-ecosystem: "npm"
directory: "autogpt_platform/frontend"
schedule:
interval: "weekly"
open-pull-requests-limit: 10
target-branch: "dev"
commit-message:
prefix: "chore(frontend/deps)"
prefix-development: "chore(frontend/deps-dev)"
groups:
production-dependencies:
dependency-type: "production"
update-types:
- "minor"
- "patch"
development-dependencies:
dependency-type: "development"
update-types:
- "minor"
- "patch"
# infra (Terraform)
- package-ecosystem: "terraform"
directory: "autogpt_platform/infra"
schedule:
interval: "weekly"
open-pull-requests-limit: 5
target-branch: "dev"
commit-message:
prefix: "chore(infra/deps)"
prefix-development: "chore(infra/deps-dev)"
groups:
production-dependencies:
dependency-type: "production"
update-types:
- "minor"
- "patch"
development-dependencies:
dependency-type: "development"
update-types:
- "minor"
- "patch"
# GitHub Actions
- package-ecosystem: "github-actions"
directory: "/"
schedule:
interval: "weekly"
open-pull-requests-limit: 5
target-branch: "dev"
groups:
production-dependencies:
dependency-type: "production"
update-types:
- "minor"
- "patch"
development-dependencies:
dependency-type: "development"
update-types:
- "minor"
- "patch"
# Docker
- package-ecosystem: "docker"
directory: "autogpt_platform/"
schedule:
interval: "weekly"
open-pull-requests-limit: 5
target-branch: "dev"
groups:
production-dependencies:
dependency-type: "production"
update-types:
- "minor"
- "patch"
development-dependencies:
dependency-type: "development"
update-types:
- "minor"
- "patch"
# Docs
- package-ecosystem: 'pip'
directory: "docs/"
schedule:
interval: "weekly"
open-pull-requests-limit: 1
target-branch: "dev"
commit-message:
prefix: "chore(docs/deps)"
groups:
production-dependencies:
dependency-type: "production"
update-types:
- "minor"
- "patch"
development-dependencies:
dependency-type: "development"
update-types:
- "minor"
- "patch"

5
.github/labeler.yml vendored
View File

@@ -25,8 +25,3 @@ platform/frontend:
platform/backend:
- changed-files:
- any-glob-to-any-file: autogpt_platform/backend/**
- all-globs-to-all-files: '!autogpt_platform/backend/backend/blocks/**'
platform/blocks:
- changed-files:
- any-glob-to-any-file: autogpt_platform/backend/backend/blocks/**

View File

@@ -2,12 +2,12 @@ name: Classic - AutoGPT CI
on:
push:
branches: [ master, dev, ci-test* ]
branches: [ master, development, ci-test* ]
paths:
- '.github/workflows/classic-autogpt-ci.yml'
- 'classic/original_autogpt/**'
pull_request:
branches: [ master, dev, release-* ]
branches: [ master, development, release-* ]
paths:
- '.github/workflows/classic-autogpt-ci.yml'
- 'classic/original_autogpt/**'
@@ -115,7 +115,6 @@ jobs:
poetry run pytest -vv \
--cov=autogpt --cov-branch --cov-report term-missing --cov-report xml \
--numprocesses=logical --durations=10 \
--junitxml=junit.xml -o junit_family=legacy \
tests/unit tests/integration
env:
CI: true
@@ -125,14 +124,8 @@ jobs:
AWS_ACCESS_KEY_ID: minioadmin
AWS_SECRET_ACCESS_KEY: minioadmin
- name: Upload test results to Codecov
if: ${{ !cancelled() }} # Run even if tests fail
uses: codecov/test-results-action@v1
with:
token: ${{ secrets.CODECOV_TOKEN }}
- name: Upload coverage reports to Codecov
uses: codecov/codecov-action@v5
uses: codecov/codecov-action@v4
with:
token: ${{ secrets.CODECOV_TOKEN }}
flags: autogpt-agent,${{ runner.os }}

View File

@@ -5,7 +5,7 @@ on:
- cron: 20 4 * * 1,4
env:
BASE_BRANCH: dev
BASE_BRANCH: development
IMAGE_NAME: auto-gpt
jobs:
@@ -15,46 +15,46 @@ jobs:
matrix:
build-type: [release, dev]
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Checkout repository
uses: actions/checkout@v4
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- id: build
name: Build image
uses: docker/build-push-action@v6
with:
context: classic/
file: classic/Dockerfile.autogpt
build-args: BUILD_TYPE=${{ matrix.build-type }}
load: true # save to docker images
# use GHA cache as read-only
cache-to: type=gha,scope=autogpt-docker-${{ matrix.build-type }},mode=max
- id: build
name: Build image
uses: docker/build-push-action@v5
with:
context: classic/
file: classic/Dockerfile.autogpt
build-args: BUILD_TYPE=${{ matrix.build-type }}
load: true # save to docker images
# use GHA cache as read-only
cache-to: type=gha,scope=autogpt-docker-${{ matrix.build-type }},mode=max
- name: Generate build report
env:
event_name: ${{ github.event_name }}
event_ref: ${{ github.event.schedule }}
- name: Generate build report
env:
event_name: ${{ github.event_name }}
event_ref: ${{ github.event.schedule }}
build_type: ${{ matrix.build-type }}
build_type: ${{ matrix.build-type }}
prod_branch: master
dev_branch: dev
repository: ${{ github.repository }}
base_branch: ${{ github.ref_name != 'master' && github.ref_name != 'dev' && 'dev' || 'master' }}
prod_branch: master
dev_branch: development
repository: ${{ github.repository }}
base_branch: ${{ github.ref_name != 'master' && github.ref_name != 'development' && 'development' || 'master' }}
current_ref: ${{ github.ref_name }}
commit_hash: ${{ github.sha }}
source_url: ${{ format('{0}/tree/{1}', github.event.repository.url, github.sha) }}
push_forced_label:
current_ref: ${{ github.ref_name }}
commit_hash: ${{ github.sha }}
source_url: ${{ format('{0}/tree/{1}', github.event.repository.url, github.sha) }}
push_forced_label:
new_commits_json: ${{ null }}
compare_url_template: ${{ format('/{0}/compare/{{base}}...{{head}}', github.repository) }}
new_commits_json: ${{ null }}
compare_url_template: ${{ format('/{0}/compare/{{base}}...{{head}}', github.repository) }}
github_context_json: ${{ toJSON(github) }}
job_env_json: ${{ toJSON(env) }}
vars_json: ${{ toJSON(vars) }}
github_context_json: ${{ toJSON(github) }}
job_env_json: ${{ toJSON(env) }}
vars_json: ${{ toJSON(vars) }}
run: .github/workflows/scripts/docker-ci-summary.sh >> $GITHUB_STEP_SUMMARY
continue-on-error: true
run: .github/workflows/scripts/docker-ci-summary.sh >> $GITHUB_STEP_SUMMARY
continue-on-error: true

View File

@@ -2,13 +2,13 @@ name: Classic - AutoGPT Docker CI
on:
push:
branches: [master, dev]
branches: [ master, development ]
paths:
- '.github/workflows/classic-autogpt-docker-ci.yml'
- 'classic/original_autogpt/**'
- 'classic/forge/**'
pull_request:
branches: [ master, dev, release-* ]
branches: [ master, development, release-* ]
paths:
- '.github/workflows/classic-autogpt-docker-ci.yml'
- 'classic/original_autogpt/**'
@@ -34,58 +34,58 @@ jobs:
matrix:
build-type: [release, dev]
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Checkout repository
uses: actions/checkout@v4
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- if: runner.debug
run: |
ls -al
du -hs *
- if: runner.debug
run: |
ls -al
du -hs *
- id: build
name: Build image
uses: docker/build-push-action@v6
with:
context: classic/
file: classic/Dockerfile.autogpt
build-args: BUILD_TYPE=${{ matrix.build-type }}
tags: ${{ env.IMAGE_NAME }}
labels: GIT_REVISION=${{ github.sha }}
load: true # save to docker images
# cache layers in GitHub Actions cache to speed up builds
cache-from: type=gha,scope=autogpt-docker-${{ matrix.build-type }}
cache-to: type=gha,scope=autogpt-docker-${{ matrix.build-type }},mode=max
- id: build
name: Build image
uses: docker/build-push-action@v5
with:
context: classic/
file: classic/Dockerfile.autogpt
build-args: BUILD_TYPE=${{ matrix.build-type }}
tags: ${{ env.IMAGE_NAME }}
labels: GIT_REVISION=${{ github.sha }}
load: true # save to docker images
# cache layers in GitHub Actions cache to speed up builds
cache-from: type=gha,scope=autogpt-docker-${{ matrix.build-type }}
cache-to: type=gha,scope=autogpt-docker-${{ matrix.build-type }},mode=max
- name: Generate build report
env:
event_name: ${{ github.event_name }}
event_ref: ${{ github.event.ref }}
event_ref_type: ${{ github.event.ref}}
- name: Generate build report
env:
event_name: ${{ github.event_name }}
event_ref: ${{ github.event.ref }}
event_ref_type: ${{ github.event.ref}}
build_type: ${{ matrix.build-type }}
build_type: ${{ matrix.build-type }}
prod_branch: master
dev_branch: dev
repository: ${{ github.repository }}
base_branch: ${{ github.ref_name != 'master' && github.ref_name != 'dev' && 'dev' || 'master' }}
prod_branch: master
dev_branch: development
repository: ${{ github.repository }}
base_branch: ${{ github.ref_name != 'master' && github.ref_name != 'development' && 'development' || 'master' }}
current_ref: ${{ github.ref_name }}
commit_hash: ${{ github.event.after }}
source_url: ${{ format('{0}/tree/{1}', github.event.repository.url, github.event.release && github.event.release.tag_name || github.sha) }}
push_forced_label: ${{ github.event.forced && '☢️ forced' || '' }}
current_ref: ${{ github.ref_name }}
commit_hash: ${{ github.event.after }}
source_url: ${{ format('{0}/tree/{1}', github.event.repository.url, github.event.release && github.event.release.tag_name || github.sha) }}
push_forced_label: ${{ github.event.forced && '☢️ forced' || '' }}
new_commits_json: ${{ toJSON(github.event.commits) }}
compare_url_template: ${{ format('/{0}/compare/{{base}}...{{head}}', github.repository) }}
new_commits_json: ${{ toJSON(github.event.commits) }}
compare_url_template: ${{ format('/{0}/compare/{{base}}...{{head}}', github.repository) }}
github_context_json: ${{ toJSON(github) }}
job_env_json: ${{ toJSON(env) }}
vars_json: ${{ toJSON(vars) }}
github_context_json: ${{ toJSON(github) }}
job_env_json: ${{ toJSON(env) }}
vars_json: ${{ toJSON(vars) }}
run: .github/workflows/scripts/docker-ci-summary.sh >> $GITHUB_STEP_SUMMARY
continue-on-error: true
run: .github/workflows/scripts/docker-ci-summary.sh >> $GITHUB_STEP_SUMMARY
continue-on-error: true
test:
runs-on: ubuntu-latest
@@ -117,16 +117,16 @@ jobs:
- id: build
name: Build image
uses: docker/build-push-action@v6
uses: docker/build-push-action@v5
with:
context: classic/
file: classic/Dockerfile.autogpt
build-args: BUILD_TYPE=dev # include pytest
build-args: BUILD_TYPE=dev # include pytest
tags: >
${{ env.IMAGE_NAME }},
${{ env.DEPLOY_IMAGE_NAME }}:${{ env.DEV_IMAGE_TAG }}
labels: GIT_REVISION=${{ github.sha }}
load: true # save to docker images
load: true # save to docker images
# cache layers in GitHub Actions cache to speed up builds
cache-from: type=gha,scope=autogpt-docker-dev
cache-to: type=gha,scope=autogpt-docker-dev,mode=max

View File

@@ -2,7 +2,7 @@ name: Classic - AutoGPT Docker Release
on:
release:
types: [published, edited]
types: [ published, edited ]
workflow_dispatch:
inputs:
@@ -19,69 +19,69 @@ jobs:
if: startsWith(github.ref, 'refs/tags/autogpt-')
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Checkout repository
uses: actions/checkout@v4
- name: Log in to Docker hub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKER_USER }}
password: ${{ secrets.DOCKER_PASSWORD }}
- name: Log in to Docker hub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKER_USER }}
password: ${{ secrets.DOCKER_PASSWORD }}
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
# slashes are not allowed in image tags, but can appear in git branch or tag names
- id: sanitize_tag
name: Sanitize image tag
run: |
tag=${raw_tag//\//-}
echo tag=${tag#autogpt-} >> $GITHUB_OUTPUT
env:
raw_tag: ${{ github.ref_name }}
# slashes are not allowed in image tags, but can appear in git branch or tag names
- id: sanitize_tag
name: Sanitize image tag
run: |
tag=${raw_tag//\//-}
echo tag=${tag#autogpt-} >> $GITHUB_OUTPUT
env:
raw_tag: ${{ github.ref_name }}
- id: build
name: Build image
uses: docker/build-push-action@v6
with:
context: classic/
file: Dockerfile.autogpt
build-args: BUILD_TYPE=release
load: true # save to docker images
# push: true # TODO: uncomment when this issue is fixed: https://github.com/moby/buildkit/issues/1555
tags: >
${{ env.IMAGE_NAME }},
${{ env.DEPLOY_IMAGE_NAME }}:latest,
${{ env.DEPLOY_IMAGE_NAME }}:${{ steps.sanitize_tag.outputs.tag }}
labels: GIT_REVISION=${{ github.sha }}
- id: build
name: Build image
uses: docker/build-push-action@v5
with:
context: classic/
file: Dockerfile.autogpt
build-args: BUILD_TYPE=release
load: true # save to docker images
# push: true # TODO: uncomment when this issue is fixed: https://github.com/moby/buildkit/issues/1555
tags: >
${{ env.IMAGE_NAME }},
${{ env.DEPLOY_IMAGE_NAME }}:latest,
${{ env.DEPLOY_IMAGE_NAME }}:${{ steps.sanitize_tag.outputs.tag }}
labels: GIT_REVISION=${{ github.sha }}
# cache layers in GitHub Actions cache to speed up builds
cache-from: ${{ !inputs.no_cache && 'type=gha' || '' }},scope=autogpt-docker-release
cache-to: type=gha,scope=autogpt-docker-release,mode=max
# cache layers in GitHub Actions cache to speed up builds
cache-from: ${{ !inputs.no_cache && 'type=gha' || '' }},scope=autogpt-docker-release
cache-to: type=gha,scope=autogpt-docker-release,mode=max
- name: Push image to Docker Hub
run: docker push --all-tags ${{ env.DEPLOY_IMAGE_NAME }}
- name: Push image to Docker Hub
run: docker push --all-tags ${{ env.DEPLOY_IMAGE_NAME }}
- name: Generate build report
env:
event_name: ${{ github.event_name }}
event_ref: ${{ github.event.ref }}
event_ref_type: ${{ github.event.ref}}
inputs_no_cache: ${{ inputs.no_cache }}
- name: Generate build report
env:
event_name: ${{ github.event_name }}
event_ref: ${{ github.event.ref }}
event_ref_type: ${{ github.event.ref}}
inputs_no_cache: ${{ inputs.no_cache }}
prod_branch: master
dev_branch: dev
repository: ${{ github.repository }}
base_branch: ${{ github.ref_name != 'master' && github.ref_name != 'dev' && 'dev' || 'master' }}
prod_branch: master
dev_branch: development
repository: ${{ github.repository }}
base_branch: ${{ github.ref_name != 'master' && github.ref_name != 'development' && 'development' || 'master' }}
ref_type: ${{ github.ref_type }}
current_ref: ${{ github.ref_name }}
commit_hash: ${{ github.sha }}
source_url: ${{ format('{0}/tree/{1}', github.event.repository.url, github.event.release && github.event.release.tag_name || github.sha) }}
ref_type: ${{ github.ref_type }}
current_ref: ${{ github.ref_name }}
commit_hash: ${{ github.sha }}
source_url: ${{ format('{0}/tree/{1}', github.event.repository.url, github.event.release && github.event.release.tag_name || github.sha) }}
github_context_json: ${{ toJSON(github) }}
job_env_json: ${{ toJSON(env) }}
vars_json: ${{ toJSON(vars) }}
github_context_json: ${{ toJSON(github) }}
job_env_json: ${{ toJSON(env) }}
vars_json: ${{ toJSON(vars) }}
run: .github/workflows/scripts/docker-release-summary.sh >> $GITHUB_STEP_SUMMARY
continue-on-error: true
run: .github/workflows/scripts/docker-release-summary.sh >> $GITHUB_STEP_SUMMARY
continue-on-error: true

View File

@@ -5,7 +5,7 @@ on:
schedule:
- cron: '0 8 * * *'
push:
branches: [ master, dev, ci-test* ]
branches: [ master, development, ci-test* ]
paths:
- '.github/workflows/classic-autogpts-ci.yml'
- 'classic/original_autogpt/**'
@@ -16,7 +16,7 @@ on:
- 'classic/setup.py'
- '!**/*.md'
pull_request:
branches: [ master, dev, release-* ]
branches: [ master, development, release-* ]
paths:
- '.github/workflows/classic-autogpts-ci.yml'
- 'classic/original_autogpt/**'

View File

@@ -2,13 +2,13 @@ name: Classic - AGBenchmark CI
on:
push:
branches: [ master, dev, ci-test* ]
branches: [ master, development, ci-test* ]
paths:
- 'classic/benchmark/**'
- '!classic/benchmark/reports/**'
- .github/workflows/classic-benchmark-ci.yml
pull_request:
branches: [ master, dev, release-* ]
branches: [ master, development, release-* ]
paths:
- 'classic/benchmark/**'
- '!classic/benchmark/reports/**'
@@ -87,20 +87,13 @@ jobs:
poetry run pytest -vv \
--cov=agbenchmark --cov-branch --cov-report term-missing --cov-report xml \
--durations=10 \
--junitxml=junit.xml -o junit_family=legacy \
tests
env:
CI: true
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
- name: Upload test results to Codecov
if: ${{ !cancelled() }} # Run even if tests fail
uses: codecov/test-results-action@v1
with:
token: ${{ secrets.CODECOV_TOKEN }}
- name: Upload coverage reports to Codecov
uses: codecov/codecov-action@v5
uses: codecov/codecov-action@v4
with:
token: ${{ secrets.CODECOV_TOKEN }}
flags: agbenchmark,${{ runner.os }}
@@ -109,7 +102,7 @@ jobs:
runs-on: ubuntu-latest
strategy:
matrix:
agent-name: [forge]
agent-name: [ forge ]
fail-fast: false
timeout-minutes: 20
steps:
@@ -153,23 +146,23 @@ jobs:
echo "Running the following command: poetry run agbenchmark --mock --category=coding"
poetry run agbenchmark --mock --category=coding
# echo "Running the following command: poetry run agbenchmark --test=WriteFile"
# poetry run agbenchmark --test=WriteFile
echo "Running the following command: poetry run agbenchmark --test=WriteFile"
poetry run agbenchmark --test=WriteFile
cd ../benchmark
poetry install
echo "Adding the BUILD_SKILL_TREE environment variable. This will attempt to add new elements in the skill tree. If new elements are added, the CI fails because they should have been pushed"
export BUILD_SKILL_TREE=true
# poetry run agbenchmark --mock
poetry run agbenchmark --mock
# CHANGED=$(git diff --name-only | grep -E '(agbenchmark/challenges)|(../classic/frontend/assets)') || echo "No diffs"
# if [ ! -z "$CHANGED" ]; then
# echo "There are unstaged changes please run agbenchmark and commit those changes since they are needed."
# echo "$CHANGED"
# exit 1
# else
# echo "No unstaged changes."
# fi
CHANGED=$(git diff --name-only | grep -E '(agbenchmark/challenges)|(../classic/frontend/assets)') || echo "No diffs"
if [ ! -z "$CHANGED" ]; then
echo "There are unstaged changes please run agbenchmark and commit those changes since they are needed."
echo "$CHANGED"
exit 1
else
echo "No unstaged changes."
fi
env:
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
TELEMETRY_ENVIRONMENT: autogpt-benchmark-ci

View File

@@ -2,13 +2,13 @@ name: Classic - Forge CI
on:
push:
branches: [ master, dev, ci-test* ]
branches: [ master, development, ci-test* ]
paths:
- '.github/workflows/classic-forge-ci.yml'
- 'classic/forge/**'
- '!classic/forge/tests/vcr_cassettes'
pull_request:
branches: [ master, dev, release-* ]
branches: [ master, development, release-* ]
paths:
- '.github/workflows/classic-forge-ci.yml'
- 'classic/forge/**'
@@ -139,7 +139,6 @@ jobs:
poetry run pytest -vv \
--cov=forge --cov-branch --cov-report term-missing --cov-report xml \
--durations=10 \
--junitxml=junit.xml -o junit_family=legacy \
forge
env:
CI: true
@@ -149,14 +148,8 @@ jobs:
AWS_ACCESS_KEY_ID: minioadmin
AWS_SECRET_ACCESS_KEY: minioadmin
- name: Upload test results to Codecov
if: ${{ !cancelled() }} # Run even if tests fail
uses: codecov/test-results-action@v1
with:
token: ${{ secrets.CODECOV_TOKEN }}
- name: Upload coverage reports to Codecov
uses: codecov/codecov-action@v5
uses: codecov/codecov-action@v4
with:
token: ${{ secrets.CODECOV_TOKEN }}
flags: forge,${{ runner.os }}

View File

@@ -4,7 +4,7 @@ on:
push:
branches:
- master
- dev
- development
- 'ci-test*' # This will match any branch that starts with "ci-test"
paths:
- 'classic/frontend/**'
@@ -24,37 +24,37 @@ jobs:
BUILD_BRANCH: ${{ format('classic-frontend-build/{0}', github.ref_name) }}
steps:
- name: Checkout Repo
uses: actions/checkout@v4
- name: Checkout Repo
uses: actions/checkout@v4
- name: Setup Flutter
uses: subosito/flutter-action@v2
with:
flutter-version: '3.13.2'
- name: Setup Flutter
uses: subosito/flutter-action@v2
with:
flutter-version: '3.13.2'
- name: Build Flutter to Web
run: |
cd classic/frontend
flutter build web --base-href /app/
- name: Build Flutter to Web
run: |
cd classic/frontend
flutter build web --base-href /app/
# - name: Commit and Push to ${{ env.BUILD_BRANCH }}
# if: github.event_name == 'push'
# run: |
# git config --local user.email "action@github.com"
# git config --local user.name "GitHub Action"
# git add classic/frontend/build/web
# git checkout -B ${{ env.BUILD_BRANCH }}
# git commit -m "Update frontend build to ${GITHUB_SHA:0:7}" -a
# git push -f origin ${{ env.BUILD_BRANCH }}
# - name: Commit and Push to ${{ env.BUILD_BRANCH }}
# if: github.event_name == 'push'
# run: |
# git config --local user.email "action@github.com"
# git config --local user.name "GitHub Action"
# git add classic/frontend/build/web
# git checkout -B ${{ env.BUILD_BRANCH }}
# git commit -m "Update frontend build to ${GITHUB_SHA:0:7}" -a
# git push -f origin ${{ env.BUILD_BRANCH }}
- name: Create PR ${{ env.BUILD_BRANCH }} -> ${{ github.ref_name }}
if: github.event_name == 'push'
uses: peter-evans/create-pull-request@v7
with:
add-paths: classic/frontend/build/web
base: ${{ github.ref_name }}
branch: ${{ env.BUILD_BRANCH }}
delete-branch: true
title: "Update frontend build in `${{ github.ref_name }}`"
body: "This PR updates the frontend build based on commit ${{ github.sha }}."
commit-message: "Update frontend build based on commit ${{ github.sha }}"
- name: Create PR ${{ env.BUILD_BRANCH }} -> ${{ github.ref_name }}
if: github.event_name == 'push'
uses: peter-evans/create-pull-request@v6
with:
add-paths: classic/frontend/build/web
base: ${{ github.ref_name }}
branch: ${{ env.BUILD_BRANCH }}
delete-branch: true
title: "Update frontend build in `${{ github.ref_name }}`"
body: "This PR updates the frontend build based on commit ${{ github.sha }}."
commit-message: "Update frontend build based on commit ${{ github.sha }}"

View File

@@ -2,7 +2,7 @@ name: Classic - Python checks
on:
push:
branches: [ master, dev, ci-test* ]
branches: [ master, development, ci-test* ]
paths:
- '.github/workflows/classic-python-checks-ci.yml'
- 'classic/original_autogpt/**'
@@ -11,7 +11,7 @@ on:
- '**.py'
- '!classic/forge/tests/vcr_cassettes'
pull_request:
branches: [ master, dev, release-* ]
branches: [ master, development, release-* ]
paths:
- '.github/workflows/classic-python-checks-ci.yml'
- 'classic/original_autogpt/**'

View File

@@ -1,98 +0,0 @@
# For most projects, this workflow file will not need changing; you simply need
# to commit it to your repository.
#
# You may wish to alter this file to override the set of languages analyzed,
# or to provide custom queries or build logic.
#
# ******** NOTE ********
# We have attempted to detect the languages in your repository. Please check
# the `language` matrix defined below to confirm you have the correct set of
# supported CodeQL languages.
#
name: "CodeQL"
on:
push:
branches: [ "master", "release-*", "dev" ]
pull_request:
branches: [ "master", "release-*", "dev" ]
merge_group:
schedule:
- cron: '15 4 * * 0'
jobs:
analyze:
name: Analyze (${{ matrix.language }})
# Runner size impacts CodeQL analysis time. To learn more, please see:
# - https://gh.io/recommended-hardware-resources-for-running-codeql
# - https://gh.io/supported-runners-and-hardware-resources
# - https://gh.io/using-larger-runners (GitHub.com only)
# Consider using larger runners or machines with greater resources for possible analysis time improvements.
runs-on: ${{ (matrix.language == 'swift' && 'macos-latest') || 'ubuntu-latest' }}
permissions:
# required for all workflows
security-events: write
# required to fetch internal or private CodeQL packs
packages: read
# only required for workflows in private repositories
actions: read
contents: read
strategy:
fail-fast: false
matrix:
include:
- language: typescript
build-mode: none
- language: python
build-mode: none
# CodeQL supports the following values keywords for 'language': 'c-cpp', 'csharp', 'go', 'java-kotlin', 'javascript-typescript', 'python', 'ruby', 'swift'
# Use `c-cpp` to analyze code written in C, C++ or both
# Use 'java-kotlin' to analyze code written in Java, Kotlin or both
# Use 'javascript-typescript' to analyze code written in JavaScript, TypeScript or both
# To learn more about changing the languages that are analyzed or customizing the build mode for your analysis,
# see https://docs.github.com/en/code-security/code-scanning/creating-an-advanced-setup-for-code-scanning/customizing-your-advanced-setup-for-code-scanning.
# If you are analyzing a compiled language, you can modify the 'build-mode' for that language to customize how
# your codebase is analyzed, see https://docs.github.com/en/code-security/code-scanning/creating-an-advanced-setup-for-code-scanning/codeql-code-scanning-for-compiled-languages
steps:
- name: Checkout repository
uses: actions/checkout@v4
# Initializes the CodeQL tools for scanning.
- name: Initialize CodeQL
uses: github/codeql-action/init@v3
with:
languages: ${{ matrix.language }}
build-mode: ${{ matrix.build-mode }}
# If you wish to specify custom queries, you can do so here or in a config file.
# By default, queries listed here will override any specified in a config file.
# Prefix the list here with "+" to use these queries and those in the config file.
config: |
paths-ignore:
- classic/frontend/build/**
# For more details on CodeQL's query packs, refer to: https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/configuring-code-scanning#using-queries-in-ql-packs
# queries: security-extended,security-and-quality
# If the analyze step fails for one of the languages you are analyzing with
# "We were unable to automatically build your code", modify the matrix above
# to set the build mode to "manual" for that language. Then modify this step
# to build your code.
# Command-line programs to run using the OS shell.
# 📚 See https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#jobsjob_idstepsrun
- if: matrix.build-mode == 'manual'
shell: bash
run: |
echo 'If you are using a "manual" build mode for one or more of the' \
'languages you are analyzing, replace this with the commands to build' \
'your code, for example:'
echo ' make bootstrap'
echo ' make release'
exit 1
- name: Perform CodeQL Analysis
uses: github/codeql-action/analyze@v3
with:
category: "/language:${{matrix.language}}"

View File

@@ -1,50 +0,0 @@
name: AutoGPT Platform - Deploy Prod Environment
on:
release:
types: [published]
permissions:
contents: 'read'
id-token: 'write'
jobs:
migrate:
environment: production
name: Run migrations for AutoGPT Platform
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: '3.11'
- name: Install Python dependencies
run: |
python -m pip install --upgrade pip
pip install prisma
- name: Run Backend Migrations
working-directory: ./autogpt_platform/backend
run: |
python -m prisma migrate deploy
env:
DATABASE_URL: ${{ secrets.BACKEND_DATABASE_URL }}
DIRECT_URL: ${{ secrets.BACKEND_DATABASE_URL }}
trigger:
needs: migrate
runs-on: ubuntu-latest
steps:
- name: Trigger deploy workflow
uses: peter-evans/repository-dispatch@v3
with:
token: ${{ secrets.DEPLOY_TOKEN }}
repository: Significant-Gravitas/AutoGPT_cloud_infrastructure
event-type: build_deploy_prod
client-payload: '{"ref": "${{ github.ref }}", "sha": "${{ github.sha }}", "repository": "${{ github.repository }}"}'

View File

@@ -1,51 +0,0 @@
name: AutoGPT Platform - Deploy Dev Environment
on:
push:
branches: [ dev ]
paths:
- 'autogpt_platform/**'
permissions:
contents: 'read'
id-token: 'write'
jobs:
migrate:
environment: develop
name: Run migrations for AutoGPT Platform
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: '3.11'
- name: Install Python dependencies
run: |
python -m pip install --upgrade pip
pip install prisma
- name: Run Backend Migrations
working-directory: ./autogpt_platform/backend
run: |
python -m prisma migrate deploy
env:
DATABASE_URL: ${{ secrets.BACKEND_DATABASE_URL }}
DIRECT_URL: ${{ secrets.BACKEND_DATABASE_URL }}
trigger:
needs: migrate
runs-on: ubuntu-latest
steps:
- name: Trigger deploy workflow
uses: peter-evans/repository-dispatch@v3
with:
token: ${{ secrets.DEPLOY_TOKEN }}
repository: Significant-Gravitas/AutoGPT_cloud_infrastructure
event-type: build_deploy_dev
client-payload: '{"ref": "${{ github.ref }}", "sha": "${{ github.sha }}", "repository": "${{ github.repository }}"}'

View File

@@ -0,0 +1,40 @@
name: AutoGPT Server Docker Build & Push
on:
push:
branches: [ update-docker-ci ]
paths:
- '**'
defaults:
run:
shell: bash
env:
PROJECT_ID: agpt-dev
IMAGE_NAME: agpt-server-dev
REGION: us-central1
jobs:
build-and-push:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v2
- name: Set up Cloud SDK
uses: google-github-actions/setup-gcloud@v0.2.1
with:
project_id: ${{ env.PROJECT_ID }}
service_account_key: ${{ secrets.GCP_SA_KEY }}
export_default_credentials: true
- name: Configure Docker
run: gcloud auth configure-docker ${{ env.REGION }}-docker.pkg.dev
- name: Build Docker image
run: docker build -t ${{ env.REGION }}-docker.pkg.dev/${{ env.PROJECT_ID }}/${{ env.IMAGE_NAME }}:${{ github.sha }} -f autogpt_platform/backend/Dockerfile .
- name: Push Docker image
run: docker push ${{ env.REGION }}-docker.pkg.dev/${{ env.PROJECT_ID }}/${{ env.IMAGE_NAME }}:${{ github.sha }}

View File

@@ -0,0 +1,56 @@
name: AutoGPT Platform - Infra
on:
push:
branches: [ master ]
paths:
- '.github/workflows/platform-autogpt-infra-ci.yml'
- 'autogpt_platform/infra/**'
pull_request:
paths:
- '.github/workflows/platform-autogpt-infra-ci.yml'
- 'autogpt_platform/infra/**'
defaults:
run:
shell: bash
working-directory: autogpt_platform/infra
jobs:
lint:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v2
with:
fetch-depth: 0
- name: TFLint
uses: pauloconnor/tflint-action@v0.0.2
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
with:
tflint_path: terraform/
tflint_recurse: true
tflint_changed_only: false
- name: Set up Helm
uses: azure/setup-helm@v4.2.0
with:
version: v3.14.4
- name: Set up chart-testing
uses: helm/chart-testing-action@v2.6.0
- name: Run chart-testing (list-changed)
id: list-changed
run: |
changed=$(ct list-changed --target-branch ${{ github.event.repository.default_branch }})
if [[ -n "$changed" ]]; then
echo "changed=true" >> "$GITHUB_OUTPUT"
fi
- name: Run chart-testing (lint)
if: steps.list-changed.outputs.changed == 'true'
run: ct lint --target-branch ${{ github.event.repository.default_branch }}

View File

@@ -2,18 +2,15 @@ name: AutoGPT Platform - Backend CI
on:
push:
branches: [master, dev, ci-test*]
branches: [master, development, ci-test*]
paths:
- ".github/workflows/platform-backend-ci.yml"
- "autogpt_platform/backend/**"
- "autogpt_platform/autogpt_libs/**"
pull_request:
branches: [master, dev, release-*]
branches: [master, development, release-*]
paths:
- ".github/workflows/platform-backend-ci.yml"
- "autogpt_platform/backend/**"
- "autogpt_platform/autogpt_libs/**"
merge_group:
concurrency:
group: ${{ format('backend-ci-{0}', github.head_ref && format('{0}-{1}', github.event_name, github.event.pull_request.number) || github.sha) }}
@@ -33,25 +30,45 @@ jobs:
fail-fast: false
matrix:
python-version: ["3.10"]
runs-on: ubuntu-latest
services:
redis:
image: bitnami/redis:6.2
env:
REDIS_PASSWORD: testpassword
ports:
- 6379:6379
rabbitmq:
image: rabbitmq:3.12-management
ports:
- 5672:5672
- 15672:15672
env:
RABBITMQ_DEFAULT_USER: ${{ env.RABBITMQ_DEFAULT_USER }}
RABBITMQ_DEFAULT_PASS: ${{ env.RABBITMQ_DEFAULT_PASS }}
platform-os: [ubuntu, macos, macos-arm64, windows]
runs-on: ${{ matrix.platform-os != 'macos-arm64' && format('{0}-latest', matrix.platform-os) || 'macos-14' }}
steps:
- name: Setup PostgreSQL
uses: ikalnytskyi/action-setup-postgres@v6
with:
username: ${{ secrets.DB_USER || 'postgres' }}
password: ${{ secrets.DB_PASS || 'postgres' }}
database: postgres
port: 5432
id: postgres
# Quite slow on macOS (2~4 minutes to set up Docker)
# - name: Set up Docker (macOS)
# if: runner.os == 'macOS'
# uses: crazy-max/ghaction-setup-docker@v3
- name: Start MinIO service (Linux)
if: runner.os == 'Linux'
working-directory: "."
run: |
docker pull minio/minio:edge-cicd
docker run -d -p 9000:9000 minio/minio:edge-cicd
- name: Start MinIO service (macOS)
if: runner.os == 'macOS'
working-directory: ${{ runner.temp }}
run: |
brew install minio/stable/minio
mkdir data
minio server ./data &
# No MinIO on Windows:
# - Windows doesn't support running Linux Docker containers
# - It doesn't seem possible to start background processes on Windows. They are
# killed after the step returns.
# See: https://github.com/actions/runner/issues/598#issuecomment-2011890429
- name: Checkout repository
uses: actions/checkout@v4
with:
@@ -63,57 +80,36 @@ jobs:
with:
python-version: ${{ matrix.python-version }}
- name: Setup Supabase
uses: supabase/setup-cli@v1
with:
version: 1.178.1
- id: get_date
name: Get date
run: echo "date=$(date +'%Y-%m-%d')" >> $GITHUB_OUTPUT
- name: Set up Python dependency cache
# On Windows, unpacking cached dependencies takes longer than just installing them
if: runner.os != 'Windows'
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
path: ${{ runner.os == 'macOS' && '~/Library/Caches/pypoetry' || '~/.cache/pypoetry' }}
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
- name: Install Poetry (Unix)
if: runner.os != 'Windows'
run: |
# Extract Poetry version from backend/poetry.lock
HEAD_POETRY_VERSION=$(head -n 1 poetry.lock | grep -oP '(?<=Poetry )[0-9]+\.[0-9]+\.[0-9]+')
echo "Found Poetry version ${HEAD_POETRY_VERSION} in backend/poetry.lock"
if [ -n "$BASE_REF" ]; then
BASE_BRANCH=${BASE_REF/refs\/heads\//}
BASE_POETRY_VERSION=$((git show "origin/$BASE_BRANCH":./poetry.lock; true) | head -n 1 | grep -oP '(?<=Poetry )[0-9]+\.[0-9]+\.[0-9]+')
echo "Found Poetry version ${BASE_POETRY_VERSION} in backend/poetry.lock on ${BASE_REF}"
POETRY_VERSION=$(printf '%s\n' "$HEAD_POETRY_VERSION" "$BASE_POETRY_VERSION" | sort -V | tail -n1)
else
POETRY_VERSION=$HEAD_POETRY_VERSION
fi
echo "Using Poetry version ${POETRY_VERSION}"
# Install Poetry
curl -sSL https://install.python-poetry.org | POETRY_VERSION=$POETRY_VERSION python3 -
curl -sSL https://install.python-poetry.org | python3 -
if [ "${{ runner.os }}" = "macOS" ]; then
PATH="$HOME/.local/bin:$PATH"
echo "$HOME/.local/bin" >> $GITHUB_PATH
fi
env:
BASE_REF: ${{ github.base_ref || github.event.merge_group.base_ref }}
- name: Check poetry.lock
- name: Install Poetry (Windows)
if: runner.os == 'Windows'
shell: pwsh
run: |
poetry lock
(Invoke-WebRequest -Uri https://install.python-poetry.org -UseBasicParsing).Content | python -
if ! git diff --quiet --ignore-matching-lines="^# " poetry.lock; then
echo "Error: poetry.lock not up to date."
echo
git diff poetry.lock
exit 1
fi
$env:PATH += ";$env:APPDATA\Python\Scripts"
echo "$env:APPDATA\Python\Scripts" >> $env:GITHUB_PATH
- name: Install Python dependencies
run: poetry install
@@ -121,21 +117,10 @@ jobs:
- name: Generate Prisma Client
run: poetry run prisma generate
- id: supabase
name: Start Supabase
working-directory: .
run: |
supabase init
supabase start --exclude postgres-meta,realtime,storage-api,imgproxy,inbucket,studio,edge-runtime,logflare,vector,supavisor
supabase status -o env | sed 's/="/=/; s/"$//' >> $GITHUB_OUTPUT
# outputs:
# DB_URL, API_URL, GRAPHQL_URL, ANON_KEY, SERVICE_ROLE_KEY, JWT_SECRET
- name: Run Database Migrations
run: poetry run prisma migrate dev --name updates
env:
DATABASE_URL: ${{ steps.supabase.outputs.DB_URL }}
DIRECT_URL: ${{ steps.supabase.outputs.DB_URL }}
CONNECTION_STR: ${{ steps.postgres.outputs.connection-uri }}
- id: lint
name: Run Linter
@@ -144,35 +129,24 @@ jobs:
- name: Run pytest with coverage
run: |
if [[ "${{ runner.debug }}" == "1" ]]; then
poetry run pytest -s -vv -o log_cli=true -o log_cli_level=DEBUG test
poetry run pytest -vv -o log_cli=true -o log_cli_level=DEBUG test
else
poetry run pytest -s -vv test
poetry run pytest -vv test
fi
if: success() || (failure() && steps.lint.outcome == 'failure')
env:
LOG_LEVEL: ${{ runner.debug && 'DEBUG' || 'INFO' }}
DATABASE_URL: ${{ steps.supabase.outputs.DB_URL }}
DIRECT_URL: ${{ steps.supabase.outputs.DB_URL }}
SUPABASE_URL: ${{ steps.supabase.outputs.API_URL }}
SUPABASE_SERVICE_ROLE_KEY: ${{ steps.supabase.outputs.SERVICE_ROLE_KEY }}
SUPABASE_JWT_SECRET: ${{ steps.supabase.outputs.JWT_SECRET }}
REDIS_HOST: "localhost"
REDIS_PORT: "6379"
REDIS_PASSWORD: "testpassword"
env:
CI: true
PLAIN_OUTPUT: True
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
DB_USER: ${{ secrets.DB_USER || 'postgres' }}
DB_PASS: ${{ secrets.DB_PASS || 'postgres' }}
DB_NAME: postgres
DB_PORT: 5432
RUN_ENV: local
PORT: 8080
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
# We know these are here, don't report this as a security vulnerability
# This is used as the default credential for the entire system's RabbitMQ instance
# If you want to replace this, you can do so by making our entire system generate
# new credentials for each local user and update the environment variables in
# the backend service, docker composes, and examples
RABBITMQ_DEFAULT_USER: "rabbitmq_user_default"
RABBITMQ_DEFAULT_PASS: "k0VMxyIJF9S35f3x2uaw5IWAl6Y536O7"
DATABASE_URL: postgresql://${{ secrets.DB_USER || 'postgres' }}:${{ secrets.DB_PASS || 'postgres' }}@localhost:5432/${{ secrets.DB_NAME || 'postgres'}}
# - name: Upload coverage reports to Codecov
# uses: codecov/codecov-action@v4

View File

@@ -2,15 +2,14 @@ name: AutoGPT Platform - Frontend CI
on:
push:
branches: [master, dev]
branches: [ master ]
paths:
- ".github/workflows/platform-frontend-ci.yml"
- "autogpt_platform/frontend/**"
- '.github/workflows/platform-frontend-ci.yml'
- 'autogpt_platform/frontend/**'
pull_request:
paths:
- ".github/workflows/platform-frontend-ci.yml"
- "autogpt_platform/frontend/**"
merge_group:
- '.github/workflows/platform-frontend-ci.yml'
- 'autogpt_platform/frontend/**'
defaults:
run:
@@ -18,128 +17,25 @@ defaults:
working-directory: autogpt_platform/frontend
jobs:
lint:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v4
- name: Set up Node.js
uses: actions/setup-node@v4
with:
node-version: '21'
- name: Set up Node.js
uses: actions/setup-node@v4
with:
node-version: "21"
- name: Install dependencies
run: |
npm install
- name: Install dependencies
run: |
yarn install --frozen-lockfile
- name: Check formatting with Prettier
run: |
npx prettier --check .
- name: Run lint
run: |
yarn lint
type-check:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Set up Node.js
uses: actions/setup-node@v4
with:
node-version: "21"
- name: Install dependencies
run: |
yarn install --frozen-lockfile
- name: Run tsc check
run: |
yarn type-check
design:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Set up Node.js
uses: actions/setup-node@v4
with:
node-version: "21"
- name: Install dependencies
run: |
yarn install --frozen-lockfile
- name: Run Chromatic
uses: chromaui/action@latest
with:
# ⚠️ Make sure to configure a `CHROMATIC_PROJECT_TOKEN` repository secret
projectToken: ${{ secrets.CHROMATIC_PROJECT_TOKEN }}
workingDir: autogpt_platform/frontend
test:
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
browser: [chromium, webkit]
steps:
- name: Checkout repository
uses: actions/checkout@v4
with:
submodules: recursive
- name: Set up Node.js
uses: actions/setup-node@v4
with:
node-version: "21"
- name: Free Disk Space (Ubuntu)
uses: jlumbroso/free-disk-space@main
with:
large-packages: false # slow
docker-images: false # limited benefit
- name: Copy default supabase .env
run: |
cp ../.env.example ../.env
- name: Copy backend .env
run: |
cp ../backend/.env.example ../backend/.env
- name: Run docker compose
run: |
docker compose -f ../docker-compose.yml up -d
- name: Install dependencies
run: |
yarn install --frozen-lockfile
- name: Setup Builder .env
run: |
cp .env.example .env
- name: Install Browser '${{ matrix.browser }}'
run: yarn playwright install --with-deps ${{ matrix.browser }}
- name: Run tests
timeout-minutes: 20
run: |
yarn test --project=${{ matrix.browser }}
- name: Print Final Docker Compose logs
if: always()
run: |
docker compose -f ../docker-compose.yml logs
- uses: actions/upload-artifact@v4
if: ${{ !cancelled() }}
with:
name: playwright-report-${{ matrix.browser }}
path: playwright-report/
retention-days: 30
- name: Run lint
run: |
npm run lint

View File

@@ -25,7 +25,7 @@ jobs:
close-issue-message: >
This issue was closed automatically because it has been stale for 10 days
with no activity.
days-before-stale: 100
days-before-stale: 50
days-before-close: 10
# Do not touch meta issues:
exempt-issue-labels: meta,fridge,project management

View File

@@ -1,21 +0,0 @@
name: Repo - Enforce dev as base branch
on:
pull_request_target:
branches: [ master ]
types: [ opened ]
jobs:
check_pr_target:
runs-on: ubuntu-latest
permissions:
pull-requests: write
steps:
- name: Check if PR is from dev or hotfix
if: ${{ !(startsWith(github.event.pull_request.head.ref, 'hotfix/') || github.event.pull_request.head.ref == 'dev') }}
run: |
gh pr comment ${{ github.event.number }} --repo "$REPO" \
--body $'This PR targets the `master` branch but does not come from `dev` or a `hotfix/*` branch.\n\nAutomatically setting the base branch to `dev`.'
gh pr edit ${{ github.event.number }} --base dev --repo "$REPO"
env:
GITHUB_TOKEN: ${{ github.token }}
REPO: ${{ github.repository }}

View File

@@ -3,7 +3,7 @@ name: Repo - Pull Request auto-label
on:
# So that PRs touching the same files as the push are updated
push:
branches: [ master, dev, release-* ]
branches: [ master, development, release-* ]
paths-ignore:
- 'classic/forge/tests/vcr_cassettes'
- 'classic/benchmark/reports/**'

View File

@@ -2,7 +2,6 @@ name: Repo - PR Status Checker
on:
pull_request:
types: [opened, synchronize, reopened]
merge_group:
jobs:
status-check:

View File

@@ -5,8 +5,6 @@ import sys
import time
from typing import Dict, List, Tuple
CHECK_INTERVAL = 30
def get_environment_variables() -> Tuple[str, str, str, str, str]:
"""Retrieve and return necessary environment variables."""
@@ -14,11 +12,7 @@ def get_environment_variables() -> Tuple[str, str, str, str, str]:
with open(os.environ["GITHUB_EVENT_PATH"]) as f:
event = json.load(f)
# Handle both PR and merge group events
if "pull_request" in event:
sha = event["pull_request"]["head"]["sha"]
else:
sha = os.environ["GITHUB_SHA"]
sha = event["pull_request"]["head"]["sha"]
return (
os.environ["GITHUB_API_URL"],
@@ -99,10 +93,9 @@ def main():
break
print(
"Some check runs are still in progress. "
f"Waiting {CHECK_INTERVAL} seconds before checking again..."
"Some check runs are still in progress. Waiting 3 minutes before checking again..."
)
time.sleep(CHECK_INTERVAL)
time.sleep(180)
if all_others_passed:
print("All other completed check runs have passed. This check passes.")

5
.gitignore vendored
View File

@@ -171,8 +171,3 @@ ig*
.github_access_token
LICENSE.rtf
autogpt_platform/backend/settings.py
/.auth
/autogpt_platform/frontend/.auth
*.ign.*
.test-contents

3
.gitmodules vendored
View File

@@ -1,3 +1,6 @@
[submodule "classic/forge/tests/vcr_cassettes"]
path = classic/forge/tests/vcr_cassettes
url = https://github.com/Significant-Gravitas/Auto-GPT-test-cassettes
[submodule "autogpt_platform/supabase"]
path = autogpt_platform/supabase
url = https://github.com/supabase/supabase.git

View File

@@ -10,142 +10,39 @@ repos:
- id: check-symlinks
- id: debug-statements
- repo: https://github.com/Yelp/detect-secrets
rev: v1.5.0
hooks:
- id: detect-secrets
name: Detect secrets
description: Detects high entropy strings that are likely to be passwords.
files: ^autogpt_platform/
stages: [push]
- repo: local
# For proper type checking, all dependencies need to be up-to-date.
# It's also a good idea to check that poetry.lock is consistent with pyproject.toml.
hooks:
- id: poetry-install
name: Check & Install dependencies - AutoGPT Platform - Backend
alias: poetry-install-platform-backend
entry: poetry -C autogpt_platform/backend install
# include autogpt_libs source (since it's a path dependency)
files: ^autogpt_platform/(backend|autogpt_libs)/poetry\.lock$
types: [file]
language: system
pass_filenames: false
- id: poetry-install
name: Check & Install dependencies - AutoGPT Platform - Libs
alias: poetry-install-platform-libs
entry: poetry -C autogpt_platform/autogpt_libs install
files: ^autogpt_platform/autogpt_libs/poetry\.lock$
types: [file]
language: system
pass_filenames: false
- id: poetry-install
name: Check & Install dependencies - Classic - AutoGPT
alias: poetry-install-classic-autogpt
entry: poetry -C classic/original_autogpt install
# include forge source (since it's a path dependency)
files: ^classic/(original_autogpt|forge)/poetry\.lock$
types: [file]
language: system
pass_filenames: false
- id: poetry-install
name: Check & Install dependencies - Classic - Forge
alias: poetry-install-classic-forge
entry: poetry -C classic/forge install
files: ^classic/forge/poetry\.lock$
types: [file]
language: system
pass_filenames: false
- id: poetry-install
name: Check & Install dependencies - Classic - Benchmark
alias: poetry-install-classic-benchmark
entry: poetry -C classic/benchmark install
files: ^classic/benchmark/poetry\.lock$
types: [file]
language: system
pass_filenames: false
- repo: local
# For proper type checking, Prisma client must be up-to-date.
hooks:
- id: prisma-generate
name: Prisma Generate - AutoGPT Platform - Backend
alias: prisma-generate-platform-backend
entry: bash -c 'cd autogpt_platform/backend && poetry run prisma generate'
# include everything that triggers poetry install + the prisma schema
files: ^autogpt_platform/((backend|autogpt_libs)/poetry\.lock|backend/schema.prisma)$
types: [file]
language: system
pass_filenames: false
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.7.2
hooks:
- id: ruff
name: Lint (Ruff) - AutoGPT Platform - Backend
alias: ruff-lint-platform-backend
files: ^autogpt_platform/backend/
args: [--fix]
- id: ruff
name: Lint (Ruff) - AutoGPT Platform - Libs
alias: ruff-lint-platform-libs
files: ^autogpt_platform/autogpt_libs/
args: [--fix]
- id: ruff-format
name: Format (Ruff) - AutoGPT Platform - Libs
alias: ruff-lint-platform-libs
files: ^autogpt_platform/autogpt_libs/
- repo: local
# isort needs the context of which packages are installed to function, so we
# can't use a vendored isort pre-commit hook (which runs in its own isolated venv).
hooks:
- id: isort
name: Lint (isort) - AutoGPT Platform - Backend
alias: isort-platform-backend
entry: poetry -P autogpt_platform/backend run isort -p backend
files: ^autogpt_platform/backend/
types: [file, python]
language: system
- id: isort
name: Lint (isort) - Classic - AutoGPT
alias: isort-classic-autogpt
entry: poetry -P classic/original_autogpt run isort -p autogpt
- id: isort-autogpt
name: Lint (isort) - AutoGPT
entry: poetry -C classic/original_autogpt run isort
files: ^classic/original_autogpt/
types: [file, python]
language: system
- id: isort
name: Lint (isort) - Classic - Forge
alias: isort-classic-forge
entry: poetry -P classic/forge run isort -p forge
- id: isort-forge
name: Lint (isort) - Forge
entry: poetry -C classic/forge run isort
files: ^classic/forge/
types: [file, python]
language: system
- id: isort
name: Lint (isort) - Classic - Benchmark
alias: isort-classic-benchmark
entry: poetry -P classic/benchmark run isort -p agbenchmark
- id: isort-benchmark
name: Lint (isort) - Benchmark
entry: poetry -C classic/benchmark run isort
files: ^classic/benchmark/
types: [file, python]
language: system
- repo: https://github.com/psf/black
rev: 24.10.0
rev: 23.12.1
# Black has sensible defaults, doesn't need package context, and ignores
# everything in .gitignore, so it works fine without any config or arguments.
hooks:
- id: black
name: Format (Black)
name: Lint (Black)
language_version: python3.10
- repo: https://github.com/PyCQA/flake8
rev: 7.0.0
@@ -153,79 +50,53 @@ repos:
# them separately.
hooks:
- id: flake8
name: Lint (Flake8) - Classic - AutoGPT
alias: flake8-classic-autogpt
name: Lint (Flake8) - AutoGPT
alias: flake8-autogpt
files: ^classic/original_autogpt/(autogpt|scripts|tests)/
args: [--config=classic/original_autogpt/.flake8]
- id: flake8
name: Lint (Flake8) - Classic - Forge
alias: flake8-classic-forge
name: Lint (Flake8) - Forge
alias: flake8-forge
files: ^classic/forge/(forge|tests)/
args: [--config=classic/forge/.flake8]
- id: flake8
name: Lint (Flake8) - Classic - Benchmark
alias: flake8-classic-benchmark
name: Lint (Flake8) - Benchmark
alias: flake8-benchmark
files: ^classic/benchmark/(agbenchmark|tests)/((?!reports).)*[/.]
args: [--config=classic/benchmark/.flake8]
- repo: local
hooks:
- id: prettier
name: Format (Prettier) - AutoGPT Platform - Frontend
alias: format-platform-frontend
entry: bash -c 'cd autogpt_platform/frontend && npx prettier --write $(echo "$@" | sed "s|autogpt_platform/frontend/||g")' --
files: ^autogpt_platform/frontend/
types: [file]
language: system
- repo: local
# To have watertight type checking, we check *all* the files in an affected
# project. To trigger on poetry.lock we also reset the file `types` filter.
hooks:
- id: pyright
name: Typecheck - AutoGPT Platform - Backend
alias: pyright-platform-backend
entry: poetry -C autogpt_platform/backend run pyright
# include forge source (since it's a path dependency) but exclude *_test.py files:
files: ^autogpt_platform/(backend/((backend|test)/|(\w+\.py|poetry\.lock)$)|autogpt_libs/(autogpt_libs/.*(?<!_test)\.py|poetry\.lock)$)
types: [file]
language: system
pass_filenames: false
- id: pyright
name: Typecheck - AutoGPT Platform - Libs
alias: pyright-platform-libs
entry: poetry -C autogpt_platform/autogpt_libs run pyright
files: ^autogpt_platform/autogpt_libs/(autogpt_libs/|poetry\.lock$)
types: [file]
language: system
pass_filenames: false
- id: pyright
name: Typecheck - Classic - AutoGPT
alias: pyright-classic-autogpt
name: Typecheck - AutoGPT
alias: pyright-autogpt
entry: poetry -C classic/original_autogpt run pyright
args: [-p, autogpt, autogpt]
# include forge source (since it's a path dependency) but exclude *_test.py files:
files: ^(classic/original_autogpt/((autogpt|scripts|tests)/|poetry\.lock$)|classic/forge/(forge/.*(?<!_test)\.py|poetry\.lock)$)
files: ^(classic/original_autogpt/((autogpt|scripts|tests)/|poetry\.lock$)|classic/forge/(classic/forge/.*(?<!_test)\.py|poetry\.lock)$)
types: [file]
language: system
pass_filenames: false
- id: pyright
name: Typecheck - Classic - Forge
alias: pyright-classic-forge
name: Typecheck - Forge
alias: pyright-forge
entry: poetry -C classic/forge run pyright
files: ^classic/forge/(forge/|poetry\.lock$)
args: [-p, forge, forge]
files: ^classic/forge/(classic/forge/|poetry\.lock$)
types: [file]
language: system
pass_filenames: false
- id: pyright
name: Typecheck - Classic - Benchmark
alias: pyright-classic-benchmark
name: Typecheck - Benchmark
alias: pyright-benchmark
entry: poetry -C classic/benchmark run pyright
args: [-p, benchmark, benchmark]
files: ^classic/benchmark/(agbenchmark/|tests/|poetry\.lock$)
types: [file]
language: system
@@ -233,45 +104,23 @@ repos:
- repo: local
hooks:
- id: tsc
name: Typecheck - AutoGPT Platform - Frontend
entry: bash -c 'cd autogpt_platform/frontend && npm run type-check'
files: ^autogpt_platform/frontend/
types: [file]
language: system
pass_filenames: false
- repo: local
hooks:
- id: pytest
name: Run tests - AutoGPT Platform - Backend
alias: pytest-platform-backend
entry: bash -c 'cd autogpt_platform/backend && poetry run pytest'
# include autogpt_libs source (since it's a path dependency) but exclude *_test.py files:
files: ^autogpt_platform/(backend/((backend|test)/|poetry\.lock$)|autogpt_libs/(autogpt_libs/.*(?<!_test)\.py|poetry\.lock)$)
language: system
pass_filenames: false
- id: pytest
name: Run tests - Classic - AutoGPT (excl. slow tests)
alias: pytest-classic-autogpt
- id: pytest-autogpt
name: Run tests - AutoGPT (excl. slow tests)
entry: bash -c 'cd classic/original_autogpt && poetry run pytest --cov=autogpt -m "not slow" tests/unit tests/integration'
# include forge source (since it's a path dependency) but exclude *_test.py files:
files: ^(classic/original_autogpt/((autogpt|tests)/|poetry\.lock$)|classic/forge/(forge/.*(?<!_test)\.py|poetry\.lock)$)
files: ^(classic/original_autogpt/((autogpt|tests)/|poetry\.lock$)|classic/forge/(classic/forge/.*(?<!_test)\.py|poetry\.lock)$)
language: system
pass_filenames: false
- id: pytest
name: Run tests - Classic - Forge (excl. slow tests)
alias: pytest-classic-forge
- id: pytest-forge
name: Run tests - Forge (excl. slow tests)
entry: bash -c 'cd classic/forge && poetry run pytest --cov=forge -m "not slow"'
files: ^classic/forge/(forge/|tests/|poetry\.lock$)
files: ^classic/forge/(classic/forge/|tests/|poetry\.lock$)
language: system
pass_filenames: false
- id: pytest
name: Run tests - Classic - Benchmark
alias: pytest-classic-benchmark
- id: pytest-benchmark
name: Run tests - Benchmark
entry: bash -c 'cd classic/benchmark && poetry run pytest --cov=benchmark'
files: ^classic/benchmark/(agbenchmark/|tests/|poetry\.lock$)
language: system

View File

@@ -1,12 +1,12 @@
{
"folders": [
{
"name": "frontend",
"path": "../autogpt_platform/frontend"
"name": "autogpt_server",
"path": "../autogpt_platform/autogpt_server"
},
{
"name": "backend",
"path": "../autogpt_platform/backend"
"name": "autogpt_builder",
"path": "../autogpt_platform/autogpt_builder"
},
{
"name": "market",
@@ -24,7 +24,10 @@
"name": "docs",
"path": "../docs"
},
{
"name": "[root]",
"path": ".."
},
{
"name": "classic - autogpt",
"path": "../classic/original_autogpt"
@@ -41,10 +44,6 @@
"name": "classic - frontend",
"path": "../classic/frontend"
},
{
"name": "[root]",
"path": ".."
}
],
"settings": {
"python.analysis.typeCheckingMode": "basic"

67
.vscode/launch.json vendored
View File

@@ -1,67 +0,0 @@
{
"version": "0.2.0",
"configurations": [
{
"name": "Frontend: Server Side",
"type": "node-terminal",
"request": "launch",
"cwd": "${workspaceFolder}/autogpt_platform/frontend",
"command": "yarn dev"
},
{
"name": "Frontend: Client Side",
"type": "msedge",
"request": "launch",
"url": "http://localhost:3000"
},
{
"name": "Frontend: Full Stack",
"type": "node-terminal",
"request": "launch",
"command": "yarn dev",
"cwd": "${workspaceFolder}/autogpt_platform/frontend",
"serverReadyAction": {
"pattern": "- Local:.+(https?://.+)",
"uriFormat": "%s",
"action": "debugWithEdge"
}
},
{
"name": "Backend",
"type": "debugpy",
"request": "launch",
"module": "backend.app",
// "env": {
// "ENV": "dev"
// },
"envFile": "${workspaceFolder}/backend/.env",
"justMyCode": false,
"cwd": "${workspaceFolder}/autogpt_platform/backend"
},
{
"name": "Marketplace",
"type": "debugpy",
"request": "launch",
"module": "autogpt_platform.market.main",
"env": {
"ENV": "dev"
},
"envFile": "${workspaceFolder}/market/.env",
"justMyCode": false,
"cwd": "${workspaceFolder}/market"
}
],
"compounds": [
{
"name": "Everything",
"configurations": ["Backend", "Frontend: Full Stack"],
// "preLaunchTask": "${defaultBuildTask}",
"stopAll": true,
"presentation": {
"hidden": false,
"order": 0
}
}
]
}

View File

@@ -2,14 +2,14 @@
If you are reading this, you are probably looking for the full **[contribution guide]**,
which is part of our [wiki].
Also check out our [🚀 Roadmap][roadmap] for information about our priorities and associated tasks.
<!-- You can find our immediate priorities and their progress on our public [kanban board]. -->
[contribution guide]: https://github.com/Significant-Gravitas/AutoGPT/wiki/Contributing
[wiki]: https://github.com/Significant-Gravitas/AutoGPT/wiki
[roadmap]: https://github.com/Significant-Gravitas/AutoGPT/discussions/6971
[kanban board]: https://github.com/orgs/Significant-Gravitas/projects/1
## Contributing to the AutoGPT Platform Folder
All contributions to [the autogpt_platform folder](https://github.com/Significant-Gravitas/AutoGPT/blob/master/autogpt_platform) will be under our [Contribution License Agreement](https://github.com/Significant-Gravitas/AutoGPT/blob/master/autogpt_platform/Contributor%20License%20Agreement%20(CLA).md). By making a pull request contributing to this folder, you agree to the terms of our CLA for your contribution. All contributions to other folders will be under the MIT license.
## In short
1. Avoid duplicate work, issues, PRs etc.
2. We encourage you to collaborate with fellow community members on some of our bigger

View File

@@ -1,13 +1,7 @@
All portions of this repository are under one of two licenses. The majority of the AutoGPT repository is under the MIT License below. The autogpt_platform folder is under the
Polyform Shield License.
MIT License
Copyright (c) 2023 Toran Bruce Richards
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
@@ -15,11 +9,9 @@ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

View File

@@ -1,75 +1,43 @@
# AutoGPT: Build, Deploy, and Run AI Agents
# AutoGPT: Build & Use AI Agents
[![Discord Follow](https://dcbadge.vercel.app/api/server/autogpt?style=flat)](https://discord.gg/autogpt) &ensp;
[![Twitter Follow](https://img.shields.io/twitter/follow/Auto_GPT?style=social)](https://twitter.com/Auto_GPT) &ensp;
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
**AutoGPT** is a powerful platform that allows you to create, deploy, and manage continuous AI agents that automate complex workflows.
**AutoGPT** is a powerful tool that lets you create and run intelligent agents. These agents can perform various tasks automatically, making your life easier.
## Hosting Options
- Download to self-host
- [Join the Waitlist](https://bit.ly/3ZDijAI) for the cloud-hosted beta
## How to Get Started
## How to Setup for Self-Hosting
> [!NOTE]
> Setting up and hosting the AutoGPT Platform yourself is a technical process.
> If you'd rather something that just works, we recommend [joining the waitlist](https://bit.ly/3ZDijAI) for the cloud-hosted beta.
https://github.com/user-attachments/assets/8508f4dc-b362-4cab-900f-644964a96cdf
### Updated Setup Instructions:
Weve moved to a fully maintained and regularly updated documentation site.
### 🧱 AutoGPT Builder
👉 [Follow the official self-hosting guide here](https://docs.agpt.co/platform/getting-started/)
The AutoGPT Builder is the frontend. It allows you to design agents using an easy flowchart style. You build your agent by connecting blocks, where each block performs a single action. It's simple and intuitive!
This tutorial assumes you have Docker, VSCode, git and npm installed.
### 🧱 AutoGPT Frontend
The AutoGPT frontend is where users interact with our powerful AI automation platform. It offers multiple ways to engage with and leverage our AI agents. This is the interface where you'll bring your AI automation ideas to life:
**Agent Builder:** For those who want to customize, our intuitive, low-code interface allows you to design and configure your own AI agents.
**Workflow Management:** Build, modify, and optimize your automation workflows with ease. You build your agent by connecting blocks, where each block performs a single action.
**Deployment Controls:** Manage the lifecycle of your agents, from testing to production.
**Ready-to-Use Agents:** Don't want to build? Simply select from our library of pre-configured agents and put them to work immediately.
**Agent Interaction:** Whether you've built your own or are using pre-configured agents, easily run and interact with them through our user-friendly interface.
**Monitoring and Analytics:** Keep track of your agents' performance and gain insights to continually improve your automation processes.
[Read this guide](https://docs.agpt.co/platform/new_blocks/) to learn how to build your own custom blocks.
[Read this guide](https://docs.agpt.co/server/new_blocks/) to learn how to build your own custom blocks.
### 💽 AutoGPT Server
The AutoGPT Server is the powerhouse of our platform This is where your agents run. Once deployed, agents can be triggered by external sources and can operate continuously. It contains all the essential components that make AutoGPT run smoothly.
**Source Code:** The core logic that drives our agents and automation processes.
**Infrastructure:** Robust systems that ensure reliable and scalable performance.
**Marketplace:** A comprehensive marketplace where you can find and deploy a wide range of pre-built agents.
The AutoGPT Server is the backend. This is where your agents run. Once deployed, agents can be triggered by external sources and can operate continuously.
### 🐙 Example Agents
Here are two examples of what you can do with AutoGPT:
1. **Generate Viral Videos from Trending Topics**
- This agent reads topics on Reddit.
- It identifies trending topics.
- It then automatically creates a short-form video based on the content.
1. **Reddit Marketing Agent**
- This agent reads comments on Reddit.
- It looks for people asking about your product.
- It then automatically responds to them.
2. **Identify Top Quotes from Videos for Social Media**
2. **YouTube Content Repurposing Agent**
- This agent subscribes to your YouTube channel.
- When you post a new video, it transcribes it.
- It uses AI to identify the most impactful quotes to generate a summary.
- Then, it writes a post to automatically publish to your social media.
- It uses AI to write a search engine optimized blog post.
- Then, it publishes this blog post to your Medium account.
These examples show just a glimpse of what you can achieve with AutoGPT! You can create customized workflows to build agents for any use case.
These examples show just a glimpse of what you can achieve with AutoGPT!
---
### Mission and Licencing
Our mission is to provide the tools, so that you can focus on what matters:
- 🏗️ **Building** - Lay the foundation for something amazing.
@@ -82,13 +50,6 @@ Be part of the revolution! **AutoGPT** is here to stay, at the forefront of AI i
&ensp;|&ensp;
**🚀 [Contributing](CONTRIBUTING.md)**
**Licensing:**
MIT License: The majority of the AutoGPT repository is under the MIT License.
Polyform Shield License: This license applies to the autogpt_platform folder.
For more information, see https://agpt.co/blog/introducing-the-autogpt-platform
---
## 🤖 AutoGPT Classic
@@ -113,7 +74,7 @@ This guide will walk you through the process of creating your own agent and usin
📦 [`agbenchmark`](https://pypi.org/project/agbenchmark/) on Pypi
&ensp;|&ensp;
📘 [Learn More](https://github.com/Significant-Gravitas/AutoGPT/tree/master/classic/benchmark) about the Benchmark
📘 [Learn More](https://github.com/Significant-Gravitas/AutoGPT/blob/master/benchmark) about the Benchmark
### 💻 UI
@@ -162,8 +123,6 @@ To maintain a uniform standard and ensure seamless compatibility with many curre
---
## Stars stats
<p align="center">
<a href="https://star-history.com/#Significant-Gravitas/AutoGPT">
<picture>
@@ -173,10 +132,3 @@ To maintain a uniform standard and ensure seamless compatibility with many curre
</picture>
</a>
</p>
## ⚡ Contributors
<a href="https://github.com/Significant-Gravitas/AutoGPT/graphs/contributors" alt="View Contributors">
<img src="https://contrib.rocks/image?repo=Significant-Gravitas/AutoGPT&max=1000&columns=10" alt="Contributors" />
</a>

View File

@@ -1,48 +0,0 @@
# Security Policy
## Reporting Security Issues
We take the security of our project seriously. If you believe you have found a security vulnerability, please report it to us privately. **Please do not report security vulnerabilities through public GitHub issues, discussions, or pull requests.**
> **Important Note**: Any code within the `classic/` folder is considered legacy, unsupported, and out of scope for security reports. We will not address security vulnerabilities in this deprecated code.
Instead, please report them via:
- [GitHub Security Advisory](https://github.com/Significant-Gravitas/AutoGPT/security/advisories/new)
<!--- [Huntr.dev](https://huntr.com/repos/significant-gravitas/autogpt) - where you may be eligible for a bounty-->
### Reporting Process
1. **Submit Report**: Use one of the above channels to submit your report
2. **Response Time**: Our team will acknowledge receipt of your report within 14 business days.
3. **Collaboration**: We will collaborate with you to understand and validate the issue
4. **Resolution**: We will work on a fix and coordinate the release process
### Disclosure Policy
- Please provide detailed reports with reproducible steps
- Include the version/commit hash where you discovered the vulnerability
- Allow us a 90-day security fix window before any public disclosure
- After patch is released, allow 30 days for users to update before public disclosure (for a total of 120 days max between update time and fix time)
- Share any potential mitigations or workarounds if known
## Supported Versions
Only the following versions are eligible for security updates:
| Version | Supported |
|---------|-----------|
| Latest release on master branch | ✅ |
| Development commits (pre-master) | ✅ |
| Classic folder (deprecated) | ❌ |
| All other versions | ❌ |
## Security Best Practices
When using this project:
1. Always use the latest stable version
2. Review security advisories before updating
3. Follow our security documentation and guidelines
4. Keep your dependencies up to date
5. Do not use code from the `classic/` folder as it is deprecated and unsupported
## Past Security Advisories
For a list of past security advisories, please visit our [Security Advisory Page](https://github.com/Significant-Gravitas/AutoGPT/security/advisories) and [Huntr Disclosures Page](https://huntr.com/repos/significant-gravitas/autogpt).
---
Last updated: November 2024

View File

@@ -1,123 +0,0 @@
############
# Secrets
# YOU MUST CHANGE THESE BEFORE GOING INTO PRODUCTION
############
POSTGRES_PASSWORD=your-super-secret-and-long-postgres-password
JWT_SECRET=your-super-secret-jwt-token-with-at-least-32-characters-long
ANON_KEY=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyAgCiAgICAicm9sZSI6ICJhbm9uIiwKICAgICJpc3MiOiAic3VwYWJhc2UtZGVtbyIsCiAgICAiaWF0IjogMTY0MTc2OTIwMCwKICAgICJleHAiOiAxNzk5NTM1NjAwCn0.dc_X5iR_VP_qT0zsiyj_I_OZ2T9FtRU2BBNWN8Bu4GE
SERVICE_ROLE_KEY=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyAgCiAgICAicm9sZSI6ICJzZXJ2aWNlX3JvbGUiLAogICAgImlzcyI6ICJzdXBhYmFzZS1kZW1vIiwKICAgICJpYXQiOiAxNjQxNzY5MjAwLAogICAgImV4cCI6IDE3OTk1MzU2MDAKfQ.DaYlNEoUrrEn2Ig7tqibS-PHK5vgusbcbo7X36XVt4Q
DASHBOARD_USERNAME=supabase
DASHBOARD_PASSWORD=this_password_is_insecure_and_should_be_updated
SECRET_KEY_BASE=UpNVntn3cDxHJpq99YMc1T1AQgQpc8kfYTuRgBiYa15BLrx8etQoXz3gZv1/u2oq
VAULT_ENC_KEY=your-encryption-key-32-chars-min
############
# Database - You can change these to any PostgreSQL database that has logical replication enabled.
############
POSTGRES_HOST=db
POSTGRES_DB=postgres
POSTGRES_PORT=5432
# default user is postgres
############
# Supavisor -- Database pooler
############
POOLER_PROXY_PORT_TRANSACTION=6543
POOLER_DEFAULT_POOL_SIZE=20
POOLER_MAX_CLIENT_CONN=100
POOLER_TENANT_ID=your-tenant-id
############
# API Proxy - Configuration for the Kong Reverse proxy.
############
KONG_HTTP_PORT=8000
KONG_HTTPS_PORT=8443
############
# API - Configuration for PostgREST.
############
PGRST_DB_SCHEMAS=public,storage,graphql_public
############
# Auth - Configuration for the GoTrue authentication server.
############
## General
SITE_URL=http://localhost:3000
ADDITIONAL_REDIRECT_URLS=
JWT_EXPIRY=3600
DISABLE_SIGNUP=false
API_EXTERNAL_URL=http://localhost:8000
## Mailer Config
MAILER_URLPATHS_CONFIRMATION="/auth/v1/verify"
MAILER_URLPATHS_INVITE="/auth/v1/verify"
MAILER_URLPATHS_RECOVERY="/auth/v1/verify"
MAILER_URLPATHS_EMAIL_CHANGE="/auth/v1/verify"
## Email auth
ENABLE_EMAIL_SIGNUP=true
ENABLE_EMAIL_AUTOCONFIRM=false
SMTP_ADMIN_EMAIL=admin@example.com
SMTP_HOST=supabase-mail
SMTP_PORT=2500
SMTP_USER=fake_mail_user
SMTP_PASS=fake_mail_password
SMTP_SENDER_NAME=fake_sender
ENABLE_ANONYMOUS_USERS=false
## Phone auth
ENABLE_PHONE_SIGNUP=true
ENABLE_PHONE_AUTOCONFIRM=true
############
# Studio - Configuration for the Dashboard
############
STUDIO_DEFAULT_ORGANIZATION=Default Organization
STUDIO_DEFAULT_PROJECT=Default Project
STUDIO_PORT=3000
# replace if you intend to use Studio outside of localhost
SUPABASE_PUBLIC_URL=http://localhost:8000
# Enable webp support
IMGPROXY_ENABLE_WEBP_DETECTION=true
# Add your OpenAI API key to enable SQL Editor Assistant
OPENAI_API_KEY=
############
# Functions - Configuration for Functions
############
# NOTE: VERIFY_JWT applies to all functions. Per-function VERIFY_JWT is not supported yet.
FUNCTIONS_VERIFY_JWT=false
############
# Logs - Configuration for Logflare
# Please refer to https://supabase.com/docs/reference/self-hosting-analytics/introduction
############
LOGFLARE_LOGGER_BACKEND_API_KEY=your-super-secret-and-long-logflare-key
# Change vector.toml sinks to reflect this change
LOGFLARE_API_KEY=your-super-secret-and-long-logflare-key
# Docker socket location - this value will differ depending on your OS
DOCKER_SOCKET_LOCATION=/var/run/docker.sock
# Google Cloud Project details
GOOGLE_PROJECT_ID=GOOGLE_PROJECT_ID
GOOGLE_PROJECT_NUMBER=GOOGLE_PROJECT_NUMBER

View File

@@ -1,2 +0,0 @@
*.ignore.*
*.ign.*

View File

@@ -1,21 +0,0 @@
**Determinist Ltd**
**Contributor License Agreement (“Agreement”)**
Thank you for your interest in the AutoGPT open source project at [https://github.com/Significant-Gravitas/AutoGPT](https://github.com/Significant-Gravitas/AutoGPT) stewarded by Determinist Ltd (“**Determinist**”), with offices at 3rd Floor 1 Ashley Road, Altrincham, Cheshire, WA14 2DT, United Kingdom. The form of license below is a document that clarifies the terms under which You, the person listed below, may contribute software code described below (the “**Contribution**”) to the project. We appreciate your participation in our project, and your help in improving our products, so we want you to understand what will be done with the Contributions. This license is for your protection as well as the protection of Determinist and its licensees; it does not change your rights to use your own Contributions for any other purpose.
By submitting a Pull Request which modifies the content of the “autogpt\_platform” folder at [https://github.com/Significant-Gravitas/AutoGPT/tree/master/autogpt\_platform](https://github.com/Significant-Gravitas/AutoGPT/tree/master/autogpt_platform), You hereby agree:
1\. **You grant us the ability to use the Contributions in any way**. You hereby grant to Determinist a non-exclusive, irrevocable, worldwide, royalty-free, sublicenseable, transferable license under all of Your relevant intellectual property rights (including copyright, patent, and any other rights), to use, copy, prepare derivative works of, distribute and publicly perform and display the Contributions on any licensing terms, including without limitation: (a) open source licenses like the GNU General Public License (GPL), the GNU Lesser General Public License (LGPL), the Common Public License, or the Berkeley Science Division license (BSD); and (b) binary, proprietary, or commercial licenses.
2\. **Grant of Patent License**. You hereby grant to Determinist a worldwide, non-exclusive, royalty-free, irrevocable, license, under any rights you may have, now or in the future, in any patents or patent applications, to make, have made, use, offer to sell, sell, and import products containing the Contribution or portions of the Contribution. This license extends to patent claims that are infringed by the Contribution alone or by combination of the Contribution with other inventions.
4\. **Limitations on Licenses**. The licenses granted in this Agreement will continue for the duration of the applicable patent or intellectual property right under which such license is granted. The licenses granted in this Agreement will include the right to grant and authorize sublicenses, so long as the sublicenses are within the scope of the licenses granted in this Agreement. Except for the licenses granted herein, You reserve all right, title, and interest in and to the Contribution.
5\. **You are able to grant us these rights**. You represent that You are legally entitled to grant the above license. If Your employer has rights to intellectual property that You create, You represent that You are authorized to make the Contributions on behalf of that employer, or that Your employer has waived such rights for the Contributions.
3\. **The Contributions are your original work**. You represent that the Contributions are Your original works of authorship, and to Your knowledge, no other person claims, or has the right to claim, any right in any invention or patent related to the Contributions. You also represent that You are not legally obligated, whether by entering into an agreement or otherwise, in any way that conflicts with the terms of this license. For example, if you have signed an agreement requiring you to assign the intellectual property rights in the Contributions to an employer or customer, that would conflict with the terms of this license.
6\. **We determine the code that is in our products**. You understand that the decision to include the Contribution in any product or source repository is entirely that of Determinist, and this agreement does not guarantee that the Contributions will be included in any product.
7\. **No Implied Warranties.** Determinist acknowledges that, except as explicitly described in this Agreement, the Contribution is provided on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

View File

@@ -1,164 +0,0 @@
# PolyForm Shield License 1.0.0
<https://polyformproject.org/licenses/shield/1.0.0>
## Acceptance
In order to get any license under these terms, you must agree
to them as both strict obligations and conditions to all
your licenses.
## Copyright License
The licensor grants you a copyright license for the
software to do everything you might do with the software
that would otherwise infringe the licensor's copyright
in it for any permitted purpose. However, you may
only distribute the software according to [Distribution
License](#distribution-license) and make changes or new works
based on the software according to [Changes and New Works
License](#changes-and-new-works-license).
## Distribution License
The licensor grants you an additional copyright license
to distribute copies of the software. Your license
to distribute covers distributing the software with
changes and new works permitted by [Changes and New Works
License](#changes-and-new-works-license).
## Notices
You must ensure that anyone who gets a copy of any part of
the software from you also gets a copy of these terms or the
URL for them above, as well as copies of any plain-text lines
beginning with `Required Notice:` that the licensor provided
with the software. For example:
> Required Notice: Copyright Yoyodyne, Inc. (http://example.com)
## Changes and New Works License
The licensor grants you an additional copyright license to
make changes and new works based on the software for any
permitted purpose.
## Patent License
The licensor grants you a patent license for the software that
covers patent claims the licensor can license, or becomes able
to license, that you would infringe by using the software.
## Noncompete
Any purpose is a permitted purpose, except for providing any
product that competes with the software or any product the
licensor or any of its affiliates provides using the software.
## Competition
Goods and services compete even when they provide functionality
through different kinds of interfaces or for different technical
platforms. Applications can compete with services, libraries
with plugins, frameworks with development tools, and so on,
even if they're written in different programming languages
or for different computer architectures. Goods and services
compete even when provided free of charge. If you market a
product as a practical substitute for the software or another
product, it definitely competes.
## New Products
If you are using the software to provide a product that does
not compete, but the licensor or any of its affiliates brings
your product into competition by providing a new version of
the software or another product using the software, you may
continue using versions of the software available under these
terms beforehand to provide your competing product, but not
any later versions.
## Discontinued Products
You may begin using the software to compete with a product
or service that the licensor or any of its affiliates has
stopped providing, unless the licensor includes a plain-text
line beginning with `Licensor Line of Business:` with the
software that mentions that line of business. For example:
> Licensor Line of Business: YoyodyneCMS Content Management
System (http://example.com/cms)
## Sales of Business
If the licensor or any of its affiliates sells a line of
business developing the software or using the software
to provide a product, the buyer can also enforce
[Noncompete](#noncompete) for that product.
## Fair Use
You may have "fair use" rights for the software under the
law. These terms do not limit them.
## No Other Rights
These terms do not allow you to sublicense or transfer any of
your licenses to anyone else, or prevent the licensor from
granting licenses to anyone else. These terms do not imply
any other licenses.
## Patent Defense
If you make any written claim that the software infringes or
contributes to infringement of any patent, your patent license
for the software granted under these terms ends immediately. If
your company makes such a claim, your patent license ends
immediately for work on behalf of your company.
## Violations
The first time you are notified in writing that you have
violated any of these terms, or done anything with the software
not covered by your licenses, your licenses can nonetheless
continue if you come into full compliance with these terms,
and take practical steps to correct past violations, within
32 days of receiving notice. Otherwise, all your licenses
end immediately.
## No Liability
***As far as the law allows, the software comes as is, without
any warranty or condition, and the licensor will not be liable
to you for any damages arising out of these terms or the use
or nature of the software, under any kind of legal claim.***
## Definitions
The **licensor** is the individual or entity offering these
terms, and the **software** is the software the licensor makes
available under these terms.
A **product** can be a good or service, or a combination
of them.
**You** refers to the individual or entity agreeing to these
terms.
**Your company** is any legal entity, sole proprietorship,
or other kind of organization that you work for, plus all
its affiliates.
**Affiliates** means the other organizations than an
organization has control over, is under the control of, or is
under common control with.
**Control** means ownership of substantially all the assets of
an entity, or the power to direct its management and policies
by vote, contract, or otherwise. Control can be direct or
indirect.
**Your licenses** are all the licenses granted to you for the
software under these terms.
**Use** means anything you do with the software requiring one
of your licenses.

View File

@@ -8,61 +8,46 @@ Welcome to the AutoGPT Platform - a powerful system for creating and running AI
- Docker
- Docker Compose V2 (comes with Docker Desktop, or can be installed separately)
- Node.js & NPM (for running the frontend application)
### Running the System
To run the AutoGPT Platform, follow these steps:
1. Clone this repository to your local machine and navigate to the `autogpt_platform` directory within the repository:
```
git clone <https://github.com/Significant-Gravitas/AutoGPT.git | git@github.com:Significant-Gravitas/AutoGPT.git>
cd AutoGPT/autogpt_platform
```
2. Run the following command:
```
cp .env.example .env
```
This command will copy the `.env.example` file to `.env`. You can modify the `.env` file to add your own environment variables.
1. Clone this repository to your local machine.
2. Navigate to autogpt_platform/supabase
3. Run the following command:
```
docker compose up -d
git submodule update --init --recursive
```
This command will start all the necessary backend services defined in the `docker-compose.yml` file in detached mode.
4. Navigate to `frontend` within the `autogpt_platform` directory:
4. Navigate back to autogpt_platform (cd ..)
5. Run the following command:
```
cd frontend
cp supabase/docker/.env.example .env
```
You will need to run your frontend application separately on your local machine.
5. Run the following command:
```
cp .env.example .env.local
```
This command will copy the `.env.example` file to `.env.local` in the `frontend` directory. You can modify the `.env.local` within this folder to add your own environment variables for the frontend application.
6. Run the following command:
```
npm install
npm run dev
```
This command will install the necessary dependencies and start the frontend application in development mode.
If you are using Yarn, you can run the following commands instead:
```
yarn install && yarn dev
docker compose -f docker-compose.combined.yml up -d
```
7. Open your browser and navigate to `http://localhost:3000` to access the AutoGPT Platform frontend.
This command will start all the necessary backend services defined in the `docker-compose.combined.yml` file in detached mode.
7. Navigate to autogpt_platform/frontend.
8. Run the following command:
```
cp .env.example .env.local
```
9. Run the following command:
```
yarn dev
```
### Docker Compose Commands
Here are some useful Docker Compose commands for managing your AutoGPT Platform:
- `docker compose up -d`: Start the services in detached mode.
- `docker compose stop`: Stop the running services without removing them.
- `docker compose -f docker-compose.combined.yml up -d`: Start the services in detached mode.
- `docker compose -f docker-compose.combined.yml stop`: Stop the running services without removing them.
- `docker compose rm`: Remove stopped service containers.
- `docker compose build`: Build or rebuild services.
- `docker compose down`: Stop and remove containers, networks, and volumes.
@@ -143,3 +128,6 @@ To persist data for PostgreSQL and Redis, you can modify the `docker-compose.yml
3. Save the file and run `docker compose up -d` to apply the changes.
This configuration will create named volumes for PostgreSQL and Redis, ensuring that your data persists across container restarts.

View File

@@ -1,34 +0,0 @@
import hashlib
import secrets
from typing import NamedTuple
class APIKeyContainer(NamedTuple):
"""Container for API key parts."""
raw: str
prefix: str
postfix: str
hash: str
class APIKeyManager:
PREFIX: str = "agpt_"
PREFIX_LENGTH: int = 8
POSTFIX_LENGTH: int = 8
def generate_api_key(self) -> APIKeyContainer:
"""Generate a new API key with all its parts."""
raw_key = f"{self.PREFIX}{secrets.token_urlsafe(32)}"
return APIKeyContainer(
raw=raw_key,
prefix=raw_key[: self.PREFIX_LENGTH],
postfix=raw_key[-self.POSTFIX_LENGTH :],
hash=hashlib.sha256(raw_key.encode()).hexdigest(),
)
def verify_api_key(self, provided_key: str, stored_hash: str) -> bool:
"""Verify if a provided API key matches the stored hash."""
if not provided_key.startswith(self.PREFIX):
return False
return hashlib.sha256(provided_key.encode()).hexdigest() == stored_hash

View File

@@ -1,13 +1,14 @@
from .config import Settings
from .depends import requires_admin_user, requires_user
from .jwt_utils import parse_jwt_token
from .middleware import APIKeyValidator, auth_middleware
from .middleware import auth_middleware
from .models import User
__all__ = [
"Settings",
"parse_jwt_token",
"requires_user",
"requires_admin_user",
"APIKeyValidator",
"auth_middleware",
"User",
]

View File

@@ -1,11 +1,14 @@
import os
from dotenv import load_dotenv
load_dotenv()
class Settings:
def __init__(self):
self.JWT_SECRET_KEY: str = os.getenv("SUPABASE_JWT_SECRET", "")
self.ENABLE_AUTH: bool = os.getenv("ENABLE_AUTH", "false").lower() == "true"
self.JWT_ALGORITHM: str = "HS256"
JWT_SECRET_KEY: str = os.getenv("SUPABASE_JWT_SECRET", "")
ENABLE_AUTH: bool = os.getenv("ENABLE_AUTH", "false").lower() == "true"
JWT_ALGORITHM: str = "HS256"
@property
def is_configured(self) -> bool:

View File

@@ -1,8 +1,7 @@
import fastapi
from .config import settings
from .middleware import auth_middleware
from .models import DEFAULT_USER_ID, User
from .models import User
def requires_user(payload: dict = fastapi.Depends(auth_middleware)) -> User:
@@ -17,12 +16,8 @@ def requires_admin_user(
def verify_user(payload: dict | None, admin_only: bool) -> User:
if not payload:
if settings.ENABLE_AUTH:
raise fastapi.HTTPException(
status_code=401, detail="Authorization header is missing"
)
# This handles the case when authentication is disabled
payload = {"sub": DEFAULT_USER_ID, "role": "admin"}
payload = {"sub": "3e53486c-cf57-477e-ba2a-cb02dc828e1a", "role": "admin"}
user_id = payload.get("sub")
@@ -35,12 +30,3 @@ def verify_user(payload: dict | None, admin_only: bool) -> User:
raise fastapi.HTTPException(status_code=403, detail="Admin access required")
return User.from_payload(payload)
def get_user_id(payload: dict = fastapi.Depends(auth_middleware)) -> str:
user_id = payload.get("sub")
if not user_id:
raise fastapi.HTTPException(
status_code=401, detail="User ID not found in token"
)
return user_id

View File

@@ -1,22 +1,18 @@
import inspect
import logging
from typing import Any, Callable, Optional
from fastapi import HTTPException, Request, Security
from fastapi.security import APIKeyHeader, HTTPBearer
from starlette.status import HTTP_401_UNAUTHORIZED
from fastapi import HTTPException, Request
from fastapi.security import HTTPBearer
from .config import settings
from .jwt_utils import parse_jwt_token
security = HTTPBearer()
logger = logging.getLogger(__name__)
async def auth_middleware(request: Request):
if not settings.ENABLE_AUTH:
# If authentication is disabled, allow the request to proceed
logger.warn("Auth disabled")
logging.warn("Auth disabled")
return {}
security = HTTPBearer()
@@ -28,108 +24,7 @@ async def auth_middleware(request: Request):
try:
payload = parse_jwt_token(credentials.credentials)
request.state.user = payload
logger.debug("Token decoded successfully")
logging.info("Token decoded successfully")
except ValueError as e:
raise HTTPException(status_code=401, detail=str(e))
return payload
class APIKeyValidator:
"""
Configurable API key validator that supports custom validation functions
for FastAPI applications.
This class provides a flexible way to implement API key authentication with optional
custom validation logic. It can be used for simple token matching
or more complex validation scenarios like database lookups.
Examples:
Simple token validation:
```python
validator = APIKeyValidator(
header_name="X-API-Key",
expected_token="your-secret-token"
)
@app.get("/protected", dependencies=[Depends(validator.get_dependency())])
def protected_endpoint():
return {"message": "Access granted"}
```
Custom validation with database lookup:
```python
async def validate_with_db(api_key: str):
api_key_obj = await db.get_api_key(api_key)
return api_key_obj if api_key_obj and api_key_obj.is_active else None
validator = APIKeyValidator(
header_name="X-API-Key",
validate_fn=validate_with_db
)
```
Args:
header_name (str): The name of the header containing the API key
expected_token (Optional[str]): The expected API key value for simple token matching
validate_fn (Optional[Callable]): Custom validation function that takes an API key
string and returns a boolean or object. Can be async.
error_status (int): HTTP status code to use for validation errors
error_message (str): Error message to return when validation fails
"""
def __init__(
self,
header_name: str,
expected_token: Optional[str] = None,
validate_fn: Optional[Callable[[str], bool]] = None,
error_status: int = HTTP_401_UNAUTHORIZED,
error_message: str = "Invalid API key",
):
# Create the APIKeyHeader as a class property
self.security_scheme = APIKeyHeader(name=header_name)
self.expected_token = expected_token
self.custom_validate_fn = validate_fn
self.error_status = error_status
self.error_message = error_message
async def default_validator(self, api_key: str) -> bool:
return api_key == self.expected_token
async def __call__(
self, request: Request, api_key: str = Security(APIKeyHeader)
) -> Any:
if api_key is None:
raise HTTPException(status_code=self.error_status, detail="Missing API key")
# Use custom validation if provided, otherwise use default equality check
validator = self.custom_validate_fn or self.default_validator
result = (
await validator(api_key)
if inspect.iscoroutinefunction(validator)
else validator(api_key)
)
if not result:
raise HTTPException(
status_code=self.error_status, detail=self.error_message
)
# Store validation result in request state if it's not just a boolean
if result is not True:
request.state.api_key = result
return result
def get_dependency(self):
"""
Returns a callable dependency that FastAPI will recognize as a security scheme
"""
async def validate_api_key(
request: Request, api_key: str = Security(self.security_scheme)
) -> Any:
return await self(request, api_key)
# This helps FastAPI recognize it as a security dependency
validate_api_key.__name__ = f"validate_{self.security_scheme.model.name}"
return validate_api_key

View File

@@ -1,8 +1,5 @@
from dataclasses import dataclass
DEFAULT_USER_ID = "3e53486c-cf57-477e-ba2a-cb02dc828e1a"
DEFAULT_EMAIL = "default@example.com"
# Using dataclass here to avoid adding dependency on pydantic
@dataclass(frozen=True)

View File

@@ -1,166 +0,0 @@
import asyncio
import contextlib
import logging
from functools import wraps
from typing import Any, Awaitable, Callable, Dict, Optional, TypeVar, Union, cast
import ldclient
from fastapi import HTTPException
from ldclient import Context, LDClient
from ldclient.config import Config
from typing_extensions import ParamSpec
from .config import SETTINGS
logger = logging.getLogger(__name__)
P = ParamSpec("P")
T = TypeVar("T")
def get_client() -> LDClient:
"""Get the LaunchDarkly client singleton."""
return ldclient.get()
def initialize_launchdarkly() -> None:
sdk_key = SETTINGS.launch_darkly_sdk_key
logger.debug(
f"Initializing LaunchDarkly with SDK key: {'present' if sdk_key else 'missing'}"
)
if not sdk_key:
logger.warning("LaunchDarkly SDK key not configured")
return
config = Config(sdk_key)
ldclient.set_config(config)
if ldclient.get().is_initialized():
logger.info("LaunchDarkly client initialized successfully")
else:
logger.error("LaunchDarkly client failed to initialize")
def shutdown_launchdarkly() -> None:
"""Shutdown the LaunchDarkly client."""
if ldclient.get().is_initialized():
ldclient.get().close()
logger.info("LaunchDarkly client closed successfully")
def create_context(
user_id: str, additional_attributes: Optional[Dict[str, Any]] = None
) -> Context:
"""Create LaunchDarkly context with optional additional attributes."""
builder = Context.builder(str(user_id)).kind("user")
if additional_attributes:
for key, value in additional_attributes.items():
builder.set(key, value)
return builder.build()
def feature_flag(
flag_key: str,
default: bool = False,
) -> Callable[
[Callable[P, Union[T, Awaitable[T]]]], Callable[P, Union[T, Awaitable[T]]]
]:
"""
Decorator for feature flag protected endpoints.
"""
def decorator(
func: Callable[P, Union[T, Awaitable[T]]],
) -> Callable[P, Union[T, Awaitable[T]]]:
@wraps(func)
async def async_wrapper(*args: P.args, **kwargs: P.kwargs) -> T:
try:
user_id = kwargs.get("user_id")
if not user_id:
raise ValueError("user_id is required")
if not get_client().is_initialized():
logger.warning(
f"LaunchDarkly not initialized, using default={default}"
)
is_enabled = default
else:
context = create_context(str(user_id))
is_enabled = get_client().variation(flag_key, context, default)
if not is_enabled:
raise HTTPException(status_code=404, detail="Feature not available")
result = func(*args, **kwargs)
if asyncio.iscoroutine(result):
return await result
return cast(T, result)
except Exception as e:
logger.error(f"Error evaluating feature flag {flag_key}: {e}")
raise
@wraps(func)
def sync_wrapper(*args: P.args, **kwargs: P.kwargs) -> T:
try:
user_id = kwargs.get("user_id")
if not user_id:
raise ValueError("user_id is required")
if not get_client().is_initialized():
logger.warning(
f"LaunchDarkly not initialized, using default={default}"
)
is_enabled = default
else:
context = create_context(str(user_id))
is_enabled = get_client().variation(flag_key, context, default)
if not is_enabled:
raise HTTPException(status_code=404, detail="Feature not available")
return cast(T, func(*args, **kwargs))
except Exception as e:
logger.error(f"Error evaluating feature flag {flag_key}: {e}")
raise
return cast(
Callable[P, Union[T, Awaitable[T]]],
async_wrapper if asyncio.iscoroutinefunction(func) else sync_wrapper,
)
return decorator
def percentage_rollout(
flag_key: str,
default: bool = False,
) -> Callable[
[Callable[P, Union[T, Awaitable[T]]]], Callable[P, Union[T, Awaitable[T]]]
]:
"""Decorator for percentage-based rollouts."""
return feature_flag(flag_key, default)
def beta_feature(
flag_key: Optional[str] = None,
unauthorized_response: Any = {"message": "Not available in beta"},
) -> Callable[
[Callable[P, Union[T, Awaitable[T]]]], Callable[P, Union[T, Awaitable[T]]]
]:
"""Decorator for beta features."""
actual_key = f"beta-{flag_key}" if flag_key else "beta"
return feature_flag(actual_key, False)
@contextlib.contextmanager
def mock_flag_variation(flag_key: str, return_value: Any):
"""Context manager for testing feature flags."""
original_variation = get_client().variation
get_client().variation = lambda key, context, default: (
return_value if key == flag_key else original_variation(key, context, default)
)
try:
yield
finally:
get_client().variation = original_variation

View File

@@ -1,45 +0,0 @@
import pytest
from ldclient import LDClient
from autogpt_libs.feature_flag.client import feature_flag, mock_flag_variation
@pytest.fixture
def ld_client(mocker):
client = mocker.Mock(spec=LDClient)
mocker.patch("ldclient.get", return_value=client)
client.is_initialized.return_value = True
return client
@pytest.mark.asyncio
async def test_feature_flag_enabled(ld_client):
ld_client.variation.return_value = True
@feature_flag("test-flag")
async def test_function(user_id: str):
return "success"
result = test_function(user_id="test-user")
assert result == "success"
ld_client.variation.assert_called_once()
@pytest.mark.asyncio
async def test_feature_flag_unauthorized_response(ld_client):
ld_client.variation.return_value = False
@feature_flag("test-flag")
async def test_function(user_id: str):
return "success"
result = test_function(user_id="test-user")
assert result == {"error": "disabled"}
def test_mock_flag_variation(ld_client):
with mock_flag_variation("test-flag", True):
assert ld_client.variation("test-flag", None, False)
with mock_flag_variation("test-flag", False):
assert ld_client.variation("test-flag", None, False)

View File

@@ -1,15 +0,0 @@
from pydantic import Field
from pydantic_settings import BaseSettings, SettingsConfigDict
class Settings(BaseSettings):
launch_darkly_sdk_key: str = Field(
default="",
description="The Launch Darkly SDK key",
validation_alias="LAUNCH_DARKLY_SDK_KEY",
)
model_config = SettingsConfigDict(case_sensitive=True, extra="ignore")
SETTINGS = Settings()

View File

@@ -6,9 +6,8 @@ from pathlib import Path
from pydantic import Field, field_validator
from pydantic_settings import BaseSettings, SettingsConfigDict
from .filters import BelowLevelFilter
from .formatters import AGPTFormatter
from .formatters import AGPTFormatter, StructuredLoggingFormatter
LOG_DIR = Path(__file__).parent.parent.parent.parent / "logs"
LOG_FILE = "activity.log"
@@ -18,11 +17,12 @@ ERROR_LOG_FILE = "error.log"
SIMPLE_LOG_FORMAT = "%(asctime)s %(levelname)s %(title)s%(message)s"
DEBUG_LOG_FORMAT = (
"%(asctime)s %(levelname)s %(filename)s:%(lineno)d %(title)s%(message)s"
"%(asctime)s %(levelname)s %(filename)s:%(lineno)d" " %(title)s%(message)s"
)
class LoggingConfig(BaseSettings):
level: str = Field(
default="INFO",
description="Logging level",
@@ -81,26 +81,9 @@ def configure_logging(force_cloud_logging: bool = False) -> None:
"""
config = LoggingConfig()
log_handlers: list[logging.Handler] = []
# Console output handlers
stdout = logging.StreamHandler(stream=sys.stdout)
stdout.setLevel(config.level)
stdout.addFilter(BelowLevelFilter(logging.WARNING))
if config.level == logging.DEBUG:
stdout.setFormatter(AGPTFormatter(DEBUG_LOG_FORMAT))
else:
stdout.setFormatter(AGPTFormatter(SIMPLE_LOG_FORMAT))
stderr = logging.StreamHandler()
stderr.setLevel(logging.WARNING)
if config.level == logging.DEBUG:
stderr.setFormatter(AGPTFormatter(DEBUG_LOG_FORMAT))
else:
stderr.setFormatter(AGPTFormatter(SIMPLE_LOG_FORMAT))
log_handlers += [stdout, stderr]
# Cloud logging setup
if config.enable_cloud_logging or force_cloud_logging:
import google.cloud.logging
@@ -114,7 +97,28 @@ def configure_logging(force_cloud_logging: bool = False) -> None:
transport=SyncTransport,
)
cloud_handler.setLevel(config.level)
cloud_handler.setFormatter(StructuredLoggingFormatter())
log_handlers.append(cloud_handler)
print("Cloud logging enabled")
else:
# Console output handlers
stdout = logging.StreamHandler(stream=sys.stdout)
stdout.setLevel(config.level)
stdout.addFilter(BelowLevelFilter(logging.WARNING))
if config.level == logging.DEBUG:
stdout.setFormatter(AGPTFormatter(DEBUG_LOG_FORMAT))
else:
stdout.setFormatter(AGPTFormatter(SIMPLE_LOG_FORMAT))
stderr = logging.StreamHandler()
stderr.setLevel(logging.WARNING)
if config.level == logging.DEBUG:
stderr.setFormatter(AGPTFormatter(DEBUG_LOG_FORMAT))
else:
stderr.setFormatter(AGPTFormatter(SIMPLE_LOG_FORMAT))
log_handlers += [stdout, stderr]
print("Console logging enabled")
# File logging setup
if config.enable_file_logging:
@@ -152,6 +156,7 @@ def configure_logging(force_cloud_logging: bool = False) -> None:
error_log_handler.setLevel(logging.ERROR)
error_log_handler.setFormatter(AGPTFormatter(DEBUG_LOG_FORMAT, no_color=True))
log_handlers.append(error_log_handler)
print("File logging enabled")
# Configure the root logger
logging.basicConfig(

View File

@@ -1,6 +1,7 @@
import logging
from colorama import Fore, Style
from google.cloud.logging_v2.handlers import CloudLoggingFilter, StructuredLogHandler
from .utils import remove_color_codes
@@ -79,3 +80,16 @@ class AGPTFormatter(FancyConsoleFormatter):
return remove_color_codes(super().format(record))
else:
return super().format(record)
class StructuredLoggingFormatter(StructuredLogHandler, logging.Formatter):
def __init__(self):
# Set up CloudLoggingFilter to add diagnostic info to the log records
self.cloud_logging_filter = CloudLoggingFilter()
# Init StructuredLogHandler
super().__init__()
def format(self, record: logging.LogRecord) -> str:
self.cloud_logging_filter.filter(record)
return super().format(record)

View File

@@ -24,10 +24,10 @@ from .utils import remove_color_codes
),
("", ""),
("hello", "hello"),
("hello\x1b[31m world", "hello world"),
("\x1b[36mHello,\x1b[32m World!", "Hello, World!"),
("hello\x1B[31m world", "hello world"),
("\x1B[36mHello,\x1B[32m World!", "Hello, World!"),
(
"\x1b[1m\x1b[31mError:\x1b[0m\x1b[31m file not found",
"\x1B[1m\x1B[31mError:\x1B[0m\x1B[31m file not found",
"Error: file not found",
),
],

View File

@@ -2,7 +2,6 @@ import logging
import re
from typing import Any
import uvicorn.config
from colorama import Fore
@@ -26,14 +25,3 @@ def print_attribute(
"color": value_color,
},
)
def generate_uvicorn_config():
"""
Generates a uvicorn logging config that silences uvicorn's default logging and tells it to use the native logging module.
"""
log_config = dict(uvicorn.config.LOGGING_CONFIG)
log_config["loggers"]["uvicorn"] = {"handlers": []}
log_config["loggers"]["uvicorn.error"] = {"handlers": []}
log_config["loggers"]["uvicorn.access"] = {"handlers": []}
return log_config

View File

@@ -1,31 +0,0 @@
from pydantic import Field
from pydantic_settings import BaseSettings, SettingsConfigDict
class RateLimitSettings(BaseSettings):
redis_host: str = Field(
default="redis://localhost:6379",
description="Redis host",
validation_alias="REDIS_HOST",
)
redis_port: str = Field(
default="6379", description="Redis port", validation_alias="REDIS_PORT"
)
redis_password: str = Field(
default="password",
description="Redis password",
validation_alias="REDIS_PASSWORD",
)
requests_per_minute: int = Field(
default=60,
description="Maximum number of requests allowed per minute per API key",
validation_alias="RATE_LIMIT_REQUESTS_PER_MINUTE",
)
model_config = SettingsConfigDict(case_sensitive=True, extra="ignore")
RATE_LIMIT_SETTINGS = RateLimitSettings()

View File

@@ -1,51 +0,0 @@
import time
from typing import Tuple
from redis import Redis
from .config import RATE_LIMIT_SETTINGS
class RateLimiter:
def __init__(
self,
redis_host: str = RATE_LIMIT_SETTINGS.redis_host,
redis_port: str = RATE_LIMIT_SETTINGS.redis_port,
redis_password: str = RATE_LIMIT_SETTINGS.redis_password,
requests_per_minute: int = RATE_LIMIT_SETTINGS.requests_per_minute,
):
self.redis = Redis(
host=redis_host,
port=int(redis_port),
password=redis_password,
decode_responses=True,
)
self.window = 60
self.max_requests = requests_per_minute
async def check_rate_limit(self, api_key_id: str) -> Tuple[bool, int, int]:
"""
Check if request is within rate limits.
Args:
api_key_id: The API key identifier to check
Returns:
Tuple of (is_allowed, remaining_requests, reset_time)
"""
now = time.time()
window_start = now - self.window
key = f"ratelimit:{api_key_id}:1min"
pipe = self.redis.pipeline()
pipe.zremrangebyscore(key, 0, window_start)
pipe.zadd(key, {str(now): now})
pipe.zcount(key, window_start, now)
pipe.expire(key, self.window)
_, _, request_count, _ = pipe.execute()
remaining = max(0, self.max_requests - request_count)
reset_time = int(now + self.window)
return request_count <= self.max_requests, remaining, reset_time

View File

@@ -1,32 +0,0 @@
from fastapi import HTTPException, Request
from starlette.middleware.base import RequestResponseEndpoint
from .limiter import RateLimiter
async def rate_limit_middleware(request: Request, call_next: RequestResponseEndpoint):
"""FastAPI middleware for rate limiting API requests."""
limiter = RateLimiter()
if not request.url.path.startswith("/api"):
return await call_next(request)
api_key = request.headers.get("Authorization")
if not api_key:
return await call_next(request)
api_key = api_key.replace("Bearer ", "")
is_allowed, remaining, reset_time = await limiter.check_rate_limit(api_key)
if not is_allowed:
raise HTTPException(
status_code=429, detail="Rate limit exceeded. Please try again later."
)
response = await call_next(request)
response.headers["X-RateLimit-Limit"] = str(limiter.max_requests)
response.headers["X-RateLimit-Remaining"] = str(remaining)
response.headers["X-RateLimit-Reset"] = str(reset_time)
return response

View File

@@ -0,0 +1,8 @@
from .store import SupabaseIntegrationCredentialsStore
from .types import APIKeyCredentials, OAuth2Credentials
__all__ = [
"SupabaseIntegrationCredentialsStore",
"APIKeyCredentials",
"OAuth2Credentials",
]

View File

@@ -0,0 +1,145 @@
import secrets
from datetime import datetime, timedelta, timezone
from typing import cast
from supabase import Client
from .types import (
Credentials,
OAuth2Credentials,
OAuthState,
UserMetadata,
UserMetadataRaw,
)
class SupabaseIntegrationCredentialsStore:
def __init__(self, supabase: Client):
self.supabase = supabase
def add_creds(self, user_id: str, credentials: Credentials) -> None:
if self.get_creds_by_id(user_id, credentials.id):
raise ValueError(
f"Can not re-create existing credentials with ID {credentials.id} "
f"for user with ID {user_id}"
)
self._set_user_integration_creds(
user_id, [*self.get_all_creds(user_id), credentials]
)
def get_all_creds(self, user_id: str) -> list[Credentials]:
user_metadata = self._get_user_metadata(user_id)
return UserMetadata.model_validate(user_metadata).integration_credentials
def get_creds_by_id(self, user_id: str, credentials_id: str) -> Credentials | None:
credentials = self.get_all_creds(user_id)
return next((c for c in credentials if c.id == credentials_id), None)
def get_creds_by_provider(self, user_id: str, provider: str) -> list[Credentials]:
credentials = self.get_all_creds(user_id)
return [c for c in credentials if c.provider == provider]
def get_authorized_providers(self, user_id: str) -> list[str]:
credentials = self.get_all_creds(user_id)
return list(set(c.provider for c in credentials))
def update_creds(self, user_id: str, updated: Credentials) -> None:
current = self.get_creds_by_id(user_id, updated.id)
if not current:
raise ValueError(
f"Credentials with ID {updated.id} "
f"for user with ID {user_id} not found"
)
if type(current) is not type(updated):
raise TypeError(
f"Can not update credentials with ID {updated.id} "
f"from type {type(current)} "
f"to type {type(updated)}"
)
# Ensure no scopes are removed when updating credentials
if (
isinstance(updated, OAuth2Credentials)
and isinstance(current, OAuth2Credentials)
and not set(updated.scopes).issuperset(current.scopes)
):
raise ValueError(
f"Can not update credentials with ID {updated.id} "
f"and scopes {current.scopes} "
f"to more restrictive set of scopes {updated.scopes}"
)
# Update the credentials
updated_credentials_list = [
updated if c.id == updated.id else c for c in self.get_all_creds(user_id)
]
self._set_user_integration_creds(user_id, updated_credentials_list)
def delete_creds_by_id(self, user_id: str, credentials_id: str) -> None:
filtered_credentials = [
c for c in self.get_all_creds(user_id) if c.id != credentials_id
]
self._set_user_integration_creds(user_id, filtered_credentials)
async def store_state_token(self, user_id: str, provider: str) -> str:
token = secrets.token_urlsafe(32)
expires_at = datetime.now(timezone.utc) + timedelta(minutes=10)
state = OAuthState(
token=token, provider=provider, expires_at=int(expires_at.timestamp())
)
user_metadata = self._get_user_metadata(user_id)
oauth_states = user_metadata.get("integration_oauth_states", [])
oauth_states.append(state.model_dump())
user_metadata["integration_oauth_states"] = oauth_states
self.supabase.auth.admin.update_user_by_id(
user_id, {"user_metadata": user_metadata}
)
return token
async def verify_state_token(self, user_id: str, token: str, provider: str) -> bool:
user_metadata = self._get_user_metadata(user_id)
oauth_states = user_metadata.get("integration_oauth_states", [])
now = datetime.now(timezone.utc)
valid_state = next(
(
state
for state in oauth_states
if state["token"] == token
and state["provider"] == provider
and state["expires_at"] > now.timestamp()
),
None,
)
if valid_state:
# Remove the used state
oauth_states.remove(valid_state)
user_metadata["integration_oauth_states"] = oauth_states
self.supabase.auth.admin.update_user_by_id(
user_id, {"user_metadata": user_metadata}
)
return True
return False
def _set_user_integration_creds(
self, user_id: str, credentials: list[Credentials]
) -> None:
raw_metadata = self._get_user_metadata(user_id)
raw_metadata.update(
{"integration_credentials": [c.model_dump() for c in credentials]}
)
self.supabase.auth.admin.update_user_by_id(
user_id, {"user_metadata": raw_metadata}
)
def _get_user_metadata(self, user_id: str) -> UserMetadataRaw:
response = self.supabase.auth.admin.get_user_by_id(user_id)
if not response.user:
raise ValueError(f"User with ID {user_id} not found")
return cast(UserMetadataRaw, response.user.user_metadata)

View File

@@ -29,9 +29,6 @@ class OAuth2Credentials(_BaseCredentials):
scopes: list[str]
metadata: dict[str, Any] = Field(default_factory=dict)
def bearer(self) -> str:
return f"Bearer {self.access_token.get_secret_value()}"
class APIKeyCredentials(_BaseCredentials):
type: Literal["api_key"] = "api_key"
@@ -39,9 +36,6 @@ class APIKeyCredentials(_BaseCredentials):
expires_at: Optional[int]
"""Unix timestamp (seconds) indicating when the API key expires (if at all)"""
def bearer(self) -> str:
return f"Bearer {self.api_key.get_secret_value()}"
Credentials = Annotated[
OAuth2Credentials | APIKeyCredentials,
@@ -49,15 +43,10 @@ Credentials = Annotated[
]
CredentialsType = Literal["api_key", "oauth2"]
class OAuthState(BaseModel):
token: str
provider: str
expires_at: int
code_verifier: Optional[str] = None
scopes: list[str]
"""Unix timestamp (seconds) indicating when this OAuth state expires"""
@@ -69,8 +58,3 @@ class UserMetadata(BaseModel):
class UserMetadataRaw(TypedDict, total=False):
integration_credentials: list[dict]
integration_oauth_states: list[dict]
class UserIntegrations(BaseModel):
credentials: list[Credentials] = Field(default_factory=list)
oauth_states: list[OAuthState] = Field(default_factory=list)

View File

@@ -1,59 +0,0 @@
import inspect
import threading
from typing import Awaitable, Callable, ParamSpec, TypeVar, cast, overload
P = ParamSpec("P")
R = TypeVar("R")
@overload
def thread_cached(func: Callable[P, Awaitable[R]]) -> Callable[P, Awaitable[R]]: ...
@overload
def thread_cached(func: Callable[P, R]) -> Callable[P, R]: ...
def thread_cached(
func: Callable[P, R] | Callable[P, Awaitable[R]],
) -> Callable[P, R] | Callable[P, Awaitable[R]]:
thread_local = threading.local()
def _clear():
if hasattr(thread_local, "cache"):
del thread_local.cache
if inspect.iscoroutinefunction(func):
async def async_wrapper(*args: P.args, **kwargs: P.kwargs) -> R:
cache = getattr(thread_local, "cache", None)
if cache is None:
cache = thread_local.cache = {}
key = (args, tuple(sorted(kwargs.items())))
if key not in cache:
cache[key] = await cast(Callable[P, Awaitable[R]], func)(
*args, **kwargs
)
return cache[key]
setattr(async_wrapper, "clear_cache", _clear)
return async_wrapper
else:
def sync_wrapper(*args: P.args, **kwargs: P.kwargs) -> R:
cache = getattr(thread_local, "cache", None)
if cache is None:
cache = thread_local.cache = {}
key = (args, tuple(sorted(kwargs.items())))
if key not in cache:
cache[key] = func(*args, **kwargs)
return cache[key]
setattr(sync_wrapper, "clear_cache", _clear)
return sync_wrapper
def clear_thread_cache(func: Callable) -> None:
if clear := getattr(func, "clear_cache", None):
clear()

View File

@@ -1,57 +0,0 @@
from contextlib import contextmanager
from threading import Lock
from typing import TYPE_CHECKING, Any
from expiringdict import ExpiringDict
if TYPE_CHECKING:
from redis import Redis
from redis.lock import Lock as RedisLock
class RedisKeyedMutex:
"""
This class provides a mutex that can be locked and unlocked by a specific key,
using Redis as a distributed locking provider.
It uses an ExpiringDict to automatically clear the mutex after a specified timeout,
in case the key is not unlocked for a specified duration, to prevent memory leaks.
"""
def __init__(self, redis: "Redis", timeout: int | None = 60):
self.redis = redis
self.timeout = timeout
self.locks: dict[Any, "RedisLock"] = ExpiringDict(
max_len=6000, max_age_seconds=self.timeout
)
self.locks_lock = Lock()
@contextmanager
def locked(self, key: Any):
lock = self.acquire(key)
try:
yield
finally:
if lock.locked():
lock.release()
def acquire(self, key: Any) -> "RedisLock":
"""Acquires and returns a lock with the given key"""
with self.locks_lock:
if key not in self.locks:
self.locks[key] = self.redis.lock(
str(key), self.timeout, thread_local=False
)
lock = self.locks[key]
lock.acquire()
return lock
def release(self, key: Any):
if (lock := self.locks.get(key)) and lock.locked() and lock.owned():
lock.release()
def release_all_locks(self):
"""Call this on process termination to ensure all locks are released"""
self.locks_lock.acquire(blocking=False)
for lock in self.locks.values():
if lock.locked() and lock.owned():
lock.release()

File diff suppressed because it is too large Load Diff

View File

@@ -8,26 +8,14 @@ packages = [{ include = "autogpt_libs" }]
[tool.poetry.dependencies]
colorama = "^0.4.6"
expiringdict = "^1.2.2"
google-cloud-logging = "^3.11.4"
pydantic = "^2.11.1"
pydantic-settings = "^2.8.1"
pyjwt = "^2.10.1"
pytest-asyncio = "^0.26.0"
pytest-mock = "^3.14.0"
google-cloud-logging = "^3.8.0"
pydantic = "^2.8.2"
pydantic-settings = "^2.5.2"
pyjwt = "^2.8.0"
python = ">=3.10,<4.0"
supabase = "^2.15.0"
[tool.poetry.group.dev.dependencies]
redis = "^5.2.1"
ruff = "^0.11.0"
python-dotenv = "^1.0.1"
supabase = "^2.7.2"
[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"
[tool.ruff]
line-length = 88
[tool.ruff.lint]
extend-select = ["I"] # sort dependencies

View File

@@ -1,119 +1,21 @@
DB_USER=postgres
DB_PASS=your-super-secret-and-long-postgres-password
DB_NAME=postgres
DB_PORT=5432
DB_HOST=localhost
DB_CONNECTION_LIMIT=12
DB_CONNECT_TIMEOUT=60
DB_POOL_TIMEOUT=300
DB_SCHEMA=platform
DATABASE_URL="postgresql://${DB_USER}:${DB_PASS}@${DB_HOST}:${DB_PORT}/${DB_NAME}?schema=${DB_SCHEMA}&connect_timeout=${DB_CONNECT_TIMEOUT}"
DIRECT_URL="postgresql://${DB_USER}:${DB_PASS}@${DB_HOST}:${DB_PORT}/${DB_NAME}?schema=${DB_SCHEMA}&connect_timeout=${DB_CONNECT_TIMEOUT}"
DB_USER=agpt_user
DB_PASS=pass123
DB_NAME=agpt_local
DB_PORT=5433
DATABASE_URL="postgresql://${DB_USER}:${DB_PASS}@localhost:${DB_PORT}/${DB_NAME}"
PRISMA_SCHEMA="postgres/schema.prisma"
# EXECUTOR
NUM_GRAPH_WORKERS=10
NUM_NODE_WORKERS=3
BACKEND_CORS_ALLOW_ORIGINS=["http://localhost:3000"]
# generate using `from cryptography.fernet import Fernet;Fernet.generate_key().decode()`
ENCRYPTION_KEY='dvziYgz0KSK8FENhju0ZYi8-fRTfAdlz6YLhdB_jhNw='
UNSUBSCRIBE_SECRET_KEY = 'HlP8ivStJjmbf6NKi78m_3FnOogut0t5ckzjsIqeaio='
REDIS_HOST=localhost
REDIS_PORT=6379
REDIS_PASSWORD=password
ENABLE_AUTH=false
ENABLE_CREDIT=false
STRIPE_API_KEY=
STRIPE_WEBHOOK_SECRET=
# What environment things should be logged under: local dev or prod
APP_ENV=local
# What environment to behave as: "local" or "cloud"
BEHAVE_AS=local
APP_ENV="local"
PYRO_HOST=localhost
SENTRY_DSN=
# Email For Postmark so we can send emails
POSTMARK_SERVER_API_TOKEN=
POSTMARK_SENDER_EMAIL=invalid@invalid.com
POSTMARK_WEBHOOK_TOKEN=
## User auth with Supabase is required for any of the 3rd party integrations with auth to work.
ENABLE_AUTH=true
SUPABASE_URL=http://localhost:8000
SUPABASE_SERVICE_ROLE_KEY=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyAgCiAgICAicm9sZSI6ICJzZXJ2aWNlX3JvbGUiLAogICAgImlzcyI6ICJzdXBhYmFzZS1kZW1vIiwKICAgICJpYXQiOiAxNjQxNzY5MjAwLAogICAgImV4cCI6IDE3OTk1MzU2MDAKfQ.DaYlNEoUrrEn2Ig7tqibS-PHK5vgusbcbo7X36XVt4Q
SUPABASE_JWT_SECRET=your-super-secret-jwt-token-with-at-least-32-characters-long
# RabbitMQ credentials -- Used for communication between services
RABBITMQ_HOST=localhost
RABBITMQ_PORT=5672
RABBITMQ_DEFAULT_USER=rabbitmq_user_default
RABBITMQ_DEFAULT_PASS=k0VMxyIJF9S35f3x2uaw5IWAl6Y536O7
## GCS bucket is required for marketplace and library functionality
MEDIA_GCS_BUCKET_NAME=
## For local development, you may need to set FRONTEND_BASE_URL for the OAuth flow
## for integrations to work. Defaults to the value of PLATFORM_BASE_URL if not set.
# FRONTEND_BASE_URL=http://localhost:3000
## PLATFORM_BASE_URL must be set to a *publicly accessible* URL pointing to your backend
## to use the platform's webhook-related functionality.
## If you are developing locally, you can use something like ngrok to get a publc URL
## and tunnel it to your locally running backend.
PLATFORM_BASE_URL=http://localhost:3000
## == INTEGRATION CREDENTIALS == ##
# Each set of server side credentials is required for the corresponding 3rd party
# integration to work.
# For the OAuth callback URL, use <your_frontend_url>/auth/integrations/oauth_callback,
# e.g. http://localhost:3000/auth/integrations/oauth_callback
# GitHub OAuth App server credentials - https://github.com/settings/developers
GITHUB_CLIENT_ID=
GITHUB_CLIENT_SECRET=
# Google OAuth App server credentials - https://console.cloud.google.com/apis/credentials, and enable gmail api and set scopes
# https://console.cloud.google.com/apis/credentials/consent ?project=<your_project_id>
# You'll need to add/enable the following scopes (minimum):
# https://console.developers.google.com/apis/api/gmail.googleapis.com/overview ?project=<your_project_id>
# https://console.cloud.google.com/apis/library/sheets.googleapis.com/ ?project=<your_project_id>
GOOGLE_CLIENT_ID=
GOOGLE_CLIENT_SECRET=
# Twitter (X) OAuth 2.0 with PKCE Configuration
# 1. Create a Twitter Developer Account:
# - Visit https://developer.x.com/en and sign up
# 2. Set up your application:
# - Navigate to Developer Portal > Projects > Create Project
# - Add a new app to your project
# 3. Configure app settings:
# - App Permissions: Read + Write + Direct Messages
# - App Type: Web App, Automated App or Bot
# - OAuth 2.0 Callback URL: http://localhost:3000/auth/integrations/oauth_callback
# - Save your Client ID and Client Secret below
TWITTER_CLIENT_ID=
TWITTER_CLIENT_SECRET=
# Linear App
# Make a new workspace for your OAuth APP -- trust me
# https://linear.app/settings/api/applications/new
# Callback URL: http://localhost:3000/auth/integrations/oauth_callback
LINEAR_CLIENT_ID=
LINEAR_CLIENT_SECRET=
# To obtain Todoist API credentials:
# 1. Create a Todoist account at todoist.com
# 2. Visit the Developer Console: https://developer.todoist.com/appconsole.html
# 3. Click "Create new app"
# 4. Once created, copy your Client ID and Client Secret below
TODOIST_CLIENT_ID=
TODOIST_CLIENT_SECRET=
# This is needed when ENABLE_AUTH is true
SUPABASE_JWT_SECRET=
## ===== OPTIONAL API KEYS ===== ##
@@ -121,15 +23,12 @@ TODOIST_CLIENT_SECRET=
OPENAI_API_KEY=
ANTHROPIC_API_KEY=
GROQ_API_KEY=
OPEN_ROUTER_API_KEY=
# Reddit
# Go to https://www.reddit.com/prefs/apps and create a new app
# Choose "script" for the type
# Fill in the redirect uri as <your_frontend_url>/auth/integrations/oauth_callback, e.g. http://localhost:3000/auth/integrations/oauth_callback
REDDIT_CLIENT_ID=
REDDIT_CLIENT_SECRET=
REDDIT_USER_AGENT="AutoGPT:1.0 (by /u/autogpt)"
REDDIT_USERNAME=
REDDIT_PASSWORD=
# Discord
DISCORD_BOT_TOKEN=
@@ -156,40 +55,6 @@ SMTP_PASSWORD=
MEDIUM_API_KEY=
MEDIUM_AUTHOR_ID=
# Google Maps
GOOGLE_MAPS_API_KEY=
# Replicate
REPLICATE_API_KEY=
# Ideogram
IDEOGRAM_API_KEY=
# Fal
FAL_API_KEY=
# Exa
EXA_API_KEY=
# E2B
E2B_API_KEY=
# Mem0
MEM0_API_KEY=
# Nvidia
NVIDIA_API_KEY=
# Apollo
APOLLO_API_KEY=
# SmartLead
SMARTLEAD_API_KEY=
# ZeroBounce
ZEROBOUNCE_API_KEY=
## ===== OPTIONAL API KEYS END ===== ##
# Logging Configuration
LOG_LEVEL=INFO

View File

@@ -5,7 +5,4 @@ dev.db-journal
build/
config.json
secrets/*
!secrets/.gitkeep
*.ignore.*
*.ign.*
!secrets/.gitkeep

View File

@@ -1,4 +1,4 @@
FROM python:3.11.10-slim-bookworm AS builder
FROM python:3.11-slim-buster AS builder
# Set environment variables
ENV PYTHONDONTWRITEBYTECODE 1
@@ -6,21 +6,17 @@ ENV PYTHONUNBUFFERED 1
WORKDIR /app
RUN echo 'Acquire::http::Pipeline-Depth 0;\nAcquire::http::No-Cache true;\nAcquire::BrokenProxy true;\n' > /etc/apt/apt.conf.d/99fixbadproxy
RUN apt-get update --allow-releaseinfo-change --fix-missing
# Install build dependencies
RUN apt-get install -y build-essential
RUN apt-get install -y libpq5
RUN apt-get install -y libz-dev
RUN apt-get install -y libssl-dev
RUN apt-get install -y postgresql-client
RUN apt-get update \
&& apt-get install -y build-essential curl ffmpeg wget libcurl4-gnutls-dev libexpat1-dev gettext libz-dev libssl-dev postgresql-client git \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*
ENV POETRY_HOME=/opt/poetry
ENV POETRY_NO_INTERACTION=1
ENV POETRY_VIRTUALENVS_CREATE=false
ENV PATH=/opt/poetry/bin:$PATH
ENV POETRY_VERSION=1.8.3 \
POETRY_HOME="/opt/poetry" \
POETRY_NO_INTERACTION=1 \
POETRY_VIRTUALENVS_CREATE=false \
PATH="$POETRY_HOME/bin:$PATH"
# Upgrade pip and setuptools to fix security vulnerabilities
RUN pip3 install --upgrade pip setuptools
@@ -31,20 +27,24 @@ RUN pip3 install poetry
COPY autogpt_platform/autogpt_libs /app/autogpt_platform/autogpt_libs
COPY autogpt_platform/backend/poetry.lock autogpt_platform/backend/pyproject.toml /app/autogpt_platform/backend/
WORKDIR /app/autogpt_platform/backend
RUN poetry install --no-ansi --no-root
RUN poetry config virtualenvs.create false \
&& poetry install --no-interaction --no-ansi
# Generate Prisma client
COPY autogpt_platform/backend/schema.prisma ./
RUN poetry run prisma generate
RUN poetry config virtualenvs.create false \
&& poetry run prisma generate
FROM python:3.11.10-slim-bookworm AS server_dependencies
FROM python:3.11-slim-buster AS server_dependencies
WORKDIR /app
ENV POETRY_HOME=/opt/poetry \
ENV POETRY_VERSION=1.8.3 \
POETRY_HOME="/opt/poetry" \
POETRY_NO_INTERACTION=1 \
POETRY_VIRTUALENVS_CREATE=false
ENV PATH=/opt/poetry/bin:$PATH
POETRY_VIRTUALENVS_CREATE=false \
PATH="$POETRY_HOME/bin:$PATH"
# Upgrade pip and setuptools to fix security vulnerabilities
RUN pip3 install --upgrade pip setuptools
@@ -71,8 +71,8 @@ WORKDIR /app/autogpt_platform/backend
FROM server_dependencies AS server
COPY autogpt_platform/backend /app/autogpt_platform/backend
RUN poetry install --no-ansi --only-root
ENV DATABASE_URL=""
ENV PORT=8000
CMD ["poetry", "run", "rest"]

View File

@@ -1 +1,75 @@
[Advanced Setup (Dev Branch)](https://dev-docs.agpt.co/platform/advanced_setup/#autogpt_agent_server_advanced_set_up)
# AutoGPT Agent Server Advanced set up
This guide walks you through a dockerized set up, with an external DB (postgres)
## Setup
We use the Poetry to manage the dependencies. To set up the project, follow these steps inside this directory:
0. Install Poetry
```sh
pip install poetry
```
1. Configure Poetry to use .venv in your project directory
```sh
poetry config virtualenvs.in-project true
```
2. Enter the poetry shell
```sh
poetry shell
```
3. Install dependencies
```sh
poetry install
```
4. Copy .env.example to .env
```sh
cp .env.example .env
```
5. Generate the Prisma client
```sh
poetry run prisma generate --schema postgres/schema.prisma
```
> In case Prisma generates the client for the global Python installation instead of the virtual environment, the current mitigation is to just uninstall the global Prisma package:
>
> ```sh
> pip uninstall prisma
> ```
>
> Then run the generation again. The path *should* look something like this:
> `<some path>/pypoetry/virtualenvs/backend-TQIRSwR6-py3.12/bin/prisma`
6. Run the postgres database from the /rnd folder
```sh
cd autogpt_platform/
docker compose up -d
```
7. Run the migrations (from the backend folder)
```sh
cd ../backend
prisma migrate dev --schema postgres/schema.prisma
```
## Running The Server
### Starting the server directly
Run the following command:
```sh
poetry run app
```

View File

@@ -1 +1,202 @@
[Getting Started (Released)](https://docs.agpt.co/platform/getting-started/#autogpt_agent_server)
# AutoGPT Agent Server
This is an initial project for creating the next generation of agent execution, which is an AutoGPT agent server.
The agent server will enable the creation of composite multi-agent systems that utilize AutoGPT agents and other non-agent components as its primitives.
## Docs
You can access the docs for the [AutoGPT Agent Server here](https://docs.agpt.co/server/setup).
## Setup
We use the Poetry to manage the dependencies. To set up the project, follow these steps inside this directory:
0. Install Poetry
```sh
pip install poetry
```
1. Configure Poetry to use .venv in your project directory
```sh
poetry config virtualenvs.in-project true
```
2. Enter the poetry shell
```sh
poetry shell
```
3. Install dependencies
```sh
poetry install
```
4. Copy .env.example to .env
```sh
cp .env.example .env
```
5. Generate the Prisma client
```sh
poetry run prisma generate
```
> In case Prisma generates the client for the global Python installation instead of the virtual environment, the current mitigation is to just uninstall the global Prisma package:
>
> ```sh
> pip uninstall prisma
> ```
>
> Then run the generation again. The path *should* look something like this:
> `<some path>/pypoetry/virtualenvs/backend-TQIRSwR6-py3.12/bin/prisma`
6. Migrate the database. Be careful because this deletes current data in the database.
```sh
docker compose up postgres redis -d
poetry run prisma migrate dev
```
## Running The Server
### Starting the server without Docker
Run the following command to build the dockerfiles:
```sh
poetry run app
```
### Starting the server with Docker
Run the following command to build the dockerfiles:
```sh
docker compose build
```
Run the following command to run the app:
```sh
docker compose up
```
Run the following to automatically rebuild when code changes, in another terminal:
```sh
docker compose watch
```
Run the following command to shut down:
```sh
docker compose down
```
If you run into issues with dangling orphans, try:
```sh
docker compose down --volumes --remove-orphans && docker-compose up --force-recreate --renew-anon-volumes --remove-orphans
```
## Testing
To run the tests:
```sh
poetry run test
```
## Development
### Formatting & Linting
Auto formatter and linter are set up in the project. To run them:
Install:
```sh
poetry install --with dev
```
Format the code:
```sh
poetry run format
```
Lint the code:
```sh
poetry run lint
```
## Project Outline
The current project has the following main modules:
### **blocks**
This module stores all the Agent Blocks, which are reusable components to build a graph that represents the agent's behavior.
### **data**
This module stores the logical model that is persisted in the database.
It abstracts the database operations into functions that can be called by the service layer.
Any code that interacts with Prisma objects or the database should reside in this module.
The main models are:
* `block`: anything related to the block used in the graph
* `execution`: anything related to the execution graph execution
* `graph`: anything related to the graph, node, and its relations
### **execution**
This module stores the business logic of executing the graph.
It currently has the following main modules:
* `manager`: A service that consumes the queue of the graph execution and executes the graph. It contains both pieces of logic.
* `scheduler`: A service that triggers scheduled graph execution based on a cron expression. It pushes an execution request to the manager.
### **server**
This module stores the logic for the server API.
It contains all the logic used for the API that allows the client to create, execute, and monitor the graph and its execution.
This API service interacts with other services like those defined in `manager` and `scheduler`.
### **utils**
This module stores utility functions that are used across the project.
Currently, it has two main modules:
* `process`: A module that contains the logic to spawn a new process.
* `service`: A module that serves as a parent class for all the services in the project.
## Service Communication
Currently, there are only 3 active services:
- AgentServer (the API, defined in `server.py`)
- ExecutionManager (the executor, defined in `manager.py`)
- ExecutionScheduler (the scheduler, defined in `scheduler.py`)
The services run in independent Python processes and communicate through an IPC.
A communication layer (`service.py`) is created to decouple the communication library from the implementation.
Currently, the IPC is done using Pyro5 and abstracted in a way that allows a function decorated with `@expose` to be called from a different process.
By default the daemons run on the following ports:
Execution Manager Daemon: 8002
Execution Scheduler Daemon: 8003
Rest Server Daemon: 8004
## Adding a New Agent Block
To add a new agent block, you need to create a new class that inherits from `Block` and provides the following information:
* All the block code should live in the `blocks` (`backend.blocks`) module.
* `input_schema`: the schema of the input data, represented by a Pydantic object.
* `output_schema`: the schema of the output data, represented by a Pydantic object.
* `run` method: the main logic of the block.
* `test_input` & `test_output`: the sample input and output data for the block, which will be used to auto-test the block.
* You can mock the functions declared in the block using the `test_mock` field for your unit tests.
* Once you finish creating the block, you can test it by running `pytest -s test/block/test_block.py`.

View File

@@ -1,30 +1,22 @@
import logging
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from backend.util.process import AppProcess
logger = logging.getLogger(__name__)
def run_processes(*processes: "AppProcess", **kwargs):
"""
Execute all processes in the app. The last process is run in the foreground.
Includes enhanced error handling and process lifecycle management.
"""
try:
# Run all processes except the last one in the background.
for process in processes[:-1]:
process.start(background=True, **kwargs)
# Run the last process in the foreground.
# Run the last process in the foreground
processes[-1].start(background=False, **kwargs)
finally:
for process in processes:
try:
process.stop()
except Exception as e:
logger.exception(f"[{process.service_name}] unable to stop: {e}")
process.stop()
def main(**kwargs):
@@ -32,16 +24,12 @@ def main(**kwargs):
Run all the processes required for the AutoGPT-server (REST and WebSocket APIs).
"""
from backend.executor import DatabaseManager, ExecutionManager, Scheduler
from backend.notifications import NotificationManager
from backend.server.rest_api import AgentServer
from backend.server.ws_api import WebsocketServer
from backend.executor import ExecutionManager, ExecutionScheduler
from backend.server import AgentServer, WebsocketServer
run_processes(
DatabaseManager(),
ExecutionManager(),
Scheduler(),
NotificationManager(),
ExecutionScheduler(),
WebsocketServer(),
AgentServer(),
**kwargs,

View File

@@ -1,104 +1,75 @@
import glob
import importlib
import os
import re
from pathlib import Path
from typing import TYPE_CHECKING, TypeVar
if TYPE_CHECKING:
from backend.data.block import Block
from backend.data.block import Block
T = TypeVar("T")
# Dynamically load all modules under backend.blocks
AVAILABLE_MODULES = []
current_dir = os.path.dirname(__file__)
modules = glob.glob(os.path.join(current_dir, "*.py"))
modules = [
Path(f).stem
for f in modules
if os.path.isfile(f) and f.endswith(".py") and not f.endswith("__init__.py")
]
for module in modules:
if not re.match("^[a-z_]+$", module):
raise ValueError(
f"Block module {module} error: module name must be lowercase, separated by underscores, and contain only alphabet characters"
)
importlib.import_module(f".{module}", package=__name__)
AVAILABLE_MODULES.append(module)
# Load all Block instances from the available modules
AVAILABLE_BLOCKS = {}
_AVAILABLE_BLOCKS: dict[str, type["Block"]] = {}
def load_all_blocks() -> dict[str, type["Block"]]:
from backend.data.block import Block
if _AVAILABLE_BLOCKS:
return _AVAILABLE_BLOCKS
# Dynamically load all modules under backend.blocks
AVAILABLE_MODULES = []
current_dir = Path(__file__).parent
modules = [
str(f.relative_to(current_dir))[:-3].replace(os.path.sep, ".")
for f in current_dir.rglob("*.py")
if f.is_file() and f.name != "__init__.py"
]
for module in modules:
if not re.match("^[a-z0-9_.]+$", module):
raise ValueError(
f"Block module {module} error: module name must be lowercase, "
"and contain only alphanumeric characters and underscores."
)
importlib.import_module(f".{module}", package=__name__)
AVAILABLE_MODULES.append(module)
# Load all Block instances from the available modules
for block_cls in all_subclasses(Block):
class_name = block_cls.__name__
if class_name.endswith("Base"):
continue
if not class_name.endswith("Block"):
raise ValueError(
f"Block class {class_name} does not end with 'Block'. "
"If you are creating an abstract class, "
"please name the class with 'Base' at the end"
)
block = block_cls.create()
if not isinstance(block.id, str) or len(block.id) != 36:
raise ValueError(
f"Block ID {block.name} error: {block.id} is not a valid UUID"
)
if block.id in _AVAILABLE_BLOCKS:
raise ValueError(
f"Block ID {block.name} error: {block.id} is already in use"
)
input_schema = block.input_schema.model_fields
output_schema = block.output_schema.model_fields
# Make sure `error` field is a string in the output schema
if "error" in output_schema and output_schema["error"].annotation is not str:
raise ValueError(
f"{block.name} `error` field in output_schema must be a string"
)
# Ensure all fields in input_schema and output_schema are annotated SchemaFields
for field_name, field in [*input_schema.items(), *output_schema.items()]:
if field.annotation is None:
raise ValueError(
f"{block.name} has a field {field_name} that is not annotated"
)
if field.json_schema_extra is None:
raise ValueError(
f"{block.name} has a field {field_name} not defined as SchemaField"
)
for field in block.input_schema.model_fields.values():
if field.annotation is bool and field.default not in (True, False):
raise ValueError(
f"{block.name} has a boolean field with no default value"
)
_AVAILABLE_BLOCKS[block.id] = block_cls
return _AVAILABLE_BLOCKS
__all__ = ["load_all_blocks"]
def all_subclasses(cls: type[T]) -> list[type[T]]:
subclasses = cls.__subclasses__()
def all_subclasses(clz):
subclasses = clz.__subclasses__()
for subclass in subclasses:
subclasses += all_subclasses(subclass)
return subclasses
for cls in all_subclasses(Block):
name = cls.__name__
if cls.__name__.endswith("Base"):
continue
if not cls.__name__.endswith("Block"):
raise ValueError(
f"Block class {cls.__name__} does not end with 'Block', If you are creating an abstract class, please name the class with 'Base' at the end"
)
block = cls()
if not isinstance(block.id, str) or len(block.id) != 36:
raise ValueError(f"Block ID {block.name} error: {block.id} is not a valid UUID")
if block.id in AVAILABLE_BLOCKS:
raise ValueError(f"Block ID {block.name} error: {block.id} is already in use")
# Prevent duplicate field name in input_schema and output_schema
duplicate_field_names = set(block.input_schema.model_fields.keys()) & set(
block.output_schema.model_fields.keys()
)
if duplicate_field_names:
raise ValueError(
f"{block.name} has duplicate field names in input_schema and output_schema: {duplicate_field_names}"
)
for field in block.input_schema.model_fields.values():
if field.annotation is bool and field.default not in (True, False):
raise ValueError(f"{block.name} has a boolean field with no default value")
if block.disabled:
continue
AVAILABLE_BLOCKS[block.id] = block
__all__ = ["AVAILABLE_MODULES", "AVAILABLE_BLOCKS"]

View File

@@ -1,112 +0,0 @@
import logging
from typing import Any
from backend.data.block import (
Block,
BlockCategory,
BlockInput,
BlockOutput,
BlockSchema,
BlockType,
get_block,
)
from backend.data.execution import ExecutionStatus
from backend.data.model import SchemaField
from backend.util import json
logger = logging.getLogger(__name__)
class AgentExecutorBlock(Block):
class Input(BlockSchema):
user_id: str = SchemaField(description="User ID")
graph_id: str = SchemaField(description="Graph ID")
graph_version: int = SchemaField(description="Graph Version")
data: BlockInput = SchemaField(description="Input data for the graph")
input_schema: dict = SchemaField(description="Input schema for the graph")
output_schema: dict = SchemaField(description="Output schema for the graph")
@classmethod
def get_input_schema(cls, data: BlockInput) -> dict[str, Any]:
return data.get("input_schema", {})
@classmethod
def get_input_defaults(cls, data: BlockInput) -> BlockInput:
return data.get("data", {})
@classmethod
def get_missing_input(cls, data: BlockInput) -> set[str]:
required_fields = cls.get_input_schema(data).get("required", [])
return set(required_fields) - set(data)
@classmethod
def get_mismatch_error(cls, data: BlockInput) -> str | None:
return json.validate_with_jsonschema(cls.get_input_schema(data), data)
class Output(BlockSchema):
pass
def __init__(self):
super().__init__(
id="e189baac-8c20-45a1-94a7-55177ea42565",
description="Executes an existing agent inside your agent",
input_schema=AgentExecutorBlock.Input,
output_schema=AgentExecutorBlock.Output,
block_type=BlockType.AGENT,
categories={BlockCategory.AGENT},
)
def run(self, input_data: Input, **kwargs) -> BlockOutput:
from backend.data.execution import ExecutionEventType
from backend.executor import utils as execution_utils
event_bus = execution_utils.get_execution_event_bus()
graph_exec = execution_utils.add_graph_execution(
graph_id=input_data.graph_id,
graph_version=input_data.graph_version,
user_id=input_data.user_id,
inputs=input_data.data,
)
log_id = f"Graph #{input_data.graph_id}-V{input_data.graph_version}, exec-id: {graph_exec.id}"
logger.info(f"Starting execution of {log_id}")
for event in event_bus.listen(
user_id=graph_exec.user_id,
graph_id=graph_exec.graph_id,
graph_exec_id=graph_exec.id,
):
if event.event_type == ExecutionEventType.GRAPH_EXEC_UPDATE:
if event.status in [
ExecutionStatus.COMPLETED,
ExecutionStatus.TERMINATED,
ExecutionStatus.FAILED,
]:
logger.info(f"Execution {log_id} ended with status {event.status}")
break
else:
continue
logger.debug(
f"Execution {log_id} produced input {event.input_data} output {event.output_data}"
)
if not event.block_id:
logger.warning(f"{log_id} received event without block_id {event}")
continue
block = get_block(event.block_id)
if not block or block.block_type != BlockType.OUTPUT:
continue
output_name = event.input_data.get("name")
if not output_name:
logger.warning(f"{log_id} produced an output with no name {event}")
continue
for output_data in event.output_data.get("output", []):
logger.debug(
f"Execution {log_id} produced {output_name}: {output_data}"
)
yield output_name, output_data

View File

@@ -1,325 +0,0 @@
from enum import Enum
from typing import Literal
import replicate
from pydantic import SecretStr
from replicate.helpers import FileOutput
from backend.data.block import Block, BlockCategory, BlockSchema
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
CredentialsMetaInput,
SchemaField,
)
from backend.integrations.providers import ProviderName
class ImageSize(str, Enum):
"""
Semantic sizes that map reliably across all models
"""
SQUARE = "square" # For profile pictures, icons, etc.
LANDSCAPE = "landscape" # For traditional photos, scenes
PORTRAIT = "portrait" # For vertical photos, portraits
WIDE = "wide" # For cinematic, desktop wallpapers
TALL = "tall" # For mobile wallpapers, stories
# Mapping semantic sizes to model-specific formats
SIZE_TO_SD_RATIO = {
ImageSize.SQUARE: "1:1",
ImageSize.LANDSCAPE: "4:3",
ImageSize.PORTRAIT: "3:4",
ImageSize.WIDE: "16:9",
ImageSize.TALL: "9:16",
}
SIZE_TO_FLUX_RATIO = {
ImageSize.SQUARE: "1:1",
ImageSize.LANDSCAPE: "4:3",
ImageSize.PORTRAIT: "3:4",
ImageSize.WIDE: "16:9",
ImageSize.TALL: "9:16",
}
SIZE_TO_FLUX_DIMENSIONS = {
ImageSize.SQUARE: (1024, 1024),
ImageSize.LANDSCAPE: (1365, 1024),
ImageSize.PORTRAIT: (1024, 1365),
ImageSize.WIDE: (1440, 810), # Adjusted to maintain 16:9 within 1440 limit
ImageSize.TALL: (810, 1440), # Adjusted to maintain 9:16 within 1440 limit
}
SIZE_TO_RECRAFT_DIMENSIONS = {
ImageSize.SQUARE: "1024x1024",
ImageSize.LANDSCAPE: "1365x1024",
ImageSize.PORTRAIT: "1024x1365",
ImageSize.WIDE: "1536x1024",
ImageSize.TALL: "1024x1536",
}
class ImageStyle(str, Enum):
"""
Complete set of supported styles
"""
ANY = "any"
# Realistic image styles
REALISTIC = "realistic_image"
REALISTIC_BW = "realistic_image/b_and_w"
REALISTIC_HDR = "realistic_image/hdr"
REALISTIC_NATURAL = "realistic_image/natural_light"
REALISTIC_STUDIO = "realistic_image/studio_portrait"
REALISTIC_ENTERPRISE = "realistic_image/enterprise"
REALISTIC_HARD_FLASH = "realistic_image/hard_flash"
REALISTIC_MOTION_BLUR = "realistic_image/motion_blur"
# Digital illustration styles
DIGITAL_ART = "digital_illustration"
PIXEL_ART = "digital_illustration/pixel_art"
HAND_DRAWN = "digital_illustration/hand_drawn"
GRAIN = "digital_illustration/grain"
SKETCH = "digital_illustration/infantile_sketch"
POSTER = "digital_illustration/2d_art_poster"
POSTER_2 = "digital_illustration/2d_art_poster_2"
HANDMADE_3D = "digital_illustration/handmade_3d"
HAND_DRAWN_OUTLINE = "digital_illustration/hand_drawn_outline"
ENGRAVING_COLOR = "digital_illustration/engraving_color"
class ImageGenModel(str, Enum):
"""
Available model providers
"""
FLUX = "Flux 1.1 Pro"
FLUX_ULTRA = "Flux 1.1 Pro Ultra"
RECRAFT = "Recraft v3"
SD3_5 = "Stable Diffusion 3.5 Medium"
class AIImageGeneratorBlock(Block):
class Input(BlockSchema):
credentials: CredentialsMetaInput[
Literal[ProviderName.REPLICATE], Literal["api_key"]
] = CredentialsField(
description="Enter your Replicate API key to access the image generation API. You can obtain an API key from https://replicate.com/account/api-tokens.",
)
prompt: str = SchemaField(
description="Text prompt for image generation",
placeholder="e.g., 'A red panda using a laptop in a snowy forest'",
title="Prompt",
)
model: ImageGenModel = SchemaField(
description="The AI model to use for image generation",
default=ImageGenModel.SD3_5,
title="Model",
)
size: ImageSize = SchemaField(
description=(
"Format of the generated image:\n"
"- Square: Perfect for profile pictures, icons\n"
"- Landscape: Traditional photo format\n"
"- Portrait: Vertical photos, portraits\n"
"- Wide: Cinematic format, desktop wallpapers\n"
"- Tall: Mobile wallpapers, social media stories"
),
default=ImageSize.SQUARE,
title="Image Format",
)
style: ImageStyle = SchemaField(
description="Visual style for the generated image",
default=ImageStyle.ANY,
title="Image Style",
)
class Output(BlockSchema):
image_url: str = SchemaField(description="URL of the generated image")
error: str = SchemaField(description="Error message if generation failed")
def __init__(self):
super().__init__(
id="ed1ae7a0-b770-4089-b520-1f0005fad19a",
description="Generate images using various AI models through a unified interface",
categories={BlockCategory.AI},
input_schema=AIImageGeneratorBlock.Input,
output_schema=AIImageGeneratorBlock.Output,
test_input={
"credentials": TEST_CREDENTIALS_INPUT,
"prompt": "An octopus using a laptop in a snowy forest with 'AutoGPT' clearly visible on the screen",
"model": ImageGenModel.RECRAFT,
"size": ImageSize.SQUARE,
"style": ImageStyle.REALISTIC,
},
test_credentials=TEST_CREDENTIALS,
test_output=[
(
"image_url",
"https://replicate.delivery/generated-image.webp",
),
],
test_mock={
"_run_client": lambda *args, **kwargs: "https://replicate.delivery/generated-image.webp"
},
)
def _run_client(
self, credentials: APIKeyCredentials, model_name: str, input_params: dict
):
try:
# Initialize Replicate client
client = replicate.Client(api_token=credentials.api_key.get_secret_value())
# Run the model with input parameters
output = client.run(model_name, input=input_params, wait=False)
# Process output
if isinstance(output, list) and len(output) > 0:
if isinstance(output[0], FileOutput):
result_url = output[0].url
else:
result_url = output[0]
elif isinstance(output, FileOutput):
result_url = output.url
elif isinstance(output, str):
result_url = output
else:
result_url = None
return result_url
except TypeError as e:
raise TypeError(f"Error during model execution: {e}")
except Exception as e:
raise RuntimeError(f"Unexpected error during model execution: {e}")
def generate_image(self, input_data: Input, credentials: APIKeyCredentials):
try:
# Handle style-based prompt modification for models without native style support
modified_prompt = input_data.prompt
if input_data.model not in [ImageGenModel.RECRAFT]:
style_prefix = self._style_to_prompt_prefix(input_data.style)
modified_prompt = f"{style_prefix} {modified_prompt}".strip()
if input_data.model == ImageGenModel.SD3_5:
# Use Stable Diffusion 3.5 with aspect ratio
input_params = {
"prompt": modified_prompt,
"aspect_ratio": SIZE_TO_SD_RATIO[input_data.size],
"output_format": "webp",
"output_quality": 90,
"steps": 40,
"cfg_scale": 7.0,
}
output = self._run_client(
credentials,
"stability-ai/stable-diffusion-3.5-medium",
input_params,
)
return output
elif input_data.model == ImageGenModel.FLUX:
# Use Flux-specific dimensions with 'jpg' format to avoid ReplicateError
width, height = SIZE_TO_FLUX_DIMENSIONS[input_data.size]
input_params = {
"prompt": modified_prompt,
"width": width,
"height": height,
"aspect_ratio": SIZE_TO_FLUX_RATIO[input_data.size],
"output_format": "jpg", # Set to jpg for Flux models
"output_quality": 90,
}
output = self._run_client(
credentials, "black-forest-labs/flux-1.1-pro", input_params
)
return output
elif input_data.model == ImageGenModel.FLUX_ULTRA:
width, height = SIZE_TO_FLUX_DIMENSIONS[input_data.size]
input_params = {
"prompt": modified_prompt,
"width": width,
"height": height,
"aspect_ratio": SIZE_TO_FLUX_RATIO[input_data.size],
"output_format": "jpg",
"output_quality": 90,
}
output = self._run_client(
credentials, "black-forest-labs/flux-1.1-pro-ultra", input_params
)
return output
elif input_data.model == ImageGenModel.RECRAFT:
input_params = {
"prompt": input_data.prompt,
"size": SIZE_TO_RECRAFT_DIMENSIONS[input_data.size],
"style": input_data.style.value,
}
output = self._run_client(
credentials, "recraft-ai/recraft-v3", input_params
)
return output
except Exception as e:
raise RuntimeError(f"Failed to generate image: {str(e)}")
def _style_to_prompt_prefix(self, style: ImageStyle) -> str:
"""
Convert a style enum to a prompt prefix for models without native style support.
"""
if style == ImageStyle.ANY:
return ""
style_map = {
ImageStyle.REALISTIC: "photorealistic",
ImageStyle.REALISTIC_BW: "black and white photograph",
ImageStyle.REALISTIC_HDR: "HDR photograph",
ImageStyle.REALISTIC_NATURAL: "natural light photograph",
ImageStyle.REALISTIC_STUDIO: "studio portrait photograph",
ImageStyle.REALISTIC_ENTERPRISE: "enterprise photograph",
ImageStyle.REALISTIC_HARD_FLASH: "hard flash photograph",
ImageStyle.REALISTIC_MOTION_BLUR: "motion blur photograph",
ImageStyle.DIGITAL_ART: "digital art",
ImageStyle.PIXEL_ART: "pixel art",
ImageStyle.HAND_DRAWN: "hand drawn illustration",
ImageStyle.GRAIN: "grainy digital illustration",
ImageStyle.SKETCH: "sketchy illustration",
ImageStyle.POSTER: "2D art poster",
ImageStyle.POSTER_2: "alternate 2D art poster",
ImageStyle.HANDMADE_3D: "handmade 3D illustration",
ImageStyle.HAND_DRAWN_OUTLINE: "hand drawn outline illustration",
ImageStyle.ENGRAVING_COLOR: "color engraving illustration",
}
style_text = style_map.get(style, "")
return f"{style_text} of" if style_text else ""
def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
try:
url = self.generate_image(input_data, credentials)
if url:
yield "image_url", url
else:
yield "error", "Image generation returned an empty result."
except Exception as e:
# Capture and return only the message of the exception, avoiding serialization of non-serializable objects
yield "error", str(e)
# Test credentials stay the same
TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
provider="replicate",
api_key=SecretStr("mock-replicate-api-key"),
title="Mock Replicate API key",
expires_at=None,
)
TEST_CREDENTIALS_INPUT = {
"provider": TEST_CREDENTIALS.provider,
"id": TEST_CREDENTIALS.id,
"type": TEST_CREDENTIALS.type,
"title": TEST_CREDENTIALS.title,
}

View File

@@ -1,227 +0,0 @@
import logging
import time
from enum import Enum
from typing import Literal
import replicate
from pydantic import SecretStr
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
CredentialsMetaInput,
SchemaField,
)
from backend.integrations.providers import ProviderName
logger = logging.getLogger(__name__)
TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
provider="replicate",
api_key=SecretStr("mock-replicate-api-key"),
title="Mock Replicate API key",
expires_at=None,
)
TEST_CREDENTIALS_INPUT = {
"provider": TEST_CREDENTIALS.provider,
"id": TEST_CREDENTIALS.id,
"type": TEST_CREDENTIALS.type,
"title": TEST_CREDENTIALS.type,
}
# Model version enum
class MusicGenModelVersion(str, Enum):
STEREO_LARGE = "stereo-large"
MELODY_LARGE = "melody-large"
LARGE = "large"
# Audio format enum
class AudioFormat(str, Enum):
WAV = "wav"
MP3 = "mp3"
# Normalization strategy enum
class NormalizationStrategy(str, Enum):
LOUDNESS = "loudness"
CLIP = "clip"
PEAK = "peak"
RMS = "rms"
class AIMusicGeneratorBlock(Block):
class Input(BlockSchema):
credentials: CredentialsMetaInput[
Literal[ProviderName.REPLICATE], Literal["api_key"]
] = CredentialsField(
description="The Replicate integration can be used with "
"any API key with sufficient permissions for the blocks it is used on.",
)
prompt: str = SchemaField(
description="A description of the music you want to generate",
placeholder="e.g., 'An upbeat electronic dance track with heavy bass'",
title="Prompt",
)
music_gen_model_version: MusicGenModelVersion = SchemaField(
description="Model to use for generation",
default=MusicGenModelVersion.STEREO_LARGE,
title="Model Version",
)
duration: int = SchemaField(
description="Duration of the generated audio in seconds",
default=8,
title="Duration",
)
temperature: float = SchemaField(
description="Controls the 'conservativeness' of the sampling process. Higher temperature means more diversity",
default=1.0,
title="Temperature",
)
top_k: int = SchemaField(
description="Reduces sampling to the k most likely tokens",
default=250,
title="Top K",
)
top_p: float = SchemaField(
description="Reduces sampling to tokens with cumulative probability of p. When set to 0 (default), top_k sampling is used",
default=0.0,
title="Top P",
)
classifier_free_guidance: int = SchemaField(
description="Increases the influence of inputs on the output. Higher values produce lower-variance outputs that adhere more closely to inputs",
default=3,
title="Classifier Free Guidance",
)
output_format: AudioFormat = SchemaField(
description="Output format for generated audio",
default=AudioFormat.WAV,
title="Output Format",
)
normalization_strategy: NormalizationStrategy = SchemaField(
description="Strategy for normalizing audio",
default=NormalizationStrategy.LOUDNESS,
title="Normalization Strategy",
)
class Output(BlockSchema):
result: str = SchemaField(description="URL of the generated audio file")
error: str = SchemaField(description="Error message if the model run failed")
def __init__(self):
super().__init__(
id="44f6c8ad-d75c-4ae1-8209-aad1c0326928",
description="This block generates music using Meta's MusicGen model on Replicate.",
categories={BlockCategory.AI},
input_schema=AIMusicGeneratorBlock.Input,
output_schema=AIMusicGeneratorBlock.Output,
test_input={
"credentials": TEST_CREDENTIALS_INPUT,
"prompt": "An upbeat electronic dance track with heavy bass",
"music_gen_model_version": MusicGenModelVersion.STEREO_LARGE,
"duration": 8,
"temperature": 1.0,
"top_k": 250,
"top_p": 0.0,
"classifier_free_guidance": 3,
"output_format": AudioFormat.WAV,
"normalization_strategy": NormalizationStrategy.LOUDNESS,
},
test_output=[
(
"result",
"https://replicate.com/output/generated-audio-url.wav",
),
],
test_mock={
"run_model": lambda api_key, music_gen_model_version, prompt, duration, temperature, top_k, top_p, classifier_free_guidance, output_format, normalization_strategy: "https://replicate.com/output/generated-audio-url.wav",
},
test_credentials=TEST_CREDENTIALS,
)
def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
max_retries = 3
retry_delay = 5 # seconds
last_error = None
for attempt in range(max_retries):
try:
logger.debug(
f"[AIMusicGeneratorBlock] - Running model (attempt {attempt + 1})"
)
result = self.run_model(
api_key=credentials.api_key,
music_gen_model_version=input_data.music_gen_model_version,
prompt=input_data.prompt,
duration=input_data.duration,
temperature=input_data.temperature,
top_k=input_data.top_k,
top_p=input_data.top_p,
classifier_free_guidance=input_data.classifier_free_guidance,
output_format=input_data.output_format,
normalization_strategy=input_data.normalization_strategy,
)
if result and result != "No output received":
yield "result", result
return
else:
last_error = "Model returned empty or invalid response"
raise ValueError(last_error)
except Exception as e:
last_error = f"Unexpected error: {str(e)}"
logger.error(f"[AIMusicGeneratorBlock] - Error: {last_error}")
if attempt < max_retries - 1:
time.sleep(retry_delay)
continue
# If we've exhausted all retries, yield the error
yield "error", f"Failed after {max_retries} attempts. Last error: {last_error}"
def run_model(
self,
api_key: SecretStr,
music_gen_model_version: MusicGenModelVersion,
prompt: str,
duration: int,
temperature: float,
top_k: int,
top_p: float,
classifier_free_guidance: int,
output_format: AudioFormat,
normalization_strategy: NormalizationStrategy,
):
# Initialize Replicate client with the API key
client = replicate.Client(api_token=api_key.get_secret_value())
# Run the model with parameters
output = client.run(
"meta/musicgen:671ac645ce5e552cc63a54a2bbff63fcf798043055d2dac5fc9e36a837eedcfb",
input={
"prompt": prompt,
"music_gen_model_version": music_gen_model_version,
"duration": duration,
"temperature": temperature,
"top_k": top_k,
"top_p": top_p,
"classifier_free_guidance": classifier_free_guidance,
"output_format": output_format,
"normalization_strategy": normalization_strategy,
},
)
# Handle the output
if isinstance(output, list) and len(output) > 0:
result_url = output[0] # If output is a list, get the first element
elif isinstance(output, str):
result_url = output # If output is a string, use it directly
else:
result_url = (
"No output received" # Fallback message if output is not as expected
)
return result_url

View File

@@ -1,323 +0,0 @@
import logging
import time
from enum import Enum
from typing import Literal
from pydantic import SecretStr
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
CredentialsMetaInput,
SchemaField,
)
from backend.integrations.providers import ProviderName
from backend.util.request import requests
TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
provider="revid",
api_key=SecretStr("mock-revid-api-key"),
title="Mock Revid API key",
expires_at=None,
)
TEST_CREDENTIALS_INPUT = {
"provider": TEST_CREDENTIALS.provider,
"id": TEST_CREDENTIALS.id,
"type": TEST_CREDENTIALS.type,
"title": TEST_CREDENTIALS.type,
}
class AudioTrack(str, Enum):
OBSERVER = ("Observer",)
FUTURISTIC_BEAT = ("Futuristic Beat",)
SCIENCE_DOCUMENTARY = ("Science Documentary",)
HOTLINE = ("Hotline",)
BLADERUNNER_2049 = ("Bladerunner 2049",)
A_FUTURE = ("A Future",)
ELYSIAN_EMBERS = ("Elysian Embers",)
INSPIRING_CINEMATIC = ("Inspiring Cinematic",)
BLADERUNNER_REMIX = ("Bladerunner Remix",)
IZZAMUZZIC = ("Izzamuzzic",)
NAS = ("Nas",)
PARIS_ELSE = ("Paris - Else",)
SNOWFALL = ("Snowfall",)
BURLESQUE = ("Burlesque",)
CORNY_CANDY = ("Corny Candy",)
HIGHWAY_NOCTURNE = ("Highway Nocturne",)
I_DONT_THINK_SO = ("I Don't Think So",)
LOSING_YOUR_MARBLES = ("Losing Your Marbles",)
REFRESHER = ("Refresher",)
TOURIST = ("Tourist",)
TWIN_TYCHES = ("Twin Tyches",)
@property
def audio_url(self):
audio_urls = {
AudioTrack.OBSERVER: "https://cdn.tfrv.xyz/audio/observer.mp3",
AudioTrack.FUTURISTIC_BEAT: "https://cdn.tfrv.xyz/audio/_futuristic-beat.mp3",
AudioTrack.SCIENCE_DOCUMENTARY: "https://cdn.tfrv.xyz/audio/_science-documentary.mp3",
AudioTrack.HOTLINE: "https://cdn.tfrv.xyz/audio/_hotline.mp3",
AudioTrack.BLADERUNNER_2049: "https://cdn.tfrv.xyz/audio/_bladerunner-2049.mp3",
AudioTrack.A_FUTURE: "https://cdn.tfrv.xyz/audio/a-future.mp3",
AudioTrack.ELYSIAN_EMBERS: "https://cdn.tfrv.xyz/audio/elysian-embers.mp3",
AudioTrack.INSPIRING_CINEMATIC: "https://cdn.tfrv.xyz/audio/inspiring-cinematic-ambient.mp3",
AudioTrack.BLADERUNNER_REMIX: "https://cdn.tfrv.xyz/audio/bladerunner-remix.mp3",
AudioTrack.IZZAMUZZIC: "https://cdn.tfrv.xyz/audio/_izzamuzzic.mp3",
AudioTrack.NAS: "https://cdn.tfrv.xyz/audio/_nas.mp3",
AudioTrack.PARIS_ELSE: "https://cdn.tfrv.xyz/audio/_paris-else.mp3",
AudioTrack.SNOWFALL: "https://cdn.tfrv.xyz/audio/_snowfall.mp3",
AudioTrack.BURLESQUE: "https://cdn.tfrv.xyz/audio/burlesque.mp3",
AudioTrack.CORNY_CANDY: "https://cdn.tfrv.xyz/audio/corny-candy.mp3",
AudioTrack.HIGHWAY_NOCTURNE: "https://cdn.tfrv.xyz/audio/highway-nocturne.mp3",
AudioTrack.I_DONT_THINK_SO: "https://cdn.tfrv.xyz/audio/i-dont-think-so.mp3",
AudioTrack.LOSING_YOUR_MARBLES: "https://cdn.tfrv.xyz/audio/losing-your-marbles.mp3",
AudioTrack.REFRESHER: "https://cdn.tfrv.xyz/audio/refresher.mp3",
AudioTrack.TOURIST: "https://cdn.tfrv.xyz/audio/tourist.mp3",
AudioTrack.TWIN_TYCHES: "https://cdn.tfrv.xyz/audio/twin-tynches.mp3",
}
return audio_urls[self]
class GenerationPreset(str, Enum):
LEONARDO = ("Default",)
ANIME = ("Anime",)
REALISM = ("Realist",)
ILLUSTRATION = ("Illustration",)
SKETCH_COLOR = ("Sketch Color",)
SKETCH_BW = ("Sketch B&W",)
PIXAR = ("Pixar",)
INK = ("Japanese Ink",)
RENDER_3D = ("3D Render",)
LEGO = ("Lego",)
SCIFI = ("Sci-Fi",)
RECRO_CARTOON = ("Retro Cartoon",)
PIXEL_ART = ("Pixel Art",)
CREATIVE = ("Creative",)
PHOTOGRAPHY = ("Photography",)
RAYTRACED = ("Raytraced",)
ENVIRONMENT = ("Environment",)
FANTASY = ("Fantasy",)
ANIME_SR = ("Anime Realism",)
MOVIE = ("Movie",)
STYLIZED_ILLUSTRATION = ("Stylized Illustration",)
MANGA = ("Manga",)
class Voice(str, Enum):
LILY = "Lily"
DANIEL = "Daniel"
BRIAN = "Brian"
JESSICA = "Jessica"
CHARLOTTE = "Charlotte"
CALLUM = "Callum"
@property
def voice_id(self):
voice_id_map = {
Voice.LILY: "pFZP5JQG7iQjIQuC4Bku",
Voice.DANIEL: "onwK4e9ZLuTAKqWW03F9",
Voice.BRIAN: "nPczCjzI2devNBz1zQrb",
Voice.JESSICA: "cgSgspJ2msm6clMCkdW9",
Voice.CHARLOTTE: "XB0fDUnXU5powFXDhCwa",
Voice.CALLUM: "N2lVS1w4EtoT3dr4eOWO",
}
return voice_id_map[self]
def __str__(self):
return self.value
class VisualMediaType(str, Enum):
STOCK_VIDEOS = ("stockVideo",)
MOVING_AI_IMAGES = ("movingImage",)
AI_VIDEO = ("aiVideo",)
logger = logging.getLogger(__name__)
class AIShortformVideoCreatorBlock(Block):
class Input(BlockSchema):
credentials: CredentialsMetaInput[
Literal[ProviderName.REVID], Literal["api_key"]
] = CredentialsField(
description="The revid.ai integration can be used with "
"any API key with sufficient permissions for the blocks it is used on.",
)
script: str = SchemaField(
description="""1. Use short and punctuated sentences\n\n2. Use linebreaks to create a new clip\n\n3. Text outside of brackets is spoken by the AI, and [text between brackets] will be used to guide the visual generation. For example, [close-up of a cat] will show a close-up of a cat.""",
placeholder="[close-up of a cat] Meow!",
)
ratio: str = SchemaField(
description="Aspect ratio of the video", default="9 / 16"
)
resolution: str = SchemaField(
description="Resolution of the video", default="720p"
)
frame_rate: int = SchemaField(description="Frame rate of the video", default=60)
generation_preset: GenerationPreset = SchemaField(
description="Generation preset for visual style - only effects AI generated visuals",
default=GenerationPreset.LEONARDO,
placeholder=GenerationPreset.LEONARDO,
)
background_music: AudioTrack = SchemaField(
description="Background music track",
default=AudioTrack.HIGHWAY_NOCTURNE,
placeholder=AudioTrack.HIGHWAY_NOCTURNE,
)
voice: Voice = SchemaField(
description="AI voice to use for narration",
default=Voice.LILY,
placeholder=Voice.LILY,
)
video_style: VisualMediaType = SchemaField(
description="Type of visual media to use for the video",
default=VisualMediaType.STOCK_VIDEOS,
placeholder=VisualMediaType.STOCK_VIDEOS,
)
class Output(BlockSchema):
video_url: str = SchemaField(description="The URL of the created video")
error: str = SchemaField(description="Error message if the request failed")
def __init__(self):
super().__init__(
id="361697fb-0c4f-4feb-aed3-8320c88c771b",
description="Creates a shortform video using revid.ai",
categories={BlockCategory.SOCIAL, BlockCategory.AI},
input_schema=AIShortformVideoCreatorBlock.Input,
output_schema=AIShortformVideoCreatorBlock.Output,
test_input={
"credentials": TEST_CREDENTIALS_INPUT,
"script": "[close-up of a cat] Meow!",
"ratio": "9 / 16",
"resolution": "720p",
"frame_rate": 60,
"generation_preset": GenerationPreset.LEONARDO,
"background_music": AudioTrack.HIGHWAY_NOCTURNE,
"voice": Voice.LILY,
"video_style": VisualMediaType.STOCK_VIDEOS,
},
test_output=(
"video_url",
"https://example.com/video.mp4",
),
test_mock={
"create_webhook": lambda: (
"test_uuid",
"https://webhook.site/test_uuid",
),
"create_video": lambda api_key, payload: {"pid": "test_pid"},
"wait_for_video": lambda api_key, pid, webhook_token, max_wait_time=1000: "https://example.com/video.mp4",
},
test_credentials=TEST_CREDENTIALS,
)
def create_webhook(self):
url = "https://webhook.site/token"
headers = {"Accept": "application/json", "Content-Type": "application/json"}
response = requests.post(url, headers=headers)
webhook_data = response.json()
return webhook_data["uuid"], f"https://webhook.site/{webhook_data['uuid']}"
def create_video(self, api_key: SecretStr, payload: dict) -> dict:
url = "https://www.revid.ai/api/public/v2/render"
headers = {"key": api_key.get_secret_value()}
response = requests.post(url, json=payload, headers=headers)
logger.debug(
f"API Response Status Code: {response.status_code}, Content: {response.text}"
)
return response.json()
def check_video_status(self, api_key: SecretStr, pid: str) -> dict:
url = f"https://www.revid.ai/api/public/v2/status?pid={pid}"
headers = {"key": api_key.get_secret_value()}
response = requests.get(url, headers=headers)
return response.json()
def wait_for_video(
self,
api_key: SecretStr,
pid: str,
webhook_token: str,
max_wait_time: int = 1000,
) -> str:
start_time = time.time()
while time.time() - start_time < max_wait_time:
status = self.check_video_status(api_key, pid)
logger.debug(f"Video status: {status}")
if status.get("status") == "ready" and "videoUrl" in status:
return status["videoUrl"]
elif status.get("status") == "error":
error_message = status.get("error", "Unknown error occurred")
logger.error(f"Video creation failed: {error_message}")
raise ValueError(f"Video creation failed: {error_message}")
elif status.get("status") in ["FAILED", "CANCELED"]:
logger.error(f"Video creation failed: {status.get('message')}")
raise ValueError(f"Video creation failed: {status.get('message')}")
time.sleep(10)
logger.error("Video creation timed out")
raise TimeoutError("Video creation timed out")
def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
# Create a new Webhook.site URL
webhook_token, webhook_url = self.create_webhook()
logger.debug(f"Webhook URL: {webhook_url}")
audio_url = input_data.background_music.audio_url
payload = {
"frameRate": input_data.frame_rate,
"resolution": input_data.resolution,
"frameDurationMultiplier": 18,
"webhook": webhook_url,
"creationParams": {
"mediaType": input_data.video_style,
"captionPresetName": "Wrap 1",
"selectedVoice": input_data.voice.voice_id,
"hasEnhancedGeneration": True,
"generationPreset": input_data.generation_preset.name,
"selectedAudio": input_data.background_music,
"origin": "/create",
"inputText": input_data.script,
"flowType": "text-to-video",
"slug": "create-tiktok-video",
"hasToGenerateVoice": True,
"hasToTranscript": False,
"hasToSearchMedia": True,
"hasAvatar": False,
"hasWebsiteRecorder": False,
"hasTextSmallAtBottom": False,
"ratio": input_data.ratio,
"sourceType": "contentScraping",
"selectedStoryStyle": {"value": "custom", "label": "Custom"},
"hasToGenerateVideos": input_data.video_style
!= VisualMediaType.STOCK_VIDEOS,
"audioUrl": audio_url,
},
}
logger.debug("Creating video...")
response = self.create_video(credentials.api_key, payload)
pid = response.get("pid")
if not pid:
logger.error(
f"Failed to create video: No project ID returned. API Response: {response}"
)
raise RuntimeError("Failed to create video: No project ID returned")
else:
logger.debug(
f"Video created with project ID: {pid}. Waiting for completion..."
)
video_url = self.wait_for_video(credentials.api_key, pid, webhook_token)
logger.debug(f"Video ready: {video_url}")
yield "video_url", video_url

View File

@@ -1,108 +0,0 @@
import logging
from typing import List
from backend.blocks.apollo._auth import ApolloCredentials
from backend.blocks.apollo.models import (
Contact,
Organization,
SearchOrganizationsRequest,
SearchOrganizationsResponse,
SearchPeopleRequest,
SearchPeopleResponse,
)
from backend.util.request import Requests
logger = logging.getLogger(name=__name__)
class ApolloClient:
"""Client for the Apollo API"""
API_URL = "https://api.apollo.io/api/v1"
def __init__(self, credentials: ApolloCredentials):
self.credentials = credentials
self.requests = Requests()
def _get_headers(self) -> dict[str, str]:
return {"x-api-key": self.credentials.api_key.get_secret_value()}
def search_people(self, query: SearchPeopleRequest) -> List[Contact]:
"""Search for people in Apollo"""
response = self.requests.get(
f"{self.API_URL}/mixed_people/search",
headers=self._get_headers(),
params=query.model_dump(exclude={"credentials", "max_results"}),
)
parsed_response = SearchPeopleResponse(**response.json())
if parsed_response.pagination.total_entries == 0:
return []
people = parsed_response.people
# handle pagination
if (
query.max_results is not None
and query.max_results < parsed_response.pagination.total_entries
and len(people) < query.max_results
):
while (
len(people) < query.max_results
and query.page < parsed_response.pagination.total_pages
and len(parsed_response.people) > 0
):
query.page += 1
response = self.requests.get(
f"{self.API_URL}/mixed_people/search",
headers=self._get_headers(),
params=query.model_dump(exclude={"credentials", "max_results"}),
)
parsed_response = SearchPeopleResponse(**response.json())
people.extend(parsed_response.people[: query.max_results - len(people)])
logger.info(f"Found {len(people)} people")
return people[: query.max_results] if query.max_results else people
def search_organizations(
self, query: SearchOrganizationsRequest
) -> List[Organization]:
"""Search for organizations in Apollo"""
response = self.requests.get(
f"{self.API_URL}/mixed_companies/search",
headers=self._get_headers(),
params=query.model_dump(exclude={"credentials", "max_results"}),
)
parsed_response = SearchOrganizationsResponse(**response.json())
if parsed_response.pagination.total_entries == 0:
return []
organizations = parsed_response.organizations
# handle pagination
if (
query.max_results is not None
and query.max_results < parsed_response.pagination.total_entries
and len(organizations) < query.max_results
):
while (
len(organizations) < query.max_results
and query.page < parsed_response.pagination.total_pages
and len(parsed_response.organizations) > 0
):
query.page += 1
response = self.requests.get(
f"{self.API_URL}/mixed_companies/search",
headers=self._get_headers(),
params=query.model_dump(exclude={"credentials", "max_results"}),
)
parsed_response = SearchOrganizationsResponse(**response.json())
organizations.extend(
parsed_response.organizations[
: query.max_results - len(organizations)
]
)
logger.info(f"Found {len(organizations)} organizations")
return (
organizations[: query.max_results] if query.max_results else organizations
)

View File

@@ -1,35 +0,0 @@
from typing import Literal
from pydantic import SecretStr
from backend.data.model import APIKeyCredentials, CredentialsField, CredentialsMetaInput
from backend.integrations.providers import ProviderName
ApolloCredentials = APIKeyCredentials
ApolloCredentialsInput = CredentialsMetaInput[
Literal[ProviderName.APOLLO],
Literal["api_key"],
]
TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
provider="apollo",
api_key=SecretStr("mock-apollo-api-key"),
title="Mock Apollo API key",
expires_at=None,
)
TEST_CREDENTIALS_INPUT = {
"provider": TEST_CREDENTIALS.provider,
"id": TEST_CREDENTIALS.id,
"type": TEST_CREDENTIALS.type,
"title": TEST_CREDENTIALS.title,
}
def ApolloCredentialsField() -> ApolloCredentialsInput:
"""
Creates a Apollo credentials input on a block.
"""
return CredentialsField(
description="The Apollo integration can be used with an API Key.",
)

View File

@@ -1,548 +0,0 @@
from enum import Enum
from typing import Any, Optional
from pydantic import BaseModel, ConfigDict
from backend.data.model import SchemaField
class PrimaryPhone(BaseModel):
"""A primary phone in Apollo"""
number: str
source: str
sanitized_number: str
class SenorityLevels(str, Enum):
"""Seniority levels in Apollo"""
OWNER = "owner"
FOUNDER = "founder"
C_SUITE = "c_suite"
PARTNER = "partner"
VP = "vp"
HEAD = "head"
DIRECTOR = "director"
MANAGER = "manager"
SENIOR = "senior"
ENTRY = "entry"
INTERN = "intern"
class ContactEmailStatuses(str, Enum):
"""Contact email statuses in Apollo"""
VERIFIED = "verified"
UNVERIFIED = "unverified"
LIKELY_TO_ENGAGE = "likely_to_engage"
UNAVAILABLE = "unavailable"
class RuleConfigStatus(BaseModel):
"""A rule config status in Apollo"""
_id: str
created_at: str
rule_action_config_id: str
rule_config_id: str
status_cd: str
updated_at: str
id: str
key: str
class ContactCampaignStatus(BaseModel):
"""A contact campaign status in Apollo"""
id: str
emailer_campaign_id: str
send_email_from_user_id: str
inactive_reason: str
status: str
added_at: str
added_by_user_id: str
finished_at: str
paused_at: str
auto_unpause_at: str
send_email_from_email_address: str
send_email_from_email_account_id: str
manually_set_unpause: str
failure_reason: str
current_step_id: str
in_response_to_emailer_message_id: str
cc_emails: str
bcc_emails: str
to_emails: str
class Account(BaseModel):
"""An account in Apollo"""
id: str
name: str
website_url: str
blog_url: str
angellist_url: str
linkedin_url: str
twitter_url: str
facebook_url: str
primary_phone: PrimaryPhone
languages: list[str]
alexa_ranking: int
phone: str
linkedin_uid: str
founded_year: int
publicly_traded_symbol: str
publicly_traded_exchange: str
logo_url: str
chrunchbase_url: str
primary_domain: str
domain: str
team_id: str
organization_id: str
account_stage_id: str
source: str
original_source: str
creator_id: str
owner_id: str
created_at: str
phone_status: str
hubspot_id: str
salesforce_id: str
crm_owner_id: str
parent_account_id: str
sanitized_phone: str
# no listed type on the API docs
account_playbook_statues: list[Any]
account_rule_config_statuses: list[RuleConfigStatus]
existence_level: str
label_ids: list[str]
typed_custom_fields: Any
custom_field_errors: Any
modality: str
source_display_name: str
salesforce_record_id: str
crm_record_url: str
class ContactEmail(BaseModel):
"""A contact email in Apollo"""
email: str = ""
email_md5: str = ""
email_sha256: str = ""
email_status: str = ""
email_source: str = ""
extrapolated_email_confidence: str = ""
position: int = 0
email_from_customer: str = ""
free_domain: bool = True
class EmploymentHistory(BaseModel):
"""An employment history in Apollo"""
model_config = ConfigDict(
extra="allow",
arbitrary_types_allowed=True,
from_attributes=True,
populate_by_name=True,
)
_id: Optional[str] = None
created_at: Optional[str] = None
current: Optional[bool] = None
degree: Optional[str] = None
description: Optional[str] = None
emails: Optional[str] = None
end_date: Optional[str] = None
grade_level: Optional[str] = None
kind: Optional[str] = None
major: Optional[str] = None
organization_id: Optional[str] = None
organization_name: Optional[str] = None
raw_address: Optional[str] = None
start_date: Optional[str] = None
title: Optional[str] = None
updated_at: Optional[str] = None
id: Optional[str] = None
key: Optional[str] = None
class Breadcrumb(BaseModel):
"""A breadcrumb in Apollo"""
label: Optional[str] = "N/A"
signal_field_name: Optional[str] = "N/A"
value: str | list | None = "N/A"
display_name: Optional[str] = "N/A"
class TypedCustomField(BaseModel):
"""A typed custom field in Apollo"""
id: Optional[str] = "N/A"
value: Optional[str] = "N/A"
class Pagination(BaseModel):
"""Pagination in Apollo"""
model_config = ConfigDict(
extra="allow",
arbitrary_types_allowed=True,
from_attributes=True,
populate_by_name=True,
)
page: int = 0
per_page: int = 0
total_entries: int = 0
total_pages: int = 0
class DialerFlags(BaseModel):
"""A dialer flags in Apollo"""
country_name: str
country_enabled: bool
high_risk_calling_enabled: bool
potential_high_risk_number: bool
class PhoneNumber(BaseModel):
"""A phone number in Apollo"""
raw_number: str = ""
sanitized_number: str = ""
type: str = ""
position: int = 0
status: str = ""
dnc_status: str = ""
dnc_other_info: str = ""
dailer_flags: DialerFlags = DialerFlags(
country_name="",
country_enabled=True,
high_risk_calling_enabled=True,
potential_high_risk_number=True,
)
class Organization(BaseModel):
"""An organization in Apollo"""
model_config = ConfigDict(
extra="allow",
arbitrary_types_allowed=True,
from_attributes=True,
populate_by_name=True,
)
id: Optional[str] = "N/A"
name: Optional[str] = "N/A"
website_url: Optional[str] = "N/A"
blog_url: Optional[str] = "N/A"
angellist_url: Optional[str] = "N/A"
linkedin_url: Optional[str] = "N/A"
twitter_url: Optional[str] = "N/A"
facebook_url: Optional[str] = "N/A"
primary_phone: Optional[PrimaryPhone] = PrimaryPhone(
number="N/A", source="N/A", sanitized_number="N/A"
)
languages: list[str] = []
alexa_ranking: Optional[int] = 0
phone: Optional[str] = "N/A"
linkedin_uid: Optional[str] = "N/A"
founded_year: Optional[int] = 0
publicly_traded_symbol: Optional[str] = "N/A"
publicly_traded_exchange: Optional[str] = "N/A"
logo_url: Optional[str] = "N/A"
chrunchbase_url: Optional[str] = "N/A"
primary_domain: Optional[str] = "N/A"
sanitized_phone: Optional[str] = "N/A"
owned_by_organization_id: Optional[str] = "N/A"
intent_strength: Optional[str] = "N/A"
show_intent: bool = True
has_intent_signal_account: Optional[bool] = True
intent_signal_account: Optional[str] = "N/A"
class Contact(BaseModel):
"""A contact in Apollo"""
model_config = ConfigDict(
extra="allow",
arbitrary_types_allowed=True,
from_attributes=True,
populate_by_name=True,
)
contact_roles: list[Any] = []
id: Optional[str] = None
first_name: Optional[str] = None
last_name: Optional[str] = None
name: Optional[str] = None
linkedin_url: Optional[str] = None
title: Optional[str] = None
contact_stage_id: Optional[str] = None
owner_id: Optional[str] = None
creator_id: Optional[str] = None
person_id: Optional[str] = None
email_needs_tickling: bool = True
organization_name: Optional[str] = None
source: Optional[str] = None
original_source: Optional[str] = None
organization_id: Optional[str] = None
headline: Optional[str] = None
photo_url: Optional[str] = None
present_raw_address: Optional[str] = None
linkededin_uid: Optional[str] = None
extrapolated_email_confidence: Optional[float] = None
salesforce_id: Optional[str] = None
salesforce_lead_id: Optional[str] = None
salesforce_contact_id: Optional[str] = None
saleforce_account_id: Optional[str] = None
crm_owner_id: Optional[str] = None
created_at: Optional[str] = None
emailer_campaign_ids: list[str] = []
direct_dial_status: Optional[str] = None
direct_dial_enrichment_failed_at: Optional[str] = None
email_status: Optional[str] = None
email_source: Optional[str] = None
account_id: Optional[str] = None
last_activity_date: Optional[str] = None
hubspot_vid: Optional[str] = None
hubspot_company_id: Optional[str] = None
crm_id: Optional[str] = None
sanitized_phone: Optional[str] = None
merged_crm_ids: Optional[str] = None
updated_at: Optional[str] = None
queued_for_crm_push: bool = True
suggested_from_rule_engine_config_id: Optional[str] = None
email_unsubscribed: Optional[str] = None
label_ids: list[Any] = []
has_pending_email_arcgate_request: bool = True
has_email_arcgate_request: bool = True
existence_level: Optional[str] = None
email: Optional[str] = None
email_from_customer: Optional[str] = None
typed_custom_fields: list[TypedCustomField] = []
custom_field_errors: Any = None
salesforce_record_id: Optional[str] = None
crm_record_url: Optional[str] = None
email_status_unavailable_reason: Optional[str] = None
email_true_status: Optional[str] = None
updated_email_true_status: bool = True
contact_rule_config_statuses: list[RuleConfigStatus] = []
source_display_name: Optional[str] = None
twitter_url: Optional[str] = None
contact_campaign_statuses: list[ContactCampaignStatus] = []
state: Optional[str] = None
city: Optional[str] = None
country: Optional[str] = None
account: Optional[Account] = None
contact_emails: list[ContactEmail] = []
organization: Optional[Organization] = None
employment_history: list[EmploymentHistory] = []
time_zone: Optional[str] = None
intent_strength: Optional[str] = None
show_intent: bool = True
phone_numbers: list[PhoneNumber] = []
account_phone_note: Optional[str] = None
free_domain: bool = True
is_likely_to_engage: bool = True
email_domain_catchall: bool = True
contact_job_change_event: Optional[str] = None
class SearchOrganizationsRequest(BaseModel):
"""Request for Apollo's search organizations API"""
organization_num_empoloyees_range: list[int] = SchemaField(
description="""The number range of employees working for the company. This enables you to find companies based on headcount. You can add multiple ranges to expand your search results.
Each range you add needs to be a string, with the upper and lower numbers of the range separated only by a comma.""",
default=[0, 1000000],
)
organization_locations: list[str] = SchemaField(
description="""The location of the company headquarters. You can search across cities, US states, and countries.
If a company has several office locations, results are still based on the headquarters location. For example, if you search chicago but a company's HQ location is in boston, any Boston-based companies will not appearch in your search results, even if they match other parameters.
To exclude companies based on location, use the organization_not_locations parameter.
""",
default_factory=list,
)
organizations_not_locations: list[str] = SchemaField(
description="""Exclude companies from search results based on the location of the company headquarters. You can use cities, US states, and countries as locations to exclude.
This parameter is useful for ensuring you do not prospect in an undesirable territory. For example, if you use ireland as a value, no Ireland-based companies will appear in your search results.
""",
default_factory=list,
)
q_organization_keyword_tags: list[str] = SchemaField(
description="""Filter search results based on keywords associated with companies. For example, you can enter mining as a value to return only companies that have an association with the mining industry."""
)
q_organization_name: str = SchemaField(
description="""Filter search results to include a specific company name.
If the value you enter for this parameter does not match with a company's name, the company will not appear in search results, even if it matches other parameters. Partial matches are accepted. For example, if you filter by the value marketing, a company called NY Marketing Unlimited would still be eligible as a search result, but NY Market Analysis would not be eligible."""
)
organization_ids: list[str] = SchemaField(
description="""The Apollo IDs for the companies you want to include in your search results. Each company in the Apollo database is assigned a unique ID.
To find IDs, identify the values for organization_id when you call this endpoint.""",
default_factory=list,
)
max_results: int = SchemaField(
description="""The maximum number of results to return. If you don't specify this parameter, the default is 100.""",
default=100,
ge=1,
le=50000,
advanced=True,
)
page: int = SchemaField(
description="""The page number of the Apollo data that you want to retrieve.
Use this parameter in combination with the per_page parameter to make search results for navigable and improve the performance of the endpoint.""",
default=1,
)
per_page: int = SchemaField(
description="""The number of search results that should be returned for each page. Limited the number of results per page improves the endpoint's performance.
Use the page parameter to search the different pages of data.""",
default=100,
)
class SearchOrganizationsResponse(BaseModel):
"""Response from Apollo's search organizations API"""
breadcrumbs: list[Breadcrumb] = []
partial_results_only: bool = True
has_join: bool = True
disable_eu_prospecting: bool = True
partial_results_limit: int = 0
pagination: Pagination = Pagination(
page=0, per_page=0, total_entries=0, total_pages=0
)
# no listed type on the API docs
accounts: list[Any] = []
organizations: list[Organization] = []
models_ids: list[str] = []
num_fetch_result: Optional[str] = "N/A"
derived_params: Optional[str] = "N/A"
class SearchPeopleRequest(BaseModel):
"""Request for Apollo's search people API"""
person_titles: list[str] = SchemaField(
description="""Job titles held by the people you want to find. For a person to be included in search results, they only need to match 1 of the job titles you add. Adding more job titles expands your search results.
Results also include job titles with the same terms, even if they are not exact matches. For example, searching for marketing manager might return people with the job title content marketing manager.
Use this parameter in combination with the person_seniorities[] parameter to find people based on specific job functions and seniority levels.
""",
default_factory=list,
placeholder="marketing manager",
)
person_locations: list[str] = SchemaField(
description="""The location where people live. You can search across cities, US states, and countries.
To find people based on the headquarters locations of their current employer, use the organization_locations parameter.""",
default_factory=list,
)
person_seniorities: list[SenorityLevels] = SchemaField(
description="""The job seniority that people hold within their current employer. This enables you to find people that currently hold positions at certain reporting levels, such as Director level or senior IC level.
For a person to be included in search results, they only need to match 1 of the seniorities you add. Adding more seniorities expands your search results.
Searches only return results based on their current job title, so searching for Director-level employees only returns people that currently hold a Director-level title. If someone was previously a Director, but is currently a VP, they would not be included in your search results.
Use this parameter in combination with the person_titles[] parameter to find people based on specific job functions and seniority levels.""",
default_factory=list,
)
organization_locations: list[str] = SchemaField(
description="""The location of the company headquarters for a person's current employer. You can search across cities, US states, and countries.
If a company has several office locations, results are still based on the headquarters location. For example, if you search chicago but a company's HQ location is in boston, people that work for the Boston-based company will not appear in your results, even if they match other parameters.
To find people based on their personal location, use the person_locations parameter.""",
default_factory=list,
)
q_organization_domains: list[str] = SchemaField(
description="""The domain name for the person's employer. This can be the current employer or a previous employer. Do not include www., the @ symbol, or similar.
You can add multiple domains to search across companies.
Examples: apollo.io and microsoft.com""",
default_factory=list,
)
contact_email_statuses: list[ContactEmailStatuses] = SchemaField(
description="""The email statuses for the people you want to find. You can add multiple statuses to expand your search.""",
default_factory=list,
)
organization_ids: list[str] = SchemaField(
description="""The Apollo IDs for the companies (employers) you want to include in your search results. Each company in the Apollo database is assigned a unique ID.
To find IDs, call the Organization Search endpoint and identify the values for organization_id.""",
default_factory=list,
)
organization_num_empoloyees_range: list[int] = SchemaField(
description="""The number range of employees working for the company. This enables you to find companies based on headcount. You can add multiple ranges to expand your search results.
Each range you add needs to be a string, with the upper and lower numbers of the range separated only by a comma.""",
default_factory=list,
)
q_keywords: str = SchemaField(
description="""A string of words over which we want to filter the results""",
default="",
)
page: int = SchemaField(
description="""The page number of the Apollo data that you want to retrieve.
Use this parameter in combination with the per_page parameter to make search results for navigable and improve the performance of the endpoint.""",
default=1,
)
per_page: int = SchemaField(
description="""The number of search results that should be returned for each page. Limited the number of results per page improves the endpoint's performance.
Use the page parameter to search the different pages of data.""",
default=100,
)
max_results: int = SchemaField(
description="""The maximum number of results to return. If you don't specify this parameter, the default is 100.""",
default=100,
ge=1,
le=50000,
advanced=True,
)
class SearchPeopleResponse(BaseModel):
"""Response from Apollo's search people API"""
model_config = ConfigDict(
extra="allow",
arbitrary_types_allowed=True,
from_attributes=True,
populate_by_name=True,
)
breadcrumbs: list[Breadcrumb] = []
partial_results_only: bool = True
has_join: bool = True
disable_eu_prospecting: bool = True
partial_results_limit: int = 0
pagination: Pagination = Pagination(
page=0, per_page=0, total_entries=0, total_pages=0
)
contacts: list[Contact] = []
people: list[Contact] = []
model_ids: list[str] = []
num_fetch_result: Optional[str] = "N/A"
derived_params: Optional[str] = "N/A"

View File

@@ -1,219 +0,0 @@
from backend.blocks.apollo._api import ApolloClient
from backend.blocks.apollo._auth import (
TEST_CREDENTIALS,
TEST_CREDENTIALS_INPUT,
ApolloCredentials,
ApolloCredentialsInput,
)
from backend.blocks.apollo.models import (
Organization,
PrimaryPhone,
SearchOrganizationsRequest,
)
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import SchemaField
class SearchOrganizationsBlock(Block):
"""Search for organizations in Apollo"""
class Input(BlockSchema):
organization_num_empoloyees_range: list[int] = SchemaField(
description="""The number range of employees working for the company. This enables you to find companies based on headcount. You can add multiple ranges to expand your search results.
Each range you add needs to be a string, with the upper and lower numbers of the range separated only by a comma.""",
default=[0, 1000000],
)
organization_locations: list[str] = SchemaField(
description="""The location of the company headquarters. You can search across cities, US states, and countries.
If a company has several office locations, results are still based on the headquarters location. For example, if you search chicago but a company's HQ location is in boston, any Boston-based companies will not appearch in your search results, even if they match other parameters.
To exclude companies based on location, use the organization_not_locations parameter.
""",
default_factory=list,
)
organizations_not_locations: list[str] = SchemaField(
description="""Exclude companies from search results based on the location of the company headquarters. You can use cities, US states, and countries as locations to exclude.
This parameter is useful for ensuring you do not prospect in an undesirable territory. For example, if you use ireland as a value, no Ireland-based companies will appear in your search results.
""",
default_factory=list,
)
q_organization_keyword_tags: list[str] = SchemaField(
description="""Filter search results based on keywords associated with companies. For example, you can enter mining as a value to return only companies that have an association with the mining industry.""",
default_factory=list,
)
q_organization_name: str = SchemaField(
description="""Filter search results to include a specific company name.
If the value you enter for this parameter does not match with a company's name, the company will not appear in search results, even if it matches other parameters. Partial matches are accepted. For example, if you filter by the value marketing, a company called NY Marketing Unlimited would still be eligible as a search result, but NY Market Analysis would not be eligible.""",
default="",
advanced=False,
)
organization_ids: list[str] = SchemaField(
description="""The Apollo IDs for the companies you want to include in your search results. Each company in the Apollo database is assigned a unique ID.
To find IDs, identify the values for organization_id when you call this endpoint.""",
default_factory=list,
)
max_results: int = SchemaField(
description="""The maximum number of results to return. If you don't specify this parameter, the default is 100.""",
default=100,
ge=1,
le=50000,
advanced=True,
)
credentials: ApolloCredentialsInput = SchemaField(
description="Apollo credentials",
)
class Output(BlockSchema):
organizations: list[Organization] = SchemaField(
description="List of organizations found",
default_factory=list,
)
organization: Organization = SchemaField(
description="Each found organization, one at a time",
)
error: str = SchemaField(
description="Error message if the search failed",
default="",
)
def __init__(self):
super().__init__(
id="3d71270d-599e-4148-9b95-71b35d2f44f0",
description="Search for organizations in Apollo",
categories={BlockCategory.SEARCH},
input_schema=SearchOrganizationsBlock.Input,
output_schema=SearchOrganizationsBlock.Output,
test_credentials=TEST_CREDENTIALS,
test_input={"query": "Google", "credentials": TEST_CREDENTIALS_INPUT},
test_output=[
(
"organization",
Organization(
id="1",
name="Google",
website_url="https://google.com",
blog_url="https://google.com/blog",
angellist_url="https://angel.co/google",
linkedin_url="https://linkedin.com/company/google",
twitter_url="https://twitter.com/google",
facebook_url="https://facebook.com/google",
primary_phone=PrimaryPhone(
source="google",
number="1234567890",
sanitized_number="1234567890",
),
languages=["en"],
alexa_ranking=1000,
phone="1234567890",
linkedin_uid="1234567890",
founded_year=2000,
publicly_traded_symbol="GOOGL",
publicly_traded_exchange="NASDAQ",
logo_url="https://google.com/logo.png",
chrunchbase_url="https://chrunchbase.com/google",
primary_domain="google.com",
sanitized_phone="1234567890",
owned_by_organization_id="1",
intent_strength="strong",
show_intent=True,
has_intent_signal_account=True,
intent_signal_account="1",
),
),
(
"organizations",
[
Organization(
id="1",
name="Google",
website_url="https://google.com",
blog_url="https://google.com/blog",
angellist_url="https://angel.co/google",
linkedin_url="https://linkedin.com/company/google",
twitter_url="https://twitter.com/google",
facebook_url="https://facebook.com/google",
primary_phone=PrimaryPhone(
source="google",
number="1234567890",
sanitized_number="1234567890",
),
languages=["en"],
alexa_ranking=1000,
phone="1234567890",
linkedin_uid="1234567890",
founded_year=2000,
publicly_traded_symbol="GOOGL",
publicly_traded_exchange="NASDAQ",
logo_url="https://google.com/logo.png",
chrunchbase_url="https://chrunchbase.com/google",
primary_domain="google.com",
sanitized_phone="1234567890",
owned_by_organization_id="1",
intent_strength="strong",
show_intent=True,
has_intent_signal_account=True,
intent_signal_account="1",
),
],
),
],
test_mock={
"search_organizations": lambda *args, **kwargs: [
Organization(
id="1",
name="Google",
website_url="https://google.com",
blog_url="https://google.com/blog",
angellist_url="https://angel.co/google",
linkedin_url="https://linkedin.com/company/google",
twitter_url="https://twitter.com/google",
facebook_url="https://facebook.com/google",
primary_phone=PrimaryPhone(
source="google",
number="1234567890",
sanitized_number="1234567890",
),
languages=["en"],
alexa_ranking=1000,
phone="1234567890",
linkedin_uid="1234567890",
founded_year=2000,
publicly_traded_symbol="GOOGL",
publicly_traded_exchange="NASDAQ",
logo_url="https://google.com/logo.png",
chrunchbase_url="https://chrunchbase.com/google",
primary_domain="google.com",
sanitized_phone="1234567890",
owned_by_organization_id="1",
intent_strength="strong",
show_intent=True,
has_intent_signal_account=True,
intent_signal_account="1",
)
]
},
)
@staticmethod
def search_organizations(
query: SearchOrganizationsRequest, credentials: ApolloCredentials
) -> list[Organization]:
client = ApolloClient(credentials)
return client.search_organizations(query)
def run(
self, input_data: Input, *, credentials: ApolloCredentials, **kwargs
) -> BlockOutput:
query = SearchOrganizationsRequest(
**input_data.model_dump(exclude={"credentials"})
)
organizations = self.search_organizations(query, credentials)
for organization in organizations:
yield "organization", organization
yield "organizations", organizations

View File

@@ -1,394 +0,0 @@
from backend.blocks.apollo._api import ApolloClient
from backend.blocks.apollo._auth import (
TEST_CREDENTIALS,
TEST_CREDENTIALS_INPUT,
ApolloCredentials,
ApolloCredentialsInput,
)
from backend.blocks.apollo.models import (
Contact,
ContactEmailStatuses,
SearchPeopleRequest,
SenorityLevels,
)
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import SchemaField
class SearchPeopleBlock(Block):
"""Search for people in Apollo"""
class Input(BlockSchema):
person_titles: list[str] = SchemaField(
description="""Job titles held by the people you want to find. For a person to be included in search results, they only need to match 1 of the job titles you add. Adding more job titles expands your search results.
Results also include job titles with the same terms, even if they are not exact matches. For example, searching for marketing manager might return people with the job title content marketing manager.
Use this parameter in combination with the person_seniorities[] parameter to find people based on specific job functions and seniority levels.
""",
default_factory=list,
advanced=False,
)
person_locations: list[str] = SchemaField(
description="""The location where people live. You can search across cities, US states, and countries.
To find people based on the headquarters locations of their current employer, use the organization_locations parameter.""",
default_factory=list,
advanced=False,
)
person_seniorities: list[SenorityLevels] = SchemaField(
description="""The job seniority that people hold within their current employer. This enables you to find people that currently hold positions at certain reporting levels, such as Director level or senior IC level.
For a person to be included in search results, they only need to match 1 of the seniorities you add. Adding more seniorities expands your search results.
Searches only return results based on their current job title, so searching for Director-level employees only returns people that currently hold a Director-level title. If someone was previously a Director, but is currently a VP, they would not be included in your search results.
Use this parameter in combination with the person_titles[] parameter to find people based on specific job functions and seniority levels.""",
default_factory=list,
advanced=False,
)
organization_locations: list[str] = SchemaField(
description="""The location of the company headquarters for a person's current employer. You can search across cities, US states, and countries.
If a company has several office locations, results are still based on the headquarters location. For example, if you search chicago but a company's HQ location is in boston, people that work for the Boston-based company will not appear in your results, even if they match other parameters.
To find people based on their personal location, use the person_locations parameter.""",
default_factory=list,
advanced=False,
)
q_organization_domains: list[str] = SchemaField(
description="""The domain name for the person's employer. This can be the current employer or a previous employer. Do not include www., the @ symbol, or similar.
You can add multiple domains to search across companies.
Examples: apollo.io and microsoft.com""",
default_factory=list,
advanced=False,
)
contact_email_statuses: list[ContactEmailStatuses] = SchemaField(
description="""The email statuses for the people you want to find. You can add multiple statuses to expand your search.""",
default_factory=list,
advanced=False,
)
organization_ids: list[str] = SchemaField(
description="""The Apollo IDs for the companies (employers) you want to include in your search results. Each company in the Apollo database is assigned a unique ID.
To find IDs, call the Organization Search endpoint and identify the values for organization_id.""",
default_factory=list,
advanced=False,
)
organization_num_empoloyees_range: list[int] = SchemaField(
description="""The number range of employees working for the company. This enables you to find companies based on headcount. You can add multiple ranges to expand your search results.
Each range you add needs to be a string, with the upper and lower numbers of the range separated only by a comma.""",
default_factory=list,
advanced=False,
)
q_keywords: str = SchemaField(
description="""A string of words over which we want to filter the results""",
default="",
advanced=False,
)
max_results: int = SchemaField(
description="""The maximum number of results to return. If you don't specify this parameter, the default is 100.""",
default=100,
ge=1,
le=50000,
advanced=True,
)
credentials: ApolloCredentialsInput = SchemaField(
description="Apollo credentials",
)
class Output(BlockSchema):
people: list[Contact] = SchemaField(
description="List of people found",
default_factory=list,
)
person: Contact = SchemaField(
description="Each found person, one at a time",
)
error: str = SchemaField(
description="Error message if the search failed",
default="",
)
def __init__(self):
super().__init__(
id="c2adb3aa-5aae-488d-8a6e-4eb8c23e2ed6",
description="Search for people in Apollo",
categories={BlockCategory.SEARCH},
input_schema=SearchPeopleBlock.Input,
output_schema=SearchPeopleBlock.Output,
test_credentials=TEST_CREDENTIALS,
test_input={"credentials": TEST_CREDENTIALS_INPUT},
test_output=[
(
"person",
Contact(
contact_roles=[],
id="1",
name="John Doe",
first_name="John",
last_name="Doe",
linkedin_url="https://www.linkedin.com/in/johndoe",
title="Software Engineer",
organization_name="Google",
organization_id="123456",
contact_stage_id="1",
owner_id="1",
creator_id="1",
person_id="1",
email_needs_tickling=True,
source="apollo",
original_source="apollo",
headline="Software Engineer",
photo_url="https://www.linkedin.com/in/johndoe",
present_raw_address="123 Main St, Anytown, USA",
linkededin_uid="123456",
extrapolated_email_confidence=0.8,
salesforce_id="123456",
salesforce_lead_id="123456",
salesforce_contact_id="123456",
saleforce_account_id="123456",
crm_owner_id="123456",
created_at="2021-01-01",
emailer_campaign_ids=[],
direct_dial_status="active",
direct_dial_enrichment_failed_at="2021-01-01",
email_status="active",
email_source="apollo",
account_id="123456",
last_activity_date="2021-01-01",
hubspot_vid="123456",
hubspot_company_id="123456",
crm_id="123456",
sanitized_phone="123456",
merged_crm_ids="123456",
updated_at="2021-01-01",
queued_for_crm_push=True,
suggested_from_rule_engine_config_id="123456",
email_unsubscribed=None,
label_ids=[],
has_pending_email_arcgate_request=True,
has_email_arcgate_request=True,
existence_level=None,
email=None,
email_from_customer=None,
typed_custom_fields=[],
custom_field_errors=None,
salesforce_record_id=None,
crm_record_url=None,
email_status_unavailable_reason=None,
email_true_status=None,
updated_email_true_status=True,
contact_rule_config_statuses=[],
source_display_name=None,
twitter_url=None,
contact_campaign_statuses=[],
state=None,
city=None,
country=None,
account=None,
contact_emails=[],
organization=None,
employment_history=[],
time_zone=None,
intent_strength=None,
show_intent=True,
phone_numbers=[],
account_phone_note=None,
free_domain=True,
is_likely_to_engage=True,
email_domain_catchall=True,
contact_job_change_event=None,
),
),
(
"people",
[
Contact(
contact_roles=[],
id="1",
name="John Doe",
first_name="John",
last_name="Doe",
linkedin_url="https://www.linkedin.com/in/johndoe",
title="Software Engineer",
organization_name="Google",
organization_id="123456",
contact_stage_id="1",
owner_id="1",
creator_id="1",
person_id="1",
email_needs_tickling=True,
source="apollo",
original_source="apollo",
headline="Software Engineer",
photo_url="https://www.linkedin.com/in/johndoe",
present_raw_address="123 Main St, Anytown, USA",
linkededin_uid="123456",
extrapolated_email_confidence=0.8,
salesforce_id="123456",
salesforce_lead_id="123456",
salesforce_contact_id="123456",
saleforce_account_id="123456",
crm_owner_id="123456",
created_at="2021-01-01",
emailer_campaign_ids=[],
direct_dial_status="active",
direct_dial_enrichment_failed_at="2021-01-01",
email_status="active",
email_source="apollo",
account_id="123456",
last_activity_date="2021-01-01",
hubspot_vid="123456",
hubspot_company_id="123456",
crm_id="123456",
sanitized_phone="123456",
merged_crm_ids="123456",
updated_at="2021-01-01",
queued_for_crm_push=True,
suggested_from_rule_engine_config_id="123456",
email_unsubscribed=None,
label_ids=[],
has_pending_email_arcgate_request=True,
has_email_arcgate_request=True,
existence_level=None,
email=None,
email_from_customer=None,
typed_custom_fields=[],
custom_field_errors=None,
salesforce_record_id=None,
crm_record_url=None,
email_status_unavailable_reason=None,
email_true_status=None,
updated_email_true_status=True,
contact_rule_config_statuses=[],
source_display_name=None,
twitter_url=None,
contact_campaign_statuses=[],
state=None,
city=None,
country=None,
account=None,
contact_emails=[],
organization=None,
employment_history=[],
time_zone=None,
intent_strength=None,
show_intent=True,
phone_numbers=[],
account_phone_note=None,
free_domain=True,
is_likely_to_engage=True,
email_domain_catchall=True,
contact_job_change_event=None,
),
],
),
],
test_mock={
"search_people": lambda query, credentials: [
Contact(
id="1",
name="John Doe",
first_name="John",
last_name="Doe",
linkedin_url="https://www.linkedin.com/in/johndoe",
title="Software Engineer",
organization_name="Google",
organization_id="123456",
contact_stage_id="1",
owner_id="1",
creator_id="1",
person_id="1",
email_needs_tickling=True,
source="apollo",
original_source="apollo",
headline="Software Engineer",
photo_url="https://www.linkedin.com/in/johndoe",
present_raw_address="123 Main St, Anytown, USA",
linkededin_uid="123456",
extrapolated_email_confidence=0.8,
salesforce_id="123456",
salesforce_lead_id="123456",
salesforce_contact_id="123456",
saleforce_account_id="123456",
crm_owner_id="123456",
created_at="2021-01-01",
emailer_campaign_ids=[],
direct_dial_status="active",
direct_dial_enrichment_failed_at="2021-01-01",
email_status="active",
email_source="apollo",
account_id="123456",
last_activity_date="2021-01-01",
hubspot_vid="123456",
hubspot_company_id="123456",
crm_id="123456",
sanitized_phone="123456",
merged_crm_ids="123456",
updated_at="2021-01-01",
queued_for_crm_push=True,
suggested_from_rule_engine_config_id="123456",
email_unsubscribed=None,
label_ids=[],
has_pending_email_arcgate_request=True,
has_email_arcgate_request=True,
existence_level=None,
email=None,
email_from_customer=None,
typed_custom_fields=[],
custom_field_errors=None,
salesforce_record_id=None,
crm_record_url=None,
email_status_unavailable_reason=None,
email_true_status=None,
updated_email_true_status=True,
contact_rule_config_statuses=[],
source_display_name=None,
twitter_url=None,
contact_campaign_statuses=[],
state=None,
city=None,
country=None,
account=None,
contact_emails=[],
organization=None,
employment_history=[],
time_zone=None,
intent_strength=None,
show_intent=True,
phone_numbers=[],
account_phone_note=None,
free_domain=True,
is_likely_to_engage=True,
email_domain_catchall=True,
contact_job_change_event=None,
),
]
},
)
@staticmethod
def search_people(
query: SearchPeopleRequest, credentials: ApolloCredentials
) -> list[Contact]:
client = ApolloClient(credentials)
return client.search_people(query)
def run(
self,
input_data: Input,
*,
credentials: ApolloCredentials,
**kwargs,
) -> BlockOutput:
query = SearchPeopleRequest(**input_data.model_dump(exclude={"credentials"}))
people = self.search_people(query, credentials)
for person in people:
yield "person", person
yield "people", people

View File

@@ -1,48 +1,20 @@
import enum
import re
from typing import Any, List
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema, BlockType
from jinja2 import BaseLoader, Environment
from pydantic import Field
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchema,
BlockUIType,
)
from backend.data.model import SchemaField
from backend.util import json
from backend.util.file import store_media_file
from backend.util.mock import MockObject
from backend.util.type import MediaFileType, convert
class FileStoreBlock(Block):
class Input(BlockSchema):
file_in: MediaFileType = SchemaField(
description="The file to store in the temporary directory, it can be a URL, data URI, or local path."
)
class Output(BlockSchema):
file_out: MediaFileType = SchemaField(
description="The relative path to the stored file in the temporary directory."
)
def __init__(self):
super().__init__(
id="cbb50872-625b-42f0-8203-a2ae78242d8a",
description="Stores the input file in the temporary directory.",
categories={BlockCategory.BASIC, BlockCategory.MULTIMEDIA},
input_schema=FileStoreBlock.Input,
output_schema=FileStoreBlock.Output,
static_output=True,
)
def run(
self,
input_data: Input,
*,
graph_exec_id: str,
**kwargs,
) -> BlockOutput:
file_path = store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.file_in,
return_content=False,
)
yield "file_out", file_path
jinja = Environment(loader=BaseLoader())
class StoreValueBlock(Block):
@@ -53,23 +25,24 @@ class StoreValueBlock(Block):
"""
class Input(BlockSchema):
input: Any = SchemaField(
input: Any = Field(
description="Trigger the block to produce the output. "
"The value is only used when `data` is None."
)
data: Any = SchemaField(
data: Any = Field(
description="The constant data to be retained in the block. "
"This value is passed as `output`.",
default=None,
)
class Output(BlockSchema):
output: Any = SchemaField(description="The stored data retained in the block.")
output: Any
def __init__(self):
super().__init__(
id="1ff065e9-88e8-4358-9d82-8dc91f622ba9",
description="This block forwards an input value as output, allowing reuse without change.",
description="This block forwards the `input` pin to `output` pin. "
"This block output will be static, the output can be consumed many times.",
categories={BlockCategory.BASIC},
input_schema=StoreValueBlock.Input,
output_schema=StoreValueBlock.Output,
@@ -84,24 +57,45 @@ class StoreValueBlock(Block):
static_output=True,
)
def run(self, input_data: Input, **kwargs) -> BlockOutput:
def run(self, input_data: Input) -> BlockOutput:
yield "output", input_data.data or input_data.input
class PrintToConsoleBlock(Block):
class Input(BlockSchema):
text: str
class Output(BlockSchema):
status: str
def __init__(self):
super().__init__(
id="f3b1c1b2-4c4f-4f0d-8d2f-4c4f0d8d2f4c",
description="Print the given text to the console, this is used for a debugging purpose.",
categories={BlockCategory.BASIC},
input_schema=PrintToConsoleBlock.Input,
output_schema=PrintToConsoleBlock.Output,
test_input={"text": "Hello, World!"},
test_output=("status", "printed"),
)
def run(self, input_data: Input) -> BlockOutput:
print(">>>>> Print: ", input_data.text)
yield "status", "printed"
class FindInDictionaryBlock(Block):
class Input(BlockSchema):
input: Any = SchemaField(description="Dictionary to lookup from")
key: str | int = SchemaField(description="Key to lookup in the dictionary")
input: Any = Field(description="Dictionary to lookup from")
key: str | int = Field(description="Key to lookup in the dictionary")
class Output(BlockSchema):
output: Any = SchemaField(description="Value found for the given key")
missing: Any = SchemaField(
description="Value of the input that missing the key"
)
output: Any = Field(description="Value found for the given key")
missing: Any = Field(description="Value of the input that missing the key")
def __init__(self):
super().__init__(
id="0e50422c-6dee-4145-83d6-3a5a392f65de",
id="b2g2c3d4-5e6f-7g8h-9i0j-k1l2m3n4o5p6",
description="Lookup the given key in the input dictionary/object/list and return the value.",
input_schema=FindInDictionaryBlock.Input,
output_schema=FindInDictionaryBlock.Output,
@@ -124,13 +118,10 @@ class FindInDictionaryBlock(Block):
categories={BlockCategory.BASIC},
)
def run(self, input_data: Input, **kwargs) -> BlockOutput:
def run(self, input_data: Input) -> BlockOutput:
obj = input_data.input
key = input_data.key
if isinstance(obj, str):
obj = json.loads(obj)
if isinstance(obj, dict) and key in obj:
yield "output", obj[key]
elif isinstance(obj, list) and isinstance(key, int) and 0 <= key < len(obj):
@@ -148,28 +139,178 @@ class FindInDictionaryBlock(Block):
yield "missing", input_data.input
class AgentInputBlock(Block):
"""
This block is used to provide input to the graph.
It takes in a value, name, description, default values list and bool to limit selection to default values.
It Outputs the value passed as input.
"""
class Input(BlockSchema):
value: Any = SchemaField(description="The value to be passed as input.")
name: str = SchemaField(description="The name of the input.")
description: str = SchemaField(
description="The description of the input.",
default="",
advanced=True,
)
placeholder_values: List[Any] = SchemaField(
description="The placeholder values to be passed as input.",
default=[],
advanced=True,
)
limit_to_placeholder_values: bool = SchemaField(
description="Whether to limit the selection to placeholder values.",
default=False,
advanced=True,
)
class Output(BlockSchema):
result: Any = SchemaField(description="The value passed as input.")
def __init__(self):
super().__init__(
id="c0a8e994-ebf1-4a9c-a4d8-89d09c86741b",
description="This block is used to provide input to the graph.",
input_schema=AgentInputBlock.Input,
output_schema=AgentInputBlock.Output,
test_input=[
{
"value": "Hello, World!",
"name": "input_1",
"description": "This is a test input.",
"placeholder_values": [],
"limit_to_placeholder_values": False,
},
{
"value": "Hello, World!",
"name": "input_2",
"description": "This is a test input.",
"placeholder_values": ["Hello, World!"],
"limit_to_placeholder_values": True,
},
],
test_output=[
("result", "Hello, World!"),
("result", "Hello, World!"),
],
categories={BlockCategory.INPUT, BlockCategory.BASIC},
ui_type=BlockUIType.INPUT,
)
def run(self, input_data: Input) -> BlockOutput:
yield "result", input_data.value
class AgentOutputBlock(Block):
"""
Records the output of the graph for users to see.
Attributes:
recorded_value: The value to be recorded as output.
name: The name of the output.
description: The description of the output.
fmt_string: The format string to be used to format the recorded_value.
Outputs:
output: The formatted recorded_value if fmt_string is provided and the recorded_value
can be formatted, otherwise the raw recorded_value.
Behavior:
If fmt_string is provided and the recorded_value is of a type that can be formatted,
the block attempts to format the recorded_value using the fmt_string.
If formatting fails or no fmt_string is provided, the raw recorded_value is output.
"""
class Input(BlockSchema):
value: Any = SchemaField(description="The value to be recorded as output.")
name: str = SchemaField(description="The name of the output.")
description: str = SchemaField(
description="The description of the output.",
default="",
advanced=True,
)
format: str = SchemaField(
description="The format string to be used to format the recorded_value.",
default="",
advanced=True,
)
class Output(BlockSchema):
output: Any = SchemaField(description="The value recorded as output.")
def __init__(self):
super().__init__(
id="363ae599-353e-4804-937e-b2ee3cef3da4",
description=(
"This block records the graph output. It takes a value to record, "
"with a name, description, and optional format string. If a format "
"string is given, it tries to format the recorded value. The "
"formatted (or raw, if formatting fails) value is then output. "
"This block is key for capturing and presenting final results or "
"important intermediate outputs of the graph execution."
),
input_schema=AgentOutputBlock.Input,
output_schema=AgentOutputBlock.Output,
test_input=[
{
"value": "Hello, World!",
"name": "output_1",
"description": "This is a test output.",
"format": "{{ output_1 }}!!",
},
{
"value": "42",
"name": "output_2",
"description": "This is another test output.",
"format": "{{ output_2 }}",
},
{
"value": MockObject(value="!!", key="key"),
"name": "output_3",
"description": "This is a test output with a mock object.",
"format": "{{ output_3 }}",
},
],
test_output=[
("output", "Hello, World!!!"),
("output", "42"),
("output", MockObject(value="!!", key="key")),
],
categories={BlockCategory.OUTPUT, BlockCategory.BASIC},
ui_type=BlockUIType.OUTPUT,
)
def run(self, input_data: Input) -> BlockOutput:
"""
Attempts to format the recorded_value using the fmt_string if provided.
If formatting fails or no fmt_string is given, returns the original recorded_value.
"""
if input_data.format:
try:
fmt = re.sub(r"(?<!{){[ a-zA-Z0-9_]+}", r"{\g<0>}", input_data.format)
template = jinja.from_string(fmt)
yield "output", template.render({input_data.name: input_data.value})
except Exception as e:
yield "output", f"Error: {e}, {input_data.value}"
else:
yield "output", input_data.value
class AddToDictionaryBlock(Block):
class Input(BlockSchema):
dictionary: dict[Any, Any] = SchemaField(
default_factory=dict,
dictionary: dict | None = SchemaField(
default=None,
description="The dictionary to add the entry to. If not provided, a new dictionary will be created.",
placeholder='{"key1": "value1", "key2": "value2"}',
)
key: str = SchemaField(
default="",
description="The key for the new entry.",
placeholder="new_key",
advanced=False,
description="The key for the new entry.", placeholder="new_key"
)
value: Any = SchemaField(
default=None,
description="The value for the new entry.",
placeholder="new_value",
advanced=False,
)
entries: dict[Any, Any] = SchemaField(
default_factory=dict,
description="The entries to add to the dictionary. This is the batch version of the `key` and `value` fields.",
advanced=True,
description="The value for the new entry.", placeholder="new_value"
)
class Output(BlockSchema):
@@ -192,10 +333,6 @@ class AddToDictionaryBlock(Block):
"value": "new_value",
},
{"key": "first_key", "value": "first_value"},
{
"dictionary": {"existing_key": "existing_value"},
"entries": {"new_key": "new_value", "first_key": "first_value"},
},
],
test_output=[
(
@@ -203,49 +340,41 @@ class AddToDictionaryBlock(Block):
{"existing_key": "existing_value", "new_key": "new_value"},
),
("updated_dictionary", {"first_key": "first_value"}),
(
"updated_dictionary",
{
"existing_key": "existing_value",
"new_key": "new_value",
"first_key": "first_value",
},
),
],
)
def run(self, input_data: Input, **kwargs) -> BlockOutput:
updated_dict = input_data.dictionary.copy()
def run(self, input_data: Input) -> BlockOutput:
try:
# If no dictionary is provided, create a new one
if input_data.dictionary is None:
updated_dict = {}
else:
# Create a copy of the input dictionary to avoid modifying the original
updated_dict = input_data.dictionary.copy()
if input_data.value is not None and input_data.key:
# Add the new key-value pair
updated_dict[input_data.key] = input_data.value
for key, value in input_data.entries.items():
updated_dict[key] = value
yield "updated_dictionary", updated_dict
yield "updated_dictionary", updated_dict
except Exception as e:
yield "error", f"Failed to add entry to dictionary: {str(e)}"
class AddToListBlock(Block):
class Input(BlockSchema):
list: List[Any] = SchemaField(
default_factory=list,
advanced=False,
list: List[Any] | None = SchemaField(
default=None,
description="The list to add the entry to. If not provided, a new list will be created.",
placeholder='[1, "string", {"key": "value"}]',
)
entry: Any = SchemaField(
description="The entry to add to the list. Can be of any type (string, int, dict, etc.).",
advanced=False,
default=None,
)
entries: List[Any] = SchemaField(
default_factory=lambda: list(),
description="The entries to add to the list. This is the batch version of the `entry` field.",
advanced=True,
placeholder='{"new_key": "new_value"}',
)
position: int | None = SchemaField(
default=None,
description="The position to insert the new entry. If not provided, the entry will be appended to the end of the list.",
placeholder="0",
)
class Output(BlockSchema):
@@ -269,12 +398,6 @@ class AddToListBlock(Block):
},
{"entry": "first_entry"},
{"list": ["a", "b", "c"], "entry": "d"},
{
"entry": "e",
"entries": ["f", "g"],
"list": ["a", "b"],
"position": 1,
},
],
test_output=[
(
@@ -288,64 +411,27 @@ class AddToListBlock(Block):
),
("updated_list", ["first_entry"]),
("updated_list", ["a", "b", "c", "d"]),
("updated_list", ["a", "f", "g", "e", "b"]),
],
)
def run(self, input_data: Input, **kwargs) -> BlockOutput:
entries_added = input_data.entries.copy()
if input_data.entry:
entries_added.append(input_data.entry)
updated_list = input_data.list.copy()
if (pos := input_data.position) is not None:
updated_list = updated_list[:pos] + entries_added + updated_list[pos:]
else:
updated_list += entries_added
yield "updated_list", updated_list
class FindInListBlock(Block):
class Input(BlockSchema):
list: List[Any] = SchemaField(description="The list to search in.")
value: Any = SchemaField(description="The value to search for.")
class Output(BlockSchema):
index: int = SchemaField(description="The index of the value in the list.")
found: bool = SchemaField(
description="Whether the value was found in the list."
)
not_found_value: Any = SchemaField(
description="The value that was not found in the list."
)
def __init__(self):
super().__init__(
id="5e2c6d0a-1e37-489f-b1d0-8e1812b23333",
description="Finds the index of the value in the list.",
categories={BlockCategory.BASIC},
input_schema=FindInListBlock.Input,
output_schema=FindInListBlock.Output,
test_input=[
{"list": [1, 2, 3, 4, 5], "value": 3},
{"list": [1, 2, 3, 4, 5], "value": 6},
],
test_output=[
("index", 2),
("found", True),
("found", False),
("not_found_value", 6),
],
)
def run(self, input_data: Input, **kwargs) -> BlockOutput:
def run(self, input_data: Input) -> BlockOutput:
try:
yield "index", input_data.list.index(input_data.value)
yield "found", True
except ValueError:
yield "found", False
yield "not_found_value", input_data.value
# If no list is provided, create a new one
if input_data.list is None:
updated_list = []
else:
# Create a copy of the input list to avoid modifying the original
updated_list = input_data.list.copy()
# Add the new entry
if input_data.position is None:
updated_list.append(input_data.entry)
else:
updated_list.insert(input_data.position, input_data.entry)
yield "updated_list", updated_list
except Exception as e:
yield "error", f"Failed to add entry to list: {str(e)}"
class NoteBlock(Block):
@@ -357,7 +443,7 @@ class NoteBlock(Block):
def __init__(self):
super().__init__(
id="cc10ff7b-7753-4ff2-9af6-9399b1a7eddc",
id="31d1064e-7446-4693-o7d4-65e5ca9110d1",
description="This block is used to display a sticky note with the given text.",
categories={BlockCategory.BASIC},
input_schema=NoteBlock.Input,
@@ -366,150 +452,8 @@ class NoteBlock(Block):
test_output=[
("output", "Hello, World!"),
],
block_type=BlockType.NOTE,
ui_type=BlockUIType.NOTE,
)
def run(self, input_data: Input, **kwargs) -> BlockOutput:
def run(self, input_data: Input) -> BlockOutput:
yield "output", input_data.text
class CreateDictionaryBlock(Block):
class Input(BlockSchema):
values: dict[str, Any] = SchemaField(
description="Key-value pairs to create the dictionary with",
placeholder="e.g., {'name': 'Alice', 'age': 25}",
)
class Output(BlockSchema):
dictionary: dict[str, Any] = SchemaField(
description="The created dictionary containing the specified key-value pairs"
)
error: str = SchemaField(
description="Error message if dictionary creation failed"
)
def __init__(self):
super().__init__(
id="b924ddf4-de4f-4b56-9a85-358930dcbc91",
description="Creates a dictionary with the specified key-value pairs. Use this when you know all the values you want to add upfront.",
categories={BlockCategory.DATA},
input_schema=CreateDictionaryBlock.Input,
output_schema=CreateDictionaryBlock.Output,
test_input=[
{
"values": {"name": "Alice", "age": 25, "city": "New York"},
},
{
"values": {"numbers": [1, 2, 3], "active": True, "score": 95.5},
},
],
test_output=[
(
"dictionary",
{"name": "Alice", "age": 25, "city": "New York"},
),
(
"dictionary",
{"numbers": [1, 2, 3], "active": True, "score": 95.5},
),
],
)
def run(self, input_data: Input, **kwargs) -> BlockOutput:
try:
# The values are already validated by Pydantic schema
yield "dictionary", input_data.values
except Exception as e:
yield "error", f"Failed to create dictionary: {str(e)}"
class CreateListBlock(Block):
class Input(BlockSchema):
values: List[Any] = SchemaField(
description="A list of values to be combined into a new list.",
placeholder="e.g., ['Alice', 25, True]",
)
class Output(BlockSchema):
list: List[Any] = SchemaField(
description="The created list containing the specified values."
)
error: str = SchemaField(description="Error message if list creation failed.")
def __init__(self):
super().__init__(
id="a912d5c7-6e00-4542-b2a9-8034136930e4",
description="Creates a list with the specified values. Use this when you know all the values you want to add upfront.",
categories={BlockCategory.DATA},
input_schema=CreateListBlock.Input,
output_schema=CreateListBlock.Output,
test_input=[
{
"values": ["Alice", 25, True],
},
{
"values": [1, 2, 3, "four", {"key": "value"}],
},
],
test_output=[
(
"list",
["Alice", 25, True],
),
(
"list",
[1, 2, 3, "four", {"key": "value"}],
),
],
)
def run(self, input_data: Input, **kwargs) -> BlockOutput:
try:
# The values are already validated by Pydantic schema
yield "list", input_data.values
except Exception as e:
yield "error", f"Failed to create list: {str(e)}"
class TypeOptions(enum.Enum):
STRING = "string"
NUMBER = "number"
BOOLEAN = "boolean"
LIST = "list"
DICTIONARY = "dictionary"
class UniversalTypeConverterBlock(Block):
class Input(BlockSchema):
value: Any = SchemaField(
description="The value to convert to a universal type."
)
type: TypeOptions = SchemaField(description="The type to convert the value to.")
class Output(BlockSchema):
value: Any = SchemaField(description="The converted value.")
def __init__(self):
super().__init__(
id="95d1b990-ce13-4d88-9737-ba5c2070c97b",
description="This block is used to convert a value to a universal type.",
categories={BlockCategory.BASIC},
input_schema=UniversalTypeConverterBlock.Input,
output_schema=UniversalTypeConverterBlock.Output,
)
def run(self, input_data: Input, **kwargs) -> BlockOutput:
try:
converted_value = convert(
input_data.value,
{
TypeOptions.STRING: str,
TypeOptions.NUMBER: float,
TypeOptions.BOOLEAN: bool,
TypeOptions.LIST: list,
TypeOptions.DICTIONARY: dict,
}[input_data.type],
)
yield "value", converted_value
except Exception as e:
yield "error", f"Failed to convert value: {str(e)}"

View File

@@ -3,7 +3,6 @@ import re
from typing import Type
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import SchemaField
class BlockInstallationBlock(Block):
@@ -16,17 +15,11 @@ class BlockInstallationBlock(Block):
"""
class Input(BlockSchema):
code: str = SchemaField(
description="Python code of the block to be installed",
)
code: str
class Output(BlockSchema):
success: str = SchemaField(
description="Success message if the block is installed successfully",
)
error: str = SchemaField(
description="Error message if the block installation fails",
)
success: str
error: str
def __init__(self):
super().__init__(
@@ -38,18 +31,20 @@ class BlockInstallationBlock(Block):
disabled=True,
)
def run(self, input_data: Input, **kwargs) -> BlockOutput:
def run(self, input_data: Input) -> BlockOutput:
code = input_data.code
if search := re.search(r"class (\w+)\(Block\):", code):
class_name = search.group(1)
else:
raise RuntimeError("No class found in the code.")
yield "error", "No class found in the code."
return
if search := re.search(r"id=\"(\w+-\w+-\w+-\w+-\w+)\"", code):
file_name = search.group(1)
else:
raise RuntimeError("No UUID found in the code.")
yield "error", "No UUID found in the code."
return
block_dir = os.path.dirname(__file__)
file_path = f"{block_dir}/{file_name}.py"
@@ -68,4 +63,4 @@ class BlockInstallationBlock(Block):
yield "success", "Block installed successfully."
except Exception as e:
os.remove(file_path)
raise RuntimeError(f"[Code]\n{code}\n\n[Error]\n{str(e)}")
yield "error", f"[Code]\n{code}\n\n[Error]\n{str(e)}"

View File

@@ -70,25 +70,12 @@ class ConditionBlock(Block):
],
)
def run(self, input_data: Input, **kwargs) -> BlockOutput:
operator = input_data.operator
def run(self, input_data: Input) -> BlockOutput:
value1 = input_data.value1
if isinstance(value1, str):
try:
value1 = float(value1.strip())
except ValueError:
value1 = value1.strip()
operator = input_data.operator
value2 = input_data.value2
if isinstance(value2, str):
try:
value2 = float(value2.strip())
except ValueError:
value2 = value2.strip()
yes_value = input_data.yes_value if input_data.yes_value is not None else value1
no_value = input_data.no_value if input_data.no_value is not None else value2
no_value = input_data.no_value if input_data.no_value is not None else value1
comparison_funcs = {
ComparisonOperator.EQUAL: lambda a, b: a == b,
@@ -99,91 +86,17 @@ class ConditionBlock(Block):
ComparisonOperator.LESS_THAN_OR_EQUAL: lambda a, b: a <= b,
}
result = comparison_funcs[operator](value1, value2)
try:
result = comparison_funcs[operator](value1, value2)
yield "result", result
yield "result", result
if result:
yield "yes_output", yes_value
else:
yield "no_output", no_value
if result:
yield "yes_output", yes_value
else:
yield "no_output", no_value
class IfInputMatchesBlock(Block):
class Input(BlockSchema):
input: Any = SchemaField(
description="The input to match against",
placeholder="For example: 10 or 'hello' or True",
)
value: Any = SchemaField(
description="The value to output if the input matches",
placeholder="For example: 'Greater' or 20 or False",
)
yes_value: Any = SchemaField(
description="The value to output if the input matches",
placeholder="For example: 'Greater' or 20 or False",
default=None,
)
no_value: Any = SchemaField(
description="The value to output if the input does not match",
placeholder="For example: 'Greater' or 20 or False",
default=None,
)
class Output(BlockSchema):
result: bool = SchemaField(
description="The result of the condition evaluation (True or False)"
)
yes_output: Any = SchemaField(
description="The output value if the condition is true"
)
no_output: Any = SchemaField(
description="The output value if the condition is false"
)
def __init__(self):
super().__init__(
id="6dbbc4b3-ca6c-42b6-b508-da52d23e13f2",
input_schema=IfInputMatchesBlock.Input,
output_schema=IfInputMatchesBlock.Output,
description="Handles conditional logic based on comparison operators",
categories={BlockCategory.LOGIC},
test_input=[
{
"input": 10,
"value": 10,
"yes_value": "Greater",
"no_value": "Not greater",
},
{
"input": 10,
"value": 20,
"yes_value": "Greater",
"no_value": "Not greater",
},
{
"input": 10,
"value": None,
"yes_value": "Yes",
"no_value": "No",
},
],
test_output=[
("result", True),
("yes_output", "Greater"),
("result", False),
("no_output", "Not greater"),
("result", False),
("no_output", "No"),
# ("result", True),
# ("yes_output", "Yes"),
],
)
def run(self, input_data: Input, **kwargs) -> BlockOutput:
if input_data.input == input_data.value or input_data.input is input_data.value:
yield "result", True
yield "yes_output", input_data.yes_value
else:
yield "result", False
yield "no_output", input_data.no_value
except Exception:
yield "result", None
yield "yes_output", None
yield "no_output", None

View File

@@ -1,457 +0,0 @@
from enum import Enum
from typing import Literal
from e2b_code_interpreter import Sandbox
from pydantic import SecretStr
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
CredentialsMetaInput,
SchemaField,
)
from backend.integrations.providers import ProviderName
TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
provider="e2b",
api_key=SecretStr("mock-e2b-api-key"),
title="Mock E2B API key",
expires_at=None,
)
TEST_CREDENTIALS_INPUT = {
"provider": TEST_CREDENTIALS.provider,
"id": TEST_CREDENTIALS.id,
"type": TEST_CREDENTIALS.type,
"title": TEST_CREDENTIALS.type,
}
class ProgrammingLanguage(Enum):
PYTHON = "python"
JAVASCRIPT = "js"
BASH = "bash"
R = "r"
JAVA = "java"
class CodeExecutionBlock(Block):
# TODO : Add support to upload and download files
# Currently, You can customized the CPU and Memory, only by creating a pre customized sandbox template
class Input(BlockSchema):
credentials: CredentialsMetaInput[
Literal[ProviderName.E2B], Literal["api_key"]
] = CredentialsField(
description="Enter your api key for the E2B Sandbox. You can get it in here - https://e2b.dev/docs",
)
# Todo : Option to run commond in background
setup_commands: list[str] = SchemaField(
description=(
"Shell commands to set up the sandbox before running the code. "
"You can use `curl` or `git` to install your desired Debian based "
"package manager. `pip` and `npm` are pre-installed.\n\n"
"These commands are executed with `sh`, in the foreground."
),
placeholder="pip install cowsay",
default_factory=list,
advanced=False,
)
code: str = SchemaField(
description="Code to execute in the sandbox",
placeholder="print('Hello, World!')",
default="",
advanced=False,
)
language: ProgrammingLanguage = SchemaField(
description="Programming language to execute",
default=ProgrammingLanguage.PYTHON,
advanced=False,
)
timeout: int = SchemaField(
description="Execution timeout in seconds", default=300
)
template_id: str = SchemaField(
description=(
"You can use an E2B sandbox template by entering its ID here. "
"Check out the E2B docs for more details: "
"[E2B - Sandbox template](https://e2b.dev/docs/sandbox-template)"
),
default="",
advanced=True,
)
class Output(BlockSchema):
response: str = SchemaField(description="Response from code execution")
stdout_logs: str = SchemaField(
description="Standard output logs from execution"
)
stderr_logs: str = SchemaField(description="Standard error logs from execution")
error: str = SchemaField(description="Error message if execution failed")
def __init__(self):
super().__init__(
id="0b02b072-abe7-11ef-8372-fb5d162dd712",
description="Executes code in an isolated sandbox environment with internet access.",
categories={BlockCategory.DEVELOPER_TOOLS},
input_schema=CodeExecutionBlock.Input,
output_schema=CodeExecutionBlock.Output,
test_credentials=TEST_CREDENTIALS,
test_input={
"credentials": TEST_CREDENTIALS_INPUT,
"code": "print('Hello World')",
"language": ProgrammingLanguage.PYTHON.value,
"setup_commands": [],
"timeout": 300,
"template_id": "",
},
test_output=[
("response", "Hello World"),
("stdout_logs", "Hello World\n"),
],
test_mock={
"execute_code": lambda code, language, setup_commands, timeout, api_key, template_id: (
"Hello World",
"Hello World\n",
"",
),
},
)
def execute_code(
self,
code: str,
language: ProgrammingLanguage,
setup_commands: list[str],
timeout: int,
api_key: str,
template_id: str,
):
try:
sandbox = None
if template_id:
sandbox = Sandbox(
template=template_id, api_key=api_key, timeout=timeout
)
else:
sandbox = Sandbox(api_key=api_key, timeout=timeout)
if not sandbox:
raise Exception("Sandbox not created")
# Running setup commands
for cmd in setup_commands:
sandbox.commands.run(cmd)
# Executing the code
execution = sandbox.run_code(
code,
language=language.value,
on_error=lambda e: sandbox.kill(), # Kill the sandbox if there is an error
)
if execution.error:
raise Exception(execution.error)
response = execution.text
stdout_logs = "".join(execution.logs.stdout)
stderr_logs = "".join(execution.logs.stderr)
return response, stdout_logs, stderr_logs
except Exception as e:
raise e
def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
try:
response, stdout_logs, stderr_logs = self.execute_code(
input_data.code,
input_data.language,
input_data.setup_commands,
input_data.timeout,
credentials.api_key.get_secret_value(),
input_data.template_id,
)
if response:
yield "response", response
if stdout_logs:
yield "stdout_logs", stdout_logs
if stderr_logs:
yield "stderr_logs", stderr_logs
except Exception as e:
yield "error", str(e)
class InstantiationBlock(Block):
class Input(BlockSchema):
credentials: CredentialsMetaInput[
Literal[ProviderName.E2B], Literal["api_key"]
] = CredentialsField(
description="Enter your api key for the E2B Sandbox. You can get it in here - https://e2b.dev/docs",
)
# Todo : Option to run commond in background
setup_commands: list[str] = SchemaField(
description=(
"Shell commands to set up the sandbox before running the code. "
"You can use `curl` or `git` to install your desired Debian based "
"package manager. `pip` and `npm` are pre-installed.\n\n"
"These commands are executed with `sh`, in the foreground."
),
placeholder="pip install cowsay",
default_factory=list,
advanced=False,
)
setup_code: str = SchemaField(
description="Code to execute in the sandbox",
placeholder="print('Hello, World!')",
default="",
advanced=False,
)
language: ProgrammingLanguage = SchemaField(
description="Programming language to execute",
default=ProgrammingLanguage.PYTHON,
advanced=False,
)
timeout: int = SchemaField(
description="Execution timeout in seconds", default=300
)
template_id: str = SchemaField(
description=(
"You can use an E2B sandbox template by entering its ID here. "
"Check out the E2B docs for more details: "
"[E2B - Sandbox template](https://e2b.dev/docs/sandbox-template)"
),
default="",
advanced=True,
)
class Output(BlockSchema):
sandbox_id: str = SchemaField(description="ID of the sandbox instance")
response: str = SchemaField(description="Response from code execution")
stdout_logs: str = SchemaField(
description="Standard output logs from execution"
)
stderr_logs: str = SchemaField(description="Standard error logs from execution")
error: str = SchemaField(description="Error message if execution failed")
def __init__(self):
super().__init__(
id="ff0861c9-1726-4aec-9e5b-bf53f3622112",
description="Instantiate an isolated sandbox environment with internet access where to execute code in.",
categories={BlockCategory.DEVELOPER_TOOLS},
input_schema=InstantiationBlock.Input,
output_schema=InstantiationBlock.Output,
test_credentials=TEST_CREDENTIALS,
test_input={
"credentials": TEST_CREDENTIALS_INPUT,
"setup_code": "print('Hello World')",
"language": ProgrammingLanguage.PYTHON.value,
"setup_commands": [],
"timeout": 300,
"template_id": "",
},
test_output=[
("sandbox_id", str),
("response", "Hello World"),
("stdout_logs", "Hello World\n"),
],
test_mock={
"execute_code": lambda setup_code, language, setup_commands, timeout, api_key, template_id: (
"sandbox_id",
"Hello World",
"Hello World\n",
"",
),
},
)
def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
try:
sandbox_id, response, stdout_logs, stderr_logs = self.execute_code(
input_data.setup_code,
input_data.language,
input_data.setup_commands,
input_data.timeout,
credentials.api_key.get_secret_value(),
input_data.template_id,
)
if sandbox_id:
yield "sandbox_id", sandbox_id
else:
yield "error", "Sandbox ID not found"
if response:
yield "response", response
if stdout_logs:
yield "stdout_logs", stdout_logs
if stderr_logs:
yield "stderr_logs", stderr_logs
except Exception as e:
yield "error", str(e)
def execute_code(
self,
code: str,
language: ProgrammingLanguage,
setup_commands: list[str],
timeout: int,
api_key: str,
template_id: str,
):
try:
sandbox = None
if template_id:
sandbox = Sandbox(
template=template_id, api_key=api_key, timeout=timeout
)
else:
sandbox = Sandbox(api_key=api_key, timeout=timeout)
if not sandbox:
raise Exception("Sandbox not created")
# Running setup commands
for cmd in setup_commands:
sandbox.commands.run(cmd)
# Executing the code
execution = sandbox.run_code(
code,
language=language.value,
on_error=lambda e: sandbox.kill(), # Kill the sandbox if there is an error
)
if execution.error:
raise Exception(execution.error)
response = execution.text
stdout_logs = "".join(execution.logs.stdout)
stderr_logs = "".join(execution.logs.stderr)
return sandbox.sandbox_id, response, stdout_logs, stderr_logs
except Exception as e:
raise e
class StepExecutionBlock(Block):
class Input(BlockSchema):
credentials: CredentialsMetaInput[
Literal[ProviderName.E2B], Literal["api_key"]
] = CredentialsField(
description="Enter your api key for the E2B Sandbox. You can get it in here - https://e2b.dev/docs",
)
sandbox_id: str = SchemaField(
description="ID of the sandbox instance to execute the code in",
advanced=False,
)
step_code: str = SchemaField(
description="Code to execute in the sandbox",
placeholder="print('Hello, World!')",
default="",
advanced=False,
)
language: ProgrammingLanguage = SchemaField(
description="Programming language to execute",
default=ProgrammingLanguage.PYTHON,
advanced=False,
)
class Output(BlockSchema):
response: str = SchemaField(description="Response from code execution")
stdout_logs: str = SchemaField(
description="Standard output logs from execution"
)
stderr_logs: str = SchemaField(description="Standard error logs from execution")
error: str = SchemaField(description="Error message if execution failed")
def __init__(self):
super().__init__(
id="82b59b8e-ea10-4d57-9161-8b169b0adba6",
description="Execute code in a previously instantiated sandbox environment.",
categories={BlockCategory.DEVELOPER_TOOLS},
input_schema=StepExecutionBlock.Input,
output_schema=StepExecutionBlock.Output,
test_credentials=TEST_CREDENTIALS,
test_input={
"credentials": TEST_CREDENTIALS_INPUT,
"sandbox_id": "sandbox_id",
"step_code": "print('Hello World')",
"language": ProgrammingLanguage.PYTHON.value,
},
test_output=[
("response", "Hello World"),
("stdout_logs", "Hello World\n"),
],
test_mock={
"execute_step_code": lambda sandbox_id, step_code, language, api_key: (
"Hello World",
"Hello World\n",
"",
),
},
)
def execute_step_code(
self,
sandbox_id: str,
code: str,
language: ProgrammingLanguage,
api_key: str,
):
try:
sandbox = Sandbox.connect(sandbox_id=sandbox_id, api_key=api_key)
if not sandbox:
raise Exception("Sandbox not found")
# Executing the code
execution = sandbox.run_code(code, language=language.value)
if execution.error:
raise Exception(execution.error)
response = execution.text
stdout_logs = "".join(execution.logs.stdout)
stderr_logs = "".join(execution.logs.stderr)
return response, stdout_logs, stderr_logs
except Exception as e:
raise e
def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
try:
response, stdout_logs, stderr_logs = self.execute_step_code(
input_data.sandbox_id,
input_data.step_code,
input_data.language,
credentials.api_key.get_secret_value(),
)
if response:
yield "response", response
if stdout_logs:
yield "stdout_logs", stdout_logs
if stderr_logs:
yield "stderr_logs", stderr_logs
except Exception as e:
yield "error", str(e)

View File

@@ -1,110 +0,0 @@
import re
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import SchemaField
class CodeExtractionBlock(Block):
class Input(BlockSchema):
text: str = SchemaField(
description="Text containing code blocks to extract (e.g., AI response)",
placeholder="Enter text containing code blocks",
)
class Output(BlockSchema):
html: str = SchemaField(description="Extracted HTML code")
css: str = SchemaField(description="Extracted CSS code")
javascript: str = SchemaField(description="Extracted JavaScript code")
python: str = SchemaField(description="Extracted Python code")
sql: str = SchemaField(description="Extracted SQL code")
java: str = SchemaField(description="Extracted Java code")
cpp: str = SchemaField(description="Extracted C++ code")
csharp: str = SchemaField(description="Extracted C# code")
json_code: str = SchemaField(description="Extracted JSON code")
bash: str = SchemaField(description="Extracted Bash code")
php: str = SchemaField(description="Extracted PHP code")
ruby: str = SchemaField(description="Extracted Ruby code")
yaml: str = SchemaField(description="Extracted YAML code")
markdown: str = SchemaField(description="Extracted Markdown code")
typescript: str = SchemaField(description="Extracted TypeScript code")
xml: str = SchemaField(description="Extracted XML code")
remaining_text: str = SchemaField(
description="Remaining text after code extraction"
)
def __init__(self):
super().__init__(
id="d3a7d896-3b78-4f44-8b4b-48fbf4f0bcd8",
description="Extracts code blocks from text and identifies their programming languages",
categories={BlockCategory.TEXT},
input_schema=CodeExtractionBlock.Input,
output_schema=CodeExtractionBlock.Output,
test_input={
"text": "Here's a Python example:\n```python\nprint('Hello World')\n```\nAnd some HTML:\n```html\n<h1>Title</h1>\n```"
},
test_output=[
("html", "<h1>Title</h1>"),
("python", "print('Hello World')"),
("remaining_text", "Here's a Python example:\nAnd some HTML:"),
],
)
def run(self, input_data: Input, **kwargs) -> BlockOutput:
# List of supported programming languages with mapped aliases
language_aliases = {
"html": ["html", "htm"],
"css": ["css"],
"javascript": ["javascript", "js"],
"python": ["python", "py"],
"sql": ["sql"],
"java": ["java"],
"cpp": ["cpp", "c++"],
"csharp": ["csharp", "c#", "cs"],
"json_code": ["json"],
"bash": ["bash", "shell", "sh"],
"php": ["php"],
"ruby": ["ruby", "rb"],
"yaml": ["yaml", "yml"],
"markdown": ["markdown", "md"],
"typescript": ["typescript", "ts"],
"xml": ["xml"],
}
# Extract code for each language
for canonical_name, aliases in language_aliases.items():
code = ""
# Try each alias for the language
for alias in aliases:
code_for_alias = self.extract_code(input_data.text, alias)
if code_for_alias:
code = code + "\n\n" + code_for_alias if code else code_for_alias
if code: # Only yield if there's actual code content
yield canonical_name, code
# Remove all code blocks from the text to get remaining text
pattern = (
r"```(?:"
+ "|".join(
re.escape(alias)
for aliases in language_aliases.values()
for alias in aliases
)
+ r")\s+[\s\S]*?```"
)
remaining_text = re.sub(pattern, "", input_data.text).strip()
remaining_text = re.sub(r"\n\s*\n", "\n", remaining_text)
if remaining_text: # Only yield if there's remaining text
yield "remaining_text", remaining_text
def extract_code(self, text: str, language: str) -> str:
# Escape special regex characters in the language string
language = re.escape(language)
# Extract all code blocks enclosed in ```language``` blocks
pattern = re.compile(rf"```{language}\s+(.*?)```", re.DOTALL | re.IGNORECASE)
matches = pattern.finditer(text)
# Combine all code blocks for this language with newlines between them
code_blocks = [match.group(1).strip() for match in matches]
return "\n\n".join(code_blocks) if code_blocks else ""

View File

@@ -1,60 +0,0 @@
from pydantic import BaseModel
from backend.data.block import (
Block,
BlockCategory,
BlockManualWebhookConfig,
BlockOutput,
BlockSchema,
)
from backend.data.model import SchemaField
from backend.integrations.providers import ProviderName
from backend.integrations.webhooks.compass import CompassWebhookType
class Transcription(BaseModel):
text: str
speaker: str
end: float
start: float
duration: float
class TranscriptionDataModel(BaseModel):
date: str
transcription: str
transcriptions: list[Transcription]
class CompassAITriggerBlock(Block):
class Input(BlockSchema):
payload: TranscriptionDataModel = SchemaField(hidden=True)
class Output(BlockSchema):
transcription: str = SchemaField(
description="The contents of the compass transcription."
)
def __init__(self):
super().__init__(
id="9464a020-ed1d-49e1-990f-7f2ac924a2b7",
description="This block will output the contents of the compass transcription.",
categories={BlockCategory.HARDWARE},
input_schema=CompassAITriggerBlock.Input,
output_schema=CompassAITriggerBlock.Output,
webhook_config=BlockManualWebhookConfig(
provider=ProviderName.COMPASS,
webhook_type=CompassWebhookType.TRANSCRIPTION,
),
test_input=[
{"input": "Hello, World!"},
{"input": "Hello, World!", "data": "Existing Data"},
],
# test_output=[
# ("output", "Hello, World!"), # No data provided, so trigger is returned
# ("output", "Existing Data"), # Data is provided, so data is returned.
# ],
)
def run(self, input_data: Input, **kwargs) -> BlockOutput:
yield "transcription", input_data.payload.transcription

View File

@@ -1,43 +0,0 @@
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import SchemaField
class WordCharacterCountBlock(Block):
class Input(BlockSchema):
text: str = SchemaField(
description="Input text to count words and characters",
placeholder="Enter your text here",
advanced=False,
)
class Output(BlockSchema):
word_count: int = SchemaField(description="Number of words in the input text")
character_count: int = SchemaField(
description="Number of characters in the input text"
)
error: str = SchemaField(
description="Error message if the counting operation failed"
)
def __init__(self):
super().__init__(
id="ab2a782d-22cf-4587-8a70-55b59b3f9f90",
description="Counts the number of words and characters in a given text.",
categories={BlockCategory.TEXT},
input_schema=WordCharacterCountBlock.Input,
output_schema=WordCharacterCountBlock.Output,
test_input={"text": "Hello, how are you?"},
test_output=[("word_count", 4), ("character_count", 19)],
)
def run(self, input_data: Input, **kwargs) -> BlockOutput:
try:
text = input_data.text
word_count = len(text.split())
character_count = len(text)
yield "word_count", word_count
yield "character_count", character_count
except Exception as e:
yield "error", str(e)

View File

@@ -1,58 +1,29 @@
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import ContributorDetails, SchemaField
from backend.data.model import ContributorDetails
class ReadCsvBlock(Block):
class Input(BlockSchema):
contents: str = SchemaField(
description="The contents of the CSV file to read",
placeholder="a, b, c\n1,2,3\n4,5,6",
)
delimiter: str = SchemaField(
description="The delimiter used in the CSV file",
default=",",
)
quotechar: str = SchemaField(
description="The character used to quote fields",
default='"',
)
escapechar: str = SchemaField(
description="The character used to escape the delimiter",
default="\\",
)
has_header: bool = SchemaField(
description="Whether the CSV file has a header row",
default=True,
)
skip_rows: int = SchemaField(
description="The number of rows to skip from the start of the file",
default=0,
)
strip: bool = SchemaField(
description="Whether to strip whitespace from the values",
default=True,
)
skip_columns: list[str] = SchemaField(
description="The columns to skip from the start of the row",
default_factory=list,
)
contents: str
delimiter: str = ","
quotechar: str = '"'
escapechar: str = "\\"
has_header: bool = True
skip_rows: int = 0
strip: bool = True
skip_columns: list[str] = []
class Output(BlockSchema):
row: dict[str, str] = SchemaField(
description="The data produced from each row in the CSV file"
)
all_data: list[dict[str, str]] = SchemaField(
description="All the data in the CSV file as a list of rows"
)
row: dict[str, str]
all_data: list[dict[str, str]]
def __init__(self):
super().__init__(
id="acf7625e-d2cb-4941-bfeb-2819fc6fc015",
input_schema=ReadCsvBlock.Input,
output_schema=ReadCsvBlock.Output,
description="Reads a CSV file and outputs the data as a list of dictionaries and individual rows via rows.",
contributors=[ContributorDetails(name="Nicholas Tindle")],
categories={BlockCategory.TEXT, BlockCategory.DATA},
categories={BlockCategory.TEXT},
test_input={
"contents": "a, b, c\n1,2,3\n4,5,6",
},
@@ -69,7 +40,7 @@ class ReadCsvBlock(Block):
],
)
def run(self, input_data: Input, **kwargs) -> BlockOutput:
def run(self, input_data: Input) -> BlockOutput:
import csv
from io import StringIO

View File

@@ -1,39 +0,0 @@
import codecs
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import SchemaField
class TextDecoderBlock(Block):
class Input(BlockSchema):
text: str = SchemaField(
description="A string containing escaped characters to be decoded",
placeholder='Your entire text block with \\n and \\" escaped characters',
)
class Output(BlockSchema):
decoded_text: str = SchemaField(
description="The decoded text with escape sequences processed"
)
def __init__(self):
super().__init__(
id="2570e8fe-8447-43ed-84c7-70d657923231",
description="Decodes a string containing escape sequences into actual text",
categories={BlockCategory.TEXT},
input_schema=TextDecoderBlock.Input,
output_schema=TextDecoderBlock.Output,
test_input={"text": """Hello\nWorld!\nThis is a \"quoted\" string."""},
test_output=[
(
"decoded_text",
"""Hello
World!
This is a "quoted" string.""",
)
],
)
def run(self, input_data: Input, **kwargs) -> BlockOutput:
decoded_text = codecs.decode(input_data.text, "unicode_escape")
yield "decoded_text", decoded_text

View File

@@ -1,70 +1,38 @@
import asyncio
from typing import Literal
import aiohttp
import discord
from pydantic import SecretStr
from pydantic import Field
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
CredentialsMetaInput,
SchemaField,
)
from backend.integrations.providers import ProviderName
DiscordCredentials = CredentialsMetaInput[
Literal[ProviderName.DISCORD], Literal["api_key"]
]
def DiscordCredentialsField() -> DiscordCredentials:
return CredentialsField(description="Discord bot token")
TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
provider="discord",
api_key=SecretStr("test_api_key"),
title="Mock Discord API key",
expires_at=None,
)
TEST_CREDENTIALS_INPUT = {
"provider": TEST_CREDENTIALS.provider,
"id": TEST_CREDENTIALS.id,
"type": TEST_CREDENTIALS.type,
"title": TEST_CREDENTIALS.type,
}
from backend.data.model import BlockSecret, SecretField
class ReadDiscordMessagesBlock(Block):
class Input(BlockSchema):
credentials: DiscordCredentials = DiscordCredentialsField()
discord_bot_token: BlockSecret = SecretField(
key="discord_bot_token", description="Discord bot token"
)
continuous_read: bool = Field(
description="Whether to continuously read messages", default=True
)
class Output(BlockSchema):
message_content: str = SchemaField(
description="The content of the message received"
)
channel_name: str = SchemaField(
message_content: str = Field(description="The content of the message received")
channel_name: str = Field(
description="The name of the channel the message was received from"
)
username: str = SchemaField(
username: str = Field(
description="The username of the user who sent the message"
)
def __init__(self):
super().__init__(
id="df06086a-d5ac-4abb-9996-2ad0acb2eff7",
id="d3f4g5h6-1i2j-3k4l-5m6n-7o8p9q0r1s2t", # Unique ID for the node
input_schema=ReadDiscordMessagesBlock.Input, # Assign input schema
output_schema=ReadDiscordMessagesBlock.Output, # Assign output schema
description="Reads messages from a Discord channel using a bot token.",
categories={BlockCategory.SOCIAL},
test_input={
"continuous_read": False,
"credentials": TEST_CREDENTIALS_INPUT,
},
test_credentials=TEST_CREDENTIALS,
test_input={"discord_bot_token": "test_token", "continuous_read": False},
test_output=[
(
"message_content",
@@ -78,7 +46,7 @@ class ReadDiscordMessagesBlock(Block):
},
)
async def run_bot(self, token: SecretStr):
async def run_bot(self, token: str):
intents = discord.Intents.default()
intents.message_content = True
@@ -111,20 +79,19 @@ class ReadDiscordMessagesBlock(Block):
await client.close()
await client.start(token.get_secret_value())
await client.start(token)
def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
def run(self, input_data: "ReadDiscordMessagesBlock.Input") -> BlockOutput:
while True:
for output_name, output_value in self.__run(input_data, credentials):
for output_name, output_value in self.__run(input_data):
yield output_name, output_value
break
if not input_data.continuous_read:
break
def __run(self, input_data: Input, credentials: APIKeyCredentials) -> BlockOutput:
def __run(self, input_data: "ReadDiscordMessagesBlock.Input") -> BlockOutput:
try:
loop = asyncio.get_event_loop()
future = self.run_bot(credentials.api_key)
future = self.run_bot(input_data.discord_bot_token.get_secret_value())
# If it's a Future (mock), set the result
if isinstance(future, asyncio.Future):
@@ -163,36 +130,34 @@ class ReadDiscordMessagesBlock(Block):
class SendDiscordMessageBlock(Block):
class Input(BlockSchema):
credentials: DiscordCredentials = DiscordCredentialsField()
message_content: str = SchemaField(
description="The content of the message received"
discord_bot_token: BlockSecret = SecretField(
key="discord_bot_token", description="Discord bot token"
)
channel_name: str = SchemaField(
message_content: str = Field(description="The content of the message received")
channel_name: str = Field(
description="The name of the channel the message was received from"
)
class Output(BlockSchema):
status: str = SchemaField(
status: str = Field(
description="The status of the operation (e.g., 'Message sent', 'Error')"
)
def __init__(self):
super().__init__(
id="d0822ab5-9f8a-44a3-8971-531dd0178b6b",
id="h1i2j3k4-5l6m-7n8o-9p0q-r1s2t3u4v5w6", # Unique ID for the node
input_schema=SendDiscordMessageBlock.Input, # Assign input schema
output_schema=SendDiscordMessageBlock.Output, # Assign output schema
description="Sends a message to a Discord channel using a bot token.",
categories={BlockCategory.SOCIAL},
test_input={
"discord_bot_token": "YOUR_DISCORD_BOT_TOKEN",
"channel_name": "general",
"message_content": "Hello, Discord!",
"credentials": TEST_CREDENTIALS_INPUT,
},
test_output=[("status", "Message sent")],
test_mock={
"send_message": lambda token, channel_name, message_content: asyncio.Future()
},
test_credentials=TEST_CREDENTIALS,
)
async def send_message(self, token: str, channel_name: str, message_content: str):
@@ -222,13 +187,11 @@ class SendDiscordMessageBlock(Block):
"""Splits a message into chunks not exceeding the Discord limit."""
return [message[i : i + limit] for i in range(0, len(message), limit)]
def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
def run(self, input_data: "SendDiscordMessageBlock.Input") -> BlockOutput:
try:
loop = asyncio.get_event_loop()
future = self.send_message(
credentials.api_key.get_secret_value(),
input_data.discord_bot_token.get_secret_value(),
input_data.channel_name,
input_data.message_content,
)

View File

@@ -1,53 +1,22 @@
import smtplib
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from typing import Literal
from pydantic import BaseModel, ConfigDict, SecretStr
from pydantic import BaseModel, ConfigDict, Field
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import (
CredentialsField,
CredentialsMetaInput,
SchemaField,
UserPasswordCredentials,
)
from backend.integrations.providers import ProviderName
TEST_CREDENTIALS = UserPasswordCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
provider="smtp",
username=SecretStr("mock-smtp-username"),
password=SecretStr("mock-smtp-password"),
title="Mock SMTP credentials",
)
TEST_CREDENTIALS_INPUT = {
"provider": TEST_CREDENTIALS.provider,
"id": TEST_CREDENTIALS.id,
"type": TEST_CREDENTIALS.type,
"title": TEST_CREDENTIALS.title,
}
SMTPCredentials = UserPasswordCredentials
SMTPCredentialsInput = CredentialsMetaInput[
Literal[ProviderName.SMTP],
Literal["user_password"],
]
from backend.data.model import BlockSecret, SchemaField, SecretField
def SMTPCredentialsField() -> SMTPCredentialsInput:
return CredentialsField(
description="The SMTP integration requires a username and password.",
class EmailCredentials(BaseModel):
smtp_server: str = Field(
default="smtp.gmail.com", description="SMTP server address"
)
smtp_port: int = Field(default=25, description="SMTP port number")
smtp_username: BlockSecret = SecretField(key="smtp_username")
smtp_password: BlockSecret = SecretField(key="smtp_password")
class SMTPConfig(BaseModel):
smtp_server: str = SchemaField(
default="smtp.example.com", description="SMTP server address"
)
smtp_port: int = SchemaField(default=25, description="SMTP port number")
model_config = ConfigDict(title="SMTP Config")
model_config = ConfigDict(title="Email Credentials")
class SendEmailBlock(Block):
@@ -61,11 +30,10 @@ class SendEmailBlock(Block):
body: str = SchemaField(
description="Body of the email", placeholder="Enter the email body"
)
config: SMTPConfig = SchemaField(
description="SMTP Config",
default=SMTPConfig(),
creds: EmailCredentials = Field(
description="SMTP credentials",
default=EmailCredentials(),
)
credentials: SMTPCredentialsInput = SMTPCredentialsField()
class Output(BlockSchema):
status: str = SchemaField(description="Status of the email sending operation")
@@ -75,7 +43,7 @@ class SendEmailBlock(Block):
def __init__(self):
super().__init__(
id="4335878a-394e-4e67-adf2-919877ff49ae",
id="a1234567-89ab-cdef-0123-456789abcdef",
description="This block sends an email using the provided SMTP credentials.",
categories={BlockCategory.OUTPUT},
input_schema=SendEmailBlock.Input,
@@ -84,50 +52,50 @@ class SendEmailBlock(Block):
"to_email": "recipient@example.com",
"subject": "Test Email",
"body": "This is a test email.",
"config": {
"creds": {
"smtp_server": "smtp.gmail.com",
"smtp_port": 25,
"smtp_username": "your-email@gmail.com",
"smtp_password": "your-gmail-password",
},
"credentials": TEST_CREDENTIALS_INPUT,
},
test_credentials=TEST_CREDENTIALS,
test_output=[("status", "Email sent successfully")],
test_mock={"send_email": lambda *args, **kwargs: "Email sent successfully"},
)
@staticmethod
def send_email(
config: SMTPConfig,
to_email: str,
subject: str,
body: str,
credentials: SMTPCredentials,
creds: EmailCredentials, to_email: str, subject: str, body: str
) -> str:
smtp_server = config.smtp_server
smtp_port = config.smtp_port
smtp_username = credentials.username.get_secret_value()
smtp_password = credentials.password.get_secret_value()
try:
smtp_server = creds.smtp_server
smtp_port = creds.smtp_port
smtp_username = creds.smtp_username.get_secret_value()
smtp_password = creds.smtp_password.get_secret_value()
msg = MIMEMultipart()
msg["From"] = smtp_username
msg["To"] = to_email
msg["Subject"] = subject
msg.attach(MIMEText(body, "plain"))
msg = MIMEMultipart()
msg["From"] = smtp_username
msg["To"] = to_email
msg["Subject"] = subject
msg.attach(MIMEText(body, "plain"))
with smtplib.SMTP(smtp_server, smtp_port) as server:
server.starttls()
server.login(smtp_username, smtp_password)
server.sendmail(smtp_username, to_email, msg.as_string())
with smtplib.SMTP(smtp_server, smtp_port) as server:
server.starttls()
server.login(smtp_username, smtp_password)
server.sendmail(smtp_username, to_email, msg.as_string())
return "Email sent successfully"
return "Email sent successfully"
except Exception as e:
return f"Failed to send email: {str(e)}"
def run(
self, input_data: Input, *, credentials: SMTPCredentials, **kwargs
) -> BlockOutput:
yield "status", self.send_email(
config=input_data.config,
to_email=input_data.to_email,
subject=input_data.subject,
body=input_data.body,
credentials=credentials,
def run(self, input_data: Input) -> BlockOutput:
status = self.send_email(
input_data.creds,
input_data.to_email,
input_data.subject,
input_data.body,
)
if "successfully" in status:
yield "status", status
else:
yield "error", status

View File

@@ -1,32 +0,0 @@
from typing import Literal
from pydantic import SecretStr
from backend.data.model import APIKeyCredentials, CredentialsField, CredentialsMetaInput
from backend.integrations.providers import ProviderName
ExaCredentials = APIKeyCredentials
ExaCredentialsInput = CredentialsMetaInput[
Literal[ProviderName.EXA],
Literal["api_key"],
]
TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
provider="exa",
api_key=SecretStr("mock-exa-api-key"),
title="Mock Exa API key",
expires_at=None,
)
TEST_CREDENTIALS_INPUT = {
"provider": TEST_CREDENTIALS.provider,
"id": TEST_CREDENTIALS.id,
"type": TEST_CREDENTIALS.type,
"title": TEST_CREDENTIALS.title,
}
def ExaCredentialsField() -> ExaCredentialsInput:
"""Creates an Exa credentials input on a block."""
return CredentialsField(description="The Exa integration requires an API Key.")

View File

@@ -1,88 +0,0 @@
from typing import List
from pydantic import BaseModel
from backend.blocks.exa._auth import (
ExaCredentials,
ExaCredentialsField,
ExaCredentialsInput,
)
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import SchemaField
from backend.util.request import requests
class ContentRetrievalSettings(BaseModel):
text: dict = SchemaField(
description="Text content settings",
default={"maxCharacters": 1000, "includeHtmlTags": False},
advanced=True,
)
highlights: dict = SchemaField(
description="Highlight settings",
default={
"numSentences": 3,
"highlightsPerUrl": 3,
"query": "",
},
advanced=True,
)
summary: dict = SchemaField(
description="Summary settings",
default={"query": ""},
advanced=True,
)
class ExaContentsBlock(Block):
class Input(BlockSchema):
credentials: ExaCredentialsInput = ExaCredentialsField()
ids: List[str] = SchemaField(
description="Array of document IDs obtained from searches",
)
contents: ContentRetrievalSettings = SchemaField(
description="Content retrieval settings",
default=ContentRetrievalSettings(),
advanced=True,
)
class Output(BlockSchema):
results: list = SchemaField(
description="List of document contents",
default_factory=list,
)
error: str = SchemaField(description="Error message if the request failed")
def __init__(self):
super().__init__(
id="c52be83f-f8cd-4180-b243-af35f986b461",
description="Retrieves document contents using Exa's contents API",
categories={BlockCategory.SEARCH},
input_schema=ExaContentsBlock.Input,
output_schema=ExaContentsBlock.Output,
)
def run(
self, input_data: Input, *, credentials: ExaCredentials, **kwargs
) -> BlockOutput:
url = "https://api.exa.ai/contents"
headers = {
"Content-Type": "application/json",
"x-api-key": credentials.api_key.get_secret_value(),
}
payload = {
"ids": input_data.ids,
"text": input_data.contents.text,
"highlights": input_data.contents.highlights,
"summary": input_data.contents.summary,
}
try:
response = requests.post(url, headers=headers, json=payload)
response.raise_for_status()
data = response.json()
yield "results", data.get("results", [])
except Exception as e:
yield "error", str(e)
yield "results", []

View File

@@ -1,54 +0,0 @@
from typing import Optional
from pydantic import BaseModel
from backend.data.model import SchemaField
class TextSettings(BaseModel):
max_characters: int = SchemaField(
default=1000,
description="Maximum number of characters to return",
placeholder="1000",
)
include_html_tags: bool = SchemaField(
default=False,
description="Whether to include HTML tags in the text",
placeholder="False",
)
class HighlightSettings(BaseModel):
num_sentences: int = SchemaField(
default=3,
description="Number of sentences per highlight",
placeholder="3",
)
highlights_per_url: int = SchemaField(
default=3,
description="Number of highlights per URL",
placeholder="3",
)
class SummarySettings(BaseModel):
query: Optional[str] = SchemaField(
default="",
description="Query string for summarization",
placeholder="Enter query",
)
class ContentSettings(BaseModel):
text: TextSettings = SchemaField(
default=TextSettings(),
description="Text content settings",
)
highlights: HighlightSettings = SchemaField(
default=HighlightSettings(),
description="Highlight settings",
)
summary: SummarySettings = SchemaField(
default=SummarySettings(),
description="Summary settings",
)

View File

@@ -1,143 +0,0 @@
from datetime import datetime
from typing import List
from backend.blocks.exa._auth import (
ExaCredentials,
ExaCredentialsField,
ExaCredentialsInput,
)
from backend.blocks.exa.helpers import ContentSettings
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import SchemaField
from backend.util.request import requests
class ExaSearchBlock(Block):
class Input(BlockSchema):
credentials: ExaCredentialsInput = ExaCredentialsField()
query: str = SchemaField(description="The search query")
use_auto_prompt: bool = SchemaField(
description="Whether to use autoprompt",
default=True,
advanced=True,
)
type: str = SchemaField(
description="Type of search",
default="",
advanced=True,
)
category: str = SchemaField(
description="Category to search within",
default="",
advanced=True,
)
number_of_results: int = SchemaField(
description="Number of results to return",
default=10,
advanced=True,
)
include_domains: List[str] = SchemaField(
description="Domains to include in search",
default_factory=list,
)
exclude_domains: List[str] = SchemaField(
description="Domains to exclude from search",
default_factory=list,
advanced=True,
)
start_crawl_date: datetime = SchemaField(
description="Start date for crawled content",
)
end_crawl_date: datetime = SchemaField(
description="End date for crawled content",
)
start_published_date: datetime = SchemaField(
description="Start date for published content",
)
end_published_date: datetime = SchemaField(
description="End date for published content",
)
include_text: List[str] = SchemaField(
description="Text patterns to include",
default_factory=list,
advanced=True,
)
exclude_text: List[str] = SchemaField(
description="Text patterns to exclude",
default_factory=list,
advanced=True,
)
contents: ContentSettings = SchemaField(
description="Content retrieval settings",
default=ContentSettings(),
advanced=True,
)
class Output(BlockSchema):
results: list = SchemaField(
description="List of search results",
default_factory=list,
)
def __init__(self):
super().__init__(
id="996cec64-ac40-4dde-982f-b0dc60a5824d",
description="Searches the web using Exa's advanced search API",
categories={BlockCategory.SEARCH},
input_schema=ExaSearchBlock.Input,
output_schema=ExaSearchBlock.Output,
)
def run(
self, input_data: Input, *, credentials: ExaCredentials, **kwargs
) -> BlockOutput:
url = "https://api.exa.ai/search"
headers = {
"Content-Type": "application/json",
"x-api-key": credentials.api_key.get_secret_value(),
}
payload = {
"query": input_data.query,
"useAutoprompt": input_data.use_auto_prompt,
"numResults": input_data.number_of_results,
"contents": input_data.contents.dict(),
}
date_field_mapping = {
"start_crawl_date": "startCrawlDate",
"end_crawl_date": "endCrawlDate",
"start_published_date": "startPublishedDate",
"end_published_date": "endPublishedDate",
}
# Add dates if they exist
for input_field, api_field in date_field_mapping.items():
value = getattr(input_data, input_field, None)
if value:
payload[api_field] = value.strftime("%Y-%m-%dT%H:%M:%S.000Z")
optional_field_mapping = {
"type": "type",
"category": "category",
"include_domains": "includeDomains",
"exclude_domains": "excludeDomains",
"include_text": "includeText",
"exclude_text": "excludeText",
}
# Add other fields
for input_field, api_field in optional_field_mapping.items():
value = getattr(input_data, input_field)
if value: # Only add non-empty values
payload[api_field] = value
try:
response = requests.post(url, headers=headers, json=payload)
response.raise_for_status()
data = response.json()
# Extract just the results array from the response
yield "results", data.get("results", [])
except Exception as e:
yield "error", str(e)
yield "results", []

View File

@@ -1,128 +0,0 @@
from datetime import datetime
from typing import Any, List
from backend.blocks.exa._auth import (
ExaCredentials,
ExaCredentialsField,
ExaCredentialsInput,
)
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import SchemaField
from backend.util.request import requests
from .helpers import ContentSettings
class ExaFindSimilarBlock(Block):
class Input(BlockSchema):
credentials: ExaCredentialsInput = ExaCredentialsField()
url: str = SchemaField(
description="The url for which you would like to find similar links"
)
number_of_results: int = SchemaField(
description="Number of results to return",
default=10,
advanced=True,
)
include_domains: List[str] = SchemaField(
description="Domains to include in search",
default_factory=list,
advanced=True,
)
exclude_domains: List[str] = SchemaField(
description="Domains to exclude from search",
default_factory=list,
advanced=True,
)
start_crawl_date: datetime = SchemaField(
description="Start date for crawled content",
)
end_crawl_date: datetime = SchemaField(
description="End date for crawled content",
)
start_published_date: datetime = SchemaField(
description="Start date for published content",
)
end_published_date: datetime = SchemaField(
description="End date for published content",
)
include_text: List[str] = SchemaField(
description="Text patterns to include (max 1 string, up to 5 words)",
default_factory=list,
advanced=True,
)
exclude_text: List[str] = SchemaField(
description="Text patterns to exclude (max 1 string, up to 5 words)",
default_factory=list,
advanced=True,
)
contents: ContentSettings = SchemaField(
description="Content retrieval settings",
default=ContentSettings(),
advanced=True,
)
class Output(BlockSchema):
results: List[Any] = SchemaField(
description="List of similar documents with title, URL, published date, author, and score",
default_factory=list,
)
def __init__(self):
super().__init__(
id="5e7315d1-af61-4a0c-9350-7c868fa7438a",
description="Finds similar links using Exa's findSimilar API",
categories={BlockCategory.SEARCH},
input_schema=ExaFindSimilarBlock.Input,
output_schema=ExaFindSimilarBlock.Output,
)
def run(
self, input_data: Input, *, credentials: ExaCredentials, **kwargs
) -> BlockOutput:
url = "https://api.exa.ai/findSimilar"
headers = {
"Content-Type": "application/json",
"x-api-key": credentials.api_key.get_secret_value(),
}
payload = {
"url": input_data.url,
"numResults": input_data.number_of_results,
"contents": input_data.contents.dict(),
}
optional_field_mapping = {
"include_domains": "includeDomains",
"exclude_domains": "excludeDomains",
"include_text": "includeText",
"exclude_text": "excludeText",
}
# Add optional fields if they have values
for input_field, api_field in optional_field_mapping.items():
value = getattr(input_data, input_field)
if value: # Only add non-empty values
payload[api_field] = value
date_field_mapping = {
"start_crawl_date": "startCrawlDate",
"end_crawl_date": "endCrawlDate",
"start_published_date": "startPublishedDate",
"end_published_date": "endPublishedDate",
}
# Add dates if they exist
for input_field, api_field in date_field_mapping.items():
value = getattr(input_data, input_field, None)
if value:
payload[api_field] = value.strftime("%Y-%m-%dT%H:%M:%S.000Z")
try:
response = requests.post(url, headers=headers, json=payload)
response.raise_for_status()
data = response.json()
yield "results", data.get("results", [])
except Exception as e:
yield "error", str(e)
yield "results", []

View File

@@ -1,35 +0,0 @@
from typing import Literal
from pydantic import SecretStr
from backend.data.model import APIKeyCredentials, CredentialsField, CredentialsMetaInput
from backend.integrations.providers import ProviderName
FalCredentials = APIKeyCredentials
FalCredentialsInput = CredentialsMetaInput[
Literal[ProviderName.FAL],
Literal["api_key"],
]
TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
provider="fal",
api_key=SecretStr("mock-fal-api-key"),
title="Mock FAL API key",
expires_at=None,
)
TEST_CREDENTIALS_INPUT = {
"provider": TEST_CREDENTIALS.provider,
"id": TEST_CREDENTIALS.id,
"type": TEST_CREDENTIALS.type,
"title": TEST_CREDENTIALS.title,
}
def FalCredentialsField() -> FalCredentialsInput:
"""
Creates a FAL credentials input on a block.
"""
return CredentialsField(
description="The FAL integration can be used with an API Key.",
)

View File

@@ -1,199 +0,0 @@
import logging
import time
from enum import Enum
from typing import Any
import httpx
from backend.blocks.fal._auth import (
TEST_CREDENTIALS,
TEST_CREDENTIALS_INPUT,
FalCredentials,
FalCredentialsField,
FalCredentialsInput,
)
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import SchemaField
logger = logging.getLogger(__name__)
class FalModel(str, Enum):
MOCHI = "fal-ai/mochi-v1"
LUMA = "fal-ai/luma-dream-machine"
class AIVideoGeneratorBlock(Block):
class Input(BlockSchema):
prompt: str = SchemaField(
description="Description of the video to generate.",
placeholder="A dog running in a field.",
)
model: FalModel = SchemaField(
title="FAL Model",
default=FalModel.MOCHI,
description="The FAL model to use for video generation.",
)
credentials: FalCredentialsInput = FalCredentialsField()
class Output(BlockSchema):
video_url: str = SchemaField(description="The URL of the generated video.")
error: str = SchemaField(
description="Error message if video generation failed."
)
logs: list[str] = SchemaField(
description="Generation progress logs.",
)
def __init__(self):
super().__init__(
id="530cf046-2ce0-4854-ae2c-659db17c7a46",
description="Generate videos using FAL AI models.",
categories={BlockCategory.AI},
input_schema=self.Input,
output_schema=self.Output,
test_input={
"prompt": "A dog running in a field.",
"model": FalModel.MOCHI,
"credentials": TEST_CREDENTIALS_INPUT,
},
test_credentials=TEST_CREDENTIALS,
test_output=[("video_url", "https://fal.media/files/example/video.mp4")],
test_mock={
"generate_video": lambda *args, **kwargs: "https://fal.media/files/example/video.mp4"
},
)
def _get_headers(self, api_key: str) -> dict[str, str]:
"""Get headers for FAL API requests."""
return {
"Authorization": f"Key {api_key}",
"Content-Type": "application/json",
}
def _submit_request(
self, url: str, headers: dict[str, str], data: dict[str, Any]
) -> dict[str, Any]:
"""Submit a request to the FAL API."""
try:
response = httpx.post(url, headers=headers, json=data)
response.raise_for_status()
return response.json()
except httpx.HTTPError as e:
logger.error(f"FAL API request failed: {str(e)}")
raise RuntimeError(f"Failed to submit request: {str(e)}")
def _poll_status(self, status_url: str, headers: dict[str, str]) -> dict[str, Any]:
"""Poll the status endpoint until completion or failure."""
try:
response = httpx.get(status_url, headers=headers)
response.raise_for_status()
return response.json()
except httpx.HTTPError as e:
logger.error(f"Failed to get status: {str(e)}")
raise RuntimeError(f"Failed to get status: {str(e)}")
def generate_video(self, input_data: Input, credentials: FalCredentials) -> str:
"""Generate video using the specified FAL model."""
base_url = "https://queue.fal.run"
api_key = credentials.api_key.get_secret_value()
headers = self._get_headers(api_key)
# Submit generation request
submit_url = f"{base_url}/{input_data.model.value}"
submit_data = {"prompt": input_data.prompt}
seen_logs = set()
try:
# Submit request to queue
submit_response = httpx.post(submit_url, headers=headers, json=submit_data)
submit_response.raise_for_status()
request_data = submit_response.json()
# Get request_id and urls from initial response
request_id = request_data.get("request_id")
status_url = request_data.get("status_url")
result_url = request_data.get("response_url")
if not all([request_id, status_url, result_url]):
raise ValueError("Missing required data in submission response")
# Poll for status with exponential backoff
max_attempts = 30
attempt = 0
base_wait_time = 5
while attempt < max_attempts:
status_response = httpx.get(f"{status_url}?logs=1", headers=headers)
status_response.raise_for_status()
status_data = status_response.json()
# Process new logs only
logs = status_data.get("logs", [])
if logs and isinstance(logs, list):
for log in logs:
if isinstance(log, dict):
# Create a unique key for this log entry
log_key = (
f"{log.get('timestamp', '')}-{log.get('message', '')}"
)
if log_key not in seen_logs:
seen_logs.add(log_key)
message = log.get("message", "")
if message:
logger.debug(
f"[FAL Generation] [{log.get('level', 'INFO')}] [{log.get('source', '')}] [{log.get('timestamp', '')}] {message}"
)
status = status_data.get("status")
if status == "COMPLETED":
# Get the final result
result_response = httpx.get(result_url, headers=headers)
result_response.raise_for_status()
result_data = result_response.json()
if "video" not in result_data or not isinstance(
result_data["video"], dict
):
raise ValueError("Invalid response format - missing video data")
video_url = result_data["video"].get("url")
if not video_url:
raise ValueError("No video URL in response")
return video_url
elif status == "FAILED":
error_msg = status_data.get("error", "No error details provided")
raise RuntimeError(f"Video generation failed: {error_msg}")
elif status == "IN_QUEUE":
position = status_data.get("queue_position", "unknown")
logger.debug(
f"[FAL Generation] Status: In queue, position: {position}"
)
elif status == "IN_PROGRESS":
logger.debug(
"[FAL Generation] Status: Request is being processed..."
)
else:
logger.info(f"[FAL Generation] Status: Unknown status: {status}")
wait_time = min(base_wait_time * (2**attempt), 60) # Cap at 60 seconds
time.sleep(wait_time)
attempt += 1
raise RuntimeError("Maximum polling attempts reached")
except httpx.HTTPError as e:
raise RuntimeError(f"API request failed: {str(e)}")
def run(
self, input_data: Input, *, credentials: FalCredentials, **kwargs
) -> BlockOutput:
try:
video_url = self.generate_video(input_data, credentials)
yield "video_url", video_url
except Exception as e:
error_message = str(e)
yield "error", error_message

View File

@@ -1,51 +0,0 @@
from backend.data.block import (
Block,
BlockCategory,
BlockManualWebhookConfig,
BlockOutput,
BlockSchema,
)
from backend.data.model import SchemaField
from backend.integrations.providers import ProviderName
from backend.integrations.webhooks.generic import GenericWebhookType
class GenericWebhookTriggerBlock(Block):
class Input(BlockSchema):
payload: dict = SchemaField(hidden=True, default_factory=dict)
constants: dict = SchemaField(
description="The constants to be set when the block is put on the graph",
default_factory=dict,
)
class Output(BlockSchema):
payload: dict = SchemaField(
description="The complete webhook payload that was received from the generic webhook."
)
constants: dict = SchemaField(
description="The constants to be set when the block is put on the graph"
)
example_payload = {"message": "Hello, World!"}
def __init__(self):
super().__init__(
id="8fa8c167-2002-47ce-aba8-97572fc5d387",
description="This block will output the contents of the generic input for the webhook.",
categories={BlockCategory.INPUT},
input_schema=GenericWebhookTriggerBlock.Input,
output_schema=GenericWebhookTriggerBlock.Output,
webhook_config=BlockManualWebhookConfig(
provider=ProviderName.GENERIC_WEBHOOK,
webhook_type=GenericWebhookType.PLAIN,
),
test_input={"constants": {"key": "value"}, "payload": self.example_payload},
test_output=[
("constants", {"key": "value"}),
("payload", self.example_payload),
],
)
def run(self, input_data: Input, **kwargs) -> BlockOutput:
yield "constants", input_data.constants
yield "payload", input_data.payload

View File

@@ -1,102 +0,0 @@
from urllib.parse import urlparse
from backend.blocks.github._auth import (
GithubCredentials,
GithubFineGrainedAPICredentials,
)
from backend.util.request import Requests
def _convert_to_api_url(url: str) -> str:
"""
Converts a standard GitHub URL to the corresponding GitHub API URL.
Handles repository URLs, issue URLs, pull request URLs, and more.
"""
parsed_url = urlparse(url)
path_parts = parsed_url.path.strip("/").split("/")
if len(path_parts) >= 2:
owner, repo = path_parts[0], path_parts[1]
api_base = f"https://api.github.com/repos/{owner}/{repo}"
if len(path_parts) > 2:
additional_path = "/".join(path_parts[2:])
api_url = f"{api_base}/{additional_path}"
else:
# Repository base URL
api_url = api_base
else:
raise ValueError("Invalid GitHub URL format.")
return api_url
def _get_headers(credentials: GithubCredentials) -> dict[str, str]:
return {
"Authorization": credentials.auth_header(),
"Accept": "application/vnd.github.v3+json",
}
def convert_comment_url_to_api_endpoint(comment_url: str) -> str:
"""
Converts a GitHub comment URL (web interface) to the appropriate API endpoint URL.
Handles:
1. Issue/PR comments: #issuecomment-{id}
2. PR review comments: #discussion_r{id}
Returns the appropriate API endpoint path for the comment.
"""
# First, check if this is already an API URL
parsed_url = urlparse(comment_url)
if parsed_url.hostname == "api.github.com":
return comment_url
# Replace pull with issues for comment endpoints
if "/pull/" in comment_url:
comment_url = comment_url.replace("/pull/", "/issues/")
# Handle issue/PR comments (#issuecomment-xxx)
if "#issuecomment-" in comment_url:
base_url, comment_part = comment_url.split("#issuecomment-")
comment_id = comment_part
# Extract repo information from base URL
parsed_url = urlparse(base_url)
path_parts = parsed_url.path.strip("/").split("/")
owner, repo = path_parts[0], path_parts[1]
# Construct API URL for issue comments
return (
f"https://api.github.com/repos/{owner}/{repo}/issues/comments/{comment_id}"
)
# Handle PR review comments (#discussion_r)
elif "#discussion_r" in comment_url:
base_url, comment_part = comment_url.split("#discussion_r")
comment_id = comment_part
# Extract repo information from base URL
parsed_url = urlparse(base_url)
path_parts = parsed_url.path.strip("/").split("/")
owner, repo = path_parts[0], path_parts[1]
# Construct API URL for PR review comments
return (
f"https://api.github.com/repos/{owner}/{repo}/pulls/comments/{comment_id}"
)
# If no specific comment identifiers are found, use the general URL conversion
return _convert_to_api_url(comment_url)
def get_api(
credentials: GithubCredentials | GithubFineGrainedAPICredentials,
convert_urls: bool = True,
) -> Requests:
return Requests(
trusted_origins=["https://api.github.com", "https://github.com"],
extra_url_validator=_convert_to_api_url if convert_urls else None,
extra_headers=_get_headers(credentials),
)

View File

@@ -1,82 +0,0 @@
from typing import Literal
from pydantic import SecretStr
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
CredentialsMetaInput,
OAuth2Credentials,
)
from backend.integrations.providers import ProviderName
from backend.util.settings import Secrets
secrets = Secrets()
GITHUB_OAUTH_IS_CONFIGURED = bool(
secrets.github_client_id and secrets.github_client_secret
)
GithubCredentials = APIKeyCredentials | OAuth2Credentials
GithubCredentialsInput = CredentialsMetaInput[
Literal[ProviderName.GITHUB],
Literal["api_key", "oauth2"] if GITHUB_OAUTH_IS_CONFIGURED else Literal["api_key"],
]
GithubFineGrainedAPICredentials = APIKeyCredentials
GithubFineGrainedAPICredentialsInput = CredentialsMetaInput[
Literal[ProviderName.GITHUB], Literal["api_key"]
]
def GithubCredentialsField(scope: str) -> GithubCredentialsInput:
"""
Creates a GitHub credentials input on a block.
Params:
scope: The authorization scope needed for the block to work. ([list of available scopes](https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/scopes-for-oauth-apps#available-scopes))
""" # noqa
return CredentialsField(
required_scopes={scope},
description="The GitHub integration can be used with OAuth, "
"or any API key with sufficient permissions for the blocks it is used on.",
)
def GithubFineGrainedAPICredentialsField(
scope: str,
) -> GithubFineGrainedAPICredentialsInput:
return CredentialsField(
required_scopes={scope},
description="The GitHub integration can be used with OAuth, "
"or any API key with sufficient permissions for the blocks it is used on.",
)
TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
provider="github",
api_key=SecretStr("mock-github-api-key"),
title="Mock GitHub API key",
expires_at=None,
)
TEST_CREDENTIALS_INPUT = {
"provider": TEST_CREDENTIALS.provider,
"id": TEST_CREDENTIALS.id,
"type": TEST_CREDENTIALS.type,
"title": TEST_CREDENTIALS.type,
}
TEST_FINE_GRAINED_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
provider="github",
api_key=SecretStr("mock-github-api-key"),
title="Mock GitHub API key",
expires_at=None,
)
TEST_FINE_GRAINED_CREDENTIALS_INPUT = {
"provider": TEST_FINE_GRAINED_CREDENTIALS.provider,
"id": TEST_FINE_GRAINED_CREDENTIALS.id,
"type": TEST_FINE_GRAINED_CREDENTIALS.type,
"title": TEST_FINE_GRAINED_CREDENTIALS.type,
}

Some files were not shown because too many files have changed in this diff Show More