Compare commits

..

28 Commits

Author SHA1 Message Date
Aarushi
3860a9b6e4 remove work dir 2024-09-22 12:22:46 +01:00
Aarushi
1414b83cf8 wip 2024-09-22 11:57:22 +01:00
Zamil Majdy
612e7cfed5 feat(rnd): Route to /login on authenticated requests (#8111) 2024-09-21 23:50:55 +07:00
Zamil Majdy
52ee846744 fix(platform): Fix logging incomplete information & LLM missing error (#8128) 2024-09-21 15:18:36 +00:00
Zamil Majdy
62a3e1c127 fix(rnd): Fix broken list input pin execution ordering & unlinked dynamic pins on save (#8108) 2024-09-21 22:11:35 +07:00
Swifty
ef7cfbb860 refactor: AutoGPT Platform Stealth Launch Repo Re-Org (#8113)
Restructuring the Repo to make it clear the difference between classic autogpt and the autogpt platform:
* Move the "classic" projects `autogpt`, `forge`, `frontend`, and `benchmark` into a `classic` folder
  * Also rename `autogpt` to `original_autogpt` for absolute clarity
* Rename `rnd/` to `autogpt_platform/`
  * `rnd/autogpt_builder` -> `autogpt_platform/frontend`
  * `rnd/autogpt_server` -> `autogpt_platform/backend`
* Adjust any paths accordingly
2024-09-20 16:50:43 +02:00
Aarushi
2dfc927f03 tweak(docs) add to docs supabase submodule steps (#8115)
add to docs
2024-09-20 10:39:52 +01:00
Aarushi
e3f35d79c7 tweak(.github): Update pr template wording (#8103)
* update pr template wording

* add what and how

* Update .github/PULL_REQUEST_TEMPLATE.md

---------

Co-authored-by: Toran Bruce Richards <toran.richards@gmail.com>
2024-09-19 12:44:50 +00:00
Aarushi
0040495143 tweak(.github): Update PR template (#8100)
* update PR template

* Update .github/PULL_REQUEST_TEMPLATE.md

Co-authored-by: Krzysztof Czerwinski <34861343+kcze@users.noreply.github.com>

* add note

* typo

---------

Co-authored-by: Krzysztof Czerwinski <34861343+kcze@users.noreply.github.com>
2024-09-19 13:00:16 +01:00
Aarushi
d3eac86f9a fix(frontend): Update REST API port (#8096)
update server port to 8006

Co-authored-by: Zamil Majdy <zamil.majdy@agpt.co>
2024-09-19 01:06:04 +02:00
Zamil Majdy
c3cb90ac20 feat(rnd): Add initial block execution credit accounting UI on AutoGPT Builder (#8078) 2024-09-19 04:21:40 +07:00
matanm
9b5bf81d7c Fix typo in Groq setup docs (#8018)
Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
2024-09-18 20:22:57 +00:00
Nicholas Tindle
86db4deef9 feat(server): backend analytics endpoints (#8030) 2024-09-18 18:23:20 +00:00
Aarushi
d8f989daf8 docs(rnd): Update submodules info in readme (#8095)
update submodules info in readme
2024-09-18 18:59:23 +01:00
Aarushi
00f2b134cb tweak(rnd): add env var to docker compose so no messing with .env (#8091)
add env var to docker compose so no messing with .env
2024-09-18 16:39:15 +01:00
Aarushi
a3959712dc tweak(builder): Update .env.example server url with right port (#8090)
update server url with right port
2024-09-18 15:51:44 +01:00
Aarushi
8477b25c5a tweak(builder) Add local supabse credentials (#8089)
add local supabse credentials
2024-09-18 15:45:09 +01:00
Swifty
f133c9c1ef fix(rnd): incorrect docker image for migrate (#8086)
fix incorrect docker image for migrate
2024-09-18 15:21:38 +02:00
Aarushi
dc72ec97bc feat(rnd): Add support for supabase locally (#8077)
* add just auth for now

* add supabase script

* add to docker compose

* update docker compose

* tweak(rnd) Add prefix in logs (#8001)

* add prefix

* fix typos

* fix conflicts

* feat(rnd): Reduce container size remove dep with forge and autogpt (#8040)

* Remove forge and autogpt

* update lock files

* Update build process to reduce image size

* Reduced built image size

* fixed docker compose watch

* Updated logging

* updated env.example

* formatting

* linting issue

* linting not working in github actions..

* trying to get around github action linting issue

* updated version

* sleep for prisma issues

* add exp backoff on connection issues

* updated config based on review comments

* Sorting alphabetical

* updated default config

* updated depends checks

* fixed missing prisma binaries

* remove dead layer

* remove try

* remove dead layer

* updated lock file

* add to docker compose

* update for init

* add local supabase variables to docker compose

* wip supbase connectioon

* subabase submodule

* combined docker file wth new supbase url pointing to kong

* updated combined

* ngix

* updated docker compose without frontend

* updated docker compose

* update to remove frontend

* update docs

* update newline

* remove unescessary change

---------

Co-authored-by: Swifty <craigswift13@gmail.com>
2024-09-18 09:50:39 +01:00
Nicholas Tindle
0c915cb558 feat(server): anthropic updates, csv, sampling, and code blocks (#7803)
Co-authored-by: Bentlybro <tomnoon9@gmail.com>
2024-09-17 21:29:35 -05:00
Nicholas Tindle
f6ab15db47 feat(market): add filters to the market queries (#8064) 2024-09-17 14:59:25 +00:00
Krzysztof Czerwinski
80161decb9 feat(server): Add credentials API endpoints (#8024)
- Add two endpoints to OAuth `integrations.py`:
  - `GET /integrations/{provider}/credentials` - list all credentials for a provider, without secrets (metadata only)
   - `GET /integrations/{provider}/credentials/{cred_id}` - retrieve a set of credentials (including secrets)

- Add `username` property to `Credentials` types
   - Add logic to populate `username` in OAuth handlers

- Expand `CredentialsMetaResponse` and remove `credentials_` prefix from properties

- Fix `autogpt_libs` dependency caching issue

- Remove accidentally duplicated OAuth handler files in `autogpt_server/integrations`
2024-09-17 11:16:16 +00:00
Swifty
0bf8edcd96 fix(autogpt_server): Fix vulnerability in Dockerfile (#8071) 2024-09-17 11:37:22 +01:00
Zamil Majdy
b1347a92de fix(rnd): Fix execution error on non-saved agent (#8054) 2024-09-16 19:35:31 +00:00
Nicholas Tindle
22ce8e0047 feat(builder): sentry integration (#8053) 2024-09-16 23:19:52 +07:00
Bently
5a7193cfb7 Feat(Builder): Add Runner input and ouput screens (#8038)
* Feat(Builder): Add Runner input and ouput screens

* Fix run button not working

* prettier

* prettier again -- forgot flow

* fix input scaling + auto close on run

* removed "Runner Input" button to make it auto open runner input if input block is  + Fixed issue with output not showing in output UI

* replaced runner output icon and added a new icon for it

* replaced IconOutput icon with LogOut from lucide-react

* prettier

* fix type safety issue + add error handling for formatOutput

* Updates based on comments

* prettier for utils
2024-09-16 13:05:07 +02:00
Zamil Majdy
c1f301ab8b feat(rnd): Add initial credit accounting system for block execution (#8047)
### Background

We need a way to set an execution quota per user for each block execution.

### Changes 🏗️

* Introduced a `UserBlockCredit`, a transaction table tracking the block usage along with it cost/quota.
* The tracking is toggled by `ENABLE_CREDIT` config, default = false.
* Introduced  `BLOCK_COSTS` | `GET /blocks/costs` as a source of information for the cost on each block depending on the input configuration.

Improvements:
* Refactor logging in manager.py to always print a prefix and pass the metadata.
* Make executionStatus on AgentNodeExecution prisma enum. And add executionStatus on AgentGraphExecution.
* Use executionStatus from AgentGraphExecution to improve waiting logic on test_manager.py.
2024-09-14 23:47:28 +07:00
Zamil Majdy
f32244a112 fix(rnd): Fix broken save feature on Agent Builder (#8052) 2024-09-13 18:04:51 -05:00
2866 changed files with 86527 additions and 28467 deletions

4
.gitattributes vendored
View File

@@ -1,10 +1,10 @@
frontend/build/** linguist-generated
classic/frontend/build/** linguist-generated
**/poetry.lock linguist-generated
docs/_javascript/** linguist-vendored
# Exclude VCR cassettes from stats
forge/tests/vcr_cassettes/**/**.y*ml linguist-generated
classic/forge/tests/vcr_cassettes/**/**.y*ml linguist-generated
* text=auto

8
.github/CODEOWNERS vendored
View File

@@ -1,7 +1,7 @@
* @Significant-Gravitas/maintainers
.github/workflows/ @Significant-Gravitas/devops
forge/ @Significant-Gravitas/forge-maintainers
benchmark/ @Significant-Gravitas/benchmark-maintainers
frontend/ @Significant-Gravitas/frontend-maintainers
rnd/infra @Significant-Gravitas/devops
classic/forge/ @Significant-Gravitas/forge-maintainers
classic/benchmark/ @Significant-Gravitas/benchmark-maintainers
classic/frontend/ @Significant-Gravitas/frontend-maintainers
autogpt_platform/infra @Significant-Gravitas/devops
.github/CODEOWNERS @Significant-Gravitas/admins

View File

@@ -6,26 +6,18 @@
<!-- Concisely describe all of the changes made in this pull request: -->
### PR Quality Scorecard ✨
### Testing 🔍
> [!NOTE]
Only for the new autogpt platform, currently in autogpt_platform/
<!--
Check out our contribution guide:
https://github.com/Significant-Gravitas/AutoGPT/wiki/Contributing
1. Avoid duplicate work, issues, PRs etc.
2. Also consider contributing something other than code; see the [contribution guide]
for options.
3. Clearly explain your changes.
4. Avoid making unnecessary changes, especially if they're purely based on personal
preferences. Doing so is the maintainers' job. ;-)
Please make sure your changes have been tested and are in good working condition.
Here is a list of our critical paths, if you need some inspiration on what and how to test:
-->
- [x] Have you used the PR description template? &ensp; `+2 pts`
- [ ] Is your pull request atomic, focusing on a single change? &ensp; `+5 pts`
- [ ] Have you linked the GitHub issue(s) that this PR addresses? &ensp; `+5 pts`
- [ ] Have you documented your changes clearly and comprehensively? &ensp; `+5 pts`
- [ ] Have you changed or added a feature? &ensp; `-4 pts`
- [ ] Have you added/updated corresponding documentation? &ensp; `+4 pts`
- [ ] Have you added/updated corresponding integration tests? &ensp; `+5 pts`
- [ ] Have you changed the behavior of AutoGPT? &ensp; `-5 pts`
- [ ] Have you also run `agbenchmark` to verify that these changes do not regress performance? &ensp; `+10 pts`
- Create from scratch and execute an agent with at least 3 blocks
- Import an agent from file upload, and confirm it executes correctly
- Upload agent to marketplace
- Import an agent from marketplace and confirm it executes correctly
- Edit an agent from monitor, and confirm it executes correctly

30
.github/labeler.yml vendored
View File

@@ -1,27 +1,27 @@
AutoGPT Agent:
Classic AutoGPT Agent:
- changed-files:
- any-glob-to-any-file: autogpt/**
- any-glob-to-any-file: classic/original_autogpt/**
Classic Benchmark:
- changed-files:
- any-glob-to-any-file: classic/benchmark/**
Classic Frontend:
- changed-files:
- any-glob-to-any-file: classic/frontend/**
Forge:
- changed-files:
- any-glob-to-any-file: forge/**
Benchmark:
- changed-files:
- any-glob-to-any-file: benchmark/**
Frontend:
- changed-files:
- any-glob-to-any-file: frontend/**
- any-glob-to-any-file: classic/forge/**
documentation:
- changed-files:
- any-glob-to-any-file: docs/**
Builder:
platform/frontend:
- changed-files:
- any-glob-to-any-file: rnd/autogpt_builder/**
- any-glob-to-any-file: autogpt_platform/frontend/**
Server:
platform/backend:
- changed-files:
- any-glob-to-any-file: rnd/autogpt_server/**
- any-glob-to-any-file: autogpt_platform/backend/**

View File

@@ -1,97 +0,0 @@
name: AutoGPTs Nightly Benchmark
on:
workflow_dispatch:
schedule:
- cron: '0 2 * * *'
jobs:
benchmark:
permissions:
contents: write
runs-on: ubuntu-latest
strategy:
matrix:
agent-name: [ autogpt ]
fail-fast: false
timeout-minutes: 120
env:
min-python-version: '3.10'
REPORTS_BRANCH: data/benchmark-reports
REPORTS_FOLDER: ${{ format('benchmark/reports/{0}', matrix.agent-name) }}
steps:
- name: Checkout repository
uses: actions/checkout@v4
with:
fetch-depth: 0
submodules: true
- name: Set up Python ${{ env.min-python-version }}
uses: actions/setup-python@v5
with:
python-version: ${{ env.min-python-version }}
- name: Install Poetry
run: curl -sSL https://install.python-poetry.org | python -
- name: Prepare reports folder
run: mkdir -p ${{ env.REPORTS_FOLDER }}
- run: poetry -C benchmark install
- name: Benchmark ${{ matrix.agent-name }}
run: |
./run agent start ${{ matrix.agent-name }}
cd ${{ matrix.agent-name }}
set +e # Do not quit on non-zero exit codes
poetry run agbenchmark run -N 3 \
--test=ReadFile \
--test=BasicRetrieval --test=RevenueRetrieval2 \
--test=CombineCsv --test=LabelCsv --test=AnswerQuestionCombineCsv \
--test=UrlShortener --test=TicTacToe --test=Battleship \
--test=WebArenaTask_0 --test=WebArenaTask_21 --test=WebArenaTask_124 \
--test=WebArenaTask_134 --test=WebArenaTask_163
# Convert exit code 1 (some challenges failed) to exit code 0
if [ $? -eq 0 ] || [ $? -eq 1 ]; then
exit 0
else
exit $?
fi
env:
AGENT_NAME: ${{ matrix.agent-name }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
REQUESTS_CA_BUNDLE: /etc/ssl/certs/ca-certificates.crt
REPORTS_FOLDER: ${{ format('../../{0}', env.REPORTS_FOLDER) }} # account for changed workdir
TELEMETRY_ENVIRONMENT: autogpt-benchmark-ci
TELEMETRY_OPT_IN: ${{ github.ref_name == 'master' }}
- name: Push reports to data branch
run: |
# BODGE: Remove success_rate.json and regression_tests.json to avoid conflicts on checkout
rm ${{ env.REPORTS_FOLDER }}/*.json
# Find folder with newest (untracked) report in it
report_subfolder=$(find ${{ env.REPORTS_FOLDER }} -type f -name 'report.json' \
| xargs -I {} dirname {} \
| xargs -I {} git ls-files --others --exclude-standard {} \
| xargs -I {} dirname {} \
| sort -u)
json_report_file="$report_subfolder/report.json"
# Convert JSON report to Markdown
markdown_report_file="$report_subfolder/report.md"
poetry -C benchmark run benchmark/reports/format.py "$json_report_file" > "$markdown_report_file"
cat "$markdown_report_file" >> $GITHUB_STEP_SUMMARY
git config --global user.name 'GitHub Actions'
git config --global user.email 'github-actions@agpt.co'
git fetch origin ${{ env.REPORTS_BRANCH }}:${{ env.REPORTS_BRANCH }} \
&& git checkout ${{ env.REPORTS_BRANCH }} \
|| git checkout --orphan ${{ env.REPORTS_BRANCH }}
git reset --hard
git add ${{ env.REPORTS_FOLDER }}
git commit -m "Benchmark report for ${{ matrix.agent-name }} @ $(date +'%Y-%m-%d')" \
&& git push origin ${{ env.REPORTS_BRANCH }}

View File

@@ -1,25 +1,25 @@
name: AutoGPT CI
name: Classic - AutoGPT CI
on:
push:
branches: [ master, development, ci-test* ]
paths:
- '.github/workflows/autogpt-ci.yml'
- 'autogpt/**'
- '.github/workflows/classic-autogpt-ci.yml'
- 'classic/original_autogpt/**'
pull_request:
branches: [ master, development, release-* ]
paths:
- '.github/workflows/autogpt-ci.yml'
- 'autogpt/**'
- '.github/workflows/classic-autogpt-ci.yml'
- 'classic/original_autogpt/**'
concurrency:
group: ${{ format('autogpt-ci-{0}', github.head_ref && format('{0}-{1}', github.event_name, github.event.pull_request.number) || github.sha) }}
group: ${{ format('classic-autogpt-ci-{0}', github.head_ref && format('{0}-{1}', github.event_name, github.event.pull_request.number) || github.sha) }}
cancel-in-progress: ${{ startsWith(github.event_name, 'pull_request') }}
defaults:
run:
shell: bash
working-directory: autogpt
working-directory: classic/original_autogpt
jobs:
test:
@@ -86,7 +86,7 @@ jobs:
uses: actions/cache@v4
with:
path: ${{ runner.os == 'macOS' && '~/Library/Caches/pypoetry' || '~/.cache/pypoetry' }}
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt/poetry.lock') }}
key: poetry-${{ runner.os }}-${{ hashFiles('classic/original_autogpt/poetry.lock') }}
- name: Install Poetry (Unix)
if: runner.os != 'Windows'
@@ -135,4 +135,4 @@ jobs:
uses: actions/upload-artifact@v4
with:
name: test-logs
path: autogpt/logs/
path: classic/original_autogpt/logs/

View File

@@ -1,4 +1,4 @@
name: Purge Auto-GPT Docker CI cache
name: Classic - Purge Auto-GPT Docker CI cache
on:
schedule:
@@ -25,7 +25,8 @@ jobs:
name: Build image
uses: docker/build-push-action@v5
with:
file: Dockerfile.autogpt
context: classic/
file: classic/Dockerfile.autogpt
build-args: BUILD_TYPE=${{ matrix.build-type }}
load: true # save to docker images
# use GHA cache as read-only

View File

@@ -1,24 +1,26 @@
name: AutoGPT Docker CI
name: Classic - AutoGPT Docker CI
on:
push:
branches: [ master, development ]
paths:
- '.github/workflows/autogpt-docker-ci.yml'
- 'autogpt/**'
- '.github/workflows/classic-autogpt-docker-ci.yml'
- 'classic/original_autogpt/**'
- 'classic/forge/**'
pull_request:
branches: [ master, development, release-* ]
paths:
- '.github/workflows/autogpt-docker-ci.yml'
- 'autogpt/**'
- '.github/workflows/classic-autogpt-docker-ci.yml'
- 'classic/original_autogpt/**'
- 'classic/forge/**'
concurrency:
group: ${{ format('autogpt-docker-ci-{0}', github.head_ref && format('pr-{0}', github.event.pull_request.number) || github.sha) }}
group: ${{ format('classic-autogpt-docker-ci-{0}', github.head_ref && format('pr-{0}', github.event.pull_request.number) || github.sha) }}
cancel-in-progress: ${{ github.event_name == 'pull_request' }}
defaults:
run:
working-directory: autogpt
working-directory: classic/original_autogpt
env:
IMAGE_NAME: auto-gpt
@@ -47,7 +49,8 @@ jobs:
name: Build image
uses: docker/build-push-action@v5
with:
file: Dockerfile.autogpt
context: classic/
file: classic/Dockerfile.autogpt
build-args: BUILD_TYPE=${{ matrix.build-type }}
tags: ${{ env.IMAGE_NAME }}
labels: GIT_REVISION=${{ github.sha }}
@@ -116,7 +119,8 @@ jobs:
name: Build image
uses: docker/build-push-action@v5
with:
file: Dockerfile.autogpt
context: classic/
file: classic/Dockerfile.autogpt
build-args: BUILD_TYPE=dev # include pytest
tags: >
${{ env.IMAGE_NAME }},

View File

@@ -1,4 +1,4 @@
name: AutoGPT Docker Release
name: Classic - AutoGPT Docker Release
on:
release:
@@ -44,6 +44,7 @@ jobs:
name: Build image
uses: docker/build-push-action@v5
with:
context: classic/
file: Dockerfile.autogpt
build-args: BUILD_TYPE=release
load: true # save to docker images

View File

@@ -1,4 +1,4 @@
name: Agent smoke tests
name: Classic - Agent smoke tests
on:
workflow_dispatch:
@@ -7,32 +7,37 @@ on:
push:
branches: [ master, development, ci-test* ]
paths:
- '.github/workflows/autogpts-ci.yml'
- 'autogpt/**'
- 'forge/**'
- 'benchmark/**'
- 'run'
- 'cli.py'
- 'setup.py'
- '.github/workflows/classic-autogpts-ci.yml'
- 'classic/original_autogpt/**'
- 'classic/forge/**'
- 'classic/benchmark/**'
- 'classic/run'
- 'classic/cli.py'
- 'classic/setup.py'
- '!**/*.md'
pull_request:
branches: [ master, development, release-* ]
paths:
- '.github/workflows/autogpts-ci.yml'
- 'autogpt/**'
- 'forge/**'
- 'benchmark/**'
- 'run'
- 'cli.py'
- 'setup.py'
- '.github/workflows/classic-autogpts-ci.yml'
- 'classic/original_autogpt/**'
- 'classic/forge/**'
- 'classic/benchmark/**'
- 'classic/run'
- 'classic/cli.py'
- 'classic/setup.py'
- '!**/*.md'
defaults:
run:
shell: bash
working-directory: classic
jobs:
serve-agent-protocol:
runs-on: ubuntu-latest
strategy:
matrix:
agent-name: [ autogpt ]
agent-name: [ original_autogpt ]
fail-fast: false
timeout-minutes: 20
env:
@@ -50,7 +55,7 @@ jobs:
python-version: ${{ env.min-python-version }}
- name: Install Poetry
working-directory: ./${{ matrix.agent-name }}/
working-directory: ./classic/${{ matrix.agent-name }}/
run: |
curl -sSL https://install.python-poetry.org | python -

View File

@@ -1,18 +1,18 @@
name: AGBenchmark CI
name: Classic - AGBenchmark CI
on:
push:
branches: [ master, development, ci-test* ]
paths:
- 'benchmark/**'
- .github/workflows/benchmark-ci.yml
- '!benchmark/reports/**'
- 'classic/benchmark/**'
- '!classic/benchmark/reports/**'
- .github/workflows/classic-benchmark-ci.yml
pull_request:
branches: [ master, development, release-* ]
paths:
- 'benchmark/**'
- '!benchmark/reports/**'
- .github/workflows/benchmark-ci.yml
- 'classic/benchmark/**'
- '!classic/benchmark/reports/**'
- .github/workflows/classic-benchmark-ci.yml
concurrency:
group: ${{ format('benchmark-ci-{0}', github.head_ref && format('{0}-{1}', github.event_name, github.event.pull_request.number) || github.sha) }}
@@ -39,7 +39,7 @@ jobs:
defaults:
run:
shell: bash
working-directory: benchmark
working-directory: classic/benchmark
steps:
- name: Checkout repository
uses: actions/checkout@v4
@@ -58,7 +58,7 @@ jobs:
uses: actions/cache@v4
with:
path: ${{ runner.os == 'macOS' && '~/Library/Caches/pypoetry' || '~/.cache/pypoetry' }}
key: poetry-${{ runner.os }}-${{ hashFiles('benchmark/poetry.lock') }}
key: poetry-${{ runner.os }}-${{ hashFiles('classic/benchmark/poetry.lock') }}
- name: Install Poetry (Unix)
if: runner.os != 'Windows'
@@ -122,7 +122,7 @@ jobs:
curl -sSL https://install.python-poetry.org | python -
- name: Run regression tests
working-directory: .
working-directory: classic
run: |
./run agent start ${{ matrix.agent-name }}
cd ${{ matrix.agent-name }}
@@ -155,7 +155,7 @@ jobs:
poetry run agbenchmark --mock
CHANGED=$(git diff --name-only | grep -E '(agbenchmark/challenges)|(../frontend/assets)') || echo "No diffs"
CHANGED=$(git diff --name-only | grep -E '(agbenchmark/challenges)|(../classic/frontend/assets)') || echo "No diffs"
if [ ! -z "$CHANGED" ]; then
echo "There are unstaged changes please run agbenchmark and commit those changes since they are needed."
echo "$CHANGED"

View File

@@ -1,4 +1,4 @@
name: Publish to PyPI
name: Classic - Publish to PyPI
on:
workflow_dispatch:
@@ -21,21 +21,21 @@ jobs:
python-version: 3.8
- name: Install Poetry
working-directory: ./benchmark/
working-directory: ./classic/benchmark/
run: |
curl -sSL https://install.python-poetry.org | python3 -
echo "$HOME/.poetry/bin" >> $GITHUB_PATH
- name: Build project for distribution
working-directory: ./benchmark/
working-directory: ./classic/benchmark/
run: poetry build
- name: Install dependencies
working-directory: ./benchmark/
working-directory: ./classic/benchmark/
run: poetry install
- name: Check Version
working-directory: ./benchmark/
working-directory: ./classic/benchmark/
id: check-version
run: |
echo version=$(poetry version --short) >> $GITHUB_OUTPUT
@@ -43,7 +43,7 @@ jobs:
- name: Create Release
uses: ncipollo/release-action@v1
with:
artifacts: "benchmark/dist/*"
artifacts: "classic/benchmark/dist/*"
token: ${{ secrets.GITHUB_TOKEN }}
draft: false
generateReleaseNotes: false
@@ -51,5 +51,5 @@ jobs:
commit: master
- name: Build and publish
working-directory: ./benchmark/
working-directory: ./classic/benchmark/
run: poetry publish -u __token__ -p ${{ secrets.PYPI_API_TOKEN }}

View File

@@ -1,18 +1,18 @@
name: Forge CI
name: Classic - Forge CI
on:
push:
branches: [ master, development, ci-test* ]
paths:
- '.github/workflows/forge-ci.yml'
- 'forge/**'
- '!forge/tests/vcr_cassettes'
- '.github/workflows/classic-forge-ci.yml'
- 'classic/forge/**'
- '!classic/forge/tests/vcr_cassettes'
pull_request:
branches: [ master, development, release-* ]
paths:
- '.github/workflows/forge-ci.yml'
- 'forge/**'
- '!forge/tests/vcr_cassettes'
- '.github/workflows/classic-forge-ci.yml'
- 'classic/forge/**'
- '!classic/forge/tests/vcr_cassettes'
concurrency:
group: ${{ format('forge-ci-{0}', github.head_ref && format('{0}-{1}', github.event_name, github.event.pull_request.number) || github.sha) }}
@@ -21,7 +21,7 @@ concurrency:
defaults:
run:
shell: bash
working-directory: forge
working-directory: classic/forge
jobs:
test:
@@ -110,7 +110,7 @@ jobs:
uses: actions/cache@v4
with:
path: ${{ runner.os == 'macOS' && '~/Library/Caches/pypoetry' || '~/.cache/pypoetry' }}
key: poetry-${{ runner.os }}-${{ hashFiles('forge/poetry.lock') }}
key: poetry-${{ runner.os }}-${{ hashFiles('classic/forge/poetry.lock') }}
- name: Install Poetry (Unix)
if: runner.os != 'Windows'
@@ -233,4 +233,4 @@ jobs:
uses: actions/upload-artifact@v4
with:
name: test-logs
path: forge/logs/
path: classic/forge/logs/

View File

@@ -1,4 +1,4 @@
name: Frontend CI/CD
name: Classic - Frontend CI/CD
on:
push:
@@ -7,12 +7,12 @@ on:
- development
- 'ci-test*' # This will match any branch that starts with "ci-test"
paths:
- 'frontend/**'
- '.github/workflows/frontend-ci.yml'
- 'classic/frontend/**'
- '.github/workflows/classic-frontend-ci.yml'
pull_request:
paths:
- 'frontend/**'
- '.github/workflows/frontend-ci.yml'
- 'classic/frontend/**'
- '.github/workflows/classic-frontend-ci.yml'
jobs:
build:
@@ -21,7 +21,7 @@ jobs:
pull-requests: write
runs-on: ubuntu-latest
env:
BUILD_BRANCH: ${{ format('frontend-build/{0}', github.ref_name) }}
BUILD_BRANCH: ${{ format('classic-frontend-build/{0}', github.ref_name) }}
steps:
- name: Checkout Repo
@@ -34,7 +34,7 @@ jobs:
- name: Build Flutter to Web
run: |
cd frontend
cd classic/frontend
flutter build web --base-href /app/
# - name: Commit and Push to ${{ env.BUILD_BRANCH }}
@@ -42,7 +42,7 @@ jobs:
# run: |
# git config --local user.email "action@github.com"
# git config --local user.name "GitHub Action"
# git add frontend/build/web
# git add classic/frontend/build/web
# git checkout -B ${{ env.BUILD_BRANCH }}
# git commit -m "Update frontend build to ${GITHUB_SHA:0:7}" -a
# git push -f origin ${{ env.BUILD_BRANCH }}
@@ -51,7 +51,7 @@ jobs:
if: github.event_name == 'push'
uses: peter-evans/create-pull-request@v6
with:
add-paths: frontend/build/web
add-paths: classic/frontend/build/web
base: ${{ github.ref_name }}
branch: ${{ env.BUILD_BRANCH }}
delete-branch: true

View File

@@ -1,27 +1,27 @@
name: Python checks
name: Classic - Python checks
on:
push:
branches: [ master, development, ci-test* ]
paths:
- '.github/workflows/lint-ci.yml'
- 'autogpt/**'
- 'forge/**'
- 'benchmark/**'
- '.github/workflows/classic-python-checks-ci.yml'
- 'classic/original_autogpt/**'
- 'classic/forge/**'
- 'classic/benchmark/**'
- '**.py'
- '!forge/tests/vcr_cassettes'
- '!classic/forge/tests/vcr_cassettes'
pull_request:
branches: [ master, development, release-* ]
paths:
- '.github/workflows/lint-ci.yml'
- 'autogpt/**'
- 'forge/**'
- 'benchmark/**'
- '.github/workflows/classic-python-checks-ci.yml'
- 'classic/original_autogpt/**'
- 'classic/forge/**'
- 'classic/benchmark/**'
- '**.py'
- '!forge/tests/vcr_cassettes'
- '!classic/forge/tests/vcr_cassettes'
concurrency:
group: ${{ format('lint-ci-{0}', github.head_ref && format('{0}-{1}', github.event_name, github.event.pull_request.number) || github.sha) }}
group: ${{ format('classic-python-checks-ci-{0}', github.head_ref && format('{0}-{1}', github.event_name, github.event.pull_request.number) || github.sha) }}
cancel-in-progress: ${{ startsWith(github.event_name, 'pull_request') }}
defaults:
@@ -40,18 +40,18 @@ jobs:
uses: dorny/paths-filter@v3
with:
filters: |
autogpt:
- autogpt/autogpt/**
- autogpt/tests/**
- autogpt/poetry.lock
original_autogpt:
- classic/original_autogpt/autogpt/**
- classic/original_autogpt/tests/**
- classic/original_autogpt/poetry.lock
forge:
- forge/forge/**
- forge/tests/**
- forge/poetry.lock
- classic/forge/forge/**
- classic/forge/tests/**
- classic/forge/poetry.lock
benchmark:
- benchmark/agbenchmark/**
- benchmark/tests/**
- benchmark/poetry.lock
- classic/benchmark/agbenchmark/**
- classic/benchmark/tests/**
- classic/benchmark/poetry.lock
outputs:
changed-parts: ${{ steps.changes-in.outputs.changes }}
@@ -89,23 +89,23 @@ jobs:
# Install dependencies
- name: Install Python dependencies
run: poetry -C ${{ matrix.sub-package }} install
run: poetry -C classic/${{ matrix.sub-package }} install
# Lint
- name: Lint (isort)
run: poetry run isort --check .
working-directory: ${{ matrix.sub-package }}
working-directory: classic/${{ matrix.sub-package }}
- name: Lint (Black)
if: success() || failure()
run: poetry run black --check .
working-directory: ${{ matrix.sub-package }}
working-directory: classic/${{ matrix.sub-package }}
- name: Lint (Flake8)
if: success() || failure()
run: poetry run flake8 .
working-directory: ${{ matrix.sub-package }}
working-directory: classic/${{ matrix.sub-package }}
types:
needs: get-changed-parts
@@ -141,11 +141,11 @@ jobs:
# Install dependencies
- name: Install Python dependencies
run: poetry -C ${{ matrix.sub-package }} install
run: poetry -C classic/${{ matrix.sub-package }} install
# Typecheck
- name: Typecheck
if: success() || failure()
run: poetry run pyright
working-directory: ${{ matrix.sub-package }}
working-directory: classic/${{ matrix.sub-package }}

View File

@@ -1,133 +0,0 @@
name: Hackathon
on:
workflow_dispatch:
inputs:
agents:
description: "Agents to run (comma-separated)"
required: false
default: "autogpt" # Default agents if none are specified
jobs:
matrix-setup:
runs-on: ubuntu-latest
# Service containers to run with `matrix-setup`
services:
# Label used to access the service container
postgres:
# Docker Hub image
image: postgres
# Provide the password for postgres
env:
POSTGRES_PASSWORD: postgres
# Set health checks to wait until postgres has started
options: >-
--health-cmd pg_isready
--health-interval 10s
--health-timeout 5s
--health-retries 5
ports:
# Maps tcp port 5432 on service container to the host
- 5432:5432
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
env-name: ${{ steps.set-matrix.outputs.env-name }}
steps:
- id: set-matrix
run: |
if [ "${{ github.event_name }}" == "schedule" ]; then
echo "::set-output name=env-name::production"
echo "::set-output name=matrix::[ 'irrelevant']"
elif [ "${{ github.event_name }}" == "workflow_dispatch" ]; then
IFS=',' read -ra matrix_array <<< "${{ github.event.inputs.agents }}"
matrix_string="[ \"$(echo "${matrix_array[@]}" | sed 's/ /", "/g')\" ]"
echo "::set-output name=env-name::production"
echo "::set-output name=matrix::$matrix_string"
else
echo "::set-output name=env-name::testing"
echo "::set-output name=matrix::[ 'irrelevant' ]"
fi
tests:
environment:
name: "${{ needs.matrix-setup.outputs.env-name }}"
needs: matrix-setup
env:
min-python-version: "3.10"
name: "${{ matrix.agent-name }}"
runs-on: ubuntu-latest
services:
# Label used to access the service container
postgres:
# Docker Hub image
image: postgres
# Provide the password for postgres
env:
POSTGRES_PASSWORD: postgres
# Set health checks to wait until postgres has started
options: >-
--health-cmd pg_isready
--health-interval 10s
--health-timeout 5s
--health-retries 5
ports:
# Maps tcp port 5432 on service container to the host
- 5432:5432
timeout-minutes: 50
strategy:
fail-fast: false
matrix:
agent-name: ${{fromJson(needs.matrix-setup.outputs.matrix)}}
steps:
- name: Print Environment Name
run: |
echo "Matrix Setup Environment Name: ${{ needs.matrix-setup.outputs.env-name }}"
- name: Check Docker Container
id: check
run: docker ps
- name: Checkout repository
uses: actions/checkout@v4
with:
fetch-depth: 0
submodules: true
- name: Set up Python ${{ env.min-python-version }}
uses: actions/setup-python@v5
with:
python-version: ${{ env.min-python-version }}
- id: get_date
name: Get date
run: echo "date=$(date +'%Y-%m-%d')" >> $GITHUB_OUTPUT
- name: Install Poetry
run: |
curl -sSL https://install.python-poetry.org | python -
- name: Install Node.js
uses: actions/setup-node@v4
with:
node-version: v18.15
- name: Run benchmark
run: |
link=$(jq -r '.["github_repo_url"]' arena/$AGENT_NAME.json)
branch=$(jq -r '.["branch_to_benchmark"]' arena/$AGENT_NAME.json)
git clone "$link" -b "$branch" "$AGENT_NAME"
cd $AGENT_NAME
cp ./$AGENT_NAME/.env.example ./$AGENT_NAME/.env || echo "file not found"
./run agent start $AGENT_NAME
cd ../benchmark
poetry install
poetry run agbenchmark --no-dep
env:
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
SERP_API_KEY: ${{ secrets.SERP_API_KEY }}
SERPAPI_API_KEY: ${{ secrets.SERP_API_KEY }}
WEAVIATE_API_KEY: ${{ secrets.WEAVIATE_API_KEY }}
WEAVIATE_URL: ${{ secrets.WEAVIATE_URL }}
GOOGLE_API_KEY: ${{ secrets.GOOGLE_API_KEY }}
GOOGLE_CUSTOM_SEARCH_ENGINE_ID: ${{ secrets.GOOGLE_CUSTOM_SEARCH_ENGINE_ID }}
AGENT_NAME: ${{ matrix.agent-name }}

View File

@@ -0,0 +1,40 @@
name: AutoGPT Server Docker Build & Push
on:
push:
branches: [ update-docker-ci ]
paths:
- '**'
defaults:
run:
shell: bash
env:
PROJECT_ID: agpt-dev
IMAGE_NAME: agpt-server-dev
REGION: us-central1
jobs:
build-and-push:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v2
- name: Set up Cloud SDK
uses: google-github-actions/setup-gcloud@v0.2.1
with:
project_id: ${{ env.PROJECT_ID }}
service_account_key: ${{ secrets.GCP_SA_KEY }}
export_default_credentials: true
- name: Configure Docker
run: gcloud auth configure-docker ${{ env.REGION }}-docker.pkg.dev
- name: Build Docker image
run: docker build -t ${{ env.REGION }}-docker.pkg.dev/${{ env.PROJECT_ID }}/${{ env.IMAGE_NAME }}:${{ github.sha }} -f autogpt_platform/backend/Dockerfile .
- name: Push Docker image
run: docker push ${{ env.REGION }}-docker.pkg.dev/${{ env.PROJECT_ID }}/${{ env.IMAGE_NAME }}:${{ github.sha }}

View File

@@ -1,20 +1,20 @@
name: AutoGPT Builder Infra
name: AutoGPT Platform - Infra
on:
push:
branches: [ master ]
paths:
- '.github/workflows/autogpt-infra-ci.yml'
- 'rnd/infra/**'
- '.github/workflows/platform-autogpt-infra-ci.yml'
- 'autogpt_platform/infra/**'
pull_request:
paths:
- '.github/workflows/autogpt-infra-ci.yml'
- 'rnd/infra/**'
- '.github/workflows/platform-autogpt-infra-ci.yml'
- 'autogpt_platform/infra/**'
defaults:
run:
shell: bash
working-directory: rnd/infra
working-directory: autogpt_platform/infra
jobs:
lint:
@@ -53,4 +53,4 @@ jobs:
- name: Run chart-testing (lint)
if: steps.list-changed.outputs.changed == 'true'
run: ct lint --target-branch ${{ github.event.repository.default_branch }}
run: ct lint --target-branch ${{ github.event.repository.default_branch }}

View File

@@ -1,25 +1,25 @@
name: AutoGPT Server CI
name: AutoGPT Platform - Backend CI
on:
push:
branches: [master, development, ci-test*]
paths:
- ".github/workflows/autogpt-server-ci.yml"
- "rnd/autogpt_server/**"
- ".github/workflows/platform-backend-ci.yml"
- "autogpt_platform/backend/**"
pull_request:
branches: [master, development, release-*]
paths:
- ".github/workflows/autogpt-server-ci.yml"
- "rnd/autogpt_server/**"
- ".github/workflows/platform-backend-ci.yml"
- "autogpt_platform/backend/**"
concurrency:
group: ${{ format('autogpt-server-ci-{0}', github.head_ref && format('{0}-{1}', github.event_name, github.event.pull_request.number) || github.sha) }}
group: ${{ format('backend-ci-{0}', github.head_ref && format('{0}-{1}', github.event_name, github.event.pull_request.number) || github.sha) }}
cancel-in-progress: ${{ startsWith(github.event_name, 'pull_request') }}
defaults:
run:
shell: bash
working-directory: rnd/autogpt_server
working-directory: autogpt_platform/backend
jobs:
test:
@@ -90,7 +90,7 @@ jobs:
uses: actions/cache@v4
with:
path: ${{ runner.os == 'macOS' && '~/Library/Caches/pypoetry' || '~/.cache/pypoetry' }}
key: poetry-${{ runner.os }}-${{ hashFiles('rnd/autogpt_server/poetry.lock') }}
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
- name: Install Poetry (Unix)
if: runner.os != 'Windows'
@@ -152,4 +152,4 @@ jobs:
# uses: codecov/codecov-action@v4
# with:
# token: ${{ secrets.CODECOV_TOKEN }}
# flags: autogpt-server,${{ runner.os }}
# flags: backend,${{ runner.os }}

View File

@@ -1,20 +1,20 @@
name: AutoGPT Builder CI
name: AutoGPT Platform - Frontend CI
on:
push:
branches: [ master ]
paths:
- '.github/workflows/autogpt-builder-ci.yml'
- 'rnd/autogpt_builder/**'
- '.github/workflows/platform-frontend-ci.yml'
- 'autogpt_platform/frontend/**'
pull_request:
paths:
- '.github/workflows/autogpt-builder-ci.yml'
- 'rnd/autogpt_builder/**'
- '.github/workflows/platform-frontend-ci.yml'
- 'autogpt_platform/frontend/**'
defaults:
run:
shell: bash
working-directory: rnd/autogpt_builder
working-directory: autogpt_platform/frontend
jobs:

View File

@@ -1,4 +1,4 @@
name: 'Close stale issues'
name: Repo - Close stale issues
on:
schedule:
- cron: '30 1 * * *'

View File

@@ -1,12 +1,12 @@
name: "Pull Request auto-label"
name: Repo - Pull Request auto-label
on:
# So that PRs touching the same files as the push are updated
push:
branches: [ master, development, release-* ]
paths-ignore:
- 'forge/tests/vcr_cassettes'
- 'benchmark/reports/**'
- 'classic/forge/tests/vcr_cassettes'
- 'classic/benchmark/reports/**'
# So that the `dirtyLabel` is removed if conflicts are resolve
# We recommend `pull_request_target` so that github secrets are available.
# In `pull_request` we wouldn't be able to change labels of fork PRs

View File

@@ -1,4 +1,4 @@
name: github-repo-stats
name: Repo - Github Stats
on:
schedule:

View File

@@ -1,4 +1,4 @@
name: PR Status Checker
name: Repo - PR Status Checker
on:
pull_request:
types: [opened, synchronize, reopened]
@@ -26,6 +26,6 @@ jobs:
echo "Current directory before running Python script:"
pwd
echo "Attempting to run Python script:"
python check_actions_status.py
python .github/workflows/scripts/check_actions_status.py
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

8
.gitignore vendored
View File

@@ -1,7 +1,7 @@
## Original ignores
.github_access_token
autogpt/keys.py
autogpt/*.json
classic/original_autogpt/keys.py
classic/original_autogpt/*.json
auto_gpt_workspace/*
*.mpeg
.env
@@ -157,7 +157,7 @@ openai/
CURRENT_BULLETIN.md
# AgBenchmark
agbenchmark/reports/
classic/benchmark/agbenchmark/reports/
# Nodejs
package-lock.json
@@ -170,4 +170,4 @@ pri*
ig*
.github_access_token
LICENSE.rtf
rnd/autogpt_server/settings.py
autogpt_platform/backend/settings.py

7
.gitmodules vendored
View File

@@ -1,3 +1,6 @@
[submodule "forge/tests/vcr_cassettes"]
path = forge/tests/vcr_cassettes
[submodule "classic/forge/tests/vcr_cassettes"]
path = classic/forge/tests/vcr_cassettes
url = https://github.com/Significant-Gravitas/Auto-GPT-test-cassettes
[submodule "autogpt_platform/supabase"]
path = autogpt_platform/supabase
url = https://github.com/supabase/supabase.git

View File

@@ -16,22 +16,22 @@ repos:
hooks:
- id: isort-autogpt
name: Lint (isort) - AutoGPT
entry: poetry -C autogpt run isort
files: ^autogpt/
entry: poetry -C classic/original_autogpt run isort
files: ^classic/original_autogpt/
types: [file, python]
language: system
- id: isort-forge
name: Lint (isort) - Forge
entry: poetry -C forge run isort
files: ^forge/
entry: poetry -C classic/forge run isort
files: ^classic/forge/
types: [file, python]
language: system
- id: isort-benchmark
name: Lint (isort) - Benchmark
entry: poetry -C benchmark run isort
files: ^benchmark/
entry: poetry -C classic/benchmark run isort
files: ^classic/benchmark/
types: [file, python]
language: system
@@ -52,20 +52,20 @@ repos:
- id: flake8
name: Lint (Flake8) - AutoGPT
alias: flake8-autogpt
files: ^autogpt/(autogpt|scripts|tests)/
args: [--config=autogpt/.flake8]
files: ^classic/original_autogpt/(autogpt|scripts|tests)/
args: [--config=classic/original_autogpt/.flake8]
- id: flake8
name: Lint (Flake8) - Forge
alias: flake8-forge
files: ^forge/(forge|tests)/
args: [--config=forge/.flake8]
files: ^classic/forge/(forge|tests)/
args: [--config=classic/forge/.flake8]
- id: flake8
name: Lint (Flake8) - Benchmark
alias: flake8-benchmark
files: ^benchmark/(agbenchmark|tests)/((?!reports).)*[/.]
args: [--config=benchmark/.flake8]
files: ^classic/benchmark/(agbenchmark|tests)/((?!reports).)*[/.]
args: [--config=classic/benchmark/.flake8]
- repo: local
# To have watertight type checking, we check *all* the files in an affected
@@ -74,10 +74,10 @@ repos:
- id: pyright
name: Typecheck - AutoGPT
alias: pyright-autogpt
entry: poetry -C autogpt run pyright
entry: poetry -C classic/original_autogpt run pyright
args: [-p, autogpt, autogpt]
# include forge source (since it's a path dependency) but exclude *_test.py files:
files: ^(autogpt/((autogpt|scripts|tests)/|poetry\.lock$)|forge/(forge/.*(?<!_test)\.py|poetry\.lock)$)
files: ^(classic/original_autogpt/((autogpt|scripts|tests)/|poetry\.lock$)|classic/forge/(classic/forge/.*(?<!_test)\.py|poetry\.lock)$)
types: [file]
language: system
pass_filenames: false
@@ -85,9 +85,9 @@ repos:
- id: pyright
name: Typecheck - Forge
alias: pyright-forge
entry: poetry -C forge run pyright
entry: poetry -C classic/forge run pyright
args: [-p, forge, forge]
files: ^forge/(forge/|poetry\.lock$)
files: ^classic/forge/(classic/forge/|poetry\.lock$)
types: [file]
language: system
pass_filenames: false
@@ -95,9 +95,9 @@ repos:
- id: pyright
name: Typecheck - Benchmark
alias: pyright-benchmark
entry: poetry -C benchmark run pyright
entry: poetry -C classic/benchmark run pyright
args: [-p, benchmark, benchmark]
files: ^benchmark/(agbenchmark/|tests/|poetry\.lock$)
files: ^classic/benchmark/(agbenchmark/|tests/|poetry\.lock$)
types: [file]
language: system
pass_filenames: false
@@ -106,22 +106,22 @@ repos:
hooks:
- id: pytest-autogpt
name: Run tests - AutoGPT (excl. slow tests)
entry: bash -c 'cd autogpt && poetry run pytest --cov=autogpt -m "not slow" tests/unit tests/integration'
entry: bash -c 'cd classic/original_autogpt && poetry run pytest --cov=autogpt -m "not slow" tests/unit tests/integration'
# include forge source (since it's a path dependency) but exclude *_test.py files:
files: ^(autogpt/((autogpt|tests)/|poetry\.lock$)|forge/(forge/.*(?<!_test)\.py|poetry\.lock)$)
files: ^(classic/original_autogpt/((autogpt|tests)/|poetry\.lock$)|classic/forge/(classic/forge/.*(?<!_test)\.py|poetry\.lock)$)
language: system
pass_filenames: false
- id: pytest-forge
name: Run tests - Forge (excl. slow tests)
entry: bash -c 'cd forge && poetry run pytest --cov=forge -m "not slow"'
files: ^forge/(forge/|tests/|poetry\.lock$)
entry: bash -c 'cd classic/forge && poetry run pytest --cov=forge -m "not slow"'
files: ^classic/forge/(classic/forge/|tests/|poetry\.lock$)
language: system
pass_filenames: false
- id: pytest-benchmark
name: Run tests - Benchmark
entry: bash -c 'cd benchmark && poetry run pytest --cov=benchmark'
files: ^benchmark/(agbenchmark/|tests/|poetry\.lock$)
entry: bash -c 'cd classic/benchmark && poetry run pytest --cov=benchmark'
files: ^classic/benchmark/(agbenchmark/|tests/|poetry\.lock$)
language: system
pass_filenames: false

View File

@@ -1,49 +1,49 @@
{
"folders": [
{
"name": "autogpt",
"path": "../autogpt"
"name": "autogpt_server",
"path": "../autogpt_platform/autogpt_server"
},
{
"name": "benchmark",
"path": "../benchmark"
"name": "autogpt_builder",
"path": "../autogpt_platform/autogpt_builder"
},
{
"name": "market",
"path": "../autogpt_platform/market"
},
{
"name": "lib",
"path": "../autogpt_platform/autogpt_libs"
},
{
"name": "infra",
"path": "../autogpt_platform/infra"
},
{
"name": "docs",
"path": "../docs"
},
{
"name": "forge",
"path": "../forge"
},
{
"name": "frontend",
"path": "../frontend"
},
{
"name": "autogpt_server",
"path": "../rnd/autogpt_server"
},
{
"name": "autogpt_builder",
"path": "../rnd/autogpt_builder"
},
{
"name": "market",
"path": "../rnd/market"
},
{
"name": "lib",
"path": "../rnd/autogpt_libs"
},
{
"name": "infra",
"path": "../rnd/infra"
},
{
"name": "[root]",
"path": ".."
}
},
{
"name": "classic - autogpt",
"path": "../classic/original_autogpt"
},
{
"name": "classic - benchmark",
"path": "../classic/benchmark"
},
{
"name": "classic - forge",
"path": "../classic/forge"
},
{
"name": "classic - frontend",
"path": "../classic/frontend"
},
],
"settings": {
"python.analysis.typeCheckingMode": "basic"

View File

@@ -55,15 +55,16 @@ Be part of the revolution! **AutoGPT** is here to stay, at the forefront of AI i
## 🤖 AutoGPT Classic
> Below is information about the classic version of AutoGPT.
**🛠️ [Build your own Agent - Quickstart](FORGE-QUICKSTART.md)**
**🛠️ [Build your own Agent - Quickstart](classic/FORGE-QUICKSTART.md)**
### 🏗️ Forge
**Forge your own agent!** &ndash; Forge is a ready-to-go template for your agent application. All the boilerplate code is already handled, letting you channel all your creativity into the things that set *your* agent apart. All tutorials are located [here](https://medium.com/@aiedge/autogpt-forge-e3de53cc58ec). Components from the [`forge.sdk`](/forge/forge/sdk) can also be used individually to speed up development and reduce boilerplate in your agent project.
**Forge your own agent!** &ndash; Forge is a ready-to-go toolkit to build your own agent application. It handles most of the boilerplate code, letting you channel all your creativity into the things that set *your* agent apart. All tutorials are located [here](https://medium.com/@aiedge/autogpt-forge-e3de53cc58ec). Components from [`forge`](/classic/forge/) can also be used individually to speed up development and reduce boilerplate in your agent project.
🚀 [**Getting Started with Forge**](https://github.com/Significant-Gravitas/AutoGPT/blob/master/forge/tutorials/001_getting_started.md) &ndash;
🚀 [**Getting Started with Forge**](https://github.com/Significant-Gravitas/AutoGPT/blob/master/classic/forge/tutorials/001_getting_started.md) &ndash;
This guide will walk you through the process of creating your own agent and using the benchmark and user interface.
📘 [Learn More](https://github.com/Significant-Gravitas/AutoGPT/tree/master/forge) about Forge
📘 [Learn More](https://github.com/Significant-Gravitas/AutoGPT/tree/master/classic/forge) about Forge
### 🎯 Benchmark
@@ -83,7 +84,7 @@ This guide will walk you through the process of creating your own agent and usin
The frontend works out-of-the-box with all agents in the repo. Just use the [CLI] to run your agent of choice!
📘 [Learn More](https://github.com/Significant-Gravitas/AutoGPT/tree/master/frontend) about the Frontend
📘 [Learn More](https://github.com/Significant-Gravitas/AutoGPT/tree/master/classic/frontend) about the Frontend
### ⌨️ CLI

View File

@@ -1,3 +0,0 @@
{
"python.analysis.typeCheckingMode": "basic",
}

View File

@@ -14,21 +14,40 @@ Welcome to the AutoGPT Platform - a powerful system for creating and running AI
To run the AutoGPT Platform, follow these steps:
1. Clone this repository to your local machine.
2. Navigate to the project directory.
2. Navigate to autogpt_platform/supabase
3. Run the following command:
```
git submodule update --init --recursive
```
4. Navigate back to autogpt_platform (cd ..)
5. Run the following command:
```
cp supabase/docker/.env.example .env
```
6. Run the following command:
```
docker compose up -d
docker compose -f docker-compose.combined.yml up -d
```
This command will start all the necessary services defined in the `docker-compose.yml` file in detached mode.
This command will start all the necessary backend services defined in the `docker-compose.combined.yml` file in detached mode.
7. Navigate to autogpt_platform/frontend.
8. Run the following command:
```
cp .env.example .env.local
```
9. Run the following command:
```
yarn dev
```
### Docker Compose Commands
Here are some useful Docker Compose commands for managing your AutoGPT Platform:
- `docker compose up -d`: Start the services in detached mode.
- `docker compose stop`: Stop the running services without removing them.
- `docker compose -f docker-compose.combined.yml up -d`: Start the services in detached mode.
- `docker compose -f docker-compose.combined.yml stop`: Stop the running services without removing them.
- `docker compose rm`: Remove stopped service containers.
- `docker compose build`: Build or rebuild services.
- `docker compose down`: Stop and remove containers, networks, and volumes.

View File

@@ -7,7 +7,7 @@ from pydantic import BaseModel, Field, SecretStr, field_serializer
class _BaseCredentials(BaseModel):
id: str = Field(default_factory=lambda: str(uuid4()))
provider: str
title: str
title: Optional[str]
@field_serializer("*")
def dump_secret_strings(value: Any, _info):
@@ -18,6 +18,8 @@ class _BaseCredentials(BaseModel):
class OAuth2Credentials(_BaseCredentials):
type: Literal["oauth2"] = "oauth2"
username: Optional[str]
"""Username of the third-party service user that these credentials belong to"""
access_token: SecretStr
access_token_expires_at: Optional[int]
"""Unix timestamp (seconds) indicating when the access token expires (if at all)"""

View File

@@ -1,7 +1,7 @@
DB_USER=agpt_user
DB_PASS=pass123
DB_NAME=agpt_local
DB_PORT=5432
DB_PORT=5433
DATABASE_URL="postgresql://${DB_USER}:${DB_PASS}@localhost:${DB_PORT}/${DB_NAME}"
PRISMA_SCHEMA="postgres/schema.prisma"
@@ -9,10 +9,13 @@ REDIS_HOST=localhost
REDIS_PORT=6379
REDIS_PASSWORD=password
AUTH_ENABLED=false
ENABLE_AUTH=false
ENABLE_CREDIT=false
APP_ENV="local"
PYRO_HOST=localhost
SENTRY_DSN=
# This is needed when ENABLE_AUTH is true
SUPABASE_JWT_SECRET=
## ===== OPTIONAL API KEYS ===== ##

View File

@@ -17,17 +17,21 @@ ENV POETRY_VERSION=1.8.3 \
POETRY_NO_INTERACTION=1 \
POETRY_VIRTUALENVS_CREATE=false \
PATH="$POETRY_HOME/bin:$PATH"
# Upgrade pip and setuptools to fix security vulnerabilities
RUN pip3 install --upgrade pip setuptools
RUN pip3 install poetry
# Copy and install dependencies
COPY rnd/autogpt_libs /app/rnd/autogpt_libs
COPY rnd/autogpt_server/poetry.lock rnd/autogpt_server/pyproject.toml /app/rnd/autogpt_server/
WORKDIR /app/rnd/autogpt_server
COPY autogpt_platform/autogpt_libs /app/autogpt_platform/autogpt_libs
COPY autogpt_platform/backend/poetry.lock autogpt_platform/backend/pyproject.toml /app/autogpt_platform/backend/
WORKDIR /app/autogpt_platform/backend
RUN poetry config virtualenvs.create false \
&& poetry install --no-interaction --no-ansi
# Generate Prisma client
COPY rnd/autogpt_server/schema.prisma ./
COPY autogpt_platform/backend/schema.prisma ./
RUN poetry config virtualenvs.create false \
&& poetry run prisma generate
@@ -41,6 +45,10 @@ ENV POETRY_VERSION=1.8.3 \
POETRY_VIRTUALENVS_CREATE=false \
PATH="$POETRY_HOME/bin:$PATH"
# Upgrade pip and setuptools to fix security vulnerabilities
RUN pip3 install --upgrade pip setuptools
# Copy only necessary files from builder
COPY --from=builder /app /app
COPY --from=builder /usr/local/lib/python3.11 /usr/local/lib/python3.11
@@ -51,21 +59,20 @@ COPY --from=builder /root/.cache/prisma-python/binaries /root/.cache/prisma-pyth
ENV PATH="/app/.venv/bin:$PATH"
RUN mkdir -p /app/rnd/autogpt_libs
RUN mkdir -p /app/rnd/autogpt_server
RUN mkdir -p /app/autogpt_platform/autogpt_libs
RUN mkdir -p /app/autogpt_platform/backend
COPY rnd/autogpt_libs /app/rnd/autogpt_libs
COPY autogpt_platform/autogpt_libs /app/autogpt_platform/autogpt_libs
COPY rnd/autogpt_server/poetry.lock rnd/autogpt_server/pyproject.toml /app/rnd/autogpt_server/
COPY autogpt_platform/backend/poetry.lock autogpt_platform/backend/pyproject.toml /app/autogpt_platform/backend/
WORKDIR /app/rnd/autogpt_server
WORKDIR /app/autogpt_platform/backend
FROM server_dependencies AS server
COPY rnd/autogpt_server /app/rnd/autogpt_server
COPY autogpt_platform/backend /app/autogpt_platform/backend
ENV DATABASE_URL=""
ENV PORT=8000
CMD ["poetry", "run", "rest"]

View File

@@ -48,19 +48,19 @@ We use the Poetry to manage the dependencies. To set up the project, follow thes
> ```
>
> Then run the generation again. The path *should* look something like this:
> `<some path>/pypoetry/virtualenvs/autogpt-server-TQIRSwR6-py3.12/bin/prisma`
> `<some path>/pypoetry/virtualenvs/backend-TQIRSwR6-py3.12/bin/prisma`
6. Run the postgres database from the /rnd folder
```sh
cd rnd/
cd autogpt_platform/
docker compose up -d
```
7. Run the migrations (from the autogpt_server folder)
7. Run the migrations (from the backend folder)
```sh
cd ../autogpt_server
cd ../backend
prisma migrate dev --schema postgres/schema.prisma
```

View File

@@ -53,7 +53,7 @@ We use the Poetry to manage the dependencies. To set up the project, follow thes
> ```
>
> Then run the generation again. The path *should* look something like this:
> `<some path>/pypoetry/virtualenvs/autogpt-server-TQIRSwR6-py3.12/bin/prisma`
> `<some path>/pypoetry/virtualenvs/backend-TQIRSwR6-py3.12/bin/prisma`
6. Migrate the database. Be careful because this deletes current data in the database.
@@ -193,7 +193,7 @@ Rest Server Daemon: 8004
## Adding a New Agent Block
To add a new agent block, you need to create a new class that inherits from `Block` and provides the following information:
* All the block code should live in the `blocks` (`autogpt_server.blocks`) module.
* All the block code should live in the `blocks` (`backend.blocks`) module.
* `input_schema`: the schema of the input data, represented by a Pydantic object.
* `output_schema`: the schema of the output data, represented by a Pydantic object.
* `run` method: the main logic of the block.

View File

@@ -1,7 +1,7 @@
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from autogpt_server.util.process import AppProcess
from backend.util.process import AppProcess
def run_processes(*processes: "AppProcess", **kwargs):
@@ -24,8 +24,8 @@ def main(**kwargs):
Run all the processes required for the AutoGPT-server (REST and WebSocket APIs).
"""
from autogpt_server.executor import ExecutionManager, ExecutionScheduler
from autogpt_server.server import AgentServer, WebsocketServer
from backend.executor import ExecutionManager, ExecutionScheduler
from backend.server import AgentServer, WebsocketServer
run_processes(
ExecutionManager(),

View File

@@ -4,9 +4,9 @@ import os
import re
from pathlib import Path
from autogpt_server.data.block import Block
from backend.data.block import Block
# Dynamically load all modules under autogpt_server.blocks
# Dynamically load all modules under backend.blocks
AVAILABLE_MODULES = []
current_dir = os.path.dirname(__file__)
modules = glob.glob(os.path.join(current_dir, "*.py"))

View File

@@ -4,15 +4,15 @@ from typing import Any, List
from jinja2 import BaseLoader, Environment
from pydantic import Field
from autogpt_server.data.block import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchema,
BlockUIType,
)
from autogpt_server.data.model import SchemaField
from autogpt_server.util.mock import MockObject
from backend.data.model import SchemaField
from backend.util.mock import MockObject
jinja = Environment(loader=BaseLoader())
@@ -85,7 +85,6 @@ class PrintToConsoleBlock(Block):
class FindInDictionaryBlock(Block):
class Input(BlockSchema):
input: Any = Field(description="Dictionary to lookup from")
key: str | int = Field(description="Key to lookup in the dictionary")

View File

@@ -2,7 +2,7 @@ import os
import re
from typing import Type
from autogpt_server.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
class BlockInstallationBlock(Block):
@@ -48,7 +48,7 @@ class BlockInstallationBlock(Block):
block_dir = os.path.dirname(__file__)
file_path = f"{block_dir}/{file_name}.py"
module_name = f"autogpt_server.blocks.{file_name}"
module_name = f"backend.blocks.{file_name}"
with open(file_path, "w") as f:
f.write(code)
@@ -57,7 +57,7 @@ class BlockInstallationBlock(Block):
block_class: Type[Block] = getattr(module, class_name)
block = block_class()
from autogpt_server.util.test import execute_block_test
from backend.util.test import execute_block_test
execute_block_test(block)
yield "success", "Block installed successfully."

View File

@@ -1,8 +1,8 @@
from enum import Enum
from typing import Any
from autogpt_server.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from autogpt_server.data.model import SchemaField
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import SchemaField
class ComparisonOperator(Enum):

View File

@@ -1,5 +1,5 @@
from autogpt_server.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from autogpt_server.data.model import ContributorDetails
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import ContributorDetails
class ReadCsvBlock(Block):
@@ -14,7 +14,8 @@ class ReadCsvBlock(Block):
skip_columns: list[str] = []
class Output(BlockSchema):
data: dict[str, str]
row: dict[str, str]
all_data: list[dict[str, str]]
def __init__(self):
super().__init__(
@@ -27,8 +28,15 @@ class ReadCsvBlock(Block):
"contents": "a, b, c\n1,2,3\n4,5,6",
},
test_output=[
("data", {"a": "1", "b": "2", "c": "3"}),
("data", {"a": "4", "b": "5", "c": "6"}),
("row", {"a": "1", "b": "2", "c": "3"}),
("row", {"a": "4", "b": "5", "c": "6"}),
(
"all_data",
[
{"a": "1", "b": "2", "c": "3"},
{"a": "4", "b": "5", "c": "6"},
],
),
],
)
@@ -53,8 +61,7 @@ class ReadCsvBlock(Block):
for _ in range(input_data.skip_rows):
next(reader)
# join the data with the header
for row in reader:
def process_row(row):
data = {}
for i, value in enumerate(row):
if i not in input_data.skip_columns:
@@ -62,4 +69,12 @@ class ReadCsvBlock(Block):
data[header[i]] = value.strip() if input_data.strip else value
else:
data[str(i)] = value.strip() if input_data.strip else value
yield "data", data
return data
all_data = []
for row in reader:
processed_row = process_row(row)
all_data.append(processed_row)
yield "row", processed_row
yield "all_data", all_data

View File

@@ -4,8 +4,8 @@ import aiohttp
import discord
from pydantic import Field
from autogpt_server.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from autogpt_server.data.model import BlockSecret, SecretField
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import BlockSecret, SecretField
class ReadDiscordMessagesBlock(Block):

View File

@@ -4,8 +4,8 @@ from email.mime.text import MIMEText
from pydantic import BaseModel, ConfigDict, Field
from autogpt_server.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from autogpt_server.data.model import BlockSecret, SchemaField, SecretField
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import BlockSecret, SchemaField, SecretField
class EmailCredentials(BaseModel):

View File

@@ -3,7 +3,7 @@ from enum import Enum
import requests
from autogpt_server.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
class HttpMethod(Enum):

View File

@@ -1,7 +1,7 @@
from typing import Any, List, Tuple
from autogpt_server.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from autogpt_server.data.model import SchemaField
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import SchemaField
class ListIteratorBlock(Block):

View File

@@ -1,15 +1,16 @@
import logging
from enum import Enum
from typing import List, NamedTuple
from json import JSONDecodeError
from typing import Any, List, NamedTuple
import anthropic
import ollama
import openai
from groq import Groq
from autogpt_server.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from autogpt_server.data.model import BlockSecret, SchemaField, SecretField
from autogpt_server.util import json
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import BlockSecret, SchemaField, SecretField
from backend.util import json
logger = logging.getLogger(__name__)
@@ -24,6 +25,7 @@ LlmApiKeys = {
class ModelMetadata(NamedTuple):
provider: str
context_window: int
cost_factor: int
class LlmModel(str, Enum):
@@ -55,26 +57,29 @@ class LlmModel(str, Enum):
MODEL_METADATA = {
LlmModel.GPT4O_MINI: ModelMetadata("openai", 128000),
LlmModel.GPT4O: ModelMetadata("openai", 128000),
LlmModel.GPT4_TURBO: ModelMetadata("openai", 128000),
LlmModel.GPT3_5_TURBO: ModelMetadata("openai", 16385),
LlmModel.CLAUDE_3_5_SONNET: ModelMetadata("anthropic", 200000),
LlmModel.CLAUDE_3_HAIKU: ModelMetadata("anthropic", 200000),
LlmModel.LLAMA3_8B: ModelMetadata("groq", 8192),
LlmModel.LLAMA3_70B: ModelMetadata("groq", 8192),
LlmModel.MIXTRAL_8X7B: ModelMetadata("groq", 32768),
LlmModel.GEMMA_7B: ModelMetadata("groq", 8192),
LlmModel.GEMMA2_9B: ModelMetadata("groq", 8192),
LlmModel.LLAMA3_1_405B: ModelMetadata(
"groq", 8192
), # Limited to 16k during preview
LlmModel.LLAMA3_1_70B: ModelMetadata("groq", 131072),
LlmModel.LLAMA3_1_8B: ModelMetadata("groq", 131072),
LlmModel.OLLAMA_LLAMA3_8B: ModelMetadata("ollama", 8192),
LlmModel.OLLAMA_LLAMA3_405B: ModelMetadata("ollama", 8192),
LlmModel.GPT4O_MINI: ModelMetadata("openai", 128000, cost_factor=10),
LlmModel.GPT4O: ModelMetadata("openai", 128000, cost_factor=12),
LlmModel.GPT4_TURBO: ModelMetadata("openai", 128000, cost_factor=11),
LlmModel.GPT3_5_TURBO: ModelMetadata("openai", 16385, cost_factor=8),
LlmModel.CLAUDE_3_5_SONNET: ModelMetadata("anthropic", 200000, cost_factor=14),
LlmModel.CLAUDE_3_HAIKU: ModelMetadata("anthropic", 200000, cost_factor=13),
LlmModel.LLAMA3_8B: ModelMetadata("groq", 8192, cost_factor=6),
LlmModel.LLAMA3_70B: ModelMetadata("groq", 8192, cost_factor=9),
LlmModel.MIXTRAL_8X7B: ModelMetadata("groq", 32768, cost_factor=7),
LlmModel.GEMMA_7B: ModelMetadata("groq", 8192, cost_factor=6),
LlmModel.GEMMA2_9B: ModelMetadata("groq", 8192, cost_factor=7),
LlmModel.LLAMA3_1_405B: ModelMetadata("groq", 8192, cost_factor=10),
# Limited to 16k during preview
LlmModel.LLAMA3_1_70B: ModelMetadata("groq", 131072, cost_factor=15),
LlmModel.LLAMA3_1_8B: ModelMetadata("groq", 131072, cost_factor=13),
LlmModel.OLLAMA_LLAMA3_8B: ModelMetadata("ollama", 8192, cost_factor=7),
LlmModel.OLLAMA_LLAMA3_405B: ModelMetadata("ollama", 8192, cost_factor=11),
}
for model in LlmModel:
if model not in MODEL_METADATA:
raise ValueError(f"Missing MODEL_METADATA metadata for model: {model}")
class AIStructuredResponseGeneratorBlock(Block):
class Input(BlockSchema):
@@ -89,7 +94,7 @@ class AIStructuredResponseGeneratorBlock(Block):
)
class Output(BlockSchema):
response: dict[str, str]
response: dict[str, Any]
error: str
def __init__(self):
@@ -135,16 +140,33 @@ class AIStructuredResponseGeneratorBlock(Block):
)
return response.choices[0].message.content or ""
elif provider == "anthropic":
sysprompt = "".join([p["content"] for p in prompt if p["role"] == "system"])
usrprompt = [p for p in prompt if p["role"] == "user"]
system_messages = [p["content"] for p in prompt if p["role"] == "system"]
sysprompt = " ".join(system_messages)
messages = []
last_role = None
for p in prompt:
if p["role"] in ["user", "assistant"]:
if p["role"] != last_role:
messages.append({"role": p["role"], "content": p["content"]})
last_role = p["role"]
else:
# If the role is the same as the last one, combine the content
messages[-1]["content"] += "\n" + p["content"]
client = anthropic.Anthropic(api_key=api_key)
response = client.messages.create(
model=model.value,
max_tokens=4096,
system=sysprompt,
messages=usrprompt, # type: ignore
)
return response.content[0].text if response.content else ""
try:
response = client.messages.create(
model=model.value,
max_tokens=4096,
system=sysprompt,
messages=messages,
)
return response.content[0].text if response.content else ""
except anthropic.APIError as e:
error_message = f"Anthropic API error: {str(e)}"
logger.error(error_message)
raise ValueError(error_message)
elif provider == "groq":
client = Groq(api_key=api_key)
response_format = {"type": "json_object"} if json_format else None
@@ -195,14 +217,16 @@ class AIStructuredResponseGeneratorBlock(Block):
prompt.append({"role": "user", "content": input_data.prompt})
def parse_response(resp: str) -> tuple[dict[str, str], str | None]:
def parse_response(resp: str) -> tuple[dict[str, Any], str | None]:
try:
parsed = json.loads(resp)
if not isinstance(parsed, dict):
return {}, f"Expected a dictionary, but got {type(parsed)}"
miss_keys = set(input_data.expected_format.keys()) - set(parsed.keys())
if miss_keys:
return parsed, f"Missing keys: {miss_keys}"
return parsed, None
except Exception as e:
except JSONDecodeError as e:
return {}, f"JSON decode error: {e}"
logger.info(f"LLM request: {prompt}")
@@ -226,7 +250,16 @@ class AIStructuredResponseGeneratorBlock(Block):
if input_data.expected_format:
parsed_dict, parsed_error = parse_response(response_text)
if not parsed_error:
yield "response", {k: str(v) for k, v in parsed_dict.items()}
yield "response", {
k: (
json.loads(v)
if isinstance(v, str)
and v.startswith("[")
and v.endswith("]")
else (", ".join(v) if isinstance(v, list) else v)
)
for k, v in parsed_dict.items()
}
return
else:
yield "response", {"response": response_text}
@@ -287,7 +320,7 @@ class AITextGeneratorBlock(Block):
if output_name == "response":
return output_data["response"]
else:
raise output_data
raise RuntimeError(output_data)
raise ValueError("Failed to get a response from the LLM.")
def run(self, input_data: Input) -> BlockOutput:
@@ -301,7 +334,7 @@ class AITextGeneratorBlock(Block):
yield "error", str(e)
class TextSummarizerBlock(Block):
class AITextSummarizerBlock(Block):
class Input(BlockSchema):
text: str
model: LlmModel = LlmModel.GPT4_TURBO
@@ -319,8 +352,8 @@ class TextSummarizerBlock(Block):
id="c3d4e5f6-7g8h-9i0j-1k2l-m3n4o5p6q7r8",
description="Utilize a Large Language Model (LLM) to summarize a long text.",
categories={BlockCategory.AI, BlockCategory.TEXT},
input_schema=TextSummarizerBlock.Input,
output_schema=TextSummarizerBlock.Output,
input_schema=AITextSummarizerBlock.Input,
output_schema=AITextSummarizerBlock.Output,
test_input={"text": "Lorem ipsum..." * 100},
test_output=("summary", "Final summary of a long text"),
test_mock={
@@ -412,7 +445,7 @@ class TextSummarizerBlock(Block):
else:
# If combined summaries are still too long, recursively summarize
return self._run(
TextSummarizerBlock.Input(
AITextSummarizerBlock.Input(
text=combined_text,
api_key=input_data.api_key,
model=input_data.model,

View File

@@ -2,8 +2,8 @@ import operator
from enum import Enum
from typing import Any
from autogpt_server.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from autogpt_server.data.model import SchemaField
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import SchemaField
class Operation(Enum):

View File

@@ -2,8 +2,8 @@ from typing import List
import requests
from autogpt_server.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from autogpt_server.data.model import BlockSecret, SchemaField, SecretField
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import BlockSecret, SchemaField, SecretField
class PublishToMediumBlock(Block):

View File

@@ -4,9 +4,9 @@ from typing import Iterator
import praw
from pydantic import BaseModel, ConfigDict, Field
from autogpt_server.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from autogpt_server.data.model import BlockSecret, SecretField
from autogpt_server.util.mock import MockObject
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import BlockSecret, SecretField
from backend.util.mock import MockObject
class RedditCredentials(BaseModel):

View File

@@ -5,8 +5,8 @@ from typing import Any
import feedparser
import pydantic
from autogpt_server.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from autogpt_server.data.model import SchemaField
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import SchemaField
class RSSEntry(pydantic.BaseModel):

View File

@@ -0,0 +1,264 @@
import random
from collections import defaultdict
from enum import Enum
from typing import Any, Dict, List, Optional, Union
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import SchemaField
class SamplingMethod(str, Enum):
RANDOM = "random"
SYSTEMATIC = "systematic"
TOP = "top"
BOTTOM = "bottom"
STRATIFIED = "stratified"
WEIGHTED = "weighted"
RESERVOIR = "reservoir"
CLUSTER = "cluster"
class DataSamplingBlock(Block):
class Input(BlockSchema):
data: Union[Dict[str, Any], List[Union[dict, List[Any]]]] = SchemaField(
description="The dataset to sample from. Can be a single dictionary, a list of dictionaries, or a list of lists.",
placeholder="{'id': 1, 'value': 'a'} or [{'id': 1, 'value': 'a'}, {'id': 2, 'value': 'b'}, ...]",
)
sample_size: int = SchemaField(
description="The number of samples to take from the dataset.",
placeholder="10",
default=10,
)
sampling_method: SamplingMethod = SchemaField(
description="The method to use for sampling.",
default=SamplingMethod.RANDOM,
)
accumulate: bool = SchemaField(
description="Whether to accumulate data before sampling.",
default=False,
)
random_seed: Optional[int] = SchemaField(
description="Seed for random number generator (optional).",
default=None,
)
stratify_key: Optional[str] = SchemaField(
description="Key to use for stratified sampling (required for stratified sampling).",
default=None,
)
weight_key: Optional[str] = SchemaField(
description="Key to use for weighted sampling (required for weighted sampling).",
default=None,
)
cluster_key: Optional[str] = SchemaField(
description="Key to use for cluster sampling (required for cluster sampling).",
default=None,
)
class Output(BlockSchema):
sampled_data: List[Union[dict, List[Any]]] = SchemaField(
description="The sampled subset of the input data."
)
sample_indices: List[int] = SchemaField(
description="The indices of the sampled data in the original dataset."
)
def __init__(self):
super().__init__(
id="4a448883-71fa-49cf-91cf-70d793bd7d87",
description="This block samples data from a given dataset using various sampling methods.",
categories={BlockCategory.LOGIC},
input_schema=DataSamplingBlock.Input,
output_schema=DataSamplingBlock.Output,
test_input={
"data": [
{"id": i, "value": chr(97 + i), "group": i % 3} for i in range(10)
],
"sample_size": 3,
"sampling_method": SamplingMethod.STRATIFIED,
"accumulate": False,
"random_seed": 42,
"stratify_key": "group",
},
test_output=[
(
"sampled_data",
[
{"id": 0, "value": "a", "group": 0},
{"id": 1, "value": "b", "group": 1},
{"id": 8, "value": "i", "group": 2},
],
),
("sample_indices", [0, 1, 8]),
],
)
self.accumulated_data = []
def run(self, input_data: Input) -> BlockOutput:
if input_data.accumulate:
if isinstance(input_data.data, dict):
self.accumulated_data.append(input_data.data)
elif isinstance(input_data.data, list):
self.accumulated_data.extend(input_data.data)
else:
raise ValueError(f"Unsupported data type: {type(input_data.data)}")
# If we don't have enough data yet, return without sampling
if len(self.accumulated_data) < input_data.sample_size:
return
data_to_sample = self.accumulated_data
else:
# If not accumulating, use the input data directly
data_to_sample = (
input_data.data
if isinstance(input_data.data, list)
else [input_data.data]
)
if input_data.random_seed is not None:
random.seed(input_data.random_seed)
data_size = len(data_to_sample)
if input_data.sample_size > data_size:
raise ValueError(
f"Sample size ({input_data.sample_size}) cannot be larger than the dataset size ({data_size})."
)
indices = []
if input_data.sampling_method == SamplingMethod.RANDOM:
indices = random.sample(range(data_size), input_data.sample_size)
elif input_data.sampling_method == SamplingMethod.SYSTEMATIC:
step = data_size // input_data.sample_size
start = random.randint(0, step - 1)
indices = list(range(start, data_size, step))[: input_data.sample_size]
elif input_data.sampling_method == SamplingMethod.TOP:
indices = list(range(input_data.sample_size))
elif input_data.sampling_method == SamplingMethod.BOTTOM:
indices = list(range(data_size - input_data.sample_size, data_size))
elif input_data.sampling_method == SamplingMethod.STRATIFIED:
if not input_data.stratify_key:
raise ValueError(
"Stratify key must be provided for stratified sampling."
)
strata = defaultdict(list)
for i, item in enumerate(data_to_sample):
if isinstance(item, dict):
strata_value = item.get(input_data.stratify_key)
elif hasattr(item, input_data.stratify_key):
strata_value = getattr(item, input_data.stratify_key)
else:
raise ValueError(
f"Stratify key '{input_data.stratify_key}' not found in item {item}"
)
if strata_value is None:
raise ValueError(
f"Stratify value for key '{input_data.stratify_key}' is None"
)
strata[str(strata_value)].append(i)
# Calculate the number of samples to take from each stratum
stratum_sizes = {
k: max(1, int(len(v) / data_size * input_data.sample_size))
for k, v in strata.items()
}
# Adjust sizes to ensure we get exactly sample_size samples
while sum(stratum_sizes.values()) != input_data.sample_size:
if sum(stratum_sizes.values()) < input_data.sample_size:
stratum_sizes[
max(stratum_sizes, key=lambda k: stratum_sizes[k])
] += 1
else:
stratum_sizes[
max(stratum_sizes, key=lambda k: stratum_sizes[k])
] -= 1
for stratum, size in stratum_sizes.items():
indices.extend(random.sample(strata[stratum], size))
elif input_data.sampling_method == SamplingMethod.WEIGHTED:
if not input_data.weight_key:
raise ValueError("Weight key must be provided for weighted sampling.")
weights = []
for item in data_to_sample:
if isinstance(item, dict):
weight = item.get(input_data.weight_key)
elif hasattr(item, input_data.weight_key):
weight = getattr(item, input_data.weight_key)
else:
raise ValueError(
f"Weight key '{input_data.weight_key}' not found in item {item}"
)
if weight is None:
raise ValueError(
f"Weight value for key '{input_data.weight_key}' is None"
)
try:
weights.append(float(weight))
except ValueError:
raise ValueError(
f"Weight value '{weight}' cannot be converted to a number"
)
if not weights:
raise ValueError(
f"No valid weights found using key '{input_data.weight_key}'"
)
indices = random.choices(
range(data_size), weights=weights, k=input_data.sample_size
)
elif input_data.sampling_method == SamplingMethod.RESERVOIR:
indices = list(range(input_data.sample_size))
for i in range(input_data.sample_size, data_size):
j = random.randint(0, i)
if j < input_data.sample_size:
indices[j] = i
elif input_data.sampling_method == SamplingMethod.CLUSTER:
if not input_data.cluster_key:
raise ValueError("Cluster key must be provided for cluster sampling.")
clusters = defaultdict(list)
for i, item in enumerate(data_to_sample):
if isinstance(item, dict):
cluster_value = item.get(input_data.cluster_key)
elif hasattr(item, input_data.cluster_key):
cluster_value = getattr(item, input_data.cluster_key)
else:
raise TypeError(
f"Item {item} does not have the cluster key '{input_data.cluster_key}'"
)
clusters[str(cluster_value)].append(i)
# Randomly select clusters until we have enough samples
selected_clusters = []
while (
sum(len(clusters[c]) for c in selected_clusters)
< input_data.sample_size
):
available_clusters = [c for c in clusters if c not in selected_clusters]
if not available_clusters:
break
selected_clusters.append(random.choice(available_clusters))
for cluster in selected_clusters:
indices.extend(clusters[cluster])
# If we have more samples than needed, randomly remove some
if len(indices) > input_data.sample_size:
indices = random.sample(indices, input_data.sample_size)
else:
raise ValueError(f"Unknown sampling method: {input_data.sampling_method}")
sampled_data = [data_to_sample[i] for i in indices]
# Clear accumulated data after sampling if accumulation is enabled
if input_data.accumulate:
self.accumulated_data = []
yield "sampled_data", sampled_data
yield "sample_indices", indices

View File

@@ -3,8 +3,8 @@ from urllib.parse import quote
import requests
from autogpt_server.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from autogpt_server.data.model import BlockSecret, SecretField
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import BlockSecret, SecretField
class GetRequest:

View File

@@ -3,8 +3,8 @@ from typing import Literal
import requests
from autogpt_server.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from autogpt_server.data.model import BlockSecret, SchemaField, SecretField
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import BlockSecret, SchemaField, SecretField
class CreateTalkingAvatarVideoBlock(Block):

View File

@@ -4,8 +4,8 @@ from typing import Any
from jinja2 import BaseLoader, Environment
from pydantic import Field
from autogpt_server.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from autogpt_server.util import json
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.util import json
jinja = Environment(loader=BaseLoader())

View File

@@ -2,7 +2,7 @@ import time
from datetime import datetime, timedelta
from typing import Any, Union
from autogpt_server.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
class GetCurrentTimeBlock(Block):
@@ -23,7 +23,7 @@ class GetCurrentTimeBlock(Block):
{"trigger": "Hello", "format": "{time}"},
],
test_output=[
("time", time.strftime("%H:%M:%S")),
("time", lambda _: time.strftime("%H:%M:%S")),
],
)
@@ -130,7 +130,6 @@ class CountdownTimerBlock(Block):
)
def run(self, input_data: Input) -> BlockOutput:
seconds = int(input_data.seconds)
minutes = int(input_data.minutes)
hours = int(input_data.hours)

View File

@@ -3,8 +3,8 @@ from urllib.parse import parse_qs, urlparse
from youtube_transcript_api import YouTubeTranscriptApi
from youtube_transcript_api.formatters import TextFormatter
from autogpt_server.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from autogpt_server.data.model import SchemaField
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import SchemaField
class TranscribeYouTubeVideoBlock(Block):

View File

@@ -8,8 +8,8 @@ import pathlib
import click
import psutil
from autogpt_server import app
from autogpt_server.util.process import AppProcess
from backend import app
from backend.util.process import AppProcess
def get_pid_path() -> pathlib.Path:
@@ -109,7 +109,7 @@ def reddit(server_address: str):
"""
import requests
from autogpt_server.usecases.reddit_marketing import create_test_graph
from backend.usecases.reddit_marketing import create_test_graph
test_graph = create_test_graph()
url = f"{server_address}/graphs"
@@ -130,7 +130,7 @@ def populate_db(server_address: str):
"""
import requests
from autogpt_server.usecases.sample import create_test_graph
from backend.usecases.sample import create_test_graph
test_graph = create_test_graph()
url = f"{server_address}/graphs"
@@ -166,7 +166,7 @@ def graph(server_address: str):
"""
import requests
from autogpt_server.usecases.sample import create_test_graph
from backend.usecases.sample import create_test_graph
url = f"{server_address}/graphs"
headers = {"Content-Type": "application/json"}
@@ -219,7 +219,7 @@ def websocket(server_address: str, graph_id: str):
import websockets
from autogpt_server.server.ws_api import ExecutionSubscription, Methods, WsMessage
from backend.server.ws_api import ExecutionSubscription, Methods, WsMessage
async def send_message(server_address: str):
uri = f"ws://{server_address}"

View File

@@ -0,0 +1,43 @@
import logging
import prisma.types
logger = logging.getLogger(__name__)
async def log_raw_analytics(
user_id: str,
type: str,
data: dict,
data_index: str,
):
details = await prisma.models.AnalyticsDetails.prisma().create(
data={
"userId": user_id,
"type": type,
"data": prisma.Json(data),
"dataIndex": data_index,
}
)
return details
async def log_raw_metric(
user_id: str,
metric_name: str,
metric_value: float,
data_string: str,
):
if metric_value < 0:
raise ValueError("metric_value must be non-negative")
result = await prisma.models.AnalyticsMetrics.prisma().create(
data={
"value": metric_value,
"analyticMetric": metric_name,
"userId": user_id,
"dataString": data_string,
},
)
return result

View File

@@ -7,8 +7,8 @@ import jsonschema
from prisma.models import AgentBlock
from pydantic import BaseModel
from autogpt_server.data.model import ContributorDetails
from autogpt_server.util import json
from backend.data.model import ContributorDetails
from backend.util import json
BlockData = tuple[str, Any] # Input & Output data should be a tuple of (name, data).
BlockInput = dict[str, Any] # Input: 1 input pin consumes 1 data.
@@ -225,7 +225,7 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
def get_blocks() -> dict[str, Block]:
from autogpt_server.blocks import AVAILABLE_BLOCKS # noqa: E402
from backend.blocks import AVAILABLE_BLOCKS # noqa: E402
return AVAILABLE_BLOCKS

View File

@@ -0,0 +1,274 @@
from abc import ABC, abstractmethod
from datetime import datetime, timezone
from enum import Enum
from typing import Any, Optional, Type
import prisma.errors
from prisma import Json
from prisma.enums import UserBlockCreditType
from prisma.models import UserBlockCredit
from pydantic import BaseModel
from backend.blocks.llm import (
MODEL_METADATA,
AIConversationBlock,
AIStructuredResponseGeneratorBlock,
AITextGeneratorBlock,
AITextSummarizerBlock,
LlmModel,
)
from backend.blocks.talking_head import CreateTalkingAvatarVideoBlock
from backend.data.block import Block, BlockInput
from backend.util.settings import Config
class BlockCostType(str, Enum):
RUN = "run" # cost X credits per run
BYTE = "byte" # cost X credits per byte
SECOND = "second" # cost X credits per second
class BlockCost(BaseModel):
cost_amount: int
cost_filter: BlockInput
cost_type: BlockCostType
def __init__(
self,
cost_amount: int,
cost_type: BlockCostType = BlockCostType.RUN,
cost_filter: Optional[BlockInput] = None,
**data: Any,
) -> None:
super().__init__(
cost_amount=cost_amount,
cost_filter=cost_filter or {},
cost_type=cost_type,
**data,
)
llm_cost = [
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter={
"model": model,
"api_key": None, # Running LLM with user own API key is free.
},
cost_amount=metadata.cost_factor,
)
for model, metadata in MODEL_METADATA.items()
] + [
BlockCost(
# Default cost is running LlmModel.GPT4O.
cost_amount=MODEL_METADATA[LlmModel.GPT4O].cost_factor,
cost_filter={"api_key": None},
),
]
BLOCK_COSTS: dict[Type[Block], list[BlockCost]] = {
AIConversationBlock: llm_cost,
AITextGeneratorBlock: llm_cost,
AIStructuredResponseGeneratorBlock: llm_cost,
AITextSummarizerBlock: llm_cost,
CreateTalkingAvatarVideoBlock: [
BlockCost(cost_amount=15, cost_filter={"api_key": None})
],
}
class UserCreditBase(ABC):
def __init__(self, num_user_credits_refill: int):
self.num_user_credits_refill = num_user_credits_refill
@abstractmethod
async def get_or_refill_credit(self, user_id: str) -> int:
"""
Get the current credit for the user and refill if no transaction has been made in the current cycle.
Returns:
int: The current credit for the user.
"""
pass
@abstractmethod
async def spend_credits(
self,
user_id: str,
user_credit: int,
block: Block,
input_data: BlockInput,
data_size: float,
run_time: float,
) -> int:
"""
Spend the credits for the user based on the block usage.
Args:
user_id (str): The user ID.
user_credit (int): The current credit for the user.
block (Block): The block that is being used.
input_data (BlockInput): The input data for the block.
data_size (float): The size of the data being processed.
run_time (float): The time taken to run the block.
Returns:
int: amount of credit spent
"""
pass
@abstractmethod
async def top_up_credits(self, user_id: str, amount: int):
"""
Top up the credits for the user.
Args:
user_id (str): The user ID.
amount (int): The amount to top up.
"""
pass
class UserCredit(UserCreditBase):
async def get_or_refill_credit(self, user_id: str) -> int:
cur_time = self.time_now()
cur_month = cur_time.replace(day=1, hour=0, minute=0, second=0, microsecond=0)
nxt_month = cur_month.replace(month=cur_month.month + 1)
user_credit = await UserBlockCredit.prisma().group_by(
by=["userId"],
sum={"amount": True},
where={
"userId": user_id,
"createdAt": {"gte": cur_month, "lt": nxt_month},
"isActive": True,
},
)
if user_credit:
credit_sum = user_credit[0].get("_sum") or {}
return credit_sum.get("amount", 0)
key = f"MONTHLY-CREDIT-TOP-UP-{cur_month}"
try:
await UserBlockCredit.prisma().create(
data={
"amount": self.num_user_credits_refill,
"type": UserBlockCreditType.TOP_UP,
"userId": user_id,
"transactionKey": key,
"createdAt": self.time_now(),
}
)
except prisma.errors.UniqueViolationError:
pass # Already refilled this month
return self.num_user_credits_refill
@staticmethod
def time_now():
return datetime.now(timezone.utc)
@staticmethod
def _block_usage_cost(
block: Block,
input_data: BlockInput,
data_size: float,
run_time: float,
) -> tuple[int, BlockInput]:
block_costs = BLOCK_COSTS.get(type(block))
if not block_costs:
return 0, {}
for block_cost in block_costs:
if all(
# None, [], {}, "", are considered the same value.
input_data.get(k) == b or (not input_data.get(k) and not b)
for k, b in block_cost.cost_filter.items()
):
if block_cost.cost_type == BlockCostType.RUN:
return block_cost.cost_amount, block_cost.cost_filter
if block_cost.cost_type == BlockCostType.SECOND:
return (
int(run_time * block_cost.cost_amount),
block_cost.cost_filter,
)
if block_cost.cost_type == BlockCostType.BYTE:
return (
int(data_size * block_cost.cost_amount),
block_cost.cost_filter,
)
return 0, {}
async def spend_credits(
self,
user_id: str,
user_credit: int,
block: Block,
input_data: BlockInput,
data_size: float,
run_time: float,
validate_balance: bool = True,
) -> int:
cost, matching_filter = self._block_usage_cost(
block=block, input_data=input_data, data_size=data_size, run_time=run_time
)
if cost <= 0:
return 0
if validate_balance and user_credit < cost:
raise ValueError(f"Insufficient credit: {user_credit} < {cost}")
await UserBlockCredit.prisma().create(
data={
"userId": user_id,
"amount": -cost,
"type": UserBlockCreditType.USAGE,
"blockId": block.id,
"metadata": Json(
{
"block": block.name,
"input": matching_filter,
}
),
"createdAt": self.time_now(),
}
)
return cost
async def top_up_credits(self, user_id: str, amount: int):
await UserBlockCredit.prisma().create(
data={
"userId": user_id,
"amount": amount,
"type": UserBlockCreditType.TOP_UP,
"createdAt": self.time_now(),
}
)
class DisabledUserCredit(UserCreditBase):
async def get_or_refill_credit(self, *args, **kwargs) -> int:
return 0
async def spend_credits(self, *args, **kwargs) -> int:
return 0
async def top_up_credits(self, *args, **kwargs):
pass
def get_user_credit_model() -> UserCreditBase:
config = Config()
if config.enable_credit.lower() == "true":
return UserCredit(config.num_user_credits_refill)
else:
return DisabledUserCredit(0)
def get_block_costs() -> dict[str, list[BlockCost]]:
return {block().id: costs for block, costs in BLOCK_COSTS.items()}

View File

@@ -1,9 +1,9 @@
from collections import defaultdict
from datetime import datetime, timezone
from enum import Enum
from multiprocessing import Manager
from typing import Any, Generic, TypeVar
from prisma.enums import AgentExecutionStatus
from prisma.models import (
AgentGraphExecution,
AgentNodeExecution,
@@ -16,17 +16,19 @@ from prisma.types import (
)
from pydantic import BaseModel
from autogpt_server.data.block import BlockData, BlockInput, CompletedBlockOutput
from autogpt_server.util import json, mock
from backend.data.block import BlockData, BlockInput, CompletedBlockOutput
from backend.util import json, mock
class GraphExecution(BaseModel):
user_id: str
graph_exec_id: str
start_node_execs: list["NodeExecution"]
graph_id: str
start_node_execs: list["NodeExecution"]
class NodeExecution(BaseModel):
user_id: str
graph_exec_id: str
graph_id: str
node_exec_id: str
@@ -34,13 +36,7 @@ class NodeExecution(BaseModel):
data: BlockInput
class ExecutionStatus(str, Enum):
INCOMPLETE = "INCOMPLETE"
QUEUED = "QUEUED"
RUNNING = "RUNNING"
COMPLETED = "COMPLETED"
FAILED = "FAILED"
ExecutionStatus = AgentExecutionStatus
T = TypeVar("T")
@@ -148,6 +144,7 @@ async def create_graph_execution(
data={
"agentGraphId": graph_id,
"agentGraphVersion": graph_version,
"executionStatus": ExecutionStatus.QUEUED,
"AgentNodeExecutions": {
"create": [ # type: ignore
{
@@ -259,10 +256,20 @@ async def upsert_execution_output(
)
async def update_graph_execution_start_time(graph_exec_id: str):
await AgentGraphExecution.prisma().update(
where={"id": graph_exec_id},
data={
"executionStatus": ExecutionStatus.RUNNING,
"startedAt": datetime.now(tz=timezone.utc),
},
)
async def update_graph_execution_stats(graph_exec_id: str, stats: dict[str, Any]):
await AgentGraphExecution.prisma().update(
where={"id": graph_exec_id},
data={"stats": json.dumps(stats)},
data={"executionStatus": ExecutionStatus.COMPLETED, "stats": json.dumps(stats)},
)
@@ -389,19 +396,19 @@ def merge_execution_input(data: BlockInput) -> BlockInput:
# Merge all input with <input_name>_$_<index> into a single list.
items = list(data.items())
list_input: list[Any] = []
for key, value in items:
if LIST_SPLIT not in key:
continue
name, index = key.split(LIST_SPLIT)
if not index.isdigit():
list_input.append((name, value, 0))
else:
list_input.append((name, value, int(index)))
raise ValueError(f"Invalid key: {key}, #{index} index must be an integer.")
for name, value, _ in sorted(list_input, key=lambda x: x[2]):
data[name] = data.get(name, [])
data[name].append(value)
if int(index) >= len(data[name]):
# Pad list with empty string on missing indices.
data[name].extend([""] * (int(index) - len(data[name]) + 1))
data[name][int(index)] = value
# Merge all input with <input_name>_#_<index> into a single dict.
for key, value in items:

View File

@@ -9,11 +9,11 @@ from prisma.models import AgentGraph, AgentNode, AgentNodeLink
from pydantic import BaseModel, PrivateAttr
from pydantic_core import PydanticUndefinedType
from autogpt_server.blocks.basic import AgentInputBlock, AgentOutputBlock
from autogpt_server.data.block import BlockInput, get_block, get_blocks
from autogpt_server.data.db import BaseDbModel, transaction
from autogpt_server.data.user import DEFAULT_USER_ID
from autogpt_server.util import json
from backend.blocks.basic import AgentInputBlock, AgentOutputBlock
from backend.data.block import BlockInput, get_block, get_blocks
from backend.data.db import BaseDbModel, transaction
from backend.data.user import DEFAULT_USER_ID
from backend.util import json
logger = logging.getLogger(__name__)
@@ -274,7 +274,6 @@ class Graph(GraphMeta):
PydanticUndefinedType,
)
):
input_schema.append(
InputSchemaItem(
node_id=node.id,

View File

@@ -11,7 +11,7 @@ from pydantic_core import (
core_schema,
)
from autogpt_server.util.settings import Secrets
from backend.util.settings import Secrets
T = TypeVar("T")
logger = logging.getLogger(__name__)

View File

@@ -6,7 +6,7 @@ from datetime import datetime
from redis.asyncio import Redis
from autogpt_server.data.execution import ExecutionResult
from backend.data.execution import ExecutionResult
logger = logging.getLogger(__name__)
@@ -37,7 +37,6 @@ class AsyncEventQueue(ABC):
class AsyncRedisEventQueue(AsyncEventQueue):
def __init__(self):
self.host = os.getenv("REDIS_HOST", "localhost")
self.port = int(os.getenv("REDIS_PORT", "6379"))

View File

@@ -3,9 +3,9 @@ from typing import Optional
from prisma.models import AgentGraphExecutionSchedule
from autogpt_server.data.block import BlockInput
from autogpt_server.data.db import BaseDbModel
from autogpt_server.util import json
from backend.data.block import BlockInput
from backend.data.db import BaseDbModel
from backend.util import json
class ExecutionSchedule(BaseDbModel):

View File

@@ -3,14 +3,13 @@ from typing import Optional
from fastapi import HTTPException
from prisma.models import User
from autogpt_server.data.db import prisma
from backend.data.db import prisma
DEFAULT_USER_ID = "3e53486c-cf57-477e-ba2a-cb02dc828e1a"
DEFAULT_EMAIL = "default@example.com"
async def get_or_create_user(user_data: dict) -> User:
user_id = user_data.get("sub")
if not user_id:
raise HTTPException(status_code=401, detail="User ID not found in token")

View File

@@ -1,5 +1,5 @@
from autogpt_server.app import run_processes
from autogpt_server.executor import ExecutionManager
from backend.app import run_processes
from backend.executor import ExecutionManager
def main():

View File

@@ -12,13 +12,15 @@ from multiprocessing.pool import AsyncResult, Pool
from typing import TYPE_CHECKING, Any, Coroutine, Generator, TypeVar
if TYPE_CHECKING:
from autogpt_server.server.rest_api import AgentServer
from backend.server.rest_api import AgentServer
from autogpt_server.blocks.basic import AgentInputBlock
from autogpt_server.data import db
from autogpt_server.data.block import Block, BlockData, BlockInput, get_block
from autogpt_server.data.execution import (
from backend.blocks.basic import AgentInputBlock
from backend.data import db
from backend.data.block import Block, BlockData, BlockInput, get_block
from backend.data.credit import get_user_credit_model
from backend.data.execution import (
ExecutionQueue,
ExecutionResult,
ExecutionStatus,
GraphExecution,
NodeExecution,
@@ -34,36 +36,60 @@ from autogpt_server.data.execution import (
upsert_execution_input,
upsert_execution_output,
)
from autogpt_server.data.graph import Graph, Link, Node, get_graph, get_node
from autogpt_server.util import json
from autogpt_server.util.decorator import error_logged, time_measured
from autogpt_server.util.logging import configure_logging
from autogpt_server.util.service import AppService, expose, get_service_client
from autogpt_server.util.settings import Config
from autogpt_server.util.type import convert
from backend.data.graph import Graph, Link, Node, get_graph, get_node
from backend.util import json
from backend.util.decorator import error_logged, time_measured
from backend.util.logging import configure_logging
from backend.util.service import AppService, expose, get_service_client
from backend.util.settings import Config
from backend.util.type import convert
logger = logging.getLogger(__name__)
def get_log_metadata(
graph_eid: str,
graph_id: str,
node_eid: str,
node_id: str,
block_name: str,
) -> dict:
return {
"component": "ExecutionManager",
"graph_eid": graph_eid,
"graph_id": graph_id,
"node_eid": node_eid,
"node_id": node_id,
"block_name": block_name,
}
class LogMetadata:
def __init__(
self,
user_id: str,
graph_eid: str,
graph_id: str,
node_eid: str,
node_id: str,
block_name: str,
):
self.metadata = {
"component": "ExecutionManager",
"user_id": user_id,
"graph_eid": graph_eid,
"graph_id": graph_id,
"node_eid": node_eid,
"node_id": node_id,
"block_name": block_name,
}
self.prefix = f"[ExecutionManager|uid:{user_id}|gid:{graph_id}|nid:{node_id}]|geid:{graph_eid}|nid:{node_eid}|{block_name}]"
def info(self, msg: str, **extra):
msg = self._wrap(msg, **extra)
logger.info(msg, extra={"json_fields": {**self.metadata, **extra}})
def get_log_prefix(graph_eid: str, node_eid: str, block_name: str = "-"):
return f"[ExecutionManager][graph-eid-{graph_eid}|node-eid-{node_eid}|{block_name}]"
def warning(self, msg: str, **extra):
msg = self._wrap(msg, **extra)
logger.warning(msg, extra={"json_fields": {**self.metadata, **extra}})
def error(self, msg: str, **extra):
msg = self._wrap(msg, **extra)
logger.error(msg, extra={"json_fields": {**self.metadata, **extra}})
def debug(self, msg: str, **extra):
msg = self._wrap(msg, **extra)
logger.debug(msg, extra={"json_fields": {**self.metadata, **extra}})
def exception(self, msg: str, **extra):
msg = self._wrap(msg, **extra)
logger.exception(msg, extra={"json_fields": {**self.metadata, **extra}})
def _wrap(self, msg: str, **extra):
return f"{self.prefix} {msg} {extra}"
T = TypeVar("T")
@@ -89,6 +115,7 @@ def execute_node(
Returns:
The subsequent node to be enqueued, or None if there is no subsequent node.
"""
user_id = data.user_id
graph_exec_id = data.graph_exec_id
graph_id = data.graph_id
node_exec_id = data.node_exec_id
@@ -99,9 +126,10 @@ def execute_node(
def wait(f: Coroutine[Any, Any, T]) -> T:
return loop.run_until_complete(f)
def update_execution(status: ExecutionStatus):
def update_execution(status: ExecutionStatus) -> ExecutionResult:
exec_update = wait(update_execution_status(node_exec_id, status))
api_client.send_execution_update(exec_update.model_dump())
return exec_update
node = wait(get_node(node_id))
@@ -111,43 +139,35 @@ def execute_node(
return
# Sanity check: validate the execution input.
log_metadata = get_log_metadata(
log_metadata = LogMetadata(
user_id=user_id,
graph_eid=graph_exec_id,
graph_id=graph_id,
node_eid=node_exec_id,
node_id=node_id,
block_name=node_block.name,
)
prefix = get_log_prefix(
graph_eid=graph_exec_id,
node_eid=node_exec_id,
block_name=node_block.name,
)
input_data, error = validate_exec(node, data.data, resolve_input=False)
if input_data is None:
logger.error(
"{prefix} Skip execution, input validation error",
extra={"json_fields": {**log_metadata, "error": error}},
)
log_metadata.error(f"Skip execution, input validation error: {error}")
return
# Execute the node
input_data_str = json.dumps(input_data)
input_size = len(input_data_str)
logger.info(
f"{prefix} Executed node with input",
extra={"json_fields": {**log_metadata, "input": input_data_str}},
)
log_metadata.info("Executed node with input", input=input_data_str)
update_execution(ExecutionStatus.RUNNING)
user_credit = get_user_credit_model()
output_size = 0
try:
credit = wait(user_credit.get_or_refill_credit(user_id))
if credit < 0:
raise ValueError(f"Insufficient credit: {credit}")
for output_name, output_data in node_block.execute(input_data):
output_size += len(json.dumps(output_data))
logger.info(
f"{prefix} Node produced output",
extra={"json_fields": {**log_metadata, output_name: output_data}},
)
log_metadata.info("Node produced output", output_name=output_data)
wait(upsert_execution_output(node_exec_id, output_name, output_data))
for execution in _enqueue_next_nodes(
@@ -155,20 +175,25 @@ def execute_node(
loop=loop,
node=node,
output=(output_name, output_data),
user_id=user_id,
graph_exec_id=graph_exec_id,
graph_id=graph_id,
log_metadata=log_metadata,
):
yield execution
update_execution(ExecutionStatus.COMPLETED)
r = update_execution(ExecutionStatus.COMPLETED)
s = input_size + output_size
t = (
(r.end_time - r.start_time).total_seconds()
if r.end_time and r.start_time
else 0
)
wait(user_credit.spend_credits(user_id, credit, node_block, input_data, s, t))
except Exception as e:
error_msg = f"{e.__class__.__name__}: {e}"
logger.exception(
f"{prefix} Node execution failed with error",
extra={"json_fields": {**log_metadata, error: error_msg}},
)
error_msg = str(e)
log_metadata.exception(f"Node execution failed with error {error_msg}")
wait(upsert_execution_output(node_exec_id, "error", error_msg))
update_execution(ExecutionStatus.FAILED)
@@ -194,9 +219,10 @@ def _enqueue_next_nodes(
loop: asyncio.AbstractEventLoop,
node: Node,
output: BlockData,
user_id: str,
graph_exec_id: str,
graph_id: str,
log_metadata: dict,
log_metadata: LogMetadata,
) -> list[NodeExecution]:
def wait(f: Coroutine[Any, Any, T]) -> T:
return loop.run_until_complete(f)
@@ -209,6 +235,7 @@ def _enqueue_next_nodes(
)
api_client.send_execution_update(exec_update.model_dump())
return NodeExecution(
user_id=user_id,
graph_exec_id=graph_exec_id,
graph_id=graph_id,
node_exec_id=node_exec_id,
@@ -262,17 +289,11 @@ def _enqueue_next_nodes(
# Incomplete input data, skip queueing the execution.
if not next_node_input:
logger.warning(
f"Skipped queueing {suffix}",
extra={"json_fields": {**log_metadata}},
)
log_metadata.warning(f"Skipped queueing {suffix}")
return enqueued_executions
# Input is complete, enqueue the execution.
logger.info(
f"Enqueued {suffix}",
extra={"json_fields": {**log_metadata}},
)
log_metadata.info(f"Enqueued {suffix}")
enqueued_executions.append(
add_enqueued_execution(next_node_exec_id, next_node_id, next_node_input)
)
@@ -298,11 +319,9 @@ def _enqueue_next_nodes(
idata, msg = validate_exec(next_node, idata)
suffix = f"{next_output_name}>{next_input_name}~{ineid}:{msg}"
if not idata:
logger.info(
f"{log_metadata} Enqueueing static-link skipped: {suffix}"
)
log_metadata.info(f"Enqueueing static-link skipped: {suffix}")
continue
logger.info(f"{log_metadata} Enqueueing static-link execution {suffix}")
log_metadata.info(f"Enqueueing static-link execution {suffix}")
enqueued_executions.append(
add_enqueued_execution(iexec.node_exec_id, next_node_id, idata)
)
@@ -371,7 +390,7 @@ def validate_exec(
def get_agent_server_client() -> "AgentServer":
from autogpt_server.server.rest_api import AgentServer
from backend.server.rest_api import AgentServer
return get_service_client(AgentServer, Config().agent_server_port)
@@ -443,22 +462,18 @@ class Executor:
def on_node_execution(
cls, q: ExecutionQueue[NodeExecution], node_exec: NodeExecution
):
log_metadata = get_log_metadata(
log_metadata = LogMetadata(
user_id=node_exec.user_id,
graph_eid=node_exec.graph_exec_id,
graph_id=node_exec.graph_id,
node_eid=node_exec.node_exec_id,
node_id=node_exec.node_id,
block_name="-",
)
prefix = get_log_prefix(
graph_eid=node_exec.graph_exec_id,
node_eid=node_exec.node_exec_id,
block_name="-",
)
execution_stats = {}
timing_info, _ = cls._on_node_execution(
q, node_exec, log_metadata, prefix, execution_stats
q, node_exec, log_metadata, execution_stats
)
execution_stats["walltime"] = timing_info.wall_time
execution_stats["cputime"] = timing_info.cpu_time
@@ -473,29 +488,19 @@ class Executor:
cls,
q: ExecutionQueue[NodeExecution],
node_exec: NodeExecution,
log_metadata: dict,
prefix: str,
log_metadata: LogMetadata,
stats: dict[str, Any] | None = None,
):
try:
logger.info(
f"{prefix} Start node execution {node_exec.node_exec_id}",
extra={"json_fields": {**log_metadata}},
)
log_metadata.info(f"Start node execution {node_exec.node_exec_id}")
for execution in execute_node(
cls.loop, cls.agent_server_client, node_exec, stats
):
q.add(execution)
logger.info(
f"{prefix} Finished node execution {node_exec.node_exec_id}",
extra={"json_fields": {**log_metadata}},
)
log_metadata.info(f"Finished node execution {node_exec.node_exec_id}")
except Exception as e:
logger.exception(
f"Failed node execution {node_exec.node_exec_id}: {e}",
extra={
**log_metadata,
},
log_metadata.exception(
f"Failed node execution {node_exec.node_exec_id}: {e}"
)
@classmethod
@@ -517,10 +522,12 @@ class Executor:
@classmethod
def on_graph_executor_stop(cls):
logger.info(
f"[on_graph_executor_stop {cls.pid}]Terminating node executor pool..."
)
prefix = f"[on_graph_executor_stop {cls.pid}]"
logger.info(f"{prefix}Disconnecting DB...")
cls.loop.run_until_complete(db.disconnect())
logger.info(f"{prefix} ⏳ Terminating node executor pool...")
cls.executor.terminate()
logger.info(f"{prefix} ✅ Finished cleanup")
@classmethod
def _init_node_executor_pool(cls):
@@ -532,20 +539,16 @@ class Executor:
@classmethod
@error_logged
def on_graph_execution(cls, graph_exec: GraphExecution, cancel: threading.Event):
log_metadata = get_log_metadata(
log_metadata = LogMetadata(
user_id=graph_exec.user_id,
graph_eid=graph_exec.graph_exec_id,
graph_id=graph_exec.graph_id,
node_id="*",
node_eid="*",
block_name="-",
)
prefix = get_log_prefix(
graph_eid=graph_exec.graph_exec_id,
node_eid="*",
block_name="-",
)
timing_info, node_count = cls._on_graph_execution(
graph_exec, cancel, log_metadata, prefix
graph_exec, cancel, log_metadata
)
cls.loop.run_until_complete(
@@ -565,13 +568,9 @@ class Executor:
cls,
graph_exec: GraphExecution,
cancel: threading.Event,
log_metadata: dict,
prefix: str,
log_metadata: LogMetadata,
) -> int:
logger.info(
f"{prefix} Start graph execution {graph_exec.graph_exec_id}",
extra={"json_fields": {**log_metadata}},
)
log_metadata.info(f"Start graph execution {graph_exec.graph_exec_id}")
n_node_executions = 0
finished = False
@@ -581,10 +580,7 @@ class Executor:
if finished:
return
cls.executor.terminate()
logger.info(
f"{prefix} Terminated graph execution {graph_exec.graph_exec_id}",
extra={"json_fields": {**log_metadata}},
)
log_metadata.info(f"Terminated graph execution {graph_exec.graph_exec_id}")
cls._init_node_executor_pool()
cancel_thread = threading.Thread(target=cancel_handler)
@@ -622,10 +618,9 @@ class Executor:
# Re-enqueueing the data back to the queue will disrupt the order.
execution.wait()
logger.debug(
f"{prefix} Dispatching node execution {exec_data.node_exec_id} "
log_metadata.debug(
f"Dispatching node execution {exec_data.node_exec_id} "
f"for node {exec_data.node_id}",
extra={**log_metadata},
)
running_executions[exec_data.node_id] = cls.executor.apply_async(
cls.on_node_execution,
@@ -635,10 +630,8 @@ class Executor:
# Avoid terminating graph execution when some nodes are still running.
while queue.empty() and running_executions:
logger.debug(
"Queue empty; running nodes: "
f"{list(running_executions.keys())}",
extra={"json_fields": {**log_metadata}},
log_metadata.debug(
f"Queue empty; running nodes: {list(running_executions.keys())}"
)
for node_id, execution in list(running_executions.items()):
if cancel.is_set():
@@ -647,20 +640,13 @@ class Executor:
if not queue.empty():
break # yield to parent loop to execute new queue items
logger.debug(
f"Waiting on execution of node {node_id}",
extra={"json_fields": {**log_metadata}},
)
log_metadata.debug(f"Waiting on execution of node {node_id}")
execution.wait(3)
logger.info(
f"{prefix} Finished graph execution {graph_exec.graph_exec_id}",
extra={"json_fields": {**log_metadata}},
)
log_metadata.info(f"Finished graph execution {graph_exec.graph_exec_id}")
except Exception as e:
logger.exception(
f"{prefix} Failed graph execution {graph_exec.graph_exec_id}: {e}",
extra={"json_fields": {**log_metadata}},
log_metadata.exception(
f"Failed graph execution {graph_exec.graph_exec_id}: {e}"
)
finally:
if not cancel.is_set():
@@ -747,6 +733,7 @@ class ExecutionManager(AppService):
for node_exec in node_execs:
starting_node_execs.append(
NodeExecution(
user_id=user_id,
graph_exec_id=node_exec.graph_exec_id,
graph_id=node_exec.graph_id,
node_exec_id=node_exec.node_exec_id,
@@ -762,6 +749,7 @@ class ExecutionManager(AppService):
self.agent_server_client.send_execution_update(exec_update.model_dump())
graph_exec = GraphExecution(
user_id=user_id,
graph_id=graph_id,
graph_exec_id=graph_exec_id,
start_node_execs=starting_node_execs,

View File

@@ -5,11 +5,11 @@ from datetime import datetime
from apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.triggers.cron import CronTrigger
from autogpt_server.data import schedule as model
from autogpt_server.data.block import BlockInput
from autogpt_server.executor.manager import ExecutionManager
from autogpt_server.util.service import AppService, expose, get_service_client
from autogpt_server.util.settings import Config
from backend.data import schedule as model
from backend.data.block import BlockInput
from backend.executor.manager import ExecutionManager
from backend.util.service import AppService, expose, get_service_client
from backend.util.settings import Config
logger = logging.getLogger(__name__)

View File

@@ -23,6 +23,7 @@ class GitHubOAuthHandler(BaseOAuthHandler):
""" # noqa
PROVIDER_NAME = "github"
EMAIL_ENDPOINT = "https://api.github.com/user/emails"
def __init__(self, client_id: str, client_secret: str, redirect_uri: str):
self.client_id = client_id
@@ -69,10 +70,13 @@ class GitHubOAuthHandler(BaseOAuthHandler):
response.raise_for_status()
token_data: dict = response.json()
username = self._request_username(token_data["access_token"])
now = int(time.time())
new_credentials = OAuth2Credentials(
provider=self.PROVIDER_NAME,
title=current_credentials.title if current_credentials else "GitHub",
title=current_credentials.title if current_credentials else None,
username=username,
access_token=token_data["access_token"],
# Token refresh responses have an empty `scope` property (see docs),
# so we have to get the scope from the existing credentials object.
@@ -97,3 +101,19 @@ class GitHubOAuthHandler(BaseOAuthHandler):
if current_credentials:
new_credentials.id = current_credentials.id
return new_credentials
def _request_username(self, access_token: str) -> str | None:
url = "https://api.github.com/user"
headers = {
"Accept": "application/vnd.github+json",
"Authorization": f"Bearer {access_token}",
"X-GitHub-Api-Version": "2022-11-28",
}
response = requests.get(url, headers=headers)
if not response.ok:
return None
# Get the login (username)
return response.json().get("login")

Some files were not shown because too many files have changed in this diff Show More