Compare commits

..

6 Commits

Author SHA1 Message Date
Swifty
a86d750cf5 Merge branch 'fix/integrations-credential-type' into swiftyos/dev 2025-12-04 16:14:51 +01:00
Swifty
13bd648731 Merge branch 'swiftyos/vector-search' into swiftyos/dev 2025-12-04 16:14:47 +01:00
Swifty
3d7ee7cc29 Merge branch 'swiftyos/add-default-agents' into swiftyos/dev 2025-12-04 16:14:44 +01:00
Swifty
1ea52934cd add store agents for seeding test databases 2025-12-04 16:07:58 +01:00
Swifty
2c9563353e formatting 2025-12-04 09:35:53 +01:00
Swifty
fb2a70e2d8 pass credential type 2025-12-04 09:21:12 +01:00
240 changed files with 3605 additions and 17707 deletions

View File

@@ -32,9 +32,7 @@ jobs:
strategy:
fail-fast: false
matrix:
# Use Python 3.13 to match Docker image (see backend/Dockerfile)
# ClamAV tests moved to platform-backend-security-ci.yml (runs on merge to master)
python-version: ["3.13"]
python-version: ["3.11", "3.12", "3.13"]
runs-on: ubuntu-latest
services:
@@ -50,6 +48,23 @@ jobs:
env:
RABBITMQ_DEFAULT_USER: ${{ env.RABBITMQ_DEFAULT_USER }}
RABBITMQ_DEFAULT_PASS: ${{ env.RABBITMQ_DEFAULT_PASS }}
clamav:
image: clamav/clamav-debian:latest
ports:
- 3310:3310
env:
CLAMAV_NO_FRESHCLAMD: false
CLAMD_CONF_StreamMaxLength: 50M
CLAMD_CONF_MaxFileSize: 100M
CLAMD_CONF_MaxScanSize: 100M
CLAMD_CONF_MaxThreads: 4
CLAMD_CONF_ReadTimeout: 300
options: >-
--health-cmd "clamdscan --version || exit 1"
--health-interval 30s
--health-timeout 10s
--health-retries 5
--health-start-period 180s
steps:
- name: Checkout repository
@@ -131,6 +146,35 @@ jobs:
# outputs:
# DB_URL, API_URL, GRAPHQL_URL, ANON_KEY, SERVICE_ROLE_KEY, JWT_SECRET
- name: Wait for ClamAV to be ready
run: |
echo "Waiting for ClamAV daemon to start..."
max_attempts=60
attempt=0
until nc -z localhost 3310 || [ $attempt -eq $max_attempts ]; do
echo "ClamAV is unavailable - sleeping (attempt $((attempt+1))/$max_attempts)"
sleep 5
attempt=$((attempt+1))
done
if [ $attempt -eq $max_attempts ]; then
echo "ClamAV failed to start after $((max_attempts*5)) seconds"
echo "Checking ClamAV service logs..."
docker logs $(docker ps -q --filter "ancestor=clamav/clamav-debian:latest") 2>&1 | tail -50 || echo "No ClamAV container found"
exit 1
fi
echo "ClamAV is ready!"
# Verify ClamAV is responsive
echo "Testing ClamAV connection..."
timeout 10 bash -c 'echo "PING" | nc localhost 3310' || {
echo "ClamAV is not responding to PING"
docker logs $(docker ps -q --filter "ancestor=clamav/clamav-debian:latest") 2>&1 | tail -50 || echo "No ClamAV container found"
exit 1
}
- name: Run Database Migrations
run: poetry run prisma migrate dev --name updates
env:

View File

@@ -1,145 +0,0 @@
name: AutoGPT Platform - Backend Security CI
# This workflow runs ClamAV-dependent security tests.
# It only runs on merge to master to avoid the 3-5 minute ClamAV startup time on every PR.
on:
push:
branches: [master]
paths:
- "autogpt_platform/backend/**/file*.py"
- "autogpt_platform/backend/**/scan*.py"
- "autogpt_platform/backend/**/virus*.py"
- "autogpt_platform/backend/**/media*.py"
- ".github/workflows/platform-backend-security-ci.yml"
concurrency:
group: ${{ format('backend-security-ci-{0}', github.sha) }}
cancel-in-progress: false
defaults:
run:
shell: bash
working-directory: autogpt_platform/backend
jobs:
security-tests:
runs-on: ubuntu-latest
timeout-minutes: 15
services:
redis:
image: redis:latest
ports:
- 6379:6379
clamav:
image: clamav/clamav-debian:latest
ports:
- 3310:3310
env:
CLAMAV_NO_FRESHCLAMD: false
CLAMD_CONF_StreamMaxLength: 50M
CLAMD_CONF_MaxFileSize: 100M
CLAMD_CONF_MaxScanSize: 100M
CLAMD_CONF_MaxThreads: 4
CLAMD_CONF_ReadTimeout: 300
options: >-
--health-cmd "clamdscan --version || exit 1"
--health-interval 30s
--health-timeout 10s
--health-retries 5
--health-start-period 180s
steps:
- name: Checkout repository
uses: actions/checkout@v4
with:
fetch-depth: 0
submodules: true
- name: Set up Python 3.13
uses: actions/setup-python@v5
with:
python-version: "3.13"
- name: Setup Supabase
uses: supabase/setup-cli@v1
with:
version: 1.178.1
- name: Set up Python dependency cache
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
- name: Install Poetry
run: |
HEAD_POETRY_VERSION=$(python ../../.github/workflows/scripts/get_package_version_from_lockfile.py poetry)
echo "Using Poetry version ${HEAD_POETRY_VERSION}"
curl -sSL https://install.python-poetry.org | POETRY_VERSION=$HEAD_POETRY_VERSION python3 -
- name: Install Python dependencies
run: poetry install
- name: Generate Prisma Client
run: poetry run prisma generate
- id: supabase
name: Start Supabase
working-directory: .
run: |
supabase init
supabase start --exclude postgres-meta,realtime,storage-api,imgproxy,inbucket,studio,edge-runtime,logflare,vector,supavisor
supabase status -o env | sed 's/="/=/; s/"$//' >> $GITHUB_OUTPUT
- name: Wait for ClamAV to be ready
run: |
echo "Waiting for ClamAV daemon to start..."
max_attempts=60
attempt=0
until nc -z localhost 3310 || [ $attempt -eq $max_attempts ]; do
echo "ClamAV is unavailable - sleeping (attempt $((attempt+1))/$max_attempts)"
sleep 5
attempt=$((attempt+1))
done
if [ $attempt -eq $max_attempts ]; then
echo "ClamAV failed to start after $((max_attempts*5)) seconds"
exit 1
fi
echo "ClamAV is ready!"
- name: Run Database Migrations
run: poetry run prisma migrate dev --name updates
env:
DATABASE_URL: ${{ steps.supabase.outputs.DB_URL }}
DIRECT_URL: ${{ steps.supabase.outputs.DB_URL }}
- name: Run security-related tests
run: |
poetry run pytest -v \
backend/util/virus_scanner_test.py \
backend/util/file_test.py \
backend/server/v2/store/media_test.py \
-x
env:
DATABASE_URL: ${{ steps.supabase.outputs.DB_URL }}
DIRECT_URL: ${{ steps.supabase.outputs.DB_URL }}
SUPABASE_URL: ${{ steps.supabase.outputs.API_URL }}
SUPABASE_SERVICE_ROLE_KEY: ${{ steps.supabase.outputs.SERVICE_ROLE_KEY }}
JWT_VERIFY_KEY: ${{ steps.supabase.outputs.JWT_SECRET }}
REDIS_HOST: "localhost"
REDIS_PORT: "6379"
ENCRYPTION_KEY: "dvziYgz0KSK8FENhju0ZYi8-fRTfAdlz6YLhdB_jhNw="
CLAMAV_SERVICE_HOST: "localhost"
CLAMAV_SERVICE_PORT: "3310"
CLAMAV_SERVICE_ENABLED: "true"
env:
CI: true
PLAIN_OUTPUT: True
RUN_ENV: local
PORT: 8080

View File

@@ -154,78 +154,35 @@ jobs:
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
# Docker image tar caching - loads images from cache in parallel for faster startup
- name: Set up Docker image cache
id: docker-cache
- name: Cache Docker layers
uses: actions/cache@v4
with:
path: ~/docker-cache
key: docker-images-frontend-${{ runner.os }}-${{ hashFiles('autogpt_platform/docker-compose.yml') }}
path: /tmp/.buildx-cache
key: ${{ runner.os }}-buildx-frontend-test-${{ hashFiles('autogpt_platform/docker-compose.yml', 'autogpt_platform/backend/Dockerfile', 'autogpt_platform/backend/pyproject.toml', 'autogpt_platform/backend/poetry.lock') }}
restore-keys: |
docker-images-frontend-${{ runner.os }}-
- name: Load or pull Docker images
working-directory: autogpt_platform
run: |
mkdir -p ~/docker-cache
# Define image list for easy maintenance
IMAGES=(
"redis:latest"
"rabbitmq:management"
"kong:2.8.1"
"supabase/gotrue:v2.170.0"
"supabase/postgres:15.8.1.049"
)
# Check if any cached tar files exist
if ls ~/docker-cache/*.tar 1> /dev/null 2>&1; then
echo "Docker cache found, loading images in parallel..."
for image in "${IMAGES[@]}"; do
filename=$(echo "$image" | tr ':/' '--')
if [ -f ~/docker-cache/${filename}.tar ]; then
echo "Loading $image..."
docker load -i ~/docker-cache/${filename}.tar || echo "Warning: Failed to load $image from cache" &
fi
done
wait
echo "All cached images loaded"
else
echo "No Docker cache found, pulling images in parallel..."
for image in "${IMAGES[@]}"; do
docker pull "$image" &
done
wait
# Only save cache on main branches (not PRs) to avoid cache pollution
if [[ "${{ github.ref }}" == "refs/heads/master" ]] || [[ "${{ github.ref }}" == "refs/heads/dev" ]]; then
echo "Saving Docker images to cache in parallel..."
for image in "${IMAGES[@]}"; do
filename=$(echo "$image" | tr ':/' '--')
echo "Saving $image..."
docker save -o ~/docker-cache/${filename}.tar "$image" || echo "Warning: Failed to save $image" &
done
wait
echo "Docker image cache saved"
else
echo "Skipping cache save for PR/feature branch"
fi
fi
echo "Docker images ready for use"
${{ runner.os }}-buildx-frontend-test-
- name: Run docker compose
run: |
NEXT_PUBLIC_PW_TEST=true docker compose -f ../docker-compose.yml up -d
env:
DOCKER_BUILDKIT: 1
BUILDX_CACHE_FROM: type=local,src=/tmp/.buildx-cache
BUILDX_CACHE_TO: type=local,dest=/tmp/.buildx-cache-new,mode=max
- name: Move cache
run: |
rm -rf /tmp/.buildx-cache
if [ -d "/tmp/.buildx-cache-new" ]; then
mv /tmp/.buildx-cache-new /tmp/.buildx-cache
fi
- name: Wait for services to be ready
run: |
echo "Waiting for rest_server to be ready..."
timeout 30 sh -c 'until curl -f http://localhost:8006/health 2>/dev/null; do sleep 2; done' || echo "Rest server health check timeout, continuing..."
timeout 60 sh -c 'until curl -f http://localhost:8006/health 2>/dev/null; do sleep 2; done' || echo "Rest server health check timeout, continuing..."
echo "Waiting for database to be ready..."
timeout 30 sh -c 'until docker compose -f ../docker-compose.yml exec -T db pg_isready -U postgres 2>/dev/null; do sleep 2; done' || echo "Database ready check timeout, continuing..."
timeout 60 sh -c 'until docker compose -f ../docker-compose.yml exec -T db pg_isready -U postgres 2>/dev/null; do sleep 2; done' || echo "Database ready check timeout, continuing..."
- name: Create E2E test data
run: |
@@ -264,27 +221,9 @@ jobs:
- name: Install dependencies
run: pnpm install --frozen-lockfile
# Playwright browser caching - saves 30-60s when cache hits
- name: Get Playwright version
id: playwright-version
run: |
echo "version=$(pnpm list @playwright/test --json | jq -r '.[0].dependencies["@playwright/test"].version')" >> $GITHUB_OUTPUT
- name: Cache Playwright browsers
uses: actions/cache@v4
id: playwright-cache
with:
path: ~/.cache/ms-playwright
key: playwright-${{ runner.os }}-${{ steps.playwright-version.outputs.version }}
- name: Install Playwright browsers
if: steps.playwright-cache.outputs.cache-hit != 'true'
- name: Install Browser 'chromium'
run: pnpm playwright install --with-deps chromium
- name: Install Playwright deps only (when cache hit)
if: steps.playwright-cache.outputs.cache-hit == 'true'
run: pnpm playwright install-deps chromium
- name: Run Playwright tests
run: pnpm test:no-build

View File

@@ -83,66 +83,6 @@ jobs:
run: |
cp ../backend/.env.default ../backend/.env
# Docker image tar caching - loads images from cache in parallel for faster startup
- name: Set up Docker image cache
id: docker-cache
uses: actions/cache@v4
with:
path: ~/docker-cache
key: docker-images-fullstack-${{ runner.os }}-${{ hashFiles('autogpt_platform/docker-compose.yml') }}
restore-keys: |
docker-images-fullstack-${{ runner.os }}-
- name: Load or pull Docker images
working-directory: autogpt_platform
run: |
mkdir -p ~/docker-cache
# Define image list for easy maintenance
IMAGES=(
"redis:latest"
"rabbitmq:management"
"kong:2.8.1"
"supabase/gotrue:v2.170.0"
"supabase/postgres:15.8.1.049"
)
# Check if any cached tar files exist
if ls ~/docker-cache/*.tar 1> /dev/null 2>&1; then
echo "Docker cache found, loading images in parallel..."
for image in "${IMAGES[@]}"; do
filename=$(echo "$image" | tr ':/' '--')
if [ -f ~/docker-cache/${filename}.tar ]; then
echo "Loading $image..."
docker load -i ~/docker-cache/${filename}.tar || echo "Warning: Failed to load $image from cache" &
fi
done
wait
echo "All cached images loaded"
else
echo "No Docker cache found, pulling images in parallel..."
for image in "${IMAGES[@]}"; do
docker pull "$image" &
done
wait
# Only save cache on main branches (not PRs) to avoid cache pollution
if [[ "${{ github.ref }}" == "refs/heads/master" ]] || [[ "${{ github.ref }}" == "refs/heads/dev" ]]; then
echo "Saving Docker images to cache in parallel..."
for image in "${IMAGES[@]}"; do
filename=$(echo "$image" | tr ':/' '--')
echo "Saving $image..."
docker save -o ~/docker-cache/${filename}.tar "$image" || echo "Warning: Failed to save $image" &
done
wait
echo "Docker image cache saved"
else
echo "Skipping cache save for PR/feature branch"
fi
fi
echo "Docker images ready for use"
- name: Run docker compose
run: |
docker compose -f ../docker-compose.yml --profile local --profile deps_backend up -d
@@ -164,9 +104,9 @@ jobs:
- name: Wait for services to be ready
run: |
echo "Waiting for rest_server to be ready..."
timeout 30 sh -c 'until curl -f http://localhost:8006/health 2>/dev/null; do sleep 2; done' || echo "Rest server health check timeout, continuing..."
timeout 60 sh -c 'until curl -f http://localhost:8006/health 2>/dev/null; do sleep 2; done' || echo "Rest server health check timeout, continuing..."
echo "Waiting for database to be ready..."
timeout 30 sh -c 'until docker compose -f ../docker-compose.yml exec -T db pg_isready -U postgres 2>/dev/null; do sleep 2; done' || echo "Database ready check timeout, continuing..."
timeout 60 sh -c 'until docker compose -f ../docker-compose.yml exec -T db pg_isready -U postgres 2>/dev/null; do sleep 2; done' || echo "Database ready check timeout, continuing..."
- name: Generate API queries
run: pnpm generate:api:force

View File

@@ -11,7 +11,7 @@ jobs:
stale:
runs-on: ubuntu-latest
steps:
- uses: actions/stale@v10
- uses: actions/stale@v9
with:
# operations-per-run: 5000
stale-issue-message: >

View File

@@ -61,6 +61,6 @@ jobs:
pull-requests: write
runs-on: ubuntu-latest
steps:
- uses: actions/labeler@v6
- uses: actions/labeler@v5
with:
sync-labels: true

View File

@@ -44,7 +44,7 @@ test-data:
cd backend && poetry run python test/test_data_creator.py
load-store-agents:
cd backend && poetry run load-store-agents
cd backend && poetry run python test/load_store_agents.py
help:
@echo "Usage: make <target>"

View File

@@ -1371,7 +1371,7 @@ async def create_base(
if tables:
params["tables"] = tables
logger.debug(f"Creating Airtable base with params: {params}")
print(params)
response = await Requests().post(
"https://api.airtable.com/v0/meta/bases",

View File

@@ -1,108 +0,0 @@
{
"action": "created",
"discussion": {
"repository_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT",
"category": {
"id": 12345678,
"node_id": "DIC_kwDOJKSTjM4CXXXX",
"repository_id": 614765452,
"emoji": ":pray:",
"name": "Q&A",
"description": "Ask the community for help",
"created_at": "2023-03-16T09:21:07Z",
"updated_at": "2023-03-16T09:21:07Z",
"slug": "q-a",
"is_answerable": true
},
"answer_html_url": null,
"answer_chosen_at": null,
"answer_chosen_by": null,
"html_url": "https://github.com/Significant-Gravitas/AutoGPT/discussions/9999",
"id": 5000000001,
"node_id": "D_kwDOJKSTjM4AYYYY",
"number": 9999,
"title": "How do I configure custom blocks?",
"user": {
"login": "curious-user",
"id": 22222222,
"node_id": "MDQ6VXNlcjIyMjIyMjIy",
"avatar_url": "https://avatars.githubusercontent.com/u/22222222?v=4",
"url": "https://api.github.com/users/curious-user",
"html_url": "https://github.com/curious-user",
"type": "User",
"site_admin": false
},
"state": "open",
"state_reason": null,
"locked": false,
"comments": 0,
"created_at": "2024-12-01T17:00:00Z",
"updated_at": "2024-12-01T17:00:00Z",
"author_association": "NONE",
"active_lock_reason": null,
"body": "## Question\n\nI'm trying to create a custom block for my specific use case. I've read the documentation but I'm not sure how to:\n\n1. Define the input/output schema\n2. Handle authentication\n3. Test my block locally\n\nCan someone point me to examples or provide guidance?\n\n## Environment\n\n- AutoGPT Platform version: latest\n- Python: 3.11",
"reactions": {
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/discussions/9999/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
},
"timeline_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/discussions/9999/timeline"
},
"repository": {
"id": 614765452,
"node_id": "R_kgDOJKSTjA",
"name": "AutoGPT",
"full_name": "Significant-Gravitas/AutoGPT",
"private": false,
"owner": {
"login": "Significant-Gravitas",
"id": 130738209,
"node_id": "O_kgDOB8roIQ",
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
"url": "https://api.github.com/users/Significant-Gravitas",
"html_url": "https://github.com/Significant-Gravitas",
"type": "Organization",
"site_admin": false
},
"html_url": "https://github.com/Significant-Gravitas/AutoGPT",
"description": "AutoGPT is the vision of accessible AI for everyone, to use and to build on.",
"fork": false,
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT",
"created_at": "2023-03-16T09:21:07Z",
"updated_at": "2024-12-01T17:00:00Z",
"pushed_at": "2024-12-01T12:00:00Z",
"stargazers_count": 170000,
"watchers_count": 170000,
"language": "Python",
"has_discussions": true,
"forks_count": 45000,
"visibility": "public",
"default_branch": "master"
},
"organization": {
"login": "Significant-Gravitas",
"id": 130738209,
"node_id": "O_kgDOB8roIQ",
"url": "https://api.github.com/orgs/Significant-Gravitas",
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
"description": ""
},
"sender": {
"login": "curious-user",
"id": 22222222,
"node_id": "MDQ6VXNlcjIyMjIyMjIy",
"avatar_url": "https://avatars.githubusercontent.com/u/22222222?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/curious-user",
"html_url": "https://github.com/curious-user",
"type": "User",
"site_admin": false
}
}

View File

@@ -1,112 +0,0 @@
{
"action": "opened",
"issue": {
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/issues/12345",
"repository_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT",
"labels_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/issues/12345/labels{/name}",
"comments_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/issues/12345/comments",
"events_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/issues/12345/events",
"html_url": "https://github.com/Significant-Gravitas/AutoGPT/issues/12345",
"id": 2000000001,
"node_id": "I_kwDOJKSTjM5wXXXX",
"number": 12345,
"title": "Bug: Application crashes when processing large files",
"user": {
"login": "bug-reporter",
"id": 11111111,
"node_id": "MDQ6VXNlcjExMTExMTEx",
"avatar_url": "https://avatars.githubusercontent.com/u/11111111?v=4",
"url": "https://api.github.com/users/bug-reporter",
"html_url": "https://github.com/bug-reporter",
"type": "User",
"site_admin": false
},
"labels": [
{
"id": 5272676214,
"node_id": "LA_kwDOJKSTjM8AAAABOkandg",
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
}
],
"state": "open",
"locked": false,
"assignee": null,
"assignees": [],
"milestone": null,
"comments": 0,
"created_at": "2024-12-01T16:00:00Z",
"updated_at": "2024-12-01T16:00:00Z",
"closed_at": null,
"author_association": "NONE",
"active_lock_reason": null,
"body": "## Description\n\nWhen I try to process a file larger than 100MB, the application crashes with an out of memory error.\n\n## Steps to Reproduce\n\n1. Open the application\n2. Select a file larger than 100MB\n3. Click 'Process'\n4. Application crashes\n\n## Expected Behavior\n\nThe application should handle large files gracefully.\n\n## Environment\n\n- OS: Ubuntu 22.04\n- Python: 3.11\n- AutoGPT Version: 1.0.0",
"reactions": {
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/issues/12345/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
},
"timeline_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/issues/12345/timeline",
"state_reason": null
},
"repository": {
"id": 614765452,
"node_id": "R_kgDOJKSTjA",
"name": "AutoGPT",
"full_name": "Significant-Gravitas/AutoGPT",
"private": false,
"owner": {
"login": "Significant-Gravitas",
"id": 130738209,
"node_id": "O_kgDOB8roIQ",
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
"url": "https://api.github.com/users/Significant-Gravitas",
"html_url": "https://github.com/Significant-Gravitas",
"type": "Organization",
"site_admin": false
},
"html_url": "https://github.com/Significant-Gravitas/AutoGPT",
"description": "AutoGPT is the vision of accessible AI for everyone, to use and to build on.",
"fork": false,
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT",
"created_at": "2023-03-16T09:21:07Z",
"updated_at": "2024-12-01T16:00:00Z",
"pushed_at": "2024-12-01T12:00:00Z",
"stargazers_count": 170000,
"watchers_count": 170000,
"language": "Python",
"forks_count": 45000,
"open_issues_count": 190,
"visibility": "public",
"default_branch": "master"
},
"organization": {
"login": "Significant-Gravitas",
"id": 130738209,
"node_id": "O_kgDOB8roIQ",
"url": "https://api.github.com/orgs/Significant-Gravitas",
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
"description": ""
},
"sender": {
"login": "bug-reporter",
"id": 11111111,
"node_id": "MDQ6VXNlcjExMTExMTEx",
"avatar_url": "https://avatars.githubusercontent.com/u/11111111?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/bug-reporter",
"html_url": "https://github.com/bug-reporter",
"type": "User",
"site_admin": false
}
}

View File

@@ -1,97 +0,0 @@
{
"action": "published",
"release": {
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/releases/123456789",
"assets_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/releases/123456789/assets",
"upload_url": "https://uploads.github.com/repos/Significant-Gravitas/AutoGPT/releases/123456789/assets{?name,label}",
"html_url": "https://github.com/Significant-Gravitas/AutoGPT/releases/tag/v1.0.0",
"id": 123456789,
"author": {
"login": "ntindle",
"id": 12345678,
"node_id": "MDQ6VXNlcjEyMzQ1Njc4",
"avatar_url": "https://avatars.githubusercontent.com/u/12345678?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ntindle",
"html_url": "https://github.com/ntindle",
"type": "User",
"site_admin": false
},
"node_id": "RE_kwDOJKSTjM4HWwAA",
"tag_name": "v1.0.0",
"target_commitish": "master",
"name": "AutoGPT Platform v1.0.0",
"draft": false,
"prerelease": false,
"created_at": "2024-12-01T10:00:00Z",
"published_at": "2024-12-01T12:00:00Z",
"assets": [
{
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/releases/assets/987654321",
"id": 987654321,
"node_id": "RA_kwDOJKSTjM4HWwBB",
"name": "autogpt-v1.0.0.zip",
"label": "Release Package",
"content_type": "application/zip",
"state": "uploaded",
"size": 52428800,
"download_count": 0,
"created_at": "2024-12-01T11:30:00Z",
"updated_at": "2024-12-01T11:35:00Z",
"browser_download_url": "https://github.com/Significant-Gravitas/AutoGPT/releases/download/v1.0.0/autogpt-v1.0.0.zip"
}
],
"tarball_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/tarball/v1.0.0",
"zipball_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/zipball/v1.0.0",
"body": "## What's New\n\n- Feature 1: Amazing new capability\n- Feature 2: Performance improvements\n- Bug fixes and stability improvements\n\n## Breaking Changes\n\nNone\n\n## Contributors\n\nThanks to all our contributors!"
},
"repository": {
"id": 614765452,
"node_id": "R_kgDOJKSTjA",
"name": "AutoGPT",
"full_name": "Significant-Gravitas/AutoGPT",
"private": false,
"owner": {
"login": "Significant-Gravitas",
"id": 130738209,
"node_id": "O_kgDOB8roIQ",
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
"url": "https://api.github.com/users/Significant-Gravitas",
"html_url": "https://github.com/Significant-Gravitas",
"type": "Organization",
"site_admin": false
},
"html_url": "https://github.com/Significant-Gravitas/AutoGPT",
"description": "AutoGPT is the vision of accessible AI for everyone, to use and to build on.",
"fork": false,
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT",
"created_at": "2023-03-16T09:21:07Z",
"updated_at": "2024-12-01T12:00:00Z",
"pushed_at": "2024-12-01T12:00:00Z",
"stargazers_count": 170000,
"watchers_count": 170000,
"language": "Python",
"forks_count": 45000,
"visibility": "public",
"default_branch": "master"
},
"organization": {
"login": "Significant-Gravitas",
"id": 130738209,
"node_id": "O_kgDOB8roIQ",
"url": "https://api.github.com/orgs/Significant-Gravitas",
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
"description": ""
},
"sender": {
"login": "ntindle",
"id": 12345678,
"node_id": "MDQ6VXNlcjEyMzQ1Njc4",
"avatar_url": "https://avatars.githubusercontent.com/u/12345678?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ntindle",
"html_url": "https://github.com/ntindle",
"type": "User",
"site_admin": false
}
}

View File

@@ -1,53 +0,0 @@
{
"action": "created",
"starred_at": "2024-12-01T15:30:00Z",
"repository": {
"id": 614765452,
"node_id": "R_kgDOJKSTjA",
"name": "AutoGPT",
"full_name": "Significant-Gravitas/AutoGPT",
"private": false,
"owner": {
"login": "Significant-Gravitas",
"id": 130738209,
"node_id": "O_kgDOB8roIQ",
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
"url": "https://api.github.com/users/Significant-Gravitas",
"html_url": "https://github.com/Significant-Gravitas",
"type": "Organization",
"site_admin": false
},
"html_url": "https://github.com/Significant-Gravitas/AutoGPT",
"description": "AutoGPT is the vision of accessible AI for everyone, to use and to build on.",
"fork": false,
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT",
"created_at": "2023-03-16T09:21:07Z",
"updated_at": "2024-12-01T15:30:00Z",
"pushed_at": "2024-12-01T12:00:00Z",
"stargazers_count": 170001,
"watchers_count": 170001,
"language": "Python",
"forks_count": 45000,
"visibility": "public",
"default_branch": "master"
},
"organization": {
"login": "Significant-Gravitas",
"id": 130738209,
"node_id": "O_kgDOB8roIQ",
"url": "https://api.github.com/orgs/Significant-Gravitas",
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
"description": ""
},
"sender": {
"login": "awesome-contributor",
"id": 98765432,
"node_id": "MDQ6VXNlcjk4NzY1NDMy",
"avatar_url": "https://avatars.githubusercontent.com/u/98765432?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/awesome-contributor",
"html_url": "https://github.com/awesome-contributor",
"type": "User",
"site_admin": false
}
}

View File

@@ -159,391 +159,3 @@ class GithubPullRequestTriggerBlock(GitHubTriggerBase, Block):
# --8<-- [end:GithubTriggerExample]
class GithubStarTriggerBlock(GitHubTriggerBase, Block):
"""Trigger block for GitHub star events - useful for milestone celebrations."""
EXAMPLE_PAYLOAD_FILE = (
Path(__file__).parent / "example_payloads" / "star.created.json"
)
class Input(GitHubTriggerBase.Input):
class EventsFilter(BaseModel):
"""
https://docs.github.com/en/webhooks/webhook-events-and-payloads#star
"""
created: bool = False
deleted: bool = False
events: EventsFilter = SchemaField(
title="Events", description="The star events to subscribe to"
)
class Output(GitHubTriggerBase.Output):
event: str = SchemaField(
description="The star event that triggered the webhook ('created' or 'deleted')"
)
starred_at: str = SchemaField(
description="ISO timestamp when the repo was starred (empty if deleted)"
)
stargazers_count: int = SchemaField(
description="Current number of stars on the repository"
)
repository_name: str = SchemaField(
description="Full name of the repository (owner/repo)"
)
repository_url: str = SchemaField(description="URL to the repository")
def __init__(self):
from backend.integrations.webhooks.github import GithubWebhookType
example_payload = json.loads(
self.EXAMPLE_PAYLOAD_FILE.read_text(encoding="utf-8")
)
super().__init__(
id="551e0a35-100b-49b7-89b8-3031322239b6",
description="This block triggers on GitHub star events. "
"Useful for celebrating milestones (e.g., 1k, 10k stars) or tracking engagement.",
categories={BlockCategory.DEVELOPER_TOOLS, BlockCategory.INPUT},
input_schema=GithubStarTriggerBlock.Input,
output_schema=GithubStarTriggerBlock.Output,
webhook_config=BlockWebhookConfig(
provider=ProviderName.GITHUB,
webhook_type=GithubWebhookType.REPO,
resource_format="{repo}",
event_filter_input="events",
event_format="star.{event}",
),
test_input={
"repo": "Significant-Gravitas/AutoGPT",
"events": {"created": True},
"credentials": TEST_CREDENTIALS_INPUT,
"payload": example_payload,
},
test_credentials=TEST_CREDENTIALS,
test_output=[
("payload", example_payload),
("triggered_by_user", example_payload["sender"]),
("event", example_payload["action"]),
("starred_at", example_payload.get("starred_at", "")),
("stargazers_count", example_payload["repository"]["stargazers_count"]),
("repository_name", example_payload["repository"]["full_name"]),
("repository_url", example_payload["repository"]["html_url"]),
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput: # type: ignore
async for name, value in super().run(input_data, **kwargs):
yield name, value
yield "event", input_data.payload["action"]
yield "starred_at", input_data.payload.get("starred_at", "")
yield "stargazers_count", input_data.payload["repository"]["stargazers_count"]
yield "repository_name", input_data.payload["repository"]["full_name"]
yield "repository_url", input_data.payload["repository"]["html_url"]
class GithubReleaseTriggerBlock(GitHubTriggerBase, Block):
"""Trigger block for GitHub release events - ideal for announcing new versions."""
EXAMPLE_PAYLOAD_FILE = (
Path(__file__).parent / "example_payloads" / "release.published.json"
)
class Input(GitHubTriggerBase.Input):
class EventsFilter(BaseModel):
"""
https://docs.github.com/en/webhooks/webhook-events-and-payloads#release
"""
published: bool = False
unpublished: bool = False
created: bool = False
edited: bool = False
deleted: bool = False
prereleased: bool = False
released: bool = False
events: EventsFilter = SchemaField(
title="Events", description="The release events to subscribe to"
)
class Output(GitHubTriggerBase.Output):
event: str = SchemaField(
description="The release event that triggered the webhook (e.g., 'published')"
)
release: dict = SchemaField(description="The full release object")
release_url: str = SchemaField(description="URL to the release page")
tag_name: str = SchemaField(description="The release tag name (e.g., 'v1.0.0')")
release_name: str = SchemaField(description="Human-readable release name")
body: str = SchemaField(description="Release notes/description")
prerelease: bool = SchemaField(description="Whether this is a prerelease")
draft: bool = SchemaField(description="Whether this is a draft release")
assets: list = SchemaField(description="List of release assets/files")
def __init__(self):
from backend.integrations.webhooks.github import GithubWebhookType
example_payload = json.loads(
self.EXAMPLE_PAYLOAD_FILE.read_text(encoding="utf-8")
)
super().__init__(
id="2052dd1b-74e1-46ac-9c87-c7a0e057b60b",
description="This block triggers on GitHub release events. "
"Perfect for automating announcements to Discord, Twitter, or other platforms.",
categories={BlockCategory.DEVELOPER_TOOLS, BlockCategory.INPUT},
input_schema=GithubReleaseTriggerBlock.Input,
output_schema=GithubReleaseTriggerBlock.Output,
webhook_config=BlockWebhookConfig(
provider=ProviderName.GITHUB,
webhook_type=GithubWebhookType.REPO,
resource_format="{repo}",
event_filter_input="events",
event_format="release.{event}",
),
test_input={
"repo": "Significant-Gravitas/AutoGPT",
"events": {"published": True},
"credentials": TEST_CREDENTIALS_INPUT,
"payload": example_payload,
},
test_credentials=TEST_CREDENTIALS,
test_output=[
("payload", example_payload),
("triggered_by_user", example_payload["sender"]),
("event", example_payload["action"]),
("release", example_payload["release"]),
("release_url", example_payload["release"]["html_url"]),
("tag_name", example_payload["release"]["tag_name"]),
("release_name", example_payload["release"]["name"]),
("body", example_payload["release"]["body"]),
("prerelease", example_payload["release"]["prerelease"]),
("draft", example_payload["release"]["draft"]),
("assets", example_payload["release"]["assets"]),
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput: # type: ignore
async for name, value in super().run(input_data, **kwargs):
yield name, value
release = input_data.payload["release"]
yield "event", input_data.payload["action"]
yield "release", release
yield "release_url", release["html_url"]
yield "tag_name", release["tag_name"]
yield "release_name", release.get("name", "")
yield "body", release.get("body", "")
yield "prerelease", release["prerelease"]
yield "draft", release["draft"]
yield "assets", release["assets"]
class GithubIssuesTriggerBlock(GitHubTriggerBase, Block):
"""Trigger block for GitHub issues events - great for triage and notifications."""
EXAMPLE_PAYLOAD_FILE = (
Path(__file__).parent / "example_payloads" / "issues.opened.json"
)
class Input(GitHubTriggerBase.Input):
class EventsFilter(BaseModel):
"""
https://docs.github.com/en/webhooks/webhook-events-and-payloads#issues
"""
opened: bool = False
edited: bool = False
deleted: bool = False
closed: bool = False
reopened: bool = False
assigned: bool = False
unassigned: bool = False
labeled: bool = False
unlabeled: bool = False
locked: bool = False
unlocked: bool = False
transferred: bool = False
milestoned: bool = False
demilestoned: bool = False
pinned: bool = False
unpinned: bool = False
events: EventsFilter = SchemaField(
title="Events", description="The issue events to subscribe to"
)
class Output(GitHubTriggerBase.Output):
event: str = SchemaField(
description="The issue event that triggered the webhook (e.g., 'opened')"
)
number: int = SchemaField(description="The issue number")
issue: dict = SchemaField(description="The full issue object")
issue_url: str = SchemaField(description="URL to the issue")
issue_title: str = SchemaField(description="The issue title")
issue_body: str = SchemaField(description="The issue body/description")
labels: list = SchemaField(description="List of labels on the issue")
assignees: list = SchemaField(description="List of assignees")
state: str = SchemaField(description="Issue state ('open' or 'closed')")
def __init__(self):
from backend.integrations.webhooks.github import GithubWebhookType
example_payload = json.loads(
self.EXAMPLE_PAYLOAD_FILE.read_text(encoding="utf-8")
)
super().__init__(
id="b2605464-e486-4bf4-aad3-d8a213c8a48a",
description="This block triggers on GitHub issues events. "
"Useful for automated triage, notifications, and welcoming first-time contributors.",
categories={BlockCategory.DEVELOPER_TOOLS, BlockCategory.INPUT},
input_schema=GithubIssuesTriggerBlock.Input,
output_schema=GithubIssuesTriggerBlock.Output,
webhook_config=BlockWebhookConfig(
provider=ProviderName.GITHUB,
webhook_type=GithubWebhookType.REPO,
resource_format="{repo}",
event_filter_input="events",
event_format="issues.{event}",
),
test_input={
"repo": "Significant-Gravitas/AutoGPT",
"events": {"opened": True},
"credentials": TEST_CREDENTIALS_INPUT,
"payload": example_payload,
},
test_credentials=TEST_CREDENTIALS,
test_output=[
("payload", example_payload),
("triggered_by_user", example_payload["sender"]),
("event", example_payload["action"]),
("number", example_payload["issue"]["number"]),
("issue", example_payload["issue"]),
("issue_url", example_payload["issue"]["html_url"]),
("issue_title", example_payload["issue"]["title"]),
("issue_body", example_payload["issue"]["body"]),
("labels", example_payload["issue"]["labels"]),
("assignees", example_payload["issue"]["assignees"]),
("state", example_payload["issue"]["state"]),
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput: # type: ignore
async for name, value in super().run(input_data, **kwargs):
yield name, value
issue = input_data.payload["issue"]
yield "event", input_data.payload["action"]
yield "number", issue["number"]
yield "issue", issue
yield "issue_url", issue["html_url"]
yield "issue_title", issue["title"]
yield "issue_body", issue.get("body") or ""
yield "labels", issue["labels"]
yield "assignees", issue["assignees"]
yield "state", issue["state"]
class GithubDiscussionTriggerBlock(GitHubTriggerBase, Block):
"""Trigger block for GitHub discussion events - perfect for community Q&A sync."""
EXAMPLE_PAYLOAD_FILE = (
Path(__file__).parent / "example_payloads" / "discussion.created.json"
)
class Input(GitHubTriggerBase.Input):
class EventsFilter(BaseModel):
"""
https://docs.github.com/en/webhooks/webhook-events-and-payloads#discussion
"""
created: bool = False
edited: bool = False
deleted: bool = False
answered: bool = False
unanswered: bool = False
labeled: bool = False
unlabeled: bool = False
locked: bool = False
unlocked: bool = False
category_changed: bool = False
transferred: bool = False
pinned: bool = False
unpinned: bool = False
events: EventsFilter = SchemaField(
title="Events", description="The discussion events to subscribe to"
)
class Output(GitHubTriggerBase.Output):
event: str = SchemaField(
description="The discussion event that triggered the webhook"
)
number: int = SchemaField(description="The discussion number")
discussion: dict = SchemaField(description="The full discussion object")
discussion_url: str = SchemaField(description="URL to the discussion")
title: str = SchemaField(description="The discussion title")
body: str = SchemaField(description="The discussion body")
category: dict = SchemaField(description="The discussion category object")
category_name: str = SchemaField(description="Name of the category")
state: str = SchemaField(description="Discussion state")
def __init__(self):
from backend.integrations.webhooks.github import GithubWebhookType
example_payload = json.loads(
self.EXAMPLE_PAYLOAD_FILE.read_text(encoding="utf-8")
)
super().__init__(
id="87f847b3-d81a-424e-8e89-acadb5c9d52b",
description="This block triggers on GitHub Discussions events. "
"Great for syncing Q&A to Discord or auto-responding to common questions. "
"Note: Discussions must be enabled on the repository.",
categories={BlockCategory.DEVELOPER_TOOLS, BlockCategory.INPUT},
input_schema=GithubDiscussionTriggerBlock.Input,
output_schema=GithubDiscussionTriggerBlock.Output,
webhook_config=BlockWebhookConfig(
provider=ProviderName.GITHUB,
webhook_type=GithubWebhookType.REPO,
resource_format="{repo}",
event_filter_input="events",
event_format="discussion.{event}",
),
test_input={
"repo": "Significant-Gravitas/AutoGPT",
"events": {"created": True},
"credentials": TEST_CREDENTIALS_INPUT,
"payload": example_payload,
},
test_credentials=TEST_CREDENTIALS,
test_output=[
("payload", example_payload),
("triggered_by_user", example_payload["sender"]),
("event", example_payload["action"]),
("number", example_payload["discussion"]["number"]),
("discussion", example_payload["discussion"]),
("discussion_url", example_payload["discussion"]["html_url"]),
("title", example_payload["discussion"]["title"]),
("body", example_payload["discussion"]["body"]),
("category", example_payload["discussion"]["category"]),
("category_name", example_payload["discussion"]["category"]["name"]),
("state", example_payload["discussion"]["state"]),
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput: # type: ignore
async for name, value in super().run(input_data, **kwargs):
yield name, value
discussion = input_data.payload["discussion"]
yield "event", input_data.payload["action"]
yield "number", discussion["number"]
yield "discussion", discussion
yield "discussion_url", discussion["html_url"]
yield "title", discussion["title"]
yield "body", discussion.get("body") or ""
yield "category", discussion["category"]
yield "category_name", discussion["category"]["name"]
yield "state", discussion["state"]

File diff suppressed because it is too large Load Diff

View File

@@ -1,5 +1,5 @@
import logging
from typing import Any
from typing import Any, Literal
from prisma.enums import ReviewStatus
@@ -45,11 +45,11 @@ class HumanInTheLoopBlock(Block):
)
class Output(BlockSchemaOutput):
approved_data: Any = SchemaField(
description="The data when approved (may be modified by reviewer)"
reviewed_data: Any = SchemaField(
description="The data after human review (may be modified)"
)
rejected_data: Any = SchemaField(
description="The data when rejected (may be modified by reviewer)"
status: Literal["approved", "rejected"] = SchemaField(
description="Status of the review: 'approved' or 'rejected'"
)
review_message: str = SchemaField(
description="Any message provided by the reviewer", default=""
@@ -69,7 +69,8 @@ class HumanInTheLoopBlock(Block):
"editable": True,
},
test_output=[
("approved_data", {"name": "John Doe", "age": 30}),
("status", "approved"),
("reviewed_data", {"name": "John Doe", "age": 30}),
],
test_mock={
"get_or_create_human_review": lambda *_args, **_kwargs: ReviewResult(
@@ -115,7 +116,8 @@ class HumanInTheLoopBlock(Block):
logger.info(
f"HITL block skipping review for node {node_exec_id} - safe mode disabled"
)
yield "approved_data", input_data.data
yield "status", "approved"
yield "reviewed_data", input_data.data
yield "review_message", "Auto-approved (safe mode disabled)"
return
@@ -156,11 +158,12 @@ class HumanInTheLoopBlock(Block):
)
if result.status == ReviewStatus.APPROVED:
yield "approved_data", result.data
yield "status", "approved"
yield "reviewed_data", result.data
if result.message:
yield "review_message", result.message
elif result.status == ReviewStatus.REJECTED:
yield "rejected_data", result.data
yield "status", "rejected"
if result.message:
yield "review_message", result.message

View File

@@ -1,4 +1,3 @@
import logging
from datetime import datetime, timezone
from typing import Iterator, Literal
@@ -65,7 +64,6 @@ class RedditComment(BaseModel):
settings = Settings()
logger = logging.getLogger(__name__)
def get_praw(creds: RedditCredentials) -> praw.Reddit:
@@ -79,7 +77,7 @@ def get_praw(creds: RedditCredentials) -> praw.Reddit:
me = client.user.me()
if not me:
raise ValueError("Invalid Reddit credentials.")
logger.info(f"Logged in as Reddit user: {me.name}")
print(f"Logged in as Reddit user: {me.name}")
return client

View File

@@ -1,11 +1,8 @@
import logging
import re
from collections import Counter
from concurrent.futures import Future
from typing import TYPE_CHECKING, Any
from pydantic import BaseModel
import backend.blocks.llm as llm
from backend.blocks.agent import AgentExecutorBlock
from backend.data.block import (
@@ -23,41 +20,16 @@ from backend.data.dynamic_fields import (
is_dynamic_field,
is_tool_pin,
)
from backend.data.execution import ExecutionContext
from backend.data.model import NodeExecutionStats, SchemaField
from backend.util import json
from backend.util.clients import get_database_manager_async_client
from backend.util.prompt import MAIN_OBJECTIVE_PREFIX
if TYPE_CHECKING:
from backend.data.graph import Link, Node
from backend.executor.manager import ExecutionProcessor
logger = logging.getLogger(__name__)
class ToolInfo(BaseModel):
"""Processed tool call information."""
tool_call: Any # The original tool call object from LLM response
tool_name: str # The function name
tool_def: dict[str, Any] # The tool definition from tool_functions
input_data: dict[str, Any] # Processed input data ready for tool execution
field_mapping: dict[str, str] # Field name mapping for the tool
class ExecutionParams(BaseModel):
"""Tool execution parameters."""
user_id: str
graph_id: str
node_id: str
graph_version: int
graph_exec_id: str
node_exec_id: str
execution_context: "ExecutionContext"
def _get_tool_requests(entry: dict[str, Any]) -> list[str]:
"""
Return a list of tool_call_ids if the entry is a tool request.
@@ -133,50 +105,6 @@ def _create_tool_response(call_id: str, output: Any) -> dict[str, Any]:
return {"role": "tool", "tool_call_id": call_id, "content": content}
def _combine_tool_responses(tool_outputs: list[dict[str, Any]]) -> list[dict[str, Any]]:
"""
Combine multiple Anthropic tool responses into a single user message.
For non-Anthropic formats, returns the original list unchanged.
"""
if len(tool_outputs) <= 1:
return tool_outputs
# Anthropic responses have role="user", type="message", and content is a list with tool_result items
anthropic_responses = [
output
for output in tool_outputs
if (
output.get("role") == "user"
and output.get("type") == "message"
and isinstance(output.get("content"), list)
and any(
item.get("type") == "tool_result"
for item in output.get("content", [])
if isinstance(item, dict)
)
)
]
if len(anthropic_responses) > 1:
combined_content = [
item for response in anthropic_responses for item in response["content"]
]
combined_response = {
"role": "user",
"type": "message",
"content": combined_content,
}
non_anthropic_responses = [
output for output in tool_outputs if output not in anthropic_responses
]
return [combined_response] + non_anthropic_responses
return tool_outputs
def _convert_raw_response_to_dict(raw_response: Any) -> dict[str, Any]:
"""
Safely convert raw_response to dictionary format for conversation history.
@@ -276,17 +204,6 @@ class SmartDecisionMakerBlock(Block):
default="localhost:11434",
description="Ollama host for local models",
)
agent_mode_max_iterations: int = SchemaField(
title="Agent Mode Max Iterations",
description="Maximum iterations for agent mode. 0 = traditional mode (single LLM call, yield tool calls for external execution), -1 = infinite agent mode (loop until finished), 1+ = agent mode with max iterations limit.",
advanced=True,
default=0,
)
conversation_compaction: bool = SchemaField(
default=True,
title="Context window auto-compaction",
description="Automatically compact the context window once it hits the limit",
)
@classmethod
def get_missing_links(cls, data: BlockInput, links: list["Link"]) -> set[str]:
@@ -589,7 +506,6 @@ class SmartDecisionMakerBlock(Block):
Returns the response if successful, raises ValueError if validation fails.
"""
resp = await llm.llm_call(
compress_prompt_to_fit=input_data.conversation_compaction,
credentials=credentials,
llm_model=input_data.model,
prompt=current_prompt,
@@ -677,291 +593,6 @@ class SmartDecisionMakerBlock(Block):
return resp
def _process_tool_calls(
self, response, tool_functions: list[dict[str, Any]]
) -> list[ToolInfo]:
"""Process tool calls and extract tool definitions, arguments, and input data.
Returns a list of tool info dicts with:
- tool_call: The original tool call object
- tool_name: The function name
- tool_def: The tool definition from tool_functions
- input_data: Processed input data dict (includes None values)
- field_mapping: Field name mapping for the tool
"""
if not response.tool_calls:
return []
processed_tools = []
for tool_call in response.tool_calls:
tool_name = tool_call.function.name
tool_args = json.loads(tool_call.function.arguments)
tool_def = next(
(
tool
for tool in tool_functions
if tool["function"]["name"] == tool_name
),
None,
)
if not tool_def:
if len(tool_functions) == 1:
tool_def = tool_functions[0]
else:
continue
# Build input data for the tool
input_data = {}
field_mapping = tool_def["function"].get("_field_mapping", {})
if "function" in tool_def and "parameters" in tool_def["function"]:
expected_args = tool_def["function"]["parameters"].get("properties", {})
for clean_arg_name in expected_args:
original_field_name = field_mapping.get(
clean_arg_name, clean_arg_name
)
arg_value = tool_args.get(clean_arg_name)
# Include all expected parameters, even if None (for backward compatibility with tests)
input_data[original_field_name] = arg_value
processed_tools.append(
ToolInfo(
tool_call=tool_call,
tool_name=tool_name,
tool_def=tool_def,
input_data=input_data,
field_mapping=field_mapping,
)
)
return processed_tools
def _update_conversation(
self, prompt: list[dict], response, tool_outputs: list | None = None
):
"""Update conversation history with response and tool outputs."""
# Don't add separate reasoning message with tool calls (breaks Anthropic's tool_use->tool_result pairing)
assistant_message = _convert_raw_response_to_dict(response.raw_response)
has_tool_calls = isinstance(assistant_message.get("content"), list) and any(
item.get("type") == "tool_use"
for item in assistant_message.get("content", [])
)
if response.reasoning and not has_tool_calls:
prompt.append(
{"role": "assistant", "content": f"[Reasoning]: {response.reasoning}"}
)
prompt.append(assistant_message)
if tool_outputs:
prompt.extend(tool_outputs)
async def _execute_single_tool_with_manager(
self,
tool_info: ToolInfo,
execution_params: ExecutionParams,
execution_processor: "ExecutionProcessor",
) -> dict:
"""Execute a single tool using the execution manager for proper integration."""
# Lazy imports to avoid circular dependencies
from backend.data.execution import NodeExecutionEntry
tool_call = tool_info.tool_call
tool_def = tool_info.tool_def
raw_input_data = tool_info.input_data
# Get sink node and field mapping
sink_node_id = tool_def["function"]["_sink_node_id"]
# Use proper database operations for tool execution
db_client = get_database_manager_async_client()
# Get target node
target_node = await db_client.get_node(sink_node_id)
if not target_node:
raise ValueError(f"Target node {sink_node_id} not found")
# Create proper node execution using upsert_execution_input
node_exec_result = None
final_input_data = None
# Add all inputs to the execution
if not raw_input_data:
raise ValueError(f"Tool call has no input data: {tool_call}")
for input_name, input_value in raw_input_data.items():
node_exec_result, final_input_data = await db_client.upsert_execution_input(
node_id=sink_node_id,
graph_exec_id=execution_params.graph_exec_id,
input_name=input_name,
input_data=input_value,
)
assert node_exec_result is not None, "node_exec_result should not be None"
# Create NodeExecutionEntry for execution manager
node_exec_entry = NodeExecutionEntry(
user_id=execution_params.user_id,
graph_exec_id=execution_params.graph_exec_id,
graph_id=execution_params.graph_id,
graph_version=execution_params.graph_version,
node_exec_id=node_exec_result.node_exec_id,
node_id=sink_node_id,
block_id=target_node.block_id,
inputs=final_input_data or {},
execution_context=execution_params.execution_context,
)
# Use the execution manager to execute the tool node
try:
# Get NodeExecutionProgress from the execution manager's running nodes
node_exec_progress = execution_processor.running_node_execution[
sink_node_id
]
# Use the execution manager's own graph stats
graph_stats_pair = (
execution_processor.execution_stats,
execution_processor.execution_stats_lock,
)
# Create a completed future for the task tracking system
node_exec_future = Future()
node_exec_progress.add_task(
node_exec_id=node_exec_result.node_exec_id,
task=node_exec_future,
)
# Execute the node directly since we're in the SmartDecisionMaker context
node_exec_future.set_result(
await execution_processor.on_node_execution(
node_exec=node_exec_entry,
node_exec_progress=node_exec_progress,
nodes_input_masks=None,
graph_stats_pair=graph_stats_pair,
)
)
# Get outputs from database after execution completes using database manager client
node_outputs = await db_client.get_execution_outputs_by_node_exec_id(
node_exec_result.node_exec_id
)
# Create tool response
tool_response_content = (
json.dumps(node_outputs)
if node_outputs
else "Tool executed successfully"
)
return _create_tool_response(tool_call.id, tool_response_content)
except Exception as e:
logger.error(f"Tool execution with manager failed: {e}")
# Return error response
return _create_tool_response(
tool_call.id, f"Tool execution failed: {str(e)}"
)
async def _execute_tools_agent_mode(
self,
input_data,
credentials,
tool_functions: list[dict[str, Any]],
prompt: list[dict],
graph_exec_id: str,
node_id: str,
node_exec_id: str,
user_id: str,
graph_id: str,
graph_version: int,
execution_context: ExecutionContext,
execution_processor: "ExecutionProcessor",
):
"""Execute tools in agent mode with a loop until finished."""
max_iterations = input_data.agent_mode_max_iterations
iteration = 0
# Execution parameters for tool execution
execution_params = ExecutionParams(
user_id=user_id,
graph_id=graph_id,
node_id=node_id,
graph_version=graph_version,
graph_exec_id=graph_exec_id,
node_exec_id=node_exec_id,
execution_context=execution_context,
)
current_prompt = list(prompt)
while max_iterations < 0 or iteration < max_iterations:
iteration += 1
logger.debug(f"Agent mode iteration {iteration}")
# Prepare prompt for this iteration
iteration_prompt = list(current_prompt)
# On the last iteration, add a special system message to encourage completion
if max_iterations > 0 and iteration == max_iterations:
last_iteration_message = {
"role": "system",
"content": f"{MAIN_OBJECTIVE_PREFIX}This is your last iteration ({iteration}/{max_iterations}). "
"Try to complete the task with the information you have. If you cannot fully complete it, "
"provide a summary of what you've accomplished and what remains to be done. "
"Prefer finishing with a clear response rather than making additional tool calls.",
}
iteration_prompt.append(last_iteration_message)
# Get LLM response
try:
response = await self._attempt_llm_call_with_validation(
credentials, input_data, iteration_prompt, tool_functions
)
except Exception as e:
yield "error", f"LLM call failed in agent mode iteration {iteration}: {str(e)}"
return
# Process tool calls
processed_tools = self._process_tool_calls(response, tool_functions)
# If no tool calls, we're done
if not processed_tools:
yield "finished", response.response
self._update_conversation(current_prompt, response)
yield "conversations", current_prompt
return
# Execute tools and collect responses
tool_outputs = []
for tool_info in processed_tools:
try:
tool_response = await self._execute_single_tool_with_manager(
tool_info, execution_params, execution_processor
)
tool_outputs.append(tool_response)
except Exception as e:
logger.error(f"Tool execution failed: {e}")
# Create error response for the tool
error_response = _create_tool_response(
tool_info.tool_call.id, f"Error: {str(e)}"
)
tool_outputs.append(error_response)
tool_outputs = _combine_tool_responses(tool_outputs)
self._update_conversation(current_prompt, response, tool_outputs)
# Yield intermediate conversation state
yield "conversations", current_prompt
# If we reach max iterations, yield the current state
if max_iterations < 0:
yield "finished", f"Agent mode completed after {iteration} iterations"
else:
yield "finished", f"Agent mode completed after {max_iterations} iterations (limit reached)"
yield "conversations", current_prompt
async def run(
self,
input_data: Input,
@@ -972,12 +603,8 @@ class SmartDecisionMakerBlock(Block):
graph_exec_id: str,
node_exec_id: str,
user_id: str,
graph_version: int,
execution_context: ExecutionContext,
execution_processor: "ExecutionProcessor",
**kwargs,
) -> BlockOutput:
tool_functions = await self._create_tool_node_signatures(node_id)
yield "tool_functions", json.dumps(tool_functions)
@@ -1021,52 +648,24 @@ class SmartDecisionMakerBlock(Block):
input_data.prompt = llm.fmt.format_string(input_data.prompt, values)
input_data.sys_prompt = llm.fmt.format_string(input_data.sys_prompt, values)
prefix = "[Main Objective Prompt]: "
if input_data.sys_prompt and not any(
p["role"] == "system" and p["content"].startswith(MAIN_OBJECTIVE_PREFIX)
for p in prompt
p["role"] == "system" and p["content"].startswith(prefix) for p in prompt
):
prompt.append(
{
"role": "system",
"content": MAIN_OBJECTIVE_PREFIX + input_data.sys_prompt,
}
)
prompt.append({"role": "system", "content": prefix + input_data.sys_prompt})
if input_data.prompt and not any(
p["role"] == "user" and p["content"].startswith(MAIN_OBJECTIVE_PREFIX)
for p in prompt
p["role"] == "user" and p["content"].startswith(prefix) for p in prompt
):
prompt.append(
{"role": "user", "content": MAIN_OBJECTIVE_PREFIX + input_data.prompt}
)
prompt.append({"role": "user", "content": prefix + input_data.prompt})
# Execute tools based on the selected mode
if input_data.agent_mode_max_iterations != 0:
# In agent mode, execute tools directly in a loop until finished
async for result in self._execute_tools_agent_mode(
input_data=input_data,
credentials=credentials,
tool_functions=tool_functions,
prompt=prompt,
graph_exec_id=graph_exec_id,
node_id=node_id,
node_exec_id=node_exec_id,
user_id=user_id,
graph_id=graph_id,
graph_version=graph_version,
execution_context=execution_context,
execution_processor=execution_processor,
):
yield result
return
# One-off mode: single LLM call and yield tool calls for external execution
current_prompt = list(prompt)
max_attempts = max(1, int(input_data.retry))
response = None
last_error = None
for _ in range(max_attempts):
for attempt in range(max_attempts):
try:
response = await self._attempt_llm_call_with_validation(
credentials, input_data, current_prompt, tool_functions

View File

@@ -1,11 +1,7 @@
import logging
import threading
from collections import defaultdict
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from backend.data.execution import ExecutionContext
from backend.data.model import ProviderName, User
from backend.server.model import CreateGraph
from backend.server.rest_api import AgentServer
@@ -21,10 +17,10 @@ async def create_graph(s: SpinTestServer, g, u: User):
async def create_credentials(s: SpinTestServer, u: User):
import backend.blocks.llm as llm_module
import backend.blocks.llm as llm
provider = ProviderName.OPENAI
credentials = llm_module.TEST_CREDENTIALS
credentials = llm.TEST_CREDENTIALS
return await s.agent_server.test_create_credentials(u.id, provider, credentials)
@@ -200,6 +196,8 @@ async def test_smart_decision_maker_function_signature(server: SpinTestServer):
@pytest.mark.asyncio
async def test_smart_decision_maker_tracks_llm_stats():
"""Test that SmartDecisionMakerBlock correctly tracks LLM usage stats."""
from unittest.mock import MagicMock, patch
import backend.blocks.llm as llm_module
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
@@ -218,6 +216,7 @@ async def test_smart_decision_maker_tracks_llm_stats():
}
# Mock the _create_tool_node_signatures method to avoid database calls
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
@@ -235,19 +234,10 @@ async def test_smart_decision_maker_tracks_llm_stats():
prompt="Should I continue with this task?",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=0,
)
# Execute the block
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
mock_execution_processor = MagicMock()
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
@@ -256,9 +246,6 @@ async def test_smart_decision_maker_tracks_llm_stats():
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
@@ -276,6 +263,8 @@ async def test_smart_decision_maker_tracks_llm_stats():
@pytest.mark.asyncio
async def test_smart_decision_maker_parameter_validation():
"""Test that SmartDecisionMakerBlock correctly validates tool call parameters."""
from unittest.mock import MagicMock, patch
import backend.blocks.llm as llm_module
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
@@ -322,6 +311,8 @@ async def test_smart_decision_maker_parameter_validation():
mock_response_with_typo.reasoning = None
mock_response_with_typo.raw_response = {"role": "assistant", "content": None}
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
@@ -338,17 +329,8 @@ async def test_smart_decision_maker_parameter_validation():
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
retry=2, # Set retry to 2 for testing
agent_mode_max_iterations=0,
)
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
mock_execution_processor = MagicMock()
# Should raise ValueError after retries due to typo'd parameter name
with pytest.raises(ValueError) as exc_info:
outputs = {}
@@ -360,9 +342,6 @@ async def test_smart_decision_maker_parameter_validation():
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
@@ -389,6 +368,8 @@ async def test_smart_decision_maker_parameter_validation():
mock_response_missing_required.reasoning = None
mock_response_missing_required.raw_response = {"role": "assistant", "content": None}
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
@@ -404,17 +385,8 @@ async def test_smart_decision_maker_parameter_validation():
prompt="Search for keywords",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=0,
)
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
mock_execution_processor = MagicMock()
# Should raise ValueError due to missing required parameter
with pytest.raises(ValueError) as exc_info:
outputs = {}
@@ -426,9 +398,6 @@ async def test_smart_decision_maker_parameter_validation():
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
@@ -449,6 +418,8 @@ async def test_smart_decision_maker_parameter_validation():
mock_response_valid.reasoning = None
mock_response_valid.raw_response = {"role": "assistant", "content": None}
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
@@ -464,19 +435,10 @@ async def test_smart_decision_maker_parameter_validation():
prompt="Search for keywords",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=0,
)
# Should succeed - optional parameter missing is OK
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
mock_execution_processor = MagicMock()
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
@@ -485,9 +447,6 @@ async def test_smart_decision_maker_parameter_validation():
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
@@ -513,6 +472,8 @@ async def test_smart_decision_maker_parameter_validation():
mock_response_all_params.reasoning = None
mock_response_all_params.raw_response = {"role": "assistant", "content": None}
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
@@ -528,19 +489,10 @@ async def test_smart_decision_maker_parameter_validation():
prompt="Search for keywords",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=0,
)
# Should succeed with all parameters
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
mock_execution_processor = MagicMock()
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
@@ -549,9 +501,6 @@ async def test_smart_decision_maker_parameter_validation():
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
@@ -564,6 +513,8 @@ async def test_smart_decision_maker_parameter_validation():
@pytest.mark.asyncio
async def test_smart_decision_maker_raw_response_conversion():
"""Test that SmartDecisionMaker correctly handles different raw_response types with retry mechanism."""
from unittest.mock import MagicMock, patch
import backend.blocks.llm as llm_module
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
@@ -633,6 +584,7 @@ async def test_smart_decision_maker_raw_response_conversion():
)
# Mock llm_call to return different responses on different calls
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call", new_callable=AsyncMock
@@ -651,19 +603,10 @@ async def test_smart_decision_maker_raw_response_conversion():
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
retry=2,
agent_mode_max_iterations=0,
)
# Should succeed after retry, demonstrating our helper function works
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
mock_execution_processor = MagicMock()
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
@@ -672,9 +615,6 @@ async def test_smart_decision_maker_raw_response_conversion():
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
@@ -710,6 +650,8 @@ async def test_smart_decision_maker_raw_response_conversion():
"I'll help you with that." # Ollama returns string
)
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
@@ -724,18 +666,9 @@ async def test_smart_decision_maker_raw_response_conversion():
prompt="Simple prompt",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=0,
)
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
mock_execution_processor = MagicMock()
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
@@ -744,9 +677,6 @@ async def test_smart_decision_maker_raw_response_conversion():
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
@@ -766,6 +696,8 @@ async def test_smart_decision_maker_raw_response_conversion():
"content": "Test response",
} # Dict format
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
@@ -780,18 +712,9 @@ async def test_smart_decision_maker_raw_response_conversion():
prompt="Another test",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=0,
)
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
mock_execution_processor = MagicMock()
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
@@ -800,260 +723,8 @@ async def test_smart_decision_maker_raw_response_conversion():
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
assert "finished" in outputs
assert outputs["finished"] == "Test response"
@pytest.mark.asyncio
async def test_smart_decision_maker_agent_mode():
"""Test that agent mode executes tools directly and loops until finished."""
import backend.blocks.llm as llm_module
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
block = SmartDecisionMakerBlock()
# Mock tool call that requires multiple iterations
mock_tool_call_1 = MagicMock()
mock_tool_call_1.id = "call_1"
mock_tool_call_1.function.name = "search_keywords"
mock_tool_call_1.function.arguments = (
'{"query": "test", "max_keyword_difficulty": 50}'
)
mock_response_1 = MagicMock()
mock_response_1.response = None
mock_response_1.tool_calls = [mock_tool_call_1]
mock_response_1.prompt_tokens = 50
mock_response_1.completion_tokens = 25
mock_response_1.reasoning = "Using search tool"
mock_response_1.raw_response = {
"role": "assistant",
"content": None,
"tool_calls": [{"id": "call_1", "type": "function"}],
}
# Final response with no tool calls (finished)
mock_response_2 = MagicMock()
mock_response_2.response = "Task completed successfully"
mock_response_2.tool_calls = []
mock_response_2.prompt_tokens = 30
mock_response_2.completion_tokens = 15
mock_response_2.reasoning = None
mock_response_2.raw_response = {
"role": "assistant",
"content": "Task completed successfully",
}
# Mock the LLM call to return different responses on each iteration
llm_call_mock = AsyncMock()
llm_call_mock.side_effect = [mock_response_1, mock_response_2]
# Mock tool node signatures
mock_tool_signatures = [
{
"type": "function",
"function": {
"name": "search_keywords",
"_sink_node_id": "test-sink-node-id",
"_field_mapping": {},
"parameters": {
"properties": {
"query": {"type": "string"},
"max_keyword_difficulty": {"type": "integer"},
},
"required": ["query", "max_keyword_difficulty"],
},
},
}
]
# Mock database and execution components
mock_db_client = AsyncMock()
mock_node = MagicMock()
mock_node.block_id = "test-block-id"
mock_db_client.get_node.return_value = mock_node
# Mock upsert_execution_input to return proper NodeExecutionResult and input data
mock_node_exec_result = MagicMock()
mock_node_exec_result.node_exec_id = "test-tool-exec-id"
mock_input_data = {"query": "test", "max_keyword_difficulty": 50}
mock_db_client.upsert_execution_input.return_value = (
mock_node_exec_result,
mock_input_data,
)
# No longer need mock_execute_node since we use execution_processor.on_node_execution
with patch("backend.blocks.llm.llm_call", llm_call_mock), patch.object(
block, "_create_tool_node_signatures", return_value=mock_tool_signatures
), patch(
"backend.blocks.smart_decision_maker.get_database_manager_async_client",
return_value=mock_db_client,
), patch(
"backend.executor.manager.async_update_node_execution_status",
new_callable=AsyncMock,
), patch(
"backend.integrations.creds_manager.IntegrationCredentialsManager"
):
# Create a mock execution context
mock_execution_context = ExecutionContext(
safe_mode=False,
)
# Create a mock execution processor for agent mode tests
mock_execution_processor = AsyncMock()
# Configure the execution processor mock with required attributes
mock_execution_processor.running_node_execution = defaultdict(MagicMock)
mock_execution_processor.execution_stats = MagicMock()
mock_execution_processor.execution_stats_lock = threading.Lock()
# Mock the on_node_execution method to return successful stats
mock_node_stats = MagicMock()
mock_node_stats.error = None # No error
mock_execution_processor.on_node_execution = AsyncMock(
return_value=mock_node_stats
)
# Mock the get_execution_outputs_by_node_exec_id method
mock_db_client.get_execution_outputs_by_node_exec_id.return_value = {
"result": {"status": "success", "data": "search completed"}
}
# Test agent mode with max_iterations = 3
input_data = SmartDecisionMakerBlock.Input(
prompt="Complete this task using tools",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=3, # Enable agent mode with 3 max iterations
)
outputs = {}
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
graph_id="test-graph-id",
node_id="test-node-id",
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
# Verify agent mode behavior
assert "tool_functions" in outputs # tool_functions is yielded in both modes
assert "finished" in outputs
assert outputs["finished"] == "Task completed successfully"
assert "conversations" in outputs
# Verify the conversation includes tool responses
conversations = outputs["conversations"]
assert len(conversations) > 2 # Should have multiple conversation entries
# Verify LLM was called twice (once for tool call, once for finish)
assert llm_call_mock.call_count == 2
# Verify tool was executed via execution processor
assert mock_execution_processor.on_node_execution.call_count == 1
@pytest.mark.asyncio
async def test_smart_decision_maker_traditional_mode_default():
"""Test that default behavior (agent_mode_max_iterations=0) works as traditional mode."""
import backend.blocks.llm as llm_module
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
block = SmartDecisionMakerBlock()
# Mock tool call
mock_tool_call = MagicMock()
mock_tool_call.function.name = "search_keywords"
mock_tool_call.function.arguments = (
'{"query": "test", "max_keyword_difficulty": 50}'
)
mock_response = MagicMock()
mock_response.response = None
mock_response.tool_calls = [mock_tool_call]
mock_response.prompt_tokens = 50
mock_response.completion_tokens = 25
mock_response.reasoning = None
mock_response.raw_response = {"role": "assistant", "content": None}
mock_tool_signatures = [
{
"type": "function",
"function": {
"name": "search_keywords",
"_sink_node_id": "test-sink-node-id",
"_field_mapping": {},
"parameters": {
"properties": {
"query": {"type": "string"},
"max_keyword_difficulty": {"type": "integer"},
},
"required": ["query", "max_keyword_difficulty"],
},
},
}
]
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
return_value=mock_response,
), patch.object(
block, "_create_tool_node_signatures", return_value=mock_tool_signatures
):
# Test default behavior (traditional mode)
input_data = SmartDecisionMakerBlock.Input(
prompt="Test prompt",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=0, # Traditional mode
)
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
mock_execution_processor = MagicMock()
outputs = {}
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
graph_id="test-graph-id",
node_id="test-node-id",
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
# Verify traditional mode behavior
assert (
"tool_functions" in outputs
) # Should yield tool_functions in traditional mode
assert (
"tools_^_test-sink-node-id_~_query" in outputs
) # Should yield individual tool parameters
assert "tools_^_test-sink-node-id_~_max_keyword_difficulty" in outputs
assert "conversations" in outputs

View File

@@ -1,7 +1,7 @@
"""Comprehensive tests for SmartDecisionMakerBlock dynamic field handling."""
import json
from unittest.mock import AsyncMock, MagicMock, Mock, patch
from unittest.mock import AsyncMock, Mock, patch
import pytest
@@ -308,47 +308,10 @@ async def test_output_yielding_with_dynamic_fields():
) as mock_llm:
mock_llm.return_value = mock_response
# Mock the database manager to avoid HTTP calls during tool execution
with patch(
"backend.blocks.smart_decision_maker.get_database_manager_async_client"
) as mock_db_manager, patch.object(
# Mock the function signature creation
with patch.object(
block, "_create_tool_node_signatures", new_callable=AsyncMock
) as mock_sig:
# Set up the mock database manager
mock_db_client = AsyncMock()
mock_db_manager.return_value = mock_db_client
# Mock the node retrieval
mock_target_node = Mock()
mock_target_node.id = "test-sink-node-id"
mock_target_node.block_id = "CreateDictionaryBlock"
mock_target_node.block = Mock()
mock_target_node.block.name = "Create Dictionary"
mock_db_client.get_node.return_value = mock_target_node
# Mock the execution result creation
mock_node_exec_result = Mock()
mock_node_exec_result.node_exec_id = "mock-node-exec-id"
mock_final_input_data = {
"values_#_name": "Alice",
"values_#_age": 30,
"values_#_email": "alice@example.com",
}
mock_db_client.upsert_execution_input.return_value = (
mock_node_exec_result,
mock_final_input_data,
)
# Mock the output retrieval
mock_outputs = {
"values_#_name": "Alice",
"values_#_age": 30,
"values_#_email": "alice@example.com",
}
mock_db_client.get_execution_outputs_by_node_exec_id.return_value = (
mock_outputs
)
mock_sig.return_value = [
{
"type": "function",
@@ -374,16 +337,10 @@ async def test_output_yielding_with_dynamic_fields():
prompt="Create a user dictionary",
credentials=llm.TEST_CREDENTIALS_INPUT,
model=llm.LlmModel.GPT4O,
agent_mode_max_iterations=0, # Use traditional mode to test output yielding
)
# Run the block
outputs = {}
from backend.data.execution import ExecutionContext
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_processor = MagicMock()
async for output_name, output_value in block.run(
input_data,
credentials=llm.TEST_CREDENTIALS,
@@ -392,9 +349,6 @@ async def test_output_yielding_with_dynamic_fields():
graph_exec_id="test_exec",
node_exec_id="test_node_exec",
user_id="test_user",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_value
@@ -557,108 +511,45 @@ async def test_validation_errors_dont_pollute_conversation():
}
]
# Mock the database manager to avoid HTTP calls during tool execution
with patch(
"backend.blocks.smart_decision_maker.get_database_manager_async_client"
) as mock_db_manager:
# Set up the mock database manager for agent mode
mock_db_client = AsyncMock()
mock_db_manager.return_value = mock_db_client
# Create input data
from backend.blocks import llm
# Mock the node retrieval
mock_target_node = Mock()
mock_target_node.id = "test-sink-node-id"
mock_target_node.block_id = "TestBlock"
mock_target_node.block = Mock()
mock_target_node.block.name = "Test Block"
mock_db_client.get_node.return_value = mock_target_node
input_data = block.input_schema(
prompt="Test prompt",
credentials=llm.TEST_CREDENTIALS_INPUT,
model=llm.LlmModel.GPT4O,
retry=3, # Allow retries
)
# Mock the execution result creation
mock_node_exec_result = Mock()
mock_node_exec_result.node_exec_id = "mock-node-exec-id"
mock_final_input_data = {"correct_param": "value"}
mock_db_client.upsert_execution_input.return_value = (
mock_node_exec_result,
mock_final_input_data,
)
# Run the block
outputs = {}
async for output_name, output_value in block.run(
input_data,
credentials=llm.TEST_CREDENTIALS,
graph_id="test_graph",
node_id="test_node",
graph_exec_id="test_exec",
node_exec_id="test_node_exec",
user_id="test_user",
):
outputs[output_name] = output_value
# Mock the output retrieval
mock_outputs = {"correct_param": "value"}
mock_db_client.get_execution_outputs_by_node_exec_id.return_value = (
mock_outputs
)
# Verify we had 2 LLM calls (initial + retry)
assert call_count == 2
# Create input data
from backend.blocks import llm
# Check the final conversation output
final_conversation = outputs.get("conversations", [])
input_data = block.input_schema(
prompt="Test prompt",
credentials=llm.TEST_CREDENTIALS_INPUT,
model=llm.LlmModel.GPT4O,
retry=3, # Allow retries
agent_mode_max_iterations=1,
)
# The final conversation should NOT contain the validation error message
error_messages = [
msg
for msg in final_conversation
if msg.get("role") == "user"
and "parameter errors" in msg.get("content", "")
]
assert (
len(error_messages) == 0
), "Validation error leaked into final conversation"
# Run the block
outputs = {}
from backend.data.execution import ExecutionContext
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a proper mock execution processor for agent mode
from collections import defaultdict
mock_execution_processor = AsyncMock()
mock_execution_processor.execution_stats = MagicMock()
mock_execution_processor.execution_stats_lock = MagicMock()
# Create a mock NodeExecutionProgress for the sink node
mock_node_exec_progress = MagicMock()
mock_node_exec_progress.add_task = MagicMock()
mock_node_exec_progress.pop_output = MagicMock(
return_value=None
) # No outputs to process
# Set up running_node_execution as a defaultdict that returns our mock for any key
mock_execution_processor.running_node_execution = defaultdict(
lambda: mock_node_exec_progress
)
# Mock the on_node_execution method that gets called during tool execution
mock_node_stats = MagicMock()
mock_node_stats.error = None
mock_execution_processor.on_node_execution.return_value = (
mock_node_stats
)
async for output_name, output_value in block.run(
input_data,
credentials=llm.TEST_CREDENTIALS,
graph_id="test_graph",
node_id="test_node",
graph_exec_id="test_exec",
node_exec_id="test_node_exec",
user_id="test_user",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_value
# Verify we had at least 1 LLM call
assert call_count >= 1
# Check the final conversation output
final_conversation = outputs.get("conversations", [])
# The final conversation should NOT contain validation error messages
# Even if retries don't happen in agent mode, we should not leak errors
error_messages = [
msg
for msg in final_conversation
if msg.get("role") == "user"
and "parameter errors" in msg.get("content", "")
]
assert (
len(error_messages) == 0
), "Validation error leaked into final conversation"
# The final conversation should only have the successful response
assert final_conversation[-1]["content"] == "valid"

View File

@@ -1,45 +1,12 @@
import logging
from datetime import datetime, timedelta, timezone
from typing import Optional
import prisma.types
from pydantic import BaseModel
from backend.data.db import query_raw_with_schema
from backend.util.json import SafeJson
logger = logging.getLogger(__name__)
class AccuracyAlertData(BaseModel):
"""Alert data when accuracy drops significantly."""
graph_id: str
user_id: Optional[str]
drop_percent: float
three_day_avg: float
seven_day_avg: float
detected_at: datetime
class AccuracyLatestData(BaseModel):
"""Latest execution accuracy data point."""
date: datetime
daily_score: Optional[float]
three_day_avg: Optional[float]
seven_day_avg: Optional[float]
fourteen_day_avg: Optional[float]
class AccuracyTrendsResponse(BaseModel):
"""Response model for accuracy trends and alerts."""
latest_data: AccuracyLatestData
alert: Optional[AccuracyAlertData]
historical_data: Optional[list[AccuracyLatestData]] = None
async def log_raw_analytics(
user_id: str,
type: str,
@@ -76,217 +43,3 @@ async def log_raw_metric(
)
return result
async def get_accuracy_trends_and_alerts(
graph_id: str,
days_back: int = 30,
user_id: Optional[str] = None,
drop_threshold: float = 10.0,
include_historical: bool = False,
) -> AccuracyTrendsResponse:
"""Get accuracy trends and detect alerts for a specific graph."""
query_template = """
WITH daily_scores AS (
SELECT
DATE(e."createdAt") as execution_date,
AVG(CASE
WHEN e.stats IS NOT NULL
AND e.stats::json->>'correctness_score' IS NOT NULL
AND e.stats::json->>'correctness_score' != 'null'
THEN (e.stats::json->>'correctness_score')::float * 100
ELSE NULL
END) as daily_score
FROM {schema_prefix}"AgentGraphExecution" e
WHERE e."agentGraphId" = $1::text
AND e."isDeleted" = false
AND e."createdAt" >= $2::timestamp
AND e."executionStatus" IN ('COMPLETED', 'FAILED', 'TERMINATED')
{user_filter}
GROUP BY DATE(e."createdAt")
HAVING COUNT(*) >= 3 -- Need at least 3 executions per day
),
trends AS (
SELECT
execution_date,
daily_score,
AVG(daily_score) OVER (
ORDER BY execution_date
ROWS BETWEEN 2 PRECEDING AND CURRENT ROW
) as three_day_avg,
AVG(daily_score) OVER (
ORDER BY execution_date
ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
) as seven_day_avg,
AVG(daily_score) OVER (
ORDER BY execution_date
ROWS BETWEEN 13 PRECEDING AND CURRENT ROW
) as fourteen_day_avg
FROM daily_scores
)
SELECT *,
CASE
WHEN three_day_avg IS NOT NULL AND seven_day_avg IS NOT NULL AND seven_day_avg > 0
THEN ((seven_day_avg - three_day_avg) / seven_day_avg * 100)
ELSE NULL
END as drop_percent
FROM trends
ORDER BY execution_date DESC
{limit_clause}
"""
start_date = datetime.now(timezone.utc) - timedelta(days=days_back)
params = [graph_id, start_date]
user_filter = ""
if user_id:
user_filter = 'AND e."userId" = $3::text'
params.append(user_id)
# Determine limit clause
limit_clause = "" if include_historical else "LIMIT 1"
final_query = query_template.format(
schema_prefix="{schema_prefix}",
user_filter=user_filter,
limit_clause=limit_clause,
)
result = await query_raw_with_schema(final_query, *params)
if not result:
return AccuracyTrendsResponse(
latest_data=AccuracyLatestData(
date=datetime.now(timezone.utc),
daily_score=None,
three_day_avg=None,
seven_day_avg=None,
fourteen_day_avg=None,
),
alert=None,
)
latest = result[0]
alert = None
if (
latest["drop_percent"] is not None
and latest["drop_percent"] >= drop_threshold
and latest["three_day_avg"] is not None
and latest["seven_day_avg"] is not None
):
alert = AccuracyAlertData(
graph_id=graph_id,
user_id=user_id,
drop_percent=float(latest["drop_percent"]),
three_day_avg=float(latest["three_day_avg"]),
seven_day_avg=float(latest["seven_day_avg"]),
detected_at=datetime.now(timezone.utc),
)
# Prepare historical data if requested
historical_data = None
if include_historical:
historical_data = []
for row in result:
historical_data.append(
AccuracyLatestData(
date=row["execution_date"],
daily_score=(
float(row["daily_score"])
if row["daily_score"] is not None
else None
),
three_day_avg=(
float(row["three_day_avg"])
if row["three_day_avg"] is not None
else None
),
seven_day_avg=(
float(row["seven_day_avg"])
if row["seven_day_avg"] is not None
else None
),
fourteen_day_avg=(
float(row["fourteen_day_avg"])
if row["fourteen_day_avg"] is not None
else None
),
)
)
return AccuracyTrendsResponse(
latest_data=AccuracyLatestData(
date=latest["execution_date"],
daily_score=(
float(latest["daily_score"])
if latest["daily_score"] is not None
else None
),
three_day_avg=(
float(latest["three_day_avg"])
if latest["three_day_avg"] is not None
else None
),
seven_day_avg=(
float(latest["seven_day_avg"])
if latest["seven_day_avg"] is not None
else None
),
fourteen_day_avg=(
float(latest["fourteen_day_avg"])
if latest["fourteen_day_avg"] is not None
else None
),
),
alert=alert,
historical_data=historical_data,
)
class MarketplaceGraphData(BaseModel):
"""Data structure for marketplace graph monitoring."""
graph_id: str
user_id: Optional[str]
execution_count: int
async def get_marketplace_graphs_for_monitoring(
days_back: int = 30,
min_executions: int = 10,
) -> list[MarketplaceGraphData]:
"""Get published marketplace graphs with recent executions for monitoring."""
query_template = """
WITH marketplace_graphs AS (
SELECT DISTINCT
slv."agentGraphId" as graph_id,
slv."agentGraphVersion" as graph_version
FROM {schema_prefix}"StoreListing" sl
JOIN {schema_prefix}"StoreListingVersion" slv ON sl."activeVersionId" = slv."id"
WHERE sl."hasApprovedVersion" = true
AND sl."isDeleted" = false
)
SELECT DISTINCT
mg.graph_id,
NULL as user_id, -- Marketplace graphs don't have a specific user_id for monitoring
COUNT(*) as execution_count
FROM marketplace_graphs mg
JOIN {schema_prefix}"AgentGraphExecution" e ON e."agentGraphId" = mg.graph_id
WHERE e."createdAt" >= $1::timestamp
AND e."isDeleted" = false
AND e."executionStatus" IN ('COMPLETED', 'FAILED', 'TERMINATED')
GROUP BY mg.graph_id
HAVING COUNT(*) >= $2
ORDER BY execution_count DESC
"""
start_date = datetime.now(timezone.utc) - timedelta(days=days_back)
result = await query_raw_with_schema(query_template, start_date, min_executions)
return [
MarketplaceGraphData(
graph_id=row["graph_id"],
user_id=row["user_id"],
execution_count=int(row["execution_count"]),
)
for row in result
]

View File

@@ -601,18 +601,14 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
async for output_name, output_data in self._execute(input_data, **kwargs):
yield output_name, output_data
except Exception as ex:
if isinstance(ex, BlockError):
raise ex
else:
raise (
BlockExecutionError
if isinstance(ex, ValueError)
else BlockUnknownError
)(
if not isinstance(ex, BlockError):
raise BlockUnknownError(
message=str(ex),
block_name=self.name,
block_id=self.id,
) from ex
else:
raise ex
async def _execute(self, input_data: BlockInput, **kwargs) -> BlockOutput:
if error := self.input_schema.validate_data(input_data):

View File

@@ -5,7 +5,6 @@ from enum import Enum
from multiprocessing import Manager
from queue import Empty
from typing import (
TYPE_CHECKING,
Annotated,
Any,
AsyncGenerator,
@@ -66,9 +65,6 @@ from .includes import (
)
from .model import CredentialsMetaInput, GraphExecutionStats, NodeExecutionStats
if TYPE_CHECKING:
pass
T = TypeVar("T")
logger = logging.getLogger(__name__)
@@ -840,30 +836,6 @@ async def upsert_execution_output(
await AgentNodeExecutionInputOutput.prisma().create(data=data)
async def get_execution_outputs_by_node_exec_id(
node_exec_id: str,
) -> dict[str, Any]:
"""
Get all execution outputs for a specific node execution ID.
Args:
node_exec_id: The node execution ID to get outputs for
Returns:
Dictionary mapping output names to their data values
"""
outputs = await AgentNodeExecutionInputOutput.prisma().find_many(
where={"referencedByOutputExecId": node_exec_id}
)
result = {}
for output in outputs:
if output.data is not None:
result[output.name] = type_utils.convert(output.data, JsonValue)
return result
async def update_graph_execution_start_time(
graph_exec_id: str,
) -> GraphExecution | None:
@@ -1493,35 +1465,3 @@ async def get_graph_execution_by_share_token(
created_at=execution.createdAt,
outputs=outputs,
)
async def get_frequently_executed_graphs(
days_back: int = 30,
min_executions: int = 10,
) -> list[dict]:
"""Get graphs that have been frequently executed for monitoring."""
query_template = """
SELECT DISTINCT
e."agentGraphId" as graph_id,
e."userId" as user_id,
COUNT(*) as execution_count
FROM {schema_prefix}"AgentGraphExecution" e
WHERE e."createdAt" >= $1::timestamp
AND e."isDeleted" = false
AND e."executionStatus" IN ('COMPLETED', 'FAILED', 'TERMINATED')
GROUP BY e."agentGraphId", e."userId"
HAVING COUNT(*) >= $2
ORDER BY execution_count DESC
"""
start_date = datetime.now(timezone.utc) - timedelta(days=days_back)
result = await query_raw_with_schema(query_template, start_date, min_executions)
return [
{
"graph_id": row["graph_id"],
"user_id": row["user_id"],
"execution_count": int(row["execution_count"]),
}
for row in result
]

View File

@@ -100,7 +100,7 @@ async def get_or_create_human_review(
return None
else:
return ReviewResult(
data=review.payload,
data=review.payload if review.status == ReviewStatus.APPROVED else None,
status=review.status,
message=review.reviewMessage or "",
processed=review.processed,

View File

@@ -22,7 +22,7 @@ from typing import (
from urllib.parse import urlparse
from uuid import uuid4
from prisma.enums import CreditTransactionType, OnboardingStep
from prisma.enums import CreditTransactionType
from pydantic import (
BaseModel,
ConfigDict,
@@ -868,20 +868,3 @@ class UserExecutionSummaryStats(BaseModel):
total_execution_time: float = Field(default=0)
average_execution_time: float = Field(default=0)
cost_breakdown: dict[str, float] = Field(default_factory=dict)
class UserOnboarding(BaseModel):
userId: str
completedSteps: list[OnboardingStep]
walletShown: bool
notified: list[OnboardingStep]
rewardedFor: list[OnboardingStep]
usageReason: Optional[str]
integrations: list[str]
otherIntegrations: Optional[str]
selectedStoreListingVersionId: Optional[str]
agentInput: Optional[dict[str, Any]]
onboardingAgentExecutionId: Optional[str]
agentRuns: int
lastRunAt: Optional[datetime]
consecutiveRunDays: int

View File

@@ -2,7 +2,7 @@ from __future__ import annotations
from typing import AsyncGenerator
from pydantic import BaseModel, field_serializer
from pydantic import BaseModel
from backend.data.event_bus import AsyncRedisEventBus
from backend.server.model import NotificationPayload
@@ -15,11 +15,6 @@ class NotificationEvent(BaseModel):
user_id: str
payload: NotificationPayload
@field_serializer("payload")
def serialize_payload(self, payload: NotificationPayload):
"""Ensure extra fields survive Redis serialization."""
return payload.model_dump()
class AsyncRedisNotificationEventBus(AsyncRedisEventBus[NotificationEvent]):
Model = NotificationEvent # type: ignore

View File

@@ -1,7 +1,6 @@
import re
from datetime import datetime, timedelta, timezone
from typing import Any, Literal, Optional
from zoneinfo import ZoneInfo
from datetime import datetime
from typing import Any, Optional
import prisma
import pydantic
@@ -9,18 +8,17 @@ from prisma.enums import OnboardingStep
from prisma.models import UserOnboarding
from prisma.types import UserOnboardingCreateInput, UserOnboardingUpdateInput
from backend.data import execution as execution_db
from backend.data.block import get_blocks
from backend.data.credit import get_user_credit_model
from backend.data.model import CredentialsMetaInput
from backend.data.notification_bus import (
AsyncRedisNotificationEventBus,
NotificationEvent,
)
from backend.data.user import get_user_by_id
from backend.server.model import OnboardingNotificationPayload
from backend.server.v2.store.model import StoreAgentDetails
from backend.util.cache import cached
from backend.util.json import SafeJson
from backend.util.timezone_utils import get_user_timezone_or_utc
# Mapping from user reason id to categories to search for when choosing agent to show
REASON_MAPPING: dict[str, list[str]] = {
@@ -33,20 +31,9 @@ REASON_MAPPING: dict[str, list[str]] = {
POINTS_AGENT_COUNT = 50 # Number of agents to calculate points for
MIN_AGENT_COUNT = 2 # Minimum number of marketplace agents to enable onboarding
FrontendOnboardingStep = Literal[
OnboardingStep.WELCOME,
OnboardingStep.USAGE_REASON,
OnboardingStep.INTEGRATIONS,
OnboardingStep.AGENT_CHOICE,
OnboardingStep.AGENT_NEW_RUN,
OnboardingStep.AGENT_INPUT,
OnboardingStep.CONGRATS,
OnboardingStep.MARKETPLACE_VISIT,
OnboardingStep.BUILDER_OPEN,
]
class UserOnboardingUpdate(pydantic.BaseModel):
completedSteps: Optional[list[OnboardingStep]] = None
walletShown: Optional[bool] = None
notified: Optional[list[OnboardingStep]] = None
usageReason: Optional[str] = None
@@ -55,6 +42,9 @@ class UserOnboardingUpdate(pydantic.BaseModel):
selectedStoreListingVersionId: Optional[str] = None
agentInput: Optional[dict[str, Any]] = None
onboardingAgentExecutionId: Optional[str] = None
agentRuns: Optional[int] = None
lastRunAt: Optional[datetime] = None
consecutiveRunDays: Optional[int] = None
async def get_user_onboarding(user_id: str):
@@ -93,6 +83,14 @@ async def reset_user_onboarding(user_id: str):
async def update_user_onboarding(user_id: str, data: UserOnboardingUpdate):
update: UserOnboardingUpdateInput = {}
onboarding = await get_user_onboarding(user_id)
if data.completedSteps is not None:
update["completedSteps"] = list(
set(data.completedSteps + onboarding.completedSteps)
)
for step in data.completedSteps:
if step not in onboarding.completedSteps:
await _reward_user(user_id, onboarding, step)
await _send_onboarding_notification(user_id, step)
if data.walletShown:
update["walletShown"] = data.walletShown
if data.notified is not None:
@@ -109,6 +107,12 @@ async def update_user_onboarding(user_id: str, data: UserOnboardingUpdate):
update["agentInput"] = SafeJson(data.agentInput)
if data.onboardingAgentExecutionId is not None:
update["onboardingAgentExecutionId"] = data.onboardingAgentExecutionId
if data.agentRuns is not None and data.agentRuns > onboarding.agentRuns:
update["agentRuns"] = data.agentRuns
if data.lastRunAt is not None:
update["lastRunAt"] = data.lastRunAt
if data.consecutiveRunDays is not None:
update["consecutiveRunDays"] = data.consecutiveRunDays
return await UserOnboarding.prisma().upsert(
where={"userId": user_id},
@@ -157,12 +161,14 @@ async def _reward_user(user_id: str, onboarding: UserOnboarding, step: Onboardin
if step in onboarding.rewardedFor:
return
onboarding.rewardedFor.append(step)
user_credit_model = await get_user_credit_model(user_id)
await user_credit_model.onboarding_reward(user_id, reward, step)
await UserOnboarding.prisma().update(
where={"userId": user_id},
data={
"rewardedFor": list(set(onboarding.rewardedFor + [step])),
"completedSteps": list(set(onboarding.completedSteps + [step])),
"rewardedFor": onboarding.rewardedFor,
},
)
@@ -171,52 +177,31 @@ async def complete_onboarding_step(user_id: str, step: OnboardingStep):
"""
Completes the specified onboarding step for the user if not already completed.
"""
onboarding = await get_user_onboarding(user_id)
if step not in onboarding.completedSteps:
await UserOnboarding.prisma().update(
where={"userId": user_id},
data={
"completedSteps": list(set(onboarding.completedSteps + [step])),
},
await update_user_onboarding(
user_id,
UserOnboardingUpdate(completedSteps=onboarding.completedSteps + [step]),
)
await _reward_user(user_id, onboarding, step)
await _send_onboarding_notification(user_id, step)
async def _send_onboarding_notification(
user_id: str, step: OnboardingStep | None, event: str = "step_completed"
):
async def _send_onboarding_notification(user_id: str, step: OnboardingStep):
"""
Sends an onboarding notification to the user.
Sends an onboarding notification to the user for the specified step.
"""
payload = OnboardingNotificationPayload(
type="onboarding",
event=event,
step=step,
event="step_completed",
step=step.value,
)
await AsyncRedisNotificationEventBus().publish(
NotificationEvent(user_id=user_id, payload=payload)
)
async def complete_re_run_agent(user_id: str, graph_id: str) -> None:
"""
Complete RE_RUN_AGENT step when a user runs a graph they've run before.
Keeps overhead low by only counting executions if the step is still pending.
"""
onboarding = await get_user_onboarding(user_id)
if OnboardingStep.RE_RUN_AGENT in onboarding.completedSteps:
return
# Includes current execution, so count > 1 means there was at least one prior run.
previous_exec_count = await execution_db.get_graph_executions_count(
user_id=user_id, graph_id=graph_id
)
if previous_exec_count > 1:
await complete_onboarding_step(user_id, OnboardingStep.RE_RUN_AGENT)
def _clean_and_split(text: str) -> list[str]:
def clean_and_split(text: str) -> list[str]:
"""
Removes all special characters from a string, truncates it to 100 characters,
and splits it by whitespace and commas.
@@ -239,7 +224,7 @@ def _clean_and_split(text: str) -> list[str]:
return words
def _calculate_points(
def calculate_points(
agent, categories: list[str], custom: list[str], integrations: list[str]
) -> int:
"""
@@ -283,85 +268,18 @@ def _calculate_points(
return int(points)
def _normalize_datetime(value: datetime | None) -> datetime | None:
if value is None:
return None
if value.tzinfo is None:
return value.replace(tzinfo=timezone.utc)
return value.astimezone(timezone.utc)
def get_credentials_blocks() -> dict[str, str]:
# Returns a dictionary of block id to credentials field name
creds: dict[str, str] = {}
blocks = get_blocks()
for id, block in blocks.items():
for field_name, field_info in block().input_schema.model_fields.items():
if field_info.annotation == CredentialsMetaInput:
creds[id] = field_name
return creds
def _calculate_consecutive_run_days(
last_run_at: datetime | None, current_consecutive_days: int, user_timezone: str
) -> tuple[datetime, int]:
tz = ZoneInfo(user_timezone)
local_now = datetime.now(tz)
normalized_last_run = _normalize_datetime(last_run_at)
if normalized_last_run is None:
return local_now.astimezone(timezone.utc), 1
last_run_local = normalized_last_run.astimezone(tz)
last_run_date = last_run_local.date()
today = local_now.date()
if last_run_date == today:
return local_now.astimezone(timezone.utc), current_consecutive_days
if last_run_date == today - timedelta(days=1):
return local_now.astimezone(timezone.utc), current_consecutive_days + 1
return local_now.astimezone(timezone.utc), 1
def _get_run_milestone_steps(
new_run_count: int, consecutive_days: int
) -> list[OnboardingStep]:
milestones: list[OnboardingStep] = []
if new_run_count >= 10:
milestones.append(OnboardingStep.RUN_AGENTS)
if new_run_count >= 100:
milestones.append(OnboardingStep.RUN_AGENTS_100)
if consecutive_days >= 3:
milestones.append(OnboardingStep.RUN_3_DAYS)
if consecutive_days >= 14:
milestones.append(OnboardingStep.RUN_14_DAYS)
return milestones
async def _get_user_timezone(user_id: str) -> str:
user = await get_user_by_id(user_id)
return get_user_timezone_or_utc(user.timezone if user else None)
async def increment_runs(user_id: str):
"""
Increment a user's run counters and trigger any onboarding milestones.
"""
user_timezone = await _get_user_timezone(user_id)
onboarding = await get_user_onboarding(user_id)
new_run_count = onboarding.agentRuns + 1
last_run_at, consecutive_run_days = _calculate_consecutive_run_days(
onboarding.lastRunAt, onboarding.consecutiveRunDays, user_timezone
)
await UserOnboarding.prisma().update(
where={"userId": user_id},
data={
"agentRuns": {"increment": 1},
"lastRunAt": last_run_at,
"consecutiveRunDays": consecutive_run_days,
},
)
milestones = _get_run_milestone_steps(new_run_count, consecutive_run_days)
new_steps = [step for step in milestones if step not in onboarding.completedSteps]
for step in new_steps:
await complete_onboarding_step(user_id, step)
# Send progress notification if no steps were completed, so client refetches onboarding state
if not new_steps:
await _send_onboarding_notification(user_id, None, event="increment_runs")
CREDENTIALS_FIELDS: dict[str, str] = get_credentials_blocks()
async def get_recommended_agents(user_id: str) -> list[StoreAgentDetails]:
@@ -370,7 +288,7 @@ async def get_recommended_agents(user_id: str) -> list[StoreAgentDetails]:
where_clause: dict[str, Any] = {}
custom = _clean_and_split((user_onboarding.usageReason or "").lower())
custom = clean_and_split((user_onboarding.usageReason or "").lower())
if categories:
where_clause["OR"] = [
@@ -418,7 +336,7 @@ async def get_recommended_agents(user_id: str) -> list[StoreAgentDetails]:
# Calculate points for the first X agents and choose the top 2
agent_points = []
for agent in storeAgents[:POINTS_AGENT_COUNT]:
points = _calculate_points(
points = calculate_points(
agent, categories, custom, user_onboarding.integrations
)
agent_points.append((agent, points))
@@ -432,7 +350,6 @@ async def get_recommended_agents(user_id: str) -> list[StoreAgentDetails]:
slug=agent.slug,
agent_name=agent.agent_name,
agent_video=agent.agent_video or "",
agent_output_demo=agent.agent_output_demo or "",
agent_image=agent.agent_image,
creator=agent.creator_username,
creator_avatar=agent.creator_avatar,

View File

@@ -3,18 +3,12 @@ from contextlib import asynccontextmanager
from typing import TYPE_CHECKING, Callable, Concatenate, ParamSpec, TypeVar, cast
from backend.data import db
from backend.data.analytics import (
get_accuracy_trends_and_alerts,
get_marketplace_graphs_for_monitoring,
)
from backend.data.credit import UsageTransactionMetadata, get_user_credit_model
from backend.data.execution import (
create_graph_execution,
get_block_error_stats,
get_child_graph_executions,
get_execution_kv_data,
get_execution_outputs_by_node_exec_id,
get_frequently_executed_graphs,
get_graph_execution_meta,
get_graph_executions,
get_graph_executions_count,
@@ -148,13 +142,9 @@ class DatabaseManager(AppService):
update_graph_execution_stats = _(update_graph_execution_stats)
upsert_execution_input = _(upsert_execution_input)
upsert_execution_output = _(upsert_execution_output)
get_execution_outputs_by_node_exec_id = _(get_execution_outputs_by_node_exec_id)
get_execution_kv_data = _(get_execution_kv_data)
set_execution_kv_data = _(set_execution_kv_data)
get_block_error_stats = _(get_block_error_stats)
get_accuracy_trends_and_alerts = _(get_accuracy_trends_and_alerts)
get_frequently_executed_graphs = _(get_frequently_executed_graphs)
get_marketplace_graphs_for_monitoring = _(get_marketplace_graphs_for_monitoring)
# Graphs
get_node = _(get_node)
@@ -236,10 +226,6 @@ class DatabaseManagerClient(AppServiceClient):
# Block error monitoring
get_block_error_stats = _(d.get_block_error_stats)
# Execution accuracy monitoring
get_accuracy_trends_and_alerts = _(d.get_accuracy_trends_and_alerts)
get_frequently_executed_graphs = _(d.get_frequently_executed_graphs)
get_marketplace_graphs_for_monitoring = _(d.get_marketplace_graphs_for_monitoring)
# Human In The Loop
has_pending_reviews_for_graph_exec = _(d.has_pending_reviews_for_graph_exec)
@@ -279,7 +265,6 @@ class DatabaseManagerAsyncClient(AppServiceClient):
get_user_integrations = d.get_user_integrations
upsert_execution_input = d.upsert_execution_input
upsert_execution_output = d.upsert_execution_output
get_execution_outputs_by_node_exec_id = d.get_execution_outputs_by_node_exec_id
update_graph_execution_stats = d.update_graph_execution_stats
update_node_execution_status = d.update_node_execution_status
update_node_execution_status_batch = d.update_node_execution_status_batch

View File

@@ -133,8 +133,9 @@ def execute_graph(
cluster_lock: ClusterLock,
):
"""Execute graph using thread-local ExecutionProcessor instance"""
processor: ExecutionProcessor = _tls.processor
return processor.on_graph_execution(graph_exec_entry, cancel_event, cluster_lock)
return _tls.processor.on_graph_execution(
graph_exec_entry, cancel_event, cluster_lock
)
T = TypeVar("T")
@@ -142,8 +143,8 @@ T = TypeVar("T")
async def execute_node(
node: Node,
creds_manager: IntegrationCredentialsManager,
data: NodeExecutionEntry,
execution_processor: "ExecutionProcessor",
execution_stats: NodeExecutionStats | None = None,
nodes_input_masks: Optional[NodesInputMasks] = None,
) -> BlockOutput:
@@ -168,7 +169,6 @@ async def execute_node(
node_id = data.node_id
node_block = node.block
execution_context = data.execution_context
creds_manager = execution_processor.creds_manager
log_metadata = LogMetadata(
logger=_logger,
@@ -212,7 +212,6 @@ async def execute_node(
"node_exec_id": node_exec_id,
"user_id": user_id,
"execution_context": execution_context,
"execution_processor": execution_processor,
}
# Last-minute fetch credentials + acquire a system-wide read-write lock to prevent
@@ -609,8 +608,8 @@ class ExecutionProcessor:
async for output_name, output_data in execute_node(
node=node,
creds_manager=self.creds_manager,
data=node_exec,
execution_processor=self,
execution_stats=stats,
nodes_input_masks=nodes_input_masks,
):
@@ -861,17 +860,12 @@ class ExecutionProcessor:
execution_stats_lock = threading.Lock()
# State holders ----------------------------------------------------
self.running_node_execution: dict[str, NodeExecutionProgress] = defaultdict(
running_node_execution: dict[str, NodeExecutionProgress] = defaultdict(
NodeExecutionProgress
)
self.running_node_evaluation: dict[str, Future] = {}
self.execution_stats = execution_stats
self.execution_stats_lock = execution_stats_lock
running_node_evaluation: dict[str, Future] = {}
execution_queue = ExecutionQueue[NodeExecutionEntry]()
running_node_execution = self.running_node_execution
running_node_evaluation = self.running_node_evaluation
try:
if db_client.get_credits(graph_exec.user_id) <= 0:
raise InsufficientBalanceError(

View File

@@ -26,14 +26,12 @@ from sqlalchemy import MetaData, create_engine
from backend.data.block import BlockInput
from backend.data.execution import GraphExecutionWithNodes
from backend.data.model import CredentialsMetaInput
from backend.data.onboarding import increment_runs
from backend.executor import utils as execution_utils
from backend.monitoring import (
NotificationJobArgs,
process_existing_batches,
process_weekly_summary,
report_block_error_rates,
report_execution_accuracy_alerts,
report_late_executions,
)
from backend.util.clients import get_scheduler_client
@@ -155,7 +153,6 @@ async def _execute_graph(**kwargs):
inputs=args.input_data,
graph_credentials_inputs=args.input_credentials,
)
await increment_runs(args.user_id)
elapsed = asyncio.get_event_loop().time() - start_time
logger.info(
f"Graph execution started with ID {graph_exec.id} for graph {args.graph_id} "
@@ -242,11 +239,6 @@ def cleanup_expired_files():
run_async(cleanup_expired_files_async())
def execution_accuracy_alerts():
"""Check execution accuracy and send alerts if drops are detected."""
return report_execution_accuracy_alerts()
# Monitoring functions are now imported from monitoring module
@@ -446,17 +438,6 @@ class Scheduler(AppService):
jobstore=Jobstores.EXECUTION.value,
)
# Execution Accuracy Monitoring - configurable interval
self.scheduler.add_job(
execution_accuracy_alerts,
id="report_execution_accuracy_alerts",
trigger="interval",
replace_existing=True,
seconds=config.execution_accuracy_check_interval_hours
* 3600, # Convert hours to seconds
jobstore=Jobstores.EXECUTION.value,
)
self.scheduler.add_listener(job_listener, EVENT_JOB_EXECUTED | EVENT_JOB_ERROR)
self.scheduler.add_listener(job_missed_listener, EVENT_JOB_MISSED)
self.scheduler.add_listener(job_max_instances_listener, EVENT_JOB_MAX_INSTANCES)
@@ -604,11 +585,6 @@ class Scheduler(AppService):
"""Manually trigger cleanup of expired cloud storage files."""
return cleanup_expired_files()
@expose
def execute_report_execution_accuracy_alerts(self):
"""Manually trigger execution accuracy alert checking."""
return execution_accuracy_alerts()
class SchedulerClient(AppServiceClient):
@classmethod

View File

@@ -4,7 +4,6 @@ Embedding service for generating text embeddings using OpenAI.
Used for vector-based semantic search in the store.
"""
import functools
import logging
from typing import Optional
@@ -28,12 +27,7 @@ MAX_BATCH_SIZE = 100 # maximum texts per batch request
class EmbeddingService:
"""Service for generating text embeddings using OpenAI.
The service can be created without an API key - the key is validated
only when the client property is first accessed. This allows the service
to be instantiated at module load time without requiring configuration.
"""
"""Service for generating text embeddings using OpenAI."""
def __init__(self, api_key: Optional[str] = None):
settings = Settings()
@@ -42,16 +36,12 @@ class EmbeddingService:
or settings.secrets.openai_internal_api_key
or settings.secrets.openai_api_key
)
@functools.cached_property
def client(self) -> openai.AsyncOpenAI:
"""Lazily create the OpenAI client, raising if no API key is configured."""
if not self.api_key:
raise ValueError(
"OpenAI API key not configured. "
"Set OPENAI_API_KEY or OPENAI_INTERNAL_API_KEY environment variable."
)
return openai.AsyncOpenAI(api_key=self.api_key)
self.client = openai.AsyncOpenAI(api_key=self.api_key)
async def generate_embedding(self, text: str) -> list[float]:
"""
@@ -75,14 +65,16 @@ class EmbeddingService:
f"Text exceeds maximum length of {MAX_TEXT_LENGTH} characters"
)
response = await self.client.embeddings.create(
model=EMBEDDING_MODEL,
input=text,
dimensions=EMBEDDING_DIMENSIONS,
)
if not response.data:
raise ValueError("OpenAI API returned empty embedding data")
return response.data[0].embedding
try:
response = await self.client.embeddings.create(
model=EMBEDDING_MODEL,
input=text,
dimensions=EMBEDDING_DIMENSIONS,
)
return response.data[0].embedding
except openai.APIError as e:
logger.error(f"OpenAI API error generating embedding: {e}")
raise
async def generate_embeddings(self, texts: list[str]) -> list[list[float]]:
"""
@@ -111,14 +103,18 @@ class EmbeddingService:
f"Text at index {i} exceeds maximum length of {MAX_TEXT_LENGTH} characters"
)
response = await self.client.embeddings.create(
model=EMBEDDING_MODEL,
input=texts,
dimensions=EMBEDDING_DIMENSIONS,
)
# Sort by index to ensure correct ordering
sorted_data = sorted(response.data, key=lambda x: x.index)
return [item.embedding for item in sorted_data]
try:
response = await self.client.embeddings.create(
model=EMBEDDING_MODEL,
input=texts,
dimensions=EMBEDDING_DIMENSIONS,
)
# Sort by index to ensure correct ordering
sorted_data = sorted(response.data, key=lambda x: x.index)
return [item.embedding for item in sorted_data]
except openai.APIError as e:
logger.error(f"OpenAI API error generating embeddings: {e}")
raise
def create_search_text(name: str, sub_heading: str, description: str) -> str:
@@ -137,21 +133,24 @@ def create_search_text(name: str, sub_heading: str, description: str) -> str:
A single string combining all non-empty fields.
"""
parts = [name or "", sub_heading or "", description or ""]
# filter(None, parts) removes empty strings since empty string is falsy
return " ".join(filter(None, parts)).strip()
@functools.cache
def get_embedding_service() -> EmbeddingService:
# Singleton instance
_embedding_service: Optional[EmbeddingService] = None
async def get_embedding_service() -> EmbeddingService:
"""
Get or create the embedding service singleton.
Uses functools.cache for thread-safe lazy initialization.
Returns:
The shared EmbeddingService instance.
Raises:
ValueError: If OpenAI API key is not configured (when generating embeddings).
ValueError: If OpenAI API key is not configured.
"""
return EmbeddingService()
global _embedding_service
if _embedding_service is None:
_embedding_service = EmbeddingService()
return _embedding_service

View File

@@ -76,25 +76,19 @@ class TestEmbeddingServiceValidation:
@pytest.fixture
def service(self, mock_settings):
"""Create an EmbeddingService instance with mocked settings."""
service = EmbeddingService()
# Inject a mock client by setting the cached_property directly
service.__dict__["client"] = MagicMock()
return service
with patch("backend.integrations.embeddings.openai.AsyncOpenAI"):
return EmbeddingService()
def test_client_access_requires_api_key(self):
"""Test that accessing client fails without an API key."""
def test_init_requires_api_key(self):
"""Test that initialization fails without an API key."""
with patch("backend.integrations.embeddings.Settings") as mock:
mock_instance = MagicMock()
mock_instance.secrets.openai_internal_api_key = ""
mock_instance.secrets.openai_api_key = ""
mock.return_value = mock_instance
# Service creation should succeed
service = EmbeddingService()
# But accessing client should fail
with pytest.raises(ValueError, match="OpenAI API key not configured"):
_ = service.client
EmbeddingService()
def test_init_accepts_explicit_api_key(self):
"""Test that explicit API key overrides settings."""
@@ -173,10 +167,12 @@ class TestEmbeddingServiceAPI:
mock_instance.secrets.openai_api_key = ""
mock_settings.return_value = mock_instance
service = EmbeddingService()
# Inject mock client by setting the cached_property directly
service.__dict__["client"] = mock_openai_client
return service, mock_openai_client
with patch(
"backend.integrations.embeddings.openai.AsyncOpenAI"
) as mock_openai:
mock_openai.return_value = mock_openai_client
service = EmbeddingService()
return service, mock_openai_client
@pytest.mark.asyncio
async def test_generate_embedding_success(self, service_with_mock_client):

View File

@@ -18,9 +18,7 @@ class ManualWebhookManagerBase(BaseWebhooksManager[WT]):
ingress_url: str,
secret: str,
) -> tuple[str, dict]:
# TODO: pass ingress_url to user in frontend
# See: https://github.com/Significant-Gravitas/AutoGPT/issues/8537
logger.debug(f"Manual webhook registered with ingress URL: {ingress_url}")
print(ingress_url) # FIXME: pass URL to user in front end
return "", {}

View File

@@ -1,6 +1,5 @@
"""Monitoring module for platform health and alerting."""
from .accuracy_monitor import AccuracyMonitor, report_execution_accuracy_alerts
from .block_error_monitor import BlockErrorMonitor, report_block_error_rates
from .late_execution_monitor import (
LateExecutionException,
@@ -14,12 +13,10 @@ from .notification_monitor import (
)
__all__ = [
"AccuracyMonitor",
"BlockErrorMonitor",
"LateExecutionMonitor",
"LateExecutionException",
"NotificationJobArgs",
"report_execution_accuracy_alerts",
"report_block_error_rates",
"report_late_executions",
"process_existing_batches",

View File

@@ -1,107 +0,0 @@
"""Execution accuracy monitoring module."""
import logging
from backend.util.clients import (
get_database_manager_client,
get_notification_manager_client,
)
from backend.util.metrics import DiscordChannel, sentry_capture_error
from backend.util.settings import Config
logger = logging.getLogger(__name__)
config = Config()
class AccuracyMonitor:
"""Monitor execution accuracy trends and send alerts for drops."""
def __init__(self, drop_threshold: float = 10.0):
self.config = config
self.notification_client = get_notification_manager_client()
self.database_client = get_database_manager_client()
self.drop_threshold = drop_threshold
def check_execution_accuracy_alerts(self) -> str:
"""Check marketplace agents for accuracy drops and send alerts."""
try:
logger.info("Checking execution accuracy for marketplace agents")
# Get marketplace graphs using database client
graphs = self.database_client.get_marketplace_graphs_for_monitoring(
days_back=30, min_executions=10
)
alerts_found = 0
for graph_data in graphs:
result = self.database_client.get_accuracy_trends_and_alerts(
graph_id=graph_data.graph_id,
user_id=graph_data.user_id,
days_back=21, # 3 weeks
drop_threshold=self.drop_threshold,
)
if result.alert:
alert = result.alert
# Get graph details for better alert info
try:
graph_info = self.database_client.get_graph_metadata(
graph_id=alert.graph_id
)
graph_name = graph_info.name if graph_info else "Unknown Agent"
except Exception:
graph_name = "Unknown Agent"
# Create detailed alert message
alert_msg = (
f"🚨 **AGENT ACCURACY DROP DETECTED**\n\n"
f"**Agent:** {graph_name}\n"
f"**Graph ID:** `{alert.graph_id}`\n"
f"**Accuracy Drop:** {alert.drop_percent:.1f}%\n"
f"**Recent Performance:**\n"
f" • 3-day average: {alert.three_day_avg:.1f}%\n"
f" • 7-day average: {alert.seven_day_avg:.1f}%\n"
)
if alert.user_id:
alert_msg += f"**Owner:** {alert.user_id}\n"
# Send individual alert for each agent (not batched)
self.notification_client.discord_system_alert(
alert_msg, DiscordChannel.PRODUCT
)
alerts_found += 1
logger.warning(
f"Sent accuracy alert for agent: {graph_name} ({alert.graph_id})"
)
if alerts_found > 0:
return f"Alert sent for {alerts_found} agents with accuracy drops"
logger.info("No execution accuracy alerts detected")
return "No accuracy alerts detected"
except Exception as e:
logger.exception(f"Error checking execution accuracy alerts: {e}")
error = Exception(f"Error checking execution accuracy alerts: {e}")
msg = str(error)
sentry_capture_error(error)
self.notification_client.discord_system_alert(msg, DiscordChannel.PRODUCT)
return msg
def report_execution_accuracy_alerts(drop_threshold: float = 10.0) -> str:
"""
Check execution accuracy and send alerts if drops are detected.
Args:
drop_threshold: Percentage drop threshold to trigger alerts (default 10.0%)
Returns:
Status message indicating results of the check
"""
monitor = AccuracyMonitor(drop_threshold=drop_threshold)
return monitor.check_execution_accuracy_alerts()

View File

@@ -33,11 +33,7 @@ from backend.data.model import (
OAuth2Credentials,
UserIntegrations,
)
from backend.data.onboarding import (
OnboardingStep,
complete_onboarding_step,
increment_runs,
)
from backend.data.onboarding import OnboardingStep, complete_onboarding_step
from backend.data.user import get_user_integrations
from backend.executor.utils import add_graph_execution
from backend.integrations.ayrshare import AyrshareClient, SocialPlatform
@@ -381,7 +377,6 @@ async def webhook_ingress_generic(
return
await complete_onboarding_step(user_id, OnboardingStep.TRIGGER_WEBHOOK)
await increment_runs(user_id)
# Execute all triggers concurrently for better performance
tasks = []

View File

@@ -1,8 +1,7 @@
import enum
from typing import Any, Literal, Optional
from typing import Any, Optional
import pydantic
from prisma.enums import OnboardingStep
from backend.data.api_key import APIKeyInfo, APIKeyPermission
from backend.data.graph import Graph
@@ -36,13 +35,8 @@ class WSSubscribeGraphExecutionsRequest(pydantic.BaseModel):
graph_id: str
GraphCreationSource = Literal["builder", "upload"]
GraphExecutionSource = Literal["builder", "library", "onboarding"]
class CreateGraph(pydantic.BaseModel):
graph: Graph
source: GraphCreationSource | None = None
class CreateAPIKeyRequest(pydantic.BaseModel):
@@ -89,8 +83,6 @@ class NotificationPayload(pydantic.BaseModel):
type: str
event: str
model_config = pydantic.ConfigDict(extra="allow")
class OnboardingNotificationPayload(NotificationPayload):
step: OnboardingStep | None
step: str

View File

@@ -5,7 +5,7 @@ import time
import uuid
from collections import defaultdict
from datetime import datetime, timezone
from typing import Annotated, Any, Sequence, get_args
from typing import Annotated, Any, Sequence
import pydantic
import stripe
@@ -45,17 +45,12 @@ from backend.data.credit import (
set_auto_top_up,
)
from backend.data.graph import GraphSettings
from backend.data.model import CredentialsMetaInput, UserOnboarding
from backend.data.model import CredentialsMetaInput
from backend.data.notifications import NotificationPreference, NotificationPreferenceDTO
from backend.data.onboarding import (
FrontendOnboardingStep,
OnboardingStep,
UserOnboardingUpdate,
complete_onboarding_step,
complete_re_run_agent,
get_recommended_agents,
get_user_onboarding,
increment_runs,
onboarding_enabled,
reset_user_onboarding,
update_user_onboarding,
@@ -83,7 +78,6 @@ from backend.server.model import (
CreateAPIKeyRequest,
CreateAPIKeyResponse,
CreateGraph,
GraphExecutionSource,
RequestTopUp,
SetGraphActiveVersion,
TimezoneResponse,
@@ -91,7 +85,6 @@ from backend.server.model import (
UpdateTimezoneRequest,
UploadFileResponse,
)
from backend.server.v2.store.model import StoreAgentDetails
from backend.util.cache import cached
from backend.util.clients import get_scheduler_client
from backend.util.cloud_storage import get_cloud_storage_handler
@@ -281,10 +274,9 @@ async def update_preferences(
@v1_router.get(
"/onboarding",
summary="Onboarding state",
summary="Get onboarding status",
tags=["onboarding"],
dependencies=[Security(requires_user)],
response_model=UserOnboarding,
)
async def get_onboarding(user_id: Annotated[str, Security(get_user_id)]):
return await get_user_onboarding(user_id)
@@ -292,10 +284,9 @@ async def get_onboarding(user_id: Annotated[str, Security(get_user_id)]):
@v1_router.patch(
"/onboarding",
summary="Update onboarding state",
summary="Update onboarding progress",
tags=["onboarding"],
dependencies=[Security(requires_user)],
response_model=UserOnboarding,
)
async def update_onboarding(
user_id: Annotated[str, Security(get_user_id)], data: UserOnboardingUpdate
@@ -303,39 +294,25 @@ async def update_onboarding(
return await update_user_onboarding(user_id, data)
@v1_router.post(
"/onboarding/step",
summary="Complete onboarding step",
tags=["onboarding"],
dependencies=[Security(requires_user)],
)
async def onboarding_complete_step(
user_id: Annotated[str, Security(get_user_id)], step: FrontendOnboardingStep
):
if step not in get_args(FrontendOnboardingStep):
raise HTTPException(status_code=400, detail="Invalid onboarding step")
return await complete_onboarding_step(user_id, step)
@v1_router.get(
"/onboarding/agents",
summary="Recommended onboarding agents",
summary="Get recommended agents",
tags=["onboarding"],
dependencies=[Security(requires_user)],
)
async def get_onboarding_agents(
user_id: Annotated[str, Security(get_user_id)],
) -> list[StoreAgentDetails]:
):
return await get_recommended_agents(user_id)
@v1_router.get(
"/onboarding/enabled",
summary="Is onboarding enabled",
summary="Check onboarding enabled",
tags=["onboarding", "public"],
dependencies=[Security(requires_user)],
)
async def is_onboarding_enabled() -> bool:
async def is_onboarding_enabled():
return await onboarding_enabled()
@@ -344,7 +321,6 @@ async def is_onboarding_enabled() -> bool:
summary="Reset onboarding progress",
tags=["onboarding"],
dependencies=[Security(requires_user)],
response_model=UserOnboarding,
)
async def reset_onboarding(user_id: Annotated[str, Security(get_user_id)]):
return await reset_user_onboarding(user_id)
@@ -833,12 +809,7 @@ async def create_new_graph(
# as the graph already valid and no sub-graphs are returned back.
await graph_db.create_graph(graph, user_id=user_id)
await library_db.create_library_agent(graph, user_id=user_id)
activated_graph = await on_graph_activate(graph, user_id=user_id)
if create_graph.source == "builder":
await complete_onboarding_step(user_id, OnboardingStep.BUILDER_SAVE_AGENT)
return activated_graph
return await on_graph_activate(graph, user_id=user_id)
@v1_router.delete(
@@ -996,7 +967,6 @@ async def execute_graph(
credentials_inputs: Annotated[
dict[str, CredentialsMetaInput], Body(..., embed=True, default_factory=dict)
],
source: Annotated[GraphExecutionSource | None, Body(embed=True)] = None,
graph_version: Optional[int] = None,
preset_id: Optional[str] = None,
) -> execution_db.GraphExecutionMeta:
@@ -1020,14 +990,6 @@ async def execute_graph(
# Record successful graph execution
record_graph_execution(graph_id=graph_id, status="success", user_id=user_id)
record_graph_operation(operation="execute", status="success")
await increment_runs(user_id)
await complete_re_run_agent(user_id, graph_id)
if source == "library":
await complete_onboarding_step(
user_id, OnboardingStep.MARKETPLACE_RUN_AGENT
)
elif source == "builder":
await complete_onboarding_step(user_id, OnboardingStep.BUILDER_RUN_AGENT)
return result
except GraphValidationError as e:
# Record failed graph execution
@@ -1141,15 +1103,6 @@ async def list_graph_executions(
filtered_executions = await hide_activity_summaries_if_disabled(
paginated_result.executions, user_id
)
onboarding = await get_user_onboarding(user_id)
if (
onboarding.onboardingAgentExecutionId
and onboarding.onboardingAgentExecutionId
in [exec.id for exec in filtered_executions]
and OnboardingStep.GET_RESULTS not in onboarding.completedSteps
):
await complete_onboarding_step(user_id, OnboardingStep.GET_RESULTS)
return execution_db.GraphExecutionsPaginated(
executions=filtered_executions, pagination=paginated_result.pagination
)
@@ -1187,12 +1140,6 @@ async def get_graph_execution(
# Apply feature flags to filter out disabled features
result = await hide_activity_summary_if_disabled(result, user_id)
onboarding = await get_user_onboarding(user_id)
if (
onboarding.onboardingAgentExecutionId == graph_exec_id
and OnboardingStep.GET_RESULTS not in onboarding.completedSteps
):
await complete_onboarding_step(user_id, OnboardingStep.GET_RESULTS)
return result
@@ -1369,8 +1316,6 @@ async def create_graph_execution_schedule(
result.next_run_time, user_timezone
)
await complete_onboarding_step(user_id, OnboardingStep.SCHEDULE_AGENT)
return result

View File

@@ -8,10 +8,6 @@ from fastapi import APIRouter, HTTPException, Security
from pydantic import BaseModel, Field
from backend.blocks.llm import LlmModel
from backend.data.analytics import (
AccuracyTrendsResponse,
get_accuracy_trends_and_alerts,
)
from backend.data.execution import (
ExecutionStatus,
GraphExecutionMeta,
@@ -87,18 +83,6 @@ class ExecutionAnalyticsConfig(BaseModel):
recommended_model: str
class AccuracyTrendsRequest(BaseModel):
graph_id: str = Field(..., description="Graph ID to analyze", min_length=1)
user_id: Optional[str] = Field(None, description="Optional user ID filter")
days_back: int = Field(30, description="Number of days to look back", ge=7, le=90)
drop_threshold: float = Field(
10.0, description="Alert threshold percentage", ge=1.0, le=50.0
)
include_historical: bool = Field(
False, description="Include historical data for charts"
)
router = APIRouter(
prefix="/admin",
tags=["admin", "execution_analytics"],
@@ -435,40 +419,3 @@ async def _process_batch(
return await asyncio.gather(
*[process_single_execution(execution) for execution in executions]
)
@router.get(
"/execution_accuracy_trends",
response_model=AccuracyTrendsResponse,
summary="Get Execution Accuracy Trends and Alerts",
)
async def get_execution_accuracy_trends(
graph_id: str,
user_id: Optional[str] = None,
days_back: int = 30,
drop_threshold: float = 10.0,
include_historical: bool = False,
admin_user_id: str = Security(get_user_id),
) -> AccuracyTrendsResponse:
"""
Get execution accuracy trends with moving averages and alert detection.
Simple single-query approach.
"""
logger.info(
f"Admin user {admin_user_id} requesting accuracy trends for graph {graph_id}"
)
try:
result = await get_accuracy_trends_and_alerts(
graph_id=graph_id,
days_back=days_back,
user_id=user_id,
drop_threshold=drop_threshold,
include_historical=include_historical,
)
return result
except Exception as e:
logger.exception(f"Error getting accuracy trends for graph {graph_id}: {e}")
raise HTTPException(status_code=500, detail=str(e))

View File

@@ -1,16 +1,9 @@
import logging
from dataclasses import dataclass
from datetime import datetime, timedelta, timezone
from difflib import SequenceMatcher
from typing import Sequence
import prisma
import backend.data.block
import backend.server.v2.library.db as library_db
import backend.server.v2.library.model as library_model
import backend.server.v2.store.db as store_db
import backend.server.v2.store.model as store_model
from backend.blocks import load_all_blocks
from backend.blocks.llm import LlmModel
from backend.data.block import AnyBlockSchema, BlockCategory, BlockInfo, BlockSchema
@@ -21,36 +14,17 @@ from backend.server.v2.builder.model import (
BlockResponse,
BlockType,
CountResponse,
FilterType,
Provider,
ProviderResponse,
SearchEntry,
SearchBlocksResponse,
)
from backend.util.cache import cached
from backend.util.models import Pagination
logger = logging.getLogger(__name__)
llm_models = [name.name.lower().replace("_", " ") for name in LlmModel]
MAX_LIBRARY_AGENT_RESULTS = 100
MAX_MARKETPLACE_AGENT_RESULTS = 100
MIN_SCORE_FOR_FILTERED_RESULTS = 10.0
SearchResultItem = BlockInfo | library_model.LibraryAgent | store_model.StoreAgent
@dataclass
class _ScoredItem:
item: SearchResultItem
filter_type: FilterType
score: float
sort_key: str
@dataclass
class _SearchCacheEntry:
items: list[SearchResultItem]
total_items: dict[FilterType, int]
_static_counts_cache: dict | None = None
_suggested_blocks: list[BlockInfo] | None = None
def get_block_categories(category_blocks: int = 3) -> list[BlockCategoryResponse]:
@@ -156,244 +130,71 @@ def get_block_by_id(block_id: str) -> BlockInfo | None:
return None
async def update_search(user_id: str, search: SearchEntry) -> str:
def search_blocks(
include_blocks: bool = True,
include_integrations: bool = True,
query: str = "",
page: int = 1,
page_size: int = 50,
) -> SearchBlocksResponse:
"""
Upsert a search request for the user and return the search ID.
Get blocks based on the filter and query.
`providers` only applies for `integrations` filter.
"""
if search.search_id:
# Update existing search
await prisma.models.BuilderSearchHistory.prisma().update(
where={
"id": search.search_id,
},
data={
"searchQuery": search.search_query or "",
"filter": search.filter or [], # type: ignore
"byCreator": search.by_creator or [],
},
)
return search.search_id
else:
# Create new search
new_search = await prisma.models.BuilderSearchHistory.prisma().create(
data={
"userId": user_id,
"searchQuery": search.search_query or "",
"filter": search.filter or [], # type: ignore
"byCreator": search.by_creator or [],
}
)
return new_search.id
blocks: list[AnyBlockSchema] = []
query = query.lower()
async def get_recent_searches(user_id: str, limit: int = 5) -> list[SearchEntry]:
"""
Get the user's most recent search requests.
"""
searches = await prisma.models.BuilderSearchHistory.prisma().find_many(
where={
"userId": user_id,
},
order={
"updatedAt": "desc",
},
take=limit,
)
return [
SearchEntry(
search_query=s.searchQuery,
filter=s.filter, # type: ignore
by_creator=s.byCreator,
search_id=s.id,
)
for s in searches
]
async def get_sorted_search_results(
*,
user_id: str,
search_query: str | None,
filters: Sequence[FilterType],
by_creator: Sequence[str] | None = None,
) -> _SearchCacheEntry:
normalized_filters: tuple[FilterType, ...] = tuple(sorted(set(filters or [])))
normalized_creators: tuple[str, ...] = tuple(sorted(set(by_creator or [])))
return await _build_cached_search_results(
user_id=user_id,
search_query=search_query or "",
filters=normalized_filters,
by_creator=normalized_creators,
)
@cached(ttl_seconds=300, shared_cache=True)
async def _build_cached_search_results(
user_id: str,
search_query: str,
filters: tuple[FilterType, ...],
by_creator: tuple[str, ...],
) -> _SearchCacheEntry:
normalized_query = (search_query or "").strip().lower()
include_blocks = "blocks" in filters
include_integrations = "integrations" in filters
include_library_agents = "my_agents" in filters
include_marketplace_agents = "marketplace_agents" in filters
scored_items: list[_ScoredItem] = []
total_items: dict[FilterType, int] = {
"blocks": 0,
"integrations": 0,
"marketplace_agents": 0,
"my_agents": 0,
}
block_results, block_total, integration_total = _collect_block_results(
normalized_query=normalized_query,
include_blocks=include_blocks,
include_integrations=include_integrations,
)
scored_items.extend(block_results)
total_items["blocks"] = block_total
total_items["integrations"] = integration_total
if include_library_agents:
library_response = await library_db.list_library_agents(
user_id=user_id,
search_term=search_query or None,
page=1,
page_size=MAX_LIBRARY_AGENT_RESULTS,
)
total_items["my_agents"] = library_response.pagination.total_items
scored_items.extend(
_build_library_items(
agents=library_response.agents,
normalized_query=normalized_query,
)
)
if include_marketplace_agents:
marketplace_response = await store_db.get_store_agents(
creators=list(by_creator) or None,
search_query=search_query or None,
page=1,
page_size=MAX_MARKETPLACE_AGENT_RESULTS,
)
total_items["marketplace_agents"] = marketplace_response.pagination.total_items
scored_items.extend(
_build_marketplace_items(
agents=marketplace_response.agents,
normalized_query=normalized_query,
)
)
sorted_items = sorted(
scored_items,
key=lambda entry: (-entry.score, entry.sort_key, entry.filter_type),
)
return _SearchCacheEntry(
items=[entry.item for entry in sorted_items],
total_items=total_items,
)
def _collect_block_results(
*,
normalized_query: str,
include_blocks: bool,
include_integrations: bool,
) -> tuple[list[_ScoredItem], int, int]:
results: list[_ScoredItem] = []
total = 0
skip = (page - 1) * page_size
take = page_size
block_count = 0
integration_count = 0
if not include_blocks and not include_integrations:
return results, block_count, integration_count
for block_type in load_all_blocks().values():
block: AnyBlockSchema = block_type()
# Skip disabled blocks
if block.disabled:
continue
block_info = block.get_info()
# Skip blocks that don't match the query
if (
query not in block.name.lower()
and query not in block.description.lower()
and not _matches_llm_model(block.input_schema, query)
):
continue
keep = False
credentials = list(block.input_schema.get_credentials_fields().values())
is_integration = len(credentials) > 0
if is_integration and not include_integrations:
continue
if not is_integration and not include_blocks:
continue
score = _score_block(block, block_info, normalized_query)
if not _should_include_item(score, normalized_query):
continue
filter_type: FilterType = "integrations" if is_integration else "blocks"
if is_integration:
if include_integrations and len(credentials) > 0:
keep = True
integration_count += 1
else:
if include_blocks and len(credentials) == 0:
keep = True
block_count += 1
results.append(
_ScoredItem(
item=block_info,
filter_type=filter_type,
score=score,
sort_key=_get_item_name(block_info),
)
)
return results, block_count, integration_count
def _build_library_items(
*,
agents: list[library_model.LibraryAgent],
normalized_query: str,
) -> list[_ScoredItem]:
results: list[_ScoredItem] = []
for agent in agents:
score = _score_library_agent(agent, normalized_query)
if not _should_include_item(score, normalized_query):
if not keep:
continue
results.append(
_ScoredItem(
item=agent,
filter_type="my_agents",
score=score,
sort_key=_get_item_name(agent),
)
)
return results
def _build_marketplace_items(
*,
agents: list[store_model.StoreAgent],
normalized_query: str,
) -> list[_ScoredItem]:
results: list[_ScoredItem] = []
for agent in agents:
score = _score_store_agent(agent, normalized_query)
if not _should_include_item(score, normalized_query):
total += 1
if skip > 0:
skip -= 1
continue
if take > 0:
take -= 1
blocks.append(block)
results.append(
_ScoredItem(
item=agent,
filter_type="marketplace_agents",
score=score,
sort_key=_get_item_name(agent),
)
)
return results
return SearchBlocksResponse(
blocks=BlockResponse(
blocks=[b.get_info() for b in blocks],
pagination=Pagination(
total_items=total,
total_pages=(total + page_size - 1) // page_size,
current_page=page,
page_size=page_size,
),
),
total_block_count=block_count,
total_integration_count=integration_count,
)
def get_providers(
@@ -450,12 +251,16 @@ async def get_counts(user_id: str) -> CountResponse:
)
@cached(ttl_seconds=3600)
async def _get_static_counts():
"""
Get counts of blocks, integrations, and marketplace agents.
This is cached to avoid unnecessary database queries and calculations.
Can't use functools.cache here because the function is async.
"""
global _static_counts_cache
if _static_counts_cache is not None:
return _static_counts_cache
all_blocks = 0
input_blocks = 0
action_blocks = 0
@@ -482,7 +287,7 @@ async def _get_static_counts():
marketplace_agents = await prisma.models.StoreAgent.prisma().count()
return {
_static_counts_cache = {
"all_blocks": all_blocks,
"input_blocks": input_blocks,
"action_blocks": action_blocks,
@@ -491,6 +296,8 @@ async def _get_static_counts():
"marketplace_agents": marketplace_agents,
}
return _static_counts_cache
def _matches_llm_model(schema_cls: type[BlockSchema], query: str) -> bool:
for field in schema_cls.model_fields.values():
@@ -501,123 +308,6 @@ def _matches_llm_model(schema_cls: type[BlockSchema], query: str) -> bool:
return False
def _score_block(
block: AnyBlockSchema,
block_info: BlockInfo,
normalized_query: str,
) -> float:
if not normalized_query:
return 0.0
name = block_info.name.lower()
description = block_info.description.lower()
score = _score_primary_fields(name, description, normalized_query)
category_text = " ".join(
category.get("category", "").lower() for category in block_info.categories
)
score += _score_additional_field(category_text, normalized_query, 12, 6)
credentials_info = block.input_schema.get_credentials_fields_info().values()
provider_names = [
provider.value.lower()
for info in credentials_info
for provider in info.provider
]
provider_text = " ".join(provider_names)
score += _score_additional_field(provider_text, normalized_query, 15, 6)
if _matches_llm_model(block.input_schema, normalized_query):
score += 20
return score
def _score_library_agent(
agent: library_model.LibraryAgent,
normalized_query: str,
) -> float:
if not normalized_query:
return 0.0
name = agent.name.lower()
description = (agent.description or "").lower()
instructions = (agent.instructions or "").lower()
score = _score_primary_fields(name, description, normalized_query)
score += _score_additional_field(instructions, normalized_query, 15, 6)
score += _score_additional_field(
agent.creator_name.lower(), normalized_query, 10, 5
)
return score
def _score_store_agent(
agent: store_model.StoreAgent,
normalized_query: str,
) -> float:
if not normalized_query:
return 0.0
name = agent.agent_name.lower()
description = agent.description.lower()
sub_heading = agent.sub_heading.lower()
score = _score_primary_fields(name, description, normalized_query)
score += _score_additional_field(sub_heading, normalized_query, 12, 6)
score += _score_additional_field(agent.creator.lower(), normalized_query, 10, 5)
return score
def _score_primary_fields(name: str, description: str, query: str) -> float:
score = 0.0
if name == query:
score += 120
elif name.startswith(query):
score += 90
elif query in name:
score += 60
score += SequenceMatcher(None, name, query).ratio() * 50
if description:
if query in description:
score += 30
score += SequenceMatcher(None, description, query).ratio() * 25
return score
def _score_additional_field(
value: str,
query: str,
contains_weight: float,
similarity_weight: float,
) -> float:
if not value or not query:
return 0.0
score = 0.0
if query in value:
score += contains_weight
score += SequenceMatcher(None, value, query).ratio() * similarity_weight
return score
def _should_include_item(score: float, normalized_query: str) -> bool:
if not normalized_query:
return True
return score >= MIN_SCORE_FOR_FILTERED_RESULTS
def _get_item_name(item: SearchResultItem) -> str:
if isinstance(item, BlockInfo):
return item.name.lower()
if isinstance(item, library_model.LibraryAgent):
return item.name.lower()
return item.agent_name.lower()
@cached(ttl_seconds=3600)
def _get_all_providers() -> dict[ProviderName, Provider]:
providers: dict[ProviderName, Provider] = {}
@@ -639,9 +329,13 @@ def _get_all_providers() -> dict[ProviderName, Provider]:
return providers
@cached(ttl_seconds=3600)
async def get_suggested_blocks(count: int = 5) -> list[BlockInfo]:
suggested_blocks = []
global _suggested_blocks
if _suggested_blocks is not None and len(_suggested_blocks) >= count:
return _suggested_blocks[:count]
_suggested_blocks = []
# Sum the number of executions for each block type
# Prisma cannot group by nested relations, so we do a raw query
# Calculate the cutoff timestamp
@@ -682,7 +376,7 @@ async def get_suggested_blocks(count: int = 5) -> list[BlockInfo]:
# Sort blocks by execution count
blocks.sort(key=lambda x: x[1], reverse=True)
suggested_blocks = [block[0] for block in blocks]
_suggested_blocks = [block[0] for block in blocks]
# Return the top blocks
return suggested_blocks[:count]
return _suggested_blocks[:count]

View File

@@ -18,17 +18,10 @@ FilterType = Literal[
BlockType = Literal["all", "input", "action", "output"]
class SearchEntry(BaseModel):
search_query: str | None = None
filter: list[FilterType] | None = None
by_creator: list[str] | None = None
search_id: str | None = None
# Suggestions
class SuggestionsResponse(BaseModel):
otto_suggestions: list[str]
recent_searches: list[SearchEntry]
recent_searches: list[str]
providers: list[ProviderName]
top_blocks: list[BlockInfo]
@@ -39,7 +32,7 @@ class BlockCategoryResponse(BaseModel):
total_blocks: int
blocks: list[BlockInfo]
model_config = {"use_enum_values": False} # Use enum names like "AI"
model_config = {"use_enum_values": False} # <== use enum names like "AI"
# Input/Action/Output and see all for block categories
@@ -60,11 +53,17 @@ class ProviderResponse(BaseModel):
pagination: Pagination
class SearchBlocksResponse(BaseModel):
blocks: BlockResponse
total_block_count: int
total_integration_count: int
class SearchResponse(BaseModel):
items: list[BlockInfo | library_model.LibraryAgent | store_model.StoreAgent]
search_id: str
total_items: dict[FilterType, int]
pagination: Pagination
page: int
more_pages: bool
class CountResponse(BaseModel):

View File

@@ -6,6 +6,10 @@ from autogpt_libs.auth.dependencies import get_user_id, requires_user
import backend.server.v2.builder.db as builder_db
import backend.server.v2.builder.model as builder_model
import backend.server.v2.library.db as library_db
import backend.server.v2.library.model as library_model
import backend.server.v2.store.db as store_db
import backend.server.v2.store.model as store_model
from backend.integrations.providers import ProviderName
from backend.util.models import Pagination
@@ -41,9 +45,7 @@ def sanitize_query(query: str | None) -> str | None:
summary="Get Builder suggestions",
response_model=builder_model.SuggestionsResponse,
)
async def get_suggestions(
user_id: Annotated[str, fastapi.Security(get_user_id)],
) -> builder_model.SuggestionsResponse:
async def get_suggestions() -> builder_model.SuggestionsResponse:
"""
Get all suggestions for the Blocks Menu.
"""
@@ -53,7 +55,11 @@ async def get_suggestions(
"Help me create a list",
"Help me feed my data to Google Maps",
],
recent_searches=await builder_db.get_recent_searches(user_id),
recent_searches=[
"image generation",
"deepfake",
"competitor analysis",
],
providers=[
ProviderName.TWITTER,
ProviderName.GITHUB,
@@ -141,6 +147,7 @@ async def get_providers(
)
# Not using post method because on frontend, orval doesn't support Infinite Query with POST method.
@router.get(
"/search",
summary="Builder search",
@@ -150,7 +157,7 @@ async def get_providers(
async def search(
user_id: Annotated[str, fastapi.Security(get_user_id)],
search_query: Annotated[str | None, fastapi.Query()] = None,
filter: Annotated[list[builder_model.FilterType] | None, fastapi.Query()] = None,
filter: Annotated[list[str] | None, fastapi.Query()] = None,
search_id: Annotated[str | None, fastapi.Query()] = None,
by_creator: Annotated[list[str] | None, fastapi.Query()] = None,
page: Annotated[int, fastapi.Query()] = 1,
@@ -169,43 +176,69 @@ async def search(
]
search_query = sanitize_query(search_query)
# Get all possible results
cached_results = await builder_db.get_sorted_search_results(
user_id=user_id,
search_query=search_query,
filters=filter,
by_creator=by_creator,
)
# Paginate results
total_combined_items = len(cached_results.items)
pagination = Pagination(
total_items=total_combined_items,
total_pages=(total_combined_items + page_size - 1) // page_size,
current_page=page,
page_size=page_size,
)
start_idx = (page - 1) * page_size
end_idx = start_idx + page_size
paginated_items = cached_results.items[start_idx:end_idx]
# Update the search entry by id
search_id = await builder_db.update_search(
user_id,
builder_model.SearchEntry(
search_query=search_query,
filter=filter,
by_creator=by_creator,
search_id=search_id,
# Blocks&Integrations
blocks = builder_model.SearchBlocksResponse(
blocks=builder_model.BlockResponse(
blocks=[],
pagination=Pagination.empty(),
),
total_block_count=0,
total_integration_count=0,
)
if "blocks" in filter or "integrations" in filter:
blocks = builder_db.search_blocks(
include_blocks="blocks" in filter,
include_integrations="integrations" in filter,
query=search_query or "",
page=page,
page_size=page_size,
)
# Library Agents
my_agents = library_model.LibraryAgentResponse(
agents=[],
pagination=Pagination.empty(),
)
if "my_agents" in filter:
my_agents = await library_db.list_library_agents(
user_id=user_id,
search_term=search_query,
page=page,
page_size=page_size,
)
# Marketplace Agents
marketplace_agents = store_model.StoreAgentsResponse(
agents=[],
pagination=Pagination.empty(),
)
if "marketplace_agents" in filter:
marketplace_agents = await store_db.get_store_agents(
creators=by_creator,
search_query=search_query,
page=page,
page_size=page_size,
)
more_pages = False
if (
blocks.blocks.pagination.current_page < blocks.blocks.pagination.total_pages
or my_agents.pagination.current_page < my_agents.pagination.total_pages
or marketplace_agents.pagination.current_page
< marketplace_agents.pagination.total_pages
):
more_pages = True
return builder_model.SearchResponse(
items=paginated_items,
search_id=search_id,
total_items=cached_results.total_items,
pagination=pagination,
items=blocks.blocks.blocks + my_agents.agents + marketplace_agents.agents,
total_items={
"blocks": blocks.total_block_count,
"integrations": blocks.total_integration_count,
"marketplace_agents": marketplace_agents.pagination.total_items,
"my_agents": my_agents.pagination.total_items,
},
page=page,
more_pages=more_pages,
)

View File

@@ -1,4 +1,3 @@
import functools
import logging
from collections.abc import AsyncGenerator
from datetime import UTC, datetime
@@ -33,12 +32,7 @@ from backend.util.exceptions import NotFoundError
logger = logging.getLogger(__name__)
config = backend.server.v2.chat.config.ChatConfig()
@functools.cache
def get_openai_client() -> AsyncOpenAI:
"""Lazily create the OpenAI client singleton."""
return AsyncOpenAI(api_key=config.api_key, base_url=config.base_url)
client = AsyncOpenAI(api_key=config.api_key, base_url=config.base_url)
async def create_chat_session(
@@ -361,7 +355,7 @@ async def _stream_chat_chunks(
logger.info("Creating OpenAI chat completion stream...")
# Create the stream with proper types
stream = await get_openai_client().chat.completions.create(
stream = await client.chat.completions.create(
model=model,
messages=session.to_openai_messages(),
tools=tools,

View File

@@ -23,7 +23,7 @@ logger = logging.getLogger(__name__)
router = APIRouter(
tags=["v2", "executions", "review"],
tags=["executions", "review", "private"],
dependencies=[Security(autogpt_auth_lib.requires_user)],
)
@@ -134,14 +134,18 @@ async def process_review_action(
# Build review decisions map
review_decisions = {}
for review in request.reviews:
review_status = (
ReviewStatus.APPROVED if review.approved else ReviewStatus.REJECTED
)
review_decisions[review.node_exec_id] = (
review_status,
review.reviewed_data,
review.message,
)
if review.approved:
review_decisions[review.node_exec_id] = (
ReviewStatus.APPROVED,
review.reviewed_data,
review.message,
)
else:
review_decisions[review.node_exec_id] = (
ReviewStatus.REJECTED,
None,
review.message,
)
# Process all reviews
updated_reviews = await process_all_reviews_for_execution(

View File

@@ -1,15 +1,13 @@
import logging
from typing import Literal, Optional
from typing import Optional
import autogpt_libs.auth as autogpt_auth_lib
from fastapi import APIRouter, Body, HTTPException, Query, Security, status
from fastapi.responses import Response
from prisma.enums import OnboardingStep
import backend.server.v2.library.db as library_db
import backend.server.v2.library.model as library_model
import backend.server.v2.store.exceptions as store_exceptions
from backend.data.onboarding import complete_onboarding_step
from backend.util.exceptions import DatabaseError, NotFoundError
logger = logging.getLogger(__name__)
@@ -202,9 +200,6 @@ async def get_library_agent_by_store_listing_version_id(
)
async def add_marketplace_agent_to_library(
store_listing_version_id: str = Body(embed=True),
source: Literal["onboarding", "marketplace"] = Body(
default="marketplace", embed=True
),
user_id: str = Security(autogpt_auth_lib.get_user_id),
) -> library_model.LibraryAgent:
"""
@@ -222,15 +217,10 @@ async def add_marketplace_agent_to_library(
HTTPException(500): If a server/database error occurs.
"""
try:
agent = await library_db.add_store_agent_to_library(
return await library_db.add_store_agent_to_library(
store_listing_version_id=store_listing_version_id,
user_id=user_id,
)
if source != "onboarding":
await complete_onboarding_step(
user_id, OnboardingStep.MARKETPLACE_ADD_AGENT
)
return agent
except store_exceptions.AgentNotFoundError as e:
logger.warning(

View File

@@ -10,7 +10,6 @@ from backend.data.execution import GraphExecutionMeta
from backend.data.graph import get_graph
from backend.data.integrations import get_webhook
from backend.data.model import CredentialsMetaInput
from backend.data.onboarding import increment_runs
from backend.executor.utils import add_graph_execution, make_node_credentials_input_map
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.integrations.webhooks import get_webhook_manager
@@ -402,8 +401,6 @@ async def execute_preset(
merged_node_input = preset.inputs | inputs
merged_credential_inputs = preset.credentials | credential_inputs
await increment_runs(user_id)
return await add_graph_execution(
user_id=user_id,
graph_id=preset.graph_id,

View File

@@ -1,6 +1,5 @@
import datetime
import json
from unittest.mock import AsyncMock
import fastapi.testclient
import pytest
@@ -226,10 +225,6 @@ def test_add_agent_to_library_success(
"backend.server.v2.library.db.add_store_agent_to_library"
)
mock_db_call.return_value = mock_library_agent
mock_complete_onboarding = mocker.patch(
"backend.server.v2.library.routes.agents.complete_onboarding_step",
new_callable=AsyncMock,
)
response = client.post(
"/agents", json={"store_listing_version_id": "test-version-id"}
@@ -244,7 +239,6 @@ def test_add_agent_to_library_success(
mock_db_call.assert_called_once_with(
store_listing_version_id="test-version-id", user_id=test_user_id
)
mock_complete_onboarding.assert_awaited_once()
def test_add_agent_to_library_error(mocker: pytest_mock.MockFixture, test_user_id: str):

View File

@@ -16,7 +16,7 @@ import logging
import sys
from backend.data.db import connect, disconnect, query_raw_with_schema
from backend.integrations.embeddings import create_search_text, get_embedding_service
from backend.integrations.embeddings import EmbeddingService, create_search_text
logging.basicConfig(
level=logging.INFO,
@@ -48,7 +48,7 @@ async def backfill_embeddings(
await connect()
try:
embedding_service = get_embedding_service()
embedding_service = EmbeddingService()
# Get all versions without embeddings
versions = await query_raw_with_schema(

View File

@@ -27,9 +27,8 @@ async def _get_cached_store_agents(
category: str | None,
page: int,
page_size: int,
filter_mode: Literal["strict", "permissive", "combined"] = "permissive",
):
"""Cached helper to get store agents with hybrid search support."""
"""Cached helper to get store agents."""
return await backend.server.v2.store.db.get_store_agents(
featured=featured,
creators=[creator] if creator else None,
@@ -38,7 +37,6 @@ async def _get_cached_store_agents(
category=category,
page=page,
page_size=page_size,
filter_mode=filter_mode,
)

View File

@@ -39,25 +39,6 @@ settings = Settings()
DEFAULT_ADMIN_NAME = "AutoGPT Admin"
DEFAULT_ADMIN_EMAIL = "admin@autogpt.co"
# Minimum similarity threshold for vector search results
# Cosine similarity ranges from -1 to 1, where 1 is identical
# 0.4 filters loosely related results while keeping semantically relevant ones
VECTOR_SEARCH_SIMILARITY_THRESHOLD = 0.4
# Minimum relevance threshold for BM25 full-text search results
# ts_rank_cd returns values typically in range 0-1 (can exceed 1 for exact matches)
# 0.05 allows partial keyword matches
BM25_RELEVANCE_THRESHOLD = 0.05
# RRF constant (k) - standard value that balances influence of top vs lower ranks
# Higher k values reduce the influence of high-ranking items
RRF_K = 60
# Minimum RRF score threshold for combined mode
# Filters out results that rank poorly across all signals
# For reference: rank #1 in all = ~0.041, rank #100 in all = ~0.016
RRF_SCORE_THRESHOLD = 0.02
async def get_store_agents(
featured: bool = False,
@@ -67,223 +48,75 @@ async def get_store_agents(
category: str | None = None,
page: int = 1,
page_size: int = 20,
filter_mode: Literal["strict", "permissive", "combined"] = "permissive",
) -> backend.server.v2.store.model.StoreAgentsResponse:
"""
Get PUBLIC store agents from the StoreAgent view.
When search_query is provided, uses hybrid search combining:
- BM25 full-text search (lexical matching via PostgreSQL tsvector)
- Vector semantic similarity (meaning-based matching via pgvector)
- Popularity signal (run counts as PageRank proxy)
Results are ranked using Reciprocal Rank Fusion (RRF).
Args:
featured: Filter to only show featured agents.
creators: Filter agents by creator usernames.
sorted_by: Sort agents by "runs", "rating", "name", or "updated_at".
search_query: Search query for hybrid search.
category: Filter agents by category.
page: Page number for pagination.
page_size: Number of agents per page.
filter_mode: Controls how results are filtered when searching:
- "strict": Must match BOTH BM25 AND vector thresholds
- "permissive": Must match EITHER BM25 OR vector threshold
- "combined": No threshold filtering, rely on RRF score (default)
Returns:
StoreAgentsResponse with paginated list of agents.
Get PUBLIC store agents from the StoreAgent view
"""
logger.debug(
f"Getting store agents. featured={featured}, creators={creators}, "
f"sorted_by={sorted_by}, search={search_query}, category={category}, "
f"page={page}, filter_mode={filter_mode}"
f"Getting store agents. featured={featured}, creators={creators}, sorted_by={sorted_by}, search={search_query}, category={category}, page={page}"
)
try:
# If search_query is provided, use hybrid search (BM25 + vector + popularity)
# If search_query is provided, use vector similarity search
if search_query:
offset = (page - 1) * page_size
# Try to generate embedding for vector search
# Falls back to BM25-only if embedding service is not available
query_embedding: list[float] | None = None
try:
embedding_service = get_embedding_service()
query_embedding = await embedding_service.generate_embedding(
search_query
)
except (ValueError, Exception) as e:
# Embedding service not configured or failed - use BM25 only
logger.warning(f"Embedding generation failed, using BM25 only: {e}")
# Generate embedding for search query
embedding_service = await get_embedding_service()
query_embedding = await embedding_service.generate_embedding(search_query)
# Convert embedding to PostgreSQL array format
embedding_str = "[" + ",".join(map(str, query_embedding)) + "]"
# Convert embedding to PostgreSQL array format (or None for BM25-only)
embedding_str = (
"[" + ",".join(map(str, query_embedding)) + "]"
if query_embedding
else None
)
# Whitelist allowed order_by columns
# For vector search, we use similarity instead of rank
ALLOWED_ORDER_BY = {
"rating": "rating DESC, similarity DESC",
"runs": "runs DESC, similarity DESC",
"name": "agent_name ASC, similarity DESC",
"updated_at": "updated_at DESC, similarity DESC",
}
# Validate and get order clause
if sorted_by and sorted_by in ALLOWED_ORDER_BY:
order_by_clause = ALLOWED_ORDER_BY[sorted_by]
else:
# Default: order by vector similarity (most similar first)
order_by_clause = "similarity DESC, updated_at DESC"
# Build WHERE conditions and parameters list
# When embedding is not available (no OpenAI key), $1 will be NULL
where_parts: list[str] = []
params: list[typing.Any] = [embedding_str] # $1 - query embedding (or NULL)
params: list[typing.Any] = [embedding_str] # $1 - query embedding
param_index = 2 # Start at $2 for next parameter
# Always filter for available agents
# Always filter for available agents and agents with embeddings
where_parts.append("is_available = true")
# Require search signals to be present
if embedding_str is None:
# No embedding available - require BM25 search only
where_parts.append("search IS NOT NULL")
elif filter_mode == "strict":
# Strict mode: require both embedding AND search to be available
where_parts.append("embedding IS NOT NULL")
where_parts.append("search IS NOT NULL")
else:
# Permissive/combined: require at least one signal
where_parts.append("(embedding IS NOT NULL OR search IS NOT NULL)")
where_parts.append("embedding IS NOT NULL")
if featured:
where_parts.append("featured = true")
if creators:
if creators and creators:
# Use ANY with array parameter
where_parts.append(f"creator_username = ANY(${param_index})")
params.append(creators)
param_index += 1
if category:
if category and category:
where_parts.append(f"${param_index} = ANY(categories)")
params.append(category)
param_index += 1
# Add search query for BM25
params.append(search_query)
bm25_query_param = f"${param_index}"
param_index += 1
sql_where_clause: str = " AND ".join(where_parts) if where_parts else "1=1"
# Build score filter based on filter_mode
# This filter is applied BEFORE RRF ranking in the filtered_agents CTE
if embedding_str is None:
# No embedding - filter only on BM25 score
score_filter = f"bm25_score >= {BM25_RELEVANCE_THRESHOLD}"
elif filter_mode == "strict":
score_filter = f"""
bm25_score >= {BM25_RELEVANCE_THRESHOLD}
AND vector_score >= {VECTOR_SEARCH_SIMILARITY_THRESHOLD}
"""
elif filter_mode == "permissive":
score_filter = f"""
bm25_score >= {BM25_RELEVANCE_THRESHOLD}
OR vector_score >= {VECTOR_SEARCH_SIMILARITY_THRESHOLD}
"""
else: # combined - no pre-filtering on individual scores
score_filter = "1=1"
# RRF score filter is applied AFTER ranking to filter irrelevant results
rrf_score_filter = f"rrf_score >= {RRF_SCORE_THRESHOLD}"
# Build ORDER BY clause - sorted_by takes precedence, rrf_score as secondary
if sorted_by == "rating":
order_by_clause = "rating DESC, rrf_score DESC"
elif sorted_by == "runs":
order_by_clause = "runs DESC, rrf_score DESC"
elif sorted_by == "name":
order_by_clause = "agent_name ASC, rrf_score DESC"
elif sorted_by == "updated_at":
order_by_clause = "updated_at DESC, rrf_score DESC"
else:
# Default: order by RRF relevance score
order_by_clause = "rrf_score DESC, updated_at DESC"
# Add pagination params
params.extend([page_size, offset])
limit_param = f"${param_index}"
offset_param = f"${param_index + 1}"
# Hybrid search SQL with Reciprocal Rank Fusion (RRF)
# CTEs: scored_agents -> filtered_agents -> ranked_agents -> rrf_scored
# Vector similarity search query using cosine distance
# The <=> operator returns cosine distance (0 = identical, 2 = opposite)
# We convert to similarity: 1 - distance/2 gives range [0, 1]
sql_query = f"""
WITH scored_agents AS (
SELECT
slug,
agent_name,
agent_image,
creator_username,
creator_avatar,
sub_heading,
description,
runs,
rating,
categories,
featured,
is_available,
updated_at,
-- BM25 score using ts_rank_cd (covers density normalization)
COALESCE(
ts_rank_cd(
search,
plainto_tsquery('english', {bm25_query_param}),
32 -- normalization: divide by document length
),
0
) AS bm25_score,
-- Vector similarity score (cosine: 1 - distance)
-- Returns 0 when query embedding ($1) is NULL (no OpenAI key)
CASE
WHEN $1 IS NOT NULL AND embedding IS NOT NULL
THEN 1 - (embedding <=> $1::vector)
ELSE 0
END AS vector_score,
-- Popularity score (log-normalized run count)
CASE
WHEN runs > 0
THEN LN(runs + 1)
ELSE 0
END AS popularity_score
FROM {{schema_prefix}}"StoreAgent"
WHERE {sql_where_clause}
),
max_popularity AS (
SELECT GREATEST(MAX(popularity_score), 1) AS max_pop
FROM scored_agents
),
normalized_agents AS (
SELECT
sa.*,
-- Normalize popularity to [0, 1] range
sa.popularity_score / mp.max_pop AS norm_popularity_score
FROM scored_agents sa
CROSS JOIN max_popularity mp
),
filtered_agents AS (
SELECT *
FROM normalized_agents
WHERE {score_filter}
),
ranked_agents AS (
SELECT
*,
ROW_NUMBER() OVER (ORDER BY bm25_score DESC NULLS LAST) AS bm25_rank,
ROW_NUMBER() OVER (ORDER BY vector_score DESC NULLS LAST) AS vector_rank,
ROW_NUMBER() OVER (ORDER BY norm_popularity_score DESC NULLS LAST) AS popularity_rank
FROM filtered_agents
),
rrf_scored AS (
SELECT
*,
-- RRF formula with weighted contributions
-- BM25 and vector get full weight, popularity gets 0.5x weight
(1.0 / ({RRF_K} + bm25_rank)) +
(1.0 / ({RRF_K} + vector_rank)) +
(0.5 / ({RRF_K} + popularity_rank)) AS rrf_score
FROM ranked_agents
)
SELECT
slug,
agent_name,
@@ -298,79 +131,21 @@ async def get_store_agents(
featured,
is_available,
updated_at,
rrf_score
FROM rrf_scored
WHERE {rrf_score_filter}
1 - (embedding <=> $1::vector) AS similarity
FROM {{schema_prefix}}"StoreAgent"
WHERE {sql_where_clause}
ORDER BY {order_by_clause}
LIMIT {limit_param} OFFSET {offset_param}
"""
# Count query (without pagination) - requires same CTE structure because:
# 1. RRF scoring requires computing ranks across ALL matching results
# 2. The rrf_score_filter threshold must be applied consistently
# Note: This is inherent to RRF - there's no way to count without ranking
# Count query for pagination
count_query = f"""
WITH scored_agents AS (
SELECT
runs,
COALESCE(
ts_rank_cd(
search,
plainto_tsquery('english', {bm25_query_param}),
32
),
0
) AS bm25_score,
CASE
WHEN $1 IS NOT NULL AND embedding IS NOT NULL
THEN 1 - (embedding <=> $1::vector)
ELSE 0
END AS vector_score,
CASE
WHEN runs > 0
THEN LN(runs + 1)
ELSE 0
END AS popularity_score
FROM {{schema_prefix}}"StoreAgent"
WHERE {sql_where_clause}
),
max_popularity AS (
SELECT GREATEST(MAX(popularity_score), 1) AS max_pop
FROM scored_agents
),
normalized_agents AS (
SELECT
sa.*,
sa.popularity_score / mp.max_pop AS norm_popularity_score
FROM scored_agents sa
CROSS JOIN max_popularity mp
),
filtered_agents AS (
SELECT *
FROM normalized_agents
WHERE {score_filter}
),
ranked_agents AS (
SELECT
*,
ROW_NUMBER() OVER (ORDER BY bm25_score DESC NULLS LAST) AS bm25_rank,
ROW_NUMBER() OVER (ORDER BY vector_score DESC NULLS LAST) AS vector_rank,
ROW_NUMBER() OVER (ORDER BY norm_popularity_score DESC NULLS LAST) AS popularity_rank
FROM filtered_agents
),
rrf_scored AS (
SELECT
(1.0 / ({RRF_K} + bm25_rank)) +
(1.0 / ({RRF_K} + vector_rank)) +
(0.5 / ({RRF_K} + popularity_rank)) AS rrf_score
FROM ranked_agents
)
SELECT COUNT(*) as count
FROM rrf_scored
WHERE {rrf_score_filter}
FROM {{schema_prefix}}"StoreAgent"
WHERE {sql_where_clause}
"""
# Execute queries
# Execute both queries with parameters
agents = await query_raw_with_schema(sql_query, *params)
# For count, use params without pagination (last 2 params)
@@ -507,7 +282,7 @@ async def _generate_and_store_embedding(
description: The agent description.
"""
try:
embedding_service = get_embedding_service()
embedding_service = await get_embedding_service()
search_text = create_search_text(name, sub_heading, description)
if not search_text:
@@ -610,7 +385,6 @@ async def get_store_agent_details(
slug=agent.slug,
agent_name=agent.agent_name,
agent_video=agent.agent_video or "",
agent_output_demo=agent.agent_output_demo or "",
agent_image=agent.agent_image,
creator=agent.creator_username or "",
creator_avatar=agent.creator_avatar or "",
@@ -681,7 +455,6 @@ async def get_store_agent_by_version_id(
slug=agent.slug,
agent_name=agent.agent_name,
agent_video=agent.agent_video or "",
agent_output_demo=agent.agent_output_demo or "",
agent_image=agent.agent_image,
creator=agent.creator_username or "",
creator_avatar=agent.creator_avatar or "",
@@ -968,7 +741,6 @@ async def create_store_submission(
slug: str,
name: str,
video_url: str | None = None,
agent_output_demo_url: str | None = None,
image_urls: list[str] = [],
description: str = "",
instructions: str | None = None,
@@ -1063,7 +835,6 @@ async def create_store_submission(
agentGraphVersion=agent_version,
name=name,
videoUrl=video_url,
agentOutputDemoUrl=agent_output_demo_url,
imageUrls=image_urls,
description=description,
instructions=instructions,
@@ -1142,7 +913,6 @@ async def edit_store_submission(
store_listing_version_id: str,
name: str,
video_url: str | None = None,
agent_output_demo_url: str | None = None,
image_urls: list[str] = [],
description: str = "",
sub_heading: str = "",
@@ -1224,7 +994,6 @@ async def edit_store_submission(
store_listing_id=current_version.storeListingId,
name=name,
video_url=video_url,
agent_output_demo_url=agent_output_demo_url,
image_urls=image_urls,
description=description,
sub_heading=sub_heading,
@@ -1242,7 +1011,6 @@ async def edit_store_submission(
data=prisma.types.StoreListingVersionUpdateInput(
name=name,
videoUrl=video_url,
agentOutputDemoUrl=agent_output_demo_url,
imageUrls=image_urls,
description=description,
categories=categories,
@@ -1310,7 +1078,6 @@ async def create_store_version(
store_listing_id: str,
name: str,
video_url: str | None = None,
agent_output_demo_url: str | None = None,
image_urls: list[str] = [],
description: str = "",
instructions: str | None = None,
@@ -1380,7 +1147,6 @@ async def create_store_version(
agentGraphVersion=agent_version,
name=name,
videoUrl=video_url,
agentOutputDemoUrl=agent_output_demo_url,
imageUrls=image_urls,
description=description,
instructions=instructions,

View File

@@ -407,12 +407,12 @@ async def test_get_store_agents_search_category_array_injection():
assert isinstance(result.agents, list)
# Hybrid search tests (BM25 + vector + popularity with RRF ranking)
# Vector search tests
@pytest.mark.asyncio(loop_scope="session")
async def test_get_store_agents_hybrid_search_mocked(mocker):
"""Test hybrid search uses embedding service and executes query safely."""
async def test_get_store_agents_vector_search_mocked(mocker):
"""Test vector search uses embedding service and executes query safely."""
from backend.integrations.embeddings import EMBEDDING_DIMENSIONS
# Mock embedding service
@@ -423,7 +423,7 @@ async def test_get_store_agents_hybrid_search_mocked(mocker):
)
mocker.patch(
"backend.server.v2.store.db.get_embedding_service",
mocker.MagicMock(return_value=mock_embedding_service),
mocker.AsyncMock(return_value=mock_embedding_service),
)
# Mock query_raw_with_schema to return empty results
@@ -444,8 +444,8 @@ async def test_get_store_agents_hybrid_search_mocked(mocker):
@pytest.mark.asyncio(loop_scope="session")
async def test_get_store_agents_hybrid_search_with_results(mocker):
"""Test hybrid search returns properly formatted results with RRF scoring."""
async def test_get_store_agents_vector_search_with_results(mocker):
"""Test vector search returns properly formatted results."""
from backend.integrations.embeddings import EMBEDDING_DIMENSIONS
# Mock embedding service
@@ -456,10 +456,10 @@ async def test_get_store_agents_hybrid_search_with_results(mocker):
)
mocker.patch(
"backend.server.v2.store.db.get_embedding_service",
mocker.MagicMock(return_value=mock_embedding_service),
mocker.AsyncMock(return_value=mock_embedding_service),
)
# Mock query results (hybrid search returns rrf_score instead of similarity)
# Mock query results
mock_agents = [
{
"slug": "test-agent",
@@ -475,7 +475,7 @@ async def test_get_store_agents_hybrid_search_with_results(mocker):
"featured": False,
"is_available": True,
"updated_at": datetime.now(),
"rrf_score": 0.048, # RRF score from combined rankings
"similarity": 0.95,
}
]
mock_count = [{"count": 1}]
@@ -496,8 +496,8 @@ async def test_get_store_agents_hybrid_search_with_results(mocker):
@pytest.mark.asyncio(loop_scope="session")
async def test_get_store_agents_hybrid_search_with_filters(mocker):
"""Test hybrid search works correctly with additional filters."""
async def test_get_store_agents_vector_search_with_filters(mocker):
"""Test vector search works correctly with additional filters."""
from backend.integrations.embeddings import EMBEDDING_DIMENSIONS
# Mock embedding service
@@ -508,7 +508,7 @@ async def test_get_store_agents_hybrid_search_with_filters(mocker):
)
mocker.patch(
"backend.server.v2.store.db.get_embedding_service",
mocker.MagicMock(return_value=mock_embedding_service),
mocker.AsyncMock(return_value=mock_embedding_service),
)
# Mock query_raw_with_schema
@@ -523,6 +523,7 @@ async def test_get_store_agents_hybrid_search_with_filters(mocker):
featured=True,
creators=["creator1", "creator2"],
category="AI",
sorted_by="rating",
)
# Verify query was called with parameterized values
@@ -533,124 +534,13 @@ async def test_get_store_agents_hybrid_search_with_filters(mocker):
first_call_args = mock_query.call_args_list[0]
sql_query = first_call_args[0][0]
# Verify key elements of hybrid search query
assert "embedding <=> $1::vector" in sql_query # Vector search
assert "ts_rank_cd" in sql_query # BM25 search
assert "rrf_score" in sql_query # RRF ranking
# Verify key elements of the query
assert "embedding <=> $1::vector" in sql_query
assert "featured = true" in sql_query
assert "creator_username = ANY($" in sql_query
assert "= ANY(categories)" in sql_query
@pytest.mark.asyncio(loop_scope="session")
async def test_get_store_agents_hybrid_search_strict_filter_mode(mocker):
"""Test hybrid search with strict filter mode requires both BM25 and vector matches."""
from backend.integrations.embeddings import EMBEDDING_DIMENSIONS
# Mock embedding service
mock_embedding = [0.1] * EMBEDDING_DIMENSIONS
mock_embedding_service = mocker.MagicMock()
mock_embedding_service.generate_embedding = mocker.AsyncMock(
return_value=mock_embedding
)
mocker.patch(
"backend.server.v2.store.db.get_embedding_service",
mocker.MagicMock(return_value=mock_embedding_service),
)
# Mock query_raw_with_schema
mock_query = mocker.patch(
"backend.server.v2.store.db.query_raw_with_schema",
mocker.AsyncMock(side_effect=[[], [{"count": 0}]]),
)
# Call function with strict filter mode
await db.get_store_agents(search_query="test query", filter_mode="strict")
# Check that the SQL query includes strict filtering conditions
first_call_args = mock_query.call_args_list[0]
sql_query = first_call_args[0][0]
# Strict mode requires both embedding AND search to be present
assert "embedding IS NOT NULL" in sql_query
assert "search IS NOT NULL" in sql_query
# Strict score filter requires both thresholds to be met
assert "bm25_score >=" in sql_query
assert "AND vector_score >=" in sql_query
@pytest.mark.asyncio(loop_scope="session")
async def test_get_store_agents_hybrid_search_permissive_filter_mode(mocker):
"""Test hybrid search with permissive filter mode requires either BM25 or vector match."""
from backend.integrations.embeddings import EMBEDDING_DIMENSIONS
# Mock embedding service
mock_embedding = [0.1] * EMBEDDING_DIMENSIONS
mock_embedding_service = mocker.MagicMock()
mock_embedding_service.generate_embedding = mocker.AsyncMock(
return_value=mock_embedding
)
mocker.patch(
"backend.server.v2.store.db.get_embedding_service",
mocker.MagicMock(return_value=mock_embedding_service),
)
# Mock query_raw_with_schema
mock_query = mocker.patch(
"backend.server.v2.store.db.query_raw_with_schema",
mocker.AsyncMock(side_effect=[[], [{"count": 0}]]),
)
# Call function with permissive filter mode
await db.get_store_agents(search_query="test query", filter_mode="permissive")
# Check that the SQL query includes permissive filtering conditions
first_call_args = mock_query.call_args_list[0]
sql_query = first_call_args[0][0]
# Permissive mode requires at least one signal
assert "(embedding IS NOT NULL OR search IS NOT NULL)" in sql_query
# Permissive score filter requires either threshold to be met
assert "OR vector_score >=" in sql_query
@pytest.mark.asyncio(loop_scope="session")
async def test_get_store_agents_hybrid_search_combined_filter_mode(mocker):
"""Test hybrid search with combined filter mode (default) filters by RRF score."""
from backend.integrations.embeddings import EMBEDDING_DIMENSIONS
# Mock embedding service
mock_embedding = [0.1] * EMBEDDING_DIMENSIONS
mock_embedding_service = mocker.MagicMock()
mock_embedding_service.generate_embedding = mocker.AsyncMock(
return_value=mock_embedding
)
mocker.patch(
"backend.server.v2.store.db.get_embedding_service",
mocker.MagicMock(return_value=mock_embedding_service),
)
# Mock query_raw_with_schema
mock_query = mocker.patch(
"backend.server.v2.store.db.query_raw_with_schema",
mocker.AsyncMock(side_effect=[[], [{"count": 0}]]),
)
# Call function with combined filter mode (default)
await db.get_store_agents(search_query="test query", filter_mode="combined")
# Check that the SQL query includes combined filtering
first_call_args = mock_query.call_args_list[0]
sql_query = first_call_args[0][0]
# Combined mode requires at least one signal
assert "(embedding IS NOT NULL OR search IS NOT NULL)" in sql_query
# Combined mode uses "1=1" as pre-filter (no individual score filtering)
# But applies RRF score threshold to filter irrelevant results
assert "rrf_score" in sql_query
assert "rrf_score >=" in sql_query # RRF threshold filter applied
@pytest.mark.asyncio(loop_scope="session")
async def test_generate_and_store_embedding_success(mocker):
"""Test that embedding generation and storage works correctly."""
@@ -664,7 +554,7 @@ async def test_generate_and_store_embedding_success(mocker):
)
mocker.patch(
"backend.server.v2.store.db.get_embedding_service",
mocker.MagicMock(return_value=mock_embedding_service),
mocker.AsyncMock(return_value=mock_embedding_service),
)
# Mock query_raw_with_schema
@@ -702,7 +592,7 @@ async def test_generate_and_store_embedding_empty_text(mocker):
mock_embedding_service.generate_embedding = mocker.AsyncMock()
mocker.patch(
"backend.server.v2.store.db.get_embedding_service",
mocker.MagicMock(return_value=mock_embedding_service),
mocker.AsyncMock(return_value=mock_embedding_service),
)
# Mock query_raw_with_schema
@@ -736,7 +626,7 @@ async def test_generate_and_store_embedding_handles_error(mocker):
)
mocker.patch(
"backend.server.v2.store.db.get_embedding_service",
mocker.MagicMock(return_value=mock_embedding_service),
mocker.AsyncMock(return_value=mock_embedding_service),
)
# Call should not raise - errors are logged but not propagated

View File

@@ -1,5 +1,4 @@
import datetime
from enum import Enum
from typing import List
import prisma.enums
@@ -8,19 +7,6 @@ import pydantic
from backend.util.models import Pagination
class SearchFilterMode(str, Enum):
"""How to combine BM25 and vector search results for filtering.
- STRICT: Must pass BOTH BM25 AND vector similarity thresholds
- PERMISSIVE: Must pass EITHER BM25 OR vector similarity threshold
- COMBINED: No pre-filtering, only the combined RRF score matters (default)
"""
STRICT = "strict"
PERMISSIVE = "permissive"
COMBINED = "combined"
class MyAgent(pydantic.BaseModel):
agent_id: str
agent_version: int
@@ -58,7 +44,6 @@ class StoreAgentDetails(pydantic.BaseModel):
slug: str
agent_name: str
agent_video: str
agent_output_demo: str
agent_image: list[str]
creator: str
creator_avatar: str
@@ -136,7 +121,6 @@ class StoreSubmission(pydantic.BaseModel):
# Additional fields for editing
video_url: str | None = None
agent_output_demo_url: str | None = None
categories: list[str] = []
@@ -173,7 +157,6 @@ class StoreSubmissionRequest(pydantic.BaseModel):
name: str
sub_heading: str
video_url: str | None = None
agent_output_demo_url: str | None = None
image_urls: list[str] = []
description: str = ""
instructions: str | None = None
@@ -186,7 +169,6 @@ class StoreSubmissionEditRequest(pydantic.BaseModel):
name: str
sub_heading: str
video_url: str | None = None
agent_output_demo_url: str | None = None
image_urls: list[str] = []
description: str = ""
instructions: str | None = None

View File

@@ -62,7 +62,6 @@ def test_store_agent_details():
slug="test-agent",
agent_name="Test Agent",
agent_video="video.mp4",
agent_output_demo="demo.mp4",
agent_image=["image1.jpg", "image2.jpg"],
creator="creator1",
creator_avatar="avatar.jpg",

View File

@@ -99,30 +99,18 @@ async def get_agents(
category: str | None = None,
page: int = 1,
page_size: int = 20,
filter_mode: Literal["strict", "permissive", "combined"] = "permissive",
):
"""
Get a paginated list of agents from the store with optional filtering and sorting.
When search_query is provided, uses hybrid search combining:
- BM25 full-text search (lexical matching)
- Vector semantic similarity (meaning-based matching)
- Popularity signal (run counts)
Results are ranked using Reciprocal Rank Fusion (RRF).
Args:
featured (bool, optional): Filter to only show featured agents. Defaults to False.
creator (str | None, optional): Filter agents by creator username. Defaults to None.
sorted_by (str | None, optional): Sort agents by "runs" or "rating". Defaults to None.
search_query (str | None, optional): Search agents by name, subheading and description.
search_query (str | None, optional): Search agents by name, subheading and description. Defaults to None.
category (str | None, optional): Filter agents by category. Defaults to None.
page (int, optional): Page number for pagination. Defaults to 1.
page_size (int, optional): Number of agents per page. Defaults to 20.
filter_mode (str, optional): Controls result filtering when searching:
- "strict": Must match BOTH BM25 AND vector thresholds
- "permissive": Must match EITHER BM25 OR vector threshold
- "combined": No threshold filtering, rely on RRF score (default)
Returns:
StoreAgentsResponse: Paginated list of agents matching the filters
@@ -156,7 +144,6 @@ async def get_agents(
category=category,
page=page,
page_size=page_size,
filter_mode=filter_mode,
)
return agents
@@ -451,7 +438,6 @@ async def create_submission(
slug=submission_request.slug,
name=submission_request.name,
video_url=submission_request.video_url,
agent_output_demo_url=submission_request.agent_output_demo_url,
image_urls=submission_request.image_urls,
description=submission_request.description,
instructions=submission_request.instructions,
@@ -495,7 +481,6 @@ async def edit_submission(
store_listing_version_id=store_listing_version_id,
name=submission_request.name,
video_url=submission_request.video_url,
agent_output_demo_url=submission_request.agent_output_demo_url,
image_urls=submission_request.image_urls,
description=submission_request.description,
instructions=submission_request.instructions,

View File

@@ -65,7 +65,6 @@ def test_get_agents_defaults(
category=None,
page=1,
page_size=20,
filter_mode="permissive",
)
@@ -113,7 +112,6 @@ def test_get_agents_featured(
category=None,
page=1,
page_size=20,
filter_mode="permissive",
)
@@ -161,7 +159,6 @@ def test_get_agents_by_creator(
category=None,
page=1,
page_size=20,
filter_mode="permissive",
)
@@ -209,7 +206,6 @@ def test_get_agents_sorted(
category=None,
page=1,
page_size=20,
filter_mode="permissive",
)
@@ -257,7 +253,6 @@ def test_get_agents_search(
category=None,
page=1,
page_size=20,
filter_mode="permissive",
)
@@ -304,7 +299,6 @@ def test_get_agents_category(
category="test-category",
page=1,
page_size=20,
filter_mode="permissive",
)
@@ -354,7 +348,6 @@ def test_get_agents_pagination(
category=None,
page=2,
page_size=5,
filter_mode="permissive",
)
@@ -385,7 +378,6 @@ def test_get_agent_details(
slug="test-agent",
agent_name="Test Agent",
agent_video="video.mp4",
agent_output_demo="demo.mp4",
agent_image=["image1.jpg", "image2.jpg"],
creator="creator1",
creator_avatar="avatar1.jpg",

View File

@@ -5,13 +5,6 @@ from tiktoken import encoding_for_model
from backend.util import json
# ---------------------------------------------------------------------------#
# CONSTANTS #
# ---------------------------------------------------------------------------#
# Message prefixes for important system messages that should be protected during compression
MAIN_OBJECTIVE_PREFIX = "[Main Objective Prompt]: "
# ---------------------------------------------------------------------------#
# INTERNAL UTILITIES #
# ---------------------------------------------------------------------------#
@@ -70,55 +63,6 @@ def _msg_tokens(msg: dict, enc) -> int:
return WRAPPER + content_tokens + tool_call_tokens
def _is_tool_message(msg: dict) -> bool:
"""Check if a message contains tool calls or results that should be protected."""
content = msg.get("content")
# Check for Anthropic-style tool messages
if isinstance(content, list) and any(
isinstance(item, dict) and item.get("type") in ("tool_use", "tool_result")
for item in content
):
return True
# Check for OpenAI-style tool calls in the message
if "tool_calls" in msg or msg.get("role") == "tool":
return True
return False
def _is_objective_message(msg: dict) -> bool:
"""Check if a message contains objective/system prompts that should be absolutely protected."""
content = msg.get("content", "")
if isinstance(content, str):
# Protect any message with the main objective prefix
return content.startswith(MAIN_OBJECTIVE_PREFIX)
return False
def _truncate_tool_message_content(msg: dict, enc, max_tokens: int) -> None:
"""
Carefully truncate tool message content while preserving tool structure.
Only truncates tool_result content, leaves tool_use intact.
"""
content = msg.get("content")
if not isinstance(content, list):
return
for item in content:
# Only process tool_result items, leave tool_use blocks completely intact
if not (isinstance(item, dict) and item.get("type") == "tool_result"):
continue
result_content = item.get("content", "")
if (
isinstance(result_content, str)
and _tok_len(result_content, enc) > max_tokens
):
item["content"] = _truncate_middle_tokens(result_content, enc, max_tokens)
def _truncate_middle_tokens(text: str, enc, max_tok: int) -> str:
"""
Return *text* shortened to ≈max_tok tokens by keeping the head & tail
@@ -196,21 +140,13 @@ def compress_prompt(
return sum(_msg_tokens(m, enc) for m in msgs)
original_token_count = total_tokens()
if original_token_count + reserve <= target_tokens:
return msgs
# ---- STEP 0 : normalise content --------------------------------------
# Convert non-string payloads to strings so token counting is coherent.
for i, m in enumerate(msgs):
for m in msgs[1:-1]: # keep the first & last intact
if not isinstance(m.get("content"), str) and m.get("content") is not None:
if _is_tool_message(m):
continue
# Keep first and last messages intact (unless they're tool messages)
if i == 0 or i == len(msgs) - 1:
continue
# Reasonable 20k-char ceiling prevents pathological blobs
content_str = json.dumps(m["content"], separators=(",", ":"))
if len(content_str) > 20_000:
@@ -221,45 +157,34 @@ def compress_prompt(
cap = start_cap
while total_tokens() + reserve > target_tokens and cap >= floor_cap:
for m in msgs[1:-1]: # keep first & last intact
if _is_tool_message(m):
# For tool messages, only truncate tool result content, preserve structure
_truncate_tool_message_content(m, enc, cap)
continue
if _is_objective_message(m):
# Never truncate objective messages - they contain the core task
continue
content = m.get("content") or ""
if _tok_len(content, enc) > cap:
m["content"] = _truncate_middle_tokens(content, enc, cap)
if _tok_len(m.get("content") or "", enc) > cap:
m["content"] = _truncate_middle_tokens(m["content"], enc, cap)
cap //= 2 # tighten the screw
# ---- STEP 2 : middle-out deletion -----------------------------------
while total_tokens() + reserve > target_tokens and len(msgs) > 2:
# Identify all deletable messages (not first/last, not tool messages, not objective messages)
deletable_indices = []
for i in range(1, len(msgs) - 1): # Skip first and last
if not _is_tool_message(msgs[i]) and not _is_objective_message(msgs[i]):
deletable_indices.append(i)
if not deletable_indices:
break # nothing more we can drop
# Delete from center outward - find the index closest to center
centre = len(msgs) // 2
to_delete = min(deletable_indices, key=lambda i: abs(i - centre))
del msgs[to_delete]
# Build a symmetrical centre-out index walk: centre, centre+1, centre-1, ...
order = [centre] + [
i
for pair in zip(range(centre + 1, len(msgs) - 1), range(centre - 1, 0, -1))
for i in pair
]
removed = False
for i in order:
msg = msgs[i]
if "tool_calls" in msg or msg.get("role") == "tool":
continue # protect tool shells
del msgs[i]
removed = True
break
if not removed: # nothing more we can drop
break
# ---- STEP 3 : final safety-net trim on first & last ------------------
cap = start_cap
while total_tokens() + reserve > target_tokens and cap >= floor_cap:
for idx in (0, -1): # first and last
if _is_tool_message(msgs[idx]):
# For tool messages at first/last position, truncate tool result content only
_truncate_tool_message_content(msgs[idx], enc, cap)
continue
text = msgs[idx].get("content") or ""
if _tok_len(text, enc) > cap:
msgs[idx]["content"] = _truncate_middle_tokens(text, enc, cap)

View File

@@ -185,12 +185,6 @@ class Config(UpdateTrackingModel["Config"], BaseSettings):
description="Number of top blocks with most errors to show when no blocks exceed threshold (0 to disable).",
)
# Execution Accuracy Monitoring
execution_accuracy_check_interval_hours: int = Field(
default=24,
description="Interval in hours between execution accuracy alert checks.",
)
model_config = SettingsConfigDict(
env_file=".env",
extra="allow",

View File

@@ -1,64 +0,0 @@
-- AlterTable
ALTER TABLE "StoreListingVersion" ADD COLUMN "agentOutputDemoUrl" TEXT;
-- Drop and recreate the StoreAgent view with agentOutputDemoUrl field
DROP VIEW IF EXISTS "StoreAgent";
CREATE OR REPLACE VIEW "StoreAgent" AS
WITH latest_versions AS (
SELECT
"storeListingId",
MAX(version) AS max_version
FROM "StoreListingVersion"
WHERE "submissionStatus" = 'APPROVED'
GROUP BY "storeListingId"
),
agent_versions AS (
SELECT
"storeListingId",
array_agg(DISTINCT version::text ORDER BY version::text) AS versions
FROM "StoreListingVersion"
WHERE "submissionStatus" = 'APPROVED'
GROUP BY "storeListingId"
)
SELECT
sl.id AS listing_id,
slv.id AS "storeListingVersionId",
slv."createdAt" AS updated_at,
sl.slug,
COALESCE(slv.name, '') AS agent_name,
slv."videoUrl" AS agent_video,
slv."agentOutputDemoUrl" AS agent_output_demo,
COALESCE(slv."imageUrls", ARRAY[]::text[]) AS agent_image,
slv."isFeatured" AS featured,
p.username AS creator_username, -- Allow NULL for malformed sub-agents
p."avatarUrl" AS creator_avatar, -- Allow NULL for malformed sub-agents
slv."subHeading" AS sub_heading,
slv.description,
slv.categories,
slv.search,
COALESCE(ar.run_count, 0::bigint) AS runs,
COALESCE(rs.avg_rating, 0.0)::double precision AS rating,
COALESCE(av.versions, ARRAY[slv.version::text]) AS versions,
slv."isAvailable" AS is_available,
COALESCE(sl."useForOnboarding", false) AS "useForOnboarding"
FROM "StoreListing" sl
JOIN latest_versions lv
ON sl.id = lv."storeListingId"
JOIN "StoreListingVersion" slv
ON slv."storeListingId" = lv."storeListingId"
AND slv.version = lv.max_version
AND slv."submissionStatus" = 'APPROVED'
JOIN "AgentGraph" a
ON slv."agentGraphId" = a.id
AND slv."agentGraphVersion" = a.version
LEFT JOIN "Profile" p
ON sl."owningUserId" = p."userId"
LEFT JOIN "mv_review_stats" rs
ON sl.id = rs."storeListingId"
LEFT JOIN "mv_agent_run_counts" ar
ON a.id = ar."agentGraphId"
LEFT JOIN agent_versions av
ON sl.id = av."storeListingId"
WHERE sl."isDeleted" = false
AND sl."hasApprovedVersion" = true;

View File

@@ -13,6 +13,13 @@ CREATE EXTENSION IF NOT EXISTS vector;
-- First drop the view that depends on the search column
DROP VIEW IF EXISTS "StoreAgent";
-- Remove full-text search infrastructure
DROP TRIGGER IF EXISTS "update_tsvector" ON "StoreListingVersion";
DROP FUNCTION IF EXISTS update_tsvector_column();
-- Drop the tsvector search column
ALTER TABLE "StoreListingVersion" DROP COLUMN IF EXISTS "search";
-- Add embedding column for vector search (1536 dimensions for text-embedding-3-small)
ALTER TABLE "StoreListingVersion"
ADD COLUMN IF NOT EXISTS "embedding" vector(1536);
@@ -50,7 +57,6 @@ SELECT
sl.slug,
COALESCE(slv.name, '') AS agent_name,
slv."videoUrl" AS agent_video,
slv."agentOutputDemoUrl" AS agent_output_demo,
COALESCE(slv."imageUrls", ARRAY[]::text[]) AS agent_image,
slv."isFeatured" AS featured,
p.username AS creator_username,
@@ -58,7 +64,6 @@ SELECT
slv."subHeading" AS sub_heading,
slv.description,
slv.categories,
slv.search,
slv.embedding,
COALESCE(ar.run_count, 0::bigint) AS runs,
COALESCE(rs.avg_rating, 0.0)::double precision AS rating,

View File

@@ -1,15 +0,0 @@
-- Create BuilderSearchHistory table
CREATE TABLE "BuilderSearchHistory" (
"id" TEXT NOT NULL,
"userId" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"searchQuery" TEXT NOT NULL,
"filter" TEXT[] DEFAULT ARRAY[]::TEXT[],
"byCreator" TEXT[] DEFAULT ARRAY[]::TEXT[],
CONSTRAINT "BuilderSearchHistory_pkey" PRIMARY KEY ("id")
);
-- Define User foreign relation
ALTER TABLE "BuilderSearchHistory" ADD CONSTRAINT "BuilderSearchHistory_userId_fkey" FOREIGN KEY ("userId") REFERENCES "User"("id") ON DELETE CASCADE ON UPDATE CASCADE;

View File

@@ -1,35 +0,0 @@
-- Migration: Add hybrid search infrastructure (BM25 + vector + popularity)
-- This migration:
-- 1. Creates/updates the tsvector trigger with weighted fields
-- 2. Adds GIN index for full-text search performance
-- 3. Backfills existing records with tsvector data
-- Create or replace the trigger function with WEIGHTED tsvector
-- Weight A = name (highest priority), B = subHeading, C = description
CREATE OR REPLACE FUNCTION update_tsvector_column() RETURNS TRIGGER AS $$
BEGIN
NEW.search := setweight(to_tsvector('english', COALESCE(NEW.name, '')), 'A') ||
setweight(to_tsvector('english', COALESCE(NEW."subHeading", '')), 'B') ||
setweight(to_tsvector('english', COALESCE(NEW.description, '')), 'C');
RETURN NEW;
END;
$$ LANGUAGE plpgsql;
-- Drop and recreate trigger to ensure it's active with the updated function
DROP TRIGGER IF EXISTS "update_tsvector" ON "StoreListingVersion";
CREATE TRIGGER "update_tsvector"
BEFORE INSERT OR UPDATE OF name, "subHeading", description ON "StoreListingVersion"
FOR EACH ROW
EXECUTE FUNCTION update_tsvector_column();
-- Create GIN index for full-text search performance
CREATE INDEX IF NOT EXISTS idx_store_listing_version_search_gin
ON "StoreListingVersion" USING GIN (search);
-- Backfill existing records with weighted tsvector
UPDATE "StoreListingVersion"
SET search = setweight(to_tsvector('english', COALESCE(name, '')), 'A') ||
setweight(to_tsvector('english', COALESCE("subHeading", '')), 'B') ||
setweight(to_tsvector('english', COALESCE(description, '')), 'C')
WHERE search IS NULL
OR search = ''::tsvector;

View File

@@ -114,7 +114,6 @@ cli = "backend.cli:main"
format = "linter:format"
lint = "linter:lint"
test = "run_tests:test"
load-store-agents = "test.load_store_agents:run"
[tool.isort]
profile = "black"
@@ -138,4 +137,3 @@ filterwarnings = [
[tool.ruff]
target-version = "py310"

View File

@@ -53,7 +53,6 @@ model User {
Profile Profile[]
UserOnboarding UserOnboarding?
BuilderSearchHistory BuilderSearchHistory[]
StoreListings StoreListing[]
StoreListingReviews StoreListingReview[]
StoreVersionsReviewed StoreListingVersion[]
@@ -115,19 +114,6 @@ model UserOnboarding {
User User @relation(fields: [userId], references: [id], onDelete: Cascade)
}
model BuilderSearchHistory {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @default(now()) @updatedAt
searchQuery String
filter String[] @default([])
byCreator String[] @default([])
userId String
User User @relation(fields: [userId], references: [id], onDelete: Cascade)
}
// This model describes the Agent Graph/Flow (Multi Agent System).
model AgentGraph {
id String @default(uuid())
@@ -715,11 +701,10 @@ view StoreAgent {
storeListingVersionId String
updated_at DateTime
slug String
agent_name String
agent_video String?
agent_output_demo String?
agent_image String[]
slug String
agent_name String
agent_video String?
agent_image String[]
featured Boolean @default(false)
creator_username String?
@@ -848,14 +833,13 @@ model StoreListingVersion {
AgentGraph AgentGraph @relation(fields: [agentGraphId, agentGraphVersion], references: [id, version])
// Content fields
name String
subHeading String
videoUrl String?
agentOutputDemoUrl String?
imageUrls String[]
description String
instructions String?
categories String[]
name String
subHeading String
videoUrl String?
imageUrls String[]
description String
instructions String?
categories String[]
isFeatured Boolean @default(false)
@@ -863,10 +847,7 @@ model StoreListingVersion {
// Old versions can be made unavailable by the author if desired
isAvailable Boolean @default(true)
// Full-text search tsvector column
search Unsupported("tsvector")?
// Vector embedding for semantic search
// Vector embedding for semantic search (replaces tsvector full-text search)
embedding Unsupported("vector(1536)")?
// Version workflow state

View File

@@ -3,7 +3,6 @@
"slug": "test-agent",
"agent_name": "Test Agent",
"agent_video": "video.mp4",
"agent_output_demo": "demo.mp4",
"agent_image": [
"image1.jpg",
"image2.jpg"

View File

@@ -23,7 +23,6 @@
"reviewed_at": null,
"changes_summary": null,
"video_url": "test.mp4",
"agent_output_demo_url": null,
"categories": [
"test-category"
]

View File

@@ -10,7 +10,7 @@ It creates:
Usage:
cd backend
poetry run load-store-agents
poetry run python test/load_store_agents.py
"""
import asyncio
@@ -37,8 +37,7 @@ from prisma.types import (
AGENTS_DIR = Path(__file__).parent.parent / "agents"
CSV_FILE = AGENTS_DIR / "StoreAgent_rows.csv"
# User constants for the autogpt creator (test data, not production)
# Fixed uuid4 for idempotency - same user is reused across script runs
# Fixed user ID for the autogpt creator (test data, not production)
AUTOGPT_USER_ID = "79d96c73-e6f5-4656-a83a-185b41ee0d06"
AUTOGPT_EMAIL = "autogpt-test@agpt.co"
AUTOGPT_USERNAME = "autogpt"
@@ -254,12 +253,7 @@ async def create_agent_graph(
for node in nodes:
block_id = node["block_id"]
# Ensure the block exists (create placeholder if needed)
block_exists = await ensure_block_exists(db, block_id, known_blocks)
if not block_exists:
print(
f" Skipping node {node['id']} - block {block_id} could not be created"
)
continue
await ensure_block_exists(db, block_id, known_blocks)
await db.agentnode.create(
data=AgentNodeCreateInput(
@@ -359,7 +353,7 @@ async def create_store_listing(
if is_approved:
await db.storelisting.update(
where={"id": listing_id},
data={"ActiveVersion": {"connect": {"id": version_id}}},
data={"activeVersionId": version_id},
)
@@ -393,7 +387,6 @@ async def main():
# Build mapping from version_id to json file
loaded_graphs = {} # graph_id -> (graph_id, version)
failed_agents = []
for json_file in json_files:
# Extract the version ID from filename (agent_<version_id>.json)
@@ -406,25 +399,17 @@ async def main():
continue
metadata = csv_metadata[version_id]
agent_name = metadata["agent_name"]
print(f"\nProcessing: {agent_name}")
print(f"\nProcessing: {metadata['agent_name']}")
# Use a transaction per agent to prevent dangling resources
try:
async with db.tx() as tx:
# Load and create the agent graph
agent_data = await load_agent_json(json_file)
graph_id, graph_version = await create_agent_graph(
tx, agent_data, known_blocks
)
loaded_graphs[graph_id] = (graph_id, graph_version)
# Load and create the agent graph
agent_data = await load_agent_json(json_file)
graph_id, graph_version = await create_agent_graph(
db, agent_data, known_blocks
)
loaded_graphs[graph_id] = (graph_id, graph_version)
# Create store listing
await create_store_listing(tx, graph_id, graph_version, metadata)
except Exception as e:
print(f" Error loading agent '{agent_name}': {e}")
failed_agents.append(agent_name)
continue
# Create store listing
await create_store_listing(db, graph_id, graph_version, metadata)
# Step 4: Refresh materialized views
print("\n[Step 4] Refreshing materialized views...")
@@ -436,20 +421,11 @@ async def main():
print("\n" + "=" * 60)
print(f"Successfully loaded {len(loaded_graphs)} agents")
if failed_agents:
print(
f"Failed to load {len(failed_agents)} agents: {', '.join(failed_agents)}"
)
print("=" * 60)
finally:
await db.disconnect()
def run():
"""Entry point for poetry script."""
asyncio.run(main())
if __name__ == "__main__":
run()
asyncio.run(main())

View File

@@ -3,14 +3,6 @@ import { withSentryConfig } from "@sentry/nextjs";
/** @type {import('next').NextConfig} */
const nextConfig = {
productionBrowserSourceMaps: true,
experimental: {
serverActions: {
bodySizeLimit: "256mb",
},
// Increase body size limit for API routes (file uploads) - 256MB to match backend limit
proxyClientMaxBodySize: "256mb",
middlewareClientMaxBodySize: "256mb",
},
images: {
domains: [
// We dont need to maintain alphabetical order here

View File

@@ -82,7 +82,7 @@
"lodash": "4.17.21",
"lucide-react": "0.552.0",
"moment": "2.30.1",
"next": "15.4.10",
"next": "15.4.7",
"next-themes": "0.4.6",
"nuqs": "2.7.2",
"party-js": "2.2.0",
@@ -137,8 +137,9 @@
"concurrently": "9.2.1",
"cross-env": "10.1.0",
"eslint": "8.57.1",
"eslint-config-next": "15.5.7",
"eslint-config-next": "15.5.2",
"eslint-plugin-storybook": "9.1.5",
"import-in-the-middle": "1.14.2",
"msw": "2.11.6",
"msw-storybook-addon": "2.0.6",
"orval": "7.13.0",
@@ -158,4 +159,3 @@
},
"packageManager": "pnpm@10.20.0+sha512.cf9998222162dd85864d0a8102e7892e7ba4ceadebbf5a31f9c2fce48dfce317a9c53b9f6464d1ef9042cba2e02ae02a9f7c143a2b438cd93c91840f0192b9dd"
}

View File

@@ -16,7 +16,7 @@ importers:
version: 5.2.2(react-hook-form@7.66.0(react@18.3.1))
'@next/third-parties':
specifier: 15.4.6
version: 15.4.6(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)
version: 15.4.6(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)
'@phosphor-icons/react':
specifier: 2.1.10
version: 2.1.10(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
@@ -88,7 +88,7 @@ importers:
version: 5.24.13(@rjsf/utils@5.24.13(react@18.3.1))
'@sentry/nextjs':
specifier: 10.27.0
version: 10.27.0(@opentelemetry/context-async-hooks@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/core@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/sdk-trace-base@2.2.0(@opentelemetry/api@1.9.0))(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)(webpack@5.101.3(esbuild@0.25.9))
version: 10.27.0(@opentelemetry/context-async-hooks@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/core@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/sdk-trace-base@2.2.0(@opentelemetry/api@1.9.0))(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)(webpack@5.101.3(esbuild@0.25.9))
'@supabase/ssr':
specifier: 0.7.0
version: 0.7.0(@supabase/supabase-js@2.78.0)
@@ -106,10 +106,10 @@ importers:
version: 0.2.4
'@vercel/analytics':
specifier: 1.5.0
version: 1.5.0(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)
version: 1.5.0(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)
'@vercel/speed-insights':
specifier: 1.2.0
version: 1.2.0(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)
version: 1.2.0(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)
'@xyflow/react':
specifier: 12.9.2
version: 12.9.2(@types/react@18.3.17)(immer@10.1.3)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
@@ -148,7 +148,7 @@ importers:
version: 12.23.24(@emotion/is-prop-valid@1.2.2)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
geist:
specifier: 1.5.1
version: 1.5.1(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))
version: 1.5.1(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))
highlight.js:
specifier: 11.11.1
version: 11.11.1
@@ -171,14 +171,14 @@ importers:
specifier: 2.30.1
version: 2.30.1
next:
specifier: 15.4.10
version: 15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
specifier: 15.4.7
version: 15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
next-themes:
specifier: 0.4.6
version: 0.4.6(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
nuqs:
specifier: 2.7.2
version: 2.7.2(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)
version: 2.7.2(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)
party-js:
specifier: 2.2.0
version: 2.2.0
@@ -284,7 +284,7 @@ importers:
version: 9.1.5(storybook@9.1.5(@testing-library/dom@10.4.1)(msw@2.11.6(@types/node@24.10.0)(typescript@5.9.3))(prettier@3.6.2))
'@storybook/nextjs':
specifier: 9.1.5
version: 9.1.5(esbuild@0.25.9)(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react-dom@18.3.1(react@18.3.1))(react@18.3.1)(storybook@9.1.5(@testing-library/dom@10.4.1)(msw@2.11.6(@types/node@24.10.0)(typescript@5.9.3))(prettier@3.6.2))(type-fest@4.41.0)(typescript@5.9.3)(webpack-hot-middleware@2.26.1)(webpack@5.101.3(esbuild@0.25.9))
version: 9.1.5(esbuild@0.25.9)(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react-dom@18.3.1(react@18.3.1))(react@18.3.1)(storybook@9.1.5(@testing-library/dom@10.4.1)(msw@2.11.6(@types/node@24.10.0)(typescript@5.9.3))(prettier@3.6.2))(type-fest@4.41.0)(typescript@5.9.3)(webpack-hot-middleware@2.26.1)(webpack@5.101.3(esbuild@0.25.9))
'@tanstack/eslint-plugin-query':
specifier: 5.91.2
version: 5.91.2(eslint@8.57.1)(typescript@5.9.3)
@@ -331,11 +331,14 @@ importers:
specifier: 8.57.1
version: 8.57.1
eslint-config-next:
specifier: 15.5.7
version: 15.5.7(eslint@8.57.1)(typescript@5.9.3)
specifier: 15.5.2
version: 15.5.2(eslint@8.57.1)(typescript@5.9.3)
eslint-plugin-storybook:
specifier: 9.1.5
version: 9.1.5(eslint@8.57.1)(storybook@9.1.5(@testing-library/dom@10.4.1)(msw@2.11.6(@types/node@24.10.0)(typescript@5.9.3))(prettier@3.6.2))(typescript@5.9.3)
import-in-the-middle:
specifier: 1.14.2
version: 1.14.2
msw:
specifier: 2.11.6
version: 2.11.6(@types/node@24.10.0)(typescript@5.9.3)
@@ -983,15 +986,12 @@ packages:
'@date-fns/tz@1.4.1':
resolution: {integrity: sha512-P5LUNhtbj6YfI3iJjw5EL9eUAG6OitD0W3fWQcpQjDRc/QIsL0tRNuO1PcDvPccWL1fSTXXdE1ds+l95DV/OFA==}
'@emnapi/core@1.7.1':
resolution: {integrity: sha512-o1uhUASyo921r2XtHYOHy7gdkGLge8ghBEQHMWmyJFoXlpU58kIrhhN3w26lpQb6dspetweapMn2CSNwQ8I4wg==}
'@emnapi/core@1.5.0':
resolution: {integrity: sha512-sbP8GzB1WDzacS8fgNPpHlp6C9VZe+SJP3F90W9rLemaQj2PzIuTEl1qDOYQf58YIpyjViI24y9aPWCjEzY2cg==}
'@emnapi/runtime@1.5.0':
resolution: {integrity: sha512-97/BJ3iXHww3djw6hYIfErCZFee7qCtrneuLa20UXFCOTCfBM2cvQHjWJ2EG0s0MtdNwInarqCTz35i4wWXHsQ==}
'@emnapi/runtime@1.7.1':
resolution: {integrity: sha512-PVtJr5CmLwYAU9PZDMITZoR5iAOShYREoR45EyyLrbntV50mdePTgUn4AmOw90Ifcj+x2kRjdzr1HP3RrNiHGA==}
'@emnapi/wasi-threads@1.1.0':
resolution: {integrity: sha512-WI0DdZ8xFSbgMjR1sFsKABJ/C5OnRrjT06JXbZKexJGrDuPTzZdDYfFlsgcCXCyf+suG5QU2e/y1Wo2V/OapLQ==}
@@ -1329,10 +1329,6 @@ packages:
resolution: {integrity: sha512-CCZCDJuduB9OUkFkY2IgppNZMi2lBQgD2qzwXkEia16cge2pijY/aXi96CJMquDMn3nJdlPV1A5KrJEXwfLNzQ==}
engines: {node: ^12.0.0 || ^14.0.0 || >=16.0.0}
'@eslint-community/regexpp@4.12.2':
resolution: {integrity: sha512-EriSTlt5OC9/7SXkRSCAhfSxxoSUgBm33OH+IkwbdpgoqsSsUg7y3uh+IICI/Qg4BBWr3U2i39RpmycbxMq4ew==}
engines: {node: ^12.0.0 || ^14.0.0 || >=16.0.0}
'@eslint/eslintrc@2.1.4':
resolution: {integrity: sha512-269Z39MS6wVJtsoUl10L60WdkhJVdPG24Q4eZTH3nnF6lpvSShEK3wQjDX9JRWAUPvPh7COouPpU9IrqaZFvtQ==}
engines: {node: ^12.22.0 || ^14.17.0 || >=16.0.0}
@@ -1606,56 +1602,56 @@ packages:
'@neoconfetti/react@1.0.0':
resolution: {integrity: sha512-klcSooChXXOzIm+SE5IISIAn3bYzYfPjbX7D7HoqZL84oAfgREeSg5vSIaSFH+DaGzzvImTyWe1OyrJ67vik4A==}
'@next/env@15.4.10':
resolution: {integrity: sha512-knhmoJ0Vv7VRf6pZEPSnciUG1S4bIhWx+qTYBW/AjxEtlzsiNORPk8sFDCEvqLfmKuey56UB9FL1UdHEV3uBrg==}
'@next/env@15.4.7':
resolution: {integrity: sha512-PrBIpO8oljZGTOe9HH0miix1w5MUiGJ/q83Jge03mHEE0E3pyqzAy2+l5G6aJDbXoobmxPJTVhbCuwlLtjSHwg==}
'@next/eslint-plugin-next@15.5.7':
resolution: {integrity: sha512-DtRU2N7BkGr8r+pExfuWHwMEPX5SD57FeA6pxdgCHODo+b/UgIgjE+rgWKtJAbEbGhVZ2jtHn4g3wNhWFoNBQQ==}
'@next/eslint-plugin-next@15.5.2':
resolution: {integrity: sha512-lkLrRVxcftuOsJNhWatf1P2hNVfh98k/omQHrCEPPriUypR6RcS13IvLdIrEvkm9AH2Nu2YpR5vLqBuy6twH3Q==}
'@next/swc-darwin-arm64@15.4.8':
resolution: {integrity: sha512-Pf6zXp7yyQEn7sqMxur6+kYcywx5up1J849psyET7/8pG2gQTVMjU3NzgIt8SeEP5to3If/SaWmaA6H6ysBr1A==}
'@next/swc-darwin-arm64@15.4.7':
resolution: {integrity: sha512-2Dkb+VUTp9kHHkSqtws4fDl2Oxms29HcZBwFIda1X7Ztudzy7M6XF9HDS2dq85TmdN47VpuhjE+i6wgnIboVzQ==}
engines: {node: '>= 10'}
cpu: [arm64]
os: [darwin]
'@next/swc-darwin-x64@15.4.8':
resolution: {integrity: sha512-xla6AOfz68a6kq3gRQccWEvFC/VRGJmA/QuSLENSO7CZX5WIEkSz7r1FdXUjtGCQ1c2M+ndUAH7opdfLK1PQbw==}
'@next/swc-darwin-x64@15.4.7':
resolution: {integrity: sha512-qaMnEozKdWezlmh1OGDVFueFv2z9lWTcLvt7e39QA3YOvZHNpN2rLs/IQLwZaUiw2jSvxW07LxMCWtOqsWFNQg==}
engines: {node: '>= 10'}
cpu: [x64]
os: [darwin]
'@next/swc-linux-arm64-gnu@15.4.8':
resolution: {integrity: sha512-y3fmp+1Px/SJD+5ntve5QLZnGLycsxsVPkTzAc3zUiXYSOlTPqT8ynfmt6tt4fSo1tAhDPmryXpYKEAcoAPDJw==}
'@next/swc-linux-arm64-gnu@15.4.7':
resolution: {integrity: sha512-ny7lODPE7a15Qms8LZiN9wjNWIeI+iAZOFDOnv2pcHStncUr7cr9lD5XF81mdhrBXLUP9yT9RzlmSWKIazWoDw==}
engines: {node: '>= 10'}
cpu: [arm64]
os: [linux]
'@next/swc-linux-arm64-musl@15.4.8':
resolution: {integrity: sha512-DX/L8VHzrr1CfwaVjBQr3GWCqNNFgyWJbeQ10Lx/phzbQo3JNAxUok1DZ8JHRGcL6PgMRgj6HylnLNndxn4Z6A==}
'@next/swc-linux-arm64-musl@15.4.7':
resolution: {integrity: sha512-4SaCjlFR/2hGJqZLLWycccy1t+wBrE/vyJWnYaZJhUVHccpGLG5q0C+Xkw4iRzUIkE+/dr90MJRUym3s1+vO8A==}
engines: {node: '>= 10'}
cpu: [arm64]
os: [linux]
'@next/swc-linux-x64-gnu@15.4.8':
resolution: {integrity: sha512-9fLAAXKAL3xEIFdKdzG5rUSvSiZTLLTCc6JKq1z04DR4zY7DbAPcRvNm3K1inVhTiQCs19ZRAgUerHiVKMZZIA==}
'@next/swc-linux-x64-gnu@15.4.7':
resolution: {integrity: sha512-2uNXjxvONyRidg00VwvlTYDwC9EgCGNzPAPYbttIATZRxmOZ3hllk/YYESzHZb65eyZfBR5g9xgCZjRAl9YYGg==}
engines: {node: '>= 10'}
cpu: [x64]
os: [linux]
'@next/swc-linux-x64-musl@15.4.8':
resolution: {integrity: sha512-s45V7nfb5g7dbS7JK6XZDcapicVrMMvX2uYgOHP16QuKH/JA285oy6HcxlKqwUNaFY/UC6EvQ8QZUOo19cBKSA==}
'@next/swc-linux-x64-musl@15.4.7':
resolution: {integrity: sha512-ceNbPjsFgLscYNGKSu4I6LYaadq2B8tcK116nVuInpHHdAWLWSwVK6CHNvCi0wVS9+TTArIFKJGsEyVD1H+4Kg==}
engines: {node: '>= 10'}
cpu: [x64]
os: [linux]
'@next/swc-win32-arm64-msvc@15.4.8':
resolution: {integrity: sha512-KjgeQyOAq7t/HzAJcWPGA8X+4WY03uSCZ2Ekk98S9OgCFsb6lfBE3dbUzUuEQAN2THbwYgFfxX2yFTCMm8Kehw==}
'@next/swc-win32-arm64-msvc@15.4.7':
resolution: {integrity: sha512-pZyxmY1iHlZJ04LUL7Css8bNvsYAMYOY9JRwFA3HZgpaNKsJSowD09Vg2R9734GxAcLJc2KDQHSCR91uD6/AAw==}
engines: {node: '>= 10'}
cpu: [arm64]
os: [win32]
'@next/swc-win32-x64-msvc@15.4.8':
resolution: {integrity: sha512-Exsmf/+42fWVnLMaZHzshukTBxZrSwuuLKFvqhGHJ+mC1AokqieLY/XzAl3jc/CqhXLqLY3RRjkKJ9YnLPcRWg==}
'@next/swc-win32-x64-msvc@15.4.7':
resolution: {integrity: sha512-HjuwPJ7BeRzgl3KrjKqD2iDng0eQIpIReyhpF5r4yeAHFwWRuAhfW92rWv/r3qeQHEwHsLRzFDvMqRjyM5DI6A==}
engines: {node: '>= 10'}
cpu: [x64]
os: [win32]
@@ -2626,8 +2622,8 @@ packages:
'@rtsao/scc@1.1.0':
resolution: {integrity: sha512-zt6OdqaDoOnJ1ZYsCYGt9YmWzDXl4vQdKTyJev62gFhRGKdx7mcT54V9KIjg+d2wi9EXsPvAPKe7i7WjfVWB8g==}
'@rushstack/eslint-patch@1.15.0':
resolution: {integrity: sha512-ojSshQPKwVvSMR8yT2L/QtUkV5SXi/IfDiJ4/8d6UbTPjiHVmxZzUAzGD8Tzks1b9+qQkZa0isUOvYObedITaw==}
'@rushstack/eslint-patch@1.12.0':
resolution: {integrity: sha512-5EwMtOqvJMMa3HbmxLlF74e+3/HhwBTMcvt3nqVJgGCozO6hzIPOBlwm8mGVNR9SN2IJpxSnlxczyDjcn7qIyw==}
'@scarf/scarf@1.4.0':
resolution: {integrity: sha512-xxeapPiUXdZAE3che6f3xogoJPeZgig6omHEy1rIY5WVsB3H2BHNnZH+gHG6x91SCWyQCzWGsuL2Hh3ClO5/qQ==}
@@ -3101,8 +3097,8 @@ packages:
peerDependencies:
'@testing-library/dom': '>=7.21.4'
'@tybys/wasm-util@0.10.1':
resolution: {integrity: sha512-9tTaPJLSiejZKx+Bmog4uSubteqTvFrVrURwkmHixBo0G4seD0zUxp98E1DzUBJxLQ3NPwXrGKDiVjwx/DpPsg==}
'@tybys/wasm-util@0.10.0':
resolution: {integrity: sha512-VyyPYFlOMNylG45GoAe0xDoLwWuowvf92F9kySqzYh8vmYm7D2u4iUJKa1tOUpS70Ku13ASrOkS4ScXFsTaCNQ==}
'@types/aria-query@5.0.4':
resolution: {integrity: sha512-rfT93uj5s0PRL7EzccGMs3brplhcrghnDoV26NqKhCAS1hVo+WdNsPvE/yb6ilfr5hi2MEk6d5EWJTKdxg8jVw==}
@@ -3292,16 +3288,16 @@ packages:
'@types/ws@8.18.1':
resolution: {integrity: sha512-ThVF6DCVhA8kUGy+aazFQ4kXQ7E1Ty7A3ypFOe0IcJV8O/M511G99AW24irKrW56Wt44yG9+ij8FaqoBGkuBXg==}
'@typescript-eslint/eslint-plugin@8.48.1':
resolution: {integrity: sha512-X63hI1bxl5ohelzr0LY5coufyl0LJNthld+abwxpCoo6Gq+hSqhKwci7MUWkXo67mzgUK6YFByhmaHmUcuBJmA==}
'@typescript-eslint/eslint-plugin@8.43.0':
resolution: {integrity: sha512-8tg+gt7ENL7KewsKMKDHXR1vm8tt9eMxjJBYINf6swonlWgkYn5NwyIgXpbbDxTNU5DgpDFfj95prcTq2clIQQ==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
peerDependencies:
'@typescript-eslint/parser': ^8.48.1
'@typescript-eslint/parser': ^8.43.0
eslint: ^8.57.0 || ^9.0.0
typescript: '>=4.8.4 <6.0.0'
'@typescript-eslint/parser@8.48.1':
resolution: {integrity: sha512-PC0PDZfJg8sP7cmKe6L3QIL8GZwU5aRvUFedqSIpw3B+QjRSUZeeITC2M5XKeMXEzL6wccN196iy3JLwKNvDVA==}
'@typescript-eslint/parser@8.43.0':
resolution: {integrity: sha512-B7RIQiTsCBBmY+yW4+ILd6mF5h1FUwJsVvpqkrgpszYifetQ2Ke+Z4u6aZh0CblkUGIdR59iYVyXqqZGkZ3aBw==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
peerDependencies:
eslint: ^8.57.0 || ^9.0.0
@@ -3319,12 +3315,6 @@ packages:
peerDependencies:
typescript: '>=4.8.4 <6.0.0'
'@typescript-eslint/project-service@8.48.1':
resolution: {integrity: sha512-HQWSicah4s9z2/HifRPQ6b6R7G+SBx64JlFQpgSSHWPKdvCZX57XCbszg/bapbRsOEv42q5tayTYcEFpACcX1w==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
peerDependencies:
typescript: '>=4.8.4 <6.0.0'
'@typescript-eslint/scope-manager@8.43.0':
resolution: {integrity: sha512-daSWlQ87ZhsjrbMLvpuuMAt3y4ba57AuvadcR7f3nl8eS3BjRc8L9VLxFLk92RL5xdXOg6IQ+qKjjqNEimGuAg==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
@@ -3333,10 +3323,6 @@ packages:
resolution: {integrity: sha512-LF4b/NmGvdWEHD2H4MsHD8ny6JpiVNDzrSZr3CsckEgCbAGZbYM4Cqxvi9L+WqDMT+51Ozy7lt2M+d0JLEuBqA==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
'@typescript-eslint/scope-manager@8.48.1':
resolution: {integrity: sha512-rj4vWQsytQbLxC5Bf4XwZ0/CKd362DkWMUkviT7DCS057SK64D5lH74sSGzhI6PDD2HCEq02xAP9cX68dYyg1w==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
'@typescript-eslint/tsconfig-utils@8.43.0':
resolution: {integrity: sha512-ALC2prjZcj2YqqL5X/bwWQmHA2em6/94GcbB/KKu5SX3EBDOsqztmmX1kMkvAJHzxk7TazKzJfFiEIagNV3qEA==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
@@ -3349,14 +3335,8 @@ packages:
peerDependencies:
typescript: '>=4.8.4 <6.0.0'
'@typescript-eslint/tsconfig-utils@8.48.1':
resolution: {integrity: sha512-k0Jhs4CpEffIBm6wPaCXBAD7jxBtrHjrSgtfCjUvPp9AZ78lXKdTR8fxyZO5y4vWNlOvYXRtngSZNSn+H53Jkw==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
peerDependencies:
typescript: '>=4.8.4 <6.0.0'
'@typescript-eslint/type-utils@8.48.1':
resolution: {integrity: sha512-1jEop81a3LrJQLTf/1VfPQdhIY4PlGDBc/i67EVWObrtvcziysbLN3oReexHOM6N3jyXgCrkBsZpqwH0hiDOQg==}
'@typescript-eslint/type-utils@8.43.0':
resolution: {integrity: sha512-qaH1uLBpBuBBuRf8c1mLJ6swOfzCXryhKND04Igr4pckzSEW9JX5Aw9AgW00kwfjWJF0kk0ps9ExKTfvXfw4Qg==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
peerDependencies:
eslint: ^8.57.0 || ^9.0.0
@@ -3370,10 +3350,6 @@ packages:
resolution: {integrity: sha512-lNCWCbq7rpg7qDsQrd3D6NyWYu+gkTENkG5IKYhUIcxSb59SQC/hEQ+MrG4sTgBVghTonNWq42bA/d4yYumldQ==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
'@typescript-eslint/types@8.48.1':
resolution: {integrity: sha512-+fZ3LZNeiELGmimrujsDCT4CRIbq5oXdHe7chLiW8qzqyPMnn1puNstCrMNVAqwcl2FdIxkuJ4tOs/RFDBVc/Q==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
'@typescript-eslint/typescript-estree@8.43.0':
resolution: {integrity: sha512-7Vv6zlAhPb+cvEpP06WXXy/ZByph9iL6BQRBDj4kmBsW98AqEeQHlj/13X+sZOrKSo9/rNKH4Ul4f6EICREFdw==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
@@ -3386,12 +3362,6 @@ packages:
peerDependencies:
typescript: '>=4.8.4 <6.0.0'
'@typescript-eslint/typescript-estree@8.48.1':
resolution: {integrity: sha512-/9wQ4PqaefTK6POVTjJaYS0bynCgzh6ClJHGSBj06XEHjkfylzB+A3qvyaXnErEZSaxhIo4YdyBgq6j4RysxDg==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
peerDependencies:
typescript: '>=4.8.4 <6.0.0'
'@typescript-eslint/utils@8.43.0':
resolution: {integrity: sha512-S1/tEmkUeeswxd0GGcnwuVQPFWo8NzZTOMxCvw8BX7OMxnNae+i8Tm7REQen/SwUIPoPqfKn7EaZ+YLpiB3k9g==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
@@ -3406,13 +3376,6 @@ packages:
eslint: ^8.57.0 || ^9.0.0
typescript: '>=4.8.4 <6.0.0'
'@typescript-eslint/utils@8.48.1':
resolution: {integrity: sha512-fAnhLrDjiVfey5wwFRwrweyRlCmdz5ZxXz2G/4cLn0YDLjTapmN4gcCsTBR1N2rWnZSDeWpYtgLDsJt+FpmcwA==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
peerDependencies:
eslint: ^8.57.0 || ^9.0.0
typescript: '>=4.8.4 <6.0.0'
'@typescript-eslint/visitor-keys@8.43.0':
resolution: {integrity: sha512-T+S1KqRD4sg/bHfLwrpF/K3gQLBM1n7Rp7OjjikjTEssI2YJzQpi5WXoynOaQ93ERIuq3O8RBTOUYDKszUCEHw==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
@@ -3421,10 +3384,6 @@ packages:
resolution: {integrity: sha512-tUFMXI4gxzzMXt4xpGJEsBsTox0XbNQ1y94EwlD/CuZwFcQP79xfQqMhau9HsRc/J0cAPA/HZt1dZPtGn9V/7w==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
'@typescript-eslint/visitor-keys@8.48.1':
resolution: {integrity: sha512-BmxxndzEWhE4TIEEMBs8lP3MBWN3jFPs/p6gPm/wkv02o41hI6cq9AuSmGAaTTHPtA1FTi2jBre4A9rm5ZmX+Q==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
'@ungap/structured-clone@1.3.0':
resolution: {integrity: sha512-WmoN8qaIAo7WTYWbAZuG8PYEhn5fkz7dZrqTBZ7dtt//lL2Gwms1IcnQ5yHqjDfX8Ft5j4YzDM23f87zBfDe9g==}
@@ -4626,8 +4585,8 @@ packages:
resolution: {integrity: sha512-/veY75JbMK4j1yjvuUxuVsiS/hr/4iHs9FTT6cgTexxdE0Ly/glccBAkloH/DofkjRbZU3bnoj38mOmhkZ0lHw==}
engines: {node: '>=12'}
eslint-config-next@15.5.7:
resolution: {integrity: sha512-nU/TRGHHeG81NeLW5DeQT5t6BDUqbpsNQTvef1ld/tqHT+/zTx60/TIhKnmPISTTe++DVo+DLxDmk4rnwHaZVw==}
eslint-config-next@15.5.2:
resolution: {integrity: sha512-3hPZghsLupMxxZ2ggjIIrat/bPniM2yRpsVPVM40rp8ZMzKWOJp2CGWn7+EzoV2ddkUr5fxNfHpF+wU1hGt/3g==}
peerDependencies:
eslint: ^7.23.0 || ^8.0.0 || ^9.0.0
typescript: '>=3.3.1'
@@ -4959,10 +4918,6 @@ packages:
peerDependencies:
next: '>=13.2.0'
generator-function@2.0.1:
resolution: {integrity: sha512-SFdFmIJi+ybC0vjlHN0ZGVGHc3lgE0DxPAT0djjVg+kjOnSqclqmj0KQ7ykTOLP6YxoqOvuAODGdcHJn+43q3g==}
engines: {node: '>= 0.4'}
gensync@1.0.0-beta.2:
resolution: {integrity: sha512-3hN7NaskYvMDLQY55gnW3NQ+mesEAepTqlg+VEbj7zzqEMBVNhzcGYYeqFo/TlYz6eQiFcp1HcsCZO+nGgS8zg==}
engines: {node: '>=6.9.0'}
@@ -4991,8 +4946,8 @@ packages:
resolution: {integrity: sha512-w9UMqWwJxHNOvoNzSJ2oPF5wvYcvP7jUvYzhp67yEhTi17ZDBBC1z9pTdGuzjD+EFIqLSYRweZjqfiPzQ06Ebg==}
engines: {node: '>= 0.4'}
get-tsconfig@4.13.0:
resolution: {integrity: sha512-1VKTZJCwBrvbd+Wn3AOgQP/2Av+TfTCOlE4AcRJE72W1ksZXbAx8PPBR9RzgTeSPzlPMHrbANMH3LbltH73wxQ==}
get-tsconfig@4.10.1:
resolution: {integrity: sha512-auHyJ4AgMz7vgS8Hp3N6HXSmlMdUyhSUrfBF16w153rxtLIEOE+HGqaBppczZvnHLqQJfiHotCYpNhl0lUROFQ==}
github-slugger@2.0.0:
resolution: {integrity: sha512-IaOQ9puYtjrkq7Y0Ygl9KDZnrf/aiUJYUpVf89y8kyaxbRG7Y1SrX/jaumrv81vc61+kiMempujsM3Yw7w5qcw==}
@@ -5213,6 +5168,9 @@ packages:
resolution: {integrity: sha512-TR3KfrTZTYLPB6jUjfx6MF9WcWrHL9su5TObK4ZkYgBdWKPOFoSoQIdEuTuR82pmtxH2spWG9h6etwfr1pLBqQ==}
engines: {node: '>=6'}
import-in-the-middle@1.14.2:
resolution: {integrity: sha512-5tCuY9BV8ujfOpwtAGgsTx9CGUapcFMEEyByLv1B+v2+6DhAcw+Zr0nhQT7uwaZ7DiourxFEscghOR8e1aPLQw==}
import-in-the-middle@2.0.0:
resolution: {integrity: sha512-yNZhyQYqXpkT0AKq3F3KLasUSK4fHvebNH5hOsKQw2dhGSALvQ4U0BqUc5suziKvydO5u5hgN2hy1RJaho8U5A==}
@@ -5324,10 +5282,6 @@ packages:
resolution: {integrity: sha512-nPUB5km40q9e8UfN/Zc24eLlzdSf9OfKByBw9CIdw4H1giPMeA0OIJvbchsCu4npfI2QcMVBsGEBHKZ7wLTWmQ==}
engines: {node: '>= 0.4'}
is-generator-function@1.1.2:
resolution: {integrity: sha512-upqt1SkGkODW9tsGNG5mtXTXtECizwtS2kA161M+gJPc1xdb/Ax629af6YrTwcOeQHbewrPNlE5Dx7kzvXTizA==}
engines: {node: '>= 0.4'}
is-glob@4.0.3:
resolution: {integrity: sha512-xelSayHH36ZgE7ZWhli7pW34hNbNl8Ojv5KVmkJD4hBdD3th8Tfk9vYasLM+mXWOZhFkgZfxhLSnrwRr4elSSg==}
engines: {node: '>=0.10.0'}
@@ -5949,8 +5903,8 @@ packages:
engines: {node: ^10 || ^12 || ^13.7 || ^14 || >=15.0.1}
hasBin: true
napi-postinstall@0.3.4:
resolution: {integrity: sha512-PHI5f1O0EP5xJ9gQmFGMS6IZcrVvTjpXjz7Na41gTE7eE2hK11lg04CECCYEEjdc17EV4DO+fkGEtt7TpTaTiQ==}
napi-postinstall@0.3.3:
resolution: {integrity: sha512-uTp172LLXSxuSYHv/kou+f6KW3SMppU9ivthaVTXian9sOt3XM/zHYHpRZiLgQoxeWfYUnslNWQHF1+G71xcow==}
engines: {node: ^12.20.0 || ^14.18.0 || >=16.0.0}
hasBin: true
@@ -5966,8 +5920,8 @@ packages:
react: ^16.8 || ^17 || ^18 || ^19 || ^19.0.0-rc
react-dom: ^16.8 || ^17 || ^18 || ^19 || ^19.0.0-rc
next@15.4.10:
resolution: {integrity: sha512-itVlc79QjpKMFMRhP+kbGKaSG/gZM6RCvwhEbwmCNF06CdDiNaoHcbeg0PqkEa2GOcn8KJ0nnc7+yL7EjoYLHQ==}
next@15.4.7:
resolution: {integrity: sha512-OcqRugwF7n7mC8OSYjvsZhhG1AYSvulor1EIUsIkbbEbf1qoE5EbH36Swj8WhF4cHqmDgkiam3z1c1W0J1Wifg==}
engines: {node: ^18.18.0 || ^19.8.0 || >= 20.0.0}
hasBin: true
peerDependencies:
@@ -6815,11 +6769,6 @@ packages:
engines: {node: '>= 0.4'}
hasBin: true
resolve@1.22.11:
resolution: {integrity: sha512-RfqAvLnMl313r7c9oclB1HhUEAezcpLjz95wFH4LVuhk9JF/r22qmVP9AMmOU4vMX7Q8pN8jwNg/CSpdFnMjTQ==}
engines: {node: '>= 0.4'}
hasBin: true
resolve@1.22.8:
resolution: {integrity: sha512-oKWePCxqpd6FlLvGV1VU0x7bkPmmCNolxzjMf4NczoDnQcIWrAF+cPtZn5i6n+RfD2d9i0tzpKnG6Yk168yIyw==}
hasBin: true
@@ -7909,7 +7858,7 @@ snapshots:
'@babel/helper-plugin-utils': 7.27.1
debug: 4.4.3
lodash.debounce: 4.0.8
resolve: 1.22.11
resolve: 1.22.10
transitivePeerDependencies:
- supports-color
@@ -8601,7 +8550,7 @@ snapshots:
'@date-fns/tz@1.4.1': {}
'@emnapi/core@1.7.1':
'@emnapi/core@1.5.0':
dependencies:
'@emnapi/wasi-threads': 1.1.0
tslib: 2.8.1
@@ -8612,11 +8561,6 @@ snapshots:
tslib: 2.8.1
optional: true
'@emnapi/runtime@1.7.1':
dependencies:
tslib: 2.8.1
optional: true
'@emnapi/wasi-threads@1.1.0':
dependencies:
tslib: 2.8.1
@@ -8795,8 +8739,6 @@ snapshots:
'@eslint-community/regexpp@4.12.1': {}
'@eslint-community/regexpp@4.12.2': {}
'@eslint/eslintrc@2.1.4':
dependencies:
ajv: 6.12.6
@@ -9054,46 +8996,46 @@ snapshots:
'@napi-rs/wasm-runtime@0.2.12':
dependencies:
'@emnapi/core': 1.7.1
'@emnapi/runtime': 1.7.1
'@tybys/wasm-util': 0.10.1
'@emnapi/core': 1.5.0
'@emnapi/runtime': 1.5.0
'@tybys/wasm-util': 0.10.0
optional: true
'@neoconfetti/react@1.0.0': {}
'@next/env@15.4.10': {}
'@next/env@15.4.7': {}
'@next/eslint-plugin-next@15.5.7':
'@next/eslint-plugin-next@15.5.2':
dependencies:
fast-glob: 3.3.1
'@next/swc-darwin-arm64@15.4.8':
'@next/swc-darwin-arm64@15.4.7':
optional: true
'@next/swc-darwin-x64@15.4.8':
'@next/swc-darwin-x64@15.4.7':
optional: true
'@next/swc-linux-arm64-gnu@15.4.8':
'@next/swc-linux-arm64-gnu@15.4.7':
optional: true
'@next/swc-linux-arm64-musl@15.4.8':
'@next/swc-linux-arm64-musl@15.4.7':
optional: true
'@next/swc-linux-x64-gnu@15.4.8':
'@next/swc-linux-x64-gnu@15.4.7':
optional: true
'@next/swc-linux-x64-musl@15.4.8':
'@next/swc-linux-x64-musl@15.4.7':
optional: true
'@next/swc-win32-arm64-msvc@15.4.8':
'@next/swc-win32-arm64-msvc@15.4.7':
optional: true
'@next/swc-win32-x64-msvc@15.4.8':
'@next/swc-win32-x64-msvc@15.4.7':
optional: true
'@next/third-parties@15.4.6(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)':
'@next/third-parties@15.4.6(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)':
dependencies:
next: 15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
next: 15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
react: 18.3.1
third-party-capital: 1.0.20
@@ -10173,7 +10115,7 @@ snapshots:
'@rtsao/scc@1.1.0': {}
'@rushstack/eslint-patch@1.15.0': {}
'@rushstack/eslint-patch@1.12.0': {}
'@scarf/scarf@1.4.0': {}
@@ -10325,7 +10267,7 @@ snapshots:
'@sentry/core@10.27.0': {}
'@sentry/nextjs@10.27.0(@opentelemetry/context-async-hooks@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/core@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/sdk-trace-base@2.2.0(@opentelemetry/api@1.9.0))(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)(webpack@5.101.3(esbuild@0.25.9))':
'@sentry/nextjs@10.27.0(@opentelemetry/context-async-hooks@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/core@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/sdk-trace-base@2.2.0(@opentelemetry/api@1.9.0))(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)(webpack@5.101.3(esbuild@0.25.9))':
dependencies:
'@opentelemetry/api': 1.9.0
'@opentelemetry/semantic-conventions': 1.37.0
@@ -10338,7 +10280,7 @@ snapshots:
'@sentry/react': 10.27.0(react@18.3.1)
'@sentry/vercel-edge': 10.27.0
'@sentry/webpack-plugin': 4.3.0(webpack@5.101.3(esbuild@0.25.9))
next: 15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
next: 15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
resolve: 1.22.8
rollup: 4.52.2
stacktrace-parser: 0.1.11
@@ -10700,7 +10642,7 @@ snapshots:
react: 18.3.1
react-dom: 18.3.1(react@18.3.1)
'@storybook/nextjs@9.1.5(esbuild@0.25.9)(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react-dom@18.3.1(react@18.3.1))(react@18.3.1)(storybook@9.1.5(@testing-library/dom@10.4.1)(msw@2.11.6(@types/node@24.10.0)(typescript@5.9.3))(prettier@3.6.2))(type-fest@4.41.0)(typescript@5.9.3)(webpack-hot-middleware@2.26.1)(webpack@5.101.3(esbuild@0.25.9))':
'@storybook/nextjs@9.1.5(esbuild@0.25.9)(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react-dom@18.3.1(react@18.3.1))(react@18.3.1)(storybook@9.1.5(@testing-library/dom@10.4.1)(msw@2.11.6(@types/node@24.10.0)(typescript@5.9.3))(prettier@3.6.2))(type-fest@4.41.0)(typescript@5.9.3)(webpack-hot-middleware@2.26.1)(webpack@5.101.3(esbuild@0.25.9))':
dependencies:
'@babel/core': 7.28.4
'@babel/plugin-syntax-bigint': 7.8.3(@babel/core@7.28.4)
@@ -10724,7 +10666,7 @@ snapshots:
css-loader: 6.11.0(webpack@5.101.3(esbuild@0.25.9))
image-size: 2.0.2
loader-utils: 3.3.1
next: 15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
next: 15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
node-polyfill-webpack-plugin: 2.0.1(webpack@5.101.3(esbuild@0.25.9))
postcss: 8.5.6
postcss-loader: 8.2.0(postcss@8.5.6)(typescript@5.9.3)(webpack@5.101.3(esbuild@0.25.9))
@@ -10925,7 +10867,7 @@ snapshots:
dependencies:
'@testing-library/dom': 10.4.1
'@tybys/wasm-util@0.10.1':
'@tybys/wasm-util@0.10.0':
dependencies:
tslib: 2.8.1
optional: true
@@ -11123,14 +11065,14 @@ snapshots:
dependencies:
'@types/node': 24.10.0
'@typescript-eslint/eslint-plugin@8.48.1(@typescript-eslint/parser@8.48.1(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1)(typescript@5.9.3)':
'@typescript-eslint/eslint-plugin@8.43.0(@typescript-eslint/parser@8.43.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1)(typescript@5.9.3)':
dependencies:
'@eslint-community/regexpp': 4.12.2
'@typescript-eslint/parser': 8.48.1(eslint@8.57.1)(typescript@5.9.3)
'@typescript-eslint/scope-manager': 8.48.1
'@typescript-eslint/type-utils': 8.48.1(eslint@8.57.1)(typescript@5.9.3)
'@typescript-eslint/utils': 8.48.1(eslint@8.57.1)(typescript@5.9.3)
'@typescript-eslint/visitor-keys': 8.48.1
'@eslint-community/regexpp': 4.12.1
'@typescript-eslint/parser': 8.43.0(eslint@8.57.1)(typescript@5.9.3)
'@typescript-eslint/scope-manager': 8.43.0
'@typescript-eslint/type-utils': 8.43.0(eslint@8.57.1)(typescript@5.9.3)
'@typescript-eslint/utils': 8.43.0(eslint@8.57.1)(typescript@5.9.3)
'@typescript-eslint/visitor-keys': 8.43.0
eslint: 8.57.1
graphemer: 1.4.0
ignore: 7.0.5
@@ -11140,12 +11082,12 @@ snapshots:
transitivePeerDependencies:
- supports-color
'@typescript-eslint/parser@8.48.1(eslint@8.57.1)(typescript@5.9.3)':
'@typescript-eslint/parser@8.43.0(eslint@8.57.1)(typescript@5.9.3)':
dependencies:
'@typescript-eslint/scope-manager': 8.48.1
'@typescript-eslint/types': 8.48.1
'@typescript-eslint/typescript-estree': 8.48.1(typescript@5.9.3)
'@typescript-eslint/visitor-keys': 8.48.1
'@typescript-eslint/scope-manager': 8.43.0
'@typescript-eslint/types': 8.43.0
'@typescript-eslint/typescript-estree': 8.43.0(typescript@5.9.3)
'@typescript-eslint/visitor-keys': 8.43.0
debug: 4.4.3
eslint: 8.57.1
typescript: 5.9.3
@@ -11155,7 +11097,7 @@ snapshots:
'@typescript-eslint/project-service@8.43.0(typescript@5.9.3)':
dependencies:
'@typescript-eslint/tsconfig-utils': 8.43.0(typescript@5.9.3)
'@typescript-eslint/types': 8.48.1
'@typescript-eslint/types': 8.43.0
debug: 4.4.3
typescript: 5.9.3
transitivePeerDependencies:
@@ -11164,16 +11106,7 @@ snapshots:
'@typescript-eslint/project-service@8.46.2(typescript@5.9.3)':
dependencies:
'@typescript-eslint/tsconfig-utils': 8.46.2(typescript@5.9.3)
'@typescript-eslint/types': 8.48.1
debug: 4.4.3
typescript: 5.9.3
transitivePeerDependencies:
- supports-color
'@typescript-eslint/project-service@8.48.1(typescript@5.9.3)':
dependencies:
'@typescript-eslint/tsconfig-utils': 8.48.1(typescript@5.9.3)
'@typescript-eslint/types': 8.48.1
'@typescript-eslint/types': 8.46.2
debug: 4.4.3
typescript: 5.9.3
transitivePeerDependencies:
@@ -11189,11 +11122,6 @@ snapshots:
'@typescript-eslint/types': 8.46.2
'@typescript-eslint/visitor-keys': 8.46.2
'@typescript-eslint/scope-manager@8.48.1':
dependencies:
'@typescript-eslint/types': 8.48.1
'@typescript-eslint/visitor-keys': 8.48.1
'@typescript-eslint/tsconfig-utils@8.43.0(typescript@5.9.3)':
dependencies:
typescript: 5.9.3
@@ -11202,15 +11130,11 @@ snapshots:
dependencies:
typescript: 5.9.3
'@typescript-eslint/tsconfig-utils@8.48.1(typescript@5.9.3)':
'@typescript-eslint/type-utils@8.43.0(eslint@8.57.1)(typescript@5.9.3)':
dependencies:
typescript: 5.9.3
'@typescript-eslint/type-utils@8.48.1(eslint@8.57.1)(typescript@5.9.3)':
dependencies:
'@typescript-eslint/types': 8.48.1
'@typescript-eslint/typescript-estree': 8.48.1(typescript@5.9.3)
'@typescript-eslint/utils': 8.48.1(eslint@8.57.1)(typescript@5.9.3)
'@typescript-eslint/types': 8.43.0
'@typescript-eslint/typescript-estree': 8.43.0(typescript@5.9.3)
'@typescript-eslint/utils': 8.43.0(eslint@8.57.1)(typescript@5.9.3)
debug: 4.4.3
eslint: 8.57.1
ts-api-utils: 2.1.0(typescript@5.9.3)
@@ -11222,8 +11146,6 @@ snapshots:
'@typescript-eslint/types@8.46.2': {}
'@typescript-eslint/types@8.48.1': {}
'@typescript-eslint/typescript-estree@8.43.0(typescript@5.9.3)':
dependencies:
'@typescript-eslint/project-service': 8.43.0(typescript@5.9.3)
@@ -11234,7 +11156,7 @@ snapshots:
fast-glob: 3.3.3
is-glob: 4.0.3
minimatch: 9.0.5
semver: 7.7.3
semver: 7.7.2
ts-api-utils: 2.1.0(typescript@5.9.3)
typescript: 5.9.3
transitivePeerDependencies:
@@ -11256,21 +11178,6 @@ snapshots:
transitivePeerDependencies:
- supports-color
'@typescript-eslint/typescript-estree@8.48.1(typescript@5.9.3)':
dependencies:
'@typescript-eslint/project-service': 8.48.1(typescript@5.9.3)
'@typescript-eslint/tsconfig-utils': 8.48.1(typescript@5.9.3)
'@typescript-eslint/types': 8.48.1
'@typescript-eslint/visitor-keys': 8.48.1
debug: 4.4.3
minimatch: 9.0.5
semver: 7.7.3
tinyglobby: 0.2.15
ts-api-utils: 2.1.0(typescript@5.9.3)
typescript: 5.9.3
transitivePeerDependencies:
- supports-color
'@typescript-eslint/utils@8.43.0(eslint@8.57.1)(typescript@5.9.3)':
dependencies:
'@eslint-community/eslint-utils': 4.9.0(eslint@8.57.1)
@@ -11293,17 +11200,6 @@ snapshots:
transitivePeerDependencies:
- supports-color
'@typescript-eslint/utils@8.48.1(eslint@8.57.1)(typescript@5.9.3)':
dependencies:
'@eslint-community/eslint-utils': 4.9.0(eslint@8.57.1)
'@typescript-eslint/scope-manager': 8.48.1
'@typescript-eslint/types': 8.48.1
'@typescript-eslint/typescript-estree': 8.48.1(typescript@5.9.3)
eslint: 8.57.1
typescript: 5.9.3
transitivePeerDependencies:
- supports-color
'@typescript-eslint/visitor-keys@8.43.0':
dependencies:
'@typescript-eslint/types': 8.43.0
@@ -11314,11 +11210,6 @@ snapshots:
'@typescript-eslint/types': 8.46.2
eslint-visitor-keys: 4.2.1
'@typescript-eslint/visitor-keys@8.48.1':
dependencies:
'@typescript-eslint/types': 8.48.1
eslint-visitor-keys: 4.2.1
'@ungap/structured-clone@1.3.0': {}
'@unrs/resolver-binding-android-arm-eabi@1.11.1':
@@ -11380,14 +11271,14 @@ snapshots:
'@unrs/resolver-binding-win32-x64-msvc@1.11.1':
optional: true
'@vercel/analytics@1.5.0(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)':
'@vercel/analytics@1.5.0(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)':
optionalDependencies:
next: 15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
next: 15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
react: 18.3.1
'@vercel/speed-insights@1.2.0(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)':
'@vercel/speed-insights@1.2.0(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)':
optionalDependencies:
next: 15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
next: 15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
react: 18.3.1
'@vitest/expect@3.2.4':
@@ -12641,16 +12532,16 @@ snapshots:
escape-string-regexp@5.0.0: {}
eslint-config-next@15.5.7(eslint@8.57.1)(typescript@5.9.3):
eslint-config-next@15.5.2(eslint@8.57.1)(typescript@5.9.3):
dependencies:
'@next/eslint-plugin-next': 15.5.7
'@rushstack/eslint-patch': 1.15.0
'@typescript-eslint/eslint-plugin': 8.48.1(@typescript-eslint/parser@8.48.1(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1)(typescript@5.9.3)
'@typescript-eslint/parser': 8.48.1(eslint@8.57.1)(typescript@5.9.3)
'@next/eslint-plugin-next': 15.5.2
'@rushstack/eslint-patch': 1.12.0
'@typescript-eslint/eslint-plugin': 8.43.0(@typescript-eslint/parser@8.43.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1)(typescript@5.9.3)
'@typescript-eslint/parser': 8.43.0(eslint@8.57.1)(typescript@5.9.3)
eslint: 8.57.1
eslint-import-resolver-node: 0.3.9
eslint-import-resolver-typescript: 3.10.1(eslint-plugin-import@2.32.0)(eslint@8.57.1)
eslint-plugin-import: 2.32.0(@typescript-eslint/parser@8.48.1(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1)
eslint-plugin-import: 2.32.0(@typescript-eslint/parser@8.43.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1)
eslint-plugin-jsx-a11y: 6.10.2(eslint@8.57.1)
eslint-plugin-react: 7.37.5(eslint@8.57.1)
eslint-plugin-react-hooks: 5.2.0(eslint@8.57.1)
@@ -12665,7 +12556,7 @@ snapshots:
dependencies:
debug: 3.2.7
is-core-module: 2.16.1
resolve: 1.22.11
resolve: 1.22.10
transitivePeerDependencies:
- supports-color
@@ -12674,28 +12565,28 @@ snapshots:
'@nolyfill/is-core-module': 1.0.39
debug: 4.4.3
eslint: 8.57.1
get-tsconfig: 4.13.0
get-tsconfig: 4.10.1
is-bun-module: 2.0.0
stable-hash: 0.0.5
tinyglobby: 0.2.15
unrs-resolver: 1.11.1
optionalDependencies:
eslint-plugin-import: 2.32.0(@typescript-eslint/parser@8.48.1(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1)
eslint-plugin-import: 2.32.0(@typescript-eslint/parser@8.43.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1)
transitivePeerDependencies:
- supports-color
eslint-module-utils@2.12.1(@typescript-eslint/parser@8.48.1(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-node@0.3.9)(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1):
eslint-module-utils@2.12.1(@typescript-eslint/parser@8.43.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-node@0.3.9)(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1):
dependencies:
debug: 3.2.7
optionalDependencies:
'@typescript-eslint/parser': 8.48.1(eslint@8.57.1)(typescript@5.9.3)
'@typescript-eslint/parser': 8.43.0(eslint@8.57.1)(typescript@5.9.3)
eslint: 8.57.1
eslint-import-resolver-node: 0.3.9
eslint-import-resolver-typescript: 3.10.1(eslint-plugin-import@2.32.0)(eslint@8.57.1)
transitivePeerDependencies:
- supports-color
eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.48.1(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1):
eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.43.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1):
dependencies:
'@rtsao/scc': 1.1.0
array-includes: 3.1.9
@@ -12706,7 +12597,7 @@ snapshots:
doctrine: 2.1.0
eslint: 8.57.1
eslint-import-resolver-node: 0.3.9
eslint-module-utils: 2.12.1(@typescript-eslint/parser@8.48.1(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-node@0.3.9)(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1)
eslint-module-utils: 2.12.1(@typescript-eslint/parser@8.43.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-node@0.3.9)(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1)
hasown: 2.0.2
is-core-module: 2.16.1
is-glob: 4.0.3
@@ -12718,7 +12609,7 @@ snapshots:
string.prototype.trimend: 1.0.9
tsconfig-paths: 3.15.0
optionalDependencies:
'@typescript-eslint/parser': 8.48.1(eslint@8.57.1)(typescript@5.9.3)
'@typescript-eslint/parser': 8.43.0(eslint@8.57.1)(typescript@5.9.3)
transitivePeerDependencies:
- eslint-import-resolver-typescript
- eslint-import-resolver-webpack
@@ -13063,11 +12954,9 @@ snapshots:
functions-have-names@1.2.3: {}
geist@1.5.1(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)):
geist@1.5.1(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)):
dependencies:
next: 15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
generator-function@2.0.1: {}
next: 15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
gensync@1.0.0-beta.2: {}
@@ -13101,7 +12990,7 @@ snapshots:
es-errors: 1.3.0
get-intrinsic: 1.3.0
get-tsconfig@4.13.0:
get-tsconfig@4.10.1:
dependencies:
resolve-pkg-maps: 1.0.0
@@ -13385,6 +13274,13 @@ snapshots:
parent-module: 1.0.1
resolve-from: 4.0.0
import-in-the-middle@1.14.2:
dependencies:
acorn: 8.15.0
acorn-import-attributes: 1.9.5(acorn@8.15.0)
cjs-module-lexer: 1.4.3
module-details-from-path: 1.0.4
import-in-the-middle@2.0.0:
dependencies:
acorn: 8.15.0
@@ -13461,7 +13357,7 @@ snapshots:
is-bun-module@2.0.0:
dependencies:
semver: 7.7.3
semver: 7.7.2
is-callable@1.2.7: {}
@@ -13499,14 +13395,6 @@ snapshots:
has-tostringtag: 1.0.2
safe-regex-test: 1.1.0
is-generator-function@1.1.2:
dependencies:
call-bound: 1.0.4
generator-function: 2.0.1
get-proto: 1.0.1
has-tostringtag: 1.0.2
safe-regex-test: 1.1.0
is-glob@4.0.3:
dependencies:
is-extglob: 2.1.1
@@ -14327,7 +14215,7 @@ snapshots:
nanoid@3.3.11: {}
napi-postinstall@0.3.4: {}
napi-postinstall@0.3.3: {}
natural-compare@1.4.0: {}
@@ -14338,9 +14226,9 @@ snapshots:
react: 18.3.1
react-dom: 18.3.1(react@18.3.1)
next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1):
next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1):
dependencies:
'@next/env': 15.4.10
'@next/env': 15.4.7
'@swc/helpers': 0.5.15
caniuse-lite: 1.0.30001741
postcss: 8.4.31
@@ -14348,14 +14236,14 @@ snapshots:
react-dom: 18.3.1(react@18.3.1)
styled-jsx: 5.1.6(@babel/core@7.28.4)(react@18.3.1)
optionalDependencies:
'@next/swc-darwin-arm64': 15.4.8
'@next/swc-darwin-x64': 15.4.8
'@next/swc-linux-arm64-gnu': 15.4.8
'@next/swc-linux-arm64-musl': 15.4.8
'@next/swc-linux-x64-gnu': 15.4.8
'@next/swc-linux-x64-musl': 15.4.8
'@next/swc-win32-arm64-msvc': 15.4.8
'@next/swc-win32-x64-msvc': 15.4.8
'@next/swc-darwin-arm64': 15.4.7
'@next/swc-darwin-x64': 15.4.7
'@next/swc-linux-arm64-gnu': 15.4.7
'@next/swc-linux-arm64-musl': 15.4.7
'@next/swc-linux-x64-gnu': 15.4.7
'@next/swc-linux-x64-musl': 15.4.7
'@next/swc-win32-arm64-msvc': 15.4.7
'@next/swc-win32-x64-msvc': 15.4.7
'@opentelemetry/api': 1.9.0
'@playwright/test': 1.56.1
sharp: 0.34.3
@@ -14433,12 +14321,12 @@ snapshots:
dependencies:
boolbase: 1.0.0
nuqs@2.7.2(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1):
nuqs@2.7.2(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1):
dependencies:
'@standard-schema/spec': 1.0.0
react: 18.3.1
optionalDependencies:
next: 15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
next: 15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
oas-kit-common@1.0.8:
dependencies:
@@ -15297,12 +15185,6 @@ snapshots:
path-parse: 1.0.7
supports-preserve-symlinks-flag: 1.0.0
resolve@1.22.11:
dependencies:
is-core-module: 2.16.1
path-parse: 1.0.7
supports-preserve-symlinks-flag: 1.0.0
resolve@1.22.8:
dependencies:
is-core-module: 2.16.1
@@ -15458,7 +15340,7 @@ snapshots:
dependencies:
color: 4.2.3
detect-libc: 2.0.4
semver: 7.7.3
semver: 7.7.2
optionalDependencies:
'@img/sharp-darwin-arm64': 0.34.3
'@img/sharp-darwin-x64': 0.34.3
@@ -16114,7 +15996,7 @@ snapshots:
unrs-resolver@1.11.1:
dependencies:
napi-postinstall: 0.3.4
napi-postinstall: 0.3.3
optionalDependencies:
'@unrs/resolver-binding-android-arm-eabi': 1.11.1
'@unrs/resolver-binding-android-arm64': 1.11.1
@@ -16342,7 +16224,7 @@ snapshots:
is-async-function: 2.1.1
is-date-object: 1.1.0
is-finalizationregistry: 1.1.1
is-generator-function: 1.1.2
is-generator-function: 1.1.0
is-regex: 1.2.1
is-weakref: 1.1.1
isarray: 2.0.5

View File

@@ -1,4 +1,6 @@
"use client";
import { StoreAgentDetails } from "@/lib/autogpt-server-api";
import { useBackendAPI } from "@/lib/autogpt-server-api/context";
import { isEmptyOrWhitespace } from "@/lib/utils";
import { useRouter } from "next/navigation";
import { useEffect, useState } from "react";
@@ -11,17 +13,15 @@ import {
OnboardingStep,
} from "../components/OnboardingStep";
import { OnboardingText } from "../components/OnboardingText";
import { getV1RecommendedOnboardingAgents } from "@/app/api/__generated__/endpoints/onboarding/onboarding";
import { resolveResponse } from "@/app/api/helpers";
import { StoreAgentDetails } from "@/app/api/__generated__/models/storeAgentDetails";
export default function Page() {
const { state, updateState, completeStep } = useOnboarding(4, "INTEGRATIONS");
const [agents, setAgents] = useState<StoreAgentDetails[]>([]);
const api = useBackendAPI();
const router = useRouter();
useEffect(() => {
resolveResponse(getV1RecommendedOnboardingAgents()).then((agents) => {
api.getOnboardingAgents().then((agents) => {
if (agents.length < 2) {
completeStep("CONGRATS");
router.replace("/");

View File

@@ -8,6 +8,7 @@ import {
CardTitle,
} from "@/components/__legacy__/ui/card";
import { ErrorCard } from "@/components/molecules/ErrorCard/ErrorCard";
import { InformationTooltip } from "@/components/molecules/InformationTooltip/InformationTooltip";
import { CircleNotchIcon } from "@phosphor-icons/react/dist/ssr";
import { Play } from "lucide-react";
import OnboardingButton from "../components/OnboardingButton";
@@ -78,13 +79,20 @@ export default function Page() {
<CardContent className="flex flex-col gap-4">
{Object.entries(agent?.input_schema.properties || {}).map(
([key, inputSubSchema]) => (
<RunAgentInputs
key={key}
schema={inputSubSchema}
value={onboarding.state?.agentInput?.[key]}
placeholder={inputSubSchema.description}
onChange={(value) => handleSetAgentInput(key, value)}
/>
<div key={key} className="flex flex-col space-y-2">
<label className="flex items-center gap-1 text-sm font-medium">
{inputSubSchema.title || key}
<InformationTooltip
description={inputSubSchema.description}
/>
</label>
<RunAgentInputs
schema={inputSubSchema}
value={onboarding.state?.agentInput?.[key]}
placeholder={inputSubSchema.description}
onChange={(value) => handleSetAgentInput(key, value)}
/>
</div>
),
)}
<AgentOnboardingCredentials

View File

@@ -12,9 +12,6 @@ import {
useGetV2GetAgentByVersion,
useGetV2GetAgentGraph,
} from "@/app/api/__generated__/endpoints/store/store";
import { resolveResponse } from "@/app/api/helpers";
import { postV2AddMarketplaceAgent } from "@/app/api/__generated__/endpoints/library/library";
import { GraphID } from "@/lib/autogpt-server-api";
export function useOnboardingRunStep() {
const onboarding = useOnboarding(undefined, "AGENT_CHOICE");
@@ -80,7 +77,12 @@ export function useOnboardingRunStep() {
setShowInput(true);
onboarding.setStep(6);
onboarding.completeStep("AGENT_NEW_RUN");
onboarding.updateState({
completedSteps: [
...(onboarding.state.completedSteps || []),
"AGENT_NEW_RUN",
],
});
}
function handleSetAgentInput(key: string, value: string) {
@@ -109,22 +111,21 @@ export function useOnboardingRunStep() {
setRunningAgent(true);
try {
const libraryAgent = await resolveResponse(
postV2AddMarketplaceAgent({
store_listing_version_id: storeAgent?.store_listing_version_id || "",
source: "onboarding",
}),
const libraryAgent = await api.addMarketplaceAgentToLibrary(
storeAgent?.store_listing_version_id || "",
);
const { id: runID } = await api.executeGraph(
libraryAgent.graph_id as GraphID,
libraryAgent.graph_id,
libraryAgent.graph_version,
onboarding.state.agentInput || {},
inputCredentials,
"onboarding",
);
onboarding.updateState({ onboardingAgentExecutionId: runID });
onboarding.updateState({
onboardingAgentExecutionId: runID,
agentRuns: (onboarding.state.agentRuns || 0) + 1,
});
router.push("/onboarding/6-congrats");
} catch (error) {

View File

@@ -5,9 +5,6 @@ import { useRouter } from "next/navigation";
import * as party from "party-js";
import { useEffect, useRef, useState } from "react";
import { useOnboarding } from "../../../../providers/onboarding/onboarding-provider";
import { resolveResponse } from "@/app/api/helpers";
import { getV1OnboardingState } from "@/app/api/__generated__/endpoints/onboarding/onboarding";
import { postV2AddMarketplaceAgent } from "@/app/api/__generated__/endpoints/library/library";
export default function Page() {
const { completeStep } = useOnboarding(7, "AGENT_INPUT");
@@ -40,15 +37,11 @@ export default function Page() {
completeStep("CONGRATS");
try {
const onboarding = await resolveResponse(getV1OnboardingState());
const onboarding = await api.getUserOnboarding();
if (onboarding?.selectedStoreListingVersionId) {
try {
const libraryAgent = await resolveResponse(
postV2AddMarketplaceAgent({
store_listing_version_id:
onboarding.selectedStoreListingVersionId,
source: "onboarding",
}),
const libraryAgent = await api.addMarketplaceAgentToLibrary(
onboarding.selectedStoreListingVersionId,
);
router.replace(`/library/agents/${libraryAgent.id}`);
} catch (error) {

View File

@@ -1,7 +1,7 @@
import { cn } from "@/lib/utils";
import StarRating from "./StarRating";
import { StoreAgentDetails } from "@/lib/autogpt-server-api";
import SmartImage from "@/components/__legacy__/SmartImage";
import { StoreAgentDetails } from "@/app/api/__generated__/models/storeAgentDetails";
type OnboardingAgentCardProps = {
agent?: StoreAgentDetails;

View File

@@ -1,24 +1,24 @@
"use client";
import { LoadingSpinner } from "@/components/atoms/LoadingSpinner/LoadingSpinner";
import { useBackendAPI } from "@/lib/autogpt-server-api/context";
import { useRouter } from "next/navigation";
import { useEffect } from "react";
import { resolveResponse, shouldShowOnboarding } from "@/app/api/helpers";
import { getV1OnboardingState } from "@/app/api/__generated__/endpoints/onboarding/onboarding";
export default function OnboardingPage() {
const router = useRouter();
const api = useBackendAPI();
useEffect(() => {
async function redirectToStep() {
try {
// Check if onboarding is enabled
const isEnabled = await shouldShowOnboarding();
const isEnabled = await api.isOnboardingEnabled();
if (!isEnabled) {
router.replace("/");
return;
}
const onboarding = await resolveResponse(getV1OnboardingState());
const onboarding = await api.getUserOnboarding();
// Handle completed onboarding
if (onboarding.completedSteps.includes("GET_RESULTS")) {
@@ -66,7 +66,7 @@ export default function OnboardingPage() {
}
redirectToStep();
}, [router]);
}, [api, router]);
return <LoadingSpinner size="large" cover />;
}

View File

@@ -1,16 +1,6 @@
"use client";
import { useState, useEffect } from "react";
import {
LineChart,
Line,
XAxis,
YAxis,
CartesianGrid,
Tooltip,
Legend,
ResponsiveContainer,
} from "recharts";
import { Button } from "@/components/atoms/Button/Button";
import { Input } from "@/components/__legacy__/ui/input";
import { Label } from "@/components/__legacy__/ui/label";
@@ -28,12 +18,9 @@ import { useToast } from "@/components/molecules/Toast/use-toast";
import {
usePostV2GenerateExecutionAnalytics,
useGetV2GetExecutionAnalyticsConfiguration,
useGetV2GetExecutionAccuracyTrendsAndAlerts,
} from "@/app/api/__generated__/endpoints/admin/admin";
import type { ExecutionAnalyticsRequest } from "@/app/api/__generated__/models/executionAnalyticsRequest";
import type { ExecutionAnalyticsResponse } from "@/app/api/__generated__/models/executionAnalyticsResponse";
import type { AccuracyTrendsResponse } from "@/app/api/__generated__/models/accuracyTrendsResponse";
import type { AccuracyLatestData } from "@/app/api/__generated__/models/accuracyLatestData";
// Use the generated type with minimal adjustment for form handling
interface FormData extends Omit<ExecutionAnalyticsRequest, "created_after"> {
@@ -46,133 +33,8 @@ export function ExecutionAnalyticsForm() {
const [results, setResults] = useState<ExecutionAnalyticsResponse | null>(
null,
);
const [trendsData, setTrendsData] = useState<AccuracyTrendsResponse | null>(
null,
);
const { toast } = useToast();
// State for accuracy trends query parameters
const [accuracyParams, setAccuracyParams] = useState<{
graph_id: string;
user_id?: string;
days_back: number;
drop_threshold: number;
include_historical?: boolean;
} | null>(null);
// Use the generated API client for accuracy trends (GET)
const { data: accuracyApiResponse, error: accuracyError } =
useGetV2GetExecutionAccuracyTrendsAndAlerts(
accuracyParams || {
graph_id: "",
days_back: 30,
drop_threshold: 10.0,
include_historical: false,
},
{
query: {
enabled: !!accuracyParams?.graph_id,
},
},
);
// Update local state when data changes and handle success/error
useEffect(() => {
if (accuracyError) {
console.error("Failed to fetch trends:", accuracyError);
toast({
title: "Trends Error",
description:
(accuracyError as any)?.message || "Failed to fetch accuracy trends",
variant: "destructive",
});
return;
}
const data = accuracyApiResponse?.data;
if (data && "latest_data" in data) {
setTrendsData(data);
// Check for alerts
if (data.alert) {
toast({
title: "🚨 Accuracy Alert Detected",
description: `${data.alert.drop_percent.toFixed(1)}% accuracy drop detected for this agent`,
variant: "destructive",
});
}
}
}, [accuracyApiResponse, accuracyError, toast]);
// Chart component for accuracy trends
function AccuracyChart({ data }: { data: AccuracyLatestData[] }) {
const chartData = data.map((item) => ({
date: new Date(item.date).toLocaleDateString(),
"Daily Score": item.daily_score,
"3-Day Avg": item.three_day_avg,
"7-Day Avg": item.seven_day_avg,
"14-Day Avg": item.fourteen_day_avg,
}));
return (
<ResponsiveContainer width="100%" height={400}>
<LineChart
data={chartData}
margin={{ top: 5, right: 30, left: 20, bottom: 5 }}
>
<CartesianGrid strokeDasharray="3 3" />
<XAxis dataKey="date" />
<YAxis domain={[0, 100]} />
<Tooltip
formatter={(value) => [`${Number(value).toFixed(2)}%`, ""]}
/>
<Legend />
<Line
type="monotone"
dataKey="Daily Score"
stroke="#3b82f6"
strokeWidth={2}
dot={{ r: 3 }}
/>
<Line
type="monotone"
dataKey="3-Day Avg"
stroke="#10b981"
strokeWidth={2}
dot={{ r: 3 }}
/>
<Line
type="monotone"
dataKey="7-Day Avg"
stroke="#f59e0b"
strokeWidth={2}
dot={{ r: 3 }}
/>
<Line
type="monotone"
dataKey="14-Day Avg"
stroke="#8b5cf6"
strokeWidth={2}
dot={{ r: 3 }}
/>
</LineChart>
</ResponsiveContainer>
);
}
// Function to fetch accuracy trends using generated API client
const fetchAccuracyTrends = (graphId: string, userId?: string) => {
if (!graphId.trim()) return;
setAccuracyParams({
graph_id: graphId.trim(),
user_id: userId?.trim() || undefined,
days_back: 30,
drop_threshold: 10.0,
include_historical: showAccuracyChart, // Include historical data when chart is enabled
});
};
// Fetch configuration from API
const {
data: config,
@@ -188,7 +50,6 @@ export function ExecutionAnalyticsForm() {
}
const result = res.data;
setResults(result);
toast({
title: "Analytics Generated",
description: `Processed ${result.processed_executions} executions. ${result.successful_analytics} successful, ${result.failed_analytics} failed, ${result.skipped_executions} skipped.`,
@@ -197,21 +58,11 @@ export function ExecutionAnalyticsForm() {
},
onError: (error: any) => {
console.error("Analytics generation error:", error);
const errorMessage =
error?.message || error?.detail || "An unexpected error occurred";
const isOpenAIError = errorMessage.includes(
"OpenAI API key not configured",
);
toast({
title: isOpenAIError
? "Analytics Generation Skipped"
: "Analytics Generation Failed",
description: isOpenAIError
? "Analytics generation requires OpenAI configuration, but accuracy trends are still available above."
: errorMessage,
variant: isOpenAIError ? "default" : "destructive",
title: "Analytics Generation Failed",
description:
error?.message || error?.detail || "An unexpected error occurred",
variant: "destructive",
});
},
},
@@ -226,9 +77,6 @@ export function ExecutionAnalyticsForm() {
user_prompt: "", // Will use config default when empty
});
// State for accuracy trends chart toggle
const [showAccuracyChart, setShowAccuracyChart] = useState(true);
// Update form defaults when config loads
useEffect(() => {
if (config?.data && config.status === 200 && !formData.model_name) {
@@ -253,11 +101,6 @@ export function ExecutionAnalyticsForm() {
setResults(null);
// Fetch accuracy trends if chart is enabled
if (showAccuracyChart) {
fetchAccuracyTrends(formData.graph_id, formData.user_id || undefined);
}
// Prepare the request payload
const payload: ExecutionAnalyticsRequest = {
graph_id: formData.graph_id.trim(),
@@ -419,18 +262,6 @@ export function ExecutionAnalyticsForm() {
</Label>
</div>
{/* Show Accuracy Chart Checkbox */}
<div className="flex items-center space-x-2">
<Checkbox
id="show_accuracy_chart"
checked={showAccuracyChart}
onCheckedChange={(checked) => setShowAccuracyChart(!!checked)}
/>
<Label htmlFor="show_accuracy_chart" className="text-sm">
Show accuracy trends chart and historical data visualization
</Label>
</div>
{/* Custom System Prompt */}
<div className="space-y-2">
<Label htmlFor="system_prompt">
@@ -539,98 +370,6 @@ export function ExecutionAnalyticsForm() {
</div>
</form>
{/* Accuracy Trends Display */}
{trendsData && (
<div className="space-y-4">
<h3 className="text-lg font-semibold">Execution Accuracy Trends</h3>
{/* Alert Section */}
{trendsData.alert && (
<div className="rounded-lg border-l-4 border-red-500 bg-red-50 p-4">
<div className="flex items-start">
<span className="text-2xl">🚨</span>
<div className="ml-3 space-y-2">
<h4 className="text-lg font-semibold text-red-800">
Accuracy Alert Detected
</h4>
<p className="text-red-700">
<strong>
{trendsData.alert.drop_percent.toFixed(1)}% accuracy drop
</strong>{" "}
detected for agent{" "}
<code className="rounded bg-red-100 px-1 text-sm">
{formData.graph_id}
</code>
</p>
<div className="space-y-1 text-sm text-red-600">
<p>
3-day average:{" "}
<strong>
{trendsData.alert.three_day_avg.toFixed(2)}%
</strong>
</p>
<p>
7-day average:{" "}
<strong>
{trendsData.alert.seven_day_avg.toFixed(2)}%
</strong>
</p>
<p>
Detected at:{" "}
<strong>
{new Date(
trendsData.alert.detected_at,
).toLocaleString()}
</strong>
</p>
</div>
</div>
</div>
</div>
)}
{/* Latest Data Summary */}
<div className="grid grid-cols-2 gap-4 md:grid-cols-4">
<div className="rounded-lg border bg-white p-4 text-center">
<div className="text-2xl font-bold text-blue-600">
{trendsData.latest_data.daily_score?.toFixed(2) || "N/A"}
</div>
<div className="text-sm text-gray-600">Daily Score</div>
</div>
<div className="rounded-lg border bg-white p-4 text-center">
<div className="text-2xl font-bold text-green-600">
{trendsData.latest_data.three_day_avg?.toFixed(2) || "N/A"}
</div>
<div className="text-sm text-gray-600">3-Day Avg</div>
</div>
<div className="rounded-lg border bg-white p-4 text-center">
<div className="text-2xl font-bold text-orange-600">
{trendsData.latest_data.seven_day_avg?.toFixed(2) || "N/A"}
</div>
<div className="text-sm text-gray-600">7-Day Avg</div>
</div>
<div className="rounded-lg border bg-white p-4 text-center">
<div className="text-2xl font-bold text-purple-600">
{trendsData.latest_data.fourteen_day_avg?.toFixed(2) || "N/A"}
</div>
<div className="text-sm text-gray-600">14-Day Avg</div>
</div>
</div>
{/* Chart Section - only show when toggle is enabled and historical data exists */}
{showAccuracyChart && trendsData?.historical_data && (
<div className="mt-6">
<h4 className="mb-4 text-lg font-semibold">
Execution Accuracy Trends Chart
</h4>
<div className="rounded-lg border bg-white p-6">
<AccuracyChart data={trendsData.historical_data} />
</div>
</div>
)}
</div>
)}
{results && <AnalyticsResultsTable results={results} />}
</div>
);

View File

@@ -17,13 +17,12 @@ function ExecutionAnalyticsDashboard() {
</div>
<div className="rounded-lg border bg-white p-6 shadow-sm">
<h2 className="mb-4 text-xl font-semibold">
Execution Analytics & Accuracy Monitoring
</h2>
<h2 className="mb-4 text-xl font-semibold">Analytics Generation</h2>
<p className="mb-6 text-gray-600">
Generate missing activity summaries and success scores for agent
executions. After generation, accuracy trends and alerts will
automatically be displayed to help monitor agent health over time.
This tool will identify completed executions missing activity
summaries or success scores and generate them using AI. Only
executions that meet the criteria and are missing these fields will
be processed.
</p>
<Suspense

View File

@@ -1,4 +1,4 @@
import { OAuthPopupResultMessage } from "@/components/renderers/input-renderer/fields/CredentialField/models/OAuthCredentialModal/useOAuthCredentialModal";
import { OAuthPopupResultMessage } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/modals/CredentialsInputs/CredentialsInputs";
import { NextResponse } from "next/server";
// This route is intended to be used as the callback for integration OAuth flows,

View File

@@ -9,8 +9,6 @@ import { useGraphStore } from "@/app/(platform)/build/stores/graphStore";
import { useShallow } from "zustand/react/shallow";
import { useState } from "react";
import { useSaveGraph } from "@/app/(platform)/build/hooks/useSaveGraph";
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
import { ApiError } from "@/lib/autogpt-server-api/helpers"; // Check if this exists
export const useRunGraph = () => {
const { saveGraph, isSaving } = useSaveGraph({
@@ -26,13 +24,6 @@ export const useRunGraph = () => {
);
const [openRunInputDialog, setOpenRunInputDialog] = useState(false);
const setNodeErrorsForBackendId = useNodeStore(
useShallow((state) => state.setNodeErrorsForBackendId),
);
const clearAllNodeErrors = useNodeStore(
useShallow((state) => state.clearAllNodeErrors),
);
const [{ flowID, flowVersion, flowExecutionID }, setQueryStates] =
useQueryStates({
flowID: parseAsString,
@@ -44,49 +35,19 @@ export const useRunGraph = () => {
usePostV1ExecuteGraphAgent({
mutation: {
onSuccess: (response: any) => {
clearAllNodeErrors();
const { id } = response.data as GraphExecutionMeta;
setQueryStates({
flowExecutionID: id,
});
},
onError: (error: any) => {
// Reset running state on error
setIsGraphRunning(false);
if (error instanceof ApiError && error.isGraphValidationError?.()) {
const errorData = error.response?.detail;
if (errorData?.node_errors) {
Object.entries(errorData.node_errors).forEach(
([backendId, nodeErrors]) => {
setNodeErrorsForBackendId(
backendId,
nodeErrors as { [key: string]: string },
);
},
);
useNodeStore.getState().nodes.forEach((node) => {
const backendId = node.data.metadata?.backend_id || node.id;
if (!errorData.node_errors[backendId as string]) {
useNodeStore.getState().updateNodeErrors(node.id, {});
}
});
}
toast({
title: errorData?.message || "Graph validation failed",
description:
"Please fix the validation errors on the highlighted nodes and try again.",
variant: "destructive",
});
} else {
toast({
title:
(error.detail as string) ?? "An unexpected error occurred.",
description: "An unexpected error occurred.",
variant: "destructive",
});
}
toast({
title: (error.detail as string) ?? "An unexpected error occurred.",
description: "An unexpected error occurred.",
variant: "destructive",
});
},
},
});
@@ -116,7 +77,7 @@ export const useRunGraph = () => {
await executeGraph({
graphId: flowID ?? "",
graphVersion: flowVersion || null,
data: { inputs: {}, credentials_inputs: {}, source: "builder" },
data: { inputs: {}, credentials_inputs: {} },
});
}
};

View File

@@ -79,11 +79,7 @@ export const useRunInputDialog = ({
await executeGraph({
graphId: flowID ?? "",
graphVersion: flowVersion || null,
data: {
inputs: inputValues,
credentials_inputs: credentialValues,
source: "builder",
},
data: { inputs: inputValues, credentials_inputs: credentialValues },
});
// Optimistically set running state immediately for responsive UI
setIsGraphRunning(true);

View File

@@ -1,25 +1,24 @@
import { useCallback } from "react";
import { useReactFlow } from "@xyflow/react";
import { Key, storage } from "@/services/storage/local-storage";
import { v4 as uuidv4 } from "uuid";
import { useNodeStore } from "../../../stores/nodeStore";
import { useEdgeStore } from "../../../stores/edgeStore";
import { CustomNode } from "../nodes/CustomNode/CustomNode";
import { CustomEdge } from "../edges/CustomEdge";
import { useToast } from "@/components/molecules/Toast/use-toast";
interface CopyableData {
nodes: CustomNode[];
edges: CustomEdge[];
}
const CLIPBOARD_PREFIX = "autogpt-flow-data:";
export function useCopyPaste() {
// Only use useReactFlow for viewport (not managed by stores)
const { getViewport } = useReactFlow();
const { toast } = useToast();
const handleCopyPaste = useCallback(
(event: KeyboardEvent) => {
// Prevent copy/paste if any modal is open or if the focus is on an input element
const activeElement = document.activeElement;
const isInputField =
activeElement?.tagName === "INPUT" ||
@@ -29,6 +28,7 @@ export function useCopyPaste() {
if (isInputField) return;
if (event.ctrlKey || event.metaKey) {
// COPY: Ctrl+C or Cmd+C
if (event.key === "c" || event.key === "C") {
const { nodes } = useNodeStore.getState();
const { edges } = useEdgeStore.getState();
@@ -53,102 +53,81 @@ export function useCopyPaste() {
edges: selectedEdges,
};
const clipboardText = `${CLIPBOARD_PREFIX}${JSON.stringify(copiedData)}`;
navigator.clipboard
.writeText(clipboardText)
.then(() => {
toast({
title: "Copied successfully",
description: `${selectedNodes.length} node(s) copied to clipboard`,
});
})
.catch((error) => {
console.error("Failed to copy to clipboard:", error);
});
storage.set(Key.COPIED_FLOW_DATA, JSON.stringify(copiedData));
}
// PASTE: Ctrl+V or Cmd+V
if (event.key === "v" || event.key === "V") {
navigator.clipboard
.readText()
.then((clipboardText) => {
if (!clipboardText.startsWith(CLIPBOARD_PREFIX)) {
return; // Not our data, ignore
}
const copiedDataString = storage.get(Key.COPIED_FLOW_DATA);
if (copiedDataString) {
const copiedData = JSON.parse(copiedDataString) as CopyableData;
const oldToNewIdMap: Record<string, string> = {};
const jsonString = clipboardText.slice(CLIPBOARD_PREFIX.length);
const copiedData = JSON.parse(jsonString) as CopyableData;
const oldToNewIdMap: Record<string, string> = {};
// Get fresh viewport values at paste time to ensure correct positioning
const { x, y, zoom } = getViewport();
const viewportCenter = {
x: (window.innerWidth / 2 - x) / zoom,
y: (window.innerHeight / 2 - y) / zoom,
};
const { x, y, zoom } = getViewport();
const viewportCenter = {
x: (window.innerWidth / 2 - x) / zoom,
y: (window.innerHeight / 2 - y) / zoom,
let minX = Infinity,
minY = Infinity,
maxX = -Infinity,
maxY = -Infinity;
copiedData.nodes.forEach((node) => {
minX = Math.min(minX, node.position.x);
minY = Math.min(minY, node.position.y);
maxX = Math.max(maxX, node.position.x);
maxY = Math.max(maxY, node.position.y);
});
const offsetX = viewportCenter.x - (minX + maxX) / 2;
const offsetY = viewportCenter.y - (minY + maxY) / 2;
// Deselect existing nodes first
useNodeStore.setState((state) => ({
nodes: state.nodes.map((node) => ({ ...node, selected: false })),
}));
// Create and add new nodes with UNIQUE IDs using UUID
copiedData.nodes.forEach((node) => {
const newNodeId = uuidv4();
oldToNewIdMap[node.id] = newNodeId;
const newNode: CustomNode = {
...node,
id: newNodeId,
selected: true,
position: {
x: node.position.x + offsetX,
y: node.position.y + offsetY,
},
};
let minX = Infinity,
minY = Infinity,
maxX = -Infinity,
maxY = -Infinity;
copiedData.nodes.forEach((node) => {
minX = Math.min(minX, node.position.x);
minY = Math.min(minY, node.position.y);
maxX = Math.max(maxX, node.position.x);
maxY = Math.max(maxY, node.position.y);
});
const offsetX = viewportCenter.x - (minX + maxX) / 2;
const offsetY = viewportCenter.y - (minY + maxY) / 2;
// Deselect existing nodes first
useNodeStore.setState((state) => ({
nodes: state.nodes.map((node) => ({
...node,
selected: false,
})),
}));
// Create and add new nodes with UNIQUE IDs using UUID
copiedData.nodes.forEach((node) => {
const newNodeId = uuidv4();
oldToNewIdMap[node.id] = newNodeId;
const newNode: CustomNode = {
...node,
id: newNodeId,
selected: true,
position: {
x: node.position.x + offsetX,
y: node.position.y + offsetY,
},
};
useNodeStore.getState().addNode(newNode);
});
// Add edges with updated source/target IDs
const { addEdge } = useEdgeStore.getState();
copiedData.edges.forEach((edge) => {
const newSourceId = oldToNewIdMap[edge.source] ?? edge.source;
const newTargetId = oldToNewIdMap[edge.target] ?? edge.target;
addEdge({
source: newSourceId,
target: newTargetId,
sourceHandle: edge.sourceHandle ?? "",
targetHandle: edge.targetHandle ?? "",
data: {
...edge.data,
},
});
});
})
.catch((error) => {
console.error("Failed to read from clipboard:", error);
useNodeStore.getState().addNode(newNode);
});
// Add edges with updated source/target IDs
const { addEdge } = useEdgeStore.getState();
copiedData.edges.forEach((edge) => {
const newSourceId = oldToNewIdMap[edge.source] ?? edge.source;
const newTargetId = oldToNewIdMap[edge.target] ?? edge.target;
addEdge({
source: newSourceId,
target: newTargetId,
sourceHandle: edge.sourceHandle ?? "",
targetHandle: edge.targetHandle ?? "",
data: {
...edge.data,
},
});
});
}
}
}
},
[getViewport, toast],
[getViewport],
);
return handleCopyPaste;

View File

@@ -42,12 +42,11 @@ export const useFlow = () => {
const setBlockMenuOpen = useControlPanelStore(
useShallow((state) => state.setBlockMenuOpen),
);
const [{ flowID, flowVersion, flowExecutionID }, setQueryStates] =
useQueryStates({
flowID: parseAsString,
flowVersion: parseAsInteger,
flowExecutionID: parseAsString,
});
const [{ flowID, flowVersion, flowExecutionID }] = useQueryStates({
flowID: parseAsString,
flowVersion: parseAsInteger,
flowExecutionID: parseAsString,
});
const { data: executionDetails } = useGetV1GetExecutionDetails(
flowID || "",
@@ -82,7 +81,7 @@ export const useFlow = () => {
{
query: {
select: (res) => res.data as BlockInfo[],
enabled: !!flowID && !!blockIds && blockIds.length > 0,
enabled: !!flowID && !!blockIds,
},
},
);
@@ -103,9 +102,6 @@ export const useFlow = () => {
// load graph schemas
useEffect(() => {
if (graph) {
setQueryStates({
flowVersion: graph.version ?? 1,
});
setGraphSchemas(
graph.input_schema as Record<string, any> | null,
graph.credentials_input_schema as Record<string, any> | null,

View File

@@ -37,7 +37,6 @@ export type CustomNodeData = {
costs: BlockCost[];
categories: BlockInfoCategoriesItem[];
metadata?: NodeModelMetadata;
errors?: { [key: string]: string };
};
export type CustomNode = XYNode<CustomNodeData, "custom">;
@@ -72,24 +71,10 @@ export const CustomNode: React.FC<NodeProps<CustomNode>> = React.memo(
? (data.hardcodedValues.output_schema ?? {})
: data.outputSchema;
const hasConfigErrors =
data.errors &&
Object.values(data.errors).some(
(value) => value !== null && value !== undefined && value !== "",
);
const outputData = data.nodeExecutionResult?.output_data;
const hasOutputError =
typeof outputData === "object" &&
outputData !== null &&
"error" in outputData;
const hasErrors = hasConfigErrors || hasOutputError;
// Currently all blockTypes design are similar - that's why i am using the same component for all of them
// If in future - if we need some drastic change in some blockTypes design - we can create separate components for them
return (
<NodeContainer selected={selected} nodeId={nodeId} hasErrors={hasErrors}>
<NodeContainer selected={selected} nodeId={nodeId}>
<div className="rounded-xlarge bg-white">
<NodeHeader data={data} nodeId={nodeId} />
{isWebhook && <WebhookDisclaimer nodeId={nodeId} />}
@@ -106,11 +91,7 @@ export const CustomNode: React.FC<NodeProps<CustomNode>> = React.memo(
/>
<NodeAdvancedToggle nodeId={nodeId} />
{data.uiType != BlockUIType.OUTPUT && (
<OutputHandler
uiType={data.uiType}
outputSchema={outputSchema}
nodeId={nodeId}
/>
<OutputHandler outputSchema={outputSchema} nodeId={nodeId} />
)}
<NodeDataRenderer nodeId={nodeId} />
</div>

View File

@@ -3,18 +3,15 @@ import { nodeStyleBasedOnStatus } from "../helpers";
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
import { useShallow } from "zustand/react/shallow";
import { AgentExecutionStatus } from "@/app/api/__generated__/models/agentExecutionStatus";
export const NodeContainer = ({
children,
nodeId,
selected,
hasErrors, // these are configuration errors that occur before executing the graph -- more like validation errors
}: {
children: React.ReactNode;
nodeId: string;
selected: boolean;
hasErrors?: boolean;
}) => {
const status = useNodeStore(
useShallow((state) => state.getNodeStatus(nodeId)),
@@ -25,7 +22,6 @@ export const NodeContainer = ({
"z-12 max-w-[370px] rounded-xlarge ring-1 ring-slate-200/60",
selected && "shadow-lg ring-2 ring-slate-200",
status && nodeStyleBasedOnStatus[status],
hasErrors ? nodeStyleBasedOnStatus[AgentExecutionStatus.FAILED] : "",
)}
>
{children}

View File

@@ -28,7 +28,6 @@ export const NodeContextMenu = ({
})),
}));
useCopyPasteStore.getState().copySelectedNodes();
useCopyPasteStore.getState().pasteNodes();
};

View File

@@ -20,32 +20,17 @@ export const FormCreator = React.memo(
className?: string;
}) => {
const updateNodeData = useNodeStore((state) => state.updateNodeData);
const getHardCodedValues = useNodeStore(
(state) => state.getHardCodedValues,
);
const handleChange = ({ formData }: any) => {
if ("credentials" in formData && !formData.credentials?.id) {
delete formData.credentials;
}
const updatedValues =
uiType === BlockUIType.AGENT
? {
...getHardCodedValues(nodeId),
inputs: formData,
}
: formData;
updateNodeData(nodeId, { hardcodedValues: updatedValues });
updateNodeData(nodeId, { hardcodedValues: formData });
};
const hardcodedValues = getHardCodedValues(nodeId);
const initialValues =
uiType === BlockUIType.AGENT
? (hardcodedValues.inputs ?? {})
: hardcodedValues;
const initialValues = getHardCodedValues(nodeId);
return (
<div className={className}>

View File

@@ -14,16 +14,13 @@ import {
import { useEdgeStore } from "@/app/(platform)/build/stores/edgeStore";
import { getTypeDisplayInfo } from "./helpers";
import { generateHandleId } from "../handlers/helpers";
import { BlockUIType } from "../../types";
export const OutputHandler = ({
outputSchema,
nodeId,
uiType,
}: {
outputSchema: RJSFSchema;
nodeId: string;
uiType: BlockUIType;
}) => {
const { isOutputConnected } = useEdgeStore();
const properties = outputSchema?.properties || {};
@@ -82,9 +79,7 @@ export const OutputHandler = ({
</Text>
<NodeHandle
handleId={
uiType === BlockUIType.AGENT ? key : generateHandleId(key)
}
handleId={generateHandleId(key)}
isConnected={isConnected}
side="right"
/>

View File

@@ -1,36 +1,24 @@
import { useBlockMenuStore } from "../../../../stores/blockMenuStore";
import { useGetV2BuilderSearchInfinite } from "@/app/api/__generated__/endpoints/store/store";
import { SearchResponse } from "@/app/api/__generated__/models/searchResponse";
import { useCallback, useEffect, useState } from "react";
import { useState } from "react";
import { useAddAgentToBuilder } from "../hooks/useAddAgentToBuilder";
import { LibraryAgent } from "@/app/api/__generated__/models/libraryAgent";
import { getV2GetSpecificAgent } from "@/app/api/__generated__/endpoints/store/store";
import {
getGetV2ListLibraryAgentsQueryKey,
getV2GetLibraryAgent,
usePostV2AddMarketplaceAgent,
} from "@/app/api/__generated__/endpoints/library/library";
import {
getGetV2GetBuilderItemCountsQueryKey,
getGetV2GetBuilderSuggestionsQueryKey,
} from "@/app/api/__generated__/endpoints/default/default";
import { getGetV2GetBuilderItemCountsQueryKey } from "@/app/api/__generated__/endpoints/default/default";
import { getQueryClient } from "@/lib/react-query/queryClient";
import { useToast } from "@/components/molecules/Toast/use-toast";
import * as Sentry from "@sentry/nextjs";
export const useBlockMenuSearch = () => {
const { searchQuery, searchId, setSearchId } = useBlockMenuStore();
const { searchQuery } = useBlockMenuStore();
const { toast } = useToast();
const { addAgentToBuilder, addLibraryAgentToBuilder } =
useAddAgentToBuilder();
const queryClient = getQueryClient();
const resetSearchSession = useCallback(() => {
setSearchId(undefined);
queryClient.invalidateQueries({
queryKey: getGetV2GetBuilderSuggestionsQueryKey(),
});
}, [queryClient, setSearchId]);
const [addingLibraryAgentId, setAddingLibraryAgentId] = useState<
string | null
@@ -50,19 +38,13 @@ export const useBlockMenuSearch = () => {
page: 1,
page_size: 8,
search_query: searchQuery,
search_id: searchId,
},
{
query: {
getNextPageParam: (lastPage) => {
const response = lastPage.data as SearchResponse;
const { pagination } = response;
if (!pagination) {
return undefined;
}
const { current_page, total_pages } = pagination;
return current_page < total_pages ? current_page + 1 : undefined;
getNextPageParam: (lastPage, allPages) => {
const pagination = lastPage.data as SearchResponse;
const isMore = pagination.more_pages;
return isMore ? allPages.length + 1 : undefined;
},
},
},
@@ -71,6 +53,7 @@ export const useBlockMenuSearch = () => {
const { mutateAsync: addMarketplaceAgent } = usePostV2AddMarketplaceAgent({
mutation: {
onSuccess: () => {
const queryClient = getQueryClient();
queryClient.invalidateQueries({
queryKey: getGetV2ListLibraryAgentsQueryKey(),
});
@@ -92,24 +75,6 @@ export const useBlockMenuSearch = () => {
},
});
useEffect(() => {
if (!searchData?.pages?.length) {
return;
}
const latestPage = searchData.pages[searchData.pages.length - 1];
const response = latestPage?.data as SearchResponse;
if (response?.search_id && response.search_id !== searchId) {
setSearchId(response.search_id);
}
}, [searchData, searchId, setSearchId]);
useEffect(() => {
if (searchId && !searchQuery) {
resetSearchSession();
}
}, [resetSearchSession, searchId, searchQuery]);
const allSearchData =
searchData?.pages?.flatMap((page) => {
const response = page.data as SearchResponse;
@@ -152,12 +117,7 @@ export const useBlockMenuSearch = () => {
});
const libraryAgent = response.data as LibraryAgent;
const { data: libraryAgentDetails } = await getV2GetLibraryAgent(
libraryAgent.id,
);
addAgentToBuilder(libraryAgentDetails as LibraryAgent);
addAgentToBuilder(libraryAgent);
toast({
title: "Agent Added",

View File

@@ -1,32 +1,30 @@
import { debounce } from "lodash";
import { useCallback, useEffect, useRef, useState } from "react";
import { useBlockMenuStore } from "../../../../stores/blockMenuStore";
import { getQueryClient } from "@/lib/react-query/queryClient";
import { getGetV2GetBuilderSuggestionsQueryKey } from "@/app/api/__generated__/endpoints/default/default";
const SEARCH_DEBOUNCE_MS = 300;
export const useBlockMenuSearchBar = () => {
const inputRef = useRef<HTMLInputElement>(null);
const [localQuery, setLocalQuery] = useState("");
const { setSearchQuery, setSearchId, searchQuery } = useBlockMenuStore();
const queryClient = getQueryClient();
const { setSearchQuery, setSearchId, searchId, searchQuery } =
useBlockMenuStore();
const clearSearchSession = useCallback(() => {
setSearchId(undefined);
queryClient.invalidateQueries({
queryKey: getGetV2GetBuilderSuggestionsQueryKey(),
});
}, [queryClient, setSearchId]);
const searchIdRef = useRef(searchId);
useEffect(() => {
searchIdRef.current = searchId;
}, [searchId]);
const debouncedSetSearchQuery = useCallback(
debounce((value: string) => {
setSearchQuery(value);
if (value.length === 0) {
clearSearchSession();
setSearchId(undefined);
} else if (!searchIdRef.current) {
setSearchId(crypto.randomUUID());
}
}, SEARCH_DEBOUNCE_MS),
[clearSearchSession, setSearchQuery],
[setSearchQuery, setSearchId],
);
useEffect(() => {
@@ -38,13 +36,13 @@ export const useBlockMenuSearchBar = () => {
const handleClear = () => {
setLocalQuery("");
setSearchQuery("");
clearSearchSession();
setSearchId(undefined);
debouncedSetSearchQuery.cancel();
};
useEffect(() => {
setLocalQuery(searchQuery);
}, [searchQuery]);
}, []);
return {
handleClear,

View File

@@ -1,109 +0,0 @@
import React, { useEffect, useRef, useState } from "react";
import { ArrowLeftIcon, ArrowRightIcon } from "@phosphor-icons/react";
import { cn } from "@/lib/utils";
interface HorizontalScrollAreaProps {
children: React.ReactNode;
wrapperClassName?: string;
scrollContainerClassName?: string;
scrollAmount?: number;
dependencyList?: React.DependencyList;
}
const defaultDependencies: React.DependencyList = [];
const baseScrollClasses =
"flex gap-2 overflow-x-auto px-8 [scrollbar-width:none] [-ms-overflow-style:'none'] [&::-webkit-scrollbar]:hidden";
export const HorizontalScroll: React.FC<HorizontalScrollAreaProps> = ({
children,
wrapperClassName,
scrollContainerClassName,
scrollAmount = 300,
dependencyList = defaultDependencies,
}) => {
const scrollRef = useRef<HTMLDivElement | null>(null);
const [canScrollLeft, setCanScrollLeft] = useState(false);
const [canScrollRight, setCanScrollRight] = useState(false);
const scrollByDelta = (delta: number) => {
if (!scrollRef.current) {
return;
}
scrollRef.current.scrollBy({ left: delta, behavior: "smooth" });
};
const updateScrollState = () => {
const element = scrollRef.current;
if (!element) {
setCanScrollLeft(false);
setCanScrollRight(false);
return;
}
setCanScrollLeft(element.scrollLeft > 0);
setCanScrollRight(
Math.ceil(element.scrollLeft + element.clientWidth) < element.scrollWidth,
);
};
useEffect(() => {
updateScrollState();
const element = scrollRef.current;
if (!element) {
return;
}
const handleScroll = () => updateScrollState();
element.addEventListener("scroll", handleScroll);
window.addEventListener("resize", handleScroll);
return () => {
element.removeEventListener("scroll", handleScroll);
window.removeEventListener("resize", handleScroll);
};
}, dependencyList);
return (
<div className={wrapperClassName}>
<div className="group relative">
<div
ref={scrollRef}
className={cn(baseScrollClasses, scrollContainerClassName)}
>
{children}
</div>
{canScrollLeft && (
<div className="pointer-events-none absolute inset-y-0 left-0 w-8 bg-gradient-to-r from-white via-white/80 to-white/0" />
)}
{canScrollRight && (
<div className="pointer-events-none absolute inset-y-0 right-0 w-8 bg-gradient-to-l from-white via-white/80 to-white/0" />
)}
{canScrollLeft && (
<button
type="button"
aria-label="Scroll left"
className="pointer-events-none absolute left-2 top-5 -translate-y-1/2 opacity-0 transition-opacity duration-200 group-hover:pointer-events-auto group-hover:opacity-100"
onClick={() => scrollByDelta(-scrollAmount)}
>
<ArrowLeftIcon
size={28}
className="rounded-full bg-zinc-700 p-1 text-white drop-shadow"
weight="light"
/>
</button>
)}
{canScrollRight && (
<button
type="button"
aria-label="Scroll right"
className="pointer-events-none absolute right-2 top-5 -translate-y-1/2 opacity-0 transition-opacity duration-200 group-hover:pointer-events-auto group-hover:opacity-100"
onClick={() => scrollByDelta(scrollAmount)}
>
<ArrowRightIcon
size={28}
className="rounded-full bg-zinc-700 p-1 text-white drop-shadow"
weight="light"
/>
</button>
)}
</div>
</div>
);
};

View File

@@ -1,7 +1,6 @@
import { getGetV2GetBuilderItemCountsQueryKey } from "@/app/api/__generated__/endpoints/default/default";
import {
getGetV2ListLibraryAgentsQueryKey,
getV2GetLibraryAgent,
usePostV2AddMarketplaceAgent,
} from "@/app/api/__generated__/endpoints/library/library";
import {
@@ -106,16 +105,8 @@ export const useMarketplaceAgentsContent = () => {
},
});
// Here, libraryAgent has empty input and output schemas.
// Not updating the endpoint because this endpoint is used elsewhere.
// TODO: Create a new endpoint for builder specific to marketplace agents.
const libraryAgent = response.data as LibraryAgent;
const { data: libraryAgentDetails } = await getV2GetLibraryAgent(
libraryAgent.id,
);
addAgentToBuilder(libraryAgentDetails as LibraryAgent);
addAgentToBuilder(libraryAgent);
toast({
title: "Agent Added",

View File

@@ -6,15 +6,10 @@ import { ErrorCard } from "@/components/molecules/ErrorCard/ErrorCard";
import { blockMenuContainerStyle } from "../style";
import { useBlockMenuStore } from "../../../../stores/blockMenuStore";
import { DefaultStateType } from "../types";
import { SearchHistoryChip } from "../SearchHistoryChip";
import { HorizontalScroll } from "../HorizontalScroll";
export const SuggestionContent = () => {
const { setIntegration, setDefaultState, setSearchQuery, setSearchId } =
useBlockMenuStore();
const { setIntegration, setDefaultState } = useBlockMenuStore();
const { data, isLoading, isError, error, refetch } = useSuggestionContent();
const suggestions = data?.suggestions;
const hasRecentSearches = (suggestions?.recent_searches?.length ?? 0) > 0;
if (isError) {
return (
@@ -34,45 +29,11 @@ export const SuggestionContent = () => {
);
}
const suggestions = data?.suggestions;
return (
<div className={blockMenuContainerStyle}>
<div className="w-full space-y-6 pb-4">
{/* Recent searches */}
{hasRecentSearches && (
<div className="space-y-2.5 px-4">
<p className="font-sans text-sm font-medium leading-[1.375rem] text-zinc-800">
Recent searches
</p>
<HorizontalScroll
wrapperClassName="-mx-8"
scrollContainerClassName="flex gap-2 overflow-x-auto px-8 [scrollbar-width:none] [-ms-overflow-style:'none'] [&::-webkit-scrollbar]:hidden"
dependencyList={[
suggestions?.recent_searches?.length ?? 0,
isLoading,
]}
>
{!isLoading && suggestions
? suggestions.recent_searches.map((entry, index) => (
<SearchHistoryChip
key={entry.search_id || `${entry.search_query}-${index}`}
content={entry.search_query || "Untitled search"}
onClick={() => {
setSearchQuery(entry.search_query || "");
setSearchId(entry.search_id || undefined);
}}
/>
))
: Array(3)
.fill(0)
.map((_, index) => (
<SearchHistoryChip.Skeleton
key={`recent-search-skeleton-${index}`}
/>
))}
</HorizontalScroll>
</div>
)}
{/* Integrations */}
<div className="space-y-2.5 px-4">
<p className="font-sans text-sm font-medium leading-[1.375rem] text-zinc-800">

View File

@@ -981,17 +981,15 @@ const NodeArrayInput: FC<{
);
return (
<div key={entryKey}>
{schema.items && (
<NodeHandle
title={`#${index + 1}`}
className="text-sm text-gray-500"
keyName={entryKey}
schema={schema.items}
isConnected={isConnected}
isRequired={false}
side="left"
/>
)}
<NodeHandle
title={`#${index + 1}`}
className="text-sm text-gray-500"
keyName={entryKey}
schema={schema.items!}
isConnected={isConnected}
isRequired={false}
side="left"
/>
<div className="mb-2 flex space-x-2">
{!isConnected &&
(schema.items ? (

View File

@@ -83,6 +83,7 @@ export function RunnerInputDialog({
onRun={doRun ? undefined : doClose}
doCreateSchedule={doCreateSchedule ? handleSchedule : undefined}
onCreateSchedule={doCreateSchedule ? undefined : doClose}
runCount={0}
/>
</DialogContent>
</Dialog>

View File

@@ -152,9 +152,7 @@ export const useSaveGraph = ({
links: graphLinks,
};
const response = await createNewGraph({
data: { graph: data, source: "builder" },
});
const response = await createNewGraph({ data: { graph: data } });
const graphData = response.data as GraphModel;
setGraphSchemas(
graphData.input_schema,

View File

@@ -53,15 +53,6 @@ type NodeStore = {
getNodeExecutionResult: (nodeId: string) => NodeExecutionResult | undefined;
getNodeBlockUIType: (nodeId: string) => BlockUIType;
hasWebhookNodes: () => boolean;
updateNodeErrors: (nodeId: string, errors: { [key: string]: string }) => void;
clearNodeErrors: (nodeId: string) => void;
getNodeErrors: (nodeId: string) => { [key: string]: string } | undefined;
setNodeErrorsForBackendId: (
backendId: string,
errors: { [key: string]: string },
) => void;
clearAllNodeErrors: () => void; // Add this
};
export const useNodeStore = create<NodeStore>((set, get) => ({
@@ -262,47 +253,4 @@ export const useNodeStore = create<NodeStore>((set, get) => ({
[BlockUIType.WEBHOOK, BlockUIType.WEBHOOK_MANUAL].includes(n.data.uiType),
);
},
updateNodeErrors: (nodeId: string, errors: { [key: string]: string }) => {
set((state) => ({
nodes: state.nodes.map((n) =>
n.id === nodeId ? { ...n, data: { ...n.data, errors } } : n,
),
}));
},
clearNodeErrors: (nodeId: string) => {
set((state) => ({
nodes: state.nodes.map((n) =>
n.id === nodeId ? { ...n, data: { ...n.data, errors: undefined } } : n,
),
}));
},
getNodeErrors: (nodeId: string) => {
return get().nodes.find((n) => n.id === nodeId)?.data?.errors;
},
setNodeErrorsForBackendId: (
backendId: string,
errors: { [key: string]: string },
) => {
set((state) => ({
nodes: state.nodes.map((n) => {
// Match by backend_id if nodes have it, or by id
const matches =
n.data.metadata?.backend_id === backendId || n.id === backendId;
return matches ? { ...n, data: { ...n.data, errors } } : n;
}),
}));
},
clearAllNodeErrors: () => {
set((state) => ({
nodes: state.nodes.map((n) => ({
...n,
data: { ...n.data, errors: undefined },
})),
}));
},
}));

View File

@@ -141,6 +141,7 @@ export function ChatCredentialsSetup({
onSelectCredentials={(credMeta) =>
handleCredentialSelect(cred.provider, credMeta)
}
hideIfSingleCredentialAvailable={false}
/>
</div>
);

View File

@@ -1,5 +1,6 @@
"use client";
import { Skeleton } from "@/components/__legacy__/ui/skeleton";
import { Button } from "@/components/atoms/Button/Button";
import { Breadcrumbs } from "@/components/molecules/Breadcrumbs/Breadcrumbs";
import { ErrorCard } from "@/components/molecules/ErrorCard/ErrorCard";
@@ -10,27 +11,20 @@ import { AgentRunsLoading } from "./components/other/AgentRunsLoading";
import { EmptySchedules } from "./components/other/EmptySchedules";
import { EmptyTasks } from "./components/other/EmptyTasks";
import { EmptyTemplates } from "./components/other/EmptyTemplates";
import { EmptyTriggers } from "./components/other/EmptyTriggers";
import { SectionWrap } from "./components/other/SectionWrap";
import { LoadingSelectedContent } from "./components/selected-views/LoadingSelectedContent";
import { SelectedRunView } from "./components/selected-views/SelectedRunView/SelectedRunView";
import { SelectedScheduleView } from "./components/selected-views/SelectedScheduleView/SelectedScheduleView";
import { SelectedTemplateView } from "./components/selected-views/SelectedTemplateView/SelectedTemplateView";
import { SelectedTriggerView } from "./components/selected-views/SelectedTriggerView/SelectedTriggerView";
import { SelectedViewLayout } from "./components/selected-views/SelectedViewLayout";
import { SidebarRunsList } from "./components/sidebar/SidebarRunsList/SidebarRunsList";
import { AGENT_LIBRARY_SECTION_PADDING_X } from "./helpers";
import { useNewAgentLibraryView } from "./useNewAgentLibraryView";
export function NewAgentLibraryView() {
const {
agentId,
agent,
ready,
activeTemplate,
isTemplateLoading,
error,
hasAnyItems,
ready,
error,
agentId,
activeItem,
sidebarLoading,
activeTab,
@@ -38,9 +32,6 @@ export function NewAgentLibraryView() {
handleSelectRun,
handleCountsChange,
handleClearSelectedRun,
onRunInitiated,
onTriggerSetup,
onScheduleCreated,
} = useNewAgentLibraryView();
if (error) {
@@ -70,19 +61,14 @@ export function NewAgentLibraryView() {
/>
</div>
<div className="flex min-h-0 flex-1">
<EmptyTasks
agent={agent}
onRun={onRunInitiated}
onTriggerSetup={onTriggerSetup}
onScheduleCreated={onScheduleCreated}
/>
<EmptyTasks agent={agent} />
</div>
</div>
);
}
return (
<div className="mx-4 grid h-full grid-cols-1 gap-0 pt-3 md:ml-4 md:mr-0 md:gap-4 lg:grid-cols-[25%_70%]">
<div className="ml-4 grid h-full grid-cols-1 gap-0 pt-3 md:gap-4 lg:grid-cols-[25%_70%]">
<SectionWrap className="mb-3 block">
<div
className={cn(
@@ -92,21 +78,16 @@ export function NewAgentLibraryView() {
>
<RunAgentModal
triggerSlot={
<Button
variant="primary"
size="large"
className="w-full"
disabled={isTemplateLoading && activeTab === "templates"}
>
<Button variant="primary" size="large" className="w-full">
<PlusIcon size={20} /> New task
</Button>
}
agent={agent}
onRunCreated={onRunInitiated}
onScheduleCreated={onScheduleCreated}
onTriggerSetup={onTriggerSetup}
initialInputValues={activeTemplate?.inputs}
initialInputCredentials={activeTemplate?.credentials}
agentId={agent.id.toString()}
onRunCreated={(execution) => handleSelectRun(execution.id, "runs")}
onScheduleCreated={(schedule) =>
handleSelectRun(schedule.id, "scheduled")
}
/>
</div>
@@ -120,60 +101,49 @@ export function NewAgentLibraryView() {
/>
</SectionWrap>
{activeItem ? (
activeTab === "scheduled" ? (
<SelectedScheduleView
agent={agent}
scheduleId={activeItem}
onClearSelectedRun={handleClearSelectedRun}
<SectionWrap className="mb-3">
<div
className={`${AGENT_LIBRARY_SECTION_PADDING_X} border-b border-zinc-100 pb-4`}
>
<Breadcrumbs
items={[
{ name: "My Library", link: "/library" },
{ name: agent.name, link: `/library/agents/${agentId}` },
]}
/>
) : activeTab === "templates" ? (
<SelectedTemplateView
agent={agent}
templateId={activeItem}
onClearSelectedRun={handleClearSelectedRun}
onRunCreated={(execution) => handleSelectRun(execution.id, "runs")}
onSwitchToRunsTab={() => setActiveTab("runs")}
/>
) : activeTab === "triggers" ? (
<SelectedTriggerView
agent={agent}
triggerId={activeItem}
onClearSelectedRun={handleClearSelectedRun}
onSwitchToRunsTab={() => setActiveTab("runs")}
/>
) : (
<SelectedRunView
agent={agent}
runId={activeItem}
onSelectRun={handleSelectRun}
onClearSelectedRun={handleClearSelectedRun}
/>
)
) : sidebarLoading ? (
<LoadingSelectedContent agentName={agent.name} agentId={agent.id} />
) : activeTab === "scheduled" ? (
<SelectedViewLayout agentName={agent.name} agentId={agent.id}>
<EmptySchedules />
</SelectedViewLayout>
) : activeTab === "templates" ? (
<SelectedViewLayout agentName={agent.name} agentId={agent.id}>
<EmptyTemplates />
</SelectedViewLayout>
) : activeTab === "triggers" ? (
<SelectedViewLayout agentName={agent.name} agentId={agent.id}>
<EmptyTriggers />
</SelectedViewLayout>
) : (
<SelectedViewLayout agentName={agent.name} agentId={agent.id}>
<EmptyTasks
agent={agent}
onRun={onRunInitiated}
onTriggerSetup={onTriggerSetup}
onScheduleCreated={onScheduleCreated}
/>
</SelectedViewLayout>
)}
</div>
<div className="flex min-h-0 flex-1 flex-col">
{activeItem ? (
activeTab === "scheduled" ? (
<SelectedScheduleView
agent={agent}
scheduleId={activeItem}
onClearSelectedRun={handleClearSelectedRun}
/>
) : (
<SelectedRunView
agent={agent}
runId={activeItem}
onSelectRun={handleSelectRun}
onClearSelectedRun={handleClearSelectedRun}
/>
)
) : sidebarLoading ? (
<div className="flex flex-col gap-4">
<Skeleton className="h-8 w-full bg-slate-100" />
<Skeleton className="h-12 w-full bg-slate-100" />
<Skeleton className="h-64 w-full bg-slate-100" />
<Skeleton className="h-32 w-full bg-slate-100" />
</div>
) : activeTab === "scheduled" ? (
<EmptySchedules />
) : activeTab === "templates" ? (
<EmptyTemplates />
) : (
<EmptyTasks agent={agent} />
)}
</div>
</SectionWrap>
</div>
);
}

View File

@@ -1,11 +1,15 @@
"use client";
import React from "react";
import type { LibraryAgent } from "@/app/api/__generated__/models/libraryAgent";
import { Text } from "@/components/atoms/Text/Text";
import type { CredentialsMetaInput } from "@/lib/autogpt-server-api/types";
import { CredentialsInput } from "../CredentialsInputs/CredentialsInputs";
import { RunAgentInputs } from "../RunAgentInputs/RunAgentInputs";
import { getAgentCredentialsFields, getAgentInputFields } from "./helpers";
import { toDisplayName } from "@/providers/agent-credentials/helper";
import {
getAgentCredentialsFields,
getAgentInputFields,
getCredentialTypeDisplayName,
renderValue,
} from "./helpers";
type Props = {
agent: LibraryAgent;
@@ -18,28 +22,16 @@ export function AgentInputsReadOnly({
inputs,
credentialInputs,
}: Props) {
const inputFields = getAgentInputFields(agent);
const credentialFieldEntries = Object.entries(
getAgentCredentialsFields(agent),
);
const fields = getAgentInputFields(agent);
const credentialFields = getAgentCredentialsFields(agent);
const inputEntries = Object.entries(fields);
const credentialEntries = Object.entries(credentialFields);
const inputEntries =
inputs &&
Object.entries(inputs).map(([key, value]) => ({
key,
schema: inputFields[key],
value,
}));
const hasInputs = inputEntries && inputEntries.length > 0;
const hasCredentials = credentialInputs && credentialFieldEntries.length > 0;
const hasInputs = inputs && inputEntries.length > 0;
const hasCredentials = credentialInputs && credentialEntries.length > 0;
if (!hasInputs && !hasCredentials) {
return (
<Text variant="body" className="text-zinc-700">
No input for this run.
</Text>
);
return <div className="text-neutral-600">No input for this run.</div>;
}
return (
@@ -47,20 +39,14 @@ export function AgentInputsReadOnly({
{/* Regular inputs */}
{hasInputs && (
<div className="flex flex-col gap-4">
{inputEntries.map(({ key, schema, value }) => {
if (!schema) return null;
return (
<RunAgentInputs
key={key}
schema={schema}
value={value}
placeholder={schema.description}
onChange={() => {}}
readOnly={true}
/>
);
})}
{inputEntries.map(([key, sub]) => (
<div key={key} className="flex flex-col gap-1.5">
<label className="text-sm font-medium">{sub?.title || key}</label>
<p className="whitespace-pre-wrap break-words text-sm text-neutral-700">
{renderValue((inputs as Record<string, any>)[key])}
</p>
</div>
))}
</div>
)}
@@ -68,18 +54,32 @@ export function AgentInputsReadOnly({
{hasCredentials && (
<div className="flex flex-col gap-6">
{hasInputs && <div className="border-t border-neutral-200 pt-4" />}
{credentialFieldEntries.map(([key, inputSubSchema]) => {
{credentialEntries.map(([key, _sub]) => {
const credential = credentialInputs![key];
if (!credential) return null;
return (
<CredentialsInput
key={key}
schema={{ ...inputSubSchema, discriminator: undefined } as any}
selectedCredentials={credential}
onSelectCredentials={() => {}}
readOnly={true}
/>
<div key={key} className="flex flex-col gap-4">
<h3 className="text-lg font-medium text-neutral-900">
{toDisplayName(credential.provider)} credentials
</h3>
<div className="flex flex-col gap-3">
<div className="flex items-center justify-between text-sm">
<span className="text-neutral-600">Name</span>
<span className="text-neutral-600">
{getCredentialTypeDisplayName(credential.type)}
</span>
</div>
<div className="flex items-center justify-between text-sm">
<span className="text-neutral-900">
{credential.title || "Untitled"}
</span>
<span className="font-mono text-neutral-400">
{"*".repeat(25)}
</span>
</div>
</div>
</div>
);
})}
</div>

View File

@@ -13,8 +13,7 @@ export function getCredentialTypeDisplayName(type: string): string {
}
export function getAgentInputFields(agent: LibraryAgent): Record<string, any> {
const schema = (agent.trigger_setup_info?.config_schema ??
agent.input_schema) as unknown as {
const schema = agent.input_schema as unknown as {
properties?: Record<string, any>;
} | null;
if (!schema || !schema.properties) return {};

Some files were not shown because too many files have changed in this diff Show More