Compare commits

..

7 Commits

Author SHA1 Message Date
Swifty
a86d750cf5 Merge branch 'fix/integrations-credential-type' into swiftyos/dev 2025-12-04 16:14:51 +01:00
Swifty
13bd648731 Merge branch 'swiftyos/vector-search' into swiftyos/dev 2025-12-04 16:14:47 +01:00
Swifty
3d7ee7cc29 Merge branch 'swiftyos/add-default-agents' into swiftyos/dev 2025-12-04 16:14:44 +01:00
Swifty
1ea52934cd add store agents for seeding test databases 2025-12-04 16:07:58 +01:00
Swifty
7b6db6e260 add vector search 2025-12-04 16:05:47 +01:00
Swifty
2c9563353e formatting 2025-12-04 09:35:53 +01:00
Swifty
fb2a70e2d8 pass credential type 2025-12-04 09:21:12 +01:00
240 changed files with 4475 additions and 17021 deletions

View File

@@ -11,7 +11,7 @@ jobs:
stale:
runs-on: ubuntu-latest
steps:
- uses: actions/stale@v10
- uses: actions/stale@v9
with:
# operations-per-run: 5000
stale-issue-message: >

View File

@@ -61,6 +61,6 @@ jobs:
pull-requests: write
runs-on: ubuntu-latest
steps:
- uses: actions/labeler@v6
- uses: actions/labeler@v5
with:
sync-labels: true

View File

@@ -44,7 +44,7 @@ test-data:
cd backend && poetry run python test/test_data_creator.py
load-store-agents:
cd backend && poetry run load-store-agents
cd backend && poetry run python test/load_store_agents.py
help:
@echo "Usage: make <target>"

View File

@@ -1371,7 +1371,7 @@ async def create_base(
if tables:
params["tables"] = tables
logger.debug(f"Creating Airtable base with params: {params}")
print(params)
response = await Requests().post(
"https://api.airtable.com/v0/meta/bases",

View File

@@ -1,108 +0,0 @@
{
"action": "created",
"discussion": {
"repository_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT",
"category": {
"id": 12345678,
"node_id": "DIC_kwDOJKSTjM4CXXXX",
"repository_id": 614765452,
"emoji": ":pray:",
"name": "Q&A",
"description": "Ask the community for help",
"created_at": "2023-03-16T09:21:07Z",
"updated_at": "2023-03-16T09:21:07Z",
"slug": "q-a",
"is_answerable": true
},
"answer_html_url": null,
"answer_chosen_at": null,
"answer_chosen_by": null,
"html_url": "https://github.com/Significant-Gravitas/AutoGPT/discussions/9999",
"id": 5000000001,
"node_id": "D_kwDOJKSTjM4AYYYY",
"number": 9999,
"title": "How do I configure custom blocks?",
"user": {
"login": "curious-user",
"id": 22222222,
"node_id": "MDQ6VXNlcjIyMjIyMjIy",
"avatar_url": "https://avatars.githubusercontent.com/u/22222222?v=4",
"url": "https://api.github.com/users/curious-user",
"html_url": "https://github.com/curious-user",
"type": "User",
"site_admin": false
},
"state": "open",
"state_reason": null,
"locked": false,
"comments": 0,
"created_at": "2024-12-01T17:00:00Z",
"updated_at": "2024-12-01T17:00:00Z",
"author_association": "NONE",
"active_lock_reason": null,
"body": "## Question\n\nI'm trying to create a custom block for my specific use case. I've read the documentation but I'm not sure how to:\n\n1. Define the input/output schema\n2. Handle authentication\n3. Test my block locally\n\nCan someone point me to examples or provide guidance?\n\n## Environment\n\n- AutoGPT Platform version: latest\n- Python: 3.11",
"reactions": {
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/discussions/9999/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
},
"timeline_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/discussions/9999/timeline"
},
"repository": {
"id": 614765452,
"node_id": "R_kgDOJKSTjA",
"name": "AutoGPT",
"full_name": "Significant-Gravitas/AutoGPT",
"private": false,
"owner": {
"login": "Significant-Gravitas",
"id": 130738209,
"node_id": "O_kgDOB8roIQ",
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
"url": "https://api.github.com/users/Significant-Gravitas",
"html_url": "https://github.com/Significant-Gravitas",
"type": "Organization",
"site_admin": false
},
"html_url": "https://github.com/Significant-Gravitas/AutoGPT",
"description": "AutoGPT is the vision of accessible AI for everyone, to use and to build on.",
"fork": false,
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT",
"created_at": "2023-03-16T09:21:07Z",
"updated_at": "2024-12-01T17:00:00Z",
"pushed_at": "2024-12-01T12:00:00Z",
"stargazers_count": 170000,
"watchers_count": 170000,
"language": "Python",
"has_discussions": true,
"forks_count": 45000,
"visibility": "public",
"default_branch": "master"
},
"organization": {
"login": "Significant-Gravitas",
"id": 130738209,
"node_id": "O_kgDOB8roIQ",
"url": "https://api.github.com/orgs/Significant-Gravitas",
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
"description": ""
},
"sender": {
"login": "curious-user",
"id": 22222222,
"node_id": "MDQ6VXNlcjIyMjIyMjIy",
"avatar_url": "https://avatars.githubusercontent.com/u/22222222?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/curious-user",
"html_url": "https://github.com/curious-user",
"type": "User",
"site_admin": false
}
}

View File

@@ -1,112 +0,0 @@
{
"action": "opened",
"issue": {
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/issues/12345",
"repository_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT",
"labels_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/issues/12345/labels{/name}",
"comments_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/issues/12345/comments",
"events_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/issues/12345/events",
"html_url": "https://github.com/Significant-Gravitas/AutoGPT/issues/12345",
"id": 2000000001,
"node_id": "I_kwDOJKSTjM5wXXXX",
"number": 12345,
"title": "Bug: Application crashes when processing large files",
"user": {
"login": "bug-reporter",
"id": 11111111,
"node_id": "MDQ6VXNlcjExMTExMTEx",
"avatar_url": "https://avatars.githubusercontent.com/u/11111111?v=4",
"url": "https://api.github.com/users/bug-reporter",
"html_url": "https://github.com/bug-reporter",
"type": "User",
"site_admin": false
},
"labels": [
{
"id": 5272676214,
"node_id": "LA_kwDOJKSTjM8AAAABOkandg",
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
}
],
"state": "open",
"locked": false,
"assignee": null,
"assignees": [],
"milestone": null,
"comments": 0,
"created_at": "2024-12-01T16:00:00Z",
"updated_at": "2024-12-01T16:00:00Z",
"closed_at": null,
"author_association": "NONE",
"active_lock_reason": null,
"body": "## Description\n\nWhen I try to process a file larger than 100MB, the application crashes with an out of memory error.\n\n## Steps to Reproduce\n\n1. Open the application\n2. Select a file larger than 100MB\n3. Click 'Process'\n4. Application crashes\n\n## Expected Behavior\n\nThe application should handle large files gracefully.\n\n## Environment\n\n- OS: Ubuntu 22.04\n- Python: 3.11\n- AutoGPT Version: 1.0.0",
"reactions": {
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/issues/12345/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
},
"timeline_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/issues/12345/timeline",
"state_reason": null
},
"repository": {
"id": 614765452,
"node_id": "R_kgDOJKSTjA",
"name": "AutoGPT",
"full_name": "Significant-Gravitas/AutoGPT",
"private": false,
"owner": {
"login": "Significant-Gravitas",
"id": 130738209,
"node_id": "O_kgDOB8roIQ",
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
"url": "https://api.github.com/users/Significant-Gravitas",
"html_url": "https://github.com/Significant-Gravitas",
"type": "Organization",
"site_admin": false
},
"html_url": "https://github.com/Significant-Gravitas/AutoGPT",
"description": "AutoGPT is the vision of accessible AI for everyone, to use and to build on.",
"fork": false,
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT",
"created_at": "2023-03-16T09:21:07Z",
"updated_at": "2024-12-01T16:00:00Z",
"pushed_at": "2024-12-01T12:00:00Z",
"stargazers_count": 170000,
"watchers_count": 170000,
"language": "Python",
"forks_count": 45000,
"open_issues_count": 190,
"visibility": "public",
"default_branch": "master"
},
"organization": {
"login": "Significant-Gravitas",
"id": 130738209,
"node_id": "O_kgDOB8roIQ",
"url": "https://api.github.com/orgs/Significant-Gravitas",
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
"description": ""
},
"sender": {
"login": "bug-reporter",
"id": 11111111,
"node_id": "MDQ6VXNlcjExMTExMTEx",
"avatar_url": "https://avatars.githubusercontent.com/u/11111111?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/bug-reporter",
"html_url": "https://github.com/bug-reporter",
"type": "User",
"site_admin": false
}
}

View File

@@ -1,97 +0,0 @@
{
"action": "published",
"release": {
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/releases/123456789",
"assets_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/releases/123456789/assets",
"upload_url": "https://uploads.github.com/repos/Significant-Gravitas/AutoGPT/releases/123456789/assets{?name,label}",
"html_url": "https://github.com/Significant-Gravitas/AutoGPT/releases/tag/v1.0.0",
"id": 123456789,
"author": {
"login": "ntindle",
"id": 12345678,
"node_id": "MDQ6VXNlcjEyMzQ1Njc4",
"avatar_url": "https://avatars.githubusercontent.com/u/12345678?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ntindle",
"html_url": "https://github.com/ntindle",
"type": "User",
"site_admin": false
},
"node_id": "RE_kwDOJKSTjM4HWwAA",
"tag_name": "v1.0.0",
"target_commitish": "master",
"name": "AutoGPT Platform v1.0.0",
"draft": false,
"prerelease": false,
"created_at": "2024-12-01T10:00:00Z",
"published_at": "2024-12-01T12:00:00Z",
"assets": [
{
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/releases/assets/987654321",
"id": 987654321,
"node_id": "RA_kwDOJKSTjM4HWwBB",
"name": "autogpt-v1.0.0.zip",
"label": "Release Package",
"content_type": "application/zip",
"state": "uploaded",
"size": 52428800,
"download_count": 0,
"created_at": "2024-12-01T11:30:00Z",
"updated_at": "2024-12-01T11:35:00Z",
"browser_download_url": "https://github.com/Significant-Gravitas/AutoGPT/releases/download/v1.0.0/autogpt-v1.0.0.zip"
}
],
"tarball_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/tarball/v1.0.0",
"zipball_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/zipball/v1.0.0",
"body": "## What's New\n\n- Feature 1: Amazing new capability\n- Feature 2: Performance improvements\n- Bug fixes and stability improvements\n\n## Breaking Changes\n\nNone\n\n## Contributors\n\nThanks to all our contributors!"
},
"repository": {
"id": 614765452,
"node_id": "R_kgDOJKSTjA",
"name": "AutoGPT",
"full_name": "Significant-Gravitas/AutoGPT",
"private": false,
"owner": {
"login": "Significant-Gravitas",
"id": 130738209,
"node_id": "O_kgDOB8roIQ",
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
"url": "https://api.github.com/users/Significant-Gravitas",
"html_url": "https://github.com/Significant-Gravitas",
"type": "Organization",
"site_admin": false
},
"html_url": "https://github.com/Significant-Gravitas/AutoGPT",
"description": "AutoGPT is the vision of accessible AI for everyone, to use and to build on.",
"fork": false,
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT",
"created_at": "2023-03-16T09:21:07Z",
"updated_at": "2024-12-01T12:00:00Z",
"pushed_at": "2024-12-01T12:00:00Z",
"stargazers_count": 170000,
"watchers_count": 170000,
"language": "Python",
"forks_count": 45000,
"visibility": "public",
"default_branch": "master"
},
"organization": {
"login": "Significant-Gravitas",
"id": 130738209,
"node_id": "O_kgDOB8roIQ",
"url": "https://api.github.com/orgs/Significant-Gravitas",
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
"description": ""
},
"sender": {
"login": "ntindle",
"id": 12345678,
"node_id": "MDQ6VXNlcjEyMzQ1Njc4",
"avatar_url": "https://avatars.githubusercontent.com/u/12345678?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ntindle",
"html_url": "https://github.com/ntindle",
"type": "User",
"site_admin": false
}
}

View File

@@ -1,53 +0,0 @@
{
"action": "created",
"starred_at": "2024-12-01T15:30:00Z",
"repository": {
"id": 614765452,
"node_id": "R_kgDOJKSTjA",
"name": "AutoGPT",
"full_name": "Significant-Gravitas/AutoGPT",
"private": false,
"owner": {
"login": "Significant-Gravitas",
"id": 130738209,
"node_id": "O_kgDOB8roIQ",
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
"url": "https://api.github.com/users/Significant-Gravitas",
"html_url": "https://github.com/Significant-Gravitas",
"type": "Organization",
"site_admin": false
},
"html_url": "https://github.com/Significant-Gravitas/AutoGPT",
"description": "AutoGPT is the vision of accessible AI for everyone, to use and to build on.",
"fork": false,
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT",
"created_at": "2023-03-16T09:21:07Z",
"updated_at": "2024-12-01T15:30:00Z",
"pushed_at": "2024-12-01T12:00:00Z",
"stargazers_count": 170001,
"watchers_count": 170001,
"language": "Python",
"forks_count": 45000,
"visibility": "public",
"default_branch": "master"
},
"organization": {
"login": "Significant-Gravitas",
"id": 130738209,
"node_id": "O_kgDOB8roIQ",
"url": "https://api.github.com/orgs/Significant-Gravitas",
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
"description": ""
},
"sender": {
"login": "awesome-contributor",
"id": 98765432,
"node_id": "MDQ6VXNlcjk4NzY1NDMy",
"avatar_url": "https://avatars.githubusercontent.com/u/98765432?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/awesome-contributor",
"html_url": "https://github.com/awesome-contributor",
"type": "User",
"site_admin": false
}
}

View File

@@ -159,391 +159,3 @@ class GithubPullRequestTriggerBlock(GitHubTriggerBase, Block):
# --8<-- [end:GithubTriggerExample]
class GithubStarTriggerBlock(GitHubTriggerBase, Block):
"""Trigger block for GitHub star events - useful for milestone celebrations."""
EXAMPLE_PAYLOAD_FILE = (
Path(__file__).parent / "example_payloads" / "star.created.json"
)
class Input(GitHubTriggerBase.Input):
class EventsFilter(BaseModel):
"""
https://docs.github.com/en/webhooks/webhook-events-and-payloads#star
"""
created: bool = False
deleted: bool = False
events: EventsFilter = SchemaField(
title="Events", description="The star events to subscribe to"
)
class Output(GitHubTriggerBase.Output):
event: str = SchemaField(
description="The star event that triggered the webhook ('created' or 'deleted')"
)
starred_at: str = SchemaField(
description="ISO timestamp when the repo was starred (empty if deleted)"
)
stargazers_count: int = SchemaField(
description="Current number of stars on the repository"
)
repository_name: str = SchemaField(
description="Full name of the repository (owner/repo)"
)
repository_url: str = SchemaField(description="URL to the repository")
def __init__(self):
from backend.integrations.webhooks.github import GithubWebhookType
example_payload = json.loads(
self.EXAMPLE_PAYLOAD_FILE.read_text(encoding="utf-8")
)
super().__init__(
id="551e0a35-100b-49b7-89b8-3031322239b6",
description="This block triggers on GitHub star events. "
"Useful for celebrating milestones (e.g., 1k, 10k stars) or tracking engagement.",
categories={BlockCategory.DEVELOPER_TOOLS, BlockCategory.INPUT},
input_schema=GithubStarTriggerBlock.Input,
output_schema=GithubStarTriggerBlock.Output,
webhook_config=BlockWebhookConfig(
provider=ProviderName.GITHUB,
webhook_type=GithubWebhookType.REPO,
resource_format="{repo}",
event_filter_input="events",
event_format="star.{event}",
),
test_input={
"repo": "Significant-Gravitas/AutoGPT",
"events": {"created": True},
"credentials": TEST_CREDENTIALS_INPUT,
"payload": example_payload,
},
test_credentials=TEST_CREDENTIALS,
test_output=[
("payload", example_payload),
("triggered_by_user", example_payload["sender"]),
("event", example_payload["action"]),
("starred_at", example_payload.get("starred_at", "")),
("stargazers_count", example_payload["repository"]["stargazers_count"]),
("repository_name", example_payload["repository"]["full_name"]),
("repository_url", example_payload["repository"]["html_url"]),
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput: # type: ignore
async for name, value in super().run(input_data, **kwargs):
yield name, value
yield "event", input_data.payload["action"]
yield "starred_at", input_data.payload.get("starred_at", "")
yield "stargazers_count", input_data.payload["repository"]["stargazers_count"]
yield "repository_name", input_data.payload["repository"]["full_name"]
yield "repository_url", input_data.payload["repository"]["html_url"]
class GithubReleaseTriggerBlock(GitHubTriggerBase, Block):
"""Trigger block for GitHub release events - ideal for announcing new versions."""
EXAMPLE_PAYLOAD_FILE = (
Path(__file__).parent / "example_payloads" / "release.published.json"
)
class Input(GitHubTriggerBase.Input):
class EventsFilter(BaseModel):
"""
https://docs.github.com/en/webhooks/webhook-events-and-payloads#release
"""
published: bool = False
unpublished: bool = False
created: bool = False
edited: bool = False
deleted: bool = False
prereleased: bool = False
released: bool = False
events: EventsFilter = SchemaField(
title="Events", description="The release events to subscribe to"
)
class Output(GitHubTriggerBase.Output):
event: str = SchemaField(
description="The release event that triggered the webhook (e.g., 'published')"
)
release: dict = SchemaField(description="The full release object")
release_url: str = SchemaField(description="URL to the release page")
tag_name: str = SchemaField(description="The release tag name (e.g., 'v1.0.0')")
release_name: str = SchemaField(description="Human-readable release name")
body: str = SchemaField(description="Release notes/description")
prerelease: bool = SchemaField(description="Whether this is a prerelease")
draft: bool = SchemaField(description="Whether this is a draft release")
assets: list = SchemaField(description="List of release assets/files")
def __init__(self):
from backend.integrations.webhooks.github import GithubWebhookType
example_payload = json.loads(
self.EXAMPLE_PAYLOAD_FILE.read_text(encoding="utf-8")
)
super().__init__(
id="2052dd1b-74e1-46ac-9c87-c7a0e057b60b",
description="This block triggers on GitHub release events. "
"Perfect for automating announcements to Discord, Twitter, or other platforms.",
categories={BlockCategory.DEVELOPER_TOOLS, BlockCategory.INPUT},
input_schema=GithubReleaseTriggerBlock.Input,
output_schema=GithubReleaseTriggerBlock.Output,
webhook_config=BlockWebhookConfig(
provider=ProviderName.GITHUB,
webhook_type=GithubWebhookType.REPO,
resource_format="{repo}",
event_filter_input="events",
event_format="release.{event}",
),
test_input={
"repo": "Significant-Gravitas/AutoGPT",
"events": {"published": True},
"credentials": TEST_CREDENTIALS_INPUT,
"payload": example_payload,
},
test_credentials=TEST_CREDENTIALS,
test_output=[
("payload", example_payload),
("triggered_by_user", example_payload["sender"]),
("event", example_payload["action"]),
("release", example_payload["release"]),
("release_url", example_payload["release"]["html_url"]),
("tag_name", example_payload["release"]["tag_name"]),
("release_name", example_payload["release"]["name"]),
("body", example_payload["release"]["body"]),
("prerelease", example_payload["release"]["prerelease"]),
("draft", example_payload["release"]["draft"]),
("assets", example_payload["release"]["assets"]),
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput: # type: ignore
async for name, value in super().run(input_data, **kwargs):
yield name, value
release = input_data.payload["release"]
yield "event", input_data.payload["action"]
yield "release", release
yield "release_url", release["html_url"]
yield "tag_name", release["tag_name"]
yield "release_name", release.get("name", "")
yield "body", release.get("body", "")
yield "prerelease", release["prerelease"]
yield "draft", release["draft"]
yield "assets", release["assets"]
class GithubIssuesTriggerBlock(GitHubTriggerBase, Block):
"""Trigger block for GitHub issues events - great for triage and notifications."""
EXAMPLE_PAYLOAD_FILE = (
Path(__file__).parent / "example_payloads" / "issues.opened.json"
)
class Input(GitHubTriggerBase.Input):
class EventsFilter(BaseModel):
"""
https://docs.github.com/en/webhooks/webhook-events-and-payloads#issues
"""
opened: bool = False
edited: bool = False
deleted: bool = False
closed: bool = False
reopened: bool = False
assigned: bool = False
unassigned: bool = False
labeled: bool = False
unlabeled: bool = False
locked: bool = False
unlocked: bool = False
transferred: bool = False
milestoned: bool = False
demilestoned: bool = False
pinned: bool = False
unpinned: bool = False
events: EventsFilter = SchemaField(
title="Events", description="The issue events to subscribe to"
)
class Output(GitHubTriggerBase.Output):
event: str = SchemaField(
description="The issue event that triggered the webhook (e.g., 'opened')"
)
number: int = SchemaField(description="The issue number")
issue: dict = SchemaField(description="The full issue object")
issue_url: str = SchemaField(description="URL to the issue")
issue_title: str = SchemaField(description="The issue title")
issue_body: str = SchemaField(description="The issue body/description")
labels: list = SchemaField(description="List of labels on the issue")
assignees: list = SchemaField(description="List of assignees")
state: str = SchemaField(description="Issue state ('open' or 'closed')")
def __init__(self):
from backend.integrations.webhooks.github import GithubWebhookType
example_payload = json.loads(
self.EXAMPLE_PAYLOAD_FILE.read_text(encoding="utf-8")
)
super().__init__(
id="b2605464-e486-4bf4-aad3-d8a213c8a48a",
description="This block triggers on GitHub issues events. "
"Useful for automated triage, notifications, and welcoming first-time contributors.",
categories={BlockCategory.DEVELOPER_TOOLS, BlockCategory.INPUT},
input_schema=GithubIssuesTriggerBlock.Input,
output_schema=GithubIssuesTriggerBlock.Output,
webhook_config=BlockWebhookConfig(
provider=ProviderName.GITHUB,
webhook_type=GithubWebhookType.REPO,
resource_format="{repo}",
event_filter_input="events",
event_format="issues.{event}",
),
test_input={
"repo": "Significant-Gravitas/AutoGPT",
"events": {"opened": True},
"credentials": TEST_CREDENTIALS_INPUT,
"payload": example_payload,
},
test_credentials=TEST_CREDENTIALS,
test_output=[
("payload", example_payload),
("triggered_by_user", example_payload["sender"]),
("event", example_payload["action"]),
("number", example_payload["issue"]["number"]),
("issue", example_payload["issue"]),
("issue_url", example_payload["issue"]["html_url"]),
("issue_title", example_payload["issue"]["title"]),
("issue_body", example_payload["issue"]["body"]),
("labels", example_payload["issue"]["labels"]),
("assignees", example_payload["issue"]["assignees"]),
("state", example_payload["issue"]["state"]),
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput: # type: ignore
async for name, value in super().run(input_data, **kwargs):
yield name, value
issue = input_data.payload["issue"]
yield "event", input_data.payload["action"]
yield "number", issue["number"]
yield "issue", issue
yield "issue_url", issue["html_url"]
yield "issue_title", issue["title"]
yield "issue_body", issue.get("body") or ""
yield "labels", issue["labels"]
yield "assignees", issue["assignees"]
yield "state", issue["state"]
class GithubDiscussionTriggerBlock(GitHubTriggerBase, Block):
"""Trigger block for GitHub discussion events - perfect for community Q&A sync."""
EXAMPLE_PAYLOAD_FILE = (
Path(__file__).parent / "example_payloads" / "discussion.created.json"
)
class Input(GitHubTriggerBase.Input):
class EventsFilter(BaseModel):
"""
https://docs.github.com/en/webhooks/webhook-events-and-payloads#discussion
"""
created: bool = False
edited: bool = False
deleted: bool = False
answered: bool = False
unanswered: bool = False
labeled: bool = False
unlabeled: bool = False
locked: bool = False
unlocked: bool = False
category_changed: bool = False
transferred: bool = False
pinned: bool = False
unpinned: bool = False
events: EventsFilter = SchemaField(
title="Events", description="The discussion events to subscribe to"
)
class Output(GitHubTriggerBase.Output):
event: str = SchemaField(
description="The discussion event that triggered the webhook"
)
number: int = SchemaField(description="The discussion number")
discussion: dict = SchemaField(description="The full discussion object")
discussion_url: str = SchemaField(description="URL to the discussion")
title: str = SchemaField(description="The discussion title")
body: str = SchemaField(description="The discussion body")
category: dict = SchemaField(description="The discussion category object")
category_name: str = SchemaField(description="Name of the category")
state: str = SchemaField(description="Discussion state")
def __init__(self):
from backend.integrations.webhooks.github import GithubWebhookType
example_payload = json.loads(
self.EXAMPLE_PAYLOAD_FILE.read_text(encoding="utf-8")
)
super().__init__(
id="87f847b3-d81a-424e-8e89-acadb5c9d52b",
description="This block triggers on GitHub Discussions events. "
"Great for syncing Q&A to Discord or auto-responding to common questions. "
"Note: Discussions must be enabled on the repository.",
categories={BlockCategory.DEVELOPER_TOOLS, BlockCategory.INPUT},
input_schema=GithubDiscussionTriggerBlock.Input,
output_schema=GithubDiscussionTriggerBlock.Output,
webhook_config=BlockWebhookConfig(
provider=ProviderName.GITHUB,
webhook_type=GithubWebhookType.REPO,
resource_format="{repo}",
event_filter_input="events",
event_format="discussion.{event}",
),
test_input={
"repo": "Significant-Gravitas/AutoGPT",
"events": {"created": True},
"credentials": TEST_CREDENTIALS_INPUT,
"payload": example_payload,
},
test_credentials=TEST_CREDENTIALS,
test_output=[
("payload", example_payload),
("triggered_by_user", example_payload["sender"]),
("event", example_payload["action"]),
("number", example_payload["discussion"]["number"]),
("discussion", example_payload["discussion"]),
("discussion_url", example_payload["discussion"]["html_url"]),
("title", example_payload["discussion"]["title"]),
("body", example_payload["discussion"]["body"]),
("category", example_payload["discussion"]["category"]),
("category_name", example_payload["discussion"]["category"]["name"]),
("state", example_payload["discussion"]["state"]),
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput: # type: ignore
async for name, value in super().run(input_data, **kwargs):
yield name, value
discussion = input_data.payload["discussion"]
yield "event", input_data.payload["action"]
yield "number", discussion["number"]
yield "discussion", discussion
yield "discussion_url", discussion["html_url"]
yield "title", discussion["title"]
yield "body", discussion.get("body") or ""
yield "category", discussion["category"]
yield "category_name", discussion["category"]["name"]
yield "state", discussion["state"]

File diff suppressed because it is too large Load Diff

View File

@@ -1,5 +1,5 @@
import logging
from typing import Any
from typing import Any, Literal
from prisma.enums import ReviewStatus
@@ -45,11 +45,11 @@ class HumanInTheLoopBlock(Block):
)
class Output(BlockSchemaOutput):
approved_data: Any = SchemaField(
description="The data when approved (may be modified by reviewer)"
reviewed_data: Any = SchemaField(
description="The data after human review (may be modified)"
)
rejected_data: Any = SchemaField(
description="The data when rejected (may be modified by reviewer)"
status: Literal["approved", "rejected"] = SchemaField(
description="Status of the review: 'approved' or 'rejected'"
)
review_message: str = SchemaField(
description="Any message provided by the reviewer", default=""
@@ -69,7 +69,8 @@ class HumanInTheLoopBlock(Block):
"editable": True,
},
test_output=[
("approved_data", {"name": "John Doe", "age": 30}),
("status", "approved"),
("reviewed_data", {"name": "John Doe", "age": 30}),
],
test_mock={
"get_or_create_human_review": lambda *_args, **_kwargs: ReviewResult(
@@ -115,7 +116,8 @@ class HumanInTheLoopBlock(Block):
logger.info(
f"HITL block skipping review for node {node_exec_id} - safe mode disabled"
)
yield "approved_data", input_data.data
yield "status", "approved"
yield "reviewed_data", input_data.data
yield "review_message", "Auto-approved (safe mode disabled)"
return
@@ -156,11 +158,12 @@ class HumanInTheLoopBlock(Block):
)
if result.status == ReviewStatus.APPROVED:
yield "approved_data", result.data
yield "status", "approved"
yield "reviewed_data", result.data
if result.message:
yield "review_message", result.message
elif result.status == ReviewStatus.REJECTED:
yield "rejected_data", result.data
yield "status", "rejected"
if result.message:
yield "review_message", result.message

View File

@@ -1,4 +1,3 @@
import logging
from datetime import datetime, timezone
from typing import Iterator, Literal
@@ -65,7 +64,6 @@ class RedditComment(BaseModel):
settings = Settings()
logger = logging.getLogger(__name__)
def get_praw(creds: RedditCredentials) -> praw.Reddit:
@@ -79,7 +77,7 @@ def get_praw(creds: RedditCredentials) -> praw.Reddit:
me = client.user.me()
if not me:
raise ValueError("Invalid Reddit credentials.")
logger.info(f"Logged in as Reddit user: {me.name}")
print(f"Logged in as Reddit user: {me.name}")
return client

View File

@@ -1,11 +1,8 @@
import logging
import re
from collections import Counter
from concurrent.futures import Future
from typing import TYPE_CHECKING, Any
from pydantic import BaseModel
import backend.blocks.llm as llm
from backend.blocks.agent import AgentExecutorBlock
from backend.data.block import (
@@ -23,41 +20,16 @@ from backend.data.dynamic_fields import (
is_dynamic_field,
is_tool_pin,
)
from backend.data.execution import ExecutionContext
from backend.data.model import NodeExecutionStats, SchemaField
from backend.util import json
from backend.util.clients import get_database_manager_async_client
from backend.util.prompt import MAIN_OBJECTIVE_PREFIX
if TYPE_CHECKING:
from backend.data.graph import Link, Node
from backend.executor.manager import ExecutionProcessor
logger = logging.getLogger(__name__)
class ToolInfo(BaseModel):
"""Processed tool call information."""
tool_call: Any # The original tool call object from LLM response
tool_name: str # The function name
tool_def: dict[str, Any] # The tool definition from tool_functions
input_data: dict[str, Any] # Processed input data ready for tool execution
field_mapping: dict[str, str] # Field name mapping for the tool
class ExecutionParams(BaseModel):
"""Tool execution parameters."""
user_id: str
graph_id: str
node_id: str
graph_version: int
graph_exec_id: str
node_exec_id: str
execution_context: "ExecutionContext"
def _get_tool_requests(entry: dict[str, Any]) -> list[str]:
"""
Return a list of tool_call_ids if the entry is a tool request.
@@ -133,50 +105,6 @@ def _create_tool_response(call_id: str, output: Any) -> dict[str, Any]:
return {"role": "tool", "tool_call_id": call_id, "content": content}
def _combine_tool_responses(tool_outputs: list[dict[str, Any]]) -> list[dict[str, Any]]:
"""
Combine multiple Anthropic tool responses into a single user message.
For non-Anthropic formats, returns the original list unchanged.
"""
if len(tool_outputs) <= 1:
return tool_outputs
# Anthropic responses have role="user", type="message", and content is a list with tool_result items
anthropic_responses = [
output
for output in tool_outputs
if (
output.get("role") == "user"
and output.get("type") == "message"
and isinstance(output.get("content"), list)
and any(
item.get("type") == "tool_result"
for item in output.get("content", [])
if isinstance(item, dict)
)
)
]
if len(anthropic_responses) > 1:
combined_content = [
item for response in anthropic_responses for item in response["content"]
]
combined_response = {
"role": "user",
"type": "message",
"content": combined_content,
}
non_anthropic_responses = [
output for output in tool_outputs if output not in anthropic_responses
]
return [combined_response] + non_anthropic_responses
return tool_outputs
def _convert_raw_response_to_dict(raw_response: Any) -> dict[str, Any]:
"""
Safely convert raw_response to dictionary format for conversation history.
@@ -276,17 +204,6 @@ class SmartDecisionMakerBlock(Block):
default="localhost:11434",
description="Ollama host for local models",
)
agent_mode_max_iterations: int = SchemaField(
title="Agent Mode Max Iterations",
description="Maximum iterations for agent mode. 0 = traditional mode (single LLM call, yield tool calls for external execution), -1 = infinite agent mode (loop until finished), 1+ = agent mode with max iterations limit.",
advanced=True,
default=0,
)
conversation_compaction: bool = SchemaField(
default=True,
title="Context window auto-compaction",
description="Automatically compact the context window once it hits the limit",
)
@classmethod
def get_missing_links(cls, data: BlockInput, links: list["Link"]) -> set[str]:
@@ -589,7 +506,6 @@ class SmartDecisionMakerBlock(Block):
Returns the response if successful, raises ValueError if validation fails.
"""
resp = await llm.llm_call(
compress_prompt_to_fit=input_data.conversation_compaction,
credentials=credentials,
llm_model=input_data.model,
prompt=current_prompt,
@@ -677,291 +593,6 @@ class SmartDecisionMakerBlock(Block):
return resp
def _process_tool_calls(
self, response, tool_functions: list[dict[str, Any]]
) -> list[ToolInfo]:
"""Process tool calls and extract tool definitions, arguments, and input data.
Returns a list of tool info dicts with:
- tool_call: The original tool call object
- tool_name: The function name
- tool_def: The tool definition from tool_functions
- input_data: Processed input data dict (includes None values)
- field_mapping: Field name mapping for the tool
"""
if not response.tool_calls:
return []
processed_tools = []
for tool_call in response.tool_calls:
tool_name = tool_call.function.name
tool_args = json.loads(tool_call.function.arguments)
tool_def = next(
(
tool
for tool in tool_functions
if tool["function"]["name"] == tool_name
),
None,
)
if not tool_def:
if len(tool_functions) == 1:
tool_def = tool_functions[0]
else:
continue
# Build input data for the tool
input_data = {}
field_mapping = tool_def["function"].get("_field_mapping", {})
if "function" in tool_def and "parameters" in tool_def["function"]:
expected_args = tool_def["function"]["parameters"].get("properties", {})
for clean_arg_name in expected_args:
original_field_name = field_mapping.get(
clean_arg_name, clean_arg_name
)
arg_value = tool_args.get(clean_arg_name)
# Include all expected parameters, even if None (for backward compatibility with tests)
input_data[original_field_name] = arg_value
processed_tools.append(
ToolInfo(
tool_call=tool_call,
tool_name=tool_name,
tool_def=tool_def,
input_data=input_data,
field_mapping=field_mapping,
)
)
return processed_tools
def _update_conversation(
self, prompt: list[dict], response, tool_outputs: list | None = None
):
"""Update conversation history with response and tool outputs."""
# Don't add separate reasoning message with tool calls (breaks Anthropic's tool_use->tool_result pairing)
assistant_message = _convert_raw_response_to_dict(response.raw_response)
has_tool_calls = isinstance(assistant_message.get("content"), list) and any(
item.get("type") == "tool_use"
for item in assistant_message.get("content", [])
)
if response.reasoning and not has_tool_calls:
prompt.append(
{"role": "assistant", "content": f"[Reasoning]: {response.reasoning}"}
)
prompt.append(assistant_message)
if tool_outputs:
prompt.extend(tool_outputs)
async def _execute_single_tool_with_manager(
self,
tool_info: ToolInfo,
execution_params: ExecutionParams,
execution_processor: "ExecutionProcessor",
) -> dict:
"""Execute a single tool using the execution manager for proper integration."""
# Lazy imports to avoid circular dependencies
from backend.data.execution import NodeExecutionEntry
tool_call = tool_info.tool_call
tool_def = tool_info.tool_def
raw_input_data = tool_info.input_data
# Get sink node and field mapping
sink_node_id = tool_def["function"]["_sink_node_id"]
# Use proper database operations for tool execution
db_client = get_database_manager_async_client()
# Get target node
target_node = await db_client.get_node(sink_node_id)
if not target_node:
raise ValueError(f"Target node {sink_node_id} not found")
# Create proper node execution using upsert_execution_input
node_exec_result = None
final_input_data = None
# Add all inputs to the execution
if not raw_input_data:
raise ValueError(f"Tool call has no input data: {tool_call}")
for input_name, input_value in raw_input_data.items():
node_exec_result, final_input_data = await db_client.upsert_execution_input(
node_id=sink_node_id,
graph_exec_id=execution_params.graph_exec_id,
input_name=input_name,
input_data=input_value,
)
assert node_exec_result is not None, "node_exec_result should not be None"
# Create NodeExecutionEntry for execution manager
node_exec_entry = NodeExecutionEntry(
user_id=execution_params.user_id,
graph_exec_id=execution_params.graph_exec_id,
graph_id=execution_params.graph_id,
graph_version=execution_params.graph_version,
node_exec_id=node_exec_result.node_exec_id,
node_id=sink_node_id,
block_id=target_node.block_id,
inputs=final_input_data or {},
execution_context=execution_params.execution_context,
)
# Use the execution manager to execute the tool node
try:
# Get NodeExecutionProgress from the execution manager's running nodes
node_exec_progress = execution_processor.running_node_execution[
sink_node_id
]
# Use the execution manager's own graph stats
graph_stats_pair = (
execution_processor.execution_stats,
execution_processor.execution_stats_lock,
)
# Create a completed future for the task tracking system
node_exec_future = Future()
node_exec_progress.add_task(
node_exec_id=node_exec_result.node_exec_id,
task=node_exec_future,
)
# Execute the node directly since we're in the SmartDecisionMaker context
node_exec_future.set_result(
await execution_processor.on_node_execution(
node_exec=node_exec_entry,
node_exec_progress=node_exec_progress,
nodes_input_masks=None,
graph_stats_pair=graph_stats_pair,
)
)
# Get outputs from database after execution completes using database manager client
node_outputs = await db_client.get_execution_outputs_by_node_exec_id(
node_exec_result.node_exec_id
)
# Create tool response
tool_response_content = (
json.dumps(node_outputs)
if node_outputs
else "Tool executed successfully"
)
return _create_tool_response(tool_call.id, tool_response_content)
except Exception as e:
logger.error(f"Tool execution with manager failed: {e}")
# Return error response
return _create_tool_response(
tool_call.id, f"Tool execution failed: {str(e)}"
)
async def _execute_tools_agent_mode(
self,
input_data,
credentials,
tool_functions: list[dict[str, Any]],
prompt: list[dict],
graph_exec_id: str,
node_id: str,
node_exec_id: str,
user_id: str,
graph_id: str,
graph_version: int,
execution_context: ExecutionContext,
execution_processor: "ExecutionProcessor",
):
"""Execute tools in agent mode with a loop until finished."""
max_iterations = input_data.agent_mode_max_iterations
iteration = 0
# Execution parameters for tool execution
execution_params = ExecutionParams(
user_id=user_id,
graph_id=graph_id,
node_id=node_id,
graph_version=graph_version,
graph_exec_id=graph_exec_id,
node_exec_id=node_exec_id,
execution_context=execution_context,
)
current_prompt = list(prompt)
while max_iterations < 0 or iteration < max_iterations:
iteration += 1
logger.debug(f"Agent mode iteration {iteration}")
# Prepare prompt for this iteration
iteration_prompt = list(current_prompt)
# On the last iteration, add a special system message to encourage completion
if max_iterations > 0 and iteration == max_iterations:
last_iteration_message = {
"role": "system",
"content": f"{MAIN_OBJECTIVE_PREFIX}This is your last iteration ({iteration}/{max_iterations}). "
"Try to complete the task with the information you have. If you cannot fully complete it, "
"provide a summary of what you've accomplished and what remains to be done. "
"Prefer finishing with a clear response rather than making additional tool calls.",
}
iteration_prompt.append(last_iteration_message)
# Get LLM response
try:
response = await self._attempt_llm_call_with_validation(
credentials, input_data, iteration_prompt, tool_functions
)
except Exception as e:
yield "error", f"LLM call failed in agent mode iteration {iteration}: {str(e)}"
return
# Process tool calls
processed_tools = self._process_tool_calls(response, tool_functions)
# If no tool calls, we're done
if not processed_tools:
yield "finished", response.response
self._update_conversation(current_prompt, response)
yield "conversations", current_prompt
return
# Execute tools and collect responses
tool_outputs = []
for tool_info in processed_tools:
try:
tool_response = await self._execute_single_tool_with_manager(
tool_info, execution_params, execution_processor
)
tool_outputs.append(tool_response)
except Exception as e:
logger.error(f"Tool execution failed: {e}")
# Create error response for the tool
error_response = _create_tool_response(
tool_info.tool_call.id, f"Error: {str(e)}"
)
tool_outputs.append(error_response)
tool_outputs = _combine_tool_responses(tool_outputs)
self._update_conversation(current_prompt, response, tool_outputs)
# Yield intermediate conversation state
yield "conversations", current_prompt
# If we reach max iterations, yield the current state
if max_iterations < 0:
yield "finished", f"Agent mode completed after {iteration} iterations"
else:
yield "finished", f"Agent mode completed after {max_iterations} iterations (limit reached)"
yield "conversations", current_prompt
async def run(
self,
input_data: Input,
@@ -972,12 +603,8 @@ class SmartDecisionMakerBlock(Block):
graph_exec_id: str,
node_exec_id: str,
user_id: str,
graph_version: int,
execution_context: ExecutionContext,
execution_processor: "ExecutionProcessor",
**kwargs,
) -> BlockOutput:
tool_functions = await self._create_tool_node_signatures(node_id)
yield "tool_functions", json.dumps(tool_functions)
@@ -1021,52 +648,24 @@ class SmartDecisionMakerBlock(Block):
input_data.prompt = llm.fmt.format_string(input_data.prompt, values)
input_data.sys_prompt = llm.fmt.format_string(input_data.sys_prompt, values)
prefix = "[Main Objective Prompt]: "
if input_data.sys_prompt and not any(
p["role"] == "system" and p["content"].startswith(MAIN_OBJECTIVE_PREFIX)
for p in prompt
p["role"] == "system" and p["content"].startswith(prefix) for p in prompt
):
prompt.append(
{
"role": "system",
"content": MAIN_OBJECTIVE_PREFIX + input_data.sys_prompt,
}
)
prompt.append({"role": "system", "content": prefix + input_data.sys_prompt})
if input_data.prompt and not any(
p["role"] == "user" and p["content"].startswith(MAIN_OBJECTIVE_PREFIX)
for p in prompt
p["role"] == "user" and p["content"].startswith(prefix) for p in prompt
):
prompt.append(
{"role": "user", "content": MAIN_OBJECTIVE_PREFIX + input_data.prompt}
)
prompt.append({"role": "user", "content": prefix + input_data.prompt})
# Execute tools based on the selected mode
if input_data.agent_mode_max_iterations != 0:
# In agent mode, execute tools directly in a loop until finished
async for result in self._execute_tools_agent_mode(
input_data=input_data,
credentials=credentials,
tool_functions=tool_functions,
prompt=prompt,
graph_exec_id=graph_exec_id,
node_id=node_id,
node_exec_id=node_exec_id,
user_id=user_id,
graph_id=graph_id,
graph_version=graph_version,
execution_context=execution_context,
execution_processor=execution_processor,
):
yield result
return
# One-off mode: single LLM call and yield tool calls for external execution
current_prompt = list(prompt)
max_attempts = max(1, int(input_data.retry))
response = None
last_error = None
for _ in range(max_attempts):
for attempt in range(max_attempts):
try:
response = await self._attempt_llm_call_with_validation(
credentials, input_data, current_prompt, tool_functions

View File

@@ -1,11 +1,7 @@
import logging
import threading
from collections import defaultdict
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from backend.data.execution import ExecutionContext
from backend.data.model import ProviderName, User
from backend.server.model import CreateGraph
from backend.server.rest_api import AgentServer
@@ -21,10 +17,10 @@ async def create_graph(s: SpinTestServer, g, u: User):
async def create_credentials(s: SpinTestServer, u: User):
import backend.blocks.llm as llm_module
import backend.blocks.llm as llm
provider = ProviderName.OPENAI
credentials = llm_module.TEST_CREDENTIALS
credentials = llm.TEST_CREDENTIALS
return await s.agent_server.test_create_credentials(u.id, provider, credentials)
@@ -200,6 +196,8 @@ async def test_smart_decision_maker_function_signature(server: SpinTestServer):
@pytest.mark.asyncio
async def test_smart_decision_maker_tracks_llm_stats():
"""Test that SmartDecisionMakerBlock correctly tracks LLM usage stats."""
from unittest.mock import MagicMock, patch
import backend.blocks.llm as llm_module
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
@@ -218,6 +216,7 @@ async def test_smart_decision_maker_tracks_llm_stats():
}
# Mock the _create_tool_node_signatures method to avoid database calls
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
@@ -235,19 +234,10 @@ async def test_smart_decision_maker_tracks_llm_stats():
prompt="Should I continue with this task?",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=0,
)
# Execute the block
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
mock_execution_processor = MagicMock()
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
@@ -256,9 +246,6 @@ async def test_smart_decision_maker_tracks_llm_stats():
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
@@ -276,6 +263,8 @@ async def test_smart_decision_maker_tracks_llm_stats():
@pytest.mark.asyncio
async def test_smart_decision_maker_parameter_validation():
"""Test that SmartDecisionMakerBlock correctly validates tool call parameters."""
from unittest.mock import MagicMock, patch
import backend.blocks.llm as llm_module
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
@@ -322,6 +311,8 @@ async def test_smart_decision_maker_parameter_validation():
mock_response_with_typo.reasoning = None
mock_response_with_typo.raw_response = {"role": "assistant", "content": None}
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
@@ -338,17 +329,8 @@ async def test_smart_decision_maker_parameter_validation():
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
retry=2, # Set retry to 2 for testing
agent_mode_max_iterations=0,
)
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
mock_execution_processor = MagicMock()
# Should raise ValueError after retries due to typo'd parameter name
with pytest.raises(ValueError) as exc_info:
outputs = {}
@@ -360,9 +342,6 @@ async def test_smart_decision_maker_parameter_validation():
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
@@ -389,6 +368,8 @@ async def test_smart_decision_maker_parameter_validation():
mock_response_missing_required.reasoning = None
mock_response_missing_required.raw_response = {"role": "assistant", "content": None}
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
@@ -404,17 +385,8 @@ async def test_smart_decision_maker_parameter_validation():
prompt="Search for keywords",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=0,
)
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
mock_execution_processor = MagicMock()
# Should raise ValueError due to missing required parameter
with pytest.raises(ValueError) as exc_info:
outputs = {}
@@ -426,9 +398,6 @@ async def test_smart_decision_maker_parameter_validation():
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
@@ -449,6 +418,8 @@ async def test_smart_decision_maker_parameter_validation():
mock_response_valid.reasoning = None
mock_response_valid.raw_response = {"role": "assistant", "content": None}
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
@@ -464,19 +435,10 @@ async def test_smart_decision_maker_parameter_validation():
prompt="Search for keywords",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=0,
)
# Should succeed - optional parameter missing is OK
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
mock_execution_processor = MagicMock()
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
@@ -485,9 +447,6 @@ async def test_smart_decision_maker_parameter_validation():
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
@@ -513,6 +472,8 @@ async def test_smart_decision_maker_parameter_validation():
mock_response_all_params.reasoning = None
mock_response_all_params.raw_response = {"role": "assistant", "content": None}
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
@@ -528,19 +489,10 @@ async def test_smart_decision_maker_parameter_validation():
prompt="Search for keywords",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=0,
)
# Should succeed with all parameters
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
mock_execution_processor = MagicMock()
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
@@ -549,9 +501,6 @@ async def test_smart_decision_maker_parameter_validation():
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
@@ -564,6 +513,8 @@ async def test_smart_decision_maker_parameter_validation():
@pytest.mark.asyncio
async def test_smart_decision_maker_raw_response_conversion():
"""Test that SmartDecisionMaker correctly handles different raw_response types with retry mechanism."""
from unittest.mock import MagicMock, patch
import backend.blocks.llm as llm_module
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
@@ -633,6 +584,7 @@ async def test_smart_decision_maker_raw_response_conversion():
)
# Mock llm_call to return different responses on different calls
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call", new_callable=AsyncMock
@@ -651,19 +603,10 @@ async def test_smart_decision_maker_raw_response_conversion():
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
retry=2,
agent_mode_max_iterations=0,
)
# Should succeed after retry, demonstrating our helper function works
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
mock_execution_processor = MagicMock()
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
@@ -672,9 +615,6 @@ async def test_smart_decision_maker_raw_response_conversion():
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
@@ -710,6 +650,8 @@ async def test_smart_decision_maker_raw_response_conversion():
"I'll help you with that." # Ollama returns string
)
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
@@ -724,18 +666,9 @@ async def test_smart_decision_maker_raw_response_conversion():
prompt="Simple prompt",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=0,
)
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
mock_execution_processor = MagicMock()
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
@@ -744,9 +677,6 @@ async def test_smart_decision_maker_raw_response_conversion():
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
@@ -766,6 +696,8 @@ async def test_smart_decision_maker_raw_response_conversion():
"content": "Test response",
} # Dict format
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
@@ -780,18 +712,9 @@ async def test_smart_decision_maker_raw_response_conversion():
prompt="Another test",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=0,
)
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
mock_execution_processor = MagicMock()
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
@@ -800,260 +723,8 @@ async def test_smart_decision_maker_raw_response_conversion():
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
assert "finished" in outputs
assert outputs["finished"] == "Test response"
@pytest.mark.asyncio
async def test_smart_decision_maker_agent_mode():
"""Test that agent mode executes tools directly and loops until finished."""
import backend.blocks.llm as llm_module
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
block = SmartDecisionMakerBlock()
# Mock tool call that requires multiple iterations
mock_tool_call_1 = MagicMock()
mock_tool_call_1.id = "call_1"
mock_tool_call_1.function.name = "search_keywords"
mock_tool_call_1.function.arguments = (
'{"query": "test", "max_keyword_difficulty": 50}'
)
mock_response_1 = MagicMock()
mock_response_1.response = None
mock_response_1.tool_calls = [mock_tool_call_1]
mock_response_1.prompt_tokens = 50
mock_response_1.completion_tokens = 25
mock_response_1.reasoning = "Using search tool"
mock_response_1.raw_response = {
"role": "assistant",
"content": None,
"tool_calls": [{"id": "call_1", "type": "function"}],
}
# Final response with no tool calls (finished)
mock_response_2 = MagicMock()
mock_response_2.response = "Task completed successfully"
mock_response_2.tool_calls = []
mock_response_2.prompt_tokens = 30
mock_response_2.completion_tokens = 15
mock_response_2.reasoning = None
mock_response_2.raw_response = {
"role": "assistant",
"content": "Task completed successfully",
}
# Mock the LLM call to return different responses on each iteration
llm_call_mock = AsyncMock()
llm_call_mock.side_effect = [mock_response_1, mock_response_2]
# Mock tool node signatures
mock_tool_signatures = [
{
"type": "function",
"function": {
"name": "search_keywords",
"_sink_node_id": "test-sink-node-id",
"_field_mapping": {},
"parameters": {
"properties": {
"query": {"type": "string"},
"max_keyword_difficulty": {"type": "integer"},
},
"required": ["query", "max_keyword_difficulty"],
},
},
}
]
# Mock database and execution components
mock_db_client = AsyncMock()
mock_node = MagicMock()
mock_node.block_id = "test-block-id"
mock_db_client.get_node.return_value = mock_node
# Mock upsert_execution_input to return proper NodeExecutionResult and input data
mock_node_exec_result = MagicMock()
mock_node_exec_result.node_exec_id = "test-tool-exec-id"
mock_input_data = {"query": "test", "max_keyword_difficulty": 50}
mock_db_client.upsert_execution_input.return_value = (
mock_node_exec_result,
mock_input_data,
)
# No longer need mock_execute_node since we use execution_processor.on_node_execution
with patch("backend.blocks.llm.llm_call", llm_call_mock), patch.object(
block, "_create_tool_node_signatures", return_value=mock_tool_signatures
), patch(
"backend.blocks.smart_decision_maker.get_database_manager_async_client",
return_value=mock_db_client,
), patch(
"backend.executor.manager.async_update_node_execution_status",
new_callable=AsyncMock,
), patch(
"backend.integrations.creds_manager.IntegrationCredentialsManager"
):
# Create a mock execution context
mock_execution_context = ExecutionContext(
safe_mode=False,
)
# Create a mock execution processor for agent mode tests
mock_execution_processor = AsyncMock()
# Configure the execution processor mock with required attributes
mock_execution_processor.running_node_execution = defaultdict(MagicMock)
mock_execution_processor.execution_stats = MagicMock()
mock_execution_processor.execution_stats_lock = threading.Lock()
# Mock the on_node_execution method to return successful stats
mock_node_stats = MagicMock()
mock_node_stats.error = None # No error
mock_execution_processor.on_node_execution = AsyncMock(
return_value=mock_node_stats
)
# Mock the get_execution_outputs_by_node_exec_id method
mock_db_client.get_execution_outputs_by_node_exec_id.return_value = {
"result": {"status": "success", "data": "search completed"}
}
# Test agent mode with max_iterations = 3
input_data = SmartDecisionMakerBlock.Input(
prompt="Complete this task using tools",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=3, # Enable agent mode with 3 max iterations
)
outputs = {}
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
graph_id="test-graph-id",
node_id="test-node-id",
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
# Verify agent mode behavior
assert "tool_functions" in outputs # tool_functions is yielded in both modes
assert "finished" in outputs
assert outputs["finished"] == "Task completed successfully"
assert "conversations" in outputs
# Verify the conversation includes tool responses
conversations = outputs["conversations"]
assert len(conversations) > 2 # Should have multiple conversation entries
# Verify LLM was called twice (once for tool call, once for finish)
assert llm_call_mock.call_count == 2
# Verify tool was executed via execution processor
assert mock_execution_processor.on_node_execution.call_count == 1
@pytest.mark.asyncio
async def test_smart_decision_maker_traditional_mode_default():
"""Test that default behavior (agent_mode_max_iterations=0) works as traditional mode."""
import backend.blocks.llm as llm_module
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
block = SmartDecisionMakerBlock()
# Mock tool call
mock_tool_call = MagicMock()
mock_tool_call.function.name = "search_keywords"
mock_tool_call.function.arguments = (
'{"query": "test", "max_keyword_difficulty": 50}'
)
mock_response = MagicMock()
mock_response.response = None
mock_response.tool_calls = [mock_tool_call]
mock_response.prompt_tokens = 50
mock_response.completion_tokens = 25
mock_response.reasoning = None
mock_response.raw_response = {"role": "assistant", "content": None}
mock_tool_signatures = [
{
"type": "function",
"function": {
"name": "search_keywords",
"_sink_node_id": "test-sink-node-id",
"_field_mapping": {},
"parameters": {
"properties": {
"query": {"type": "string"},
"max_keyword_difficulty": {"type": "integer"},
},
"required": ["query", "max_keyword_difficulty"],
},
},
}
]
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
return_value=mock_response,
), patch.object(
block, "_create_tool_node_signatures", return_value=mock_tool_signatures
):
# Test default behavior (traditional mode)
input_data = SmartDecisionMakerBlock.Input(
prompt="Test prompt",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=0, # Traditional mode
)
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
mock_execution_processor = MagicMock()
outputs = {}
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
graph_id="test-graph-id",
node_id="test-node-id",
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
# Verify traditional mode behavior
assert (
"tool_functions" in outputs
) # Should yield tool_functions in traditional mode
assert (
"tools_^_test-sink-node-id_~_query" in outputs
) # Should yield individual tool parameters
assert "tools_^_test-sink-node-id_~_max_keyword_difficulty" in outputs
assert "conversations" in outputs

View File

@@ -1,7 +1,7 @@
"""Comprehensive tests for SmartDecisionMakerBlock dynamic field handling."""
import json
from unittest.mock import AsyncMock, MagicMock, Mock, patch
from unittest.mock import AsyncMock, Mock, patch
import pytest
@@ -308,47 +308,10 @@ async def test_output_yielding_with_dynamic_fields():
) as mock_llm:
mock_llm.return_value = mock_response
# Mock the database manager to avoid HTTP calls during tool execution
with patch(
"backend.blocks.smart_decision_maker.get_database_manager_async_client"
) as mock_db_manager, patch.object(
# Mock the function signature creation
with patch.object(
block, "_create_tool_node_signatures", new_callable=AsyncMock
) as mock_sig:
# Set up the mock database manager
mock_db_client = AsyncMock()
mock_db_manager.return_value = mock_db_client
# Mock the node retrieval
mock_target_node = Mock()
mock_target_node.id = "test-sink-node-id"
mock_target_node.block_id = "CreateDictionaryBlock"
mock_target_node.block = Mock()
mock_target_node.block.name = "Create Dictionary"
mock_db_client.get_node.return_value = mock_target_node
# Mock the execution result creation
mock_node_exec_result = Mock()
mock_node_exec_result.node_exec_id = "mock-node-exec-id"
mock_final_input_data = {
"values_#_name": "Alice",
"values_#_age": 30,
"values_#_email": "alice@example.com",
}
mock_db_client.upsert_execution_input.return_value = (
mock_node_exec_result,
mock_final_input_data,
)
# Mock the output retrieval
mock_outputs = {
"values_#_name": "Alice",
"values_#_age": 30,
"values_#_email": "alice@example.com",
}
mock_db_client.get_execution_outputs_by_node_exec_id.return_value = (
mock_outputs
)
mock_sig.return_value = [
{
"type": "function",
@@ -374,16 +337,10 @@ async def test_output_yielding_with_dynamic_fields():
prompt="Create a user dictionary",
credentials=llm.TEST_CREDENTIALS_INPUT,
model=llm.LlmModel.GPT4O,
agent_mode_max_iterations=0, # Use traditional mode to test output yielding
)
# Run the block
outputs = {}
from backend.data.execution import ExecutionContext
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_processor = MagicMock()
async for output_name, output_value in block.run(
input_data,
credentials=llm.TEST_CREDENTIALS,
@@ -392,9 +349,6 @@ async def test_output_yielding_with_dynamic_fields():
graph_exec_id="test_exec",
node_exec_id="test_node_exec",
user_id="test_user",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_value
@@ -557,108 +511,45 @@ async def test_validation_errors_dont_pollute_conversation():
}
]
# Mock the database manager to avoid HTTP calls during tool execution
with patch(
"backend.blocks.smart_decision_maker.get_database_manager_async_client"
) as mock_db_manager:
# Set up the mock database manager for agent mode
mock_db_client = AsyncMock()
mock_db_manager.return_value = mock_db_client
# Create input data
from backend.blocks import llm
# Mock the node retrieval
mock_target_node = Mock()
mock_target_node.id = "test-sink-node-id"
mock_target_node.block_id = "TestBlock"
mock_target_node.block = Mock()
mock_target_node.block.name = "Test Block"
mock_db_client.get_node.return_value = mock_target_node
input_data = block.input_schema(
prompt="Test prompt",
credentials=llm.TEST_CREDENTIALS_INPUT,
model=llm.LlmModel.GPT4O,
retry=3, # Allow retries
)
# Mock the execution result creation
mock_node_exec_result = Mock()
mock_node_exec_result.node_exec_id = "mock-node-exec-id"
mock_final_input_data = {"correct_param": "value"}
mock_db_client.upsert_execution_input.return_value = (
mock_node_exec_result,
mock_final_input_data,
)
# Run the block
outputs = {}
async for output_name, output_value in block.run(
input_data,
credentials=llm.TEST_CREDENTIALS,
graph_id="test_graph",
node_id="test_node",
graph_exec_id="test_exec",
node_exec_id="test_node_exec",
user_id="test_user",
):
outputs[output_name] = output_value
# Mock the output retrieval
mock_outputs = {"correct_param": "value"}
mock_db_client.get_execution_outputs_by_node_exec_id.return_value = (
mock_outputs
)
# Verify we had 2 LLM calls (initial + retry)
assert call_count == 2
# Create input data
from backend.blocks import llm
# Check the final conversation output
final_conversation = outputs.get("conversations", [])
input_data = block.input_schema(
prompt="Test prompt",
credentials=llm.TEST_CREDENTIALS_INPUT,
model=llm.LlmModel.GPT4O,
retry=3, # Allow retries
agent_mode_max_iterations=1,
)
# The final conversation should NOT contain the validation error message
error_messages = [
msg
for msg in final_conversation
if msg.get("role") == "user"
and "parameter errors" in msg.get("content", "")
]
assert (
len(error_messages) == 0
), "Validation error leaked into final conversation"
# Run the block
outputs = {}
from backend.data.execution import ExecutionContext
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a proper mock execution processor for agent mode
from collections import defaultdict
mock_execution_processor = AsyncMock()
mock_execution_processor.execution_stats = MagicMock()
mock_execution_processor.execution_stats_lock = MagicMock()
# Create a mock NodeExecutionProgress for the sink node
mock_node_exec_progress = MagicMock()
mock_node_exec_progress.add_task = MagicMock()
mock_node_exec_progress.pop_output = MagicMock(
return_value=None
) # No outputs to process
# Set up running_node_execution as a defaultdict that returns our mock for any key
mock_execution_processor.running_node_execution = defaultdict(
lambda: mock_node_exec_progress
)
# Mock the on_node_execution method that gets called during tool execution
mock_node_stats = MagicMock()
mock_node_stats.error = None
mock_execution_processor.on_node_execution.return_value = (
mock_node_stats
)
async for output_name, output_value in block.run(
input_data,
credentials=llm.TEST_CREDENTIALS,
graph_id="test_graph",
node_id="test_node",
graph_exec_id="test_exec",
node_exec_id="test_node_exec",
user_id="test_user",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_value
# Verify we had at least 1 LLM call
assert call_count >= 1
# Check the final conversation output
final_conversation = outputs.get("conversations", [])
# The final conversation should NOT contain validation error messages
# Even if retries don't happen in agent mode, we should not leak errors
error_messages = [
msg
for msg in final_conversation
if msg.get("role") == "user"
and "parameter errors" in msg.get("content", "")
]
assert (
len(error_messages) == 0
), "Validation error leaked into final conversation"
# The final conversation should only have the successful response
assert final_conversation[-1]["content"] == "valid"

View File

@@ -1,45 +1,12 @@
import logging
from datetime import datetime, timedelta, timezone
from typing import Optional
import prisma.types
from pydantic import BaseModel
from backend.data.db import query_raw_with_schema
from backend.util.json import SafeJson
logger = logging.getLogger(__name__)
class AccuracyAlertData(BaseModel):
"""Alert data when accuracy drops significantly."""
graph_id: str
user_id: Optional[str]
drop_percent: float
three_day_avg: float
seven_day_avg: float
detected_at: datetime
class AccuracyLatestData(BaseModel):
"""Latest execution accuracy data point."""
date: datetime
daily_score: Optional[float]
three_day_avg: Optional[float]
seven_day_avg: Optional[float]
fourteen_day_avg: Optional[float]
class AccuracyTrendsResponse(BaseModel):
"""Response model for accuracy trends and alerts."""
latest_data: AccuracyLatestData
alert: Optional[AccuracyAlertData]
historical_data: Optional[list[AccuracyLatestData]] = None
async def log_raw_analytics(
user_id: str,
type: str,
@@ -76,217 +43,3 @@ async def log_raw_metric(
)
return result
async def get_accuracy_trends_and_alerts(
graph_id: str,
days_back: int = 30,
user_id: Optional[str] = None,
drop_threshold: float = 10.0,
include_historical: bool = False,
) -> AccuracyTrendsResponse:
"""Get accuracy trends and detect alerts for a specific graph."""
query_template = """
WITH daily_scores AS (
SELECT
DATE(e."createdAt") as execution_date,
AVG(CASE
WHEN e.stats IS NOT NULL
AND e.stats::json->>'correctness_score' IS NOT NULL
AND e.stats::json->>'correctness_score' != 'null'
THEN (e.stats::json->>'correctness_score')::float * 100
ELSE NULL
END) as daily_score
FROM {schema_prefix}"AgentGraphExecution" e
WHERE e."agentGraphId" = $1::text
AND e."isDeleted" = false
AND e."createdAt" >= $2::timestamp
AND e."executionStatus" IN ('COMPLETED', 'FAILED', 'TERMINATED')
{user_filter}
GROUP BY DATE(e."createdAt")
HAVING COUNT(*) >= 3 -- Need at least 3 executions per day
),
trends AS (
SELECT
execution_date,
daily_score,
AVG(daily_score) OVER (
ORDER BY execution_date
ROWS BETWEEN 2 PRECEDING AND CURRENT ROW
) as three_day_avg,
AVG(daily_score) OVER (
ORDER BY execution_date
ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
) as seven_day_avg,
AVG(daily_score) OVER (
ORDER BY execution_date
ROWS BETWEEN 13 PRECEDING AND CURRENT ROW
) as fourteen_day_avg
FROM daily_scores
)
SELECT *,
CASE
WHEN three_day_avg IS NOT NULL AND seven_day_avg IS NOT NULL AND seven_day_avg > 0
THEN ((seven_day_avg - three_day_avg) / seven_day_avg * 100)
ELSE NULL
END as drop_percent
FROM trends
ORDER BY execution_date DESC
{limit_clause}
"""
start_date = datetime.now(timezone.utc) - timedelta(days=days_back)
params = [graph_id, start_date]
user_filter = ""
if user_id:
user_filter = 'AND e."userId" = $3::text'
params.append(user_id)
# Determine limit clause
limit_clause = "" if include_historical else "LIMIT 1"
final_query = query_template.format(
schema_prefix="{schema_prefix}",
user_filter=user_filter,
limit_clause=limit_clause,
)
result = await query_raw_with_schema(final_query, *params)
if not result:
return AccuracyTrendsResponse(
latest_data=AccuracyLatestData(
date=datetime.now(timezone.utc),
daily_score=None,
three_day_avg=None,
seven_day_avg=None,
fourteen_day_avg=None,
),
alert=None,
)
latest = result[0]
alert = None
if (
latest["drop_percent"] is not None
and latest["drop_percent"] >= drop_threshold
and latest["three_day_avg"] is not None
and latest["seven_day_avg"] is not None
):
alert = AccuracyAlertData(
graph_id=graph_id,
user_id=user_id,
drop_percent=float(latest["drop_percent"]),
three_day_avg=float(latest["three_day_avg"]),
seven_day_avg=float(latest["seven_day_avg"]),
detected_at=datetime.now(timezone.utc),
)
# Prepare historical data if requested
historical_data = None
if include_historical:
historical_data = []
for row in result:
historical_data.append(
AccuracyLatestData(
date=row["execution_date"],
daily_score=(
float(row["daily_score"])
if row["daily_score"] is not None
else None
),
three_day_avg=(
float(row["three_day_avg"])
if row["three_day_avg"] is not None
else None
),
seven_day_avg=(
float(row["seven_day_avg"])
if row["seven_day_avg"] is not None
else None
),
fourteen_day_avg=(
float(row["fourteen_day_avg"])
if row["fourteen_day_avg"] is not None
else None
),
)
)
return AccuracyTrendsResponse(
latest_data=AccuracyLatestData(
date=latest["execution_date"],
daily_score=(
float(latest["daily_score"])
if latest["daily_score"] is not None
else None
),
three_day_avg=(
float(latest["three_day_avg"])
if latest["three_day_avg"] is not None
else None
),
seven_day_avg=(
float(latest["seven_day_avg"])
if latest["seven_day_avg"] is not None
else None
),
fourteen_day_avg=(
float(latest["fourteen_day_avg"])
if latest["fourteen_day_avg"] is not None
else None
),
),
alert=alert,
historical_data=historical_data,
)
class MarketplaceGraphData(BaseModel):
"""Data structure for marketplace graph monitoring."""
graph_id: str
user_id: Optional[str]
execution_count: int
async def get_marketplace_graphs_for_monitoring(
days_back: int = 30,
min_executions: int = 10,
) -> list[MarketplaceGraphData]:
"""Get published marketplace graphs with recent executions for monitoring."""
query_template = """
WITH marketplace_graphs AS (
SELECT DISTINCT
slv."agentGraphId" as graph_id,
slv."agentGraphVersion" as graph_version
FROM {schema_prefix}"StoreListing" sl
JOIN {schema_prefix}"StoreListingVersion" slv ON sl."activeVersionId" = slv."id"
WHERE sl."hasApprovedVersion" = true
AND sl."isDeleted" = false
)
SELECT DISTINCT
mg.graph_id,
NULL as user_id, -- Marketplace graphs don't have a specific user_id for monitoring
COUNT(*) as execution_count
FROM marketplace_graphs mg
JOIN {schema_prefix}"AgentGraphExecution" e ON e."agentGraphId" = mg.graph_id
WHERE e."createdAt" >= $1::timestamp
AND e."isDeleted" = false
AND e."executionStatus" IN ('COMPLETED', 'FAILED', 'TERMINATED')
GROUP BY mg.graph_id
HAVING COUNT(*) >= $2
ORDER BY execution_count DESC
"""
start_date = datetime.now(timezone.utc) - timedelta(days=days_back)
result = await query_raw_with_schema(query_template, start_date, min_executions)
return [
MarketplaceGraphData(
graph_id=row["graph_id"],
user_id=row["user_id"],
execution_count=int(row["execution_count"]),
)
for row in result
]

View File

@@ -601,18 +601,14 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
async for output_name, output_data in self._execute(input_data, **kwargs):
yield output_name, output_data
except Exception as ex:
if isinstance(ex, BlockError):
raise ex
else:
raise (
BlockExecutionError
if isinstance(ex, ValueError)
else BlockUnknownError
)(
if not isinstance(ex, BlockError):
raise BlockUnknownError(
message=str(ex),
block_name=self.name,
block_id=self.id,
) from ex
else:
raise ex
async def _execute(self, input_data: BlockInput, **kwargs) -> BlockOutput:
if error := self.input_schema.validate_data(input_data):

View File

@@ -5,7 +5,6 @@ from enum import Enum
from multiprocessing import Manager
from queue import Empty
from typing import (
TYPE_CHECKING,
Annotated,
Any,
AsyncGenerator,
@@ -66,9 +65,6 @@ from .includes import (
)
from .model import CredentialsMetaInput, GraphExecutionStats, NodeExecutionStats
if TYPE_CHECKING:
pass
T = TypeVar("T")
logger = logging.getLogger(__name__)
@@ -840,30 +836,6 @@ async def upsert_execution_output(
await AgentNodeExecutionInputOutput.prisma().create(data=data)
async def get_execution_outputs_by_node_exec_id(
node_exec_id: str,
) -> dict[str, Any]:
"""
Get all execution outputs for a specific node execution ID.
Args:
node_exec_id: The node execution ID to get outputs for
Returns:
Dictionary mapping output names to their data values
"""
outputs = await AgentNodeExecutionInputOutput.prisma().find_many(
where={"referencedByOutputExecId": node_exec_id}
)
result = {}
for output in outputs:
if output.data is not None:
result[output.name] = type_utils.convert(output.data, JsonValue)
return result
async def update_graph_execution_start_time(
graph_exec_id: str,
) -> GraphExecution | None:
@@ -1493,35 +1465,3 @@ async def get_graph_execution_by_share_token(
created_at=execution.createdAt,
outputs=outputs,
)
async def get_frequently_executed_graphs(
days_back: int = 30,
min_executions: int = 10,
) -> list[dict]:
"""Get graphs that have been frequently executed for monitoring."""
query_template = """
SELECT DISTINCT
e."agentGraphId" as graph_id,
e."userId" as user_id,
COUNT(*) as execution_count
FROM {schema_prefix}"AgentGraphExecution" e
WHERE e."createdAt" >= $1::timestamp
AND e."isDeleted" = false
AND e."executionStatus" IN ('COMPLETED', 'FAILED', 'TERMINATED')
GROUP BY e."agentGraphId", e."userId"
HAVING COUNT(*) >= $2
ORDER BY execution_count DESC
"""
start_date = datetime.now(timezone.utc) - timedelta(days=days_back)
result = await query_raw_with_schema(query_template, start_date, min_executions)
return [
{
"graph_id": row["graph_id"],
"user_id": row["user_id"],
"execution_count": int(row["execution_count"]),
}
for row in result
]

View File

@@ -100,7 +100,7 @@ async def get_or_create_human_review(
return None
else:
return ReviewResult(
data=review.payload,
data=review.payload if review.status == ReviewStatus.APPROVED else None,
status=review.status,
message=review.reviewMessage or "",
processed=review.processed,

View File

@@ -22,7 +22,7 @@ from typing import (
from urllib.parse import urlparse
from uuid import uuid4
from prisma.enums import CreditTransactionType, OnboardingStep
from prisma.enums import CreditTransactionType
from pydantic import (
BaseModel,
ConfigDict,
@@ -868,20 +868,3 @@ class UserExecutionSummaryStats(BaseModel):
total_execution_time: float = Field(default=0)
average_execution_time: float = Field(default=0)
cost_breakdown: dict[str, float] = Field(default_factory=dict)
class UserOnboarding(BaseModel):
userId: str
completedSteps: list[OnboardingStep]
walletShown: bool
notified: list[OnboardingStep]
rewardedFor: list[OnboardingStep]
usageReason: Optional[str]
integrations: list[str]
otherIntegrations: Optional[str]
selectedStoreListingVersionId: Optional[str]
agentInput: Optional[dict[str, Any]]
onboardingAgentExecutionId: Optional[str]
agentRuns: int
lastRunAt: Optional[datetime]
consecutiveRunDays: int

View File

@@ -2,7 +2,7 @@ from __future__ import annotations
from typing import AsyncGenerator
from pydantic import BaseModel, field_serializer
from pydantic import BaseModel
from backend.data.event_bus import AsyncRedisEventBus
from backend.server.model import NotificationPayload
@@ -15,11 +15,6 @@ class NotificationEvent(BaseModel):
user_id: str
payload: NotificationPayload
@field_serializer("payload")
def serialize_payload(self, payload: NotificationPayload):
"""Ensure extra fields survive Redis serialization."""
return payload.model_dump()
class AsyncRedisNotificationEventBus(AsyncRedisEventBus[NotificationEvent]):
Model = NotificationEvent # type: ignore

View File

@@ -1,7 +1,6 @@
import re
from datetime import datetime, timedelta, timezone
from typing import Any, Literal, Optional
from zoneinfo import ZoneInfo
from datetime import datetime
from typing import Any, Optional
import prisma
import pydantic
@@ -9,18 +8,17 @@ from prisma.enums import OnboardingStep
from prisma.models import UserOnboarding
from prisma.types import UserOnboardingCreateInput, UserOnboardingUpdateInput
from backend.data import execution as execution_db
from backend.data.block import get_blocks
from backend.data.credit import get_user_credit_model
from backend.data.model import CredentialsMetaInput
from backend.data.notification_bus import (
AsyncRedisNotificationEventBus,
NotificationEvent,
)
from backend.data.user import get_user_by_id
from backend.server.model import OnboardingNotificationPayload
from backend.server.v2.store.model import StoreAgentDetails
from backend.util.cache import cached
from backend.util.json import SafeJson
from backend.util.timezone_utils import get_user_timezone_or_utc
# Mapping from user reason id to categories to search for when choosing agent to show
REASON_MAPPING: dict[str, list[str]] = {
@@ -33,20 +31,9 @@ REASON_MAPPING: dict[str, list[str]] = {
POINTS_AGENT_COUNT = 50 # Number of agents to calculate points for
MIN_AGENT_COUNT = 2 # Minimum number of marketplace agents to enable onboarding
FrontendOnboardingStep = Literal[
OnboardingStep.WELCOME,
OnboardingStep.USAGE_REASON,
OnboardingStep.INTEGRATIONS,
OnboardingStep.AGENT_CHOICE,
OnboardingStep.AGENT_NEW_RUN,
OnboardingStep.AGENT_INPUT,
OnboardingStep.CONGRATS,
OnboardingStep.MARKETPLACE_VISIT,
OnboardingStep.BUILDER_OPEN,
]
class UserOnboardingUpdate(pydantic.BaseModel):
completedSteps: Optional[list[OnboardingStep]] = None
walletShown: Optional[bool] = None
notified: Optional[list[OnboardingStep]] = None
usageReason: Optional[str] = None
@@ -55,6 +42,9 @@ class UserOnboardingUpdate(pydantic.BaseModel):
selectedStoreListingVersionId: Optional[str] = None
agentInput: Optional[dict[str, Any]] = None
onboardingAgentExecutionId: Optional[str] = None
agentRuns: Optional[int] = None
lastRunAt: Optional[datetime] = None
consecutiveRunDays: Optional[int] = None
async def get_user_onboarding(user_id: str):
@@ -93,6 +83,14 @@ async def reset_user_onboarding(user_id: str):
async def update_user_onboarding(user_id: str, data: UserOnboardingUpdate):
update: UserOnboardingUpdateInput = {}
onboarding = await get_user_onboarding(user_id)
if data.completedSteps is not None:
update["completedSteps"] = list(
set(data.completedSteps + onboarding.completedSteps)
)
for step in data.completedSteps:
if step not in onboarding.completedSteps:
await _reward_user(user_id, onboarding, step)
await _send_onboarding_notification(user_id, step)
if data.walletShown:
update["walletShown"] = data.walletShown
if data.notified is not None:
@@ -109,6 +107,12 @@ async def update_user_onboarding(user_id: str, data: UserOnboardingUpdate):
update["agentInput"] = SafeJson(data.agentInput)
if data.onboardingAgentExecutionId is not None:
update["onboardingAgentExecutionId"] = data.onboardingAgentExecutionId
if data.agentRuns is not None and data.agentRuns > onboarding.agentRuns:
update["agentRuns"] = data.agentRuns
if data.lastRunAt is not None:
update["lastRunAt"] = data.lastRunAt
if data.consecutiveRunDays is not None:
update["consecutiveRunDays"] = data.consecutiveRunDays
return await UserOnboarding.prisma().upsert(
where={"userId": user_id},
@@ -157,12 +161,14 @@ async def _reward_user(user_id: str, onboarding: UserOnboarding, step: Onboardin
if step in onboarding.rewardedFor:
return
onboarding.rewardedFor.append(step)
user_credit_model = await get_user_credit_model(user_id)
await user_credit_model.onboarding_reward(user_id, reward, step)
await UserOnboarding.prisma().update(
where={"userId": user_id},
data={
"rewardedFor": list(set(onboarding.rewardedFor + [step])),
"completedSteps": list(set(onboarding.completedSteps + [step])),
"rewardedFor": onboarding.rewardedFor,
},
)
@@ -171,52 +177,31 @@ async def complete_onboarding_step(user_id: str, step: OnboardingStep):
"""
Completes the specified onboarding step for the user if not already completed.
"""
onboarding = await get_user_onboarding(user_id)
if step not in onboarding.completedSteps:
await UserOnboarding.prisma().update(
where={"userId": user_id},
data={
"completedSteps": list(set(onboarding.completedSteps + [step])),
},
await update_user_onboarding(
user_id,
UserOnboardingUpdate(completedSteps=onboarding.completedSteps + [step]),
)
await _reward_user(user_id, onboarding, step)
await _send_onboarding_notification(user_id, step)
async def _send_onboarding_notification(
user_id: str, step: OnboardingStep | None, event: str = "step_completed"
):
async def _send_onboarding_notification(user_id: str, step: OnboardingStep):
"""
Sends an onboarding notification to the user.
Sends an onboarding notification to the user for the specified step.
"""
payload = OnboardingNotificationPayload(
type="onboarding",
event=event,
step=step,
event="step_completed",
step=step.value,
)
await AsyncRedisNotificationEventBus().publish(
NotificationEvent(user_id=user_id, payload=payload)
)
async def complete_re_run_agent(user_id: str, graph_id: str) -> None:
"""
Complete RE_RUN_AGENT step when a user runs a graph they've run before.
Keeps overhead low by only counting executions if the step is still pending.
"""
onboarding = await get_user_onboarding(user_id)
if OnboardingStep.RE_RUN_AGENT in onboarding.completedSteps:
return
# Includes current execution, so count > 1 means there was at least one prior run.
previous_exec_count = await execution_db.get_graph_executions_count(
user_id=user_id, graph_id=graph_id
)
if previous_exec_count > 1:
await complete_onboarding_step(user_id, OnboardingStep.RE_RUN_AGENT)
def _clean_and_split(text: str) -> list[str]:
def clean_and_split(text: str) -> list[str]:
"""
Removes all special characters from a string, truncates it to 100 characters,
and splits it by whitespace and commas.
@@ -239,7 +224,7 @@ def _clean_and_split(text: str) -> list[str]:
return words
def _calculate_points(
def calculate_points(
agent, categories: list[str], custom: list[str], integrations: list[str]
) -> int:
"""
@@ -283,85 +268,18 @@ def _calculate_points(
return int(points)
def _normalize_datetime(value: datetime | None) -> datetime | None:
if value is None:
return None
if value.tzinfo is None:
return value.replace(tzinfo=timezone.utc)
return value.astimezone(timezone.utc)
def get_credentials_blocks() -> dict[str, str]:
# Returns a dictionary of block id to credentials field name
creds: dict[str, str] = {}
blocks = get_blocks()
for id, block in blocks.items():
for field_name, field_info in block().input_schema.model_fields.items():
if field_info.annotation == CredentialsMetaInput:
creds[id] = field_name
return creds
def _calculate_consecutive_run_days(
last_run_at: datetime | None, current_consecutive_days: int, user_timezone: str
) -> tuple[datetime, int]:
tz = ZoneInfo(user_timezone)
local_now = datetime.now(tz)
normalized_last_run = _normalize_datetime(last_run_at)
if normalized_last_run is None:
return local_now.astimezone(timezone.utc), 1
last_run_local = normalized_last_run.astimezone(tz)
last_run_date = last_run_local.date()
today = local_now.date()
if last_run_date == today:
return local_now.astimezone(timezone.utc), current_consecutive_days
if last_run_date == today - timedelta(days=1):
return local_now.astimezone(timezone.utc), current_consecutive_days + 1
return local_now.astimezone(timezone.utc), 1
def _get_run_milestone_steps(
new_run_count: int, consecutive_days: int
) -> list[OnboardingStep]:
milestones: list[OnboardingStep] = []
if new_run_count >= 10:
milestones.append(OnboardingStep.RUN_AGENTS)
if new_run_count >= 100:
milestones.append(OnboardingStep.RUN_AGENTS_100)
if consecutive_days >= 3:
milestones.append(OnboardingStep.RUN_3_DAYS)
if consecutive_days >= 14:
milestones.append(OnboardingStep.RUN_14_DAYS)
return milestones
async def _get_user_timezone(user_id: str) -> str:
user = await get_user_by_id(user_id)
return get_user_timezone_or_utc(user.timezone if user else None)
async def increment_runs(user_id: str):
"""
Increment a user's run counters and trigger any onboarding milestones.
"""
user_timezone = await _get_user_timezone(user_id)
onboarding = await get_user_onboarding(user_id)
new_run_count = onboarding.agentRuns + 1
last_run_at, consecutive_run_days = _calculate_consecutive_run_days(
onboarding.lastRunAt, onboarding.consecutiveRunDays, user_timezone
)
await UserOnboarding.prisma().update(
where={"userId": user_id},
data={
"agentRuns": {"increment": 1},
"lastRunAt": last_run_at,
"consecutiveRunDays": consecutive_run_days,
},
)
milestones = _get_run_milestone_steps(new_run_count, consecutive_run_days)
new_steps = [step for step in milestones if step not in onboarding.completedSteps]
for step in new_steps:
await complete_onboarding_step(user_id, step)
# Send progress notification if no steps were completed, so client refetches onboarding state
if not new_steps:
await _send_onboarding_notification(user_id, None, event="increment_runs")
CREDENTIALS_FIELDS: dict[str, str] = get_credentials_blocks()
async def get_recommended_agents(user_id: str) -> list[StoreAgentDetails]:
@@ -370,7 +288,7 @@ async def get_recommended_agents(user_id: str) -> list[StoreAgentDetails]:
where_clause: dict[str, Any] = {}
custom = _clean_and_split((user_onboarding.usageReason or "").lower())
custom = clean_and_split((user_onboarding.usageReason or "").lower())
if categories:
where_clause["OR"] = [
@@ -418,7 +336,7 @@ async def get_recommended_agents(user_id: str) -> list[StoreAgentDetails]:
# Calculate points for the first X agents and choose the top 2
agent_points = []
for agent in storeAgents[:POINTS_AGENT_COUNT]:
points = _calculate_points(
points = calculate_points(
agent, categories, custom, user_onboarding.integrations
)
agent_points.append((agent, points))
@@ -432,7 +350,6 @@ async def get_recommended_agents(user_id: str) -> list[StoreAgentDetails]:
slug=agent.slug,
agent_name=agent.agent_name,
agent_video=agent.agent_video or "",
agent_output_demo=agent.agent_output_demo or "",
agent_image=agent.agent_image,
creator=agent.creator_username,
creator_avatar=agent.creator_avatar,

View File

@@ -188,14 +188,14 @@ class TestClusterLockExpiry:
def test_lock_natural_expiry(self, redis_client, lock_key, owner_id):
"""Test lock expires naturally via Redis TTL."""
lock = ClusterLock(
redis_client, lock_key, owner_id, timeout=1
) # 1 second timeout
redis_client, lock_key, owner_id, timeout=2
) # 2 second timeout
lock.try_acquire()
assert redis_client.exists(lock_key) == 1
# Wait for expiry
time.sleep(1.2)
time.sleep(3)
assert redis_client.exists(lock_key) == 0
# New lock with same key should succeed
@@ -205,18 +205,18 @@ class TestClusterLockExpiry:
def test_lock_refresh_prevents_expiry(self, redis_client, lock_key, owner_id):
"""Test refreshing prevents lock from expiring."""
lock = ClusterLock(
redis_client, lock_key, owner_id, timeout=2
) # 2 second timeout
redis_client, lock_key, owner_id, timeout=3
) # 3 second timeout
lock.try_acquire()
# Wait and refresh before expiry
time.sleep(0.5)
time.sleep(1)
lock._last_refresh = 0 # Force refresh past rate limit
assert lock.refresh() is True
# Wait beyond original timeout
time.sleep(1.8)
time.sleep(2.5)
assert redis_client.exists(lock_key) == 1 # Should still exist
@@ -249,16 +249,16 @@ class TestClusterLockConcurrency:
assert len(successful_acquisitions) == 1
def test_sequential_lock_reuse(self, redis_client, lock_key):
"""Test lock can be reused after release."""
"""Test lock can be reused after natural expiry."""
owners = [str(uuid.uuid4()) for _ in range(3)]
for i, owner_id in enumerate(owners):
lock = ClusterLock(redis_client, lock_key, owner_id, timeout=60)
lock = ClusterLock(redis_client, lock_key, owner_id, timeout=1) # 1 second
assert lock.try_acquire() == owner_id
lock.release() # Release immediately instead of waiting for expiry
time.sleep(1.5) # Wait for expiry
# Verify lock released
# Verify lock expired
assert redis_client.exists(lock_key) == 0
def test_refresh_during_concurrent_access(self, redis_client, lock_key):
@@ -445,18 +445,18 @@ class TestClusterLockRealWorldScenarios:
):
"""Test lock maintains ownership during long execution with periodic refresh."""
lock = ClusterLock(
redis_client, lock_key, owner_id, timeout=5
) # 5 second timeout, refresh interval = max(5//10, 1) = 1 second
redis_client, lock_key, owner_id, timeout=30
) # 30 second timeout, refresh interval = max(30//10, 1) = 3 seconds
def long_execution_with_refresh():
"""Simulate long-running execution with periodic refresh."""
assert lock.try_acquire() == owner_id
# Simulate 2 seconds of work with refreshes
# Simulate 10 seconds of work with refreshes every 2 seconds
# This respects rate limiting - actual refreshes will happen at 0s, 3s, 6s, 9s
try:
for i in range(2): # 2 iterations * 0.5 seconds = 1 second total
time.sleep(0.5)
lock._last_refresh = 0 # Force refresh past rate limit
for i in range(5): # 5 iterations * 2 seconds = 10 seconds total
time.sleep(2)
refresh_success = lock.refresh()
assert refresh_success is True, f"Refresh failed at iteration {i}"
return "completed"
@@ -471,7 +471,7 @@ class TestClusterLockRealWorldScenarios:
"""Test graceful degradation when Redis becomes unavailable."""
owner_id = str(uuid.uuid4())
lock = ClusterLock(
redis_client, lock_key, owner_id, timeout=1
redis_client, lock_key, owner_id, timeout=3
) # Use shorter timeout
# Normal operation
@@ -484,7 +484,7 @@ class TestClusterLockRealWorldScenarios:
lock.redis = redis.Redis(
host="invalid_host",
port=1234,
socket_connect_timeout=0.5,
socket_connect_timeout=1,
decode_responses=False,
)
@@ -495,8 +495,8 @@ class TestClusterLockRealWorldScenarios:
# Restore Redis and verify can acquire again
lock.redis = original_redis
# Wait for original lock to expire
time.sleep(1.2)
# Wait for original lock to expire (use longer wait for 3s timeout)
time.sleep(4)
new_lock = ClusterLock(redis_client, lock_key, owner_id, timeout=60)
assert new_lock.try_acquire() == owner_id

View File

@@ -3,18 +3,12 @@ from contextlib import asynccontextmanager
from typing import TYPE_CHECKING, Callable, Concatenate, ParamSpec, TypeVar, cast
from backend.data import db
from backend.data.analytics import (
get_accuracy_trends_and_alerts,
get_marketplace_graphs_for_monitoring,
)
from backend.data.credit import UsageTransactionMetadata, get_user_credit_model
from backend.data.execution import (
create_graph_execution,
get_block_error_stats,
get_child_graph_executions,
get_execution_kv_data,
get_execution_outputs_by_node_exec_id,
get_frequently_executed_graphs,
get_graph_execution_meta,
get_graph_executions,
get_graph_executions_count,
@@ -148,13 +142,9 @@ class DatabaseManager(AppService):
update_graph_execution_stats = _(update_graph_execution_stats)
upsert_execution_input = _(upsert_execution_input)
upsert_execution_output = _(upsert_execution_output)
get_execution_outputs_by_node_exec_id = _(get_execution_outputs_by_node_exec_id)
get_execution_kv_data = _(get_execution_kv_data)
set_execution_kv_data = _(set_execution_kv_data)
get_block_error_stats = _(get_block_error_stats)
get_accuracy_trends_and_alerts = _(get_accuracy_trends_and_alerts)
get_frequently_executed_graphs = _(get_frequently_executed_graphs)
get_marketplace_graphs_for_monitoring = _(get_marketplace_graphs_for_monitoring)
# Graphs
get_node = _(get_node)
@@ -236,10 +226,6 @@ class DatabaseManagerClient(AppServiceClient):
# Block error monitoring
get_block_error_stats = _(d.get_block_error_stats)
# Execution accuracy monitoring
get_accuracy_trends_and_alerts = _(d.get_accuracy_trends_and_alerts)
get_frequently_executed_graphs = _(d.get_frequently_executed_graphs)
get_marketplace_graphs_for_monitoring = _(d.get_marketplace_graphs_for_monitoring)
# Human In The Loop
has_pending_reviews_for_graph_exec = _(d.has_pending_reviews_for_graph_exec)
@@ -279,7 +265,6 @@ class DatabaseManagerAsyncClient(AppServiceClient):
get_user_integrations = d.get_user_integrations
upsert_execution_input = d.upsert_execution_input
upsert_execution_output = d.upsert_execution_output
get_execution_outputs_by_node_exec_id = d.get_execution_outputs_by_node_exec_id
update_graph_execution_stats = d.update_graph_execution_stats
update_node_execution_status = d.update_node_execution_status
update_node_execution_status_batch = d.update_node_execution_status_batch

View File

@@ -133,8 +133,9 @@ def execute_graph(
cluster_lock: ClusterLock,
):
"""Execute graph using thread-local ExecutionProcessor instance"""
processor: ExecutionProcessor = _tls.processor
return processor.on_graph_execution(graph_exec_entry, cancel_event, cluster_lock)
return _tls.processor.on_graph_execution(
graph_exec_entry, cancel_event, cluster_lock
)
T = TypeVar("T")
@@ -142,8 +143,8 @@ T = TypeVar("T")
async def execute_node(
node: Node,
creds_manager: IntegrationCredentialsManager,
data: NodeExecutionEntry,
execution_processor: "ExecutionProcessor",
execution_stats: NodeExecutionStats | None = None,
nodes_input_masks: Optional[NodesInputMasks] = None,
) -> BlockOutput:
@@ -168,7 +169,6 @@ async def execute_node(
node_id = data.node_id
node_block = node.block
execution_context = data.execution_context
creds_manager = execution_processor.creds_manager
log_metadata = LogMetadata(
logger=_logger,
@@ -212,7 +212,6 @@ async def execute_node(
"node_exec_id": node_exec_id,
"user_id": user_id,
"execution_context": execution_context,
"execution_processor": execution_processor,
}
# Last-minute fetch credentials + acquire a system-wide read-write lock to prevent
@@ -609,8 +608,8 @@ class ExecutionProcessor:
async for output_name, output_data in execute_node(
node=node,
creds_manager=self.creds_manager,
data=node_exec,
execution_processor=self,
execution_stats=stats,
nodes_input_masks=nodes_input_masks,
):
@@ -861,17 +860,12 @@ class ExecutionProcessor:
execution_stats_lock = threading.Lock()
# State holders ----------------------------------------------------
self.running_node_execution: dict[str, NodeExecutionProgress] = defaultdict(
running_node_execution: dict[str, NodeExecutionProgress] = defaultdict(
NodeExecutionProgress
)
self.running_node_evaluation: dict[str, Future] = {}
self.execution_stats = execution_stats
self.execution_stats_lock = execution_stats_lock
running_node_evaluation: dict[str, Future] = {}
execution_queue = ExecutionQueue[NodeExecutionEntry]()
running_node_execution = self.running_node_execution
running_node_evaluation = self.running_node_evaluation
try:
if db_client.get_credits(graph_exec.user_id) <= 0:
raise InsufficientBalanceError(

View File

@@ -26,14 +26,12 @@ from sqlalchemy import MetaData, create_engine
from backend.data.block import BlockInput
from backend.data.execution import GraphExecutionWithNodes
from backend.data.model import CredentialsMetaInput
from backend.data.onboarding import increment_runs
from backend.executor import utils as execution_utils
from backend.monitoring import (
NotificationJobArgs,
process_existing_batches,
process_weekly_summary,
report_block_error_rates,
report_execution_accuracy_alerts,
report_late_executions,
)
from backend.util.clients import get_scheduler_client
@@ -155,7 +153,6 @@ async def _execute_graph(**kwargs):
inputs=args.input_data,
graph_credentials_inputs=args.input_credentials,
)
await increment_runs(args.user_id)
elapsed = asyncio.get_event_loop().time() - start_time
logger.info(
f"Graph execution started with ID {graph_exec.id} for graph {args.graph_id} "
@@ -242,11 +239,6 @@ def cleanup_expired_files():
run_async(cleanup_expired_files_async())
def execution_accuracy_alerts():
"""Check execution accuracy and send alerts if drops are detected."""
return report_execution_accuracy_alerts()
# Monitoring functions are now imported from monitoring module
@@ -446,17 +438,6 @@ class Scheduler(AppService):
jobstore=Jobstores.EXECUTION.value,
)
# Execution Accuracy Monitoring - configurable interval
self.scheduler.add_job(
execution_accuracy_alerts,
id="report_execution_accuracy_alerts",
trigger="interval",
replace_existing=True,
seconds=config.execution_accuracy_check_interval_hours
* 3600, # Convert hours to seconds
jobstore=Jobstores.EXECUTION.value,
)
self.scheduler.add_listener(job_listener, EVENT_JOB_EXECUTED | EVENT_JOB_ERROR)
self.scheduler.add_listener(job_missed_listener, EVENT_JOB_MISSED)
self.scheduler.add_listener(job_max_instances_listener, EVENT_JOB_MAX_INSTANCES)
@@ -604,11 +585,6 @@ class Scheduler(AppService):
"""Manually trigger cleanup of expired cloud storage files."""
return cleanup_expired_files()
@expose
def execute_report_execution_accuracy_alerts(self):
"""Manually trigger execution accuracy alert checking."""
return execution_accuracy_alerts()
class SchedulerClient(AppServiceClient):
@classmethod

View File

@@ -0,0 +1,156 @@
"""
Embedding service for generating text embeddings using OpenAI.
Used for vector-based semantic search in the store.
"""
import logging
from typing import Optional
import openai
from backend.util.settings import Settings
logger = logging.getLogger(__name__)
# Model configuration
# Using text-embedding-3-small (1536 dimensions) for compatibility with pgvector indexes
# pgvector IVFFlat/HNSW indexes have dimension limits (2000 for IVFFlat, varies for HNSW)
EMBEDDING_MODEL = "text-embedding-3-small"
EMBEDDING_DIMENSIONS = 1536
# Input validation limits
# OpenAI text-embedding-3-large supports up to 8191 tokens (~32k chars)
# We set a conservative limit to prevent abuse
MAX_TEXT_LENGTH = 10000 # characters
MAX_BATCH_SIZE = 100 # maximum texts per batch request
class EmbeddingService:
"""Service for generating text embeddings using OpenAI."""
def __init__(self, api_key: Optional[str] = None):
settings = Settings()
self.api_key = (
api_key
or settings.secrets.openai_internal_api_key
or settings.secrets.openai_api_key
)
if not self.api_key:
raise ValueError(
"OpenAI API key not configured. "
"Set OPENAI_API_KEY or OPENAI_INTERNAL_API_KEY environment variable."
)
self.client = openai.AsyncOpenAI(api_key=self.api_key)
async def generate_embedding(self, text: str) -> list[float]:
"""
Generate embedding for a single text string.
Args:
text: The text to generate an embedding for.
Returns:
A list of floats representing the embedding vector.
Raises:
ValueError: If the text is empty or exceeds maximum length.
openai.APIError: If the OpenAI API call fails.
"""
# Input validation
if not text or not text.strip():
raise ValueError("Text cannot be empty")
if len(text) > MAX_TEXT_LENGTH:
raise ValueError(
f"Text exceeds maximum length of {MAX_TEXT_LENGTH} characters"
)
try:
response = await self.client.embeddings.create(
model=EMBEDDING_MODEL,
input=text,
dimensions=EMBEDDING_DIMENSIONS,
)
return response.data[0].embedding
except openai.APIError as e:
logger.error(f"OpenAI API error generating embedding: {e}")
raise
async def generate_embeddings(self, texts: list[str]) -> list[list[float]]:
"""
Generate embeddings for multiple texts (batch).
Args:
texts: List of texts to generate embeddings for.
Returns:
List of embedding vectors, one per input text.
Raises:
ValueError: If any text is invalid or batch size exceeds limit.
openai.APIError: If the OpenAI API call fails.
"""
# Input validation
if not texts:
raise ValueError("Texts list cannot be empty")
if len(texts) > MAX_BATCH_SIZE:
raise ValueError(f"Batch size exceeds maximum of {MAX_BATCH_SIZE} texts")
for i, text in enumerate(texts):
if not text or not text.strip():
raise ValueError(f"Text at index {i} cannot be empty")
if len(text) > MAX_TEXT_LENGTH:
raise ValueError(
f"Text at index {i} exceeds maximum length of {MAX_TEXT_LENGTH} characters"
)
try:
response = await self.client.embeddings.create(
model=EMBEDDING_MODEL,
input=texts,
dimensions=EMBEDDING_DIMENSIONS,
)
# Sort by index to ensure correct ordering
sorted_data = sorted(response.data, key=lambda x: x.index)
return [item.embedding for item in sorted_data]
except openai.APIError as e:
logger.error(f"OpenAI API error generating embeddings: {e}")
raise
def create_search_text(name: str, sub_heading: str, description: str) -> str:
"""
Combine fields into searchable text for embedding.
This creates a single text string from the agent's name, sub-heading,
and description, which is then converted to an embedding vector.
Args:
name: The agent name.
sub_heading: The agent sub-heading/tagline.
description: The agent description.
Returns:
A single string combining all non-empty fields.
"""
parts = [name or "", sub_heading or "", description or ""]
return " ".join(filter(None, parts)).strip()
# Singleton instance
_embedding_service: Optional[EmbeddingService] = None
async def get_embedding_service() -> EmbeddingService:
"""
Get or create the embedding service singleton.
Returns:
The shared EmbeddingService instance.
Raises:
ValueError: If OpenAI API key is not configured.
"""
global _embedding_service
if _embedding_service is None:
_embedding_service = EmbeddingService()
return _embedding_service

View File

@@ -0,0 +1,231 @@
"""Tests for the embedding service.
This module tests:
- create_search_text utility function
- EmbeddingService input validation
- EmbeddingService API interaction (mocked)
"""
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from backend.integrations.embeddings import (
EMBEDDING_DIMENSIONS,
MAX_BATCH_SIZE,
MAX_TEXT_LENGTH,
EmbeddingService,
create_search_text,
)
class TestCreateSearchText:
"""Tests for the create_search_text utility function."""
def test_combines_all_fields(self):
result = create_search_text("Agent Name", "A cool agent", "Does amazing things")
assert result == "Agent Name A cool agent Does amazing things"
def test_handles_empty_name(self):
result = create_search_text("", "Sub heading", "Description")
assert result == "Sub heading Description"
def test_handles_empty_sub_heading(self):
result = create_search_text("Name", "", "Description")
assert result == "Name Description"
def test_handles_empty_description(self):
result = create_search_text("Name", "Sub heading", "")
assert result == "Name Sub heading"
def test_handles_all_empty(self):
result = create_search_text("", "", "")
assert result == ""
def test_handles_none_values(self):
# The function expects strings but should handle None gracefully
result = create_search_text(None, None, None) # type: ignore
assert result == ""
def test_preserves_content_strips_outer_whitespace(self):
# The function joins parts and strips the outer result
# Internal whitespace in each part is preserved
result = create_search_text(" Name ", " Sub ", " Desc ")
# Each part is joined with space, then outer strip applied
assert result == "Name Sub Desc"
def test_handles_only_whitespace(self):
# Parts that are only whitespace become empty after filter
result = create_search_text(" ", " ", " ")
assert result == ""
class TestEmbeddingServiceValidation:
"""Tests for EmbeddingService input validation."""
@pytest.fixture
def mock_settings(self):
"""Mock settings with a test API key."""
with patch("backend.integrations.embeddings.Settings") as mock:
mock_instance = MagicMock()
mock_instance.secrets.openai_internal_api_key = "test-api-key"
mock_instance.secrets.openai_api_key = ""
mock.return_value = mock_instance
yield mock
@pytest.fixture
def service(self, mock_settings):
"""Create an EmbeddingService instance with mocked settings."""
with patch("backend.integrations.embeddings.openai.AsyncOpenAI"):
return EmbeddingService()
def test_init_requires_api_key(self):
"""Test that initialization fails without an API key."""
with patch("backend.integrations.embeddings.Settings") as mock:
mock_instance = MagicMock()
mock_instance.secrets.openai_internal_api_key = ""
mock_instance.secrets.openai_api_key = ""
mock.return_value = mock_instance
with pytest.raises(ValueError, match="OpenAI API key not configured"):
EmbeddingService()
def test_init_accepts_explicit_api_key(self):
"""Test that explicit API key overrides settings."""
with patch("backend.integrations.embeddings.Settings") as mock:
mock_instance = MagicMock()
mock_instance.secrets.openai_internal_api_key = ""
mock_instance.secrets.openai_api_key = ""
mock.return_value = mock_instance
with patch("backend.integrations.embeddings.openai.AsyncOpenAI"):
service = EmbeddingService(api_key="explicit-key")
assert service.api_key == "explicit-key"
@pytest.mark.asyncio
async def test_generate_embedding_empty_text(self, service):
"""Test that empty text raises ValueError."""
with pytest.raises(ValueError, match="Text cannot be empty"):
await service.generate_embedding("")
@pytest.mark.asyncio
async def test_generate_embedding_whitespace_only(self, service):
"""Test that whitespace-only text raises ValueError."""
with pytest.raises(ValueError, match="Text cannot be empty"):
await service.generate_embedding(" ")
@pytest.mark.asyncio
async def test_generate_embedding_exceeds_max_length(self, service):
"""Test that text exceeding max length raises ValueError."""
long_text = "a" * (MAX_TEXT_LENGTH + 1)
with pytest.raises(ValueError, match="exceeds maximum length"):
await service.generate_embedding(long_text)
@pytest.mark.asyncio
async def test_generate_embeddings_empty_list(self, service):
"""Test that empty list raises ValueError."""
with pytest.raises(ValueError, match="Texts list cannot be empty"):
await service.generate_embeddings([])
@pytest.mark.asyncio
async def test_generate_embeddings_exceeds_batch_size(self, service):
"""Test that batch exceeding max size raises ValueError."""
texts = ["text"] * (MAX_BATCH_SIZE + 1)
with pytest.raises(ValueError, match="Batch size exceeds maximum"):
await service.generate_embeddings(texts)
@pytest.mark.asyncio
async def test_generate_embeddings_empty_text_in_batch(self, service):
"""Test that empty text in batch raises ValueError with index."""
with pytest.raises(ValueError, match="Text at index 1 cannot be empty"):
await service.generate_embeddings(["valid", "", "also valid"])
@pytest.mark.asyncio
async def test_generate_embeddings_long_text_in_batch(self, service):
"""Test that long text in batch raises ValueError with index."""
long_text = "a" * (MAX_TEXT_LENGTH + 1)
with pytest.raises(ValueError, match="Text at index 2 exceeds maximum length"):
await service.generate_embeddings(["short", "also short", long_text])
class TestEmbeddingServiceAPI:
"""Tests for EmbeddingService API interaction."""
@pytest.fixture
def mock_openai_client(self):
"""Create a mock OpenAI client."""
mock_client = MagicMock()
mock_client.embeddings = MagicMock()
return mock_client
@pytest.fixture
def service_with_mock_client(self, mock_openai_client):
"""Create an EmbeddingService with a mocked OpenAI client."""
with patch("backend.integrations.embeddings.Settings") as mock_settings:
mock_instance = MagicMock()
mock_instance.secrets.openai_internal_api_key = "test-key"
mock_instance.secrets.openai_api_key = ""
mock_settings.return_value = mock_instance
with patch(
"backend.integrations.embeddings.openai.AsyncOpenAI"
) as mock_openai:
mock_openai.return_value = mock_openai_client
service = EmbeddingService()
return service, mock_openai_client
@pytest.mark.asyncio
async def test_generate_embedding_success(self, service_with_mock_client):
"""Test successful embedding generation."""
service, mock_client = service_with_mock_client
# Create mock response
mock_embedding = [0.1] * EMBEDDING_DIMENSIONS
mock_response = MagicMock()
mock_response.data = [MagicMock(embedding=mock_embedding)]
mock_client.embeddings.create = AsyncMock(return_value=mock_response)
result = await service.generate_embedding("test text")
assert result == mock_embedding
mock_client.embeddings.create.assert_called_once()
@pytest.mark.asyncio
async def test_generate_embeddings_success(self, service_with_mock_client):
"""Test successful batch embedding generation."""
service, mock_client = service_with_mock_client
# Create mock response with multiple embeddings
mock_embeddings = [[0.1] * EMBEDDING_DIMENSIONS, [0.2] * EMBEDDING_DIMENSIONS]
mock_response = MagicMock()
mock_response.data = [
MagicMock(embedding=mock_embeddings[0], index=0),
MagicMock(embedding=mock_embeddings[1], index=1),
]
mock_client.embeddings.create = AsyncMock(return_value=mock_response)
result = await service.generate_embeddings(["text1", "text2"])
assert result == mock_embeddings
mock_client.embeddings.create.assert_called_once()
@pytest.mark.asyncio
async def test_generate_embeddings_preserves_order(self, service_with_mock_client):
"""Test that batch embeddings are returned in correct order even if API returns out of order."""
service, mock_client = service_with_mock_client
# Create mock response with embeddings out of order
mock_embeddings = [[0.1] * EMBEDDING_DIMENSIONS, [0.2] * EMBEDDING_DIMENSIONS]
mock_response = MagicMock()
# Return in reverse order
mock_response.data = [
MagicMock(embedding=mock_embeddings[1], index=1),
MagicMock(embedding=mock_embeddings[0], index=0),
]
mock_client.embeddings.create = AsyncMock(return_value=mock_response)
result = await service.generate_embeddings(["text1", "text2"])
# Should be sorted by index
assert result[0] == mock_embeddings[0]
assert result[1] == mock_embeddings[1]

View File

@@ -18,9 +18,7 @@ class ManualWebhookManagerBase(BaseWebhooksManager[WT]):
ingress_url: str,
secret: str,
) -> tuple[str, dict]:
# TODO: pass ingress_url to user in frontend
# See: https://github.com/Significant-Gravitas/AutoGPT/issues/8537
logger.debug(f"Manual webhook registered with ingress URL: {ingress_url}")
print(ingress_url) # FIXME: pass URL to user in front end
return "", {}

View File

@@ -1,6 +1,5 @@
"""Monitoring module for platform health and alerting."""
from .accuracy_monitor import AccuracyMonitor, report_execution_accuracy_alerts
from .block_error_monitor import BlockErrorMonitor, report_block_error_rates
from .late_execution_monitor import (
LateExecutionException,
@@ -14,12 +13,10 @@ from .notification_monitor import (
)
__all__ = [
"AccuracyMonitor",
"BlockErrorMonitor",
"LateExecutionMonitor",
"LateExecutionException",
"NotificationJobArgs",
"report_execution_accuracy_alerts",
"report_block_error_rates",
"report_late_executions",
"process_existing_batches",

View File

@@ -1,107 +0,0 @@
"""Execution accuracy monitoring module."""
import logging
from backend.util.clients import (
get_database_manager_client,
get_notification_manager_client,
)
from backend.util.metrics import DiscordChannel, sentry_capture_error
from backend.util.settings import Config
logger = logging.getLogger(__name__)
config = Config()
class AccuracyMonitor:
"""Monitor execution accuracy trends and send alerts for drops."""
def __init__(self, drop_threshold: float = 10.0):
self.config = config
self.notification_client = get_notification_manager_client()
self.database_client = get_database_manager_client()
self.drop_threshold = drop_threshold
def check_execution_accuracy_alerts(self) -> str:
"""Check marketplace agents for accuracy drops and send alerts."""
try:
logger.info("Checking execution accuracy for marketplace agents")
# Get marketplace graphs using database client
graphs = self.database_client.get_marketplace_graphs_for_monitoring(
days_back=30, min_executions=10
)
alerts_found = 0
for graph_data in graphs:
result = self.database_client.get_accuracy_trends_and_alerts(
graph_id=graph_data.graph_id,
user_id=graph_data.user_id,
days_back=21, # 3 weeks
drop_threshold=self.drop_threshold,
)
if result.alert:
alert = result.alert
# Get graph details for better alert info
try:
graph_info = self.database_client.get_graph_metadata(
graph_id=alert.graph_id
)
graph_name = graph_info.name if graph_info else "Unknown Agent"
except Exception:
graph_name = "Unknown Agent"
# Create detailed alert message
alert_msg = (
f"🚨 **AGENT ACCURACY DROP DETECTED**\n\n"
f"**Agent:** {graph_name}\n"
f"**Graph ID:** `{alert.graph_id}`\n"
f"**Accuracy Drop:** {alert.drop_percent:.1f}%\n"
f"**Recent Performance:**\n"
f" • 3-day average: {alert.three_day_avg:.1f}%\n"
f" • 7-day average: {alert.seven_day_avg:.1f}%\n"
)
if alert.user_id:
alert_msg += f"**Owner:** {alert.user_id}\n"
# Send individual alert for each agent (not batched)
self.notification_client.discord_system_alert(
alert_msg, DiscordChannel.PRODUCT
)
alerts_found += 1
logger.warning(
f"Sent accuracy alert for agent: {graph_name} ({alert.graph_id})"
)
if alerts_found > 0:
return f"Alert sent for {alerts_found} agents with accuracy drops"
logger.info("No execution accuracy alerts detected")
return "No accuracy alerts detected"
except Exception as e:
logger.exception(f"Error checking execution accuracy alerts: {e}")
error = Exception(f"Error checking execution accuracy alerts: {e}")
msg = str(error)
sentry_capture_error(error)
self.notification_client.discord_system_alert(msg, DiscordChannel.PRODUCT)
return msg
def report_execution_accuracy_alerts(drop_threshold: float = 10.0) -> str:
"""
Check execution accuracy and send alerts if drops are detected.
Args:
drop_threshold: Percentage drop threshold to trigger alerts (default 10.0%)
Returns:
Status message indicating results of the check
"""
monitor = AccuracyMonitor(drop_threshold=drop_threshold)
return monitor.check_execution_accuracy_alerts()

View File

@@ -33,11 +33,7 @@ from backend.data.model import (
OAuth2Credentials,
UserIntegrations,
)
from backend.data.onboarding import (
OnboardingStep,
complete_onboarding_step,
increment_runs,
)
from backend.data.onboarding import OnboardingStep, complete_onboarding_step
from backend.data.user import get_user_integrations
from backend.executor.utils import add_graph_execution
from backend.integrations.ayrshare import AyrshareClient, SocialPlatform
@@ -381,7 +377,6 @@ async def webhook_ingress_generic(
return
await complete_onboarding_step(user_id, OnboardingStep.TRIGGER_WEBHOOK)
await increment_runs(user_id)
# Execute all triggers concurrently for better performance
tasks = []

View File

@@ -1,8 +1,7 @@
import enum
from typing import Any, Literal, Optional
from typing import Any, Optional
import pydantic
from prisma.enums import OnboardingStep
from backend.data.api_key import APIKeyInfo, APIKeyPermission
from backend.data.graph import Graph
@@ -36,13 +35,8 @@ class WSSubscribeGraphExecutionsRequest(pydantic.BaseModel):
graph_id: str
GraphCreationSource = Literal["builder", "upload"]
GraphExecutionSource = Literal["builder", "library", "onboarding"]
class CreateGraph(pydantic.BaseModel):
graph: Graph
source: GraphCreationSource | None = None
class CreateAPIKeyRequest(pydantic.BaseModel):
@@ -89,8 +83,6 @@ class NotificationPayload(pydantic.BaseModel):
type: str
event: str
model_config = pydantic.ConfigDict(extra="allow")
class OnboardingNotificationPayload(NotificationPayload):
step: OnboardingStep | None
step: str

View File

@@ -5,7 +5,7 @@ import time
import uuid
from collections import defaultdict
from datetime import datetime, timezone
from typing import Annotated, Any, Sequence, get_args
from typing import Annotated, Any, Sequence
import pydantic
import stripe
@@ -45,17 +45,12 @@ from backend.data.credit import (
set_auto_top_up,
)
from backend.data.graph import GraphSettings
from backend.data.model import CredentialsMetaInput, UserOnboarding
from backend.data.model import CredentialsMetaInput
from backend.data.notifications import NotificationPreference, NotificationPreferenceDTO
from backend.data.onboarding import (
FrontendOnboardingStep,
OnboardingStep,
UserOnboardingUpdate,
complete_onboarding_step,
complete_re_run_agent,
get_recommended_agents,
get_user_onboarding,
increment_runs,
onboarding_enabled,
reset_user_onboarding,
update_user_onboarding,
@@ -83,7 +78,6 @@ from backend.server.model import (
CreateAPIKeyRequest,
CreateAPIKeyResponse,
CreateGraph,
GraphExecutionSource,
RequestTopUp,
SetGraphActiveVersion,
TimezoneResponse,
@@ -91,7 +85,6 @@ from backend.server.model import (
UpdateTimezoneRequest,
UploadFileResponse,
)
from backend.server.v2.store.model import StoreAgentDetails
from backend.util.cache import cached
from backend.util.clients import get_scheduler_client
from backend.util.cloud_storage import get_cloud_storage_handler
@@ -281,10 +274,9 @@ async def update_preferences(
@v1_router.get(
"/onboarding",
summary="Onboarding state",
summary="Get onboarding status",
tags=["onboarding"],
dependencies=[Security(requires_user)],
response_model=UserOnboarding,
)
async def get_onboarding(user_id: Annotated[str, Security(get_user_id)]):
return await get_user_onboarding(user_id)
@@ -292,10 +284,9 @@ async def get_onboarding(user_id: Annotated[str, Security(get_user_id)]):
@v1_router.patch(
"/onboarding",
summary="Update onboarding state",
summary="Update onboarding progress",
tags=["onboarding"],
dependencies=[Security(requires_user)],
response_model=UserOnboarding,
)
async def update_onboarding(
user_id: Annotated[str, Security(get_user_id)], data: UserOnboardingUpdate
@@ -303,39 +294,25 @@ async def update_onboarding(
return await update_user_onboarding(user_id, data)
@v1_router.post(
"/onboarding/step",
summary="Complete onboarding step",
tags=["onboarding"],
dependencies=[Security(requires_user)],
)
async def onboarding_complete_step(
user_id: Annotated[str, Security(get_user_id)], step: FrontendOnboardingStep
):
if step not in get_args(FrontendOnboardingStep):
raise HTTPException(status_code=400, detail="Invalid onboarding step")
return await complete_onboarding_step(user_id, step)
@v1_router.get(
"/onboarding/agents",
summary="Recommended onboarding agents",
summary="Get recommended agents",
tags=["onboarding"],
dependencies=[Security(requires_user)],
)
async def get_onboarding_agents(
user_id: Annotated[str, Security(get_user_id)],
) -> list[StoreAgentDetails]:
):
return await get_recommended_agents(user_id)
@v1_router.get(
"/onboarding/enabled",
summary="Is onboarding enabled",
summary="Check onboarding enabled",
tags=["onboarding", "public"],
dependencies=[Security(requires_user)],
)
async def is_onboarding_enabled() -> bool:
async def is_onboarding_enabled():
return await onboarding_enabled()
@@ -344,7 +321,6 @@ async def is_onboarding_enabled() -> bool:
summary="Reset onboarding progress",
tags=["onboarding"],
dependencies=[Security(requires_user)],
response_model=UserOnboarding,
)
async def reset_onboarding(user_id: Annotated[str, Security(get_user_id)]):
return await reset_user_onboarding(user_id)
@@ -833,12 +809,7 @@ async def create_new_graph(
# as the graph already valid and no sub-graphs are returned back.
await graph_db.create_graph(graph, user_id=user_id)
await library_db.create_library_agent(graph, user_id=user_id)
activated_graph = await on_graph_activate(graph, user_id=user_id)
if create_graph.source == "builder":
await complete_onboarding_step(user_id, OnboardingStep.BUILDER_SAVE_AGENT)
return activated_graph
return await on_graph_activate(graph, user_id=user_id)
@v1_router.delete(
@@ -996,7 +967,6 @@ async def execute_graph(
credentials_inputs: Annotated[
dict[str, CredentialsMetaInput], Body(..., embed=True, default_factory=dict)
],
source: Annotated[GraphExecutionSource | None, Body(embed=True)] = None,
graph_version: Optional[int] = None,
preset_id: Optional[str] = None,
) -> execution_db.GraphExecutionMeta:
@@ -1020,14 +990,6 @@ async def execute_graph(
# Record successful graph execution
record_graph_execution(graph_id=graph_id, status="success", user_id=user_id)
record_graph_operation(operation="execute", status="success")
await increment_runs(user_id)
await complete_re_run_agent(user_id, graph_id)
if source == "library":
await complete_onboarding_step(
user_id, OnboardingStep.MARKETPLACE_RUN_AGENT
)
elif source == "builder":
await complete_onboarding_step(user_id, OnboardingStep.BUILDER_RUN_AGENT)
return result
except GraphValidationError as e:
# Record failed graph execution
@@ -1141,15 +1103,6 @@ async def list_graph_executions(
filtered_executions = await hide_activity_summaries_if_disabled(
paginated_result.executions, user_id
)
onboarding = await get_user_onboarding(user_id)
if (
onboarding.onboardingAgentExecutionId
and onboarding.onboardingAgentExecutionId
in [exec.id for exec in filtered_executions]
and OnboardingStep.GET_RESULTS not in onboarding.completedSteps
):
await complete_onboarding_step(user_id, OnboardingStep.GET_RESULTS)
return execution_db.GraphExecutionsPaginated(
executions=filtered_executions, pagination=paginated_result.pagination
)
@@ -1187,12 +1140,6 @@ async def get_graph_execution(
# Apply feature flags to filter out disabled features
result = await hide_activity_summary_if_disabled(result, user_id)
onboarding = await get_user_onboarding(user_id)
if (
onboarding.onboardingAgentExecutionId == graph_exec_id
and OnboardingStep.GET_RESULTS not in onboarding.completedSteps
):
await complete_onboarding_step(user_id, OnboardingStep.GET_RESULTS)
return result
@@ -1369,8 +1316,6 @@ async def create_graph_execution_schedule(
result.next_run_time, user_timezone
)
await complete_onboarding_step(user_id, OnboardingStep.SCHEDULE_AGENT)
return result

View File

@@ -8,10 +8,6 @@ from fastapi import APIRouter, HTTPException, Security
from pydantic import BaseModel, Field
from backend.blocks.llm import LlmModel
from backend.data.analytics import (
AccuracyTrendsResponse,
get_accuracy_trends_and_alerts,
)
from backend.data.execution import (
ExecutionStatus,
GraphExecutionMeta,
@@ -87,18 +83,6 @@ class ExecutionAnalyticsConfig(BaseModel):
recommended_model: str
class AccuracyTrendsRequest(BaseModel):
graph_id: str = Field(..., description="Graph ID to analyze", min_length=1)
user_id: Optional[str] = Field(None, description="Optional user ID filter")
days_back: int = Field(30, description="Number of days to look back", ge=7, le=90)
drop_threshold: float = Field(
10.0, description="Alert threshold percentage", ge=1.0, le=50.0
)
include_historical: bool = Field(
False, description="Include historical data for charts"
)
router = APIRouter(
prefix="/admin",
tags=["admin", "execution_analytics"],
@@ -435,40 +419,3 @@ async def _process_batch(
return await asyncio.gather(
*[process_single_execution(execution) for execution in executions]
)
@router.get(
"/execution_accuracy_trends",
response_model=AccuracyTrendsResponse,
summary="Get Execution Accuracy Trends and Alerts",
)
async def get_execution_accuracy_trends(
graph_id: str,
user_id: Optional[str] = None,
days_back: int = 30,
drop_threshold: float = 10.0,
include_historical: bool = False,
admin_user_id: str = Security(get_user_id),
) -> AccuracyTrendsResponse:
"""
Get execution accuracy trends with moving averages and alert detection.
Simple single-query approach.
"""
logger.info(
f"Admin user {admin_user_id} requesting accuracy trends for graph {graph_id}"
)
try:
result = await get_accuracy_trends_and_alerts(
graph_id=graph_id,
days_back=days_back,
user_id=user_id,
drop_threshold=drop_threshold,
include_historical=include_historical,
)
return result
except Exception as e:
logger.exception(f"Error getting accuracy trends for graph {graph_id}: {e}")
raise HTTPException(status_code=500, detail=str(e))

View File

@@ -1,16 +1,9 @@
import logging
from dataclasses import dataclass
from datetime import datetime, timedelta, timezone
from difflib import SequenceMatcher
from typing import Sequence
import prisma
import backend.data.block
import backend.server.v2.library.db as library_db
import backend.server.v2.library.model as library_model
import backend.server.v2.store.db as store_db
import backend.server.v2.store.model as store_model
from backend.blocks import load_all_blocks
from backend.blocks.llm import LlmModel
from backend.data.block import AnyBlockSchema, BlockCategory, BlockInfo, BlockSchema
@@ -21,36 +14,17 @@ from backend.server.v2.builder.model import (
BlockResponse,
BlockType,
CountResponse,
FilterType,
Provider,
ProviderResponse,
SearchEntry,
SearchBlocksResponse,
)
from backend.util.cache import cached
from backend.util.models import Pagination
logger = logging.getLogger(__name__)
llm_models = [name.name.lower().replace("_", " ") for name in LlmModel]
MAX_LIBRARY_AGENT_RESULTS = 100
MAX_MARKETPLACE_AGENT_RESULTS = 100
MIN_SCORE_FOR_FILTERED_RESULTS = 10.0
SearchResultItem = BlockInfo | library_model.LibraryAgent | store_model.StoreAgent
@dataclass
class _ScoredItem:
item: SearchResultItem
filter_type: FilterType
score: float
sort_key: str
@dataclass
class _SearchCacheEntry:
items: list[SearchResultItem]
total_items: dict[FilterType, int]
_static_counts_cache: dict | None = None
_suggested_blocks: list[BlockInfo] | None = None
def get_block_categories(category_blocks: int = 3) -> list[BlockCategoryResponse]:
@@ -156,244 +130,71 @@ def get_block_by_id(block_id: str) -> BlockInfo | None:
return None
async def update_search(user_id: str, search: SearchEntry) -> str:
def search_blocks(
include_blocks: bool = True,
include_integrations: bool = True,
query: str = "",
page: int = 1,
page_size: int = 50,
) -> SearchBlocksResponse:
"""
Upsert a search request for the user and return the search ID.
Get blocks based on the filter and query.
`providers` only applies for `integrations` filter.
"""
if search.search_id:
# Update existing search
await prisma.models.BuilderSearchHistory.prisma().update(
where={
"id": search.search_id,
},
data={
"searchQuery": search.search_query or "",
"filter": search.filter or [], # type: ignore
"byCreator": search.by_creator or [],
},
)
return search.search_id
else:
# Create new search
new_search = await prisma.models.BuilderSearchHistory.prisma().create(
data={
"userId": user_id,
"searchQuery": search.search_query or "",
"filter": search.filter or [], # type: ignore
"byCreator": search.by_creator or [],
}
)
return new_search.id
blocks: list[AnyBlockSchema] = []
query = query.lower()
async def get_recent_searches(user_id: str, limit: int = 5) -> list[SearchEntry]:
"""
Get the user's most recent search requests.
"""
searches = await prisma.models.BuilderSearchHistory.prisma().find_many(
where={
"userId": user_id,
},
order={
"updatedAt": "desc",
},
take=limit,
)
return [
SearchEntry(
search_query=s.searchQuery,
filter=s.filter, # type: ignore
by_creator=s.byCreator,
search_id=s.id,
)
for s in searches
]
async def get_sorted_search_results(
*,
user_id: str,
search_query: str | None,
filters: Sequence[FilterType],
by_creator: Sequence[str] | None = None,
) -> _SearchCacheEntry:
normalized_filters: tuple[FilterType, ...] = tuple(sorted(set(filters or [])))
normalized_creators: tuple[str, ...] = tuple(sorted(set(by_creator or [])))
return await _build_cached_search_results(
user_id=user_id,
search_query=search_query or "",
filters=normalized_filters,
by_creator=normalized_creators,
)
@cached(ttl_seconds=300, shared_cache=True)
async def _build_cached_search_results(
user_id: str,
search_query: str,
filters: tuple[FilterType, ...],
by_creator: tuple[str, ...],
) -> _SearchCacheEntry:
normalized_query = (search_query or "").strip().lower()
include_blocks = "blocks" in filters
include_integrations = "integrations" in filters
include_library_agents = "my_agents" in filters
include_marketplace_agents = "marketplace_agents" in filters
scored_items: list[_ScoredItem] = []
total_items: dict[FilterType, int] = {
"blocks": 0,
"integrations": 0,
"marketplace_agents": 0,
"my_agents": 0,
}
block_results, block_total, integration_total = _collect_block_results(
normalized_query=normalized_query,
include_blocks=include_blocks,
include_integrations=include_integrations,
)
scored_items.extend(block_results)
total_items["blocks"] = block_total
total_items["integrations"] = integration_total
if include_library_agents:
library_response = await library_db.list_library_agents(
user_id=user_id,
search_term=search_query or None,
page=1,
page_size=MAX_LIBRARY_AGENT_RESULTS,
)
total_items["my_agents"] = library_response.pagination.total_items
scored_items.extend(
_build_library_items(
agents=library_response.agents,
normalized_query=normalized_query,
)
)
if include_marketplace_agents:
marketplace_response = await store_db.get_store_agents(
creators=list(by_creator) or None,
search_query=search_query or None,
page=1,
page_size=MAX_MARKETPLACE_AGENT_RESULTS,
)
total_items["marketplace_agents"] = marketplace_response.pagination.total_items
scored_items.extend(
_build_marketplace_items(
agents=marketplace_response.agents,
normalized_query=normalized_query,
)
)
sorted_items = sorted(
scored_items,
key=lambda entry: (-entry.score, entry.sort_key, entry.filter_type),
)
return _SearchCacheEntry(
items=[entry.item for entry in sorted_items],
total_items=total_items,
)
def _collect_block_results(
*,
normalized_query: str,
include_blocks: bool,
include_integrations: bool,
) -> tuple[list[_ScoredItem], int, int]:
results: list[_ScoredItem] = []
total = 0
skip = (page - 1) * page_size
take = page_size
block_count = 0
integration_count = 0
if not include_blocks and not include_integrations:
return results, block_count, integration_count
for block_type in load_all_blocks().values():
block: AnyBlockSchema = block_type()
# Skip disabled blocks
if block.disabled:
continue
block_info = block.get_info()
# Skip blocks that don't match the query
if (
query not in block.name.lower()
and query not in block.description.lower()
and not _matches_llm_model(block.input_schema, query)
):
continue
keep = False
credentials = list(block.input_schema.get_credentials_fields().values())
is_integration = len(credentials) > 0
if is_integration and not include_integrations:
continue
if not is_integration and not include_blocks:
continue
score = _score_block(block, block_info, normalized_query)
if not _should_include_item(score, normalized_query):
continue
filter_type: FilterType = "integrations" if is_integration else "blocks"
if is_integration:
if include_integrations and len(credentials) > 0:
keep = True
integration_count += 1
else:
if include_blocks and len(credentials) == 0:
keep = True
block_count += 1
results.append(
_ScoredItem(
item=block_info,
filter_type=filter_type,
score=score,
sort_key=_get_item_name(block_info),
)
)
return results, block_count, integration_count
def _build_library_items(
*,
agents: list[library_model.LibraryAgent],
normalized_query: str,
) -> list[_ScoredItem]:
results: list[_ScoredItem] = []
for agent in agents:
score = _score_library_agent(agent, normalized_query)
if not _should_include_item(score, normalized_query):
if not keep:
continue
results.append(
_ScoredItem(
item=agent,
filter_type="my_agents",
score=score,
sort_key=_get_item_name(agent),
)
)
return results
def _build_marketplace_items(
*,
agents: list[store_model.StoreAgent],
normalized_query: str,
) -> list[_ScoredItem]:
results: list[_ScoredItem] = []
for agent in agents:
score = _score_store_agent(agent, normalized_query)
if not _should_include_item(score, normalized_query):
total += 1
if skip > 0:
skip -= 1
continue
if take > 0:
take -= 1
blocks.append(block)
results.append(
_ScoredItem(
item=agent,
filter_type="marketplace_agents",
score=score,
sort_key=_get_item_name(agent),
)
)
return results
return SearchBlocksResponse(
blocks=BlockResponse(
blocks=[b.get_info() for b in blocks],
pagination=Pagination(
total_items=total,
total_pages=(total + page_size - 1) // page_size,
current_page=page,
page_size=page_size,
),
),
total_block_count=block_count,
total_integration_count=integration_count,
)
def get_providers(
@@ -450,12 +251,16 @@ async def get_counts(user_id: str) -> CountResponse:
)
@cached(ttl_seconds=3600)
async def _get_static_counts():
"""
Get counts of blocks, integrations, and marketplace agents.
This is cached to avoid unnecessary database queries and calculations.
Can't use functools.cache here because the function is async.
"""
global _static_counts_cache
if _static_counts_cache is not None:
return _static_counts_cache
all_blocks = 0
input_blocks = 0
action_blocks = 0
@@ -482,7 +287,7 @@ async def _get_static_counts():
marketplace_agents = await prisma.models.StoreAgent.prisma().count()
return {
_static_counts_cache = {
"all_blocks": all_blocks,
"input_blocks": input_blocks,
"action_blocks": action_blocks,
@@ -491,6 +296,8 @@ async def _get_static_counts():
"marketplace_agents": marketplace_agents,
}
return _static_counts_cache
def _matches_llm_model(schema_cls: type[BlockSchema], query: str) -> bool:
for field in schema_cls.model_fields.values():
@@ -501,123 +308,6 @@ def _matches_llm_model(schema_cls: type[BlockSchema], query: str) -> bool:
return False
def _score_block(
block: AnyBlockSchema,
block_info: BlockInfo,
normalized_query: str,
) -> float:
if not normalized_query:
return 0.0
name = block_info.name.lower()
description = block_info.description.lower()
score = _score_primary_fields(name, description, normalized_query)
category_text = " ".join(
category.get("category", "").lower() for category in block_info.categories
)
score += _score_additional_field(category_text, normalized_query, 12, 6)
credentials_info = block.input_schema.get_credentials_fields_info().values()
provider_names = [
provider.value.lower()
for info in credentials_info
for provider in info.provider
]
provider_text = " ".join(provider_names)
score += _score_additional_field(provider_text, normalized_query, 15, 6)
if _matches_llm_model(block.input_schema, normalized_query):
score += 20
return score
def _score_library_agent(
agent: library_model.LibraryAgent,
normalized_query: str,
) -> float:
if not normalized_query:
return 0.0
name = agent.name.lower()
description = (agent.description or "").lower()
instructions = (agent.instructions or "").lower()
score = _score_primary_fields(name, description, normalized_query)
score += _score_additional_field(instructions, normalized_query, 15, 6)
score += _score_additional_field(
agent.creator_name.lower(), normalized_query, 10, 5
)
return score
def _score_store_agent(
agent: store_model.StoreAgent,
normalized_query: str,
) -> float:
if not normalized_query:
return 0.0
name = agent.agent_name.lower()
description = agent.description.lower()
sub_heading = agent.sub_heading.lower()
score = _score_primary_fields(name, description, normalized_query)
score += _score_additional_field(sub_heading, normalized_query, 12, 6)
score += _score_additional_field(agent.creator.lower(), normalized_query, 10, 5)
return score
def _score_primary_fields(name: str, description: str, query: str) -> float:
score = 0.0
if name == query:
score += 120
elif name.startswith(query):
score += 90
elif query in name:
score += 60
score += SequenceMatcher(None, name, query).ratio() * 50
if description:
if query in description:
score += 30
score += SequenceMatcher(None, description, query).ratio() * 25
return score
def _score_additional_field(
value: str,
query: str,
contains_weight: float,
similarity_weight: float,
) -> float:
if not value or not query:
return 0.0
score = 0.0
if query in value:
score += contains_weight
score += SequenceMatcher(None, value, query).ratio() * similarity_weight
return score
def _should_include_item(score: float, normalized_query: str) -> bool:
if not normalized_query:
return True
return score >= MIN_SCORE_FOR_FILTERED_RESULTS
def _get_item_name(item: SearchResultItem) -> str:
if isinstance(item, BlockInfo):
return item.name.lower()
if isinstance(item, library_model.LibraryAgent):
return item.name.lower()
return item.agent_name.lower()
@cached(ttl_seconds=3600)
def _get_all_providers() -> dict[ProviderName, Provider]:
providers: dict[ProviderName, Provider] = {}
@@ -639,9 +329,13 @@ def _get_all_providers() -> dict[ProviderName, Provider]:
return providers
@cached(ttl_seconds=3600)
async def get_suggested_blocks(count: int = 5) -> list[BlockInfo]:
suggested_blocks = []
global _suggested_blocks
if _suggested_blocks is not None and len(_suggested_blocks) >= count:
return _suggested_blocks[:count]
_suggested_blocks = []
# Sum the number of executions for each block type
# Prisma cannot group by nested relations, so we do a raw query
# Calculate the cutoff timestamp
@@ -682,7 +376,7 @@ async def get_suggested_blocks(count: int = 5) -> list[BlockInfo]:
# Sort blocks by execution count
blocks.sort(key=lambda x: x[1], reverse=True)
suggested_blocks = [block[0] for block in blocks]
_suggested_blocks = [block[0] for block in blocks]
# Return the top blocks
return suggested_blocks[:count]
return _suggested_blocks[:count]

View File

@@ -18,17 +18,10 @@ FilterType = Literal[
BlockType = Literal["all", "input", "action", "output"]
class SearchEntry(BaseModel):
search_query: str | None = None
filter: list[FilterType] | None = None
by_creator: list[str] | None = None
search_id: str | None = None
# Suggestions
class SuggestionsResponse(BaseModel):
otto_suggestions: list[str]
recent_searches: list[SearchEntry]
recent_searches: list[str]
providers: list[ProviderName]
top_blocks: list[BlockInfo]
@@ -39,7 +32,7 @@ class BlockCategoryResponse(BaseModel):
total_blocks: int
blocks: list[BlockInfo]
model_config = {"use_enum_values": False} # Use enum names like "AI"
model_config = {"use_enum_values": False} # <== use enum names like "AI"
# Input/Action/Output and see all for block categories
@@ -60,11 +53,17 @@ class ProviderResponse(BaseModel):
pagination: Pagination
class SearchBlocksResponse(BaseModel):
blocks: BlockResponse
total_block_count: int
total_integration_count: int
class SearchResponse(BaseModel):
items: list[BlockInfo | library_model.LibraryAgent | store_model.StoreAgent]
search_id: str
total_items: dict[FilterType, int]
pagination: Pagination
page: int
more_pages: bool
class CountResponse(BaseModel):

View File

@@ -6,6 +6,10 @@ from autogpt_libs.auth.dependencies import get_user_id, requires_user
import backend.server.v2.builder.db as builder_db
import backend.server.v2.builder.model as builder_model
import backend.server.v2.library.db as library_db
import backend.server.v2.library.model as library_model
import backend.server.v2.store.db as store_db
import backend.server.v2.store.model as store_model
from backend.integrations.providers import ProviderName
from backend.util.models import Pagination
@@ -41,9 +45,7 @@ def sanitize_query(query: str | None) -> str | None:
summary="Get Builder suggestions",
response_model=builder_model.SuggestionsResponse,
)
async def get_suggestions(
user_id: Annotated[str, fastapi.Security(get_user_id)],
) -> builder_model.SuggestionsResponse:
async def get_suggestions() -> builder_model.SuggestionsResponse:
"""
Get all suggestions for the Blocks Menu.
"""
@@ -53,7 +55,11 @@ async def get_suggestions(
"Help me create a list",
"Help me feed my data to Google Maps",
],
recent_searches=await builder_db.get_recent_searches(user_id),
recent_searches=[
"image generation",
"deepfake",
"competitor analysis",
],
providers=[
ProviderName.TWITTER,
ProviderName.GITHUB,
@@ -141,6 +147,7 @@ async def get_providers(
)
# Not using post method because on frontend, orval doesn't support Infinite Query with POST method.
@router.get(
"/search",
summary="Builder search",
@@ -150,7 +157,7 @@ async def get_providers(
async def search(
user_id: Annotated[str, fastapi.Security(get_user_id)],
search_query: Annotated[str | None, fastapi.Query()] = None,
filter: Annotated[list[builder_model.FilterType] | None, fastapi.Query()] = None,
filter: Annotated[list[str] | None, fastapi.Query()] = None,
search_id: Annotated[str | None, fastapi.Query()] = None,
by_creator: Annotated[list[str] | None, fastapi.Query()] = None,
page: Annotated[int, fastapi.Query()] = 1,
@@ -169,43 +176,69 @@ async def search(
]
search_query = sanitize_query(search_query)
# Get all possible results
cached_results = await builder_db.get_sorted_search_results(
user_id=user_id,
search_query=search_query,
filters=filter,
by_creator=by_creator,
)
# Paginate results
total_combined_items = len(cached_results.items)
pagination = Pagination(
total_items=total_combined_items,
total_pages=(total_combined_items + page_size - 1) // page_size,
current_page=page,
page_size=page_size,
)
start_idx = (page - 1) * page_size
end_idx = start_idx + page_size
paginated_items = cached_results.items[start_idx:end_idx]
# Update the search entry by id
search_id = await builder_db.update_search(
user_id,
builder_model.SearchEntry(
search_query=search_query,
filter=filter,
by_creator=by_creator,
search_id=search_id,
# Blocks&Integrations
blocks = builder_model.SearchBlocksResponse(
blocks=builder_model.BlockResponse(
blocks=[],
pagination=Pagination.empty(),
),
total_block_count=0,
total_integration_count=0,
)
if "blocks" in filter or "integrations" in filter:
blocks = builder_db.search_blocks(
include_blocks="blocks" in filter,
include_integrations="integrations" in filter,
query=search_query or "",
page=page,
page_size=page_size,
)
# Library Agents
my_agents = library_model.LibraryAgentResponse(
agents=[],
pagination=Pagination.empty(),
)
if "my_agents" in filter:
my_agents = await library_db.list_library_agents(
user_id=user_id,
search_term=search_query,
page=page,
page_size=page_size,
)
# Marketplace Agents
marketplace_agents = store_model.StoreAgentsResponse(
agents=[],
pagination=Pagination.empty(),
)
if "marketplace_agents" in filter:
marketplace_agents = await store_db.get_store_agents(
creators=by_creator,
search_query=search_query,
page=page,
page_size=page_size,
)
more_pages = False
if (
blocks.blocks.pagination.current_page < blocks.blocks.pagination.total_pages
or my_agents.pagination.current_page < my_agents.pagination.total_pages
or marketplace_agents.pagination.current_page
< marketplace_agents.pagination.total_pages
):
more_pages = True
return builder_model.SearchResponse(
items=paginated_items,
search_id=search_id,
total_items=cached_results.total_items,
pagination=pagination,
items=blocks.blocks.blocks + my_agents.agents + marketplace_agents.agents,
total_items={
"blocks": blocks.total_block_count,
"integrations": blocks.total_integration_count,
"marketplace_agents": marketplace_agents.pagination.total_items,
"my_agents": my_agents.pagination.total_items,
},
page=page,
more_pages=more_pages,
)

View File

@@ -23,7 +23,7 @@ logger = logging.getLogger(__name__)
router = APIRouter(
tags=["v2", "executions", "review"],
tags=["executions", "review", "private"],
dependencies=[Security(autogpt_auth_lib.requires_user)],
)
@@ -134,14 +134,18 @@ async def process_review_action(
# Build review decisions map
review_decisions = {}
for review in request.reviews:
review_status = (
ReviewStatus.APPROVED if review.approved else ReviewStatus.REJECTED
)
review_decisions[review.node_exec_id] = (
review_status,
review.reviewed_data,
review.message,
)
if review.approved:
review_decisions[review.node_exec_id] = (
ReviewStatus.APPROVED,
review.reviewed_data,
review.message,
)
else:
review_decisions[review.node_exec_id] = (
ReviewStatus.REJECTED,
None,
review.message,
)
# Process all reviews
updated_reviews = await process_all_reviews_for_execution(

View File

@@ -1,15 +1,13 @@
import logging
from typing import Literal, Optional
from typing import Optional
import autogpt_libs.auth as autogpt_auth_lib
from fastapi import APIRouter, Body, HTTPException, Query, Security, status
from fastapi.responses import Response
from prisma.enums import OnboardingStep
import backend.server.v2.library.db as library_db
import backend.server.v2.library.model as library_model
import backend.server.v2.store.exceptions as store_exceptions
from backend.data.onboarding import complete_onboarding_step
from backend.util.exceptions import DatabaseError, NotFoundError
logger = logging.getLogger(__name__)
@@ -202,9 +200,6 @@ async def get_library_agent_by_store_listing_version_id(
)
async def add_marketplace_agent_to_library(
store_listing_version_id: str = Body(embed=True),
source: Literal["onboarding", "marketplace"] = Body(
default="marketplace", embed=True
),
user_id: str = Security(autogpt_auth_lib.get_user_id),
) -> library_model.LibraryAgent:
"""
@@ -222,15 +217,10 @@ async def add_marketplace_agent_to_library(
HTTPException(500): If a server/database error occurs.
"""
try:
agent = await library_db.add_store_agent_to_library(
return await library_db.add_store_agent_to_library(
store_listing_version_id=store_listing_version_id,
user_id=user_id,
)
if source != "onboarding":
await complete_onboarding_step(
user_id, OnboardingStep.MARKETPLACE_ADD_AGENT
)
return agent
except store_exceptions.AgentNotFoundError as e:
logger.warning(

View File

@@ -10,7 +10,6 @@ from backend.data.execution import GraphExecutionMeta
from backend.data.graph import get_graph
from backend.data.integrations import get_webhook
from backend.data.model import CredentialsMetaInput
from backend.data.onboarding import increment_runs
from backend.executor.utils import add_graph_execution, make_node_credentials_input_map
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.integrations.webhooks import get_webhook_manager
@@ -402,8 +401,6 @@ async def execute_preset(
merged_node_input = preset.inputs | inputs
merged_credential_inputs = preset.credentials | credential_inputs
await increment_runs(user_id)
return await add_graph_execution(
user_id=user_id,
graph_id=preset.graph_id,

View File

@@ -1,6 +1,5 @@
import datetime
import json
from unittest.mock import AsyncMock
import fastapi.testclient
import pytest
@@ -226,10 +225,6 @@ def test_add_agent_to_library_success(
"backend.server.v2.library.db.add_store_agent_to_library"
)
mock_db_call.return_value = mock_library_agent
mock_complete_onboarding = mocker.patch(
"backend.server.v2.library.routes.agents.complete_onboarding_step",
new_callable=AsyncMock,
)
response = client.post(
"/agents", json={"store_listing_version_id": "test-version-id"}
@@ -244,7 +239,6 @@ def test_add_agent_to_library_success(
mock_db_call.assert_called_once_with(
store_listing_version_id="test-version-id", user_id=test_user_id
)
mock_complete_onboarding.assert_awaited_once()
def test_add_agent_to_library_error(mocker: pytest_mock.MockFixture, test_user_id: str):

View File

@@ -0,0 +1,168 @@
"""
Script to backfill embeddings for existing store listing versions.
This script should be run after the migration to add the embedding column
to populate embeddings for all existing store listing versions.
Usage:
poetry run python -m backend.server.v2.store.backfill_embeddings
poetry run python -m backend.server.v2.store.backfill_embeddings --dry-run
poetry run python -m backend.server.v2.store.backfill_embeddings --batch-size 25
"""
import argparse
import asyncio
import logging
import sys
from backend.data.db import connect, disconnect, query_raw_with_schema
from backend.integrations.embeddings import EmbeddingService, create_search_text
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
)
logger = logging.getLogger(__name__)
# Default batch size for processing
DEFAULT_BATCH_SIZE = 50
# Delay between batches to avoid rate limits (seconds)
BATCH_DELAY_SECONDS = 1.0
async def backfill_embeddings(
dry_run: bool = False,
batch_size: int = DEFAULT_BATCH_SIZE,
) -> tuple[int, int]:
"""
Backfill embeddings for all store listing versions without embeddings.
Args:
dry_run: If True, don't make any changes, just report what would be done.
batch_size: Number of versions to process in each batch.
Returns:
Tuple of (processed_count, error_count)
"""
await connect()
try:
embedding_service = EmbeddingService()
# Get all versions without embeddings
versions = await query_raw_with_schema(
"""
SELECT id, name, "subHeading", description
FROM {schema_prefix}"StoreListingVersion"
WHERE embedding IS NULL
ORDER BY "createdAt" DESC
"""
)
total = len(versions)
logger.info(f"Found {total} versions without embeddings")
if dry_run:
logger.info("Dry run mode - no changes will be made")
return (0, 0)
if total == 0:
logger.info("No versions need embeddings")
return (0, 0)
processed = 0
errors = 0
for i in range(0, total, batch_size):
batch = versions[i : i + batch_size]
batch_num = (i // batch_size) + 1
total_batches = (total + batch_size - 1) // batch_size
logger.info(f"Processing batch {batch_num}/{total_batches}")
for version in batch:
version_id = version["id"]
try:
search_text = create_search_text(
version["name"] or "",
version["subHeading"] or "",
version["description"] or "",
)
if not search_text:
logger.warning(f"Skipping {version_id} - no searchable text")
continue
embedding = await embedding_service.generate_embedding(search_text)
embedding_str = "[" + ",".join(map(str, embedding)) + "]"
await query_raw_with_schema(
"""
UPDATE {schema_prefix}"StoreListingVersion"
SET embedding = $1::vector
WHERE id = $2
""",
embedding_str,
version_id,
)
processed += 1
except Exception as e:
logger.error(f"Error processing {version_id}: {e}")
errors += 1
logger.info(f"Progress: {processed}/{total} processed, {errors} errors")
# Rate limit: wait between batches to avoid hitting API limits
if i + batch_size < total:
await asyncio.sleep(BATCH_DELAY_SECONDS)
logger.info(f"Backfill complete: {processed} processed, {errors} errors")
return (processed, errors)
finally:
await disconnect()
def main():
parser = argparse.ArgumentParser(
description="Backfill embeddings for store listing versions"
)
parser.add_argument(
"--dry-run",
action="store_true",
help="Don't make any changes, just report what would be done",
)
parser.add_argument(
"--batch-size",
type=int,
default=DEFAULT_BATCH_SIZE,
help=f"Number of versions to process in each batch (default: {DEFAULT_BATCH_SIZE})",
)
args = parser.parse_args()
try:
processed, errors = asyncio.run(
backfill_embeddings(dry_run=args.dry_run, batch_size=args.batch_size)
)
if errors > 0:
logger.warning(f"Completed with {errors} errors")
sys.exit(1)
else:
logger.info("Completed successfully")
sys.exit(0)
except KeyboardInterrupt:
logger.info("Interrupted by user")
sys.exit(130)
except Exception as e:
logger.error(f"Fatal error: {e}")
sys.exit(1)
if __name__ == "__main__":
main()

View File

@@ -26,6 +26,7 @@ from backend.data.notifications import (
AgentRejectionData,
NotificationEventModel,
)
from backend.integrations.embeddings import create_search_text, get_embedding_service
from backend.notifications.notifications import queue_notification_async
from backend.util.exceptions import DatabaseError
from backend.util.settings import Settings
@@ -56,31 +57,40 @@ async def get_store_agents(
)
try:
# If search_query is provided, use full-text search
# If search_query is provided, use vector similarity search
if search_query:
offset = (page - 1) * page_size
# Generate embedding for search query
embedding_service = await get_embedding_service()
query_embedding = await embedding_service.generate_embedding(search_query)
# Convert embedding to PostgreSQL array format
embedding_str = "[" + ",".join(map(str, query_embedding)) + "]"
# Whitelist allowed order_by columns
# For vector search, we use similarity instead of rank
ALLOWED_ORDER_BY = {
"rating": "rating DESC, rank DESC",
"runs": "runs DESC, rank DESC",
"name": "agent_name ASC, rank ASC",
"updated_at": "updated_at DESC, rank DESC",
"rating": "rating DESC, similarity DESC",
"runs": "runs DESC, similarity DESC",
"name": "agent_name ASC, similarity DESC",
"updated_at": "updated_at DESC, similarity DESC",
}
# Validate and get order clause
if sorted_by and sorted_by in ALLOWED_ORDER_BY:
order_by_clause = ALLOWED_ORDER_BY[sorted_by]
else:
order_by_clause = "updated_at DESC, rank DESC"
# Default: order by vector similarity (most similar first)
order_by_clause = "similarity DESC, updated_at DESC"
# Build WHERE conditions and parameters list
where_parts: list[str] = []
params: list[typing.Any] = [search_query] # $1 - search term
params: list[typing.Any] = [embedding_str] # $1 - query embedding
param_index = 2 # Start at $2 for next parameter
# Always filter for available agents
# Always filter for available agents and agents with embeddings
where_parts.append("is_available = true")
where_parts.append("embedding IS NOT NULL")
if featured:
where_parts.append("featured = true")
@@ -103,7 +113,9 @@ async def get_store_agents(
limit_param = f"${param_index}"
offset_param = f"${param_index + 1}"
# Execute full-text search query with parameterized values
# Vector similarity search query using cosine distance
# The <=> operator returns cosine distance (0 = identical, 2 = opposite)
# We convert to similarity: 1 - distance/2 gives range [0, 1]
sql_query = f"""
SELECT
slug,
@@ -119,22 +131,18 @@ async def get_store_agents(
featured,
is_available,
updated_at,
ts_rank_cd(search, query) AS rank
FROM {{schema_prefix}}"StoreAgent",
plainto_tsquery('english', $1) AS query
1 - (embedding <=> $1::vector) AS similarity
FROM {{schema_prefix}}"StoreAgent"
WHERE {sql_where_clause}
AND search @@ query
ORDER BY {order_by_clause}
LIMIT {limit_param} OFFSET {offset_param}
"""
# Count query for pagination - only uses search term parameter
# Count query for pagination
count_query = f"""
SELECT COUNT(*) as count
FROM {{schema_prefix}}"StoreAgent",
plainto_tsquery('english', $1) AS query
FROM {{schema_prefix}}"StoreAgent"
WHERE {sql_where_clause}
AND search @@ query
"""
# Execute both queries with parameters
@@ -255,6 +263,56 @@ async def log_search_term(search_query: str):
logger.error(f"Error logging search term: {e}")
async def _generate_and_store_embedding(
store_listing_version_id: str,
name: str,
sub_heading: str,
description: str,
) -> None:
"""
Generate and store embedding for a store listing version.
This creates a vector embedding from the agent's name, sub_heading, and
description, which is used for semantic search.
Args:
store_listing_version_id: The ID of the store listing version.
name: The agent name.
sub_heading: The agent sub-heading/tagline.
description: The agent description.
"""
try:
embedding_service = await get_embedding_service()
search_text = create_search_text(name, sub_heading, description)
if not search_text:
logger.warning(
f"No searchable text for version {store_listing_version_id}, "
"skipping embedding generation"
)
return
embedding = await embedding_service.generate_embedding(search_text)
embedding_str = "[" + ",".join(map(str, embedding)) + "]"
await query_raw_with_schema(
"""
UPDATE {schema_prefix}"StoreListingVersion"
SET embedding = $1::vector
WHERE id = $2
""",
embedding_str,
store_listing_version_id,
)
logger.debug(f"Generated embedding for version {store_listing_version_id}")
except Exception as e:
# Log error but don't fail the whole operation
# Embeddings can be generated later via backfill
logger.error(
f"Failed to generate embedding for {store_listing_version_id}: {e}"
)
async def get_store_agent_details(
username: str, agent_name: str
) -> backend.server.v2.store.model.StoreAgentDetails:
@@ -327,7 +385,6 @@ async def get_store_agent_details(
slug=agent.slug,
agent_name=agent.agent_name,
agent_video=agent.agent_video or "",
agent_output_demo=agent.agent_output_demo or "",
agent_image=agent.agent_image,
creator=agent.creator_username or "",
creator_avatar=agent.creator_avatar or "",
@@ -398,7 +455,6 @@ async def get_store_agent_by_version_id(
slug=agent.slug,
agent_name=agent.agent_name,
agent_video=agent.agent_video or "",
agent_output_demo=agent.agent_output_demo or "",
agent_image=agent.agent_image,
creator=agent.creator_username or "",
creator_avatar=agent.creator_avatar or "",
@@ -685,7 +741,6 @@ async def create_store_submission(
slug: str,
name: str,
video_url: str | None = None,
agent_output_demo_url: str | None = None,
image_urls: list[str] = [],
description: str = "",
instructions: str | None = None,
@@ -780,7 +835,6 @@ async def create_store_submission(
agentGraphVersion=agent_version,
name=name,
videoUrl=video_url,
agentOutputDemoUrl=agent_output_demo_url,
imageUrls=image_urls,
description=description,
instructions=instructions,
@@ -805,6 +859,12 @@ async def create_store_submission(
else None
)
# Generate embedding for semantic search
if store_listing_version_id:
await _generate_and_store_embedding(
store_listing_version_id, name, sub_heading, description
)
logger.debug(f"Created store listing for agent {agent_id}")
# Return submission details
return backend.server.v2.store.model.StoreSubmission(
@@ -853,7 +913,6 @@ async def edit_store_submission(
store_listing_version_id: str,
name: str,
video_url: str | None = None,
agent_output_demo_url: str | None = None,
image_urls: list[str] = [],
description: str = "",
sub_heading: str = "",
@@ -935,7 +994,6 @@ async def edit_store_submission(
store_listing_id=current_version.storeListingId,
name=name,
video_url=video_url,
agent_output_demo_url=agent_output_demo_url,
image_urls=image_urls,
description=description,
sub_heading=sub_heading,
@@ -953,7 +1011,6 @@ async def edit_store_submission(
data=prisma.types.StoreListingVersionUpdateInput(
name=name,
videoUrl=video_url,
agentOutputDemoUrl=agent_output_demo_url,
imageUrls=image_urls,
description=description,
categories=categories,
@@ -970,6 +1027,12 @@ async def edit_store_submission(
if not updated_version:
raise DatabaseError("Failed to update store listing version")
# Regenerate embedding with updated content
await _generate_and_store_embedding(
store_listing_version_id, name, sub_heading, description
)
return backend.server.v2.store.model.StoreSubmission(
agent_id=current_version.agentGraphId,
agent_version=current_version.agentGraphVersion,
@@ -1015,7 +1078,6 @@ async def create_store_version(
store_listing_id: str,
name: str,
video_url: str | None = None,
agent_output_demo_url: str | None = None,
image_urls: list[str] = [],
description: str = "",
instructions: str | None = None,
@@ -1085,7 +1147,6 @@ async def create_store_version(
agentGraphVersion=agent_version,
name=name,
videoUrl=video_url,
agentOutputDemoUrl=agent_output_demo_url,
imageUrls=image_urls,
description=description,
instructions=instructions,
@@ -1102,6 +1163,12 @@ async def create_store_version(
logger.debug(
f"Created new version for listing {store_listing_id} of agent {agent_id}"
)
# Generate embedding for semantic search
await _generate_and_store_embedding(
new_version.id, name, sub_heading, description
)
# Return submission details
return backend.server.v2.store.model.StoreSubmission(
agent_id=agent_id,

View File

@@ -405,3 +405,237 @@ async def test_get_store_agents_search_category_array_injection():
# Verify the query executed without error
# Category should be parameterized, preventing SQL injection
assert isinstance(result.agents, list)
# Vector search tests
@pytest.mark.asyncio(loop_scope="session")
async def test_get_store_agents_vector_search_mocked(mocker):
"""Test vector search uses embedding service and executes query safely."""
from backend.integrations.embeddings import EMBEDDING_DIMENSIONS
# Mock embedding service
mock_embedding = [0.1] * EMBEDDING_DIMENSIONS
mock_embedding_service = mocker.MagicMock()
mock_embedding_service.generate_embedding = mocker.AsyncMock(
return_value=mock_embedding
)
mocker.patch(
"backend.server.v2.store.db.get_embedding_service",
mocker.AsyncMock(return_value=mock_embedding_service),
)
# Mock query_raw_with_schema to return empty results
mocker.patch(
"backend.server.v2.store.db.query_raw_with_schema",
mocker.AsyncMock(side_effect=[[], [{"count": 0}]]),
)
# Call function with search query
result = await db.get_store_agents(search_query="test query")
# Verify embedding service was called
mock_embedding_service.generate_embedding.assert_called_once_with("test query")
# Verify results
assert isinstance(result.agents, list)
assert len(result.agents) == 0
@pytest.mark.asyncio(loop_scope="session")
async def test_get_store_agents_vector_search_with_results(mocker):
"""Test vector search returns properly formatted results."""
from backend.integrations.embeddings import EMBEDDING_DIMENSIONS
# Mock embedding service
mock_embedding = [0.1] * EMBEDDING_DIMENSIONS
mock_embedding_service = mocker.MagicMock()
mock_embedding_service.generate_embedding = mocker.AsyncMock(
return_value=mock_embedding
)
mocker.patch(
"backend.server.v2.store.db.get_embedding_service",
mocker.AsyncMock(return_value=mock_embedding_service),
)
# Mock query results
mock_agents = [
{
"slug": "test-agent",
"agent_name": "Test Agent",
"agent_image": ["image.jpg"],
"creator_username": "creator",
"creator_avatar": "avatar.jpg",
"sub_heading": "Test heading",
"description": "Test description",
"runs": 10,
"rating": 4.5,
"categories": ["test"],
"featured": False,
"is_available": True,
"updated_at": datetime.now(),
"similarity": 0.95,
}
]
mock_count = [{"count": 1}]
mocker.patch(
"backend.server.v2.store.db.query_raw_with_schema",
mocker.AsyncMock(side_effect=[mock_agents, mock_count]),
)
# Call function with search query
result = await db.get_store_agents(search_query="test query")
# Verify results
assert len(result.agents) == 1
assert result.agents[0].slug == "test-agent"
assert result.agents[0].agent_name == "Test Agent"
assert result.pagination.total_items == 1
@pytest.mark.asyncio(loop_scope="session")
async def test_get_store_agents_vector_search_with_filters(mocker):
"""Test vector search works correctly with additional filters."""
from backend.integrations.embeddings import EMBEDDING_DIMENSIONS
# Mock embedding service
mock_embedding = [0.1] * EMBEDDING_DIMENSIONS
mock_embedding_service = mocker.MagicMock()
mock_embedding_service.generate_embedding = mocker.AsyncMock(
return_value=mock_embedding
)
mocker.patch(
"backend.server.v2.store.db.get_embedding_service",
mocker.AsyncMock(return_value=mock_embedding_service),
)
# Mock query_raw_with_schema
mock_query = mocker.patch(
"backend.server.v2.store.db.query_raw_with_schema",
mocker.AsyncMock(side_effect=[[], [{"count": 0}]]),
)
# Call function with search query and filters
await db.get_store_agents(
search_query="test query",
featured=True,
creators=["creator1", "creator2"],
category="AI",
sorted_by="rating",
)
# Verify query was called with parameterized values
# First call is the main query, second is count
assert mock_query.call_count == 2
# Check that the SQL query includes proper parameterization
first_call_args = mock_query.call_args_list[0]
sql_query = first_call_args[0][0]
# Verify key elements of the query
assert "embedding <=> $1::vector" in sql_query
assert "featured = true" in sql_query
assert "creator_username = ANY($" in sql_query
assert "= ANY(categories)" in sql_query
@pytest.mark.asyncio(loop_scope="session")
async def test_generate_and_store_embedding_success(mocker):
"""Test that embedding generation and storage works correctly."""
from backend.integrations.embeddings import EMBEDDING_DIMENSIONS
# Mock embedding service
mock_embedding = [0.1] * EMBEDDING_DIMENSIONS
mock_embedding_service = mocker.MagicMock()
mock_embedding_service.generate_embedding = mocker.AsyncMock(
return_value=mock_embedding
)
mocker.patch(
"backend.server.v2.store.db.get_embedding_service",
mocker.AsyncMock(return_value=mock_embedding_service),
)
# Mock query_raw_with_schema
mock_query = mocker.patch(
"backend.server.v2.store.db.query_raw_with_schema",
mocker.AsyncMock(return_value=[]),
)
# Call the internal function
await db._generate_and_store_embedding(
store_listing_version_id="version-123",
name="Test Agent",
sub_heading="A test agent",
description="Does testing",
)
# Verify embedding service was called with combined text
mock_embedding_service.generate_embedding.assert_called_once_with(
"Test Agent A test agent Does testing"
)
# Verify database update was called
mock_query.assert_called_once()
call_args = mock_query.call_args
assert "UPDATE" in call_args[0][0]
assert "embedding = $1::vector" in call_args[0][0]
assert call_args[0][2] == "version-123"
@pytest.mark.asyncio(loop_scope="session")
async def test_generate_and_store_embedding_empty_text(mocker):
"""Test that embedding is not generated for empty text."""
# Mock embedding service
mock_embedding_service = mocker.MagicMock()
mock_embedding_service.generate_embedding = mocker.AsyncMock()
mocker.patch(
"backend.server.v2.store.db.get_embedding_service",
mocker.AsyncMock(return_value=mock_embedding_service),
)
# Mock query_raw_with_schema
mock_query = mocker.patch(
"backend.server.v2.store.db.query_raw_with_schema",
mocker.AsyncMock(return_value=[]),
)
# Call with empty fields
await db._generate_and_store_embedding(
store_listing_version_id="version-123",
name="",
sub_heading="",
description="",
)
# Verify embedding service was NOT called
mock_embedding_service.generate_embedding.assert_not_called()
# Verify database was NOT updated
mock_query.assert_not_called()
@pytest.mark.asyncio(loop_scope="session")
async def test_generate_and_store_embedding_handles_error(mocker):
"""Test that embedding generation errors don't crash the operation."""
# Mock embedding service to raise an error
mock_embedding_service = mocker.MagicMock()
mock_embedding_service.generate_embedding = mocker.AsyncMock(
side_effect=Exception("API error")
)
mocker.patch(
"backend.server.v2.store.db.get_embedding_service",
mocker.AsyncMock(return_value=mock_embedding_service),
)
# Call should not raise - errors are logged but not propagated
await db._generate_and_store_embedding(
store_listing_version_id="version-123",
name="Test Agent",
sub_heading="A test agent",
description="Does testing",
)
# Verify embedding service was called (and failed)
mock_embedding_service.generate_embedding.assert_called_once()

View File

@@ -44,7 +44,6 @@ class StoreAgentDetails(pydantic.BaseModel):
slug: str
agent_name: str
agent_video: str
agent_output_demo: str
agent_image: list[str]
creator: str
creator_avatar: str
@@ -122,7 +121,6 @@ class StoreSubmission(pydantic.BaseModel):
# Additional fields for editing
video_url: str | None = None
agent_output_demo_url: str | None = None
categories: list[str] = []
@@ -159,7 +157,6 @@ class StoreSubmissionRequest(pydantic.BaseModel):
name: str
sub_heading: str
video_url: str | None = None
agent_output_demo_url: str | None = None
image_urls: list[str] = []
description: str = ""
instructions: str | None = None
@@ -172,7 +169,6 @@ class StoreSubmissionEditRequest(pydantic.BaseModel):
name: str
sub_heading: str
video_url: str | None = None
agent_output_demo_url: str | None = None
image_urls: list[str] = []
description: str = ""
instructions: str | None = None

View File

@@ -62,7 +62,6 @@ def test_store_agent_details():
slug="test-agent",
agent_name="Test Agent",
agent_video="video.mp4",
agent_output_demo="demo.mp4",
agent_image=["image1.jpg", "image2.jpg"],
creator="creator1",
creator_avatar="avatar.jpg",

View File

@@ -438,7 +438,6 @@ async def create_submission(
slug=submission_request.slug,
name=submission_request.name,
video_url=submission_request.video_url,
agent_output_demo_url=submission_request.agent_output_demo_url,
image_urls=submission_request.image_urls,
description=submission_request.description,
instructions=submission_request.instructions,
@@ -482,7 +481,6 @@ async def edit_submission(
store_listing_version_id=store_listing_version_id,
name=submission_request.name,
video_url=submission_request.video_url,
agent_output_demo_url=submission_request.agent_output_demo_url,
image_urls=submission_request.image_urls,
description=submission_request.description,
instructions=submission_request.instructions,

View File

@@ -378,7 +378,6 @@ def test_get_agent_details(
slug="test-agent",
agent_name="Test Agent",
agent_video="video.mp4",
agent_output_demo="demo.mp4",
agent_image=["image1.jpg", "image2.jpg"],
creator="creator1",
creator_avatar="avatar1.jpg",

View File

@@ -432,7 +432,7 @@ class TestCache:
"""Test TTL functionality with sync function."""
call_count = 0
@cached(maxsize=10, ttl_seconds=0.3) # Short TTL
@cached(maxsize=10, ttl_seconds=1) # Short TTL
def ttl_function(x: int) -> int:
nonlocal call_count
call_count += 1
@@ -449,7 +449,7 @@ class TestCache:
assert call_count == 1
# Wait for TTL to expire
time.sleep(0.35)
time.sleep(1.1)
# Third call after expiration - should call function again
result3 = ttl_function(3)
@@ -461,7 +461,7 @@ class TestCache:
"""Test TTL functionality with async function."""
call_count = 0
@cached(maxsize=10, ttl_seconds=0.3) # Short TTL
@cached(maxsize=10, ttl_seconds=1) # Short TTL
async def async_ttl_function(x: int) -> int:
nonlocal call_count
call_count += 1
@@ -479,7 +479,7 @@ class TestCache:
assert call_count == 1
# Wait for TTL to expire
await asyncio.sleep(0.35)
await asyncio.sleep(1.1)
# Third call after expiration - should call function again
result3 = await async_ttl_function(3)
@@ -761,16 +761,16 @@ class TestSharedCache:
assert result1 == 30
assert call_count == 1
# Wait 0.5 second
time.sleep(0.5)
# Wait 1 second
time.sleep(1)
# Second call - should refresh TTL and use cache
result2 = ttl_refresh_function(3)
assert result2 == 30
assert call_count == 1
# Wait another 1.0 second (total 1.5s from first call, 1.0s from second)
time.sleep(1.0)
# Wait another 1.5 seconds (total 2.5s from first call, 1.5s from second)
time.sleep(1.5)
# Third call - TTL should have been refreshed, so still cached
result3 = ttl_refresh_function(3)
@@ -792,7 +792,7 @@ class TestSharedCache:
"""Test that TTL doesn't refresh when refresh_ttl_on_get=False."""
call_count = 0
@cached(ttl_seconds=1, shared_cache=True, refresh_ttl_on_get=False)
@cached(ttl_seconds=2, shared_cache=True, refresh_ttl_on_get=False)
def no_ttl_refresh_function(x: int) -> int:
nonlocal call_count
call_count += 1
@@ -806,16 +806,16 @@ class TestSharedCache:
assert result1 == 40
assert call_count == 1
# Wait 0.4 seconds
time.sleep(0.4)
# Wait 1 second
time.sleep(1)
# Second call - should use cache but NOT refresh TTL
result2 = no_ttl_refresh_function(4)
assert result2 == 40
assert call_count == 1
# Wait another 0.7 seconds (total 1.1s from first call)
time.sleep(0.7)
# Wait another 1.1 seconds (total 2.1s from first call)
time.sleep(1.1)
# Third call - should have expired
result3 = no_ttl_refresh_function(4)

View File

@@ -5,13 +5,6 @@ from tiktoken import encoding_for_model
from backend.util import json
# ---------------------------------------------------------------------------#
# CONSTANTS #
# ---------------------------------------------------------------------------#
# Message prefixes for important system messages that should be protected during compression
MAIN_OBJECTIVE_PREFIX = "[Main Objective Prompt]: "
# ---------------------------------------------------------------------------#
# INTERNAL UTILITIES #
# ---------------------------------------------------------------------------#
@@ -70,55 +63,6 @@ def _msg_tokens(msg: dict, enc) -> int:
return WRAPPER + content_tokens + tool_call_tokens
def _is_tool_message(msg: dict) -> bool:
"""Check if a message contains tool calls or results that should be protected."""
content = msg.get("content")
# Check for Anthropic-style tool messages
if isinstance(content, list) and any(
isinstance(item, dict) and item.get("type") in ("tool_use", "tool_result")
for item in content
):
return True
# Check for OpenAI-style tool calls in the message
if "tool_calls" in msg or msg.get("role") == "tool":
return True
return False
def _is_objective_message(msg: dict) -> bool:
"""Check if a message contains objective/system prompts that should be absolutely protected."""
content = msg.get("content", "")
if isinstance(content, str):
# Protect any message with the main objective prefix
return content.startswith(MAIN_OBJECTIVE_PREFIX)
return False
def _truncate_tool_message_content(msg: dict, enc, max_tokens: int) -> None:
"""
Carefully truncate tool message content while preserving tool structure.
Only truncates tool_result content, leaves tool_use intact.
"""
content = msg.get("content")
if not isinstance(content, list):
return
for item in content:
# Only process tool_result items, leave tool_use blocks completely intact
if not (isinstance(item, dict) and item.get("type") == "tool_result"):
continue
result_content = item.get("content", "")
if (
isinstance(result_content, str)
and _tok_len(result_content, enc) > max_tokens
):
item["content"] = _truncate_middle_tokens(result_content, enc, max_tokens)
def _truncate_middle_tokens(text: str, enc, max_tok: int) -> str:
"""
Return *text* shortened to ≈max_tok tokens by keeping the head & tail
@@ -196,21 +140,13 @@ def compress_prompt(
return sum(_msg_tokens(m, enc) for m in msgs)
original_token_count = total_tokens()
if original_token_count + reserve <= target_tokens:
return msgs
# ---- STEP 0 : normalise content --------------------------------------
# Convert non-string payloads to strings so token counting is coherent.
for i, m in enumerate(msgs):
for m in msgs[1:-1]: # keep the first & last intact
if not isinstance(m.get("content"), str) and m.get("content") is not None:
if _is_tool_message(m):
continue
# Keep first and last messages intact (unless they're tool messages)
if i == 0 or i == len(msgs) - 1:
continue
# Reasonable 20k-char ceiling prevents pathological blobs
content_str = json.dumps(m["content"], separators=(",", ":"))
if len(content_str) > 20_000:
@@ -221,45 +157,34 @@ def compress_prompt(
cap = start_cap
while total_tokens() + reserve > target_tokens and cap >= floor_cap:
for m in msgs[1:-1]: # keep first & last intact
if _is_tool_message(m):
# For tool messages, only truncate tool result content, preserve structure
_truncate_tool_message_content(m, enc, cap)
continue
if _is_objective_message(m):
# Never truncate objective messages - they contain the core task
continue
content = m.get("content") or ""
if _tok_len(content, enc) > cap:
m["content"] = _truncate_middle_tokens(content, enc, cap)
if _tok_len(m.get("content") or "", enc) > cap:
m["content"] = _truncate_middle_tokens(m["content"], enc, cap)
cap //= 2 # tighten the screw
# ---- STEP 2 : middle-out deletion -----------------------------------
while total_tokens() + reserve > target_tokens and len(msgs) > 2:
# Identify all deletable messages (not first/last, not tool messages, not objective messages)
deletable_indices = []
for i in range(1, len(msgs) - 1): # Skip first and last
if not _is_tool_message(msgs[i]) and not _is_objective_message(msgs[i]):
deletable_indices.append(i)
if not deletable_indices:
break # nothing more we can drop
# Delete from center outward - find the index closest to center
centre = len(msgs) // 2
to_delete = min(deletable_indices, key=lambda i: abs(i - centre))
del msgs[to_delete]
# Build a symmetrical centre-out index walk: centre, centre+1, centre-1, ...
order = [centre] + [
i
for pair in zip(range(centre + 1, len(msgs) - 1), range(centre - 1, 0, -1))
for i in pair
]
removed = False
for i in order:
msg = msgs[i]
if "tool_calls" in msg or msg.get("role") == "tool":
continue # protect tool shells
del msgs[i]
removed = True
break
if not removed: # nothing more we can drop
break
# ---- STEP 3 : final safety-net trim on first & last ------------------
cap = start_cap
while total_tokens() + reserve > target_tokens and cap >= floor_cap:
for idx in (0, -1): # first and last
if _is_tool_message(msgs[idx]):
# For tool messages at first/last position, truncate tool result content only
_truncate_tool_message_content(msgs[idx], enc, cap)
continue
text = msgs[idx].get("content") or ""
if _tok_len(text, enc) > cap:
msgs[idx]["content"] = _truncate_middle_tokens(text, enc, cap)

View File

@@ -41,10 +41,10 @@ def test_conn_retry_sync_function():
async def test_conn_retry_async_function():
retry_count = 0
@conn_retry("Test", "Test function", max_retry=2, max_wait=0.01)
@conn_retry("Test", "Test function", max_retry=2, max_wait=0.1)
async def test_function():
nonlocal retry_count
await asyncio.sleep(0.01)
await asyncio.sleep(1)
retry_count -= 1
if retry_count > 0:
raise ValueError("Test error")

View File

@@ -506,7 +506,7 @@ class TestGracefulShutdownService(AppService):
self.cleanup_completed = False
@expose
async def slow_endpoint(self, duration: float = 1.0) -> dict:
async def slow_endpoint(self, duration: int = 5) -> dict:
"""Endpoint that takes time to complete"""
start_time = time.time()
self.request_log.append(f"slow_endpoint started at {start_time}")
@@ -575,7 +575,7 @@ async def wait_until_service_ready(base_url: str, timeout: float = 10):
async def send_slow_request(base_url: str) -> dict:
"""Send a slow request and return the result"""
async with httpx.AsyncClient(timeout=30) as client:
response = await client.post(f"{base_url}/slow_endpoint", json={"duration": 1.0})
response = await client.post(f"{base_url}/slow_endpoint", json={"duration": 5})
assert response.status_code == 200
return response.json()
@@ -589,14 +589,14 @@ async def test_graceful_shutdown(test_service):
slow_task = asyncio.create_task(send_slow_request(test_service_url))
# Give the slow request time to start
await asyncio.sleep(0.2)
await asyncio.sleep(1)
# Send SIGTERM to the service process
shutdown_start_time = time.time()
service.process.terminate() # This sends SIGTERM
# Wait a moment for shutdown to start
await asyncio.sleep(0.2)
await asyncio.sleep(0.5)
# Try to send a new request - should be rejected or connection refused
try:
@@ -612,18 +612,18 @@ async def test_graceful_shutdown(test_service):
# The slow request should still complete successfully
slow_result = await slow_task
assert slow_result["message"] == "completed"
assert 0.9 < slow_result["duration"] < 1.5 # Should have taken ~1 second
assert 4.9 < slow_result["duration"] < 5.5 # Should have taken ~5 seconds
# Wait for the service to fully shut down
service.process.join(timeout=10)
service.process.join(timeout=15)
shutdown_end_time = time.time()
# Verify the service actually terminated
assert not service.process.is_alive()
# Verify shutdown took reasonable time
# Verify shutdown took reasonable time (slow request - 1s + cleanup)
shutdown_duration = shutdown_end_time - shutdown_start_time
assert 0.5 <= shutdown_duration <= 3 # ~1s request + buffer
assert 4 <= shutdown_duration <= 6 # ~5s request - 1s + buffer
print(f"Shutdown took {shutdown_duration:.2f} seconds")
print(f"Slow request completed in: {slow_result['duration']:.2f} seconds")

View File

@@ -185,12 +185,6 @@ class Config(UpdateTrackingModel["Config"], BaseSettings):
description="Number of top blocks with most errors to show when no blocks exceed threshold (0 to disable).",
)
# Execution Accuracy Monitoring
execution_accuracy_check_interval_hours: int = Field(
default=24,
description="Interval in hours between execution accuracy alert checks.",
)
model_config = SettingsConfigDict(
env_file=".env",
extra="allow",

View File

@@ -6,7 +6,6 @@ networks:
volumes:
supabase-config:
clamav-data:
x-agpt-services:
&agpt-services
@@ -20,6 +19,10 @@ x-supabase-services:
- app-network
- shared-network
volumes:
clamav-data:
services:
db:
@@ -82,3 +85,6 @@ services:
interval: 30s
timeout: 10s
retries: 3
networks:
app-network-test:
driver: bridge

View File

@@ -1,64 +0,0 @@
-- AlterTable
ALTER TABLE "StoreListingVersion" ADD COLUMN "agentOutputDemoUrl" TEXT;
-- Drop and recreate the StoreAgent view with agentOutputDemoUrl field
DROP VIEW IF EXISTS "StoreAgent";
CREATE OR REPLACE VIEW "StoreAgent" AS
WITH latest_versions AS (
SELECT
"storeListingId",
MAX(version) AS max_version
FROM "StoreListingVersion"
WHERE "submissionStatus" = 'APPROVED'
GROUP BY "storeListingId"
),
agent_versions AS (
SELECT
"storeListingId",
array_agg(DISTINCT version::text ORDER BY version::text) AS versions
FROM "StoreListingVersion"
WHERE "submissionStatus" = 'APPROVED'
GROUP BY "storeListingId"
)
SELECT
sl.id AS listing_id,
slv.id AS "storeListingVersionId",
slv."createdAt" AS updated_at,
sl.slug,
COALESCE(slv.name, '') AS agent_name,
slv."videoUrl" AS agent_video,
slv."agentOutputDemoUrl" AS agent_output_demo,
COALESCE(slv."imageUrls", ARRAY[]::text[]) AS agent_image,
slv."isFeatured" AS featured,
p.username AS creator_username, -- Allow NULL for malformed sub-agents
p."avatarUrl" AS creator_avatar, -- Allow NULL for malformed sub-agents
slv."subHeading" AS sub_heading,
slv.description,
slv.categories,
slv.search,
COALESCE(ar.run_count, 0::bigint) AS runs,
COALESCE(rs.avg_rating, 0.0)::double precision AS rating,
COALESCE(av.versions, ARRAY[slv.version::text]) AS versions,
slv."isAvailable" AS is_available,
COALESCE(sl."useForOnboarding", false) AS "useForOnboarding"
FROM "StoreListing" sl
JOIN latest_versions lv
ON sl.id = lv."storeListingId"
JOIN "StoreListingVersion" slv
ON slv."storeListingId" = lv."storeListingId"
AND slv.version = lv.max_version
AND slv."submissionStatus" = 'APPROVED'
JOIN "AgentGraph" a
ON slv."agentGraphId" = a.id
AND slv."agentGraphVersion" = a.version
LEFT JOIN "Profile" p
ON sl."owningUserId" = p."userId"
LEFT JOIN "mv_review_stats" rs
ON sl.id = rs."storeListingId"
LEFT JOIN "mv_agent_run_counts" ar
ON a.id = ar."agentGraphId"
LEFT JOIN agent_versions av
ON sl.id = av."storeListingId"
WHERE sl."isDeleted" = false
AND sl."hasApprovedVersion" = true;

View File

@@ -0,0 +1,92 @@
-- Migration: Replace full-text search with pgvector-based vector search
-- This migration:
-- 1. Enables the pgvector extension
-- 2. Drops the StoreAgent view (depends on search column)
-- 3. Removes the full-text search infrastructure (trigger, function, tsvector column)
-- 4. Adds a vector embedding column for semantic search
-- 5. Creates an index for fast vector similarity search
-- 6. Recreates the StoreAgent view with the embedding column
-- Enable pgvector extension
CREATE EXTENSION IF NOT EXISTS vector;
-- First drop the view that depends on the search column
DROP VIEW IF EXISTS "StoreAgent";
-- Remove full-text search infrastructure
DROP TRIGGER IF EXISTS "update_tsvector" ON "StoreListingVersion";
DROP FUNCTION IF EXISTS update_tsvector_column();
-- Drop the tsvector search column
ALTER TABLE "StoreListingVersion" DROP COLUMN IF EXISTS "search";
-- Add embedding column for vector search (1536 dimensions for text-embedding-3-small)
ALTER TABLE "StoreListingVersion"
ADD COLUMN IF NOT EXISTS "embedding" vector(1536);
-- Create IVFFlat index for fast similarity search
-- Using cosine distance (vector_cosine_ops) which is standard for text embeddings
-- lists = 100 is appropriate for datasets under 1M rows
CREATE INDEX IF NOT EXISTS idx_store_listing_version_embedding
ON "StoreListingVersion"
USING ivfflat (embedding vector_cosine_ops)
WITH (lists = 100);
-- Recreate StoreAgent view WITHOUT search column, WITH embedding column
CREATE OR REPLACE VIEW "StoreAgent" AS
WITH latest_versions AS (
SELECT
"storeListingId",
MAX(version) AS max_version
FROM "StoreListingVersion"
WHERE "submissionStatus" = 'APPROVED'
GROUP BY "storeListingId"
),
agent_versions AS (
SELECT
"storeListingId",
array_agg(DISTINCT version::text ORDER BY version::text) AS versions
FROM "StoreListingVersion"
WHERE "submissionStatus" = 'APPROVED'
GROUP BY "storeListingId"
)
SELECT
sl.id AS listing_id,
slv.id AS "storeListingVersionId",
slv."createdAt" AS updated_at,
sl.slug,
COALESCE(slv.name, '') AS agent_name,
slv."videoUrl" AS agent_video,
COALESCE(slv."imageUrls", ARRAY[]::text[]) AS agent_image,
slv."isFeatured" AS featured,
p.username AS creator_username,
p."avatarUrl" AS creator_avatar,
slv."subHeading" AS sub_heading,
slv.description,
slv.categories,
slv.embedding,
COALESCE(ar.run_count, 0::bigint) AS runs,
COALESCE(rs.avg_rating, 0.0)::double precision AS rating,
COALESCE(av.versions, ARRAY[slv.version::text]) AS versions,
COALESCE(sl."useForOnboarding", false) AS "useForOnboarding",
slv."isAvailable" AS is_available
FROM "StoreListing" sl
JOIN latest_versions lv
ON sl.id = lv."storeListingId"
JOIN "StoreListingVersion" slv
ON slv."storeListingId" = lv."storeListingId"
AND slv.version = lv.max_version
AND slv."submissionStatus" = 'APPROVED'
JOIN "AgentGraph" a
ON slv."agentGraphId" = a.id
AND slv."agentGraphVersion" = a.version
LEFT JOIN "Profile" p
ON sl."owningUserId" = p."userId"
LEFT JOIN "mv_review_stats" rs
ON sl.id = rs."storeListingId"
LEFT JOIN "mv_agent_run_counts" ar
ON a.id = ar."agentGraphId"
LEFT JOIN agent_versions av
ON sl.id = av."storeListingId"
WHERE sl."isDeleted" = false
AND sl."hasApprovedVersion" = true;

View File

@@ -1,15 +0,0 @@
-- Create BuilderSearchHistory table
CREATE TABLE "BuilderSearchHistory" (
"id" TEXT NOT NULL,
"userId" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"searchQuery" TEXT NOT NULL,
"filter" TEXT[] DEFAULT ARRAY[]::TEXT[],
"byCreator" TEXT[] DEFAULT ARRAY[]::TEXT[],
CONSTRAINT "BuilderSearchHistory_pkey" PRIMARY KEY ("id")
);
-- Define User foreign relation
ALTER TABLE "BuilderSearchHistory" ADD CONSTRAINT "BuilderSearchHistory_userId_fkey" FOREIGN KEY ("userId") REFERENCES "User"("id") ON DELETE CASCADE ON UPDATE CASCADE;

View File

@@ -1223,21 +1223,6 @@ typing-extensions = {version = ">=4.6.0", markers = "python_version < \"3.13\""}
[package.extras]
test = ["pytest (>=6)"]
[[package]]
name = "execnet"
version = "2.1.2"
description = "execnet: rapid multi-Python deployment"
optional = false
python-versions = ">=3.8"
groups = ["dev"]
files = [
{file = "execnet-2.1.2-py3-none-any.whl", hash = "sha256:67fba928dd5a544b783f6056f449e5e3931a5c378b128bc18501f7ea79e296ec"},
{file = "execnet-2.1.2.tar.gz", hash = "sha256:63d83bfdd9a23e35b9c6a3261412324f964c2ec8dcd8d3c6916ee9373e0befcd"},
]
[package.extras]
testing = ["hatch", "pre-commit", "pytest", "tox"]
[[package]]
name = "expiringdict"
version = "1.2.2"
@@ -5040,27 +5025,6 @@ files = [
tomli = {version = ">=2.0.1,<3.0.0", markers = "python_version < \"3.11\""}
watchdog = ">=2.0.0"
[[package]]
name = "pytest-xdist"
version = "3.8.0"
description = "pytest xdist plugin for distributed testing, most importantly across multiple CPUs"
optional = false
python-versions = ">=3.9"
groups = ["dev"]
files = [
{file = "pytest_xdist-3.8.0-py3-none-any.whl", hash = "sha256:202ca578cfeb7370784a8c33d6d05bc6e13b4f25b5053c30a152269fd10f0b88"},
{file = "pytest_xdist-3.8.0.tar.gz", hash = "sha256:7e578125ec9bc6050861aa93f2d59f1d8d085595d6551c2c90b6f4fad8d3a9f1"},
]
[package.dependencies]
execnet = ">=2.1"
pytest = ">=7.0.0"
[package.extras]
psutil = ["psutil (>=3.0)"]
setproctitle = ["setproctitle"]
testing = ["filelock"]
[[package]]
name = "python-dateutil"
version = "2.9.0.post0"
@@ -7315,4 +7279,4 @@ cffi = ["cffi (>=1.11)"]
[metadata]
lock-version = "2.1"
python-versions = ">=3.10,<3.14"
content-hash = "efe0419078764a4f4c248a5f93f352e92e60b8e9a8250cebd86e869054c6cef6"
content-hash = "13b191b2a1989d3321ff713c66ff6f5f4f3b82d15df4d407e0e5dbf87d7522c4"

View File

@@ -97,7 +97,6 @@ pytest-watcher = "^0.4.2"
requests = "^2.32.5"
ruff = "^0.14.5"
# NOTE: please insert new dependencies in their alphabetical location
pytest-xdist = "^3.8.0"
[build-system]
requires = ["poetry-core"]
@@ -115,7 +114,6 @@ cli = "backend.cli:main"
format = "linter:format"
lint = "linter:lint"
test = "run_tests:test"
load-store-agents = "test.load_store_agents:run"
[tool.isort]
profile = "black"

View File

@@ -53,7 +53,6 @@ model User {
Profile Profile[]
UserOnboarding UserOnboarding?
BuilderSearchHistory BuilderSearchHistory[]
StoreListings StoreListing[]
StoreListingReviews StoreListingReview[]
StoreVersionsReviewed StoreListingVersion[]
@@ -115,19 +114,6 @@ model UserOnboarding {
User User @relation(fields: [userId], references: [id], onDelete: Cascade)
}
model BuilderSearchHistory {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @default(now()) @updatedAt
searchQuery String
filter String[] @default([])
byCreator String[] @default([])
userId String
User User @relation(fields: [userId], references: [id], onDelete: Cascade)
}
// This model describes the Agent Graph/Flow (Multi Agent System).
model AgentGraph {
id String @default(uuid())
@@ -715,11 +701,10 @@ view StoreAgent {
storeListingVersionId String
updated_at DateTime
slug String
agent_name String
agent_video String?
agent_output_demo String?
agent_image String[]
slug String
agent_name String
agent_video String?
agent_image String[]
featured Boolean @default(false)
creator_username String?
@@ -727,7 +712,7 @@ view StoreAgent {
sub_heading String
description String
categories String[]
search Unsupported("tsvector")? @default(dbgenerated("''::tsvector"))
embedding Unsupported("vector(1536)")?
runs Int
rating Float
versions String[]
@@ -848,14 +833,13 @@ model StoreListingVersion {
AgentGraph AgentGraph @relation(fields: [agentGraphId, agentGraphVersion], references: [id, version])
// Content fields
name String
subHeading String
videoUrl String?
agentOutputDemoUrl String?
imageUrls String[]
description String
instructions String?
categories String[]
name String
subHeading String
videoUrl String?
imageUrls String[]
description String
instructions String?
categories String[]
isFeatured Boolean @default(false)
@@ -863,7 +847,8 @@ model StoreListingVersion {
// Old versions can be made unavailable by the author if desired
isAvailable Boolean @default(true)
search Unsupported("tsvector")? @default(dbgenerated("''::tsvector"))
// Vector embedding for semantic search (replaces tsvector full-text search)
embedding Unsupported("vector(1536)")?
// Version workflow state
submissionStatus SubmissionStatus @default(DRAFT)

View File

@@ -3,7 +3,6 @@
"slug": "test-agent",
"agent_name": "Test Agent",
"agent_video": "video.mp4",
"agent_output_demo": "demo.mp4",
"agent_image": [
"image1.jpg",
"image2.jpg"

View File

@@ -23,7 +23,6 @@
"reviewed_at": null,
"changes_summary": null,
"video_url": "test.mp4",
"agent_output_demo_url": null,
"categories": [
"test-category"
]

View File

@@ -10,7 +10,7 @@ It creates:
Usage:
cd backend
poetry run load-store-agents
poetry run python test/load_store_agents.py
"""
import asyncio
@@ -37,8 +37,7 @@ from prisma.types import (
AGENTS_DIR = Path(__file__).parent.parent / "agents"
CSV_FILE = AGENTS_DIR / "StoreAgent_rows.csv"
# User constants for the autogpt creator (test data, not production)
# Fixed uuid4 for idempotency - same user is reused across script runs
# Fixed user ID for the autogpt creator (test data, not production)
AUTOGPT_USER_ID = "79d96c73-e6f5-4656-a83a-185b41ee0d06"
AUTOGPT_EMAIL = "autogpt-test@agpt.co"
AUTOGPT_USERNAME = "autogpt"
@@ -254,12 +253,7 @@ async def create_agent_graph(
for node in nodes:
block_id = node["block_id"]
# Ensure the block exists (create placeholder if needed)
block_exists = await ensure_block_exists(db, block_id, known_blocks)
if not block_exists:
print(
f" Skipping node {node['id']} - block {block_id} could not be created"
)
continue
await ensure_block_exists(db, block_id, known_blocks)
await db.agentnode.create(
data=AgentNodeCreateInput(
@@ -359,7 +353,7 @@ async def create_store_listing(
if is_approved:
await db.storelisting.update(
where={"id": listing_id},
data={"ActiveVersion": {"connect": {"id": version_id}}},
data={"activeVersionId": version_id},
)
@@ -393,7 +387,6 @@ async def main():
# Build mapping from version_id to json file
loaded_graphs = {} # graph_id -> (graph_id, version)
failed_agents = []
for json_file in json_files:
# Extract the version ID from filename (agent_<version_id>.json)
@@ -406,25 +399,17 @@ async def main():
continue
metadata = csv_metadata[version_id]
agent_name = metadata["agent_name"]
print(f"\nProcessing: {agent_name}")
print(f"\nProcessing: {metadata['agent_name']}")
# Use a transaction per agent to prevent dangling resources
try:
async with db.tx() as tx:
# Load and create the agent graph
agent_data = await load_agent_json(json_file)
graph_id, graph_version = await create_agent_graph(
tx, agent_data, known_blocks
)
loaded_graphs[graph_id] = (graph_id, graph_version)
# Load and create the agent graph
agent_data = await load_agent_json(json_file)
graph_id, graph_version = await create_agent_graph(
db, agent_data, known_blocks
)
loaded_graphs[graph_id] = (graph_id, graph_version)
# Create store listing
await create_store_listing(tx, graph_id, graph_version, metadata)
except Exception as e:
print(f" Error loading agent '{agent_name}': {e}")
failed_agents.append(agent_name)
continue
# Create store listing
await create_store_listing(db, graph_id, graph_version, metadata)
# Step 4: Refresh materialized views
print("\n[Step 4] Refreshing materialized views...")
@@ -436,20 +421,11 @@ async def main():
print("\n" + "=" * 60)
print(f"Successfully loaded {len(loaded_graphs)} agents")
if failed_agents:
print(
f"Failed to load {len(failed_agents)} agents: {', '.join(failed_agents)}"
)
print("=" * 60)
finally:
await db.disconnect()
def run():
"""Entry point for poetry script."""
asyncio.run(main())
if __name__ == "__main__":
run()
asyncio.run(main())

View File

@@ -3,14 +3,6 @@ import { withSentryConfig } from "@sentry/nextjs";
/** @type {import('next').NextConfig} */
const nextConfig = {
productionBrowserSourceMaps: true,
experimental: {
serverActions: {
bodySizeLimit: "256mb",
},
// Increase body size limit for API routes (file uploads) - 256MB to match backend limit
proxyClientMaxBodySize: "256mb",
middlewareClientMaxBodySize: "256mb",
},
images: {
domains: [
// We dont need to maintain alphabetical order here

View File

@@ -82,7 +82,7 @@
"lodash": "4.17.21",
"lucide-react": "0.552.0",
"moment": "2.30.1",
"next": "15.4.10",
"next": "15.4.7",
"next-themes": "0.4.6",
"nuqs": "2.7.2",
"party-js": "2.2.0",
@@ -137,8 +137,9 @@
"concurrently": "9.2.1",
"cross-env": "10.1.0",
"eslint": "8.57.1",
"eslint-config-next": "15.5.7",
"eslint-config-next": "15.5.2",
"eslint-plugin-storybook": "9.1.5",
"import-in-the-middle": "1.14.2",
"msw": "2.11.6",
"msw-storybook-addon": "2.0.6",
"orval": "7.13.0",

View File

@@ -16,7 +16,7 @@ importers:
version: 5.2.2(react-hook-form@7.66.0(react@18.3.1))
'@next/third-parties':
specifier: 15.4.6
version: 15.4.6(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)
version: 15.4.6(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)
'@phosphor-icons/react':
specifier: 2.1.10
version: 2.1.10(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
@@ -88,7 +88,7 @@ importers:
version: 5.24.13(@rjsf/utils@5.24.13(react@18.3.1))
'@sentry/nextjs':
specifier: 10.27.0
version: 10.27.0(@opentelemetry/context-async-hooks@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/core@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/sdk-trace-base@2.2.0(@opentelemetry/api@1.9.0))(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)(webpack@5.101.3(esbuild@0.25.9))
version: 10.27.0(@opentelemetry/context-async-hooks@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/core@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/sdk-trace-base@2.2.0(@opentelemetry/api@1.9.0))(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)(webpack@5.101.3(esbuild@0.25.9))
'@supabase/ssr':
specifier: 0.7.0
version: 0.7.0(@supabase/supabase-js@2.78.0)
@@ -106,10 +106,10 @@ importers:
version: 0.2.4
'@vercel/analytics':
specifier: 1.5.0
version: 1.5.0(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)
version: 1.5.0(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)
'@vercel/speed-insights':
specifier: 1.2.0
version: 1.2.0(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)
version: 1.2.0(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)
'@xyflow/react':
specifier: 12.9.2
version: 12.9.2(@types/react@18.3.17)(immer@10.1.3)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
@@ -148,7 +148,7 @@ importers:
version: 12.23.24(@emotion/is-prop-valid@1.2.2)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
geist:
specifier: 1.5.1
version: 1.5.1(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))
version: 1.5.1(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))
highlight.js:
specifier: 11.11.1
version: 11.11.1
@@ -171,14 +171,14 @@ importers:
specifier: 2.30.1
version: 2.30.1
next:
specifier: 15.4.10
version: 15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
specifier: 15.4.7
version: 15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
next-themes:
specifier: 0.4.6
version: 0.4.6(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
nuqs:
specifier: 2.7.2
version: 2.7.2(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)
version: 2.7.2(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)
party-js:
specifier: 2.2.0
version: 2.2.0
@@ -284,7 +284,7 @@ importers:
version: 9.1.5(storybook@9.1.5(@testing-library/dom@10.4.1)(msw@2.11.6(@types/node@24.10.0)(typescript@5.9.3))(prettier@3.6.2))
'@storybook/nextjs':
specifier: 9.1.5
version: 9.1.5(esbuild@0.25.9)(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react-dom@18.3.1(react@18.3.1))(react@18.3.1)(storybook@9.1.5(@testing-library/dom@10.4.1)(msw@2.11.6(@types/node@24.10.0)(typescript@5.9.3))(prettier@3.6.2))(type-fest@4.41.0)(typescript@5.9.3)(webpack-hot-middleware@2.26.1)(webpack@5.101.3(esbuild@0.25.9))
version: 9.1.5(esbuild@0.25.9)(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react-dom@18.3.1(react@18.3.1))(react@18.3.1)(storybook@9.1.5(@testing-library/dom@10.4.1)(msw@2.11.6(@types/node@24.10.0)(typescript@5.9.3))(prettier@3.6.2))(type-fest@4.41.0)(typescript@5.9.3)(webpack-hot-middleware@2.26.1)(webpack@5.101.3(esbuild@0.25.9))
'@tanstack/eslint-plugin-query':
specifier: 5.91.2
version: 5.91.2(eslint@8.57.1)(typescript@5.9.3)
@@ -331,11 +331,14 @@ importers:
specifier: 8.57.1
version: 8.57.1
eslint-config-next:
specifier: 15.5.7
version: 15.5.7(eslint@8.57.1)(typescript@5.9.3)
specifier: 15.5.2
version: 15.5.2(eslint@8.57.1)(typescript@5.9.3)
eslint-plugin-storybook:
specifier: 9.1.5
version: 9.1.5(eslint@8.57.1)(storybook@9.1.5(@testing-library/dom@10.4.1)(msw@2.11.6(@types/node@24.10.0)(typescript@5.9.3))(prettier@3.6.2))(typescript@5.9.3)
import-in-the-middle:
specifier: 1.14.2
version: 1.14.2
msw:
specifier: 2.11.6
version: 2.11.6(@types/node@24.10.0)(typescript@5.9.3)
@@ -983,15 +986,12 @@ packages:
'@date-fns/tz@1.4.1':
resolution: {integrity: sha512-P5LUNhtbj6YfI3iJjw5EL9eUAG6OitD0W3fWQcpQjDRc/QIsL0tRNuO1PcDvPccWL1fSTXXdE1ds+l95DV/OFA==}
'@emnapi/core@1.7.1':
resolution: {integrity: sha512-o1uhUASyo921r2XtHYOHy7gdkGLge8ghBEQHMWmyJFoXlpU58kIrhhN3w26lpQb6dspetweapMn2CSNwQ8I4wg==}
'@emnapi/core@1.5.0':
resolution: {integrity: sha512-sbP8GzB1WDzacS8fgNPpHlp6C9VZe+SJP3F90W9rLemaQj2PzIuTEl1qDOYQf58YIpyjViI24y9aPWCjEzY2cg==}
'@emnapi/runtime@1.5.0':
resolution: {integrity: sha512-97/BJ3iXHww3djw6hYIfErCZFee7qCtrneuLa20UXFCOTCfBM2cvQHjWJ2EG0s0MtdNwInarqCTz35i4wWXHsQ==}
'@emnapi/runtime@1.7.1':
resolution: {integrity: sha512-PVtJr5CmLwYAU9PZDMITZoR5iAOShYREoR45EyyLrbntV50mdePTgUn4AmOw90Ifcj+x2kRjdzr1HP3RrNiHGA==}
'@emnapi/wasi-threads@1.1.0':
resolution: {integrity: sha512-WI0DdZ8xFSbgMjR1sFsKABJ/C5OnRrjT06JXbZKexJGrDuPTzZdDYfFlsgcCXCyf+suG5QU2e/y1Wo2V/OapLQ==}
@@ -1329,10 +1329,6 @@ packages:
resolution: {integrity: sha512-CCZCDJuduB9OUkFkY2IgppNZMi2lBQgD2qzwXkEia16cge2pijY/aXi96CJMquDMn3nJdlPV1A5KrJEXwfLNzQ==}
engines: {node: ^12.0.0 || ^14.0.0 || >=16.0.0}
'@eslint-community/regexpp@4.12.2':
resolution: {integrity: sha512-EriSTlt5OC9/7SXkRSCAhfSxxoSUgBm33OH+IkwbdpgoqsSsUg7y3uh+IICI/Qg4BBWr3U2i39RpmycbxMq4ew==}
engines: {node: ^12.0.0 || ^14.0.0 || >=16.0.0}
'@eslint/eslintrc@2.1.4':
resolution: {integrity: sha512-269Z39MS6wVJtsoUl10L60WdkhJVdPG24Q4eZTH3nnF6lpvSShEK3wQjDX9JRWAUPvPh7COouPpU9IrqaZFvtQ==}
engines: {node: ^12.22.0 || ^14.17.0 || >=16.0.0}
@@ -1606,56 +1602,56 @@ packages:
'@neoconfetti/react@1.0.0':
resolution: {integrity: sha512-klcSooChXXOzIm+SE5IISIAn3bYzYfPjbX7D7HoqZL84oAfgREeSg5vSIaSFH+DaGzzvImTyWe1OyrJ67vik4A==}
'@next/env@15.4.10':
resolution: {integrity: sha512-knhmoJ0Vv7VRf6pZEPSnciUG1S4bIhWx+qTYBW/AjxEtlzsiNORPk8sFDCEvqLfmKuey56UB9FL1UdHEV3uBrg==}
'@next/env@15.4.7':
resolution: {integrity: sha512-PrBIpO8oljZGTOe9HH0miix1w5MUiGJ/q83Jge03mHEE0E3pyqzAy2+l5G6aJDbXoobmxPJTVhbCuwlLtjSHwg==}
'@next/eslint-plugin-next@15.5.7':
resolution: {integrity: sha512-DtRU2N7BkGr8r+pExfuWHwMEPX5SD57FeA6pxdgCHODo+b/UgIgjE+rgWKtJAbEbGhVZ2jtHn4g3wNhWFoNBQQ==}
'@next/eslint-plugin-next@15.5.2':
resolution: {integrity: sha512-lkLrRVxcftuOsJNhWatf1P2hNVfh98k/omQHrCEPPriUypR6RcS13IvLdIrEvkm9AH2Nu2YpR5vLqBuy6twH3Q==}
'@next/swc-darwin-arm64@15.4.8':
resolution: {integrity: sha512-Pf6zXp7yyQEn7sqMxur6+kYcywx5up1J849psyET7/8pG2gQTVMjU3NzgIt8SeEP5to3If/SaWmaA6H6ysBr1A==}
'@next/swc-darwin-arm64@15.4.7':
resolution: {integrity: sha512-2Dkb+VUTp9kHHkSqtws4fDl2Oxms29HcZBwFIda1X7Ztudzy7M6XF9HDS2dq85TmdN47VpuhjE+i6wgnIboVzQ==}
engines: {node: '>= 10'}
cpu: [arm64]
os: [darwin]
'@next/swc-darwin-x64@15.4.8':
resolution: {integrity: sha512-xla6AOfz68a6kq3gRQccWEvFC/VRGJmA/QuSLENSO7CZX5WIEkSz7r1FdXUjtGCQ1c2M+ndUAH7opdfLK1PQbw==}
'@next/swc-darwin-x64@15.4.7':
resolution: {integrity: sha512-qaMnEozKdWezlmh1OGDVFueFv2z9lWTcLvt7e39QA3YOvZHNpN2rLs/IQLwZaUiw2jSvxW07LxMCWtOqsWFNQg==}
engines: {node: '>= 10'}
cpu: [x64]
os: [darwin]
'@next/swc-linux-arm64-gnu@15.4.8':
resolution: {integrity: sha512-y3fmp+1Px/SJD+5ntve5QLZnGLycsxsVPkTzAc3zUiXYSOlTPqT8ynfmt6tt4fSo1tAhDPmryXpYKEAcoAPDJw==}
'@next/swc-linux-arm64-gnu@15.4.7':
resolution: {integrity: sha512-ny7lODPE7a15Qms8LZiN9wjNWIeI+iAZOFDOnv2pcHStncUr7cr9lD5XF81mdhrBXLUP9yT9RzlmSWKIazWoDw==}
engines: {node: '>= 10'}
cpu: [arm64]
os: [linux]
'@next/swc-linux-arm64-musl@15.4.8':
resolution: {integrity: sha512-DX/L8VHzrr1CfwaVjBQr3GWCqNNFgyWJbeQ10Lx/phzbQo3JNAxUok1DZ8JHRGcL6PgMRgj6HylnLNndxn4Z6A==}
'@next/swc-linux-arm64-musl@15.4.7':
resolution: {integrity: sha512-4SaCjlFR/2hGJqZLLWycccy1t+wBrE/vyJWnYaZJhUVHccpGLG5q0C+Xkw4iRzUIkE+/dr90MJRUym3s1+vO8A==}
engines: {node: '>= 10'}
cpu: [arm64]
os: [linux]
'@next/swc-linux-x64-gnu@15.4.8':
resolution: {integrity: sha512-9fLAAXKAL3xEIFdKdzG5rUSvSiZTLLTCc6JKq1z04DR4zY7DbAPcRvNm3K1inVhTiQCs19ZRAgUerHiVKMZZIA==}
'@next/swc-linux-x64-gnu@15.4.7':
resolution: {integrity: sha512-2uNXjxvONyRidg00VwvlTYDwC9EgCGNzPAPYbttIATZRxmOZ3hllk/YYESzHZb65eyZfBR5g9xgCZjRAl9YYGg==}
engines: {node: '>= 10'}
cpu: [x64]
os: [linux]
'@next/swc-linux-x64-musl@15.4.8':
resolution: {integrity: sha512-s45V7nfb5g7dbS7JK6XZDcapicVrMMvX2uYgOHP16QuKH/JA285oy6HcxlKqwUNaFY/UC6EvQ8QZUOo19cBKSA==}
'@next/swc-linux-x64-musl@15.4.7':
resolution: {integrity: sha512-ceNbPjsFgLscYNGKSu4I6LYaadq2B8tcK116nVuInpHHdAWLWSwVK6CHNvCi0wVS9+TTArIFKJGsEyVD1H+4Kg==}
engines: {node: '>= 10'}
cpu: [x64]
os: [linux]
'@next/swc-win32-arm64-msvc@15.4.8':
resolution: {integrity: sha512-KjgeQyOAq7t/HzAJcWPGA8X+4WY03uSCZ2Ekk98S9OgCFsb6lfBE3dbUzUuEQAN2THbwYgFfxX2yFTCMm8Kehw==}
'@next/swc-win32-arm64-msvc@15.4.7':
resolution: {integrity: sha512-pZyxmY1iHlZJ04LUL7Css8bNvsYAMYOY9JRwFA3HZgpaNKsJSowD09Vg2R9734GxAcLJc2KDQHSCR91uD6/AAw==}
engines: {node: '>= 10'}
cpu: [arm64]
os: [win32]
'@next/swc-win32-x64-msvc@15.4.8':
resolution: {integrity: sha512-Exsmf/+42fWVnLMaZHzshukTBxZrSwuuLKFvqhGHJ+mC1AokqieLY/XzAl3jc/CqhXLqLY3RRjkKJ9YnLPcRWg==}
'@next/swc-win32-x64-msvc@15.4.7':
resolution: {integrity: sha512-HjuwPJ7BeRzgl3KrjKqD2iDng0eQIpIReyhpF5r4yeAHFwWRuAhfW92rWv/r3qeQHEwHsLRzFDvMqRjyM5DI6A==}
engines: {node: '>= 10'}
cpu: [x64]
os: [win32]
@@ -2626,8 +2622,8 @@ packages:
'@rtsao/scc@1.1.0':
resolution: {integrity: sha512-zt6OdqaDoOnJ1ZYsCYGt9YmWzDXl4vQdKTyJev62gFhRGKdx7mcT54V9KIjg+d2wi9EXsPvAPKe7i7WjfVWB8g==}
'@rushstack/eslint-patch@1.15.0':
resolution: {integrity: sha512-ojSshQPKwVvSMR8yT2L/QtUkV5SXi/IfDiJ4/8d6UbTPjiHVmxZzUAzGD8Tzks1b9+qQkZa0isUOvYObedITaw==}
'@rushstack/eslint-patch@1.12.0':
resolution: {integrity: sha512-5EwMtOqvJMMa3HbmxLlF74e+3/HhwBTMcvt3nqVJgGCozO6hzIPOBlwm8mGVNR9SN2IJpxSnlxczyDjcn7qIyw==}
'@scarf/scarf@1.4.0':
resolution: {integrity: sha512-xxeapPiUXdZAE3che6f3xogoJPeZgig6omHEy1rIY5WVsB3H2BHNnZH+gHG6x91SCWyQCzWGsuL2Hh3ClO5/qQ==}
@@ -3101,8 +3097,8 @@ packages:
peerDependencies:
'@testing-library/dom': '>=7.21.4'
'@tybys/wasm-util@0.10.1':
resolution: {integrity: sha512-9tTaPJLSiejZKx+Bmog4uSubteqTvFrVrURwkmHixBo0G4seD0zUxp98E1DzUBJxLQ3NPwXrGKDiVjwx/DpPsg==}
'@tybys/wasm-util@0.10.0':
resolution: {integrity: sha512-VyyPYFlOMNylG45GoAe0xDoLwWuowvf92F9kySqzYh8vmYm7D2u4iUJKa1tOUpS70Ku13ASrOkS4ScXFsTaCNQ==}
'@types/aria-query@5.0.4':
resolution: {integrity: sha512-rfT93uj5s0PRL7EzccGMs3brplhcrghnDoV26NqKhCAS1hVo+WdNsPvE/yb6ilfr5hi2MEk6d5EWJTKdxg8jVw==}
@@ -3292,16 +3288,16 @@ packages:
'@types/ws@8.18.1':
resolution: {integrity: sha512-ThVF6DCVhA8kUGy+aazFQ4kXQ7E1Ty7A3ypFOe0IcJV8O/M511G99AW24irKrW56Wt44yG9+ij8FaqoBGkuBXg==}
'@typescript-eslint/eslint-plugin@8.48.1':
resolution: {integrity: sha512-X63hI1bxl5ohelzr0LY5coufyl0LJNthld+abwxpCoo6Gq+hSqhKwci7MUWkXo67mzgUK6YFByhmaHmUcuBJmA==}
'@typescript-eslint/eslint-plugin@8.43.0':
resolution: {integrity: sha512-8tg+gt7ENL7KewsKMKDHXR1vm8tt9eMxjJBYINf6swonlWgkYn5NwyIgXpbbDxTNU5DgpDFfj95prcTq2clIQQ==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
peerDependencies:
'@typescript-eslint/parser': ^8.48.1
'@typescript-eslint/parser': ^8.43.0
eslint: ^8.57.0 || ^9.0.0
typescript: '>=4.8.4 <6.0.0'
'@typescript-eslint/parser@8.48.1':
resolution: {integrity: sha512-PC0PDZfJg8sP7cmKe6L3QIL8GZwU5aRvUFedqSIpw3B+QjRSUZeeITC2M5XKeMXEzL6wccN196iy3JLwKNvDVA==}
'@typescript-eslint/parser@8.43.0':
resolution: {integrity: sha512-B7RIQiTsCBBmY+yW4+ILd6mF5h1FUwJsVvpqkrgpszYifetQ2Ke+Z4u6aZh0CblkUGIdR59iYVyXqqZGkZ3aBw==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
peerDependencies:
eslint: ^8.57.0 || ^9.0.0
@@ -3319,12 +3315,6 @@ packages:
peerDependencies:
typescript: '>=4.8.4 <6.0.0'
'@typescript-eslint/project-service@8.48.1':
resolution: {integrity: sha512-HQWSicah4s9z2/HifRPQ6b6R7G+SBx64JlFQpgSSHWPKdvCZX57XCbszg/bapbRsOEv42q5tayTYcEFpACcX1w==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
peerDependencies:
typescript: '>=4.8.4 <6.0.0'
'@typescript-eslint/scope-manager@8.43.0':
resolution: {integrity: sha512-daSWlQ87ZhsjrbMLvpuuMAt3y4ba57AuvadcR7f3nl8eS3BjRc8L9VLxFLk92RL5xdXOg6IQ+qKjjqNEimGuAg==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
@@ -3333,10 +3323,6 @@ packages:
resolution: {integrity: sha512-LF4b/NmGvdWEHD2H4MsHD8ny6JpiVNDzrSZr3CsckEgCbAGZbYM4Cqxvi9L+WqDMT+51Ozy7lt2M+d0JLEuBqA==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
'@typescript-eslint/scope-manager@8.48.1':
resolution: {integrity: sha512-rj4vWQsytQbLxC5Bf4XwZ0/CKd362DkWMUkviT7DCS057SK64D5lH74sSGzhI6PDD2HCEq02xAP9cX68dYyg1w==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
'@typescript-eslint/tsconfig-utils@8.43.0':
resolution: {integrity: sha512-ALC2prjZcj2YqqL5X/bwWQmHA2em6/94GcbB/KKu5SX3EBDOsqztmmX1kMkvAJHzxk7TazKzJfFiEIagNV3qEA==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
@@ -3349,14 +3335,8 @@ packages:
peerDependencies:
typescript: '>=4.8.4 <6.0.0'
'@typescript-eslint/tsconfig-utils@8.48.1':
resolution: {integrity: sha512-k0Jhs4CpEffIBm6wPaCXBAD7jxBtrHjrSgtfCjUvPp9AZ78lXKdTR8fxyZO5y4vWNlOvYXRtngSZNSn+H53Jkw==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
peerDependencies:
typescript: '>=4.8.4 <6.0.0'
'@typescript-eslint/type-utils@8.48.1':
resolution: {integrity: sha512-1jEop81a3LrJQLTf/1VfPQdhIY4PlGDBc/i67EVWObrtvcziysbLN3oReexHOM6N3jyXgCrkBsZpqwH0hiDOQg==}
'@typescript-eslint/type-utils@8.43.0':
resolution: {integrity: sha512-qaH1uLBpBuBBuRf8c1mLJ6swOfzCXryhKND04Igr4pckzSEW9JX5Aw9AgW00kwfjWJF0kk0ps9ExKTfvXfw4Qg==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
peerDependencies:
eslint: ^8.57.0 || ^9.0.0
@@ -3370,10 +3350,6 @@ packages:
resolution: {integrity: sha512-lNCWCbq7rpg7qDsQrd3D6NyWYu+gkTENkG5IKYhUIcxSb59SQC/hEQ+MrG4sTgBVghTonNWq42bA/d4yYumldQ==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
'@typescript-eslint/types@8.48.1':
resolution: {integrity: sha512-+fZ3LZNeiELGmimrujsDCT4CRIbq5oXdHe7chLiW8qzqyPMnn1puNstCrMNVAqwcl2FdIxkuJ4tOs/RFDBVc/Q==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
'@typescript-eslint/typescript-estree@8.43.0':
resolution: {integrity: sha512-7Vv6zlAhPb+cvEpP06WXXy/ZByph9iL6BQRBDj4kmBsW98AqEeQHlj/13X+sZOrKSo9/rNKH4Ul4f6EICREFdw==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
@@ -3386,12 +3362,6 @@ packages:
peerDependencies:
typescript: '>=4.8.4 <6.0.0'
'@typescript-eslint/typescript-estree@8.48.1':
resolution: {integrity: sha512-/9wQ4PqaefTK6POVTjJaYS0bynCgzh6ClJHGSBj06XEHjkfylzB+A3qvyaXnErEZSaxhIo4YdyBgq6j4RysxDg==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
peerDependencies:
typescript: '>=4.8.4 <6.0.0'
'@typescript-eslint/utils@8.43.0':
resolution: {integrity: sha512-S1/tEmkUeeswxd0GGcnwuVQPFWo8NzZTOMxCvw8BX7OMxnNae+i8Tm7REQen/SwUIPoPqfKn7EaZ+YLpiB3k9g==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
@@ -3406,13 +3376,6 @@ packages:
eslint: ^8.57.0 || ^9.0.0
typescript: '>=4.8.4 <6.0.0'
'@typescript-eslint/utils@8.48.1':
resolution: {integrity: sha512-fAnhLrDjiVfey5wwFRwrweyRlCmdz5ZxXz2G/4cLn0YDLjTapmN4gcCsTBR1N2rWnZSDeWpYtgLDsJt+FpmcwA==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
peerDependencies:
eslint: ^8.57.0 || ^9.0.0
typescript: '>=4.8.4 <6.0.0'
'@typescript-eslint/visitor-keys@8.43.0':
resolution: {integrity: sha512-T+S1KqRD4sg/bHfLwrpF/K3gQLBM1n7Rp7OjjikjTEssI2YJzQpi5WXoynOaQ93ERIuq3O8RBTOUYDKszUCEHw==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
@@ -3421,10 +3384,6 @@ packages:
resolution: {integrity: sha512-tUFMXI4gxzzMXt4xpGJEsBsTox0XbNQ1y94EwlD/CuZwFcQP79xfQqMhau9HsRc/J0cAPA/HZt1dZPtGn9V/7w==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
'@typescript-eslint/visitor-keys@8.48.1':
resolution: {integrity: sha512-BmxxndzEWhE4TIEEMBs8lP3MBWN3jFPs/p6gPm/wkv02o41hI6cq9AuSmGAaTTHPtA1FTi2jBre4A9rm5ZmX+Q==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
'@ungap/structured-clone@1.3.0':
resolution: {integrity: sha512-WmoN8qaIAo7WTYWbAZuG8PYEhn5fkz7dZrqTBZ7dtt//lL2Gwms1IcnQ5yHqjDfX8Ft5j4YzDM23f87zBfDe9g==}
@@ -4626,8 +4585,8 @@ packages:
resolution: {integrity: sha512-/veY75JbMK4j1yjvuUxuVsiS/hr/4iHs9FTT6cgTexxdE0Ly/glccBAkloH/DofkjRbZU3bnoj38mOmhkZ0lHw==}
engines: {node: '>=12'}
eslint-config-next@15.5.7:
resolution: {integrity: sha512-nU/TRGHHeG81NeLW5DeQT5t6BDUqbpsNQTvef1ld/tqHT+/zTx60/TIhKnmPISTTe++DVo+DLxDmk4rnwHaZVw==}
eslint-config-next@15.5.2:
resolution: {integrity: sha512-3hPZghsLupMxxZ2ggjIIrat/bPniM2yRpsVPVM40rp8ZMzKWOJp2CGWn7+EzoV2ddkUr5fxNfHpF+wU1hGt/3g==}
peerDependencies:
eslint: ^7.23.0 || ^8.0.0 || ^9.0.0
typescript: '>=3.3.1'
@@ -4959,10 +4918,6 @@ packages:
peerDependencies:
next: '>=13.2.0'
generator-function@2.0.1:
resolution: {integrity: sha512-SFdFmIJi+ybC0vjlHN0ZGVGHc3lgE0DxPAT0djjVg+kjOnSqclqmj0KQ7ykTOLP6YxoqOvuAODGdcHJn+43q3g==}
engines: {node: '>= 0.4'}
gensync@1.0.0-beta.2:
resolution: {integrity: sha512-3hN7NaskYvMDLQY55gnW3NQ+mesEAepTqlg+VEbj7zzqEMBVNhzcGYYeqFo/TlYz6eQiFcp1HcsCZO+nGgS8zg==}
engines: {node: '>=6.9.0'}
@@ -4991,8 +4946,8 @@ packages:
resolution: {integrity: sha512-w9UMqWwJxHNOvoNzSJ2oPF5wvYcvP7jUvYzhp67yEhTi17ZDBBC1z9pTdGuzjD+EFIqLSYRweZjqfiPzQ06Ebg==}
engines: {node: '>= 0.4'}
get-tsconfig@4.13.0:
resolution: {integrity: sha512-1VKTZJCwBrvbd+Wn3AOgQP/2Av+TfTCOlE4AcRJE72W1ksZXbAx8PPBR9RzgTeSPzlPMHrbANMH3LbltH73wxQ==}
get-tsconfig@4.10.1:
resolution: {integrity: sha512-auHyJ4AgMz7vgS8Hp3N6HXSmlMdUyhSUrfBF16w153rxtLIEOE+HGqaBppczZvnHLqQJfiHotCYpNhl0lUROFQ==}
github-slugger@2.0.0:
resolution: {integrity: sha512-IaOQ9puYtjrkq7Y0Ygl9KDZnrf/aiUJYUpVf89y8kyaxbRG7Y1SrX/jaumrv81vc61+kiMempujsM3Yw7w5qcw==}
@@ -5213,6 +5168,9 @@ packages:
resolution: {integrity: sha512-TR3KfrTZTYLPB6jUjfx6MF9WcWrHL9su5TObK4ZkYgBdWKPOFoSoQIdEuTuR82pmtxH2spWG9h6etwfr1pLBqQ==}
engines: {node: '>=6'}
import-in-the-middle@1.14.2:
resolution: {integrity: sha512-5tCuY9BV8ujfOpwtAGgsTx9CGUapcFMEEyByLv1B+v2+6DhAcw+Zr0nhQT7uwaZ7DiourxFEscghOR8e1aPLQw==}
import-in-the-middle@2.0.0:
resolution: {integrity: sha512-yNZhyQYqXpkT0AKq3F3KLasUSK4fHvebNH5hOsKQw2dhGSALvQ4U0BqUc5suziKvydO5u5hgN2hy1RJaho8U5A==}
@@ -5324,10 +5282,6 @@ packages:
resolution: {integrity: sha512-nPUB5km40q9e8UfN/Zc24eLlzdSf9OfKByBw9CIdw4H1giPMeA0OIJvbchsCu4npfI2QcMVBsGEBHKZ7wLTWmQ==}
engines: {node: '>= 0.4'}
is-generator-function@1.1.2:
resolution: {integrity: sha512-upqt1SkGkODW9tsGNG5mtXTXtECizwtS2kA161M+gJPc1xdb/Ax629af6YrTwcOeQHbewrPNlE5Dx7kzvXTizA==}
engines: {node: '>= 0.4'}
is-glob@4.0.3:
resolution: {integrity: sha512-xelSayHH36ZgE7ZWhli7pW34hNbNl8Ojv5KVmkJD4hBdD3th8Tfk9vYasLM+mXWOZhFkgZfxhLSnrwRr4elSSg==}
engines: {node: '>=0.10.0'}
@@ -5949,8 +5903,8 @@ packages:
engines: {node: ^10 || ^12 || ^13.7 || ^14 || >=15.0.1}
hasBin: true
napi-postinstall@0.3.4:
resolution: {integrity: sha512-PHI5f1O0EP5xJ9gQmFGMS6IZcrVvTjpXjz7Na41gTE7eE2hK11lg04CECCYEEjdc17EV4DO+fkGEtt7TpTaTiQ==}
napi-postinstall@0.3.3:
resolution: {integrity: sha512-uTp172LLXSxuSYHv/kou+f6KW3SMppU9ivthaVTXian9sOt3XM/zHYHpRZiLgQoxeWfYUnslNWQHF1+G71xcow==}
engines: {node: ^12.20.0 || ^14.18.0 || >=16.0.0}
hasBin: true
@@ -5966,8 +5920,8 @@ packages:
react: ^16.8 || ^17 || ^18 || ^19 || ^19.0.0-rc
react-dom: ^16.8 || ^17 || ^18 || ^19 || ^19.0.0-rc
next@15.4.10:
resolution: {integrity: sha512-itVlc79QjpKMFMRhP+kbGKaSG/gZM6RCvwhEbwmCNF06CdDiNaoHcbeg0PqkEa2GOcn8KJ0nnc7+yL7EjoYLHQ==}
next@15.4.7:
resolution: {integrity: sha512-OcqRugwF7n7mC8OSYjvsZhhG1AYSvulor1EIUsIkbbEbf1qoE5EbH36Swj8WhF4cHqmDgkiam3z1c1W0J1Wifg==}
engines: {node: ^18.18.0 || ^19.8.0 || >= 20.0.0}
hasBin: true
peerDependencies:
@@ -6815,11 +6769,6 @@ packages:
engines: {node: '>= 0.4'}
hasBin: true
resolve@1.22.11:
resolution: {integrity: sha512-RfqAvLnMl313r7c9oclB1HhUEAezcpLjz95wFH4LVuhk9JF/r22qmVP9AMmOU4vMX7Q8pN8jwNg/CSpdFnMjTQ==}
engines: {node: '>= 0.4'}
hasBin: true
resolve@1.22.8:
resolution: {integrity: sha512-oKWePCxqpd6FlLvGV1VU0x7bkPmmCNolxzjMf4NczoDnQcIWrAF+cPtZn5i6n+RfD2d9i0tzpKnG6Yk168yIyw==}
hasBin: true
@@ -7909,7 +7858,7 @@ snapshots:
'@babel/helper-plugin-utils': 7.27.1
debug: 4.4.3
lodash.debounce: 4.0.8
resolve: 1.22.11
resolve: 1.22.10
transitivePeerDependencies:
- supports-color
@@ -8601,7 +8550,7 @@ snapshots:
'@date-fns/tz@1.4.1': {}
'@emnapi/core@1.7.1':
'@emnapi/core@1.5.0':
dependencies:
'@emnapi/wasi-threads': 1.1.0
tslib: 2.8.1
@@ -8612,11 +8561,6 @@ snapshots:
tslib: 2.8.1
optional: true
'@emnapi/runtime@1.7.1':
dependencies:
tslib: 2.8.1
optional: true
'@emnapi/wasi-threads@1.1.0':
dependencies:
tslib: 2.8.1
@@ -8795,8 +8739,6 @@ snapshots:
'@eslint-community/regexpp@4.12.1': {}
'@eslint-community/regexpp@4.12.2': {}
'@eslint/eslintrc@2.1.4':
dependencies:
ajv: 6.12.6
@@ -9054,46 +8996,46 @@ snapshots:
'@napi-rs/wasm-runtime@0.2.12':
dependencies:
'@emnapi/core': 1.7.1
'@emnapi/runtime': 1.7.1
'@tybys/wasm-util': 0.10.1
'@emnapi/core': 1.5.0
'@emnapi/runtime': 1.5.0
'@tybys/wasm-util': 0.10.0
optional: true
'@neoconfetti/react@1.0.0': {}
'@next/env@15.4.10': {}
'@next/env@15.4.7': {}
'@next/eslint-plugin-next@15.5.7':
'@next/eslint-plugin-next@15.5.2':
dependencies:
fast-glob: 3.3.1
'@next/swc-darwin-arm64@15.4.8':
'@next/swc-darwin-arm64@15.4.7':
optional: true
'@next/swc-darwin-x64@15.4.8':
'@next/swc-darwin-x64@15.4.7':
optional: true
'@next/swc-linux-arm64-gnu@15.4.8':
'@next/swc-linux-arm64-gnu@15.4.7':
optional: true
'@next/swc-linux-arm64-musl@15.4.8':
'@next/swc-linux-arm64-musl@15.4.7':
optional: true
'@next/swc-linux-x64-gnu@15.4.8':
'@next/swc-linux-x64-gnu@15.4.7':
optional: true
'@next/swc-linux-x64-musl@15.4.8':
'@next/swc-linux-x64-musl@15.4.7':
optional: true
'@next/swc-win32-arm64-msvc@15.4.8':
'@next/swc-win32-arm64-msvc@15.4.7':
optional: true
'@next/swc-win32-x64-msvc@15.4.8':
'@next/swc-win32-x64-msvc@15.4.7':
optional: true
'@next/third-parties@15.4.6(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)':
'@next/third-parties@15.4.6(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)':
dependencies:
next: 15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
next: 15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
react: 18.3.1
third-party-capital: 1.0.20
@@ -10173,7 +10115,7 @@ snapshots:
'@rtsao/scc@1.1.0': {}
'@rushstack/eslint-patch@1.15.0': {}
'@rushstack/eslint-patch@1.12.0': {}
'@scarf/scarf@1.4.0': {}
@@ -10325,7 +10267,7 @@ snapshots:
'@sentry/core@10.27.0': {}
'@sentry/nextjs@10.27.0(@opentelemetry/context-async-hooks@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/core@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/sdk-trace-base@2.2.0(@opentelemetry/api@1.9.0))(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)(webpack@5.101.3(esbuild@0.25.9))':
'@sentry/nextjs@10.27.0(@opentelemetry/context-async-hooks@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/core@2.2.0(@opentelemetry/api@1.9.0))(@opentelemetry/sdk-trace-base@2.2.0(@opentelemetry/api@1.9.0))(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)(webpack@5.101.3(esbuild@0.25.9))':
dependencies:
'@opentelemetry/api': 1.9.0
'@opentelemetry/semantic-conventions': 1.37.0
@@ -10338,7 +10280,7 @@ snapshots:
'@sentry/react': 10.27.0(react@18.3.1)
'@sentry/vercel-edge': 10.27.0
'@sentry/webpack-plugin': 4.3.0(webpack@5.101.3(esbuild@0.25.9))
next: 15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
next: 15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
resolve: 1.22.8
rollup: 4.52.2
stacktrace-parser: 0.1.11
@@ -10700,7 +10642,7 @@ snapshots:
react: 18.3.1
react-dom: 18.3.1(react@18.3.1)
'@storybook/nextjs@9.1.5(esbuild@0.25.9)(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react-dom@18.3.1(react@18.3.1))(react@18.3.1)(storybook@9.1.5(@testing-library/dom@10.4.1)(msw@2.11.6(@types/node@24.10.0)(typescript@5.9.3))(prettier@3.6.2))(type-fest@4.41.0)(typescript@5.9.3)(webpack-hot-middleware@2.26.1)(webpack@5.101.3(esbuild@0.25.9))':
'@storybook/nextjs@9.1.5(esbuild@0.25.9)(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react-dom@18.3.1(react@18.3.1))(react@18.3.1)(storybook@9.1.5(@testing-library/dom@10.4.1)(msw@2.11.6(@types/node@24.10.0)(typescript@5.9.3))(prettier@3.6.2))(type-fest@4.41.0)(typescript@5.9.3)(webpack-hot-middleware@2.26.1)(webpack@5.101.3(esbuild@0.25.9))':
dependencies:
'@babel/core': 7.28.4
'@babel/plugin-syntax-bigint': 7.8.3(@babel/core@7.28.4)
@@ -10724,7 +10666,7 @@ snapshots:
css-loader: 6.11.0(webpack@5.101.3(esbuild@0.25.9))
image-size: 2.0.2
loader-utils: 3.3.1
next: 15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
next: 15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
node-polyfill-webpack-plugin: 2.0.1(webpack@5.101.3(esbuild@0.25.9))
postcss: 8.5.6
postcss-loader: 8.2.0(postcss@8.5.6)(typescript@5.9.3)(webpack@5.101.3(esbuild@0.25.9))
@@ -10925,7 +10867,7 @@ snapshots:
dependencies:
'@testing-library/dom': 10.4.1
'@tybys/wasm-util@0.10.1':
'@tybys/wasm-util@0.10.0':
dependencies:
tslib: 2.8.1
optional: true
@@ -11123,14 +11065,14 @@ snapshots:
dependencies:
'@types/node': 24.10.0
'@typescript-eslint/eslint-plugin@8.48.1(@typescript-eslint/parser@8.48.1(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1)(typescript@5.9.3)':
'@typescript-eslint/eslint-plugin@8.43.0(@typescript-eslint/parser@8.43.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1)(typescript@5.9.3)':
dependencies:
'@eslint-community/regexpp': 4.12.2
'@typescript-eslint/parser': 8.48.1(eslint@8.57.1)(typescript@5.9.3)
'@typescript-eslint/scope-manager': 8.48.1
'@typescript-eslint/type-utils': 8.48.1(eslint@8.57.1)(typescript@5.9.3)
'@typescript-eslint/utils': 8.48.1(eslint@8.57.1)(typescript@5.9.3)
'@typescript-eslint/visitor-keys': 8.48.1
'@eslint-community/regexpp': 4.12.1
'@typescript-eslint/parser': 8.43.0(eslint@8.57.1)(typescript@5.9.3)
'@typescript-eslint/scope-manager': 8.43.0
'@typescript-eslint/type-utils': 8.43.0(eslint@8.57.1)(typescript@5.9.3)
'@typescript-eslint/utils': 8.43.0(eslint@8.57.1)(typescript@5.9.3)
'@typescript-eslint/visitor-keys': 8.43.0
eslint: 8.57.1
graphemer: 1.4.0
ignore: 7.0.5
@@ -11140,12 +11082,12 @@ snapshots:
transitivePeerDependencies:
- supports-color
'@typescript-eslint/parser@8.48.1(eslint@8.57.1)(typescript@5.9.3)':
'@typescript-eslint/parser@8.43.0(eslint@8.57.1)(typescript@5.9.3)':
dependencies:
'@typescript-eslint/scope-manager': 8.48.1
'@typescript-eslint/types': 8.48.1
'@typescript-eslint/typescript-estree': 8.48.1(typescript@5.9.3)
'@typescript-eslint/visitor-keys': 8.48.1
'@typescript-eslint/scope-manager': 8.43.0
'@typescript-eslint/types': 8.43.0
'@typescript-eslint/typescript-estree': 8.43.0(typescript@5.9.3)
'@typescript-eslint/visitor-keys': 8.43.0
debug: 4.4.3
eslint: 8.57.1
typescript: 5.9.3
@@ -11155,7 +11097,7 @@ snapshots:
'@typescript-eslint/project-service@8.43.0(typescript@5.9.3)':
dependencies:
'@typescript-eslint/tsconfig-utils': 8.43.0(typescript@5.9.3)
'@typescript-eslint/types': 8.48.1
'@typescript-eslint/types': 8.43.0
debug: 4.4.3
typescript: 5.9.3
transitivePeerDependencies:
@@ -11164,16 +11106,7 @@ snapshots:
'@typescript-eslint/project-service@8.46.2(typescript@5.9.3)':
dependencies:
'@typescript-eslint/tsconfig-utils': 8.46.2(typescript@5.9.3)
'@typescript-eslint/types': 8.48.1
debug: 4.4.3
typescript: 5.9.3
transitivePeerDependencies:
- supports-color
'@typescript-eslint/project-service@8.48.1(typescript@5.9.3)':
dependencies:
'@typescript-eslint/tsconfig-utils': 8.48.1(typescript@5.9.3)
'@typescript-eslint/types': 8.48.1
'@typescript-eslint/types': 8.46.2
debug: 4.4.3
typescript: 5.9.3
transitivePeerDependencies:
@@ -11189,11 +11122,6 @@ snapshots:
'@typescript-eslint/types': 8.46.2
'@typescript-eslint/visitor-keys': 8.46.2
'@typescript-eslint/scope-manager@8.48.1':
dependencies:
'@typescript-eslint/types': 8.48.1
'@typescript-eslint/visitor-keys': 8.48.1
'@typescript-eslint/tsconfig-utils@8.43.0(typescript@5.9.3)':
dependencies:
typescript: 5.9.3
@@ -11202,15 +11130,11 @@ snapshots:
dependencies:
typescript: 5.9.3
'@typescript-eslint/tsconfig-utils@8.48.1(typescript@5.9.3)':
'@typescript-eslint/type-utils@8.43.0(eslint@8.57.1)(typescript@5.9.3)':
dependencies:
typescript: 5.9.3
'@typescript-eslint/type-utils@8.48.1(eslint@8.57.1)(typescript@5.9.3)':
dependencies:
'@typescript-eslint/types': 8.48.1
'@typescript-eslint/typescript-estree': 8.48.1(typescript@5.9.3)
'@typescript-eslint/utils': 8.48.1(eslint@8.57.1)(typescript@5.9.3)
'@typescript-eslint/types': 8.43.0
'@typescript-eslint/typescript-estree': 8.43.0(typescript@5.9.3)
'@typescript-eslint/utils': 8.43.0(eslint@8.57.1)(typescript@5.9.3)
debug: 4.4.3
eslint: 8.57.1
ts-api-utils: 2.1.0(typescript@5.9.3)
@@ -11222,8 +11146,6 @@ snapshots:
'@typescript-eslint/types@8.46.2': {}
'@typescript-eslint/types@8.48.1': {}
'@typescript-eslint/typescript-estree@8.43.0(typescript@5.9.3)':
dependencies:
'@typescript-eslint/project-service': 8.43.0(typescript@5.9.3)
@@ -11234,7 +11156,7 @@ snapshots:
fast-glob: 3.3.3
is-glob: 4.0.3
minimatch: 9.0.5
semver: 7.7.3
semver: 7.7.2
ts-api-utils: 2.1.0(typescript@5.9.3)
typescript: 5.9.3
transitivePeerDependencies:
@@ -11256,21 +11178,6 @@ snapshots:
transitivePeerDependencies:
- supports-color
'@typescript-eslint/typescript-estree@8.48.1(typescript@5.9.3)':
dependencies:
'@typescript-eslint/project-service': 8.48.1(typescript@5.9.3)
'@typescript-eslint/tsconfig-utils': 8.48.1(typescript@5.9.3)
'@typescript-eslint/types': 8.48.1
'@typescript-eslint/visitor-keys': 8.48.1
debug: 4.4.3
minimatch: 9.0.5
semver: 7.7.3
tinyglobby: 0.2.15
ts-api-utils: 2.1.0(typescript@5.9.3)
typescript: 5.9.3
transitivePeerDependencies:
- supports-color
'@typescript-eslint/utils@8.43.0(eslint@8.57.1)(typescript@5.9.3)':
dependencies:
'@eslint-community/eslint-utils': 4.9.0(eslint@8.57.1)
@@ -11293,17 +11200,6 @@ snapshots:
transitivePeerDependencies:
- supports-color
'@typescript-eslint/utils@8.48.1(eslint@8.57.1)(typescript@5.9.3)':
dependencies:
'@eslint-community/eslint-utils': 4.9.0(eslint@8.57.1)
'@typescript-eslint/scope-manager': 8.48.1
'@typescript-eslint/types': 8.48.1
'@typescript-eslint/typescript-estree': 8.48.1(typescript@5.9.3)
eslint: 8.57.1
typescript: 5.9.3
transitivePeerDependencies:
- supports-color
'@typescript-eslint/visitor-keys@8.43.0':
dependencies:
'@typescript-eslint/types': 8.43.0
@@ -11314,11 +11210,6 @@ snapshots:
'@typescript-eslint/types': 8.46.2
eslint-visitor-keys: 4.2.1
'@typescript-eslint/visitor-keys@8.48.1':
dependencies:
'@typescript-eslint/types': 8.48.1
eslint-visitor-keys: 4.2.1
'@ungap/structured-clone@1.3.0': {}
'@unrs/resolver-binding-android-arm-eabi@1.11.1':
@@ -11380,14 +11271,14 @@ snapshots:
'@unrs/resolver-binding-win32-x64-msvc@1.11.1':
optional: true
'@vercel/analytics@1.5.0(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)':
'@vercel/analytics@1.5.0(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)':
optionalDependencies:
next: 15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
next: 15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
react: 18.3.1
'@vercel/speed-insights@1.2.0(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)':
'@vercel/speed-insights@1.2.0(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1)':
optionalDependencies:
next: 15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
next: 15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
react: 18.3.1
'@vitest/expect@3.2.4':
@@ -12641,16 +12532,16 @@ snapshots:
escape-string-regexp@5.0.0: {}
eslint-config-next@15.5.7(eslint@8.57.1)(typescript@5.9.3):
eslint-config-next@15.5.2(eslint@8.57.1)(typescript@5.9.3):
dependencies:
'@next/eslint-plugin-next': 15.5.7
'@rushstack/eslint-patch': 1.15.0
'@typescript-eslint/eslint-plugin': 8.48.1(@typescript-eslint/parser@8.48.1(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1)(typescript@5.9.3)
'@typescript-eslint/parser': 8.48.1(eslint@8.57.1)(typescript@5.9.3)
'@next/eslint-plugin-next': 15.5.2
'@rushstack/eslint-patch': 1.12.0
'@typescript-eslint/eslint-plugin': 8.43.0(@typescript-eslint/parser@8.43.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1)(typescript@5.9.3)
'@typescript-eslint/parser': 8.43.0(eslint@8.57.1)(typescript@5.9.3)
eslint: 8.57.1
eslint-import-resolver-node: 0.3.9
eslint-import-resolver-typescript: 3.10.1(eslint-plugin-import@2.32.0)(eslint@8.57.1)
eslint-plugin-import: 2.32.0(@typescript-eslint/parser@8.48.1(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1)
eslint-plugin-import: 2.32.0(@typescript-eslint/parser@8.43.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1)
eslint-plugin-jsx-a11y: 6.10.2(eslint@8.57.1)
eslint-plugin-react: 7.37.5(eslint@8.57.1)
eslint-plugin-react-hooks: 5.2.0(eslint@8.57.1)
@@ -12665,7 +12556,7 @@ snapshots:
dependencies:
debug: 3.2.7
is-core-module: 2.16.1
resolve: 1.22.11
resolve: 1.22.10
transitivePeerDependencies:
- supports-color
@@ -12674,28 +12565,28 @@ snapshots:
'@nolyfill/is-core-module': 1.0.39
debug: 4.4.3
eslint: 8.57.1
get-tsconfig: 4.13.0
get-tsconfig: 4.10.1
is-bun-module: 2.0.0
stable-hash: 0.0.5
tinyglobby: 0.2.15
unrs-resolver: 1.11.1
optionalDependencies:
eslint-plugin-import: 2.32.0(@typescript-eslint/parser@8.48.1(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1)
eslint-plugin-import: 2.32.0(@typescript-eslint/parser@8.43.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1)
transitivePeerDependencies:
- supports-color
eslint-module-utils@2.12.1(@typescript-eslint/parser@8.48.1(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-node@0.3.9)(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1):
eslint-module-utils@2.12.1(@typescript-eslint/parser@8.43.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-node@0.3.9)(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1):
dependencies:
debug: 3.2.7
optionalDependencies:
'@typescript-eslint/parser': 8.48.1(eslint@8.57.1)(typescript@5.9.3)
'@typescript-eslint/parser': 8.43.0(eslint@8.57.1)(typescript@5.9.3)
eslint: 8.57.1
eslint-import-resolver-node: 0.3.9
eslint-import-resolver-typescript: 3.10.1(eslint-plugin-import@2.32.0)(eslint@8.57.1)
transitivePeerDependencies:
- supports-color
eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.48.1(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1):
eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.43.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1):
dependencies:
'@rtsao/scc': 1.1.0
array-includes: 3.1.9
@@ -12706,7 +12597,7 @@ snapshots:
doctrine: 2.1.0
eslint: 8.57.1
eslint-import-resolver-node: 0.3.9
eslint-module-utils: 2.12.1(@typescript-eslint/parser@8.48.1(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-node@0.3.9)(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1)
eslint-module-utils: 2.12.1(@typescript-eslint/parser@8.43.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-node@0.3.9)(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1)
hasown: 2.0.2
is-core-module: 2.16.1
is-glob: 4.0.3
@@ -12718,7 +12609,7 @@ snapshots:
string.prototype.trimend: 1.0.9
tsconfig-paths: 3.15.0
optionalDependencies:
'@typescript-eslint/parser': 8.48.1(eslint@8.57.1)(typescript@5.9.3)
'@typescript-eslint/parser': 8.43.0(eslint@8.57.1)(typescript@5.9.3)
transitivePeerDependencies:
- eslint-import-resolver-typescript
- eslint-import-resolver-webpack
@@ -13063,11 +12954,9 @@ snapshots:
functions-have-names@1.2.3: {}
geist@1.5.1(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)):
geist@1.5.1(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)):
dependencies:
next: 15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
generator-function@2.0.1: {}
next: 15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
gensync@1.0.0-beta.2: {}
@@ -13101,7 +12990,7 @@ snapshots:
es-errors: 1.3.0
get-intrinsic: 1.3.0
get-tsconfig@4.13.0:
get-tsconfig@4.10.1:
dependencies:
resolve-pkg-maps: 1.0.0
@@ -13385,6 +13274,13 @@ snapshots:
parent-module: 1.0.1
resolve-from: 4.0.0
import-in-the-middle@1.14.2:
dependencies:
acorn: 8.15.0
acorn-import-attributes: 1.9.5(acorn@8.15.0)
cjs-module-lexer: 1.4.3
module-details-from-path: 1.0.4
import-in-the-middle@2.0.0:
dependencies:
acorn: 8.15.0
@@ -13461,7 +13357,7 @@ snapshots:
is-bun-module@2.0.0:
dependencies:
semver: 7.7.3
semver: 7.7.2
is-callable@1.2.7: {}
@@ -13499,14 +13395,6 @@ snapshots:
has-tostringtag: 1.0.2
safe-regex-test: 1.1.0
is-generator-function@1.1.2:
dependencies:
call-bound: 1.0.4
generator-function: 2.0.1
get-proto: 1.0.1
has-tostringtag: 1.0.2
safe-regex-test: 1.1.0
is-glob@4.0.3:
dependencies:
is-extglob: 2.1.1
@@ -14327,7 +14215,7 @@ snapshots:
nanoid@3.3.11: {}
napi-postinstall@0.3.4: {}
napi-postinstall@0.3.3: {}
natural-compare@1.4.0: {}
@@ -14338,9 +14226,9 @@ snapshots:
react: 18.3.1
react-dom: 18.3.1(react@18.3.1)
next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1):
next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1):
dependencies:
'@next/env': 15.4.10
'@next/env': 15.4.7
'@swc/helpers': 0.5.15
caniuse-lite: 1.0.30001741
postcss: 8.4.31
@@ -14348,14 +14236,14 @@ snapshots:
react-dom: 18.3.1(react@18.3.1)
styled-jsx: 5.1.6(@babel/core@7.28.4)(react@18.3.1)
optionalDependencies:
'@next/swc-darwin-arm64': 15.4.8
'@next/swc-darwin-x64': 15.4.8
'@next/swc-linux-arm64-gnu': 15.4.8
'@next/swc-linux-arm64-musl': 15.4.8
'@next/swc-linux-x64-gnu': 15.4.8
'@next/swc-linux-x64-musl': 15.4.8
'@next/swc-win32-arm64-msvc': 15.4.8
'@next/swc-win32-x64-msvc': 15.4.8
'@next/swc-darwin-arm64': 15.4.7
'@next/swc-darwin-x64': 15.4.7
'@next/swc-linux-arm64-gnu': 15.4.7
'@next/swc-linux-arm64-musl': 15.4.7
'@next/swc-linux-x64-gnu': 15.4.7
'@next/swc-linux-x64-musl': 15.4.7
'@next/swc-win32-arm64-msvc': 15.4.7
'@next/swc-win32-x64-msvc': 15.4.7
'@opentelemetry/api': 1.9.0
'@playwright/test': 1.56.1
sharp: 0.34.3
@@ -14433,12 +14321,12 @@ snapshots:
dependencies:
boolbase: 1.0.0
nuqs@2.7.2(next@15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1):
nuqs@2.7.2(next@15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1))(react@18.3.1):
dependencies:
'@standard-schema/spec': 1.0.0
react: 18.3.1
optionalDependencies:
next: 15.4.10(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
next: 15.4.7(@babel/core@7.28.4)(@opentelemetry/api@1.9.0)(@playwright/test@1.56.1)(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
oas-kit-common@1.0.8:
dependencies:
@@ -15297,12 +15185,6 @@ snapshots:
path-parse: 1.0.7
supports-preserve-symlinks-flag: 1.0.0
resolve@1.22.11:
dependencies:
is-core-module: 2.16.1
path-parse: 1.0.7
supports-preserve-symlinks-flag: 1.0.0
resolve@1.22.8:
dependencies:
is-core-module: 2.16.1
@@ -15458,7 +15340,7 @@ snapshots:
dependencies:
color: 4.2.3
detect-libc: 2.0.4
semver: 7.7.3
semver: 7.7.2
optionalDependencies:
'@img/sharp-darwin-arm64': 0.34.3
'@img/sharp-darwin-x64': 0.34.3
@@ -16114,7 +15996,7 @@ snapshots:
unrs-resolver@1.11.1:
dependencies:
napi-postinstall: 0.3.4
napi-postinstall: 0.3.3
optionalDependencies:
'@unrs/resolver-binding-android-arm-eabi': 1.11.1
'@unrs/resolver-binding-android-arm64': 1.11.1
@@ -16342,7 +16224,7 @@ snapshots:
is-async-function: 2.1.1
is-date-object: 1.1.0
is-finalizationregistry: 1.1.1
is-generator-function: 1.1.2
is-generator-function: 1.1.0
is-regex: 1.2.1
is-weakref: 1.1.1
isarray: 2.0.5

View File

@@ -1,4 +1,6 @@
"use client";
import { StoreAgentDetails } from "@/lib/autogpt-server-api";
import { useBackendAPI } from "@/lib/autogpt-server-api/context";
import { isEmptyOrWhitespace } from "@/lib/utils";
import { useRouter } from "next/navigation";
import { useEffect, useState } from "react";
@@ -11,17 +13,15 @@ import {
OnboardingStep,
} from "../components/OnboardingStep";
import { OnboardingText } from "../components/OnboardingText";
import { getV1RecommendedOnboardingAgents } from "@/app/api/__generated__/endpoints/onboarding/onboarding";
import { resolveResponse } from "@/app/api/helpers";
import { StoreAgentDetails } from "@/app/api/__generated__/models/storeAgentDetails";
export default function Page() {
const { state, updateState, completeStep } = useOnboarding(4, "INTEGRATIONS");
const [agents, setAgents] = useState<StoreAgentDetails[]>([]);
const api = useBackendAPI();
const router = useRouter();
useEffect(() => {
resolveResponse(getV1RecommendedOnboardingAgents()).then((agents) => {
api.getOnboardingAgents().then((agents) => {
if (agents.length < 2) {
completeStep("CONGRATS");
router.replace("/");

View File

@@ -8,6 +8,7 @@ import {
CardTitle,
} from "@/components/__legacy__/ui/card";
import { ErrorCard } from "@/components/molecules/ErrorCard/ErrorCard";
import { InformationTooltip } from "@/components/molecules/InformationTooltip/InformationTooltip";
import { CircleNotchIcon } from "@phosphor-icons/react/dist/ssr";
import { Play } from "lucide-react";
import OnboardingButton from "../components/OnboardingButton";
@@ -78,13 +79,20 @@ export default function Page() {
<CardContent className="flex flex-col gap-4">
{Object.entries(agent?.input_schema.properties || {}).map(
([key, inputSubSchema]) => (
<RunAgentInputs
key={key}
schema={inputSubSchema}
value={onboarding.state?.agentInput?.[key]}
placeholder={inputSubSchema.description}
onChange={(value) => handleSetAgentInput(key, value)}
/>
<div key={key} className="flex flex-col space-y-2">
<label className="flex items-center gap-1 text-sm font-medium">
{inputSubSchema.title || key}
<InformationTooltip
description={inputSubSchema.description}
/>
</label>
<RunAgentInputs
schema={inputSubSchema}
value={onboarding.state?.agentInput?.[key]}
placeholder={inputSubSchema.description}
onChange={(value) => handleSetAgentInput(key, value)}
/>
</div>
),
)}
<AgentOnboardingCredentials

View File

@@ -12,9 +12,6 @@ import {
useGetV2GetAgentByVersion,
useGetV2GetAgentGraph,
} from "@/app/api/__generated__/endpoints/store/store";
import { resolveResponse } from "@/app/api/helpers";
import { postV2AddMarketplaceAgent } from "@/app/api/__generated__/endpoints/library/library";
import { GraphID } from "@/lib/autogpt-server-api";
export function useOnboardingRunStep() {
const onboarding = useOnboarding(undefined, "AGENT_CHOICE");
@@ -80,7 +77,12 @@ export function useOnboardingRunStep() {
setShowInput(true);
onboarding.setStep(6);
onboarding.completeStep("AGENT_NEW_RUN");
onboarding.updateState({
completedSteps: [
...(onboarding.state.completedSteps || []),
"AGENT_NEW_RUN",
],
});
}
function handleSetAgentInput(key: string, value: string) {
@@ -109,22 +111,21 @@ export function useOnboardingRunStep() {
setRunningAgent(true);
try {
const libraryAgent = await resolveResponse(
postV2AddMarketplaceAgent({
store_listing_version_id: storeAgent?.store_listing_version_id || "",
source: "onboarding",
}),
const libraryAgent = await api.addMarketplaceAgentToLibrary(
storeAgent?.store_listing_version_id || "",
);
const { id: runID } = await api.executeGraph(
libraryAgent.graph_id as GraphID,
libraryAgent.graph_id,
libraryAgent.graph_version,
onboarding.state.agentInput || {},
inputCredentials,
"onboarding",
);
onboarding.updateState({ onboardingAgentExecutionId: runID });
onboarding.updateState({
onboardingAgentExecutionId: runID,
agentRuns: (onboarding.state.agentRuns || 0) + 1,
});
router.push("/onboarding/6-congrats");
} catch (error) {

View File

@@ -5,9 +5,6 @@ import { useRouter } from "next/navigation";
import * as party from "party-js";
import { useEffect, useRef, useState } from "react";
import { useOnboarding } from "../../../../providers/onboarding/onboarding-provider";
import { resolveResponse } from "@/app/api/helpers";
import { getV1OnboardingState } from "@/app/api/__generated__/endpoints/onboarding/onboarding";
import { postV2AddMarketplaceAgent } from "@/app/api/__generated__/endpoints/library/library";
export default function Page() {
const { completeStep } = useOnboarding(7, "AGENT_INPUT");
@@ -40,15 +37,11 @@ export default function Page() {
completeStep("CONGRATS");
try {
const onboarding = await resolveResponse(getV1OnboardingState());
const onboarding = await api.getUserOnboarding();
if (onboarding?.selectedStoreListingVersionId) {
try {
const libraryAgent = await resolveResponse(
postV2AddMarketplaceAgent({
store_listing_version_id:
onboarding.selectedStoreListingVersionId,
source: "onboarding",
}),
const libraryAgent = await api.addMarketplaceAgentToLibrary(
onboarding.selectedStoreListingVersionId,
);
router.replace(`/library/agents/${libraryAgent.id}`);
} catch (error) {

View File

@@ -1,7 +1,7 @@
import { cn } from "@/lib/utils";
import StarRating from "./StarRating";
import { StoreAgentDetails } from "@/lib/autogpt-server-api";
import SmartImage from "@/components/__legacy__/SmartImage";
import { StoreAgentDetails } from "@/app/api/__generated__/models/storeAgentDetails";
type OnboardingAgentCardProps = {
agent?: StoreAgentDetails;

View File

@@ -1,24 +1,24 @@
"use client";
import { LoadingSpinner } from "@/components/atoms/LoadingSpinner/LoadingSpinner";
import { useBackendAPI } from "@/lib/autogpt-server-api/context";
import { useRouter } from "next/navigation";
import { useEffect } from "react";
import { resolveResponse, shouldShowOnboarding } from "@/app/api/helpers";
import { getV1OnboardingState } from "@/app/api/__generated__/endpoints/onboarding/onboarding";
export default function OnboardingPage() {
const router = useRouter();
const api = useBackendAPI();
useEffect(() => {
async function redirectToStep() {
try {
// Check if onboarding is enabled
const isEnabled = await shouldShowOnboarding();
const isEnabled = await api.isOnboardingEnabled();
if (!isEnabled) {
router.replace("/");
return;
}
const onboarding = await resolveResponse(getV1OnboardingState());
const onboarding = await api.getUserOnboarding();
// Handle completed onboarding
if (onboarding.completedSteps.includes("GET_RESULTS")) {
@@ -66,7 +66,7 @@ export default function OnboardingPage() {
}
redirectToStep();
}, [router]);
}, [api, router]);
return <LoadingSpinner size="large" cover />;
}

View File

@@ -1,16 +1,6 @@
"use client";
import { useState, useEffect } from "react";
import {
LineChart,
Line,
XAxis,
YAxis,
CartesianGrid,
Tooltip,
Legend,
ResponsiveContainer,
} from "recharts";
import { Button } from "@/components/atoms/Button/Button";
import { Input } from "@/components/__legacy__/ui/input";
import { Label } from "@/components/__legacy__/ui/label";
@@ -28,12 +18,9 @@ import { useToast } from "@/components/molecules/Toast/use-toast";
import {
usePostV2GenerateExecutionAnalytics,
useGetV2GetExecutionAnalyticsConfiguration,
useGetV2GetExecutionAccuracyTrendsAndAlerts,
} from "@/app/api/__generated__/endpoints/admin/admin";
import type { ExecutionAnalyticsRequest } from "@/app/api/__generated__/models/executionAnalyticsRequest";
import type { ExecutionAnalyticsResponse } from "@/app/api/__generated__/models/executionAnalyticsResponse";
import type { AccuracyTrendsResponse } from "@/app/api/__generated__/models/accuracyTrendsResponse";
import type { AccuracyLatestData } from "@/app/api/__generated__/models/accuracyLatestData";
// Use the generated type with minimal adjustment for form handling
interface FormData extends Omit<ExecutionAnalyticsRequest, "created_after"> {
@@ -46,133 +33,8 @@ export function ExecutionAnalyticsForm() {
const [results, setResults] = useState<ExecutionAnalyticsResponse | null>(
null,
);
const [trendsData, setTrendsData] = useState<AccuracyTrendsResponse | null>(
null,
);
const { toast } = useToast();
// State for accuracy trends query parameters
const [accuracyParams, setAccuracyParams] = useState<{
graph_id: string;
user_id?: string;
days_back: number;
drop_threshold: number;
include_historical?: boolean;
} | null>(null);
// Use the generated API client for accuracy trends (GET)
const { data: accuracyApiResponse, error: accuracyError } =
useGetV2GetExecutionAccuracyTrendsAndAlerts(
accuracyParams || {
graph_id: "",
days_back: 30,
drop_threshold: 10.0,
include_historical: false,
},
{
query: {
enabled: !!accuracyParams?.graph_id,
},
},
);
// Update local state when data changes and handle success/error
useEffect(() => {
if (accuracyError) {
console.error("Failed to fetch trends:", accuracyError);
toast({
title: "Trends Error",
description:
(accuracyError as any)?.message || "Failed to fetch accuracy trends",
variant: "destructive",
});
return;
}
const data = accuracyApiResponse?.data;
if (data && "latest_data" in data) {
setTrendsData(data);
// Check for alerts
if (data.alert) {
toast({
title: "🚨 Accuracy Alert Detected",
description: `${data.alert.drop_percent.toFixed(1)}% accuracy drop detected for this agent`,
variant: "destructive",
});
}
}
}, [accuracyApiResponse, accuracyError, toast]);
// Chart component for accuracy trends
function AccuracyChart({ data }: { data: AccuracyLatestData[] }) {
const chartData = data.map((item) => ({
date: new Date(item.date).toLocaleDateString(),
"Daily Score": item.daily_score,
"3-Day Avg": item.three_day_avg,
"7-Day Avg": item.seven_day_avg,
"14-Day Avg": item.fourteen_day_avg,
}));
return (
<ResponsiveContainer width="100%" height={400}>
<LineChart
data={chartData}
margin={{ top: 5, right: 30, left: 20, bottom: 5 }}
>
<CartesianGrid strokeDasharray="3 3" />
<XAxis dataKey="date" />
<YAxis domain={[0, 100]} />
<Tooltip
formatter={(value) => [`${Number(value).toFixed(2)}%`, ""]}
/>
<Legend />
<Line
type="monotone"
dataKey="Daily Score"
stroke="#3b82f6"
strokeWidth={2}
dot={{ r: 3 }}
/>
<Line
type="monotone"
dataKey="3-Day Avg"
stroke="#10b981"
strokeWidth={2}
dot={{ r: 3 }}
/>
<Line
type="monotone"
dataKey="7-Day Avg"
stroke="#f59e0b"
strokeWidth={2}
dot={{ r: 3 }}
/>
<Line
type="monotone"
dataKey="14-Day Avg"
stroke="#8b5cf6"
strokeWidth={2}
dot={{ r: 3 }}
/>
</LineChart>
</ResponsiveContainer>
);
}
// Function to fetch accuracy trends using generated API client
const fetchAccuracyTrends = (graphId: string, userId?: string) => {
if (!graphId.trim()) return;
setAccuracyParams({
graph_id: graphId.trim(),
user_id: userId?.trim() || undefined,
days_back: 30,
drop_threshold: 10.0,
include_historical: showAccuracyChart, // Include historical data when chart is enabled
});
};
// Fetch configuration from API
const {
data: config,
@@ -188,7 +50,6 @@ export function ExecutionAnalyticsForm() {
}
const result = res.data;
setResults(result);
toast({
title: "Analytics Generated",
description: `Processed ${result.processed_executions} executions. ${result.successful_analytics} successful, ${result.failed_analytics} failed, ${result.skipped_executions} skipped.`,
@@ -197,21 +58,11 @@ export function ExecutionAnalyticsForm() {
},
onError: (error: any) => {
console.error("Analytics generation error:", error);
const errorMessage =
error?.message || error?.detail || "An unexpected error occurred";
const isOpenAIError = errorMessage.includes(
"OpenAI API key not configured",
);
toast({
title: isOpenAIError
? "Analytics Generation Skipped"
: "Analytics Generation Failed",
description: isOpenAIError
? "Analytics generation requires OpenAI configuration, but accuracy trends are still available above."
: errorMessage,
variant: isOpenAIError ? "default" : "destructive",
title: "Analytics Generation Failed",
description:
error?.message || error?.detail || "An unexpected error occurred",
variant: "destructive",
});
},
},
@@ -226,9 +77,6 @@ export function ExecutionAnalyticsForm() {
user_prompt: "", // Will use config default when empty
});
// State for accuracy trends chart toggle
const [showAccuracyChart, setShowAccuracyChart] = useState(true);
// Update form defaults when config loads
useEffect(() => {
if (config?.data && config.status === 200 && !formData.model_name) {
@@ -253,11 +101,6 @@ export function ExecutionAnalyticsForm() {
setResults(null);
// Fetch accuracy trends if chart is enabled
if (showAccuracyChart) {
fetchAccuracyTrends(formData.graph_id, formData.user_id || undefined);
}
// Prepare the request payload
const payload: ExecutionAnalyticsRequest = {
graph_id: formData.graph_id.trim(),
@@ -419,18 +262,6 @@ export function ExecutionAnalyticsForm() {
</Label>
</div>
{/* Show Accuracy Chart Checkbox */}
<div className="flex items-center space-x-2">
<Checkbox
id="show_accuracy_chart"
checked={showAccuracyChart}
onCheckedChange={(checked) => setShowAccuracyChart(!!checked)}
/>
<Label htmlFor="show_accuracy_chart" className="text-sm">
Show accuracy trends chart and historical data visualization
</Label>
</div>
{/* Custom System Prompt */}
<div className="space-y-2">
<Label htmlFor="system_prompt">
@@ -539,98 +370,6 @@ export function ExecutionAnalyticsForm() {
</div>
</form>
{/* Accuracy Trends Display */}
{trendsData && (
<div className="space-y-4">
<h3 className="text-lg font-semibold">Execution Accuracy Trends</h3>
{/* Alert Section */}
{trendsData.alert && (
<div className="rounded-lg border-l-4 border-red-500 bg-red-50 p-4">
<div className="flex items-start">
<span className="text-2xl">🚨</span>
<div className="ml-3 space-y-2">
<h4 className="text-lg font-semibold text-red-800">
Accuracy Alert Detected
</h4>
<p className="text-red-700">
<strong>
{trendsData.alert.drop_percent.toFixed(1)}% accuracy drop
</strong>{" "}
detected for agent{" "}
<code className="rounded bg-red-100 px-1 text-sm">
{formData.graph_id}
</code>
</p>
<div className="space-y-1 text-sm text-red-600">
<p>
3-day average:{" "}
<strong>
{trendsData.alert.three_day_avg.toFixed(2)}%
</strong>
</p>
<p>
7-day average:{" "}
<strong>
{trendsData.alert.seven_day_avg.toFixed(2)}%
</strong>
</p>
<p>
Detected at:{" "}
<strong>
{new Date(
trendsData.alert.detected_at,
).toLocaleString()}
</strong>
</p>
</div>
</div>
</div>
</div>
)}
{/* Latest Data Summary */}
<div className="grid grid-cols-2 gap-4 md:grid-cols-4">
<div className="rounded-lg border bg-white p-4 text-center">
<div className="text-2xl font-bold text-blue-600">
{trendsData.latest_data.daily_score?.toFixed(2) || "N/A"}
</div>
<div className="text-sm text-gray-600">Daily Score</div>
</div>
<div className="rounded-lg border bg-white p-4 text-center">
<div className="text-2xl font-bold text-green-600">
{trendsData.latest_data.three_day_avg?.toFixed(2) || "N/A"}
</div>
<div className="text-sm text-gray-600">3-Day Avg</div>
</div>
<div className="rounded-lg border bg-white p-4 text-center">
<div className="text-2xl font-bold text-orange-600">
{trendsData.latest_data.seven_day_avg?.toFixed(2) || "N/A"}
</div>
<div className="text-sm text-gray-600">7-Day Avg</div>
</div>
<div className="rounded-lg border bg-white p-4 text-center">
<div className="text-2xl font-bold text-purple-600">
{trendsData.latest_data.fourteen_day_avg?.toFixed(2) || "N/A"}
</div>
<div className="text-sm text-gray-600">14-Day Avg</div>
</div>
</div>
{/* Chart Section - only show when toggle is enabled and historical data exists */}
{showAccuracyChart && trendsData?.historical_data && (
<div className="mt-6">
<h4 className="mb-4 text-lg font-semibold">
Execution Accuracy Trends Chart
</h4>
<div className="rounded-lg border bg-white p-6">
<AccuracyChart data={trendsData.historical_data} />
</div>
</div>
)}
</div>
)}
{results && <AnalyticsResultsTable results={results} />}
</div>
);

View File

@@ -17,13 +17,12 @@ function ExecutionAnalyticsDashboard() {
</div>
<div className="rounded-lg border bg-white p-6 shadow-sm">
<h2 className="mb-4 text-xl font-semibold">
Execution Analytics & Accuracy Monitoring
</h2>
<h2 className="mb-4 text-xl font-semibold">Analytics Generation</h2>
<p className="mb-6 text-gray-600">
Generate missing activity summaries and success scores for agent
executions. After generation, accuracy trends and alerts will
automatically be displayed to help monitor agent health over time.
This tool will identify completed executions missing activity
summaries or success scores and generate them using AI. Only
executions that meet the criteria and are missing these fields will
be processed.
</p>
<Suspense

View File

@@ -1,4 +1,4 @@
import { OAuthPopupResultMessage } from "@/components/renderers/input-renderer/fields/CredentialField/models/OAuthCredentialModal/useOAuthCredentialModal";
import { OAuthPopupResultMessage } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/modals/CredentialsInputs/CredentialsInputs";
import { NextResponse } from "next/server";
// This route is intended to be used as the callback for integration OAuth flows,

View File

@@ -9,8 +9,6 @@ import { useGraphStore } from "@/app/(platform)/build/stores/graphStore";
import { useShallow } from "zustand/react/shallow";
import { useState } from "react";
import { useSaveGraph } from "@/app/(platform)/build/hooks/useSaveGraph";
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
import { ApiError } from "@/lib/autogpt-server-api/helpers"; // Check if this exists
export const useRunGraph = () => {
const { saveGraph, isSaving } = useSaveGraph({
@@ -26,13 +24,6 @@ export const useRunGraph = () => {
);
const [openRunInputDialog, setOpenRunInputDialog] = useState(false);
const setNodeErrorsForBackendId = useNodeStore(
useShallow((state) => state.setNodeErrorsForBackendId),
);
const clearAllNodeErrors = useNodeStore(
useShallow((state) => state.clearAllNodeErrors),
);
const [{ flowID, flowVersion, flowExecutionID }, setQueryStates] =
useQueryStates({
flowID: parseAsString,
@@ -44,49 +35,19 @@ export const useRunGraph = () => {
usePostV1ExecuteGraphAgent({
mutation: {
onSuccess: (response: any) => {
clearAllNodeErrors();
const { id } = response.data as GraphExecutionMeta;
setQueryStates({
flowExecutionID: id,
});
},
onError: (error: any) => {
// Reset running state on error
setIsGraphRunning(false);
if (error instanceof ApiError && error.isGraphValidationError?.()) {
const errorData = error.response?.detail;
if (errorData?.node_errors) {
Object.entries(errorData.node_errors).forEach(
([backendId, nodeErrors]) => {
setNodeErrorsForBackendId(
backendId,
nodeErrors as { [key: string]: string },
);
},
);
useNodeStore.getState().nodes.forEach((node) => {
const backendId = node.data.metadata?.backend_id || node.id;
if (!errorData.node_errors[backendId as string]) {
useNodeStore.getState().updateNodeErrors(node.id, {});
}
});
}
toast({
title: errorData?.message || "Graph validation failed",
description:
"Please fix the validation errors on the highlighted nodes and try again.",
variant: "destructive",
});
} else {
toast({
title:
(error.detail as string) ?? "An unexpected error occurred.",
description: "An unexpected error occurred.",
variant: "destructive",
});
}
toast({
title: (error.detail as string) ?? "An unexpected error occurred.",
description: "An unexpected error occurred.",
variant: "destructive",
});
},
},
});
@@ -116,7 +77,7 @@ export const useRunGraph = () => {
await executeGraph({
graphId: flowID ?? "",
graphVersion: flowVersion || null,
data: { inputs: {}, credentials_inputs: {}, source: "builder" },
data: { inputs: {}, credentials_inputs: {} },
});
}
};

View File

@@ -79,11 +79,7 @@ export const useRunInputDialog = ({
await executeGraph({
graphId: flowID ?? "",
graphVersion: flowVersion || null,
data: {
inputs: inputValues,
credentials_inputs: credentialValues,
source: "builder",
},
data: { inputs: inputValues, credentials_inputs: credentialValues },
});
// Optimistically set running state immediately for responsive UI
setIsGraphRunning(true);

View File

@@ -1,25 +1,24 @@
import { useCallback } from "react";
import { useReactFlow } from "@xyflow/react";
import { Key, storage } from "@/services/storage/local-storage";
import { v4 as uuidv4 } from "uuid";
import { useNodeStore } from "../../../stores/nodeStore";
import { useEdgeStore } from "../../../stores/edgeStore";
import { CustomNode } from "../nodes/CustomNode/CustomNode";
import { CustomEdge } from "../edges/CustomEdge";
import { useToast } from "@/components/molecules/Toast/use-toast";
interface CopyableData {
nodes: CustomNode[];
edges: CustomEdge[];
}
const CLIPBOARD_PREFIX = "autogpt-flow-data:";
export function useCopyPaste() {
// Only use useReactFlow for viewport (not managed by stores)
const { getViewport } = useReactFlow();
const { toast } = useToast();
const handleCopyPaste = useCallback(
(event: KeyboardEvent) => {
// Prevent copy/paste if any modal is open or if the focus is on an input element
const activeElement = document.activeElement;
const isInputField =
activeElement?.tagName === "INPUT" ||
@@ -29,6 +28,7 @@ export function useCopyPaste() {
if (isInputField) return;
if (event.ctrlKey || event.metaKey) {
// COPY: Ctrl+C or Cmd+C
if (event.key === "c" || event.key === "C") {
const { nodes } = useNodeStore.getState();
const { edges } = useEdgeStore.getState();
@@ -53,102 +53,81 @@ export function useCopyPaste() {
edges: selectedEdges,
};
const clipboardText = `${CLIPBOARD_PREFIX}${JSON.stringify(copiedData)}`;
navigator.clipboard
.writeText(clipboardText)
.then(() => {
toast({
title: "Copied successfully",
description: `${selectedNodes.length} node(s) copied to clipboard`,
});
})
.catch((error) => {
console.error("Failed to copy to clipboard:", error);
});
storage.set(Key.COPIED_FLOW_DATA, JSON.stringify(copiedData));
}
// PASTE: Ctrl+V or Cmd+V
if (event.key === "v" || event.key === "V") {
navigator.clipboard
.readText()
.then((clipboardText) => {
if (!clipboardText.startsWith(CLIPBOARD_PREFIX)) {
return; // Not our data, ignore
}
const copiedDataString = storage.get(Key.COPIED_FLOW_DATA);
if (copiedDataString) {
const copiedData = JSON.parse(copiedDataString) as CopyableData;
const oldToNewIdMap: Record<string, string> = {};
const jsonString = clipboardText.slice(CLIPBOARD_PREFIX.length);
const copiedData = JSON.parse(jsonString) as CopyableData;
const oldToNewIdMap: Record<string, string> = {};
// Get fresh viewport values at paste time to ensure correct positioning
const { x, y, zoom } = getViewport();
const viewportCenter = {
x: (window.innerWidth / 2 - x) / zoom,
y: (window.innerHeight / 2 - y) / zoom,
};
const { x, y, zoom } = getViewport();
const viewportCenter = {
x: (window.innerWidth / 2 - x) / zoom,
y: (window.innerHeight / 2 - y) / zoom,
let minX = Infinity,
minY = Infinity,
maxX = -Infinity,
maxY = -Infinity;
copiedData.nodes.forEach((node) => {
minX = Math.min(minX, node.position.x);
minY = Math.min(minY, node.position.y);
maxX = Math.max(maxX, node.position.x);
maxY = Math.max(maxY, node.position.y);
});
const offsetX = viewportCenter.x - (minX + maxX) / 2;
const offsetY = viewportCenter.y - (minY + maxY) / 2;
// Deselect existing nodes first
useNodeStore.setState((state) => ({
nodes: state.nodes.map((node) => ({ ...node, selected: false })),
}));
// Create and add new nodes with UNIQUE IDs using UUID
copiedData.nodes.forEach((node) => {
const newNodeId = uuidv4();
oldToNewIdMap[node.id] = newNodeId;
const newNode: CustomNode = {
...node,
id: newNodeId,
selected: true,
position: {
x: node.position.x + offsetX,
y: node.position.y + offsetY,
},
};
let minX = Infinity,
minY = Infinity,
maxX = -Infinity,
maxY = -Infinity;
copiedData.nodes.forEach((node) => {
minX = Math.min(minX, node.position.x);
minY = Math.min(minY, node.position.y);
maxX = Math.max(maxX, node.position.x);
maxY = Math.max(maxY, node.position.y);
});
const offsetX = viewportCenter.x - (minX + maxX) / 2;
const offsetY = viewportCenter.y - (minY + maxY) / 2;
// Deselect existing nodes first
useNodeStore.setState((state) => ({
nodes: state.nodes.map((node) => ({
...node,
selected: false,
})),
}));
// Create and add new nodes with UNIQUE IDs using UUID
copiedData.nodes.forEach((node) => {
const newNodeId = uuidv4();
oldToNewIdMap[node.id] = newNodeId;
const newNode: CustomNode = {
...node,
id: newNodeId,
selected: true,
position: {
x: node.position.x + offsetX,
y: node.position.y + offsetY,
},
};
useNodeStore.getState().addNode(newNode);
});
// Add edges with updated source/target IDs
const { addEdge } = useEdgeStore.getState();
copiedData.edges.forEach((edge) => {
const newSourceId = oldToNewIdMap[edge.source] ?? edge.source;
const newTargetId = oldToNewIdMap[edge.target] ?? edge.target;
addEdge({
source: newSourceId,
target: newTargetId,
sourceHandle: edge.sourceHandle ?? "",
targetHandle: edge.targetHandle ?? "",
data: {
...edge.data,
},
});
});
})
.catch((error) => {
console.error("Failed to read from clipboard:", error);
useNodeStore.getState().addNode(newNode);
});
// Add edges with updated source/target IDs
const { addEdge } = useEdgeStore.getState();
copiedData.edges.forEach((edge) => {
const newSourceId = oldToNewIdMap[edge.source] ?? edge.source;
const newTargetId = oldToNewIdMap[edge.target] ?? edge.target;
addEdge({
source: newSourceId,
target: newTargetId,
sourceHandle: edge.sourceHandle ?? "",
targetHandle: edge.targetHandle ?? "",
data: {
...edge.data,
},
});
});
}
}
}
},
[getViewport, toast],
[getViewport],
);
return handleCopyPaste;

View File

@@ -20,7 +20,6 @@ import { AgentExecutionStatus } from "@/app/api/__generated__/models/agentExecut
export const useFlow = () => {
const [isLocked, setIsLocked] = useState(false);
const [hasAutoFramed, setHasAutoFramed] = useState(false);
const addNodes = useNodeStore(useShallow((state) => state.addNodes));
const addLinks = useEdgeStore(useShallow((state) => state.addLinks));
const updateNodeStatus = useNodeStore(
@@ -43,12 +42,11 @@ export const useFlow = () => {
const setBlockMenuOpen = useControlPanelStore(
useShallow((state) => state.setBlockMenuOpen),
);
const [{ flowID, flowVersion, flowExecutionID }, setQueryStates] =
useQueryStates({
flowID: parseAsString,
flowVersion: parseAsInteger,
flowExecutionID: parseAsString,
});
const [{ flowID, flowVersion, flowExecutionID }] = useQueryStates({
flowID: parseAsString,
flowVersion: parseAsInteger,
flowExecutionID: parseAsString,
});
const { data: executionDetails } = useGetV1GetExecutionDetails(
flowID || "",
@@ -83,7 +81,7 @@ export const useFlow = () => {
{
query: {
select: (res) => res.data as BlockInfo[],
enabled: !!flowID && !!blockIds && blockIds.length > 0,
enabled: !!flowID && !!blockIds,
},
},
);
@@ -104,9 +102,6 @@ export const useFlow = () => {
// load graph schemas
useEffect(() => {
if (graph) {
setQueryStates({
flowVersion: graph.version ?? 1,
});
setGraphSchemas(
graph.input_schema as Record<string, any> | null,
graph.credentials_input_schema as Record<string, any> | null,
@@ -188,36 +183,9 @@ export const useFlow = () => {
};
}, []);
const linkCount = graph?.links?.length ?? 0;
useEffect(() => {
if (isGraphLoading || isBlocksLoading) {
setHasAutoFramed(false);
return;
}
if (hasAutoFramed) {
return;
}
const rafId = requestAnimationFrame(() => {
fitView({ padding: 0.2, duration: 800, maxZoom: 1 });
setHasAutoFramed(true);
});
return () => cancelAnimationFrame(rafId);
}, [
fitView,
hasAutoFramed,
customNodes.length,
isBlocksLoading,
isGraphLoading,
linkCount,
]);
useEffect(() => {
setHasAutoFramed(false);
}, [flowID, flowVersion]);
fitView({ padding: 0.2, duration: 800, maxZoom: 2 });
}, [fitView]);
// Drag and drop block from block menu
const onDragOver = useCallback((event: React.DragEvent) => {

View File

@@ -37,7 +37,6 @@ export type CustomNodeData = {
costs: BlockCost[];
categories: BlockInfoCategoriesItem[];
metadata?: NodeModelMetadata;
errors?: { [key: string]: string };
};
export type CustomNode = XYNode<CustomNodeData, "custom">;
@@ -72,24 +71,10 @@ export const CustomNode: React.FC<NodeProps<CustomNode>> = React.memo(
? (data.hardcodedValues.output_schema ?? {})
: data.outputSchema;
const hasConfigErrors =
data.errors &&
Object.values(data.errors).some(
(value) => value !== null && value !== undefined && value !== "",
);
const outputData = data.nodeExecutionResult?.output_data;
const hasOutputError =
typeof outputData === "object" &&
outputData !== null &&
"error" in outputData;
const hasErrors = hasConfigErrors || hasOutputError;
// Currently all blockTypes design are similar - that's why i am using the same component for all of them
// If in future - if we need some drastic change in some blockTypes design - we can create separate components for them
return (
<NodeContainer selected={selected} nodeId={nodeId} hasErrors={hasErrors}>
<NodeContainer selected={selected} nodeId={nodeId}>
<div className="rounded-xlarge bg-white">
<NodeHeader data={data} nodeId={nodeId} />
{isWebhook && <WebhookDisclaimer nodeId={nodeId} />}
@@ -106,11 +91,7 @@ export const CustomNode: React.FC<NodeProps<CustomNode>> = React.memo(
/>
<NodeAdvancedToggle nodeId={nodeId} />
{data.uiType != BlockUIType.OUTPUT && (
<OutputHandler
uiType={data.uiType}
outputSchema={outputSchema}
nodeId={nodeId}
/>
<OutputHandler outputSchema={outputSchema} nodeId={nodeId} />
)}
<NodeDataRenderer nodeId={nodeId} />
</div>

View File

@@ -3,18 +3,15 @@ import { nodeStyleBasedOnStatus } from "../helpers";
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
import { useShallow } from "zustand/react/shallow";
import { AgentExecutionStatus } from "@/app/api/__generated__/models/agentExecutionStatus";
export const NodeContainer = ({
children,
nodeId,
selected,
hasErrors, // these are configuration errors that occur before executing the graph -- more like validation errors
}: {
children: React.ReactNode;
nodeId: string;
selected: boolean;
hasErrors?: boolean;
}) => {
const status = useNodeStore(
useShallow((state) => state.getNodeStatus(nodeId)),
@@ -25,7 +22,6 @@ export const NodeContainer = ({
"z-12 max-w-[370px] rounded-xlarge ring-1 ring-slate-200/60",
selected && "shadow-lg ring-2 ring-slate-200",
status && nodeStyleBasedOnStatus[status],
hasErrors ? nodeStyleBasedOnStatus[AgentExecutionStatus.FAILED] : "",
)}
>
{children}

View File

@@ -28,7 +28,6 @@ export const NodeContextMenu = ({
})),
}));
useCopyPasteStore.getState().copySelectedNodes();
useCopyPasteStore.getState().pasteNodes();
};

View File

@@ -20,32 +20,17 @@ export const FormCreator = React.memo(
className?: string;
}) => {
const updateNodeData = useNodeStore((state) => state.updateNodeData);
const getHardCodedValues = useNodeStore(
(state) => state.getHardCodedValues,
);
const handleChange = ({ formData }: any) => {
if ("credentials" in formData && !formData.credentials?.id) {
delete formData.credentials;
}
const updatedValues =
uiType === BlockUIType.AGENT
? {
...getHardCodedValues(nodeId),
inputs: formData,
}
: formData;
updateNodeData(nodeId, { hardcodedValues: updatedValues });
updateNodeData(nodeId, { hardcodedValues: formData });
};
const hardcodedValues = getHardCodedValues(nodeId);
const initialValues =
uiType === BlockUIType.AGENT
? (hardcodedValues.inputs ?? {})
: hardcodedValues;
const initialValues = getHardCodedValues(nodeId);
return (
<div className={className}>

View File

@@ -14,16 +14,13 @@ import {
import { useEdgeStore } from "@/app/(platform)/build/stores/edgeStore";
import { getTypeDisplayInfo } from "./helpers";
import { generateHandleId } from "../handlers/helpers";
import { BlockUIType } from "../../types";
export const OutputHandler = ({
outputSchema,
nodeId,
uiType,
}: {
outputSchema: RJSFSchema;
nodeId: string;
uiType: BlockUIType;
}) => {
const { isOutputConnected } = useEdgeStore();
const properties = outputSchema?.properties || {};
@@ -82,9 +79,7 @@ export const OutputHandler = ({
</Text>
<NodeHandle
handleId={
uiType === BlockUIType.AGENT ? key : generateHandleId(key)
}
handleId={generateHandleId(key)}
isConnected={isConnected}
side="right"
/>

View File

@@ -1,36 +1,24 @@
import { useBlockMenuStore } from "../../../../stores/blockMenuStore";
import { useGetV2BuilderSearchInfinite } from "@/app/api/__generated__/endpoints/store/store";
import { SearchResponse } from "@/app/api/__generated__/models/searchResponse";
import { useCallback, useEffect, useState } from "react";
import { useState } from "react";
import { useAddAgentToBuilder } from "../hooks/useAddAgentToBuilder";
import { LibraryAgent } from "@/app/api/__generated__/models/libraryAgent";
import { getV2GetSpecificAgent } from "@/app/api/__generated__/endpoints/store/store";
import {
getGetV2ListLibraryAgentsQueryKey,
getV2GetLibraryAgent,
usePostV2AddMarketplaceAgent,
} from "@/app/api/__generated__/endpoints/library/library";
import {
getGetV2GetBuilderItemCountsQueryKey,
getGetV2GetBuilderSuggestionsQueryKey,
} from "@/app/api/__generated__/endpoints/default/default";
import { getGetV2GetBuilderItemCountsQueryKey } from "@/app/api/__generated__/endpoints/default/default";
import { getQueryClient } from "@/lib/react-query/queryClient";
import { useToast } from "@/components/molecules/Toast/use-toast";
import * as Sentry from "@sentry/nextjs";
export const useBlockMenuSearch = () => {
const { searchQuery, searchId, setSearchId } = useBlockMenuStore();
const { searchQuery } = useBlockMenuStore();
const { toast } = useToast();
const { addAgentToBuilder, addLibraryAgentToBuilder } =
useAddAgentToBuilder();
const queryClient = getQueryClient();
const resetSearchSession = useCallback(() => {
setSearchId(undefined);
queryClient.invalidateQueries({
queryKey: getGetV2GetBuilderSuggestionsQueryKey(),
});
}, [queryClient, setSearchId]);
const [addingLibraryAgentId, setAddingLibraryAgentId] = useState<
string | null
@@ -50,19 +38,13 @@ export const useBlockMenuSearch = () => {
page: 1,
page_size: 8,
search_query: searchQuery,
search_id: searchId,
},
{
query: {
getNextPageParam: (lastPage) => {
const response = lastPage.data as SearchResponse;
const { pagination } = response;
if (!pagination) {
return undefined;
}
const { current_page, total_pages } = pagination;
return current_page < total_pages ? current_page + 1 : undefined;
getNextPageParam: (lastPage, allPages) => {
const pagination = lastPage.data as SearchResponse;
const isMore = pagination.more_pages;
return isMore ? allPages.length + 1 : undefined;
},
},
},
@@ -71,6 +53,7 @@ export const useBlockMenuSearch = () => {
const { mutateAsync: addMarketplaceAgent } = usePostV2AddMarketplaceAgent({
mutation: {
onSuccess: () => {
const queryClient = getQueryClient();
queryClient.invalidateQueries({
queryKey: getGetV2ListLibraryAgentsQueryKey(),
});
@@ -92,24 +75,6 @@ export const useBlockMenuSearch = () => {
},
});
useEffect(() => {
if (!searchData?.pages?.length) {
return;
}
const latestPage = searchData.pages[searchData.pages.length - 1];
const response = latestPage?.data as SearchResponse;
if (response?.search_id && response.search_id !== searchId) {
setSearchId(response.search_id);
}
}, [searchData, searchId, setSearchId]);
useEffect(() => {
if (searchId && !searchQuery) {
resetSearchSession();
}
}, [resetSearchSession, searchId, searchQuery]);
const allSearchData =
searchData?.pages?.flatMap((page) => {
const response = page.data as SearchResponse;
@@ -152,12 +117,7 @@ export const useBlockMenuSearch = () => {
});
const libraryAgent = response.data as LibraryAgent;
const { data: libraryAgentDetails } = await getV2GetLibraryAgent(
libraryAgent.id,
);
addAgentToBuilder(libraryAgentDetails as LibraryAgent);
addAgentToBuilder(libraryAgent);
toast({
title: "Agent Added",

View File

@@ -1,32 +1,30 @@
import { debounce } from "lodash";
import { useCallback, useEffect, useRef, useState } from "react";
import { useBlockMenuStore } from "../../../../stores/blockMenuStore";
import { getQueryClient } from "@/lib/react-query/queryClient";
import { getGetV2GetBuilderSuggestionsQueryKey } from "@/app/api/__generated__/endpoints/default/default";
const SEARCH_DEBOUNCE_MS = 300;
export const useBlockMenuSearchBar = () => {
const inputRef = useRef<HTMLInputElement>(null);
const [localQuery, setLocalQuery] = useState("");
const { setSearchQuery, setSearchId, searchQuery } = useBlockMenuStore();
const queryClient = getQueryClient();
const { setSearchQuery, setSearchId, searchId, searchQuery } =
useBlockMenuStore();
const clearSearchSession = useCallback(() => {
setSearchId(undefined);
queryClient.invalidateQueries({
queryKey: getGetV2GetBuilderSuggestionsQueryKey(),
});
}, [queryClient, setSearchId]);
const searchIdRef = useRef(searchId);
useEffect(() => {
searchIdRef.current = searchId;
}, [searchId]);
const debouncedSetSearchQuery = useCallback(
debounce((value: string) => {
setSearchQuery(value);
if (value.length === 0) {
clearSearchSession();
setSearchId(undefined);
} else if (!searchIdRef.current) {
setSearchId(crypto.randomUUID());
}
}, SEARCH_DEBOUNCE_MS),
[clearSearchSession, setSearchQuery],
[setSearchQuery, setSearchId],
);
useEffect(() => {
@@ -38,13 +36,13 @@ export const useBlockMenuSearchBar = () => {
const handleClear = () => {
setLocalQuery("");
setSearchQuery("");
clearSearchSession();
setSearchId(undefined);
debouncedSetSearchQuery.cancel();
};
useEffect(() => {
setLocalQuery(searchQuery);
}, [searchQuery]);
}, []);
return {
handleClear,

View File

@@ -1,109 +0,0 @@
import React, { useEffect, useRef, useState } from "react";
import { ArrowLeftIcon, ArrowRightIcon } from "@phosphor-icons/react";
import { cn } from "@/lib/utils";
interface HorizontalScrollAreaProps {
children: React.ReactNode;
wrapperClassName?: string;
scrollContainerClassName?: string;
scrollAmount?: number;
dependencyList?: React.DependencyList;
}
const defaultDependencies: React.DependencyList = [];
const baseScrollClasses =
"flex gap-2 overflow-x-auto px-8 [scrollbar-width:none] [-ms-overflow-style:'none'] [&::-webkit-scrollbar]:hidden";
export const HorizontalScroll: React.FC<HorizontalScrollAreaProps> = ({
children,
wrapperClassName,
scrollContainerClassName,
scrollAmount = 300,
dependencyList = defaultDependencies,
}) => {
const scrollRef = useRef<HTMLDivElement | null>(null);
const [canScrollLeft, setCanScrollLeft] = useState(false);
const [canScrollRight, setCanScrollRight] = useState(false);
const scrollByDelta = (delta: number) => {
if (!scrollRef.current) {
return;
}
scrollRef.current.scrollBy({ left: delta, behavior: "smooth" });
};
const updateScrollState = () => {
const element = scrollRef.current;
if (!element) {
setCanScrollLeft(false);
setCanScrollRight(false);
return;
}
setCanScrollLeft(element.scrollLeft > 0);
setCanScrollRight(
Math.ceil(element.scrollLeft + element.clientWidth) < element.scrollWidth,
);
};
useEffect(() => {
updateScrollState();
const element = scrollRef.current;
if (!element) {
return;
}
const handleScroll = () => updateScrollState();
element.addEventListener("scroll", handleScroll);
window.addEventListener("resize", handleScroll);
return () => {
element.removeEventListener("scroll", handleScroll);
window.removeEventListener("resize", handleScroll);
};
}, dependencyList);
return (
<div className={wrapperClassName}>
<div className="group relative">
<div
ref={scrollRef}
className={cn(baseScrollClasses, scrollContainerClassName)}
>
{children}
</div>
{canScrollLeft && (
<div className="pointer-events-none absolute inset-y-0 left-0 w-8 bg-gradient-to-r from-white via-white/80 to-white/0" />
)}
{canScrollRight && (
<div className="pointer-events-none absolute inset-y-0 right-0 w-8 bg-gradient-to-l from-white via-white/80 to-white/0" />
)}
{canScrollLeft && (
<button
type="button"
aria-label="Scroll left"
className="pointer-events-none absolute left-2 top-5 -translate-y-1/2 opacity-0 transition-opacity duration-200 group-hover:pointer-events-auto group-hover:opacity-100"
onClick={() => scrollByDelta(-scrollAmount)}
>
<ArrowLeftIcon
size={28}
className="rounded-full bg-zinc-700 p-1 text-white drop-shadow"
weight="light"
/>
</button>
)}
{canScrollRight && (
<button
type="button"
aria-label="Scroll right"
className="pointer-events-none absolute right-2 top-5 -translate-y-1/2 opacity-0 transition-opacity duration-200 group-hover:pointer-events-auto group-hover:opacity-100"
onClick={() => scrollByDelta(scrollAmount)}
>
<ArrowRightIcon
size={28}
className="rounded-full bg-zinc-700 p-1 text-white drop-shadow"
weight="light"
/>
</button>
)}
</div>
</div>
);
};

View File

@@ -1,7 +1,6 @@
import { getGetV2GetBuilderItemCountsQueryKey } from "@/app/api/__generated__/endpoints/default/default";
import {
getGetV2ListLibraryAgentsQueryKey,
getV2GetLibraryAgent,
usePostV2AddMarketplaceAgent,
} from "@/app/api/__generated__/endpoints/library/library";
import {
@@ -106,16 +105,8 @@ export const useMarketplaceAgentsContent = () => {
},
});
// Here, libraryAgent has empty input and output schemas.
// Not updating the endpoint because this endpoint is used elsewhere.
// TODO: Create a new endpoint for builder specific to marketplace agents.
const libraryAgent = response.data as LibraryAgent;
const { data: libraryAgentDetails } = await getV2GetLibraryAgent(
libraryAgent.id,
);
addAgentToBuilder(libraryAgentDetails as LibraryAgent);
addAgentToBuilder(libraryAgent);
toast({
title: "Agent Added",

View File

@@ -6,15 +6,10 @@ import { ErrorCard } from "@/components/molecules/ErrorCard/ErrorCard";
import { blockMenuContainerStyle } from "../style";
import { useBlockMenuStore } from "../../../../stores/blockMenuStore";
import { DefaultStateType } from "../types";
import { SearchHistoryChip } from "../SearchHistoryChip";
import { HorizontalScroll } from "../HorizontalScroll";
export const SuggestionContent = () => {
const { setIntegration, setDefaultState, setSearchQuery, setSearchId } =
useBlockMenuStore();
const { setIntegration, setDefaultState } = useBlockMenuStore();
const { data, isLoading, isError, error, refetch } = useSuggestionContent();
const suggestions = data?.suggestions;
const hasRecentSearches = (suggestions?.recent_searches?.length ?? 0) > 0;
if (isError) {
return (
@@ -34,45 +29,11 @@ export const SuggestionContent = () => {
);
}
const suggestions = data?.suggestions;
return (
<div className={blockMenuContainerStyle}>
<div className="w-full space-y-6 pb-4">
{/* Recent searches */}
{hasRecentSearches && (
<div className="space-y-2.5 px-4">
<p className="font-sans text-sm font-medium leading-[1.375rem] text-zinc-800">
Recent searches
</p>
<HorizontalScroll
wrapperClassName="-mx-8"
scrollContainerClassName="flex gap-2 overflow-x-auto px-8 [scrollbar-width:none] [-ms-overflow-style:'none'] [&::-webkit-scrollbar]:hidden"
dependencyList={[
suggestions?.recent_searches?.length ?? 0,
isLoading,
]}
>
{!isLoading && suggestions
? suggestions.recent_searches.map((entry, index) => (
<SearchHistoryChip
key={entry.search_id || `${entry.search_query}-${index}`}
content={entry.search_query || "Untitled search"}
onClick={() => {
setSearchQuery(entry.search_query || "");
setSearchId(entry.search_id || undefined);
}}
/>
))
: Array(3)
.fill(0)
.map((_, index) => (
<SearchHistoryChip.Skeleton
key={`recent-search-skeleton-${index}`}
/>
))}
</HorizontalScroll>
</div>
)}
{/* Integrations */}
<div className="space-y-2.5 px-4">
<p className="font-sans text-sm font-medium leading-[1.375rem] text-zinc-800">

View File

@@ -103,7 +103,6 @@ const FlowEditor: React.FC<{
updateNode,
getViewport,
setViewport,
fitView,
screenToFlowPosition,
} = useReactFlow<CustomNode, CustomEdge>();
const [nodeId, setNodeId] = useState<number>(1);
@@ -116,7 +115,6 @@ const FlowEditor: React.FC<{
const [pinBlocksPopover, setPinBlocksPopover] = useState(false);
// State to control if save popover should be pinned open
const [pinSavePopover, setPinSavePopover] = useState(false);
const [hasAutoFramed, setHasAutoFramed] = useState(false);
const {
agentName,
@@ -484,26 +482,35 @@ const FlowEditor: React.FC<{
return uuidv4();
}, []);
// Set the initial view port to center the canvas.
useEffect(() => {
if (nodes.length === 0) {
const { x, y } = getViewport();
if (nodes.length <= 0 || x !== 0 || y !== 0) {
return;
}
if (hasAutoFramed) {
return;
}
const topLeft = { x: Infinity, y: Infinity };
const bottomRight = { x: -Infinity, y: -Infinity };
const rafId = requestAnimationFrame(() => {
fitView({ padding: 0.2, duration: 800, maxZoom: 1 });
setHasAutoFramed(true);
nodes.forEach((node) => {
const { x, y } = node.position;
topLeft.x = Math.min(topLeft.x, x);
topLeft.y = Math.min(topLeft.y, y);
// Rough estimate of the width and height of the node: 500x400.
bottomRight.x = Math.max(bottomRight.x, x + 500);
bottomRight.y = Math.max(bottomRight.y, y + 400);
});
return () => cancelAnimationFrame(rafId);
}, [fitView, hasAutoFramed, nodes.length]);
const centerX = (topLeft.x + bottomRight.x) / 2;
const centerY = (topLeft.y + bottomRight.y) / 2;
const zoom = 0.8;
useEffect(() => {
setHasAutoFramed(false);
}, [flowID, flowVersion]);
setViewport({
x: window.innerWidth / 2 - centerX * zoom,
y: window.innerHeight / 2 - centerY * zoom,
zoom: zoom,
});
}, [nodes, getViewport, setViewport]);
const navigateToNode = useCallback(
(nodeId: string) => {

View File

@@ -981,17 +981,15 @@ const NodeArrayInput: FC<{
);
return (
<div key={entryKey}>
{schema.items && (
<NodeHandle
title={`#${index + 1}`}
className="text-sm text-gray-500"
keyName={entryKey}
schema={schema.items}
isConnected={isConnected}
isRequired={false}
side="left"
/>
)}
<NodeHandle
title={`#${index + 1}`}
className="text-sm text-gray-500"
keyName={entryKey}
schema={schema.items!}
isConnected={isConnected}
isRequired={false}
side="left"
/>
<div className="mb-2 flex space-x-2">
{!isConnected &&
(schema.items ? (

View File

@@ -83,6 +83,7 @@ export function RunnerInputDialog({
onRun={doRun ? undefined : doClose}
doCreateSchedule={doCreateSchedule ? handleSchedule : undefined}
onCreateSchedule={doCreateSchedule ? undefined : doClose}
runCount={0}
/>
</DialogContent>
</Dialog>

View File

@@ -152,9 +152,7 @@ export const useSaveGraph = ({
links: graphLinks,
};
const response = await createNewGraph({
data: { graph: data, source: "builder" },
});
const response = await createNewGraph({ data: { graph: data } });
const graphData = response.data as GraphModel;
setGraphSchemas(
graphData.input_schema,

View File

@@ -53,15 +53,6 @@ type NodeStore = {
getNodeExecutionResult: (nodeId: string) => NodeExecutionResult | undefined;
getNodeBlockUIType: (nodeId: string) => BlockUIType;
hasWebhookNodes: () => boolean;
updateNodeErrors: (nodeId: string, errors: { [key: string]: string }) => void;
clearNodeErrors: (nodeId: string) => void;
getNodeErrors: (nodeId: string) => { [key: string]: string } | undefined;
setNodeErrorsForBackendId: (
backendId: string,
errors: { [key: string]: string },
) => void;
clearAllNodeErrors: () => void; // Add this
};
export const useNodeStore = create<NodeStore>((set, get) => ({
@@ -262,47 +253,4 @@ export const useNodeStore = create<NodeStore>((set, get) => ({
[BlockUIType.WEBHOOK, BlockUIType.WEBHOOK_MANUAL].includes(n.data.uiType),
);
},
updateNodeErrors: (nodeId: string, errors: { [key: string]: string }) => {
set((state) => ({
nodes: state.nodes.map((n) =>
n.id === nodeId ? { ...n, data: { ...n.data, errors } } : n,
),
}));
},
clearNodeErrors: (nodeId: string) => {
set((state) => ({
nodes: state.nodes.map((n) =>
n.id === nodeId ? { ...n, data: { ...n.data, errors: undefined } } : n,
),
}));
},
getNodeErrors: (nodeId: string) => {
return get().nodes.find((n) => n.id === nodeId)?.data?.errors;
},
setNodeErrorsForBackendId: (
backendId: string,
errors: { [key: string]: string },
) => {
set((state) => ({
nodes: state.nodes.map((n) => {
// Match by backend_id if nodes have it, or by id
const matches =
n.data.metadata?.backend_id === backendId || n.id === backendId;
return matches ? { ...n, data: { ...n.data, errors } } : n;
}),
}));
},
clearAllNodeErrors: () => {
set((state) => ({
nodes: state.nodes.map((n) => ({
...n,
data: { ...n.data, errors: undefined },
})),
}));
},
}));

View File

@@ -141,6 +141,7 @@ export function ChatCredentialsSetup({
onSelectCredentials={(credMeta) =>
handleCredentialSelect(cred.provider, credMeta)
}
hideIfSingleCredentialAvailable={false}
/>
</div>
);

View File

@@ -1,5 +1,6 @@
"use client";
import { Skeleton } from "@/components/__legacy__/ui/skeleton";
import { Button } from "@/components/atoms/Button/Button";
import { Breadcrumbs } from "@/components/molecules/Breadcrumbs/Breadcrumbs";
import { ErrorCard } from "@/components/molecules/ErrorCard/ErrorCard";
@@ -10,27 +11,20 @@ import { AgentRunsLoading } from "./components/other/AgentRunsLoading";
import { EmptySchedules } from "./components/other/EmptySchedules";
import { EmptyTasks } from "./components/other/EmptyTasks";
import { EmptyTemplates } from "./components/other/EmptyTemplates";
import { EmptyTriggers } from "./components/other/EmptyTriggers";
import { SectionWrap } from "./components/other/SectionWrap";
import { LoadingSelectedContent } from "./components/selected-views/LoadingSelectedContent";
import { SelectedRunView } from "./components/selected-views/SelectedRunView/SelectedRunView";
import { SelectedScheduleView } from "./components/selected-views/SelectedScheduleView/SelectedScheduleView";
import { SelectedTemplateView } from "./components/selected-views/SelectedTemplateView/SelectedTemplateView";
import { SelectedTriggerView } from "./components/selected-views/SelectedTriggerView/SelectedTriggerView";
import { SelectedViewLayout } from "./components/selected-views/SelectedViewLayout";
import { SidebarRunsList } from "./components/sidebar/SidebarRunsList/SidebarRunsList";
import { AGENT_LIBRARY_SECTION_PADDING_X } from "./helpers";
import { useNewAgentLibraryView } from "./useNewAgentLibraryView";
export function NewAgentLibraryView() {
const {
agentId,
agent,
ready,
activeTemplate,
isTemplateLoading,
error,
hasAnyItems,
ready,
error,
agentId,
activeItem,
sidebarLoading,
activeTab,
@@ -38,9 +32,6 @@ export function NewAgentLibraryView() {
handleSelectRun,
handleCountsChange,
handleClearSelectedRun,
onRunInitiated,
onTriggerSetup,
onScheduleCreated,
} = useNewAgentLibraryView();
if (error) {
@@ -70,19 +61,14 @@ export function NewAgentLibraryView() {
/>
</div>
<div className="flex min-h-0 flex-1">
<EmptyTasks
agent={agent}
onRun={onRunInitiated}
onTriggerSetup={onTriggerSetup}
onScheduleCreated={onScheduleCreated}
/>
<EmptyTasks agent={agent} />
</div>
</div>
);
}
return (
<div className="mx-4 grid h-full grid-cols-1 gap-0 pt-3 md:ml-4 md:mr-0 md:gap-4 lg:grid-cols-[25%_70%]">
<div className="ml-4 grid h-full grid-cols-1 gap-0 pt-3 md:gap-4 lg:grid-cols-[25%_70%]">
<SectionWrap className="mb-3 block">
<div
className={cn(
@@ -92,21 +78,16 @@ export function NewAgentLibraryView() {
>
<RunAgentModal
triggerSlot={
<Button
variant="primary"
size="large"
className="w-full"
disabled={isTemplateLoading && activeTab === "templates"}
>
<Button variant="primary" size="large" className="w-full">
<PlusIcon size={20} /> New task
</Button>
}
agent={agent}
onRunCreated={onRunInitiated}
onScheduleCreated={onScheduleCreated}
onTriggerSetup={onTriggerSetup}
initialInputValues={activeTemplate?.inputs}
initialInputCredentials={activeTemplate?.credentials}
agentId={agent.id.toString()}
onRunCreated={(execution) => handleSelectRun(execution.id, "runs")}
onScheduleCreated={(schedule) =>
handleSelectRun(schedule.id, "scheduled")
}
/>
</div>
@@ -120,60 +101,49 @@ export function NewAgentLibraryView() {
/>
</SectionWrap>
{activeItem ? (
activeTab === "scheduled" ? (
<SelectedScheduleView
agent={agent}
scheduleId={activeItem}
onClearSelectedRun={handleClearSelectedRun}
<SectionWrap className="mb-3">
<div
className={`${AGENT_LIBRARY_SECTION_PADDING_X} border-b border-zinc-100 pb-4`}
>
<Breadcrumbs
items={[
{ name: "My Library", link: "/library" },
{ name: agent.name, link: `/library/agents/${agentId}` },
]}
/>
) : activeTab === "templates" ? (
<SelectedTemplateView
agent={agent}
templateId={activeItem}
onClearSelectedRun={handleClearSelectedRun}
onRunCreated={(execution) => handleSelectRun(execution.id, "runs")}
onSwitchToRunsTab={() => setActiveTab("runs")}
/>
) : activeTab === "triggers" ? (
<SelectedTriggerView
agent={agent}
triggerId={activeItem}
onClearSelectedRun={handleClearSelectedRun}
onSwitchToRunsTab={() => setActiveTab("runs")}
/>
) : (
<SelectedRunView
agent={agent}
runId={activeItem}
onSelectRun={handleSelectRun}
onClearSelectedRun={handleClearSelectedRun}
/>
)
) : sidebarLoading ? (
<LoadingSelectedContent agentName={agent.name} agentId={agent.id} />
) : activeTab === "scheduled" ? (
<SelectedViewLayout agentName={agent.name} agentId={agent.id}>
<EmptySchedules />
</SelectedViewLayout>
) : activeTab === "templates" ? (
<SelectedViewLayout agentName={agent.name} agentId={agent.id}>
<EmptyTemplates />
</SelectedViewLayout>
) : activeTab === "triggers" ? (
<SelectedViewLayout agentName={agent.name} agentId={agent.id}>
<EmptyTriggers />
</SelectedViewLayout>
) : (
<SelectedViewLayout agentName={agent.name} agentId={agent.id}>
<EmptyTasks
agent={agent}
onRun={onRunInitiated}
onTriggerSetup={onTriggerSetup}
onScheduleCreated={onScheduleCreated}
/>
</SelectedViewLayout>
)}
</div>
<div className="flex min-h-0 flex-1 flex-col">
{activeItem ? (
activeTab === "scheduled" ? (
<SelectedScheduleView
agent={agent}
scheduleId={activeItem}
onClearSelectedRun={handleClearSelectedRun}
/>
) : (
<SelectedRunView
agent={agent}
runId={activeItem}
onSelectRun={handleSelectRun}
onClearSelectedRun={handleClearSelectedRun}
/>
)
) : sidebarLoading ? (
<div className="flex flex-col gap-4">
<Skeleton className="h-8 w-full bg-slate-100" />
<Skeleton className="h-12 w-full bg-slate-100" />
<Skeleton className="h-64 w-full bg-slate-100" />
<Skeleton className="h-32 w-full bg-slate-100" />
</div>
) : activeTab === "scheduled" ? (
<EmptySchedules />
) : activeTab === "templates" ? (
<EmptyTemplates />
) : (
<EmptyTasks agent={agent} />
)}
</div>
</SectionWrap>
</div>
);
}

View File

@@ -1,11 +1,15 @@
"use client";
import React from "react";
import type { LibraryAgent } from "@/app/api/__generated__/models/libraryAgent";
import { Text } from "@/components/atoms/Text/Text";
import type { CredentialsMetaInput } from "@/lib/autogpt-server-api/types";
import { CredentialsInput } from "../CredentialsInputs/CredentialsInputs";
import { RunAgentInputs } from "../RunAgentInputs/RunAgentInputs";
import { getAgentCredentialsFields, getAgentInputFields } from "./helpers";
import { toDisplayName } from "@/providers/agent-credentials/helper";
import {
getAgentCredentialsFields,
getAgentInputFields,
getCredentialTypeDisplayName,
renderValue,
} from "./helpers";
type Props = {
agent: LibraryAgent;
@@ -18,28 +22,16 @@ export function AgentInputsReadOnly({
inputs,
credentialInputs,
}: Props) {
const inputFields = getAgentInputFields(agent);
const credentialFieldEntries = Object.entries(
getAgentCredentialsFields(agent),
);
const fields = getAgentInputFields(agent);
const credentialFields = getAgentCredentialsFields(agent);
const inputEntries = Object.entries(fields);
const credentialEntries = Object.entries(credentialFields);
const inputEntries =
inputs &&
Object.entries(inputs).map(([key, value]) => ({
key,
schema: inputFields[key],
value,
}));
const hasInputs = inputEntries && inputEntries.length > 0;
const hasCredentials = credentialInputs && credentialFieldEntries.length > 0;
const hasInputs = inputs && inputEntries.length > 0;
const hasCredentials = credentialInputs && credentialEntries.length > 0;
if (!hasInputs && !hasCredentials) {
return (
<Text variant="body" className="text-zinc-700">
No input for this run.
</Text>
);
return <div className="text-neutral-600">No input for this run.</div>;
}
return (
@@ -47,20 +39,14 @@ export function AgentInputsReadOnly({
{/* Regular inputs */}
{hasInputs && (
<div className="flex flex-col gap-4">
{inputEntries.map(({ key, schema, value }) => {
if (!schema) return null;
return (
<RunAgentInputs
key={key}
schema={schema}
value={value}
placeholder={schema.description}
onChange={() => {}}
readOnly={true}
/>
);
})}
{inputEntries.map(([key, sub]) => (
<div key={key} className="flex flex-col gap-1.5">
<label className="text-sm font-medium">{sub?.title || key}</label>
<p className="whitespace-pre-wrap break-words text-sm text-neutral-700">
{renderValue((inputs as Record<string, any>)[key])}
</p>
</div>
))}
</div>
)}
@@ -68,18 +54,32 @@ export function AgentInputsReadOnly({
{hasCredentials && (
<div className="flex flex-col gap-6">
{hasInputs && <div className="border-t border-neutral-200 pt-4" />}
{credentialFieldEntries.map(([key, inputSubSchema]) => {
{credentialEntries.map(([key, _sub]) => {
const credential = credentialInputs![key];
if (!credential) return null;
return (
<CredentialsInput
key={key}
schema={{ ...inputSubSchema, discriminator: undefined } as any}
selectedCredentials={credential}
onSelectCredentials={() => {}}
readOnly={true}
/>
<div key={key} className="flex flex-col gap-4">
<h3 className="text-lg font-medium text-neutral-900">
{toDisplayName(credential.provider)} credentials
</h3>
<div className="flex flex-col gap-3">
<div className="flex items-center justify-between text-sm">
<span className="text-neutral-600">Name</span>
<span className="text-neutral-600">
{getCredentialTypeDisplayName(credential.type)}
</span>
</div>
<div className="flex items-center justify-between text-sm">
<span className="text-neutral-900">
{credential.title || "Untitled"}
</span>
<span className="font-mono text-neutral-400">
{"*".repeat(25)}
</span>
</div>
</div>
</div>
);
})}
</div>

View File

@@ -13,8 +13,7 @@ export function getCredentialTypeDisplayName(type: string): string {
}
export function getAgentInputFields(agent: LibraryAgent): Record<string, any> {
const schema = (agent.trigger_setup_info?.config_schema ??
agent.input_schema) as unknown as {
const schema = agent.input_schema as unknown as {
properties?: Record<string, any>;
} | null;
if (!schema || !schema.properties) return {};

Some files were not shown because too many files have changed in this diff Show More