Compare commits

..

50 Commits

Author SHA1 Message Date
Zamil Majdy
a80f452ffe style: fix linter formatting issues 2026-01-22 21:39:07 -05:00
Zamil Majdy
fd970c800c feat(frontend): implement per-review auto-approval toggles
- Replace global auto_approve_future_actions with per-review auto_approve_future
- Add individual toggle for each review in PendingReviewCard
- Track per-review auto-approval state in autoApproveFutureMap
- Send auto_approve_future field with each review item
- Update UI to show per-review toggle with explanation
- Automatically reset data to original when auto-approve is enabled per review
2026-01-22 21:38:17 -05:00
Zamil Majdy
5fc1ec0ece fix(backend): add user-scoped validation to cancel_pending_reviews_for_execution
- Add user_id parameter to validate ownership before cancelling reviews
- Update call site in executor/utils.py to pass user_id
- Update all test assertions to expect user_id parameter
- Prevents cross-tenant cancellation if graph_exec_id is misused
2026-01-22 21:29:00 -05:00
Zamil Majdy
9be3ec58ae fix(backend): fix pagination bug in review lookup and implement per-review auto-approval
- Add get_pending_review_by_node_exec_id() for direct review lookup
- Replace paginated search with direct lookup to avoid missing reviews beyond page 1
- Implement per-review auto_approve_future toggle for granular control
- Fix log deduplication for embedding generation warnings
- Remove unnecessary f-string prefixes per linter feedback
- Fix all test mocks to use correct functions (get_pending_reviews_for_user vs get_pending_review_by_node_exec_id)
- All 15 review route tests passing
2026-01-22 21:24:15 -05:00
Zamil Majdy
e6ca904326 style: remove unnecessary f-string prefixes
- Remove f-string prefix from strings without placeholders
- Fixes Ruff F541 linter warning
- Addresses CodeRabbit comment 2719299451
2026-01-22 21:13:24 -05:00
Zamil Majdy
dbb56fa7aa feat: add per-review auto-approval toggle for granular control
- Change from global auto_approve_future_actions to per-review auto_approve_future flag
- Each review item can now individually specify auto-approval
- Better UX: users can auto-approve some actions but not others
- Example: auto-approve file reads but not file writes
- Backward compatible: auto_approve_future defaults to False
- Add test for per-review granularity
- Update all existing tests to use new structure
2026-01-22 21:01:35 -05:00
Zamil Majdy
0111820f61 feat: deduplicate embedding generation failure warnings
- Use log_once_per_task for embedding generation failures
- Prevents log spam when API key is missing
- Now shows single warning per task instead of per-file warnings
- Makes logs more readable and actionable
2026-01-22 20:51:23 -05:00
Zamil Majdy
1a1b1aa26d fix: add user ownership validation to create_auto_approval_record
- Add defense-in-depth check that graph_exec_id belongs to user_id
- Validates ownership before creating auto-approval records
- Prevents potential misuse if function called from other contexts
- Addresses CodeRabbit security concern (comment 2718990979)
2026-01-22 20:43:47 -05:00
Zamil Majdy
614ed8cf82 fix(backend/hitl): preserve user timezone when resuming execution from review
- Add user_timezone to ExecutionContext when resuming after review approval
- Fetch user to get timezone preference, defaulting to UTC if not set
- Make error deduplication more general using contextvars
- Replace global flag with log_once_per_task() helper for task-scoped logging
- Prevents log spam when processing batches (embeddings, etc.)

Addresses CodeRabbit comment about ExecutionContext not being exhaustive.
2026-01-22 19:59:45 -05:00
Zamil Majdy
edd4c96aa6 fix: remove accidentally committed supabase submodule 2026-01-22 19:48:22 -05:00
Zamil Majdy
cd231e2d69 fix(backend/tests): fix event loop issues in review route tests
- Convert module-level TestClient to fixture to avoid event loop conflicts
- Add missing mock for get_pending_reviews_for_user in all tests
- Add client parameter to all test functions that use the test client
- Add missing mocks for get_graph_execution_meta in several tests
- Remove asyncio.gather to avoid event loop binding issues
- Process auto-approval creation sequentially with try/except for safety

All 14 review route tests now pass successfully.
2026-01-22 19:24:07 -05:00
Zamil Majdy
399c472623 fix(backend/store): deduplicate missing API key error logs
Only log "openai_internal_api_key not set" error once per process instead
of on every embedding generation attempt. Reduces log spam when processing
batch operations without an API key configured.
2026-01-22 19:09:35 -05:00
Zamil Majdy
554e2beddf fix(backend/hitl): address CodeRabbit review feedback
- Use return_exceptions=True in asyncio.gather for auto-approval creation
  to prevent endpoint failure when auto-approval fails (reviews already processed)
- Fix empty payload handling: use explicit None check instead of truthiness
- Distinguish auto-approvals from normal approvals: auto-approvals always
  use current input_data, normal approvals preserve explicitly empty payloads
2026-01-22 19:08:14 -05:00
Zamil Majdy
29fdda3fa8 test(backend/executor): add tests for stop_graph_execution with REVIEW status
- Test cancellation of pending reviews when stopping execution in REVIEW status
- Test database manager pattern when Prisma is disconnected
- Test cascading stop to children with pending reviews
- Fix mock to simulate status transition from RUNNING to TERMINATED

Covers the bug fixes in stop_graph_execution() that handle:
1. Immediate termination of REVIEW status executions
2. Cleanup of pending reviews when stopping
3. Recursive cleanup of subagent reviews via cascade
2026-01-22 18:59:20 -05:00
Zamil Majdy
67e6a8841c fix(executor): Handle REVIEW status when stopping graph executions
Critical bug fix: stopping a graph in REVIEW status caused timeouts and orphaned reviews.

## Bugs Fixed

### 1. REVIEW Status Not Handled
Before:
- stop_graph_execution() only handled QUEUED, INCOMPLETE, RUNNING, COMPLETED, FAILED
- REVIEW status → waited 15 seconds → TimeoutError
- Graph remained stuck in REVIEW status

After:
- REVIEW status treated like QUEUED/INCOMPLETE (terminate immediately)
- No need to wait for executor since execution is paused
- Clean termination without timeouts

### 2. Orphaned Pending Reviews
Before:
- Stopping graph → status = TERMINATED
- Pending reviews remained in WAITING status
- User saw reviews for terminated execution in UI
- Could not approve/reject (backend validation rejects)
- Reviews stuck until manual cleanup

After:
- When stopping REVIEW execution, clean up pending reviews
- Mark all WAITING reviews as REJECTED
- reviewMessage: 'Execution was stopped by user'
- processed: true, reviewedAt: now()
- No orphaned reviews in UI

### 3. Subagent Reviews
Before:
- Parent graph with child (subagent) executions
- Child paused for HITL review
- Stop parent → recursively stops child
- Child reviews orphaned (same bugs as above)

After:
- Cascade stop properly handles child REVIEW status
- All child reviews cleaned up recursively
- Clean shutdown of entire execution tree

## Implementation

Changes to stop_graph_execution():
1. Added ExecutionStatus.REVIEW to immediate termination list
2. Check if status == REVIEW before marking TERMINATED
3. Update all WAITING reviews to REJECTED with message
4. Log cleanup for debugging
5. Then terminate execution normally

Cascade behavior preserved:
- Still recursively stops all child executions
- Each child's reviews cleaned up individually
- Parent waits for all children to complete cleanup
2026-01-22 18:27:08 -05:00
Zamil Majdy
aea97db485 feat(frontend): Hide pending reviews panel while execution is RUNNING/QUEUED
Defense in depth: prevent users from seeing/clicking review panel before
execution pauses for review.

Before:
- Reviews panel could show while execution is RUNNING
- User could click to open panel and see pending reviews
- Confusing UX: why are reviews shown if graph hasn't paused yet?
- Could lead to frustration when backend rejects the approval attempt

After:
- Panel hidden if execution status is RUNNING or QUEUED
- Panel only shows when status is REVIEW (paused for review)
- Clear UX: reviews appear only when execution needs user input

Benefits:
1. **Better UX**: No confusion about when to approve reviews
2. **Prevents invalid attempts**: User can't try to approve while running
3. **Works with backend validation**: Frontend hides, backend rejects
4. **Clear state**: Panel visibility directly matches execution state

Changes:
- Added status check: hide if RUNNING or QUEUED
- Panel shows only when execution has paused (REVIEW/INCOMPLETE)
- Existing polling logic still works for real-time updates
2026-01-22 18:22:33 -05:00
Zamil Majdy
71a6969bbd feat(hitl): Add backend validation to prevent review processing during RUNNING/QUEUED status
Defense in depth: validate execution status before processing reviews.

Before:
- Reviews could be processed regardless of execution status
- Could cause race conditions and deadlocks
- User confusion when reviews processed but execution still running

After:
- Reject review processing with 409 Conflict if status is not REVIEW/INCOMPLETE
- Only allow processing when execution is actually paused for review
- Clear error message explaining why the request was rejected

Benefits:
1. **Prevention over cure**: Stop invalid requests before processing
2. **Clear semantics**: Reviews can only be processed when execution paused
3. **Better UX**: User gets immediate feedback if they try to approve too early
4. **Simpler resume logic**: No need for complex status checks since we validate upfront

Changes:
- Fetch graph execution metadata early in the endpoint
- Validate status is REVIEW or INCOMPLETE before processing
- Removed redundant status checks in resume logic (already validated)
- Simplified resume flow: just check if pending reviews remain
- Fixed comment: 'all pending reviews' not 'some reviews'
2026-01-22 18:22:21 -05:00
Zamil Majdy
e4c3f9995b feat(frontend): Change safety popup to per-agent instead of global
Changed AI_AGENT_SAFETY_POPUP_SHOWN from a boolean flag to an array of
agent IDs. This ensures users see the safety popup once per unique agent
instead of once globally.

Why this is better:
- Different agents have different capabilities (sensitive actions, HITL blocks)
- User should be aware of what THIS specific agent can do
- Not too annoying since it's still only once per agent, not every run
- Better safety awareness when switching between safe and risky agents

Changes:
- Store array of seen agent IDs in localStorage instead of single boolean
- Pass agentId to useAIAgentSafetyPopup hook and AIAgentSafetyPopup component
- Check if current agent ID is in the seen list before showing popup
- Add agent ID to list when user acknowledges popup

Testing:
- Clear localStorage or remove specific agent ID from array to re-trigger popup
- Each unique agent shows popup on first run only
2026-01-22 18:13:33 -05:00
Zamil Majdy
3b58684abc fix(hitl): Prevent review deadlock by resuming regardless of execution status
When users approve/reject reviews but the execution status is not REVIEW
(due to race conditions or bugs), the reviews get marked as processed but
execution never resumes, leaving the graph stuck forever.

This fix ensures that:
- If no pending reviews remain after processing, we ALWAYS attempt to resume
- Only skip if status is COMPLETED or FAILED (already finished)
- Log warning if status is unexpected (not REVIEW) but still resume to prevent deadlock
- Prevents scenario where user has nothing to do (reviews processed) but graph never completes

Example deadlock scenario (now prevented):
1. Graph creates review, sets status to REVIEW
2. User approves review → marked as APPROVED
3. Status check finds unexpected state (not REVIEW)
4. OLD: Return without resuming → graph stuck forever
5. NEW: Log warning and resume anyway → graph completes
2026-01-22 18:13:18 -05:00
Zamil Majdy
e8d44a62fd refactor(hitl): Add user_id validation and code quality improvements
- Add user_id parameter to check_approval for data isolation consistency
- Fix message text: 'block' → 'node' in auto-approval message
- Use walrus operator for cleaner approval_result check
- Move imports to top-level in test file (avoid local imports)
- Remove obvious comments (Check if pending, Resume execution, Load settings)
2026-01-22 18:04:03 -05:00
Zamil Majdy
be024da2a8 fix(hitl): Prevent review race condition by checking execution status
Fixed race condition where user approves reviews while graph execution
is still RUNNING, which could queue the execution twice and cause
duplicate/conflicting execution instances.

Solution:
- Check graph execution status BEFORE resuming
- Only resume if status is REVIEW (execution paused for review)
- Skip resumption if RUNNING (will naturally pick up approved reviews)
- Skip if COMPLETED/other (already finished)

This ensures we never queue an execution that's already running,
while still allowing the running execution to pick up approved
reviews naturally.

Added tests:
- All review action tests now mock get_graph_execution_meta
- Tests verify execution only resumes when status is REVIEW
2026-01-22 17:48:24 -05:00
Zamil Majdy
0df917e243 fix(hitl): Expose check_approval through database manager client
Fixed "Client is not connected to the query engine" error when
check_approval is called from block execution context. The function
is now accessed through the database manager async client (RPC),
similar to other HITL methods like get_or_create_human_review.

Changes:
- Add check_approval to DatabaseManager and DatabaseManagerAsyncClient
- Update HITLReviewHelper to call check_approval via database client
- Remove direct import of check_approval in review.py
2026-01-22 17:33:52 -05:00
Zamil Majdy
8688805a8c refactor(hitl): Consolidate check_auto_approval into check_approval
Merge auto-approval check and normal approval check into a single
function using find_first with OR condition. This reduces database
queries by checking both the node_exec_id and auto_approve_key in
one query.
2026-01-22 16:55:12 -05:00
Zamil Majdy
9bdda7dab0 cleanup 2026-01-22 16:23:40 -05:00
Zamil Majdy
7d377aabaa fix(db): Remove useless prefix 2026-01-22 16:00:09 -05:00
Zamil Majdy
dfd7c64068 feat(backend): Implement node-specific auto-approval using key pattern
- Add auto-approval via special nodeExecId key pattern (auto_approve_{graph_exec_id}_{node_id})
- Create auto-approval records in PendingHumanReview when user approves with auto-approve flag
- Check for existing auto-approval before requiring human review
- Remove node_id parameter from get_or_create_human_review
- Load graph settings properly when resuming execution after review
2026-01-21 22:21:00 -05:00
Zamil Majdy
02089bc047 fix(frontend): Add polling for pending reviews badge to update in real-time
- Add refetchInterval to execution details query to poll while running/review
- Add polling support to usePendingReviewsForExecution hook
- Poll pending reviews every 2 seconds when execution is in REVIEW status
- This ensures the "X Reviews Pending" badge updates without page refresh
2026-01-21 21:08:10 -05:00
Zamil Majdy
bed7b356bb fix(frontend): Reset card data when auto-approve toggle changes
Include autoApproveFuture in the key prop to force PendingReviewCard
to remount when the toggle changes, which resets its internal state
to the original payload data.
2026-01-21 21:04:56 -05:00
Zamil Majdy
4efc0ff502 fix(migration): Correct migration to only drop FK constraint, not non-existent column
The nodeId column was never added to PendingHumanReview. The migration
should only drop the foreign key constraint linking nodeExecId to
AgentNodeExecution, not try to drop a column that doesn't exist.
2026-01-21 20:13:41 -05:00
Zamil Majdy
4ad0528257 feat(hitl): Simplify auto-approval with toggle UX and remove node_id storage
- Remove nodeId column from PendingHumanReview schema (use in-memory tracking)
- Remove foreign key relation from PendingHumanReview to AgentNodeExecution
- Use ExecutionContext.auto_approved_node_ids for auto-approval tracking
- Add auto-approve toggle in frontend (default off)
- When toggle enabled: disable editing and use original data
- Backend looks up agentNodeId from AgentNodeExecution when auto-approving
- Update tests to reflect schema changes
2026-01-21 19:57:11 -05:00
Zamil Majdy
2f440ee80a Merge branch 'dev' into feat/sensitive-action-features 2026-01-21 19:08:32 -05:00
Zamil Majdy
5d0cd88d98 fix(backend): Use unqualified vector type for pgvector queries (#11818)
## Summary
- Remove explicit schema qualification (`{schema}.vector` and
`OPERATOR({schema}.<=>)`) from pgvector queries in `embeddings.py` and
`hybrid_search.py`
- Use unqualified `::vector` type cast and `<=>` operator which work
because pgvector is in the search_path on all environments

## Problem
The previous approach tried to explicitly qualify the vector type with
schema names, but this failed because:
- **CI environment**: pgvector is in `public` schema → `platform.vector`
doesn't exist
- **Dev (Supabase)**: pgvector is in `platform` schema → `public.vector`
doesn't exist

## Solution
Use unqualified `::vector` and `<=>` operator. PostgreSQL resolves these
via `search_path`, which includes the schema where pgvector is installed
on all environments.

Tested on both local and dev environments with a test script that
verified:
-  Unqualified `::vector` type cast
-  Unqualified `<=>` operator in ORDER BY
-  Unqualified `<=>` in SELECT (similarity calculation)
-  Combined query patterns matching actual usage

## Test plan
- [ ] CI tests pass
- [ ] Marketplace approval works on dev after deployment

Fixes: AUTOGPT-SERVER-763, AUTOGPT-SERVER-764, AUTOGPT-SERVER-76B
2026-01-21 18:11:58 +00:00
Zamil Majdy
033f58c075 fix(backend): Make Redis event bus gracefully handle connection failures (#11817)
## Summary
Adds graceful error handling to AsyncRedisEventBus and RedisEventBus so
that connection failures log exceptions with full traceback while
remaining non-breaking. This allows DatabaseManager to operate without
Redis connectivity.

## Problem
DatabaseManager was failing with "Authentication required" when trying
to publish notifications via AsyncRedisNotificationEventBus. The service
has no Redis credentials configured, causing `increment_onboarding_runs`
to fail.

## Root Cause
When `increment_onboarding_runs` publishes a notification:
1. Calls `AsyncRedisNotificationEventBus().publish()`
2. Attempts to connect to Redis via `get_redis_async()`
3. Connection fails due to missing credentials
4. Exception propagates, failing the entire DB operation

Previous fix (#11775) made the cache module lazy, but didn't address the
notification bus which also requires Redis.

## Solution
Wrap Redis operations in try-except blocks:
- `publish_event`: Logs exception with traceback, continues without
publishing
- `listen_events`: Logs exception with traceback, returns empty
generator
- `wait_for_event`: Returns None on connection failure

Using `logger.exception()` instead of `logger.warning()` ensures full
stack traces are captured for debugging while keeping operations
non-breaking.

This allows services to operate without Redis when only using event bus
for non-critical notifications.

## Changes
- Modified `backend/data/event_bus.py`:
- Added graceful error handling to `RedisEventBus` and
`AsyncRedisEventBus`
- All Redis operations now catch exceptions and log with
`logger.exception()`
- Added `backend/data/event_bus_test.py`:
  - Tests verify graceful degradation when Redis is unavailable
  - Tests verify normal operation when Redis is available

## Test Plan
- [x] New tests verify graceful degradation when Redis unavailable
- [x] Existing notification tests still pass
- [x] DatabaseManager can increment onboarding runs without Redis

## Related Issues
Fixes https://significant-gravitas.sentry.io/issues/7205834440/
(AUTOGPT-SERVER-76D)
2026-01-21 15:51:26 +00:00
Ubbe
40ef2d511f fix(frontend): auto-select credentials correctly in old builder (#11815)
## Changes 🏗️

On the **Old Builder**, when running an agent...

### Before

<img width="800" height="614" alt="Screenshot 2026-01-21 at 21 27 05"
src="https://github.com/user-attachments/assets/a3b2ec17-597f-44d2-9130-9e7931599c38"
/>

Credentials are there, but it is not recognising them, you need to click
on them to be selected

### After

<img width="1029" height="728" alt="Screenshot 2026-01-21 at 21 26 47"
src="https://github.com/user-attachments/assets/c6e83846-6048-439e-919d-6807674f2d5a"
/>

It uses the new credentials UI and correctly auto-selects existing ones.

### Other

Fixed a small timezone display glitch on the new library view.

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Run agent in old builder
- [x] Credentials are auto-selected and using the new collapsed system
credentials UI
2026-01-21 14:55:49 +00:00
Zamil Majdy
2a55923ec0 Merge dev to get GraphSettings fix 2026-01-21 09:31:17 -05:00
Zamil Majdy
b714c0c221 fix(backend): handle null values in GraphSettings validation (#11812)
## Summary
- Fixes AUTOGPT-SERVER-76H - Error parsing LibraryAgent from database
due to null values in GraphSettings fields
- When parsing LibraryAgent settings from the database, null values for
`human_in_the_loop_safe_mode` and `sensitive_action_safe_mode` were
causing Pydantic validation errors
- Adds `BeforeValidator` annotations to coerce null values to their
defaults (True and False respectively)

## Test plan
- [x] Verified with unit tests that GraphSettings can now handle
None/null values
- [x] Backend tests pass
- [x] Manually tested with all scenarios (None, empty dict, explicit
values)
2026-01-21 08:40:38 -05:00
Krzysztof Czerwinski
ebabc4287e feat(platform): New LLM Picker UI (#11726)
Add new LLM Picker for the new Builder.

### Changes 🏗️

- Enrich `LlmModelMeta` (in `llm.py`) with human readable model, creator
and provider names and price tier (note: this is temporary measure and
all LlmModelMeta will be removed completely once LLM Registry is ready)
- Add provider icons
- Add custom input field `LlmModelField` and its components&helpers

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] LLM model picker works correctly in the new Builder
  - [x] Legacy LLM model picker works in the old Builder
2026-01-21 10:52:55 +00:00
Zamil Majdy
ad50f57a2b chore: add migration for nodeId field in PendingHumanReview
Adds database migration to add the nodeId column which tracks
the node ID in the graph definition for auto-approval tracking.
2026-01-20 23:03:03 -05:00
Zamil Majdy
aebd961ef5 fix: implement node-specific auto-approval for human reviews
Instead of disabling all safe modes when approving all future actions,
now tracks specific node IDs that should be auto-approved. This means
clicking "Approve all future actions" will only auto-approve future
reviews from the same blocks, not all reviews.

Changes:
- Add nodeId field to PendingHumanReview schema
- Add auto_approved_node_ids set to ExecutionContext
- Update review helper to check auto_approved_node_ids
- Change API from disable_future_reviews to auto_approve_node_ids
- Update frontend to pass node_ids when bulk approving
- Address PR feedback: remove barrel file, JSDoc comments, and cleanup
2026-01-20 22:15:51 -05:00
Zamil Majdy
bcccaa16cc fix: remove unused props from AIAgentSafetyPopup component
Removes hasSensitiveAction and hasHumanInTheLoop props that were only
used by the hook, not the component itself, fixing ESLint unused vars error.
2026-01-20 21:05:39 -05:00
Zamil Majdy
d5ddc41b18 feat: add bulk approval option for human reviews
Add "Approve all future actions" button to the review UI that:
- Approves all current pending reviews
- Disables safe mode for the remainder of the execution run
- Shows helper text about turning auto-approval on/off in settings

Backend changes:
- Add disable_future_reviews flag to ReviewRequest model
- Pass ExecutionContext with disabled safe modes when resuming

Frontend changes:
- Add "Approve all future actions" button to PendingReviewsList
- Include helper text per PRD requirements

Implements SECRT-1795
2026-01-20 20:45:50 -05:00
Zamil Majdy
95eab5b7eb feat: add one-time safety popup for AI-generated agent runs
Show a one-time safety popup the first time a user runs an agent with
sensitive actions or human-in-the-loop blocks. The popup explains that
agents may take real-world actions and that safety checks are enabled.

- Add AI_AGENT_SAFETY_POPUP_SHOWN localStorage key
- Create AIAgentSafetyPopup component with hook
- Integrate popup into RunAgentModal before first run

Implements SECRT-1798
2026-01-20 20:40:18 -05:00
Zamil Majdy
832d6e1696 fix: correct safe mode checks for sensitive action blocks
- Add skip_safe_mode_check parameter to HITLReviewHelper to avoid
  checking the wrong safe mode flag for sensitive action blocks
- Simplify SafeModeToggle and FloatingSafeModeToggle by removing
  unnecessary intermediate variables and isHITLStateUndetermined checks
2026-01-20 20:33:55 -05:00
Zamil Majdy
8b25e62959 feat(backend,frontend): add explicit safe mode toggles for HITL and sensitive actions (#11756)
## Summary

This PR introduces two explicit safe mode toggles for controlling agent
execution behavior, providing clearer and more granular control over
when agents should pause for human review.

### Key Changes

**New Safe Mode Settings:**
- **`human_in_the_loop_safe_mode`** (bool, default `true`) - Controls
whether human-in-the-loop (HITL) blocks pause for review
- **`sensitive_action_safe_mode`** (bool, default `false`) - Controls
whether sensitive action blocks pause for review

**New Computed Properties on LibraryAgent:**
- `has_human_in_the_loop` - Indicates if agent contains HITL blocks
- `has_sensitive_action` - Indicates if agent contains sensitive action
blocks

**Block Changes:**
- Renamed `requires_human_review` to `is_sensitive_action` on blocks for
clarity
- Blocks marked as `is_sensitive_action=True` pause only when
`sensitive_action_safe_mode=True`
- HITL blocks pause when `human_in_the_loop_safe_mode=True`

**Frontend Changes:**
- Two separate toggles in Agent Settings based on block types present
- Toggle visibility based on `has_human_in_the_loop` and
`has_sensitive_action` computed properties
- Settings cog hidden if neither toggle applies
- Proper state management for both toggles with defaults

**AI-Generated Agent Behavior:**
- AI-generated agents set `sensitive_action_safe_mode=True` by default
- This ensures sensitive actions are reviewed for AI-generated content

## Changes

**Backend:**
- `backend/data/graph.py` - Updated `GraphSettings` with two boolean
toggles (non-optional with defaults), added `has_sensitive_action`
computed property
- `backend/data/block.py` - Renamed `requires_human_review` to
`is_sensitive_action`, updated review logic
- `backend/data/execution.py` - Updated `ExecutionContext` with both
safe mode fields
- `backend/api/features/library/model.py` - Added
`has_human_in_the_loop` and `has_sensitive_action` to `LibraryAgent`
- `backend/api/features/library/db.py` - Updated to use
`sensitive_action_safe_mode` parameter
- `backend/executor/utils.py` - Simplified execution context creation

**Frontend:**
- `useAgentSafeMode.ts` - Rewritten to support two independent toggles
- `AgentSettingsModal.tsx` - Shows two separate toggles
- `SelectedSettingsView.tsx` - Shows two separate toggles
- Regenerated API types with new schema

## Test Plan

- [x] All backend tests pass (Python 3.11, 3.12, 3.13)
- [x] All frontend tests pass
- [x] Backend format and lint pass
- [x] Frontend format and lint pass
- [x] Pre-commit hooks pass

---------

Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
2026-01-21 00:56:02 +00:00
Zamil Majdy
35a13e3df5 fix(backend): Use explicit schema qualification for pgvector types (#11805)
## Summary
- Fix intermittent "type 'vector' does not exist" errors when using
PgBouncer in transaction mode
- The issue was that `SET search_path` and the actual query could run on
different backend connections
- Use explicit schema qualification (`{schema}.vector`,
`OPERATOR({schema}.<=>)`) instead of relying on search_path

## Test plan
- [x] Tested vector type cast on local: `'[1,2,3]'::platform.vector`
works
- [x] Tested OPERATOR syntax on local: `OPERATOR(platform.<=>)` works
- [x] Tested on dev via kubectl exec: both work correctly
- [ ] Deploy to dev and verify backfill_missing_embeddings endpoint no
longer errors

## Related Issues
Fixes: AUTOGPT-SERVER-763, AUTOGPT-SERVER-764

---------

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 22:18:16 +00:00
Mewael Tsegay Desta
2169b433c9 feat(backend/blocks): add ConcatenateListsBlock (#11567)
# feat(backend/blocks): add ConcatenateListsBlock

## Description

This PR implements a new block `ConcatenateListsBlock` that concatenates
multiple lists into a single list. This addresses the "good first issue"
for implementing a list concatenation block in the platform/blocks area.

The block takes a list of lists as input and combines all elements in
order into a single concatenated list. This is useful for workflows that
need to merge data from multiple sources or combine results from
different operations.

### Changes 🏗️

- **Added `ConcatenateListsBlock` class** in
`autogpt_platform/backend/backend/blocks/data_manipulation.py`
- Input: `lists: List[List[Any]]` - accepts a list of lists to
concatenate
- Output: `concatenated_list: List[Any]` - returns a single concatenated
list
- Error output: `error: str` - provides clear error messages for invalid
input types
  - Block ID: `3cf9298b-5817-4141-9d80-7c2cc5199c8e`
- Category: `BlockCategory.BASIC` (consistent with other list
manipulation blocks)
  
- **Added comprehensive test suite** in
`autogpt_platform/backend/test/blocks/test_concatenate_lists.py`
  - Tests using built-in `test_input`/`test_output` validation
- Manual test cases covering edge cases (empty lists, single list, empty
input)
  - Error handling tests for invalid input types
  - Category consistency verification
  - All tests passing

- **Implementation details:**
  - Uses `extend()` method for efficient list concatenation
  - Preserves element order from all input lists
- **Runtime type validation**: Explicitly checks `isinstance(lst, list)`
before calling `extend()` to prevent:
- Strings being iterated character-by-character (e.g., `extend("abc")` →
`['a', 'b', 'c']`)
    - Non-iterable types causing `TypeError` (e.g., `extend(1)`)
  - Clear error messages indicating which index has invalid input
- Handles edge cases: empty lists, empty input, single list, None values
  - Follows existing block patterns and conventions

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Run `poetry run pytest test/blocks/test_concatenate_lists.py -v` -
all tests pass
  - [x] Verified block can be imported and instantiated
  - [x] Tested with built-in test cases (4 test scenarios)
  - [x] Tested manual edge cases (empty lists, single list, empty input)
  - [x] Tested error handling for invalid input types
  - [x] Verified category is `BASIC` for consistency
  - [x] Verified no linting errors
- [x] Confirmed block follows same patterns as other blocks in
`data_manipulation.py`

#### Code Quality:
- [x] Code follows existing patterns and conventions
- [x] Type hints are properly used
- [x] Documentation strings are clear and descriptive
- [x] Runtime type validation implemented
- [x] Error handling with clear error messages
- [x] No linting errors
- [x] Prisma client generated successfully

### Testing

**Test Results:**
```
test/blocks/test_concatenate_lists.py::test_concatenate_lists_block_builtin_tests PASSED
test/blocks/test_concatenate_lists.py::test_concatenate_lists_manual PASSED

============================== 2 passed in 8.35s ==============================
```

**Test Coverage:**
- Basic concatenation: `[[1, 2, 3], [4, 5, 6]]` → `[1, 2, 3, 4, 5, 6]`
- Mixed types: `[["a", "b"], ["c"], ["d", "e", "f"]]` → `["a", "b", "c",
"d", "e", "f"]`
- Empty list handling: `[[1, 2], []]` → `[1, 2]`
- Empty input: `[]` → `[]`
- Single list: `[[1, 2, 3]]` → `[1, 2, 3]`
- Error handling: Invalid input types (strings, non-lists) produce clear
error messages
- Category verification: Confirmed `BlockCategory.BASIC` for consistency

### Review Feedback Addressed

- **Category Consistency**: Changed from `BlockCategory.DATA` to
`BlockCategory.BASIC` to match other list manipulation blocks
(`AddToListBlock`, `FindInListBlock`, etc.)
- **Type Robustness**: Added explicit runtime validation with
`isinstance(lst, list)` check before calling `extend()` to prevent:
  - Strings being iterated character-by-character
  - Non-iterable types causing `TypeError`
- **Error Handling**: Added `error` output field with clear, descriptive
error messages indicating which index has invalid input
- **Test Coverage**: Added test case for error handling with invalid
input types

### Related Issues

- Addresses: "Implement block to concatenate lists" (good first issue,
platform/blocks, hacktoberfest)

### Notes

- This is a straightforward data manipulation block that doesn't require
external dependencies
- The block will be automatically discovered by the block loading system
- No database or configuration changes required
- Compatible with existing workflow system
- All review feedback has been addressed and incorporated


<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> Adds a new list utility and updates docs.
> 
> - **New block**: `ConcatenateListsBlock` in
`backend/blocks/data_manipulation.py`
> - Input `lists: List[List[Any]]`; outputs `concatenated_list` or
`error`
> - Skips `None` entries; emits error for non-list items; preserves
order
> - **Docs**: Adds "Concatenate Lists" section to
`docs/integrations/basic.md` and links it in
`docs/integrations/README.md`
> - **Contributor guide**: New `docs/CLAUDE.md` with manual doc section
guidelines
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
4f56dd86c2. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

---------

Co-authored-by: Zamil Majdy <zamil.majdy@agpt.co>
Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 18:04:12 +00:00
Nicholas Tindle
fa0b7029dd fix(platform): make chat credentials type selection deterministic (#11795)
## Background

When using chat to run blocks/agents that support multiple credential
types (e.g., GitHub blocks support both `api_key` and `oauth2`), users
reported that the credentials setup UI would randomly show either "Add
API key" or "Connect account (OAuth)" - seemingly at random between
requests or server restarts.

## Root Cause

The bug was in how the backend selected which credential type to return
when building the missing credentials response:

```python
cred_type = next(iter(field_info.supported_types), "api_key")
```

The problem is that `supported_types` is a **frozenset**. When you call
`iter()` on a frozenset and take `next()`, the iteration order is
**non-deterministic** due to Python's hash randomization. This means:
- `frozenset({'api_key', 'oauth2'})` could iterate as either
`['api_key', 'oauth2']` or `['oauth2', 'api_key']`
- The order varies between Python process restarts and sometimes between
requests
- This caused the UI to randomly show different credential options

### Changes 🏗️

**Backend (`utils.py`, `run_block.py`, `run_agent.py`):**
- Added `_serialize_missing_credential()` helper that uses `sorted()`
for deterministic ordering
- Added `build_missing_credentials_from_graph()` and
`build_missing_credentials_from_field_info()` utilities
- Now returns both `type` (first sorted type, for backwards compat) and
`types` (full array with ALL supported types)

**Frontend (`helpers.ts`, `ChatCredentialsSetup.tsx`,
`useChatMessage.ts`):**
- Updated to read the `types` array from backend response
- Changed `credentialType` (single) to `credentialTypes` (array)
throughout the chat credentials flow
- Passes all supported types to `CredentialsInput` via
`credentials_types` schema field

### Result

Now `useCredentials.ts` correctly sets both `supportsApiKey=true` AND
`supportsOAuth2=true` when both are supported, ensuring:
1. **Deterministic behavior** - no more random type selection
2. **All saved credentials shown** - credentials of any supported type
appear in the selection list

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Verified GitHub block shows consistent credential options across
page reloads
- [x] Verified both OAuth and API key credentials appear in selection
when user has both saved
- [x] Verified backend returns `types: ["api_key", "oauth2"]` array
(checked via Python REPL)

<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> Ensures deterministic credential type selection and surfaces all
supported types end-to-end.
> 
> - Backend: add `_serialize_missing_credential`,
`build_missing_credentials_from_graph/field_info`;
`run_agent`/`run_block` now return missing credentials with stable
ordering and both `type` (first) and `types` (all).
> - Frontend: chat helpers and UI (`helpers.ts`,
`ChatCredentialsSetup.tsx`, `useChatMessage.ts`) now read `types`,
switch from single `credentialType` to `credentialTypes`, and pass all
supported `credentials_types` in schemas.
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
7d80f4f0e0. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

---------

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <ntindle@users.noreply.github.com>
2026-01-20 16:19:57 +00:00
Abhimanyu Yadav
c20ca47bb0 feat(frontend): enhance RunGraph and RunInputDialog components with loading states and improved UI (#11808)
### Changes 🏗️

- Enhanced UI for the Run Graph button with improved loading states and
animations
- Added color-coded edges in the flow editor based on output data types
- Improved the layout of the Run Input Dialog with a two-column grid
design
- Refined the styling of flow editor controls with consistent icon sizes
and colors
- Updated tutorial icons with better color and size customization
- Fixed credential field display to show provider name with "credential"
suffix
- Optimized draft saving by excluding node position changes to prevent
excessive saves when dragging nodes

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Verified that the Run Graph button shows proper loading states
  - [x] Confirmed that edges display correct colors based on data types
- [x] Tested the Run Input Dialog layout with various input
configurations
  - [x] Checked that flow editor controls display consistently
  - [x] Verified that tutorial icons render properly
  - [x] Confirmed credential fields show proper provider names
- [x] Tested that dragging nodes doesn't trigger unnecessary draft saves
2026-01-20 15:50:23 +00:00
Abhimanyu Yadav
7756e2d12d refactor(frontend): refactor credentials input with unified CredentialsGroupedView component (#11801)
### Changes 🏗️

- Refactored the credentials input handling in the RunInputDialog to use
the shared CredentialsGroupedView component
- Moved CredentialsGroupedView from agent library to a shared component
location for reuse
- Fixed source name handling in edge creation to properly handle tool
source names
- Improved node output UI by replacing custom expand/collapse with
Accordion component
- Fixed timing of hardcoded values synchronization with handle IDs to
ensure proper loading
- Enabled NEW_FLOW_EDITOR and BUILDER_VIEW_SWITCH feature flags by
default

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Verified credentials input works in both agent run dialog and
builder run dialog
  - [x] Confirmed node output accordion works correctly
- [x] Tested flow editor with tools to ensure source name handling works
properly
  - [x] Verified hardcoded values sync correctly with handle IDs

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)
2026-01-20 12:20:25 +00:00
Swifty
bc75d70e7d refactor(backend): Improve Langfuse tracing with v3 SDK patterns and @observe decorators (#11803)
<!-- Clearly explain the need for these changes: -->

This PR improves the Langfuse tracing implementation in the chat feature
by adopting the v3 SDK patterns, resulting in cleaner code and better
observability.

### Changes 🏗️

- **Simplified Langfuse client usage**: Replace manual client
initialization with `langfuse.get_client()` global singleton
- **Use v3 context managers**: Switch to
`start_as_current_observation()` and `propagate_attributes()` for
automatic trace propagation
- **Auto-instrument OpenAI calls**: Use `langfuse.openai` wrapper for
automatic LLM call tracing instead of manual generation tracking
- **Add `@observe` decorators**: All chat tools now have
`@observe(as_type="tool")` decorators for automatic tool execution
tracing:
  - `add_understanding`
  - `view_agent_output` (renamed from `agent_output`)
  - `create_agent`
  - `edit_agent`
  - `find_agent`
  - `find_block`
  - `find_library_agent`
  - `get_doc_page`
  - `run_agent`
  - `run_block`
  - `search_docs`
- **Remove manual trace lifecycle**: Eliminated the verbose `finally`
block that manually ended traces/generations
- **Rename tool**: `agent_output` → `view_agent_output` for clarity

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Verified chat feature works with Langfuse tracing enabled
- [x] Confirmed traces appear correctly in Langfuse dashboard with tool
spans
  - [x] Tested tool execution flows show up as nested observations

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

No configuration changes required - uses existing Langfuse environment
variables.
2026-01-19 20:56:51 +00:00
131 changed files with 4401 additions and 1234 deletions

View File

@@ -83,7 +83,7 @@ jobs:
- name: Set up Python dependency cache
# On Windows, unpacking cached dependencies takes longer than just installing them
if: runner.os != 'Windows'
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ${{ runner.os == 'macOS' && '~/Library/Caches/pypoetry' || '~/.cache/pypoetry' }}
key: poetry-${{ runner.os }}-${{ hashFiles('classic/original_autogpt/poetry.lock') }}

View File

@@ -55,7 +55,7 @@ jobs:
- name: Set up Python dependency cache
# On Windows, unpacking cached dependencies takes longer than just installing them
if: runner.os != 'Windows'
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ${{ runner.os == 'macOS' && '~/Library/Caches/pypoetry' || '~/.cache/pypoetry' }}
key: poetry-${{ runner.os }}-${{ hashFiles('classic/benchmark/poetry.lock') }}

View File

@@ -107,7 +107,7 @@ jobs:
- name: Set up Python dependency cache
# On Windows, unpacking cached dependencies takes longer than just installing them
if: runner.os != 'Windows'
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ${{ runner.os == 'macOS' && '~/Library/Caches/pypoetry' || '~/.cache/pypoetry' }}
key: poetry-${{ runner.os }}-${{ hashFiles('classic/forge/poetry.lock') }}

View File

@@ -78,7 +78,7 @@ jobs:
python-version: ${{ env.min-python-version }}
- name: Set up Python dependency cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: ${{ runner.os }}-poetry-${{ hashFiles(format('{0}/poetry.lock', matrix.sub-package)) }}
@@ -130,7 +130,7 @@ jobs:
python-version: ${{ env.min-python-version }}
- name: Set up Python dependency cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: ${{ runner.os }}-poetry-${{ hashFiles(format('{0}/poetry.lock', matrix.sub-package)) }}

View File

@@ -41,7 +41,7 @@ jobs:
python-version: "3.11" # Use standard version matching CI
- name: Set up Python dependency cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
@@ -91,7 +91,7 @@ jobs:
echo "PNPM_HOME=$HOME/.pnpm-store" >> $GITHUB_ENV
- name: Cache frontend dependencies
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}
@@ -124,7 +124,7 @@ jobs:
# Phase 1: Cache and load Docker images for faster setup
- name: Set up Docker image cache
id: docker-cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/docker-cache
# Use a versioned key for cache invalidation when image list changes

View File

@@ -57,7 +57,7 @@ jobs:
python-version: "3.11" # Use standard version matching CI
- name: Set up Python dependency cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
@@ -107,7 +107,7 @@ jobs:
echo "PNPM_HOME=$HOME/.pnpm-store" >> $GITHUB_ENV
- name: Cache frontend dependencies
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}
@@ -140,7 +140,7 @@ jobs:
# Phase 1: Cache and load Docker images for faster setup
- name: Set up Docker image cache
id: docker-cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/docker-cache
# Use a versioned key for cache invalidation when image list changes

View File

@@ -39,7 +39,7 @@ jobs:
python-version: "3.11" # Use standard version matching CI
- name: Set up Python dependency cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
@@ -89,7 +89,7 @@ jobs:
echo "PNPM_HOME=$HOME/.pnpm-store" >> $GITHUB_ENV
- name: Cache frontend dependencies
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}
@@ -132,7 +132,7 @@ jobs:
# Phase 1: Cache and load Docker images for faster setup
- name: Set up Docker image cache
id: docker-cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/docker-cache
# Use a versioned key for cache invalidation when image list changes

View File

@@ -33,7 +33,7 @@ jobs:
python-version: "3.11"
- name: Set up Python dependency cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}

View File

@@ -33,7 +33,7 @@ jobs:
python-version: "3.11"
- name: Set up Python dependency cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}

View File

@@ -38,7 +38,7 @@ jobs:
python-version: "3.11"
- name: Set up Python dependency cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}

View File

@@ -88,7 +88,7 @@ jobs:
run: echo "date=$(date +'%Y-%m-%d')" >> $GITHUB_OUTPUT
- name: Set up Python dependency cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}

View File

@@ -45,7 +45,7 @@ jobs:
run: echo "key=${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}" >> $GITHUB_OUTPUT
- name: Cache dependencies
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ steps.cache-key.outputs.key }}
@@ -73,7 +73,7 @@ jobs:
run: corepack enable
- name: Restore dependencies cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}
@@ -108,7 +108,7 @@ jobs:
run: corepack enable
- name: Restore dependencies cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}
@@ -164,7 +164,7 @@ jobs:
uses: docker/setup-buildx-action@v3
- name: Cache Docker layers
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: /tmp/.buildx-cache
key: ${{ runner.os }}-buildx-frontend-test-${{ hashFiles('autogpt_platform/docker-compose.yml', 'autogpt_platform/backend/Dockerfile', 'autogpt_platform/backend/pyproject.toml', 'autogpt_platform/backend/poetry.lock') }}
@@ -219,7 +219,7 @@ jobs:
fi
- name: Restore dependencies cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}

View File

@@ -44,7 +44,7 @@ jobs:
run: echo "key=${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}" >> $GITHUB_OUTPUT
- name: Cache dependencies
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ steps.cache-key.outputs.key }}
@@ -88,7 +88,7 @@ jobs:
docker compose -f ../docker-compose.yml --profile local --profile deps_backend up -d
- name: Restore dependencies cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}

View File

@@ -4,14 +4,9 @@ from collections.abc import AsyncGenerator
from typing import Any
import orjson
from langfuse import Langfuse
from openai import (
APIConnectionError,
APIError,
APIStatusError,
AsyncOpenAI,
RateLimitError,
)
from langfuse import get_client, propagate_attributes
from langfuse.openai import openai # type: ignore
from openai import APIConnectionError, APIError, APIStatusError, RateLimitError
from openai.types.chat import ChatCompletionChunk, ChatCompletionToolParam
from backend.data.understanding import (
@@ -21,7 +16,6 @@ from backend.data.understanding import (
from backend.util.exceptions import NotFoundError
from backend.util.settings import Settings
from . import db as chat_db
from .config import ChatConfig
from .model import (
ChatMessage,
@@ -50,10 +44,10 @@ logger = logging.getLogger(__name__)
config = ChatConfig()
settings = Settings()
client = AsyncOpenAI(api_key=config.api_key, base_url=config.base_url)
client = openai.AsyncOpenAI(api_key=config.api_key, base_url=config.base_url)
# Langfuse client (lazy initialization)
_langfuse_client: Langfuse | None = None
langfuse = get_client()
class LangfuseNotConfiguredError(Exception):
@@ -69,65 +63,6 @@ def _is_langfuse_configured() -> bool:
)
def _get_langfuse_client() -> Langfuse:
"""Get or create the Langfuse client for prompt management and tracing."""
global _langfuse_client
if _langfuse_client is None:
if not _is_langfuse_configured():
raise LangfuseNotConfiguredError(
"Langfuse is not configured. The chat feature requires Langfuse for prompt management. "
"Please set the LANGFUSE_PUBLIC_KEY and LANGFUSE_SECRET_KEY environment variables."
)
_langfuse_client = Langfuse(
public_key=settings.secrets.langfuse_public_key,
secret_key=settings.secrets.langfuse_secret_key,
host=settings.secrets.langfuse_host or "https://cloud.langfuse.com",
)
return _langfuse_client
def _get_environment() -> str:
"""Get the current environment name for Langfuse tagging."""
return settings.config.app_env.value
def _get_langfuse_prompt() -> str:
"""Fetch the latest production prompt from Langfuse.
Returns:
The compiled prompt text from Langfuse.
Raises:
Exception: If Langfuse is unavailable or prompt fetch fails.
"""
try:
langfuse = _get_langfuse_client()
# cache_ttl_seconds=0 disables SDK caching to always get the latest prompt
prompt = langfuse.get_prompt(config.langfuse_prompt_name, cache_ttl_seconds=0)
compiled = prompt.compile()
logger.info(
f"Fetched prompt '{config.langfuse_prompt_name}' from Langfuse "
f"(version: {prompt.version})"
)
return compiled
except Exception as e:
logger.error(f"Failed to fetch prompt from Langfuse: {e}")
raise
async def _is_first_session(user_id: str) -> bool:
"""Check if this is the user's first chat session.
Returns True if the user has 1 or fewer sessions (meaning this is their first).
"""
try:
session_count = await chat_db.get_user_session_count(user_id)
return session_count <= 1
except Exception as e:
logger.warning(f"Failed to check session count for user {user_id}: {e}")
return False # Default to non-onboarding if we can't check
async def _build_system_prompt(user_id: str | None) -> tuple[str, Any]:
"""Build the full system prompt including business understanding if available.
@@ -139,8 +74,6 @@ async def _build_system_prompt(user_id: str | None) -> tuple[str, Any]:
Tuple of (compiled prompt string, Langfuse prompt object for tracing)
"""
langfuse = _get_langfuse_client()
# cache_ttl_seconds=0 disables SDK caching to always get the latest prompt
prompt = langfuse.get_prompt(config.langfuse_prompt_name, cache_ttl_seconds=0)
@@ -158,7 +91,7 @@ async def _build_system_prompt(user_id: str | None) -> tuple[str, Any]:
context = "This is the first time you are meeting the user. Greet them and introduce them to the platform"
compiled = prompt.compile(users_information=context)
return compiled, prompt
return compiled, understanding
async def _generate_session_title(message: str) -> str | None:
@@ -217,6 +150,7 @@ async def assign_user_to_session(
async def stream_chat_completion(
session_id: str,
message: str | None = None,
tool_call_response: str | None = None,
is_user_message: bool = True,
user_id: str | None = None,
retry_count: int = 0,
@@ -256,11 +190,6 @@ async def stream_chat_completion(
yield StreamFinish()
return
# Langfuse observations will be created after session is loaded (need messages for input)
# Initialize to None so finally block can safely check and end them
trace = None
generation = None
# Only fetch from Redis if session not provided (initial call)
if session is None:
session = await get_chat_session(session_id, user_id)
@@ -336,297 +265,259 @@ async def stream_chat_completion(
asyncio.create_task(_update_title())
# Build system prompt with business understanding
system_prompt, langfuse_prompt = await _build_system_prompt(user_id)
# Build input messages including system prompt for complete Langfuse logging
trace_input_messages = [{"role": "system", "content": system_prompt}] + [
m.model_dump() for m in session.messages
]
system_prompt, understanding = await _build_system_prompt(user_id)
# Create Langfuse trace for this LLM call (each call gets its own trace, grouped by session_id)
# Using v3 SDK: start_observation creates a root span, update_trace sets trace-level attributes
try:
langfuse = _get_langfuse_client()
env = _get_environment()
trace = langfuse.start_observation(
name="chat_completion",
input={"messages": trace_input_messages},
metadata={
"environment": env,
"model": config.model,
"message_count": len(session.messages),
"prompt_name": langfuse_prompt.name if langfuse_prompt else None,
"prompt_version": langfuse_prompt.version if langfuse_prompt else None,
},
)
# Set trace-level attributes (session_id, user_id, tags)
trace.update_trace(
input = message
if not message and tool_call_response:
input = tool_call_response
langfuse = get_client()
with langfuse.start_as_current_observation(
as_type="span",
name="user-copilot-request",
input=input,
) as span:
with propagate_attributes(
session_id=session_id,
user_id=user_id,
tags=[env, "copilot"],
)
except Exception as e:
logger.warning(f"Failed to create Langfuse trace: {e}")
tags=["copilot"],
metadata={
"users_information": format_understanding_for_prompt(understanding)[
:200
] # langfuse only accepts upto to 200 chars
},
):
# Initialize variables that will be used in finally block (must be defined before try)
assistant_response = ChatMessage(
role="assistant",
content="",
)
accumulated_tool_calls: list[dict[str, Any]] = []
# Wrap main logic in try/finally to ensure Langfuse observations are always ended
try:
has_yielded_end = False
has_yielded_error = False
has_done_tool_call = False
has_received_text = False
text_streaming_ended = False
tool_response_messages: list[ChatMessage] = []
should_retry = False
# Generate unique IDs for AI SDK protocol
import uuid as uuid_module
message_id = str(uuid_module.uuid4())
text_block_id = str(uuid_module.uuid4())
# Yield message start
yield StreamStart(messageId=message_id)
# Create Langfuse generation for each LLM call, linked to the prompt
# Using v3 SDK: start_observation with as_type="generation"
generation = (
trace.start_observation(
as_type="generation",
name="llm_call",
model=config.model,
input={"messages": trace_input_messages},
prompt=langfuse_prompt,
# Initialize variables that will be used in finally block (must be defined before try)
assistant_response = ChatMessage(
role="assistant",
content="",
)
if trace
else None
)
accumulated_tool_calls: list[dict[str, Any]] = []
try:
async for chunk in _stream_chat_chunks(
session=session,
tools=tools,
system_prompt=system_prompt,
text_block_id=text_block_id,
):
# Wrap main logic in try/finally to ensure Langfuse observations are always ended
has_yielded_end = False
has_yielded_error = False
has_done_tool_call = False
has_received_text = False
text_streaming_ended = False
tool_response_messages: list[ChatMessage] = []
should_retry = False
if isinstance(chunk, StreamTextStart):
# Emit text-start before first text delta
if not has_received_text:
# Generate unique IDs for AI SDK protocol
import uuid as uuid_module
message_id = str(uuid_module.uuid4())
text_block_id = str(uuid_module.uuid4())
# Yield message start
yield StreamStart(messageId=message_id)
try:
async for chunk in _stream_chat_chunks(
session=session,
tools=tools,
system_prompt=system_prompt,
text_block_id=text_block_id,
):
if isinstance(chunk, StreamTextStart):
# Emit text-start before first text delta
if not has_received_text:
yield chunk
elif isinstance(chunk, StreamTextDelta):
delta = chunk.delta or ""
assert assistant_response.content is not None
assistant_response.content += delta
has_received_text = True
yield chunk
elif isinstance(chunk, StreamTextDelta):
delta = chunk.delta or ""
assert assistant_response.content is not None
assistant_response.content += delta
has_received_text = True
yield chunk
elif isinstance(chunk, StreamTextEnd):
# Emit text-end after text completes
if has_received_text and not text_streaming_ended:
text_streaming_ended = True
yield chunk
elif isinstance(chunk, StreamToolInputStart):
# Emit text-end before first tool call, but only if we've received text
if has_received_text and not text_streaming_ended:
yield StreamTextEnd(id=text_block_id)
text_streaming_ended = True
yield chunk
elif isinstance(chunk, StreamToolInputAvailable):
# Accumulate tool calls in OpenAI format
accumulated_tool_calls.append(
{
"id": chunk.toolCallId,
"type": "function",
"function": {
"name": chunk.toolName,
"arguments": orjson.dumps(chunk.input).decode("utf-8"),
},
}
)
elif isinstance(chunk, StreamToolOutputAvailable):
result_content = (
chunk.output
if isinstance(chunk.output, str)
else orjson.dumps(chunk.output).decode("utf-8")
)
tool_response_messages.append(
ChatMessage(
role="tool",
content=result_content,
tool_call_id=chunk.toolCallId,
)
)
has_done_tool_call = True
# Track if any tool execution failed
if not chunk.success:
logger.warning(
f"Tool {chunk.toolName} (ID: {chunk.toolCallId}) execution failed"
)
yield chunk
elif isinstance(chunk, StreamFinish):
if not has_done_tool_call:
# Emit text-end before finish if we received text but haven't closed it
elif isinstance(chunk, StreamTextEnd):
# Emit text-end after text completes
if has_received_text and not text_streaming_ended:
text_streaming_ended = True
if assistant_response.content:
logger.warn(
f"StreamTextEnd: Attempting to set output {assistant_response.content}"
)
span.update_trace(output=assistant_response.content)
span.update(output=assistant_response.content)
yield chunk
elif isinstance(chunk, StreamToolInputStart):
# Emit text-end before first tool call, but only if we've received text
if has_received_text and not text_streaming_ended:
yield StreamTextEnd(id=text_block_id)
text_streaming_ended = True
has_yielded_end = True
yield chunk
elif isinstance(chunk, StreamError):
has_yielded_error = True
elif isinstance(chunk, StreamUsage):
session.usage.append(
Usage(
prompt_tokens=chunk.promptTokens,
completion_tokens=chunk.completionTokens,
total_tokens=chunk.totalTokens,
elif isinstance(chunk, StreamToolInputAvailable):
# Accumulate tool calls in OpenAI format
accumulated_tool_calls.append(
{
"id": chunk.toolCallId,
"type": "function",
"function": {
"name": chunk.toolName,
"arguments": orjson.dumps(chunk.input).decode(
"utf-8"
),
},
}
)
elif isinstance(chunk, StreamToolOutputAvailable):
result_content = (
chunk.output
if isinstance(chunk.output, str)
else orjson.dumps(chunk.output).decode("utf-8")
)
tool_response_messages.append(
ChatMessage(
role="tool",
content=result_content,
tool_call_id=chunk.toolCallId,
)
)
has_done_tool_call = True
# Track if any tool execution failed
if not chunk.success:
logger.warning(
f"Tool {chunk.toolName} (ID: {chunk.toolCallId}) execution failed"
)
yield chunk
elif isinstance(chunk, StreamFinish):
if not has_done_tool_call:
# Emit text-end before finish if we received text but haven't closed it
if has_received_text and not text_streaming_ended:
yield StreamTextEnd(id=text_block_id)
text_streaming_ended = True
has_yielded_end = True
yield chunk
elif isinstance(chunk, StreamError):
has_yielded_error = True
elif isinstance(chunk, StreamUsage):
session.usage.append(
Usage(
prompt_tokens=chunk.promptTokens,
completion_tokens=chunk.completionTokens,
total_tokens=chunk.totalTokens,
)
)
else:
logger.error(
f"Unknown chunk type: {type(chunk)}", exc_info=True
)
if assistant_response.content:
langfuse.update_current_trace(output=assistant_response.content)
langfuse.update_current_span(output=assistant_response.content)
elif tool_response_messages:
langfuse.update_current_trace(output=str(tool_response_messages))
langfuse.update_current_span(output=str(tool_response_messages))
except Exception as e:
logger.error(f"Error during stream: {e!s}", exc_info=True)
# Check if this is a retryable error (JSON parsing, incomplete tool calls, etc.)
is_retryable = isinstance(
e, (orjson.JSONDecodeError, KeyError, TypeError)
)
if is_retryable and retry_count < config.max_retries:
logger.info(
f"Retryable error encountered. Attempt {retry_count + 1}/{config.max_retries}"
)
should_retry = True
else:
logger.error(f"Unknown chunk type: {type(chunk)}", exc_info=True)
except Exception as e:
logger.error(f"Error during stream: {e!s}", exc_info=True)
# Non-retryable error or max retries exceeded
# Save any partial progress before reporting error
messages_to_save: list[ChatMessage] = []
# Check if this is a retryable error (JSON parsing, incomplete tool calls, etc.)
is_retryable = isinstance(e, (orjson.JSONDecodeError, KeyError, TypeError))
# Add assistant message if it has content or tool calls
if accumulated_tool_calls:
assistant_response.tool_calls = accumulated_tool_calls
if assistant_response.content or assistant_response.tool_calls:
messages_to_save.append(assistant_response)
if is_retryable and retry_count < config.max_retries:
# Add tool response messages after assistant message
messages_to_save.extend(tool_response_messages)
session.messages.extend(messages_to_save)
await upsert_chat_session(session)
if not has_yielded_error:
error_message = str(e)
if not is_retryable:
error_message = f"Non-retryable error: {error_message}"
elif retry_count >= config.max_retries:
error_message = f"Max retries ({config.max_retries}) exceeded: {error_message}"
error_response = StreamError(errorText=error_message)
yield error_response
if not has_yielded_end:
yield StreamFinish()
return
# Handle retry outside of exception handler to avoid nesting
if should_retry and retry_count < config.max_retries:
logger.info(
f"Retryable error encountered. Attempt {retry_count + 1}/{config.max_retries}"
f"Retrying stream_chat_completion for session {session_id}, attempt {retry_count + 1}"
)
should_retry = True
else:
# Non-retryable error or max retries exceeded
# Save any partial progress before reporting error
messages_to_save: list[ChatMessage] = []
async for chunk in stream_chat_completion(
session_id=session.session_id,
user_id=user_id,
retry_count=retry_count + 1,
session=session,
context=context,
):
yield chunk
return # Exit after retry to avoid double-saving in finally block
# Add assistant message if it has content or tool calls
if accumulated_tool_calls:
assistant_response.tool_calls = accumulated_tool_calls
if assistant_response.content or assistant_response.tool_calls:
messages_to_save.append(assistant_response)
# Add tool response messages after assistant message
messages_to_save.extend(tool_response_messages)
session.messages.extend(messages_to_save)
await upsert_chat_session(session)
if not has_yielded_error:
error_message = str(e)
if not is_retryable:
error_message = f"Non-retryable error: {error_message}"
elif retry_count >= config.max_retries:
error_message = f"Max retries ({config.max_retries}) exceeded: {error_message}"
error_response = StreamError(errorText=error_message)
yield error_response
if not has_yielded_end:
yield StreamFinish()
return
# Handle retry outside of exception handler to avoid nesting
if should_retry and retry_count < config.max_retries:
# Normal completion path - save session and handle tool call continuation
logger.info(
f"Retrying stream_chat_completion for session {session_id}, attempt {retry_count + 1}"
)
async for chunk in stream_chat_completion(
session_id=session.session_id,
user_id=user_id,
retry_count=retry_count + 1,
session=session,
context=context,
):
yield chunk
return # Exit after retry to avoid double-saving in finally block
# Normal completion path - save session and handle tool call continuation
logger.info(
f"Normal completion path: session={session.session_id}, "
f"current message_count={len(session.messages)}"
)
# Build the messages list in the correct order
messages_to_save: list[ChatMessage] = []
# Add assistant message with tool_calls if any
if accumulated_tool_calls:
assistant_response.tool_calls = accumulated_tool_calls
logger.info(
f"Added {len(accumulated_tool_calls)} tool calls to assistant message"
)
if assistant_response.content or assistant_response.tool_calls:
messages_to_save.append(assistant_response)
logger.info(
f"Saving assistant message with content_len={len(assistant_response.content or '')}, tool_calls={len(assistant_response.tool_calls or [])}"
f"Normal completion path: session={session.session_id}, "
f"current message_count={len(session.messages)}"
)
# Add tool response messages after assistant message
messages_to_save.extend(tool_response_messages)
logger.info(
f"Saving {len(tool_response_messages)} tool response messages, "
f"total_to_save={len(messages_to_save)}"
)
# Build the messages list in the correct order
messages_to_save: list[ChatMessage] = []
session.messages.extend(messages_to_save)
logger.info(
f"Extended session messages, new message_count={len(session.messages)}"
)
await upsert_chat_session(session)
# If we did a tool call, stream the chat completion again to get the next response
if has_done_tool_call:
logger.info(
"Tool call executed, streaming chat completion again to get assistant response"
)
async for chunk in stream_chat_completion(
session_id=session.session_id,
user_id=user_id,
session=session, # Pass session object to avoid Redis refetch
context=context,
):
yield chunk
finally:
# Always end Langfuse observations to prevent resource leaks
# Guard against None and catch errors to avoid masking original exceptions
if generation is not None:
try:
latest_usage = session.usage[-1] if session.usage else None
generation.update(
model=config.model,
output={
"content": assistant_response.content,
"tool_calls": accumulated_tool_calls or None,
},
usage_details=(
{
"input": latest_usage.prompt_tokens,
"output": latest_usage.completion_tokens,
"total": latest_usage.total_tokens,
}
if latest_usage
else None
),
# Add assistant message with tool_calls if any
if accumulated_tool_calls:
assistant_response.tool_calls = accumulated_tool_calls
logger.info(
f"Added {len(accumulated_tool_calls)} tool calls to assistant message"
)
if assistant_response.content or assistant_response.tool_calls:
messages_to_save.append(assistant_response)
logger.info(
f"Saving assistant message with content_len={len(assistant_response.content or '')}, tool_calls={len(assistant_response.tool_calls or [])}"
)
generation.end()
except Exception as e:
logger.warning(f"Failed to end Langfuse generation: {e}")
if trace is not None:
try:
if accumulated_tool_calls:
trace.update_trace(output={"tool_calls": accumulated_tool_calls})
else:
trace.update_trace(output={"response": assistant_response.content})
trace.end()
except Exception as e:
logger.warning(f"Failed to end Langfuse trace: {e}")
# Add tool response messages after assistant message
messages_to_save.extend(tool_response_messages)
logger.info(
f"Saving {len(tool_response_messages)} tool response messages, "
f"total_to_save={len(messages_to_save)}"
)
session.messages.extend(messages_to_save)
logger.info(
f"Extended session messages, new message_count={len(session.messages)}"
)
await upsert_chat_session(session)
# If we did a tool call, stream the chat completion again to get the next response
if has_done_tool_call:
logger.info(
"Tool call executed, streaming chat completion again to get assistant response"
)
async for chunk in stream_chat_completion(
session_id=session.session_id,
user_id=user_id,
session=session, # Pass session object to avoid Redis refetch
context=context,
tool_call_response=str(tool_response_messages),
):
yield chunk
# Retry configuration for OpenAI API calls
@@ -900,5 +791,4 @@ async def _yield_tool_call(
session=session,
)
logger.info(f"Yielding Tool execution response: {tool_execution_response}")
yield tool_execution_response

View File

@@ -30,7 +30,7 @@ TOOL_REGISTRY: dict[str, BaseTool] = {
"find_library_agent": FindLibraryAgentTool(),
"run_agent": RunAgentTool(),
"run_block": RunBlockTool(),
"agent_output": AgentOutputTool(),
"view_agent_output": AgentOutputTool(),
"search_docs": SearchDocsTool(),
"get_doc_page": GetDocPageTool(),
}

View File

@@ -3,6 +3,8 @@
import logging
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from backend.data.understanding import (
BusinessUnderstandingInput,
@@ -59,6 +61,7 @@ and automations for the user's specific needs."""
"""Requires authentication to store user-specific data."""
return True
@observe(as_type="tool", name="add_understanding")
async def _execute(
self,
user_id: str | None,

View File

@@ -218,6 +218,7 @@ async def save_agent_to_library(
library_agents = await library_db.create_library_agent(
graph=created_graph,
user_id=user_id,
sensitive_action_safe_mode=True,
create_library_agents_for_sub_graphs=False,
)

View File

@@ -5,6 +5,7 @@ import re
from datetime import datetime, timedelta, timezone
from typing import Any
from langfuse import observe
from pydantic import BaseModel, field_validator
from backend.api.features.chat.model import ChatSession
@@ -103,7 +104,7 @@ class AgentOutputTool(BaseTool):
@property
def name(self) -> str:
return "agent_output"
return "view_agent_output"
@property
def description(self) -> str:
@@ -328,6 +329,7 @@ class AgentOutputTool(BaseTool):
total_executions=len(available_executions) if available_executions else 1,
)
@observe(as_type="tool", name="view_agent_output")
async def _execute(
self,
user_id: str | None,

View File

@@ -3,6 +3,8 @@
import logging
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from .agent_generator import (
@@ -78,6 +80,7 @@ class CreateAgentTool(BaseTool):
"required": ["description"],
}
@observe(as_type="tool", name="create_agent")
async def _execute(
self,
user_id: str | None,

View File

@@ -3,6 +3,8 @@
import logging
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from .agent_generator import (
@@ -85,6 +87,7 @@ class EditAgentTool(BaseTool):
"required": ["agent_id", "changes"],
}
@observe(as_type="tool", name="edit_agent")
async def _execute(
self,
user_id: str | None,

View File

@@ -2,6 +2,8 @@
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from .agent_search import search_agents
@@ -35,6 +37,7 @@ class FindAgentTool(BaseTool):
"required": ["query"],
}
@observe(as_type="tool", name="find_agent")
async def _execute(
self, user_id: str | None, session: ChatSession, **kwargs
) -> ToolResponseBase:

View File

@@ -1,6 +1,7 @@
import logging
from typing import Any
from langfuse import observe
from prisma.enums import ContentType
from backend.api.features.chat.model import ChatSession
@@ -55,6 +56,7 @@ class FindBlockTool(BaseTool):
def requires_auth(self) -> bool:
return True
@observe(as_type="tool", name="find_block")
async def _execute(
self,
user_id: str | None,

View File

@@ -2,6 +2,8 @@
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from .agent_search import search_agents
@@ -41,6 +43,7 @@ class FindLibraryAgentTool(BaseTool):
def requires_auth(self) -> bool:
return True
@observe(as_type="tool", name="find_library_agent")
async def _execute(
self, user_id: str | None, session: ChatSession, **kwargs
) -> ToolResponseBase:

View File

@@ -4,6 +4,8 @@ import logging
from pathlib import Path
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
@@ -71,6 +73,7 @@ class GetDocPageTool(BaseTool):
url_path = path.rsplit(".", 1)[0] if "." in path else path
return f"{DOCS_BASE_URL}/{url_path}"
@observe(as_type="tool", name="get_doc_page")
async def _execute(
self,
user_id: str | None,

View File

@@ -3,6 +3,7 @@
import logging
from typing import Any
from langfuse import observe
from pydantic import BaseModel, Field, field_validator
from backend.api.features.chat.config import ChatConfig
@@ -32,7 +33,7 @@ from .models import (
UserReadiness,
)
from .utils import (
check_user_has_required_credentials,
build_missing_credentials_from_graph,
extract_credentials_from_schema,
fetch_graph_from_store_slug,
get_or_create_library_agent,
@@ -154,6 +155,7 @@ class RunAgentTool(BaseTool):
"""All operations require authentication."""
return True
@observe(as_type="tool", name="run_agent")
async def _execute(
self,
user_id: str | None,
@@ -235,15 +237,13 @@ class RunAgentTool(BaseTool):
# Return credentials needed response with input data info
# The UI handles credential setup automatically, so the message
# focuses on asking about input data
credentials = extract_credentials_from_schema(
graph.credentials_input_schema
requirements_creds_dict = build_missing_credentials_from_graph(
graph, None
)
missing_creds_check = await check_user_has_required_credentials(
user_id, credentials
missing_credentials_dict = build_missing_credentials_from_graph(
graph, graph_credentials
)
missing_credentials_dict = {
c.id: c.model_dump() for c in missing_creds_check
}
requirements_creds_list = list(requirements_creds_dict.values())
return SetupRequirementsResponse(
message=self._build_inputs_message(graph, MSG_WHAT_VALUES_TO_USE),
@@ -257,7 +257,7 @@ class RunAgentTool(BaseTool):
ready_to_run=False,
),
requirements={
"credentials": [c.model_dump() for c in credentials],
"credentials": requirements_creds_list,
"inputs": self._get_inputs_list(graph.input_schema),
"execution_modes": self._get_execution_modes(graph),
},

View File

@@ -4,6 +4,8 @@ import logging
from collections import defaultdict
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from backend.data.block import get_block
from backend.data.execution import ExecutionContext
@@ -20,6 +22,7 @@ from .models import (
ToolResponseBase,
UserReadiness,
)
from .utils import build_missing_credentials_from_field_info
logger = logging.getLogger(__name__)
@@ -127,6 +130,7 @@ class RunBlockTool(BaseTool):
return matched_credentials, missing_credentials
@observe(as_type="tool", name="run_block")
async def _execute(
self,
user_id: str | None,
@@ -186,7 +190,11 @@ class RunBlockTool(BaseTool):
if missing_credentials:
# Return setup requirements response with missing credentials
missing_creds_dict = {c.id: c.model_dump() for c in missing_credentials}
credentials_fields_info = block.input_schema.get_credentials_fields_info()
missing_creds_dict = build_missing_credentials_from_field_info(
credentials_fields_info, set(matched_credentials.keys())
)
missing_creds_list = list(missing_creds_dict.values())
return SetupRequirementsResponse(
message=(
@@ -203,7 +211,7 @@ class RunBlockTool(BaseTool):
ready_to_run=False,
),
requirements={
"credentials": [c.model_dump() for c in missing_credentials],
"credentials": missing_creds_list,
"inputs": self._get_inputs_list(block),
"execution_modes": ["immediate"],
},

View File

@@ -3,6 +3,7 @@
import logging
from typing import Any
from langfuse import observe
from prisma.enums import ContentType
from backend.api.features.chat.model import ChatSession
@@ -87,6 +88,7 @@ class SearchDocsTool(BaseTool):
url_path = path.rsplit(".", 1)[0] if "." in path else path
return f"{DOCS_BASE_URL}/{url_path}"
@observe(as_type="tool", name="search_docs")
async def _execute(
self,
user_id: str | None,

View File

@@ -8,7 +8,7 @@ from backend.api.features.library import model as library_model
from backend.api.features.store import db as store_db
from backend.data import graph as graph_db
from backend.data.graph import GraphModel
from backend.data.model import CredentialsMetaInput
from backend.data.model import CredentialsFieldInfo, CredentialsMetaInput
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.util.exceptions import NotFoundError
@@ -89,6 +89,59 @@ def extract_credentials_from_schema(
return credentials
def _serialize_missing_credential(
field_key: str, field_info: CredentialsFieldInfo
) -> dict[str, Any]:
"""
Convert credential field info into a serializable dict that preserves all supported
credential types (e.g., api_key + oauth2) so the UI can offer multiple options.
"""
supported_types = sorted(field_info.supported_types)
provider = next(iter(field_info.provider), "unknown")
scopes = sorted(field_info.required_scopes or [])
return {
"id": field_key,
"title": field_key.replace("_", " ").title(),
"provider": provider,
"provider_name": provider.replace("_", " ").title(),
"type": supported_types[0] if supported_types else "api_key",
"types": supported_types,
"scopes": scopes,
}
def build_missing_credentials_from_graph(
graph: GraphModel, matched_credentials: dict[str, CredentialsMetaInput] | None
) -> dict[str, Any]:
"""
Build a missing_credentials mapping from a graph's aggregated credentials inputs,
preserving all supported credential types for each field.
"""
matched_keys = set(matched_credentials.keys()) if matched_credentials else set()
aggregated_fields = graph.aggregate_credentials_inputs()
return {
field_key: _serialize_missing_credential(field_key, field_info)
for field_key, (field_info, _node_fields) in aggregated_fields.items()
if field_key not in matched_keys
}
def build_missing_credentials_from_field_info(
credential_fields: dict[str, CredentialsFieldInfo],
matched_keys: set[str],
) -> dict[str, Any]:
"""
Build missing_credentials mapping from a simple credentials field info dictionary.
"""
return {
field_key: _serialize_missing_credential(field_key, field_info)
for field_key, field_info in credential_fields.items()
if field_key not in matched_keys
}
def extract_credentials_as_dict(
credentials_input_schema: dict[str, Any] | None,
) -> dict[str, CredentialsMetaInput]:

View File

@@ -107,6 +107,13 @@ class ReviewItem(BaseModel):
reviewed_data: SafeJsonData | None = Field(
None, description="Optional edited data (ignored if approved=False)"
)
auto_approve_future: bool = Field(
default=False,
description=(
"If true and this review is approved, future executions of this same "
"block (node) will be automatically approved. This only affects approved reviews."
),
)
@field_validator("reviewed_data")
@classmethod
@@ -174,6 +181,9 @@ class ReviewRequest(BaseModel):
This request must include ALL pending reviews for a graph execution.
Each review will be either approved (with optional data modifications)
or rejected (data ignored). The execution will resume only after ALL reviews are processed.
Each review item can individually specify whether to auto-approve future executions
of the same block via the `auto_approve_future` field on ReviewItem.
"""
reviews: List[ReviewItem] = Field(

View File

@@ -8,6 +8,12 @@ from prisma.enums import ReviewStatus
from pytest_snapshot.plugin import Snapshot
from backend.api.rest_api import handle_internal_http_error
from backend.data.execution import (
ExecutionContext,
ExecutionStatus,
NodeExecutionResult,
)
from backend.data.graph import GraphSettings
from .model import PendingHumanReviewModel
from .routes import router
@@ -15,20 +21,24 @@ from .routes import router
# Using a fixed timestamp for reproducible tests
FIXED_NOW = datetime.datetime(2023, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc)
app = fastapi.FastAPI()
app.include_router(router, prefix="/api/review")
app.add_exception_handler(ValueError, handle_internal_http_error(400))
client = fastapi.testclient.TestClient(app)
@pytest.fixture
def app():
"""Create FastAPI app for testing"""
test_app = fastapi.FastAPI()
test_app.include_router(router, prefix="/api/review")
test_app.add_exception_handler(ValueError, handle_internal_http_error(400))
return test_app
@pytest.fixture(autouse=True)
def setup_app_auth(mock_jwt_user):
"""Setup auth overrides for all tests in this module"""
@pytest.fixture
def client(app, mock_jwt_user):
"""Create test client with auth overrides"""
from autogpt_libs.auth.jwt_utils import get_jwt_payload
app.dependency_overrides[get_jwt_payload] = mock_jwt_user["get_jwt_payload"]
yield
with fastapi.testclient.TestClient(app) as test_client:
yield test_client
app.dependency_overrides.clear()
@@ -55,6 +65,7 @@ def sample_pending_review(test_user_id: str) -> PendingHumanReviewModel:
def test_get_pending_reviews_empty(
client: fastapi.testclient.TestClient,
mocker: pytest_mock.MockerFixture,
snapshot: Snapshot,
test_user_id: str,
@@ -73,6 +84,7 @@ def test_get_pending_reviews_empty(
def test_get_pending_reviews_with_data(
client: fastapi.testclient.TestClient,
mocker: pytest_mock.MockerFixture,
sample_pending_review: PendingHumanReviewModel,
snapshot: Snapshot,
@@ -95,6 +107,7 @@ def test_get_pending_reviews_with_data(
def test_get_pending_reviews_for_execution_success(
client: fastapi.testclient.TestClient,
mocker: pytest_mock.MockerFixture,
sample_pending_review: PendingHumanReviewModel,
snapshot: Snapshot,
@@ -123,6 +136,7 @@ def test_get_pending_reviews_for_execution_success(
def test_get_pending_reviews_for_execution_not_available(
client: fastapi.testclient.TestClient,
mocker: pytest_mock.MockerFixture,
) -> None:
"""Test access denied when user doesn't own the execution"""
@@ -138,6 +152,7 @@ def test_get_pending_reviews_for_execution_not_available(
def test_process_review_action_approve_success(
client: fastapi.testclient.TestClient,
mocker: pytest_mock.MockerFixture,
sample_pending_review: PendingHumanReviewModel,
test_user_id: str,
@@ -145,6 +160,12 @@ def test_process_review_action_approve_success(
"""Test successful review approval"""
# Mock the route functions
# Mock get_pending_review_by_node_exec_id (called to find the graph_exec_id)
mock_get_reviews_for_user = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_review_by_node_exec_id"
)
mock_get_reviews_for_user.return_value = sample_pending_review
mock_get_reviews_for_execution = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_reviews_for_execution"
)
@@ -173,6 +194,14 @@ def test_process_review_action_approve_success(
)
mock_process_all_reviews.return_value = {"test_node_123": approved_review}
# Mock get_graph_execution_meta to return execution in REVIEW status
mock_get_graph_exec = mocker.patch(
"backend.api.features.executions.review.routes.get_graph_execution_meta"
)
mock_graph_exec_meta = mocker.Mock()
mock_graph_exec_meta.status = ExecutionStatus.REVIEW
mock_get_graph_exec.return_value = mock_graph_exec_meta
mock_has_pending = mocker.patch(
"backend.api.features.executions.review.routes.has_pending_reviews_for_graph_exec"
)
@@ -202,6 +231,7 @@ def test_process_review_action_approve_success(
def test_process_review_action_reject_success(
client: fastapi.testclient.TestClient,
mocker: pytest_mock.MockerFixture,
sample_pending_review: PendingHumanReviewModel,
test_user_id: str,
@@ -209,6 +239,20 @@ def test_process_review_action_reject_success(
"""Test successful review rejection"""
# Mock the route functions
# Mock get_pending_review_by_node_exec_id (called to find the graph_exec_id)
mock_get_reviews_for_user = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_review_by_node_exec_id"
)
mock_get_reviews_for_user.return_value = sample_pending_review
# Mock get_graph_execution_meta to return execution in REVIEW status
mock_get_graph_exec = mocker.patch(
"backend.api.features.executions.review.routes.get_graph_execution_meta"
)
mock_graph_exec_meta = mocker.Mock()
mock_graph_exec_meta.status = ExecutionStatus.REVIEW
mock_get_graph_exec.return_value = mock_graph_exec_meta
mock_get_reviews_for_execution = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_reviews_for_execution"
)
@@ -262,6 +306,7 @@ def test_process_review_action_reject_success(
def test_process_review_action_mixed_success(
client: fastapi.testclient.TestClient,
mocker: pytest_mock.MockerFixture,
sample_pending_review: PendingHumanReviewModel,
test_user_id: str,
@@ -288,6 +333,12 @@ def test_process_review_action_mixed_success(
# Mock the route functions
# Mock get_pending_review_by_node_exec_id (called to find the graph_exec_id)
mock_get_reviews_for_user = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_review_by_node_exec_id"
)
mock_get_reviews_for_user.return_value = sample_pending_review
mock_get_reviews_for_execution = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_reviews_for_execution"
)
@@ -337,6 +388,14 @@ def test_process_review_action_mixed_success(
"test_node_456": rejected_review,
}
# Mock get_graph_execution_meta to return execution in REVIEW status
mock_get_graph_exec = mocker.patch(
"backend.api.features.executions.review.routes.get_graph_execution_meta"
)
mock_graph_exec_meta = mocker.Mock()
mock_graph_exec_meta.status = ExecutionStatus.REVIEW
mock_get_graph_exec.return_value = mock_graph_exec_meta
mock_has_pending = mocker.patch(
"backend.api.features.executions.review.routes.has_pending_reviews_for_graph_exec"
)
@@ -369,6 +428,7 @@ def test_process_review_action_mixed_success(
def test_process_review_action_empty_request(
client: fastapi.testclient.TestClient,
mocker: pytest_mock.MockerFixture,
test_user_id: str,
) -> None:
@@ -386,10 +446,45 @@ def test_process_review_action_empty_request(
def test_process_review_action_review_not_found(
client: fastapi.testclient.TestClient,
mocker: pytest_mock.MockerFixture,
sample_pending_review: PendingHumanReviewModel,
test_user_id: str,
) -> None:
"""Test error when review is not found"""
# Create a review with the nonexistent_node ID so the route can find the graph_exec_id
nonexistent_review = PendingHumanReviewModel(
node_exec_id="nonexistent_node",
user_id=test_user_id,
graph_exec_id="test_graph_exec_456",
graph_id="test_graph_789",
graph_version=1,
payload={"data": "test"},
instructions="Review",
editable=True,
status=ReviewStatus.WAITING,
review_message=None,
was_edited=None,
processed=False,
created_at=FIXED_NOW,
updated_at=None,
reviewed_at=None,
)
# Mock get_pending_review_by_node_exec_id (called to find the graph_exec_id)
mock_get_reviews_for_user = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_review_by_node_exec_id"
)
mock_get_reviews_for_user.return_value = nonexistent_review
# Mock get_graph_execution_meta to return execution in REVIEW status
mock_get_graph_exec = mocker.patch(
"backend.api.features.executions.review.routes.get_graph_execution_meta"
)
mock_graph_exec_meta = mocker.Mock()
mock_graph_exec_meta.status = ExecutionStatus.REVIEW
mock_get_graph_exec.return_value = mock_graph_exec_meta
# Mock the functions that extract graph execution ID from the request
mock_get_reviews_for_execution = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_reviews_for_execution"
@@ -422,11 +517,26 @@ def test_process_review_action_review_not_found(
def test_process_review_action_partial_failure(
client: fastapi.testclient.TestClient,
mocker: pytest_mock.MockerFixture,
sample_pending_review: PendingHumanReviewModel,
test_user_id: str,
) -> None:
"""Test handling of partial failures in review processing"""
# Mock get_pending_review_by_node_exec_id (called to find the graph_exec_id)
mock_get_reviews_for_user = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_review_by_node_exec_id"
)
mock_get_reviews_for_user.return_value = sample_pending_review
# Mock get_graph_execution_meta to return execution in REVIEW status
mock_get_graph_exec = mocker.patch(
"backend.api.features.executions.review.routes.get_graph_execution_meta"
)
mock_graph_exec_meta = mocker.Mock()
mock_graph_exec_meta.status = ExecutionStatus.REVIEW
mock_get_graph_exec.return_value = mock_graph_exec_meta
# Mock the route functions
mock_get_reviews_for_execution = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_reviews_for_execution"
@@ -456,16 +566,50 @@ def test_process_review_action_partial_failure(
def test_process_review_action_invalid_node_exec_id(
client: fastapi.testclient.TestClient,
mocker: pytest_mock.MockerFixture,
sample_pending_review: PendingHumanReviewModel,
test_user_id: str,
) -> None:
"""Test failure when trying to process review with invalid node execution ID"""
# Create a review with the invalid-node-format ID so the route can find the graph_exec_id
invalid_review = PendingHumanReviewModel(
node_exec_id="invalid-node-format",
user_id=test_user_id,
graph_exec_id="test_graph_exec_456",
graph_id="test_graph_789",
graph_version=1,
payload={"data": "test"},
instructions="Review",
editable=True,
status=ReviewStatus.WAITING,
review_message=None,
was_edited=None,
processed=False,
created_at=FIXED_NOW,
updated_at=None,
reviewed_at=None,
)
# Mock get_pending_review_by_node_exec_id (called to find the graph_exec_id)
mock_get_reviews_for_user = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_review_by_node_exec_id"
)
mock_get_reviews_for_user.return_value = invalid_review
# Mock get_graph_execution_meta to return execution in REVIEW status
mock_get_graph_exec = mocker.patch(
"backend.api.features.executions.review.routes.get_graph_execution_meta"
)
mock_graph_exec_meta = mocker.Mock()
mock_graph_exec_meta.status = ExecutionStatus.REVIEW
mock_get_graph_exec.return_value = mock_graph_exec_meta
# Mock the route functions
mock_get_reviews_for_execution = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_reviews_for_execution"
)
mock_get_reviews_for_execution.return_value = [sample_pending_review]
mock_get_reviews_for_execution.return_value = [invalid_review]
# Mock validation failure - this should return 400, not 500
mock_process_all_reviews = mocker.patch(
@@ -490,3 +634,571 @@ def test_process_review_action_invalid_node_exec_id(
# Should be a 400 Bad Request, not 500 Internal Server Error
assert response.status_code == 400
assert "Invalid node execution ID format" in response.json()["detail"]
def test_process_review_action_auto_approve_creates_auto_approval_records(
client: fastapi.testclient.TestClient,
mocker: pytest_mock.MockerFixture,
sample_pending_review: PendingHumanReviewModel,
test_user_id: str,
) -> None:
"""Test that auto_approve_future_actions flag creates auto-approval records"""
# Mock get_pending_review_by_node_exec_id (called to find the graph_exec_id)
mock_get_reviews_for_user = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_review_by_node_exec_id"
)
mock_get_reviews_for_user.return_value = sample_pending_review
# Mock process_all_reviews
mock_process_all_reviews = mocker.patch(
"backend.api.features.executions.review.routes.process_all_reviews_for_execution"
)
approved_review = PendingHumanReviewModel(
node_exec_id="test_node_123",
user_id=test_user_id,
graph_exec_id="test_graph_exec_456",
graph_id="test_graph_789",
graph_version=1,
payload={"data": "test payload"},
instructions="Please review",
editable=True,
status=ReviewStatus.APPROVED,
review_message="Approved",
was_edited=False,
processed=False,
created_at=FIXED_NOW,
updated_at=FIXED_NOW,
reviewed_at=FIXED_NOW,
)
mock_process_all_reviews.return_value = {"test_node_123": approved_review}
# Mock get_node_execution to return node_id
mock_get_node_execution = mocker.patch(
"backend.api.features.executions.review.routes.get_node_execution"
)
mock_node_exec = mocker.Mock(spec=NodeExecutionResult)
mock_node_exec.node_id = "test_node_def_456"
mock_get_node_execution.return_value = mock_node_exec
# Mock create_auto_approval_record
mock_create_auto_approval = mocker.patch(
"backend.api.features.executions.review.routes.create_auto_approval_record"
)
# Mock get_graph_execution_meta to return execution in REVIEW status
mock_get_graph_exec = mocker.patch(
"backend.api.features.executions.review.routes.get_graph_execution_meta"
)
mock_graph_exec_meta = mocker.Mock()
mock_graph_exec_meta.status = ExecutionStatus.REVIEW
mock_get_graph_exec.return_value = mock_graph_exec_meta
# Mock has_pending_reviews_for_graph_exec
mock_has_pending = mocker.patch(
"backend.api.features.executions.review.routes.has_pending_reviews_for_graph_exec"
)
mock_has_pending.return_value = False
# Mock get_graph_settings to return custom settings
mock_get_settings = mocker.patch(
"backend.api.features.executions.review.routes.get_graph_settings"
)
mock_get_settings.return_value = GraphSettings(
human_in_the_loop_safe_mode=True,
sensitive_action_safe_mode=True,
)
# Mock add_graph_execution
mock_add_execution = mocker.patch(
"backend.api.features.executions.review.routes.add_graph_execution"
)
request_data = {
"reviews": [
{
"node_exec_id": "test_node_123",
"approved": True,
"message": "Approved",
"auto_approve_future": True,
}
],
}
response = client.post("/api/review/action", json=request_data)
assert response.status_code == 200
# Verify process_all_reviews_for_execution was called (without auto_approve param)
mock_process_all_reviews.assert_called_once()
# Verify create_auto_approval_record was called for the approved review
mock_create_auto_approval.assert_called_once_with(
user_id=test_user_id,
graph_exec_id="test_graph_exec_456",
graph_id="test_graph_789",
graph_version=1,
node_id="test_node_def_456",
payload={"data": "test payload"},
)
# Verify get_graph_settings was called with correct parameters
mock_get_settings.assert_called_once_with(
user_id=test_user_id, graph_id="test_graph_789"
)
# Verify add_graph_execution was called with proper ExecutionContext
mock_add_execution.assert_called_once()
call_kwargs = mock_add_execution.call_args.kwargs
execution_context = call_kwargs["execution_context"]
assert isinstance(execution_context, ExecutionContext)
assert execution_context.human_in_the_loop_safe_mode is True
assert execution_context.sensitive_action_safe_mode is True
def test_process_review_action_without_auto_approve_still_loads_settings(
client: fastapi.testclient.TestClient,
mocker: pytest_mock.MockerFixture,
sample_pending_review: PendingHumanReviewModel,
test_user_id: str,
) -> None:
"""Test that execution context is created with settings even without auto-approve"""
# Mock get_pending_review_by_node_exec_id (called to find the graph_exec_id)
mock_get_reviews_for_user = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_review_by_node_exec_id"
)
mock_get_reviews_for_user.return_value = sample_pending_review
# Mock process_all_reviews
mock_process_all_reviews = mocker.patch(
"backend.api.features.executions.review.routes.process_all_reviews_for_execution"
)
approved_review = PendingHumanReviewModel(
node_exec_id="test_node_123",
user_id=test_user_id,
graph_exec_id="test_graph_exec_456",
graph_id="test_graph_789",
graph_version=1,
payload={"data": "test payload"},
instructions="Please review",
editable=True,
status=ReviewStatus.APPROVED,
review_message="Approved",
was_edited=False,
processed=False,
created_at=FIXED_NOW,
updated_at=FIXED_NOW,
reviewed_at=FIXED_NOW,
)
mock_process_all_reviews.return_value = {"test_node_123": approved_review}
# Mock create_auto_approval_record - should NOT be called when auto_approve is False
mock_create_auto_approval = mocker.patch(
"backend.api.features.executions.review.routes.create_auto_approval_record"
)
# Mock get_graph_execution_meta to return execution in REVIEW status
mock_get_graph_exec = mocker.patch(
"backend.api.features.executions.review.routes.get_graph_execution_meta"
)
mock_graph_exec_meta = mocker.Mock()
mock_graph_exec_meta.status = ExecutionStatus.REVIEW
mock_get_graph_exec.return_value = mock_graph_exec_meta
# Mock has_pending_reviews_for_graph_exec
mock_has_pending = mocker.patch(
"backend.api.features.executions.review.routes.has_pending_reviews_for_graph_exec"
)
mock_has_pending.return_value = False
# Mock get_graph_settings with sensitive_action_safe_mode enabled
mock_get_settings = mocker.patch(
"backend.api.features.executions.review.routes.get_graph_settings"
)
mock_get_settings.return_value = GraphSettings(
human_in_the_loop_safe_mode=False,
sensitive_action_safe_mode=True,
)
# Mock add_graph_execution
mock_add_execution = mocker.patch(
"backend.api.features.executions.review.routes.add_graph_execution"
)
# Request WITHOUT auto_approve_future (defaults to False)
request_data = {
"reviews": [
{
"node_exec_id": "test_node_123",
"approved": True,
"message": "Approved",
# auto_approve_future defaults to False
}
],
}
response = client.post("/api/review/action", json=request_data)
assert response.status_code == 200
# Verify process_all_reviews_for_execution was called
mock_process_all_reviews.assert_called_once()
# Verify create_auto_approval_record was NOT called (auto_approve_future=False)
mock_create_auto_approval.assert_not_called()
# Verify settings were loaded
mock_get_settings.assert_called_once()
# Verify ExecutionContext has proper settings
mock_add_execution.assert_called_once()
call_kwargs = mock_add_execution.call_args.kwargs
execution_context = call_kwargs["execution_context"]
assert isinstance(execution_context, ExecutionContext)
assert execution_context.human_in_the_loop_safe_mode is False
assert execution_context.sensitive_action_safe_mode is True
def test_process_review_action_auto_approve_only_applies_to_approved_reviews(
client: fastapi.testclient.TestClient,
mocker: pytest_mock.MockerFixture,
test_user_id: str,
) -> None:
"""Test that auto_approve record is created only for approved reviews"""
# Create two reviews - one approved, one rejected
approved_review = PendingHumanReviewModel(
node_exec_id="node_exec_approved",
user_id=test_user_id,
graph_exec_id="test_graph_exec_456",
graph_id="test_graph_789",
graph_version=1,
payload={"data": "approved"},
instructions="Review",
editable=True,
status=ReviewStatus.APPROVED,
review_message=None,
was_edited=False,
processed=False,
created_at=FIXED_NOW,
updated_at=FIXED_NOW,
reviewed_at=FIXED_NOW,
)
rejected_review = PendingHumanReviewModel(
node_exec_id="node_exec_rejected",
user_id=test_user_id,
graph_exec_id="test_graph_exec_456",
graph_id="test_graph_789",
graph_version=1,
payload={"data": "rejected"},
instructions="Review",
editable=True,
status=ReviewStatus.REJECTED,
review_message="Rejected",
was_edited=False,
processed=False,
created_at=FIXED_NOW,
updated_at=FIXED_NOW,
reviewed_at=FIXED_NOW,
)
# Mock get_pending_review_by_node_exec_id (called to find the graph_exec_id)
mock_get_reviews_for_user = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_review_by_node_exec_id"
)
mock_get_reviews_for_user.return_value = approved_review
# Mock process_all_reviews
mock_process_all_reviews = mocker.patch(
"backend.api.features.executions.review.routes.process_all_reviews_for_execution"
)
mock_process_all_reviews.return_value = {
"node_exec_approved": approved_review,
"node_exec_rejected": rejected_review,
}
# Mock get_node_execution to return node_id (only called for approved review)
mock_get_node_execution = mocker.patch(
"backend.api.features.executions.review.routes.get_node_execution"
)
mock_node_exec = mocker.Mock(spec=NodeExecutionResult)
mock_node_exec.node_id = "test_node_def_approved"
mock_get_node_execution.return_value = mock_node_exec
# Mock create_auto_approval_record
mock_create_auto_approval = mocker.patch(
"backend.api.features.executions.review.routes.create_auto_approval_record"
)
# Mock get_graph_execution_meta to return execution in REVIEW status
mock_get_graph_exec = mocker.patch(
"backend.api.features.executions.review.routes.get_graph_execution_meta"
)
mock_graph_exec_meta = mocker.Mock()
mock_graph_exec_meta.status = ExecutionStatus.REVIEW
mock_get_graph_exec.return_value = mock_graph_exec_meta
# Mock has_pending_reviews_for_graph_exec
mock_has_pending = mocker.patch(
"backend.api.features.executions.review.routes.has_pending_reviews_for_graph_exec"
)
mock_has_pending.return_value = False
# Mock get_graph_settings
mock_get_settings = mocker.patch(
"backend.api.features.executions.review.routes.get_graph_settings"
)
mock_get_settings.return_value = GraphSettings()
# Mock add_graph_execution
mock_add_execution = mocker.patch(
"backend.api.features.executions.review.routes.add_graph_execution"
)
request_data = {
"reviews": [
{
"node_exec_id": "node_exec_approved",
"approved": True,
"auto_approve_future": True,
},
{
"node_exec_id": "node_exec_rejected",
"approved": False,
"auto_approve_future": True, # Should be ignored since rejected
},
],
}
response = client.post("/api/review/action", json=request_data)
assert response.status_code == 200
# Verify process_all_reviews_for_execution was called
mock_process_all_reviews.assert_called_once()
# Verify create_auto_approval_record was called ONLY for the approved review
# (not for the rejected one)
mock_create_auto_approval.assert_called_once_with(
user_id=test_user_id,
graph_exec_id="test_graph_exec_456",
graph_id="test_graph_789",
graph_version=1,
node_id="test_node_def_approved",
payload={"data": "approved"},
)
# Verify get_node_execution was called only for approved review
mock_get_node_execution.assert_called_once_with("node_exec_approved")
# Verify ExecutionContext was created (auto-approval is now DB-based)
call_kwargs = mock_add_execution.call_args.kwargs
execution_context = call_kwargs["execution_context"]
assert isinstance(execution_context, ExecutionContext)
def test_process_review_action_per_review_auto_approve_granularity(
client: fastapi.testclient.TestClient,
mocker: pytest_mock.MockerFixture,
sample_pending_review: PendingHumanReviewModel,
test_user_id: str,
) -> None:
"""Test that auto-approval can be set per-review (granular control)"""
# Mock get_pending_review_by_node_exec_id - return different reviews based on node_exec_id
mock_get_reviews_for_user = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_review_by_node_exec_id"
)
# Create a mapping of node_exec_id to review
review_map = {
"node_1_auto": PendingHumanReviewModel(
node_exec_id="node_1_auto",
user_id=test_user_id,
graph_exec_id="test_graph_exec",
graph_id="test_graph",
graph_version=1,
payload={"data": "node1"},
instructions="Review 1",
editable=True,
status=ReviewStatus.WAITING,
review_message=None,
was_edited=False,
processed=False,
created_at=FIXED_NOW,
),
"node_2_manual": PendingHumanReviewModel(
node_exec_id="node_2_manual",
user_id=test_user_id,
graph_exec_id="test_graph_exec",
graph_id="test_graph",
graph_version=1,
payload={"data": "node2"},
instructions="Review 2",
editable=True,
status=ReviewStatus.WAITING,
review_message=None,
was_edited=False,
processed=False,
created_at=FIXED_NOW,
),
"node_3_auto": PendingHumanReviewModel(
node_exec_id="node_3_auto",
user_id=test_user_id,
graph_exec_id="test_graph_exec",
graph_id="test_graph",
graph_version=1,
payload={"data": "node3"},
instructions="Review 3",
editable=True,
status=ReviewStatus.WAITING,
review_message=None,
was_edited=False,
processed=False,
created_at=FIXED_NOW,
),
}
# Use side_effect to return different reviews based on node_exec_id parameter
def mock_get_review_by_id(node_exec_id: str, _user_id: str):
return review_map.get(node_exec_id)
mock_get_reviews_for_user.side_effect = mock_get_review_by_id
# Mock process_all_reviews - return 3 approved reviews
mock_process_all_reviews = mocker.patch(
"backend.api.features.executions.review.routes.process_all_reviews_for_execution"
)
mock_process_all_reviews.return_value = {
"node_1_auto": PendingHumanReviewModel(
node_exec_id="node_1_auto",
user_id=test_user_id,
graph_exec_id="test_graph_exec",
graph_id="test_graph",
graph_version=1,
payload={"data": "node1"},
instructions="Review 1",
editable=True,
status=ReviewStatus.APPROVED,
review_message=None,
was_edited=False,
processed=False,
created_at=FIXED_NOW,
updated_at=FIXED_NOW,
reviewed_at=FIXED_NOW,
),
"node_2_manual": PendingHumanReviewModel(
node_exec_id="node_2_manual",
user_id=test_user_id,
graph_exec_id="test_graph_exec",
graph_id="test_graph",
graph_version=1,
payload={"data": "node2"},
instructions="Review 2",
editable=True,
status=ReviewStatus.APPROVED,
review_message=None,
was_edited=False,
processed=False,
created_at=FIXED_NOW,
updated_at=FIXED_NOW,
reviewed_at=FIXED_NOW,
),
"node_3_auto": PendingHumanReviewModel(
node_exec_id="node_3_auto",
user_id=test_user_id,
graph_exec_id="test_graph_exec",
graph_id="test_graph",
graph_version=1,
payload={"data": "node3"},
instructions="Review 3",
editable=True,
status=ReviewStatus.APPROVED,
review_message=None,
was_edited=False,
processed=False,
created_at=FIXED_NOW,
updated_at=FIXED_NOW,
reviewed_at=FIXED_NOW,
),
}
# Mock get_node_execution
mock_get_node_execution = mocker.patch(
"backend.api.features.executions.review.routes.get_node_execution"
)
def mock_get_node(node_exec_id: str):
mock_node = mocker.Mock(spec=NodeExecutionResult)
mock_node.node_id = f"node_def_{node_exec_id}"
return mock_node
mock_get_node_execution.side_effect = mock_get_node
# Mock create_auto_approval_record
mock_create_auto_approval = mocker.patch(
"backend.api.features.executions.review.routes.create_auto_approval_record"
)
# Mock get_graph_execution_meta
mock_get_graph_exec = mocker.patch(
"backend.api.features.executions.review.routes.get_graph_execution_meta"
)
mock_graph_exec_meta = mocker.Mock()
mock_graph_exec_meta.status = ExecutionStatus.REVIEW
mock_get_graph_exec.return_value = mock_graph_exec_meta
# Mock has_pending_reviews_for_graph_exec
mock_has_pending = mocker.patch(
"backend.api.features.executions.review.routes.has_pending_reviews_for_graph_exec"
)
mock_has_pending.return_value = False
# Mock settings and execution
mock_get_settings = mocker.patch(
"backend.api.features.executions.review.routes.get_graph_settings"
)
mock_get_settings.return_value = GraphSettings(
human_in_the_loop_safe_mode=False, sensitive_action_safe_mode=False
)
mocker.patch("backend.api.features.executions.review.routes.add_graph_execution")
mocker.patch("backend.api.features.executions.review.routes.get_user_by_id")
# Request with granular auto-approval:
# - node_1_auto: auto_approve_future=True
# - node_2_manual: auto_approve_future=False (explicit)
# - node_3_auto: auto_approve_future=True
request_data = {
"reviews": [
{
"node_exec_id": "node_1_auto",
"approved": True,
"auto_approve_future": True,
},
{
"node_exec_id": "node_2_manual",
"approved": True,
"auto_approve_future": False, # Don't auto-approve this one
},
{
"node_exec_id": "node_3_auto",
"approved": True,
"auto_approve_future": True,
},
],
}
response = client.post("/api/review/action", json=request_data)
assert response.status_code == 200
# Verify create_auto_approval_record was called ONLY for reviews with auto_approve_future=True
assert mock_create_auto_approval.call_count == 2
# Check that it was called for node_1 and node_3, but NOT node_2
call_args_list = [call.kwargs for call in mock_create_auto_approval.call_args_list]
node_ids_with_auto_approval = [args["node_id"] for args in call_args_list]
assert "node_def_node_1_auto" in node_ids_with_auto_approval
assert "node_def_node_3_auto" in node_ids_with_auto_approval
assert "node_def_node_2_manual" not in node_ids_with_auto_approval

View File

@@ -5,13 +5,23 @@ import autogpt_libs.auth as autogpt_auth_lib
from fastapi import APIRouter, HTTPException, Query, Security, status
from prisma.enums import ReviewStatus
from backend.data.execution import get_graph_execution_meta
from backend.data.execution import (
ExecutionContext,
ExecutionStatus,
get_graph_execution_meta,
get_node_execution,
)
from backend.data.graph import get_graph_settings
from backend.data.human_review import (
create_auto_approval_record,
get_pending_review_by_node_exec_id,
get_pending_reviews_for_execution,
get_pending_reviews_for_user,
has_pending_reviews_for_graph_exec,
process_all_reviews_for_execution,
)
from backend.data.model import USER_TIMEZONE_NOT_SET
from backend.data.user import get_user_by_id
from backend.executor.utils import add_graph_execution
from .model import PendingHumanReviewModel, ReviewRequest, ReviewResponse
@@ -127,17 +137,64 @@ async def process_review_action(
detail="At least one review must be provided",
)
# Build review decisions map
# Get graph execution ID by directly looking up one of the requested reviews
# Use direct lookup to avoid pagination issues (can't miss reviews beyond first page)
matching_review = None
for node_exec_id in all_request_node_ids:
review = await get_pending_review_by_node_exec_id(node_exec_id, user_id)
if review:
matching_review = review
break
if not matching_review:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail="No pending reviews found for the requested node executions",
)
graph_exec_id = matching_review.graph_exec_id
# Validate execution status before processing reviews
graph_exec_meta = await get_graph_execution_meta(
user_id=user_id, execution_id=graph_exec_id
)
if not graph_exec_meta:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=f"Graph execution #{graph_exec_id} not found",
)
# Only allow processing reviews if execution is paused for review
# or incomplete (partial execution with some reviews already processed)
if graph_exec_meta.status not in (
ExecutionStatus.REVIEW,
ExecutionStatus.INCOMPLETE,
):
raise HTTPException(
status_code=status.HTTP_409_CONFLICT,
detail=f"Cannot process reviews while execution status is {graph_exec_meta.status}. "
f"Reviews can only be processed when execution is paused (REVIEW status). "
f"Current status: {graph_exec_meta.status}",
)
# Build review decisions map and track which reviews requested auto-approval
# Auto-approved reviews use original data (no modifications allowed)
review_decisions = {}
auto_approve_requests = {} # Map node_exec_id -> auto_approve_future flag
for review in request.reviews:
review_status = (
ReviewStatus.APPROVED if review.approved else ReviewStatus.REJECTED
)
# If this review requested auto-approval, don't allow data modifications
reviewed_data = None if review.auto_approve_future else review.reviewed_data
review_decisions[review.node_exec_id] = (
review_status,
review.reviewed_data,
reviewed_data,
review.message,
)
auto_approve_requests[review.node_exec_id] = review.auto_approve_future
# Process all reviews
updated_reviews = await process_all_reviews_for_execution(
@@ -145,6 +202,32 @@ async def process_review_action(
review_decisions=review_decisions,
)
# Create auto-approval records for approved reviews that requested it
# Note: Processing sequentially to avoid event loop issues in tests
for node_exec_id, review_result in updated_reviews.items():
# Only create auto-approval if:
# 1. This review was approved
# 2. The review requested auto-approval
if review_result.status == ReviewStatus.APPROVED and auto_approve_requests.get(
node_exec_id, False
):
try:
node_exec = await get_node_execution(node_exec_id)
if node_exec:
await create_auto_approval_record(
user_id=user_id,
graph_exec_id=review_result.graph_exec_id,
graph_id=review_result.graph_id,
graph_version=review_result.graph_version,
node_id=node_exec.node_id,
payload=review_result.payload,
)
except Exception as e:
logger.error(
f"Failed to create auto-approval record for {node_exec_id}",
exc_info=e,
)
# Count results
approved_count = sum(
1
@@ -157,22 +240,37 @@ async def process_review_action(
if review.status == ReviewStatus.REJECTED
)
# Resume execution if we processed some reviews
# Resume execution only if ALL pending reviews for this execution have been processed
if updated_reviews:
# Get graph execution ID from any processed review
first_review = next(iter(updated_reviews.values()))
graph_exec_id = first_review.graph_exec_id
# Check if any pending reviews remain for this execution
still_has_pending = await has_pending_reviews_for_graph_exec(graph_exec_id)
if not still_has_pending:
# Resume execution
# Get the graph_id from any processed review
first_review = next(iter(updated_reviews.values()))
try:
# Fetch user and settings to build complete execution context
user = await get_user_by_id(user_id)
settings = await get_graph_settings(
user_id=user_id, graph_id=first_review.graph_id
)
# Preserve user's timezone preference when resuming execution
user_timezone = (
user.timezone if user.timezone != USER_TIMEZONE_NOT_SET else "UTC"
)
execution_context = ExecutionContext(
human_in_the_loop_safe_mode=settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=settings.sensitive_action_safe_mode,
user_timezone=user_timezone,
)
await add_graph_execution(
graph_id=first_review.graph_id,
user_id=user_id,
graph_exec_id=graph_exec_id,
execution_context=execution_context,
)
logger.info(f"Resumed execution {graph_exec_id}")
except Exception as e:

View File

@@ -401,27 +401,11 @@ async def add_generated_agent_image(
)
def _initialize_graph_settings(graph: graph_db.GraphModel) -> GraphSettings:
"""
Initialize GraphSettings based on graph content.
Args:
graph: The graph to analyze
Returns:
GraphSettings with appropriate human_in_the_loop_safe_mode value
"""
if graph.has_human_in_the_loop:
# Graph has HITL blocks - set safe mode to True by default
return GraphSettings(human_in_the_loop_safe_mode=True)
else:
# Graph has no HITL blocks - keep None
return GraphSettings(human_in_the_loop_safe_mode=None)
async def create_library_agent(
graph: graph_db.GraphModel,
user_id: str,
hitl_safe_mode: bool = True,
sensitive_action_safe_mode: bool = False,
create_library_agents_for_sub_graphs: bool = True,
) -> list[library_model.LibraryAgent]:
"""
@@ -430,6 +414,8 @@ async def create_library_agent(
Args:
agent: The agent/Graph to add to the library.
user_id: The user to whom the agent will be added.
hitl_safe_mode: Whether HITL blocks require manual review (default True).
sensitive_action_safe_mode: Whether sensitive action blocks require review.
create_library_agents_for_sub_graphs: If True, creates LibraryAgent records for sub-graphs as well.
Returns:
@@ -465,7 +451,11 @@ async def create_library_agent(
}
},
settings=SafeJson(
_initialize_graph_settings(graph_entry).model_dump()
GraphSettings.from_graph(
graph_entry,
hitl_safe_mode=hitl_safe_mode,
sensitive_action_safe_mode=sensitive_action_safe_mode,
).model_dump()
),
),
include=library_agent_include(
@@ -627,33 +617,6 @@ async def update_library_agent(
raise DatabaseError("Failed to update library agent") from e
async def update_library_agent_settings(
user_id: str,
agent_id: str,
settings: GraphSettings,
) -> library_model.LibraryAgent:
"""
Updates the settings for a specific LibraryAgent.
Args:
user_id: The owner of the LibraryAgent.
agent_id: The ID of the LibraryAgent to update.
settings: New GraphSettings to apply.
Returns:
The updated LibraryAgent.
Raises:
NotFoundError: If the specified LibraryAgent does not exist.
DatabaseError: If there's an error in the update operation.
"""
return await update_library_agent(
library_agent_id=agent_id,
user_id=user_id,
settings=settings,
)
async def delete_library_agent(
library_agent_id: str, user_id: str, soft_delete: bool = True
) -> None:
@@ -838,7 +801,7 @@ async def add_store_agent_to_library(
"isCreatedByUser": False,
"useGraphIsActiveVersion": False,
"settings": SafeJson(
_initialize_graph_settings(graph_model).model_dump()
GraphSettings.from_graph(graph_model).model_dump()
),
},
include=library_agent_include(
@@ -1228,8 +1191,15 @@ async def fork_library_agent(
)
new_graph = await on_graph_activate(new_graph, user_id=user_id)
# Create a library agent for the new graph
return (await create_library_agent(new_graph, user_id))[0]
# Create a library agent for the new graph, preserving safe mode settings
return (
await create_library_agent(
new_graph,
user_id,
hitl_safe_mode=original_agent.settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=original_agent.settings.sensitive_action_safe_mode,
)
)[0]
except prisma.errors.PrismaError as e:
logger.error(f"Database error cloning library agent: {e}")
raise DatabaseError("Failed to fork library agent") from e

View File

@@ -73,6 +73,12 @@ class LibraryAgent(pydantic.BaseModel):
has_external_trigger: bool = pydantic.Field(
description="Whether the agent has an external trigger (e.g. webhook) node"
)
has_human_in_the_loop: bool = pydantic.Field(
description="Whether the agent has human-in-the-loop blocks"
)
has_sensitive_action: bool = pydantic.Field(
description="Whether the agent has sensitive action blocks"
)
trigger_setup_info: Optional[GraphTriggerInfo] = None
# Indicates whether there's a new output (based on recent runs)
@@ -180,6 +186,8 @@ class LibraryAgent(pydantic.BaseModel):
graph.credentials_input_schema if sub_graphs is not None else None
),
has_external_trigger=graph.has_external_trigger,
has_human_in_the_loop=graph.has_human_in_the_loop,
has_sensitive_action=graph.has_sensitive_action,
trigger_setup_info=graph.trigger_setup_info,
new_output=new_output,
can_access_graph=can_access_graph,

View File

@@ -52,6 +52,8 @@ async def test_get_library_agents_success(
output_schema={"type": "object", "properties": {}},
credentials_input_schema={"type": "object", "properties": {}},
has_external_trigger=False,
has_human_in_the_loop=False,
has_sensitive_action=False,
status=library_model.LibraryAgentStatus.COMPLETED,
recommended_schedule_cron=None,
new_output=False,
@@ -75,6 +77,8 @@ async def test_get_library_agents_success(
output_schema={"type": "object", "properties": {}},
credentials_input_schema={"type": "object", "properties": {}},
has_external_trigger=False,
has_human_in_the_loop=False,
has_sensitive_action=False,
status=library_model.LibraryAgentStatus.COMPLETED,
recommended_schedule_cron=None,
new_output=False,
@@ -150,6 +154,8 @@ async def test_get_favorite_library_agents_success(
output_schema={"type": "object", "properties": {}},
credentials_input_schema={"type": "object", "properties": {}},
has_external_trigger=False,
has_human_in_the_loop=False,
has_sensitive_action=False,
status=library_model.LibraryAgentStatus.COMPLETED,
recommended_schedule_cron=None,
new_output=False,
@@ -218,6 +224,8 @@ def test_add_agent_to_library_success(
output_schema={"type": "object", "properties": {}},
credentials_input_schema={"type": "object", "properties": {}},
has_external_trigger=False,
has_human_in_the_loop=False,
has_sensitive_action=False,
status=library_model.LibraryAgentStatus.COMPLETED,
new_output=False,
can_access_graph=True,

View File

@@ -6,6 +6,7 @@ Handles generation and storage of OpenAI embeddings for all content types
"""
import asyncio
import contextvars
import logging
import time
from typing import Any
@@ -21,6 +22,11 @@ from backend.util.json import dumps
logger = logging.getLogger(__name__)
# Context variable to track errors logged in the current task/operation
# This prevents spamming the same error multiple times when processing batches
_logged_errors: contextvars.ContextVar[set[str]] = contextvars.ContextVar(
"_logged_errors"
)
# OpenAI embedding model configuration
EMBEDDING_MODEL = "text-embedding-3-small"
@@ -31,6 +37,42 @@ EMBEDDING_DIM = 1536
EMBEDDING_MAX_TOKENS = 8191
def log_once_per_task(error_key: str, log_fn, message: str, **kwargs) -> bool:
"""
Log an error/warning only once per task/operation to avoid log spam.
Uses contextvars to track what has been logged in the current async context.
Useful when processing batches where the same error might occur for many items.
Args:
error_key: Unique identifier for this error type
log_fn: Logger function to call (e.g., logger.error, logger.warning)
message: Message to log
**kwargs: Additional arguments to pass to log_fn
Returns:
True if the message was logged, False if it was suppressed (already logged)
Example:
log_once_per_task("missing_api_key", logger.error, "API key not set")
"""
# Get current logged errors, or create a new set if this is the first call in this context
logged = _logged_errors.get(None)
if logged is None:
logged = set()
_logged_errors.set(logged)
if error_key in logged:
return False
# Log the message with a note that it will only appear once
log_fn(f"{message} (This message will only be shown once per task.)", **kwargs)
# Mark as logged
logged.add(error_key)
return True
def build_searchable_text(
name: str,
description: str,
@@ -73,7 +115,11 @@ async def generate_embedding(text: str) -> list[float] | None:
try:
client = get_openai_client()
if not client:
logger.error("openai_internal_api_key not set, cannot generate embedding")
log_once_per_task(
"openai_api_key_missing",
logger.error,
"openai_internal_api_key not set, cannot generate embeddings",
)
return None
# Truncate text to token limit using tiktoken
@@ -154,6 +200,7 @@ async def store_content_embedding(
# Upsert the embedding
# WHERE clause in DO UPDATE prevents PostgreSQL 15 bug with NULLS NOT DISTINCT
# Use unqualified ::vector - pgvector is in search_path on all environments
await execute_raw_with_schema(
"""
INSERT INTO {schema_prefix}"UnifiedContentEmbedding" (
@@ -177,7 +224,6 @@ async def store_content_embedding(
searchable_text,
metadata_json,
client=client,
set_public_search_path=True,
)
logger.info(f"Stored embedding for {content_type}:{content_id}")
@@ -236,7 +282,6 @@ async def get_content_embedding(
content_type,
content_id,
user_id,
set_public_search_path=True,
)
if result and len(result) > 0:
@@ -291,7 +336,12 @@ async def ensure_embedding(
# Generate new embedding
embedding = await generate_embedding(searchable_text)
if embedding is None:
logger.warning(f"Could not generate embedding for version {version_id}")
log_once_per_task(
"embedding_generation_failed",
logger.warning,
"Could not generate embeddings (missing API key or service unavailable). "
"Embedding generation is disabled for this task.",
)
return False
# Store the embedding with metadata using new function
@@ -610,8 +660,11 @@ async def ensure_content_embedding(
# Generate new embedding
embedding = await generate_embedding(searchable_text)
if embedding is None:
logger.warning(
f"Could not generate embedding for {content_type}:{content_id}"
log_once_per_task(
"embedding_generation_failed",
logger.warning,
"Could not generate embeddings (missing API key or service unavailable). "
"Embedding generation is disabled for this task.",
)
return False
@@ -871,31 +924,45 @@ async def semantic_search(
# Add content type parameters and build placeholders dynamically
content_type_start_idx = len(params) + 1
content_type_placeholders = ", ".join(
f'${content_type_start_idx + i}::{{{{schema_prefix}}}}"ContentType"'
"$" + str(content_type_start_idx + i) + '::{schema_prefix}"ContentType"'
for i in range(len(content_types))
)
params.extend([ct.value for ct in content_types])
sql = f"""
# Build min_similarity param index before appending
min_similarity_idx = len(params) + 1
params.append(min_similarity)
# Use unqualified ::vector and <=> operator - pgvector is in search_path on all environments
sql = (
"""
SELECT
"contentId" as content_id,
"contentType" as content_type,
"searchableText" as searchable_text,
metadata,
1 - (embedding <=> '{embedding_str}'::vector) as similarity
FROM {{{{schema_prefix}}}}"UnifiedContentEmbedding"
WHERE "contentType" IN ({content_type_placeholders})
{user_filter}
AND 1 - (embedding <=> '{embedding_str}'::vector) >= ${len(params) + 1}
1 - (embedding <=> '"""
+ embedding_str
+ """'::vector) as similarity
FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" IN ("""
+ content_type_placeholders
+ """)
"""
+ user_filter
+ """
AND 1 - (embedding <=> '"""
+ embedding_str
+ """'::vector) >= $"""
+ str(min_similarity_idx)
+ """
ORDER BY similarity DESC
LIMIT $1
"""
params.append(min_similarity)
)
try:
results = await query_raw_with_schema(
sql, *params, set_public_search_path=True
)
results = await query_raw_with_schema(sql, *params)
return [
{
"content_id": row["content_id"],
@@ -922,31 +989,41 @@ async def semantic_search(
# Add content type parameters and build placeholders dynamically
content_type_start_idx = len(params_lexical) + 1
content_type_placeholders_lexical = ", ".join(
f'${content_type_start_idx + i}::{{{{schema_prefix}}}}"ContentType"'
"$" + str(content_type_start_idx + i) + '::{schema_prefix}"ContentType"'
for i in range(len(content_types))
)
params_lexical.extend([ct.value for ct in content_types])
sql_lexical = f"""
# Build query param index before appending
query_param_idx = len(params_lexical) + 1
params_lexical.append(f"%{query}%")
# Use regular string (not f-string) for template to preserve {schema_prefix} placeholders
sql_lexical = (
"""
SELECT
"contentId" as content_id,
"contentType" as content_type,
"searchableText" as searchable_text,
metadata,
0.0 as similarity
FROM {{{{schema_prefix}}}}"UnifiedContentEmbedding"
WHERE "contentType" IN ({content_type_placeholders_lexical})
{user_filter}
AND "searchableText" ILIKE ${len(params_lexical) + 1}
FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" IN ("""
+ content_type_placeholders_lexical
+ """)
"""
+ user_filter
+ """
AND "searchableText" ILIKE $"""
+ str(query_param_idx)
+ """
ORDER BY "updatedAt" DESC
LIMIT $1
"""
params_lexical.append(f"%{query}%")
)
try:
results = await query_raw_with_schema(
sql_lexical, *params_lexical, set_public_search_path=True
)
results = await query_raw_with_schema(sql_lexical, *params_lexical)
return [
{
"content_id": row["content_id"],

View File

@@ -155,18 +155,14 @@ async def test_store_embedding_success(mocker):
)
assert result is True
# execute_raw is called twice: once for SET search_path, once for INSERT
assert mock_client.execute_raw.call_count == 2
# execute_raw is called once for INSERT (no separate SET search_path needed)
assert mock_client.execute_raw.call_count == 1
# First call: SET search_path
first_call_args = mock_client.execute_raw.call_args_list[0][0]
assert "SET search_path" in first_call_args[0]
# Second call: INSERT query with the actual data
second_call_args = mock_client.execute_raw.call_args_list[1][0]
assert "test-version-id" in second_call_args
assert "[0.1,0.2,0.3]" in second_call_args
assert None in second_call_args # userId should be None for store agents
# Verify the INSERT query with the actual data
call_args = mock_client.execute_raw.call_args_list[0][0]
assert "test-version-id" in call_args
assert "[0.1,0.2,0.3]" in call_args
assert None in call_args # userId should be None for store agents
@pytest.mark.asyncio(loop_scope="session")

View File

@@ -12,7 +12,7 @@ from dataclasses import dataclass
from typing import Any, Literal
from prisma.enums import ContentType
from rank_bm25 import BM25Okapi
from rank_bm25 import BM25Okapi # type: ignore[import-untyped]
from backend.api.features.store.embeddings import (
EMBEDDING_DIM,
@@ -363,9 +363,7 @@ async def unified_hybrid_search(
LIMIT {limit_param} OFFSET {offset_param}
"""
results = await query_raw_with_schema(
sql_query, *params, set_public_search_path=True
)
results = await query_raw_with_schema(sql_query, *params)
total = results[0]["total_count"] if results else 0
# Apply BM25 reranking
@@ -688,9 +686,7 @@ async def hybrid_search(
LIMIT {limit_param} OFFSET {offset_param}
"""
results = await query_raw_with_schema(
sql_query, *params, set_public_search_path=True
)
results = await query_raw_with_schema(sql_query, *params)
total = results[0]["total_count"] if results else 0

View File

@@ -761,10 +761,8 @@ async def create_new_graph(
graph.reassign_ids(user_id=user_id, reassign_graph_id=True)
graph.validate_graph(for_run=False)
# The return value of the create graph & library function is intentionally not used here,
# as the graph already valid and no sub-graphs are returned back.
await graph_db.create_graph(graph, user_id=user_id)
await library_db.create_library_agent(graph, user_id=user_id)
await library_db.create_library_agent(graph, user_id)
activated_graph = await on_graph_activate(graph, user_id=user_id)
if create_graph.source == "builder":
@@ -888,21 +886,19 @@ async def set_graph_active_version(
async def _update_library_agent_version_and_settings(
user_id: str, agent_graph: graph_db.GraphModel
) -> library_model.LibraryAgent:
# Keep the library agent up to date with the new active version
library = await library_db.update_agent_version_in_library(
user_id, agent_graph.id, agent_graph.version
)
# If the graph has HITL node, initialize the setting if it's not already set.
if (
agent_graph.has_human_in_the_loop
and library.settings.human_in_the_loop_safe_mode is None
):
await library_db.update_library_agent_settings(
updated_settings = GraphSettings.from_graph(
graph=agent_graph,
hitl_safe_mode=library.settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=library.settings.sensitive_action_safe_mode,
)
if updated_settings != library.settings:
library = await library_db.update_library_agent(
library_agent_id=library.id,
user_id=user_id,
agent_id=library.id,
settings=library.settings.model_copy(
update={"human_in_the_loop_safe_mode": True}
),
settings=updated_settings,
)
return library
@@ -919,21 +915,18 @@ async def update_graph_settings(
user_id: Annotated[str, Security(get_user_id)],
) -> GraphSettings:
"""Update graph settings for the user's library agent."""
# Get the library agent for this graph
library_agent = await library_db.get_library_agent_by_graph_id(
graph_id=graph_id, user_id=user_id
)
if not library_agent:
raise HTTPException(404, f"Graph #{graph_id} not found in user's library")
# Update the library agent settings
updated_agent = await library_db.update_library_agent_settings(
updated_agent = await library_db.update_library_agent(
library_agent_id=library_agent.id,
user_id=user_id,
agent_id=library_agent.id,
settings=settings,
)
# Return the updated settings
return GraphSettings.model_validate(updated_agent.settings)

View File

@@ -116,6 +116,7 @@ class PrintToConsoleBlock(Block):
input_schema=PrintToConsoleBlock.Input,
output_schema=PrintToConsoleBlock.Output,
test_input={"text": "Hello, World!"},
is_sensitive_action=True,
test_output=[
("output", "Hello, World!"),
("status", "printed"),

View File

@@ -680,3 +680,58 @@ class ListIsEmptyBlock(Block):
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
yield "is_empty", len(input_data.list) == 0
class ConcatenateListsBlock(Block):
class Input(BlockSchemaInput):
lists: List[List[Any]] = SchemaField(
description="A list of lists to concatenate together. All lists will be combined in order into a single list.",
placeholder="e.g., [[1, 2], [3, 4], [5, 6]]",
)
class Output(BlockSchemaOutput):
concatenated_list: List[Any] = SchemaField(
description="The concatenated list containing all elements from all input lists in order."
)
error: str = SchemaField(
description="Error message if concatenation failed due to invalid input types."
)
def __init__(self):
super().__init__(
id="3cf9298b-5817-4141-9d80-7c2cc5199c8e",
description="Concatenates multiple lists into a single list. All elements from all input lists are combined in order.",
categories={BlockCategory.BASIC},
input_schema=ConcatenateListsBlock.Input,
output_schema=ConcatenateListsBlock.Output,
test_input=[
{"lists": [[1, 2, 3], [4, 5, 6]]},
{"lists": [["a", "b"], ["c"], ["d", "e", "f"]]},
{"lists": [[1, 2], []]},
{"lists": []},
],
test_output=[
("concatenated_list", [1, 2, 3, 4, 5, 6]),
("concatenated_list", ["a", "b", "c", "d", "e", "f"]),
("concatenated_list", [1, 2]),
("concatenated_list", []),
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
concatenated = []
for idx, lst in enumerate(input_data.lists):
if lst is None:
# Skip None values to avoid errors
continue
if not isinstance(lst, list):
# Type validation: each item must be a list
# Strings are iterable and would cause extend() to iterate character-by-character
# Non-iterable types would raise TypeError
yield "error", (
f"Invalid input at index {idx}: expected a list, got {type(lst).__name__}. "
f"All items in 'lists' must be lists (e.g., [[1, 2], [3, 4]])."
)
return
concatenated.extend(lst)
yield "concatenated_list", concatenated

View File

@@ -9,7 +9,7 @@ from typing import Any, Optional
from prisma.enums import ReviewStatus
from pydantic import BaseModel
from backend.data.execution import ExecutionContext, ExecutionStatus
from backend.data.execution import ExecutionStatus
from backend.data.human_review import ReviewResult
from backend.executor.manager import async_update_node_execution_status
from backend.util.clients import get_database_manager_async_client
@@ -28,6 +28,11 @@ class ReviewDecision(BaseModel):
class HITLReviewHelper:
"""Helper class for Human-In-The-Loop review operations."""
@staticmethod
async def check_approval(**kwargs) -> Optional[ReviewResult]:
"""Check if there's an existing approval for this node execution."""
return await get_database_manager_async_client().check_approval(**kwargs)
@staticmethod
async def get_or_create_human_review(**kwargs) -> Optional[ReviewResult]:
"""Create or retrieve a human review from the database."""
@@ -55,11 +60,11 @@ class HITLReviewHelper:
async def _handle_review_request(
input_data: Any,
user_id: str,
node_id: str,
node_exec_id: str,
graph_exec_id: str,
graph_id: str,
graph_version: int,
execution_context: ExecutionContext,
block_name: str = "Block",
editable: bool = False,
) -> Optional[ReviewResult]:
@@ -69,11 +74,11 @@ class HITLReviewHelper:
Args:
input_data: The input data to be reviewed
user_id: ID of the user requesting the review
node_id: ID of the node in the graph definition
node_exec_id: ID of the node execution
graph_exec_id: ID of the graph execution
graph_id: ID of the graph
graph_version: Version of the graph
execution_context: Current execution context
block_name: Name of the block requesting review
editable: Whether the reviewer can edit the data
@@ -83,15 +88,40 @@ class HITLReviewHelper:
Raises:
Exception: If review creation or status update fails
"""
# Skip review if safe mode is disabled - return auto-approved result
if not execution_context.safe_mode:
# Note: Safe mode checks (human_in_the_loop_safe_mode, sensitive_action_safe_mode)
# are handled by the caller:
# - HITL blocks check human_in_the_loop_safe_mode in their run() method
# - Sensitive action blocks check sensitive_action_safe_mode in is_block_exec_need_review()
# This function only handles checking for existing approvals.
# Check if this node has already been approved (normal or auto-approval)
if approval_result := await HITLReviewHelper.check_approval(
node_exec_id=node_exec_id,
graph_exec_id=graph_exec_id,
node_id=node_id,
user_id=user_id,
):
logger.info(
f"Block {block_name} skipping review for node {node_exec_id} - safe mode disabled"
f"Block {block_name} skipping review for node {node_exec_id} - "
f"found existing approval"
)
# Return a new ReviewResult with the current node_exec_id but approved status
# For auto-approvals, always use current input_data
# For normal approvals, use approval_result.data unless it's None
is_auto_approval = approval_result.node_exec_id != node_exec_id
approved_data = (
input_data
if is_auto_approval
else (
approval_result.data
if approval_result.data is not None
else input_data
)
)
return ReviewResult(
data=input_data,
data=approved_data,
status=ReviewStatus.APPROVED,
message="Auto-approved (safe mode disabled)",
message=approval_result.message,
processed=True,
node_exec_id=node_exec_id,
)
@@ -129,11 +159,11 @@ class HITLReviewHelper:
async def handle_review_decision(
input_data: Any,
user_id: str,
node_id: str,
node_exec_id: str,
graph_exec_id: str,
graph_id: str,
graph_version: int,
execution_context: ExecutionContext,
block_name: str = "Block",
editable: bool = False,
) -> Optional[ReviewDecision]:
@@ -143,11 +173,11 @@ class HITLReviewHelper:
Args:
input_data: The input data to be reviewed
user_id: ID of the user requesting the review
node_id: ID of the node in the graph definition
node_exec_id: ID of the node execution
graph_exec_id: ID of the graph execution
graph_id: ID of the graph
graph_version: Version of the graph
execution_context: Current execution context
block_name: Name of the block requesting review
editable: Whether the reviewer can edit the data
@@ -158,11 +188,11 @@ class HITLReviewHelper:
review_result = await HITLReviewHelper._handle_review_request(
input_data=input_data,
user_id=user_id,
node_id=node_id,
node_exec_id=node_exec_id,
graph_exec_id=graph_exec_id,
graph_id=graph_id,
graph_version=graph_version,
execution_context=execution_context,
block_name=block_name,
editable=editable,
)

View File

@@ -97,6 +97,7 @@ class HumanInTheLoopBlock(Block):
input_data: Input,
*,
user_id: str,
node_id: str,
node_exec_id: str,
graph_exec_id: str,
graph_id: str,
@@ -104,7 +105,7 @@ class HumanInTheLoopBlock(Block):
execution_context: ExecutionContext,
**_kwargs,
) -> BlockOutput:
if not execution_context.safe_mode:
if not execution_context.human_in_the_loop_safe_mode:
logger.info(
f"HITL block skipping review for node {node_exec_id} - safe mode disabled"
)
@@ -115,11 +116,11 @@ class HumanInTheLoopBlock(Block):
decision = await self.handle_review_decision(
input_data=input_data.data,
user_id=user_id,
node_id=node_id,
node_exec_id=node_exec_id,
graph_exec_id=graph_exec_id,
graph_id=graph_id,
graph_version=graph_version,
execution_context=execution_context,
block_name=self.name,
editable=input_data.editable,
)

View File

@@ -79,6 +79,10 @@ class ModelMetadata(NamedTuple):
provider: str
context_window: int
max_output_tokens: int | None
display_name: str
provider_name: str
creator_name: str
price_tier: Literal[1, 2, 3]
class LlmModelMeta(EnumMeta):
@@ -171,6 +175,26 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
V0_1_5_LG = "v0-1.5-lg"
V0_1_0_MD = "v0-1.0-md"
@classmethod
def __get_pydantic_json_schema__(cls, schema, handler):
json_schema = handler(schema)
llm_model_metadata = {}
for model in cls:
model_name = model.value
metadata = model.metadata
llm_model_metadata[model_name] = {
"creator": metadata.creator_name,
"creator_name": metadata.creator_name,
"title": metadata.display_name,
"provider": metadata.provider,
"provider_name": metadata.provider_name,
"name": model_name,
"price_tier": metadata.price_tier,
}
json_schema["llm_model"] = True
json_schema["llm_model_metadata"] = llm_model_metadata
return json_schema
@property
def metadata(self) -> ModelMetadata:
return MODEL_METADATA[self]
@@ -190,119 +214,291 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
MODEL_METADATA = {
# https://platform.openai.com/docs/models
LlmModel.O3: ModelMetadata("openai", 200000, 100000),
LlmModel.O3_MINI: ModelMetadata("openai", 200000, 100000), # o3-mini-2025-01-31
LlmModel.O1: ModelMetadata("openai", 200000, 100000), # o1-2024-12-17
LlmModel.O1_MINI: ModelMetadata("openai", 128000, 65536), # o1-mini-2024-09-12
LlmModel.O3: ModelMetadata("openai", 200000, 100000, "O3", "OpenAI", "OpenAI", 2),
LlmModel.O3_MINI: ModelMetadata(
"openai", 200000, 100000, "O3 Mini", "OpenAI", "OpenAI", 1
), # o3-mini-2025-01-31
LlmModel.O1: ModelMetadata(
"openai", 200000, 100000, "O1", "OpenAI", "OpenAI", 3
), # o1-2024-12-17
LlmModel.O1_MINI: ModelMetadata(
"openai", 128000, 65536, "O1 Mini", "OpenAI", "OpenAI", 2
), # o1-mini-2024-09-12
# GPT-5 models
LlmModel.GPT5_2: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5_1: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5_MINI: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5_NANO: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5_CHAT: ModelMetadata("openai", 400000, 16384),
LlmModel.GPT41: ModelMetadata("openai", 1047576, 32768),
LlmModel.GPT41_MINI: ModelMetadata("openai", 1047576, 32768),
LlmModel.GPT5_2: ModelMetadata(
"openai", 400000, 128000, "GPT-5.2", "OpenAI", "OpenAI", 3
),
LlmModel.GPT5_1: ModelMetadata(
"openai", 400000, 128000, "GPT-5.1", "OpenAI", "OpenAI", 2
),
LlmModel.GPT5: ModelMetadata(
"openai", 400000, 128000, "GPT-5", "OpenAI", "OpenAI", 1
),
LlmModel.GPT5_MINI: ModelMetadata(
"openai", 400000, 128000, "GPT-5 Mini", "OpenAI", "OpenAI", 1
),
LlmModel.GPT5_NANO: ModelMetadata(
"openai", 400000, 128000, "GPT-5 Nano", "OpenAI", "OpenAI", 1
),
LlmModel.GPT5_CHAT: ModelMetadata(
"openai", 400000, 16384, "GPT-5 Chat Latest", "OpenAI", "OpenAI", 2
),
LlmModel.GPT41: ModelMetadata(
"openai", 1047576, 32768, "GPT-4.1", "OpenAI", "OpenAI", 1
),
LlmModel.GPT41_MINI: ModelMetadata(
"openai", 1047576, 32768, "GPT-4.1 Mini", "OpenAI", "OpenAI", 1
),
LlmModel.GPT4O_MINI: ModelMetadata(
"openai", 128000, 16384
"openai", 128000, 16384, "GPT-4o Mini", "OpenAI", "OpenAI", 1
), # gpt-4o-mini-2024-07-18
LlmModel.GPT4O: ModelMetadata("openai", 128000, 16384), # gpt-4o-2024-08-06
LlmModel.GPT4O: ModelMetadata(
"openai", 128000, 16384, "GPT-4o", "OpenAI", "OpenAI", 2
), # gpt-4o-2024-08-06
LlmModel.GPT4_TURBO: ModelMetadata(
"openai", 128000, 4096
"openai", 128000, 4096, "GPT-4 Turbo", "OpenAI", "OpenAI", 3
), # gpt-4-turbo-2024-04-09
LlmModel.GPT3_5_TURBO: ModelMetadata("openai", 16385, 4096), # gpt-3.5-turbo-0125
LlmModel.GPT3_5_TURBO: ModelMetadata(
"openai", 16385, 4096, "GPT-3.5 Turbo", "OpenAI", "OpenAI", 1
), # gpt-3.5-turbo-0125
# https://docs.anthropic.com/en/docs/about-claude/models
LlmModel.CLAUDE_4_1_OPUS: ModelMetadata(
"anthropic", 200000, 32000
"anthropic", 200000, 32000, "Claude Opus 4.1", "Anthropic", "Anthropic", 3
), # claude-opus-4-1-20250805
LlmModel.CLAUDE_4_OPUS: ModelMetadata(
"anthropic", 200000, 32000
"anthropic", 200000, 32000, "Claude Opus 4", "Anthropic", "Anthropic", 3
), # claude-4-opus-20250514
LlmModel.CLAUDE_4_SONNET: ModelMetadata(
"anthropic", 200000, 64000
"anthropic", 200000, 64000, "Claude Sonnet 4", "Anthropic", "Anthropic", 2
), # claude-4-sonnet-20250514
LlmModel.CLAUDE_4_5_OPUS: ModelMetadata(
"anthropic", 200000, 64000
"anthropic", 200000, 64000, "Claude Opus 4.5", "Anthropic", "Anthropic", 3
), # claude-opus-4-5-20251101
LlmModel.CLAUDE_4_5_SONNET: ModelMetadata(
"anthropic", 200000, 64000
"anthropic", 200000, 64000, "Claude Sonnet 4.5", "Anthropic", "Anthropic", 3
), # claude-sonnet-4-5-20250929
LlmModel.CLAUDE_4_5_HAIKU: ModelMetadata(
"anthropic", 200000, 64000
"anthropic", 200000, 64000, "Claude Haiku 4.5", "Anthropic", "Anthropic", 2
), # claude-haiku-4-5-20251001
LlmModel.CLAUDE_3_7_SONNET: ModelMetadata(
"anthropic", 200000, 64000
"anthropic", 200000, 64000, "Claude 3.7 Sonnet", "Anthropic", "Anthropic", 2
), # claude-3-7-sonnet-20250219
LlmModel.CLAUDE_3_HAIKU: ModelMetadata(
"anthropic", 200000, 4096
"anthropic", 200000, 4096, "Claude 3 Haiku", "Anthropic", "Anthropic", 1
), # claude-3-haiku-20240307
# https://docs.aimlapi.com/api-overview/model-database/text-models
LlmModel.AIML_API_QWEN2_5_72B: ModelMetadata("aiml_api", 32000, 8000),
LlmModel.AIML_API_LLAMA3_1_70B: ModelMetadata("aiml_api", 128000, 40000),
LlmModel.AIML_API_LLAMA3_3_70B: ModelMetadata("aiml_api", 128000, None),
LlmModel.AIML_API_META_LLAMA_3_1_70B: ModelMetadata("aiml_api", 131000, 2000),
LlmModel.AIML_API_LLAMA_3_2_3B: ModelMetadata("aiml_api", 128000, None),
# https://console.groq.com/docs/models
LlmModel.LLAMA3_3_70B: ModelMetadata("groq", 128000, 32768),
LlmModel.LLAMA3_1_8B: ModelMetadata("groq", 128000, 8192),
# https://ollama.com/library
LlmModel.OLLAMA_LLAMA3_3: ModelMetadata("ollama", 8192, None),
LlmModel.OLLAMA_LLAMA3_2: ModelMetadata("ollama", 8192, None),
LlmModel.OLLAMA_LLAMA3_8B: ModelMetadata("ollama", 8192, None),
LlmModel.OLLAMA_LLAMA3_405B: ModelMetadata("ollama", 8192, None),
LlmModel.OLLAMA_DOLPHIN: ModelMetadata("ollama", 32768, None),
# https://openrouter.ai/models
LlmModel.GEMINI_2_5_PRO: ModelMetadata("open_router", 1050000, 8192),
LlmModel.GEMINI_3_PRO_PREVIEW: ModelMetadata("open_router", 1048576, 65535),
LlmModel.GEMINI_2_5_FLASH: ModelMetadata("open_router", 1048576, 65535),
LlmModel.GEMINI_2_0_FLASH: ModelMetadata("open_router", 1048576, 8192),
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: ModelMetadata(
"open_router", 1048576, 65535
LlmModel.AIML_API_QWEN2_5_72B: ModelMetadata(
"aiml_api", 32000, 8000, "Qwen 2.5 72B Instruct Turbo", "AI/ML", "Qwen", 1
),
LlmModel.AIML_API_LLAMA3_1_70B: ModelMetadata(
"aiml_api",
128000,
40000,
"Llama 3.1 Nemotron 70B Instruct",
"AI/ML",
"Nvidia",
1,
),
LlmModel.AIML_API_LLAMA3_3_70B: ModelMetadata(
"aiml_api", 128000, None, "Llama 3.3 70B Instruct Turbo", "AI/ML", "Meta", 1
),
LlmModel.AIML_API_META_LLAMA_3_1_70B: ModelMetadata(
"aiml_api", 131000, 2000, "Llama 3.1 70B Instruct Turbo", "AI/ML", "Meta", 1
),
LlmModel.AIML_API_LLAMA_3_2_3B: ModelMetadata(
"aiml_api", 128000, None, "Llama 3.2 3B Instruct Turbo", "AI/ML", "Meta", 1
),
# https://console.groq.com/docs/models
LlmModel.LLAMA3_3_70B: ModelMetadata(
"groq", 128000, 32768, "Llama 3.3 70B Versatile", "Groq", "Meta", 1
),
LlmModel.LLAMA3_1_8B: ModelMetadata(
"groq", 128000, 8192, "Llama 3.1 8B Instant", "Groq", "Meta", 1
),
# https://ollama.com/library
LlmModel.OLLAMA_LLAMA3_3: ModelMetadata(
"ollama", 8192, None, "Llama 3.3", "Ollama", "Meta", 1
),
LlmModel.OLLAMA_LLAMA3_2: ModelMetadata(
"ollama", 8192, None, "Llama 3.2", "Ollama", "Meta", 1
),
LlmModel.OLLAMA_LLAMA3_8B: ModelMetadata(
"ollama", 8192, None, "Llama 3", "Ollama", "Meta", 1
),
LlmModel.OLLAMA_LLAMA3_405B: ModelMetadata(
"ollama", 8192, None, "Llama 3.1 405B", "Ollama", "Meta", 1
),
LlmModel.OLLAMA_DOLPHIN: ModelMetadata(
"ollama", 32768, None, "Dolphin Mistral Latest", "Ollama", "Mistral AI", 1
),
# https://openrouter.ai/models
LlmModel.GEMINI_2_5_PRO: ModelMetadata(
"open_router",
1050000,
8192,
"Gemini 2.5 Pro Preview 03.25",
"OpenRouter",
"Google",
2,
),
LlmModel.GEMINI_3_PRO_PREVIEW: ModelMetadata(
"open_router", 1048576, 65535, "Gemini 3 Pro Preview", "OpenRouter", "Google", 2
),
LlmModel.GEMINI_2_5_FLASH: ModelMetadata(
"open_router", 1048576, 65535, "Gemini 2.5 Flash", "OpenRouter", "Google", 1
),
LlmModel.GEMINI_2_0_FLASH: ModelMetadata(
"open_router", 1048576, 8192, "Gemini 2.0 Flash 001", "OpenRouter", "Google", 1
),
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: ModelMetadata(
"open_router",
1048576,
65535,
"Gemini 2.5 Flash Lite Preview 06.17",
"OpenRouter",
"Google",
1,
),
LlmModel.GEMINI_2_0_FLASH_LITE: ModelMetadata(
"open_router",
1048576,
8192,
"Gemini 2.0 Flash Lite 001",
"OpenRouter",
"Google",
1,
),
LlmModel.MISTRAL_NEMO: ModelMetadata(
"open_router", 128000, 4096, "Mistral Nemo", "OpenRouter", "Mistral AI", 1
),
LlmModel.COHERE_COMMAND_R_08_2024: ModelMetadata(
"open_router", 128000, 4096, "Command R 08.2024", "OpenRouter", "Cohere", 1
),
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: ModelMetadata(
"open_router", 128000, 4096, "Command R Plus 08.2024", "OpenRouter", "Cohere", 2
),
LlmModel.DEEPSEEK_CHAT: ModelMetadata(
"open_router", 64000, 2048, "DeepSeek Chat", "OpenRouter", "DeepSeek", 1
),
LlmModel.DEEPSEEK_R1_0528: ModelMetadata(
"open_router", 163840, 163840, "DeepSeek R1 0528", "OpenRouter", "DeepSeek", 1
),
LlmModel.PERPLEXITY_SONAR: ModelMetadata(
"open_router", 127000, 8000, "Sonar", "OpenRouter", "Perplexity", 1
),
LlmModel.PERPLEXITY_SONAR_PRO: ModelMetadata(
"open_router", 200000, 8000, "Sonar Pro", "OpenRouter", "Perplexity", 2
),
LlmModel.GEMINI_2_0_FLASH_LITE: ModelMetadata("open_router", 1048576, 8192),
LlmModel.MISTRAL_NEMO: ModelMetadata("open_router", 128000, 4096),
LlmModel.COHERE_COMMAND_R_08_2024: ModelMetadata("open_router", 128000, 4096),
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: ModelMetadata("open_router", 128000, 4096),
LlmModel.DEEPSEEK_CHAT: ModelMetadata("open_router", 64000, 2048),
LlmModel.DEEPSEEK_R1_0528: ModelMetadata("open_router", 163840, 163840),
LlmModel.PERPLEXITY_SONAR: ModelMetadata("open_router", 127000, 8000),
LlmModel.PERPLEXITY_SONAR_PRO: ModelMetadata("open_router", 200000, 8000),
LlmModel.PERPLEXITY_SONAR_DEEP_RESEARCH: ModelMetadata(
"open_router",
128000,
16000,
"Sonar Deep Research",
"OpenRouter",
"Perplexity",
3,
),
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_405B: ModelMetadata(
"open_router", 131000, 4096
"open_router",
131000,
4096,
"Hermes 3 Llama 3.1 405B",
"OpenRouter",
"Nous Research",
1,
),
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_70B: ModelMetadata(
"open_router", 12288, 12288
"open_router",
12288,
12288,
"Hermes 3 Llama 3.1 70B",
"OpenRouter",
"Nous Research",
1,
),
LlmModel.OPENAI_GPT_OSS_120B: ModelMetadata(
"open_router", 131072, 131072, "GPT-OSS 120B", "OpenRouter", "OpenAI", 1
),
LlmModel.OPENAI_GPT_OSS_20B: ModelMetadata(
"open_router", 131072, 32768, "GPT-OSS 20B", "OpenRouter", "OpenAI", 1
),
LlmModel.AMAZON_NOVA_LITE_V1: ModelMetadata(
"open_router", 300000, 5120, "Nova Lite V1", "OpenRouter", "Amazon", 1
),
LlmModel.AMAZON_NOVA_MICRO_V1: ModelMetadata(
"open_router", 128000, 5120, "Nova Micro V1", "OpenRouter", "Amazon", 1
),
LlmModel.AMAZON_NOVA_PRO_V1: ModelMetadata(
"open_router", 300000, 5120, "Nova Pro V1", "OpenRouter", "Amazon", 1
),
LlmModel.MICROSOFT_WIZARDLM_2_8X22B: ModelMetadata(
"open_router", 65536, 4096, "WizardLM 2 8x22B", "OpenRouter", "Microsoft", 1
),
LlmModel.GRYPHE_MYTHOMAX_L2_13B: ModelMetadata(
"open_router", 4096, 4096, "MythoMax L2 13B", "OpenRouter", "Gryphe", 1
),
LlmModel.META_LLAMA_4_SCOUT: ModelMetadata(
"open_router", 131072, 131072, "Llama 4 Scout", "OpenRouter", "Meta", 1
),
LlmModel.META_LLAMA_4_MAVERICK: ModelMetadata(
"open_router", 1048576, 1000000, "Llama 4 Maverick", "OpenRouter", "Meta", 1
),
LlmModel.GROK_4: ModelMetadata(
"open_router", 256000, 256000, "Grok 4", "OpenRouter", "xAI", 3
),
LlmModel.GROK_4_FAST: ModelMetadata(
"open_router", 2000000, 30000, "Grok 4 Fast", "OpenRouter", "xAI", 1
),
LlmModel.GROK_4_1_FAST: ModelMetadata(
"open_router", 2000000, 30000, "Grok 4.1 Fast", "OpenRouter", "xAI", 1
),
LlmModel.GROK_CODE_FAST_1: ModelMetadata(
"open_router", 256000, 10000, "Grok Code Fast 1", "OpenRouter", "xAI", 1
),
LlmModel.KIMI_K2: ModelMetadata(
"open_router", 131000, 131000, "Kimi K2", "OpenRouter", "Moonshot AI", 1
),
LlmModel.QWEN3_235B_A22B_THINKING: ModelMetadata(
"open_router",
262144,
262144,
"Qwen 3 235B A22B Thinking 2507",
"OpenRouter",
"Qwen",
1,
),
LlmModel.QWEN3_CODER: ModelMetadata(
"open_router", 262144, 262144, "Qwen 3 Coder", "OpenRouter", "Qwen", 3
),
LlmModel.OPENAI_GPT_OSS_120B: ModelMetadata("open_router", 131072, 131072),
LlmModel.OPENAI_GPT_OSS_20B: ModelMetadata("open_router", 131072, 32768),
LlmModel.AMAZON_NOVA_LITE_V1: ModelMetadata("open_router", 300000, 5120),
LlmModel.AMAZON_NOVA_MICRO_V1: ModelMetadata("open_router", 128000, 5120),
LlmModel.AMAZON_NOVA_PRO_V1: ModelMetadata("open_router", 300000, 5120),
LlmModel.MICROSOFT_WIZARDLM_2_8X22B: ModelMetadata("open_router", 65536, 4096),
LlmModel.GRYPHE_MYTHOMAX_L2_13B: ModelMetadata("open_router", 4096, 4096),
LlmModel.META_LLAMA_4_SCOUT: ModelMetadata("open_router", 131072, 131072),
LlmModel.META_LLAMA_4_MAVERICK: ModelMetadata("open_router", 1048576, 1000000),
LlmModel.GROK_4: ModelMetadata("open_router", 256000, 256000),
LlmModel.GROK_4_FAST: ModelMetadata("open_router", 2000000, 30000),
LlmModel.GROK_4_1_FAST: ModelMetadata("open_router", 2000000, 30000),
LlmModel.GROK_CODE_FAST_1: ModelMetadata("open_router", 256000, 10000),
LlmModel.KIMI_K2: ModelMetadata("open_router", 131000, 131000),
LlmModel.QWEN3_235B_A22B_THINKING: ModelMetadata("open_router", 262144, 262144),
LlmModel.QWEN3_CODER: ModelMetadata("open_router", 262144, 262144),
# Llama API models
LlmModel.LLAMA_API_LLAMA_4_SCOUT: ModelMetadata("llama_api", 128000, 4028),
LlmModel.LLAMA_API_LLAMA4_MAVERICK: ModelMetadata("llama_api", 128000, 4028),
LlmModel.LLAMA_API_LLAMA3_3_8B: ModelMetadata("llama_api", 128000, 4028),
LlmModel.LLAMA_API_LLAMA3_3_70B: ModelMetadata("llama_api", 128000, 4028),
LlmModel.LLAMA_API_LLAMA_4_SCOUT: ModelMetadata(
"llama_api",
128000,
4028,
"Llama 4 Scout 17B 16E Instruct FP8",
"Llama API",
"Meta",
1,
),
LlmModel.LLAMA_API_LLAMA4_MAVERICK: ModelMetadata(
"llama_api",
128000,
4028,
"Llama 4 Maverick 17B 128E Instruct FP8",
"Llama API",
"Meta",
1,
),
LlmModel.LLAMA_API_LLAMA3_3_8B: ModelMetadata(
"llama_api", 128000, 4028, "Llama 3.3 8B Instruct", "Llama API", "Meta", 1
),
LlmModel.LLAMA_API_LLAMA3_3_70B: ModelMetadata(
"llama_api", 128000, 4028, "Llama 3.3 70B Instruct", "Llama API", "Meta", 1
),
# v0 by Vercel models
LlmModel.V0_1_5_MD: ModelMetadata("v0", 128000, 64000),
LlmModel.V0_1_5_LG: ModelMetadata("v0", 512000, 64000),
LlmModel.V0_1_0_MD: ModelMetadata("v0", 128000, 64000),
LlmModel.V0_1_5_MD: ModelMetadata("v0", 128000, 64000, "v0 1.5 MD", "V0", "V0", 1),
LlmModel.V0_1_5_LG: ModelMetadata("v0", 512000, 64000, "v0 1.5 LG", "V0", "V0", 1),
LlmModel.V0_1_0_MD: ModelMetadata("v0", 128000, 64000, "v0 1.0 MD", "V0", "V0", 1),
}
DEFAULT_LLM_MODEL = LlmModel.GPT5_2

View File

@@ -242,7 +242,7 @@ async def test_smart_decision_maker_tracks_llm_stats():
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
# Create a mock execution processor for tests
@@ -343,7 +343,7 @@ async def test_smart_decision_maker_parameter_validation():
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
# Create a mock execution processor for tests
@@ -409,7 +409,7 @@ async def test_smart_decision_maker_parameter_validation():
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
# Create a mock execution processor for tests
@@ -471,7 +471,7 @@ async def test_smart_decision_maker_parameter_validation():
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
# Create a mock execution processor for tests
@@ -535,7 +535,7 @@ async def test_smart_decision_maker_parameter_validation():
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
# Create a mock execution processor for tests
@@ -658,7 +658,7 @@ async def test_smart_decision_maker_raw_response_conversion():
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
# Create a mock execution processor for tests
@@ -730,7 +730,7 @@ async def test_smart_decision_maker_raw_response_conversion():
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
# Create a mock execution processor for tests
@@ -786,7 +786,7 @@ async def test_smart_decision_maker_raw_response_conversion():
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
# Create a mock execution processor for tests
@@ -905,7 +905,7 @@ async def test_smart_decision_maker_agent_mode():
# Create a mock execution context
mock_execution_context = ExecutionContext(
safe_mode=False,
human_in_the_loop_safe_mode=False,
)
# Create a mock execution processor for agent mode tests
@@ -1027,7 +1027,7 @@ async def test_smart_decision_maker_traditional_mode_default():
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
# Create a mock execution processor for tests

View File

@@ -386,7 +386,7 @@ async def test_output_yielding_with_dynamic_fields():
outputs = {}
from backend.data.execution import ExecutionContext
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
mock_execution_processor = MagicMock()
async for output_name, output_value in block.run(
@@ -609,7 +609,9 @@ async def test_validation_errors_dont_pollute_conversation():
outputs = {}
from backend.data.execution import ExecutionContext
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(
human_in_the_loop_safe_mode=False
)
# Create a proper mock execution processor for agent mode
from collections import defaultdict

View File

@@ -441,6 +441,7 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
static_output: bool = False,
block_type: BlockType = BlockType.STANDARD,
webhook_config: Optional[BlockWebhookConfig | BlockManualWebhookConfig] = None,
is_sensitive_action: bool = False,
):
"""
Initialize the block with the given schema.
@@ -473,8 +474,8 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
self.static_output = static_output
self.block_type = block_type
self.webhook_config = webhook_config
self.is_sensitive_action = is_sensitive_action
self.execution_stats: NodeExecutionStats = NodeExecutionStats()
self.requires_human_review: bool = False
if self.webhook_config:
if isinstance(self.webhook_config, BlockWebhookConfig):
@@ -622,6 +623,7 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
input_data: BlockInput,
*,
user_id: str,
node_id: str,
node_exec_id: str,
graph_exec_id: str,
graph_id: str,
@@ -637,8 +639,9 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
- should_pause: True if execution should be paused for review
- input_data_to_use: The input data to use (may be modified by reviewer)
"""
# Skip review if not required or safe mode is disabled
if not self.requires_human_review or not execution_context.safe_mode:
if not (
self.is_sensitive_action and execution_context.sensitive_action_safe_mode
):
return False, input_data
from backend.blocks.helpers.review import HITLReviewHelper
@@ -647,11 +650,11 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
decision = await HITLReviewHelper.handle_review_decision(
input_data=input_data,
user_id=user_id,
node_id=node_id,
node_exec_id=node_exec_id,
graph_exec_id=graph_exec_id,
graph_id=graph_id,
graph_version=graph_version,
execution_context=execution_context,
block_name=self.name,
editable=True,
)

View File

@@ -99,10 +99,15 @@ MODEL_COST: dict[LlmModel, int] = {
LlmModel.OPENAI_GPT_OSS_20B: 1,
LlmModel.GEMINI_2_5_PRO: 4,
LlmModel.GEMINI_3_PRO_PREVIEW: 5,
LlmModel.GEMINI_2_5_FLASH: 1,
LlmModel.GEMINI_2_0_FLASH: 1,
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: 1,
LlmModel.GEMINI_2_0_FLASH_LITE: 1,
LlmModel.MISTRAL_NEMO: 1,
LlmModel.COHERE_COMMAND_R_08_2024: 1,
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: 3,
LlmModel.DEEPSEEK_CHAT: 2,
LlmModel.DEEPSEEK_R1_0528: 1,
LlmModel.PERPLEXITY_SONAR: 1,
LlmModel.PERPLEXITY_SONAR_PRO: 5,
LlmModel.PERPLEXITY_SONAR_DEEP_RESEARCH: 10,
@@ -126,11 +131,6 @@ MODEL_COST: dict[LlmModel, int] = {
LlmModel.KIMI_K2: 1,
LlmModel.QWEN3_235B_A22B_THINKING: 1,
LlmModel.QWEN3_CODER: 9,
LlmModel.GEMINI_2_5_FLASH: 1,
LlmModel.GEMINI_2_0_FLASH: 1,
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: 1,
LlmModel.GEMINI_2_0_FLASH_LITE: 1,
LlmModel.DEEPSEEK_R1_0528: 1,
# v0 by Vercel models
LlmModel.V0_1_5_MD: 1,
LlmModel.V0_1_5_LG: 2,

View File

@@ -38,20 +38,6 @@ POOL_TIMEOUT = os.getenv("DB_POOL_TIMEOUT")
if POOL_TIMEOUT:
DATABASE_URL = add_param(DATABASE_URL, "pool_timeout", POOL_TIMEOUT)
# Add public schema to search_path for pgvector type access
# The vector extension is in public schema, but search_path is determined by schema parameter
# Extract the schema from DATABASE_URL or default to 'public' (matching get_database_schema())
parsed_url = urlparse(DATABASE_URL)
url_params = dict(parse_qsl(parsed_url.query))
db_schema = url_params.get("schema", "public")
# Build search_path, avoiding duplicates if db_schema is already 'public'
search_path_schemas = list(
dict.fromkeys([db_schema, "public"])
) # Preserves order, removes duplicates
search_path = ",".join(search_path_schemas)
# This allows using ::vector without schema qualification
DATABASE_URL = add_param(DATABASE_URL, "options", f"-c search_path={search_path}")
HTTP_TIMEOUT = int(POOL_TIMEOUT) if POOL_TIMEOUT else None
prisma = Prisma(
@@ -127,38 +113,48 @@ async def _raw_with_schema(
*args,
execute: bool = False,
client: Prisma | None = None,
set_public_search_path: bool = False,
) -> list[dict] | int:
"""Internal: Execute raw SQL with proper schema handling.
Use query_raw_with_schema() or execute_raw_with_schema() instead.
Supports placeholders:
- {schema_prefix}: Table/type prefix (e.g., "platform".)
- {schema}: Raw schema name for application tables (e.g., platform)
Note on pgvector types:
Use unqualified ::vector and <=> operator in queries. PostgreSQL resolves
these via search_path, which includes the schema where pgvector is installed
on all environments (local, CI, dev).
Args:
query_template: SQL query with {schema_prefix} placeholder
query_template: SQL query with {schema_prefix} and/or {schema} placeholders
*args: Query parameters
execute: If False, executes SELECT query. If True, executes INSERT/UPDATE/DELETE.
client: Optional Prisma client for transactions (only used when execute=True).
set_public_search_path: If True, sets search_path to include public schema.
Needed for pgvector types and other public schema objects.
Returns:
- list[dict] if execute=False (query results)
- int if execute=True (number of affected rows)
Example with vector type:
await execute_raw_with_schema(
'INSERT INTO {schema_prefix}"Embedding" (vec) VALUES ($1::vector)',
embedding_data
)
"""
schema = get_database_schema()
schema_prefix = f'"{schema}".' if schema != "public" else ""
formatted_query = query_template.format(schema_prefix=schema_prefix)
formatted_query = query_template.format(
schema_prefix=schema_prefix,
schema=schema,
)
import prisma as prisma_module
db_client = client if client else prisma_module.get_client()
# Set search_path to include public schema if requested
# Prisma doesn't support the 'options' connection parameter, so we set it per-session
# This is idempotent and safe to call multiple times
if set_public_search_path:
await db_client.execute_raw(f"SET search_path = {schema}, public") # type: ignore
if execute:
result = await db_client.execute_raw(formatted_query, *args) # type: ignore
else:
@@ -167,16 +163,12 @@ async def _raw_with_schema(
return result
async def query_raw_with_schema(
query_template: str, *args, set_public_search_path: bool = False
) -> list[dict]:
async def query_raw_with_schema(query_template: str, *args) -> list[dict]:
"""Execute raw SQL SELECT query with proper schema handling.
Args:
query_template: SQL query with {schema_prefix} placeholder
query_template: SQL query with {schema_prefix} and/or {schema} placeholders
*args: Query parameters
set_public_search_path: If True, sets search_path to include public schema.
Needed for pgvector types and other public schema objects.
Returns:
List of result rows as dictionaries
@@ -187,23 +179,20 @@ async def query_raw_with_schema(
user_id
)
"""
return await _raw_with_schema(query_template, *args, execute=False, set_public_search_path=set_public_search_path) # type: ignore
return await _raw_with_schema(query_template, *args, execute=False) # type: ignore
async def execute_raw_with_schema(
query_template: str,
*args,
client: Prisma | None = None,
set_public_search_path: bool = False,
) -> int:
"""Execute raw SQL command (INSERT/UPDATE/DELETE) with proper schema handling.
Args:
query_template: SQL query with {schema_prefix} placeholder
query_template: SQL query with {schema_prefix} and/or {schema} placeholders
*args: Query parameters
client: Optional Prisma client for transactions
set_public_search_path: If True, sets search_path to include public schema.
Needed for pgvector types and other public schema objects.
Returns:
Number of affected rows
@@ -215,7 +204,7 @@ async def execute_raw_with_schema(
client=tx # Optional transaction client
)
"""
return await _raw_with_schema(query_template, *args, execute=True, client=client, set_public_search_path=set_public_search_path) # type: ignore
return await _raw_with_schema(query_template, *args, execute=True, client=client) # type: ignore
class BaseDbModel(BaseModel):

View File

@@ -103,8 +103,18 @@ class RedisEventBus(BaseRedisEventBus[M], ABC):
return redis.get_redis()
def publish_event(self, event: M, channel_key: str):
message, full_channel_name = self._serialize_message(event, channel_key)
self.connection.publish(full_channel_name, message)
"""
Publish an event to Redis. Gracefully handles connection failures
by logging the error instead of raising exceptions.
"""
try:
message, full_channel_name = self._serialize_message(event, channel_key)
self.connection.publish(full_channel_name, message)
except Exception:
logger.exception(
f"Failed to publish event to Redis channel {channel_key}. "
"Event bus operation will continue without Redis connectivity."
)
def listen_events(self, channel_key: str) -> Generator[M, None, None]:
pubsub, full_channel_name = self._get_pubsub_channel(
@@ -128,9 +138,19 @@ class AsyncRedisEventBus(BaseRedisEventBus[M], ABC):
return await redis.get_redis_async()
async def publish_event(self, event: M, channel_key: str):
message, full_channel_name = self._serialize_message(event, channel_key)
connection = await self.connection
await connection.publish(full_channel_name, message)
"""
Publish an event to Redis. Gracefully handles connection failures
by logging the error instead of raising exceptions.
"""
try:
message, full_channel_name = self._serialize_message(event, channel_key)
connection = await self.connection
await connection.publish(full_channel_name, message)
except Exception:
logger.exception(
f"Failed to publish event to Redis channel {channel_key}. "
"Event bus operation will continue without Redis connectivity."
)
async def listen_events(self, channel_key: str) -> AsyncGenerator[M, None]:
pubsub, full_channel_name = self._get_pubsub_channel(

View File

@@ -0,0 +1,56 @@
"""
Tests for event_bus graceful degradation when Redis is unavailable.
"""
from unittest.mock import AsyncMock, patch
import pytest
from pydantic import BaseModel
from backend.data.event_bus import AsyncRedisEventBus
class TestEvent(BaseModel):
"""Test event model."""
message: str
class TestNotificationBus(AsyncRedisEventBus[TestEvent]):
"""Test implementation of AsyncRedisEventBus."""
Model = TestEvent
@property
def event_bus_name(self) -> str:
return "test_event_bus"
@pytest.mark.asyncio
async def test_publish_event_handles_connection_failure_gracefully():
"""Test that publish_event logs exception instead of raising when Redis is unavailable."""
bus = TestNotificationBus()
event = TestEvent(message="test message")
# Mock get_redis_async to raise connection error
with patch(
"backend.data.event_bus.redis.get_redis_async",
side_effect=ConnectionError("Authentication required."),
):
# Should not raise exception
await bus.publish_event(event, "test_channel")
@pytest.mark.asyncio
async def test_publish_event_works_with_redis_available():
"""Test that publish_event works normally when Redis is available."""
bus = TestNotificationBus()
event = TestEvent(message="test message")
# Mock successful Redis connection
mock_redis = AsyncMock()
mock_redis.publish = AsyncMock()
with patch("backend.data.event_bus.redis.get_redis_async", return_value=mock_redis):
await bus.publish_event(event, "test_channel")
mock_redis.publish.assert_called_once()

View File

@@ -81,7 +81,10 @@ class ExecutionContext(BaseModel):
This includes information needed by blocks, sub-graphs, and execution management.
"""
safe_mode: bool = True
model_config = {"extra": "ignore"}
human_in_the_loop_safe_mode: bool = True
sensitive_action_safe_mode: bool = False
user_timezone: str = "UTC"
root_execution_id: Optional[str] = None
parent_execution_id: Optional[str] = None

View File

@@ -3,7 +3,7 @@ import logging
import uuid
from collections import defaultdict
from datetime import datetime, timezone
from typing import TYPE_CHECKING, Any, Literal, Optional, cast
from typing import TYPE_CHECKING, Annotated, Any, Literal, Optional, cast
from prisma.enums import SubmissionStatus
from prisma.models import (
@@ -20,7 +20,7 @@ from prisma.types import (
AgentNodeLinkCreateInput,
StoreListingVersionWhereInput,
)
from pydantic import BaseModel, Field, create_model
from pydantic import BaseModel, BeforeValidator, Field, create_model
from pydantic.fields import computed_field
from backend.blocks.agent import AgentExecutorBlock
@@ -62,7 +62,31 @@ logger = logging.getLogger(__name__)
class GraphSettings(BaseModel):
human_in_the_loop_safe_mode: bool | None = None
# Use Annotated with BeforeValidator to coerce None to default values.
# This handles cases where the database has null values for these fields.
model_config = {"extra": "ignore"}
human_in_the_loop_safe_mode: Annotated[
bool, BeforeValidator(lambda v: v if v is not None else True)
] = True
sensitive_action_safe_mode: Annotated[
bool, BeforeValidator(lambda v: v if v is not None else False)
] = False
@classmethod
def from_graph(
cls,
graph: "GraphModel",
hitl_safe_mode: bool | None = None,
sensitive_action_safe_mode: bool = False,
) -> "GraphSettings":
# Default to True if not explicitly set
if hitl_safe_mode is None:
hitl_safe_mode = True
return cls(
human_in_the_loop_safe_mode=hitl_safe_mode,
sensitive_action_safe_mode=sensitive_action_safe_mode,
)
class Link(BaseDbModel):
@@ -244,10 +268,14 @@ class BaseGraph(BaseDbModel):
return any(
node.block_id
for node in self.nodes
if (
node.block.block_type == BlockType.HUMAN_IN_THE_LOOP
or node.block.requires_human_review
)
if node.block.block_type == BlockType.HUMAN_IN_THE_LOOP
)
@computed_field
@property
def has_sensitive_action(self) -> bool:
return any(
node.block_id for node in self.nodes if node.block.is_sensitive_action
)
@property

View File

@@ -17,6 +17,7 @@ from backend.api.features.executions.review.model import (
PendingHumanReviewModel,
SafeJsonData,
)
from backend.data.execution import get_graph_execution_meta
from backend.util.json import SafeJson
logger = logging.getLogger(__name__)
@@ -32,6 +33,117 @@ class ReviewResult(BaseModel):
node_exec_id: str
def get_auto_approve_key(graph_exec_id: str, node_id: str) -> str:
"""Generate the special nodeExecId key for auto-approval records."""
return f"auto_approve_{graph_exec_id}_{node_id}"
async def check_approval(
node_exec_id: str,
graph_exec_id: str,
node_id: str,
user_id: str,
) -> Optional[ReviewResult]:
"""
Check if there's an existing approval for this node execution.
Checks both:
1. Normal approval by node_exec_id (previous run of the same node execution)
2. Auto-approval by special key pattern "auto_approve_{graph_exec_id}_{node_id}"
Args:
node_exec_id: ID of the node execution
graph_exec_id: ID of the graph execution
node_id: ID of the node definition (not execution)
user_id: ID of the user (for data isolation)
Returns:
ReviewResult if approval found (either normal or auto), None otherwise
"""
auto_approve_key = get_auto_approve_key(graph_exec_id, node_id)
# Check for either normal approval or auto-approval in a single query
existing_review = await PendingHumanReview.prisma().find_first(
where={
"OR": [
{"nodeExecId": node_exec_id},
{"nodeExecId": auto_approve_key},
],
"status": ReviewStatus.APPROVED,
"userId": user_id,
},
)
if existing_review:
is_auto_approval = existing_review.nodeExecId == auto_approve_key
logger.info(
f"Found {'auto-' if is_auto_approval else ''}approval for node {node_id} "
f"(exec: {node_exec_id}) in execution {graph_exec_id}"
)
return ReviewResult(
data=existing_review.payload,
status=ReviewStatus.APPROVED,
message=(
"Auto-approved (user approved all future actions for this node)"
if is_auto_approval
else existing_review.reviewMessage or ""
),
processed=True,
node_exec_id=existing_review.nodeExecId,
)
return None
async def create_auto_approval_record(
user_id: str,
graph_exec_id: str,
graph_id: str,
graph_version: int,
node_id: str,
payload: SafeJsonData,
) -> None:
"""
Create an auto-approval record for a node in this execution.
This is stored as a PendingHumanReview with a special nodeExecId pattern
and status=APPROVED, so future executions of the same node can skip review.
Raises:
ValueError: If the graph execution doesn't belong to the user
"""
# Validate that the graph execution belongs to this user (defense in depth)
graph_exec = await get_graph_execution_meta(
user_id=user_id, execution_id=graph_exec_id
)
if not graph_exec:
raise ValueError(
f"Graph execution {graph_exec_id} not found or doesn't belong to user {user_id}"
)
auto_approve_key = get_auto_approve_key(graph_exec_id, node_id)
await PendingHumanReview.prisma().upsert(
where={"nodeExecId": auto_approve_key},
data={
"create": {
"nodeExecId": auto_approve_key,
"userId": user_id,
"graphExecId": graph_exec_id,
"graphId": graph_id,
"graphVersion": graph_version,
"payload": SafeJson(payload),
"instructions": "Auto-approval record",
"editable": False,
"status": ReviewStatus.APPROVED,
"processed": True,
"reviewedAt": datetime.now(timezone.utc),
},
"update": {}, # Already exists, no update needed
},
)
async def get_or_create_human_review(
user_id: str,
node_exec_id: str,
@@ -108,6 +220,29 @@ async def get_or_create_human_review(
)
async def get_pending_review_by_node_exec_id(
node_exec_id: str, user_id: str
) -> Optional["PendingHumanReviewModel"]:
"""
Get a pending review by its node execution ID.
Args:
node_exec_id: The node execution ID to look up
user_id: User ID for authorization (only returns if review belongs to this user)
Returns:
The pending review if found and belongs to user, None otherwise
"""
review = await PendingHumanReview.prisma().find_unique(
where={"nodeExecId": node_exec_id}
)
if not review or review.userId != user_id or review.status != ReviewStatus.WAITING:
return None
return PendingHumanReviewModel.from_db(review)
async def has_pending_reviews_for_graph_exec(graph_exec_id: str) -> bool:
"""
Check if a graph execution has any pending reviews.
@@ -256,3 +391,44 @@ async def update_review_processed_status(node_exec_id: str, processed: bool) ->
await PendingHumanReview.prisma().update(
where={"nodeExecId": node_exec_id}, data={"processed": processed}
)
async def cancel_pending_reviews_for_execution(graph_exec_id: str, user_id: str) -> int:
"""
Cancel all pending reviews for a graph execution (e.g., when execution is stopped).
Marks all WAITING reviews as REJECTED with a message indicating the execution was stopped.
Args:
graph_exec_id: The graph execution ID
user_id: User ID who owns the execution (for security validation)
Returns:
Number of reviews cancelled
Raises:
ValueError: If the graph execution doesn't belong to the user
"""
# Validate user ownership before cancelling reviews
graph_exec = await get_graph_execution_meta(
user_id=user_id, execution_id=graph_exec_id
)
if not graph_exec:
raise ValueError(
f"Graph execution {graph_exec_id} not found or doesn't belong to user {user_id}"
)
result = await PendingHumanReview.prisma().update_many(
where={
"graphExecId": graph_exec_id,
"userId": user_id,
"status": ReviewStatus.WAITING,
},
data={
"status": ReviewStatus.REJECTED,
"reviewMessage": "Execution was stopped by user",
"processed": True,
"reviewedAt": datetime.now(timezone.utc),
},
)
return result

View File

@@ -46,8 +46,8 @@ async def test_get_or_create_human_review_new(
sample_db_review.status = ReviewStatus.WAITING
sample_db_review.processed = False
mock_upsert = mocker.patch("backend.data.human_review.PendingHumanReview.prisma")
mock_upsert.return_value.upsert = AsyncMock(return_value=sample_db_review)
mock_prisma = mocker.patch("backend.data.human_review.PendingHumanReview.prisma")
mock_prisma.return_value.upsert = AsyncMock(return_value=sample_db_review)
result = await get_or_create_human_review(
user_id="test-user-123",
@@ -75,8 +75,8 @@ async def test_get_or_create_human_review_approved(
sample_db_review.processed = False
sample_db_review.reviewMessage = "Looks good"
mock_upsert = mocker.patch("backend.data.human_review.PendingHumanReview.prisma")
mock_upsert.return_value.upsert = AsyncMock(return_value=sample_db_review)
mock_prisma = mocker.patch("backend.data.human_review.PendingHumanReview.prisma")
mock_prisma.return_value.upsert = AsyncMock(return_value=sample_db_review)
result = await get_or_create_human_review(
user_id="test-user-123",

View File

@@ -328,6 +328,8 @@ async def clear_business_understanding(user_id: str) -> bool:
def format_understanding_for_prompt(understanding: BusinessUnderstanding) -> str:
"""Format business understanding as text for system prompt injection."""
if not understanding:
return ""
sections = []
# User info section

View File

@@ -50,6 +50,8 @@ from backend.data.graph import (
validate_graph_execution_permissions,
)
from backend.data.human_review import (
cancel_pending_reviews_for_execution,
check_approval,
get_or_create_human_review,
has_pending_reviews_for_graph_exec,
update_review_processed_status,
@@ -190,6 +192,8 @@ class DatabaseManager(AppService):
get_user_notification_preference = _(get_user_notification_preference)
# Human In The Loop
cancel_pending_reviews_for_execution = _(cancel_pending_reviews_for_execution)
check_approval = _(check_approval)
get_or_create_human_review = _(get_or_create_human_review)
has_pending_reviews_for_graph_exec = _(has_pending_reviews_for_graph_exec)
update_review_processed_status = _(update_review_processed_status)
@@ -313,6 +317,8 @@ class DatabaseManagerAsyncClient(AppServiceClient):
set_execution_kv_data = d.set_execution_kv_data
# Human In The Loop
cancel_pending_reviews_for_execution = d.cancel_pending_reviews_for_execution
check_approval = d.check_approval
get_or_create_human_review = d.get_or_create_human_review
update_review_processed_status = d.update_review_processed_status

View File

@@ -309,7 +309,7 @@ def ensure_embeddings_coverage():
# Process in batches until no more missing embeddings
while True:
result = db_client.backfill_missing_embeddings(batch_size=10)
result = db_client.backfill_missing_embeddings(batch_size=100)
total_processed += result["processed"]
total_success += result["success"]

View File

@@ -10,6 +10,7 @@ from pydantic import BaseModel, JsonValue, ValidationError
from backend.data import execution as execution_db
from backend.data import graph as graph_db
from backend.data import human_review as human_review_db
from backend.data import onboarding as onboarding_db
from backend.data import user as user_db
from backend.data.block import (
@@ -749,9 +750,27 @@ async def stop_graph_execution(
if graph_exec.status in [
ExecutionStatus.QUEUED,
ExecutionStatus.INCOMPLETE,
ExecutionStatus.REVIEW,
]:
# If the graph is still on the queue, we can prevent them from being executed
# by setting the status to TERMINATED.
# If the graph is queued/incomplete/paused for review, terminate immediately
# No need to wait for executor since it's not actively running
# If graph is in REVIEW status, clean up pending reviews before terminating
if graph_exec.status == ExecutionStatus.REVIEW:
# Use human_review_db if Prisma connected, else database manager
review_db = (
human_review_db
if prisma.is_connected()
else get_database_manager_async_client()
)
# Mark all pending reviews as rejected/cancelled
cancelled_count = await review_db.cancel_pending_reviews_for_execution(
graph_exec_id, user_id
)
logger.info(
f"Cancelled {cancelled_count} pending review(s) for stopped execution {graph_exec_id}"
)
graph_exec.status = ExecutionStatus.TERMINATED
await asyncio.gather(
@@ -873,11 +892,8 @@ async def add_graph_execution(
settings = await gdb.get_graph_settings(user_id=user_id, graph_id=graph_id)
execution_context = ExecutionContext(
safe_mode=(
settings.human_in_the_loop_safe_mode
if settings.human_in_the_loop_safe_mode is not None
else True
),
human_in_the_loop_safe_mode=settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=settings.sensitive_action_safe_mode,
user_timezone=(
user.timezone if user.timezone != USER_TIMEZONE_NOT_SET else "UTC"
),

View File

@@ -386,6 +386,7 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
mock_user.timezone = "UTC"
mock_settings = mocker.MagicMock()
mock_settings.human_in_the_loop_safe_mode = True
mock_settings.sensitive_action_safe_mode = False
mock_udb.get_user_by_id = mocker.AsyncMock(return_value=mock_user)
mock_gdb.get_graph_settings = mocker.AsyncMock(return_value=mock_settings)
@@ -651,6 +652,7 @@ async def test_add_graph_execution_with_nodes_to_skip(mocker: MockerFixture):
mock_user.timezone = "UTC"
mock_settings = mocker.MagicMock()
mock_settings.human_in_the_loop_safe_mode = True
mock_settings.sensitive_action_safe_mode = False
mock_udb.get_user_by_id = mocker.AsyncMock(return_value=mock_user)
mock_gdb.get_graph_settings = mocker.AsyncMock(return_value=mock_settings)
@@ -668,3 +670,232 @@ async def test_add_graph_execution_with_nodes_to_skip(mocker: MockerFixture):
# Verify nodes_to_skip was passed to to_graph_execution_entry
assert "nodes_to_skip" in captured_kwargs
assert captured_kwargs["nodes_to_skip"] == nodes_to_skip
@pytest.mark.asyncio
async def test_stop_graph_execution_in_review_status_cancels_pending_reviews(
mocker: MockerFixture,
):
"""Test that stopping an execution in REVIEW status cancels pending reviews."""
from backend.data.execution import ExecutionStatus, GraphExecutionMeta
from backend.executor.utils import stop_graph_execution
user_id = "test-user"
graph_exec_id = "test-exec-123"
# Mock graph execution in REVIEW status
mock_graph_exec = mocker.MagicMock(spec=GraphExecutionMeta)
mock_graph_exec.id = graph_exec_id
mock_graph_exec.status = ExecutionStatus.REVIEW
# Mock dependencies
mock_get_queue = mocker.patch("backend.executor.utils.get_async_execution_queue")
mock_queue_client = mocker.AsyncMock()
mock_get_queue.return_value = mock_queue_client
mock_prisma = mocker.patch("backend.executor.utils.prisma")
mock_prisma.is_connected.return_value = True
mock_human_review_db = mocker.patch("backend.executor.utils.human_review_db")
mock_human_review_db.cancel_pending_reviews_for_execution = mocker.AsyncMock(
return_value=2 # 2 reviews cancelled
)
mock_execution_db = mocker.patch("backend.executor.utils.execution_db")
mock_execution_db.get_graph_execution_meta = mocker.AsyncMock(
return_value=mock_graph_exec
)
mock_execution_db.update_graph_execution_stats = mocker.AsyncMock()
mock_get_event_bus = mocker.patch(
"backend.executor.utils.get_async_execution_event_bus"
)
mock_event_bus = mocker.MagicMock()
mock_event_bus.publish = mocker.AsyncMock()
mock_get_event_bus.return_value = mock_event_bus
mock_get_child_executions = mocker.patch(
"backend.executor.utils._get_child_executions"
)
mock_get_child_executions.return_value = [] # No children
# Call stop_graph_execution with timeout to allow status check
await stop_graph_execution(
user_id=user_id,
graph_exec_id=graph_exec_id,
wait_timeout=1.0, # Wait to allow status check
cascade=True,
)
# Verify pending reviews were cancelled
mock_human_review_db.cancel_pending_reviews_for_execution.assert_called_once_with(
graph_exec_id, user_id
)
# Verify execution status was updated to TERMINATED
mock_execution_db.update_graph_execution_stats.assert_called_once()
call_kwargs = mock_execution_db.update_graph_execution_stats.call_args[1]
assert call_kwargs["graph_exec_id"] == graph_exec_id
assert call_kwargs["status"] == ExecutionStatus.TERMINATED
@pytest.mark.asyncio
async def test_stop_graph_execution_with_database_manager_when_prisma_disconnected(
mocker: MockerFixture,
):
"""Test that stop uses database manager when Prisma is not connected."""
from backend.data.execution import ExecutionStatus, GraphExecutionMeta
from backend.executor.utils import stop_graph_execution
user_id = "test-user"
graph_exec_id = "test-exec-456"
# Mock graph execution in REVIEW status
mock_graph_exec = mocker.MagicMock(spec=GraphExecutionMeta)
mock_graph_exec.id = graph_exec_id
mock_graph_exec.status = ExecutionStatus.REVIEW
# Mock dependencies
mock_get_queue = mocker.patch("backend.executor.utils.get_async_execution_queue")
mock_queue_client = mocker.AsyncMock()
mock_get_queue.return_value = mock_queue_client
# Prisma is NOT connected
mock_prisma = mocker.patch("backend.executor.utils.prisma")
mock_prisma.is_connected.return_value = False
# Mock database manager client
mock_get_db_manager = mocker.patch(
"backend.executor.utils.get_database_manager_async_client"
)
mock_db_manager = mocker.AsyncMock()
mock_db_manager.get_graph_execution_meta = mocker.AsyncMock(
return_value=mock_graph_exec
)
mock_db_manager.cancel_pending_reviews_for_execution = mocker.AsyncMock(
return_value=3 # 3 reviews cancelled
)
mock_db_manager.update_graph_execution_stats = mocker.AsyncMock()
mock_get_db_manager.return_value = mock_db_manager
mock_get_event_bus = mocker.patch(
"backend.executor.utils.get_async_execution_event_bus"
)
mock_event_bus = mocker.MagicMock()
mock_event_bus.publish = mocker.AsyncMock()
mock_get_event_bus.return_value = mock_event_bus
mock_get_child_executions = mocker.patch(
"backend.executor.utils._get_child_executions"
)
mock_get_child_executions.return_value = [] # No children
# Call stop_graph_execution with timeout
await stop_graph_execution(
user_id=user_id,
graph_exec_id=graph_exec_id,
wait_timeout=1.0,
cascade=True,
)
# Verify database manager was used for cancel_pending_reviews
mock_db_manager.cancel_pending_reviews_for_execution.assert_called_once_with(
graph_exec_id, user_id
)
# Verify execution status was updated via database manager
mock_db_manager.update_graph_execution_stats.assert_called_once()
@pytest.mark.asyncio
async def test_stop_graph_execution_cascades_to_child_with_reviews(
mocker: MockerFixture,
):
"""Test that stopping parent execution cascades to children and cancels their reviews."""
from backend.data.execution import ExecutionStatus, GraphExecutionMeta
from backend.executor.utils import stop_graph_execution
user_id = "test-user"
parent_exec_id = "parent-exec"
child_exec_id = "child-exec"
# Mock parent execution in RUNNING status
mock_parent_exec = mocker.MagicMock(spec=GraphExecutionMeta)
mock_parent_exec.id = parent_exec_id
mock_parent_exec.status = ExecutionStatus.RUNNING
# Mock child execution in REVIEW status
mock_child_exec = mocker.MagicMock(spec=GraphExecutionMeta)
mock_child_exec.id = child_exec_id
mock_child_exec.status = ExecutionStatus.REVIEW
# Mock dependencies
mock_get_queue = mocker.patch("backend.executor.utils.get_async_execution_queue")
mock_queue_client = mocker.AsyncMock()
mock_get_queue.return_value = mock_queue_client
mock_prisma = mocker.patch("backend.executor.utils.prisma")
mock_prisma.is_connected.return_value = True
mock_human_review_db = mocker.patch("backend.executor.utils.human_review_db")
mock_human_review_db.cancel_pending_reviews_for_execution = mocker.AsyncMock(
return_value=1 # 1 child review cancelled
)
# Mock execution_db to return different status based on which execution is queried
mock_execution_db = mocker.patch("backend.executor.utils.execution_db")
# Track call count to simulate status transition
call_count = {"count": 0}
async def get_exec_meta_side_effect(execution_id, user_id):
call_count["count"] += 1
if execution_id == parent_exec_id:
# After a few calls (child processing happens), transition parent to TERMINATED
# This simulates the executor service processing the stop request
if call_count["count"] > 3:
mock_parent_exec.status = ExecutionStatus.TERMINATED
return mock_parent_exec
elif execution_id == child_exec_id:
return mock_child_exec
return None
mock_execution_db.get_graph_execution_meta = mocker.AsyncMock(
side_effect=get_exec_meta_side_effect
)
mock_execution_db.update_graph_execution_stats = mocker.AsyncMock()
mock_get_event_bus = mocker.patch(
"backend.executor.utils.get_async_execution_event_bus"
)
mock_event_bus = mocker.MagicMock()
mock_event_bus.publish = mocker.AsyncMock()
mock_get_event_bus.return_value = mock_event_bus
# Mock _get_child_executions to return the child
mock_get_child_executions = mocker.patch(
"backend.executor.utils._get_child_executions"
)
def get_children_side_effect(parent_id):
if parent_id == parent_exec_id:
return [mock_child_exec]
return []
mock_get_child_executions.side_effect = get_children_side_effect
# Call stop_graph_execution on parent with cascade=True
await stop_graph_execution(
user_id=user_id,
graph_exec_id=parent_exec_id,
wait_timeout=1.0,
cascade=True,
)
# Verify child reviews were cancelled
mock_human_review_db.cancel_pending_reviews_for_execution.assert_called_once_with(
child_exec_id, user_id
)
# Verify both parent and child status updates
assert mock_execution_db.update_graph_execution_stats.call_count >= 1

View File

@@ -1,9 +1,10 @@
-- CreateExtension
-- Supabase: pgvector must be enabled via Dashboard → Database → Extensions first
-- Create in public schema so vector type is available across all schemas
-- Creates extension in current schema (determined by search_path from DATABASE_URL ?schema= param)
-- This ensures vector type is in the same schema as tables, making ::vector work without explicit qualification
DO $$
BEGIN
CREATE EXTENSION IF NOT EXISTS "vector" WITH SCHEMA "public";
CREATE EXTENSION IF NOT EXISTS "vector";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'vector extension not available or already exists, skipping';
END $$;
@@ -19,7 +20,7 @@ CREATE TABLE "UnifiedContentEmbedding" (
"contentType" "ContentType" NOT NULL,
"contentId" TEXT NOT NULL,
"userId" TEXT,
"embedding" public.vector(1536) NOT NULL,
"embedding" vector(1536) NOT NULL,
"searchableText" TEXT NOT NULL,
"metadata" JSONB NOT NULL DEFAULT '{}',
@@ -45,4 +46,4 @@ CREATE UNIQUE INDEX "UnifiedContentEmbedding_contentType_contentId_userId_key" O
-- Uses cosine distance operator (<=>), which matches the query in hybrid_search.py
-- Note: Drop first in case Prisma created a btree index (Prisma doesn't support HNSW)
DROP INDEX IF EXISTS "UnifiedContentEmbedding_embedding_idx";
CREATE INDEX "UnifiedContentEmbedding_embedding_idx" ON "UnifiedContentEmbedding" USING hnsw ("embedding" public.vector_cosine_ops);
CREATE INDEX "UnifiedContentEmbedding_embedding_idx" ON "UnifiedContentEmbedding" USING hnsw ("embedding" vector_cosine_ops);

View File

@@ -0,0 +1,7 @@
-- Remove NodeExecution foreign key from PendingHumanReview
-- The nodeExecId column remains as the primary key, but we remove the FK constraint
-- to AgentNodeExecution since PendingHumanReview records can persist after node
-- execution records are deleted.
-- Drop foreign key constraint that linked PendingHumanReview.nodeExecId to AgentNodeExecution.id
ALTER TABLE "PendingHumanReview" DROP CONSTRAINT IF EXISTS "PendingHumanReview_nodeExecId_fkey";

View File

@@ -517,8 +517,6 @@ model AgentNodeExecution {
stats Json?
PendingHumanReview PendingHumanReview?
@@index([agentGraphExecutionId, agentNodeId, executionStatus])
@@index([agentNodeId, executionStatus])
@@index([addedTime, queuedTime])
@@ -567,6 +565,7 @@ enum ReviewStatus {
}
// Pending human reviews for Human-in-the-loop blocks
// Also stores auto-approval records with special nodeExecId patterns (e.g., "auto_approve_{graph_exec_id}_{node_id}")
model PendingHumanReview {
nodeExecId String @id
userId String
@@ -585,7 +584,6 @@ model PendingHumanReview {
reviewedAt DateTime?
User User @relation(fields: [userId], references: [id], onDelete: Cascade)
NodeExecution AgentNodeExecution @relation(fields: [nodeExecId], references: [id], onDelete: Cascade)
GraphExecution AgentGraphExecution @relation(fields: [graphExecId], references: [id], onDelete: Cascade)
@@unique([nodeExecId]) // One pending review per node execution

View File

@@ -366,12 +366,12 @@ def generate_block_markdown(
lines.append("")
# What it is (full description)
lines.append(f"### What it is")
lines.append("### What it is")
lines.append(block.description or "No description available.")
lines.append("")
# How it works (manual section)
lines.append(f"### How it works")
lines.append("### How it works")
how_it_works = manual_content.get(
"how_it_works", "_Add technical explanation here._"
)
@@ -383,7 +383,7 @@ def generate_block_markdown(
# Inputs table (auto-generated)
visible_inputs = [f for f in block.inputs if not f.hidden]
if visible_inputs:
lines.append(f"### Inputs")
lines.append("### Inputs")
lines.append("")
lines.append("| Input | Description | Type | Required |")
lines.append("|-------|-------------|------|----------|")
@@ -400,7 +400,7 @@ def generate_block_markdown(
# Outputs table (auto-generated)
visible_outputs = [f for f in block.outputs if not f.hidden]
if visible_outputs:
lines.append(f"### Outputs")
lines.append("### Outputs")
lines.append("")
lines.append("| Output | Description | Type |")
lines.append("|--------|-------------|------|")
@@ -414,7 +414,7 @@ def generate_block_markdown(
lines.append("")
# Possible use case (manual section)
lines.append(f"### Possible use case")
lines.append("### Possible use case")
use_case = manual_content.get("use_case", "_Add practical use case examples here._")
lines.append("<!-- MANUAL: use_case -->")
lines.append(use_case)

View File

@@ -11,6 +11,7 @@
"forked_from_version": null,
"has_external_trigger": false,
"has_human_in_the_loop": false,
"has_sensitive_action": false,
"id": "graph-123",
"input_schema": {
"properties": {},

View File

@@ -11,6 +11,7 @@
"forked_from_version": null,
"has_external_trigger": false,
"has_human_in_the_loop": false,
"has_sensitive_action": false,
"id": "graph-123",
"input_schema": {
"properties": {},

View File

@@ -27,6 +27,8 @@
"properties": {}
},
"has_external_trigger": false,
"has_human_in_the_loop": false,
"has_sensitive_action": false,
"trigger_setup_info": null,
"new_output": false,
"can_access_graph": true,
@@ -34,7 +36,8 @@
"is_favorite": false,
"recommended_schedule_cron": null,
"settings": {
"human_in_the_loop_safe_mode": null
"human_in_the_loop_safe_mode": true,
"sensitive_action_safe_mode": false
},
"marketplace_listing": null
},
@@ -65,6 +68,8 @@
"properties": {}
},
"has_external_trigger": false,
"has_human_in_the_loop": false,
"has_sensitive_action": false,
"trigger_setup_info": null,
"new_output": false,
"can_access_graph": false,
@@ -72,7 +77,8 @@
"is_favorite": false,
"recommended_schedule_cron": null,
"settings": {
"human_in_the_loop_safe_mode": null
"human_in_the_loop_safe_mode": true,
"sensitive_action_safe_mode": false
},
"marketplace_listing": null
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 72 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 374 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 663 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.5 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.8 KiB

View File

@@ -5,10 +5,11 @@ import {
TooltipContent,
TooltipTrigger,
} from "@/components/atoms/Tooltip/BaseTooltip";
import { PlayIcon, StopIcon } from "@phosphor-icons/react";
import { CircleNotchIcon, PlayIcon, StopIcon } from "@phosphor-icons/react";
import { useShallow } from "zustand/react/shallow";
import { RunInputDialog } from "../RunInputDialog/RunInputDialog";
import { useRunGraph } from "./useRunGraph";
import { cn } from "@/lib/utils";
export const RunGraph = ({ flowID }: { flowID: string | null }) => {
const {
@@ -24,6 +25,31 @@ export const RunGraph = ({ flowID }: { flowID: string | null }) => {
useShallow((state) => state.isGraphRunning),
);
const isLoading = isExecutingGraph || isTerminatingGraph || isSaving;
// Determine which icon to show with proper animation
const renderIcon = () => {
const iconClass = cn(
"size-4 transition-transform duration-200 ease-out",
!isLoading && "group-hover:scale-110",
);
if (isLoading) {
return (
<CircleNotchIcon
className={cn(iconClass, "animate-spin")}
weight="bold"
/>
);
}
if (isGraphRunning) {
return <StopIcon className={iconClass} weight="fill" />;
}
return <PlayIcon className={iconClass} weight="fill" />;
};
return (
<>
<Tooltip>
@@ -33,18 +59,18 @@ export const RunGraph = ({ flowID }: { flowID: string | null }) => {
variant={isGraphRunning ? "destructive" : "primary"}
data-id={isGraphRunning ? "stop-graph-button" : "run-graph-button"}
onClick={isGraphRunning ? handleStopGraph : handleRunGraph}
disabled={!flowID || isExecutingGraph || isTerminatingGraph}
loading={isExecutingGraph || isTerminatingGraph || isSaving}
disabled={!flowID || isLoading}
className="group"
>
{!isGraphRunning ? (
<PlayIcon className="size-4" />
) : (
<StopIcon className="size-4" />
)}
{renderIcon()}
</Button>
</TooltipTrigger>
<TooltipContent>
{isGraphRunning ? "Stop agent" : "Run agent"}
{isLoading
? "Processing..."
: isGraphRunning
? "Stop agent"
: "Run agent"}
</TooltipContent>
</Tooltip>
<RunInputDialog

View File

@@ -10,6 +10,7 @@ import { useRunInputDialog } from "./useRunInputDialog";
import { CronSchedulerDialog } from "../CronSchedulerDialog/CronSchedulerDialog";
import { useTutorialStore } from "@/app/(platform)/build/stores/tutorialStore";
import { useEffect } from "react";
import { CredentialsGroupedView } from "@/components/contextual/CredentialsInput/components/CredentialsGroupedView/CredentialsGroupedView";
export const RunInputDialog = ({
isOpen,
@@ -23,19 +24,17 @@ export const RunInputDialog = ({
const hasInputs = useGraphStore((state) => state.hasInputs);
const hasCredentials = useGraphStore((state) => state.hasCredentials);
const inputSchema = useGraphStore((state) => state.inputSchema);
const credentialsSchema = useGraphStore(
(state) => state.credentialsInputSchema,
);
const {
credentialsUiSchema,
credentialFields,
requiredCredentials,
handleManualRun,
handleInputChange,
openCronSchedulerDialog,
setOpenCronSchedulerDialog,
inputValues,
credentialValues,
handleCredentialChange,
handleCredentialFieldChange,
isExecutingGraph,
} = useRunInputDialog({ setIsOpen });
@@ -62,67 +61,67 @@ export const RunInputDialog = ({
isOpen,
set: setIsOpen,
}}
styling={{ maxWidth: "600px", minWidth: "600px" }}
styling={{ maxWidth: "700px", minWidth: "700px" }}
>
<Dialog.Content>
<div className="space-y-6 p-1" data-id="run-input-dialog-content">
{/* Credentials Section */}
{hasCredentials() && (
<div data-id="run-input-credentials-section">
<div className="mb-4">
<Text variant="h4" className="text-gray-900">
Credentials
</Text>
<div
className="grid grid-cols-[1fr_auto] gap-10 p-1"
data-id="run-input-dialog-content"
>
<div className="space-y-6">
{/* Credentials Section */}
{hasCredentials() && credentialFields.length > 0 && (
<div data-id="run-input-credentials-section">
<div className="mb-4">
<Text variant="h4" className="text-gray-900">
Credentials
</Text>
</div>
<div className="px-2" data-id="run-input-credentials-form">
<CredentialsGroupedView
credentialFields={credentialFields}
requiredCredentials={requiredCredentials}
inputCredentials={credentialValues}
inputValues={inputValues}
onCredentialChange={handleCredentialFieldChange}
/>
</div>
</div>
<div className="px-2" data-id="run-input-credentials-form">
<FormRenderer
jsonSchema={credentialsSchema as RJSFSchema}
handleChange={(v) => handleCredentialChange(v.formData)}
uiSchema={credentialsUiSchema}
initialValues={{}}
formContext={{
showHandles: false,
size: "large",
showOptionalToggle: false,
}}
/>
</div>
</div>
)}
)}
{/* Inputs Section */}
{hasInputs() && (
<div data-id="run-input-inputs-section">
<div className="mb-4">
<Text variant="h4" className="text-gray-900">
Inputs
</Text>
{/* Inputs Section */}
{hasInputs() && (
<div data-id="run-input-inputs-section">
<div className="mb-4">
<Text variant="h4" className="text-gray-900">
Inputs
</Text>
</div>
<div data-id="run-input-inputs-form">
<FormRenderer
jsonSchema={inputSchema as RJSFSchema}
handleChange={(v) => handleInputChange(v.formData)}
uiSchema={uiSchema}
initialValues={{}}
formContext={{
showHandles: false,
size: "large",
}}
/>
</div>
</div>
<div data-id="run-input-inputs-form">
<FormRenderer
jsonSchema={inputSchema as RJSFSchema}
handleChange={(v) => handleInputChange(v.formData)}
uiSchema={uiSchema}
initialValues={{}}
formContext={{
showHandles: false,
size: "large",
}}
/>
</div>
</div>
)}
)}
</div>
{/* Action Button */}
<div
className="flex justify-end pt-2"
className="flex flex-col items-end justify-start"
data-id="run-input-actions-section"
>
{purpose === "run" && (
<Button
variant="primary"
size="large"
className="group h-fit min-w-0 gap-2"
className="group h-fit min-w-0 gap-2 px-10"
onClick={handleManualRun}
loading={isExecutingGraph}
data-id="run-input-manual-run-button"
@@ -137,7 +136,7 @@ export const RunInputDialog = ({
<Button
variant="primary"
size="large"
className="group h-fit min-w-0 gap-2"
className="group h-fit min-w-0 gap-2 px-10"
onClick={() => setOpenCronSchedulerDialog(true)}
data-id="run-input-schedule-button"
>

View File

@@ -7,12 +7,11 @@ import {
GraphExecutionMeta,
} from "@/lib/autogpt-server-api";
import { parseAsInteger, parseAsString, useQueryStates } from "nuqs";
import { useMemo, useState } from "react";
import { uiSchema } from "../../../FlowEditor/nodes/uiSchema";
import { isCredentialFieldSchema } from "@/components/renderers/InputRenderer/custom/CredentialField/helpers";
import { useCallback, useMemo, useState } from "react";
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
import { useToast } from "@/components/molecules/Toast/use-toast";
import { useReactFlow } from "@xyflow/react";
import type { CredentialField } from "@/components/contextual/CredentialsInput/components/CredentialsGroupedView/helpers";
export const useRunInputDialog = ({
setIsOpen,
@@ -120,27 +119,32 @@ export const useRunInputDialog = ({
},
});
// We are rendering the credentials field differently compared to other fields.
// In the node, we have the field name as "credential" - so our library catches it and renders it differently.
// But here we have a different name, something like `Firecrawl credentials`, so here we are telling the library that this field is a credential field type.
// Convert credentials schema to credential fields array for CredentialsGroupedView
const credentialFields: CredentialField[] = useMemo(() => {
if (!credentialsSchema?.properties) return [];
return Object.entries(credentialsSchema.properties);
}, [credentialsSchema]);
const credentialsUiSchema = useMemo(() => {
const dynamicUiSchema: any = { ...uiSchema };
// Get required credentials as a Set
const requiredCredentials = useMemo(() => {
return new Set<string>(credentialsSchema?.required || []);
}, [credentialsSchema]);
if (credentialsSchema?.properties) {
Object.keys(credentialsSchema.properties).forEach((fieldName) => {
const fieldSchema = credentialsSchema.properties[fieldName];
if (isCredentialFieldSchema(fieldSchema)) {
dynamicUiSchema[fieldName] = {
...dynamicUiSchema[fieldName],
"ui:field": "custom/credential_field",
};
// Handler for individual credential changes
const handleCredentialFieldChange = useCallback(
(key: string, value?: CredentialsMetaInput) => {
setCredentialValues((prev) => {
if (value) {
return { ...prev, [key]: value };
} else {
const next = { ...prev };
delete next[key];
return next;
}
});
}
return dynamicUiSchema;
}, [credentialsSchema]);
},
[],
);
const handleManualRun = async () => {
// Filter out incomplete credentials (those without a valid id)
@@ -173,12 +177,14 @@ export const useRunInputDialog = ({
};
return {
credentialsUiSchema,
credentialFields,
requiredCredentials,
inputValues,
credentialValues,
isExecutingGraph,
handleInputChange,
handleCredentialChange,
handleCredentialFieldChange,
handleManualRun,
openCronSchedulerDialog,
setOpenCronSchedulerDialog,

View File

@@ -18,69 +18,110 @@ interface Props {
fullWidth?: boolean;
}
interface SafeModeButtonProps {
isEnabled: boolean;
label: string;
tooltipEnabled: string;
tooltipDisabled: string;
onToggle: () => void;
isPending: boolean;
fullWidth?: boolean;
}
function SafeModeButton({
isEnabled,
label,
tooltipEnabled,
tooltipDisabled,
onToggle,
isPending,
fullWidth = false,
}: SafeModeButtonProps) {
return (
<Tooltip delayDuration={100}>
<TooltipTrigger asChild>
<Button
variant={isEnabled ? "primary" : "outline"}
size="small"
onClick={onToggle}
disabled={isPending}
className={cn("justify-start", fullWidth ? "w-full" : "")}
>
{isEnabled ? (
<>
<ShieldCheckIcon weight="bold" size={16} />
<Text variant="body" className="text-zinc-200">
{label}: ON
</Text>
</>
) : (
<>
<ShieldIcon weight="bold" size={16} />
<Text variant="body" className="text-zinc-600">
{label}: OFF
</Text>
</>
)}
</Button>
</TooltipTrigger>
<TooltipContent>
<div className="text-center">
<div className="font-medium">
{label}: {isEnabled ? "ON" : "OFF"}
</div>
<div className="mt-1 text-xs text-muted-foreground">
{isEnabled ? tooltipEnabled : tooltipDisabled}
</div>
</div>
</TooltipContent>
</Tooltip>
);
}
export function FloatingSafeModeToggle({
graph,
className,
fullWidth = false,
}: Props) {
const {
currentSafeMode,
currentHITLSafeMode,
showHITLToggle,
handleHITLToggle,
currentSensitiveActionSafeMode,
showSensitiveActionToggle,
handleSensitiveActionToggle,
isPending,
shouldShowToggle,
isStateUndetermined,
handleToggle,
} = useAgentSafeMode(graph);
if (!shouldShowToggle || isStateUndetermined || isPending) {
if (!shouldShowToggle || isPending) {
return null;
}
return (
<div className={cn("fixed z-50", className)}>
<Tooltip delayDuration={100}>
<TooltipTrigger asChild>
<Button
variant={currentSafeMode! ? "primary" : "outline"}
key={graph.id}
size="small"
title={
currentSafeMode!
? "Safe Mode: ON. Human in the loop blocks require manual review"
: "Safe Mode: OFF. Human in the loop blocks proceed automatically"
}
onClick={handleToggle}
className={cn(fullWidth ? "w-full" : "")}
>
{currentSafeMode! ? (
<>
<ShieldCheckIcon weight="bold" size={16} />
<Text variant="body" className="text-zinc-200">
Safe Mode: ON
</Text>
</>
) : (
<>
<ShieldIcon weight="bold" size={16} />
<Text variant="body" className="text-zinc-600">
Safe Mode: OFF
</Text>
</>
)}
</Button>
</TooltipTrigger>
<TooltipContent>
<div className="text-center">
<div className="font-medium">
Safe Mode: {currentSafeMode! ? "ON" : "OFF"}
</div>
<div className="mt-1 text-xs text-muted-foreground">
{currentSafeMode!
? "Human in the loop blocks require manual review"
: "Human in the loop blocks proceed automatically"}
</div>
</div>
</TooltipContent>
</Tooltip>
<div className={cn("fixed z-50 flex flex-col gap-2", className)}>
{showHITLToggle && (
<SafeModeButton
isEnabled={currentHITLSafeMode}
label="Human in the loop block approval"
tooltipEnabled="The agent will pause at human-in-the-loop blocks and wait for your approval"
tooltipDisabled="Human in the loop blocks will proceed automatically"
onToggle={handleHITLToggle}
isPending={isPending}
fullWidth={fullWidth}
/>
)}
{showSensitiveActionToggle && (
<SafeModeButton
isEnabled={currentSensitiveActionSafeMode}
label="Sensitive actions blocks approval"
tooltipEnabled="The agent will pause at sensitive action blocks and wait for your approval"
tooltipDisabled="Sensitive action blocks will proceed automatically"
onToggle={handleSensitiveActionToggle}
isPending={isPending}
fullWidth={fullWidth}
/>
)}
</div>
);
}

View File

@@ -53,14 +53,14 @@ export const CustomControls = memo(
const controls = [
{
id: "zoom-in-button",
icon: <PlusIcon className="size-4" />,
icon: <PlusIcon className="size-3.5 text-zinc-600" />,
label: "Zoom In",
onClick: () => zoomIn(),
className: "h-10 w-10 border-none",
},
{
id: "zoom-out-button",
icon: <MinusIcon className="size-4" />,
icon: <MinusIcon className="size-3.5 text-zinc-600" />,
label: "Zoom Out",
onClick: () => zoomOut(),
className: "h-10 w-10 border-none",
@@ -68,9 +68,9 @@ export const CustomControls = memo(
{
id: "tutorial-button",
icon: isTutorialLoading ? (
<CircleNotchIcon className="size-4 animate-spin" />
<CircleNotchIcon className="size-3.5 animate-spin text-zinc-600" />
) : (
<ChalkboardIcon className="size-4" />
<ChalkboardIcon className="size-3.5 text-zinc-600" />
),
label: isTutorialLoading ? "Loading Tutorial..." : "Start Tutorial",
onClick: handleTutorialClick,
@@ -79,7 +79,7 @@ export const CustomControls = memo(
},
{
id: "fit-view-button",
icon: <FrameCornersIcon className="size-4" />,
icon: <FrameCornersIcon className="size-3.5 text-zinc-600" />,
label: "Fit View",
onClick: () => fitView({ padding: 0.2, duration: 800, maxZoom: 1 }),
className: "h-10 w-10 border-none",
@@ -87,9 +87,9 @@ export const CustomControls = memo(
{
id: "lock-button",
icon: !isLocked ? (
<LockOpenIcon className="size-4" />
<LockOpenIcon className="size-3.5 text-zinc-600" />
) : (
<LockIcon className="size-4" />
<LockIcon className="size-3.5 text-zinc-600" />
),
label: "Toggle Lock",
onClick: () => setIsLocked(!isLocked),

View File

@@ -139,14 +139,6 @@ export const useFlow = () => {
useNodeStore.getState().setNodes([]);
useNodeStore.getState().clearResolutionState();
addNodes(customNodes);
// Sync hardcoded values with handle IDs.
// If a keyvalue field has a key without a value, the backend omits it from hardcoded values.
// But if a handleId exists for that key, it causes inconsistency.
// This ensures hardcoded values stay in sync with handle IDs.
customNodes.forEach((node) => {
useNodeStore.getState().syncHardcodedValuesWithHandleIds(node.id);
});
}
}, [customNodes, addNodes]);
@@ -158,6 +150,14 @@ export const useFlow = () => {
}
}, [graph?.links, addLinks]);
useEffect(() => {
if (customNodes.length > 0 && graph?.links) {
customNodes.forEach((node) => {
useNodeStore.getState().syncHardcodedValuesWithHandleIds(node.id);
});
}
}, [customNodes, graph?.links]);
// update node execution status in nodes
useEffect(() => {
if (

View File

@@ -19,6 +19,8 @@ export type CustomEdgeData = {
beadUp?: number;
beadDown?: number;
beadData?: Map<string, NodeExecutionResult["status"]>;
edgeColorClass?: string;
edgeHexColor?: string;
};
export type CustomEdge = XYEdge<CustomEdgeData, "custom">;
@@ -36,7 +38,6 @@ const CustomEdge = ({
selected,
}: EdgeProps<CustomEdge>) => {
const removeConnection = useEdgeStore((state) => state.removeEdge);
// Subscribe to the brokenEdgeIDs map and check if this edge is broken across any node
const isBroken = useNodeStore((state) => state.isEdgeBroken(id));
const [isHovered, setIsHovered] = useState(false);
@@ -52,6 +53,7 @@ const CustomEdge = ({
const isStatic = data?.isStatic ?? false;
const beadUp = data?.beadUp ?? 0;
const beadDown = data?.beadDown ?? 0;
const edgeColorClass = data?.edgeColorClass;
const handleRemoveEdge = () => {
removeConnection(id);
@@ -70,7 +72,9 @@ const CustomEdge = ({
? "!stroke-red-500 !stroke-[2px] [stroke-dasharray:4]"
: selected
? "stroke-zinc-800"
: "stroke-zinc-500/50 hover:stroke-zinc-500",
: edgeColorClass
? cn(edgeColorClass, "opacity-70 hover:opacity-100")
: "stroke-zinc-500/50 hover:stroke-zinc-500",
)}
/>
<JSBeads

View File

@@ -8,6 +8,7 @@ import { useCallback } from "react";
import { useNodeStore } from "../../../stores/nodeStore";
import { useHistoryStore } from "../../../stores/historyStore";
import { CustomEdge } from "./CustomEdge";
import { getEdgeColorFromOutputType } from "../nodes/helpers";
export const useCustomEdge = () => {
const edges = useEdgeStore((s) => s.edges);
@@ -34,8 +35,13 @@ export const useCustomEdge = () => {
if (exists) return;
const nodes = useNodeStore.getState().nodes;
const isStatic = nodes.find((n) => n.id === conn.source)?.data
?.staticOutput;
const sourceNode = nodes.find((n) => n.id === conn.source);
const isStatic = sourceNode?.data?.staticOutput;
const { colorClass, hexColor } = getEdgeColorFromOutputType(
sourceNode?.data?.outputSchema,
conn.sourceHandle,
);
addEdge({
source: conn.source,
@@ -44,6 +50,8 @@ export const useCustomEdge = () => {
targetHandle: conn.targetHandle,
data: {
isStatic,
edgeColorClass: colorClass,
edgeHexColor: hexColor,
},
});
},

View File

@@ -1,22 +1,21 @@
import { Button } from "@/components/atoms/Button/Button";
import { Text } from "@/components/atoms/Text/Text";
import {
Accordion,
AccordionContent,
AccordionItem,
AccordionTrigger,
} from "@/components/molecules/Accordion/Accordion";
import { beautifyString, cn } from "@/lib/utils";
import { CaretDownIcon, CopyIcon, CheckIcon } from "@phosphor-icons/react";
import { CopyIcon, CheckIcon } from "@phosphor-icons/react";
import { NodeDataViewer } from "./components/NodeDataViewer/NodeDataViewer";
import { ContentRenderer } from "./components/ContentRenderer";
import { useNodeOutput } from "./useNodeOutput";
import { ViewMoreData } from "./components/ViewMoreData";
export const NodeDataRenderer = ({ nodeId }: { nodeId: string }) => {
const {
outputData,
isExpanded,
setIsExpanded,
copiedKey,
handleCopy,
executionResultId,
inputData,
} = useNodeOutput(nodeId);
const { outputData, copiedKey, handleCopy, executionResultId, inputData } =
useNodeOutput(nodeId);
if (Object.keys(outputData).length === 0) {
return null;
@@ -25,122 +24,117 @@ export const NodeDataRenderer = ({ nodeId }: { nodeId: string }) => {
return (
<div
data-tutorial-id={`node-output`}
className="flex flex-col gap-3 rounded-b-xl border-t border-zinc-200 px-4 py-4"
className="rounded-b-xl border-t border-zinc-200 px-4 py-2"
>
<div className="flex items-center justify-between">
<Text variant="body-medium" className="!font-semibold text-slate-700">
Node Output
</Text>
<Button
variant="ghost"
size="small"
onClick={() => setIsExpanded(!isExpanded)}
className="h-fit min-w-0 p-1 text-slate-600 hover:text-slate-900"
>
<CaretDownIcon
size={16}
weight="bold"
className={`transition-transform ${isExpanded ? "rotate-180" : ""}`}
/>
</Button>
</div>
<Accordion type="single" collapsible defaultValue="node-output">
<AccordionItem value="node-output" className="border-none">
<AccordionTrigger className="py-2 hover:no-underline">
<Text
variant="body-medium"
className="!font-semibold text-slate-700"
>
Node Output
</Text>
</AccordionTrigger>
<AccordionContent className="pt-2">
<div className="flex max-w-[350px] flex-col gap-4">
<div className="space-y-2">
<Text variant="small-medium">Input</Text>
{isExpanded && (
<>
<div className="flex max-w-[350px] flex-col gap-4">
<div className="space-y-2">
<Text variant="small-medium">Input</Text>
<ContentRenderer value={inputData} shortContent={false} />
<ContentRenderer value={inputData} shortContent={false} />
<div className="mt-1 flex justify-end gap-1">
<NodeDataViewer
data={inputData}
pinName="Input"
execId={executionResultId}
/>
<Button
variant="secondary"
size="small"
onClick={() => handleCopy("input", inputData)}
className={cn(
"h-fit min-w-0 gap-1.5 border border-zinc-200 p-2 text-black hover:text-slate-900",
copiedKey === "input" &&
"border-green-400 bg-green-100 hover:border-green-400 hover:bg-green-200",
)}
>
{copiedKey === "input" ? (
<CheckIcon size={12} className="text-green-600" />
) : (
<CopyIcon size={12} />
)}
</Button>
<div className="mt-1 flex justify-end gap-1">
<NodeDataViewer
data={inputData}
pinName="Input"
execId={executionResultId}
/>
<Button
variant="secondary"
size="small"
onClick={() => handleCopy("input", inputData)}
className={cn(
"h-fit min-w-0 gap-1.5 border border-zinc-200 p-2 text-black hover:text-slate-900",
copiedKey === "input" &&
"border-green-400 bg-green-100 hover:border-green-400 hover:bg-green-200",
)}
>
{copiedKey === "input" ? (
<CheckIcon size={12} className="text-green-600" />
) : (
<CopyIcon size={12} />
)}
</Button>
</div>
</div>
</div>
{Object.entries(outputData)
.slice(0, 2)
.map(([key, value]) => (
<div key={key} className="flex flex-col gap-2">
<div className="flex items-center gap-2">
<Text
variant="small-medium"
className="!font-semibold text-slate-600"
>
Pin:
</Text>
<Text variant="small" className="text-slate-700">
{beautifyString(key)}
</Text>
</div>
<div className="w-full space-y-2">
<Text
variant="small"
className="!font-semibold text-slate-600"
>
Data:
</Text>
<div className="relative space-y-2">
{value.map((item, index) => (
<div key={index}>
<ContentRenderer value={item} shortContent={true} />
{Object.entries(outputData)
.slice(0, 2)
.map(([key, value]) => (
<div key={key} className="flex flex-col gap-2">
<div className="flex items-center gap-2">
<Text
variant="small-medium"
className="!font-semibold text-slate-600"
>
Pin:
</Text>
<Text variant="small" className="text-slate-700">
{beautifyString(key)}
</Text>
</div>
<div className="w-full space-y-2">
<Text
variant="small"
className="!font-semibold text-slate-600"
>
Data:
</Text>
<div className="relative space-y-2">
{value.map((item, index) => (
<div key={index}>
<ContentRenderer value={item} shortContent={true} />
</div>
))}
<div className="mt-1 flex justify-end gap-1">
<NodeDataViewer
data={value}
pinName={key}
execId={executionResultId}
/>
<Button
variant="secondary"
size="small"
onClick={() => handleCopy(key, value)}
className={cn(
"h-fit min-w-0 gap-1.5 border border-zinc-200 p-2 text-black hover:text-slate-900",
copiedKey === key &&
"border-green-400 bg-green-100 hover:border-green-400 hover:bg-green-200",
)}
>
{copiedKey === key ? (
<CheckIcon size={12} className="text-green-600" />
) : (
<CopyIcon size={12} />
)}
</Button>
</div>
))}
<div className="mt-1 flex justify-end gap-1">
<NodeDataViewer
data={value}
pinName={key}
execId={executionResultId}
/>
<Button
variant="secondary"
size="small"
onClick={() => handleCopy(key, value)}
className={cn(
"h-fit min-w-0 gap-1.5 border border-zinc-200 p-2 text-black hover:text-slate-900",
copiedKey === key &&
"border-green-400 bg-green-100 hover:border-green-400 hover:bg-green-200",
)}
>
{copiedKey === key ? (
<CheckIcon size={12} className="text-green-600" />
) : (
<CopyIcon size={12} />
)}
</Button>
</div>
</div>
</div>
</div>
))}
</div>
))}
</div>
{Object.keys(outputData).length > 2 && (
<ViewMoreData outputData={outputData} execId={executionResultId} />
)}
</>
)}
{Object.keys(outputData).length > 2 && (
<ViewMoreData
outputData={outputData}
execId={executionResultId}
/>
)}
</AccordionContent>
</AccordionItem>
</Accordion>
</div>
);
};

View File

@@ -4,7 +4,6 @@ import { useShallow } from "zustand/react/shallow";
import { useState } from "react";
export const useNodeOutput = (nodeId: string) => {
const [isExpanded, setIsExpanded] = useState(true);
const [copiedKey, setCopiedKey] = useState<string | null>(null);
const { toast } = useToast();
@@ -37,13 +36,10 @@ export const useNodeOutput = (nodeId: string) => {
}
};
return {
outputData: outputData,
inputData: inputData,
isExpanded: isExpanded,
setIsExpanded: setIsExpanded,
copiedKey: copiedKey,
setCopiedKey: setCopiedKey,
handleCopy: handleCopy,
outputData,
inputData,
copiedKey,
handleCopy,
executionResultId: nodeExecutionResult?.node_exec_id,
};
};

View File

@@ -187,3 +187,38 @@ export const getTypeDisplayInfo = (schema: any) => {
hexColor,
};
};
export function getEdgeColorFromOutputType(
outputSchema: RJSFSchema | undefined,
sourceHandle: string,
): { colorClass: string; hexColor: string } {
const defaultColor = {
colorClass: "stroke-zinc-500/50",
hexColor: "#6b7280",
};
if (!outputSchema?.properties) return defaultColor;
const properties = outputSchema.properties as Record<string, unknown>;
const handleParts = sourceHandle.split("_#_");
let currentSchema: Record<string, unknown> = properties;
for (let i = 0; i < handleParts.length; i++) {
const part = handleParts[i];
const fieldSchema = currentSchema[part] as Record<string, unknown>;
if (!fieldSchema) return defaultColor;
if (i === handleParts.length - 1) {
const { hexColor, colorClass } = getTypeDisplayInfo(fieldSchema);
return { colorClass: colorClass.replace("!text-", "stroke-"), hexColor };
}
if (fieldSchema.properties) {
currentSchema = fieldSchema.properties as Record<string, unknown>;
} else {
return defaultColor;
}
}
return defaultColor;
}

View File

@@ -1,7 +1,32 @@
// These are SVG Phosphor icons
type IconOptions = {
size?: number;
color?: string;
};
const DEFAULT_SIZE = 16;
const DEFAULT_COLOR = "#52525b"; // zinc-600
const iconPaths = {
ClickIcon: `M88,24V16a8,8,0,0,1,16,0v8a8,8,0,0,1-16,0ZM16,104h8a8,8,0,0,0,0-16H16a8,8,0,0,0,0,16ZM124.42,39.16a8,8,0,0,0,10.74-3.58l8-16a8,8,0,0,0-14.31-7.16l-8,16A8,8,0,0,0,124.42,39.16Zm-96,81.69-16,8a8,8,0,0,0,7.16,14.31l16-8a8,8,0,1,0-7.16-14.31ZM219.31,184a16,16,0,0,1,0,22.63l-12.68,12.68a16,16,0,0,1-22.63,0L132.7,168,115,214.09c0,.1-.08.21-.13.32a15.83,15.83,0,0,1-14.6,9.59l-.79,0a15.83,15.83,0,0,1-14.41-11L32.8,52.92A16,16,0,0,1,52.92,32.8L213,85.07a16,16,0,0,1,1.41,29.8l-.32.13L168,132.69ZM208,195.31,156.69,144h0a16,16,0,0,1,4.93-26l.32-.14,45.95-17.64L48,48l52.2,159.86,17.65-46c0-.11.08-.22.13-.33a16,16,0,0,1,11.69-9.34,16.72,16.72,0,0,1,3-.28,16,16,0,0,1,11.3,4.69L195.31,208Z`,
Keyboard: `M224,48H32A16,16,0,0,0,16,64V192a16,16,0,0,0,16,16H224a16,16,0,0,0,16-16V64A16,16,0,0,0,224,48Zm0,144H32V64H224V192Zm-16-64a8,8,0,0,1-8,8H56a8,8,0,0,1,0-16H200A8,8,0,0,1,208,128Zm0-32a8,8,0,0,1-8,8H56a8,8,0,0,1,0-16H200A8,8,0,0,1,208,96ZM72,160a8,8,0,0,1-8,8H56a8,8,0,0,1,0-16h8A8,8,0,0,1,72,160Zm96,0a8,8,0,0,1-8,8H96a8,8,0,0,1,0-16h64A8,8,0,0,1,168,160Zm40,0a8,8,0,0,1-8,8h-8a8,8,0,0,1,0-16h8A8,8,0,0,1,208,160Z`,
Drag: `M188,80a27.79,27.79,0,0,0-13.36,3.4,28,28,0,0,0-46.64-11A28,28,0,0,0,80,92v20H68a28,28,0,0,0-28,28v12a88,88,0,0,0,176,0V108A28,28,0,0,0,188,80Zm12,72a72,72,0,0,1-144,0V140a12,12,0,0,1,12-12H80v24a8,8,0,0,0,16,0V92a12,12,0,0,1,24,0v28a8,8,0,0,0,16,0V92a12,12,0,0,1,24,0v28a8,8,0,0,0,16,0V108a12,12,0,0,1,24,0Z`,
};
function createIcon(path: string, options: IconOptions = {}): string {
const size = options.size ?? DEFAULT_SIZE;
const color = options.color ?? DEFAULT_COLOR;
return `<svg xmlns="http://www.w3.org/2000/svg" width="${size}" height="${size}" fill="${color}" viewBox="0 0 256 256"><path d="${path}"></path></svg>`;
}
export const ICONS = {
ClickIcon: `<svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="#000000" viewBox="0 0 256 256"><path d="M88,24V16a8,8,0,0,1,16,0v8a8,8,0,0,1-16,0ZM16,104h8a8,8,0,0,0,0-16H16a8,8,0,0,0,0,16ZM124.42,39.16a8,8,0,0,0,10.74-3.58l8-16a8,8,0,0,0-14.31-7.16l-8,16A8,8,0,0,0,124.42,39.16Zm-96,81.69-16,8a8,8,0,0,0,7.16,14.31l16-8a8,8,0,1,0-7.16-14.31ZM219.31,184a16,16,0,0,1,0,22.63l-12.68,12.68a16,16,0,0,1-22.63,0L132.7,168,115,214.09c0,.1-.08.21-.13.32a15.83,15.83,0,0,1-14.6,9.59l-.79,0a15.83,15.83,0,0,1-14.41-11L32.8,52.92A16,16,0,0,1,52.92,32.8L213,85.07a16,16,0,0,1,1.41,29.8l-.32.13L168,132.69ZM208,195.31,156.69,144h0a16,16,0,0,1,4.93-26l.32-.14,45.95-17.64L48,48l52.2,159.86,17.65-46c0-.11.08-.22.13-.33a16,16,0,0,1,11.69-9.34,16.72,16.72,0,0,1,3-.28,16,16,0,0,1,11.3,4.69L195.31,208Z"></path></svg>`,
Keyboard: `<svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="#000000" viewBox="0 0 256 256"><path d="M224,48H32A16,16,0,0,0,16,64V192a16,16,0,0,0,16,16H224a16,16,0,0,0,16-16V64A16,16,0,0,0,224,48Zm0,144H32V64H224V192Zm-16-64a8,8,0,0,1-8,8H56a8,8,0,0,1,0-16H200A8,8,0,0,1,208,128Zm0-32a8,8,0,0,1-8,8H56a8,8,0,0,1,0-16H200A8,8,0,0,1,208,96ZM72,160a8,8,0,0,1-8,8H56a8,8,0,0,1,0-16h8A8,8,0,0,1,72,160Zm96,0a8,8,0,0,1-8,8H96a8,8,0,0,1,0-16h64A8,8,0,0,1,168,160Zm40,0a8,8,0,0,1-8,8h-8a8,8,0,0,1,0-16h8A8,8,0,0,1,208,160Z"></path></svg>`,
Drag: `<svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="#000000" viewBox="0 0 256 256"><path d="M188,80a27.79,27.79,0,0,0-13.36,3.4,28,28,0,0,0-46.64-11A28,28,0,0,0,80,92v20H68a28,28,0,0,0-28,28v12a88,88,0,0,0,176,0V108A28,28,0,0,0,188,80Zm12,72a72,72,0,0,1-144,0V140a12,12,0,0,1,12-12H80v24a8,8,0,0,0,16,0V92a12,12,0,0,1,24,0v28a8,8,0,0,0,16,0V92a12,12,0,0,1,24,0v28a8,8,0,0,0,16,0V108a12,12,0,0,1,24,0Z"></path></svg>`,
ClickIcon: createIcon(iconPaths.ClickIcon),
Keyboard: createIcon(iconPaths.Keyboard),
Drag: createIcon(iconPaths.Drag),
};
export function getIcon(
name: keyof typeof iconPaths,
options?: IconOptions,
): string {
return createIcon(iconPaths[name], options);
}

View File

@@ -11,6 +11,7 @@ import {
} from "./helpers";
import { useNodeStore } from "../../../stores/nodeStore";
import { useEdgeStore } from "../../../stores/edgeStore";
import { useTutorialStore } from "../../../stores/tutorialStore";
let isTutorialLoading = false;
let tutorialLoadingCallback: ((loading: boolean) => void) | null = null;
@@ -60,12 +61,14 @@ export const startTutorial = async () => {
handleTutorialComplete();
removeTutorialStyles();
clearPrefetchedBlocks();
useTutorialStore.getState().setIsTutorialRunning(false);
});
tour.on("cancel", () => {
handleTutorialCancel(tour);
removeTutorialStyles();
clearPrefetchedBlocks();
useTutorialStore.getState().setIsTutorialRunning(false);
});
for (const step of tour.steps) {

View File

@@ -61,12 +61,18 @@ export const convertNodesPlusBlockInfoIntoCustomNodes = (
return customNode;
};
const isToolSourceName = (sourceName: string): boolean =>
sourceName.startsWith("tools_^_");
const cleanupSourceName = (sourceName: string): string =>
isToolSourceName(sourceName) ? "tools" : sourceName;
export const linkToCustomEdge = (link: Link): CustomEdge => ({
id: link.id ?? "",
type: "custom" as const,
source: link.source_id,
target: link.sink_id,
sourceHandle: link.source_name,
sourceHandle: cleanupSourceName(link.source_name),
targetHandle: link.sink_name,
data: {
isStatic: link.is_static,

View File

@@ -267,23 +267,34 @@ export function extractCredentialsNeeded(
| undefined;
if (missingCreds && Object.keys(missingCreds).length > 0) {
const agentName = (setupInfo?.agent_name as string) || "this block";
const credentials = Object.values(missingCreds).map((credInfo) => ({
provider: (credInfo.provider as string) || "unknown",
providerName:
(credInfo.provider_name as string) ||
(credInfo.provider as string) ||
"Unknown Provider",
credentialType:
const credentials = Object.values(missingCreds).map((credInfo) => {
// Normalize to array at boundary - prefer 'types' array, fall back to single 'type'
const typesArray = credInfo.types as
| Array<"api_key" | "oauth2" | "user_password" | "host_scoped">
| undefined;
const singleType =
(credInfo.type as
| "api_key"
| "oauth2"
| "user_password"
| "host_scoped") || "api_key",
title:
(credInfo.title as string) ||
`${(credInfo.provider_name as string) || (credInfo.provider as string)} credentials`,
scopes: credInfo.scopes as string[] | undefined,
}));
| "host_scoped"
| undefined) || "api_key";
const credentialTypes =
typesArray && typesArray.length > 0 ? typesArray : [singleType];
return {
provider: (credInfo.provider as string) || "unknown",
providerName:
(credInfo.provider_name as string) ||
(credInfo.provider as string) ||
"Unknown Provider",
credentialTypes,
title:
(credInfo.title as string) ||
`${(credInfo.provider_name as string) || (credInfo.provider as string)} credentials`,
scopes: credInfo.scopes as string[] | undefined,
};
});
return {
type: "credentials_needed",
toolName,
@@ -358,11 +369,14 @@ export function extractInputsNeeded(
credentials.forEach((cred) => {
const id = cred.id as string;
if (id) {
const credentialTypes = Array.isArray(cred.types)
? cred.types
: [(cred.type as string) || "api_key"];
credentialsSchema[id] = {
type: "object",
properties: {},
credentials_provider: [cred.provider as string],
credentials_types: [(cred.type as string) || "api_key"],
credentials_types: credentialTypes,
credentials_scopes: cred.scopes as string[] | undefined,
};
}

View File

@@ -9,7 +9,9 @@ import { useChatCredentialsSetup } from "./useChatCredentialsSetup";
export interface CredentialInfo {
provider: string;
providerName: string;
credentialType: "api_key" | "oauth2" | "user_password" | "host_scoped";
credentialTypes: Array<
"api_key" | "oauth2" | "user_password" | "host_scoped"
>;
title: string;
scopes?: string[];
}
@@ -30,7 +32,7 @@ function createSchemaFromCredentialInfo(
type: "object",
properties: {},
credentials_provider: [credential.provider],
credentials_types: [credential.credentialType],
credentials_types: credential.credentialTypes,
credentials_scopes: credential.scopes,
discriminator: undefined,
discriminator_mapping: undefined,

View File

@@ -41,7 +41,9 @@ export type ChatMessageData =
credentials: Array<{
provider: string;
providerName: string;
credentialType: "api_key" | "oauth2" | "user_password" | "host_scoped";
credentialTypes: Array<
"api_key" | "oauth2" | "user_password" | "host_scoped"
>;
title: string;
scopes?: string[];
}>;

View File

@@ -31,10 +31,18 @@ export function AgentSettingsModal({
}
}
const { currentSafeMode, isPending, hasHITLBlocks, handleToggle } =
useAgentSafeMode(agent);
const {
currentHITLSafeMode,
showHITLToggle,
handleHITLToggle,
currentSensitiveActionSafeMode,
showSensitiveActionToggle,
handleSensitiveActionToggle,
isPending,
shouldShowToggle,
} = useAgentSafeMode(agent);
if (!hasHITLBlocks) return null;
if (!shouldShowToggle) return null;
return (
<Dialog
@@ -57,23 +65,48 @@ export function AgentSettingsModal({
)}
<Dialog.Content>
<div className="space-y-6">
<div className="flex w-full flex-col items-start gap-4 rounded-xl border border-zinc-100 bg-white p-6">
<div className="flex w-full items-start justify-between gap-4">
<div className="flex-1">
<Text variant="large-semibold">Require human approval</Text>
<Text variant="large" className="mt-1 text-zinc-900">
The agent will pause and wait for your review before
continuing
</Text>
{showHITLToggle && (
<div className="flex w-full flex-col items-start gap-4 rounded-xl border border-zinc-100 bg-white p-6">
<div className="flex w-full items-start justify-between gap-4">
<div className="flex-1">
<Text variant="large-semibold">
Human-in-the-loop approval
</Text>
<Text variant="large" className="mt-1 text-zinc-900">
The agent will pause at human-in-the-loop blocks and wait
for your review before continuing
</Text>
</div>
<Switch
checked={currentHITLSafeMode || false}
onCheckedChange={handleHITLToggle}
disabled={isPending}
className="mt-1"
/>
</div>
<Switch
checked={currentSafeMode || false}
onCheckedChange={handleToggle}
disabled={isPending}
className="mt-1"
/>
</div>
</div>
)}
{showSensitiveActionToggle && (
<div className="flex w-full flex-col items-start gap-4 rounded-xl border border-zinc-100 bg-white p-6">
<div className="flex w-full items-start justify-between gap-4">
<div className="flex-1">
<Text variant="large-semibold">
Sensitive action approval
</Text>
<Text variant="large" className="mt-1 text-zinc-900">
The agent will pause at sensitive action blocks and wait for
your review before continuing
</Text>
</div>
<Switch
checked={currentSensitiveActionSafeMode}
onCheckedChange={handleSensitiveActionToggle}
disabled={isPending}
className="mt-1"
/>
</div>
</div>
)}
</div>
</Dialog.Content>
</Dialog>

View File

@@ -14,6 +14,10 @@ import {
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { useEffect, useRef, useState } from "react";
import { ScheduleAgentModal } from "../ScheduleAgentModal/ScheduleAgentModal";
import {
AIAgentSafetyPopup,
useAIAgentSafetyPopup,
} from "./components/AIAgentSafetyPopup/AIAgentSafetyPopup";
import { ModalHeader } from "./components/ModalHeader/ModalHeader";
import { ModalRunSection } from "./components/ModalRunSection/ModalRunSection";
import { RunActions } from "./components/RunActions/RunActions";
@@ -83,8 +87,18 @@ export function RunAgentModal({
const [isScheduleModalOpen, setIsScheduleModalOpen] = useState(false);
const [hasOverflow, setHasOverflow] = useState(false);
const [isSafetyPopupOpen, setIsSafetyPopupOpen] = useState(false);
const [pendingRunAction, setPendingRunAction] = useState<(() => void) | null>(
null,
);
const contentRef = useRef<HTMLDivElement>(null);
const { shouldShowPopup, dismissPopup } = useAIAgentSafetyPopup(
agent.id,
agent.has_sensitive_action,
agent.has_human_in_the_loop,
);
const hasAnySetupFields =
Object.keys(agentInputFields || {}).length > 0 ||
Object.keys(agentCredentialsInputFields || {}).length > 0;
@@ -165,6 +179,24 @@ export function RunAgentModal({
onScheduleCreated?.(schedule);
}
function handleRunWithSafetyCheck() {
if (shouldShowPopup) {
setPendingRunAction(() => handleRun);
setIsSafetyPopupOpen(true);
} else {
handleRun();
}
}
function handleSafetyPopupAcknowledge() {
setIsSafetyPopupOpen(false);
dismissPopup();
if (pendingRunAction) {
pendingRunAction();
setPendingRunAction(null);
}
}
return (
<>
<Dialog
@@ -248,7 +280,7 @@ export function RunAgentModal({
)}
<RunActions
defaultRunType={defaultRunType}
onRun={handleRun}
onRun={handleRunWithSafetyCheck}
isExecuting={isExecuting}
isSettingUpTrigger={isSettingUpTrigger}
isRunReady={allRequiredInputsAreSet}
@@ -266,6 +298,12 @@ export function RunAgentModal({
</div>
</Dialog.Content>
</Dialog>
<AIAgentSafetyPopup
agentId={agent.id}
isOpen={isSafetyPopupOpen}
onAcknowledge={handleSafetyPopupAcknowledge}
/>
</>
);
}

View File

@@ -0,0 +1,108 @@
"use client";
import { Button } from "@/components/atoms/Button/Button";
import { Text } from "@/components/atoms/Text/Text";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { Key, storage } from "@/services/storage/local-storage";
import { ShieldCheckIcon } from "@phosphor-icons/react";
import { useCallback, useEffect, useState } from "react";
interface Props {
agentId: string;
onAcknowledge: () => void;
isOpen: boolean;
}
export function AIAgentSafetyPopup({ agentId, onAcknowledge, isOpen }: Props) {
function handleAcknowledge() {
// Add this agent to the list of agents for which popup has been shown
const seenAgentsJson = storage.get(Key.AI_AGENT_SAFETY_POPUP_SHOWN);
const seenAgents: string[] = seenAgentsJson
? JSON.parse(seenAgentsJson)
: [];
if (!seenAgents.includes(agentId)) {
seenAgents.push(agentId);
storage.set(Key.AI_AGENT_SAFETY_POPUP_SHOWN, JSON.stringify(seenAgents));
}
onAcknowledge();
}
if (!isOpen) return null;
return (
<Dialog
controlled={{ isOpen, set: () => {} }}
styling={{ maxWidth: "480px" }}
>
<Dialog.Content>
<div className="flex flex-col items-center p-6 text-center">
<div className="mb-6 flex h-16 w-16 items-center justify-center rounded-full bg-blue-50">
<ShieldCheckIcon
weight="fill"
size={32}
className="text-blue-600"
/>
</div>
<Text variant="h3" className="mb-4">
Safety Checks Enabled
</Text>
<Text variant="body" className="mb-2 text-zinc-700">
AI-generated agents may take actions that affect your data or
external systems.
</Text>
<Text variant="body" className="mb-8 text-zinc-700">
AutoGPT includes safety checks so you&apos;ll always have the
opportunity to review and approve sensitive actions before they
happen.
</Text>
<Button
variant="primary"
size="large"
className="w-full"
onClick={handleAcknowledge}
>
Got it
</Button>
</div>
</Dialog.Content>
</Dialog>
);
}
export function useAIAgentSafetyPopup(
agentId: string,
hasSensitiveAction: boolean,
hasHumanInTheLoop: boolean,
) {
const [shouldShowPopup, setShouldShowPopup] = useState(false);
const [hasChecked, setHasChecked] = useState(false);
useEffect(() => {
if (hasChecked) return;
const seenAgentsJson = storage.get(Key.AI_AGENT_SAFETY_POPUP_SHOWN);
const seenAgents: string[] = seenAgentsJson
? JSON.parse(seenAgentsJson)
: [];
const hasSeenPopupForThisAgent = seenAgents.includes(agentId);
const isRelevantAgent = hasSensitiveAction || hasHumanInTheLoop;
setShouldShowPopup(!hasSeenPopupForThisAgent && isRelevantAgent);
setHasChecked(true);
}, [agentId, hasSensitiveAction, hasHumanInTheLoop, hasChecked]);
const dismissPopup = useCallback(() => {
setShouldShowPopup(false);
}, []);
return {
shouldShowPopup,
dismissPopup,
};
}

View File

@@ -1,9 +1,9 @@
import { Input } from "@/components/atoms/Input/Input";
import { CredentialsGroupedView } from "@/components/contextual/CredentialsInput/components/CredentialsGroupedView/CredentialsGroupedView";
import { InformationTooltip } from "@/components/molecules/InformationTooltip/InformationTooltip";
import { useMemo } from "react";
import { RunAgentInputs } from "../../../RunAgentInputs/RunAgentInputs";
import { useRunAgentModalContext } from "../../context";
import { CredentialsGroupedView } from "../CredentialsGroupedView/CredentialsGroupedView";
import { ModalSection } from "../ModalSection/ModalSection";
import { WebhookTriggerBanner } from "../WebhookTriggerBanner/WebhookTriggerBanner";
@@ -19,6 +19,8 @@ export function ModalRunSection() {
setInputValue,
agentInputFields,
agentCredentialsInputFields,
inputCredentials,
setInputCredentialsValue,
} = useRunAgentModalContext();
const inputFields = Object.entries(agentInputFields || {});
@@ -102,6 +104,9 @@ export function ModalRunSection() {
<CredentialsGroupedView
credentialFields={credentialFields}
requiredCredentials={requiredCredentials}
inputCredentials={inputCredentials}
inputValues={inputValues}
onCredentialChange={setInputCredentialsValue}
/>
</ModalSection>
) : null}

Some files were not shown because too many files have changed in this diff Show More