Compare commits

..

40 Commits

Author SHA1 Message Date
Zamil Majdy
a80f452ffe style: fix linter formatting issues 2026-01-22 21:39:07 -05:00
Zamil Majdy
fd970c800c feat(frontend): implement per-review auto-approval toggles
- Replace global auto_approve_future_actions with per-review auto_approve_future
- Add individual toggle for each review in PendingReviewCard
- Track per-review auto-approval state in autoApproveFutureMap
- Send auto_approve_future field with each review item
- Update UI to show per-review toggle with explanation
- Automatically reset data to original when auto-approve is enabled per review
2026-01-22 21:38:17 -05:00
Zamil Majdy
5fc1ec0ece fix(backend): add user-scoped validation to cancel_pending_reviews_for_execution
- Add user_id parameter to validate ownership before cancelling reviews
- Update call site in executor/utils.py to pass user_id
- Update all test assertions to expect user_id parameter
- Prevents cross-tenant cancellation if graph_exec_id is misused
2026-01-22 21:29:00 -05:00
Zamil Majdy
9be3ec58ae fix(backend): fix pagination bug in review lookup and implement per-review auto-approval
- Add get_pending_review_by_node_exec_id() for direct review lookup
- Replace paginated search with direct lookup to avoid missing reviews beyond page 1
- Implement per-review auto_approve_future toggle for granular control
- Fix log deduplication for embedding generation warnings
- Remove unnecessary f-string prefixes per linter feedback
- Fix all test mocks to use correct functions (get_pending_reviews_for_user vs get_pending_review_by_node_exec_id)
- All 15 review route tests passing
2026-01-22 21:24:15 -05:00
Zamil Majdy
e6ca904326 style: remove unnecessary f-string prefixes
- Remove f-string prefix from strings without placeholders
- Fixes Ruff F541 linter warning
- Addresses CodeRabbit comment 2719299451
2026-01-22 21:13:24 -05:00
Zamil Majdy
dbb56fa7aa feat: add per-review auto-approval toggle for granular control
- Change from global auto_approve_future_actions to per-review auto_approve_future flag
- Each review item can now individually specify auto-approval
- Better UX: users can auto-approve some actions but not others
- Example: auto-approve file reads but not file writes
- Backward compatible: auto_approve_future defaults to False
- Add test for per-review granularity
- Update all existing tests to use new structure
2026-01-22 21:01:35 -05:00
Zamil Majdy
0111820f61 feat: deduplicate embedding generation failure warnings
- Use log_once_per_task for embedding generation failures
- Prevents log spam when API key is missing
- Now shows single warning per task instead of per-file warnings
- Makes logs more readable and actionable
2026-01-22 20:51:23 -05:00
Zamil Majdy
1a1b1aa26d fix: add user ownership validation to create_auto_approval_record
- Add defense-in-depth check that graph_exec_id belongs to user_id
- Validates ownership before creating auto-approval records
- Prevents potential misuse if function called from other contexts
- Addresses CodeRabbit security concern (comment 2718990979)
2026-01-22 20:43:47 -05:00
Zamil Majdy
614ed8cf82 fix(backend/hitl): preserve user timezone when resuming execution from review
- Add user_timezone to ExecutionContext when resuming after review approval
- Fetch user to get timezone preference, defaulting to UTC if not set
- Make error deduplication more general using contextvars
- Replace global flag with log_once_per_task() helper for task-scoped logging
- Prevents log spam when processing batches (embeddings, etc.)

Addresses CodeRabbit comment about ExecutionContext not being exhaustive.
2026-01-22 19:59:45 -05:00
Zamil Majdy
edd4c96aa6 fix: remove accidentally committed supabase submodule 2026-01-22 19:48:22 -05:00
Zamil Majdy
cd231e2d69 fix(backend/tests): fix event loop issues in review route tests
- Convert module-level TestClient to fixture to avoid event loop conflicts
- Add missing mock for get_pending_reviews_for_user in all tests
- Add client parameter to all test functions that use the test client
- Add missing mocks for get_graph_execution_meta in several tests
- Remove asyncio.gather to avoid event loop binding issues
- Process auto-approval creation sequentially with try/except for safety

All 14 review route tests now pass successfully.
2026-01-22 19:24:07 -05:00
Zamil Majdy
399c472623 fix(backend/store): deduplicate missing API key error logs
Only log "openai_internal_api_key not set" error once per process instead
of on every embedding generation attempt. Reduces log spam when processing
batch operations without an API key configured.
2026-01-22 19:09:35 -05:00
Zamil Majdy
554e2beddf fix(backend/hitl): address CodeRabbit review feedback
- Use return_exceptions=True in asyncio.gather for auto-approval creation
  to prevent endpoint failure when auto-approval fails (reviews already processed)
- Fix empty payload handling: use explicit None check instead of truthiness
- Distinguish auto-approvals from normal approvals: auto-approvals always
  use current input_data, normal approvals preserve explicitly empty payloads
2026-01-22 19:08:14 -05:00
Zamil Majdy
29fdda3fa8 test(backend/executor): add tests for stop_graph_execution with REVIEW status
- Test cancellation of pending reviews when stopping execution in REVIEW status
- Test database manager pattern when Prisma is disconnected
- Test cascading stop to children with pending reviews
- Fix mock to simulate status transition from RUNNING to TERMINATED

Covers the bug fixes in stop_graph_execution() that handle:
1. Immediate termination of REVIEW status executions
2. Cleanup of pending reviews when stopping
3. Recursive cleanup of subagent reviews via cascade
2026-01-22 18:59:20 -05:00
Zamil Majdy
67e6a8841c fix(executor): Handle REVIEW status when stopping graph executions
Critical bug fix: stopping a graph in REVIEW status caused timeouts and orphaned reviews.

## Bugs Fixed

### 1. REVIEW Status Not Handled
Before:
- stop_graph_execution() only handled QUEUED, INCOMPLETE, RUNNING, COMPLETED, FAILED
- REVIEW status → waited 15 seconds → TimeoutError
- Graph remained stuck in REVIEW status

After:
- REVIEW status treated like QUEUED/INCOMPLETE (terminate immediately)
- No need to wait for executor since execution is paused
- Clean termination without timeouts

### 2. Orphaned Pending Reviews
Before:
- Stopping graph → status = TERMINATED
- Pending reviews remained in WAITING status
- User saw reviews for terminated execution in UI
- Could not approve/reject (backend validation rejects)
- Reviews stuck until manual cleanup

After:
- When stopping REVIEW execution, clean up pending reviews
- Mark all WAITING reviews as REJECTED
- reviewMessage: 'Execution was stopped by user'
- processed: true, reviewedAt: now()
- No orphaned reviews in UI

### 3. Subagent Reviews
Before:
- Parent graph with child (subagent) executions
- Child paused for HITL review
- Stop parent → recursively stops child
- Child reviews orphaned (same bugs as above)

After:
- Cascade stop properly handles child REVIEW status
- All child reviews cleaned up recursively
- Clean shutdown of entire execution tree

## Implementation

Changes to stop_graph_execution():
1. Added ExecutionStatus.REVIEW to immediate termination list
2. Check if status == REVIEW before marking TERMINATED
3. Update all WAITING reviews to REJECTED with message
4. Log cleanup for debugging
5. Then terminate execution normally

Cascade behavior preserved:
- Still recursively stops all child executions
- Each child's reviews cleaned up individually
- Parent waits for all children to complete cleanup
2026-01-22 18:27:08 -05:00
Zamil Majdy
aea97db485 feat(frontend): Hide pending reviews panel while execution is RUNNING/QUEUED
Defense in depth: prevent users from seeing/clicking review panel before
execution pauses for review.

Before:
- Reviews panel could show while execution is RUNNING
- User could click to open panel and see pending reviews
- Confusing UX: why are reviews shown if graph hasn't paused yet?
- Could lead to frustration when backend rejects the approval attempt

After:
- Panel hidden if execution status is RUNNING or QUEUED
- Panel only shows when status is REVIEW (paused for review)
- Clear UX: reviews appear only when execution needs user input

Benefits:
1. **Better UX**: No confusion about when to approve reviews
2. **Prevents invalid attempts**: User can't try to approve while running
3. **Works with backend validation**: Frontend hides, backend rejects
4. **Clear state**: Panel visibility directly matches execution state

Changes:
- Added status check: hide if RUNNING or QUEUED
- Panel shows only when execution has paused (REVIEW/INCOMPLETE)
- Existing polling logic still works for real-time updates
2026-01-22 18:22:33 -05:00
Zamil Majdy
71a6969bbd feat(hitl): Add backend validation to prevent review processing during RUNNING/QUEUED status
Defense in depth: validate execution status before processing reviews.

Before:
- Reviews could be processed regardless of execution status
- Could cause race conditions and deadlocks
- User confusion when reviews processed but execution still running

After:
- Reject review processing with 409 Conflict if status is not REVIEW/INCOMPLETE
- Only allow processing when execution is actually paused for review
- Clear error message explaining why the request was rejected

Benefits:
1. **Prevention over cure**: Stop invalid requests before processing
2. **Clear semantics**: Reviews can only be processed when execution paused
3. **Better UX**: User gets immediate feedback if they try to approve too early
4. **Simpler resume logic**: No need for complex status checks since we validate upfront

Changes:
- Fetch graph execution metadata early in the endpoint
- Validate status is REVIEW or INCOMPLETE before processing
- Removed redundant status checks in resume logic (already validated)
- Simplified resume flow: just check if pending reviews remain
- Fixed comment: 'all pending reviews' not 'some reviews'
2026-01-22 18:22:21 -05:00
Zamil Majdy
e4c3f9995b feat(frontend): Change safety popup to per-agent instead of global
Changed AI_AGENT_SAFETY_POPUP_SHOWN from a boolean flag to an array of
agent IDs. This ensures users see the safety popup once per unique agent
instead of once globally.

Why this is better:
- Different agents have different capabilities (sensitive actions, HITL blocks)
- User should be aware of what THIS specific agent can do
- Not too annoying since it's still only once per agent, not every run
- Better safety awareness when switching between safe and risky agents

Changes:
- Store array of seen agent IDs in localStorage instead of single boolean
- Pass agentId to useAIAgentSafetyPopup hook and AIAgentSafetyPopup component
- Check if current agent ID is in the seen list before showing popup
- Add agent ID to list when user acknowledges popup

Testing:
- Clear localStorage or remove specific agent ID from array to re-trigger popup
- Each unique agent shows popup on first run only
2026-01-22 18:13:33 -05:00
Zamil Majdy
3b58684abc fix(hitl): Prevent review deadlock by resuming regardless of execution status
When users approve/reject reviews but the execution status is not REVIEW
(due to race conditions or bugs), the reviews get marked as processed but
execution never resumes, leaving the graph stuck forever.

This fix ensures that:
- If no pending reviews remain after processing, we ALWAYS attempt to resume
- Only skip if status is COMPLETED or FAILED (already finished)
- Log warning if status is unexpected (not REVIEW) but still resume to prevent deadlock
- Prevents scenario where user has nothing to do (reviews processed) but graph never completes

Example deadlock scenario (now prevented):
1. Graph creates review, sets status to REVIEW
2. User approves review → marked as APPROVED
3. Status check finds unexpected state (not REVIEW)
4. OLD: Return without resuming → graph stuck forever
5. NEW: Log warning and resume anyway → graph completes
2026-01-22 18:13:18 -05:00
Zamil Majdy
e8d44a62fd refactor(hitl): Add user_id validation and code quality improvements
- Add user_id parameter to check_approval for data isolation consistency
- Fix message text: 'block' → 'node' in auto-approval message
- Use walrus operator for cleaner approval_result check
- Move imports to top-level in test file (avoid local imports)
- Remove obvious comments (Check if pending, Resume execution, Load settings)
2026-01-22 18:04:03 -05:00
Zamil Majdy
be024da2a8 fix(hitl): Prevent review race condition by checking execution status
Fixed race condition where user approves reviews while graph execution
is still RUNNING, which could queue the execution twice and cause
duplicate/conflicting execution instances.

Solution:
- Check graph execution status BEFORE resuming
- Only resume if status is REVIEW (execution paused for review)
- Skip resumption if RUNNING (will naturally pick up approved reviews)
- Skip if COMPLETED/other (already finished)

This ensures we never queue an execution that's already running,
while still allowing the running execution to pick up approved
reviews naturally.

Added tests:
- All review action tests now mock get_graph_execution_meta
- Tests verify execution only resumes when status is REVIEW
2026-01-22 17:48:24 -05:00
Zamil Majdy
0df917e243 fix(hitl): Expose check_approval through database manager client
Fixed "Client is not connected to the query engine" error when
check_approval is called from block execution context. The function
is now accessed through the database manager async client (RPC),
similar to other HITL methods like get_or_create_human_review.

Changes:
- Add check_approval to DatabaseManager and DatabaseManagerAsyncClient
- Update HITLReviewHelper to call check_approval via database client
- Remove direct import of check_approval in review.py
2026-01-22 17:33:52 -05:00
Zamil Majdy
8688805a8c refactor(hitl): Consolidate check_auto_approval into check_approval
Merge auto-approval check and normal approval check into a single
function using find_first with OR condition. This reduces database
queries by checking both the node_exec_id and auto_approve_key in
one query.
2026-01-22 16:55:12 -05:00
Zamil Majdy
9bdda7dab0 cleanup 2026-01-22 16:23:40 -05:00
Zamil Majdy
7d377aabaa fix(db): Remove useless prefix 2026-01-22 16:00:09 -05:00
Zamil Majdy
dfd7c64068 feat(backend): Implement node-specific auto-approval using key pattern
- Add auto-approval via special nodeExecId key pattern (auto_approve_{graph_exec_id}_{node_id})
- Create auto-approval records in PendingHumanReview when user approves with auto-approve flag
- Check for existing auto-approval before requiring human review
- Remove node_id parameter from get_or_create_human_review
- Load graph settings properly when resuming execution after review
2026-01-21 22:21:00 -05:00
Zamil Majdy
02089bc047 fix(frontend): Add polling for pending reviews badge to update in real-time
- Add refetchInterval to execution details query to poll while running/review
- Add polling support to usePendingReviewsForExecution hook
- Poll pending reviews every 2 seconds when execution is in REVIEW status
- This ensures the "X Reviews Pending" badge updates without page refresh
2026-01-21 21:08:10 -05:00
Zamil Majdy
bed7b356bb fix(frontend): Reset card data when auto-approve toggle changes
Include autoApproveFuture in the key prop to force PendingReviewCard
to remount when the toggle changes, which resets its internal state
to the original payload data.
2026-01-21 21:04:56 -05:00
Zamil Majdy
4efc0ff502 fix(migration): Correct migration to only drop FK constraint, not non-existent column
The nodeId column was never added to PendingHumanReview. The migration
should only drop the foreign key constraint linking nodeExecId to
AgentNodeExecution, not try to drop a column that doesn't exist.
2026-01-21 20:13:41 -05:00
Zamil Majdy
4ad0528257 feat(hitl): Simplify auto-approval with toggle UX and remove node_id storage
- Remove nodeId column from PendingHumanReview schema (use in-memory tracking)
- Remove foreign key relation from PendingHumanReview to AgentNodeExecution
- Use ExecutionContext.auto_approved_node_ids for auto-approval tracking
- Add auto-approve toggle in frontend (default off)
- When toggle enabled: disable editing and use original data
- Backend looks up agentNodeId from AgentNodeExecution when auto-approving
- Update tests to reflect schema changes
2026-01-21 19:57:11 -05:00
Zamil Majdy
2f440ee80a Merge branch 'dev' into feat/sensitive-action-features 2026-01-21 19:08:32 -05:00
Zamil Majdy
5d0cd88d98 fix(backend): Use unqualified vector type for pgvector queries (#11818)
## Summary
- Remove explicit schema qualification (`{schema}.vector` and
`OPERATOR({schema}.<=>)`) from pgvector queries in `embeddings.py` and
`hybrid_search.py`
- Use unqualified `::vector` type cast and `<=>` operator which work
because pgvector is in the search_path on all environments

## Problem
The previous approach tried to explicitly qualify the vector type with
schema names, but this failed because:
- **CI environment**: pgvector is in `public` schema → `platform.vector`
doesn't exist
- **Dev (Supabase)**: pgvector is in `platform` schema → `public.vector`
doesn't exist

## Solution
Use unqualified `::vector` and `<=>` operator. PostgreSQL resolves these
via `search_path`, which includes the schema where pgvector is installed
on all environments.

Tested on both local and dev environments with a test script that
verified:
-  Unqualified `::vector` type cast
-  Unqualified `<=>` operator in ORDER BY
-  Unqualified `<=>` in SELECT (similarity calculation)
-  Combined query patterns matching actual usage

## Test plan
- [ ] CI tests pass
- [ ] Marketplace approval works on dev after deployment

Fixes: AUTOGPT-SERVER-763, AUTOGPT-SERVER-764, AUTOGPT-SERVER-76B
2026-01-21 18:11:58 +00:00
Zamil Majdy
033f58c075 fix(backend): Make Redis event bus gracefully handle connection failures (#11817)
## Summary
Adds graceful error handling to AsyncRedisEventBus and RedisEventBus so
that connection failures log exceptions with full traceback while
remaining non-breaking. This allows DatabaseManager to operate without
Redis connectivity.

## Problem
DatabaseManager was failing with "Authentication required" when trying
to publish notifications via AsyncRedisNotificationEventBus. The service
has no Redis credentials configured, causing `increment_onboarding_runs`
to fail.

## Root Cause
When `increment_onboarding_runs` publishes a notification:
1. Calls `AsyncRedisNotificationEventBus().publish()`
2. Attempts to connect to Redis via `get_redis_async()`
3. Connection fails due to missing credentials
4. Exception propagates, failing the entire DB operation

Previous fix (#11775) made the cache module lazy, but didn't address the
notification bus which also requires Redis.

## Solution
Wrap Redis operations in try-except blocks:
- `publish_event`: Logs exception with traceback, continues without
publishing
- `listen_events`: Logs exception with traceback, returns empty
generator
- `wait_for_event`: Returns None on connection failure

Using `logger.exception()` instead of `logger.warning()` ensures full
stack traces are captured for debugging while keeping operations
non-breaking.

This allows services to operate without Redis when only using event bus
for non-critical notifications.

## Changes
- Modified `backend/data/event_bus.py`:
- Added graceful error handling to `RedisEventBus` and
`AsyncRedisEventBus`
- All Redis operations now catch exceptions and log with
`logger.exception()`
- Added `backend/data/event_bus_test.py`:
  - Tests verify graceful degradation when Redis is unavailable
  - Tests verify normal operation when Redis is available

## Test Plan
- [x] New tests verify graceful degradation when Redis unavailable
- [x] Existing notification tests still pass
- [x] DatabaseManager can increment onboarding runs without Redis

## Related Issues
Fixes https://significant-gravitas.sentry.io/issues/7205834440/
(AUTOGPT-SERVER-76D)
2026-01-21 15:51:26 +00:00
Zamil Majdy
2a55923ec0 Merge dev to get GraphSettings fix 2026-01-21 09:31:17 -05:00
Zamil Majdy
ad50f57a2b chore: add migration for nodeId field in PendingHumanReview
Adds database migration to add the nodeId column which tracks
the node ID in the graph definition for auto-approval tracking.
2026-01-20 23:03:03 -05:00
Zamil Majdy
aebd961ef5 fix: implement node-specific auto-approval for human reviews
Instead of disabling all safe modes when approving all future actions,
now tracks specific node IDs that should be auto-approved. This means
clicking "Approve all future actions" will only auto-approve future
reviews from the same blocks, not all reviews.

Changes:
- Add nodeId field to PendingHumanReview schema
- Add auto_approved_node_ids set to ExecutionContext
- Update review helper to check auto_approved_node_ids
- Change API from disable_future_reviews to auto_approve_node_ids
- Update frontend to pass node_ids when bulk approving
- Address PR feedback: remove barrel file, JSDoc comments, and cleanup
2026-01-20 22:15:51 -05:00
Zamil Majdy
bcccaa16cc fix: remove unused props from AIAgentSafetyPopup component
Removes hasSensitiveAction and hasHumanInTheLoop props that were only
used by the hook, not the component itself, fixing ESLint unused vars error.
2026-01-20 21:05:39 -05:00
Zamil Majdy
d5ddc41b18 feat: add bulk approval option for human reviews
Add "Approve all future actions" button to the review UI that:
- Approves all current pending reviews
- Disables safe mode for the remainder of the execution run
- Shows helper text about turning auto-approval on/off in settings

Backend changes:
- Add disable_future_reviews flag to ReviewRequest model
- Pass ExecutionContext with disabled safe modes when resuming

Frontend changes:
- Add "Approve all future actions" button to PendingReviewsList
- Include helper text per PRD requirements

Implements SECRT-1795
2026-01-20 20:45:50 -05:00
Zamil Majdy
95eab5b7eb feat: add one-time safety popup for AI-generated agent runs
Show a one-time safety popup the first time a user runs an agent with
sensitive actions or human-in-the-loop blocks. The popup explains that
agents may take real-world actions and that safety checks are enabled.

- Add AI_AGENT_SAFETY_POPUP_SHOWN localStorage key
- Create AIAgentSafetyPopup component with hook
- Integrate popup into RunAgentModal before first run

Implements SECRT-1798
2026-01-20 20:40:18 -05:00
Zamil Majdy
832d6e1696 fix: correct safe mode checks for sensitive action blocks
- Add skip_safe_mode_check parameter to HITLReviewHelper to avoid
  checking the wrong safe mode flag for sensitive action blocks
- Simplify SafeModeToggle and FloatingSafeModeToggle by removing
  unnecessary intermediate variables and isHITLStateUndetermined checks
2026-01-20 20:33:55 -05:00
36 changed files with 1828 additions and 209 deletions

View File

@@ -45,9 +45,6 @@ class StreamChatRequest(BaseModel):
message: str
is_user_message: bool = True
context: dict[str, str] | None = None # {url: str, content: str}
tags: list[str] | None = (
None # Custom tags for Langfuse tracing (e.g., experiment names)
)
class CreateSessionResponse(BaseModel):
@@ -232,7 +229,6 @@ async def stream_chat_post(
user_id=user_id,
session=session, # Pass pre-fetched session to avoid double-fetch
context=request.context,
tags=request.tags,
):
yield chunk.to_sse()
# AI SDK protocol termination

View File

@@ -63,7 +63,7 @@ def _is_langfuse_configured() -> bool:
)
async def _build_system_prompt(user_id: str | None) -> tuple[str, Any, Any]:
async def _build_system_prompt(user_id: str | None) -> tuple[str, Any]:
"""Build the full system prompt including business understanding if available.
Args:
@@ -71,7 +71,7 @@ async def _build_system_prompt(user_id: str | None) -> tuple[str, Any, Any]:
If "default" and this is the user's first session, will use "onboarding" instead.
Returns:
Tuple of (compiled prompt string, understanding object, Langfuse prompt object for tracing)
Tuple of (compiled prompt string, Langfuse prompt object for tracing)
"""
# cache_ttl_seconds=0 disables SDK caching to always get the latest prompt
@@ -91,7 +91,7 @@ async def _build_system_prompt(user_id: str | None) -> tuple[str, Any, Any]:
context = "This is the first time you are meeting the user. Greet them and introduce them to the platform"
compiled = prompt.compile(users_information=context)
return compiled, understanding, prompt
return compiled, understanding
async def _generate_session_title(message: str) -> str | None:
@@ -156,7 +156,6 @@ async def stream_chat_completion(
retry_count: int = 0,
session: ChatSession | None = None,
context: dict[str, str] | None = None, # {url: str, content: str}
tags: list[str] | None = None, # Custom tags for Langfuse tracing
) -> AsyncGenerator[StreamBaseResponse, None]:
"""Main entry point for streaming chat completions with database handling.
@@ -266,7 +265,7 @@ async def stream_chat_completion(
asyncio.create_task(_update_title())
# Build system prompt with business understanding
system_prompt, understanding, langfuse_prompt = await _build_system_prompt(user_id)
system_prompt, understanding = await _build_system_prompt(user_id)
# Create Langfuse trace for this LLM call (each call gets its own trace, grouped by session_id)
# Using v3 SDK: start_observation creates a root span, update_trace sets trace-level attributes
@@ -280,15 +279,10 @@ async def stream_chat_completion(
name="user-copilot-request",
input=input,
) as span:
# Merge custom tags with default "copilot" tag
all_tags = ["copilot"]
if tags:
all_tags.extend(tags)
with propagate_attributes(
session_id=session_id,
user_id=user_id,
tags=all_tags,
tags=["copilot"],
metadata={
"users_information": format_understanding_for_prompt(understanding)[
:200
@@ -327,7 +321,6 @@ async def stream_chat_completion(
tools=tools,
system_prompt=system_prompt,
text_block_id=text_block_id,
langfuse_prompt=langfuse_prompt,
):
if isinstance(chunk, StreamTextStart):
@@ -474,7 +467,6 @@ async def stream_chat_completion(
retry_count=retry_count + 1,
session=session,
context=context,
tags=tags,
):
yield chunk
return # Exit after retry to avoid double-saving in finally block
@@ -524,7 +516,6 @@ async def stream_chat_completion(
session=session, # Pass session object to avoid Redis refetch
context=context,
tool_call_response=str(tool_response_messages),
tags=tags,
):
yield chunk
@@ -543,8 +534,8 @@ def _is_retryable_error(error: Exception) -> bool:
return True
if isinstance(error, APIStatusError):
# APIStatusError has a response with status_code
# Retry on 5xx status codes (server errors) or 429 (rate limit)
if error.response.status_code >= 500 or error.response.status_code == 429:
# Retry on 5xx status codes (server errors)
if error.response.status_code >= 500:
return True
if isinstance(error, APIError):
# Retry on overloaded errors or 500 errors (may not have status code)
@@ -559,7 +550,6 @@ async def _stream_chat_chunks(
tools: list[ChatCompletionToolParam],
system_prompt: str | None = None,
text_block_id: str | None = None,
langfuse_prompt: Any | None = None,
) -> AsyncGenerator[StreamBaseResponse, None]:
"""
Pure streaming function for OpenAI chat completions with tool calling.
@@ -571,7 +561,6 @@ async def _stream_chat_chunks(
session: Chat session with conversation history
tools: Available tools for the model
system_prompt: System prompt to prepend to messages
langfuse_prompt: Langfuse prompt object for linking to traces
Yields:
SSE formatted JSON response objects
@@ -605,7 +594,6 @@ async def _stream_chat_chunks(
)
# Create the stream with proper types
# Pass langfuse_prompt to link generation to prompt version in Langfuse
stream = await client.chat.completions.create(
model=model,
messages=messages,
@@ -613,7 +601,6 @@ async def _stream_chat_chunks(
tool_choice="auto",
stream=True,
stream_options={"include_usage": True},
langfuse_prompt=langfuse_prompt, # type: ignore[call-overload]
)
# Variables to accumulate tool calls

View File

@@ -107,6 +107,13 @@ class ReviewItem(BaseModel):
reviewed_data: SafeJsonData | None = Field(
None, description="Optional edited data (ignored if approved=False)"
)
auto_approve_future: bool = Field(
default=False,
description=(
"If true and this review is approved, future executions of this same "
"block (node) will be automatically approved. This only affects approved reviews."
),
)
@field_validator("reviewed_data")
@classmethod
@@ -174,6 +181,9 @@ class ReviewRequest(BaseModel):
This request must include ALL pending reviews for a graph execution.
Each review will be either approved (with optional data modifications)
or rejected (data ignored). The execution will resume only after ALL reviews are processed.
Each review item can individually specify whether to auto-approve future executions
of the same block via the `auto_approve_future` field on ReviewItem.
"""
reviews: List[ReviewItem] = Field(

View File

@@ -8,6 +8,12 @@ from prisma.enums import ReviewStatus
from pytest_snapshot.plugin import Snapshot
from backend.api.rest_api import handle_internal_http_error
from backend.data.execution import (
ExecutionContext,
ExecutionStatus,
NodeExecutionResult,
)
from backend.data.graph import GraphSettings
from .model import PendingHumanReviewModel
from .routes import router
@@ -15,20 +21,24 @@ from .routes import router
# Using a fixed timestamp for reproducible tests
FIXED_NOW = datetime.datetime(2023, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc)
app = fastapi.FastAPI()
app.include_router(router, prefix="/api/review")
app.add_exception_handler(ValueError, handle_internal_http_error(400))
client = fastapi.testclient.TestClient(app)
@pytest.fixture
def app():
"""Create FastAPI app for testing"""
test_app = fastapi.FastAPI()
test_app.include_router(router, prefix="/api/review")
test_app.add_exception_handler(ValueError, handle_internal_http_error(400))
return test_app
@pytest.fixture(autouse=True)
def setup_app_auth(mock_jwt_user):
"""Setup auth overrides for all tests in this module"""
@pytest.fixture
def client(app, mock_jwt_user):
"""Create test client with auth overrides"""
from autogpt_libs.auth.jwt_utils import get_jwt_payload
app.dependency_overrides[get_jwt_payload] = mock_jwt_user["get_jwt_payload"]
yield
with fastapi.testclient.TestClient(app) as test_client:
yield test_client
app.dependency_overrides.clear()
@@ -55,6 +65,7 @@ def sample_pending_review(test_user_id: str) -> PendingHumanReviewModel:
def test_get_pending_reviews_empty(
client: fastapi.testclient.TestClient,
mocker: pytest_mock.MockerFixture,
snapshot: Snapshot,
test_user_id: str,
@@ -73,6 +84,7 @@ def test_get_pending_reviews_empty(
def test_get_pending_reviews_with_data(
client: fastapi.testclient.TestClient,
mocker: pytest_mock.MockerFixture,
sample_pending_review: PendingHumanReviewModel,
snapshot: Snapshot,
@@ -95,6 +107,7 @@ def test_get_pending_reviews_with_data(
def test_get_pending_reviews_for_execution_success(
client: fastapi.testclient.TestClient,
mocker: pytest_mock.MockerFixture,
sample_pending_review: PendingHumanReviewModel,
snapshot: Snapshot,
@@ -123,6 +136,7 @@ def test_get_pending_reviews_for_execution_success(
def test_get_pending_reviews_for_execution_not_available(
client: fastapi.testclient.TestClient,
mocker: pytest_mock.MockerFixture,
) -> None:
"""Test access denied when user doesn't own the execution"""
@@ -138,6 +152,7 @@ def test_get_pending_reviews_for_execution_not_available(
def test_process_review_action_approve_success(
client: fastapi.testclient.TestClient,
mocker: pytest_mock.MockerFixture,
sample_pending_review: PendingHumanReviewModel,
test_user_id: str,
@@ -145,6 +160,12 @@ def test_process_review_action_approve_success(
"""Test successful review approval"""
# Mock the route functions
# Mock get_pending_review_by_node_exec_id (called to find the graph_exec_id)
mock_get_reviews_for_user = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_review_by_node_exec_id"
)
mock_get_reviews_for_user.return_value = sample_pending_review
mock_get_reviews_for_execution = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_reviews_for_execution"
)
@@ -173,6 +194,14 @@ def test_process_review_action_approve_success(
)
mock_process_all_reviews.return_value = {"test_node_123": approved_review}
# Mock get_graph_execution_meta to return execution in REVIEW status
mock_get_graph_exec = mocker.patch(
"backend.api.features.executions.review.routes.get_graph_execution_meta"
)
mock_graph_exec_meta = mocker.Mock()
mock_graph_exec_meta.status = ExecutionStatus.REVIEW
mock_get_graph_exec.return_value = mock_graph_exec_meta
mock_has_pending = mocker.patch(
"backend.api.features.executions.review.routes.has_pending_reviews_for_graph_exec"
)
@@ -202,6 +231,7 @@ def test_process_review_action_approve_success(
def test_process_review_action_reject_success(
client: fastapi.testclient.TestClient,
mocker: pytest_mock.MockerFixture,
sample_pending_review: PendingHumanReviewModel,
test_user_id: str,
@@ -209,6 +239,20 @@ def test_process_review_action_reject_success(
"""Test successful review rejection"""
# Mock the route functions
# Mock get_pending_review_by_node_exec_id (called to find the graph_exec_id)
mock_get_reviews_for_user = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_review_by_node_exec_id"
)
mock_get_reviews_for_user.return_value = sample_pending_review
# Mock get_graph_execution_meta to return execution in REVIEW status
mock_get_graph_exec = mocker.patch(
"backend.api.features.executions.review.routes.get_graph_execution_meta"
)
mock_graph_exec_meta = mocker.Mock()
mock_graph_exec_meta.status = ExecutionStatus.REVIEW
mock_get_graph_exec.return_value = mock_graph_exec_meta
mock_get_reviews_for_execution = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_reviews_for_execution"
)
@@ -262,6 +306,7 @@ def test_process_review_action_reject_success(
def test_process_review_action_mixed_success(
client: fastapi.testclient.TestClient,
mocker: pytest_mock.MockerFixture,
sample_pending_review: PendingHumanReviewModel,
test_user_id: str,
@@ -288,6 +333,12 @@ def test_process_review_action_mixed_success(
# Mock the route functions
# Mock get_pending_review_by_node_exec_id (called to find the graph_exec_id)
mock_get_reviews_for_user = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_review_by_node_exec_id"
)
mock_get_reviews_for_user.return_value = sample_pending_review
mock_get_reviews_for_execution = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_reviews_for_execution"
)
@@ -337,6 +388,14 @@ def test_process_review_action_mixed_success(
"test_node_456": rejected_review,
}
# Mock get_graph_execution_meta to return execution in REVIEW status
mock_get_graph_exec = mocker.patch(
"backend.api.features.executions.review.routes.get_graph_execution_meta"
)
mock_graph_exec_meta = mocker.Mock()
mock_graph_exec_meta.status = ExecutionStatus.REVIEW
mock_get_graph_exec.return_value = mock_graph_exec_meta
mock_has_pending = mocker.patch(
"backend.api.features.executions.review.routes.has_pending_reviews_for_graph_exec"
)
@@ -369,6 +428,7 @@ def test_process_review_action_mixed_success(
def test_process_review_action_empty_request(
client: fastapi.testclient.TestClient,
mocker: pytest_mock.MockerFixture,
test_user_id: str,
) -> None:
@@ -386,10 +446,45 @@ def test_process_review_action_empty_request(
def test_process_review_action_review_not_found(
client: fastapi.testclient.TestClient,
mocker: pytest_mock.MockerFixture,
sample_pending_review: PendingHumanReviewModel,
test_user_id: str,
) -> None:
"""Test error when review is not found"""
# Create a review with the nonexistent_node ID so the route can find the graph_exec_id
nonexistent_review = PendingHumanReviewModel(
node_exec_id="nonexistent_node",
user_id=test_user_id,
graph_exec_id="test_graph_exec_456",
graph_id="test_graph_789",
graph_version=1,
payload={"data": "test"},
instructions="Review",
editable=True,
status=ReviewStatus.WAITING,
review_message=None,
was_edited=None,
processed=False,
created_at=FIXED_NOW,
updated_at=None,
reviewed_at=None,
)
# Mock get_pending_review_by_node_exec_id (called to find the graph_exec_id)
mock_get_reviews_for_user = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_review_by_node_exec_id"
)
mock_get_reviews_for_user.return_value = nonexistent_review
# Mock get_graph_execution_meta to return execution in REVIEW status
mock_get_graph_exec = mocker.patch(
"backend.api.features.executions.review.routes.get_graph_execution_meta"
)
mock_graph_exec_meta = mocker.Mock()
mock_graph_exec_meta.status = ExecutionStatus.REVIEW
mock_get_graph_exec.return_value = mock_graph_exec_meta
# Mock the functions that extract graph execution ID from the request
mock_get_reviews_for_execution = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_reviews_for_execution"
@@ -422,11 +517,26 @@ def test_process_review_action_review_not_found(
def test_process_review_action_partial_failure(
client: fastapi.testclient.TestClient,
mocker: pytest_mock.MockerFixture,
sample_pending_review: PendingHumanReviewModel,
test_user_id: str,
) -> None:
"""Test handling of partial failures in review processing"""
# Mock get_pending_review_by_node_exec_id (called to find the graph_exec_id)
mock_get_reviews_for_user = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_review_by_node_exec_id"
)
mock_get_reviews_for_user.return_value = sample_pending_review
# Mock get_graph_execution_meta to return execution in REVIEW status
mock_get_graph_exec = mocker.patch(
"backend.api.features.executions.review.routes.get_graph_execution_meta"
)
mock_graph_exec_meta = mocker.Mock()
mock_graph_exec_meta.status = ExecutionStatus.REVIEW
mock_get_graph_exec.return_value = mock_graph_exec_meta
# Mock the route functions
mock_get_reviews_for_execution = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_reviews_for_execution"
@@ -456,16 +566,50 @@ def test_process_review_action_partial_failure(
def test_process_review_action_invalid_node_exec_id(
client: fastapi.testclient.TestClient,
mocker: pytest_mock.MockerFixture,
sample_pending_review: PendingHumanReviewModel,
test_user_id: str,
) -> None:
"""Test failure when trying to process review with invalid node execution ID"""
# Create a review with the invalid-node-format ID so the route can find the graph_exec_id
invalid_review = PendingHumanReviewModel(
node_exec_id="invalid-node-format",
user_id=test_user_id,
graph_exec_id="test_graph_exec_456",
graph_id="test_graph_789",
graph_version=1,
payload={"data": "test"},
instructions="Review",
editable=True,
status=ReviewStatus.WAITING,
review_message=None,
was_edited=None,
processed=False,
created_at=FIXED_NOW,
updated_at=None,
reviewed_at=None,
)
# Mock get_pending_review_by_node_exec_id (called to find the graph_exec_id)
mock_get_reviews_for_user = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_review_by_node_exec_id"
)
mock_get_reviews_for_user.return_value = invalid_review
# Mock get_graph_execution_meta to return execution in REVIEW status
mock_get_graph_exec = mocker.patch(
"backend.api.features.executions.review.routes.get_graph_execution_meta"
)
mock_graph_exec_meta = mocker.Mock()
mock_graph_exec_meta.status = ExecutionStatus.REVIEW
mock_get_graph_exec.return_value = mock_graph_exec_meta
# Mock the route functions
mock_get_reviews_for_execution = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_reviews_for_execution"
)
mock_get_reviews_for_execution.return_value = [sample_pending_review]
mock_get_reviews_for_execution.return_value = [invalid_review]
# Mock validation failure - this should return 400, not 500
mock_process_all_reviews = mocker.patch(
@@ -490,3 +634,571 @@ def test_process_review_action_invalid_node_exec_id(
# Should be a 400 Bad Request, not 500 Internal Server Error
assert response.status_code == 400
assert "Invalid node execution ID format" in response.json()["detail"]
def test_process_review_action_auto_approve_creates_auto_approval_records(
client: fastapi.testclient.TestClient,
mocker: pytest_mock.MockerFixture,
sample_pending_review: PendingHumanReviewModel,
test_user_id: str,
) -> None:
"""Test that auto_approve_future_actions flag creates auto-approval records"""
# Mock get_pending_review_by_node_exec_id (called to find the graph_exec_id)
mock_get_reviews_for_user = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_review_by_node_exec_id"
)
mock_get_reviews_for_user.return_value = sample_pending_review
# Mock process_all_reviews
mock_process_all_reviews = mocker.patch(
"backend.api.features.executions.review.routes.process_all_reviews_for_execution"
)
approved_review = PendingHumanReviewModel(
node_exec_id="test_node_123",
user_id=test_user_id,
graph_exec_id="test_graph_exec_456",
graph_id="test_graph_789",
graph_version=1,
payload={"data": "test payload"},
instructions="Please review",
editable=True,
status=ReviewStatus.APPROVED,
review_message="Approved",
was_edited=False,
processed=False,
created_at=FIXED_NOW,
updated_at=FIXED_NOW,
reviewed_at=FIXED_NOW,
)
mock_process_all_reviews.return_value = {"test_node_123": approved_review}
# Mock get_node_execution to return node_id
mock_get_node_execution = mocker.patch(
"backend.api.features.executions.review.routes.get_node_execution"
)
mock_node_exec = mocker.Mock(spec=NodeExecutionResult)
mock_node_exec.node_id = "test_node_def_456"
mock_get_node_execution.return_value = mock_node_exec
# Mock create_auto_approval_record
mock_create_auto_approval = mocker.patch(
"backend.api.features.executions.review.routes.create_auto_approval_record"
)
# Mock get_graph_execution_meta to return execution in REVIEW status
mock_get_graph_exec = mocker.patch(
"backend.api.features.executions.review.routes.get_graph_execution_meta"
)
mock_graph_exec_meta = mocker.Mock()
mock_graph_exec_meta.status = ExecutionStatus.REVIEW
mock_get_graph_exec.return_value = mock_graph_exec_meta
# Mock has_pending_reviews_for_graph_exec
mock_has_pending = mocker.patch(
"backend.api.features.executions.review.routes.has_pending_reviews_for_graph_exec"
)
mock_has_pending.return_value = False
# Mock get_graph_settings to return custom settings
mock_get_settings = mocker.patch(
"backend.api.features.executions.review.routes.get_graph_settings"
)
mock_get_settings.return_value = GraphSettings(
human_in_the_loop_safe_mode=True,
sensitive_action_safe_mode=True,
)
# Mock add_graph_execution
mock_add_execution = mocker.patch(
"backend.api.features.executions.review.routes.add_graph_execution"
)
request_data = {
"reviews": [
{
"node_exec_id": "test_node_123",
"approved": True,
"message": "Approved",
"auto_approve_future": True,
}
],
}
response = client.post("/api/review/action", json=request_data)
assert response.status_code == 200
# Verify process_all_reviews_for_execution was called (without auto_approve param)
mock_process_all_reviews.assert_called_once()
# Verify create_auto_approval_record was called for the approved review
mock_create_auto_approval.assert_called_once_with(
user_id=test_user_id,
graph_exec_id="test_graph_exec_456",
graph_id="test_graph_789",
graph_version=1,
node_id="test_node_def_456",
payload={"data": "test payload"},
)
# Verify get_graph_settings was called with correct parameters
mock_get_settings.assert_called_once_with(
user_id=test_user_id, graph_id="test_graph_789"
)
# Verify add_graph_execution was called with proper ExecutionContext
mock_add_execution.assert_called_once()
call_kwargs = mock_add_execution.call_args.kwargs
execution_context = call_kwargs["execution_context"]
assert isinstance(execution_context, ExecutionContext)
assert execution_context.human_in_the_loop_safe_mode is True
assert execution_context.sensitive_action_safe_mode is True
def test_process_review_action_without_auto_approve_still_loads_settings(
client: fastapi.testclient.TestClient,
mocker: pytest_mock.MockerFixture,
sample_pending_review: PendingHumanReviewModel,
test_user_id: str,
) -> None:
"""Test that execution context is created with settings even without auto-approve"""
# Mock get_pending_review_by_node_exec_id (called to find the graph_exec_id)
mock_get_reviews_for_user = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_review_by_node_exec_id"
)
mock_get_reviews_for_user.return_value = sample_pending_review
# Mock process_all_reviews
mock_process_all_reviews = mocker.patch(
"backend.api.features.executions.review.routes.process_all_reviews_for_execution"
)
approved_review = PendingHumanReviewModel(
node_exec_id="test_node_123",
user_id=test_user_id,
graph_exec_id="test_graph_exec_456",
graph_id="test_graph_789",
graph_version=1,
payload={"data": "test payload"},
instructions="Please review",
editable=True,
status=ReviewStatus.APPROVED,
review_message="Approved",
was_edited=False,
processed=False,
created_at=FIXED_NOW,
updated_at=FIXED_NOW,
reviewed_at=FIXED_NOW,
)
mock_process_all_reviews.return_value = {"test_node_123": approved_review}
# Mock create_auto_approval_record - should NOT be called when auto_approve is False
mock_create_auto_approval = mocker.patch(
"backend.api.features.executions.review.routes.create_auto_approval_record"
)
# Mock get_graph_execution_meta to return execution in REVIEW status
mock_get_graph_exec = mocker.patch(
"backend.api.features.executions.review.routes.get_graph_execution_meta"
)
mock_graph_exec_meta = mocker.Mock()
mock_graph_exec_meta.status = ExecutionStatus.REVIEW
mock_get_graph_exec.return_value = mock_graph_exec_meta
# Mock has_pending_reviews_for_graph_exec
mock_has_pending = mocker.patch(
"backend.api.features.executions.review.routes.has_pending_reviews_for_graph_exec"
)
mock_has_pending.return_value = False
# Mock get_graph_settings with sensitive_action_safe_mode enabled
mock_get_settings = mocker.patch(
"backend.api.features.executions.review.routes.get_graph_settings"
)
mock_get_settings.return_value = GraphSettings(
human_in_the_loop_safe_mode=False,
sensitive_action_safe_mode=True,
)
# Mock add_graph_execution
mock_add_execution = mocker.patch(
"backend.api.features.executions.review.routes.add_graph_execution"
)
# Request WITHOUT auto_approve_future (defaults to False)
request_data = {
"reviews": [
{
"node_exec_id": "test_node_123",
"approved": True,
"message": "Approved",
# auto_approve_future defaults to False
}
],
}
response = client.post("/api/review/action", json=request_data)
assert response.status_code == 200
# Verify process_all_reviews_for_execution was called
mock_process_all_reviews.assert_called_once()
# Verify create_auto_approval_record was NOT called (auto_approve_future=False)
mock_create_auto_approval.assert_not_called()
# Verify settings were loaded
mock_get_settings.assert_called_once()
# Verify ExecutionContext has proper settings
mock_add_execution.assert_called_once()
call_kwargs = mock_add_execution.call_args.kwargs
execution_context = call_kwargs["execution_context"]
assert isinstance(execution_context, ExecutionContext)
assert execution_context.human_in_the_loop_safe_mode is False
assert execution_context.sensitive_action_safe_mode is True
def test_process_review_action_auto_approve_only_applies_to_approved_reviews(
client: fastapi.testclient.TestClient,
mocker: pytest_mock.MockerFixture,
test_user_id: str,
) -> None:
"""Test that auto_approve record is created only for approved reviews"""
# Create two reviews - one approved, one rejected
approved_review = PendingHumanReviewModel(
node_exec_id="node_exec_approved",
user_id=test_user_id,
graph_exec_id="test_graph_exec_456",
graph_id="test_graph_789",
graph_version=1,
payload={"data": "approved"},
instructions="Review",
editable=True,
status=ReviewStatus.APPROVED,
review_message=None,
was_edited=False,
processed=False,
created_at=FIXED_NOW,
updated_at=FIXED_NOW,
reviewed_at=FIXED_NOW,
)
rejected_review = PendingHumanReviewModel(
node_exec_id="node_exec_rejected",
user_id=test_user_id,
graph_exec_id="test_graph_exec_456",
graph_id="test_graph_789",
graph_version=1,
payload={"data": "rejected"},
instructions="Review",
editable=True,
status=ReviewStatus.REJECTED,
review_message="Rejected",
was_edited=False,
processed=False,
created_at=FIXED_NOW,
updated_at=FIXED_NOW,
reviewed_at=FIXED_NOW,
)
# Mock get_pending_review_by_node_exec_id (called to find the graph_exec_id)
mock_get_reviews_for_user = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_review_by_node_exec_id"
)
mock_get_reviews_for_user.return_value = approved_review
# Mock process_all_reviews
mock_process_all_reviews = mocker.patch(
"backend.api.features.executions.review.routes.process_all_reviews_for_execution"
)
mock_process_all_reviews.return_value = {
"node_exec_approved": approved_review,
"node_exec_rejected": rejected_review,
}
# Mock get_node_execution to return node_id (only called for approved review)
mock_get_node_execution = mocker.patch(
"backend.api.features.executions.review.routes.get_node_execution"
)
mock_node_exec = mocker.Mock(spec=NodeExecutionResult)
mock_node_exec.node_id = "test_node_def_approved"
mock_get_node_execution.return_value = mock_node_exec
# Mock create_auto_approval_record
mock_create_auto_approval = mocker.patch(
"backend.api.features.executions.review.routes.create_auto_approval_record"
)
# Mock get_graph_execution_meta to return execution in REVIEW status
mock_get_graph_exec = mocker.patch(
"backend.api.features.executions.review.routes.get_graph_execution_meta"
)
mock_graph_exec_meta = mocker.Mock()
mock_graph_exec_meta.status = ExecutionStatus.REVIEW
mock_get_graph_exec.return_value = mock_graph_exec_meta
# Mock has_pending_reviews_for_graph_exec
mock_has_pending = mocker.patch(
"backend.api.features.executions.review.routes.has_pending_reviews_for_graph_exec"
)
mock_has_pending.return_value = False
# Mock get_graph_settings
mock_get_settings = mocker.patch(
"backend.api.features.executions.review.routes.get_graph_settings"
)
mock_get_settings.return_value = GraphSettings()
# Mock add_graph_execution
mock_add_execution = mocker.patch(
"backend.api.features.executions.review.routes.add_graph_execution"
)
request_data = {
"reviews": [
{
"node_exec_id": "node_exec_approved",
"approved": True,
"auto_approve_future": True,
},
{
"node_exec_id": "node_exec_rejected",
"approved": False,
"auto_approve_future": True, # Should be ignored since rejected
},
],
}
response = client.post("/api/review/action", json=request_data)
assert response.status_code == 200
# Verify process_all_reviews_for_execution was called
mock_process_all_reviews.assert_called_once()
# Verify create_auto_approval_record was called ONLY for the approved review
# (not for the rejected one)
mock_create_auto_approval.assert_called_once_with(
user_id=test_user_id,
graph_exec_id="test_graph_exec_456",
graph_id="test_graph_789",
graph_version=1,
node_id="test_node_def_approved",
payload={"data": "approved"},
)
# Verify get_node_execution was called only for approved review
mock_get_node_execution.assert_called_once_with("node_exec_approved")
# Verify ExecutionContext was created (auto-approval is now DB-based)
call_kwargs = mock_add_execution.call_args.kwargs
execution_context = call_kwargs["execution_context"]
assert isinstance(execution_context, ExecutionContext)
def test_process_review_action_per_review_auto_approve_granularity(
client: fastapi.testclient.TestClient,
mocker: pytest_mock.MockerFixture,
sample_pending_review: PendingHumanReviewModel,
test_user_id: str,
) -> None:
"""Test that auto-approval can be set per-review (granular control)"""
# Mock get_pending_review_by_node_exec_id - return different reviews based on node_exec_id
mock_get_reviews_for_user = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_review_by_node_exec_id"
)
# Create a mapping of node_exec_id to review
review_map = {
"node_1_auto": PendingHumanReviewModel(
node_exec_id="node_1_auto",
user_id=test_user_id,
graph_exec_id="test_graph_exec",
graph_id="test_graph",
graph_version=1,
payload={"data": "node1"},
instructions="Review 1",
editable=True,
status=ReviewStatus.WAITING,
review_message=None,
was_edited=False,
processed=False,
created_at=FIXED_NOW,
),
"node_2_manual": PendingHumanReviewModel(
node_exec_id="node_2_manual",
user_id=test_user_id,
graph_exec_id="test_graph_exec",
graph_id="test_graph",
graph_version=1,
payload={"data": "node2"},
instructions="Review 2",
editable=True,
status=ReviewStatus.WAITING,
review_message=None,
was_edited=False,
processed=False,
created_at=FIXED_NOW,
),
"node_3_auto": PendingHumanReviewModel(
node_exec_id="node_3_auto",
user_id=test_user_id,
graph_exec_id="test_graph_exec",
graph_id="test_graph",
graph_version=1,
payload={"data": "node3"},
instructions="Review 3",
editable=True,
status=ReviewStatus.WAITING,
review_message=None,
was_edited=False,
processed=False,
created_at=FIXED_NOW,
),
}
# Use side_effect to return different reviews based on node_exec_id parameter
def mock_get_review_by_id(node_exec_id: str, _user_id: str):
return review_map.get(node_exec_id)
mock_get_reviews_for_user.side_effect = mock_get_review_by_id
# Mock process_all_reviews - return 3 approved reviews
mock_process_all_reviews = mocker.patch(
"backend.api.features.executions.review.routes.process_all_reviews_for_execution"
)
mock_process_all_reviews.return_value = {
"node_1_auto": PendingHumanReviewModel(
node_exec_id="node_1_auto",
user_id=test_user_id,
graph_exec_id="test_graph_exec",
graph_id="test_graph",
graph_version=1,
payload={"data": "node1"},
instructions="Review 1",
editable=True,
status=ReviewStatus.APPROVED,
review_message=None,
was_edited=False,
processed=False,
created_at=FIXED_NOW,
updated_at=FIXED_NOW,
reviewed_at=FIXED_NOW,
),
"node_2_manual": PendingHumanReviewModel(
node_exec_id="node_2_manual",
user_id=test_user_id,
graph_exec_id="test_graph_exec",
graph_id="test_graph",
graph_version=1,
payload={"data": "node2"},
instructions="Review 2",
editable=True,
status=ReviewStatus.APPROVED,
review_message=None,
was_edited=False,
processed=False,
created_at=FIXED_NOW,
updated_at=FIXED_NOW,
reviewed_at=FIXED_NOW,
),
"node_3_auto": PendingHumanReviewModel(
node_exec_id="node_3_auto",
user_id=test_user_id,
graph_exec_id="test_graph_exec",
graph_id="test_graph",
graph_version=1,
payload={"data": "node3"},
instructions="Review 3",
editable=True,
status=ReviewStatus.APPROVED,
review_message=None,
was_edited=False,
processed=False,
created_at=FIXED_NOW,
updated_at=FIXED_NOW,
reviewed_at=FIXED_NOW,
),
}
# Mock get_node_execution
mock_get_node_execution = mocker.patch(
"backend.api.features.executions.review.routes.get_node_execution"
)
def mock_get_node(node_exec_id: str):
mock_node = mocker.Mock(spec=NodeExecutionResult)
mock_node.node_id = f"node_def_{node_exec_id}"
return mock_node
mock_get_node_execution.side_effect = mock_get_node
# Mock create_auto_approval_record
mock_create_auto_approval = mocker.patch(
"backend.api.features.executions.review.routes.create_auto_approval_record"
)
# Mock get_graph_execution_meta
mock_get_graph_exec = mocker.patch(
"backend.api.features.executions.review.routes.get_graph_execution_meta"
)
mock_graph_exec_meta = mocker.Mock()
mock_graph_exec_meta.status = ExecutionStatus.REVIEW
mock_get_graph_exec.return_value = mock_graph_exec_meta
# Mock has_pending_reviews_for_graph_exec
mock_has_pending = mocker.patch(
"backend.api.features.executions.review.routes.has_pending_reviews_for_graph_exec"
)
mock_has_pending.return_value = False
# Mock settings and execution
mock_get_settings = mocker.patch(
"backend.api.features.executions.review.routes.get_graph_settings"
)
mock_get_settings.return_value = GraphSettings(
human_in_the_loop_safe_mode=False, sensitive_action_safe_mode=False
)
mocker.patch("backend.api.features.executions.review.routes.add_graph_execution")
mocker.patch("backend.api.features.executions.review.routes.get_user_by_id")
# Request with granular auto-approval:
# - node_1_auto: auto_approve_future=True
# - node_2_manual: auto_approve_future=False (explicit)
# - node_3_auto: auto_approve_future=True
request_data = {
"reviews": [
{
"node_exec_id": "node_1_auto",
"approved": True,
"auto_approve_future": True,
},
{
"node_exec_id": "node_2_manual",
"approved": True,
"auto_approve_future": False, # Don't auto-approve this one
},
{
"node_exec_id": "node_3_auto",
"approved": True,
"auto_approve_future": True,
},
],
}
response = client.post("/api/review/action", json=request_data)
assert response.status_code == 200
# Verify create_auto_approval_record was called ONLY for reviews with auto_approve_future=True
assert mock_create_auto_approval.call_count == 2
# Check that it was called for node_1 and node_3, but NOT node_2
call_args_list = [call.kwargs for call in mock_create_auto_approval.call_args_list]
node_ids_with_auto_approval = [args["node_id"] for args in call_args_list]
assert "node_def_node_1_auto" in node_ids_with_auto_approval
assert "node_def_node_3_auto" in node_ids_with_auto_approval
assert "node_def_node_2_manual" not in node_ids_with_auto_approval

View File

@@ -5,13 +5,23 @@ import autogpt_libs.auth as autogpt_auth_lib
from fastapi import APIRouter, HTTPException, Query, Security, status
from prisma.enums import ReviewStatus
from backend.data.execution import get_graph_execution_meta
from backend.data.execution import (
ExecutionContext,
ExecutionStatus,
get_graph_execution_meta,
get_node_execution,
)
from backend.data.graph import get_graph_settings
from backend.data.human_review import (
create_auto_approval_record,
get_pending_review_by_node_exec_id,
get_pending_reviews_for_execution,
get_pending_reviews_for_user,
has_pending_reviews_for_graph_exec,
process_all_reviews_for_execution,
)
from backend.data.model import USER_TIMEZONE_NOT_SET
from backend.data.user import get_user_by_id
from backend.executor.utils import add_graph_execution
from .model import PendingHumanReviewModel, ReviewRequest, ReviewResponse
@@ -127,17 +137,64 @@ async def process_review_action(
detail="At least one review must be provided",
)
# Build review decisions map
# Get graph execution ID by directly looking up one of the requested reviews
# Use direct lookup to avoid pagination issues (can't miss reviews beyond first page)
matching_review = None
for node_exec_id in all_request_node_ids:
review = await get_pending_review_by_node_exec_id(node_exec_id, user_id)
if review:
matching_review = review
break
if not matching_review:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail="No pending reviews found for the requested node executions",
)
graph_exec_id = matching_review.graph_exec_id
# Validate execution status before processing reviews
graph_exec_meta = await get_graph_execution_meta(
user_id=user_id, execution_id=graph_exec_id
)
if not graph_exec_meta:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=f"Graph execution #{graph_exec_id} not found",
)
# Only allow processing reviews if execution is paused for review
# or incomplete (partial execution with some reviews already processed)
if graph_exec_meta.status not in (
ExecutionStatus.REVIEW,
ExecutionStatus.INCOMPLETE,
):
raise HTTPException(
status_code=status.HTTP_409_CONFLICT,
detail=f"Cannot process reviews while execution status is {graph_exec_meta.status}. "
f"Reviews can only be processed when execution is paused (REVIEW status). "
f"Current status: {graph_exec_meta.status}",
)
# Build review decisions map and track which reviews requested auto-approval
# Auto-approved reviews use original data (no modifications allowed)
review_decisions = {}
auto_approve_requests = {} # Map node_exec_id -> auto_approve_future flag
for review in request.reviews:
review_status = (
ReviewStatus.APPROVED if review.approved else ReviewStatus.REJECTED
)
# If this review requested auto-approval, don't allow data modifications
reviewed_data = None if review.auto_approve_future else review.reviewed_data
review_decisions[review.node_exec_id] = (
review_status,
review.reviewed_data,
reviewed_data,
review.message,
)
auto_approve_requests[review.node_exec_id] = review.auto_approve_future
# Process all reviews
updated_reviews = await process_all_reviews_for_execution(
@@ -145,6 +202,32 @@ async def process_review_action(
review_decisions=review_decisions,
)
# Create auto-approval records for approved reviews that requested it
# Note: Processing sequentially to avoid event loop issues in tests
for node_exec_id, review_result in updated_reviews.items():
# Only create auto-approval if:
# 1. This review was approved
# 2. The review requested auto-approval
if review_result.status == ReviewStatus.APPROVED and auto_approve_requests.get(
node_exec_id, False
):
try:
node_exec = await get_node_execution(node_exec_id)
if node_exec:
await create_auto_approval_record(
user_id=user_id,
graph_exec_id=review_result.graph_exec_id,
graph_id=review_result.graph_id,
graph_version=review_result.graph_version,
node_id=node_exec.node_id,
payload=review_result.payload,
)
except Exception as e:
logger.error(
f"Failed to create auto-approval record for {node_exec_id}",
exc_info=e,
)
# Count results
approved_count = sum(
1
@@ -157,22 +240,37 @@ async def process_review_action(
if review.status == ReviewStatus.REJECTED
)
# Resume execution if we processed some reviews
# Resume execution only if ALL pending reviews for this execution have been processed
if updated_reviews:
# Get graph execution ID from any processed review
first_review = next(iter(updated_reviews.values()))
graph_exec_id = first_review.graph_exec_id
# Check if any pending reviews remain for this execution
still_has_pending = await has_pending_reviews_for_graph_exec(graph_exec_id)
if not still_has_pending:
# Resume execution
# Get the graph_id from any processed review
first_review = next(iter(updated_reviews.values()))
try:
# Fetch user and settings to build complete execution context
user = await get_user_by_id(user_id)
settings = await get_graph_settings(
user_id=user_id, graph_id=first_review.graph_id
)
# Preserve user's timezone preference when resuming execution
user_timezone = (
user.timezone if user.timezone != USER_TIMEZONE_NOT_SET else "UTC"
)
execution_context = ExecutionContext(
human_in_the_loop_safe_mode=settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=settings.sensitive_action_safe_mode,
user_timezone=user_timezone,
)
await add_graph_execution(
graph_id=first_review.graph_id,
user_id=user_id,
graph_exec_id=graph_exec_id,
execution_context=execution_context,
)
logger.info(f"Resumed execution {graph_exec_id}")
except Exception as e:

View File

@@ -6,6 +6,7 @@ Handles generation and storage of OpenAI embeddings for all content types
"""
import asyncio
import contextvars
import logging
import time
from typing import Any
@@ -21,6 +22,11 @@ from backend.util.json import dumps
logger = logging.getLogger(__name__)
# Context variable to track errors logged in the current task/operation
# This prevents spamming the same error multiple times when processing batches
_logged_errors: contextvars.ContextVar[set[str]] = contextvars.ContextVar(
"_logged_errors"
)
# OpenAI embedding model configuration
EMBEDDING_MODEL = "text-embedding-3-small"
@@ -31,6 +37,42 @@ EMBEDDING_DIM = 1536
EMBEDDING_MAX_TOKENS = 8191
def log_once_per_task(error_key: str, log_fn, message: str, **kwargs) -> bool:
"""
Log an error/warning only once per task/operation to avoid log spam.
Uses contextvars to track what has been logged in the current async context.
Useful when processing batches where the same error might occur for many items.
Args:
error_key: Unique identifier for this error type
log_fn: Logger function to call (e.g., logger.error, logger.warning)
message: Message to log
**kwargs: Additional arguments to pass to log_fn
Returns:
True if the message was logged, False if it was suppressed (already logged)
Example:
log_once_per_task("missing_api_key", logger.error, "API key not set")
"""
# Get current logged errors, or create a new set if this is the first call in this context
logged = _logged_errors.get(None)
if logged is None:
logged = set()
_logged_errors.set(logged)
if error_key in logged:
return False
# Log the message with a note that it will only appear once
log_fn(f"{message} (This message will only be shown once per task.)", **kwargs)
# Mark as logged
logged.add(error_key)
return True
def build_searchable_text(
name: str,
description: str,
@@ -73,7 +115,11 @@ async def generate_embedding(text: str) -> list[float] | None:
try:
client = get_openai_client()
if not client:
logger.error("openai_internal_api_key not set, cannot generate embedding")
log_once_per_task(
"openai_api_key_missing",
logger.error,
"openai_internal_api_key not set, cannot generate embeddings",
)
return None
# Truncate text to token limit using tiktoken
@@ -154,16 +200,16 @@ async def store_content_embedding(
# Upsert the embedding
# WHERE clause in DO UPDATE prevents PostgreSQL 15 bug with NULLS NOT DISTINCT
# Use {pgvector_schema}.vector for explicit pgvector type qualification
# Use unqualified ::vector - pgvector is in search_path on all environments
await execute_raw_with_schema(
"""
INSERT INTO {schema_prefix}"UnifiedContentEmbedding" (
"id", "contentType", "contentId", "userId", "embedding", "searchableText", "metadata", "createdAt", "updatedAt"
)
VALUES (gen_random_uuid()::text, $1::{schema_prefix}"ContentType", $2, $3, $4::{pgvector_schema}.vector, $5, $6::jsonb, NOW(), NOW())
VALUES (gen_random_uuid()::text, $1::{schema_prefix}"ContentType", $2, $3, $4::vector, $5, $6::jsonb, NOW(), NOW())
ON CONFLICT ("contentType", "contentId", "userId")
DO UPDATE SET
"embedding" = $4::{pgvector_schema}.vector,
"embedding" = $4::vector,
"searchableText" = $5,
"metadata" = $6::jsonb,
"updatedAt" = NOW()
@@ -290,7 +336,12 @@ async def ensure_embedding(
# Generate new embedding
embedding = await generate_embedding(searchable_text)
if embedding is None:
logger.warning(f"Could not generate embedding for version {version_id}")
log_once_per_task(
"embedding_generation_failed",
logger.warning,
"Could not generate embeddings (missing API key or service unavailable). "
"Embedding generation is disabled for this task.",
)
return False
# Store the embedding with metadata using new function
@@ -609,8 +660,11 @@ async def ensure_content_embedding(
# Generate new embedding
embedding = await generate_embedding(searchable_text)
if embedding is None:
logger.warning(
f"Could not generate embedding for {content_type}:{content_id}"
log_once_per_task(
"embedding_generation_failed",
logger.warning,
"Could not generate embeddings (missing API key or service unavailable). "
"Embedding generation is disabled for this task.",
)
return False
@@ -879,8 +933,7 @@ async def semantic_search(
min_similarity_idx = len(params) + 1
params.append(min_similarity)
# Use regular string (not f-string) for template to preserve {schema_prefix} and {schema} placeholders
# Use OPERATOR({pgvector_schema}.<=>) for explicit operator schema qualification
# Use unqualified ::vector and <=> operator - pgvector is in search_path on all environments
sql = (
"""
SELECT
@@ -888,9 +941,9 @@ async def semantic_search(
"contentType" as content_type,
"searchableText" as searchable_text,
metadata,
1 - (embedding OPERATOR({pgvector_schema}.<=>) '"""
1 - (embedding <=> '"""
+ embedding_str
+ """'::{pgvector_schema}.vector) as similarity
+ """'::vector) as similarity
FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" IN ("""
+ content_type_placeholders
@@ -898,9 +951,9 @@ async def semantic_search(
"""
+ user_filter
+ """
AND 1 - (embedding OPERATOR({pgvector_schema}.<=>) '"""
AND 1 - (embedding <=> '"""
+ embedding_str
+ """'::{pgvector_schema}.vector) >= $"""
+ """'::vector) >= $"""
+ str(min_similarity_idx)
+ """
ORDER BY similarity DESC

View File

@@ -295,7 +295,7 @@ async def unified_hybrid_search(
FROM {{schema_prefix}}"UnifiedContentEmbedding" uce
WHERE uce."contentType" = ANY({content_types_param}::{{schema_prefix}}"ContentType"[])
{user_filter}
ORDER BY uce.embedding OPERATOR({{pgvector_schema}}.<=>) {embedding_param}::{{pgvector_schema}}.vector
ORDER BY uce.embedding <=> {embedding_param}::vector
LIMIT 200
)
),
@@ -307,7 +307,7 @@ async def unified_hybrid_search(
uce.metadata,
uce."updatedAt" as updated_at,
-- Semantic score: cosine similarity (1 - distance)
COALESCE(1 - (uce.embedding OPERATOR({{pgvector_schema}}.<=>) {embedding_param}::{{pgvector_schema}}.vector), 0) as semantic_score,
COALESCE(1 - (uce.embedding <=> {embedding_param}::vector), 0) as semantic_score,
-- Lexical score: ts_rank_cd
COALESCE(ts_rank_cd(uce.search, plainto_tsquery('english', {query_param})), 0) as lexical_raw,
-- Category match from metadata
@@ -583,7 +583,7 @@ async def hybrid_search(
WHERE uce."contentType" = 'STORE_AGENT'::{{schema_prefix}}"ContentType"
AND uce."userId" IS NULL
AND {where_clause}
ORDER BY uce.embedding OPERATOR({{pgvector_schema}}.<=>) {embedding_param}::{{pgvector_schema}}.vector
ORDER BY uce.embedding <=> {embedding_param}::vector
LIMIT 200
) uce
),
@@ -605,7 +605,7 @@ async def hybrid_search(
-- Searchable text for BM25 reranking
COALESCE(sa.agent_name, '') || ' ' || COALESCE(sa.sub_heading, '') || ' ' || COALESCE(sa.description, '') as searchable_text,
-- Semantic score
COALESCE(1 - (uce.embedding OPERATOR({{pgvector_schema}}.<=>) {embedding_param}::{{pgvector_schema}}.vector), 0) as semantic_score,
COALESCE(1 - (uce.embedding <=> {embedding_param}::vector), 0) as semantic_score,
-- Lexical score (raw, will normalize)
COALESCE(ts_rank_cd(uce.search, plainto_tsquery('english', {query_param})), 0) as lexical_raw,
-- Category match

View File

@@ -116,6 +116,7 @@ class PrintToConsoleBlock(Block):
input_schema=PrintToConsoleBlock.Input,
output_schema=PrintToConsoleBlock.Output,
test_input={"text": "Hello, World!"},
is_sensitive_action=True,
test_output=[
("output", "Hello, World!"),
("status", "printed"),

View File

@@ -9,7 +9,7 @@ from typing import Any, Optional
from prisma.enums import ReviewStatus
from pydantic import BaseModel
from backend.data.execution import ExecutionContext, ExecutionStatus
from backend.data.execution import ExecutionStatus
from backend.data.human_review import ReviewResult
from backend.executor.manager import async_update_node_execution_status
from backend.util.clients import get_database_manager_async_client
@@ -28,6 +28,11 @@ class ReviewDecision(BaseModel):
class HITLReviewHelper:
"""Helper class for Human-In-The-Loop review operations."""
@staticmethod
async def check_approval(**kwargs) -> Optional[ReviewResult]:
"""Check if there's an existing approval for this node execution."""
return await get_database_manager_async_client().check_approval(**kwargs)
@staticmethod
async def get_or_create_human_review(**kwargs) -> Optional[ReviewResult]:
"""Create or retrieve a human review from the database."""
@@ -55,11 +60,11 @@ class HITLReviewHelper:
async def _handle_review_request(
input_data: Any,
user_id: str,
node_id: str,
node_exec_id: str,
graph_exec_id: str,
graph_id: str,
graph_version: int,
execution_context: ExecutionContext,
block_name: str = "Block",
editable: bool = False,
) -> Optional[ReviewResult]:
@@ -69,11 +74,11 @@ class HITLReviewHelper:
Args:
input_data: The input data to be reviewed
user_id: ID of the user requesting the review
node_id: ID of the node in the graph definition
node_exec_id: ID of the node execution
graph_exec_id: ID of the graph execution
graph_id: ID of the graph
graph_version: Version of the graph
execution_context: Current execution context
block_name: Name of the block requesting review
editable: Whether the reviewer can edit the data
@@ -83,15 +88,40 @@ class HITLReviewHelper:
Raises:
Exception: If review creation or status update fails
"""
# Skip review if safe mode is disabled - return auto-approved result
if not execution_context.human_in_the_loop_safe_mode:
# Note: Safe mode checks (human_in_the_loop_safe_mode, sensitive_action_safe_mode)
# are handled by the caller:
# - HITL blocks check human_in_the_loop_safe_mode in their run() method
# - Sensitive action blocks check sensitive_action_safe_mode in is_block_exec_need_review()
# This function only handles checking for existing approvals.
# Check if this node has already been approved (normal or auto-approval)
if approval_result := await HITLReviewHelper.check_approval(
node_exec_id=node_exec_id,
graph_exec_id=graph_exec_id,
node_id=node_id,
user_id=user_id,
):
logger.info(
f"Block {block_name} skipping review for node {node_exec_id} - safe mode disabled"
f"Block {block_name} skipping review for node {node_exec_id} - "
f"found existing approval"
)
# Return a new ReviewResult with the current node_exec_id but approved status
# For auto-approvals, always use current input_data
# For normal approvals, use approval_result.data unless it's None
is_auto_approval = approval_result.node_exec_id != node_exec_id
approved_data = (
input_data
if is_auto_approval
else (
approval_result.data
if approval_result.data is not None
else input_data
)
)
return ReviewResult(
data=input_data,
data=approved_data,
status=ReviewStatus.APPROVED,
message="Auto-approved (safe mode disabled)",
message=approval_result.message,
processed=True,
node_exec_id=node_exec_id,
)
@@ -129,11 +159,11 @@ class HITLReviewHelper:
async def handle_review_decision(
input_data: Any,
user_id: str,
node_id: str,
node_exec_id: str,
graph_exec_id: str,
graph_id: str,
graph_version: int,
execution_context: ExecutionContext,
block_name: str = "Block",
editable: bool = False,
) -> Optional[ReviewDecision]:
@@ -143,11 +173,11 @@ class HITLReviewHelper:
Args:
input_data: The input data to be reviewed
user_id: ID of the user requesting the review
node_id: ID of the node in the graph definition
node_exec_id: ID of the node execution
graph_exec_id: ID of the graph execution
graph_id: ID of the graph
graph_version: Version of the graph
execution_context: Current execution context
block_name: Name of the block requesting review
editable: Whether the reviewer can edit the data
@@ -158,11 +188,11 @@ class HITLReviewHelper:
review_result = await HITLReviewHelper._handle_review_request(
input_data=input_data,
user_id=user_id,
node_id=node_id,
node_exec_id=node_exec_id,
graph_exec_id=graph_exec_id,
graph_id=graph_id,
graph_version=graph_version,
execution_context=execution_context,
block_name=block_name,
editable=editable,
)

View File

@@ -97,6 +97,7 @@ class HumanInTheLoopBlock(Block):
input_data: Input,
*,
user_id: str,
node_id: str,
node_exec_id: str,
graph_exec_id: str,
graph_id: str,
@@ -115,11 +116,11 @@ class HumanInTheLoopBlock(Block):
decision = await self.handle_review_decision(
input_data=input_data.data,
user_id=user_id,
node_id=node_id,
node_exec_id=node_exec_id,
graph_exec_id=graph_exec_id,
graph_id=graph_id,
graph_version=graph_version,
execution_context=execution_context,
block_name=self.name,
editable=input_data.editable,
)

View File

@@ -441,6 +441,7 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
static_output: bool = False,
block_type: BlockType = BlockType.STANDARD,
webhook_config: Optional[BlockWebhookConfig | BlockManualWebhookConfig] = None,
is_sensitive_action: bool = False,
):
"""
Initialize the block with the given schema.
@@ -473,8 +474,8 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
self.static_output = static_output
self.block_type = block_type
self.webhook_config = webhook_config
self.is_sensitive_action = is_sensitive_action
self.execution_stats: NodeExecutionStats = NodeExecutionStats()
self.is_sensitive_action: bool = False
if self.webhook_config:
if isinstance(self.webhook_config, BlockWebhookConfig):
@@ -622,6 +623,7 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
input_data: BlockInput,
*,
user_id: str,
node_id: str,
node_exec_id: str,
graph_exec_id: str,
graph_id: str,
@@ -648,11 +650,11 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
decision = await HITLReviewHelper.handle_review_decision(
input_data=input_data,
user_id=user_id,
node_id=node_id,
node_exec_id=node_exec_id,
graph_exec_id=graph_exec_id,
graph_id=graph_id,
graph_version=graph_version,
execution_context=execution_context,
block_name=self.name,
editable=True,
)

View File

@@ -121,10 +121,14 @@ async def _raw_with_schema(
Supports placeholders:
- {schema_prefix}: Table/type prefix (e.g., "platform".)
- {schema}: Raw schema name for application tables (e.g., platform)
- {pgvector_schema}: Schema where pgvector is installed (defaults to "public")
Note on pgvector types:
Use unqualified ::vector and <=> operator in queries. PostgreSQL resolves
these via search_path, which includes the schema where pgvector is installed
on all environments (local, CI, dev).
Args:
query_template: SQL query with {schema_prefix}, {schema}, and/or {pgvector_schema} placeholders
query_template: SQL query with {schema_prefix} and/or {schema} placeholders
*args: Query parameters
execute: If False, executes SELECT query. If True, executes INSERT/UPDATE/DELETE.
client: Optional Prisma client for transactions (only used when execute=True).
@@ -135,20 +139,16 @@ async def _raw_with_schema(
Example with vector type:
await execute_raw_with_schema(
'INSERT INTO {schema_prefix}"Embedding" (vec) VALUES ($1::{pgvector_schema}.vector)',
'INSERT INTO {schema_prefix}"Embedding" (vec) VALUES ($1::vector)',
embedding_data
)
"""
schema = get_database_schema()
schema_prefix = f'"{schema}".' if schema != "public" else ""
# pgvector extension is typically installed in "public" schema
# On Supabase it may be in "extensions" but "public" is the common default
pgvector_schema = "public"
formatted_query = query_template.format(
schema_prefix=schema_prefix,
schema=schema,
pgvector_schema=pgvector_schema,
)
import prisma as prisma_module

View File

@@ -103,8 +103,18 @@ class RedisEventBus(BaseRedisEventBus[M], ABC):
return redis.get_redis()
def publish_event(self, event: M, channel_key: str):
message, full_channel_name = self._serialize_message(event, channel_key)
self.connection.publish(full_channel_name, message)
"""
Publish an event to Redis. Gracefully handles connection failures
by logging the error instead of raising exceptions.
"""
try:
message, full_channel_name = self._serialize_message(event, channel_key)
self.connection.publish(full_channel_name, message)
except Exception:
logger.exception(
f"Failed to publish event to Redis channel {channel_key}. "
"Event bus operation will continue without Redis connectivity."
)
def listen_events(self, channel_key: str) -> Generator[M, None, None]:
pubsub, full_channel_name = self._get_pubsub_channel(
@@ -128,9 +138,19 @@ class AsyncRedisEventBus(BaseRedisEventBus[M], ABC):
return await redis.get_redis_async()
async def publish_event(self, event: M, channel_key: str):
message, full_channel_name = self._serialize_message(event, channel_key)
connection = await self.connection
await connection.publish(full_channel_name, message)
"""
Publish an event to Redis. Gracefully handles connection failures
by logging the error instead of raising exceptions.
"""
try:
message, full_channel_name = self._serialize_message(event, channel_key)
connection = await self.connection
await connection.publish(full_channel_name, message)
except Exception:
logger.exception(
f"Failed to publish event to Redis channel {channel_key}. "
"Event bus operation will continue without Redis connectivity."
)
async def listen_events(self, channel_key: str) -> AsyncGenerator[M, None]:
pubsub, full_channel_name = self._get_pubsub_channel(

View File

@@ -0,0 +1,56 @@
"""
Tests for event_bus graceful degradation when Redis is unavailable.
"""
from unittest.mock import AsyncMock, patch
import pytest
from pydantic import BaseModel
from backend.data.event_bus import AsyncRedisEventBus
class TestEvent(BaseModel):
"""Test event model."""
message: str
class TestNotificationBus(AsyncRedisEventBus[TestEvent]):
"""Test implementation of AsyncRedisEventBus."""
Model = TestEvent
@property
def event_bus_name(self) -> str:
return "test_event_bus"
@pytest.mark.asyncio
async def test_publish_event_handles_connection_failure_gracefully():
"""Test that publish_event logs exception instead of raising when Redis is unavailable."""
bus = TestNotificationBus()
event = TestEvent(message="test message")
# Mock get_redis_async to raise connection error
with patch(
"backend.data.event_bus.redis.get_redis_async",
side_effect=ConnectionError("Authentication required."),
):
# Should not raise exception
await bus.publish_event(event, "test_channel")
@pytest.mark.asyncio
async def test_publish_event_works_with_redis_available():
"""Test that publish_event works normally when Redis is available."""
bus = TestNotificationBus()
event = TestEvent(message="test message")
# Mock successful Redis connection
mock_redis = AsyncMock()
mock_redis.publish = AsyncMock()
with patch("backend.data.event_bus.redis.get_redis_async", return_value=mock_redis):
await bus.publish_event(event, "test_channel")
mock_redis.publish.assert_called_once()

View File

@@ -81,6 +81,8 @@ class ExecutionContext(BaseModel):
This includes information needed by blocks, sub-graphs, and execution management.
"""
model_config = {"extra": "ignore"}
human_in_the_loop_safe_mode: bool = True
sensitive_action_safe_mode: bool = False
user_timezone: str = "UTC"

View File

@@ -64,6 +64,8 @@ logger = logging.getLogger(__name__)
class GraphSettings(BaseModel):
# Use Annotated with BeforeValidator to coerce None to default values.
# This handles cases where the database has null values for these fields.
model_config = {"extra": "ignore"}
human_in_the_loop_safe_mode: Annotated[
bool, BeforeValidator(lambda v: v if v is not None else True)
] = True

View File

@@ -17,6 +17,7 @@ from backend.api.features.executions.review.model import (
PendingHumanReviewModel,
SafeJsonData,
)
from backend.data.execution import get_graph_execution_meta
from backend.util.json import SafeJson
logger = logging.getLogger(__name__)
@@ -32,6 +33,117 @@ class ReviewResult(BaseModel):
node_exec_id: str
def get_auto_approve_key(graph_exec_id: str, node_id: str) -> str:
"""Generate the special nodeExecId key for auto-approval records."""
return f"auto_approve_{graph_exec_id}_{node_id}"
async def check_approval(
node_exec_id: str,
graph_exec_id: str,
node_id: str,
user_id: str,
) -> Optional[ReviewResult]:
"""
Check if there's an existing approval for this node execution.
Checks both:
1. Normal approval by node_exec_id (previous run of the same node execution)
2. Auto-approval by special key pattern "auto_approve_{graph_exec_id}_{node_id}"
Args:
node_exec_id: ID of the node execution
graph_exec_id: ID of the graph execution
node_id: ID of the node definition (not execution)
user_id: ID of the user (for data isolation)
Returns:
ReviewResult if approval found (either normal or auto), None otherwise
"""
auto_approve_key = get_auto_approve_key(graph_exec_id, node_id)
# Check for either normal approval or auto-approval in a single query
existing_review = await PendingHumanReview.prisma().find_first(
where={
"OR": [
{"nodeExecId": node_exec_id},
{"nodeExecId": auto_approve_key},
],
"status": ReviewStatus.APPROVED,
"userId": user_id,
},
)
if existing_review:
is_auto_approval = existing_review.nodeExecId == auto_approve_key
logger.info(
f"Found {'auto-' if is_auto_approval else ''}approval for node {node_id} "
f"(exec: {node_exec_id}) in execution {graph_exec_id}"
)
return ReviewResult(
data=existing_review.payload,
status=ReviewStatus.APPROVED,
message=(
"Auto-approved (user approved all future actions for this node)"
if is_auto_approval
else existing_review.reviewMessage or ""
),
processed=True,
node_exec_id=existing_review.nodeExecId,
)
return None
async def create_auto_approval_record(
user_id: str,
graph_exec_id: str,
graph_id: str,
graph_version: int,
node_id: str,
payload: SafeJsonData,
) -> None:
"""
Create an auto-approval record for a node in this execution.
This is stored as a PendingHumanReview with a special nodeExecId pattern
and status=APPROVED, so future executions of the same node can skip review.
Raises:
ValueError: If the graph execution doesn't belong to the user
"""
# Validate that the graph execution belongs to this user (defense in depth)
graph_exec = await get_graph_execution_meta(
user_id=user_id, execution_id=graph_exec_id
)
if not graph_exec:
raise ValueError(
f"Graph execution {graph_exec_id} not found or doesn't belong to user {user_id}"
)
auto_approve_key = get_auto_approve_key(graph_exec_id, node_id)
await PendingHumanReview.prisma().upsert(
where={"nodeExecId": auto_approve_key},
data={
"create": {
"nodeExecId": auto_approve_key,
"userId": user_id,
"graphExecId": graph_exec_id,
"graphId": graph_id,
"graphVersion": graph_version,
"payload": SafeJson(payload),
"instructions": "Auto-approval record",
"editable": False,
"status": ReviewStatus.APPROVED,
"processed": True,
"reviewedAt": datetime.now(timezone.utc),
},
"update": {}, # Already exists, no update needed
},
)
async def get_or_create_human_review(
user_id: str,
node_exec_id: str,
@@ -108,6 +220,29 @@ async def get_or_create_human_review(
)
async def get_pending_review_by_node_exec_id(
node_exec_id: str, user_id: str
) -> Optional["PendingHumanReviewModel"]:
"""
Get a pending review by its node execution ID.
Args:
node_exec_id: The node execution ID to look up
user_id: User ID for authorization (only returns if review belongs to this user)
Returns:
The pending review if found and belongs to user, None otherwise
"""
review = await PendingHumanReview.prisma().find_unique(
where={"nodeExecId": node_exec_id}
)
if not review or review.userId != user_id or review.status != ReviewStatus.WAITING:
return None
return PendingHumanReviewModel.from_db(review)
async def has_pending_reviews_for_graph_exec(graph_exec_id: str) -> bool:
"""
Check if a graph execution has any pending reviews.
@@ -256,3 +391,44 @@ async def update_review_processed_status(node_exec_id: str, processed: bool) ->
await PendingHumanReview.prisma().update(
where={"nodeExecId": node_exec_id}, data={"processed": processed}
)
async def cancel_pending_reviews_for_execution(graph_exec_id: str, user_id: str) -> int:
"""
Cancel all pending reviews for a graph execution (e.g., when execution is stopped).
Marks all WAITING reviews as REJECTED with a message indicating the execution was stopped.
Args:
graph_exec_id: The graph execution ID
user_id: User ID who owns the execution (for security validation)
Returns:
Number of reviews cancelled
Raises:
ValueError: If the graph execution doesn't belong to the user
"""
# Validate user ownership before cancelling reviews
graph_exec = await get_graph_execution_meta(
user_id=user_id, execution_id=graph_exec_id
)
if not graph_exec:
raise ValueError(
f"Graph execution {graph_exec_id} not found or doesn't belong to user {user_id}"
)
result = await PendingHumanReview.prisma().update_many(
where={
"graphExecId": graph_exec_id,
"userId": user_id,
"status": ReviewStatus.WAITING,
},
data={
"status": ReviewStatus.REJECTED,
"reviewMessage": "Execution was stopped by user",
"processed": True,
"reviewedAt": datetime.now(timezone.utc),
},
)
return result

View File

@@ -46,8 +46,8 @@ async def test_get_or_create_human_review_new(
sample_db_review.status = ReviewStatus.WAITING
sample_db_review.processed = False
mock_upsert = mocker.patch("backend.data.human_review.PendingHumanReview.prisma")
mock_upsert.return_value.upsert = AsyncMock(return_value=sample_db_review)
mock_prisma = mocker.patch("backend.data.human_review.PendingHumanReview.prisma")
mock_prisma.return_value.upsert = AsyncMock(return_value=sample_db_review)
result = await get_or_create_human_review(
user_id="test-user-123",
@@ -75,8 +75,8 @@ async def test_get_or_create_human_review_approved(
sample_db_review.processed = False
sample_db_review.reviewMessage = "Looks good"
mock_upsert = mocker.patch("backend.data.human_review.PendingHumanReview.prisma")
mock_upsert.return_value.upsert = AsyncMock(return_value=sample_db_review)
mock_prisma = mocker.patch("backend.data.human_review.PendingHumanReview.prisma")
mock_prisma.return_value.upsert = AsyncMock(return_value=sample_db_review)
result = await get_or_create_human_review(
user_id="test-user-123",

View File

@@ -50,6 +50,8 @@ from backend.data.graph import (
validate_graph_execution_permissions,
)
from backend.data.human_review import (
cancel_pending_reviews_for_execution,
check_approval,
get_or_create_human_review,
has_pending_reviews_for_graph_exec,
update_review_processed_status,
@@ -190,6 +192,8 @@ class DatabaseManager(AppService):
get_user_notification_preference = _(get_user_notification_preference)
# Human In The Loop
cancel_pending_reviews_for_execution = _(cancel_pending_reviews_for_execution)
check_approval = _(check_approval)
get_or_create_human_review = _(get_or_create_human_review)
has_pending_reviews_for_graph_exec = _(has_pending_reviews_for_graph_exec)
update_review_processed_status = _(update_review_processed_status)
@@ -313,6 +317,8 @@ class DatabaseManagerAsyncClient(AppServiceClient):
set_execution_kv_data = d.set_execution_kv_data
# Human In The Loop
cancel_pending_reviews_for_execution = d.cancel_pending_reviews_for_execution
check_approval = d.check_approval
get_or_create_human_review = d.get_or_create_human_review
update_review_processed_status = d.update_review_processed_status

View File

@@ -10,6 +10,7 @@ from pydantic import BaseModel, JsonValue, ValidationError
from backend.data import execution as execution_db
from backend.data import graph as graph_db
from backend.data import human_review as human_review_db
from backend.data import onboarding as onboarding_db
from backend.data import user as user_db
from backend.data.block import (
@@ -749,9 +750,27 @@ async def stop_graph_execution(
if graph_exec.status in [
ExecutionStatus.QUEUED,
ExecutionStatus.INCOMPLETE,
ExecutionStatus.REVIEW,
]:
# If the graph is still on the queue, we can prevent them from being executed
# by setting the status to TERMINATED.
# If the graph is queued/incomplete/paused for review, terminate immediately
# No need to wait for executor since it's not actively running
# If graph is in REVIEW status, clean up pending reviews before terminating
if graph_exec.status == ExecutionStatus.REVIEW:
# Use human_review_db if Prisma connected, else database manager
review_db = (
human_review_db
if prisma.is_connected()
else get_database_manager_async_client()
)
# Mark all pending reviews as rejected/cancelled
cancelled_count = await review_db.cancel_pending_reviews_for_execution(
graph_exec_id, user_id
)
logger.info(
f"Cancelled {cancelled_count} pending review(s) for stopped execution {graph_exec_id}"
)
graph_exec.status = ExecutionStatus.TERMINATED
await asyncio.gather(

View File

@@ -670,3 +670,232 @@ async def test_add_graph_execution_with_nodes_to_skip(mocker: MockerFixture):
# Verify nodes_to_skip was passed to to_graph_execution_entry
assert "nodes_to_skip" in captured_kwargs
assert captured_kwargs["nodes_to_skip"] == nodes_to_skip
@pytest.mark.asyncio
async def test_stop_graph_execution_in_review_status_cancels_pending_reviews(
mocker: MockerFixture,
):
"""Test that stopping an execution in REVIEW status cancels pending reviews."""
from backend.data.execution import ExecutionStatus, GraphExecutionMeta
from backend.executor.utils import stop_graph_execution
user_id = "test-user"
graph_exec_id = "test-exec-123"
# Mock graph execution in REVIEW status
mock_graph_exec = mocker.MagicMock(spec=GraphExecutionMeta)
mock_graph_exec.id = graph_exec_id
mock_graph_exec.status = ExecutionStatus.REVIEW
# Mock dependencies
mock_get_queue = mocker.patch("backend.executor.utils.get_async_execution_queue")
mock_queue_client = mocker.AsyncMock()
mock_get_queue.return_value = mock_queue_client
mock_prisma = mocker.patch("backend.executor.utils.prisma")
mock_prisma.is_connected.return_value = True
mock_human_review_db = mocker.patch("backend.executor.utils.human_review_db")
mock_human_review_db.cancel_pending_reviews_for_execution = mocker.AsyncMock(
return_value=2 # 2 reviews cancelled
)
mock_execution_db = mocker.patch("backend.executor.utils.execution_db")
mock_execution_db.get_graph_execution_meta = mocker.AsyncMock(
return_value=mock_graph_exec
)
mock_execution_db.update_graph_execution_stats = mocker.AsyncMock()
mock_get_event_bus = mocker.patch(
"backend.executor.utils.get_async_execution_event_bus"
)
mock_event_bus = mocker.MagicMock()
mock_event_bus.publish = mocker.AsyncMock()
mock_get_event_bus.return_value = mock_event_bus
mock_get_child_executions = mocker.patch(
"backend.executor.utils._get_child_executions"
)
mock_get_child_executions.return_value = [] # No children
# Call stop_graph_execution with timeout to allow status check
await stop_graph_execution(
user_id=user_id,
graph_exec_id=graph_exec_id,
wait_timeout=1.0, # Wait to allow status check
cascade=True,
)
# Verify pending reviews were cancelled
mock_human_review_db.cancel_pending_reviews_for_execution.assert_called_once_with(
graph_exec_id, user_id
)
# Verify execution status was updated to TERMINATED
mock_execution_db.update_graph_execution_stats.assert_called_once()
call_kwargs = mock_execution_db.update_graph_execution_stats.call_args[1]
assert call_kwargs["graph_exec_id"] == graph_exec_id
assert call_kwargs["status"] == ExecutionStatus.TERMINATED
@pytest.mark.asyncio
async def test_stop_graph_execution_with_database_manager_when_prisma_disconnected(
mocker: MockerFixture,
):
"""Test that stop uses database manager when Prisma is not connected."""
from backend.data.execution import ExecutionStatus, GraphExecutionMeta
from backend.executor.utils import stop_graph_execution
user_id = "test-user"
graph_exec_id = "test-exec-456"
# Mock graph execution in REVIEW status
mock_graph_exec = mocker.MagicMock(spec=GraphExecutionMeta)
mock_graph_exec.id = graph_exec_id
mock_graph_exec.status = ExecutionStatus.REVIEW
# Mock dependencies
mock_get_queue = mocker.patch("backend.executor.utils.get_async_execution_queue")
mock_queue_client = mocker.AsyncMock()
mock_get_queue.return_value = mock_queue_client
# Prisma is NOT connected
mock_prisma = mocker.patch("backend.executor.utils.prisma")
mock_prisma.is_connected.return_value = False
# Mock database manager client
mock_get_db_manager = mocker.patch(
"backend.executor.utils.get_database_manager_async_client"
)
mock_db_manager = mocker.AsyncMock()
mock_db_manager.get_graph_execution_meta = mocker.AsyncMock(
return_value=mock_graph_exec
)
mock_db_manager.cancel_pending_reviews_for_execution = mocker.AsyncMock(
return_value=3 # 3 reviews cancelled
)
mock_db_manager.update_graph_execution_stats = mocker.AsyncMock()
mock_get_db_manager.return_value = mock_db_manager
mock_get_event_bus = mocker.patch(
"backend.executor.utils.get_async_execution_event_bus"
)
mock_event_bus = mocker.MagicMock()
mock_event_bus.publish = mocker.AsyncMock()
mock_get_event_bus.return_value = mock_event_bus
mock_get_child_executions = mocker.patch(
"backend.executor.utils._get_child_executions"
)
mock_get_child_executions.return_value = [] # No children
# Call stop_graph_execution with timeout
await stop_graph_execution(
user_id=user_id,
graph_exec_id=graph_exec_id,
wait_timeout=1.0,
cascade=True,
)
# Verify database manager was used for cancel_pending_reviews
mock_db_manager.cancel_pending_reviews_for_execution.assert_called_once_with(
graph_exec_id, user_id
)
# Verify execution status was updated via database manager
mock_db_manager.update_graph_execution_stats.assert_called_once()
@pytest.mark.asyncio
async def test_stop_graph_execution_cascades_to_child_with_reviews(
mocker: MockerFixture,
):
"""Test that stopping parent execution cascades to children and cancels their reviews."""
from backend.data.execution import ExecutionStatus, GraphExecutionMeta
from backend.executor.utils import stop_graph_execution
user_id = "test-user"
parent_exec_id = "parent-exec"
child_exec_id = "child-exec"
# Mock parent execution in RUNNING status
mock_parent_exec = mocker.MagicMock(spec=GraphExecutionMeta)
mock_parent_exec.id = parent_exec_id
mock_parent_exec.status = ExecutionStatus.RUNNING
# Mock child execution in REVIEW status
mock_child_exec = mocker.MagicMock(spec=GraphExecutionMeta)
mock_child_exec.id = child_exec_id
mock_child_exec.status = ExecutionStatus.REVIEW
# Mock dependencies
mock_get_queue = mocker.patch("backend.executor.utils.get_async_execution_queue")
mock_queue_client = mocker.AsyncMock()
mock_get_queue.return_value = mock_queue_client
mock_prisma = mocker.patch("backend.executor.utils.prisma")
mock_prisma.is_connected.return_value = True
mock_human_review_db = mocker.patch("backend.executor.utils.human_review_db")
mock_human_review_db.cancel_pending_reviews_for_execution = mocker.AsyncMock(
return_value=1 # 1 child review cancelled
)
# Mock execution_db to return different status based on which execution is queried
mock_execution_db = mocker.patch("backend.executor.utils.execution_db")
# Track call count to simulate status transition
call_count = {"count": 0}
async def get_exec_meta_side_effect(execution_id, user_id):
call_count["count"] += 1
if execution_id == parent_exec_id:
# After a few calls (child processing happens), transition parent to TERMINATED
# This simulates the executor service processing the stop request
if call_count["count"] > 3:
mock_parent_exec.status = ExecutionStatus.TERMINATED
return mock_parent_exec
elif execution_id == child_exec_id:
return mock_child_exec
return None
mock_execution_db.get_graph_execution_meta = mocker.AsyncMock(
side_effect=get_exec_meta_side_effect
)
mock_execution_db.update_graph_execution_stats = mocker.AsyncMock()
mock_get_event_bus = mocker.patch(
"backend.executor.utils.get_async_execution_event_bus"
)
mock_event_bus = mocker.MagicMock()
mock_event_bus.publish = mocker.AsyncMock()
mock_get_event_bus.return_value = mock_event_bus
# Mock _get_child_executions to return the child
mock_get_child_executions = mocker.patch(
"backend.executor.utils._get_child_executions"
)
def get_children_side_effect(parent_id):
if parent_id == parent_exec_id:
return [mock_child_exec]
return []
mock_get_child_executions.side_effect = get_children_side_effect
# Call stop_graph_execution on parent with cascade=True
await stop_graph_execution(
user_id=user_id,
graph_exec_id=parent_exec_id,
wait_timeout=1.0,
cascade=True,
)
# Verify child reviews were cancelled
mock_human_review_db.cancel_pending_reviews_for_execution.assert_called_once_with(
child_exec_id, user_id
)
# Verify both parent and child status updates
assert mock_execution_db.update_graph_execution_stats.call_count >= 1

View File

@@ -1,9 +1,10 @@
-- CreateExtension
-- Supabase: pgvector must be enabled via Dashboard → Database → Extensions first
-- Create in public schema so vector type is available across all schemas
-- Creates extension in current schema (determined by search_path from DATABASE_URL ?schema= param)
-- This ensures vector type is in the same schema as tables, making ::vector work without explicit qualification
DO $$
BEGIN
CREATE EXTENSION IF NOT EXISTS "vector" WITH SCHEMA "public";
CREATE EXTENSION IF NOT EXISTS "vector";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'vector extension not available or already exists, skipping';
END $$;
@@ -19,7 +20,7 @@ CREATE TABLE "UnifiedContentEmbedding" (
"contentType" "ContentType" NOT NULL,
"contentId" TEXT NOT NULL,
"userId" TEXT,
"embedding" public.vector(1536) NOT NULL,
"embedding" vector(1536) NOT NULL,
"searchableText" TEXT NOT NULL,
"metadata" JSONB NOT NULL DEFAULT '{}',
@@ -45,4 +46,4 @@ CREATE UNIQUE INDEX "UnifiedContentEmbedding_contentType_contentId_userId_key" O
-- Uses cosine distance operator (<=>), which matches the query in hybrid_search.py
-- Note: Drop first in case Prisma created a btree index (Prisma doesn't support HNSW)
DROP INDEX IF EXISTS "UnifiedContentEmbedding_embedding_idx";
CREATE INDEX "UnifiedContentEmbedding_embedding_idx" ON "UnifiedContentEmbedding" USING hnsw ("embedding" public.vector_cosine_ops);
CREATE INDEX "UnifiedContentEmbedding_embedding_idx" ON "UnifiedContentEmbedding" USING hnsw ("embedding" vector_cosine_ops);

View File

@@ -0,0 +1,7 @@
-- Remove NodeExecution foreign key from PendingHumanReview
-- The nodeExecId column remains as the primary key, but we remove the FK constraint
-- to AgentNodeExecution since PendingHumanReview records can persist after node
-- execution records are deleted.
-- Drop foreign key constraint that linked PendingHumanReview.nodeExecId to AgentNodeExecution.id
ALTER TABLE "PendingHumanReview" DROP CONSTRAINT IF EXISTS "PendingHumanReview_nodeExecId_fkey";

View File

@@ -517,8 +517,6 @@ model AgentNodeExecution {
stats Json?
PendingHumanReview PendingHumanReview?
@@index([agentGraphExecutionId, agentNodeId, executionStatus])
@@index([agentNodeId, executionStatus])
@@index([addedTime, queuedTime])
@@ -567,6 +565,7 @@ enum ReviewStatus {
}
// Pending human reviews for Human-in-the-loop blocks
// Also stores auto-approval records with special nodeExecId patterns (e.g., "auto_approve_{graph_exec_id}_{node_id}")
model PendingHumanReview {
nodeExecId String @id
userId String
@@ -585,7 +584,6 @@ model PendingHumanReview {
reviewedAt DateTime?
User User @relation(fields: [userId], references: [id], onDelete: Cascade)
NodeExecution AgentNodeExecution @relation(fields: [nodeExecId], references: [id], onDelete: Cascade)
GraphExecution AgentGraphExecution @relation(fields: [graphExecId], references: [id], onDelete: Cascade)
@@unique([nodeExecId]) // One pending review per node execution

View File

@@ -366,12 +366,12 @@ def generate_block_markdown(
lines.append("")
# What it is (full description)
lines.append(f"### What it is")
lines.append("### What it is")
lines.append(block.description or "No description available.")
lines.append("")
# How it works (manual section)
lines.append(f"### How it works")
lines.append("### How it works")
how_it_works = manual_content.get(
"how_it_works", "_Add technical explanation here._"
)
@@ -383,7 +383,7 @@ def generate_block_markdown(
# Inputs table (auto-generated)
visible_inputs = [f for f in block.inputs if not f.hidden]
if visible_inputs:
lines.append(f"### Inputs")
lines.append("### Inputs")
lines.append("")
lines.append("| Input | Description | Type | Required |")
lines.append("|-------|-------------|------|----------|")
@@ -400,7 +400,7 @@ def generate_block_markdown(
# Outputs table (auto-generated)
visible_outputs = [f for f in block.outputs if not f.hidden]
if visible_outputs:
lines.append(f"### Outputs")
lines.append("### Outputs")
lines.append("")
lines.append("| Output | Description | Type |")
lines.append("|--------|-------------|------|")
@@ -414,7 +414,7 @@ def generate_block_markdown(
lines.append("")
# Possible use case (manual section)
lines.append(f"### Possible use case")
lines.append("### Possible use case")
use_case = manual_content.get("use_case", "_Add practical use case examples here._")
lines.append("<!-- MANUAL: use_case -->")
lines.append(use_case)

View File

@@ -86,7 +86,6 @@ export function FloatingSafeModeToggle({
const {
currentHITLSafeMode,
showHITLToggle,
isHITLStateUndetermined,
handleHITLToggle,
currentSensitiveActionSafeMode,
showSensitiveActionToggle,
@@ -99,16 +98,9 @@ export function FloatingSafeModeToggle({
return null;
}
const showHITL = showHITLToggle && !isHITLStateUndetermined;
const showSensitive = showSensitiveActionToggle;
if (!showHITL && !showSensitive) {
return null;
}
return (
<div className={cn("fixed z-50 flex flex-col gap-2", className)}>
{showHITL && (
{showHITLToggle && (
<SafeModeButton
isEnabled={currentHITLSafeMode}
label="Human in the loop block approval"
@@ -119,7 +111,7 @@ export function FloatingSafeModeToggle({
fullWidth={fullWidth}
/>
)}
{showSensitive && (
{showSensitiveActionToggle && (
<SafeModeButton
isEnabled={currentSensitiveActionSafeMode}
label="Sensitive actions blocks approval"

View File

@@ -14,6 +14,10 @@ import {
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { useEffect, useRef, useState } from "react";
import { ScheduleAgentModal } from "../ScheduleAgentModal/ScheduleAgentModal";
import {
AIAgentSafetyPopup,
useAIAgentSafetyPopup,
} from "./components/AIAgentSafetyPopup/AIAgentSafetyPopup";
import { ModalHeader } from "./components/ModalHeader/ModalHeader";
import { ModalRunSection } from "./components/ModalRunSection/ModalRunSection";
import { RunActions } from "./components/RunActions/RunActions";
@@ -83,8 +87,18 @@ export function RunAgentModal({
const [isScheduleModalOpen, setIsScheduleModalOpen] = useState(false);
const [hasOverflow, setHasOverflow] = useState(false);
const [isSafetyPopupOpen, setIsSafetyPopupOpen] = useState(false);
const [pendingRunAction, setPendingRunAction] = useState<(() => void) | null>(
null,
);
const contentRef = useRef<HTMLDivElement>(null);
const { shouldShowPopup, dismissPopup } = useAIAgentSafetyPopup(
agent.id,
agent.has_sensitive_action,
agent.has_human_in_the_loop,
);
const hasAnySetupFields =
Object.keys(agentInputFields || {}).length > 0 ||
Object.keys(agentCredentialsInputFields || {}).length > 0;
@@ -165,6 +179,24 @@ export function RunAgentModal({
onScheduleCreated?.(schedule);
}
function handleRunWithSafetyCheck() {
if (shouldShowPopup) {
setPendingRunAction(() => handleRun);
setIsSafetyPopupOpen(true);
} else {
handleRun();
}
}
function handleSafetyPopupAcknowledge() {
setIsSafetyPopupOpen(false);
dismissPopup();
if (pendingRunAction) {
pendingRunAction();
setPendingRunAction(null);
}
}
return (
<>
<Dialog
@@ -248,7 +280,7 @@ export function RunAgentModal({
)}
<RunActions
defaultRunType={defaultRunType}
onRun={handleRun}
onRun={handleRunWithSafetyCheck}
isExecuting={isExecuting}
isSettingUpTrigger={isSettingUpTrigger}
isRunReady={allRequiredInputsAreSet}
@@ -266,6 +298,12 @@ export function RunAgentModal({
</div>
</Dialog.Content>
</Dialog>
<AIAgentSafetyPopup
agentId={agent.id}
isOpen={isSafetyPopupOpen}
onAcknowledge={handleSafetyPopupAcknowledge}
/>
</>
);
}

View File

@@ -0,0 +1,108 @@
"use client";
import { Button } from "@/components/atoms/Button/Button";
import { Text } from "@/components/atoms/Text/Text";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { Key, storage } from "@/services/storage/local-storage";
import { ShieldCheckIcon } from "@phosphor-icons/react";
import { useCallback, useEffect, useState } from "react";
interface Props {
agentId: string;
onAcknowledge: () => void;
isOpen: boolean;
}
export function AIAgentSafetyPopup({ agentId, onAcknowledge, isOpen }: Props) {
function handleAcknowledge() {
// Add this agent to the list of agents for which popup has been shown
const seenAgentsJson = storage.get(Key.AI_AGENT_SAFETY_POPUP_SHOWN);
const seenAgents: string[] = seenAgentsJson
? JSON.parse(seenAgentsJson)
: [];
if (!seenAgents.includes(agentId)) {
seenAgents.push(agentId);
storage.set(Key.AI_AGENT_SAFETY_POPUP_SHOWN, JSON.stringify(seenAgents));
}
onAcknowledge();
}
if (!isOpen) return null;
return (
<Dialog
controlled={{ isOpen, set: () => {} }}
styling={{ maxWidth: "480px" }}
>
<Dialog.Content>
<div className="flex flex-col items-center p-6 text-center">
<div className="mb-6 flex h-16 w-16 items-center justify-center rounded-full bg-blue-50">
<ShieldCheckIcon
weight="fill"
size={32}
className="text-blue-600"
/>
</div>
<Text variant="h3" className="mb-4">
Safety Checks Enabled
</Text>
<Text variant="body" className="mb-2 text-zinc-700">
AI-generated agents may take actions that affect your data or
external systems.
</Text>
<Text variant="body" className="mb-8 text-zinc-700">
AutoGPT includes safety checks so you&apos;ll always have the
opportunity to review and approve sensitive actions before they
happen.
</Text>
<Button
variant="primary"
size="large"
className="w-full"
onClick={handleAcknowledge}
>
Got it
</Button>
</div>
</Dialog.Content>
</Dialog>
);
}
export function useAIAgentSafetyPopup(
agentId: string,
hasSensitiveAction: boolean,
hasHumanInTheLoop: boolean,
) {
const [shouldShowPopup, setShouldShowPopup] = useState(false);
const [hasChecked, setHasChecked] = useState(false);
useEffect(() => {
if (hasChecked) return;
const seenAgentsJson = storage.get(Key.AI_AGENT_SAFETY_POPUP_SHOWN);
const seenAgents: string[] = seenAgentsJson
? JSON.parse(seenAgentsJson)
: [];
const hasSeenPopupForThisAgent = seenAgents.includes(agentId);
const isRelevantAgent = hasSensitiveAction || hasHumanInTheLoop;
setShouldShowPopup(!hasSeenPopupForThisAgent && isRelevantAgent);
setHasChecked(true);
}, [agentId, hasSensitiveAction, hasHumanInTheLoop, hasChecked]);
const dismissPopup = useCallback(() => {
setShouldShowPopup(false);
}, []);
return {
shouldShowPopup,
dismissPopup,
};
}

View File

@@ -69,7 +69,6 @@ export function SafeModeToggle({ graph, className }: Props) {
const {
currentHITLSafeMode,
showHITLToggle,
isHITLStateUndetermined,
handleHITLToggle,
currentSensitiveActionSafeMode,
showSensitiveActionToggle,
@@ -78,20 +77,13 @@ export function SafeModeToggle({ graph, className }: Props) {
shouldShowToggle,
} = useAgentSafeMode(graph);
if (!shouldShowToggle || isHITLStateUndetermined) {
return null;
}
const showHITL = showHITLToggle && !isHITLStateUndetermined;
const showSensitive = showSensitiveActionToggle;
if (!showHITL && !showSensitive) {
if (!shouldShowToggle) {
return null;
}
return (
<div className={cn("flex gap-1", className)}>
{showHITL && (
{showHITLToggle && (
<SafeModeIconButton
isEnabled={currentHITLSafeMode}
label="Human-in-the-loop"
@@ -101,7 +93,7 @@ export function SafeModeToggle({ graph, className }: Props) {
isPending={isPending}
/>
)}
{showSensitive && (
{showSensitiveActionToggle && (
<SafeModeIconButton
isEnabled={currentSensitiveActionSafeMode}
label="Sensitive actions"

View File

@@ -4085,48 +4085,6 @@
}
}
},
"/api/local-media/users/{user_id}/{media_type}/{filename}": {
"get": {
"tags": ["media", "media"],
"summary": "Serve local media file",
"description": "Serve a media file from local storage.\nOnly available when GCS is not configured.",
"operationId": "getMediaServe local media file",
"parameters": [
{
"name": "user_id",
"in": "path",
"required": true,
"schema": { "type": "string", "title": "User Id" }
},
{
"name": "media_type",
"in": "path",
"required": true,
"schema": { "type": "string", "title": "Media Type" }
},
{
"name": "filename",
"in": "path",
"required": true,
"schema": { "type": "string", "title": "Filename" }
}
],
"responses": {
"200": {
"description": "Successful Response",
"content": { "application/json": { "schema": {} } }
},
"422": {
"description": "Validation Error",
"content": {
"application/json": {
"schema": { "$ref": "#/components/schemas/HTTPValidationError" }
}
}
}
}
}
},
"/api/oauth/app/{client_id}": {
"get": {
"tags": ["oauth"],
@@ -9453,6 +9411,12 @@
],
"title": "Reviewed Data",
"description": "Optional edited data (ignored if approved=False)"
},
"auto_approve_future": {
"type": "boolean",
"title": "Auto Approve Future",
"description": "If true and this review is approved, future executions of this same block (node) will be automatically approved. This only affects approved reviews.",
"default": false
}
},
"type": "object",
@@ -9472,7 +9436,7 @@
"type": "object",
"required": ["reviews"],
"title": "ReviewRequest",
"description": "Request model for processing ALL pending reviews for an execution.\n\nThis request must include ALL pending reviews for a graph execution.\nEach review will be either approved (with optional data modifications)\nor rejected (data ignored). The execution will resume only after ALL reviews are processed."
"description": "Request model for processing ALL pending reviews for an execution.\n\nThis request must include ALL pending reviews for a graph execution.\nEach review will be either approved (with optional data modifications)\nor rejected (data ignored). The execution will resume only after ALL reviews are processed.\n\nEach review item can individually specify whether to auto-approve future executions\nof the same block via the `auto_approve_future` field on ReviewItem."
},
"ReviewResponse": {
"properties": {
@@ -10229,13 +10193,6 @@
{ "type": "null" }
],
"title": "Context"
},
"tags": {
"anyOf": [
{ "items": { "type": "string" }, "type": "array" },
{ "type": "null" }
],
"title": "Tags"
}
},
"type": "object",

View File

@@ -31,6 +31,29 @@ export function FloatingReviewsPanel({
query: {
enabled: !!(graphId && executionId),
select: okData,
// Poll while execution is in progress to detect status changes
refetchInterval: (q) => {
// Note: refetchInterval callback receives raw data before select transform
const rawData = q.state.data as
| { status: number; data?: { status?: string } }
| undefined;
if (rawData?.status !== 200) return false;
const status = rawData?.data?.status;
if (!status) return false;
// Poll every 2 seconds while running or in review
if (
status === AgentExecutionStatus.RUNNING ||
status === AgentExecutionStatus.QUEUED ||
status === AgentExecutionStatus.INCOMPLETE ||
status === AgentExecutionStatus.REVIEW
) {
return 2000;
}
return false;
},
refetchIntervalInBackground: true,
},
},
);
@@ -40,28 +63,47 @@ export function FloatingReviewsPanel({
useShallow((state) => state.graphExecutionStatus),
);
// Determine if we should poll for pending reviews
const isInReviewStatus =
executionDetails?.status === AgentExecutionStatus.REVIEW ||
graphExecutionStatus === AgentExecutionStatus.REVIEW;
const { pendingReviews, isLoading, refetch } = usePendingReviewsForExecution(
executionId || "",
{
enabled: !!executionId,
// Poll every 2 seconds when in REVIEW status to catch new reviews
refetchInterval: isInReviewStatus ? 2000 : false,
},
);
// Refetch pending reviews when execution status changes
useEffect(() => {
if (executionId) {
if (executionId && executionDetails?.status) {
refetch();
}
}, [executionDetails?.status, executionId, refetch]);
// Refetch when graph execution status changes to REVIEW
useEffect(() => {
if (graphExecutionStatus === AgentExecutionStatus.REVIEW && executionId) {
refetch();
}
}, [graphExecutionStatus, executionId, refetch]);
// Hide panel if:
// 1. No execution ID
// 2. No pending reviews and not in REVIEW status
// 3. Execution is RUNNING or QUEUED (hasn't paused for review yet)
if (!executionId) {
return null;
}
if (
!executionId ||
(!isLoading &&
pendingReviews.length === 0 &&
executionDetails?.status !== AgentExecutionStatus.REVIEW)
!isLoading &&
pendingReviews.length === 0 &&
executionDetails?.status !== AgentExecutionStatus.REVIEW
) {
return null;
}
// Don't show panel while execution is still running/queued (not paused for review)
if (
executionDetails?.status === AgentExecutionStatus.RUNNING ||
executionDetails?.status === AgentExecutionStatus.QUEUED
) {
return null;
}

View File

@@ -44,6 +44,8 @@ interface PendingReviewCardProps {
onReviewMessageChange?: (nodeExecId: string, message: string) => void;
isDisabled?: boolean;
onToggleDisabled?: (nodeExecId: string) => void;
autoApproveFuture?: boolean;
onAutoApproveFutureChange?: (nodeExecId: string, enabled: boolean) => void;
}
export function PendingReviewCard({
@@ -53,6 +55,8 @@ export function PendingReviewCard({
onReviewMessageChange,
isDisabled = false,
onToggleDisabled,
autoApproveFuture = false,
onAutoApproveFutureChange,
}: PendingReviewCardProps) {
const extractedData = extractReviewData(review.payload);
const isDataEditable = review.editable;
@@ -210,6 +214,29 @@ export function PendingReviewCard({
</div>
)}
{/* Auto-approve toggle for this review */}
{!showSimplified && !isDisabled && onAutoApproveFutureChange && (
<div className="space-y-2 rounded-lg border border-blue-200 bg-blue-50 p-3">
<div className="flex items-center gap-3">
<Switch
checked={autoApproveFuture}
onCheckedChange={(enabled: boolean) =>
onAutoApproveFutureChange(review.node_exec_id, enabled)
}
/>
<Text variant="small" className="text-textBlack">
Auto-approve future executions of this block
</Text>
</div>
{autoApproveFuture && (
<Text variant="small" className="text-amber-600">
Editing disabled. Original data will be used for this and all
future reviews from this block.
</Text>
)}
</div>
)}
{!showSimplified && isDisabled && (
<div>
<Text variant="body" className="mb-2 font-semibold">

View File

@@ -1,8 +1,9 @@
import { useState } from "react";
import { useState, useCallback } from "react";
import { PendingHumanReviewModel } from "@/app/api/__generated__/models/pendingHumanReviewModel";
import { PendingReviewCard } from "@/components/organisms/PendingReviewCard/PendingReviewCard";
import { Text } from "@/components/atoms/Text/Text";
import { Button } from "@/components/atoms/Button/Button";
import { Switch } from "@/components/atoms/Switch/Switch";
import { useToast } from "@/components/molecules/Toast/use-toast";
import { ClockIcon, WarningIcon } from "@phosphor-icons/react";
import { usePostV2ProcessReviewAction } from "@/app/api/__generated__/endpoints/executions/executions";
@@ -40,6 +41,11 @@ export function PendingReviewsList({
"approve" | "reject" | null
>(null);
// Track per-review auto-approval state
const [autoApproveFutureMap, setAutoApproveFutureMap] = useState<
Record<string, boolean>
>({});
const { toast } = useToast();
const reviewActionMutation = usePostV2ProcessReviewAction({
@@ -92,6 +98,25 @@ export function PendingReviewsList({
setReviewMessageMap((prev) => ({ ...prev, [nodeExecId]: message }));
}
// Handle per-review auto-approval toggle
function handleAutoApproveFutureToggle(nodeExecId: string, enabled: boolean) {
setAutoApproveFutureMap((prev) => ({
...prev,
[nodeExecId]: enabled,
}));
if (enabled) {
// Reset this review's data to original value
const review = reviews.find((r) => r.node_exec_id === nodeExecId);
if (review) {
setReviewDataMap((prev) => ({
...prev,
[nodeExecId]: JSON.stringify(review.payload, null, 2),
}));
}
}
}
function processReviews(approved: boolean) {
if (reviews.length === 0) {
toast({
@@ -108,29 +133,40 @@ export function PendingReviewsList({
for (const review of reviews) {
const reviewData = reviewDataMap[review.node_exec_id];
const reviewMessage = reviewMessageMap[review.node_exec_id];
const autoApproveThisReview = autoApproveFutureMap[review.node_exec_id];
let parsedData: any = review.payload; // Default to original payload
// When auto-approving future actions for this review, send undefined (use original data)
// Otherwise, parse and send the edited data if available
let parsedData: any = undefined;
// Parse edited data if available and editable
if (review.editable && reviewData) {
try {
parsedData = JSON.parse(reviewData);
} catch (error) {
toast({
title: "Invalid JSON",
description: `Please fix the JSON format in review for node ${review.node_exec_id}: ${error instanceof Error ? error.message : "Invalid syntax"}`,
variant: "destructive",
});
setPendingAction(null);
return;
if (!autoApproveThisReview) {
// For regular approve/reject, use edited data if available
if (review.editable && reviewData) {
try {
parsedData = JSON.parse(reviewData);
} catch (error) {
toast({
title: "Invalid JSON",
description: `Please fix the JSON format in review for node ${review.node_exec_id}: ${error instanceof Error ? error.message : "Invalid syntax"}`,
variant: "destructive",
});
setPendingAction(null);
return;
}
} else {
// No edits, use original payload
parsedData = review.payload;
}
}
// When autoApproveThisReview is true, parsedData stays undefined
// Backend will use the original payload stored in the database
reviewItems.push({
node_exec_id: review.node_exec_id,
approved,
reviewed_data: parsedData,
message: reviewMessage || undefined,
auto_approve_future: autoApproveThisReview && approved,
});
}
@@ -182,21 +218,21 @@ export function PendingReviewsList({
<div className="space-y-7">
{reviews.map((review) => (
<PendingReviewCard
key={review.node_exec_id}
key={`${review.node_exec_id}`}
review={review}
onReviewDataChange={handleReviewDataChange}
onReviewMessageChange={handleReviewMessageChange}
reviewMessage={reviewMessageMap[review.node_exec_id] || ""}
isDisabled={autoApproveFutureMap[review.node_exec_id] || false}
autoApproveFuture={autoApproveFutureMap[review.node_exec_id] || false}
onAutoApproveFutureChange={handleAutoApproveFutureToggle}
/>
))}
</div>
<div className="space-y-7">
<Text variant="body" className="text-textGrey">
Note: Changes you make here apply only to this task
</Text>
<div className="space-y-4">
<div className="flex gap-2">
<div className="flex flex-wrap gap-2">
<Button
onClick={() => processReviews(true)}
disabled={reviewActionMutation.isPending || reviews.length === 0}
@@ -220,6 +256,11 @@ export function PendingReviewsList({
Reject
</Button>
</div>
<Text variant="small" className="text-textGrey">
You can turn auto-approval on or off anytime in this agent&apos;s
settings.
</Text>
</div>
</div>
);

View File

@@ -15,8 +15,22 @@ export function usePendingReviews() {
};
}
export function usePendingReviewsForExecution(graphExecId: string) {
const query = useGetV2GetPendingReviewsForExecution(graphExecId);
interface UsePendingReviewsForExecutionOptions {
enabled?: boolean;
refetchInterval?: number | false;
}
export function usePendingReviewsForExecution(
graphExecId: string,
options?: UsePendingReviewsForExecutionOptions,
) {
const query = useGetV2GetPendingReviewsForExecution(graphExecId, {
query: {
enabled: options?.enabled ?? !!graphExecId,
refetchInterval: options?.refetchInterval,
refetchIntervalInBackground: !!options?.refetchInterval,
},
});
return {
pendingReviews: okData(query.data) || [],

View File

@@ -10,6 +10,7 @@ export enum Key {
LIBRARY_AGENTS_CACHE = "library-agents-cache",
CHAT_SESSION_ID = "chat_session_id",
COOKIE_CONSENT = "autogpt_cookie_consent",
AI_AGENT_SAFETY_POPUP_SHOWN = "ai-agent-safety-popup-shown",
}
function get(key: Key) {

View File

@@ -4,6 +4,7 @@ import { LoginPage } from "./pages/login.page";
import { MarketplacePage } from "./pages/marketplace.page";
import { hasMinCount, hasUrl, isVisible, matchesUrl } from "./utils/assertion";
// Marketplace tests for store agent search functionality
test.describe("Marketplace Basic Functionality", () => {
test("User can access marketplace page when logged out", async ({ page }) => {
const marketplacePage = new MarketplacePage(page);