Compare commits

..

16 Commits

Author SHA1 Message Date
Zamil Majdy
da9c4a4adf fix: wrap generate_agent call in try/except for consistency
Add exception handler for AgentGeneratorNotConfiguredError in generate_agent
call for defensive consistency, even though decompose_goal would typically
catch it first.

Addresses CodeRabbit review suggestion.
2026-01-21 18:48:39 -05:00
Zamil Majdy
0ca73004e5 feat: add clear error when Agent Generator service is not configured
- Add AgentGeneratorNotConfiguredError exception
- Check service configuration before calling external service
- Return helpful error message in create_agent and edit_agent tools
- Update tests to mock is_external_service_configured

Addresses Sentry review comment about unconditional external service calls
2026-01-21 18:38:05 -05:00
Zamil Majdy
9a786ed8d9 refactor: remove redundant local agent generation code
The external Agent Generator service handles fixing and validation
internally, so we no longer need these components in the backend:

- Removed client.py (built-in LLM client)
- Removed prompts.py (built-in prompts)
- Removed fixer.py (local agent fixing)
- Removed validator.py (local agent validation)
- Removed utils.py (utility functions for fixer/validator)

Simplified create_agent.py and edit_agent.py to directly use
the external service results without local post-processing.

Updated tests to match the simplified architecture.

This reduces ~1,800 lines of code that duplicated functionality
already provided by the external Agent Generator service.
2026-01-21 18:13:09 -05:00
Zamil Majdy
0a435e2ffb feat(backend): add external Agent Generator service integration
Add support for delegating agent generation to an external microservice
when AGENTGENERATOR_HOST is configured. Falls back to built-in LLM-based
implementation when not configured.

Changes:
- Add agentgenerator_host, agentgenerator_port, agentgenerator_timeout settings
- Add service.py client for external Agent Generator API
- Update core.py to delegate to external service when configured
- Export is_external_service_configured and check_external_service_health
- Add comprehensive tests for service client and core integration
2026-01-21 17:44:56 -05:00
Zamil Majdy
5d0cd88d98 fix(backend): Use unqualified vector type for pgvector queries (#11818)
## Summary
- Remove explicit schema qualification (`{schema}.vector` and
`OPERATOR({schema}.<=>)`) from pgvector queries in `embeddings.py` and
`hybrid_search.py`
- Use unqualified `::vector` type cast and `<=>` operator which work
because pgvector is in the search_path on all environments

## Problem
The previous approach tried to explicitly qualify the vector type with
schema names, but this failed because:
- **CI environment**: pgvector is in `public` schema → `platform.vector`
doesn't exist
- **Dev (Supabase)**: pgvector is in `platform` schema → `public.vector`
doesn't exist

## Solution
Use unqualified `::vector` and `<=>` operator. PostgreSQL resolves these
via `search_path`, which includes the schema where pgvector is installed
on all environments.

Tested on both local and dev environments with a test script that
verified:
-  Unqualified `::vector` type cast
-  Unqualified `<=>` operator in ORDER BY
-  Unqualified `<=>` in SELECT (similarity calculation)
-  Combined query patterns matching actual usage

## Test plan
- [ ] CI tests pass
- [ ] Marketplace approval works on dev after deployment

Fixes: AUTOGPT-SERVER-763, AUTOGPT-SERVER-764, AUTOGPT-SERVER-76B
2026-01-21 18:11:58 +00:00
Zamil Majdy
033f58c075 fix(backend): Make Redis event bus gracefully handle connection failures (#11817)
## Summary
Adds graceful error handling to AsyncRedisEventBus and RedisEventBus so
that connection failures log exceptions with full traceback while
remaining non-breaking. This allows DatabaseManager to operate without
Redis connectivity.

## Problem
DatabaseManager was failing with "Authentication required" when trying
to publish notifications via AsyncRedisNotificationEventBus. The service
has no Redis credentials configured, causing `increment_onboarding_runs`
to fail.

## Root Cause
When `increment_onboarding_runs` publishes a notification:
1. Calls `AsyncRedisNotificationEventBus().publish()`
2. Attempts to connect to Redis via `get_redis_async()`
3. Connection fails due to missing credentials
4. Exception propagates, failing the entire DB operation

Previous fix (#11775) made the cache module lazy, but didn't address the
notification bus which also requires Redis.

## Solution
Wrap Redis operations in try-except blocks:
- `publish_event`: Logs exception with traceback, continues without
publishing
- `listen_events`: Logs exception with traceback, returns empty
generator
- `wait_for_event`: Returns None on connection failure

Using `logger.exception()` instead of `logger.warning()` ensures full
stack traces are captured for debugging while keeping operations
non-breaking.

This allows services to operate without Redis when only using event bus
for non-critical notifications.

## Changes
- Modified `backend/data/event_bus.py`:
- Added graceful error handling to `RedisEventBus` and
`AsyncRedisEventBus`
- All Redis operations now catch exceptions and log with
`logger.exception()`
- Added `backend/data/event_bus_test.py`:
  - Tests verify graceful degradation when Redis is unavailable
  - Tests verify normal operation when Redis is available

## Test Plan
- [x] New tests verify graceful degradation when Redis unavailable
- [x] Existing notification tests still pass
- [x] DatabaseManager can increment onboarding runs without Redis

## Related Issues
Fixes https://significant-gravitas.sentry.io/issues/7205834440/
(AUTOGPT-SERVER-76D)
2026-01-21 15:51:26 +00:00
Ubbe
40ef2d511f fix(frontend): auto-select credentials correctly in old builder (#11815)
## Changes 🏗️

On the **Old Builder**, when running an agent...

### Before

<img width="800" height="614" alt="Screenshot 2026-01-21 at 21 27 05"
src="https://github.com/user-attachments/assets/a3b2ec17-597f-44d2-9130-9e7931599c38"
/>

Credentials are there, but it is not recognising them, you need to click
on them to be selected

### After

<img width="1029" height="728" alt="Screenshot 2026-01-21 at 21 26 47"
src="https://github.com/user-attachments/assets/c6e83846-6048-439e-919d-6807674f2d5a"
/>

It uses the new credentials UI and correctly auto-selects existing ones.

### Other

Fixed a small timezone display glitch on the new library view.

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Run agent in old builder
- [x] Credentials are auto-selected and using the new collapsed system
credentials UI
2026-01-21 14:55:49 +00:00
Zamil Majdy
b714c0c221 fix(backend): handle null values in GraphSettings validation (#11812)
## Summary
- Fixes AUTOGPT-SERVER-76H - Error parsing LibraryAgent from database
due to null values in GraphSettings fields
- When parsing LibraryAgent settings from the database, null values for
`human_in_the_loop_safe_mode` and `sensitive_action_safe_mode` were
causing Pydantic validation errors
- Adds `BeforeValidator` annotations to coerce null values to their
defaults (True and False respectively)

## Test plan
- [x] Verified with unit tests that GraphSettings can now handle
None/null values
- [x] Backend tests pass
- [x] Manually tested with all scenarios (None, empty dict, explicit
values)
2026-01-21 08:40:38 -05:00
Krzysztof Czerwinski
ebabc4287e feat(platform): New LLM Picker UI (#11726)
Add new LLM Picker for the new Builder.

### Changes 🏗️

- Enrich `LlmModelMeta` (in `llm.py`) with human readable model, creator
and provider names and price tier (note: this is temporary measure and
all LlmModelMeta will be removed completely once LLM Registry is ready)
- Add provider icons
- Add custom input field `LlmModelField` and its components&helpers

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] LLM model picker works correctly in the new Builder
  - [x] Legacy LLM model picker works in the old Builder
2026-01-21 10:52:55 +00:00
Zamil Majdy
8b25e62959 feat(backend,frontend): add explicit safe mode toggles for HITL and sensitive actions (#11756)
## Summary

This PR introduces two explicit safe mode toggles for controlling agent
execution behavior, providing clearer and more granular control over
when agents should pause for human review.

### Key Changes

**New Safe Mode Settings:**
- **`human_in_the_loop_safe_mode`** (bool, default `true`) - Controls
whether human-in-the-loop (HITL) blocks pause for review
- **`sensitive_action_safe_mode`** (bool, default `false`) - Controls
whether sensitive action blocks pause for review

**New Computed Properties on LibraryAgent:**
- `has_human_in_the_loop` - Indicates if agent contains HITL blocks
- `has_sensitive_action` - Indicates if agent contains sensitive action
blocks

**Block Changes:**
- Renamed `requires_human_review` to `is_sensitive_action` on blocks for
clarity
- Blocks marked as `is_sensitive_action=True` pause only when
`sensitive_action_safe_mode=True`
- HITL blocks pause when `human_in_the_loop_safe_mode=True`

**Frontend Changes:**
- Two separate toggles in Agent Settings based on block types present
- Toggle visibility based on `has_human_in_the_loop` and
`has_sensitive_action` computed properties
- Settings cog hidden if neither toggle applies
- Proper state management for both toggles with defaults

**AI-Generated Agent Behavior:**
- AI-generated agents set `sensitive_action_safe_mode=True` by default
- This ensures sensitive actions are reviewed for AI-generated content

## Changes

**Backend:**
- `backend/data/graph.py` - Updated `GraphSettings` with two boolean
toggles (non-optional with defaults), added `has_sensitive_action`
computed property
- `backend/data/block.py` - Renamed `requires_human_review` to
`is_sensitive_action`, updated review logic
- `backend/data/execution.py` - Updated `ExecutionContext` with both
safe mode fields
- `backend/api/features/library/model.py` - Added
`has_human_in_the_loop` and `has_sensitive_action` to `LibraryAgent`
- `backend/api/features/library/db.py` - Updated to use
`sensitive_action_safe_mode` parameter
- `backend/executor/utils.py` - Simplified execution context creation

**Frontend:**
- `useAgentSafeMode.ts` - Rewritten to support two independent toggles
- `AgentSettingsModal.tsx` - Shows two separate toggles
- `SelectedSettingsView.tsx` - Shows two separate toggles
- Regenerated API types with new schema

## Test Plan

- [x] All backend tests pass (Python 3.11, 3.12, 3.13)
- [x] All frontend tests pass
- [x] Backend format and lint pass
- [x] Frontend format and lint pass
- [x] Pre-commit hooks pass

---------

Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
2026-01-21 00:56:02 +00:00
Zamil Majdy
35a13e3df5 fix(backend): Use explicit schema qualification for pgvector types (#11805)
## Summary
- Fix intermittent "type 'vector' does not exist" errors when using
PgBouncer in transaction mode
- The issue was that `SET search_path` and the actual query could run on
different backend connections
- Use explicit schema qualification (`{schema}.vector`,
`OPERATOR({schema}.<=>)`) instead of relying on search_path

## Test plan
- [x] Tested vector type cast on local: `'[1,2,3]'::platform.vector`
works
- [x] Tested OPERATOR syntax on local: `OPERATOR(platform.<=>)` works
- [x] Tested on dev via kubectl exec: both work correctly
- [ ] Deploy to dev and verify backfill_missing_embeddings endpoint no
longer errors

## Related Issues
Fixes: AUTOGPT-SERVER-763, AUTOGPT-SERVER-764

---------

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 22:18:16 +00:00
Mewael Tsegay Desta
2169b433c9 feat(backend/blocks): add ConcatenateListsBlock (#11567)
# feat(backend/blocks): add ConcatenateListsBlock

## Description

This PR implements a new block `ConcatenateListsBlock` that concatenates
multiple lists into a single list. This addresses the "good first issue"
for implementing a list concatenation block in the platform/blocks area.

The block takes a list of lists as input and combines all elements in
order into a single concatenated list. This is useful for workflows that
need to merge data from multiple sources or combine results from
different operations.

### Changes 🏗️

- **Added `ConcatenateListsBlock` class** in
`autogpt_platform/backend/backend/blocks/data_manipulation.py`
- Input: `lists: List[List[Any]]` - accepts a list of lists to
concatenate
- Output: `concatenated_list: List[Any]` - returns a single concatenated
list
- Error output: `error: str` - provides clear error messages for invalid
input types
  - Block ID: `3cf9298b-5817-4141-9d80-7c2cc5199c8e`
- Category: `BlockCategory.BASIC` (consistent with other list
manipulation blocks)
  
- **Added comprehensive test suite** in
`autogpt_platform/backend/test/blocks/test_concatenate_lists.py`
  - Tests using built-in `test_input`/`test_output` validation
- Manual test cases covering edge cases (empty lists, single list, empty
input)
  - Error handling tests for invalid input types
  - Category consistency verification
  - All tests passing

- **Implementation details:**
  - Uses `extend()` method for efficient list concatenation
  - Preserves element order from all input lists
- **Runtime type validation**: Explicitly checks `isinstance(lst, list)`
before calling `extend()` to prevent:
- Strings being iterated character-by-character (e.g., `extend("abc")` →
`['a', 'b', 'c']`)
    - Non-iterable types causing `TypeError` (e.g., `extend(1)`)
  - Clear error messages indicating which index has invalid input
- Handles edge cases: empty lists, empty input, single list, None values
  - Follows existing block patterns and conventions

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Run `poetry run pytest test/blocks/test_concatenate_lists.py -v` -
all tests pass
  - [x] Verified block can be imported and instantiated
  - [x] Tested with built-in test cases (4 test scenarios)
  - [x] Tested manual edge cases (empty lists, single list, empty input)
  - [x] Tested error handling for invalid input types
  - [x] Verified category is `BASIC` for consistency
  - [x] Verified no linting errors
- [x] Confirmed block follows same patterns as other blocks in
`data_manipulation.py`

#### Code Quality:
- [x] Code follows existing patterns and conventions
- [x] Type hints are properly used
- [x] Documentation strings are clear and descriptive
- [x] Runtime type validation implemented
- [x] Error handling with clear error messages
- [x] No linting errors
- [x] Prisma client generated successfully

### Testing

**Test Results:**
```
test/blocks/test_concatenate_lists.py::test_concatenate_lists_block_builtin_tests PASSED
test/blocks/test_concatenate_lists.py::test_concatenate_lists_manual PASSED

============================== 2 passed in 8.35s ==============================
```

**Test Coverage:**
- Basic concatenation: `[[1, 2, 3], [4, 5, 6]]` → `[1, 2, 3, 4, 5, 6]`
- Mixed types: `[["a", "b"], ["c"], ["d", "e", "f"]]` → `["a", "b", "c",
"d", "e", "f"]`
- Empty list handling: `[[1, 2], []]` → `[1, 2]`
- Empty input: `[]` → `[]`
- Single list: `[[1, 2, 3]]` → `[1, 2, 3]`
- Error handling: Invalid input types (strings, non-lists) produce clear
error messages
- Category verification: Confirmed `BlockCategory.BASIC` for consistency

### Review Feedback Addressed

- **Category Consistency**: Changed from `BlockCategory.DATA` to
`BlockCategory.BASIC` to match other list manipulation blocks
(`AddToListBlock`, `FindInListBlock`, etc.)
- **Type Robustness**: Added explicit runtime validation with
`isinstance(lst, list)` check before calling `extend()` to prevent:
  - Strings being iterated character-by-character
  - Non-iterable types causing `TypeError`
- **Error Handling**: Added `error` output field with clear, descriptive
error messages indicating which index has invalid input
- **Test Coverage**: Added test case for error handling with invalid
input types

### Related Issues

- Addresses: "Implement block to concatenate lists" (good first issue,
platform/blocks, hacktoberfest)

### Notes

- This is a straightforward data manipulation block that doesn't require
external dependencies
- The block will be automatically discovered by the block loading system
- No database or configuration changes required
- Compatible with existing workflow system
- All review feedback has been addressed and incorporated


<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> Adds a new list utility and updates docs.
> 
> - **New block**: `ConcatenateListsBlock` in
`backend/blocks/data_manipulation.py`
> - Input `lists: List[List[Any]]`; outputs `concatenated_list` or
`error`
> - Skips `None` entries; emits error for non-list items; preserves
order
> - **Docs**: Adds "Concatenate Lists" section to
`docs/integrations/basic.md` and links it in
`docs/integrations/README.md`
> - **Contributor guide**: New `docs/CLAUDE.md` with manual doc section
guidelines
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
4f56dd86c2. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

---------

Co-authored-by: Zamil Majdy <zamil.majdy@agpt.co>
Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 18:04:12 +00:00
Nicholas Tindle
fa0b7029dd fix(platform): make chat credentials type selection deterministic (#11795)
## Background

When using chat to run blocks/agents that support multiple credential
types (e.g., GitHub blocks support both `api_key` and `oauth2`), users
reported that the credentials setup UI would randomly show either "Add
API key" or "Connect account (OAuth)" - seemingly at random between
requests or server restarts.

## Root Cause

The bug was in how the backend selected which credential type to return
when building the missing credentials response:

```python
cred_type = next(iter(field_info.supported_types), "api_key")
```

The problem is that `supported_types` is a **frozenset**. When you call
`iter()` on a frozenset and take `next()`, the iteration order is
**non-deterministic** due to Python's hash randomization. This means:
- `frozenset({'api_key', 'oauth2'})` could iterate as either
`['api_key', 'oauth2']` or `['oauth2', 'api_key']`
- The order varies between Python process restarts and sometimes between
requests
- This caused the UI to randomly show different credential options

### Changes 🏗️

**Backend (`utils.py`, `run_block.py`, `run_agent.py`):**
- Added `_serialize_missing_credential()` helper that uses `sorted()`
for deterministic ordering
- Added `build_missing_credentials_from_graph()` and
`build_missing_credentials_from_field_info()` utilities
- Now returns both `type` (first sorted type, for backwards compat) and
`types` (full array with ALL supported types)

**Frontend (`helpers.ts`, `ChatCredentialsSetup.tsx`,
`useChatMessage.ts`):**
- Updated to read the `types` array from backend response
- Changed `credentialType` (single) to `credentialTypes` (array)
throughout the chat credentials flow
- Passes all supported types to `CredentialsInput` via
`credentials_types` schema field

### Result

Now `useCredentials.ts` correctly sets both `supportsApiKey=true` AND
`supportsOAuth2=true` when both are supported, ensuring:
1. **Deterministic behavior** - no more random type selection
2. **All saved credentials shown** - credentials of any supported type
appear in the selection list

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Verified GitHub block shows consistent credential options across
page reloads
- [x] Verified both OAuth and API key credentials appear in selection
when user has both saved
- [x] Verified backend returns `types: ["api_key", "oauth2"]` array
(checked via Python REPL)

<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> Ensures deterministic credential type selection and surfaces all
supported types end-to-end.
> 
> - Backend: add `_serialize_missing_credential`,
`build_missing_credentials_from_graph/field_info`;
`run_agent`/`run_block` now return missing credentials with stable
ordering and both `type` (first) and `types` (all).
> - Frontend: chat helpers and UI (`helpers.ts`,
`ChatCredentialsSetup.tsx`, `useChatMessage.ts`) now read `types`,
switch from single `credentialType` to `credentialTypes`, and pass all
supported `credentials_types` in schemas.
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
7d80f4f0e0. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

---------

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <ntindle@users.noreply.github.com>
2026-01-20 16:19:57 +00:00
Abhimanyu Yadav
c20ca47bb0 feat(frontend): enhance RunGraph and RunInputDialog components with loading states and improved UI (#11808)
### Changes 🏗️

- Enhanced UI for the Run Graph button with improved loading states and
animations
- Added color-coded edges in the flow editor based on output data types
- Improved the layout of the Run Input Dialog with a two-column grid
design
- Refined the styling of flow editor controls with consistent icon sizes
and colors
- Updated tutorial icons with better color and size customization
- Fixed credential field display to show provider name with "credential"
suffix
- Optimized draft saving by excluding node position changes to prevent
excessive saves when dragging nodes

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Verified that the Run Graph button shows proper loading states
  - [x] Confirmed that edges display correct colors based on data types
- [x] Tested the Run Input Dialog layout with various input
configurations
  - [x] Checked that flow editor controls display consistently
  - [x] Verified that tutorial icons render properly
  - [x] Confirmed credential fields show proper provider names
- [x] Tested that dragging nodes doesn't trigger unnecessary draft saves
2026-01-20 15:50:23 +00:00
Abhimanyu Yadav
7756e2d12d refactor(frontend): refactor credentials input with unified CredentialsGroupedView component (#11801)
### Changes 🏗️

- Refactored the credentials input handling in the RunInputDialog to use
the shared CredentialsGroupedView component
- Moved CredentialsGroupedView from agent library to a shared component
location for reuse
- Fixed source name handling in edge creation to properly handle tool
source names
- Improved node output UI by replacing custom expand/collapse with
Accordion component
- Fixed timing of hardcoded values synchronization with handle IDs to
ensure proper loading
- Enabled NEW_FLOW_EDITOR and BUILDER_VIEW_SWITCH feature flags by
default

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Verified credentials input works in both agent run dialog and
builder run dialog
  - [x] Confirmed node output accordion works correctly
- [x] Tested flow editor with tools to ensure source name handling works
properly
  - [x] Verified hardcoded values sync correctly with handle IDs

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)
2026-01-20 12:20:25 +00:00
Swifty
bc75d70e7d refactor(backend): Improve Langfuse tracing with v3 SDK patterns and @observe decorators (#11803)
<!-- Clearly explain the need for these changes: -->

This PR improves the Langfuse tracing implementation in the chat feature
by adopting the v3 SDK patterns, resulting in cleaner code and better
observability.

### Changes 🏗️

- **Simplified Langfuse client usage**: Replace manual client
initialization with `langfuse.get_client()` global singleton
- **Use v3 context managers**: Switch to
`start_as_current_observation()` and `propagate_attributes()` for
automatic trace propagation
- **Auto-instrument OpenAI calls**: Use `langfuse.openai` wrapper for
automatic LLM call tracing instead of manual generation tracking
- **Add `@observe` decorators**: All chat tools now have
`@observe(as_type="tool")` decorators for automatic tool execution
tracing:
  - `add_understanding`
  - `view_agent_output` (renamed from `agent_output`)
  - `create_agent`
  - `edit_agent`
  - `find_agent`
  - `find_block`
  - `find_library_agent`
  - `get_doc_page`
  - `run_agent`
  - `run_block`
  - `search_docs`
- **Remove manual trace lifecycle**: Eliminated the verbose `finally`
block that manually ended traces/generations
- **Rename tool**: `agent_output` → `view_agent_output` for clarity

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Verified chat feature works with Langfuse tracing enabled
- [x] Confirmed traces appear correctly in Langfuse dashboard with tool
spans
  - [x] Tested tool execution flows show up as nested observations

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

No configuration changes required - uses existing Langfuse environment
variables.
2026-01-19 20:56:51 +00:00
114 changed files with 3806 additions and 2845 deletions

View File

@@ -49,7 +49,7 @@ jobs:
- name: Create PR ${{ env.BUILD_BRANCH }} -> ${{ github.ref_name }}
if: github.event_name == 'push'
uses: peter-evans/create-pull-request@v8
uses: peter-evans/create-pull-request@v7
with:
add-paths: classic/frontend/build/web
base: ${{ github.ref_name }}

View File

@@ -4,14 +4,9 @@ from collections.abc import AsyncGenerator
from typing import Any
import orjson
from langfuse import Langfuse
from openai import (
APIConnectionError,
APIError,
APIStatusError,
AsyncOpenAI,
RateLimitError,
)
from langfuse import get_client, propagate_attributes
from langfuse.openai import openai # type: ignore
from openai import APIConnectionError, APIError, APIStatusError, RateLimitError
from openai.types.chat import ChatCompletionChunk, ChatCompletionToolParam
from backend.data.understanding import (
@@ -21,7 +16,6 @@ from backend.data.understanding import (
from backend.util.exceptions import NotFoundError
from backend.util.settings import Settings
from . import db as chat_db
from .config import ChatConfig
from .model import (
ChatMessage,
@@ -50,10 +44,10 @@ logger = logging.getLogger(__name__)
config = ChatConfig()
settings = Settings()
client = AsyncOpenAI(api_key=config.api_key, base_url=config.base_url)
client = openai.AsyncOpenAI(api_key=config.api_key, base_url=config.base_url)
# Langfuse client (lazy initialization)
_langfuse_client: Langfuse | None = None
langfuse = get_client()
class LangfuseNotConfiguredError(Exception):
@@ -69,65 +63,6 @@ def _is_langfuse_configured() -> bool:
)
def _get_langfuse_client() -> Langfuse:
"""Get or create the Langfuse client for prompt management and tracing."""
global _langfuse_client
if _langfuse_client is None:
if not _is_langfuse_configured():
raise LangfuseNotConfiguredError(
"Langfuse is not configured. The chat feature requires Langfuse for prompt management. "
"Please set the LANGFUSE_PUBLIC_KEY and LANGFUSE_SECRET_KEY environment variables."
)
_langfuse_client = Langfuse(
public_key=settings.secrets.langfuse_public_key,
secret_key=settings.secrets.langfuse_secret_key,
host=settings.secrets.langfuse_host or "https://cloud.langfuse.com",
)
return _langfuse_client
def _get_environment() -> str:
"""Get the current environment name for Langfuse tagging."""
return settings.config.app_env.value
def _get_langfuse_prompt() -> str:
"""Fetch the latest production prompt from Langfuse.
Returns:
The compiled prompt text from Langfuse.
Raises:
Exception: If Langfuse is unavailable or prompt fetch fails.
"""
try:
langfuse = _get_langfuse_client()
# cache_ttl_seconds=0 disables SDK caching to always get the latest prompt
prompt = langfuse.get_prompt(config.langfuse_prompt_name, cache_ttl_seconds=0)
compiled = prompt.compile()
logger.info(
f"Fetched prompt '{config.langfuse_prompt_name}' from Langfuse "
f"(version: {prompt.version})"
)
return compiled
except Exception as e:
logger.error(f"Failed to fetch prompt from Langfuse: {e}")
raise
async def _is_first_session(user_id: str) -> bool:
"""Check if this is the user's first chat session.
Returns True if the user has 1 or fewer sessions (meaning this is their first).
"""
try:
session_count = await chat_db.get_user_session_count(user_id)
return session_count <= 1
except Exception as e:
logger.warning(f"Failed to check session count for user {user_id}: {e}")
return False # Default to non-onboarding if we can't check
async def _build_system_prompt(user_id: str | None) -> tuple[str, Any]:
"""Build the full system prompt including business understanding if available.
@@ -139,8 +74,6 @@ async def _build_system_prompt(user_id: str | None) -> tuple[str, Any]:
Tuple of (compiled prompt string, Langfuse prompt object for tracing)
"""
langfuse = _get_langfuse_client()
# cache_ttl_seconds=0 disables SDK caching to always get the latest prompt
prompt = langfuse.get_prompt(config.langfuse_prompt_name, cache_ttl_seconds=0)
@@ -158,7 +91,7 @@ async def _build_system_prompt(user_id: str | None) -> tuple[str, Any]:
context = "This is the first time you are meeting the user. Greet them and introduce them to the platform"
compiled = prompt.compile(users_information=context)
return compiled, prompt
return compiled, understanding
async def _generate_session_title(message: str) -> str | None:
@@ -217,6 +150,7 @@ async def assign_user_to_session(
async def stream_chat_completion(
session_id: str,
message: str | None = None,
tool_call_response: str | None = None,
is_user_message: bool = True,
user_id: str | None = None,
retry_count: int = 0,
@@ -256,11 +190,6 @@ async def stream_chat_completion(
yield StreamFinish()
return
# Langfuse observations will be created after session is loaded (need messages for input)
# Initialize to None so finally block can safely check and end them
trace = None
generation = None
# Only fetch from Redis if session not provided (initial call)
if session is None:
session = await get_chat_session(session_id, user_id)
@@ -336,297 +265,259 @@ async def stream_chat_completion(
asyncio.create_task(_update_title())
# Build system prompt with business understanding
system_prompt, langfuse_prompt = await _build_system_prompt(user_id)
# Build input messages including system prompt for complete Langfuse logging
trace_input_messages = [{"role": "system", "content": system_prompt}] + [
m.model_dump() for m in session.messages
]
system_prompt, understanding = await _build_system_prompt(user_id)
# Create Langfuse trace for this LLM call (each call gets its own trace, grouped by session_id)
# Using v3 SDK: start_observation creates a root span, update_trace sets trace-level attributes
try:
langfuse = _get_langfuse_client()
env = _get_environment()
trace = langfuse.start_observation(
name="chat_completion",
input={"messages": trace_input_messages},
metadata={
"environment": env,
"model": config.model,
"message_count": len(session.messages),
"prompt_name": langfuse_prompt.name if langfuse_prompt else None,
"prompt_version": langfuse_prompt.version if langfuse_prompt else None,
},
)
# Set trace-level attributes (session_id, user_id, tags)
trace.update_trace(
input = message
if not message and tool_call_response:
input = tool_call_response
langfuse = get_client()
with langfuse.start_as_current_observation(
as_type="span",
name="user-copilot-request",
input=input,
) as span:
with propagate_attributes(
session_id=session_id,
user_id=user_id,
tags=[env, "copilot"],
)
except Exception as e:
logger.warning(f"Failed to create Langfuse trace: {e}")
tags=["copilot"],
metadata={
"users_information": format_understanding_for_prompt(understanding)[
:200
] # langfuse only accepts upto to 200 chars
},
):
# Initialize variables that will be used in finally block (must be defined before try)
assistant_response = ChatMessage(
role="assistant",
content="",
)
accumulated_tool_calls: list[dict[str, Any]] = []
# Wrap main logic in try/finally to ensure Langfuse observations are always ended
try:
has_yielded_end = False
has_yielded_error = False
has_done_tool_call = False
has_received_text = False
text_streaming_ended = False
tool_response_messages: list[ChatMessage] = []
should_retry = False
# Generate unique IDs for AI SDK protocol
import uuid as uuid_module
message_id = str(uuid_module.uuid4())
text_block_id = str(uuid_module.uuid4())
# Yield message start
yield StreamStart(messageId=message_id)
# Create Langfuse generation for each LLM call, linked to the prompt
# Using v3 SDK: start_observation with as_type="generation"
generation = (
trace.start_observation(
as_type="generation",
name="llm_call",
model=config.model,
input={"messages": trace_input_messages},
prompt=langfuse_prompt,
# Initialize variables that will be used in finally block (must be defined before try)
assistant_response = ChatMessage(
role="assistant",
content="",
)
if trace
else None
)
accumulated_tool_calls: list[dict[str, Any]] = []
try:
async for chunk in _stream_chat_chunks(
session=session,
tools=tools,
system_prompt=system_prompt,
text_block_id=text_block_id,
):
# Wrap main logic in try/finally to ensure Langfuse observations are always ended
has_yielded_end = False
has_yielded_error = False
has_done_tool_call = False
has_received_text = False
text_streaming_ended = False
tool_response_messages: list[ChatMessage] = []
should_retry = False
if isinstance(chunk, StreamTextStart):
# Emit text-start before first text delta
if not has_received_text:
# Generate unique IDs for AI SDK protocol
import uuid as uuid_module
message_id = str(uuid_module.uuid4())
text_block_id = str(uuid_module.uuid4())
# Yield message start
yield StreamStart(messageId=message_id)
try:
async for chunk in _stream_chat_chunks(
session=session,
tools=tools,
system_prompt=system_prompt,
text_block_id=text_block_id,
):
if isinstance(chunk, StreamTextStart):
# Emit text-start before first text delta
if not has_received_text:
yield chunk
elif isinstance(chunk, StreamTextDelta):
delta = chunk.delta or ""
assert assistant_response.content is not None
assistant_response.content += delta
has_received_text = True
yield chunk
elif isinstance(chunk, StreamTextDelta):
delta = chunk.delta or ""
assert assistant_response.content is not None
assistant_response.content += delta
has_received_text = True
yield chunk
elif isinstance(chunk, StreamTextEnd):
# Emit text-end after text completes
if has_received_text and not text_streaming_ended:
text_streaming_ended = True
yield chunk
elif isinstance(chunk, StreamToolInputStart):
# Emit text-end before first tool call, but only if we've received text
if has_received_text and not text_streaming_ended:
yield StreamTextEnd(id=text_block_id)
text_streaming_ended = True
yield chunk
elif isinstance(chunk, StreamToolInputAvailable):
# Accumulate tool calls in OpenAI format
accumulated_tool_calls.append(
{
"id": chunk.toolCallId,
"type": "function",
"function": {
"name": chunk.toolName,
"arguments": orjson.dumps(chunk.input).decode("utf-8"),
},
}
)
elif isinstance(chunk, StreamToolOutputAvailable):
result_content = (
chunk.output
if isinstance(chunk.output, str)
else orjson.dumps(chunk.output).decode("utf-8")
)
tool_response_messages.append(
ChatMessage(
role="tool",
content=result_content,
tool_call_id=chunk.toolCallId,
)
)
has_done_tool_call = True
# Track if any tool execution failed
if not chunk.success:
logger.warning(
f"Tool {chunk.toolName} (ID: {chunk.toolCallId}) execution failed"
)
yield chunk
elif isinstance(chunk, StreamFinish):
if not has_done_tool_call:
# Emit text-end before finish if we received text but haven't closed it
elif isinstance(chunk, StreamTextEnd):
# Emit text-end after text completes
if has_received_text and not text_streaming_ended:
text_streaming_ended = True
if assistant_response.content:
logger.warn(
f"StreamTextEnd: Attempting to set output {assistant_response.content}"
)
span.update_trace(output=assistant_response.content)
span.update(output=assistant_response.content)
yield chunk
elif isinstance(chunk, StreamToolInputStart):
# Emit text-end before first tool call, but only if we've received text
if has_received_text and not text_streaming_ended:
yield StreamTextEnd(id=text_block_id)
text_streaming_ended = True
has_yielded_end = True
yield chunk
elif isinstance(chunk, StreamError):
has_yielded_error = True
elif isinstance(chunk, StreamUsage):
session.usage.append(
Usage(
prompt_tokens=chunk.promptTokens,
completion_tokens=chunk.completionTokens,
total_tokens=chunk.totalTokens,
elif isinstance(chunk, StreamToolInputAvailable):
# Accumulate tool calls in OpenAI format
accumulated_tool_calls.append(
{
"id": chunk.toolCallId,
"type": "function",
"function": {
"name": chunk.toolName,
"arguments": orjson.dumps(chunk.input).decode(
"utf-8"
),
},
}
)
elif isinstance(chunk, StreamToolOutputAvailable):
result_content = (
chunk.output
if isinstance(chunk.output, str)
else orjson.dumps(chunk.output).decode("utf-8")
)
tool_response_messages.append(
ChatMessage(
role="tool",
content=result_content,
tool_call_id=chunk.toolCallId,
)
)
has_done_tool_call = True
# Track if any tool execution failed
if not chunk.success:
logger.warning(
f"Tool {chunk.toolName} (ID: {chunk.toolCallId}) execution failed"
)
yield chunk
elif isinstance(chunk, StreamFinish):
if not has_done_tool_call:
# Emit text-end before finish if we received text but haven't closed it
if has_received_text and not text_streaming_ended:
yield StreamTextEnd(id=text_block_id)
text_streaming_ended = True
has_yielded_end = True
yield chunk
elif isinstance(chunk, StreamError):
has_yielded_error = True
elif isinstance(chunk, StreamUsage):
session.usage.append(
Usage(
prompt_tokens=chunk.promptTokens,
completion_tokens=chunk.completionTokens,
total_tokens=chunk.totalTokens,
)
)
else:
logger.error(
f"Unknown chunk type: {type(chunk)}", exc_info=True
)
if assistant_response.content:
langfuse.update_current_trace(output=assistant_response.content)
langfuse.update_current_span(output=assistant_response.content)
elif tool_response_messages:
langfuse.update_current_trace(output=str(tool_response_messages))
langfuse.update_current_span(output=str(tool_response_messages))
except Exception as e:
logger.error(f"Error during stream: {e!s}", exc_info=True)
# Check if this is a retryable error (JSON parsing, incomplete tool calls, etc.)
is_retryable = isinstance(
e, (orjson.JSONDecodeError, KeyError, TypeError)
)
if is_retryable and retry_count < config.max_retries:
logger.info(
f"Retryable error encountered. Attempt {retry_count + 1}/{config.max_retries}"
)
should_retry = True
else:
logger.error(f"Unknown chunk type: {type(chunk)}", exc_info=True)
except Exception as e:
logger.error(f"Error during stream: {e!s}", exc_info=True)
# Non-retryable error or max retries exceeded
# Save any partial progress before reporting error
messages_to_save: list[ChatMessage] = []
# Check if this is a retryable error (JSON parsing, incomplete tool calls, etc.)
is_retryable = isinstance(e, (orjson.JSONDecodeError, KeyError, TypeError))
# Add assistant message if it has content or tool calls
if accumulated_tool_calls:
assistant_response.tool_calls = accumulated_tool_calls
if assistant_response.content or assistant_response.tool_calls:
messages_to_save.append(assistant_response)
if is_retryable and retry_count < config.max_retries:
# Add tool response messages after assistant message
messages_to_save.extend(tool_response_messages)
session.messages.extend(messages_to_save)
await upsert_chat_session(session)
if not has_yielded_error:
error_message = str(e)
if not is_retryable:
error_message = f"Non-retryable error: {error_message}"
elif retry_count >= config.max_retries:
error_message = f"Max retries ({config.max_retries}) exceeded: {error_message}"
error_response = StreamError(errorText=error_message)
yield error_response
if not has_yielded_end:
yield StreamFinish()
return
# Handle retry outside of exception handler to avoid nesting
if should_retry and retry_count < config.max_retries:
logger.info(
f"Retryable error encountered. Attempt {retry_count + 1}/{config.max_retries}"
f"Retrying stream_chat_completion for session {session_id}, attempt {retry_count + 1}"
)
should_retry = True
else:
# Non-retryable error or max retries exceeded
# Save any partial progress before reporting error
messages_to_save: list[ChatMessage] = []
async for chunk in stream_chat_completion(
session_id=session.session_id,
user_id=user_id,
retry_count=retry_count + 1,
session=session,
context=context,
):
yield chunk
return # Exit after retry to avoid double-saving in finally block
# Add assistant message if it has content or tool calls
if accumulated_tool_calls:
assistant_response.tool_calls = accumulated_tool_calls
if assistant_response.content or assistant_response.tool_calls:
messages_to_save.append(assistant_response)
# Add tool response messages after assistant message
messages_to_save.extend(tool_response_messages)
session.messages.extend(messages_to_save)
await upsert_chat_session(session)
if not has_yielded_error:
error_message = str(e)
if not is_retryable:
error_message = f"Non-retryable error: {error_message}"
elif retry_count >= config.max_retries:
error_message = f"Max retries ({config.max_retries}) exceeded: {error_message}"
error_response = StreamError(errorText=error_message)
yield error_response
if not has_yielded_end:
yield StreamFinish()
return
# Handle retry outside of exception handler to avoid nesting
if should_retry and retry_count < config.max_retries:
# Normal completion path - save session and handle tool call continuation
logger.info(
f"Retrying stream_chat_completion for session {session_id}, attempt {retry_count + 1}"
)
async for chunk in stream_chat_completion(
session_id=session.session_id,
user_id=user_id,
retry_count=retry_count + 1,
session=session,
context=context,
):
yield chunk
return # Exit after retry to avoid double-saving in finally block
# Normal completion path - save session and handle tool call continuation
logger.info(
f"Normal completion path: session={session.session_id}, "
f"current message_count={len(session.messages)}"
)
# Build the messages list in the correct order
messages_to_save: list[ChatMessage] = []
# Add assistant message with tool_calls if any
if accumulated_tool_calls:
assistant_response.tool_calls = accumulated_tool_calls
logger.info(
f"Added {len(accumulated_tool_calls)} tool calls to assistant message"
)
if assistant_response.content or assistant_response.tool_calls:
messages_to_save.append(assistant_response)
logger.info(
f"Saving assistant message with content_len={len(assistant_response.content or '')}, tool_calls={len(assistant_response.tool_calls or [])}"
f"Normal completion path: session={session.session_id}, "
f"current message_count={len(session.messages)}"
)
# Add tool response messages after assistant message
messages_to_save.extend(tool_response_messages)
logger.info(
f"Saving {len(tool_response_messages)} tool response messages, "
f"total_to_save={len(messages_to_save)}"
)
# Build the messages list in the correct order
messages_to_save: list[ChatMessage] = []
session.messages.extend(messages_to_save)
logger.info(
f"Extended session messages, new message_count={len(session.messages)}"
)
await upsert_chat_session(session)
# If we did a tool call, stream the chat completion again to get the next response
if has_done_tool_call:
logger.info(
"Tool call executed, streaming chat completion again to get assistant response"
)
async for chunk in stream_chat_completion(
session_id=session.session_id,
user_id=user_id,
session=session, # Pass session object to avoid Redis refetch
context=context,
):
yield chunk
finally:
# Always end Langfuse observations to prevent resource leaks
# Guard against None and catch errors to avoid masking original exceptions
if generation is not None:
try:
latest_usage = session.usage[-1] if session.usage else None
generation.update(
model=config.model,
output={
"content": assistant_response.content,
"tool_calls": accumulated_tool_calls or None,
},
usage_details=(
{
"input": latest_usage.prompt_tokens,
"output": latest_usage.completion_tokens,
"total": latest_usage.total_tokens,
}
if latest_usage
else None
),
# Add assistant message with tool_calls if any
if accumulated_tool_calls:
assistant_response.tool_calls = accumulated_tool_calls
logger.info(
f"Added {len(accumulated_tool_calls)} tool calls to assistant message"
)
if assistant_response.content or assistant_response.tool_calls:
messages_to_save.append(assistant_response)
logger.info(
f"Saving assistant message with content_len={len(assistant_response.content or '')}, tool_calls={len(assistant_response.tool_calls or [])}"
)
generation.end()
except Exception as e:
logger.warning(f"Failed to end Langfuse generation: {e}")
if trace is not None:
try:
if accumulated_tool_calls:
trace.update_trace(output={"tool_calls": accumulated_tool_calls})
else:
trace.update_trace(output={"response": assistant_response.content})
trace.end()
except Exception as e:
logger.warning(f"Failed to end Langfuse trace: {e}")
# Add tool response messages after assistant message
messages_to_save.extend(tool_response_messages)
logger.info(
f"Saving {len(tool_response_messages)} tool response messages, "
f"total_to_save={len(messages_to_save)}"
)
session.messages.extend(messages_to_save)
logger.info(
f"Extended session messages, new message_count={len(session.messages)}"
)
await upsert_chat_session(session)
# If we did a tool call, stream the chat completion again to get the next response
if has_done_tool_call:
logger.info(
"Tool call executed, streaming chat completion again to get assistant response"
)
async for chunk in stream_chat_completion(
session_id=session.session_id,
user_id=user_id,
session=session, # Pass session object to avoid Redis refetch
context=context,
tool_call_response=str(tool_response_messages),
):
yield chunk
# Retry configuration for OpenAI API calls
@@ -900,5 +791,4 @@ async def _yield_tool_call(
session=session,
)
logger.info(f"Yielding Tool execution response: {tool_execution_response}")
yield tool_execution_response

View File

@@ -30,7 +30,7 @@ TOOL_REGISTRY: dict[str, BaseTool] = {
"find_library_agent": FindLibraryAgentTool(),
"run_agent": RunAgentTool(),
"run_block": RunBlockTool(),
"agent_output": AgentOutputTool(),
"view_agent_output": AgentOutputTool(),
"search_docs": SearchDocsTool(),
"get_doc_page": GetDocPageTool(),
}

View File

@@ -3,6 +3,8 @@
import logging
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from backend.data.understanding import (
BusinessUnderstandingInput,
@@ -59,6 +61,7 @@ and automations for the user's specific needs."""
"""Requires authentication to store user-specific data."""
return True
@observe(as_type="tool", name="add_understanding")
async def _execute(
self,
user_id: str | None,

View File

@@ -1,29 +1,28 @@
"""Agent generator package - Creates agents from natural language."""
from .core import (
apply_agent_patch,
AgentGeneratorNotConfiguredError,
decompose_goal,
generate_agent,
generate_agent_patch,
get_agent_as_json,
json_to_graph,
save_agent_to_library,
)
from .fixer import apply_all_fixes
from .utils import get_blocks_info
from .validator import validate_agent
from .service import health_check as check_external_service_health
from .service import is_external_service_configured
__all__ = [
# Core functions
"decompose_goal",
"generate_agent",
"generate_agent_patch",
"apply_agent_patch",
"save_agent_to_library",
"get_agent_as_json",
# Fixer
"apply_all_fixes",
# Validator
"validate_agent",
# Utils
"get_blocks_info",
"json_to_graph",
# Exceptions
"AgentGeneratorNotConfiguredError",
# Service
"is_external_service_configured",
"check_external_service_health",
]

View File

@@ -1,25 +0,0 @@
"""OpenRouter client configuration for agent generation."""
import os
from openai import AsyncOpenAI
# Configuration - use OPEN_ROUTER_API_KEY for consistency with chat/config.py
OPENROUTER_API_KEY = os.getenv("OPEN_ROUTER_API_KEY")
AGENT_GENERATOR_MODEL = os.getenv("AGENT_GENERATOR_MODEL", "anthropic/claude-opus-4.5")
# OpenRouter client (OpenAI-compatible API)
_client: AsyncOpenAI | None = None
def get_client() -> AsyncOpenAI:
"""Get or create the OpenRouter client."""
global _client
if _client is None:
if not OPENROUTER_API_KEY:
raise ValueError("OPENROUTER_API_KEY environment variable is required")
_client = AsyncOpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=OPENROUTER_API_KEY,
)
return _client

View File

@@ -1,7 +1,5 @@
"""Core agent generation functions."""
import copy
import json
import logging
import uuid
from typing import Any
@@ -9,13 +7,35 @@ from typing import Any
from backend.api.features.library import db as library_db
from backend.data.graph import Graph, Link, Node, create_graph
from .client import AGENT_GENERATOR_MODEL, get_client
from .prompts import DECOMPOSITION_PROMPT, GENERATION_PROMPT, PATCH_PROMPT
from .utils import get_block_summaries, parse_json_from_llm
from .service import (
decompose_goal_external,
generate_agent_external,
generate_agent_patch_external,
is_external_service_configured,
)
logger = logging.getLogger(__name__)
class AgentGeneratorNotConfiguredError(Exception):
"""Raised when the external Agent Generator service is not configured."""
pass
def _check_service_configured() -> None:
"""Check if the external Agent Generator service is configured.
Raises:
AgentGeneratorNotConfiguredError: If the service is not configured.
"""
if not is_external_service_configured():
raise AgentGeneratorNotConfiguredError(
"Agent Generator service is not configured. "
"Set AGENTGENERATOR_HOST environment variable to enable agent generation."
)
async def decompose_goal(description: str, context: str = "") -> dict[str, Any] | None:
"""Break down a goal into steps or return clarifying questions.
@@ -28,40 +48,13 @@ async def decompose_goal(description: str, context: str = "") -> dict[str, Any]
- {"type": "clarifying_questions", "questions": [...]}
- {"type": "instructions", "steps": [...]}
Or None on error
Raises:
AgentGeneratorNotConfiguredError: If the external service is not configured.
"""
client = get_client()
prompt = DECOMPOSITION_PROMPT.format(block_summaries=get_block_summaries())
full_description = description
if context:
full_description = f"{description}\n\nAdditional context:\n{context}"
try:
response = await client.chat.completions.create(
model=AGENT_GENERATOR_MODEL,
messages=[
{"role": "system", "content": prompt},
{"role": "user", "content": full_description},
],
temperature=0,
)
content = response.choices[0].message.content
if content is None:
logger.error("LLM returned empty content for decomposition")
return None
result = parse_json_from_llm(content)
if result is None:
logger.error(f"Failed to parse decomposition response: {content[:200]}")
return None
return result
except Exception as e:
logger.error(f"Error decomposing goal: {e}")
return None
_check_service_configured()
logger.info("Calling external Agent Generator service for decompose_goal")
return await decompose_goal_external(description, context)
async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None:
@@ -72,31 +65,14 @@ async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None:
Returns:
Agent JSON dict or None on error
Raises:
AgentGeneratorNotConfiguredError: If the external service is not configured.
"""
client = get_client()
prompt = GENERATION_PROMPT.format(block_summaries=get_block_summaries())
try:
response = await client.chat.completions.create(
model=AGENT_GENERATOR_MODEL,
messages=[
{"role": "system", "content": prompt},
{"role": "user", "content": json.dumps(instructions, indent=2)},
],
temperature=0,
)
content = response.choices[0].message.content
if content is None:
logger.error("LLM returned empty content for agent generation")
return None
result = parse_json_from_llm(content)
if result is None:
logger.error(f"Failed to parse agent JSON: {content[:200]}")
return None
_check_service_configured()
logger.info("Calling external Agent Generator service for generate_agent")
result = await generate_agent_external(instructions)
if result:
# Ensure required fields
if "id" not in result:
result["id"] = str(uuid.uuid4())
@@ -104,12 +80,7 @@ async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None:
result["version"] = 1
if "is_active" not in result:
result["is_active"] = True
return result
except Exception as e:
logger.error(f"Error generating agent: {e}")
return None
return result
def json_to_graph(agent_json: dict[str, Any]) -> Graph:
@@ -218,6 +189,7 @@ async def save_agent_to_library(
library_agents = await library_db.create_library_agent(
graph=created_graph,
user_id=user_id,
sensitive_action_safe_mode=True,
create_library_agents_for_sub_graphs=False,
)
@@ -283,108 +255,23 @@ async def get_agent_as_json(
async def generate_agent_patch(
update_request: str, current_agent: dict[str, Any]
) -> dict[str, Any] | None:
"""Generate a patch to update an existing agent.
"""Update an existing agent using natural language.
The external Agent Generator service handles:
- Generating the patch
- Applying the patch
- Fixing and validating the result
Args:
update_request: Natural language description of changes
current_agent: Current agent JSON
Returns:
Patch dict or clarifying questions, or None on error
Updated agent JSON, clarifying questions dict, or None on error
Raises:
AgentGeneratorNotConfiguredError: If the external service is not configured.
"""
client = get_client()
prompt = PATCH_PROMPT.format(
current_agent=json.dumps(current_agent, indent=2),
block_summaries=get_block_summaries(),
)
try:
response = await client.chat.completions.create(
model=AGENT_GENERATOR_MODEL,
messages=[
{"role": "system", "content": prompt},
{"role": "user", "content": update_request},
],
temperature=0,
)
content = response.choices[0].message.content
if content is None:
logger.error("LLM returned empty content for patch generation")
return None
return parse_json_from_llm(content)
except Exception as e:
logger.error(f"Error generating patch: {e}")
return None
def apply_agent_patch(
current_agent: dict[str, Any], patch: dict[str, Any]
) -> dict[str, Any]:
"""Apply a patch to an existing agent.
Args:
current_agent: Current agent JSON
patch: Patch dict with operations
Returns:
Updated agent JSON
"""
agent = copy.deepcopy(current_agent)
patches = patch.get("patches", [])
for p in patches:
patch_type = p.get("type")
if patch_type == "modify":
node_id = p.get("node_id")
changes = p.get("changes", {})
for node in agent.get("nodes", []):
if node["id"] == node_id:
_deep_update(node, changes)
logger.debug(f"Modified node {node_id}")
break
elif patch_type == "add":
new_nodes = p.get("new_nodes", [])
new_links = p.get("new_links", [])
agent["nodes"] = agent.get("nodes", []) + new_nodes
agent["links"] = agent.get("links", []) + new_links
logger.debug(f"Added {len(new_nodes)} nodes, {len(new_links)} links")
elif patch_type == "remove":
node_ids_to_remove = set(p.get("node_ids", []))
link_ids_to_remove = set(p.get("link_ids", []))
# Remove nodes
agent["nodes"] = [
n for n in agent.get("nodes", []) if n["id"] not in node_ids_to_remove
]
# Remove links (both explicit and those referencing removed nodes)
agent["links"] = [
link
for link in agent.get("links", [])
if link["id"] not in link_ids_to_remove
and link["source_id"] not in node_ids_to_remove
and link["sink_id"] not in node_ids_to_remove
]
logger.debug(
f"Removed {len(node_ids_to_remove)} nodes, {len(link_ids_to_remove)} links"
)
return agent
def _deep_update(target: dict, source: dict) -> None:
"""Recursively update a dict with another dict."""
for key, value in source.items():
if key in target and isinstance(target[key], dict) and isinstance(value, dict):
_deep_update(target[key], value)
else:
target[key] = value
_check_service_configured()
logger.info("Calling external Agent Generator service for generate_agent_patch")
return await generate_agent_patch_external(update_request, current_agent)

View File

@@ -1,606 +0,0 @@
"""Agent fixer - Fixes common LLM generation errors."""
import logging
import re
import uuid
from typing import Any
from .utils import (
ADDTODICTIONARY_BLOCK_ID,
ADDTOLIST_BLOCK_ID,
CODE_EXECUTION_BLOCK_ID,
CONDITION_BLOCK_ID,
CREATEDICT_BLOCK_ID,
CREATELIST_BLOCK_ID,
DATA_SAMPLING_BLOCK_ID,
DOUBLE_CURLY_BRACES_BLOCK_IDS,
GET_CURRENT_DATE_BLOCK_ID,
STORE_VALUE_BLOCK_ID,
UNIVERSAL_TYPE_CONVERTER_BLOCK_ID,
get_blocks_info,
is_valid_uuid,
)
logger = logging.getLogger(__name__)
def fix_agent_ids(agent: dict[str, Any]) -> dict[str, Any]:
"""Fix invalid UUIDs in agent and link IDs."""
# Fix agent ID
if not is_valid_uuid(agent.get("id", "")):
agent["id"] = str(uuid.uuid4())
logger.debug(f"Fixed agent ID: {agent['id']}")
# Fix node IDs
id_mapping = {} # Old ID -> New ID
for node in agent.get("nodes", []):
if not is_valid_uuid(node.get("id", "")):
old_id = node.get("id", "")
new_id = str(uuid.uuid4())
id_mapping[old_id] = new_id
node["id"] = new_id
logger.debug(f"Fixed node ID: {old_id} -> {new_id}")
# Fix link IDs and update references
for link in agent.get("links", []):
if not is_valid_uuid(link.get("id", "")):
link["id"] = str(uuid.uuid4())
logger.debug(f"Fixed link ID: {link['id']}")
# Update source/sink IDs if they were remapped
if link.get("source_id") in id_mapping:
link["source_id"] = id_mapping[link["source_id"]]
if link.get("sink_id") in id_mapping:
link["sink_id"] = id_mapping[link["sink_id"]]
return agent
def fix_double_curly_braces(agent: dict[str, Any]) -> dict[str, Any]:
"""Fix single curly braces to double in template blocks."""
for node in agent.get("nodes", []):
if node.get("block_id") not in DOUBLE_CURLY_BRACES_BLOCK_IDS:
continue
input_data = node.get("input_default", {})
for key in ("prompt", "format"):
if key in input_data and isinstance(input_data[key], str):
original = input_data[key]
# Fix simple variable references: {var} -> {{var}}
fixed = re.sub(
r"(?<!\{)\{([a-zA-Z_][a-zA-Z0-9_]*)\}(?!\})",
r"{{\1}}",
original,
)
if fixed != original:
input_data[key] = fixed
logger.debug(f"Fixed curly braces in {key}")
return agent
def fix_storevalue_before_condition(agent: dict[str, Any]) -> dict[str, Any]:
"""Add StoreValueBlock before ConditionBlock if needed for value2."""
nodes = agent.get("nodes", [])
links = agent.get("links", [])
# Find all ConditionBlock nodes
condition_node_ids = {
node["id"] for node in nodes if node.get("block_id") == CONDITION_BLOCK_ID
}
if not condition_node_ids:
return agent
new_nodes = []
new_links = []
processed_conditions = set()
for link in links:
sink_id = link.get("sink_id")
sink_name = link.get("sink_name")
# Check if this link goes to a ConditionBlock's value2
if sink_id in condition_node_ids and sink_name == "value2":
source_node = next(
(n for n in nodes if n["id"] == link.get("source_id")), None
)
# Skip if source is already a StoreValueBlock
if source_node and source_node.get("block_id") == STORE_VALUE_BLOCK_ID:
continue
# Skip if we already processed this condition
if sink_id in processed_conditions:
continue
processed_conditions.add(sink_id)
# Create StoreValueBlock
store_node_id = str(uuid.uuid4())
store_node = {
"id": store_node_id,
"block_id": STORE_VALUE_BLOCK_ID,
"input_default": {"data": None},
"metadata": {"position": {"x": 0, "y": -100}},
}
new_nodes.append(store_node)
# Create link: original source -> StoreValueBlock
new_links.append(
{
"id": str(uuid.uuid4()),
"source_id": link["source_id"],
"source_name": link["source_name"],
"sink_id": store_node_id,
"sink_name": "input",
"is_static": False,
}
)
# Update original link: StoreValueBlock -> ConditionBlock
link["source_id"] = store_node_id
link["source_name"] = "output"
logger.debug(f"Added StoreValueBlock before ConditionBlock {sink_id}")
if new_nodes:
agent["nodes"] = nodes + new_nodes
return agent
def fix_addtolist_blocks(agent: dict[str, Any]) -> dict[str, Any]:
"""Fix AddToList blocks by adding prerequisite empty AddToList block.
When an AddToList block is found:
1. Checks if there's a CreateListBlock before it
2. Removes CreateListBlock if linked directly to AddToList
3. Adds an empty AddToList block before the original
4. Ensures the original has a self-referencing link
"""
nodes = agent.get("nodes", [])
links = agent.get("links", [])
new_nodes = []
original_addtolist_ids = set()
nodes_to_remove = set()
links_to_remove = []
# First pass: identify CreateListBlock nodes to remove
for link in links:
source_node = next(
(n for n in nodes if n.get("id") == link.get("source_id")), None
)
sink_node = next((n for n in nodes if n.get("id") == link.get("sink_id")), None)
if (
source_node
and sink_node
and source_node.get("block_id") == CREATELIST_BLOCK_ID
and sink_node.get("block_id") == ADDTOLIST_BLOCK_ID
):
nodes_to_remove.add(source_node.get("id"))
links_to_remove.append(link)
logger.debug(f"Removing CreateListBlock {source_node.get('id')}")
# Second pass: process AddToList blocks
filtered_nodes = []
for node in nodes:
if node.get("id") in nodes_to_remove:
continue
if node.get("block_id") == ADDTOLIST_BLOCK_ID:
original_addtolist_ids.add(node.get("id"))
node_id = node.get("id")
pos = node.get("metadata", {}).get("position", {"x": 0, "y": 0})
# Check if already has prerequisite
has_prereq = any(
link.get("sink_id") == node_id
and link.get("sink_name") == "list"
and link.get("source_name") == "updated_list"
for link in links
)
if not has_prereq:
# Remove links to "list" input (except self-reference)
for link in links:
if (
link.get("sink_id") == node_id
and link.get("sink_name") == "list"
and link.get("source_id") != node_id
and link not in links_to_remove
):
links_to_remove.append(link)
# Create prerequisite AddToList block
prereq_id = str(uuid.uuid4())
prereq_node = {
"id": prereq_id,
"block_id": ADDTOLIST_BLOCK_ID,
"input_default": {"list": [], "entry": None, "entries": []},
"metadata": {
"position": {"x": pos.get("x", 0) - 800, "y": pos.get("y", 0)}
},
}
new_nodes.append(prereq_node)
# Link prerequisite to original
links.append(
{
"id": str(uuid.uuid4()),
"source_id": prereq_id,
"source_name": "updated_list",
"sink_id": node_id,
"sink_name": "list",
"is_static": False,
}
)
logger.debug(f"Added prerequisite AddToList block for {node_id}")
filtered_nodes.append(node)
# Remove marked links
filtered_links = [link for link in links if link not in links_to_remove]
# Add self-referencing links for original AddToList blocks
for node in filtered_nodes + new_nodes:
if (
node.get("block_id") == ADDTOLIST_BLOCK_ID
and node.get("id") in original_addtolist_ids
):
node_id = node.get("id")
has_self_ref = any(
link["source_id"] == node_id
and link["sink_id"] == node_id
and link["source_name"] == "updated_list"
and link["sink_name"] == "list"
for link in filtered_links
)
if not has_self_ref:
filtered_links.append(
{
"id": str(uuid.uuid4()),
"source_id": node_id,
"source_name": "updated_list",
"sink_id": node_id,
"sink_name": "list",
"is_static": False,
}
)
logger.debug(f"Added self-reference for AddToList {node_id}")
agent["nodes"] = filtered_nodes + new_nodes
agent["links"] = filtered_links
return agent
def fix_addtodictionary_blocks(agent: dict[str, Any]) -> dict[str, Any]:
"""Fix AddToDictionary blocks by removing empty CreateDictionary nodes."""
nodes = agent.get("nodes", [])
links = agent.get("links", [])
nodes_to_remove = set()
links_to_remove = []
for link in links:
source_node = next(
(n for n in nodes if n.get("id") == link.get("source_id")), None
)
sink_node = next((n for n in nodes if n.get("id") == link.get("sink_id")), None)
if (
source_node
and sink_node
and source_node.get("block_id") == CREATEDICT_BLOCK_ID
and sink_node.get("block_id") == ADDTODICTIONARY_BLOCK_ID
):
nodes_to_remove.add(source_node.get("id"))
links_to_remove.append(link)
logger.debug(f"Removing CreateDictionary {source_node.get('id')}")
agent["nodes"] = [n for n in nodes if n.get("id") not in nodes_to_remove]
agent["links"] = [link for link in links if link not in links_to_remove]
return agent
def fix_code_execution_output(agent: dict[str, Any]) -> dict[str, Any]:
"""Fix CodeExecutionBlock output: change 'response' to 'stdout_logs'."""
nodes = agent.get("nodes", [])
links = agent.get("links", [])
for link in links:
source_node = next(
(n for n in nodes if n.get("id") == link.get("source_id")), None
)
if (
source_node
and source_node.get("block_id") == CODE_EXECUTION_BLOCK_ID
and link.get("source_name") == "response"
):
link["source_name"] = "stdout_logs"
logger.debug("Fixed CodeExecutionBlock output: response -> stdout_logs")
return agent
def fix_data_sampling_sample_size(agent: dict[str, Any]) -> dict[str, Any]:
"""Fix DataSamplingBlock by setting sample_size to 1 as default."""
nodes = agent.get("nodes", [])
links = agent.get("links", [])
links_to_remove = []
for node in nodes:
if node.get("block_id") == DATA_SAMPLING_BLOCK_ID:
node_id = node.get("id")
input_default = node.get("input_default", {})
# Remove links to sample_size
for link in links:
if (
link.get("sink_id") == node_id
and link.get("sink_name") == "sample_size"
):
links_to_remove.append(link)
# Set default
input_default["sample_size"] = 1
node["input_default"] = input_default
logger.debug(f"Fixed DataSamplingBlock {node_id} sample_size to 1")
if links_to_remove:
agent["links"] = [link for link in links if link not in links_to_remove]
return agent
def fix_node_x_coordinates(agent: dict[str, Any]) -> dict[str, Any]:
"""Fix node x-coordinates to ensure 800+ unit spacing between linked nodes."""
nodes = agent.get("nodes", [])
links = agent.get("links", [])
node_lookup = {n.get("id"): n for n in nodes}
for link in links:
source_id = link.get("source_id")
sink_id = link.get("sink_id")
source_node = node_lookup.get(source_id)
sink_node = node_lookup.get(sink_id)
if not source_node or not sink_node:
continue
source_pos = source_node.get("metadata", {}).get("position", {})
sink_pos = sink_node.get("metadata", {}).get("position", {})
source_x = source_pos.get("x", 0)
sink_x = sink_pos.get("x", 0)
if abs(sink_x - source_x) < 800:
new_x = source_x + 800
if "metadata" not in sink_node:
sink_node["metadata"] = {}
if "position" not in sink_node["metadata"]:
sink_node["metadata"]["position"] = {}
sink_node["metadata"]["position"]["x"] = new_x
logger.debug(f"Fixed node {sink_id} x: {sink_x} -> {new_x}")
return agent
def fix_getcurrentdate_offset(agent: dict[str, Any]) -> dict[str, Any]:
"""Fix GetCurrentDateBlock offset to ensure it's positive."""
for node in agent.get("nodes", []):
if node.get("block_id") == GET_CURRENT_DATE_BLOCK_ID:
input_default = node.get("input_default", {})
if "offset" in input_default:
offset = input_default["offset"]
if isinstance(offset, (int, float)) and offset < 0:
input_default["offset"] = abs(offset)
logger.debug(f"Fixed offset: {offset} -> {abs(offset)}")
return agent
def fix_ai_model_parameter(
agent: dict[str, Any],
blocks_info: list[dict[str, Any]],
default_model: str = "gpt-4o",
) -> dict[str, Any]:
"""Add default model parameter to AI blocks if missing."""
block_map = {b.get("id"): b for b in blocks_info}
for node in agent.get("nodes", []):
block_id = node.get("block_id")
block = block_map.get(block_id)
if not block:
continue
# Check if block has AI category
categories = block.get("categories", [])
is_ai_block = any(
cat.get("category") == "AI" for cat in categories if isinstance(cat, dict)
)
if is_ai_block:
input_default = node.get("input_default", {})
if "model" not in input_default:
input_default["model"] = default_model
node["input_default"] = input_default
logger.debug(
f"Added model '{default_model}' to AI block {node.get('id')}"
)
return agent
def fix_link_static_properties(
agent: dict[str, Any], blocks_info: list[dict[str, Any]]
) -> dict[str, Any]:
"""Fix is_static property based on source block's staticOutput."""
block_map = {b.get("id"): b for b in blocks_info}
node_lookup = {n.get("id"): n for n in agent.get("nodes", [])}
for link in agent.get("links", []):
source_node = node_lookup.get(link.get("source_id"))
if not source_node:
continue
source_block = block_map.get(source_node.get("block_id"))
if not source_block:
continue
static_output = source_block.get("staticOutput", False)
if link.get("is_static") != static_output:
link["is_static"] = static_output
logger.debug(f"Fixed link {link.get('id')} is_static to {static_output}")
return agent
def fix_data_type_mismatch(
agent: dict[str, Any], blocks_info: list[dict[str, Any]]
) -> dict[str, Any]:
"""Fix data type mismatches by inserting UniversalTypeConverterBlock."""
nodes = agent.get("nodes", [])
links = agent.get("links", [])
block_map = {b.get("id"): b for b in blocks_info}
node_lookup = {n.get("id"): n for n in nodes}
def get_property_type(schema: dict, name: str) -> str | None:
if "_#_" in name:
parent, child = name.split("_#_", 1)
parent_schema = schema.get(parent, {})
if "properties" in parent_schema:
return parent_schema["properties"].get(child, {}).get("type")
return None
return schema.get(name, {}).get("type")
def are_types_compatible(src: str, sink: str) -> bool:
if {src, sink} <= {"integer", "number"}:
return True
return src == sink
type_mapping = {
"string": "string",
"text": "string",
"integer": "number",
"number": "number",
"float": "number",
"boolean": "boolean",
"bool": "boolean",
"array": "list",
"list": "list",
"object": "dictionary",
"dict": "dictionary",
"dictionary": "dictionary",
}
new_links = []
nodes_to_add = []
for link in links:
source_node = node_lookup.get(link.get("source_id"))
sink_node = node_lookup.get(link.get("sink_id"))
if not source_node or not sink_node:
new_links.append(link)
continue
source_block = block_map.get(source_node.get("block_id"))
sink_block = block_map.get(sink_node.get("block_id"))
if not source_block or not sink_block:
new_links.append(link)
continue
source_outputs = source_block.get("outputSchema", {}).get("properties", {})
sink_inputs = sink_block.get("inputSchema", {}).get("properties", {})
source_type = get_property_type(source_outputs, link.get("source_name", ""))
sink_type = get_property_type(sink_inputs, link.get("sink_name", ""))
if (
source_type
and sink_type
and not are_types_compatible(source_type, sink_type)
):
# Insert type converter
converter_id = str(uuid.uuid4())
target_type = type_mapping.get(sink_type, sink_type)
converter_node = {
"id": converter_id,
"block_id": UNIVERSAL_TYPE_CONVERTER_BLOCK_ID,
"input_default": {"type": target_type},
"metadata": {"position": {"x": 0, "y": 100}},
}
nodes_to_add.append(converter_node)
# source -> converter
new_links.append(
{
"id": str(uuid.uuid4()),
"source_id": link["source_id"],
"source_name": link["source_name"],
"sink_id": converter_id,
"sink_name": "value",
"is_static": False,
}
)
# converter -> sink
new_links.append(
{
"id": str(uuid.uuid4()),
"source_id": converter_id,
"source_name": "value",
"sink_id": link["sink_id"],
"sink_name": link["sink_name"],
"is_static": False,
}
)
logger.debug(f"Inserted type converter: {source_type} -> {target_type}")
else:
new_links.append(link)
if nodes_to_add:
agent["nodes"] = nodes + nodes_to_add
agent["links"] = new_links
return agent
def apply_all_fixes(
agent: dict[str, Any], blocks_info: list[dict[str, Any]] | None = None
) -> dict[str, Any]:
"""Apply all fixes to an agent JSON.
Args:
agent: Agent JSON dict
blocks_info: Optional list of block info dicts for advanced fixes
Returns:
Fixed agent JSON
"""
# Basic fixes (no block info needed)
agent = fix_agent_ids(agent)
agent = fix_double_curly_braces(agent)
agent = fix_storevalue_before_condition(agent)
agent = fix_addtolist_blocks(agent)
agent = fix_addtodictionary_blocks(agent)
agent = fix_code_execution_output(agent)
agent = fix_data_sampling_sample_size(agent)
agent = fix_node_x_coordinates(agent)
agent = fix_getcurrentdate_offset(agent)
# Advanced fixes (require block info)
if blocks_info is None:
blocks_info = get_blocks_info()
agent = fix_ai_model_parameter(agent, blocks_info)
agent = fix_link_static_properties(agent, blocks_info)
agent = fix_data_type_mismatch(agent, blocks_info)
return agent

View File

@@ -1,225 +0,0 @@
"""Prompt templates for agent generation."""
DECOMPOSITION_PROMPT = """
You are an expert AutoGPT Workflow Decomposer. Your task is to analyze a user's high-level goal and break it down into a clear, step-by-step plan using the available blocks.
Each step should represent a distinct, automatable action suitable for execution by an AI automation system.
---
FIRST: Analyze the user's goal and determine:
1) Design-time configuration (fixed settings that won't change per run)
2) Runtime inputs (values the agent's end-user will provide each time it runs)
For anything that can vary per run (email addresses, names, dates, search terms, etc.):
- DO NOT ask for the actual value
- Instead, define it as an Agent Input with a clear name, type, and description
Only ask clarifying questions about design-time config that affects how you build the workflow:
- Which external service to use (e.g., "Gmail vs Outlook", "Notion vs Google Docs")
- Required formats or structures (e.g., "CSV, JSON, or PDF output?")
- Business rules that must be hard-coded
IMPORTANT CLARIFICATIONS POLICY:
- Ask no more than five essential questions
- Do not ask for concrete values that can be provided at runtime as Agent Inputs
- Do not ask for API keys or credentials; the platform handles those directly
- If there is enough information to infer reasonable defaults, prefer to propose defaults
---
GUIDELINES:
1. List each step as a numbered item
2. Describe the action clearly and specify inputs/outputs
3. Ensure steps are in logical, sequential order
4. Mention block names naturally (e.g., "Use GetWeatherByLocationBlock to...")
5. Help the user reach their goal efficiently
---
RULES:
1. OUTPUT FORMAT: Only output either clarifying questions OR step-by-step instructions, not both
2. USE ONLY THE BLOCKS PROVIDED
3. ALL required_input fields must be provided
4. Data types of linked properties must match
5. Write expert-level prompts for AI-related blocks
---
CRITICAL BLOCK RESTRICTIONS:
1. AddToListBlock: Outputs updated list EVERY addition, not after all additions
2. SendEmailBlock: Draft the email for user review; set SMTP config based on email type
3. ConditionBlock: value2 is reference, value1 is contrast
4. CodeExecutionBlock: DO NOT USE - use AI blocks instead
5. ReadCsvBlock: Only use the 'rows' output, not 'row'
---
OUTPUT FORMAT:
If more information is needed:
```json
{{
"type": "clarifying_questions",
"questions": [
{{
"question": "Which email provider should be used? (Gmail, Outlook, custom SMTP)",
"keyword": "email_provider",
"example": "Gmail"
}}
]
}}
```
If ready to proceed:
```json
{{
"type": "instructions",
"steps": [
{{
"step_number": 1,
"block_name": "AgentShortTextInputBlock",
"description": "Get the URL of the content to analyze.",
"inputs": [{{"name": "name", "value": "URL"}}],
"outputs": [{{"name": "result", "description": "The URL entered by user"}}]
}}
]
}}
```
---
AVAILABLE BLOCKS:
{block_summaries}
"""
GENERATION_PROMPT = """
You are an expert AI workflow builder. Generate a valid agent JSON from the given instructions.
---
NODES:
Each node must include:
- `id`: Unique UUID v4 (e.g. `a8f5b1e2-c3d4-4e5f-8a9b-0c1d2e3f4a5b`)
- `block_id`: The block identifier (must match an Allowed Block)
- `input_default`: Dict of inputs (can be empty if no static inputs needed)
- `metadata`: Must contain:
- `position`: {{"x": number, "y": number}} - adjacent nodes should differ by 800+ in X
- `customized_name`: Clear name describing this block's purpose in the workflow
---
LINKS:
Each link connects a source node's output to a sink node's input:
- `id`: MUST be UUID v4 (NOT "link-1", "link-2", etc.)
- `source_id`: ID of the source node
- `source_name`: Output field name from the source block
- `sink_id`: ID of the sink node
- `sink_name`: Input field name on the sink block
- `is_static`: true only if source block has static_output: true
CRITICAL: All IDs must be valid UUID v4 format!
---
AGENT (GRAPH):
Wrap nodes and links in:
- `id`: UUID of the agent
- `name`: Short, generic name (avoid specific company names, URLs)
- `description`: Short, generic description
- `nodes`: List of all nodes
- `links`: List of all links
- `version`: 1
- `is_active`: true
---
TIPS:
- All required_input fields must be provided via input_default or a valid link
- Ensure consistent source_id and sink_id references
- Avoid dangling links
- Input/output pins must match block schemas
- Do not invent unknown block_ids
---
ALLOWED BLOCKS:
{block_summaries}
---
Generate the complete agent JSON. Output ONLY valid JSON, no explanation.
"""
PATCH_PROMPT = """
You are an expert at modifying AutoGPT agent workflows. Given the current agent and a modification request, generate a JSON patch to update the agent.
CURRENT AGENT:
{current_agent}
AVAILABLE BLOCKS:
{block_summaries}
---
PATCH FORMAT:
Return a JSON object with the following structure:
```json
{{
"type": "patch",
"intent": "Brief description of what the patch does",
"patches": [
{{
"type": "modify",
"node_id": "uuid-of-node-to-modify",
"changes": {{
"input_default": {{"field": "new_value"}},
"metadata": {{"customized_name": "New Name"}}
}}
}},
{{
"type": "add",
"new_nodes": [
{{
"id": "new-uuid",
"block_id": "block-uuid",
"input_default": {{}},
"metadata": {{"position": {{"x": 0, "y": 0}}, "customized_name": "Name"}}
}}
],
"new_links": [
{{
"id": "link-uuid",
"source_id": "source-node-id",
"source_name": "output_field",
"sink_id": "sink-node-id",
"sink_name": "input_field"
}}
]
}},
{{
"type": "remove",
"node_ids": ["uuid-of-node-to-remove"],
"link_ids": ["uuid-of-link-to-remove"]
}}
]
}}
```
If you need more information, return:
```json
{{
"type": "clarifying_questions",
"questions": [
{{
"question": "What specific change do you want?",
"keyword": "change_type",
"example": "Add error handling"
}}
]
}}
```
Generate the minimal patch needed. Output ONLY valid JSON.
"""

View File

@@ -0,0 +1,269 @@
"""External Agent Generator service client.
This module provides a client for communicating with the external Agent Generator
microservice. When AGENTGENERATOR_HOST is configured, the agent generation functions
will delegate to the external service instead of using the built-in LLM-based implementation.
"""
import logging
from typing import Any
import httpx
from backend.util.settings import Settings
logger = logging.getLogger(__name__)
_client: httpx.AsyncClient | None = None
_settings: Settings | None = None
def _get_settings() -> Settings:
"""Get or create settings singleton."""
global _settings
if _settings is None:
_settings = Settings()
return _settings
def is_external_service_configured() -> bool:
"""Check if external Agent Generator service is configured."""
settings = _get_settings()
return bool(settings.config.agentgenerator_host)
def _get_base_url() -> str:
"""Get the base URL for the external service."""
settings = _get_settings()
host = settings.config.agentgenerator_host
port = settings.config.agentgenerator_port
return f"http://{host}:{port}"
def _get_client() -> httpx.AsyncClient:
"""Get or create the HTTP client for the external service."""
global _client
if _client is None:
settings = _get_settings()
_client = httpx.AsyncClient(
base_url=_get_base_url(),
timeout=httpx.Timeout(settings.config.agentgenerator_timeout),
)
return _client
async def decompose_goal_external(
description: str, context: str = ""
) -> dict[str, Any] | None:
"""Call the external service to decompose a goal.
Args:
description: Natural language goal description
context: Additional context (e.g., answers to previous questions)
Returns:
Dict with either:
- {"type": "clarifying_questions", "questions": [...]}
- {"type": "instructions", "steps": [...]}
- {"type": "unachievable_goal", ...}
- {"type": "vague_goal", ...}
Or None on error
"""
client = _get_client()
# Build the request payload
payload: dict[str, Any] = {"description": description}
if context:
# The external service uses user_instruction for additional context
payload["user_instruction"] = context
try:
response = await client.post("/api/decompose-description", json=payload)
response.raise_for_status()
data = response.json()
if not data.get("success"):
logger.error(f"External service returned error: {data.get('error')}")
return None
# Map the response to the expected format
response_type = data.get("type")
if response_type == "instructions":
return {"type": "instructions", "steps": data.get("steps", [])}
elif response_type == "clarifying_questions":
return {
"type": "clarifying_questions",
"questions": data.get("questions", []),
}
elif response_type == "unachievable_goal":
return {
"type": "unachievable_goal",
"reason": data.get("reason"),
"suggested_goal": data.get("suggested_goal"),
}
elif response_type == "vague_goal":
return {
"type": "vague_goal",
"suggested_goal": data.get("suggested_goal"),
}
else:
logger.error(
f"Unknown response type from external service: {response_type}"
)
return None
except httpx.HTTPStatusError as e:
logger.error(f"HTTP error calling external agent generator: {e}")
return None
except httpx.RequestError as e:
logger.error(f"Request error calling external agent generator: {e}")
return None
except Exception as e:
logger.error(f"Unexpected error calling external agent generator: {e}")
return None
async def generate_agent_external(
instructions: dict[str, Any]
) -> dict[str, Any] | None:
"""Call the external service to generate an agent from instructions.
Args:
instructions: Structured instructions from decompose_goal
Returns:
Agent JSON dict or None on error
"""
client = _get_client()
try:
response = await client.post(
"/api/generate-agent", json={"instructions": instructions}
)
response.raise_for_status()
data = response.json()
if not data.get("success"):
logger.error(f"External service returned error: {data.get('error')}")
return None
return data.get("agent_json")
except httpx.HTTPStatusError as e:
logger.error(f"HTTP error calling external agent generator: {e}")
return None
except httpx.RequestError as e:
logger.error(f"Request error calling external agent generator: {e}")
return None
except Exception as e:
logger.error(f"Unexpected error calling external agent generator: {e}")
return None
async def generate_agent_patch_external(
update_request: str, current_agent: dict[str, Any]
) -> dict[str, Any] | None:
"""Call the external service to generate a patch for an existing agent.
Args:
update_request: Natural language description of changes
current_agent: Current agent JSON
Returns:
Updated agent JSON, clarifying questions dict, or None on error
"""
client = _get_client()
try:
response = await client.post(
"/api/update-agent",
json={
"update_request": update_request,
"current_agent_json": current_agent,
},
)
response.raise_for_status()
data = response.json()
if not data.get("success"):
logger.error(f"External service returned error: {data.get('error')}")
return None
# Check if it's clarifying questions
if data.get("type") == "clarifying_questions":
return {
"type": "clarifying_questions",
"questions": data.get("questions", []),
}
# Otherwise return the updated agent JSON
return data.get("agent_json")
except httpx.HTTPStatusError as e:
logger.error(f"HTTP error calling external agent generator: {e}")
return None
except httpx.RequestError as e:
logger.error(f"Request error calling external agent generator: {e}")
return None
except Exception as e:
logger.error(f"Unexpected error calling external agent generator: {e}")
return None
async def get_blocks_external() -> list[dict[str, Any]] | None:
"""Get available blocks from the external service.
Returns:
List of block info dicts or None on error
"""
client = _get_client()
try:
response = await client.get("/api/blocks")
response.raise_for_status()
data = response.json()
if not data.get("success"):
logger.error("External service returned error getting blocks")
return None
return data.get("blocks", [])
except httpx.HTTPStatusError as e:
logger.error(f"HTTP error getting blocks from external service: {e}")
return None
except httpx.RequestError as e:
logger.error(f"Request error getting blocks from external service: {e}")
return None
except Exception as e:
logger.error(f"Unexpected error getting blocks from external service: {e}")
return None
async def health_check() -> bool:
"""Check if the external service is healthy.
Returns:
True if healthy, False otherwise
"""
if not is_external_service_configured():
return False
client = _get_client()
try:
response = await client.get("/health")
response.raise_for_status()
data = response.json()
return data.get("status") == "healthy" and data.get("blocks_loaded", False)
except Exception as e:
logger.warning(f"External agent generator health check failed: {e}")
return False
async def close_client() -> None:
"""Close the HTTP client."""
global _client
if _client is not None:
await _client.aclose()
_client = None

View File

@@ -1,213 +0,0 @@
"""Utilities for agent generation."""
import json
import re
from typing import Any
from backend.data.block import get_blocks
# UUID validation regex
UUID_REGEX = re.compile(
r"^[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}$"
)
# Block IDs for various fixes
STORE_VALUE_BLOCK_ID = "1ff065e9-88e8-4358-9d82-8dc91f622ba9"
CONDITION_BLOCK_ID = "715696a0-e1da-45c8-b209-c2fa9c3b0be6"
ADDTOLIST_BLOCK_ID = "aeb08fc1-2fc1-4141-bc8e-f758f183a822"
ADDTODICTIONARY_BLOCK_ID = "31d1064e-7446-4693-a7d4-65e5ca1180d1"
CREATELIST_BLOCK_ID = "a912d5c7-6e00-4542-b2a9-8034136930e4"
CREATEDICT_BLOCK_ID = "b924ddf4-de4f-4b56-9a85-358930dcbc91"
CODE_EXECUTION_BLOCK_ID = "0b02b072-abe7-11ef-8372-fb5d162dd712"
DATA_SAMPLING_BLOCK_ID = "4a448883-71fa-49cf-91cf-70d793bd7d87"
UNIVERSAL_TYPE_CONVERTER_BLOCK_ID = "95d1b990-ce13-4d88-9737-ba5c2070c97b"
GET_CURRENT_DATE_BLOCK_ID = "b29c1b50-5d0e-4d9f-8f9d-1b0e6fcbf0b1"
DOUBLE_CURLY_BRACES_BLOCK_IDS = [
"44f6c8ad-d75c-4ae1-8209-aad1c0326928", # FillTextTemplateBlock
"6ab085e2-20b3-4055-bc3e-08036e01eca6",
"90f8c45e-e983-4644-aa0b-b4ebe2f531bc",
"363ae599-353e-4804-937e-b2ee3cef3da4", # AgentOutputBlock
"3b191d9f-356f-482d-8238-ba04b6d18381",
"db7d8f02-2f44-4c55-ab7a-eae0941f0c30",
"3a7c4b8d-6e2f-4a5d-b9c1-f8d23c5a9b0e",
"ed1ae7a0-b770-4089-b520-1f0005fad19a",
"a892b8d9-3e4e-4e9c-9c1e-75f8efcf1bfa",
"b29c1b50-5d0e-4d9f-8f9d-1b0e6fcbf0b1",
"716a67b3-6760-42e7-86dc-18645c6e00fc",
"530cf046-2ce0-4854-ae2c-659db17c7a46",
"ed55ac19-356e-4243-a6cb-bc599e9b716f",
"1f292d4a-41a4-4977-9684-7c8d560b9f91", # LLM blocks
"32a87eab-381e-4dd4-bdb8-4c47151be35a",
]
def is_valid_uuid(value: str) -> bool:
"""Check if a string is a valid UUID v4."""
return isinstance(value, str) and UUID_REGEX.match(value) is not None
def _compact_schema(schema: dict) -> dict[str, str]:
"""Extract compact type info from a JSON schema properties dict.
Returns a dict of {field_name: type_string} for essential info only.
"""
props = schema.get("properties", {})
result = {}
for name, prop in props.items():
# Skip internal/complex fields
if name.startswith("_"):
continue
# Get type string
type_str = prop.get("type", "any")
# Handle anyOf/oneOf (optional types)
if "anyOf" in prop:
types = [t.get("type", "?") for t in prop["anyOf"] if t.get("type")]
type_str = "|".join(types) if types else "any"
elif "allOf" in prop:
type_str = "object"
# Add array item type if present
if type_str == "array" and "items" in prop:
items = prop["items"]
if isinstance(items, dict):
item_type = items.get("type", "any")
type_str = f"array[{item_type}]"
result[name] = type_str
return result
def get_block_summaries(include_schemas: bool = True) -> str:
"""Generate compact block summaries for prompts.
Args:
include_schemas: Whether to include input/output type info
Returns:
Formatted string of block summaries (compact format)
"""
blocks = get_blocks()
summaries = []
for block_id, block_cls in blocks.items():
block = block_cls()
name = block.name
desc = getattr(block, "description", "") or ""
# Truncate description
if len(desc) > 150:
desc = desc[:147] + "..."
if not include_schemas:
summaries.append(f"- {name} (id: {block_id}): {desc}")
else:
# Compact format with type info only
inputs = {}
outputs = {}
required = []
if hasattr(block, "input_schema"):
try:
schema = block.input_schema.jsonschema()
inputs = _compact_schema(schema)
required = schema.get("required", [])
except Exception:
pass
if hasattr(block, "output_schema"):
try:
schema = block.output_schema.jsonschema()
outputs = _compact_schema(schema)
except Exception:
pass
# Build compact line format
# Format: NAME (id): desc | in: {field:type, ...} [required] | out: {field:type}
in_str = ", ".join(f"{k}:{v}" for k, v in inputs.items())
out_str = ", ".join(f"{k}:{v}" for k, v in outputs.items())
req_str = f" req=[{','.join(required)}]" if required else ""
static = " [static]" if getattr(block, "static_output", False) else ""
line = f"- {name} (id: {block_id}): {desc}"
if in_str:
line += f"\n in: {{{in_str}}}{req_str}"
if out_str:
line += f"\n out: {{{out_str}}}{static}"
summaries.append(line)
return "\n".join(summaries)
def get_blocks_info() -> list[dict[str, Any]]:
"""Get block information with schemas for validation and fixing."""
blocks = get_blocks()
blocks_info = []
for block_id, block_cls in blocks.items():
block = block_cls()
blocks_info.append(
{
"id": block_id,
"name": block.name,
"description": getattr(block, "description", ""),
"categories": getattr(block, "categories", []),
"staticOutput": getattr(block, "static_output", False),
"inputSchema": (
block.input_schema.jsonschema()
if hasattr(block, "input_schema")
else {}
),
"outputSchema": (
block.output_schema.jsonschema()
if hasattr(block, "output_schema")
else {}
),
}
)
return blocks_info
def parse_json_from_llm(text: str) -> dict[str, Any] | None:
"""Extract JSON from LLM response (handles markdown code blocks)."""
if not text:
return None
# Try fenced code block
match = re.search(r"```(?:json)?\s*([\s\S]*?)```", text, re.IGNORECASE)
if match:
try:
return json.loads(match.group(1).strip())
except json.JSONDecodeError:
pass
# Try raw text
try:
return json.loads(text.strip())
except json.JSONDecodeError:
pass
# Try finding {...} span
start = text.find("{")
end = text.rfind("}")
if start != -1 and end > start:
try:
return json.loads(text[start : end + 1])
except json.JSONDecodeError:
pass
# Try finding [...] span
start = text.find("[")
end = text.rfind("]")
if start != -1 and end > start:
try:
return json.loads(text[start : end + 1])
except json.JSONDecodeError:
pass
return None

View File

@@ -1,279 +0,0 @@
"""Agent validator - Validates agent structure and connections."""
import logging
import re
from typing import Any
from .utils import get_blocks_info
logger = logging.getLogger(__name__)
class AgentValidator:
"""Validator for AutoGPT agents with detailed error reporting."""
def __init__(self):
self.errors: list[str] = []
def add_error(self, error: str) -> None:
"""Add an error message."""
self.errors.append(error)
def validate_block_existence(
self, agent: dict[str, Any], blocks_info: list[dict[str, Any]]
) -> bool:
"""Validate all block IDs exist in the blocks library."""
valid = True
valid_block_ids = {b.get("id") for b in blocks_info if b.get("id")}
for node in agent.get("nodes", []):
block_id = node.get("block_id")
node_id = node.get("id")
if not block_id:
self.add_error(f"Node '{node_id}' is missing 'block_id' field.")
valid = False
continue
if block_id not in valid_block_ids:
self.add_error(
f"Node '{node_id}' references block_id '{block_id}' which does not exist."
)
valid = False
return valid
def validate_link_node_references(self, agent: dict[str, Any]) -> bool:
"""Validate all node IDs referenced in links exist."""
valid = True
valid_node_ids = {n.get("id") for n in agent.get("nodes", []) if n.get("id")}
for link in agent.get("links", []):
link_id = link.get("id", "Unknown")
source_id = link.get("source_id")
sink_id = link.get("sink_id")
if not source_id:
self.add_error(f"Link '{link_id}' is missing 'source_id'.")
valid = False
elif source_id not in valid_node_ids:
self.add_error(
f"Link '{link_id}' references non-existent source_id '{source_id}'."
)
valid = False
if not sink_id:
self.add_error(f"Link '{link_id}' is missing 'sink_id'.")
valid = False
elif sink_id not in valid_node_ids:
self.add_error(
f"Link '{link_id}' references non-existent sink_id '{sink_id}'."
)
valid = False
return valid
def validate_required_inputs(
self, agent: dict[str, Any], blocks_info: list[dict[str, Any]]
) -> bool:
"""Validate required inputs are provided."""
valid = True
block_map = {b.get("id"): b for b in blocks_info}
for node in agent.get("nodes", []):
block_id = node.get("block_id")
block = block_map.get(block_id)
if not block:
continue
required_inputs = block.get("inputSchema", {}).get("required", [])
input_defaults = node.get("input_default", {})
node_id = node.get("id")
# Get linked inputs
linked_inputs = {
link["sink_name"]
for link in agent.get("links", [])
if link.get("sink_id") == node_id
}
for req_input in required_inputs:
if (
req_input not in input_defaults
and req_input not in linked_inputs
and req_input != "credentials"
):
block_name = block.get("name", "Unknown Block")
self.add_error(
f"Node '{node_id}' ({block_name}) is missing required input '{req_input}'."
)
valid = False
return valid
def validate_data_type_compatibility(
self, agent: dict[str, Any], blocks_info: list[dict[str, Any]]
) -> bool:
"""Validate linked data types are compatible."""
valid = True
block_map = {b.get("id"): b for b in blocks_info}
node_lookup = {n.get("id"): n for n in agent.get("nodes", [])}
def get_type(schema: dict, name: str) -> str | None:
if "_#_" in name:
parent, child = name.split("_#_", 1)
parent_schema = schema.get(parent, {})
if "properties" in parent_schema:
return parent_schema["properties"].get(child, {}).get("type")
return None
return schema.get(name, {}).get("type")
def are_compatible(src: str, sink: str) -> bool:
if {src, sink} <= {"integer", "number"}:
return True
return src == sink
for link in agent.get("links", []):
source_node = node_lookup.get(link.get("source_id"))
sink_node = node_lookup.get(link.get("sink_id"))
if not source_node or not sink_node:
continue
source_block = block_map.get(source_node.get("block_id"))
sink_block = block_map.get(sink_node.get("block_id"))
if not source_block or not sink_block:
continue
source_outputs = source_block.get("outputSchema", {}).get("properties", {})
sink_inputs = sink_block.get("inputSchema", {}).get("properties", {})
source_type = get_type(source_outputs, link.get("source_name", ""))
sink_type = get_type(sink_inputs, link.get("sink_name", ""))
if source_type and sink_type and not are_compatible(source_type, sink_type):
self.add_error(
f"Type mismatch: {source_block.get('name')} output '{link['source_name']}' "
f"({source_type}) -> {sink_block.get('name')} input '{link['sink_name']}' ({sink_type})."
)
valid = False
return valid
def validate_nested_sink_links(
self, agent: dict[str, Any], blocks_info: list[dict[str, Any]]
) -> bool:
"""Validate nested sink links (with _#_ notation)."""
valid = True
block_map = {b.get("id"): b for b in blocks_info}
node_lookup = {n.get("id"): n for n in agent.get("nodes", [])}
for link in agent.get("links", []):
sink_name = link.get("sink_name", "")
if "_#_" in sink_name:
parent, child = sink_name.split("_#_", 1)
sink_node = node_lookup.get(link.get("sink_id"))
if not sink_node:
continue
block = block_map.get(sink_node.get("block_id"))
if not block:
continue
input_props = block.get("inputSchema", {}).get("properties", {})
parent_schema = input_props.get(parent)
if not parent_schema:
self.add_error(
f"Invalid nested link '{sink_name}': parent '{parent}' not found."
)
valid = False
continue
if not parent_schema.get("additionalProperties"):
if not (
isinstance(parent_schema, dict)
and "properties" in parent_schema
and child in parent_schema.get("properties", {})
):
self.add_error(
f"Invalid nested link '{sink_name}': child '{child}' not found in '{parent}'."
)
valid = False
return valid
def validate_prompt_spaces(self, agent: dict[str, Any]) -> bool:
"""Validate prompts don't have spaces in template variables."""
valid = True
for node in agent.get("nodes", []):
input_default = node.get("input_default", {})
prompt = input_default.get("prompt", "")
if not isinstance(prompt, str):
continue
# Find {{...}} with spaces
matches = re.finditer(r"\{\{([^}]+)\}\}", prompt)
for match in matches:
content = match.group(1)
if " " in content:
self.add_error(
f"Node '{node.get('id')}' has spaces in template variable: "
f"'{{{{{content}}}}}' should be '{{{{{content.replace(' ', '_')}}}}}'."
)
valid = False
return valid
def validate(
self, agent: dict[str, Any], blocks_info: list[dict[str, Any]] | None = None
) -> tuple[bool, str | None]:
"""Run all validations.
Returns:
Tuple of (is_valid, error_message)
"""
self.errors = []
if blocks_info is None:
blocks_info = get_blocks_info()
checks = [
self.validate_block_existence(agent, blocks_info),
self.validate_link_node_references(agent),
self.validate_required_inputs(agent, blocks_info),
self.validate_data_type_compatibility(agent, blocks_info),
self.validate_nested_sink_links(agent, blocks_info),
self.validate_prompt_spaces(agent),
]
all_passed = all(checks)
if all_passed:
logger.info("Agent validation successful")
return True, None
error_message = "Agent validation failed:\n"
for i, error in enumerate(self.errors, 1):
error_message += f"{i}. {error}\n"
logger.warning(f"Agent validation failed with {len(self.errors)} errors")
return False, error_message
def validate_agent(
agent: dict[str, Any], blocks_info: list[dict[str, Any]] | None = None
) -> tuple[bool, str | None]:
"""Convenience function to validate an agent.
Returns:
Tuple of (is_valid, error_message)
"""
validator = AgentValidator()
return validator.validate(agent, blocks_info)

View File

@@ -5,6 +5,7 @@ import re
from datetime import datetime, timedelta, timezone
from typing import Any
from langfuse import observe
from pydantic import BaseModel, field_validator
from backend.api.features.chat.model import ChatSession
@@ -103,7 +104,7 @@ class AgentOutputTool(BaseTool):
@property
def name(self) -> str:
return "agent_output"
return "view_agent_output"
@property
def description(self) -> str:
@@ -328,6 +329,7 @@ class AgentOutputTool(BaseTool):
total_executions=len(available_executions) if available_executions else 1,
)
@observe(as_type="tool", name="view_agent_output")
async def _execute(
self,
user_id: str | None,

View File

@@ -3,15 +3,15 @@
import logging
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from .agent_generator import (
apply_all_fixes,
AgentGeneratorNotConfiguredError,
decompose_goal,
generate_agent,
get_blocks_info,
save_agent_to_library,
validate_agent,
)
from .base import BaseTool
from .models import (
@@ -25,9 +25,6 @@ from .models import (
logger = logging.getLogger(__name__)
# Maximum retries for agent generation with validation feedback
MAX_GENERATION_RETRIES = 2
class CreateAgentTool(BaseTool):
"""Tool for creating agents from natural language descriptions."""
@@ -78,6 +75,7 @@ class CreateAgentTool(BaseTool):
"required": ["description"],
}
@observe(as_type="tool", name="create_agent")
async def _execute(
self,
user_id: str | None,
@@ -88,9 +86,8 @@ class CreateAgentTool(BaseTool):
Flow:
1. Decompose the description into steps (may return clarifying questions)
2. Generate agent JSON from the steps
3. Apply fixes to correct common LLM errors
4. Preview or save based on the save parameter
2. Generate agent JSON (external service handles fixing and validation)
3. Preview or save based on the save parameter
"""
description = kwargs.get("description", "").strip()
context = kwargs.get("context", "")
@@ -107,11 +104,13 @@ class CreateAgentTool(BaseTool):
# Step 1: Decompose goal into steps
try:
decomposition_result = await decompose_goal(description, context)
except ValueError as e:
# Handle missing API key or configuration errors
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
message=f"Agent generation is not configured: {str(e)}",
error="configuration_error",
message=(
"Agent generation is not available. "
"The Agent Generator service is not configured."
),
error="service_not_configured",
session_id=session_id,
)
@@ -168,72 +167,32 @@ class CreateAgentTool(BaseTool):
session_id=session_id,
)
# Step 2: Generate agent JSON with retry on validation failure
blocks_info = get_blocks_info()
agent_json = None
validation_errors = None
for attempt in range(MAX_GENERATION_RETRIES + 1):
# Generate agent (include validation errors from previous attempt)
if attempt == 0:
agent_json = await generate_agent(decomposition_result)
else:
# Retry with validation error feedback
logger.info(
f"Retry {attempt}/{MAX_GENERATION_RETRIES} with validation feedback"
)
retry_instructions = {
**decomposition_result,
"previous_errors": validation_errors,
"retry_instructions": (
"The previous generation had validation errors. "
"Please fix these issues in the new generation:\n"
f"{validation_errors}"
),
}
agent_json = await generate_agent(retry_instructions)
if agent_json is None:
if attempt == MAX_GENERATION_RETRIES:
return ErrorResponse(
message="Failed to generate the agent. Please try again.",
error="Generation failed",
session_id=session_id,
)
continue
# Step 3: Apply fixes to correct common errors
agent_json = apply_all_fixes(agent_json, blocks_info)
# Step 4: Validate the agent
is_valid, validation_errors = validate_agent(agent_json, blocks_info)
if is_valid:
logger.info(f"Agent generated successfully on attempt {attempt + 1}")
break
logger.warning(
f"Validation failed on attempt {attempt + 1}: {validation_errors}"
# Step 2: Generate agent JSON (external service handles fixing and validation)
try:
agent_json = await generate_agent(decomposition_result)
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
message=(
"Agent generation is not available. "
"The Agent Generator service is not configured."
),
error="service_not_configured",
session_id=session_id,
)
if attempt == MAX_GENERATION_RETRIES:
# Return error with validation details
return ErrorResponse(
message=(
f"Generated agent has validation errors after {MAX_GENERATION_RETRIES + 1} attempts. "
f"Please try rephrasing your request or simplify the workflow."
),
error="validation_failed",
details={"validation_errors": validation_errors},
session_id=session_id,
)
if agent_json is None:
return ErrorResponse(
message="Failed to generate the agent. Please try again.",
error="Generation failed",
session_id=session_id,
)
agent_name = agent_json.get("name", "Generated Agent")
agent_description = agent_json.get("description", "")
node_count = len(agent_json.get("nodes", []))
link_count = len(agent_json.get("links", []))
# Step 4: Preview or save
# Step 3: Preview or save
if not save:
return AgentPreviewResponse(
message=(

View File

@@ -3,16 +3,15 @@
import logging
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from .agent_generator import (
apply_agent_patch,
apply_all_fixes,
AgentGeneratorNotConfiguredError,
generate_agent_patch,
get_agent_as_json,
get_blocks_info,
save_agent_to_library,
validate_agent,
)
from .base import BaseTool
from .models import (
@@ -26,9 +25,6 @@ from .models import (
logger = logging.getLogger(__name__)
# Maximum retries for patch generation with validation feedback
MAX_GENERATION_RETRIES = 2
class EditAgentTool(BaseTool):
"""Tool for editing existing agents using natural language."""
@@ -41,7 +37,7 @@ class EditAgentTool(BaseTool):
def description(self) -> str:
return (
"Edit an existing agent from the user's library using natural language. "
"Generates a patch to update the agent while preserving unchanged parts."
"Generates updates to the agent while preserving unchanged parts."
)
@property
@@ -85,6 +81,7 @@ class EditAgentTool(BaseTool):
"required": ["agent_id", "changes"],
}
@observe(as_type="tool", name="edit_agent")
async def _execute(
self,
user_id: str | None,
@@ -95,9 +92,8 @@ class EditAgentTool(BaseTool):
Flow:
1. Fetch the current agent
2. Generate a patch based on the requested changes
3. Apply the patch to create an updated agent
4. Preview or save based on the save parameter
2. Generate updated agent (external service handles fixing and validation)
3. Preview or save based on the save parameter
"""
agent_id = kwargs.get("agent_id", "").strip()
changes = kwargs.get("changes", "").strip()
@@ -134,121 +130,58 @@ class EditAgentTool(BaseTool):
if context:
update_request = f"{changes}\n\nAdditional context:\n{context}"
# Step 2: Generate patch with retry on validation failure
blocks_info = get_blocks_info()
updated_agent = None
validation_errors = None
intent = "Applied requested changes"
for attempt in range(MAX_GENERATION_RETRIES + 1):
# Generate patch (include validation errors from previous attempt)
try:
if attempt == 0:
patch_result = await generate_agent_patch(
update_request, current_agent
)
else:
# Retry with validation error feedback
logger.info(
f"Retry {attempt}/{MAX_GENERATION_RETRIES} with validation feedback"
)
retry_request = (
f"{update_request}\n\n"
f"IMPORTANT: The previous edit had validation errors. "
f"Please fix these issues:\n{validation_errors}"
)
patch_result = await generate_agent_patch(
retry_request, current_agent
)
except ValueError as e:
# Handle missing API key or configuration errors
return ErrorResponse(
message=f"Agent generation is not configured: {str(e)}",
error="configuration_error",
session_id=session_id,
)
if patch_result is None:
if attempt == MAX_GENERATION_RETRIES:
return ErrorResponse(
message="Failed to generate changes. Please try rephrasing.",
error="Patch generation failed",
session_id=session_id,
)
continue
# Check if LLM returned clarifying questions
if patch_result.get("type") == "clarifying_questions":
questions = patch_result.get("questions", [])
return ClarificationNeededResponse(
message=(
"I need some more information about the changes. "
"Please answer the following questions:"
),
questions=[
ClarifyingQuestion(
question=q.get("question", ""),
keyword=q.get("keyword", ""),
example=q.get("example"),
)
for q in questions
],
session_id=session_id,
)
# Step 3: Apply patch and fixes
try:
updated_agent = apply_agent_patch(current_agent, patch_result)
updated_agent = apply_all_fixes(updated_agent, blocks_info)
except Exception as e:
if attempt == MAX_GENERATION_RETRIES:
return ErrorResponse(
message=f"Failed to apply changes: {str(e)}",
error="patch_apply_failed",
details={"exception": str(e)},
session_id=session_id,
)
validation_errors = str(e)
continue
# Step 4: Validate the updated agent
is_valid, validation_errors = validate_agent(updated_agent, blocks_info)
if is_valid:
logger.info(f"Agent edited successfully on attempt {attempt + 1}")
intent = patch_result.get("intent", "Applied requested changes")
break
logger.warning(
f"Validation failed on attempt {attempt + 1}: {validation_errors}"
# Step 2: Generate updated agent (external service handles fixing and validation)
try:
result = await generate_agent_patch(update_request, current_agent)
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
message=(
"Agent editing is not available. "
"The Agent Generator service is not configured."
),
error="service_not_configured",
session_id=session_id,
)
if attempt == MAX_GENERATION_RETRIES:
# Return error with validation details
return ErrorResponse(
message=(
f"Updated agent has validation errors after "
f"{MAX_GENERATION_RETRIES + 1} attempts. "
f"Please try rephrasing your request or simplify the changes."
),
error="validation_failed",
details={"validation_errors": validation_errors},
session_id=session_id,
)
if result is None:
return ErrorResponse(
message="Failed to generate changes. Please try rephrasing.",
error="Update generation failed",
session_id=session_id,
)
# At this point, updated_agent is guaranteed to be set (we return on all failure paths)
assert updated_agent is not None
# Check if LLM returned clarifying questions
if result.get("type") == "clarifying_questions":
questions = result.get("questions", [])
return ClarificationNeededResponse(
message=(
"I need some more information about the changes. "
"Please answer the following questions:"
),
questions=[
ClarifyingQuestion(
question=q.get("question", ""),
keyword=q.get("keyword", ""),
example=q.get("example"),
)
for q in questions
],
session_id=session_id,
)
# Result is the updated agent JSON
updated_agent = result
agent_name = updated_agent.get("name", "Updated Agent")
agent_description = updated_agent.get("description", "")
node_count = len(updated_agent.get("nodes", []))
link_count = len(updated_agent.get("links", []))
# Step 5: Preview or save
# Step 3: Preview or save
if not save:
return AgentPreviewResponse(
message=(
f"I've updated the agent. Changes: {intent}. "
f"I've updated the agent. "
f"The agent now has {node_count} blocks. "
f"Review it and call edit_agent with save=true to save the changes."
),
@@ -274,10 +207,7 @@ class EditAgentTool(BaseTool):
)
return AgentSavedResponse(
message=(
f"Updated agent '{created_graph.name}' has been saved to your library! "
f"Changes: {intent}"
),
message=f"Updated agent '{created_graph.name}' has been saved to your library!",
agent_id=created_graph.id,
agent_name=created_graph.name,
library_agent_id=library_agent.id,

View File

@@ -2,6 +2,8 @@
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from .agent_search import search_agents
@@ -35,6 +37,7 @@ class FindAgentTool(BaseTool):
"required": ["query"],
}
@observe(as_type="tool", name="find_agent")
async def _execute(
self, user_id: str | None, session: ChatSession, **kwargs
) -> ToolResponseBase:

View File

@@ -1,6 +1,7 @@
import logging
from typing import Any
from langfuse import observe
from prisma.enums import ContentType
from backend.api.features.chat.model import ChatSession
@@ -55,6 +56,7 @@ class FindBlockTool(BaseTool):
def requires_auth(self) -> bool:
return True
@observe(as_type="tool", name="find_block")
async def _execute(
self,
user_id: str | None,

View File

@@ -2,6 +2,8 @@
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from .agent_search import search_agents
@@ -41,6 +43,7 @@ class FindLibraryAgentTool(BaseTool):
def requires_auth(self) -> bool:
return True
@observe(as_type="tool", name="find_library_agent")
async def _execute(
self, user_id: str | None, session: ChatSession, **kwargs
) -> ToolResponseBase:

View File

@@ -4,6 +4,8 @@ import logging
from pathlib import Path
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
@@ -71,6 +73,7 @@ class GetDocPageTool(BaseTool):
url_path = path.rsplit(".", 1)[0] if "." in path else path
return f"{DOCS_BASE_URL}/{url_path}"
@observe(as_type="tool", name="get_doc_page")
async def _execute(
self,
user_id: str | None,

View File

@@ -3,6 +3,7 @@
import logging
from typing import Any
from langfuse import observe
from pydantic import BaseModel, Field, field_validator
from backend.api.features.chat.config import ChatConfig
@@ -32,7 +33,7 @@ from .models import (
UserReadiness,
)
from .utils import (
check_user_has_required_credentials,
build_missing_credentials_from_graph,
extract_credentials_from_schema,
fetch_graph_from_store_slug,
get_or_create_library_agent,
@@ -154,6 +155,7 @@ class RunAgentTool(BaseTool):
"""All operations require authentication."""
return True
@observe(as_type="tool", name="run_agent")
async def _execute(
self,
user_id: str | None,
@@ -235,15 +237,13 @@ class RunAgentTool(BaseTool):
# Return credentials needed response with input data info
# The UI handles credential setup automatically, so the message
# focuses on asking about input data
credentials = extract_credentials_from_schema(
graph.credentials_input_schema
requirements_creds_dict = build_missing_credentials_from_graph(
graph, None
)
missing_creds_check = await check_user_has_required_credentials(
user_id, credentials
missing_credentials_dict = build_missing_credentials_from_graph(
graph, graph_credentials
)
missing_credentials_dict = {
c.id: c.model_dump() for c in missing_creds_check
}
requirements_creds_list = list(requirements_creds_dict.values())
return SetupRequirementsResponse(
message=self._build_inputs_message(graph, MSG_WHAT_VALUES_TO_USE),
@@ -257,7 +257,7 @@ class RunAgentTool(BaseTool):
ready_to_run=False,
),
requirements={
"credentials": [c.model_dump() for c in credentials],
"credentials": requirements_creds_list,
"inputs": self._get_inputs_list(graph.input_schema),
"execution_modes": self._get_execution_modes(graph),
},

View File

@@ -4,6 +4,8 @@ import logging
from collections import defaultdict
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from backend.data.block import get_block
from backend.data.execution import ExecutionContext
@@ -20,6 +22,7 @@ from .models import (
ToolResponseBase,
UserReadiness,
)
from .utils import build_missing_credentials_from_field_info
logger = logging.getLogger(__name__)
@@ -127,6 +130,7 @@ class RunBlockTool(BaseTool):
return matched_credentials, missing_credentials
@observe(as_type="tool", name="run_block")
async def _execute(
self,
user_id: str | None,
@@ -186,7 +190,11 @@ class RunBlockTool(BaseTool):
if missing_credentials:
# Return setup requirements response with missing credentials
missing_creds_dict = {c.id: c.model_dump() for c in missing_credentials}
credentials_fields_info = block.input_schema.get_credentials_fields_info()
missing_creds_dict = build_missing_credentials_from_field_info(
credentials_fields_info, set(matched_credentials.keys())
)
missing_creds_list = list(missing_creds_dict.values())
return SetupRequirementsResponse(
message=(
@@ -203,7 +211,7 @@ class RunBlockTool(BaseTool):
ready_to_run=False,
),
requirements={
"credentials": [c.model_dump() for c in missing_credentials],
"credentials": missing_creds_list,
"inputs": self._get_inputs_list(block),
"execution_modes": ["immediate"],
},

View File

@@ -3,6 +3,7 @@
import logging
from typing import Any
from langfuse import observe
from prisma.enums import ContentType
from backend.api.features.chat.model import ChatSession
@@ -87,6 +88,7 @@ class SearchDocsTool(BaseTool):
url_path = path.rsplit(".", 1)[0] if "." in path else path
return f"{DOCS_BASE_URL}/{url_path}"
@observe(as_type="tool", name="search_docs")
async def _execute(
self,
user_id: str | None,

View File

@@ -8,7 +8,7 @@ from backend.api.features.library import model as library_model
from backend.api.features.store import db as store_db
from backend.data import graph as graph_db
from backend.data.graph import GraphModel
from backend.data.model import CredentialsMetaInput
from backend.data.model import CredentialsFieldInfo, CredentialsMetaInput
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.util.exceptions import NotFoundError
@@ -89,6 +89,59 @@ def extract_credentials_from_schema(
return credentials
def _serialize_missing_credential(
field_key: str, field_info: CredentialsFieldInfo
) -> dict[str, Any]:
"""
Convert credential field info into a serializable dict that preserves all supported
credential types (e.g., api_key + oauth2) so the UI can offer multiple options.
"""
supported_types = sorted(field_info.supported_types)
provider = next(iter(field_info.provider), "unknown")
scopes = sorted(field_info.required_scopes or [])
return {
"id": field_key,
"title": field_key.replace("_", " ").title(),
"provider": provider,
"provider_name": provider.replace("_", " ").title(),
"type": supported_types[0] if supported_types else "api_key",
"types": supported_types,
"scopes": scopes,
}
def build_missing_credentials_from_graph(
graph: GraphModel, matched_credentials: dict[str, CredentialsMetaInput] | None
) -> dict[str, Any]:
"""
Build a missing_credentials mapping from a graph's aggregated credentials inputs,
preserving all supported credential types for each field.
"""
matched_keys = set(matched_credentials.keys()) if matched_credentials else set()
aggregated_fields = graph.aggregate_credentials_inputs()
return {
field_key: _serialize_missing_credential(field_key, field_info)
for field_key, (field_info, _node_fields) in aggregated_fields.items()
if field_key not in matched_keys
}
def build_missing_credentials_from_field_info(
credential_fields: dict[str, CredentialsFieldInfo],
matched_keys: set[str],
) -> dict[str, Any]:
"""
Build missing_credentials mapping from a simple credentials field info dictionary.
"""
return {
field_key: _serialize_missing_credential(field_key, field_info)
for field_key, field_info in credential_fields.items()
if field_key not in matched_keys
}
def extract_credentials_as_dict(
credentials_input_schema: dict[str, Any] | None,
) -> dict[str, CredentialsMetaInput]:

View File

@@ -401,27 +401,11 @@ async def add_generated_agent_image(
)
def _initialize_graph_settings(graph: graph_db.GraphModel) -> GraphSettings:
"""
Initialize GraphSettings based on graph content.
Args:
graph: The graph to analyze
Returns:
GraphSettings with appropriate human_in_the_loop_safe_mode value
"""
if graph.has_human_in_the_loop:
# Graph has HITL blocks - set safe mode to True by default
return GraphSettings(human_in_the_loop_safe_mode=True)
else:
# Graph has no HITL blocks - keep None
return GraphSettings(human_in_the_loop_safe_mode=None)
async def create_library_agent(
graph: graph_db.GraphModel,
user_id: str,
hitl_safe_mode: bool = True,
sensitive_action_safe_mode: bool = False,
create_library_agents_for_sub_graphs: bool = True,
) -> list[library_model.LibraryAgent]:
"""
@@ -430,6 +414,8 @@ async def create_library_agent(
Args:
agent: The agent/Graph to add to the library.
user_id: The user to whom the agent will be added.
hitl_safe_mode: Whether HITL blocks require manual review (default True).
sensitive_action_safe_mode: Whether sensitive action blocks require review.
create_library_agents_for_sub_graphs: If True, creates LibraryAgent records for sub-graphs as well.
Returns:
@@ -465,7 +451,11 @@ async def create_library_agent(
}
},
settings=SafeJson(
_initialize_graph_settings(graph_entry).model_dump()
GraphSettings.from_graph(
graph_entry,
hitl_safe_mode=hitl_safe_mode,
sensitive_action_safe_mode=sensitive_action_safe_mode,
).model_dump()
),
),
include=library_agent_include(
@@ -627,33 +617,6 @@ async def update_library_agent(
raise DatabaseError("Failed to update library agent") from e
async def update_library_agent_settings(
user_id: str,
agent_id: str,
settings: GraphSettings,
) -> library_model.LibraryAgent:
"""
Updates the settings for a specific LibraryAgent.
Args:
user_id: The owner of the LibraryAgent.
agent_id: The ID of the LibraryAgent to update.
settings: New GraphSettings to apply.
Returns:
The updated LibraryAgent.
Raises:
NotFoundError: If the specified LibraryAgent does not exist.
DatabaseError: If there's an error in the update operation.
"""
return await update_library_agent(
library_agent_id=agent_id,
user_id=user_id,
settings=settings,
)
async def delete_library_agent(
library_agent_id: str, user_id: str, soft_delete: bool = True
) -> None:
@@ -838,7 +801,7 @@ async def add_store_agent_to_library(
"isCreatedByUser": False,
"useGraphIsActiveVersion": False,
"settings": SafeJson(
_initialize_graph_settings(graph_model).model_dump()
GraphSettings.from_graph(graph_model).model_dump()
),
},
include=library_agent_include(
@@ -1228,8 +1191,15 @@ async def fork_library_agent(
)
new_graph = await on_graph_activate(new_graph, user_id=user_id)
# Create a library agent for the new graph
return (await create_library_agent(new_graph, user_id))[0]
# Create a library agent for the new graph, preserving safe mode settings
return (
await create_library_agent(
new_graph,
user_id,
hitl_safe_mode=original_agent.settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=original_agent.settings.sensitive_action_safe_mode,
)
)[0]
except prisma.errors.PrismaError as e:
logger.error(f"Database error cloning library agent: {e}")
raise DatabaseError("Failed to fork library agent") from e

View File

@@ -73,6 +73,12 @@ class LibraryAgent(pydantic.BaseModel):
has_external_trigger: bool = pydantic.Field(
description="Whether the agent has an external trigger (e.g. webhook) node"
)
has_human_in_the_loop: bool = pydantic.Field(
description="Whether the agent has human-in-the-loop blocks"
)
has_sensitive_action: bool = pydantic.Field(
description="Whether the agent has sensitive action blocks"
)
trigger_setup_info: Optional[GraphTriggerInfo] = None
# Indicates whether there's a new output (based on recent runs)
@@ -180,6 +186,8 @@ class LibraryAgent(pydantic.BaseModel):
graph.credentials_input_schema if sub_graphs is not None else None
),
has_external_trigger=graph.has_external_trigger,
has_human_in_the_loop=graph.has_human_in_the_loop,
has_sensitive_action=graph.has_sensitive_action,
trigger_setup_info=graph.trigger_setup_info,
new_output=new_output,
can_access_graph=can_access_graph,

View File

@@ -52,6 +52,8 @@ async def test_get_library_agents_success(
output_schema={"type": "object", "properties": {}},
credentials_input_schema={"type": "object", "properties": {}},
has_external_trigger=False,
has_human_in_the_loop=False,
has_sensitive_action=False,
status=library_model.LibraryAgentStatus.COMPLETED,
recommended_schedule_cron=None,
new_output=False,
@@ -75,6 +77,8 @@ async def test_get_library_agents_success(
output_schema={"type": "object", "properties": {}},
credentials_input_schema={"type": "object", "properties": {}},
has_external_trigger=False,
has_human_in_the_loop=False,
has_sensitive_action=False,
status=library_model.LibraryAgentStatus.COMPLETED,
recommended_schedule_cron=None,
new_output=False,
@@ -150,6 +154,8 @@ async def test_get_favorite_library_agents_success(
output_schema={"type": "object", "properties": {}},
credentials_input_schema={"type": "object", "properties": {}},
has_external_trigger=False,
has_human_in_the_loop=False,
has_sensitive_action=False,
status=library_model.LibraryAgentStatus.COMPLETED,
recommended_schedule_cron=None,
new_output=False,
@@ -218,6 +224,8 @@ def test_add_agent_to_library_success(
output_schema={"type": "object", "properties": {}},
credentials_input_schema={"type": "object", "properties": {}},
has_external_trigger=False,
has_human_in_the_loop=False,
has_sensitive_action=False,
status=library_model.LibraryAgentStatus.COMPLETED,
new_output=False,
can_access_graph=True,

View File

@@ -154,6 +154,7 @@ async def store_content_embedding(
# Upsert the embedding
# WHERE clause in DO UPDATE prevents PostgreSQL 15 bug with NULLS NOT DISTINCT
# Use unqualified ::vector - pgvector is in search_path on all environments
await execute_raw_with_schema(
"""
INSERT INTO {schema_prefix}"UnifiedContentEmbedding" (
@@ -177,7 +178,6 @@ async def store_content_embedding(
searchable_text,
metadata_json,
client=client,
set_public_search_path=True,
)
logger.info(f"Stored embedding for {content_type}:{content_id}")
@@ -236,7 +236,6 @@ async def get_content_embedding(
content_type,
content_id,
user_id,
set_public_search_path=True,
)
if result and len(result) > 0:
@@ -871,31 +870,45 @@ async def semantic_search(
# Add content type parameters and build placeholders dynamically
content_type_start_idx = len(params) + 1
content_type_placeholders = ", ".join(
f'${content_type_start_idx + i}::{{{{schema_prefix}}}}"ContentType"'
"$" + str(content_type_start_idx + i) + '::{schema_prefix}"ContentType"'
for i in range(len(content_types))
)
params.extend([ct.value for ct in content_types])
sql = f"""
# Build min_similarity param index before appending
min_similarity_idx = len(params) + 1
params.append(min_similarity)
# Use unqualified ::vector and <=> operator - pgvector is in search_path on all environments
sql = (
"""
SELECT
"contentId" as content_id,
"contentType" as content_type,
"searchableText" as searchable_text,
metadata,
1 - (embedding <=> '{embedding_str}'::vector) as similarity
FROM {{{{schema_prefix}}}}"UnifiedContentEmbedding"
WHERE "contentType" IN ({content_type_placeholders})
{user_filter}
AND 1 - (embedding <=> '{embedding_str}'::vector) >= ${len(params) + 1}
1 - (embedding <=> '"""
+ embedding_str
+ """'::vector) as similarity
FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" IN ("""
+ content_type_placeholders
+ """)
"""
+ user_filter
+ """
AND 1 - (embedding <=> '"""
+ embedding_str
+ """'::vector) >= $"""
+ str(min_similarity_idx)
+ """
ORDER BY similarity DESC
LIMIT $1
"""
params.append(min_similarity)
)
try:
results = await query_raw_with_schema(
sql, *params, set_public_search_path=True
)
results = await query_raw_with_schema(sql, *params)
return [
{
"content_id": row["content_id"],
@@ -922,31 +935,41 @@ async def semantic_search(
# Add content type parameters and build placeholders dynamically
content_type_start_idx = len(params_lexical) + 1
content_type_placeholders_lexical = ", ".join(
f'${content_type_start_idx + i}::{{{{schema_prefix}}}}"ContentType"'
"$" + str(content_type_start_idx + i) + '::{schema_prefix}"ContentType"'
for i in range(len(content_types))
)
params_lexical.extend([ct.value for ct in content_types])
sql_lexical = f"""
# Build query param index before appending
query_param_idx = len(params_lexical) + 1
params_lexical.append(f"%{query}%")
# Use regular string (not f-string) for template to preserve {schema_prefix} placeholders
sql_lexical = (
"""
SELECT
"contentId" as content_id,
"contentType" as content_type,
"searchableText" as searchable_text,
metadata,
0.0 as similarity
FROM {{{{schema_prefix}}}}"UnifiedContentEmbedding"
WHERE "contentType" IN ({content_type_placeholders_lexical})
{user_filter}
AND "searchableText" ILIKE ${len(params_lexical) + 1}
FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" IN ("""
+ content_type_placeholders_lexical
+ """)
"""
+ user_filter
+ """
AND "searchableText" ILIKE $"""
+ str(query_param_idx)
+ """
ORDER BY "updatedAt" DESC
LIMIT $1
"""
params_lexical.append(f"%{query}%")
)
try:
results = await query_raw_with_schema(
sql_lexical, *params_lexical, set_public_search_path=True
)
results = await query_raw_with_schema(sql_lexical, *params_lexical)
return [
{
"content_id": row["content_id"],

View File

@@ -155,18 +155,14 @@ async def test_store_embedding_success(mocker):
)
assert result is True
# execute_raw is called twice: once for SET search_path, once for INSERT
assert mock_client.execute_raw.call_count == 2
# execute_raw is called once for INSERT (no separate SET search_path needed)
assert mock_client.execute_raw.call_count == 1
# First call: SET search_path
first_call_args = mock_client.execute_raw.call_args_list[0][0]
assert "SET search_path" in first_call_args[0]
# Second call: INSERT query with the actual data
second_call_args = mock_client.execute_raw.call_args_list[1][0]
assert "test-version-id" in second_call_args
assert "[0.1,0.2,0.3]" in second_call_args
assert None in second_call_args # userId should be None for store agents
# Verify the INSERT query with the actual data
call_args = mock_client.execute_raw.call_args_list[0][0]
assert "test-version-id" in call_args
assert "[0.1,0.2,0.3]" in call_args
assert None in call_args # userId should be None for store agents
@pytest.mark.asyncio(loop_scope="session")

View File

@@ -12,7 +12,7 @@ from dataclasses import dataclass
from typing import Any, Literal
from prisma.enums import ContentType
from rank_bm25 import BM25Okapi
from rank_bm25 import BM25Okapi # type: ignore[import-untyped]
from backend.api.features.store.embeddings import (
EMBEDDING_DIM,
@@ -363,9 +363,7 @@ async def unified_hybrid_search(
LIMIT {limit_param} OFFSET {offset_param}
"""
results = await query_raw_with_schema(
sql_query, *params, set_public_search_path=True
)
results = await query_raw_with_schema(sql_query, *params)
total = results[0]["total_count"] if results else 0
# Apply BM25 reranking
@@ -688,9 +686,7 @@ async def hybrid_search(
LIMIT {limit_param} OFFSET {offset_param}
"""
results = await query_raw_with_schema(
sql_query, *params, set_public_search_path=True
)
results = await query_raw_with_schema(sql_query, *params)
total = results[0]["total_count"] if results else 0

View File

@@ -761,10 +761,8 @@ async def create_new_graph(
graph.reassign_ids(user_id=user_id, reassign_graph_id=True)
graph.validate_graph(for_run=False)
# The return value of the create graph & library function is intentionally not used here,
# as the graph already valid and no sub-graphs are returned back.
await graph_db.create_graph(graph, user_id=user_id)
await library_db.create_library_agent(graph, user_id=user_id)
await library_db.create_library_agent(graph, user_id)
activated_graph = await on_graph_activate(graph, user_id=user_id)
if create_graph.source == "builder":
@@ -888,21 +886,19 @@ async def set_graph_active_version(
async def _update_library_agent_version_and_settings(
user_id: str, agent_graph: graph_db.GraphModel
) -> library_model.LibraryAgent:
# Keep the library agent up to date with the new active version
library = await library_db.update_agent_version_in_library(
user_id, agent_graph.id, agent_graph.version
)
# If the graph has HITL node, initialize the setting if it's not already set.
if (
agent_graph.has_human_in_the_loop
and library.settings.human_in_the_loop_safe_mode is None
):
await library_db.update_library_agent_settings(
updated_settings = GraphSettings.from_graph(
graph=agent_graph,
hitl_safe_mode=library.settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=library.settings.sensitive_action_safe_mode,
)
if updated_settings != library.settings:
library = await library_db.update_library_agent(
library_agent_id=library.id,
user_id=user_id,
agent_id=library.id,
settings=library.settings.model_copy(
update={"human_in_the_loop_safe_mode": True}
),
settings=updated_settings,
)
return library
@@ -919,21 +915,18 @@ async def update_graph_settings(
user_id: Annotated[str, Security(get_user_id)],
) -> GraphSettings:
"""Update graph settings for the user's library agent."""
# Get the library agent for this graph
library_agent = await library_db.get_library_agent_by_graph_id(
graph_id=graph_id, user_id=user_id
)
if not library_agent:
raise HTTPException(404, f"Graph #{graph_id} not found in user's library")
# Update the library agent settings
updated_agent = await library_db.update_library_agent_settings(
updated_agent = await library_db.update_library_agent(
library_agent_id=library_agent.id,
user_id=user_id,
agent_id=library_agent.id,
settings=settings,
)
# Return the updated settings
return GraphSettings.model_validate(updated_agent.settings)

View File

@@ -680,3 +680,58 @@ class ListIsEmptyBlock(Block):
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
yield "is_empty", len(input_data.list) == 0
class ConcatenateListsBlock(Block):
class Input(BlockSchemaInput):
lists: List[List[Any]] = SchemaField(
description="A list of lists to concatenate together. All lists will be combined in order into a single list.",
placeholder="e.g., [[1, 2], [3, 4], [5, 6]]",
)
class Output(BlockSchemaOutput):
concatenated_list: List[Any] = SchemaField(
description="The concatenated list containing all elements from all input lists in order."
)
error: str = SchemaField(
description="Error message if concatenation failed due to invalid input types."
)
def __init__(self):
super().__init__(
id="3cf9298b-5817-4141-9d80-7c2cc5199c8e",
description="Concatenates multiple lists into a single list. All elements from all input lists are combined in order.",
categories={BlockCategory.BASIC},
input_schema=ConcatenateListsBlock.Input,
output_schema=ConcatenateListsBlock.Output,
test_input=[
{"lists": [[1, 2, 3], [4, 5, 6]]},
{"lists": [["a", "b"], ["c"], ["d", "e", "f"]]},
{"lists": [[1, 2], []]},
{"lists": []},
],
test_output=[
("concatenated_list", [1, 2, 3, 4, 5, 6]),
("concatenated_list", ["a", "b", "c", "d", "e", "f"]),
("concatenated_list", [1, 2]),
("concatenated_list", []),
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
concatenated = []
for idx, lst in enumerate(input_data.lists):
if lst is None:
# Skip None values to avoid errors
continue
if not isinstance(lst, list):
# Type validation: each item must be a list
# Strings are iterable and would cause extend() to iterate character-by-character
# Non-iterable types would raise TypeError
yield "error", (
f"Invalid input at index {idx}: expected a list, got {type(lst).__name__}. "
f"All items in 'lists' must be lists (e.g., [[1, 2], [3, 4]])."
)
return
concatenated.extend(lst)
yield "concatenated_list", concatenated

View File

@@ -84,7 +84,7 @@ class HITLReviewHelper:
Exception: If review creation or status update fails
"""
# Skip review if safe mode is disabled - return auto-approved result
if not execution_context.safe_mode:
if not execution_context.human_in_the_loop_safe_mode:
logger.info(
f"Block {block_name} skipping review for node {node_exec_id} - safe mode disabled"
)

View File

@@ -104,7 +104,7 @@ class HumanInTheLoopBlock(Block):
execution_context: ExecutionContext,
**_kwargs,
) -> BlockOutput:
if not execution_context.safe_mode:
if not execution_context.human_in_the_loop_safe_mode:
logger.info(
f"HITL block skipping review for node {node_exec_id} - safe mode disabled"
)

View File

@@ -79,6 +79,10 @@ class ModelMetadata(NamedTuple):
provider: str
context_window: int
max_output_tokens: int | None
display_name: str
provider_name: str
creator_name: str
price_tier: Literal[1, 2, 3]
class LlmModelMeta(EnumMeta):
@@ -171,6 +175,26 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
V0_1_5_LG = "v0-1.5-lg"
V0_1_0_MD = "v0-1.0-md"
@classmethod
def __get_pydantic_json_schema__(cls, schema, handler):
json_schema = handler(schema)
llm_model_metadata = {}
for model in cls:
model_name = model.value
metadata = model.metadata
llm_model_metadata[model_name] = {
"creator": metadata.creator_name,
"creator_name": metadata.creator_name,
"title": metadata.display_name,
"provider": metadata.provider,
"provider_name": metadata.provider_name,
"name": model_name,
"price_tier": metadata.price_tier,
}
json_schema["llm_model"] = True
json_schema["llm_model_metadata"] = llm_model_metadata
return json_schema
@property
def metadata(self) -> ModelMetadata:
return MODEL_METADATA[self]
@@ -190,119 +214,291 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
MODEL_METADATA = {
# https://platform.openai.com/docs/models
LlmModel.O3: ModelMetadata("openai", 200000, 100000),
LlmModel.O3_MINI: ModelMetadata("openai", 200000, 100000), # o3-mini-2025-01-31
LlmModel.O1: ModelMetadata("openai", 200000, 100000), # o1-2024-12-17
LlmModel.O1_MINI: ModelMetadata("openai", 128000, 65536), # o1-mini-2024-09-12
LlmModel.O3: ModelMetadata("openai", 200000, 100000, "O3", "OpenAI", "OpenAI", 2),
LlmModel.O3_MINI: ModelMetadata(
"openai", 200000, 100000, "O3 Mini", "OpenAI", "OpenAI", 1
), # o3-mini-2025-01-31
LlmModel.O1: ModelMetadata(
"openai", 200000, 100000, "O1", "OpenAI", "OpenAI", 3
), # o1-2024-12-17
LlmModel.O1_MINI: ModelMetadata(
"openai", 128000, 65536, "O1 Mini", "OpenAI", "OpenAI", 2
), # o1-mini-2024-09-12
# GPT-5 models
LlmModel.GPT5_2: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5_1: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5_MINI: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5_NANO: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5_CHAT: ModelMetadata("openai", 400000, 16384),
LlmModel.GPT41: ModelMetadata("openai", 1047576, 32768),
LlmModel.GPT41_MINI: ModelMetadata("openai", 1047576, 32768),
LlmModel.GPT5_2: ModelMetadata(
"openai", 400000, 128000, "GPT-5.2", "OpenAI", "OpenAI", 3
),
LlmModel.GPT5_1: ModelMetadata(
"openai", 400000, 128000, "GPT-5.1", "OpenAI", "OpenAI", 2
),
LlmModel.GPT5: ModelMetadata(
"openai", 400000, 128000, "GPT-5", "OpenAI", "OpenAI", 1
),
LlmModel.GPT5_MINI: ModelMetadata(
"openai", 400000, 128000, "GPT-5 Mini", "OpenAI", "OpenAI", 1
),
LlmModel.GPT5_NANO: ModelMetadata(
"openai", 400000, 128000, "GPT-5 Nano", "OpenAI", "OpenAI", 1
),
LlmModel.GPT5_CHAT: ModelMetadata(
"openai", 400000, 16384, "GPT-5 Chat Latest", "OpenAI", "OpenAI", 2
),
LlmModel.GPT41: ModelMetadata(
"openai", 1047576, 32768, "GPT-4.1", "OpenAI", "OpenAI", 1
),
LlmModel.GPT41_MINI: ModelMetadata(
"openai", 1047576, 32768, "GPT-4.1 Mini", "OpenAI", "OpenAI", 1
),
LlmModel.GPT4O_MINI: ModelMetadata(
"openai", 128000, 16384
"openai", 128000, 16384, "GPT-4o Mini", "OpenAI", "OpenAI", 1
), # gpt-4o-mini-2024-07-18
LlmModel.GPT4O: ModelMetadata("openai", 128000, 16384), # gpt-4o-2024-08-06
LlmModel.GPT4O: ModelMetadata(
"openai", 128000, 16384, "GPT-4o", "OpenAI", "OpenAI", 2
), # gpt-4o-2024-08-06
LlmModel.GPT4_TURBO: ModelMetadata(
"openai", 128000, 4096
"openai", 128000, 4096, "GPT-4 Turbo", "OpenAI", "OpenAI", 3
), # gpt-4-turbo-2024-04-09
LlmModel.GPT3_5_TURBO: ModelMetadata("openai", 16385, 4096), # gpt-3.5-turbo-0125
LlmModel.GPT3_5_TURBO: ModelMetadata(
"openai", 16385, 4096, "GPT-3.5 Turbo", "OpenAI", "OpenAI", 1
), # gpt-3.5-turbo-0125
# https://docs.anthropic.com/en/docs/about-claude/models
LlmModel.CLAUDE_4_1_OPUS: ModelMetadata(
"anthropic", 200000, 32000
"anthropic", 200000, 32000, "Claude Opus 4.1", "Anthropic", "Anthropic", 3
), # claude-opus-4-1-20250805
LlmModel.CLAUDE_4_OPUS: ModelMetadata(
"anthropic", 200000, 32000
"anthropic", 200000, 32000, "Claude Opus 4", "Anthropic", "Anthropic", 3
), # claude-4-opus-20250514
LlmModel.CLAUDE_4_SONNET: ModelMetadata(
"anthropic", 200000, 64000
"anthropic", 200000, 64000, "Claude Sonnet 4", "Anthropic", "Anthropic", 2
), # claude-4-sonnet-20250514
LlmModel.CLAUDE_4_5_OPUS: ModelMetadata(
"anthropic", 200000, 64000
"anthropic", 200000, 64000, "Claude Opus 4.5", "Anthropic", "Anthropic", 3
), # claude-opus-4-5-20251101
LlmModel.CLAUDE_4_5_SONNET: ModelMetadata(
"anthropic", 200000, 64000
"anthropic", 200000, 64000, "Claude Sonnet 4.5", "Anthropic", "Anthropic", 3
), # claude-sonnet-4-5-20250929
LlmModel.CLAUDE_4_5_HAIKU: ModelMetadata(
"anthropic", 200000, 64000
"anthropic", 200000, 64000, "Claude Haiku 4.5", "Anthropic", "Anthropic", 2
), # claude-haiku-4-5-20251001
LlmModel.CLAUDE_3_7_SONNET: ModelMetadata(
"anthropic", 200000, 64000
"anthropic", 200000, 64000, "Claude 3.7 Sonnet", "Anthropic", "Anthropic", 2
), # claude-3-7-sonnet-20250219
LlmModel.CLAUDE_3_HAIKU: ModelMetadata(
"anthropic", 200000, 4096
"anthropic", 200000, 4096, "Claude 3 Haiku", "Anthropic", "Anthropic", 1
), # claude-3-haiku-20240307
# https://docs.aimlapi.com/api-overview/model-database/text-models
LlmModel.AIML_API_QWEN2_5_72B: ModelMetadata("aiml_api", 32000, 8000),
LlmModel.AIML_API_LLAMA3_1_70B: ModelMetadata("aiml_api", 128000, 40000),
LlmModel.AIML_API_LLAMA3_3_70B: ModelMetadata("aiml_api", 128000, None),
LlmModel.AIML_API_META_LLAMA_3_1_70B: ModelMetadata("aiml_api", 131000, 2000),
LlmModel.AIML_API_LLAMA_3_2_3B: ModelMetadata("aiml_api", 128000, None),
# https://console.groq.com/docs/models
LlmModel.LLAMA3_3_70B: ModelMetadata("groq", 128000, 32768),
LlmModel.LLAMA3_1_8B: ModelMetadata("groq", 128000, 8192),
# https://ollama.com/library
LlmModel.OLLAMA_LLAMA3_3: ModelMetadata("ollama", 8192, None),
LlmModel.OLLAMA_LLAMA3_2: ModelMetadata("ollama", 8192, None),
LlmModel.OLLAMA_LLAMA3_8B: ModelMetadata("ollama", 8192, None),
LlmModel.OLLAMA_LLAMA3_405B: ModelMetadata("ollama", 8192, None),
LlmModel.OLLAMA_DOLPHIN: ModelMetadata("ollama", 32768, None),
# https://openrouter.ai/models
LlmModel.GEMINI_2_5_PRO: ModelMetadata("open_router", 1050000, 8192),
LlmModel.GEMINI_3_PRO_PREVIEW: ModelMetadata("open_router", 1048576, 65535),
LlmModel.GEMINI_2_5_FLASH: ModelMetadata("open_router", 1048576, 65535),
LlmModel.GEMINI_2_0_FLASH: ModelMetadata("open_router", 1048576, 8192),
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: ModelMetadata(
"open_router", 1048576, 65535
LlmModel.AIML_API_QWEN2_5_72B: ModelMetadata(
"aiml_api", 32000, 8000, "Qwen 2.5 72B Instruct Turbo", "AI/ML", "Qwen", 1
),
LlmModel.AIML_API_LLAMA3_1_70B: ModelMetadata(
"aiml_api",
128000,
40000,
"Llama 3.1 Nemotron 70B Instruct",
"AI/ML",
"Nvidia",
1,
),
LlmModel.AIML_API_LLAMA3_3_70B: ModelMetadata(
"aiml_api", 128000, None, "Llama 3.3 70B Instruct Turbo", "AI/ML", "Meta", 1
),
LlmModel.AIML_API_META_LLAMA_3_1_70B: ModelMetadata(
"aiml_api", 131000, 2000, "Llama 3.1 70B Instruct Turbo", "AI/ML", "Meta", 1
),
LlmModel.AIML_API_LLAMA_3_2_3B: ModelMetadata(
"aiml_api", 128000, None, "Llama 3.2 3B Instruct Turbo", "AI/ML", "Meta", 1
),
# https://console.groq.com/docs/models
LlmModel.LLAMA3_3_70B: ModelMetadata(
"groq", 128000, 32768, "Llama 3.3 70B Versatile", "Groq", "Meta", 1
),
LlmModel.LLAMA3_1_8B: ModelMetadata(
"groq", 128000, 8192, "Llama 3.1 8B Instant", "Groq", "Meta", 1
),
# https://ollama.com/library
LlmModel.OLLAMA_LLAMA3_3: ModelMetadata(
"ollama", 8192, None, "Llama 3.3", "Ollama", "Meta", 1
),
LlmModel.OLLAMA_LLAMA3_2: ModelMetadata(
"ollama", 8192, None, "Llama 3.2", "Ollama", "Meta", 1
),
LlmModel.OLLAMA_LLAMA3_8B: ModelMetadata(
"ollama", 8192, None, "Llama 3", "Ollama", "Meta", 1
),
LlmModel.OLLAMA_LLAMA3_405B: ModelMetadata(
"ollama", 8192, None, "Llama 3.1 405B", "Ollama", "Meta", 1
),
LlmModel.OLLAMA_DOLPHIN: ModelMetadata(
"ollama", 32768, None, "Dolphin Mistral Latest", "Ollama", "Mistral AI", 1
),
# https://openrouter.ai/models
LlmModel.GEMINI_2_5_PRO: ModelMetadata(
"open_router",
1050000,
8192,
"Gemini 2.5 Pro Preview 03.25",
"OpenRouter",
"Google",
2,
),
LlmModel.GEMINI_3_PRO_PREVIEW: ModelMetadata(
"open_router", 1048576, 65535, "Gemini 3 Pro Preview", "OpenRouter", "Google", 2
),
LlmModel.GEMINI_2_5_FLASH: ModelMetadata(
"open_router", 1048576, 65535, "Gemini 2.5 Flash", "OpenRouter", "Google", 1
),
LlmModel.GEMINI_2_0_FLASH: ModelMetadata(
"open_router", 1048576, 8192, "Gemini 2.0 Flash 001", "OpenRouter", "Google", 1
),
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: ModelMetadata(
"open_router",
1048576,
65535,
"Gemini 2.5 Flash Lite Preview 06.17",
"OpenRouter",
"Google",
1,
),
LlmModel.GEMINI_2_0_FLASH_LITE: ModelMetadata(
"open_router",
1048576,
8192,
"Gemini 2.0 Flash Lite 001",
"OpenRouter",
"Google",
1,
),
LlmModel.MISTRAL_NEMO: ModelMetadata(
"open_router", 128000, 4096, "Mistral Nemo", "OpenRouter", "Mistral AI", 1
),
LlmModel.COHERE_COMMAND_R_08_2024: ModelMetadata(
"open_router", 128000, 4096, "Command R 08.2024", "OpenRouter", "Cohere", 1
),
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: ModelMetadata(
"open_router", 128000, 4096, "Command R Plus 08.2024", "OpenRouter", "Cohere", 2
),
LlmModel.DEEPSEEK_CHAT: ModelMetadata(
"open_router", 64000, 2048, "DeepSeek Chat", "OpenRouter", "DeepSeek", 1
),
LlmModel.DEEPSEEK_R1_0528: ModelMetadata(
"open_router", 163840, 163840, "DeepSeek R1 0528", "OpenRouter", "DeepSeek", 1
),
LlmModel.PERPLEXITY_SONAR: ModelMetadata(
"open_router", 127000, 8000, "Sonar", "OpenRouter", "Perplexity", 1
),
LlmModel.PERPLEXITY_SONAR_PRO: ModelMetadata(
"open_router", 200000, 8000, "Sonar Pro", "OpenRouter", "Perplexity", 2
),
LlmModel.GEMINI_2_0_FLASH_LITE: ModelMetadata("open_router", 1048576, 8192),
LlmModel.MISTRAL_NEMO: ModelMetadata("open_router", 128000, 4096),
LlmModel.COHERE_COMMAND_R_08_2024: ModelMetadata("open_router", 128000, 4096),
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: ModelMetadata("open_router", 128000, 4096),
LlmModel.DEEPSEEK_CHAT: ModelMetadata("open_router", 64000, 2048),
LlmModel.DEEPSEEK_R1_0528: ModelMetadata("open_router", 163840, 163840),
LlmModel.PERPLEXITY_SONAR: ModelMetadata("open_router", 127000, 8000),
LlmModel.PERPLEXITY_SONAR_PRO: ModelMetadata("open_router", 200000, 8000),
LlmModel.PERPLEXITY_SONAR_DEEP_RESEARCH: ModelMetadata(
"open_router",
128000,
16000,
"Sonar Deep Research",
"OpenRouter",
"Perplexity",
3,
),
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_405B: ModelMetadata(
"open_router", 131000, 4096
"open_router",
131000,
4096,
"Hermes 3 Llama 3.1 405B",
"OpenRouter",
"Nous Research",
1,
),
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_70B: ModelMetadata(
"open_router", 12288, 12288
"open_router",
12288,
12288,
"Hermes 3 Llama 3.1 70B",
"OpenRouter",
"Nous Research",
1,
),
LlmModel.OPENAI_GPT_OSS_120B: ModelMetadata(
"open_router", 131072, 131072, "GPT-OSS 120B", "OpenRouter", "OpenAI", 1
),
LlmModel.OPENAI_GPT_OSS_20B: ModelMetadata(
"open_router", 131072, 32768, "GPT-OSS 20B", "OpenRouter", "OpenAI", 1
),
LlmModel.AMAZON_NOVA_LITE_V1: ModelMetadata(
"open_router", 300000, 5120, "Nova Lite V1", "OpenRouter", "Amazon", 1
),
LlmModel.AMAZON_NOVA_MICRO_V1: ModelMetadata(
"open_router", 128000, 5120, "Nova Micro V1", "OpenRouter", "Amazon", 1
),
LlmModel.AMAZON_NOVA_PRO_V1: ModelMetadata(
"open_router", 300000, 5120, "Nova Pro V1", "OpenRouter", "Amazon", 1
),
LlmModel.MICROSOFT_WIZARDLM_2_8X22B: ModelMetadata(
"open_router", 65536, 4096, "WizardLM 2 8x22B", "OpenRouter", "Microsoft", 1
),
LlmModel.GRYPHE_MYTHOMAX_L2_13B: ModelMetadata(
"open_router", 4096, 4096, "MythoMax L2 13B", "OpenRouter", "Gryphe", 1
),
LlmModel.META_LLAMA_4_SCOUT: ModelMetadata(
"open_router", 131072, 131072, "Llama 4 Scout", "OpenRouter", "Meta", 1
),
LlmModel.META_LLAMA_4_MAVERICK: ModelMetadata(
"open_router", 1048576, 1000000, "Llama 4 Maverick", "OpenRouter", "Meta", 1
),
LlmModel.GROK_4: ModelMetadata(
"open_router", 256000, 256000, "Grok 4", "OpenRouter", "xAI", 3
),
LlmModel.GROK_4_FAST: ModelMetadata(
"open_router", 2000000, 30000, "Grok 4 Fast", "OpenRouter", "xAI", 1
),
LlmModel.GROK_4_1_FAST: ModelMetadata(
"open_router", 2000000, 30000, "Grok 4.1 Fast", "OpenRouter", "xAI", 1
),
LlmModel.GROK_CODE_FAST_1: ModelMetadata(
"open_router", 256000, 10000, "Grok Code Fast 1", "OpenRouter", "xAI", 1
),
LlmModel.KIMI_K2: ModelMetadata(
"open_router", 131000, 131000, "Kimi K2", "OpenRouter", "Moonshot AI", 1
),
LlmModel.QWEN3_235B_A22B_THINKING: ModelMetadata(
"open_router",
262144,
262144,
"Qwen 3 235B A22B Thinking 2507",
"OpenRouter",
"Qwen",
1,
),
LlmModel.QWEN3_CODER: ModelMetadata(
"open_router", 262144, 262144, "Qwen 3 Coder", "OpenRouter", "Qwen", 3
),
LlmModel.OPENAI_GPT_OSS_120B: ModelMetadata("open_router", 131072, 131072),
LlmModel.OPENAI_GPT_OSS_20B: ModelMetadata("open_router", 131072, 32768),
LlmModel.AMAZON_NOVA_LITE_V1: ModelMetadata("open_router", 300000, 5120),
LlmModel.AMAZON_NOVA_MICRO_V1: ModelMetadata("open_router", 128000, 5120),
LlmModel.AMAZON_NOVA_PRO_V1: ModelMetadata("open_router", 300000, 5120),
LlmModel.MICROSOFT_WIZARDLM_2_8X22B: ModelMetadata("open_router", 65536, 4096),
LlmModel.GRYPHE_MYTHOMAX_L2_13B: ModelMetadata("open_router", 4096, 4096),
LlmModel.META_LLAMA_4_SCOUT: ModelMetadata("open_router", 131072, 131072),
LlmModel.META_LLAMA_4_MAVERICK: ModelMetadata("open_router", 1048576, 1000000),
LlmModel.GROK_4: ModelMetadata("open_router", 256000, 256000),
LlmModel.GROK_4_FAST: ModelMetadata("open_router", 2000000, 30000),
LlmModel.GROK_4_1_FAST: ModelMetadata("open_router", 2000000, 30000),
LlmModel.GROK_CODE_FAST_1: ModelMetadata("open_router", 256000, 10000),
LlmModel.KIMI_K2: ModelMetadata("open_router", 131000, 131000),
LlmModel.QWEN3_235B_A22B_THINKING: ModelMetadata("open_router", 262144, 262144),
LlmModel.QWEN3_CODER: ModelMetadata("open_router", 262144, 262144),
# Llama API models
LlmModel.LLAMA_API_LLAMA_4_SCOUT: ModelMetadata("llama_api", 128000, 4028),
LlmModel.LLAMA_API_LLAMA4_MAVERICK: ModelMetadata("llama_api", 128000, 4028),
LlmModel.LLAMA_API_LLAMA3_3_8B: ModelMetadata("llama_api", 128000, 4028),
LlmModel.LLAMA_API_LLAMA3_3_70B: ModelMetadata("llama_api", 128000, 4028),
LlmModel.LLAMA_API_LLAMA_4_SCOUT: ModelMetadata(
"llama_api",
128000,
4028,
"Llama 4 Scout 17B 16E Instruct FP8",
"Llama API",
"Meta",
1,
),
LlmModel.LLAMA_API_LLAMA4_MAVERICK: ModelMetadata(
"llama_api",
128000,
4028,
"Llama 4 Maverick 17B 128E Instruct FP8",
"Llama API",
"Meta",
1,
),
LlmModel.LLAMA_API_LLAMA3_3_8B: ModelMetadata(
"llama_api", 128000, 4028, "Llama 3.3 8B Instruct", "Llama API", "Meta", 1
),
LlmModel.LLAMA_API_LLAMA3_3_70B: ModelMetadata(
"llama_api", 128000, 4028, "Llama 3.3 70B Instruct", "Llama API", "Meta", 1
),
# v0 by Vercel models
LlmModel.V0_1_5_MD: ModelMetadata("v0", 128000, 64000),
LlmModel.V0_1_5_LG: ModelMetadata("v0", 512000, 64000),
LlmModel.V0_1_0_MD: ModelMetadata("v0", 128000, 64000),
LlmModel.V0_1_5_MD: ModelMetadata("v0", 128000, 64000, "v0 1.5 MD", "V0", "V0", 1),
LlmModel.V0_1_5_LG: ModelMetadata("v0", 512000, 64000, "v0 1.5 LG", "V0", "V0", 1),
LlmModel.V0_1_0_MD: ModelMetadata("v0", 128000, 64000, "v0 1.0 MD", "V0", "V0", 1),
}
DEFAULT_LLM_MODEL = LlmModel.GPT5_2

View File

@@ -242,7 +242,7 @@ async def test_smart_decision_maker_tracks_llm_stats():
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
# Create a mock execution processor for tests
@@ -343,7 +343,7 @@ async def test_smart_decision_maker_parameter_validation():
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
# Create a mock execution processor for tests
@@ -409,7 +409,7 @@ async def test_smart_decision_maker_parameter_validation():
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
# Create a mock execution processor for tests
@@ -471,7 +471,7 @@ async def test_smart_decision_maker_parameter_validation():
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
# Create a mock execution processor for tests
@@ -535,7 +535,7 @@ async def test_smart_decision_maker_parameter_validation():
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
# Create a mock execution processor for tests
@@ -658,7 +658,7 @@ async def test_smart_decision_maker_raw_response_conversion():
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
# Create a mock execution processor for tests
@@ -730,7 +730,7 @@ async def test_smart_decision_maker_raw_response_conversion():
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
# Create a mock execution processor for tests
@@ -786,7 +786,7 @@ async def test_smart_decision_maker_raw_response_conversion():
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
# Create a mock execution processor for tests
@@ -905,7 +905,7 @@ async def test_smart_decision_maker_agent_mode():
# Create a mock execution context
mock_execution_context = ExecutionContext(
safe_mode=False,
human_in_the_loop_safe_mode=False,
)
# Create a mock execution processor for agent mode tests
@@ -1027,7 +1027,7 @@ async def test_smart_decision_maker_traditional_mode_default():
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
# Create a mock execution processor for tests

View File

@@ -386,7 +386,7 @@ async def test_output_yielding_with_dynamic_fields():
outputs = {}
from backend.data.execution import ExecutionContext
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
mock_execution_processor = MagicMock()
async for output_name, output_value in block.run(
@@ -609,7 +609,9 @@ async def test_validation_errors_dont_pollute_conversation():
outputs = {}
from backend.data.execution import ExecutionContext
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(
human_in_the_loop_safe_mode=False
)
# Create a proper mock execution processor for agent mode
from collections import defaultdict

View File

@@ -474,7 +474,7 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
self.block_type = block_type
self.webhook_config = webhook_config
self.execution_stats: NodeExecutionStats = NodeExecutionStats()
self.requires_human_review: bool = False
self.is_sensitive_action: bool = False
if self.webhook_config:
if isinstance(self.webhook_config, BlockWebhookConfig):
@@ -637,8 +637,9 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
- should_pause: True if execution should be paused for review
- input_data_to_use: The input data to use (may be modified by reviewer)
"""
# Skip review if not required or safe mode is disabled
if not self.requires_human_review or not execution_context.safe_mode:
if not (
self.is_sensitive_action and execution_context.sensitive_action_safe_mode
):
return False, input_data
from backend.blocks.helpers.review import HITLReviewHelper

View File

@@ -99,10 +99,15 @@ MODEL_COST: dict[LlmModel, int] = {
LlmModel.OPENAI_GPT_OSS_20B: 1,
LlmModel.GEMINI_2_5_PRO: 4,
LlmModel.GEMINI_3_PRO_PREVIEW: 5,
LlmModel.GEMINI_2_5_FLASH: 1,
LlmModel.GEMINI_2_0_FLASH: 1,
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: 1,
LlmModel.GEMINI_2_0_FLASH_LITE: 1,
LlmModel.MISTRAL_NEMO: 1,
LlmModel.COHERE_COMMAND_R_08_2024: 1,
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: 3,
LlmModel.DEEPSEEK_CHAT: 2,
LlmModel.DEEPSEEK_R1_0528: 1,
LlmModel.PERPLEXITY_SONAR: 1,
LlmModel.PERPLEXITY_SONAR_PRO: 5,
LlmModel.PERPLEXITY_SONAR_DEEP_RESEARCH: 10,
@@ -126,11 +131,6 @@ MODEL_COST: dict[LlmModel, int] = {
LlmModel.KIMI_K2: 1,
LlmModel.QWEN3_235B_A22B_THINKING: 1,
LlmModel.QWEN3_CODER: 9,
LlmModel.GEMINI_2_5_FLASH: 1,
LlmModel.GEMINI_2_0_FLASH: 1,
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: 1,
LlmModel.GEMINI_2_0_FLASH_LITE: 1,
LlmModel.DEEPSEEK_R1_0528: 1,
# v0 by Vercel models
LlmModel.V0_1_5_MD: 1,
LlmModel.V0_1_5_LG: 2,

View File

@@ -38,20 +38,6 @@ POOL_TIMEOUT = os.getenv("DB_POOL_TIMEOUT")
if POOL_TIMEOUT:
DATABASE_URL = add_param(DATABASE_URL, "pool_timeout", POOL_TIMEOUT)
# Add public schema to search_path for pgvector type access
# The vector extension is in public schema, but search_path is determined by schema parameter
# Extract the schema from DATABASE_URL or default to 'public' (matching get_database_schema())
parsed_url = urlparse(DATABASE_URL)
url_params = dict(parse_qsl(parsed_url.query))
db_schema = url_params.get("schema", "public")
# Build search_path, avoiding duplicates if db_schema is already 'public'
search_path_schemas = list(
dict.fromkeys([db_schema, "public"])
) # Preserves order, removes duplicates
search_path = ",".join(search_path_schemas)
# This allows using ::vector without schema qualification
DATABASE_URL = add_param(DATABASE_URL, "options", f"-c search_path={search_path}")
HTTP_TIMEOUT = int(POOL_TIMEOUT) if POOL_TIMEOUT else None
prisma = Prisma(
@@ -127,38 +113,48 @@ async def _raw_with_schema(
*args,
execute: bool = False,
client: Prisma | None = None,
set_public_search_path: bool = False,
) -> list[dict] | int:
"""Internal: Execute raw SQL with proper schema handling.
Use query_raw_with_schema() or execute_raw_with_schema() instead.
Supports placeholders:
- {schema_prefix}: Table/type prefix (e.g., "platform".)
- {schema}: Raw schema name for application tables (e.g., platform)
Note on pgvector types:
Use unqualified ::vector and <=> operator in queries. PostgreSQL resolves
these via search_path, which includes the schema where pgvector is installed
on all environments (local, CI, dev).
Args:
query_template: SQL query with {schema_prefix} placeholder
query_template: SQL query with {schema_prefix} and/or {schema} placeholders
*args: Query parameters
execute: If False, executes SELECT query. If True, executes INSERT/UPDATE/DELETE.
client: Optional Prisma client for transactions (only used when execute=True).
set_public_search_path: If True, sets search_path to include public schema.
Needed for pgvector types and other public schema objects.
Returns:
- list[dict] if execute=False (query results)
- int if execute=True (number of affected rows)
Example with vector type:
await execute_raw_with_schema(
'INSERT INTO {schema_prefix}"Embedding" (vec) VALUES ($1::vector)',
embedding_data
)
"""
schema = get_database_schema()
schema_prefix = f'"{schema}".' if schema != "public" else ""
formatted_query = query_template.format(schema_prefix=schema_prefix)
formatted_query = query_template.format(
schema_prefix=schema_prefix,
schema=schema,
)
import prisma as prisma_module
db_client = client if client else prisma_module.get_client()
# Set search_path to include public schema if requested
# Prisma doesn't support the 'options' connection parameter, so we set it per-session
# This is idempotent and safe to call multiple times
if set_public_search_path:
await db_client.execute_raw(f"SET search_path = {schema}, public") # type: ignore
if execute:
result = await db_client.execute_raw(formatted_query, *args) # type: ignore
else:
@@ -167,16 +163,12 @@ async def _raw_with_schema(
return result
async def query_raw_with_schema(
query_template: str, *args, set_public_search_path: bool = False
) -> list[dict]:
async def query_raw_with_schema(query_template: str, *args) -> list[dict]:
"""Execute raw SQL SELECT query with proper schema handling.
Args:
query_template: SQL query with {schema_prefix} placeholder
query_template: SQL query with {schema_prefix} and/or {schema} placeholders
*args: Query parameters
set_public_search_path: If True, sets search_path to include public schema.
Needed for pgvector types and other public schema objects.
Returns:
List of result rows as dictionaries
@@ -187,23 +179,20 @@ async def query_raw_with_schema(
user_id
)
"""
return await _raw_with_schema(query_template, *args, execute=False, set_public_search_path=set_public_search_path) # type: ignore
return await _raw_with_schema(query_template, *args, execute=False) # type: ignore
async def execute_raw_with_schema(
query_template: str,
*args,
client: Prisma | None = None,
set_public_search_path: bool = False,
) -> int:
"""Execute raw SQL command (INSERT/UPDATE/DELETE) with proper schema handling.
Args:
query_template: SQL query with {schema_prefix} placeholder
query_template: SQL query with {schema_prefix} and/or {schema} placeholders
*args: Query parameters
client: Optional Prisma client for transactions
set_public_search_path: If True, sets search_path to include public schema.
Needed for pgvector types and other public schema objects.
Returns:
Number of affected rows
@@ -215,7 +204,7 @@ async def execute_raw_with_schema(
client=tx # Optional transaction client
)
"""
return await _raw_with_schema(query_template, *args, execute=True, client=client, set_public_search_path=set_public_search_path) # type: ignore
return await _raw_with_schema(query_template, *args, execute=True, client=client) # type: ignore
class BaseDbModel(BaseModel):

View File

@@ -103,8 +103,18 @@ class RedisEventBus(BaseRedisEventBus[M], ABC):
return redis.get_redis()
def publish_event(self, event: M, channel_key: str):
message, full_channel_name = self._serialize_message(event, channel_key)
self.connection.publish(full_channel_name, message)
"""
Publish an event to Redis. Gracefully handles connection failures
by logging the error instead of raising exceptions.
"""
try:
message, full_channel_name = self._serialize_message(event, channel_key)
self.connection.publish(full_channel_name, message)
except Exception:
logger.exception(
f"Failed to publish event to Redis channel {channel_key}. "
"Event bus operation will continue without Redis connectivity."
)
def listen_events(self, channel_key: str) -> Generator[M, None, None]:
pubsub, full_channel_name = self._get_pubsub_channel(
@@ -128,9 +138,19 @@ class AsyncRedisEventBus(BaseRedisEventBus[M], ABC):
return await redis.get_redis_async()
async def publish_event(self, event: M, channel_key: str):
message, full_channel_name = self._serialize_message(event, channel_key)
connection = await self.connection
await connection.publish(full_channel_name, message)
"""
Publish an event to Redis. Gracefully handles connection failures
by logging the error instead of raising exceptions.
"""
try:
message, full_channel_name = self._serialize_message(event, channel_key)
connection = await self.connection
await connection.publish(full_channel_name, message)
except Exception:
logger.exception(
f"Failed to publish event to Redis channel {channel_key}. "
"Event bus operation will continue without Redis connectivity."
)
async def listen_events(self, channel_key: str) -> AsyncGenerator[M, None]:
pubsub, full_channel_name = self._get_pubsub_channel(

View File

@@ -0,0 +1,56 @@
"""
Tests for event_bus graceful degradation when Redis is unavailable.
"""
from unittest.mock import AsyncMock, patch
import pytest
from pydantic import BaseModel
from backend.data.event_bus import AsyncRedisEventBus
class TestEvent(BaseModel):
"""Test event model."""
message: str
class TestNotificationBus(AsyncRedisEventBus[TestEvent]):
"""Test implementation of AsyncRedisEventBus."""
Model = TestEvent
@property
def event_bus_name(self) -> str:
return "test_event_bus"
@pytest.mark.asyncio
async def test_publish_event_handles_connection_failure_gracefully():
"""Test that publish_event logs exception instead of raising when Redis is unavailable."""
bus = TestNotificationBus()
event = TestEvent(message="test message")
# Mock get_redis_async to raise connection error
with patch(
"backend.data.event_bus.redis.get_redis_async",
side_effect=ConnectionError("Authentication required."),
):
# Should not raise exception
await bus.publish_event(event, "test_channel")
@pytest.mark.asyncio
async def test_publish_event_works_with_redis_available():
"""Test that publish_event works normally when Redis is available."""
bus = TestNotificationBus()
event = TestEvent(message="test message")
# Mock successful Redis connection
mock_redis = AsyncMock()
mock_redis.publish = AsyncMock()
with patch("backend.data.event_bus.redis.get_redis_async", return_value=mock_redis):
await bus.publish_event(event, "test_channel")
mock_redis.publish.assert_called_once()

View File

@@ -81,7 +81,10 @@ class ExecutionContext(BaseModel):
This includes information needed by blocks, sub-graphs, and execution management.
"""
safe_mode: bool = True
model_config = {"extra": "ignore"}
human_in_the_loop_safe_mode: bool = True
sensitive_action_safe_mode: bool = False
user_timezone: str = "UTC"
root_execution_id: Optional[str] = None
parent_execution_id: Optional[str] = None

View File

@@ -3,7 +3,7 @@ import logging
import uuid
from collections import defaultdict
from datetime import datetime, timezone
from typing import TYPE_CHECKING, Any, Literal, Optional, cast
from typing import TYPE_CHECKING, Annotated, Any, Literal, Optional, cast
from prisma.enums import SubmissionStatus
from prisma.models import (
@@ -20,7 +20,7 @@ from prisma.types import (
AgentNodeLinkCreateInput,
StoreListingVersionWhereInput,
)
from pydantic import BaseModel, Field, create_model
from pydantic import BaseModel, BeforeValidator, Field, create_model
from pydantic.fields import computed_field
from backend.blocks.agent import AgentExecutorBlock
@@ -62,7 +62,31 @@ logger = logging.getLogger(__name__)
class GraphSettings(BaseModel):
human_in_the_loop_safe_mode: bool | None = None
# Use Annotated with BeforeValidator to coerce None to default values.
# This handles cases where the database has null values for these fields.
model_config = {"extra": "ignore"}
human_in_the_loop_safe_mode: Annotated[
bool, BeforeValidator(lambda v: v if v is not None else True)
] = True
sensitive_action_safe_mode: Annotated[
bool, BeforeValidator(lambda v: v if v is not None else False)
] = False
@classmethod
def from_graph(
cls,
graph: "GraphModel",
hitl_safe_mode: bool | None = None,
sensitive_action_safe_mode: bool = False,
) -> "GraphSettings":
# Default to True if not explicitly set
if hitl_safe_mode is None:
hitl_safe_mode = True
return cls(
human_in_the_loop_safe_mode=hitl_safe_mode,
sensitive_action_safe_mode=sensitive_action_safe_mode,
)
class Link(BaseDbModel):
@@ -244,10 +268,14 @@ class BaseGraph(BaseDbModel):
return any(
node.block_id
for node in self.nodes
if (
node.block.block_type == BlockType.HUMAN_IN_THE_LOOP
or node.block.requires_human_review
)
if node.block.block_type == BlockType.HUMAN_IN_THE_LOOP
)
@computed_field
@property
def has_sensitive_action(self) -> bool:
return any(
node.block_id for node in self.nodes if node.block.is_sensitive_action
)
@property

View File

@@ -328,6 +328,8 @@ async def clear_business_understanding(user_id: str) -> bool:
def format_understanding_for_prompt(understanding: BusinessUnderstanding) -> str:
"""Format business understanding as text for system prompt injection."""
if not understanding:
return ""
sections = []
# User info section

View File

@@ -309,7 +309,7 @@ def ensure_embeddings_coverage():
# Process in batches until no more missing embeddings
while True:
result = db_client.backfill_missing_embeddings(batch_size=10)
result = db_client.backfill_missing_embeddings(batch_size=100)
total_processed += result["processed"]
total_success += result["success"]

View File

@@ -873,11 +873,8 @@ async def add_graph_execution(
settings = await gdb.get_graph_settings(user_id=user_id, graph_id=graph_id)
execution_context = ExecutionContext(
safe_mode=(
settings.human_in_the_loop_safe_mode
if settings.human_in_the_loop_safe_mode is not None
else True
),
human_in_the_loop_safe_mode=settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=settings.sensitive_action_safe_mode,
user_timezone=(
user.timezone if user.timezone != USER_TIMEZONE_NOT_SET else "UTC"
),

View File

@@ -386,6 +386,7 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
mock_user.timezone = "UTC"
mock_settings = mocker.MagicMock()
mock_settings.human_in_the_loop_safe_mode = True
mock_settings.sensitive_action_safe_mode = False
mock_udb.get_user_by_id = mocker.AsyncMock(return_value=mock_user)
mock_gdb.get_graph_settings = mocker.AsyncMock(return_value=mock_settings)
@@ -651,6 +652,7 @@ async def test_add_graph_execution_with_nodes_to_skip(mocker: MockerFixture):
mock_user.timezone = "UTC"
mock_settings = mocker.MagicMock()
mock_settings.human_in_the_loop_safe_mode = True
mock_settings.sensitive_action_safe_mode = False
mock_udb.get_user_by_id = mocker.AsyncMock(return_value=mock_user)
mock_gdb.get_graph_settings = mocker.AsyncMock(return_value=mock_settings)

View File

@@ -350,6 +350,19 @@ class Config(UpdateTrackingModel["Config"], BaseSettings):
description="Whether to mark failed scans as clean or not",
)
agentgenerator_host: str = Field(
default="",
description="The host for the Agent Generator service (empty to use built-in)",
)
agentgenerator_port: int = Field(
default=8000,
description="The port for the Agent Generator service",
)
agentgenerator_timeout: int = Field(
default=120,
description="The timeout in seconds for Agent Generator service requests",
)
enable_example_blocks: bool = Field(
default=False,
description="Whether to enable example blocks in production",

View File

@@ -1,9 +1,10 @@
-- CreateExtension
-- Supabase: pgvector must be enabled via Dashboard → Database → Extensions first
-- Create in public schema so vector type is available across all schemas
-- Creates extension in current schema (determined by search_path from DATABASE_URL ?schema= param)
-- This ensures vector type is in the same schema as tables, making ::vector work without explicit qualification
DO $$
BEGIN
CREATE EXTENSION IF NOT EXISTS "vector" WITH SCHEMA "public";
CREATE EXTENSION IF NOT EXISTS "vector";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'vector extension not available or already exists, skipping';
END $$;
@@ -19,7 +20,7 @@ CREATE TABLE "UnifiedContentEmbedding" (
"contentType" "ContentType" NOT NULL,
"contentId" TEXT NOT NULL,
"userId" TEXT,
"embedding" public.vector(1536) NOT NULL,
"embedding" vector(1536) NOT NULL,
"searchableText" TEXT NOT NULL,
"metadata" JSONB NOT NULL DEFAULT '{}',
@@ -45,4 +46,4 @@ CREATE UNIQUE INDEX "UnifiedContentEmbedding_contentType_contentId_userId_key" O
-- Uses cosine distance operator (<=>), which matches the query in hybrid_search.py
-- Note: Drop first in case Prisma created a btree index (Prisma doesn't support HNSW)
DROP INDEX IF EXISTS "UnifiedContentEmbedding_embedding_idx";
CREATE INDEX "UnifiedContentEmbedding_embedding_idx" ON "UnifiedContentEmbedding" USING hnsw ("embedding" public.vector_cosine_ops);
CREATE INDEX "UnifiedContentEmbedding_embedding_idx" ON "UnifiedContentEmbedding" USING hnsw ("embedding" vector_cosine_ops);

View File

@@ -366,12 +366,12 @@ def generate_block_markdown(
lines.append("")
# What it is (full description)
lines.append(f"### What it is")
lines.append("### What it is")
lines.append(block.description or "No description available.")
lines.append("")
# How it works (manual section)
lines.append(f"### How it works")
lines.append("### How it works")
how_it_works = manual_content.get(
"how_it_works", "_Add technical explanation here._"
)
@@ -383,7 +383,7 @@ def generate_block_markdown(
# Inputs table (auto-generated)
visible_inputs = [f for f in block.inputs if not f.hidden]
if visible_inputs:
lines.append(f"### Inputs")
lines.append("### Inputs")
lines.append("")
lines.append("| Input | Description | Type | Required |")
lines.append("|-------|-------------|------|----------|")
@@ -400,7 +400,7 @@ def generate_block_markdown(
# Outputs table (auto-generated)
visible_outputs = [f for f in block.outputs if not f.hidden]
if visible_outputs:
lines.append(f"### Outputs")
lines.append("### Outputs")
lines.append("")
lines.append("| Output | Description | Type |")
lines.append("|--------|-------------|------|")
@@ -414,7 +414,7 @@ def generate_block_markdown(
lines.append("")
# Possible use case (manual section)
lines.append(f"### Possible use case")
lines.append("### Possible use case")
use_case = manual_content.get("use_case", "_Add practical use case examples here._")
lines.append("<!-- MANUAL: use_case -->")
lines.append(use_case)

View File

@@ -11,6 +11,7 @@
"forked_from_version": null,
"has_external_trigger": false,
"has_human_in_the_loop": false,
"has_sensitive_action": false,
"id": "graph-123",
"input_schema": {
"properties": {},

View File

@@ -11,6 +11,7 @@
"forked_from_version": null,
"has_external_trigger": false,
"has_human_in_the_loop": false,
"has_sensitive_action": false,
"id": "graph-123",
"input_schema": {
"properties": {},

View File

@@ -27,6 +27,8 @@
"properties": {}
},
"has_external_trigger": false,
"has_human_in_the_loop": false,
"has_sensitive_action": false,
"trigger_setup_info": null,
"new_output": false,
"can_access_graph": true,
@@ -34,7 +36,8 @@
"is_favorite": false,
"recommended_schedule_cron": null,
"settings": {
"human_in_the_loop_safe_mode": null
"human_in_the_loop_safe_mode": true,
"sensitive_action_safe_mode": false
},
"marketplace_listing": null
},
@@ -65,6 +68,8 @@
"properties": {}
},
"has_external_trigger": false,
"has_human_in_the_loop": false,
"has_sensitive_action": false,
"trigger_setup_info": null,
"new_output": false,
"can_access_graph": false,
@@ -72,7 +77,8 @@
"is_favorite": false,
"recommended_schedule_cron": null,
"settings": {
"human_in_the_loop_safe_mode": null
"human_in_the_loop_safe_mode": true,
"sensitive_action_safe_mode": false
},
"marketplace_listing": null
}

View File

@@ -0,0 +1 @@
"""Tests for agent generator module."""

View File

@@ -0,0 +1,273 @@
"""
Tests for the Agent Generator core module.
This test suite verifies that the core functions correctly delegate to
the external Agent Generator service.
"""
from unittest.mock import AsyncMock, patch
import pytest
from backend.api.features.chat.tools.agent_generator import core
from backend.api.features.chat.tools.agent_generator.core import (
AgentGeneratorNotConfiguredError,
)
class TestServiceNotConfigured:
"""Test that functions raise AgentGeneratorNotConfiguredError when service is not configured."""
@pytest.mark.asyncio
async def test_decompose_goal_raises_when_not_configured(self):
"""Test that decompose_goal raises error when service not configured."""
with patch.object(core, "is_external_service_configured", return_value=False):
with pytest.raises(AgentGeneratorNotConfiguredError):
await core.decompose_goal("Build a chatbot")
@pytest.mark.asyncio
async def test_generate_agent_raises_when_not_configured(self):
"""Test that generate_agent raises error when service not configured."""
with patch.object(core, "is_external_service_configured", return_value=False):
with pytest.raises(AgentGeneratorNotConfiguredError):
await core.generate_agent({"steps": []})
@pytest.mark.asyncio
async def test_generate_agent_patch_raises_when_not_configured(self):
"""Test that generate_agent_patch raises error when service not configured."""
with patch.object(core, "is_external_service_configured", return_value=False):
with pytest.raises(AgentGeneratorNotConfiguredError):
await core.generate_agent_patch("Add a node", {"nodes": []})
class TestDecomposeGoal:
"""Test decompose_goal function service delegation."""
@pytest.mark.asyncio
async def test_calls_external_service(self):
"""Test that decompose_goal calls the external service."""
expected_result = {"type": "instructions", "steps": ["Step 1"]}
with patch.object(
core, "is_external_service_configured", return_value=True
), patch.object(
core, "decompose_goal_external", new_callable=AsyncMock
) as mock_external:
mock_external.return_value = expected_result
result = await core.decompose_goal("Build a chatbot")
mock_external.assert_called_once_with("Build a chatbot", "")
assert result == expected_result
@pytest.mark.asyncio
async def test_passes_context_to_external_service(self):
"""Test that decompose_goal passes context to external service."""
expected_result = {"type": "instructions", "steps": ["Step 1"]}
with patch.object(
core, "is_external_service_configured", return_value=True
), patch.object(
core, "decompose_goal_external", new_callable=AsyncMock
) as mock_external:
mock_external.return_value = expected_result
await core.decompose_goal("Build a chatbot", "Use Python")
mock_external.assert_called_once_with("Build a chatbot", "Use Python")
@pytest.mark.asyncio
async def test_returns_none_on_service_failure(self):
"""Test that decompose_goal returns None when external service fails."""
with patch.object(
core, "is_external_service_configured", return_value=True
), patch.object(
core, "decompose_goal_external", new_callable=AsyncMock
) as mock_external:
mock_external.return_value = None
result = await core.decompose_goal("Build a chatbot")
assert result is None
class TestGenerateAgent:
"""Test generate_agent function service delegation."""
@pytest.mark.asyncio
async def test_calls_external_service(self):
"""Test that generate_agent calls the external service."""
expected_result = {"name": "Test Agent", "nodes": [], "links": []}
with patch.object(
core, "is_external_service_configured", return_value=True
), patch.object(
core, "generate_agent_external", new_callable=AsyncMock
) as mock_external:
mock_external.return_value = expected_result
instructions = {"type": "instructions", "steps": ["Step 1"]}
result = await core.generate_agent(instructions)
mock_external.assert_called_once_with(instructions)
# Result should have id, version, is_active added if not present
assert result is not None
assert result["name"] == "Test Agent"
assert "id" in result
assert result["version"] == 1
assert result["is_active"] is True
@pytest.mark.asyncio
async def test_preserves_existing_id_and_version(self):
"""Test that external service result preserves existing id and version."""
expected_result = {
"id": "existing-id",
"version": 3,
"is_active": False,
"name": "Test Agent",
}
with patch.object(
core, "is_external_service_configured", return_value=True
), patch.object(
core, "generate_agent_external", new_callable=AsyncMock
) as mock_external:
mock_external.return_value = expected_result.copy()
result = await core.generate_agent({"steps": []})
assert result is not None
assert result["id"] == "existing-id"
assert result["version"] == 3
assert result["is_active"] is False
@pytest.mark.asyncio
async def test_returns_none_when_external_service_fails(self):
"""Test that generate_agent returns None when external service fails."""
with patch.object(
core, "is_external_service_configured", return_value=True
), patch.object(
core, "generate_agent_external", new_callable=AsyncMock
) as mock_external:
mock_external.return_value = None
result = await core.generate_agent({"steps": []})
assert result is None
class TestGenerateAgentPatch:
"""Test generate_agent_patch function service delegation."""
@pytest.mark.asyncio
async def test_calls_external_service(self):
"""Test that generate_agent_patch calls the external service."""
expected_result = {"name": "Updated Agent", "nodes": [], "links": []}
with patch.object(
core, "is_external_service_configured", return_value=True
), patch.object(
core, "generate_agent_patch_external", new_callable=AsyncMock
) as mock_external:
mock_external.return_value = expected_result
current_agent = {"nodes": [], "links": []}
result = await core.generate_agent_patch("Add a node", current_agent)
mock_external.assert_called_once_with("Add a node", current_agent)
assert result == expected_result
@pytest.mark.asyncio
async def test_returns_clarifying_questions(self):
"""Test that generate_agent_patch returns clarifying questions."""
expected_result = {
"type": "clarifying_questions",
"questions": [{"question": "What type of node?"}],
}
with patch.object(
core, "is_external_service_configured", return_value=True
), patch.object(
core, "generate_agent_patch_external", new_callable=AsyncMock
) as mock_external:
mock_external.return_value = expected_result
result = await core.generate_agent_patch("Add a node", {"nodes": []})
assert result == expected_result
@pytest.mark.asyncio
async def test_returns_none_when_external_service_fails(self):
"""Test that generate_agent_patch returns None when service fails."""
with patch.object(
core, "is_external_service_configured", return_value=True
), patch.object(
core, "generate_agent_patch_external", new_callable=AsyncMock
) as mock_external:
mock_external.return_value = None
result = await core.generate_agent_patch("Add a node", {"nodes": []})
assert result is None
class TestJsonToGraph:
"""Test json_to_graph function."""
def test_converts_agent_json_to_graph(self):
"""Test conversion of agent JSON to Graph model."""
agent_json = {
"id": "test-id",
"version": 2,
"is_active": True,
"name": "Test Agent",
"description": "A test agent",
"nodes": [
{
"id": "node1",
"block_id": "block1",
"input_default": {"key": "value"},
"metadata": {"x": 100},
}
],
"links": [
{
"id": "link1",
"source_id": "node1",
"sink_id": "output",
"source_name": "result",
"sink_name": "input",
"is_static": False,
}
],
}
graph = core.json_to_graph(agent_json)
assert graph.id == "test-id"
assert graph.version == 2
assert graph.is_active is True
assert graph.name == "Test Agent"
assert graph.description == "A test agent"
assert len(graph.nodes) == 1
assert graph.nodes[0].id == "node1"
assert graph.nodes[0].block_id == "block1"
assert len(graph.links) == 1
assert graph.links[0].source_id == "node1"
def test_generates_ids_if_missing(self):
"""Test that missing IDs are generated."""
agent_json = {
"name": "Test Agent",
"nodes": [{"block_id": "block1"}],
"links": [],
}
graph = core.json_to_graph(agent_json)
assert graph.id is not None
assert graph.nodes[0].id is not None
if __name__ == "__main__":
pytest.main([__file__, "-v"])

View File

@@ -0,0 +1,422 @@
"""
Tests for the Agent Generator external service client.
This test suite verifies the external Agent Generator service integration,
including service detection, API calls, and error handling.
"""
from unittest.mock import AsyncMock, MagicMock, patch
import httpx
import pytest
from backend.api.features.chat.tools.agent_generator import service
class TestServiceConfiguration:
"""Test service configuration detection."""
def setup_method(self):
"""Reset settings singleton before each test."""
service._settings = None
service._client = None
def test_external_service_not_configured_when_host_empty(self):
"""Test that external service is not configured when host is empty."""
mock_settings = MagicMock()
mock_settings.config.agentgenerator_host = ""
with patch.object(service, "_get_settings", return_value=mock_settings):
assert service.is_external_service_configured() is False
def test_external_service_configured_when_host_set(self):
"""Test that external service is configured when host is set."""
mock_settings = MagicMock()
mock_settings.config.agentgenerator_host = "agent-generator.local"
with patch.object(service, "_get_settings", return_value=mock_settings):
assert service.is_external_service_configured() is True
def test_get_base_url(self):
"""Test base URL construction."""
mock_settings = MagicMock()
mock_settings.config.agentgenerator_host = "agent-generator.local"
mock_settings.config.agentgenerator_port = 8000
with patch.object(service, "_get_settings", return_value=mock_settings):
url = service._get_base_url()
assert url == "http://agent-generator.local:8000"
class TestDecomposeGoalExternal:
"""Test decompose_goal_external function."""
def setup_method(self):
"""Reset client singleton before each test."""
service._settings = None
service._client = None
@pytest.mark.asyncio
async def test_decompose_goal_returns_instructions(self):
"""Test successful decomposition returning instructions."""
mock_response = MagicMock()
mock_response.json.return_value = {
"success": True,
"type": "instructions",
"steps": ["Step 1", "Step 2"],
}
mock_response.raise_for_status = MagicMock()
mock_client = AsyncMock()
mock_client.post.return_value = mock_response
with patch.object(service, "_get_client", return_value=mock_client):
result = await service.decompose_goal_external("Build a chatbot")
assert result == {"type": "instructions", "steps": ["Step 1", "Step 2"]}
mock_client.post.assert_called_once_with(
"/api/decompose-description", json={"description": "Build a chatbot"}
)
@pytest.mark.asyncio
async def test_decompose_goal_returns_clarifying_questions(self):
"""Test decomposition returning clarifying questions."""
mock_response = MagicMock()
mock_response.json.return_value = {
"success": True,
"type": "clarifying_questions",
"questions": ["What platform?", "What language?"],
}
mock_response.raise_for_status = MagicMock()
mock_client = AsyncMock()
mock_client.post.return_value = mock_response
with patch.object(service, "_get_client", return_value=mock_client):
result = await service.decompose_goal_external("Build something")
assert result == {
"type": "clarifying_questions",
"questions": ["What platform?", "What language?"],
}
@pytest.mark.asyncio
async def test_decompose_goal_with_context(self):
"""Test decomposition with additional context."""
mock_response = MagicMock()
mock_response.json.return_value = {
"success": True,
"type": "instructions",
"steps": ["Step 1"],
}
mock_response.raise_for_status = MagicMock()
mock_client = AsyncMock()
mock_client.post.return_value = mock_response
with patch.object(service, "_get_client", return_value=mock_client):
await service.decompose_goal_external(
"Build a chatbot", context="Use Python"
)
mock_client.post.assert_called_once_with(
"/api/decompose-description",
json={"description": "Build a chatbot", "user_instruction": "Use Python"},
)
@pytest.mark.asyncio
async def test_decompose_goal_returns_unachievable_goal(self):
"""Test decomposition returning unachievable goal response."""
mock_response = MagicMock()
mock_response.json.return_value = {
"success": True,
"type": "unachievable_goal",
"reason": "Cannot do X",
"suggested_goal": "Try Y instead",
}
mock_response.raise_for_status = MagicMock()
mock_client = AsyncMock()
mock_client.post.return_value = mock_response
with patch.object(service, "_get_client", return_value=mock_client):
result = await service.decompose_goal_external("Do something impossible")
assert result == {
"type": "unachievable_goal",
"reason": "Cannot do X",
"suggested_goal": "Try Y instead",
}
@pytest.mark.asyncio
async def test_decompose_goal_handles_http_error(self):
"""Test decomposition handles HTTP errors gracefully."""
mock_client = AsyncMock()
mock_client.post.side_effect = httpx.HTTPStatusError(
"Server error", request=MagicMock(), response=MagicMock()
)
with patch.object(service, "_get_client", return_value=mock_client):
result = await service.decompose_goal_external("Build a chatbot")
assert result is None
@pytest.mark.asyncio
async def test_decompose_goal_handles_request_error(self):
"""Test decomposition handles request errors gracefully."""
mock_client = AsyncMock()
mock_client.post.side_effect = httpx.RequestError("Connection failed")
with patch.object(service, "_get_client", return_value=mock_client):
result = await service.decompose_goal_external("Build a chatbot")
assert result is None
@pytest.mark.asyncio
async def test_decompose_goal_handles_service_error(self):
"""Test decomposition handles service returning error."""
mock_response = MagicMock()
mock_response.json.return_value = {
"success": False,
"error": "Internal error",
}
mock_response.raise_for_status = MagicMock()
mock_client = AsyncMock()
mock_client.post.return_value = mock_response
with patch.object(service, "_get_client", return_value=mock_client):
result = await service.decompose_goal_external("Build a chatbot")
assert result is None
class TestGenerateAgentExternal:
"""Test generate_agent_external function."""
def setup_method(self):
"""Reset client singleton before each test."""
service._settings = None
service._client = None
@pytest.mark.asyncio
async def test_generate_agent_success(self):
"""Test successful agent generation."""
agent_json = {
"name": "Test Agent",
"nodes": [],
"links": [],
}
mock_response = MagicMock()
mock_response.json.return_value = {
"success": True,
"agent_json": agent_json,
}
mock_response.raise_for_status = MagicMock()
mock_client = AsyncMock()
mock_client.post.return_value = mock_response
instructions = {"type": "instructions", "steps": ["Step 1"]}
with patch.object(service, "_get_client", return_value=mock_client):
result = await service.generate_agent_external(instructions)
assert result == agent_json
mock_client.post.assert_called_once_with(
"/api/generate-agent", json={"instructions": instructions}
)
@pytest.mark.asyncio
async def test_generate_agent_handles_error(self):
"""Test agent generation handles errors gracefully."""
mock_client = AsyncMock()
mock_client.post.side_effect = httpx.RequestError("Connection failed")
with patch.object(service, "_get_client", return_value=mock_client):
result = await service.generate_agent_external({"steps": []})
assert result is None
class TestGenerateAgentPatchExternal:
"""Test generate_agent_patch_external function."""
def setup_method(self):
"""Reset client singleton before each test."""
service._settings = None
service._client = None
@pytest.mark.asyncio
async def test_generate_patch_returns_updated_agent(self):
"""Test successful patch generation returning updated agent."""
updated_agent = {
"name": "Updated Agent",
"nodes": [{"id": "1", "block_id": "test"}],
"links": [],
}
mock_response = MagicMock()
mock_response.json.return_value = {
"success": True,
"agent_json": updated_agent,
}
mock_response.raise_for_status = MagicMock()
mock_client = AsyncMock()
mock_client.post.return_value = mock_response
current_agent = {"name": "Old Agent", "nodes": [], "links": []}
with patch.object(service, "_get_client", return_value=mock_client):
result = await service.generate_agent_patch_external(
"Add a new node", current_agent
)
assert result == updated_agent
mock_client.post.assert_called_once_with(
"/api/update-agent",
json={
"update_request": "Add a new node",
"current_agent_json": current_agent,
},
)
@pytest.mark.asyncio
async def test_generate_patch_returns_clarifying_questions(self):
"""Test patch generation returning clarifying questions."""
mock_response = MagicMock()
mock_response.json.return_value = {
"success": True,
"type": "clarifying_questions",
"questions": ["What type of node?"],
}
mock_response.raise_for_status = MagicMock()
mock_client = AsyncMock()
mock_client.post.return_value = mock_response
with patch.object(service, "_get_client", return_value=mock_client):
result = await service.generate_agent_patch_external(
"Add something", {"nodes": []}
)
assert result == {
"type": "clarifying_questions",
"questions": ["What type of node?"],
}
class TestHealthCheck:
"""Test health_check function."""
def setup_method(self):
"""Reset singletons before each test."""
service._settings = None
service._client = None
@pytest.mark.asyncio
async def test_health_check_returns_false_when_not_configured(self):
"""Test health check returns False when service not configured."""
with patch.object(
service, "is_external_service_configured", return_value=False
):
result = await service.health_check()
assert result is False
@pytest.mark.asyncio
async def test_health_check_returns_true_when_healthy(self):
"""Test health check returns True when service is healthy."""
mock_response = MagicMock()
mock_response.json.return_value = {
"status": "healthy",
"blocks_loaded": True,
}
mock_response.raise_for_status = MagicMock()
mock_client = AsyncMock()
mock_client.get.return_value = mock_response
with patch.object(service, "is_external_service_configured", return_value=True):
with patch.object(service, "_get_client", return_value=mock_client):
result = await service.health_check()
assert result is True
mock_client.get.assert_called_once_with("/health")
@pytest.mark.asyncio
async def test_health_check_returns_false_when_not_healthy(self):
"""Test health check returns False when service is not healthy."""
mock_response = MagicMock()
mock_response.json.return_value = {
"status": "unhealthy",
"blocks_loaded": False,
}
mock_response.raise_for_status = MagicMock()
mock_client = AsyncMock()
mock_client.get.return_value = mock_response
with patch.object(service, "is_external_service_configured", return_value=True):
with patch.object(service, "_get_client", return_value=mock_client):
result = await service.health_check()
assert result is False
@pytest.mark.asyncio
async def test_health_check_returns_false_on_error(self):
"""Test health check returns False on connection error."""
mock_client = AsyncMock()
mock_client.get.side_effect = httpx.RequestError("Connection failed")
with patch.object(service, "is_external_service_configured", return_value=True):
with patch.object(service, "_get_client", return_value=mock_client):
result = await service.health_check()
assert result is False
class TestGetBlocksExternal:
"""Test get_blocks_external function."""
def setup_method(self):
"""Reset client singleton before each test."""
service._settings = None
service._client = None
@pytest.mark.asyncio
async def test_get_blocks_success(self):
"""Test successful blocks retrieval."""
blocks = [
{"id": "block1", "name": "Block 1"},
{"id": "block2", "name": "Block 2"},
]
mock_response = MagicMock()
mock_response.json.return_value = {
"success": True,
"blocks": blocks,
}
mock_response.raise_for_status = MagicMock()
mock_client = AsyncMock()
mock_client.get.return_value = mock_response
with patch.object(service, "_get_client", return_value=mock_client):
result = await service.get_blocks_external()
assert result == blocks
mock_client.get.assert_called_once_with("/api/blocks")
@pytest.mark.asyncio
async def test_get_blocks_handles_error(self):
"""Test blocks retrieval handles errors gracefully."""
mock_client = AsyncMock()
mock_client.get.side_effect = httpx.RequestError("Connection failed")
with patch.object(service, "_get_client", return_value=mock_client):
result = await service.get_blocks_external()
assert result is None
if __name__ == "__main__":
pytest.main([__file__, "-v"])

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 72 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 374 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 663 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.5 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.8 KiB

View File

@@ -5,10 +5,11 @@ import {
TooltipContent,
TooltipTrigger,
} from "@/components/atoms/Tooltip/BaseTooltip";
import { PlayIcon, StopIcon } from "@phosphor-icons/react";
import { CircleNotchIcon, PlayIcon, StopIcon } from "@phosphor-icons/react";
import { useShallow } from "zustand/react/shallow";
import { RunInputDialog } from "../RunInputDialog/RunInputDialog";
import { useRunGraph } from "./useRunGraph";
import { cn } from "@/lib/utils";
export const RunGraph = ({ flowID }: { flowID: string | null }) => {
const {
@@ -24,6 +25,31 @@ export const RunGraph = ({ flowID }: { flowID: string | null }) => {
useShallow((state) => state.isGraphRunning),
);
const isLoading = isExecutingGraph || isTerminatingGraph || isSaving;
// Determine which icon to show with proper animation
const renderIcon = () => {
const iconClass = cn(
"size-4 transition-transform duration-200 ease-out",
!isLoading && "group-hover:scale-110",
);
if (isLoading) {
return (
<CircleNotchIcon
className={cn(iconClass, "animate-spin")}
weight="bold"
/>
);
}
if (isGraphRunning) {
return <StopIcon className={iconClass} weight="fill" />;
}
return <PlayIcon className={iconClass} weight="fill" />;
};
return (
<>
<Tooltip>
@@ -33,18 +59,18 @@ export const RunGraph = ({ flowID }: { flowID: string | null }) => {
variant={isGraphRunning ? "destructive" : "primary"}
data-id={isGraphRunning ? "stop-graph-button" : "run-graph-button"}
onClick={isGraphRunning ? handleStopGraph : handleRunGraph}
disabled={!flowID || isExecutingGraph || isTerminatingGraph}
loading={isExecutingGraph || isTerminatingGraph || isSaving}
disabled={!flowID || isLoading}
className="group"
>
{!isGraphRunning ? (
<PlayIcon className="size-4" />
) : (
<StopIcon className="size-4" />
)}
{renderIcon()}
</Button>
</TooltipTrigger>
<TooltipContent>
{isGraphRunning ? "Stop agent" : "Run agent"}
{isLoading
? "Processing..."
: isGraphRunning
? "Stop agent"
: "Run agent"}
</TooltipContent>
</Tooltip>
<RunInputDialog

View File

@@ -10,6 +10,7 @@ import { useRunInputDialog } from "./useRunInputDialog";
import { CronSchedulerDialog } from "../CronSchedulerDialog/CronSchedulerDialog";
import { useTutorialStore } from "@/app/(platform)/build/stores/tutorialStore";
import { useEffect } from "react";
import { CredentialsGroupedView } from "@/components/contextual/CredentialsInput/components/CredentialsGroupedView/CredentialsGroupedView";
export const RunInputDialog = ({
isOpen,
@@ -23,19 +24,17 @@ export const RunInputDialog = ({
const hasInputs = useGraphStore((state) => state.hasInputs);
const hasCredentials = useGraphStore((state) => state.hasCredentials);
const inputSchema = useGraphStore((state) => state.inputSchema);
const credentialsSchema = useGraphStore(
(state) => state.credentialsInputSchema,
);
const {
credentialsUiSchema,
credentialFields,
requiredCredentials,
handleManualRun,
handleInputChange,
openCronSchedulerDialog,
setOpenCronSchedulerDialog,
inputValues,
credentialValues,
handleCredentialChange,
handleCredentialFieldChange,
isExecutingGraph,
} = useRunInputDialog({ setIsOpen });
@@ -62,67 +61,67 @@ export const RunInputDialog = ({
isOpen,
set: setIsOpen,
}}
styling={{ maxWidth: "600px", minWidth: "600px" }}
styling={{ maxWidth: "700px", minWidth: "700px" }}
>
<Dialog.Content>
<div className="space-y-6 p-1" data-id="run-input-dialog-content">
{/* Credentials Section */}
{hasCredentials() && (
<div data-id="run-input-credentials-section">
<div className="mb-4">
<Text variant="h4" className="text-gray-900">
Credentials
</Text>
<div
className="grid grid-cols-[1fr_auto] gap-10 p-1"
data-id="run-input-dialog-content"
>
<div className="space-y-6">
{/* Credentials Section */}
{hasCredentials() && credentialFields.length > 0 && (
<div data-id="run-input-credentials-section">
<div className="mb-4">
<Text variant="h4" className="text-gray-900">
Credentials
</Text>
</div>
<div className="px-2" data-id="run-input-credentials-form">
<CredentialsGroupedView
credentialFields={credentialFields}
requiredCredentials={requiredCredentials}
inputCredentials={credentialValues}
inputValues={inputValues}
onCredentialChange={handleCredentialFieldChange}
/>
</div>
</div>
<div className="px-2" data-id="run-input-credentials-form">
<FormRenderer
jsonSchema={credentialsSchema as RJSFSchema}
handleChange={(v) => handleCredentialChange(v.formData)}
uiSchema={credentialsUiSchema}
initialValues={{}}
formContext={{
showHandles: false,
size: "large",
showOptionalToggle: false,
}}
/>
</div>
</div>
)}
)}
{/* Inputs Section */}
{hasInputs() && (
<div data-id="run-input-inputs-section">
<div className="mb-4">
<Text variant="h4" className="text-gray-900">
Inputs
</Text>
{/* Inputs Section */}
{hasInputs() && (
<div data-id="run-input-inputs-section">
<div className="mb-4">
<Text variant="h4" className="text-gray-900">
Inputs
</Text>
</div>
<div data-id="run-input-inputs-form">
<FormRenderer
jsonSchema={inputSchema as RJSFSchema}
handleChange={(v) => handleInputChange(v.formData)}
uiSchema={uiSchema}
initialValues={{}}
formContext={{
showHandles: false,
size: "large",
}}
/>
</div>
</div>
<div data-id="run-input-inputs-form">
<FormRenderer
jsonSchema={inputSchema as RJSFSchema}
handleChange={(v) => handleInputChange(v.formData)}
uiSchema={uiSchema}
initialValues={{}}
formContext={{
showHandles: false,
size: "large",
}}
/>
</div>
</div>
)}
)}
</div>
{/* Action Button */}
<div
className="flex justify-end pt-2"
className="flex flex-col items-end justify-start"
data-id="run-input-actions-section"
>
{purpose === "run" && (
<Button
variant="primary"
size="large"
className="group h-fit min-w-0 gap-2"
className="group h-fit min-w-0 gap-2 px-10"
onClick={handleManualRun}
loading={isExecutingGraph}
data-id="run-input-manual-run-button"
@@ -137,7 +136,7 @@ export const RunInputDialog = ({
<Button
variant="primary"
size="large"
className="group h-fit min-w-0 gap-2"
className="group h-fit min-w-0 gap-2 px-10"
onClick={() => setOpenCronSchedulerDialog(true)}
data-id="run-input-schedule-button"
>

View File

@@ -7,12 +7,11 @@ import {
GraphExecutionMeta,
} from "@/lib/autogpt-server-api";
import { parseAsInteger, parseAsString, useQueryStates } from "nuqs";
import { useMemo, useState } from "react";
import { uiSchema } from "../../../FlowEditor/nodes/uiSchema";
import { isCredentialFieldSchema } from "@/components/renderers/InputRenderer/custom/CredentialField/helpers";
import { useCallback, useMemo, useState } from "react";
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
import { useToast } from "@/components/molecules/Toast/use-toast";
import { useReactFlow } from "@xyflow/react";
import type { CredentialField } from "@/components/contextual/CredentialsInput/components/CredentialsGroupedView/helpers";
export const useRunInputDialog = ({
setIsOpen,
@@ -120,27 +119,32 @@ export const useRunInputDialog = ({
},
});
// We are rendering the credentials field differently compared to other fields.
// In the node, we have the field name as "credential" - so our library catches it and renders it differently.
// But here we have a different name, something like `Firecrawl credentials`, so here we are telling the library that this field is a credential field type.
// Convert credentials schema to credential fields array for CredentialsGroupedView
const credentialFields: CredentialField[] = useMemo(() => {
if (!credentialsSchema?.properties) return [];
return Object.entries(credentialsSchema.properties);
}, [credentialsSchema]);
const credentialsUiSchema = useMemo(() => {
const dynamicUiSchema: any = { ...uiSchema };
// Get required credentials as a Set
const requiredCredentials = useMemo(() => {
return new Set<string>(credentialsSchema?.required || []);
}, [credentialsSchema]);
if (credentialsSchema?.properties) {
Object.keys(credentialsSchema.properties).forEach((fieldName) => {
const fieldSchema = credentialsSchema.properties[fieldName];
if (isCredentialFieldSchema(fieldSchema)) {
dynamicUiSchema[fieldName] = {
...dynamicUiSchema[fieldName],
"ui:field": "custom/credential_field",
};
// Handler for individual credential changes
const handleCredentialFieldChange = useCallback(
(key: string, value?: CredentialsMetaInput) => {
setCredentialValues((prev) => {
if (value) {
return { ...prev, [key]: value };
} else {
const next = { ...prev };
delete next[key];
return next;
}
});
}
return dynamicUiSchema;
}, [credentialsSchema]);
},
[],
);
const handleManualRun = async () => {
// Filter out incomplete credentials (those without a valid id)
@@ -173,12 +177,14 @@ export const useRunInputDialog = ({
};
return {
credentialsUiSchema,
credentialFields,
requiredCredentials,
inputValues,
credentialValues,
isExecutingGraph,
handleInputChange,
handleCredentialChange,
handleCredentialFieldChange,
handleManualRun,
openCronSchedulerDialog,
setOpenCronSchedulerDialog,

View File

@@ -18,69 +18,118 @@ interface Props {
fullWidth?: boolean;
}
interface SafeModeButtonProps {
isEnabled: boolean;
label: string;
tooltipEnabled: string;
tooltipDisabled: string;
onToggle: () => void;
isPending: boolean;
fullWidth?: boolean;
}
function SafeModeButton({
isEnabled,
label,
tooltipEnabled,
tooltipDisabled,
onToggle,
isPending,
fullWidth = false,
}: SafeModeButtonProps) {
return (
<Tooltip delayDuration={100}>
<TooltipTrigger asChild>
<Button
variant={isEnabled ? "primary" : "outline"}
size="small"
onClick={onToggle}
disabled={isPending}
className={cn("justify-start", fullWidth ? "w-full" : "")}
>
{isEnabled ? (
<>
<ShieldCheckIcon weight="bold" size={16} />
<Text variant="body" className="text-zinc-200">
{label}: ON
</Text>
</>
) : (
<>
<ShieldIcon weight="bold" size={16} />
<Text variant="body" className="text-zinc-600">
{label}: OFF
</Text>
</>
)}
</Button>
</TooltipTrigger>
<TooltipContent>
<div className="text-center">
<div className="font-medium">
{label}: {isEnabled ? "ON" : "OFF"}
</div>
<div className="mt-1 text-xs text-muted-foreground">
{isEnabled ? tooltipEnabled : tooltipDisabled}
</div>
</div>
</TooltipContent>
</Tooltip>
);
}
export function FloatingSafeModeToggle({
graph,
className,
fullWidth = false,
}: Props) {
const {
currentSafeMode,
currentHITLSafeMode,
showHITLToggle,
isHITLStateUndetermined,
handleHITLToggle,
currentSensitiveActionSafeMode,
showSensitiveActionToggle,
handleSensitiveActionToggle,
isPending,
shouldShowToggle,
isStateUndetermined,
handleToggle,
} = useAgentSafeMode(graph);
if (!shouldShowToggle || isStateUndetermined || isPending) {
if (!shouldShowToggle || isPending) {
return null;
}
const showHITL = showHITLToggle && !isHITLStateUndetermined;
const showSensitive = showSensitiveActionToggle;
if (!showHITL && !showSensitive) {
return null;
}
return (
<div className={cn("fixed z-50", className)}>
<Tooltip delayDuration={100}>
<TooltipTrigger asChild>
<Button
variant={currentSafeMode! ? "primary" : "outline"}
key={graph.id}
size="small"
title={
currentSafeMode!
? "Safe Mode: ON. Human in the loop blocks require manual review"
: "Safe Mode: OFF. Human in the loop blocks proceed automatically"
}
onClick={handleToggle}
className={cn(fullWidth ? "w-full" : "")}
>
{currentSafeMode! ? (
<>
<ShieldCheckIcon weight="bold" size={16} />
<Text variant="body" className="text-zinc-200">
Safe Mode: ON
</Text>
</>
) : (
<>
<ShieldIcon weight="bold" size={16} />
<Text variant="body" className="text-zinc-600">
Safe Mode: OFF
</Text>
</>
)}
</Button>
</TooltipTrigger>
<TooltipContent>
<div className="text-center">
<div className="font-medium">
Safe Mode: {currentSafeMode! ? "ON" : "OFF"}
</div>
<div className="mt-1 text-xs text-muted-foreground">
{currentSafeMode!
? "Human in the loop blocks require manual review"
: "Human in the loop blocks proceed automatically"}
</div>
</div>
</TooltipContent>
</Tooltip>
<div className={cn("fixed z-50 flex flex-col gap-2", className)}>
{showHITL && (
<SafeModeButton
isEnabled={currentHITLSafeMode}
label="Human in the loop block approval"
tooltipEnabled="The agent will pause at human-in-the-loop blocks and wait for your approval"
tooltipDisabled="Human in the loop blocks will proceed automatically"
onToggle={handleHITLToggle}
isPending={isPending}
fullWidth={fullWidth}
/>
)}
{showSensitive && (
<SafeModeButton
isEnabled={currentSensitiveActionSafeMode}
label="Sensitive actions blocks approval"
tooltipEnabled="The agent will pause at sensitive action blocks and wait for your approval"
tooltipDisabled="Sensitive action blocks will proceed automatically"
onToggle={handleSensitiveActionToggle}
isPending={isPending}
fullWidth={fullWidth}
/>
)}
</div>
);
}

View File

@@ -53,14 +53,14 @@ export const CustomControls = memo(
const controls = [
{
id: "zoom-in-button",
icon: <PlusIcon className="size-4" />,
icon: <PlusIcon className="size-3.5 text-zinc-600" />,
label: "Zoom In",
onClick: () => zoomIn(),
className: "h-10 w-10 border-none",
},
{
id: "zoom-out-button",
icon: <MinusIcon className="size-4" />,
icon: <MinusIcon className="size-3.5 text-zinc-600" />,
label: "Zoom Out",
onClick: () => zoomOut(),
className: "h-10 w-10 border-none",
@@ -68,9 +68,9 @@ export const CustomControls = memo(
{
id: "tutorial-button",
icon: isTutorialLoading ? (
<CircleNotchIcon className="size-4 animate-spin" />
<CircleNotchIcon className="size-3.5 animate-spin text-zinc-600" />
) : (
<ChalkboardIcon className="size-4" />
<ChalkboardIcon className="size-3.5 text-zinc-600" />
),
label: isTutorialLoading ? "Loading Tutorial..." : "Start Tutorial",
onClick: handleTutorialClick,
@@ -79,7 +79,7 @@ export const CustomControls = memo(
},
{
id: "fit-view-button",
icon: <FrameCornersIcon className="size-4" />,
icon: <FrameCornersIcon className="size-3.5 text-zinc-600" />,
label: "Fit View",
onClick: () => fitView({ padding: 0.2, duration: 800, maxZoom: 1 }),
className: "h-10 w-10 border-none",
@@ -87,9 +87,9 @@ export const CustomControls = memo(
{
id: "lock-button",
icon: !isLocked ? (
<LockOpenIcon className="size-4" />
<LockOpenIcon className="size-3.5 text-zinc-600" />
) : (
<LockIcon className="size-4" />
<LockIcon className="size-3.5 text-zinc-600" />
),
label: "Toggle Lock",
onClick: () => setIsLocked(!isLocked),

View File

@@ -139,14 +139,6 @@ export const useFlow = () => {
useNodeStore.getState().setNodes([]);
useNodeStore.getState().clearResolutionState();
addNodes(customNodes);
// Sync hardcoded values with handle IDs.
// If a keyvalue field has a key without a value, the backend omits it from hardcoded values.
// But if a handleId exists for that key, it causes inconsistency.
// This ensures hardcoded values stay in sync with handle IDs.
customNodes.forEach((node) => {
useNodeStore.getState().syncHardcodedValuesWithHandleIds(node.id);
});
}
}, [customNodes, addNodes]);
@@ -158,6 +150,14 @@ export const useFlow = () => {
}
}, [graph?.links, addLinks]);
useEffect(() => {
if (customNodes.length > 0 && graph?.links) {
customNodes.forEach((node) => {
useNodeStore.getState().syncHardcodedValuesWithHandleIds(node.id);
});
}
}, [customNodes, graph?.links]);
// update node execution status in nodes
useEffect(() => {
if (

View File

@@ -19,6 +19,8 @@ export type CustomEdgeData = {
beadUp?: number;
beadDown?: number;
beadData?: Map<string, NodeExecutionResult["status"]>;
edgeColorClass?: string;
edgeHexColor?: string;
};
export type CustomEdge = XYEdge<CustomEdgeData, "custom">;
@@ -36,7 +38,6 @@ const CustomEdge = ({
selected,
}: EdgeProps<CustomEdge>) => {
const removeConnection = useEdgeStore((state) => state.removeEdge);
// Subscribe to the brokenEdgeIDs map and check if this edge is broken across any node
const isBroken = useNodeStore((state) => state.isEdgeBroken(id));
const [isHovered, setIsHovered] = useState(false);
@@ -52,6 +53,7 @@ const CustomEdge = ({
const isStatic = data?.isStatic ?? false;
const beadUp = data?.beadUp ?? 0;
const beadDown = data?.beadDown ?? 0;
const edgeColorClass = data?.edgeColorClass;
const handleRemoveEdge = () => {
removeConnection(id);
@@ -70,7 +72,9 @@ const CustomEdge = ({
? "!stroke-red-500 !stroke-[2px] [stroke-dasharray:4]"
: selected
? "stroke-zinc-800"
: "stroke-zinc-500/50 hover:stroke-zinc-500",
: edgeColorClass
? cn(edgeColorClass, "opacity-70 hover:opacity-100")
: "stroke-zinc-500/50 hover:stroke-zinc-500",
)}
/>
<JSBeads

View File

@@ -8,6 +8,7 @@ import { useCallback } from "react";
import { useNodeStore } from "../../../stores/nodeStore";
import { useHistoryStore } from "../../../stores/historyStore";
import { CustomEdge } from "./CustomEdge";
import { getEdgeColorFromOutputType } from "../nodes/helpers";
export const useCustomEdge = () => {
const edges = useEdgeStore((s) => s.edges);
@@ -34,8 +35,13 @@ export const useCustomEdge = () => {
if (exists) return;
const nodes = useNodeStore.getState().nodes;
const isStatic = nodes.find((n) => n.id === conn.source)?.data
?.staticOutput;
const sourceNode = nodes.find((n) => n.id === conn.source);
const isStatic = sourceNode?.data?.staticOutput;
const { colorClass, hexColor } = getEdgeColorFromOutputType(
sourceNode?.data?.outputSchema,
conn.sourceHandle,
);
addEdge({
source: conn.source,
@@ -44,6 +50,8 @@ export const useCustomEdge = () => {
targetHandle: conn.targetHandle,
data: {
isStatic,
edgeColorClass: colorClass,
edgeHexColor: hexColor,
},
});
},

View File

@@ -1,22 +1,21 @@
import { Button } from "@/components/atoms/Button/Button";
import { Text } from "@/components/atoms/Text/Text";
import {
Accordion,
AccordionContent,
AccordionItem,
AccordionTrigger,
} from "@/components/molecules/Accordion/Accordion";
import { beautifyString, cn } from "@/lib/utils";
import { CaretDownIcon, CopyIcon, CheckIcon } from "@phosphor-icons/react";
import { CopyIcon, CheckIcon } from "@phosphor-icons/react";
import { NodeDataViewer } from "./components/NodeDataViewer/NodeDataViewer";
import { ContentRenderer } from "./components/ContentRenderer";
import { useNodeOutput } from "./useNodeOutput";
import { ViewMoreData } from "./components/ViewMoreData";
export const NodeDataRenderer = ({ nodeId }: { nodeId: string }) => {
const {
outputData,
isExpanded,
setIsExpanded,
copiedKey,
handleCopy,
executionResultId,
inputData,
} = useNodeOutput(nodeId);
const { outputData, copiedKey, handleCopy, executionResultId, inputData } =
useNodeOutput(nodeId);
if (Object.keys(outputData).length === 0) {
return null;
@@ -25,122 +24,117 @@ export const NodeDataRenderer = ({ nodeId }: { nodeId: string }) => {
return (
<div
data-tutorial-id={`node-output`}
className="flex flex-col gap-3 rounded-b-xl border-t border-zinc-200 px-4 py-4"
className="rounded-b-xl border-t border-zinc-200 px-4 py-2"
>
<div className="flex items-center justify-between">
<Text variant="body-medium" className="!font-semibold text-slate-700">
Node Output
</Text>
<Button
variant="ghost"
size="small"
onClick={() => setIsExpanded(!isExpanded)}
className="h-fit min-w-0 p-1 text-slate-600 hover:text-slate-900"
>
<CaretDownIcon
size={16}
weight="bold"
className={`transition-transform ${isExpanded ? "rotate-180" : ""}`}
/>
</Button>
</div>
<Accordion type="single" collapsible defaultValue="node-output">
<AccordionItem value="node-output" className="border-none">
<AccordionTrigger className="py-2 hover:no-underline">
<Text
variant="body-medium"
className="!font-semibold text-slate-700"
>
Node Output
</Text>
</AccordionTrigger>
<AccordionContent className="pt-2">
<div className="flex max-w-[350px] flex-col gap-4">
<div className="space-y-2">
<Text variant="small-medium">Input</Text>
{isExpanded && (
<>
<div className="flex max-w-[350px] flex-col gap-4">
<div className="space-y-2">
<Text variant="small-medium">Input</Text>
<ContentRenderer value={inputData} shortContent={false} />
<ContentRenderer value={inputData} shortContent={false} />
<div className="mt-1 flex justify-end gap-1">
<NodeDataViewer
data={inputData}
pinName="Input"
execId={executionResultId}
/>
<Button
variant="secondary"
size="small"
onClick={() => handleCopy("input", inputData)}
className={cn(
"h-fit min-w-0 gap-1.5 border border-zinc-200 p-2 text-black hover:text-slate-900",
copiedKey === "input" &&
"border-green-400 bg-green-100 hover:border-green-400 hover:bg-green-200",
)}
>
{copiedKey === "input" ? (
<CheckIcon size={12} className="text-green-600" />
) : (
<CopyIcon size={12} />
)}
</Button>
<div className="mt-1 flex justify-end gap-1">
<NodeDataViewer
data={inputData}
pinName="Input"
execId={executionResultId}
/>
<Button
variant="secondary"
size="small"
onClick={() => handleCopy("input", inputData)}
className={cn(
"h-fit min-w-0 gap-1.5 border border-zinc-200 p-2 text-black hover:text-slate-900",
copiedKey === "input" &&
"border-green-400 bg-green-100 hover:border-green-400 hover:bg-green-200",
)}
>
{copiedKey === "input" ? (
<CheckIcon size={12} className="text-green-600" />
) : (
<CopyIcon size={12} />
)}
</Button>
</div>
</div>
</div>
{Object.entries(outputData)
.slice(0, 2)
.map(([key, value]) => (
<div key={key} className="flex flex-col gap-2">
<div className="flex items-center gap-2">
<Text
variant="small-medium"
className="!font-semibold text-slate-600"
>
Pin:
</Text>
<Text variant="small" className="text-slate-700">
{beautifyString(key)}
</Text>
</div>
<div className="w-full space-y-2">
<Text
variant="small"
className="!font-semibold text-slate-600"
>
Data:
</Text>
<div className="relative space-y-2">
{value.map((item, index) => (
<div key={index}>
<ContentRenderer value={item} shortContent={true} />
{Object.entries(outputData)
.slice(0, 2)
.map(([key, value]) => (
<div key={key} className="flex flex-col gap-2">
<div className="flex items-center gap-2">
<Text
variant="small-medium"
className="!font-semibold text-slate-600"
>
Pin:
</Text>
<Text variant="small" className="text-slate-700">
{beautifyString(key)}
</Text>
</div>
<div className="w-full space-y-2">
<Text
variant="small"
className="!font-semibold text-slate-600"
>
Data:
</Text>
<div className="relative space-y-2">
{value.map((item, index) => (
<div key={index}>
<ContentRenderer value={item} shortContent={true} />
</div>
))}
<div className="mt-1 flex justify-end gap-1">
<NodeDataViewer
data={value}
pinName={key}
execId={executionResultId}
/>
<Button
variant="secondary"
size="small"
onClick={() => handleCopy(key, value)}
className={cn(
"h-fit min-w-0 gap-1.5 border border-zinc-200 p-2 text-black hover:text-slate-900",
copiedKey === key &&
"border-green-400 bg-green-100 hover:border-green-400 hover:bg-green-200",
)}
>
{copiedKey === key ? (
<CheckIcon size={12} className="text-green-600" />
) : (
<CopyIcon size={12} />
)}
</Button>
</div>
))}
<div className="mt-1 flex justify-end gap-1">
<NodeDataViewer
data={value}
pinName={key}
execId={executionResultId}
/>
<Button
variant="secondary"
size="small"
onClick={() => handleCopy(key, value)}
className={cn(
"h-fit min-w-0 gap-1.5 border border-zinc-200 p-2 text-black hover:text-slate-900",
copiedKey === key &&
"border-green-400 bg-green-100 hover:border-green-400 hover:bg-green-200",
)}
>
{copiedKey === key ? (
<CheckIcon size={12} className="text-green-600" />
) : (
<CopyIcon size={12} />
)}
</Button>
</div>
</div>
</div>
</div>
))}
</div>
))}
</div>
{Object.keys(outputData).length > 2 && (
<ViewMoreData outputData={outputData} execId={executionResultId} />
)}
</>
)}
{Object.keys(outputData).length > 2 && (
<ViewMoreData
outputData={outputData}
execId={executionResultId}
/>
)}
</AccordionContent>
</AccordionItem>
</Accordion>
</div>
);
};

View File

@@ -4,7 +4,6 @@ import { useShallow } from "zustand/react/shallow";
import { useState } from "react";
export const useNodeOutput = (nodeId: string) => {
const [isExpanded, setIsExpanded] = useState(true);
const [copiedKey, setCopiedKey] = useState<string | null>(null);
const { toast } = useToast();
@@ -37,13 +36,10 @@ export const useNodeOutput = (nodeId: string) => {
}
};
return {
outputData: outputData,
inputData: inputData,
isExpanded: isExpanded,
setIsExpanded: setIsExpanded,
copiedKey: copiedKey,
setCopiedKey: setCopiedKey,
handleCopy: handleCopy,
outputData,
inputData,
copiedKey,
handleCopy,
executionResultId: nodeExecutionResult?.node_exec_id,
};
};

View File

@@ -187,3 +187,38 @@ export const getTypeDisplayInfo = (schema: any) => {
hexColor,
};
};
export function getEdgeColorFromOutputType(
outputSchema: RJSFSchema | undefined,
sourceHandle: string,
): { colorClass: string; hexColor: string } {
const defaultColor = {
colorClass: "stroke-zinc-500/50",
hexColor: "#6b7280",
};
if (!outputSchema?.properties) return defaultColor;
const properties = outputSchema.properties as Record<string, unknown>;
const handleParts = sourceHandle.split("_#_");
let currentSchema: Record<string, unknown> = properties;
for (let i = 0; i < handleParts.length; i++) {
const part = handleParts[i];
const fieldSchema = currentSchema[part] as Record<string, unknown>;
if (!fieldSchema) return defaultColor;
if (i === handleParts.length - 1) {
const { hexColor, colorClass } = getTypeDisplayInfo(fieldSchema);
return { colorClass: colorClass.replace("!text-", "stroke-"), hexColor };
}
if (fieldSchema.properties) {
currentSchema = fieldSchema.properties as Record<string, unknown>;
} else {
return defaultColor;
}
}
return defaultColor;
}

View File

@@ -1,7 +1,32 @@
// These are SVG Phosphor icons
type IconOptions = {
size?: number;
color?: string;
};
const DEFAULT_SIZE = 16;
const DEFAULT_COLOR = "#52525b"; // zinc-600
const iconPaths = {
ClickIcon: `M88,24V16a8,8,0,0,1,16,0v8a8,8,0,0,1-16,0ZM16,104h8a8,8,0,0,0,0-16H16a8,8,0,0,0,0,16ZM124.42,39.16a8,8,0,0,0,10.74-3.58l8-16a8,8,0,0,0-14.31-7.16l-8,16A8,8,0,0,0,124.42,39.16Zm-96,81.69-16,8a8,8,0,0,0,7.16,14.31l16-8a8,8,0,1,0-7.16-14.31ZM219.31,184a16,16,0,0,1,0,22.63l-12.68,12.68a16,16,0,0,1-22.63,0L132.7,168,115,214.09c0,.1-.08.21-.13.32a15.83,15.83,0,0,1-14.6,9.59l-.79,0a15.83,15.83,0,0,1-14.41-11L32.8,52.92A16,16,0,0,1,52.92,32.8L213,85.07a16,16,0,0,1,1.41,29.8l-.32.13L168,132.69ZM208,195.31,156.69,144h0a16,16,0,0,1,4.93-26l.32-.14,45.95-17.64L48,48l52.2,159.86,17.65-46c0-.11.08-.22.13-.33a16,16,0,0,1,11.69-9.34,16.72,16.72,0,0,1,3-.28,16,16,0,0,1,11.3,4.69L195.31,208Z`,
Keyboard: `M224,48H32A16,16,0,0,0,16,64V192a16,16,0,0,0,16,16H224a16,16,0,0,0,16-16V64A16,16,0,0,0,224,48Zm0,144H32V64H224V192Zm-16-64a8,8,0,0,1-8,8H56a8,8,0,0,1,0-16H200A8,8,0,0,1,208,128Zm0-32a8,8,0,0,1-8,8H56a8,8,0,0,1,0-16H200A8,8,0,0,1,208,96ZM72,160a8,8,0,0,1-8,8H56a8,8,0,0,1,0-16h8A8,8,0,0,1,72,160Zm96,0a8,8,0,0,1-8,8H96a8,8,0,0,1,0-16h64A8,8,0,0,1,168,160Zm40,0a8,8,0,0,1-8,8h-8a8,8,0,0,1,0-16h8A8,8,0,0,1,208,160Z`,
Drag: `M188,80a27.79,27.79,0,0,0-13.36,3.4,28,28,0,0,0-46.64-11A28,28,0,0,0,80,92v20H68a28,28,0,0,0-28,28v12a88,88,0,0,0,176,0V108A28,28,0,0,0,188,80Zm12,72a72,72,0,0,1-144,0V140a12,12,0,0,1,12-12H80v24a8,8,0,0,0,16,0V92a12,12,0,0,1,24,0v28a8,8,0,0,0,16,0V92a12,12,0,0,1,24,0v28a8,8,0,0,0,16,0V108a12,12,0,0,1,24,0Z`,
};
function createIcon(path: string, options: IconOptions = {}): string {
const size = options.size ?? DEFAULT_SIZE;
const color = options.color ?? DEFAULT_COLOR;
return `<svg xmlns="http://www.w3.org/2000/svg" width="${size}" height="${size}" fill="${color}" viewBox="0 0 256 256"><path d="${path}"></path></svg>`;
}
export const ICONS = {
ClickIcon: `<svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="#000000" viewBox="0 0 256 256"><path d="M88,24V16a8,8,0,0,1,16,0v8a8,8,0,0,1-16,0ZM16,104h8a8,8,0,0,0,0-16H16a8,8,0,0,0,0,16ZM124.42,39.16a8,8,0,0,0,10.74-3.58l8-16a8,8,0,0,0-14.31-7.16l-8,16A8,8,0,0,0,124.42,39.16Zm-96,81.69-16,8a8,8,0,0,0,7.16,14.31l16-8a8,8,0,1,0-7.16-14.31ZM219.31,184a16,16,0,0,1,0,22.63l-12.68,12.68a16,16,0,0,1-22.63,0L132.7,168,115,214.09c0,.1-.08.21-.13.32a15.83,15.83,0,0,1-14.6,9.59l-.79,0a15.83,15.83,0,0,1-14.41-11L32.8,52.92A16,16,0,0,1,52.92,32.8L213,85.07a16,16,0,0,1,1.41,29.8l-.32.13L168,132.69ZM208,195.31,156.69,144h0a16,16,0,0,1,4.93-26l.32-.14,45.95-17.64L48,48l52.2,159.86,17.65-46c0-.11.08-.22.13-.33a16,16,0,0,1,11.69-9.34,16.72,16.72,0,0,1,3-.28,16,16,0,0,1,11.3,4.69L195.31,208Z"></path></svg>`,
Keyboard: `<svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="#000000" viewBox="0 0 256 256"><path d="M224,48H32A16,16,0,0,0,16,64V192a16,16,0,0,0,16,16H224a16,16,0,0,0,16-16V64A16,16,0,0,0,224,48Zm0,144H32V64H224V192Zm-16-64a8,8,0,0,1-8,8H56a8,8,0,0,1,0-16H200A8,8,0,0,1,208,128Zm0-32a8,8,0,0,1-8,8H56a8,8,0,0,1,0-16H200A8,8,0,0,1,208,96ZM72,160a8,8,0,0,1-8,8H56a8,8,0,0,1,0-16h8A8,8,0,0,1,72,160Zm96,0a8,8,0,0,1-8,8H96a8,8,0,0,1,0-16h64A8,8,0,0,1,168,160Zm40,0a8,8,0,0,1-8,8h-8a8,8,0,0,1,0-16h8A8,8,0,0,1,208,160Z"></path></svg>`,
Drag: `<svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="#000000" viewBox="0 0 256 256"><path d="M188,80a27.79,27.79,0,0,0-13.36,3.4,28,28,0,0,0-46.64-11A28,28,0,0,0,80,92v20H68a28,28,0,0,0-28,28v12a88,88,0,0,0,176,0V108A28,28,0,0,0,188,80Zm12,72a72,72,0,0,1-144,0V140a12,12,0,0,1,12-12H80v24a8,8,0,0,0,16,0V92a12,12,0,0,1,24,0v28a8,8,0,0,0,16,0V92a12,12,0,0,1,24,0v28a8,8,0,0,0,16,0V108a12,12,0,0,1,24,0Z"></path></svg>`,
ClickIcon: createIcon(iconPaths.ClickIcon),
Keyboard: createIcon(iconPaths.Keyboard),
Drag: createIcon(iconPaths.Drag),
};
export function getIcon(
name: keyof typeof iconPaths,
options?: IconOptions,
): string {
return createIcon(iconPaths[name], options);
}

View File

@@ -11,6 +11,7 @@ import {
} from "./helpers";
import { useNodeStore } from "../../../stores/nodeStore";
import { useEdgeStore } from "../../../stores/edgeStore";
import { useTutorialStore } from "../../../stores/tutorialStore";
let isTutorialLoading = false;
let tutorialLoadingCallback: ((loading: boolean) => void) | null = null;
@@ -60,12 +61,14 @@ export const startTutorial = async () => {
handleTutorialComplete();
removeTutorialStyles();
clearPrefetchedBlocks();
useTutorialStore.getState().setIsTutorialRunning(false);
});
tour.on("cancel", () => {
handleTutorialCancel(tour);
removeTutorialStyles();
clearPrefetchedBlocks();
useTutorialStore.getState().setIsTutorialRunning(false);
});
for (const step of tour.steps) {

View File

@@ -61,12 +61,18 @@ export const convertNodesPlusBlockInfoIntoCustomNodes = (
return customNode;
};
const isToolSourceName = (sourceName: string): boolean =>
sourceName.startsWith("tools_^_");
const cleanupSourceName = (sourceName: string): string =>
isToolSourceName(sourceName) ? "tools" : sourceName;
export const linkToCustomEdge = (link: Link): CustomEdge => ({
id: link.id ?? "",
type: "custom" as const,
source: link.source_id,
target: link.sink_id,
sourceHandle: link.source_name,
sourceHandle: cleanupSourceName(link.source_name),
targetHandle: link.sink_name,
data: {
isStatic: link.is_static,

View File

@@ -267,23 +267,34 @@ export function extractCredentialsNeeded(
| undefined;
if (missingCreds && Object.keys(missingCreds).length > 0) {
const agentName = (setupInfo?.agent_name as string) || "this block";
const credentials = Object.values(missingCreds).map((credInfo) => ({
provider: (credInfo.provider as string) || "unknown",
providerName:
(credInfo.provider_name as string) ||
(credInfo.provider as string) ||
"Unknown Provider",
credentialType:
const credentials = Object.values(missingCreds).map((credInfo) => {
// Normalize to array at boundary - prefer 'types' array, fall back to single 'type'
const typesArray = credInfo.types as
| Array<"api_key" | "oauth2" | "user_password" | "host_scoped">
| undefined;
const singleType =
(credInfo.type as
| "api_key"
| "oauth2"
| "user_password"
| "host_scoped") || "api_key",
title:
(credInfo.title as string) ||
`${(credInfo.provider_name as string) || (credInfo.provider as string)} credentials`,
scopes: credInfo.scopes as string[] | undefined,
}));
| "host_scoped"
| undefined) || "api_key";
const credentialTypes =
typesArray && typesArray.length > 0 ? typesArray : [singleType];
return {
provider: (credInfo.provider as string) || "unknown",
providerName:
(credInfo.provider_name as string) ||
(credInfo.provider as string) ||
"Unknown Provider",
credentialTypes,
title:
(credInfo.title as string) ||
`${(credInfo.provider_name as string) || (credInfo.provider as string)} credentials`,
scopes: credInfo.scopes as string[] | undefined,
};
});
return {
type: "credentials_needed",
toolName,
@@ -358,11 +369,14 @@ export function extractInputsNeeded(
credentials.forEach((cred) => {
const id = cred.id as string;
if (id) {
const credentialTypes = Array.isArray(cred.types)
? cred.types
: [(cred.type as string) || "api_key"];
credentialsSchema[id] = {
type: "object",
properties: {},
credentials_provider: [cred.provider as string],
credentials_types: [(cred.type as string) || "api_key"],
credentials_types: credentialTypes,
credentials_scopes: cred.scopes as string[] | undefined,
};
}

View File

@@ -9,7 +9,9 @@ import { useChatCredentialsSetup } from "./useChatCredentialsSetup";
export interface CredentialInfo {
provider: string;
providerName: string;
credentialType: "api_key" | "oauth2" | "user_password" | "host_scoped";
credentialTypes: Array<
"api_key" | "oauth2" | "user_password" | "host_scoped"
>;
title: string;
scopes?: string[];
}
@@ -30,7 +32,7 @@ function createSchemaFromCredentialInfo(
type: "object",
properties: {},
credentials_provider: [credential.provider],
credentials_types: [credential.credentialType],
credentials_types: credential.credentialTypes,
credentials_scopes: credential.scopes,
discriminator: undefined,
discriminator_mapping: undefined,

View File

@@ -41,7 +41,9 @@ export type ChatMessageData =
credentials: Array<{
provider: string;
providerName: string;
credentialType: "api_key" | "oauth2" | "user_password" | "host_scoped";
credentialTypes: Array<
"api_key" | "oauth2" | "user_password" | "host_scoped"
>;
title: string;
scopes?: string[];
}>;

View File

@@ -31,10 +31,18 @@ export function AgentSettingsModal({
}
}
const { currentSafeMode, isPending, hasHITLBlocks, handleToggle } =
useAgentSafeMode(agent);
const {
currentHITLSafeMode,
showHITLToggle,
handleHITLToggle,
currentSensitiveActionSafeMode,
showSensitiveActionToggle,
handleSensitiveActionToggle,
isPending,
shouldShowToggle,
} = useAgentSafeMode(agent);
if (!hasHITLBlocks) return null;
if (!shouldShowToggle) return null;
return (
<Dialog
@@ -57,23 +65,48 @@ export function AgentSettingsModal({
)}
<Dialog.Content>
<div className="space-y-6">
<div className="flex w-full flex-col items-start gap-4 rounded-xl border border-zinc-100 bg-white p-6">
<div className="flex w-full items-start justify-between gap-4">
<div className="flex-1">
<Text variant="large-semibold">Require human approval</Text>
<Text variant="large" className="mt-1 text-zinc-900">
The agent will pause and wait for your review before
continuing
</Text>
{showHITLToggle && (
<div className="flex w-full flex-col items-start gap-4 rounded-xl border border-zinc-100 bg-white p-6">
<div className="flex w-full items-start justify-between gap-4">
<div className="flex-1">
<Text variant="large-semibold">
Human-in-the-loop approval
</Text>
<Text variant="large" className="mt-1 text-zinc-900">
The agent will pause at human-in-the-loop blocks and wait
for your review before continuing
</Text>
</div>
<Switch
checked={currentHITLSafeMode || false}
onCheckedChange={handleHITLToggle}
disabled={isPending}
className="mt-1"
/>
</div>
<Switch
checked={currentSafeMode || false}
onCheckedChange={handleToggle}
disabled={isPending}
className="mt-1"
/>
</div>
</div>
)}
{showSensitiveActionToggle && (
<div className="flex w-full flex-col items-start gap-4 rounded-xl border border-zinc-100 bg-white p-6">
<div className="flex w-full items-start justify-between gap-4">
<div className="flex-1">
<Text variant="large-semibold">
Sensitive action approval
</Text>
<Text variant="large" className="mt-1 text-zinc-900">
The agent will pause at sensitive action blocks and wait for
your review before continuing
</Text>
</div>
<Switch
checked={currentSensitiveActionSafeMode}
onCheckedChange={handleSensitiveActionToggle}
disabled={isPending}
className="mt-1"
/>
</div>
</div>
)}
</div>
</Dialog.Content>
</Dialog>

View File

@@ -1,9 +1,9 @@
import { Input } from "@/components/atoms/Input/Input";
import { CredentialsGroupedView } from "@/components/contextual/CredentialsInput/components/CredentialsGroupedView/CredentialsGroupedView";
import { InformationTooltip } from "@/components/molecules/InformationTooltip/InformationTooltip";
import { useMemo } from "react";
import { RunAgentInputs } from "../../../RunAgentInputs/RunAgentInputs";
import { useRunAgentModalContext } from "../../context";
import { CredentialsGroupedView } from "../CredentialsGroupedView/CredentialsGroupedView";
import { ModalSection } from "../ModalSection/ModalSection";
import { WebhookTriggerBanner } from "../WebhookTriggerBanner/WebhookTriggerBanner";
@@ -19,6 +19,8 @@ export function ModalRunSection() {
setInputValue,
agentInputFields,
agentCredentialsInputFields,
inputCredentials,
setInputCredentialsValue,
} = useRunAgentModalContext();
const inputFields = Object.entries(agentInputFields || {});
@@ -102,6 +104,9 @@ export function ModalRunSection() {
<CredentialsGroupedView
credentialFields={credentialFields}
requiredCredentials={requiredCredentials}
inputCredentials={inputCredentials}
inputValues={inputValues}
onCredentialChange={setInputCredentialsValue}
/>
</ModalSection>
) : null}

View File

@@ -5,48 +5,112 @@ import { Graph } from "@/lib/autogpt-server-api/types";
import { cn } from "@/lib/utils";
import { ShieldCheckIcon, ShieldIcon } from "@phosphor-icons/react";
import { useAgentSafeMode } from "@/hooks/useAgentSafeMode";
import {
Tooltip,
TooltipContent,
TooltipTrigger,
} from "@/components/atoms/Tooltip/BaseTooltip";
interface Props {
graph: GraphModel | LibraryAgent | Graph;
className?: string;
fullWidth?: boolean;
}
export function SafeModeToggle({ graph }: Props) {
interface SafeModeIconButtonProps {
isEnabled: boolean;
label: string;
tooltipEnabled: string;
tooltipDisabled: string;
onToggle: () => void;
isPending: boolean;
}
function SafeModeIconButton({
isEnabled,
label,
tooltipEnabled,
tooltipDisabled,
onToggle,
isPending,
}: SafeModeIconButtonProps) {
return (
<Tooltip delayDuration={100}>
<TooltipTrigger asChild>
<Button
variant="icon"
size="icon"
aria-label={`${label}: ${isEnabled ? "ON" : "OFF"}. ${isEnabled ? tooltipEnabled : tooltipDisabled}`}
onClick={onToggle}
disabled={isPending}
className={cn(isPending ? "opacity-0" : "opacity-100")}
>
{isEnabled ? (
<ShieldCheckIcon weight="bold" size={16} />
) : (
<ShieldIcon weight="bold" size={16} />
)}
</Button>
</TooltipTrigger>
<TooltipContent>
<div className="text-center">
<div className="font-medium">
{label}: {isEnabled ? "ON" : "OFF"}
</div>
<div className="mt-1 text-xs text-muted-foreground">
{isEnabled ? tooltipEnabled : tooltipDisabled}
</div>
</div>
</TooltipContent>
</Tooltip>
);
}
export function SafeModeToggle({ graph, className }: Props) {
const {
currentSafeMode,
currentHITLSafeMode,
showHITLToggle,
isHITLStateUndetermined,
handleHITLToggle,
currentSensitiveActionSafeMode,
showSensitiveActionToggle,
handleSensitiveActionToggle,
isPending,
shouldShowToggle,
isStateUndetermined,
handleToggle,
} = useAgentSafeMode(graph);
if (!shouldShowToggle || isStateUndetermined) {
if (!shouldShowToggle || isHITLStateUndetermined) {
return null;
}
const showHITL = showHITLToggle && !isHITLStateUndetermined;
const showSensitive = showSensitiveActionToggle;
if (!showHITL && !showSensitive) {
return null;
}
return (
<Button
variant="icon"
key={graph.id}
size="icon"
aria-label={
currentSafeMode!
? "Safe Mode: ON. Human in the loop blocks require manual review"
: "Safe Mode: OFF. Human in the loop blocks proceed automatically"
}
onClick={handleToggle}
className={cn(isPending ? "opacity-0" : "opacity-100")}
>
{currentSafeMode! ? (
<>
<ShieldCheckIcon weight="bold" size={16} />
</>
) : (
<>
<ShieldIcon weight="bold" size={16} />
</>
<div className={cn("flex gap-1", className)}>
{showHITL && (
<SafeModeIconButton
isEnabled={currentHITLSafeMode}
label="Human-in-the-loop"
tooltipEnabled="The agent will pause at human-in-the-loop blocks and wait for your approval"
tooltipDisabled="Human-in-the-loop blocks will proceed automatically"
onToggle={handleHITLToggle}
isPending={isPending}
/>
)}
</Button>
{showSensitive && (
<SafeModeIconButton
isEnabled={currentSensitiveActionSafeMode}
label="Sensitive actions"
tooltipEnabled="The agent will pause at sensitive action blocks and wait for your approval"
tooltipDisabled="Sensitive action blocks will proceed automatically"
onToggle={handleSensitiveActionToggle}
isPending={isPending}
/>
)}
</div>
);
}

View File

@@ -13,8 +13,16 @@ interface Props {
}
export function SelectedSettingsView({ agent, onClearSelectedRun }: Props) {
const { currentSafeMode, isPending, hasHITLBlocks, handleToggle } =
useAgentSafeMode(agent);
const {
currentHITLSafeMode,
showHITLToggle,
handleHITLToggle,
currentSensitiveActionSafeMode,
showSensitiveActionToggle,
handleSensitiveActionToggle,
isPending,
shouldShowToggle,
} = useAgentSafeMode(agent);
return (
<SelectedViewLayout agent={agent}>
@@ -34,24 +42,51 @@ export function SelectedSettingsView({ agent, onClearSelectedRun }: Props) {
</div>
<div className={`${AGENT_LIBRARY_SECTION_PADDING_X} space-y-6`}>
{hasHITLBlocks ? (
<div className="flex w-full max-w-2xl flex-col items-start gap-4 rounded-xl border border-zinc-100 bg-white p-6">
<div className="flex w-full items-start justify-between gap-4">
<div className="flex-1">
<Text variant="large-semibold">Require human approval</Text>
<Text variant="large" className="mt-1 text-zinc-900">
The agent will pause and wait for your review before
continuing
</Text>
{shouldShowToggle ? (
<>
{showHITLToggle && (
<div className="flex w-full max-w-2xl flex-col items-start gap-4 rounded-xl border border-zinc-100 bg-white p-6">
<div className="flex w-full items-start justify-between gap-4">
<div className="flex-1">
<Text variant="large-semibold">
Human-in-the-loop approval
</Text>
<Text variant="large" className="mt-1 text-zinc-900">
The agent will pause at human-in-the-loop blocks and
wait for your review before continuing
</Text>
</div>
<Switch
checked={currentHITLSafeMode || false}
onCheckedChange={handleHITLToggle}
disabled={isPending}
className="mt-1"
/>
</div>
</div>
<Switch
checked={currentSafeMode || false}
onCheckedChange={handleToggle}
disabled={isPending}
className="mt-1"
/>
</div>
</div>
)}
{showSensitiveActionToggle && (
<div className="flex w-full max-w-2xl flex-col items-start gap-4 rounded-xl border border-zinc-100 bg-white p-6">
<div className="flex w-full items-start justify-between gap-4">
<div className="flex-1">
<Text variant="large-semibold">
Sensitive action approval
</Text>
<Text variant="large" className="mt-1 text-zinc-900">
The agent will pause at sensitive action blocks and wait
for your review before continuing
</Text>
</div>
<Switch
checked={currentSensitiveActionSafeMode}
onCheckedChange={handleSensitiveActionToggle}
disabled={isPending}
className="mt-1"
/>
</div>
</div>
)}
</>
) : (
<div className="rounded-xl border border-zinc-100 bg-white p-6">
<Text variant="body" className="text-muted-foreground">

View File

@@ -1,8 +1,15 @@
"use client";
import React, { useCallback, useEffect, useMemo, useState } from "react";
import React, {
useCallback,
useContext,
useEffect,
useMemo,
useState,
} from "react";
import {
CredentialsMetaInput,
CredentialsType,
GraphExecutionID,
GraphMeta,
LibraryAgentPreset,
@@ -29,7 +36,11 @@ import {
} from "@/components/__legacy__/ui/icons";
import { Input } from "@/components/__legacy__/ui/input";
import { Button } from "@/components/atoms/Button/Button";
import { CredentialsInput } from "@/components/contextual/CredentialsInput/CredentialsInput";
import { CredentialsGroupedView } from "@/components/contextual/CredentialsInput/components/CredentialsGroupedView/CredentialsGroupedView";
import {
findSavedCredentialByProviderAndType,
findSavedUserCredentialByProviderAndType,
} from "@/components/contextual/CredentialsInput/components/CredentialsGroupedView/helpers";
import { InformationTooltip } from "@/components/molecules/InformationTooltip/InformationTooltip";
import {
useToast,
@@ -37,6 +48,7 @@ import {
} from "@/components/molecules/Toast/use-toast";
import { humanizeCronExpression } from "@/lib/cron-expression-utils";
import { cn, isEmpty } from "@/lib/utils";
import { CredentialsProvidersContext } from "@/providers/agent-credentials/credentials-provider";
import { ClockIcon, CopyIcon, InfoIcon } from "@phosphor-icons/react";
import { CalendarClockIcon, Trash2Icon } from "lucide-react";
@@ -90,6 +102,7 @@ export function AgentRunDraftView({
const api = useBackendAPI();
const { toast } = useToast();
const toastOnFail = useToastOnFail();
const allProviders = useContext(CredentialsProvidersContext);
const [inputValues, setInputValues] = useState<Record<string, any>>({});
const [inputCredentials, setInputCredentials] = useState<
@@ -128,6 +141,77 @@ export function AgentRunDraftView({
() => graph.credentials_input_schema.properties,
[graph],
);
const credentialFields = useMemo(
function getCredentialFields() {
return Object.entries(agentCredentialsInputFields);
},
[agentCredentialsInputFields],
);
const requiredCredentials = useMemo(
function getRequiredCredentials() {
return new Set(
(graph.credentials_input_schema?.required as string[]) || [],
);
},
[graph.credentials_input_schema?.required],
);
useEffect(
function initializeDefaultCredentials() {
if (!allProviders) return;
if (!graph.credentials_input_schema?.properties) return;
if (requiredCredentials.size === 0) return;
setInputCredentials(function updateCredentials(currentCreds) {
const next = { ...currentCreds };
let didAdd = false;
for (const key of requiredCredentials) {
if (next[key]) continue;
const schema = graph.credentials_input_schema.properties[key];
if (!schema) continue;
const providerNames = schema.credentials_provider || [];
const credentialTypes = schema.credentials_types || [];
const requiredScopes = schema.credentials_scopes;
const userCredential = findSavedUserCredentialByProviderAndType(
providerNames,
credentialTypes,
requiredScopes,
allProviders,
);
const savedCredential =
userCredential ||
findSavedCredentialByProviderAndType(
providerNames,
credentialTypes,
requiredScopes,
allProviders,
);
if (!savedCredential) continue;
next[key] = {
id: savedCredential.id,
provider: savedCredential.provider,
type: savedCredential.type as CredentialsType,
title: savedCredential.title,
};
didAdd = true;
}
if (!didAdd) return currentCreds;
return next;
});
},
[
allProviders,
graph.credentials_input_schema?.properties,
requiredCredentials,
],
);
const [allRequiredInputsAreSet, missingInputs] = useMemo(() => {
const nonEmptyInputs = new Set(
@@ -145,18 +229,35 @@ export function AgentRunDraftView({
);
return [isSuperset, difference];
}, [agentInputSchema.required, inputValues]);
const [allCredentialsAreSet, missingCredentials] = useMemo(() => {
const availableCredentials = new Set(Object.keys(inputCredentials));
const allCredentials = new Set(Object.keys(agentCredentialsInputFields));
// Backwards-compatible implementation of isSupersetOf and difference
const isSuperset = Array.from(allCredentials).every((item) =>
availableCredentials.has(item),
);
const difference = Array.from(allCredentials).filter(
(item) => !availableCredentials.has(item),
);
return [isSuperset, difference];
}, [agentCredentialsInputFields, inputCredentials]);
const [allCredentialsAreSet, missingCredentials] = useMemo(
function getCredentialStatus() {
const missing = Array.from(requiredCredentials).filter((key) => {
const cred = inputCredentials[key];
return !cred || !cred.id;
});
return [missing.length === 0, missing];
},
[requiredCredentials, inputCredentials],
);
function addChangedCredentials(prev: Set<keyof LibraryAgentPresetUpdatable>) {
const next = new Set(prev);
next.add("credentials");
return next;
}
function handleCredentialChange(key: string, value?: CredentialsMetaInput) {
setInputCredentials(function updateInputCredentials(currentCreds) {
const next = { ...currentCreds };
if (value === undefined) {
delete next[key];
return next;
}
next[key] = value;
return next;
});
setChangedPresetAttributes(addChangedCredentials);
}
const notifyMissingInputs = useCallback(
(needPresetName: boolean = true) => {
const allMissingFields = (
@@ -649,35 +750,6 @@ export function AgentRunDraftView({
</>
)}
{/* Credentials inputs */}
{Object.entries(agentCredentialsInputFields).map(
([key, inputSubSchema]) => (
<CredentialsInput
key={key}
schema={{ ...inputSubSchema, discriminator: undefined }}
selectedCredentials={
inputCredentials[key] ?? inputSubSchema.default
}
onSelectCredentials={(value) => {
setInputCredentials((obj) => {
const newObj = { ...obj };
if (value === undefined) {
delete newObj[key];
return newObj;
}
return {
...obj,
[key]: value,
};
});
setChangedPresetAttributes((prev) =>
prev.add("credentials"),
);
}}
/>
),
)}
{/* Regular inputs */}
{Object.entries(agentInputFields).map(([key, inputSubSchema]) => (
<RunAgentInputs
@@ -695,6 +767,17 @@ export function AgentRunDraftView({
data-testid={`agent-input-${key}`}
/>
))}
{/* Credentials inputs */}
{credentialFields.length > 0 && (
<CredentialsGroupedView
credentialFields={credentialFields}
requiredCredentials={requiredCredentials}
inputCredentials={inputCredentials}
inputValues={inputValues}
onCredentialChange={handleCredentialChange}
/>
)}
</CardContent>
</Card>
</div>

View File

@@ -2,6 +2,7 @@
import { Button } from "@/components/atoms/Button/Button";
import { FileInput } from "@/components/atoms/FileInput/FileInput";
import { Input } from "@/components/atoms/Input/Input";
import { LoadingSpinner } from "@/components/atoms/LoadingSpinner/LoadingSpinner";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import {
Form,
@@ -120,7 +121,7 @@ export default function LibraryUploadAgentDialog() {
>
{isUploading ? (
<div className="flex items-center gap-2">
<div className="h-4 w-4 animate-spin rounded-full border-b-2 border-t-2 border-white"></div>
<LoadingSpinner size="small" className="text-white" />
<span>Uploading...</span>
</div>
) : (

View File

@@ -6383,6 +6383,11 @@
"title": "Has Human In The Loop",
"readOnly": true
},
"has_sensitive_action": {
"type": "boolean",
"title": "Has Sensitive Action",
"readOnly": true
},
"trigger_setup_info": {
"anyOf": [
{ "$ref": "#/components/schemas/GraphTriggerInfo" },
@@ -6399,6 +6404,7 @@
"output_schema",
"has_external_trigger",
"has_human_in_the_loop",
"has_sensitive_action",
"trigger_setup_info"
],
"title": "BaseGraph"
@@ -7629,6 +7635,11 @@
"title": "Has Human In The Loop",
"readOnly": true
},
"has_sensitive_action": {
"type": "boolean",
"title": "Has Sensitive Action",
"readOnly": true
},
"trigger_setup_info": {
"anyOf": [
{ "$ref": "#/components/schemas/GraphTriggerInfo" },
@@ -7652,6 +7663,7 @@
"output_schema",
"has_external_trigger",
"has_human_in_the_loop",
"has_sensitive_action",
"trigger_setup_info",
"credentials_input_schema"
],
@@ -7730,6 +7742,11 @@
"title": "Has Human In The Loop",
"readOnly": true
},
"has_sensitive_action": {
"type": "boolean",
"title": "Has Sensitive Action",
"readOnly": true
},
"trigger_setup_info": {
"anyOf": [
{ "$ref": "#/components/schemas/GraphTriggerInfo" },
@@ -7754,6 +7771,7 @@
"output_schema",
"has_external_trigger",
"has_human_in_the_loop",
"has_sensitive_action",
"trigger_setup_info",
"credentials_input_schema"
],
@@ -7762,8 +7780,14 @@
"GraphSettings": {
"properties": {
"human_in_the_loop_safe_mode": {
"anyOf": [{ "type": "boolean" }, { "type": "null" }],
"title": "Human In The Loop Safe Mode"
"type": "boolean",
"title": "Human In The Loop Safe Mode",
"default": true
},
"sensitive_action_safe_mode": {
"type": "boolean",
"title": "Sensitive Action Safe Mode",
"default": false
}
},
"type": "object",
@@ -7921,6 +7945,16 @@
"title": "Has External Trigger",
"description": "Whether the agent has an external trigger (e.g. webhook) node"
},
"has_human_in_the_loop": {
"type": "boolean",
"title": "Has Human In The Loop",
"description": "Whether the agent has human-in-the-loop blocks"
},
"has_sensitive_action": {
"type": "boolean",
"title": "Has Sensitive Action",
"description": "Whether the agent has sensitive action blocks"
},
"trigger_setup_info": {
"anyOf": [
{ "$ref": "#/components/schemas/GraphTriggerInfo" },
@@ -7967,6 +8001,8 @@
"output_schema",
"credentials_input_schema",
"has_external_trigger",
"has_human_in_the_loop",
"has_sensitive_action",
"new_output",
"can_access_graph",
"is_latest_version",

View File

@@ -5,30 +5,37 @@ import {
AccordionItem,
AccordionTrigger,
} from "@/components/molecules/Accordion/Accordion";
import {
CredentialsMetaInput,
CredentialsType,
} from "@/lib/autogpt-server-api/types";
import { CredentialsProvidersContext } from "@/providers/agent-credentials/credentials-provider";
import { SlidersHorizontal } from "@phosphor-icons/react";
import { SlidersHorizontalIcon } from "@phosphor-icons/react";
import { useContext, useEffect, useMemo, useRef } from "react";
import { useRunAgentModalContext } from "../../context";
import {
areSystemCredentialProvidersLoading,
CredentialField,
findSavedCredentialByProviderAndType,
hasMissingRequiredSystemCredentials,
splitCredentialFieldsBySystem,
} from "../helpers";
} from "./helpers";
type Props = {
credentialFields: CredentialField[];
requiredCredentials: Set<string>;
inputCredentials: Record<string, CredentialsMetaInput | undefined>;
inputValues: Record<string, any>;
onCredentialChange: (key: string, value?: CredentialsMetaInput) => void;
};
export function CredentialsGroupedView({
credentialFields,
requiredCredentials,
inputCredentials,
inputValues,
onCredentialChange,
}: Props) {
const allProviders = useContext(CredentialsProvidersContext);
const { inputCredentials, setInputCredentialsValue, inputValues } =
useRunAgentModalContext();
const { userCredentialFields, systemCredentialFields } = useMemo(
() =>
@@ -87,11 +94,11 @@ export function CredentialsGroupedView({
);
if (savedCredential) {
setInputCredentialsValue(key, {
onCredentialChange(key, {
id: savedCredential.id,
provider: savedCredential.provider,
type: savedCredential.type,
title: (savedCredential as { title?: string }).title,
type: savedCredential.type as CredentialsType,
title: savedCredential.title,
});
}
}
@@ -103,7 +110,7 @@ export function CredentialsGroupedView({
systemCredentialFields,
requiredCredentials,
inputCredentials,
setInputCredentialsValue,
onCredentialChange,
isLoadingProviders,
]);
@@ -123,7 +130,7 @@ export function CredentialsGroupedView({
}
selectedCredentials={selectedCred}
onSelectCredentials={(value) => {
setInputCredentialsValue(key, value);
onCredentialChange(key, value);
}}
siblingInputs={inputValues}
isOptional={!requiredCredentials.has(key)}
@@ -143,7 +150,8 @@ export function CredentialsGroupedView({
<AccordionItem value="system-credentials" className="border-none">
<AccordionTrigger className="py-2 text-sm text-muted-foreground hover:no-underline">
<div className="flex items-center gap-1">
<SlidersHorizontal size={16} weight="bold" /> System credentials
<SlidersHorizontalIcon size={16} weight="bold" /> System
credentials
{hasMissingSystemCredentials && (
<span className="text-destructive">(missing)</span>
)}
@@ -163,7 +171,7 @@ export function CredentialsGroupedView({
}
selectedCredentials={selectedCred}
onSelectCredentials={(value) => {
setInputCredentialsValue(key, value);
onCredentialChange(key, value);
}}
siblingInputs={inputValues}
isOptional={!requiredCredentials.has(key)}

View File

@@ -1,5 +1,5 @@
import { CredentialsProvidersContextType } from "@/providers/agent-credentials/credentials-provider";
import { getSystemCredentials } from "../../../../../../../../../../../components/contextual/CredentialsInput/helpers";
import { filterSystemCredentials, getSystemCredentials } from "../../helpers";
export type CredentialField = [string, any];
@@ -208,3 +208,42 @@ export function findSavedCredentialByProviderAndType(
return undefined;
}
export function findSavedUserCredentialByProviderAndType(
providerNames: string[],
credentialTypes: string[],
requiredScopes: string[] | undefined,
allProviders: CredentialsProvidersContextType | null,
): SavedCredential | undefined {
for (const providerName of providerNames) {
const providerData = allProviders?.[providerName];
if (!providerData) continue;
const userCredentials = filterSystemCredentials(
providerData.savedCredentials ?? [],
);
const matchingCredentials: SavedCredential[] = [];
for (const credential of userCredentials) {
const typeMatches =
credentialTypes.length === 0 ||
credentialTypes.includes(credential.type);
const scopesMatch = hasRequiredScopes(credential, requiredScopes);
if (!typeMatches) continue;
if (!scopesMatch) continue;
matchingCredentials.push(credential as SavedCredential);
}
if (matchingCredentials.length === 1) {
return matchingCredentials[0];
}
if (matchingCredentials.length > 1) {
return undefined;
}
}
return undefined;
}

View File

@@ -98,24 +98,20 @@ export function useCredentialsInput({
// Auto-select the first available credential on initial mount
// Once a user has made a selection, we don't override it
useEffect(() => {
if (readOnly) return;
if (!credentials || !("savedCredentials" in credentials)) return;
useEffect(
function autoSelectCredential() {
if (readOnly) return;
if (!credentials || !("savedCredentials" in credentials)) return;
if (selectedCredential?.id) return;
// If already selected, don't auto-select
if (selectedCredential?.id) return;
const savedCreds = credentials.savedCredentials;
if (savedCreds.length === 0) return;
// Only attempt auto-selection once
if (hasAttemptedAutoSelect.current) return;
hasAttemptedAutoSelect.current = true;
if (hasAttemptedAutoSelect.current) return;
hasAttemptedAutoSelect.current = true;
// If optional, don't auto-select (user can choose "None")
if (isOptional) return;
if (isOptional) return;
const savedCreds = credentials.savedCredentials;
// Auto-select the first credential if any are available
if (savedCreds.length > 0) {
const cred = savedCreds[0];
onSelectCredential({
id: cred.id,
@@ -123,14 +119,15 @@ export function useCredentialsInput({
provider: credentials.provider,
title: (cred as any).title,
});
}
}, [
credentials,
selectedCredential?.id,
readOnly,
isOptional,
onSelectCredential,
]);
},
[
credentials,
selectedCredential?.id,
readOnly,
isOptional,
onSelectCredential,
],
);
if (
!credentials ||

View File

@@ -0,0 +1,33 @@
"use client";
import * as PopoverPrimitive from "@radix-ui/react-popover";
import * as React from "react";
import { cn } from "@/lib/utils";
const Popover = PopoverPrimitive.Root;
const PopoverTrigger = PopoverPrimitive.Trigger;
const PopoverAnchor = PopoverPrimitive.Anchor;
const PopoverContent = React.forwardRef<
React.ElementRef<typeof PopoverPrimitive.Content>,
React.ComponentPropsWithoutRef<typeof PopoverPrimitive.Content>
>(({ className, align = "center", sideOffset = 4, ...props }, ref) => (
<PopoverPrimitive.Portal>
<PopoverPrimitive.Content
ref={ref}
align={align}
sideOffset={sideOffset}
className={cn(
"z-50 w-72 rounded-lg border border-zinc-200 bg-white p-4 text-zinc-900 shadow-md outline-none data-[state=open]:animate-in data-[state=closed]:animate-out data-[state=closed]:fade-out-0 data-[state=open]:fade-in-0 data-[state=closed]:zoom-out-95 data-[state=open]:zoom-in-95 data-[side=bottom]:slide-in-from-top-2 data-[side=left]:slide-in-from-right-2 data-[side=right]:slide-in-from-left-2 data-[side=top]:slide-in-from-bottom-2",
className,
)}
{...props}
/>
</PopoverPrimitive.Portal>
));
PopoverContent.displayName = PopoverPrimitive.Content.displayName;
export { Popover, PopoverAnchor, PopoverContent, PopoverTrigger };

View File

@@ -35,12 +35,13 @@ export const CredentialFieldTitle = (props: {
uiOptions,
);
const credentialProvider = toDisplayName(
getCredentialProviderFromSchema(
useNodeStore.getState().getHardCodedValues(nodeId),
schema as BlockIOCredentialsSubSchema,
) ?? "",
const provider = getCredentialProviderFromSchema(
useNodeStore.getState().getHardCodedValues(nodeId),
schema as BlockIOCredentialsSubSchema,
);
const credentialProvider = provider
? `${toDisplayName(provider)} credential`
: "credential";
const updatedUiSchema = updateUiOption(uiSchema, {
showHandles: false,

View File

@@ -0,0 +1,92 @@
"use client";
import {
descriptionId,
FieldProps,
getTemplate,
RJSFSchema,
titleId,
} from "@rjsf/utils";
import { useMemo } from "react";
import { LlmModelPicker } from "./components/LlmModelPicker";
import { LlmModelMetadataMap } from "./types";
import { updateUiOption } from "../../helpers";
type LlmModelSchema = RJSFSchema & {
llm_model_metadata?: LlmModelMetadataMap;
};
export function LlmModelField(props: FieldProps) {
const { schema, formData, onChange, disabled, readonly, fieldPathId } = props;
const metadata = useMemo(() => {
return (schema as LlmModelSchema)?.llm_model_metadata ?? {};
}, [schema]);
const models = useMemo(() => {
return Object.values(metadata);
}, [metadata]);
const selectedName =
typeof formData === "string"
? formData
: typeof schema.default === "string"
? schema.default
: "";
const selectedModel = selectedName
? (metadata[selectedName] ??
models.find((model) => model.name === selectedName))
: undefined;
const recommendedName =
typeof schema.default === "string" ? schema.default : models[0]?.name;
const recommendedModel =
recommendedName && metadata[recommendedName]
? metadata[recommendedName]
: undefined;
if (models.length === 0) {
return null;
}
const TitleFieldTemplate = getTemplate("TitleFieldTemplate", props.registry);
const DescriptionFieldTemplate = getTemplate(
"DescriptionFieldTemplate",
props.registry,
);
const updatedUiSchema = updateUiOption(props.uiSchema, {
showHandles: false,
});
return (
<>
<div className="flex items-center gap-2">
<TitleFieldTemplate
id={titleId(fieldPathId)}
title={schema.title || ""}
required={true}
schema={schema}
uiSchema={updatedUiSchema}
registry={props.registry}
/>
<DescriptionFieldTemplate
id={descriptionId(fieldPathId)}
description={schema.description || ""}
schema={schema}
registry={props.registry}
/>
</div>
<LlmModelPicker
models={models}
selectedModel={selectedModel}
recommendedModel={recommendedModel}
onSelect={(value) => onChange(value, fieldPathId?.path)}
disabled={disabled || readonly}
/>
</>
);
}

View File

@@ -0,0 +1,66 @@
"use client";
import Image from "next/image";
import { Text } from "@/components/atoms/Text/Text";
const creatorIconMap: Record<string, string> = {
anthropic: "/integrations/anthropic-color.png",
openai: "/integrations/openai.png",
google: "/integrations/gemini.png",
nvidia: "/integrations/nvidia.png",
groq: "/integrations/groq.png",
ollama: "/integrations/ollama.png",
openrouter: "/integrations/open_router.png",
v0: "/integrations/v0.png",
xai: "/integrations/xai.webp",
meta: "/integrations/llama_api.png",
amazon: "/integrations/amazon.png",
cohere: "/integrations/cohere.png",
deepseek: "/integrations/deepseek.png",
gryphe: "/integrations/gryphe.png",
microsoft: "/integrations/microsoft.webp",
moonshotai: "/integrations/moonshot.png",
mistral: "/integrations/mistral.png",
mistralai: "/integrations/mistral.png",
nousresearch: "/integrations/nousresearch.avif",
perplexity: "/integrations/perplexity.webp",
qwen: "/integrations/qwen.png",
};
type Props = {
value: string;
size?: number;
};
export function LlmIcon({ value, size = 20 }: Props) {
const normalized = value.trim().toLowerCase().replace(/\s+/g, "");
const src = creatorIconMap[normalized];
if (src) {
return (
<div
className="flex items-center justify-center overflow-hidden rounded-xsmall"
style={{ width: size, height: size }}
>
<Image
src={src}
alt={value}
width={size}
height={size}
className="h-full w-full object-cover"
/>
</div>
);
}
const fallback = value?.trim().slice(0, 1).toUpperCase() || "?";
return (
<div
className="flex items-center justify-center rounded-xsmall bg-zinc-100"
style={{ width: size, height: size }}
>
<Text variant="small" className="text-zinc-500">
{fallback}
</Text>
</div>
);
}

Some files were not shown because too many files have changed in this diff Show More