Compare commits

...

36 Commits

Author SHA1 Message Date
Nicholas Tindle
4c212f2b59 Merge branch 'dev' into claude-image-blcok 2025-04-04 13:51:42 -05:00
Nicholas Tindle
ea2910c560 Merge branch 'dev' into claude-image-blcok 2025-04-01 16:34:43 -05:00
Nicholas Tindle
27d0f03db3 Merge branch 'dev' into claude-image-blcok 2025-02-03 08:25:24 -06:00
Nicholas Tindle
1cc8981799 Merge branch 'dev' into claude-image-blcok 2025-01-29 05:13:09 -06:00
Nicholas Tindle
cebbdde75e fix: lint 2025-01-26 19:06:52 +00:00
Nicholas Tindle
eddcc97814 feat: more changes i guess 2025-01-26 19:05:22 +00:00
Nicholas Tindle
c1e8451c85 Merge branch 'zamilmajdy/multimediafilesupport' into claude-image-blcok 2025-01-26 15:48:30 +01:00
Zamil Majdy
643d1a9e3f Merge branch 'dev' into zamilmajdy/multimediafilesupport 2025-01-26 15:46:16 +01:00
Zamil Majdy
a4fc0d6206 type alias string into MediaFile 2025-01-26 15:45:32 +01:00
Nicholas Tindle
5bb43c31c5 Merge branch 'zamilmajdy/multimediafilesupport' into claude-image-blcok 2025-01-26 15:05:11 +01:00
Nicholas Tindle
96ffa64971 fix: remove block/unblock as its been removed by twitter 2025-01-26 13:15:26 +00:00
Nicholas Tindle
d86a41147b Delete autogpt_platform/backend/backend/blocks/screenshotone.py 2025-01-26 07:11:50 -06:00
Nicholas Tindle
d3425cae46 Discard changes to autogpt_platform/frontend/src/lib/autogpt-server-api/types.ts 2025-01-26 14:11:28 +01:00
Nicholas Tindle
7682cbbe6c Discard changes to autogpt_platform/frontend/src/components/integrations/credentials-provider.tsx 2025-01-26 14:11:21 +01:00
Nicholas Tindle
80ee8c61c4 Discard changes to autogpt_platform/frontend/src/components/integrations/credentials-input.tsx 2025-01-26 14:11:13 +01:00
Nicholas Tindle
cba05365e9 Discard changes to autogpt_platform/backend/backend/util/settings.py 2025-01-26 14:11:07 +01:00
Nicholas Tindle
5aadbfe98a Discard changes to autogpt_platform/backend/backend/integrations/providers.py 2025-01-26 14:10:59 +01:00
Nicholas Tindle
3e0bcbc7e4 Discard changes to autogpt_platform/backend/backend/integrations/credentials_store.py 2025-01-26 14:10:50 +01:00
Nicholas Tindle
b8749f7590 fix: use pydantic not typed dict 2025-01-26 13:09:10 +00:00
Nicholas Tindle
3aafa53f3b fix: lint 2025-01-26 13:09:10 +00:00
Nicholas Tindle
20b4a0e37f feat: image block for claude 2025-01-26 13:09:09 +00:00
Nicholas Tindle
23095f466a feat: screenshotone 2025-01-26 13:09:09 +00:00
Zamil Majdy
769c75e6ac Merge branch 'dev' into zamilmajdy/multimediafilesupport 2025-01-26 05:49:24 +01:00
Zamil Majdy
11ef0486ff Merge branch 'dev' into zamilmajdy/multimediafilesupport 2025-01-25 14:08:50 +01:00
Zamil Majdy
d72c93c037 Merge branch 'dev' into zamilmajdy/multimediafilesupport 2025-01-25 03:56:12 +07:00
Zamil Majdy
841500f378 Merge branch 'dev' of github.com:Significant-Gravitas/AutoGPT into zamilmajdy/multimediafilesupport 2025-01-24 18:17:05 +01:00
Zamil Majdy
b052413ab4 Merge branch 'dev' into zamilmajdy/multimediafilesupport 2025-01-24 20:47:40 +07:00
Zamil Majdy
d31167958c Address changes 2025-01-24 14:45:26 +01:00
Zamil Majdy
a1a52b9569 Revert 2025-01-23 19:16:46 +01:00
Zamil Majdy
50ad4a34dd fix 2025-01-23 18:58:21 +01:00
Zamil Majdy
81c403e103 Merge remote-tracking branch 'origin/zamilmajdy/multimediafilesupport' into zamilmajdy/multimediafilesupport 2025-01-23 17:50:26 +01:00
Zamil Majdy
2bfaf4d80c Remove test 2025-01-23 17:50:18 +01:00
Zamil Majdy
31e49fb55c Merge branch 'dev' into zamilmajdy/multimediafilesupport 2025-01-23 23:48:57 +07:00
Zamil Majdy
da88da9a17 feat(platform): Add multimedia file support & add basic Video blocks 2025-01-23 17:48:07 +01:00
Zamil Majdy
fed426ff77 feat(platform): Add multimedia file support & add basic Video blocks 2025-01-23 17:46:45 +01:00
Zamil Majdy
33390ff7fe feat(platform): Add multimedia file support & add basic Video blocks 2025-01-23 17:39:19 +01:00

View File

@@ -4,6 +4,16 @@ from abc import ABC
from enum import Enum, EnumMeta
from json import JSONDecodeError
from types import MappingProxyType
from typing import TYPE_CHECKING, Any, Iterable, List, Literal, NamedTuple, Optional
from pydantic import BaseModel, SecretStr
from backend.data.model import NodeExecutionStats
from backend.integrations.providers import ProviderName
from backend.util.file import MediaFile, store_media_file
if TYPE_CHECKING:
from enum import _EnumMemberT
from typing import Any, Iterable, List, Literal, NamedTuple, Optional
import anthropic
@@ -64,9 +74,43 @@ def AICredentialsField() -> AICredentials:
)
class ModelProvider(str, Enum):
OPENAI = "openai"
ANTHROPIC = "anthropic"
GROQ = "groq"
OLLAMA = "ollama"
OPEN_ROUTER = "open_router"
class ModelCreator(str, Enum):
ANTHROPIC = "anthropic"
META = "meta"
GOOGLE = "google"
OPENAI = "openai"
MISTRAL = "mistral"
COHERE = "cohere"
DEEPSEEK = "deepseek"
PERPLEXITY = "perplexity"
QWEN = "qwen"
NOUS = "nous"
AMAZON = "amazon"
MICROSOFT = "microsoft"
GRYPHE = "gryphe"
EVA = "eva"
class ModelCapabilities(NamedTuple):
supports_images: bool = False
supports_functions: bool = False
supports_vision: bool = False
is_local: bool = False
class ModelMetadata(NamedTuple):
provider: str
provider: ModelProvider
creator: ModelCreator
context_window: int
capabilities: ModelCapabilities = ModelCapabilities()
max_output_tokens: int | None
@@ -154,68 +198,114 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
MODEL_METADATA = {
# https://platform.openai.com/docs/models
LlmModel.O3_MINI: ModelMetadata("openai", 200000, 100000), # o3-mini-2025-01-31
LlmModel.O1: ModelMetadata("openai", 200000, 100000), # o1-2024-12-17
LlmModel.O1_PREVIEW: ModelMetadata(
"openai", 128000, 32768
), # o1-preview-2024-09-12
LlmModel.O1_MINI: ModelMetadata("openai", 128000, 65536), # o1-mini-2024-09-12
LlmModel.GPT4O_MINI: ModelMetadata(
"openai", 128000, 16384
), # gpt-4o-mini-2024-07-18
LlmModel.GPT4O: ModelMetadata("openai", 128000, 16384), # gpt-4o-2024-08-06
LlmModel.GPT4_TURBO: ModelMetadata(
"openai", 128000, 4096
), # gpt-4-turbo-2024-04-09
LlmModel.GPT3_5_TURBO: ModelMetadata("openai", 16385, 4096), # gpt-3.5-turbo-0125
# https://docs.anthropic.com/en/docs/about-claude/models
LlmModel.CLAUDE_3_5_SONNET: ModelMetadata(
"anthropic", 200000, 8192
), # claude-3-5-sonnet-20241022
LlmModel.CLAUDE_3_5_HAIKU: ModelMetadata(
"anthropic", 200000, 8192
), # claude-3-5-haiku-20241022
LlmModel.CLAUDE_3_HAIKU: ModelMetadata(
"anthropic", 200000, 4096
), # claude-3-haiku-20240307
# https://console.groq.com/docs/models
LlmModel.GEMMA2_9B: ModelMetadata("groq", 8192, None),
LlmModel.LLAMA3_3_70B: ModelMetadata("groq", 128000, 32768),
LlmModel.LLAMA3_1_8B: ModelMetadata("groq", 128000, 8192),
LlmModel.LLAMA3_70B: ModelMetadata("groq", 8192, None),
LlmModel.LLAMA3_8B: ModelMetadata("groq", 8192, None),
LlmModel.MIXTRAL_8X7B: ModelMetadata("groq", 32768, None),
LlmModel.DEEPSEEK_LLAMA_70B: ModelMetadata("groq", 128000, None),
# https://ollama.com/library
LlmModel.OLLAMA_LLAMA3_3: ModelMetadata("ollama", 8192, None),
LlmModel.OLLAMA_LLAMA3_2: ModelMetadata("ollama", 8192, None),
LlmModel.OLLAMA_LLAMA3_8B: ModelMetadata("ollama", 8192, None),
LlmModel.OLLAMA_LLAMA3_405B: ModelMetadata("ollama", 8192, None),
LlmModel.OLLAMA_DOLPHIN: ModelMetadata("ollama", 32768, None),
# https://openrouter.ai/models
LlmModel.GEMINI_FLASH_1_5: ModelMetadata("open_router", 1000000, 8192),
LlmModel.GROK_BETA: ModelMetadata("open_router", 131072, 131072),
LlmModel.MISTRAL_NEMO: ModelMetadata("open_router", 128000, 4096),
LlmModel.COHERE_COMMAND_R_08_2024: ModelMetadata("open_router", 128000, 4096),
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: ModelMetadata("open_router", 128000, 4096),
LlmModel.EVA_QWEN_2_5_32B: ModelMetadata("open_router", 16384, 4096),
LlmModel.DEEPSEEK_CHAT: ModelMetadata("open_router", 64000, 2048),
LlmModel.PERPLEXITY_LLAMA_3_1_SONAR_LARGE_128K_ONLINE: ModelMetadata(
"open_router", 127072, 127072
ModelProvider.OPENAI,
ModelCreator.OPENAI,
32000,
ModelCapabilities(supports_images=True),
),
LlmModel.O1_MINI: ModelMetadata(
ModelProvider.OPENAI,
ModelCreator.OPENAI,
62000,
ModelCapabilities(supports_images=True),
),
LlmModel.GPT4O_MINI: ModelMetadata(
ModelProvider.OPENAI,
ModelCreator.OPENAI,
128000,
ModelCapabilities(supports_images=True),
),
LlmModel.GPT4O: ModelMetadata(ModelProvider.OPENAI, ModelCreator.OPENAI, 128000),
LlmModel.GPT4_TURBO: ModelMetadata(
ModelProvider.OPENAI, ModelCreator.OPENAI, 128000
),
LlmModel.GPT3_5_TURBO: ModelMetadata(
ModelProvider.OPENAI, ModelCreator.OPENAI, 16385
),
LlmModel.CLAUDE_3_5_SONNET: ModelMetadata(
ModelProvider.ANTHROPIC,
ModelCreator.ANTHROPIC,
200000,
ModelCapabilities(supports_images=True),
),
LlmModel.CLAUDE_3_HAIKU: ModelMetadata(
ModelProvider.ANTHROPIC,
ModelCreator.ANTHROPIC,
200000,
ModelCapabilities(supports_images=True),
),
LlmModel.LLAMA3_8B: ModelMetadata(ModelProvider.GROQ, ModelCreator.META, 8192),
LlmModel.LLAMA3_70B: ModelMetadata(ModelProvider.GROQ, ModelCreator.META, 8192),
LlmModel.MIXTRAL_8X7B: ModelMetadata(
ModelProvider.GROQ, ModelCreator.MISTRAL, 32768
),
LlmModel.GEMMA_7B: ModelMetadata(ModelProvider.GROQ, ModelCreator.GOOGLE, 8192),
LlmModel.GEMMA2_9B: ModelMetadata(ModelProvider.GROQ, ModelCreator.GOOGLE, 8192),
LlmModel.LLAMA3_1_405B: ModelMetadata(ModelProvider.GROQ, ModelCreator.META, 8192),
# Limited to 16k during preview
LlmModel.LLAMA3_1_70B: ModelMetadata(ModelProvider.GROQ, ModelCreator.META, 131072),
LlmModel.LLAMA3_1_8B: ModelMetadata(ModelProvider.GROQ, ModelCreator.META, 131072),
LlmModel.OLLAMA_LLAMA3_2: ModelMetadata(
ModelProvider.OLLAMA, ModelCreator.META, 8192, ModelCapabilities(is_local=True)
),
LlmModel.OLLAMA_LLAMA3_8B: ModelMetadata(
ModelProvider.OLLAMA, ModelCreator.META, 8192, ModelCapabilities(is_local=True)
),
LlmModel.OLLAMA_LLAMA3_405B: ModelMetadata(
ModelProvider.OLLAMA, ModelCreator.META, 8192, ModelCapabilities(is_local=True)
),
LlmModel.OLLAMA_DOLPHIN: ModelMetadata(
ModelProvider.OLLAMA, ModelCreator.META, 32768, ModelCapabilities(is_local=True)
),
LlmModel.GEMINI_FLASH_1_5_8B: ModelMetadata(
ModelProvider.OPEN_ROUTER, ModelCreator.GOOGLE, 8192
),
LlmModel.GROK_BETA: ModelMetadata(
ModelProvider.OPEN_ROUTER, ModelCreator.GOOGLE, 8192
),
LlmModel.MISTRAL_NEMO: ModelMetadata(
ModelProvider.OPEN_ROUTER, ModelCreator.MISTRAL, 4000
),
LlmModel.COHERE_COMMAND_R_08_2024: ModelMetadata(
ModelProvider.OPEN_ROUTER, ModelCreator.COHERE, 4000
),
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: ModelMetadata(
ModelProvider.OPEN_ROUTER, ModelCreator.COHERE, 4000
),
LlmModel.EVA_QWEN_2_5_32B: ModelMetadata(
ModelProvider.OPEN_ROUTER, ModelCreator.EVA, 4000
),
LlmModel.DEEPSEEK_CHAT: ModelMetadata(
ModelProvider.OPEN_ROUTER, ModelCreator.DEEPSEEK, 8192
),
LlmModel.PERPLEXITY_LLAMA_3_1_SONAR_LARGE_128K_ONLINE: ModelMetadata(
ModelProvider.OPEN_ROUTER, ModelCreator.PERPLEXITY, 8192
),
LlmModel.QWEN_QWQ_32B_PREVIEW: ModelMetadata(
ModelProvider.OPEN_ROUTER, ModelCreator.QWEN, 4000
),
LlmModel.QWEN_QWQ_32B_PREVIEW: ModelMetadata("open_router", 32768, 32768),
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_405B: ModelMetadata(
"open_router", 131000, 4096
ModelProvider.OPEN_ROUTER, ModelCreator.NOUS, 4000
),
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_70B: ModelMetadata(
"open_router", 12288, 12288
ModelProvider.OPEN_ROUTER, ModelCreator.NOUS, 4000
),
LlmModel.AMAZON_NOVA_LITE_V1: ModelMetadata(
ModelProvider.OPEN_ROUTER, ModelCreator.AMAZON, 4000
),
LlmModel.AMAZON_NOVA_MICRO_V1: ModelMetadata(
ModelProvider.OPEN_ROUTER, ModelCreator.AMAZON, 4000
),
LlmModel.AMAZON_NOVA_PRO_V1: ModelMetadata(
ModelProvider.OPEN_ROUTER, ModelCreator.AMAZON, 4000
),
LlmModel.MICROSOFT_WIZARDLM_2_8X22B: ModelMetadata(
ModelProvider.OPEN_ROUTER, ModelCreator.MICROSOFT, 4000
),
LlmModel.GRYPHE_MYTHOMAX_L2_13B: ModelMetadata(
ModelProvider.OPEN_ROUTER, ModelCreator.GRYPHE, 4000
),
LlmModel.AMAZON_NOVA_LITE_V1: ModelMetadata("open_router", 300000, 5120),
LlmModel.AMAZON_NOVA_MICRO_V1: ModelMetadata("open_router", 128000, 5120),
LlmModel.AMAZON_NOVA_PRO_V1: ModelMetadata("open_router", 300000, 5120),
LlmModel.MICROSOFT_WIZARDLM_2_8X22B: ModelMetadata("open_router", 65536, 4096),
LlmModel.GRYPHE_MYTHOMAX_L2_13B: ModelMetadata("open_router", 4096, 4096),
}
for model in LlmModel:
@@ -518,6 +608,11 @@ def llm_call(
raise ValueError(f"Unsupported LLM provider: {provider}")
class MessageWithMedia(Message):
role: MessageRole
content: str | MediaFile
class AIBlockBase(Block, ABC):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
@@ -540,7 +635,7 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default=LlmModel.GPT4O,
default=LlmModel.CLAUDE_3_5_SONNET,
description="The language model to use for answering the prompt.",
advanced=False,
)
@@ -1367,3 +1462,335 @@ class AIListGeneratorBlock(AIBlockBase):
logger.debug(f"Retry prompt: {prompt}")
logger.debug("AIListGeneratorBlock.run completed")
class ClaudeWithImageBlock(Block):
"""Block for calling Claude API with support for images"""
class Input(BlockSchema):
prompt: str = SchemaField(
description="The prompt to send to the language model.",
placeholder="Enter your prompt here...",
)
expected_format: dict[str, str] = SchemaField(
description="Expected format of the response. If provided, the response will be validated against this format. "
"The keys should be the expected fields in the response, and the values should be the description of the field.",
)
model: LlmModel = SchemaField(
title="LLM Model",
default=LlmModel.CLAUDE_3_5_SONNET,
description="The language model to use for the conversation.",
)
credentials: AICredentials = AICredentialsField()
sys_prompt: str = SchemaField(
title="System Prompt",
default="",
description="The system prompt to provide additional context to the model.",
)
conversation_history: list[MessageWithMedia] = SchemaField(
default=[],
description="The conversation history to provide context for the prompt.",
)
retry: int = SchemaField(
title="Retry Count",
default=3,
description="Number of times to retry the LLM call if the response does not match the expected format.",
)
prompt_values: dict[str, str | MediaFile] = SchemaField(
advanced=False,
default={},
description="Values used to fill in the prompt. Images can be provided as base64 encoded data with MIME type.",
)
max_tokens: int | None = SchemaField(
advanced=True,
default=None,
description="The maximum number of tokens to generate in the chat completion.",
)
class Output(BlockSchema):
response: dict[str, Any] = SchemaField(
description="The response object generated by the language model."
)
error: str = SchemaField(description="Error message if the API call failed.")
def __init__(self):
super().__init__(
id="bc043b3e-2926-4ed7-b276-735535d1a945",
description="Call Claude with support for images to generate formatted object based on the given prompt.",
categories={BlockCategory.AI},
input_schema=ClaudeWithImageBlock.Input,
output_schema=ClaudeWithImageBlock.Output,
test_input={
"model": LlmModel.CLAUDE_3_5_SONNET,
"credentials": TEST_CREDENTIALS_INPUT,
"expected_format": {
"key1": "value1",
"key2": "value2",
},
"prompt": "Describe this image",
"prompt_values": {
"image": {
"data": "",
}
},
},
test_credentials=TEST_CREDENTIALS,
test_output=("response", {"key1": "key1Value", "key2": "key2Value"}),
test_mock={
"llm_call": lambda *args, **kwargs: (
json.dumps(
{
"key1": "key1Value",
"key2": "key2Value",
}
),
0,
0,
)
},
)
@staticmethod
def llm_call(
credentials: APIKeyCredentials,
llm_model: LlmModel,
prompt: list[dict],
max_tokens: int | None = None,
) -> tuple[str, int, int]:
"""
Call the Claude API with support for images in the messages.
Args:
credentials: API credentials for Claude
llm_model: The LLM model to use (must be Claude)
prompt: List of message dictionaries that can include image content
max_tokens: Maximum tokens to generate
Returns:
tuple containing:
- The text response
- Number of input tokens used
- Number of output tokens used
"""
if llm_model.metadata.provider != "anthropic":
raise ValueError("Only Claude models are supported for image processing")
# Extract system prompt if present
system_messages = [p["content"] for p in prompt if p["role"] == "system"]
sysprompt = " ".join(system_messages)
# Build messages array with content that can include images
messages = []
last_role = None
for p in prompt:
if p["role"] in ["user", "assistant"]:
message_content = []
# Handle text content
if isinstance(p["content"], str):
message_content.append({"type": "text", "text": p["content"]})
# Handle mixed content array with images
elif isinstance(p["content"], list):
message_content.extend(p["content"])
if p["role"] != last_role:
messages.append({"role": p["role"], "content": message_content})
last_role = p["role"]
else:
# Combine with previous message if same role
messages[-1]["content"].extend(message_content)
client = anthropic.Anthropic(api_key=credentials.api_key.get_secret_value())
try:
resp = client.messages.create(
model=llm_model.value,
system=sysprompt,
messages=messages,
max_tokens=max_tokens or 8192,
)
if not resp.content:
raise ValueError("No content returned from Anthropic.")
return (
(
resp.content[0].name
if isinstance(resp.content[0], anthropic.types.ToolUseBlock)
else resp.content[0].text
),
resp.usage.input_tokens,
resp.usage.output_tokens,
)
except anthropic.APIError as e:
error_message = f"Anthropic API error: {str(e)}"
logger.error(error_message)
raise ValueError(error_message)
def run(
self,
input_data: Input,
*,
graph_exec_id: str,
credentials: APIKeyCredentials,
**kwargs,
) -> BlockOutput:
logger.debug(f"Calling Claude with input data: {input_data}")
# Start with any existing conversation history
prompt = [p.model_dump() for p in input_data.conversation_history]
def trim_prompt(s: str) -> str:
lines = s.strip().split("\n")
return "\n".join([line.strip().lstrip("|") for line in lines])
# Handle prompt values including images
content = []
values: dict[str, str | MediaFile] = input_data.prompt_values
# Add any images from prompt_values
for key, value in values.items():
# This is an image
if isinstance(value, MediaFile):
# media file is a base64 encoded image
# read the media file
media_path = store_media_file(
graph_exec_id=graph_exec_id, file=value, return_content=True
)
content.append(
{
"type": "image",
"source": {
"type": "base64",
"media_type": media_path.split(";")[0].split(":")[1],
"data": media_path,
},
}
)
# Add the text prompt
if input_data.prompt:
content.append(
{
"type": "text",
"text": fmt.format_string(
input_data.prompt,
{k: v for k, v in values.items() if isinstance(v, str)},
),
}
)
# Add system prompt if provided
if input_data.sys_prompt:
prompt.append(
{
"role": "system",
"content": fmt.format_string(input_data.sys_prompt, values),
}
)
# Add expected format if provided
if input_data.expected_format:
expected_format = [
f'"{k}": "{v}"' for k, v in input_data.expected_format.items()
]
format_prompt = ",\n ".join(expected_format)
sys_prompt = trim_prompt(
f"""
|Reply strictly only in the following JSON format:
|{{
| {format_prompt}
|}}
"""
)
prompt.append({"role": "system", "content": sys_prompt})
# Add the main prompt with images and text
prompt.append({"role": "user", "content": content})
def parse_response(resp: str) -> tuple[dict[str, Any], str | None]:
try:
parsed = json.loads(resp)
if not isinstance(parsed, dict):
return {}, f"Expected a dictionary, but got {type(parsed)}"
if input_data.expected_format:
miss_keys = set(input_data.expected_format.keys()) - set(
parsed.keys()
)
if miss_keys:
return parsed, f"Missing keys: {miss_keys}"
return parsed, None
except JSONDecodeError as e:
return {}, f"JSON decode error: {e}"
logger.info(f"Claude request: {prompt}")
retry_prompt = ""
llm_model = input_data.model
for retry_count in range(input_data.retry):
try:
response_text, input_token, output_token = self.llm_call(
credentials=credentials,
llm_model=llm_model,
prompt=prompt,
max_tokens=input_data.max_tokens,
)
self.merge_stats(
{
"input_token_count": input_token,
"output_token_count": output_token,
}
)
logger.info(f"Claude attempt-{retry_count} response: {response_text}")
if input_data.expected_format:
parsed_dict, parsed_error = parse_response(response_text)
if not parsed_error:
yield "response", {
k: (
json.loads(v)
if isinstance(v, str)
and v.startswith("[")
and v.endswith("]")
else (", ".join(v) if isinstance(v, list) else v)
)
for k, v in parsed_dict.items()
}
return
else:
yield "response", {"response": response_text}
return
retry_prompt = trim_prompt(
f"""
|This is your previous error response:
|--
|{response_text}
|--
|
|And this is the error:
|--
|{parsed_error}
|--
"""
)
prompt.append({"role": "user", "content": retry_prompt})
except Exception as e:
logger.exception(f"Error calling Claude: {e}")
retry_prompt = f"Error calling Claude: {e}"
finally:
self.merge_stats(
{
"llm_call_count": retry_count + 1,
"llm_retry_count": retry_count,
}
)
raise RuntimeError(retry_prompt)