mirror of
https://github.com/Significant-Gravitas/AutoGPT.git
synced 2026-01-14 17:47:57 -05:00
Compare commits
29 Commits
feat/backf
...
add-llm-ma
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
69c9136060 | ||
|
|
6ed8bb4f14 | ||
|
|
6cf28e58d3 | ||
|
|
632ef24408 | ||
|
|
6dc767aafa | ||
|
|
23e37fd163 | ||
|
|
63869fe710 | ||
|
|
90ae75d475 | ||
|
|
9b6dc3be12 | ||
|
|
9b8b6252c5 | ||
|
|
0d321323f5 | ||
|
|
3ee3ea8f02 | ||
|
|
7a842d35ae | ||
|
|
07e8568f57 | ||
|
|
13a0caa5d8 | ||
|
|
664523a721 | ||
|
|
33b103d09b | ||
|
|
2e3fc99caa | ||
|
|
52c7b223df | ||
|
|
24d86fde30 | ||
|
|
df7be39724 | ||
|
|
8c7b1af409 | ||
|
|
b6e2f05b63 | ||
|
|
7435739053 | ||
|
|
a97fdba554 | ||
|
|
ec705bbbcf | ||
|
|
7fe6b576ae | ||
|
|
dfc42003a1 | ||
|
|
6bbeb22943 |
@@ -1,37 +0,0 @@
|
||||
{
|
||||
"worktreeCopyPatterns": [
|
||||
".env*",
|
||||
".vscode/**",
|
||||
".auth/**",
|
||||
".claude/**",
|
||||
"autogpt_platform/.env*",
|
||||
"autogpt_platform/backend/.env*",
|
||||
"autogpt_platform/frontend/.env*",
|
||||
"autogpt_platform/frontend/.auth/**",
|
||||
"autogpt_platform/db/docker/.env*"
|
||||
],
|
||||
"worktreeCopyIgnores": [
|
||||
"**/node_modules/**",
|
||||
"**/dist/**",
|
||||
"**/.git/**",
|
||||
"**/Thumbs.db",
|
||||
"**/.DS_Store",
|
||||
"**/.next/**",
|
||||
"**/__pycache__/**",
|
||||
"**/.ruff_cache/**",
|
||||
"**/.pytest_cache/**",
|
||||
"**/*.pyc",
|
||||
"**/playwright-report/**",
|
||||
"**/logs/**",
|
||||
"**/site/**"
|
||||
],
|
||||
"worktreePathTemplate": "$BASE_PATH.worktree",
|
||||
"postCreateCmd": [
|
||||
"cd autogpt_platform/autogpt_libs && poetry install",
|
||||
"cd autogpt_platform/backend && poetry install && poetry run prisma generate",
|
||||
"cd autogpt_platform/frontend && pnpm install",
|
||||
"cd docs && pip install -r requirements.txt"
|
||||
],
|
||||
"terminalCommand": "code .",
|
||||
"deleteBranchWithWorktree": false
|
||||
}
|
||||
@@ -16,7 +16,6 @@
|
||||
!autogpt_platform/backend/poetry.lock
|
||||
!autogpt_platform/backend/README.md
|
||||
!autogpt_platform/backend/.env
|
||||
!autogpt_platform/backend/gen_prisma_types_stub.py
|
||||
|
||||
# Platform - Market
|
||||
!autogpt_platform/market/market/
|
||||
|
||||
2
.github/workflows/claude-dependabot.yml
vendored
2
.github/workflows/claude-dependabot.yml
vendored
@@ -74,7 +74,7 @@ jobs:
|
||||
|
||||
- name: Generate Prisma Client
|
||||
working-directory: autogpt_platform/backend
|
||||
run: poetry run prisma generate && poetry run gen-prisma-stub
|
||||
run: poetry run prisma generate
|
||||
|
||||
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
|
||||
- name: Set up Node.js
|
||||
|
||||
2
.github/workflows/claude.yml
vendored
2
.github/workflows/claude.yml
vendored
@@ -90,7 +90,7 @@ jobs:
|
||||
|
||||
- name: Generate Prisma Client
|
||||
working-directory: autogpt_platform/backend
|
||||
run: poetry run prisma generate && poetry run gen-prisma-stub
|
||||
run: poetry run prisma generate
|
||||
|
||||
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
|
||||
- name: Set up Node.js
|
||||
|
||||
12
.github/workflows/copilot-setup-steps.yml
vendored
12
.github/workflows/copilot-setup-steps.yml
vendored
@@ -72,7 +72,7 @@ jobs:
|
||||
|
||||
- name: Generate Prisma Client
|
||||
working-directory: autogpt_platform/backend
|
||||
run: poetry run prisma generate && poetry run gen-prisma-stub
|
||||
run: poetry run prisma generate
|
||||
|
||||
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
|
||||
- name: Set up Node.js
|
||||
@@ -108,16 +108,6 @@ jobs:
|
||||
# run: pnpm playwright install --with-deps chromium
|
||||
|
||||
# Docker setup for development environment
|
||||
- name: Free up disk space
|
||||
run: |
|
||||
# Remove large unused tools to free disk space for Docker builds
|
||||
sudo rm -rf /usr/share/dotnet
|
||||
sudo rm -rf /usr/local/lib/android
|
||||
sudo rm -rf /opt/ghc
|
||||
sudo rm -rf /opt/hostedtoolcache/CodeQL
|
||||
sudo docker system prune -af
|
||||
df -h
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
|
||||
4
.github/workflows/platform-backend-ci.yml
vendored
4
.github/workflows/platform-backend-ci.yml
vendored
@@ -134,7 +134,7 @@ jobs:
|
||||
run: poetry install
|
||||
|
||||
- name: Generate Prisma Client
|
||||
run: poetry run prisma generate && poetry run gen-prisma-stub
|
||||
run: poetry run prisma generate
|
||||
|
||||
- id: supabase
|
||||
name: Start Supabase
|
||||
@@ -176,7 +176,7 @@ jobs:
|
||||
}
|
||||
|
||||
- name: Run Database Migrations
|
||||
run: poetry run prisma migrate deploy
|
||||
run: poetry run prisma migrate dev --name updates
|
||||
env:
|
||||
DATABASE_URL: ${{ steps.supabase.outputs.DB_URL }}
|
||||
DIRECT_URL: ${{ steps.supabase.outputs.DB_URL }}
|
||||
|
||||
@@ -12,7 +12,6 @@ reset-db:
|
||||
rm -rf db/docker/volumes/db/data
|
||||
cd backend && poetry run prisma migrate deploy
|
||||
cd backend && poetry run prisma generate
|
||||
cd backend && poetry run gen-prisma-stub
|
||||
|
||||
# View logs for core services
|
||||
logs-core:
|
||||
@@ -34,7 +33,6 @@ init-env:
|
||||
migrate:
|
||||
cd backend && poetry run prisma migrate deploy
|
||||
cd backend && poetry run prisma generate
|
||||
cd backend && poetry run gen-prisma-stub
|
||||
|
||||
run-backend:
|
||||
cd backend && poetry run app
|
||||
|
||||
1
autogpt_platform/backend/.gitignore
vendored
1
autogpt_platform/backend/.gitignore
vendored
@@ -18,4 +18,3 @@ load-tests/results/
|
||||
load-tests/*.json
|
||||
load-tests/*.log
|
||||
load-tests/node_modules/*
|
||||
migrations/*/rollback*.sql
|
||||
|
||||
@@ -48,8 +48,7 @@ RUN poetry install --no-ansi --no-root
|
||||
# Generate Prisma client
|
||||
COPY autogpt_platform/backend/schema.prisma ./
|
||||
COPY autogpt_platform/backend/backend/data/partial_types.py ./backend/data/partial_types.py
|
||||
COPY autogpt_platform/backend/gen_prisma_types_stub.py ./
|
||||
RUN poetry run prisma generate && poetry run gen-prisma-stub
|
||||
RUN poetry run prisma generate
|
||||
|
||||
FROM debian:13-slim AS server_dependencies
|
||||
|
||||
|
||||
@@ -122,6 +122,24 @@ class ConnectionManager:
|
||||
|
||||
return len(connections)
|
||||
|
||||
async def broadcast_to_all(self, *, method: WSMethod, data: dict) -> int:
|
||||
"""Broadcast a message to all active websocket connections."""
|
||||
message = WSMessage(
|
||||
method=method,
|
||||
data=data,
|
||||
).model_dump_json()
|
||||
|
||||
connections = tuple(self.active_connections)
|
||||
if not connections:
|
||||
return 0
|
||||
|
||||
await asyncio.gather(
|
||||
*(connection.send_text(message) for connection in connections),
|
||||
return_exceptions=True,
|
||||
)
|
||||
|
||||
return len(connections)
|
||||
|
||||
async def _subscribe(self, channel_key: str, websocket: WebSocket) -> str:
|
||||
if channel_key not in self.subscriptions:
|
||||
self.subscriptions[channel_key] = set()
|
||||
|
||||
@@ -173,30 +173,64 @@ async def get_execution_analytics_config(
|
||||
# Return with provider prefix for clarity
|
||||
return f"{provider_name}: {model_name}"
|
||||
|
||||
# Include all LlmModel values (no more filtering by hardcoded list)
|
||||
recommended_model = LlmModel.GPT4O_MINI.value
|
||||
for model in LlmModel:
|
||||
label = generate_model_label(model)
|
||||
# Get all models from the registry (dynamic, not hardcoded enum)
|
||||
from backend.data import llm_registry
|
||||
from backend.server.v2.llm import db as llm_db
|
||||
|
||||
# Get the recommended model from the database (configurable via admin UI)
|
||||
recommended_model_slug = await llm_db.get_recommended_model_slug()
|
||||
|
||||
# Build the available models list
|
||||
first_enabled_slug = None
|
||||
for registry_model in llm_registry.iter_dynamic_models():
|
||||
# Only include enabled models in the list
|
||||
if not registry_model.is_enabled:
|
||||
continue
|
||||
|
||||
# Track first enabled model as fallback
|
||||
if first_enabled_slug is None:
|
||||
first_enabled_slug = registry_model.slug
|
||||
|
||||
model_enum = LlmModel(registry_model.slug) # Create enum instance from slug
|
||||
label = generate_model_label(model_enum)
|
||||
# Add "(Recommended)" suffix to the recommended model
|
||||
if model.value == recommended_model:
|
||||
if registry_model.slug == recommended_model_slug:
|
||||
label += " (Recommended)"
|
||||
|
||||
available_models.append(
|
||||
ModelInfo(
|
||||
value=model.value,
|
||||
value=registry_model.slug,
|
||||
label=label,
|
||||
provider=model.provider,
|
||||
provider=registry_model.metadata.provider,
|
||||
)
|
||||
)
|
||||
|
||||
# Sort models by provider and name for better UX
|
||||
available_models.sort(key=lambda x: (x.provider, x.label))
|
||||
|
||||
# Handle case where no models are available
|
||||
if not available_models:
|
||||
logger.warning(
|
||||
"No enabled LLM models found in registry. "
|
||||
"Ensure models are configured and enabled in the LLM Registry."
|
||||
)
|
||||
# Provide a placeholder entry so admins see meaningful feedback
|
||||
available_models.append(
|
||||
ModelInfo(
|
||||
value="",
|
||||
label="No models available - configure in LLM Registry",
|
||||
provider="none",
|
||||
)
|
||||
)
|
||||
|
||||
# Use the DB recommended model, or fallback to first enabled model
|
||||
final_recommended = recommended_model_slug or first_enabled_slug or ""
|
||||
|
||||
return ExecutionAnalyticsConfig(
|
||||
available_models=available_models,
|
||||
default_system_prompt=DEFAULT_SYSTEM_PROMPT,
|
||||
default_user_prompt=DEFAULT_USER_PROMPT,
|
||||
recommended_model=recommended_model,
|
||||
recommended_model=final_recommended,
|
||||
)
|
||||
|
||||
|
||||
|
||||
@@ -0,0 +1,554 @@
|
||||
import logging
|
||||
|
||||
import autogpt_libs.auth
|
||||
import fastapi
|
||||
|
||||
from backend.data import llm_registry
|
||||
from backend.data.block_cost_config import refresh_llm_costs
|
||||
from backend.server.v2.llm import db as llm_db
|
||||
from backend.server.v2.llm import model as llm_model
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
router = fastapi.APIRouter(
|
||||
prefix="/admin/llm",
|
||||
tags=["llm", "admin"],
|
||||
dependencies=[fastapi.Security(autogpt_libs.auth.requires_admin_user)],
|
||||
)
|
||||
|
||||
|
||||
async def _refresh_runtime_state() -> None:
|
||||
"""Refresh the LLM registry and clear all related caches to ensure real-time updates."""
|
||||
logger.info("Refreshing LLM registry runtime state...")
|
||||
|
||||
# Refresh registry from database
|
||||
await llm_registry.refresh_llm_registry()
|
||||
refresh_llm_costs()
|
||||
|
||||
# Clear block schema caches so they're regenerated with updated model options
|
||||
from backend.data.block import BlockSchema
|
||||
|
||||
BlockSchema.clear_all_schema_caches()
|
||||
logger.info("Cleared all block schema caches")
|
||||
|
||||
# Clear the /blocks endpoint cache so frontend gets updated schemas
|
||||
try:
|
||||
from backend.api.features.v1 import _get_cached_blocks
|
||||
|
||||
_get_cached_blocks.cache_clear()
|
||||
logger.info("Cleared /blocks endpoint cache")
|
||||
except Exception as e:
|
||||
logger.warning("Failed to clear /blocks cache: %s", e)
|
||||
|
||||
# Clear the v2 builder providers cache (if it exists)
|
||||
try:
|
||||
from backend.api.features.builder import db as builder_db
|
||||
|
||||
if hasattr(builder_db, "_get_all_providers"):
|
||||
builder_db._get_all_providers.cache_clear()
|
||||
logger.info("Cleared v2 builder providers cache")
|
||||
except Exception as e:
|
||||
logger.debug("Could not clear v2 builder cache: %s", e)
|
||||
|
||||
# Notify all executor services to refresh their registry cache
|
||||
from backend.data.llm_registry import publish_registry_refresh_notification
|
||||
|
||||
await publish_registry_refresh_notification()
|
||||
logger.info("Published registry refresh notification")
|
||||
|
||||
|
||||
@router.get(
|
||||
"/providers",
|
||||
summary="List LLM providers",
|
||||
response_model=llm_model.LlmProvidersResponse,
|
||||
)
|
||||
async def list_llm_providers(include_models: bool = True):
|
||||
providers = await llm_db.list_providers(include_models=include_models)
|
||||
return llm_model.LlmProvidersResponse(providers=providers)
|
||||
|
||||
|
||||
@router.post(
|
||||
"/providers",
|
||||
summary="Create LLM provider",
|
||||
response_model=llm_model.LlmProvider,
|
||||
)
|
||||
async def create_llm_provider(request: llm_model.UpsertLlmProviderRequest):
|
||||
provider = await llm_db.upsert_provider(request=request)
|
||||
await _refresh_runtime_state()
|
||||
return provider
|
||||
|
||||
|
||||
@router.patch(
|
||||
"/providers/{provider_id}",
|
||||
summary="Update LLM provider",
|
||||
response_model=llm_model.LlmProvider,
|
||||
)
|
||||
async def update_llm_provider(
|
||||
provider_id: str,
|
||||
request: llm_model.UpsertLlmProviderRequest,
|
||||
):
|
||||
provider = await llm_db.upsert_provider(request=request, provider_id=provider_id)
|
||||
await _refresh_runtime_state()
|
||||
return provider
|
||||
|
||||
|
||||
@router.get(
|
||||
"/models",
|
||||
summary="List LLM models",
|
||||
response_model=llm_model.LlmModelsResponse,
|
||||
)
|
||||
async def list_llm_models(provider_id: str | None = fastapi.Query(default=None)):
|
||||
models = await llm_db.list_models(provider_id=provider_id)
|
||||
return llm_model.LlmModelsResponse(models=models)
|
||||
|
||||
|
||||
@router.post(
|
||||
"/models",
|
||||
summary="Create LLM model",
|
||||
response_model=llm_model.LlmModel,
|
||||
)
|
||||
async def create_llm_model(request: llm_model.CreateLlmModelRequest):
|
||||
model = await llm_db.create_model(request=request)
|
||||
await _refresh_runtime_state()
|
||||
return model
|
||||
|
||||
|
||||
@router.patch(
|
||||
"/models/{model_id}",
|
||||
summary="Update LLM model",
|
||||
response_model=llm_model.LlmModel,
|
||||
)
|
||||
async def update_llm_model(
|
||||
model_id: str,
|
||||
request: llm_model.UpdateLlmModelRequest,
|
||||
):
|
||||
model = await llm_db.update_model(model_id=model_id, request=request)
|
||||
await _refresh_runtime_state()
|
||||
return model
|
||||
|
||||
|
||||
@router.patch(
|
||||
"/models/{model_id}/toggle",
|
||||
summary="Toggle LLM model availability",
|
||||
response_model=llm_model.ToggleLlmModelResponse,
|
||||
)
|
||||
async def toggle_llm_model(
|
||||
model_id: str,
|
||||
request: llm_model.ToggleLlmModelRequest,
|
||||
):
|
||||
"""
|
||||
Toggle a model's enabled status, optionally migrating workflows when disabling.
|
||||
|
||||
If disabling a model and `migrate_to_slug` is provided, all workflows using
|
||||
this model will be migrated to the specified replacement model before disabling.
|
||||
A migration record is created which can be reverted later using the revert endpoint.
|
||||
|
||||
Optional fields:
|
||||
- `migration_reason`: Reason for the migration (e.g., "Provider outage")
|
||||
- `custom_credit_cost`: Custom pricing override for billing during migration
|
||||
"""
|
||||
try:
|
||||
result = await llm_db.toggle_model(
|
||||
model_id=model_id,
|
||||
is_enabled=request.is_enabled,
|
||||
migrate_to_slug=request.migrate_to_slug,
|
||||
migration_reason=request.migration_reason,
|
||||
custom_credit_cost=request.custom_credit_cost,
|
||||
)
|
||||
await _refresh_runtime_state()
|
||||
if result.nodes_migrated > 0:
|
||||
logger.info(
|
||||
"Toggled model '%s' to %s and migrated %d nodes to '%s' (migration_id=%s)",
|
||||
result.model.slug,
|
||||
"enabled" if request.is_enabled else "disabled",
|
||||
result.nodes_migrated,
|
||||
result.migrated_to_slug,
|
||||
result.migration_id,
|
||||
)
|
||||
return result
|
||||
except ValueError as exc:
|
||||
logger.warning("Model toggle validation failed: %s", exc)
|
||||
raise fastapi.HTTPException(status_code=400, detail=str(exc)) from exc
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to toggle LLM model %s: %s", model_id, exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to toggle model availability",
|
||||
) from exc
|
||||
|
||||
|
||||
@router.get(
|
||||
"/models/{model_id}/usage",
|
||||
summary="Get model usage count",
|
||||
response_model=llm_model.LlmModelUsageResponse,
|
||||
)
|
||||
async def get_llm_model_usage(model_id: str):
|
||||
"""Get the number of workflow nodes using this model."""
|
||||
try:
|
||||
return await llm_db.get_model_usage(model_id=model_id)
|
||||
except ValueError as exc:
|
||||
raise fastapi.HTTPException(status_code=404, detail=str(exc)) from exc
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to get model usage %s: %s", model_id, exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to get model usage",
|
||||
) from exc
|
||||
|
||||
|
||||
@router.delete(
|
||||
"/models/{model_id}",
|
||||
summary="Delete LLM model and migrate workflows",
|
||||
response_model=llm_model.DeleteLlmModelResponse,
|
||||
)
|
||||
async def delete_llm_model(
|
||||
model_id: str,
|
||||
replacement_model_slug: str = fastapi.Query(
|
||||
..., description="Slug of the model to migrate existing workflows to"
|
||||
),
|
||||
):
|
||||
"""
|
||||
Delete a model and automatically migrate all workflows using it to a replacement model.
|
||||
|
||||
This endpoint:
|
||||
1. Validates the replacement model exists and is enabled
|
||||
2. Counts how many workflow nodes use the model being deleted
|
||||
3. Updates all AgentNode.constantInput->model fields to the replacement
|
||||
4. Deletes the model record
|
||||
5. Refreshes all caches and notifies executors
|
||||
|
||||
Example: DELETE /admin/llm/models/{id}?replacement_model_slug=gpt-4o
|
||||
"""
|
||||
try:
|
||||
result = await llm_db.delete_model(
|
||||
model_id=model_id, replacement_model_slug=replacement_model_slug
|
||||
)
|
||||
await _refresh_runtime_state()
|
||||
logger.info(
|
||||
"Deleted model '%s' and migrated %d nodes to '%s'",
|
||||
result.deleted_model_slug,
|
||||
result.nodes_migrated,
|
||||
result.replacement_model_slug,
|
||||
)
|
||||
return result
|
||||
except ValueError as exc:
|
||||
# Validation errors (model not found, replacement invalid, etc.)
|
||||
logger.warning("Model deletion validation failed: %s", exc)
|
||||
raise fastapi.HTTPException(status_code=400, detail=str(exc)) from exc
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to delete LLM model %s: %s", model_id, exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to delete model and migrate workflows",
|
||||
) from exc
|
||||
|
||||
|
||||
# ============================================================================
|
||||
# Migration Management Endpoints
|
||||
# ============================================================================
|
||||
|
||||
|
||||
@router.get(
|
||||
"/migrations",
|
||||
summary="List model migrations",
|
||||
response_model=llm_model.LlmMigrationsResponse,
|
||||
)
|
||||
async def list_llm_migrations(
|
||||
include_reverted: bool = fastapi.Query(
|
||||
default=False, description="Include reverted migrations in the list"
|
||||
),
|
||||
):
|
||||
"""
|
||||
List all model migrations.
|
||||
|
||||
Migrations are created when disabling a model with the migrate_to_slug option.
|
||||
They can be reverted to restore the original model configuration.
|
||||
"""
|
||||
try:
|
||||
migrations = await llm_db.list_migrations(include_reverted=include_reverted)
|
||||
return llm_model.LlmMigrationsResponse(migrations=migrations)
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to list migrations: %s", exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to list migrations",
|
||||
) from exc
|
||||
|
||||
|
||||
@router.get(
|
||||
"/migrations/{migration_id}",
|
||||
summary="Get migration details",
|
||||
response_model=llm_model.LlmModelMigration,
|
||||
)
|
||||
async def get_llm_migration(migration_id: str):
|
||||
"""Get details of a specific migration."""
|
||||
try:
|
||||
migration = await llm_db.get_migration(migration_id)
|
||||
if not migration:
|
||||
raise fastapi.HTTPException(
|
||||
status_code=404, detail=f"Migration '{migration_id}' not found"
|
||||
)
|
||||
return migration
|
||||
except fastapi.HTTPException:
|
||||
raise
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to get migration %s: %s", migration_id, exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to get migration",
|
||||
) from exc
|
||||
|
||||
|
||||
@router.post(
|
||||
"/migrations/{migration_id}/revert",
|
||||
summary="Revert a model migration",
|
||||
response_model=llm_model.RevertMigrationResponse,
|
||||
)
|
||||
async def revert_llm_migration(
|
||||
migration_id: str,
|
||||
request: llm_model.RevertMigrationRequest | None = None,
|
||||
):
|
||||
"""
|
||||
Revert a model migration, restoring affected workflows to their original model.
|
||||
|
||||
This only reverts the specific nodes that were part of the migration.
|
||||
The source model must exist for the revert to succeed.
|
||||
|
||||
Options:
|
||||
- `re_enable_source_model`: Whether to re-enable the source model if disabled (default: True)
|
||||
|
||||
Response includes:
|
||||
- `nodes_reverted`: Number of nodes successfully reverted
|
||||
- `nodes_already_changed`: Number of nodes that were modified since migration (not reverted)
|
||||
- `source_model_re_enabled`: Whether the source model was re-enabled
|
||||
|
||||
Requirements:
|
||||
- Migration must not already be reverted
|
||||
- Source model must exist
|
||||
"""
|
||||
try:
|
||||
re_enable = request.re_enable_source_model if request else True
|
||||
result = await llm_db.revert_migration(
|
||||
migration_id,
|
||||
re_enable_source_model=re_enable,
|
||||
)
|
||||
await _refresh_runtime_state()
|
||||
logger.info(
|
||||
"Reverted migration '%s': %d nodes restored from '%s' to '%s' "
|
||||
"(%d already changed, source re-enabled=%s)",
|
||||
migration_id,
|
||||
result.nodes_reverted,
|
||||
result.target_model_slug,
|
||||
result.source_model_slug,
|
||||
result.nodes_already_changed,
|
||||
result.source_model_re_enabled,
|
||||
)
|
||||
return result
|
||||
except ValueError as exc:
|
||||
logger.warning("Migration revert validation failed: %s", exc)
|
||||
raise fastapi.HTTPException(status_code=400, detail=str(exc)) from exc
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to revert migration %s: %s", migration_id, exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to revert migration",
|
||||
) from exc
|
||||
|
||||
|
||||
# ============================================================================
|
||||
# Creator Management Endpoints
|
||||
# ============================================================================
|
||||
|
||||
|
||||
@router.get(
|
||||
"/creators",
|
||||
summary="List model creators",
|
||||
response_model=llm_model.LlmCreatorsResponse,
|
||||
)
|
||||
async def list_llm_creators():
|
||||
"""
|
||||
List all model creators.
|
||||
|
||||
Creators are organizations that create/train models (e.g., OpenAI, Meta, Anthropic).
|
||||
This is distinct from providers who host/serve the models (e.g., OpenRouter).
|
||||
"""
|
||||
try:
|
||||
creators = await llm_db.list_creators()
|
||||
return llm_model.LlmCreatorsResponse(creators=creators)
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to list creators: %s", exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to list creators",
|
||||
) from exc
|
||||
|
||||
|
||||
@router.get(
|
||||
"/creators/{creator_id}",
|
||||
summary="Get creator details",
|
||||
operation_id="getV2GetLlmCreatorDetails",
|
||||
response_model=llm_model.LlmModelCreator,
|
||||
)
|
||||
async def get_llm_creator(creator_id: str):
|
||||
"""Get details of a specific model creator."""
|
||||
try:
|
||||
creator = await llm_db.get_creator(creator_id)
|
||||
if not creator:
|
||||
raise fastapi.HTTPException(
|
||||
status_code=404, detail=f"Creator '{creator_id}' not found"
|
||||
)
|
||||
return creator
|
||||
except fastapi.HTTPException:
|
||||
raise
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to get creator %s: %s", creator_id, exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to get creator",
|
||||
) from exc
|
||||
|
||||
|
||||
@router.post(
|
||||
"/creators",
|
||||
summary="Create model creator",
|
||||
response_model=llm_model.LlmModelCreator,
|
||||
)
|
||||
async def create_llm_creator(request: llm_model.UpsertLlmCreatorRequest):
|
||||
"""
|
||||
Create a new model creator.
|
||||
|
||||
A creator represents an organization that creates/trains AI models,
|
||||
such as OpenAI, Anthropic, Meta, or Google.
|
||||
"""
|
||||
try:
|
||||
creator = await llm_db.upsert_creator(request=request)
|
||||
await _refresh_runtime_state()
|
||||
logger.info("Created model creator '%s' (%s)", creator.display_name, creator.id)
|
||||
return creator
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to create creator: %s", exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to create creator",
|
||||
) from exc
|
||||
|
||||
|
||||
@router.patch(
|
||||
"/creators/{creator_id}",
|
||||
summary="Update model creator",
|
||||
response_model=llm_model.LlmModelCreator,
|
||||
)
|
||||
async def update_llm_creator(
|
||||
creator_id: str,
|
||||
request: llm_model.UpsertLlmCreatorRequest,
|
||||
):
|
||||
"""Update an existing model creator."""
|
||||
try:
|
||||
creator = await llm_db.upsert_creator(request=request, creator_id=creator_id)
|
||||
await _refresh_runtime_state()
|
||||
logger.info("Updated model creator '%s' (%s)", creator.display_name, creator_id)
|
||||
return creator
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to update creator %s: %s", creator_id, exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to update creator",
|
||||
) from exc
|
||||
|
||||
|
||||
@router.delete(
|
||||
"/creators/{creator_id}",
|
||||
summary="Delete model creator",
|
||||
response_model=dict,
|
||||
)
|
||||
async def delete_llm_creator(creator_id: str):
|
||||
"""
|
||||
Delete a model creator.
|
||||
|
||||
This will remove the creator association from all models that reference it
|
||||
(sets creatorId to NULL), but will not delete the models themselves.
|
||||
"""
|
||||
try:
|
||||
await llm_db.delete_creator(creator_id)
|
||||
await _refresh_runtime_state()
|
||||
logger.info("Deleted model creator '%s'", creator_id)
|
||||
return {"success": True, "message": f"Creator '{creator_id}' deleted"}
|
||||
except ValueError as exc:
|
||||
logger.warning("Creator deletion validation failed: %s", exc)
|
||||
raise fastapi.HTTPException(status_code=404, detail=str(exc)) from exc
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to delete creator %s: %s", creator_id, exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to delete creator",
|
||||
) from exc
|
||||
|
||||
|
||||
# ============================================================================
|
||||
# Recommended Model Endpoints
|
||||
# ============================================================================
|
||||
|
||||
|
||||
@router.get(
|
||||
"/recommended-model",
|
||||
summary="Get recommended model",
|
||||
response_model=llm_model.RecommendedModelResponse,
|
||||
)
|
||||
async def get_recommended_model():
|
||||
"""
|
||||
Get the currently recommended LLM model.
|
||||
|
||||
The recommended model is shown to users as the default/suggested option
|
||||
in model selection dropdowns.
|
||||
"""
|
||||
try:
|
||||
model = await llm_db.get_recommended_model()
|
||||
return llm_model.RecommendedModelResponse(
|
||||
model=model,
|
||||
slug=model.slug if model else None,
|
||||
)
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to get recommended model: %s", exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to get recommended model",
|
||||
) from exc
|
||||
|
||||
|
||||
@router.post(
|
||||
"/recommended-model",
|
||||
summary="Set recommended model",
|
||||
response_model=llm_model.SetRecommendedModelResponse,
|
||||
)
|
||||
async def set_recommended_model(request: llm_model.SetRecommendedModelRequest):
|
||||
"""
|
||||
Set a model as the recommended model.
|
||||
|
||||
This clears the recommended flag from any other model and sets it on
|
||||
the specified model. The model must be enabled to be set as recommended.
|
||||
|
||||
The recommended model is displayed to users as the default/suggested
|
||||
option in model selection dropdowns throughout the platform.
|
||||
"""
|
||||
try:
|
||||
model, previous_slug = await llm_db.set_recommended_model(request.model_id)
|
||||
await _refresh_runtime_state()
|
||||
logger.info(
|
||||
"Set recommended model to '%s' (previous: %s)",
|
||||
model.slug,
|
||||
previous_slug or "none",
|
||||
)
|
||||
return llm_model.SetRecommendedModelResponse(
|
||||
model=model,
|
||||
previous_recommended_slug=previous_slug,
|
||||
message=f"Model '{model.display_name}' is now the recommended model",
|
||||
)
|
||||
except ValueError as exc:
|
||||
logger.warning("Set recommended model validation failed: %s", exc)
|
||||
raise fastapi.HTTPException(status_code=400, detail=str(exc)) from exc
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to set recommended model: %s", exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to set recommended model",
|
||||
) from exc
|
||||
@@ -0,0 +1,405 @@
|
||||
from unittest.mock import AsyncMock
|
||||
|
||||
import fastapi
|
||||
import fastapi.testclient
|
||||
import pytest
|
||||
import pytest_mock
|
||||
from autogpt_libs.auth.jwt_utils import get_jwt_payload
|
||||
from pytest_snapshot.plugin import Snapshot
|
||||
|
||||
import backend.api.features.admin.llm_routes as llm_routes
|
||||
|
||||
app = fastapi.FastAPI()
|
||||
app.include_router(llm_routes.router)
|
||||
|
||||
client = fastapi.testclient.TestClient(app)
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def setup_app_admin_auth(mock_jwt_admin):
|
||||
"""Setup admin auth overrides for all tests in this module"""
|
||||
app.dependency_overrides[get_jwt_payload] = mock_jwt_admin["get_jwt_payload"]
|
||||
yield
|
||||
app.dependency_overrides.clear()
|
||||
|
||||
|
||||
def test_list_llm_providers_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
configured_snapshot: Snapshot,
|
||||
) -> None:
|
||||
"""Test successful listing of LLM providers"""
|
||||
# Mock the database function
|
||||
mock_providers = [
|
||||
{
|
||||
"id": "provider-1",
|
||||
"name": "openai",
|
||||
"display_name": "OpenAI",
|
||||
"description": "OpenAI LLM provider",
|
||||
"supports_tools": True,
|
||||
"supports_json_output": True,
|
||||
"supports_reasoning": False,
|
||||
"supports_parallel_tool": True,
|
||||
"metadata": {},
|
||||
"models": [],
|
||||
},
|
||||
{
|
||||
"id": "provider-2",
|
||||
"name": "anthropic",
|
||||
"display_name": "Anthropic",
|
||||
"description": "Anthropic LLM provider",
|
||||
"supports_tools": True,
|
||||
"supports_json_output": True,
|
||||
"supports_reasoning": False,
|
||||
"supports_parallel_tool": True,
|
||||
"metadata": {},
|
||||
"models": [],
|
||||
},
|
||||
]
|
||||
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.list_providers",
|
||||
new=AsyncMock(return_value=mock_providers),
|
||||
)
|
||||
|
||||
response = client.get("/admin/llm/providers")
|
||||
|
||||
assert response.status_code == 200
|
||||
response_data = response.json()
|
||||
assert len(response_data["providers"]) == 2
|
||||
assert response_data["providers"][0]["name"] == "openai"
|
||||
|
||||
# Snapshot test the response
|
||||
configured_snapshot.assert_match(response_data, "list_llm_providers_success.json")
|
||||
|
||||
|
||||
def test_list_llm_models_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
configured_snapshot: Snapshot,
|
||||
) -> None:
|
||||
"""Test successful listing of LLM models"""
|
||||
# Mock the database function
|
||||
mock_models = [
|
||||
{
|
||||
"id": "model-1",
|
||||
"slug": "gpt-4o",
|
||||
"display_name": "GPT-4o",
|
||||
"description": "GPT-4 Optimized",
|
||||
"provider_id": "provider-1",
|
||||
"context_window": 128000,
|
||||
"max_output_tokens": 16384,
|
||||
"is_enabled": True,
|
||||
"capabilities": {},
|
||||
"metadata": {},
|
||||
"costs": [
|
||||
{
|
||||
"id": "cost-1",
|
||||
"credit_cost": 10,
|
||||
"credential_provider": "openai",
|
||||
"metadata": {},
|
||||
}
|
||||
],
|
||||
}
|
||||
]
|
||||
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.list_models",
|
||||
new=AsyncMock(return_value=mock_models),
|
||||
)
|
||||
|
||||
response = client.get("/admin/llm/models")
|
||||
|
||||
assert response.status_code == 200
|
||||
response_data = response.json()
|
||||
assert len(response_data["models"]) == 1
|
||||
assert response_data["models"][0]["slug"] == "gpt-4o"
|
||||
|
||||
# Snapshot test the response
|
||||
configured_snapshot.assert_match(response_data, "list_llm_models_success.json")
|
||||
|
||||
|
||||
def test_create_llm_provider_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
configured_snapshot: Snapshot,
|
||||
) -> None:
|
||||
"""Test successful creation of LLM provider"""
|
||||
mock_provider = {
|
||||
"id": "new-provider-id",
|
||||
"name": "groq",
|
||||
"display_name": "Groq",
|
||||
"description": "Groq LLM provider",
|
||||
"supports_tools": True,
|
||||
"supports_json_output": True,
|
||||
"supports_reasoning": False,
|
||||
"supports_parallel_tool": False,
|
||||
"metadata": {},
|
||||
}
|
||||
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.upsert_provider",
|
||||
new=AsyncMock(return_value=mock_provider),
|
||||
)
|
||||
|
||||
mock_refresh = mocker.patch(
|
||||
"backend.api.features.admin.llm_routes._refresh_runtime_state",
|
||||
new=AsyncMock(),
|
||||
)
|
||||
|
||||
request_data = {
|
||||
"name": "groq",
|
||||
"display_name": "Groq",
|
||||
"description": "Groq LLM provider",
|
||||
"supports_tools": True,
|
||||
"supports_json_output": True,
|
||||
"supports_reasoning": False,
|
||||
"supports_parallel_tool": False,
|
||||
"metadata": {},
|
||||
}
|
||||
|
||||
response = client.post("/admin/llm/providers", json=request_data)
|
||||
|
||||
assert response.status_code == 200
|
||||
response_data = response.json()
|
||||
assert response_data["name"] == "groq"
|
||||
assert response_data["display_name"] == "Groq"
|
||||
|
||||
# Verify refresh was called
|
||||
mock_refresh.assert_called_once()
|
||||
|
||||
# Snapshot test the response
|
||||
configured_snapshot.assert_match(response_data, "create_llm_provider_success.json")
|
||||
|
||||
|
||||
def test_create_llm_model_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
configured_snapshot: Snapshot,
|
||||
) -> None:
|
||||
"""Test successful creation of LLM model"""
|
||||
mock_model = {
|
||||
"id": "new-model-id",
|
||||
"slug": "gpt-4.1-mini",
|
||||
"display_name": "GPT-4.1 Mini",
|
||||
"description": "Latest GPT-4.1 Mini model",
|
||||
"provider_id": "provider-1",
|
||||
"context_window": 128000,
|
||||
"max_output_tokens": 16384,
|
||||
"is_enabled": True,
|
||||
"capabilities": {},
|
||||
"metadata": {},
|
||||
"costs": [
|
||||
{
|
||||
"id": "cost-id",
|
||||
"credit_cost": 5,
|
||||
"credential_provider": "openai",
|
||||
"metadata": {},
|
||||
}
|
||||
],
|
||||
}
|
||||
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.create_model",
|
||||
new=AsyncMock(return_value=mock_model),
|
||||
)
|
||||
|
||||
mock_refresh = mocker.patch(
|
||||
"backend.api.features.admin.llm_routes._refresh_runtime_state",
|
||||
new=AsyncMock(),
|
||||
)
|
||||
|
||||
request_data = {
|
||||
"slug": "gpt-4.1-mini",
|
||||
"display_name": "GPT-4.1 Mini",
|
||||
"description": "Latest GPT-4.1 Mini model",
|
||||
"provider_id": "provider-1",
|
||||
"context_window": 128000,
|
||||
"max_output_tokens": 16384,
|
||||
"is_enabled": True,
|
||||
"capabilities": {},
|
||||
"metadata": {},
|
||||
"costs": [
|
||||
{
|
||||
"credit_cost": 5,
|
||||
"credential_provider": "openai",
|
||||
"metadata": {},
|
||||
}
|
||||
],
|
||||
}
|
||||
|
||||
response = client.post("/admin/llm/models", json=request_data)
|
||||
|
||||
assert response.status_code == 200
|
||||
response_data = response.json()
|
||||
assert response_data["slug"] == "gpt-4.1-mini"
|
||||
assert response_data["is_enabled"] is True
|
||||
|
||||
# Verify refresh was called
|
||||
mock_refresh.assert_called_once()
|
||||
|
||||
# Snapshot test the response
|
||||
configured_snapshot.assert_match(response_data, "create_llm_model_success.json")
|
||||
|
||||
|
||||
def test_update_llm_model_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
configured_snapshot: Snapshot,
|
||||
) -> None:
|
||||
"""Test successful update of LLM model"""
|
||||
mock_model = {
|
||||
"id": "model-1",
|
||||
"slug": "gpt-4o",
|
||||
"display_name": "GPT-4o Updated",
|
||||
"description": "Updated description",
|
||||
"provider_id": "provider-1",
|
||||
"context_window": 256000,
|
||||
"max_output_tokens": 32768,
|
||||
"is_enabled": True,
|
||||
"capabilities": {},
|
||||
"metadata": {},
|
||||
"costs": [
|
||||
{
|
||||
"id": "cost-1",
|
||||
"credit_cost": 15,
|
||||
"credential_provider": "openai",
|
||||
"metadata": {},
|
||||
}
|
||||
],
|
||||
}
|
||||
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.update_model",
|
||||
new=AsyncMock(return_value=mock_model),
|
||||
)
|
||||
|
||||
mock_refresh = mocker.patch(
|
||||
"backend.api.features.admin.llm_routes._refresh_runtime_state",
|
||||
new=AsyncMock(),
|
||||
)
|
||||
|
||||
request_data = {
|
||||
"display_name": "GPT-4o Updated",
|
||||
"description": "Updated description",
|
||||
"context_window": 256000,
|
||||
"max_output_tokens": 32768,
|
||||
}
|
||||
|
||||
response = client.patch("/admin/llm/models/model-1", json=request_data)
|
||||
|
||||
assert response.status_code == 200
|
||||
response_data = response.json()
|
||||
assert response_data["display_name"] == "GPT-4o Updated"
|
||||
assert response_data["context_window"] == 256000
|
||||
|
||||
# Verify refresh was called
|
||||
mock_refresh.assert_called_once()
|
||||
|
||||
# Snapshot test the response
|
||||
configured_snapshot.assert_match(response_data, "update_llm_model_success.json")
|
||||
|
||||
|
||||
def test_toggle_llm_model_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
configured_snapshot: Snapshot,
|
||||
) -> None:
|
||||
"""Test successful toggling of LLM model enabled status"""
|
||||
mock_model = {
|
||||
"id": "model-1",
|
||||
"slug": "gpt-4o",
|
||||
"display_name": "GPT-4o",
|
||||
"description": "GPT-4 Optimized",
|
||||
"provider_id": "provider-1",
|
||||
"context_window": 128000,
|
||||
"max_output_tokens": 16384,
|
||||
"is_enabled": False,
|
||||
"capabilities": {},
|
||||
"metadata": {},
|
||||
"costs": [],
|
||||
}
|
||||
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.toggle_model",
|
||||
new=AsyncMock(return_value=mock_model),
|
||||
)
|
||||
|
||||
mock_refresh = mocker.patch(
|
||||
"backend.api.features.admin.llm_routes._refresh_runtime_state",
|
||||
new=AsyncMock(),
|
||||
)
|
||||
|
||||
request_data = {"is_enabled": False}
|
||||
|
||||
response = client.patch("/admin/llm/models/model-1/toggle", json=request_data)
|
||||
|
||||
assert response.status_code == 200
|
||||
response_data = response.json()
|
||||
assert response_data["is_enabled"] is False
|
||||
|
||||
# Verify refresh was called
|
||||
mock_refresh.assert_called_once()
|
||||
|
||||
# Snapshot test the response
|
||||
configured_snapshot.assert_match(response_data, "toggle_llm_model_success.json")
|
||||
|
||||
|
||||
def test_delete_llm_model_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
configured_snapshot: Snapshot,
|
||||
) -> None:
|
||||
"""Test successful deletion of LLM model with migration"""
|
||||
mock_response = {
|
||||
"deleted_model_slug": "gpt-3.5-turbo",
|
||||
"deleted_model_display_name": "GPT-3.5 Turbo",
|
||||
"replacement_model_slug": "gpt-4o-mini",
|
||||
"nodes_migrated": 42,
|
||||
"message": "Successfully deleted model 'GPT-3.5 Turbo' (gpt-3.5-turbo) "
|
||||
"and migrated 42 workflow node(s) to 'gpt-4o-mini'.",
|
||||
}
|
||||
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.delete_model",
|
||||
new=AsyncMock(return_value=type("obj", (object,), mock_response)()),
|
||||
)
|
||||
|
||||
mock_refresh = mocker.patch(
|
||||
"backend.api.features.admin.llm_routes._refresh_runtime_state",
|
||||
new=AsyncMock(),
|
||||
)
|
||||
|
||||
response = client.delete(
|
||||
"/admin/llm/models/model-1?replacement_model_slug=gpt-4o-mini"
|
||||
)
|
||||
|
||||
assert response.status_code == 200
|
||||
response_data = response.json()
|
||||
assert response_data["deleted_model_slug"] == "gpt-3.5-turbo"
|
||||
assert response_data["nodes_migrated"] == 42
|
||||
assert response_data["replacement_model_slug"] == "gpt-4o-mini"
|
||||
|
||||
# Verify refresh was called
|
||||
mock_refresh.assert_called_once()
|
||||
|
||||
# Snapshot test the response
|
||||
configured_snapshot.assert_match(response_data, "delete_llm_model_success.json")
|
||||
|
||||
|
||||
def test_delete_llm_model_validation_error(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
) -> None:
|
||||
"""Test deletion fails with proper error when validation fails"""
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.delete_model",
|
||||
new=AsyncMock(side_effect=ValueError("Replacement model 'invalid' not found")),
|
||||
)
|
||||
|
||||
response = client.delete("/admin/llm/models/model-1?replacement_model_slug=invalid")
|
||||
|
||||
assert response.status_code == 400
|
||||
assert "Replacement model 'invalid' not found" in response.json()["detail"]
|
||||
|
||||
|
||||
def test_delete_llm_model_missing_replacement(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
) -> None:
|
||||
"""Test deletion fails when replacement_model_slug is not provided"""
|
||||
response = client.delete("/admin/llm/models/model-1")
|
||||
|
||||
# FastAPI will return 422 for missing required query params
|
||||
assert response.status_code == 422
|
||||
@@ -15,6 +15,7 @@ from backend.blocks import load_all_blocks
|
||||
from backend.blocks.llm import LlmModel
|
||||
from backend.data.block import AnyBlockSchema, BlockCategory, BlockInfo, BlockSchema
|
||||
from backend.data.db import query_raw_with_schema
|
||||
from backend.data.llm_registry import get_all_model_slugs_for_validation
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.cache import cached
|
||||
from backend.util.models import Pagination
|
||||
@@ -31,7 +32,14 @@ from .model import (
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
llm_models = [name.name.lower().replace("_", " ") for name in LlmModel]
|
||||
|
||||
|
||||
def _get_llm_models() -> list[str]:
|
||||
"""Get LLM model names for search matching from the registry."""
|
||||
return [
|
||||
slug.lower().replace("-", " ") for slug in get_all_model_slugs_for_validation()
|
||||
]
|
||||
|
||||
|
||||
MAX_LIBRARY_AGENT_RESULTS = 100
|
||||
MAX_MARKETPLACE_AGENT_RESULTS = 100
|
||||
@@ -496,8 +504,8 @@ async def _get_static_counts():
|
||||
def _matches_llm_model(schema_cls: type[BlockSchema], query: str) -> bool:
|
||||
for field in schema_cls.model_fields.values():
|
||||
if field.annotation == LlmModel:
|
||||
# Check if query matches any value in llm_models
|
||||
if any(query in name for name in llm_models):
|
||||
# Check if query matches any value in llm_models from registry
|
||||
if any(query in name for name in _get_llm_models()):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
import uuid
|
||||
from unittest.mock import AsyncMock, patch
|
||||
|
||||
import orjson
|
||||
import pytest
|
||||
@@ -18,17 +17,6 @@ setup_test_data = setup_test_data
|
||||
setup_firecrawl_test_data = setup_firecrawl_test_data
|
||||
|
||||
|
||||
@pytest.fixture(scope="session", autouse=True)
|
||||
def mock_embedding_functions():
|
||||
"""Mock embedding functions for all tests to avoid database/API dependencies."""
|
||||
with patch(
|
||||
"backend.api.features.store.db.ensure_embedding",
|
||||
new_callable=AsyncMock,
|
||||
return_value=True,
|
||||
):
|
||||
yield
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent(setup_test_data):
|
||||
"""Test that the run_agent tool successfully executes an approved agent"""
|
||||
|
||||
@@ -489,7 +489,7 @@ async def update_agent_version_in_library(
|
||||
agent_graph_version: int,
|
||||
) -> library_model.LibraryAgent:
|
||||
"""
|
||||
Updates the agent version in the library for any agent owned by the user.
|
||||
Updates the agent version in the library if useGraphIsActiveVersion is True.
|
||||
|
||||
Args:
|
||||
user_id: Owner of the LibraryAgent.
|
||||
@@ -498,31 +498,20 @@ async def update_agent_version_in_library(
|
||||
|
||||
Raises:
|
||||
DatabaseError: If there's an error with the update.
|
||||
NotFoundError: If no library agent is found for this user and agent.
|
||||
"""
|
||||
logger.debug(
|
||||
f"Updating agent version in library for user #{user_id}, "
|
||||
f"agent #{agent_graph_id} v{agent_graph_version}"
|
||||
)
|
||||
async with transaction() as tx:
|
||||
library_agent = await prisma.models.LibraryAgent.prisma(tx).find_first_or_raise(
|
||||
try:
|
||||
library_agent = await prisma.models.LibraryAgent.prisma().find_first_or_raise(
|
||||
where={
|
||||
"userId": user_id,
|
||||
"agentGraphId": agent_graph_id,
|
||||
"useGraphIsActiveVersion": True,
|
||||
},
|
||||
)
|
||||
|
||||
# Delete any conflicting LibraryAgent for the target version
|
||||
await prisma.models.LibraryAgent.prisma(tx).delete_many(
|
||||
where={
|
||||
"userId": user_id,
|
||||
"agentGraphId": agent_graph_id,
|
||||
"agentGraphVersion": agent_graph_version,
|
||||
"id": {"not": library_agent.id},
|
||||
}
|
||||
)
|
||||
|
||||
lib = await prisma.models.LibraryAgent.prisma(tx).update(
|
||||
lib = await prisma.models.LibraryAgent.prisma().update(
|
||||
where={"id": library_agent.id},
|
||||
data={
|
||||
"AgentGraph": {
|
||||
@@ -536,13 +525,13 @@ async def update_agent_version_in_library(
|
||||
},
|
||||
include={"AgentGraph": True},
|
||||
)
|
||||
if lib is None:
|
||||
raise NotFoundError(f"Library agent {library_agent.id} not found")
|
||||
|
||||
if lib is None:
|
||||
raise NotFoundError(
|
||||
f"Failed to update library agent for {agent_graph_id} v{agent_graph_version}"
|
||||
)
|
||||
|
||||
return library_model.LibraryAgent.from_db(lib)
|
||||
return library_model.LibraryAgent.from_db(lib)
|
||||
except prisma.errors.PrismaError as e:
|
||||
logger.error(f"Database error updating agent version in library: {e}")
|
||||
raise DatabaseError("Failed to update agent version in library") from e
|
||||
|
||||
|
||||
async def update_library_agent(
|
||||
@@ -836,7 +825,6 @@ async def add_store_agent_to_library(
|
||||
}
|
||||
},
|
||||
"isCreatedByUser": False,
|
||||
"useGraphIsActiveVersion": False,
|
||||
"settings": SafeJson(
|
||||
_initialize_graph_settings(graph_model).model_dump()
|
||||
),
|
||||
|
||||
@@ -48,7 +48,6 @@ class LibraryAgent(pydantic.BaseModel):
|
||||
id: str
|
||||
graph_id: str
|
||||
graph_version: int
|
||||
owner_user_id: str # ID of user who owns/created this agent graph
|
||||
|
||||
image_url: str | None
|
||||
|
||||
@@ -164,7 +163,6 @@ class LibraryAgent(pydantic.BaseModel):
|
||||
id=agent.id,
|
||||
graph_id=agent.agentGraphId,
|
||||
graph_version=agent.agentGraphVersion,
|
||||
owner_user_id=agent.userId,
|
||||
image_url=agent.imageUrl,
|
||||
creator_name=creator_name,
|
||||
creator_image_url=creator_image_url,
|
||||
|
||||
@@ -42,7 +42,6 @@ async def test_get_library_agents_success(
|
||||
id="test-agent-1",
|
||||
graph_id="test-agent-1",
|
||||
graph_version=1,
|
||||
owner_user_id=test_user_id,
|
||||
name="Test Agent 1",
|
||||
description="Test Description 1",
|
||||
image_url=None,
|
||||
@@ -65,7 +64,6 @@ async def test_get_library_agents_success(
|
||||
id="test-agent-2",
|
||||
graph_id="test-agent-2",
|
||||
graph_version=1,
|
||||
owner_user_id=test_user_id,
|
||||
name="Test Agent 2",
|
||||
description="Test Description 2",
|
||||
image_url=None,
|
||||
@@ -140,7 +138,6 @@ async def test_get_favorite_library_agents_success(
|
||||
id="test-agent-1",
|
||||
graph_id="test-agent-1",
|
||||
graph_version=1,
|
||||
owner_user_id=test_user_id,
|
||||
name="Favorite Agent 1",
|
||||
description="Test Favorite Description 1",
|
||||
image_url=None,
|
||||
@@ -208,7 +205,6 @@ def test_add_agent_to_library_success(
|
||||
id="test-library-agent-id",
|
||||
graph_id="test-agent-1",
|
||||
graph_version=1,
|
||||
owner_user_id=test_user_id,
|
||||
name="Test Agent 1",
|
||||
description="Test Description 1",
|
||||
image_url=None,
|
||||
|
||||
@@ -1,417 +0,0 @@
|
||||
"""
|
||||
Content Type Handlers for Unified Embeddings
|
||||
|
||||
Pluggable system for different content sources (store agents, blocks, docs).
|
||||
Each handler knows how to fetch and process its content type for embedding.
|
||||
"""
|
||||
|
||||
import logging
|
||||
from abc import ABC, abstractmethod
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
from prisma.enums import ContentType
|
||||
|
||||
from backend.data.db import query_raw_with_schema
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class ContentItem:
|
||||
"""Represents a piece of content to be embedded."""
|
||||
|
||||
content_id: str # Unique identifier (DB ID or file path)
|
||||
content_type: ContentType
|
||||
searchable_text: str # Combined text for embedding
|
||||
metadata: dict[str, Any] # Content-specific metadata
|
||||
user_id: str | None = None # For user-scoped content
|
||||
|
||||
|
||||
class ContentHandler(ABC):
|
||||
"""Base handler for fetching and processing content for embeddings."""
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def content_type(self) -> ContentType:
|
||||
"""The ContentType this handler manages."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def get_missing_items(self, batch_size: int) -> list[ContentItem]:
|
||||
"""
|
||||
Fetch items that don't have embeddings yet.
|
||||
|
||||
Args:
|
||||
batch_size: Maximum number of items to return
|
||||
|
||||
Returns:
|
||||
List of ContentItem objects ready for embedding
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def get_stats(self) -> dict[str, int]:
|
||||
"""
|
||||
Get statistics about embedding coverage.
|
||||
|
||||
Returns:
|
||||
Dict with keys: total, with_embeddings, without_embeddings
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class StoreAgentHandler(ContentHandler):
|
||||
"""Handler for marketplace store agent listings."""
|
||||
|
||||
@property
|
||||
def content_type(self) -> ContentType:
|
||||
return ContentType.STORE_AGENT
|
||||
|
||||
async def get_missing_items(self, batch_size: int) -> list[ContentItem]:
|
||||
"""Fetch approved store listings without embeddings."""
|
||||
from backend.api.features.store.embeddings import build_searchable_text
|
||||
|
||||
missing = await query_raw_with_schema(
|
||||
"""
|
||||
SELECT
|
||||
slv.id,
|
||||
slv.name,
|
||||
slv.description,
|
||||
slv."subHeading",
|
||||
slv.categories
|
||||
FROM {schema_prefix}"StoreListingVersion" slv
|
||||
LEFT JOIN {schema_prefix}"UnifiedContentEmbedding" uce
|
||||
ON slv.id = uce."contentId" AND uce."contentType" = 'STORE_AGENT'::{schema_prefix}"ContentType"
|
||||
WHERE slv."submissionStatus" = 'APPROVED'
|
||||
AND slv."isDeleted" = false
|
||||
AND uce."contentId" IS NULL
|
||||
LIMIT $1
|
||||
""",
|
||||
batch_size,
|
||||
)
|
||||
|
||||
return [
|
||||
ContentItem(
|
||||
content_id=row["id"],
|
||||
content_type=ContentType.STORE_AGENT,
|
||||
searchable_text=build_searchable_text(
|
||||
name=row["name"],
|
||||
description=row["description"],
|
||||
sub_heading=row["subHeading"],
|
||||
categories=row["categories"] or [],
|
||||
),
|
||||
metadata={
|
||||
"name": row["name"],
|
||||
"categories": row["categories"] or [],
|
||||
},
|
||||
user_id=None, # Store agents are public
|
||||
)
|
||||
for row in missing
|
||||
]
|
||||
|
||||
async def get_stats(self) -> dict[str, int]:
|
||||
"""Get statistics about store agent embedding coverage."""
|
||||
# Count approved versions
|
||||
approved_result = await query_raw_with_schema(
|
||||
"""
|
||||
SELECT COUNT(*) as count
|
||||
FROM {schema_prefix}"StoreListingVersion"
|
||||
WHERE "submissionStatus" = 'APPROVED'
|
||||
AND "isDeleted" = false
|
||||
"""
|
||||
)
|
||||
total_approved = approved_result[0]["count"] if approved_result else 0
|
||||
|
||||
# Count versions with embeddings
|
||||
embedded_result = await query_raw_with_schema(
|
||||
"""
|
||||
SELECT COUNT(*) as count
|
||||
FROM {schema_prefix}"StoreListingVersion" slv
|
||||
JOIN {schema_prefix}"UnifiedContentEmbedding" uce ON slv.id = uce."contentId" AND uce."contentType" = 'STORE_AGENT'::{schema_prefix}"ContentType"
|
||||
WHERE slv."submissionStatus" = 'APPROVED'
|
||||
AND slv."isDeleted" = false
|
||||
"""
|
||||
)
|
||||
with_embeddings = embedded_result[0]["count"] if embedded_result else 0
|
||||
|
||||
return {
|
||||
"total": total_approved,
|
||||
"with_embeddings": with_embeddings,
|
||||
"without_embeddings": total_approved - with_embeddings,
|
||||
}
|
||||
|
||||
|
||||
class BlockHandler(ContentHandler):
|
||||
"""Handler for block definitions (Python classes)."""
|
||||
|
||||
@property
|
||||
def content_type(self) -> ContentType:
|
||||
return ContentType.BLOCK
|
||||
|
||||
async def get_missing_items(self, batch_size: int) -> list[ContentItem]:
|
||||
"""Fetch blocks without embeddings."""
|
||||
from backend.data.block import get_blocks
|
||||
|
||||
# Get all available blocks
|
||||
all_blocks = get_blocks()
|
||||
|
||||
# Check which ones have embeddings
|
||||
if not all_blocks:
|
||||
return []
|
||||
|
||||
block_ids = list(all_blocks.keys())
|
||||
|
||||
# Query for existing embeddings
|
||||
placeholders = ",".join([f"${i+1}" for i in range(len(block_ids))])
|
||||
existing_result = await query_raw_with_schema(
|
||||
f"""
|
||||
SELECT "contentId"
|
||||
FROM {{schema_prefix}}"UnifiedContentEmbedding"
|
||||
WHERE "contentType" = 'BLOCK'::{{schema_prefix}}"ContentType"
|
||||
AND "contentId" = ANY(ARRAY[{placeholders}])
|
||||
""",
|
||||
*block_ids,
|
||||
)
|
||||
|
||||
existing_ids = {row["contentId"] for row in existing_result}
|
||||
missing_blocks = [
|
||||
(block_id, block_cls)
|
||||
for block_id, block_cls in all_blocks.items()
|
||||
if block_id not in existing_ids
|
||||
]
|
||||
|
||||
# Convert to ContentItem
|
||||
items = []
|
||||
for block_id, block_cls in missing_blocks[:batch_size]:
|
||||
try:
|
||||
block_instance = block_cls()
|
||||
|
||||
# Build searchable text from block metadata
|
||||
parts = []
|
||||
if hasattr(block_instance, "name") and block_instance.name:
|
||||
parts.append(block_instance.name)
|
||||
if (
|
||||
hasattr(block_instance, "description")
|
||||
and block_instance.description
|
||||
):
|
||||
parts.append(block_instance.description)
|
||||
if hasattr(block_instance, "categories") and block_instance.categories:
|
||||
# Convert BlockCategory enum to strings
|
||||
parts.append(
|
||||
" ".join(str(cat.value) for cat in block_instance.categories)
|
||||
)
|
||||
|
||||
# Add input/output schema info
|
||||
if hasattr(block_instance, "input_schema"):
|
||||
schema = block_instance.input_schema
|
||||
if hasattr(schema, "model_json_schema"):
|
||||
schema_dict = schema.model_json_schema()
|
||||
if "properties" in schema_dict:
|
||||
for prop_name, prop_info in schema_dict[
|
||||
"properties"
|
||||
].items():
|
||||
if "description" in prop_info:
|
||||
parts.append(
|
||||
f"{prop_name}: {prop_info['description']}"
|
||||
)
|
||||
|
||||
searchable_text = " ".join(parts)
|
||||
|
||||
items.append(
|
||||
ContentItem(
|
||||
content_id=block_id,
|
||||
content_type=ContentType.BLOCK,
|
||||
searchable_text=searchable_text,
|
||||
metadata={
|
||||
"name": getattr(block_instance, "name", ""),
|
||||
"categories": getattr(block_instance, "categories", []),
|
||||
},
|
||||
user_id=None, # Blocks are public
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to process block {block_id}: {e}")
|
||||
continue
|
||||
|
||||
return items
|
||||
|
||||
async def get_stats(self) -> dict[str, int]:
|
||||
"""Get statistics about block embedding coverage."""
|
||||
from backend.data.block import get_blocks
|
||||
|
||||
all_blocks = get_blocks()
|
||||
total_blocks = len(all_blocks)
|
||||
|
||||
if total_blocks == 0:
|
||||
return {"total": 0, "with_embeddings": 0, "without_embeddings": 0}
|
||||
|
||||
block_ids = list(all_blocks.keys())
|
||||
placeholders = ",".join([f"${i+1}" for i in range(len(block_ids))])
|
||||
|
||||
embedded_result = await query_raw_with_schema(
|
||||
f"""
|
||||
SELECT COUNT(*) as count
|
||||
FROM {{schema_prefix}}"UnifiedContentEmbedding"
|
||||
WHERE "contentType" = 'BLOCK'::{{schema_prefix}}"ContentType"
|
||||
AND "contentId" = ANY(ARRAY[{placeholders}])
|
||||
""",
|
||||
*block_ids,
|
||||
)
|
||||
|
||||
with_embeddings = embedded_result[0]["count"] if embedded_result else 0
|
||||
|
||||
return {
|
||||
"total": total_blocks,
|
||||
"with_embeddings": with_embeddings,
|
||||
"without_embeddings": total_blocks - with_embeddings,
|
||||
}
|
||||
|
||||
|
||||
class DocumentationHandler(ContentHandler):
|
||||
"""Handler for documentation files (.md/.mdx)."""
|
||||
|
||||
@property
|
||||
def content_type(self) -> ContentType:
|
||||
return ContentType.DOCUMENTATION
|
||||
|
||||
def _get_docs_root(self) -> Path:
|
||||
"""Get the documentation root directory."""
|
||||
# Assuming docs are in /docs relative to project root
|
||||
backend_root = Path(__file__).parent.parent.parent.parent
|
||||
docs_root = backend_root.parent.parent / "docs"
|
||||
return docs_root
|
||||
|
||||
def _extract_title_and_content(self, file_path: Path) -> tuple[str, str]:
|
||||
"""Extract title and content from markdown file."""
|
||||
try:
|
||||
content = file_path.read_text(encoding="utf-8")
|
||||
|
||||
# Try to extract title from first # heading
|
||||
lines = content.split("\n")
|
||||
title = ""
|
||||
body_lines = []
|
||||
|
||||
for line in lines:
|
||||
if line.startswith("# ") and not title:
|
||||
title = line[2:].strip()
|
||||
else:
|
||||
body_lines.append(line)
|
||||
|
||||
# If no title found, use filename
|
||||
if not title:
|
||||
title = file_path.stem.replace("-", " ").replace("_", " ").title()
|
||||
|
||||
body = "\n".join(body_lines)
|
||||
|
||||
return title, body
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to read {file_path}: {e}")
|
||||
return file_path.stem, ""
|
||||
|
||||
async def get_missing_items(self, batch_size: int) -> list[ContentItem]:
|
||||
"""Fetch documentation files without embeddings."""
|
||||
docs_root = self._get_docs_root()
|
||||
|
||||
if not docs_root.exists():
|
||||
logger.warning(f"Documentation root not found: {docs_root}")
|
||||
return []
|
||||
|
||||
# Find all .md and .mdx files
|
||||
all_docs = list(docs_root.rglob("*.md")) + list(docs_root.rglob("*.mdx"))
|
||||
|
||||
# Get relative paths for content IDs
|
||||
doc_paths = [str(doc.relative_to(docs_root)) for doc in all_docs]
|
||||
|
||||
if not doc_paths:
|
||||
return []
|
||||
|
||||
# Check which ones have embeddings
|
||||
placeholders = ",".join([f"${i+1}" for i in range(len(doc_paths))])
|
||||
existing_result = await query_raw_with_schema(
|
||||
f"""
|
||||
SELECT "contentId"
|
||||
FROM {{schema_prefix}}"UnifiedContentEmbedding"
|
||||
WHERE "contentType" = 'DOCUMENTATION'::{{schema_prefix}}"ContentType"
|
||||
AND "contentId" = ANY(ARRAY[{placeholders}])
|
||||
""",
|
||||
*doc_paths,
|
||||
)
|
||||
|
||||
existing_ids = {row["contentId"] for row in existing_result}
|
||||
missing_docs = [
|
||||
(doc_path, doc_file)
|
||||
for doc_path, doc_file in zip(doc_paths, all_docs)
|
||||
if doc_path not in existing_ids
|
||||
]
|
||||
|
||||
# Convert to ContentItem
|
||||
items = []
|
||||
for doc_path, doc_file in missing_docs[:batch_size]:
|
||||
try:
|
||||
title, content = self._extract_title_and_content(doc_file)
|
||||
|
||||
# Build searchable text
|
||||
searchable_text = f"{title} {content}"
|
||||
|
||||
items.append(
|
||||
ContentItem(
|
||||
content_id=doc_path,
|
||||
content_type=ContentType.DOCUMENTATION,
|
||||
searchable_text=searchable_text,
|
||||
metadata={
|
||||
"title": title,
|
||||
"path": doc_path,
|
||||
},
|
||||
user_id=None, # Documentation is public
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to process doc {doc_path}: {e}")
|
||||
continue
|
||||
|
||||
return items
|
||||
|
||||
async def get_stats(self) -> dict[str, int]:
|
||||
"""Get statistics about documentation embedding coverage."""
|
||||
docs_root = self._get_docs_root()
|
||||
|
||||
if not docs_root.exists():
|
||||
return {"total": 0, "with_embeddings": 0, "without_embeddings": 0}
|
||||
|
||||
# Count all .md and .mdx files
|
||||
all_docs = list(docs_root.rglob("*.md")) + list(docs_root.rglob("*.mdx"))
|
||||
total_docs = len(all_docs)
|
||||
|
||||
if total_docs == 0:
|
||||
return {"total": 0, "with_embeddings": 0, "without_embeddings": 0}
|
||||
|
||||
doc_paths = [str(doc.relative_to(docs_root)) for doc in all_docs]
|
||||
placeholders = ",".join([f"${i+1}" for i in range(len(doc_paths))])
|
||||
|
||||
embedded_result = await query_raw_with_schema(
|
||||
f"""
|
||||
SELECT COUNT(*) as count
|
||||
FROM {{schema_prefix}}"UnifiedContentEmbedding"
|
||||
WHERE "contentType" = 'DOCUMENTATION'::{{schema_prefix}}"ContentType"
|
||||
AND "contentId" = ANY(ARRAY[{placeholders}])
|
||||
""",
|
||||
*doc_paths,
|
||||
)
|
||||
|
||||
with_embeddings = embedded_result[0]["count"] if embedded_result else 0
|
||||
|
||||
return {
|
||||
"total": total_docs,
|
||||
"with_embeddings": with_embeddings,
|
||||
"without_embeddings": total_docs - with_embeddings,
|
||||
}
|
||||
|
||||
|
||||
# Content handler registry
|
||||
CONTENT_HANDLERS: dict[ContentType, ContentHandler] = {
|
||||
ContentType.STORE_AGENT: StoreAgentHandler(),
|
||||
ContentType.BLOCK: BlockHandler(),
|
||||
ContentType.DOCUMENTATION: DocumentationHandler(),
|
||||
}
|
||||
@@ -1,214 +0,0 @@
|
||||
"""
|
||||
Integration tests for content handlers using real DB.
|
||||
|
||||
Run with: poetry run pytest backend/api/features/store/content_handlers_integration_test.py -xvs
|
||||
|
||||
These tests use the real database but mock OpenAI calls.
|
||||
"""
|
||||
|
||||
from unittest.mock import patch
|
||||
|
||||
import pytest
|
||||
|
||||
from backend.api.features.store.content_handlers import (
|
||||
CONTENT_HANDLERS,
|
||||
BlockHandler,
|
||||
DocumentationHandler,
|
||||
StoreAgentHandler,
|
||||
)
|
||||
from backend.api.features.store.embeddings import (
|
||||
backfill_all_content_types,
|
||||
ensure_content_embedding,
|
||||
get_embedding_stats,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_store_agent_handler_real_db():
|
||||
"""Test StoreAgentHandler with real database queries."""
|
||||
handler = StoreAgentHandler()
|
||||
|
||||
# Get stats from real DB
|
||||
stats = await handler.get_stats()
|
||||
|
||||
# Stats should have correct structure
|
||||
assert "total" in stats
|
||||
assert "with_embeddings" in stats
|
||||
assert "without_embeddings" in stats
|
||||
assert stats["total"] >= 0
|
||||
assert stats["with_embeddings"] >= 0
|
||||
assert stats["without_embeddings"] >= 0
|
||||
|
||||
# Get missing items (max 1 to keep test fast)
|
||||
items = await handler.get_missing_items(batch_size=1)
|
||||
|
||||
# Items should be list (may be empty if all have embeddings)
|
||||
assert isinstance(items, list)
|
||||
|
||||
if items:
|
||||
item = items[0]
|
||||
assert item.content_id is not None
|
||||
assert item.content_type.value == "STORE_AGENT"
|
||||
assert item.searchable_text != ""
|
||||
assert item.user_id is None
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_block_handler_real_db():
|
||||
"""Test BlockHandler with real database queries."""
|
||||
handler = BlockHandler()
|
||||
|
||||
# Get stats from real DB
|
||||
stats = await handler.get_stats()
|
||||
|
||||
# Stats should have correct structure
|
||||
assert "total" in stats
|
||||
assert "with_embeddings" in stats
|
||||
assert "without_embeddings" in stats
|
||||
assert stats["total"] >= 0 # Should have at least some blocks
|
||||
assert stats["with_embeddings"] >= 0
|
||||
assert stats["without_embeddings"] >= 0
|
||||
|
||||
# Get missing items (max 1 to keep test fast)
|
||||
items = await handler.get_missing_items(batch_size=1)
|
||||
|
||||
# Items should be list
|
||||
assert isinstance(items, list)
|
||||
|
||||
if items:
|
||||
item = items[0]
|
||||
assert item.content_id is not None # Should be block UUID
|
||||
assert item.content_type.value == "BLOCK"
|
||||
assert item.searchable_text != ""
|
||||
assert item.user_id is None
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_documentation_handler_real_fs():
|
||||
"""Test DocumentationHandler with real filesystem."""
|
||||
handler = DocumentationHandler()
|
||||
|
||||
# Get stats from real filesystem
|
||||
stats = await handler.get_stats()
|
||||
|
||||
# Stats should have correct structure
|
||||
assert "total" in stats
|
||||
assert "with_embeddings" in stats
|
||||
assert "without_embeddings" in stats
|
||||
assert stats["total"] >= 0
|
||||
assert stats["with_embeddings"] >= 0
|
||||
assert stats["without_embeddings"] >= 0
|
||||
|
||||
# Get missing items (max 1 to keep test fast)
|
||||
items = await handler.get_missing_items(batch_size=1)
|
||||
|
||||
# Items should be list
|
||||
assert isinstance(items, list)
|
||||
|
||||
if items:
|
||||
item = items[0]
|
||||
assert item.content_id is not None # Should be relative path
|
||||
assert item.content_type.value == "DOCUMENTATION"
|
||||
assert item.searchable_text != ""
|
||||
assert item.user_id is None
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_get_embedding_stats_all_types():
|
||||
"""Test get_embedding_stats aggregates all content types."""
|
||||
stats = await get_embedding_stats()
|
||||
|
||||
# Should have structure with by_type and totals
|
||||
assert "by_type" in stats
|
||||
assert "totals" in stats
|
||||
|
||||
# Check each content type is present
|
||||
by_type = stats["by_type"]
|
||||
assert "STORE_AGENT" in by_type
|
||||
assert "BLOCK" in by_type
|
||||
assert "DOCUMENTATION" in by_type
|
||||
|
||||
# Check totals are aggregated
|
||||
totals = stats["totals"]
|
||||
assert totals["total"] >= 0
|
||||
assert totals["with_embeddings"] >= 0
|
||||
assert totals["without_embeddings"] >= 0
|
||||
assert "coverage_percent" in totals
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@patch("backend.api.features.store.embeddings.generate_embedding")
|
||||
async def test_ensure_content_embedding_blocks(mock_generate):
|
||||
"""Test creating embeddings for blocks (mocked OpenAI)."""
|
||||
# Mock OpenAI to return fake embedding
|
||||
mock_generate.return_value = [0.1] * 1536
|
||||
|
||||
# Get one block without embedding
|
||||
handler = BlockHandler()
|
||||
items = await handler.get_missing_items(batch_size=1)
|
||||
|
||||
if not items:
|
||||
pytest.skip("No blocks without embeddings")
|
||||
|
||||
item = items[0]
|
||||
|
||||
# Try to create embedding (OpenAI mocked)
|
||||
result = await ensure_content_embedding(
|
||||
content_type=item.content_type,
|
||||
content_id=item.content_id,
|
||||
searchable_text=item.searchable_text,
|
||||
metadata=item.metadata,
|
||||
user_id=item.user_id,
|
||||
)
|
||||
|
||||
# Should succeed with mocked OpenAI
|
||||
assert result is True
|
||||
mock_generate.assert_called_once()
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@patch("backend.api.features.store.embeddings.generate_embedding")
|
||||
async def test_backfill_all_content_types_dry_run(mock_generate):
|
||||
"""Test backfill_all_content_types processes all handlers in order."""
|
||||
# Mock OpenAI to return fake embedding
|
||||
mock_generate.return_value = [0.1] * 1536
|
||||
|
||||
# Run backfill with batch_size=1 to process max 1 per type
|
||||
result = await backfill_all_content_types(batch_size=1)
|
||||
|
||||
# Should have results for all content types
|
||||
assert "by_type" in result
|
||||
assert "totals" in result
|
||||
|
||||
by_type = result["by_type"]
|
||||
assert "BLOCK" in by_type
|
||||
assert "STORE_AGENT" in by_type
|
||||
assert "DOCUMENTATION" in by_type
|
||||
|
||||
# Each type should have correct structure
|
||||
for content_type, type_result in by_type.items():
|
||||
assert "processed" in type_result
|
||||
assert "success" in type_result
|
||||
assert "failed" in type_result
|
||||
|
||||
# Totals should aggregate
|
||||
totals = result["totals"]
|
||||
assert totals["processed"] >= 0
|
||||
assert totals["success"] >= 0
|
||||
assert totals["failed"] >= 0
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_content_handler_registry():
|
||||
"""Test all handlers are registered in correct order."""
|
||||
from prisma.enums import ContentType
|
||||
|
||||
# All three types should be registered
|
||||
assert ContentType.STORE_AGENT in CONTENT_HANDLERS
|
||||
assert ContentType.BLOCK in CONTENT_HANDLERS
|
||||
assert ContentType.DOCUMENTATION in CONTENT_HANDLERS
|
||||
|
||||
# Check handler types
|
||||
assert isinstance(CONTENT_HANDLERS[ContentType.STORE_AGENT], StoreAgentHandler)
|
||||
assert isinstance(CONTENT_HANDLERS[ContentType.BLOCK], BlockHandler)
|
||||
assert isinstance(CONTENT_HANDLERS[ContentType.DOCUMENTATION], DocumentationHandler)
|
||||
@@ -1,324 +0,0 @@
|
||||
"""
|
||||
E2E tests for content handlers (blocks, store agents, documentation).
|
||||
|
||||
Tests the full flow: discovering content → generating embeddings → storing.
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import pytest
|
||||
from prisma.enums import ContentType
|
||||
|
||||
from backend.api.features.store.content_handlers import (
|
||||
CONTENT_HANDLERS,
|
||||
BlockHandler,
|
||||
DocumentationHandler,
|
||||
StoreAgentHandler,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_store_agent_handler_get_missing_items(mocker):
|
||||
"""Test StoreAgentHandler fetches approved agents without embeddings."""
|
||||
handler = StoreAgentHandler()
|
||||
|
||||
# Mock database query
|
||||
mock_missing = [
|
||||
{
|
||||
"id": "agent-1",
|
||||
"name": "Test Agent",
|
||||
"description": "A test agent",
|
||||
"subHeading": "Test heading",
|
||||
"categories": ["AI", "Testing"],
|
||||
}
|
||||
]
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.content_handlers.query_raw_with_schema",
|
||||
return_value=mock_missing,
|
||||
):
|
||||
items = await handler.get_missing_items(batch_size=10)
|
||||
|
||||
assert len(items) == 1
|
||||
assert items[0].content_id == "agent-1"
|
||||
assert items[0].content_type == ContentType.STORE_AGENT
|
||||
assert "Test Agent" in items[0].searchable_text
|
||||
assert "A test agent" in items[0].searchable_text
|
||||
assert items[0].metadata["name"] == "Test Agent"
|
||||
assert items[0].user_id is None
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_store_agent_handler_get_stats(mocker):
|
||||
"""Test StoreAgentHandler returns correct stats."""
|
||||
handler = StoreAgentHandler()
|
||||
|
||||
# Mock approved count query
|
||||
mock_approved = [{"count": 50}]
|
||||
# Mock embedded count query
|
||||
mock_embedded = [{"count": 30}]
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.content_handlers.query_raw_with_schema",
|
||||
side_effect=[mock_approved, mock_embedded],
|
||||
):
|
||||
stats = await handler.get_stats()
|
||||
|
||||
assert stats["total"] == 50
|
||||
assert stats["with_embeddings"] == 30
|
||||
assert stats["without_embeddings"] == 20
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_block_handler_get_missing_items(mocker):
|
||||
"""Test BlockHandler discovers blocks without embeddings."""
|
||||
handler = BlockHandler()
|
||||
|
||||
# Mock get_blocks to return test blocks
|
||||
mock_block_class = MagicMock()
|
||||
mock_block_instance = MagicMock()
|
||||
mock_block_instance.name = "Calculator Block"
|
||||
mock_block_instance.description = "Performs calculations"
|
||||
mock_block_instance.categories = [MagicMock(value="MATH")]
|
||||
mock_block_instance.input_schema.model_json_schema.return_value = {
|
||||
"properties": {"expression": {"description": "Math expression to evaluate"}}
|
||||
}
|
||||
mock_block_class.return_value = mock_block_instance
|
||||
|
||||
mock_blocks = {"block-uuid-1": mock_block_class}
|
||||
|
||||
# Mock existing embeddings query (no embeddings exist)
|
||||
mock_existing = []
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.content_handlers.get_blocks",
|
||||
return_value=mock_blocks,
|
||||
):
|
||||
with patch(
|
||||
"backend.api.features.store.content_handlers.query_raw_with_schema",
|
||||
return_value=mock_existing,
|
||||
):
|
||||
items = await handler.get_missing_items(batch_size=10)
|
||||
|
||||
assert len(items) == 1
|
||||
assert items[0].content_id == "block-uuid-1"
|
||||
assert items[0].content_type == ContentType.BLOCK
|
||||
assert "Calculator Block" in items[0].searchable_text
|
||||
assert "Performs calculations" in items[0].searchable_text
|
||||
assert "MATH" in items[0].searchable_text
|
||||
assert "expression: Math expression" in items[0].searchable_text
|
||||
assert items[0].user_id is None
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_block_handler_get_stats(mocker):
|
||||
"""Test BlockHandler returns correct stats."""
|
||||
handler = BlockHandler()
|
||||
|
||||
# Mock get_blocks
|
||||
mock_blocks = {
|
||||
"block-1": MagicMock(),
|
||||
"block-2": MagicMock(),
|
||||
"block-3": MagicMock(),
|
||||
}
|
||||
|
||||
# Mock embedded count query (2 blocks have embeddings)
|
||||
mock_embedded = [{"count": 2}]
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.content_handlers.get_blocks",
|
||||
return_value=mock_blocks,
|
||||
):
|
||||
with patch(
|
||||
"backend.api.features.store.content_handlers.query_raw_with_schema",
|
||||
return_value=mock_embedded,
|
||||
):
|
||||
stats = await handler.get_stats()
|
||||
|
||||
assert stats["total"] == 3
|
||||
assert stats["with_embeddings"] == 2
|
||||
assert stats["without_embeddings"] == 1
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_documentation_handler_get_missing_items(tmp_path, mocker):
|
||||
"""Test DocumentationHandler discovers docs without embeddings."""
|
||||
handler = DocumentationHandler()
|
||||
|
||||
# Create temporary docs directory with test files
|
||||
docs_root = tmp_path / "docs"
|
||||
docs_root.mkdir()
|
||||
|
||||
(docs_root / "guide.md").write_text("# Getting Started\n\nThis is a guide.")
|
||||
(docs_root / "api.mdx").write_text("# API Reference\n\nAPI documentation.")
|
||||
|
||||
# Mock _get_docs_root to return temp dir
|
||||
with patch.object(handler, "_get_docs_root", return_value=docs_root):
|
||||
# Mock existing embeddings query (no embeddings exist)
|
||||
with patch(
|
||||
"backend.api.features.store.content_handlers.query_raw_with_schema",
|
||||
return_value=[],
|
||||
):
|
||||
items = await handler.get_missing_items(batch_size=10)
|
||||
|
||||
assert len(items) == 2
|
||||
|
||||
# Check guide.md
|
||||
guide_item = next(
|
||||
(item for item in items if item.content_id == "guide.md"), None
|
||||
)
|
||||
assert guide_item is not None
|
||||
assert guide_item.content_type == ContentType.DOCUMENTATION
|
||||
assert "Getting Started" in guide_item.searchable_text
|
||||
assert "This is a guide" in guide_item.searchable_text
|
||||
assert guide_item.metadata["title"] == "Getting Started"
|
||||
assert guide_item.user_id is None
|
||||
|
||||
# Check api.mdx
|
||||
api_item = next(
|
||||
(item for item in items if item.content_id == "api.mdx"), None
|
||||
)
|
||||
assert api_item is not None
|
||||
assert "API Reference" in api_item.searchable_text
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_documentation_handler_get_stats(tmp_path, mocker):
|
||||
"""Test DocumentationHandler returns correct stats."""
|
||||
handler = DocumentationHandler()
|
||||
|
||||
# Create temporary docs directory
|
||||
docs_root = tmp_path / "docs"
|
||||
docs_root.mkdir()
|
||||
(docs_root / "doc1.md").write_text("# Doc 1")
|
||||
(docs_root / "doc2.md").write_text("# Doc 2")
|
||||
(docs_root / "doc3.mdx").write_text("# Doc 3")
|
||||
|
||||
# Mock embedded count query (1 doc has embedding)
|
||||
mock_embedded = [{"count": 1}]
|
||||
|
||||
with patch.object(handler, "_get_docs_root", return_value=docs_root):
|
||||
with patch(
|
||||
"backend.api.features.store.content_handlers.query_raw_with_schema",
|
||||
return_value=mock_embedded,
|
||||
):
|
||||
stats = await handler.get_stats()
|
||||
|
||||
assert stats["total"] == 3
|
||||
assert stats["with_embeddings"] == 1
|
||||
assert stats["without_embeddings"] == 2
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_documentation_handler_title_extraction(tmp_path):
|
||||
"""Test DocumentationHandler extracts title from markdown heading."""
|
||||
handler = DocumentationHandler()
|
||||
|
||||
# Test with heading
|
||||
doc_with_heading = tmp_path / "with_heading.md"
|
||||
doc_with_heading.write_text("# My Title\n\nContent here")
|
||||
title, content = handler._extract_title_and_content(doc_with_heading)
|
||||
assert title == "My Title"
|
||||
assert "# My Title" not in content
|
||||
assert "Content here" in content
|
||||
|
||||
# Test without heading
|
||||
doc_without_heading = tmp_path / "no-heading.md"
|
||||
doc_without_heading.write_text("Just content, no heading")
|
||||
title, content = handler._extract_title_and_content(doc_without_heading)
|
||||
assert title == "No Heading" # Uses filename
|
||||
assert "Just content" in content
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_content_handlers_registry():
|
||||
"""Test all content types are registered."""
|
||||
assert ContentType.STORE_AGENT in CONTENT_HANDLERS
|
||||
assert ContentType.BLOCK in CONTENT_HANDLERS
|
||||
assert ContentType.DOCUMENTATION in CONTENT_HANDLERS
|
||||
|
||||
assert isinstance(CONTENT_HANDLERS[ContentType.STORE_AGENT], StoreAgentHandler)
|
||||
assert isinstance(CONTENT_HANDLERS[ContentType.BLOCK], BlockHandler)
|
||||
assert isinstance(CONTENT_HANDLERS[ContentType.DOCUMENTATION], DocumentationHandler)
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_block_handler_handles_missing_attributes():
|
||||
"""Test BlockHandler gracefully handles blocks with missing attributes."""
|
||||
handler = BlockHandler()
|
||||
|
||||
# Mock block with minimal attributes
|
||||
mock_block_class = MagicMock()
|
||||
mock_block_instance = MagicMock()
|
||||
mock_block_instance.name = "Minimal Block"
|
||||
# No description, categories, or schema
|
||||
del mock_block_instance.description
|
||||
del mock_block_instance.categories
|
||||
del mock_block_instance.input_schema
|
||||
mock_block_class.return_value = mock_block_instance
|
||||
|
||||
mock_blocks = {"block-minimal": mock_block_class}
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.content_handlers.get_blocks",
|
||||
return_value=mock_blocks,
|
||||
):
|
||||
with patch(
|
||||
"backend.api.features.store.content_handlers.query_raw_with_schema",
|
||||
return_value=[],
|
||||
):
|
||||
items = await handler.get_missing_items(batch_size=10)
|
||||
|
||||
assert len(items) == 1
|
||||
assert items[0].searchable_text == "Minimal Block"
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_block_handler_skips_failed_blocks():
|
||||
"""Test BlockHandler skips blocks that fail to instantiate."""
|
||||
handler = BlockHandler()
|
||||
|
||||
# Mock one good block and one bad block
|
||||
good_block = MagicMock()
|
||||
good_instance = MagicMock()
|
||||
good_instance.name = "Good Block"
|
||||
good_instance.description = "Works fine"
|
||||
good_instance.categories = []
|
||||
good_block.return_value = good_instance
|
||||
|
||||
bad_block = MagicMock()
|
||||
bad_block.side_effect = Exception("Instantiation failed")
|
||||
|
||||
mock_blocks = {"good-block": good_block, "bad-block": bad_block}
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.content_handlers.get_blocks",
|
||||
return_value=mock_blocks,
|
||||
):
|
||||
with patch(
|
||||
"backend.api.features.store.content_handlers.query_raw_with_schema",
|
||||
return_value=[],
|
||||
):
|
||||
items = await handler.get_missing_items(batch_size=10)
|
||||
|
||||
# Should only get the good block
|
||||
assert len(items) == 1
|
||||
assert items[0].content_id == "good-block"
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_documentation_handler_missing_docs_directory():
|
||||
"""Test DocumentationHandler handles missing docs directory gracefully."""
|
||||
handler = DocumentationHandler()
|
||||
|
||||
# Mock _get_docs_root to return non-existent path
|
||||
fake_path = Path("/nonexistent/docs")
|
||||
with patch.object(handler, "_get_docs_root", return_value=fake_path):
|
||||
items = await handler.get_missing_items(batch_size=10)
|
||||
assert items == []
|
||||
|
||||
stats = await handler.get_stats()
|
||||
assert stats["total"] == 0
|
||||
assert stats["with_embeddings"] == 0
|
||||
assert stats["without_embeddings"] == 0
|
||||
@@ -1,7 +1,8 @@
|
||||
import asyncio
|
||||
import logging
|
||||
import typing
|
||||
from datetime import datetime, timezone
|
||||
from typing import Any, Literal
|
||||
from typing import Literal
|
||||
|
||||
import fastapi
|
||||
import prisma.enums
|
||||
@@ -9,7 +10,7 @@ import prisma.errors
|
||||
import prisma.models
|
||||
import prisma.types
|
||||
|
||||
from backend.data.db import transaction
|
||||
from backend.data.db import query_raw_with_schema, transaction
|
||||
from backend.data.graph import (
|
||||
GraphMeta,
|
||||
GraphModel,
|
||||
@@ -29,8 +30,6 @@ from backend.util.settings import Settings
|
||||
|
||||
from . import exceptions as store_exceptions
|
||||
from . import model as store_model
|
||||
from .embeddings import ensure_embedding
|
||||
from .hybrid_search import hybrid_search
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
settings = Settings()
|
||||
@@ -51,77 +50,128 @@ async def get_store_agents(
|
||||
page_size: int = 20,
|
||||
) -> store_model.StoreAgentsResponse:
|
||||
"""
|
||||
Get PUBLIC store agents from the StoreAgent view.
|
||||
|
||||
Search behavior:
|
||||
- With search_query: Uses hybrid search (semantic + lexical)
|
||||
- Fallback: If embeddings unavailable, gracefully degrades to lexical-only
|
||||
- Rationale: User-facing endpoint prioritizes availability over accuracy
|
||||
|
||||
Note: Admin operations (approval) use fail-fast to prevent inconsistent state.
|
||||
Get PUBLIC store agents from the StoreAgent view
|
||||
"""
|
||||
logger.debug(
|
||||
f"Getting store agents. featured={featured}, creators={creators}, sorted_by={sorted_by}, search={search_query}, category={category}, page={page}"
|
||||
)
|
||||
|
||||
search_used_hybrid = False
|
||||
store_agents: list[store_model.StoreAgent] = []
|
||||
agents: list[dict[str, Any]] = []
|
||||
total = 0
|
||||
total_pages = 0
|
||||
|
||||
try:
|
||||
# If search_query is provided, use hybrid search (embeddings + tsvector)
|
||||
# If search_query is provided, use full-text search
|
||||
if search_query:
|
||||
# Try hybrid search combining semantic and lexical signals
|
||||
# Falls back to lexical-only if OpenAI unavailable (user-facing, high SLA)
|
||||
try:
|
||||
agents, total = await hybrid_search(
|
||||
query=search_query,
|
||||
featured=featured,
|
||||
creators=creators,
|
||||
category=category,
|
||||
sorted_by="relevance", # Use hybrid scoring for relevance
|
||||
page=page,
|
||||
page_size=page_size,
|
||||
)
|
||||
search_used_hybrid = True
|
||||
except Exception as e:
|
||||
# Log error but fall back to lexical search for better UX
|
||||
logger.error(
|
||||
f"Hybrid search failed (likely OpenAI unavailable), "
|
||||
f"falling back to lexical search: {e}"
|
||||
)
|
||||
# search_used_hybrid remains False, will use fallback path below
|
||||
offset = (page - 1) * page_size
|
||||
|
||||
# Convert hybrid search results (dict format) if hybrid succeeded
|
||||
if search_used_hybrid:
|
||||
total_pages = (total + page_size - 1) // page_size
|
||||
store_agents: list[store_model.StoreAgent] = []
|
||||
for agent in agents:
|
||||
try:
|
||||
store_agent = store_model.StoreAgent(
|
||||
slug=agent["slug"],
|
||||
agent_name=agent["agent_name"],
|
||||
agent_image=(
|
||||
agent["agent_image"][0] if agent["agent_image"] else ""
|
||||
),
|
||||
creator=agent["creator_username"] or "Needs Profile",
|
||||
creator_avatar=agent["creator_avatar"] or "",
|
||||
sub_heading=agent["sub_heading"],
|
||||
description=agent["description"],
|
||||
runs=agent["runs"],
|
||||
rating=agent["rating"],
|
||||
)
|
||||
store_agents.append(store_agent)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Error parsing Store agent from hybrid search results: {e}"
|
||||
)
|
||||
continue
|
||||
# Whitelist allowed order_by columns
|
||||
ALLOWED_ORDER_BY = {
|
||||
"rating": "rating DESC, rank DESC",
|
||||
"runs": "runs DESC, rank DESC",
|
||||
"name": "agent_name ASC, rank ASC",
|
||||
"updated_at": "updated_at DESC, rank DESC",
|
||||
}
|
||||
|
||||
if not search_used_hybrid:
|
||||
# Fallback path - use basic search or no search
|
||||
# Validate and get order clause
|
||||
if sorted_by and sorted_by in ALLOWED_ORDER_BY:
|
||||
order_by_clause = ALLOWED_ORDER_BY[sorted_by]
|
||||
else:
|
||||
order_by_clause = "updated_at DESC, rank DESC"
|
||||
|
||||
# Build WHERE conditions and parameters list
|
||||
where_parts: list[str] = []
|
||||
params: list[typing.Any] = [search_query] # $1 - search term
|
||||
param_index = 2 # Start at $2 for next parameter
|
||||
|
||||
# Always filter for available agents
|
||||
where_parts.append("is_available = true")
|
||||
|
||||
if featured:
|
||||
where_parts.append("featured = true")
|
||||
|
||||
if creators and creators:
|
||||
# Use ANY with array parameter
|
||||
where_parts.append(f"creator_username = ANY(${param_index})")
|
||||
params.append(creators)
|
||||
param_index += 1
|
||||
|
||||
if category and category:
|
||||
where_parts.append(f"${param_index} = ANY(categories)")
|
||||
params.append(category)
|
||||
param_index += 1
|
||||
|
||||
sql_where_clause: str = " AND ".join(where_parts) if where_parts else "1=1"
|
||||
|
||||
# Add pagination params
|
||||
params.extend([page_size, offset])
|
||||
limit_param = f"${param_index}"
|
||||
offset_param = f"${param_index + 1}"
|
||||
|
||||
# Execute full-text search query with parameterized values
|
||||
sql_query = f"""
|
||||
SELECT
|
||||
slug,
|
||||
agent_name,
|
||||
agent_image,
|
||||
creator_username,
|
||||
creator_avatar,
|
||||
sub_heading,
|
||||
description,
|
||||
runs,
|
||||
rating,
|
||||
categories,
|
||||
featured,
|
||||
is_available,
|
||||
updated_at,
|
||||
ts_rank_cd(search, query) AS rank
|
||||
FROM {{schema_prefix}}"StoreAgent",
|
||||
plainto_tsquery('english', $1) AS query
|
||||
WHERE {sql_where_clause}
|
||||
AND search @@ query
|
||||
ORDER BY {order_by_clause}
|
||||
LIMIT {limit_param} OFFSET {offset_param}
|
||||
"""
|
||||
|
||||
# Count query for pagination - only uses search term parameter
|
||||
count_query = f"""
|
||||
SELECT COUNT(*) as count
|
||||
FROM {{schema_prefix}}"StoreAgent",
|
||||
plainto_tsquery('english', $1) AS query
|
||||
WHERE {sql_where_clause}
|
||||
AND search @@ query
|
||||
"""
|
||||
|
||||
# Execute both queries with parameters
|
||||
agents = await query_raw_with_schema(sql_query, *params)
|
||||
|
||||
# For count, use params without pagination (last 2 params)
|
||||
count_params = params[:-2]
|
||||
count_result = await query_raw_with_schema(count_query, *count_params)
|
||||
|
||||
total = count_result[0]["count"] if count_result else 0
|
||||
total_pages = (total + page_size - 1) // page_size
|
||||
|
||||
# Convert raw results to StoreAgent models
|
||||
store_agents: list[store_model.StoreAgent] = []
|
||||
for agent in agents:
|
||||
try:
|
||||
store_agent = store_model.StoreAgent(
|
||||
slug=agent["slug"],
|
||||
agent_name=agent["agent_name"],
|
||||
agent_image=(
|
||||
agent["agent_image"][0] if agent["agent_image"] else ""
|
||||
),
|
||||
creator=agent["creator_username"] or "Needs Profile",
|
||||
creator_avatar=agent["creator_avatar"] or "",
|
||||
sub_heading=agent["sub_heading"],
|
||||
description=agent["description"],
|
||||
runs=agent["runs"],
|
||||
rating=agent["rating"],
|
||||
)
|
||||
store_agents.append(store_agent)
|
||||
except Exception as e:
|
||||
logger.error(f"Error parsing Store agent from search results: {e}")
|
||||
continue
|
||||
|
||||
else:
|
||||
# Non-search query path (original logic)
|
||||
where_clause: prisma.types.StoreAgentWhereInput = {"is_available": True}
|
||||
if featured:
|
||||
where_clause["featured"] = featured
|
||||
@@ -130,14 +180,6 @@ async def get_store_agents(
|
||||
if category:
|
||||
where_clause["categories"] = {"has": category}
|
||||
|
||||
# Add basic text search if search_query provided but hybrid failed
|
||||
if search_query:
|
||||
where_clause["OR"] = [
|
||||
{"agent_name": {"contains": search_query, "mode": "insensitive"}},
|
||||
{"sub_heading": {"contains": search_query, "mode": "insensitive"}},
|
||||
{"description": {"contains": search_query, "mode": "insensitive"}},
|
||||
]
|
||||
|
||||
order_by = []
|
||||
if sorted_by == "rating":
|
||||
order_by.append({"rating": "desc"})
|
||||
@@ -146,7 +188,7 @@ async def get_store_agents(
|
||||
elif sorted_by == "name":
|
||||
order_by.append({"agent_name": "asc"})
|
||||
|
||||
db_agents = await prisma.models.StoreAgent.prisma().find_many(
|
||||
agents = await prisma.models.StoreAgent.prisma().find_many(
|
||||
where=where_clause,
|
||||
order=order_by,
|
||||
skip=(page - 1) * page_size,
|
||||
@@ -157,7 +199,7 @@ async def get_store_agents(
|
||||
total_pages = (total + page_size - 1) // page_size
|
||||
|
||||
store_agents: list[store_model.StoreAgent] = []
|
||||
for agent in db_agents:
|
||||
for agent in agents:
|
||||
try:
|
||||
# Create the StoreAgent object safely
|
||||
store_agent = store_model.StoreAgent(
|
||||
@@ -572,7 +614,6 @@ async def get_store_submissions(
|
||||
submission_models = []
|
||||
for sub in submissions:
|
||||
submission_model = store_model.StoreSubmission(
|
||||
listing_id=sub.listing_id,
|
||||
agent_id=sub.agent_id,
|
||||
agent_version=sub.agent_version,
|
||||
name=sub.name,
|
||||
@@ -626,48 +667,35 @@ async def delete_store_submission(
|
||||
submission_id: str,
|
||||
) -> bool:
|
||||
"""
|
||||
Delete a store submission version as the submitting user.
|
||||
Delete a store listing submission as the submitting user.
|
||||
|
||||
Args:
|
||||
user_id: ID of the authenticated user
|
||||
submission_id: StoreListingVersion ID to delete
|
||||
submission_id: ID of the submission to be deleted
|
||||
|
||||
Returns:
|
||||
bool: True if successfully deleted
|
||||
bool: True if the submission was successfully deleted, False otherwise
|
||||
"""
|
||||
logger.debug(f"Deleting store submission {submission_id} for user {user_id}")
|
||||
|
||||
try:
|
||||
# Find the submission version with ownership check
|
||||
version = await prisma.models.StoreListingVersion.prisma().find_first(
|
||||
where={"id": submission_id}, include={"StoreListing": True}
|
||||
# Verify the submission belongs to this user
|
||||
submission = await prisma.models.StoreListing.prisma().find_first(
|
||||
where={"agentGraphId": submission_id, "owningUserId": user_id}
|
||||
)
|
||||
|
||||
if (
|
||||
not version
|
||||
or not version.StoreListing
|
||||
or version.StoreListing.owningUserId != user_id
|
||||
):
|
||||
raise store_exceptions.SubmissionNotFoundError("Submission not found")
|
||||
|
||||
# Prevent deletion of approved submissions
|
||||
if version.submissionStatus == prisma.enums.SubmissionStatus.APPROVED:
|
||||
raise store_exceptions.InvalidOperationError(
|
||||
"Cannot delete approved submissions"
|
||||
if not submission:
|
||||
logger.warning(f"Submission not found for user {user_id}: {submission_id}")
|
||||
raise store_exceptions.SubmissionNotFoundError(
|
||||
f"Submission not found for this user. User ID: {user_id}, Submission ID: {submission_id}"
|
||||
)
|
||||
|
||||
# Delete the version
|
||||
await prisma.models.StoreListingVersion.prisma().delete(
|
||||
where={"id": version.id}
|
||||
)
|
||||
# Delete the submission
|
||||
await prisma.models.StoreListing.prisma().delete(where={"id": submission.id})
|
||||
|
||||
# Clean up empty listing if this was the last version
|
||||
remaining = await prisma.models.StoreListingVersion.prisma().count(
|
||||
where={"storeListingId": version.storeListingId}
|
||||
logger.debug(
|
||||
f"Successfully deleted submission {submission_id} for user {user_id}"
|
||||
)
|
||||
if remaining == 0:
|
||||
await prisma.models.StoreListing.prisma().delete(
|
||||
where={"id": version.storeListingId}
|
||||
)
|
||||
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
@@ -731,15 +759,9 @@ async def create_store_submission(
|
||||
logger.warning(
|
||||
f"Agent not found for user {user_id}: {agent_id} v{agent_version}"
|
||||
)
|
||||
# Provide more user-friendly error message when agent_id is empty
|
||||
if not agent_id or agent_id.strip() == "":
|
||||
raise store_exceptions.AgentNotFoundError(
|
||||
"No agent selected. Please select an agent before submitting to the store."
|
||||
)
|
||||
else:
|
||||
raise store_exceptions.AgentNotFoundError(
|
||||
f"Agent not found for this user. User ID: {user_id}, Agent ID: {agent_id}, Version: {agent_version}"
|
||||
)
|
||||
raise store_exceptions.AgentNotFoundError(
|
||||
f"Agent not found for this user. User ID: {user_id}, Agent ID: {agent_id}, Version: {agent_version}"
|
||||
)
|
||||
|
||||
# Check if listing already exists for this agent
|
||||
existing_listing = await prisma.models.StoreListing.prisma().find_first(
|
||||
@@ -811,7 +833,6 @@ async def create_store_submission(
|
||||
logger.debug(f"Created store listing for agent {agent_id}")
|
||||
# Return submission details
|
||||
return store_model.StoreSubmission(
|
||||
listing_id=listing.id,
|
||||
agent_id=agent_id,
|
||||
agent_version=agent_version,
|
||||
name=name,
|
||||
@@ -923,56 +944,81 @@ async def edit_store_submission(
|
||||
# Currently we are not allowing user to update the agent associated with a submission
|
||||
# If we allow it in future, then we need a check here to verify the agent belongs to this user.
|
||||
|
||||
# Only allow editing of PENDING submissions
|
||||
if current_version.submissionStatus != prisma.enums.SubmissionStatus.PENDING:
|
||||
# Check if we can edit this submission
|
||||
if current_version.submissionStatus == prisma.enums.SubmissionStatus.REJECTED:
|
||||
raise store_exceptions.InvalidOperationError(
|
||||
f"Cannot edit a {current_version.submissionStatus.value.lower()} submission. Only pending submissions can be edited."
|
||||
"Cannot edit a rejected submission"
|
||||
)
|
||||
|
||||
# For APPROVED submissions, we need to create a new version
|
||||
if current_version.submissionStatus == prisma.enums.SubmissionStatus.APPROVED:
|
||||
# Create a new version for the existing listing
|
||||
return await create_store_version(
|
||||
user_id=user_id,
|
||||
agent_id=current_version.agentGraphId,
|
||||
agent_version=current_version.agentGraphVersion,
|
||||
store_listing_id=current_version.storeListingId,
|
||||
name=name,
|
||||
video_url=video_url,
|
||||
agent_output_demo_url=agent_output_demo_url,
|
||||
image_urls=image_urls,
|
||||
description=description,
|
||||
sub_heading=sub_heading,
|
||||
categories=categories,
|
||||
changes_summary=changes_summary,
|
||||
recommended_schedule_cron=recommended_schedule_cron,
|
||||
instructions=instructions,
|
||||
)
|
||||
|
||||
# For PENDING submissions, we can update the existing version
|
||||
# Update the existing version
|
||||
updated_version = await prisma.models.StoreListingVersion.prisma().update(
|
||||
where={"id": store_listing_version_id},
|
||||
data=prisma.types.StoreListingVersionUpdateInput(
|
||||
elif current_version.submissionStatus == prisma.enums.SubmissionStatus.PENDING:
|
||||
# Update the existing version
|
||||
updated_version = await prisma.models.StoreListingVersion.prisma().update(
|
||||
where={"id": store_listing_version_id},
|
||||
data=prisma.types.StoreListingVersionUpdateInput(
|
||||
name=name,
|
||||
videoUrl=video_url,
|
||||
agentOutputDemoUrl=agent_output_demo_url,
|
||||
imageUrls=image_urls,
|
||||
description=description,
|
||||
categories=categories,
|
||||
subHeading=sub_heading,
|
||||
changesSummary=changes_summary,
|
||||
recommendedScheduleCron=recommended_schedule_cron,
|
||||
instructions=instructions,
|
||||
),
|
||||
)
|
||||
|
||||
logger.debug(
|
||||
f"Updated existing version {store_listing_version_id} for agent {current_version.agentGraphId}"
|
||||
)
|
||||
|
||||
if not updated_version:
|
||||
raise DatabaseError("Failed to update store listing version")
|
||||
return store_model.StoreSubmission(
|
||||
agent_id=current_version.agentGraphId,
|
||||
agent_version=current_version.agentGraphVersion,
|
||||
name=name,
|
||||
videoUrl=video_url,
|
||||
agentOutputDemoUrl=agent_output_demo_url,
|
||||
imageUrls=image_urls,
|
||||
sub_heading=sub_heading,
|
||||
slug=current_version.StoreListing.slug,
|
||||
description=description,
|
||||
categories=categories,
|
||||
subHeading=sub_heading,
|
||||
changesSummary=changes_summary,
|
||||
recommendedScheduleCron=recommended_schedule_cron,
|
||||
instructions=instructions,
|
||||
),
|
||||
)
|
||||
image_urls=image_urls,
|
||||
date_submitted=updated_version.submittedAt or updated_version.createdAt,
|
||||
status=updated_version.submissionStatus,
|
||||
runs=0,
|
||||
rating=0.0,
|
||||
store_listing_version_id=updated_version.id,
|
||||
changes_summary=changes_summary,
|
||||
video_url=video_url,
|
||||
categories=categories,
|
||||
version=updated_version.version,
|
||||
)
|
||||
|
||||
logger.debug(
|
||||
f"Updated existing version {store_listing_version_id} for agent {current_version.agentGraphId}"
|
||||
)
|
||||
|
||||
if not updated_version:
|
||||
raise DatabaseError("Failed to update store listing version")
|
||||
return store_model.StoreSubmission(
|
||||
listing_id=current_version.StoreListing.id,
|
||||
agent_id=current_version.agentGraphId,
|
||||
agent_version=current_version.agentGraphVersion,
|
||||
name=name,
|
||||
sub_heading=sub_heading,
|
||||
slug=current_version.StoreListing.slug,
|
||||
description=description,
|
||||
instructions=instructions,
|
||||
image_urls=image_urls,
|
||||
date_submitted=updated_version.submittedAt or updated_version.createdAt,
|
||||
status=updated_version.submissionStatus,
|
||||
runs=0,
|
||||
rating=0.0,
|
||||
store_listing_version_id=updated_version.id,
|
||||
changes_summary=changes_summary,
|
||||
video_url=video_url,
|
||||
categories=categories,
|
||||
version=updated_version.version,
|
||||
)
|
||||
else:
|
||||
raise store_exceptions.InvalidOperationError(
|
||||
f"Cannot edit submission with status: {current_version.submissionStatus}"
|
||||
)
|
||||
|
||||
except (
|
||||
store_exceptions.SubmissionNotFoundError,
|
||||
@@ -1051,78 +1097,38 @@ async def create_store_version(
|
||||
f"Agent not found for this user. User ID: {user_id}, Agent ID: {agent_id}, Version: {agent_version}"
|
||||
)
|
||||
|
||||
# Check if there's already a PENDING submission for this agent (any version)
|
||||
existing_pending_submission = (
|
||||
await prisma.models.StoreListingVersion.prisma().find_first(
|
||||
where=prisma.types.StoreListingVersionWhereInput(
|
||||
storeListingId=store_listing_id,
|
||||
agentGraphId=agent_id,
|
||||
submissionStatus=prisma.enums.SubmissionStatus.PENDING,
|
||||
isDeleted=False,
|
||||
)
|
||||
# Get the latest version number
|
||||
latest_version = listing.Versions[0] if listing.Versions else None
|
||||
|
||||
next_version = (latest_version.version + 1) if latest_version else 1
|
||||
|
||||
# Create a new version for the existing listing
|
||||
new_version = await prisma.models.StoreListingVersion.prisma().create(
|
||||
data=prisma.types.StoreListingVersionCreateInput(
|
||||
version=next_version,
|
||||
agentGraphId=agent_id,
|
||||
agentGraphVersion=agent_version,
|
||||
name=name,
|
||||
videoUrl=video_url,
|
||||
agentOutputDemoUrl=agent_output_demo_url,
|
||||
imageUrls=image_urls,
|
||||
description=description,
|
||||
instructions=instructions,
|
||||
categories=categories,
|
||||
subHeading=sub_heading,
|
||||
submissionStatus=prisma.enums.SubmissionStatus.PENDING,
|
||||
submittedAt=datetime.now(),
|
||||
changesSummary=changes_summary,
|
||||
recommendedScheduleCron=recommended_schedule_cron,
|
||||
storeListingId=store_listing_id,
|
||||
)
|
||||
)
|
||||
|
||||
# Handle existing pending submission and create new one atomically
|
||||
async with transaction() as tx:
|
||||
# Get the latest version number first
|
||||
latest_listing = await prisma.models.StoreListing.prisma(tx).find_first(
|
||||
where=prisma.types.StoreListingWhereInput(
|
||||
id=store_listing_id, owningUserId=user_id
|
||||
),
|
||||
include={"Versions": {"order_by": {"version": "desc"}, "take": 1}},
|
||||
)
|
||||
|
||||
if not latest_listing:
|
||||
raise store_exceptions.ListingNotFoundError(
|
||||
f"Store listing not found. User ID: {user_id}, Listing ID: {store_listing_id}"
|
||||
)
|
||||
|
||||
latest_version = (
|
||||
latest_listing.Versions[0] if latest_listing.Versions else None
|
||||
)
|
||||
next_version = (latest_version.version + 1) if latest_version else 1
|
||||
|
||||
# If there's an existing pending submission, delete it atomically before creating new one
|
||||
if existing_pending_submission:
|
||||
logger.info(
|
||||
f"Found existing PENDING submission for agent {agent_id} (was v{existing_pending_submission.agentGraphVersion}, now v{agent_version}), replacing existing submission instead of creating duplicate"
|
||||
)
|
||||
await prisma.models.StoreListingVersion.prisma(tx).delete(
|
||||
where={"id": existing_pending_submission.id}
|
||||
)
|
||||
logger.debug(
|
||||
f"Deleted existing pending submission {existing_pending_submission.id}"
|
||||
)
|
||||
|
||||
# Create a new version for the existing listing
|
||||
new_version = await prisma.models.StoreListingVersion.prisma(tx).create(
|
||||
data=prisma.types.StoreListingVersionCreateInput(
|
||||
version=next_version,
|
||||
agentGraphId=agent_id,
|
||||
agentGraphVersion=agent_version,
|
||||
name=name,
|
||||
videoUrl=video_url,
|
||||
agentOutputDemoUrl=agent_output_demo_url,
|
||||
imageUrls=image_urls,
|
||||
description=description,
|
||||
instructions=instructions,
|
||||
categories=categories,
|
||||
subHeading=sub_heading,
|
||||
submissionStatus=prisma.enums.SubmissionStatus.PENDING,
|
||||
submittedAt=datetime.now(),
|
||||
changesSummary=changes_summary,
|
||||
recommendedScheduleCron=recommended_schedule_cron,
|
||||
storeListingId=store_listing_id,
|
||||
)
|
||||
)
|
||||
|
||||
logger.debug(
|
||||
f"Created new version for listing {store_listing_id} of agent {agent_id}"
|
||||
)
|
||||
# Return submission details
|
||||
return store_model.StoreSubmission(
|
||||
listing_id=listing.id,
|
||||
agent_id=agent_id,
|
||||
agent_version=agent_version,
|
||||
name=name,
|
||||
@@ -1535,7 +1541,7 @@ async def review_store_submission(
|
||||
)
|
||||
|
||||
# Update the AgentGraph with store listing data
|
||||
await prisma.models.AgentGraph.prisma(tx).update(
|
||||
await prisma.models.AgentGraph.prisma().update(
|
||||
where={
|
||||
"graphVersionId": {
|
||||
"id": store_listing_version.agentGraphId,
|
||||
@@ -1550,23 +1556,6 @@ async def review_store_submission(
|
||||
},
|
||||
)
|
||||
|
||||
# Generate embedding for approved listing (blocking - admin operation)
|
||||
# Inside transaction: if embedding fails, entire transaction rolls back
|
||||
embedding_success = await ensure_embedding(
|
||||
version_id=store_listing_version_id,
|
||||
name=store_listing_version.name,
|
||||
description=store_listing_version.description,
|
||||
sub_heading=store_listing_version.subHeading,
|
||||
categories=store_listing_version.categories or [],
|
||||
tx=tx,
|
||||
)
|
||||
if not embedding_success:
|
||||
raise ValueError(
|
||||
f"Failed to generate embedding for listing {store_listing_version_id}. "
|
||||
"This is likely due to OpenAI API being unavailable. "
|
||||
"Please try again later or contact support if the issue persists."
|
||||
)
|
||||
|
||||
await prisma.models.StoreListing.prisma(tx).update(
|
||||
where={"id": store_listing_version.StoreListing.id},
|
||||
data={
|
||||
@@ -1719,12 +1708,15 @@ async def review_store_submission(
|
||||
|
||||
# Convert to Pydantic model for consistency
|
||||
return store_model.StoreSubmission(
|
||||
listing_id=(submission.StoreListing.id if submission.StoreListing else ""),
|
||||
agent_id=submission.agentGraphId,
|
||||
agent_version=submission.agentGraphVersion,
|
||||
name=submission.name,
|
||||
sub_heading=submission.subHeading,
|
||||
slug=(submission.StoreListing.slug if submission.StoreListing else ""),
|
||||
slug=(
|
||||
submission.StoreListing.slug
|
||||
if hasattr(submission, "storeListing") and submission.StoreListing
|
||||
else ""
|
||||
),
|
||||
description=submission.description,
|
||||
instructions=submission.instructions,
|
||||
image_urls=submission.imageUrls or [],
|
||||
@@ -1826,7 +1818,9 @@ async def get_admin_listings_with_versions(
|
||||
where = prisma.types.StoreListingWhereInput(**where_dict)
|
||||
include = prisma.types.StoreListingInclude(
|
||||
Versions=prisma.types.FindManyStoreListingVersionArgsFromStoreListing(
|
||||
order_by={"version": "desc"}
|
||||
order_by=prisma.types._StoreListingVersion_version_OrderByInput(
|
||||
version="desc"
|
||||
)
|
||||
),
|
||||
OwningUser=True,
|
||||
)
|
||||
@@ -1851,7 +1845,6 @@ async def get_admin_listings_with_versions(
|
||||
# If we have versions, turn them into StoreSubmission models
|
||||
for version in listing.Versions or []:
|
||||
version_model = store_model.StoreSubmission(
|
||||
listing_id=listing.id,
|
||||
agent_id=version.agentGraphId,
|
||||
agent_version=version.agentGraphVersion,
|
||||
name=version.name,
|
||||
|
||||
@@ -1,628 +0,0 @@
|
||||
"""
|
||||
Unified Content Embeddings Service
|
||||
|
||||
Handles generation and storage of OpenAI embeddings for all content types
|
||||
(store listings, blocks, documentation, library agents) to enable semantic/hybrid search.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
import time
|
||||
from typing import Any
|
||||
|
||||
import prisma
|
||||
from prisma.enums import ContentType
|
||||
from tiktoken import encoding_for_model
|
||||
|
||||
from backend.api.features.store.content_handlers import CONTENT_HANDLERS
|
||||
from backend.data.db import execute_raw_with_schema, query_raw_with_schema
|
||||
from backend.util.clients import get_openai_client
|
||||
from backend.util.json import dumps
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
# OpenAI embedding model configuration
|
||||
EMBEDDING_MODEL = "text-embedding-3-small"
|
||||
# OpenAI embedding token limit (8,191 with 1 token buffer for safety)
|
||||
EMBEDDING_MAX_TOKENS = 8191
|
||||
|
||||
|
||||
def build_searchable_text(
|
||||
name: str,
|
||||
description: str,
|
||||
sub_heading: str,
|
||||
categories: list[str],
|
||||
) -> str:
|
||||
"""
|
||||
Build searchable text from listing version fields.
|
||||
|
||||
Combines relevant fields into a single string for embedding.
|
||||
"""
|
||||
parts = []
|
||||
|
||||
# Name is important - include it
|
||||
if name:
|
||||
parts.append(name)
|
||||
|
||||
# Sub-heading provides context
|
||||
if sub_heading:
|
||||
parts.append(sub_heading)
|
||||
|
||||
# Description is the main content
|
||||
if description:
|
||||
parts.append(description)
|
||||
|
||||
# Categories help with semantic matching
|
||||
if categories:
|
||||
parts.append(" ".join(categories))
|
||||
|
||||
return " ".join(parts)
|
||||
|
||||
|
||||
async def generate_embedding(text: str) -> list[float] | None:
|
||||
"""
|
||||
Generate embedding for text using OpenAI API.
|
||||
|
||||
Returns None if embedding generation fails.
|
||||
Fail-fast: no retries to maintain consistency with approval flow.
|
||||
"""
|
||||
try:
|
||||
client = get_openai_client()
|
||||
if not client:
|
||||
logger.error("openai_internal_api_key not set, cannot generate embedding")
|
||||
return None
|
||||
|
||||
# Truncate text to token limit using tiktoken
|
||||
# Character-based truncation is insufficient because token ratios vary by content type
|
||||
enc = encoding_for_model(EMBEDDING_MODEL)
|
||||
tokens = enc.encode(text)
|
||||
if len(tokens) > EMBEDDING_MAX_TOKENS:
|
||||
tokens = tokens[:EMBEDDING_MAX_TOKENS]
|
||||
truncated_text = enc.decode(tokens)
|
||||
logger.info(
|
||||
f"Truncated text from {len(enc.encode(text))} to {len(tokens)} tokens"
|
||||
)
|
||||
else:
|
||||
truncated_text = text
|
||||
|
||||
start_time = time.time()
|
||||
response = await client.embeddings.create(
|
||||
model=EMBEDDING_MODEL,
|
||||
input=truncated_text,
|
||||
)
|
||||
latency_ms = (time.time() - start_time) * 1000
|
||||
|
||||
embedding = response.data[0].embedding
|
||||
logger.info(
|
||||
f"Generated embedding: {len(embedding)} dims, "
|
||||
f"{len(tokens)} tokens, {latency_ms:.0f}ms"
|
||||
)
|
||||
return embedding
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to generate embedding: {e}")
|
||||
return None
|
||||
|
||||
|
||||
async def store_embedding(
|
||||
version_id: str,
|
||||
embedding: list[float],
|
||||
tx: prisma.Prisma | None = None,
|
||||
) -> bool:
|
||||
"""
|
||||
Store embedding in the database.
|
||||
|
||||
BACKWARD COMPATIBILITY: Maintained for existing store listing usage.
|
||||
DEPRECATED: Use ensure_embedding() instead (includes searchable_text).
|
||||
"""
|
||||
return await store_content_embedding(
|
||||
content_type=ContentType.STORE_AGENT,
|
||||
content_id=version_id,
|
||||
embedding=embedding,
|
||||
searchable_text="", # Empty for backward compat; ensure_embedding() populates this
|
||||
metadata=None,
|
||||
user_id=None, # Store agents are public
|
||||
tx=tx,
|
||||
)
|
||||
|
||||
|
||||
async def store_content_embedding(
|
||||
content_type: ContentType,
|
||||
content_id: str,
|
||||
embedding: list[float],
|
||||
searchable_text: str,
|
||||
metadata: dict | None = None,
|
||||
user_id: str | None = None,
|
||||
tx: prisma.Prisma | None = None,
|
||||
) -> bool:
|
||||
"""
|
||||
Store embedding in the unified content embeddings table.
|
||||
|
||||
New function for unified content embedding storage.
|
||||
Uses raw SQL since Prisma doesn't natively support pgvector.
|
||||
"""
|
||||
try:
|
||||
client = tx if tx else prisma.get_client()
|
||||
|
||||
# Convert embedding to PostgreSQL vector format
|
||||
embedding_str = embedding_to_vector_string(embedding)
|
||||
metadata_json = dumps(metadata or {})
|
||||
|
||||
# Upsert the embedding
|
||||
# WHERE clause in DO UPDATE prevents PostgreSQL 15 bug with NULLS NOT DISTINCT
|
||||
await execute_raw_with_schema(
|
||||
"""
|
||||
INSERT INTO {schema_prefix}"UnifiedContentEmbedding" (
|
||||
"id", "contentType", "contentId", "userId", "embedding", "searchableText", "metadata", "createdAt", "updatedAt"
|
||||
)
|
||||
VALUES (gen_random_uuid()::text, $1::{schema_prefix}"ContentType", $2, $3, $4::vector, $5, $6::jsonb, NOW(), NOW())
|
||||
ON CONFLICT ("contentType", "contentId", "userId")
|
||||
DO UPDATE SET
|
||||
"embedding" = $4::vector,
|
||||
"searchableText" = $5,
|
||||
"metadata" = $6::jsonb,
|
||||
"updatedAt" = NOW()
|
||||
WHERE {schema_prefix}"UnifiedContentEmbedding"."contentType" = $1::{schema_prefix}"ContentType"
|
||||
AND {schema_prefix}"UnifiedContentEmbedding"."contentId" = $2
|
||||
AND ({schema_prefix}"UnifiedContentEmbedding"."userId" = $3 OR ($3 IS NULL AND {schema_prefix}"UnifiedContentEmbedding"."userId" IS NULL))
|
||||
""",
|
||||
content_type,
|
||||
content_id,
|
||||
user_id,
|
||||
embedding_str,
|
||||
searchable_text,
|
||||
metadata_json,
|
||||
client=client,
|
||||
set_public_search_path=True,
|
||||
)
|
||||
|
||||
logger.info(f"Stored embedding for {content_type}:{content_id}")
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to store embedding for {content_type}:{content_id}: {e}")
|
||||
return False
|
||||
|
||||
|
||||
async def get_embedding(version_id: str) -> dict[str, Any] | None:
|
||||
"""
|
||||
Retrieve embedding record for a listing version.
|
||||
|
||||
BACKWARD COMPATIBILITY: Maintained for existing store listing usage.
|
||||
Returns dict with storeListingVersionId, embedding, timestamps or None if not found.
|
||||
"""
|
||||
result = await get_content_embedding(
|
||||
ContentType.STORE_AGENT, version_id, user_id=None
|
||||
)
|
||||
if result:
|
||||
# Transform to old format for backward compatibility
|
||||
return {
|
||||
"storeListingVersionId": result["contentId"],
|
||||
"embedding": result["embedding"],
|
||||
"createdAt": result["createdAt"],
|
||||
"updatedAt": result["updatedAt"],
|
||||
}
|
||||
return None
|
||||
|
||||
|
||||
async def get_content_embedding(
|
||||
content_type: ContentType, content_id: str, user_id: str | None = None
|
||||
) -> dict[str, Any] | None:
|
||||
"""
|
||||
Retrieve embedding record for any content type.
|
||||
|
||||
New function for unified content embedding retrieval.
|
||||
Returns dict with contentType, contentId, embedding, timestamps or None if not found.
|
||||
"""
|
||||
try:
|
||||
result = await query_raw_with_schema(
|
||||
"""
|
||||
SELECT
|
||||
"contentType",
|
||||
"contentId",
|
||||
"userId",
|
||||
"embedding"::text as "embedding",
|
||||
"searchableText",
|
||||
"metadata",
|
||||
"createdAt",
|
||||
"updatedAt"
|
||||
FROM {schema_prefix}"UnifiedContentEmbedding"
|
||||
WHERE "contentType" = $1::{schema_prefix}"ContentType" AND "contentId" = $2 AND ("userId" = $3 OR ($3 IS NULL AND "userId" IS NULL))
|
||||
""",
|
||||
content_type,
|
||||
content_id,
|
||||
user_id,
|
||||
set_public_search_path=True,
|
||||
)
|
||||
|
||||
if result and len(result) > 0:
|
||||
return result[0]
|
||||
return None
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to get embedding for {content_type}:{content_id}: {e}")
|
||||
return None
|
||||
|
||||
|
||||
async def ensure_embedding(
|
||||
version_id: str,
|
||||
name: str,
|
||||
description: str,
|
||||
sub_heading: str,
|
||||
categories: list[str],
|
||||
force: bool = False,
|
||||
tx: prisma.Prisma | None = None,
|
||||
) -> bool:
|
||||
"""
|
||||
Ensure an embedding exists for the listing version.
|
||||
|
||||
Creates embedding if missing. Use force=True to regenerate.
|
||||
Backward-compatible wrapper for store listings.
|
||||
|
||||
Args:
|
||||
version_id: The StoreListingVersion ID
|
||||
name: Agent name
|
||||
description: Agent description
|
||||
sub_heading: Agent sub-heading
|
||||
categories: Agent categories
|
||||
force: Force regeneration even if embedding exists
|
||||
tx: Optional transaction client
|
||||
|
||||
Returns:
|
||||
True if embedding exists/was created, False on failure
|
||||
"""
|
||||
try:
|
||||
# Check if embedding already exists
|
||||
if not force:
|
||||
existing = await get_embedding(version_id)
|
||||
if existing and existing.get("embedding"):
|
||||
logger.debug(f"Embedding for version {version_id} already exists")
|
||||
return True
|
||||
|
||||
# Build searchable text for embedding
|
||||
searchable_text = build_searchable_text(
|
||||
name, description, sub_heading, categories
|
||||
)
|
||||
|
||||
# Generate new embedding
|
||||
embedding = await generate_embedding(searchable_text)
|
||||
if embedding is None:
|
||||
logger.warning(f"Could not generate embedding for version {version_id}")
|
||||
return False
|
||||
|
||||
# Store the embedding with metadata using new function
|
||||
metadata = {
|
||||
"name": name,
|
||||
"subHeading": sub_heading,
|
||||
"categories": categories,
|
||||
}
|
||||
return await store_content_embedding(
|
||||
content_type=ContentType.STORE_AGENT,
|
||||
content_id=version_id,
|
||||
embedding=embedding,
|
||||
searchable_text=searchable_text,
|
||||
metadata=metadata,
|
||||
user_id=None, # Store agents are public
|
||||
tx=tx,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to ensure embedding for version {version_id}: {e}")
|
||||
return False
|
||||
|
||||
|
||||
async def delete_embedding(version_id: str) -> bool:
|
||||
"""
|
||||
Delete embedding for a listing version.
|
||||
|
||||
BACKWARD COMPATIBILITY: Maintained for existing store listing usage.
|
||||
Note: This is usually handled automatically by CASCADE delete,
|
||||
but provided for manual cleanup if needed.
|
||||
"""
|
||||
return await delete_content_embedding(ContentType.STORE_AGENT, version_id)
|
||||
|
||||
|
||||
async def delete_content_embedding(
|
||||
content_type: ContentType, content_id: str, user_id: str | None = None
|
||||
) -> bool:
|
||||
"""
|
||||
Delete embedding for any content type.
|
||||
|
||||
New function for unified content embedding deletion.
|
||||
Note: This is usually handled automatically by CASCADE delete,
|
||||
but provided for manual cleanup if needed.
|
||||
|
||||
Args:
|
||||
content_type: The type of content (STORE_AGENT, LIBRARY_AGENT, etc.)
|
||||
content_id: The unique identifier for the content
|
||||
user_id: Optional user ID. For public content (STORE_AGENT, BLOCK), pass None.
|
||||
For user-scoped content (LIBRARY_AGENT), pass the user's ID to avoid
|
||||
deleting embeddings belonging to other users.
|
||||
|
||||
Returns:
|
||||
True if deletion succeeded, False otherwise
|
||||
"""
|
||||
try:
|
||||
client = prisma.get_client()
|
||||
|
||||
await execute_raw_with_schema(
|
||||
"""
|
||||
DELETE FROM {schema_prefix}"UnifiedContentEmbedding"
|
||||
WHERE "contentType" = $1::{schema_prefix}"ContentType"
|
||||
AND "contentId" = $2
|
||||
AND ("userId" = $3 OR ($3 IS NULL AND "userId" IS NULL))
|
||||
""",
|
||||
content_type,
|
||||
content_id,
|
||||
user_id,
|
||||
client=client,
|
||||
)
|
||||
|
||||
user_str = f" (user: {user_id})" if user_id else ""
|
||||
logger.info(f"Deleted embedding for {content_type}:{content_id}{user_str}")
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to delete embedding for {content_type}:{content_id}: {e}")
|
||||
return False
|
||||
|
||||
|
||||
async def get_embedding_stats() -> dict[str, Any]:
|
||||
"""
|
||||
Get statistics about embedding coverage for all content types.
|
||||
|
||||
Returns stats per content type and overall totals.
|
||||
"""
|
||||
try:
|
||||
stats_by_type = {}
|
||||
total_items = 0
|
||||
total_with_embeddings = 0
|
||||
total_without_embeddings = 0
|
||||
|
||||
# Aggregate stats from all handlers
|
||||
for content_type, handler in CONTENT_HANDLERS.items():
|
||||
try:
|
||||
stats = await handler.get_stats()
|
||||
stats_by_type[content_type.value] = {
|
||||
"total": stats["total"],
|
||||
"with_embeddings": stats["with_embeddings"],
|
||||
"without_embeddings": stats["without_embeddings"],
|
||||
"coverage_percent": (
|
||||
round(stats["with_embeddings"] / stats["total"] * 100, 1)
|
||||
if stats["total"] > 0
|
||||
else 0
|
||||
),
|
||||
}
|
||||
|
||||
total_items += stats["total"]
|
||||
total_with_embeddings += stats["with_embeddings"]
|
||||
total_without_embeddings += stats["without_embeddings"]
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to get stats for {content_type.value}: {e}")
|
||||
stats_by_type[content_type.value] = {
|
||||
"total": 0,
|
||||
"with_embeddings": 0,
|
||||
"without_embeddings": 0,
|
||||
"coverage_percent": 0,
|
||||
"error": str(e),
|
||||
}
|
||||
|
||||
return {
|
||||
"by_type": stats_by_type,
|
||||
"totals": {
|
||||
"total": total_items,
|
||||
"with_embeddings": total_with_embeddings,
|
||||
"without_embeddings": total_without_embeddings,
|
||||
"coverage_percent": (
|
||||
round(total_with_embeddings / total_items * 100, 1)
|
||||
if total_items > 0
|
||||
else 0
|
||||
),
|
||||
},
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to get embedding stats: {e}")
|
||||
return {
|
||||
"by_type": {},
|
||||
"totals": {
|
||||
"total": 0,
|
||||
"with_embeddings": 0,
|
||||
"without_embeddings": 0,
|
||||
"coverage_percent": 0,
|
||||
},
|
||||
"error": str(e),
|
||||
}
|
||||
|
||||
|
||||
async def backfill_missing_embeddings(batch_size: int = 10) -> dict[str, Any]:
|
||||
"""
|
||||
Generate embeddings for approved listings that don't have them.
|
||||
|
||||
BACKWARD COMPATIBILITY: Maintained for existing usage.
|
||||
This now delegates to backfill_all_content_types() to process all content types.
|
||||
|
||||
Args:
|
||||
batch_size: Number of embeddings to generate per content type
|
||||
|
||||
Returns:
|
||||
Dict with success/failure counts aggregated across all content types
|
||||
"""
|
||||
# Delegate to the new generic backfill system
|
||||
result = await backfill_all_content_types(batch_size)
|
||||
|
||||
# Return in the old format for backward compatibility
|
||||
return result["totals"]
|
||||
|
||||
|
||||
async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
|
||||
"""
|
||||
Generate embeddings for all content types using registered handlers.
|
||||
|
||||
Processes content types in order: BLOCK → STORE_AGENT → DOCUMENTATION.
|
||||
This ensures foundational content (blocks) are searchable first.
|
||||
|
||||
Args:
|
||||
batch_size: Number of embeddings to generate per content type
|
||||
|
||||
Returns:
|
||||
Dict with stats per content type and overall totals
|
||||
"""
|
||||
results_by_type = {}
|
||||
total_processed = 0
|
||||
total_success = 0
|
||||
total_failed = 0
|
||||
|
||||
# Process content types in explicit order
|
||||
processing_order = [
|
||||
ContentType.BLOCK,
|
||||
ContentType.STORE_AGENT,
|
||||
ContentType.DOCUMENTATION,
|
||||
]
|
||||
|
||||
for content_type in processing_order:
|
||||
handler = CONTENT_HANDLERS.get(content_type)
|
||||
if not handler:
|
||||
logger.warning(f"No handler registered for {content_type.value}")
|
||||
continue
|
||||
try:
|
||||
logger.info(f"Processing {content_type.value} content type...")
|
||||
|
||||
# Get missing items from handler
|
||||
missing_items = await handler.get_missing_items(batch_size)
|
||||
|
||||
if not missing_items:
|
||||
results_by_type[content_type.value] = {
|
||||
"processed": 0,
|
||||
"success": 0,
|
||||
"failed": 0,
|
||||
"message": "No missing embeddings",
|
||||
}
|
||||
continue
|
||||
|
||||
# Process embeddings concurrently for better performance
|
||||
embedding_tasks = [
|
||||
ensure_content_embedding(
|
||||
content_type=item.content_type,
|
||||
content_id=item.content_id,
|
||||
searchable_text=item.searchable_text,
|
||||
metadata=item.metadata,
|
||||
user_id=item.user_id,
|
||||
)
|
||||
for item in missing_items
|
||||
]
|
||||
|
||||
results = await asyncio.gather(*embedding_tasks, return_exceptions=True)
|
||||
|
||||
success = sum(1 for result in results if result is True)
|
||||
failed = len(results) - success
|
||||
|
||||
results_by_type[content_type.value] = {
|
||||
"processed": len(missing_items),
|
||||
"success": success,
|
||||
"failed": failed,
|
||||
"message": f"Backfilled {success} embeddings, {failed} failed",
|
||||
}
|
||||
|
||||
total_processed += len(missing_items)
|
||||
total_success += success
|
||||
total_failed += failed
|
||||
|
||||
logger.info(
|
||||
f"{content_type.value}: processed {len(missing_items)}, "
|
||||
f"success {success}, failed {failed}"
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to process {content_type.value}: {e}")
|
||||
results_by_type[content_type.value] = {
|
||||
"processed": 0,
|
||||
"success": 0,
|
||||
"failed": 0,
|
||||
"error": str(e),
|
||||
}
|
||||
|
||||
return {
|
||||
"by_type": results_by_type,
|
||||
"totals": {
|
||||
"processed": total_processed,
|
||||
"success": total_success,
|
||||
"failed": total_failed,
|
||||
"message": f"Overall: {total_success} succeeded, {total_failed} failed",
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
async def embed_query(query: str) -> list[float] | None:
|
||||
"""
|
||||
Generate embedding for a search query.
|
||||
|
||||
Same as generate_embedding but with clearer intent.
|
||||
"""
|
||||
return await generate_embedding(query)
|
||||
|
||||
|
||||
def embedding_to_vector_string(embedding: list[float]) -> str:
|
||||
"""Convert embedding list to PostgreSQL vector string format."""
|
||||
return "[" + ",".join(str(x) for x in embedding) + "]"
|
||||
|
||||
|
||||
async def ensure_content_embedding(
|
||||
content_type: ContentType,
|
||||
content_id: str,
|
||||
searchable_text: str,
|
||||
metadata: dict | None = None,
|
||||
user_id: str | None = None,
|
||||
force: bool = False,
|
||||
tx: prisma.Prisma | None = None,
|
||||
) -> bool:
|
||||
"""
|
||||
Ensure an embedding exists for any content type.
|
||||
|
||||
Generic function for creating embeddings for store agents, blocks, docs, etc.
|
||||
|
||||
Args:
|
||||
content_type: ContentType enum value (STORE_AGENT, BLOCK, etc.)
|
||||
content_id: Unique identifier for the content
|
||||
searchable_text: Combined text for embedding generation
|
||||
metadata: Optional metadata to store with embedding
|
||||
force: Force regeneration even if embedding exists
|
||||
tx: Optional transaction client
|
||||
|
||||
Returns:
|
||||
True if embedding exists/was created, False on failure
|
||||
"""
|
||||
try:
|
||||
# Check if embedding already exists
|
||||
if not force:
|
||||
existing = await get_content_embedding(content_type, content_id, user_id)
|
||||
if existing and existing.get("embedding"):
|
||||
logger.debug(
|
||||
f"Embedding for {content_type}:{content_id} already exists"
|
||||
)
|
||||
return True
|
||||
|
||||
# Generate new embedding
|
||||
embedding = await generate_embedding(searchable_text)
|
||||
if embedding is None:
|
||||
logger.warning(
|
||||
f"Could not generate embedding for {content_type}:{content_id}"
|
||||
)
|
||||
return False
|
||||
|
||||
# Store the embedding
|
||||
return await store_content_embedding(
|
||||
content_type=content_type,
|
||||
content_id=content_id,
|
||||
embedding=embedding,
|
||||
searchable_text=searchable_text,
|
||||
metadata=metadata or {},
|
||||
user_id=user_id,
|
||||
tx=tx,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to ensure embedding for {content_type}:{content_id}: {e}")
|
||||
return False
|
||||
@@ -1,329 +0,0 @@
|
||||
"""
|
||||
Integration tests for embeddings with schema handling.
|
||||
|
||||
These tests verify that embeddings operations work correctly across different database schemas.
|
||||
"""
|
||||
|
||||
from unittest.mock import AsyncMock, patch
|
||||
|
||||
import pytest
|
||||
from prisma.enums import ContentType
|
||||
|
||||
from backend.api.features.store import embeddings
|
||||
|
||||
# Schema prefix tests removed - functionality moved to db.raw_with_schema() helper
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.integration
|
||||
async def test_store_content_embedding_with_schema():
|
||||
"""Test storing embeddings with proper schema handling."""
|
||||
with patch("backend.data.db.get_database_schema") as mock_schema:
|
||||
mock_schema.return_value = "platform"
|
||||
|
||||
with patch("prisma.get_client") as mock_get_client:
|
||||
mock_client = AsyncMock()
|
||||
mock_get_client.return_value = mock_client
|
||||
|
||||
result = await embeddings.store_content_embedding(
|
||||
content_type=ContentType.STORE_AGENT,
|
||||
content_id="test-id",
|
||||
embedding=[0.1] * 1536,
|
||||
searchable_text="test text",
|
||||
metadata={"test": "data"},
|
||||
user_id=None,
|
||||
)
|
||||
|
||||
# Verify the query was called
|
||||
assert mock_client.execute_raw.called
|
||||
|
||||
# Get the SQL query that was executed
|
||||
call_args = mock_client.execute_raw.call_args
|
||||
sql_query = call_args[0][0]
|
||||
|
||||
# Verify schema prefix is in the query
|
||||
assert '"platform"."UnifiedContentEmbedding"' in sql_query
|
||||
|
||||
# Verify result
|
||||
assert result is True
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.integration
|
||||
async def test_get_content_embedding_with_schema():
|
||||
"""Test retrieving embeddings with proper schema handling."""
|
||||
with patch("backend.data.db.get_database_schema") as mock_schema:
|
||||
mock_schema.return_value = "platform"
|
||||
|
||||
with patch("prisma.get_client") as mock_get_client:
|
||||
mock_client = AsyncMock()
|
||||
mock_client.query_raw.return_value = [
|
||||
{
|
||||
"contentType": "STORE_AGENT",
|
||||
"contentId": "test-id",
|
||||
"userId": None,
|
||||
"embedding": "[0.1, 0.2]",
|
||||
"searchableText": "test",
|
||||
"metadata": {},
|
||||
"createdAt": "2024-01-01",
|
||||
"updatedAt": "2024-01-01",
|
||||
}
|
||||
]
|
||||
mock_get_client.return_value = mock_client
|
||||
|
||||
result = await embeddings.get_content_embedding(
|
||||
ContentType.STORE_AGENT,
|
||||
"test-id",
|
||||
user_id=None,
|
||||
)
|
||||
|
||||
# Verify the query was called
|
||||
assert mock_client.query_raw.called
|
||||
|
||||
# Get the SQL query that was executed
|
||||
call_args = mock_client.query_raw.call_args
|
||||
sql_query = call_args[0][0]
|
||||
|
||||
# Verify schema prefix is in the query
|
||||
assert '"platform"."UnifiedContentEmbedding"' in sql_query
|
||||
|
||||
# Verify result
|
||||
assert result is not None
|
||||
assert result["contentId"] == "test-id"
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.integration
|
||||
async def test_delete_content_embedding_with_schema():
|
||||
"""Test deleting embeddings with proper schema handling."""
|
||||
with patch("backend.data.db.get_database_schema") as mock_schema:
|
||||
mock_schema.return_value = "platform"
|
||||
|
||||
with patch("prisma.get_client") as mock_get_client:
|
||||
mock_client = AsyncMock()
|
||||
mock_get_client.return_value = mock_client
|
||||
|
||||
result = await embeddings.delete_content_embedding(
|
||||
ContentType.STORE_AGENT,
|
||||
"test-id",
|
||||
)
|
||||
|
||||
# Verify the query was called
|
||||
assert mock_client.execute_raw.called
|
||||
|
||||
# Get the SQL query that was executed
|
||||
call_args = mock_client.execute_raw.call_args
|
||||
sql_query = call_args[0][0]
|
||||
|
||||
# Verify schema prefix is in the query
|
||||
assert '"platform"."UnifiedContentEmbedding"' in sql_query
|
||||
|
||||
# Verify result
|
||||
assert result is True
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.integration
|
||||
async def test_get_embedding_stats_with_schema():
|
||||
"""Test embedding statistics with proper schema handling."""
|
||||
with patch("backend.data.db.get_database_schema") as mock_schema:
|
||||
mock_schema.return_value = "platform"
|
||||
|
||||
with patch("prisma.get_client") as mock_get_client:
|
||||
mock_client = AsyncMock()
|
||||
# Mock both query results
|
||||
mock_client.query_raw.side_effect = [
|
||||
[{"count": 100}], # total_approved
|
||||
[{"count": 80}], # with_embeddings
|
||||
]
|
||||
mock_get_client.return_value = mock_client
|
||||
|
||||
result = await embeddings.get_embedding_stats()
|
||||
|
||||
# Verify both queries were called
|
||||
assert mock_client.query_raw.call_count == 2
|
||||
|
||||
# Get both SQL queries
|
||||
first_call = mock_client.query_raw.call_args_list[0]
|
||||
second_call = mock_client.query_raw.call_args_list[1]
|
||||
|
||||
first_sql = first_call[0][0]
|
||||
second_sql = second_call[0][0]
|
||||
|
||||
# Verify schema prefix in both queries
|
||||
assert '"platform"."StoreListingVersion"' in first_sql
|
||||
assert '"platform"."StoreListingVersion"' in second_sql
|
||||
assert '"platform"."UnifiedContentEmbedding"' in second_sql
|
||||
|
||||
# Verify results
|
||||
assert result["total_approved"] == 100
|
||||
assert result["with_embeddings"] == 80
|
||||
assert result["without_embeddings"] == 20
|
||||
assert result["coverage_percent"] == 80.0
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.integration
|
||||
async def test_backfill_missing_embeddings_with_schema():
|
||||
"""Test backfilling embeddings with proper schema handling."""
|
||||
with patch("backend.data.db.get_database_schema") as mock_schema:
|
||||
mock_schema.return_value = "platform"
|
||||
|
||||
with patch("prisma.get_client") as mock_get_client:
|
||||
mock_client = AsyncMock()
|
||||
# Mock missing embeddings query
|
||||
mock_client.query_raw.return_value = [
|
||||
{
|
||||
"id": "version-1",
|
||||
"name": "Test Agent",
|
||||
"description": "Test description",
|
||||
"subHeading": "Test heading",
|
||||
"categories": ["test"],
|
||||
}
|
||||
]
|
||||
mock_get_client.return_value = mock_client
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.embeddings.ensure_embedding"
|
||||
) as mock_ensure:
|
||||
mock_ensure.return_value = True
|
||||
|
||||
result = await embeddings.backfill_missing_embeddings(batch_size=10)
|
||||
|
||||
# Verify the query was called
|
||||
assert mock_client.query_raw.called
|
||||
|
||||
# Get the SQL query
|
||||
call_args = mock_client.query_raw.call_args
|
||||
sql_query = call_args[0][0]
|
||||
|
||||
# Verify schema prefix in query
|
||||
assert '"platform"."StoreListingVersion"' in sql_query
|
||||
assert '"platform"."UnifiedContentEmbedding"' in sql_query
|
||||
|
||||
# Verify ensure_embedding was called
|
||||
assert mock_ensure.called
|
||||
|
||||
# Verify results
|
||||
assert result["processed"] == 1
|
||||
assert result["success"] == 1
|
||||
assert result["failed"] == 0
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.integration
|
||||
async def test_ensure_content_embedding_with_schema():
|
||||
"""Test ensuring embeddings exist with proper schema handling."""
|
||||
with patch("backend.data.db.get_database_schema") as mock_schema:
|
||||
mock_schema.return_value = "platform"
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.embeddings.get_content_embedding"
|
||||
) as mock_get:
|
||||
# Simulate no existing embedding
|
||||
mock_get.return_value = None
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.embeddings.generate_embedding"
|
||||
) as mock_generate:
|
||||
mock_generate.return_value = [0.1] * 1536
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.embeddings.store_content_embedding"
|
||||
) as mock_store:
|
||||
mock_store.return_value = True
|
||||
|
||||
result = await embeddings.ensure_content_embedding(
|
||||
content_type=ContentType.STORE_AGENT,
|
||||
content_id="test-id",
|
||||
searchable_text="test text",
|
||||
metadata={"test": "data"},
|
||||
user_id=None,
|
||||
force=False,
|
||||
)
|
||||
|
||||
# Verify the flow
|
||||
assert mock_get.called
|
||||
assert mock_generate.called
|
||||
assert mock_store.called
|
||||
assert result is True
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.integration
|
||||
async def test_backward_compatibility_store_embedding():
|
||||
"""Test backward compatibility wrapper for store_embedding."""
|
||||
with patch(
|
||||
"backend.api.features.store.embeddings.store_content_embedding"
|
||||
) as mock_store:
|
||||
mock_store.return_value = True
|
||||
|
||||
result = await embeddings.store_embedding(
|
||||
version_id="test-version-id",
|
||||
embedding=[0.1] * 1536,
|
||||
tx=None,
|
||||
)
|
||||
|
||||
# Verify it calls the new function with correct parameters
|
||||
assert mock_store.called
|
||||
call_args = mock_store.call_args
|
||||
|
||||
assert call_args[1]["content_type"] == ContentType.STORE_AGENT
|
||||
assert call_args[1]["content_id"] == "test-version-id"
|
||||
assert call_args[1]["user_id"] is None
|
||||
assert result is True
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.integration
|
||||
async def test_backward_compatibility_get_embedding():
|
||||
"""Test backward compatibility wrapper for get_embedding."""
|
||||
with patch(
|
||||
"backend.api.features.store.embeddings.get_content_embedding"
|
||||
) as mock_get:
|
||||
mock_get.return_value = {
|
||||
"contentType": "STORE_AGENT",
|
||||
"contentId": "test-version-id",
|
||||
"embedding": "[0.1, 0.2]",
|
||||
"createdAt": "2024-01-01",
|
||||
"updatedAt": "2024-01-01",
|
||||
}
|
||||
|
||||
result = await embeddings.get_embedding("test-version-id")
|
||||
|
||||
# Verify it calls the new function
|
||||
assert mock_get.called
|
||||
|
||||
# Verify it transforms to old format
|
||||
assert result is not None
|
||||
assert result["storeListingVersionId"] == "test-version-id"
|
||||
assert "embedding" in result
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.integration
|
||||
async def test_schema_handling_error_cases():
|
||||
"""Test error handling in schema-aware operations."""
|
||||
with patch("backend.data.db.get_database_schema") as mock_schema:
|
||||
mock_schema.return_value = "platform"
|
||||
|
||||
with patch("prisma.get_client") as mock_get_client:
|
||||
mock_client = AsyncMock()
|
||||
mock_client.execute_raw.side_effect = Exception("Database error")
|
||||
mock_get_client.return_value = mock_client
|
||||
|
||||
result = await embeddings.store_content_embedding(
|
||||
content_type=ContentType.STORE_AGENT,
|
||||
content_id="test-id",
|
||||
embedding=[0.1] * 1536,
|
||||
searchable_text="test",
|
||||
metadata=None,
|
||||
user_id=None,
|
||||
)
|
||||
|
||||
# Should return False on error, not raise
|
||||
assert result is False
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
pytest.main([__file__, "-v", "-s"])
|
||||
@@ -1,387 +0,0 @@
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
import prisma
|
||||
import pytest
|
||||
from prisma import Prisma
|
||||
from prisma.enums import ContentType
|
||||
|
||||
from backend.api.features.store import embeddings
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
async def setup_prisma():
|
||||
"""Setup Prisma client for tests."""
|
||||
try:
|
||||
Prisma()
|
||||
except prisma.errors.ClientAlreadyRegisteredError:
|
||||
pass
|
||||
yield
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_build_searchable_text():
|
||||
"""Test searchable text building from listing fields."""
|
||||
result = embeddings.build_searchable_text(
|
||||
name="AI Assistant",
|
||||
description="A helpful AI assistant for productivity",
|
||||
sub_heading="Boost your productivity",
|
||||
categories=["AI", "Productivity"],
|
||||
)
|
||||
|
||||
expected = "AI Assistant Boost your productivity A helpful AI assistant for productivity AI Productivity"
|
||||
assert result == expected
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_build_searchable_text_empty_fields():
|
||||
"""Test searchable text building with empty fields."""
|
||||
result = embeddings.build_searchable_text(
|
||||
name="", description="Test description", sub_heading="", categories=[]
|
||||
)
|
||||
|
||||
assert result == "Test description"
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_generate_embedding_success():
|
||||
"""Test successful embedding generation."""
|
||||
# Mock OpenAI response
|
||||
mock_client = MagicMock()
|
||||
mock_response = MagicMock()
|
||||
mock_response.data = [MagicMock()]
|
||||
mock_response.data[0].embedding = [0.1, 0.2, 0.3] * 512 # 1536 dimensions
|
||||
|
||||
# Use AsyncMock for async embeddings.create method
|
||||
mock_client.embeddings.create = AsyncMock(return_value=mock_response)
|
||||
|
||||
# Patch at the point of use in embeddings.py
|
||||
with patch(
|
||||
"backend.api.features.store.embeddings.get_openai_client"
|
||||
) as mock_get_client:
|
||||
mock_get_client.return_value = mock_client
|
||||
|
||||
result = await embeddings.generate_embedding("test text")
|
||||
|
||||
assert result is not None
|
||||
assert len(result) == 1536
|
||||
assert result[0] == 0.1
|
||||
|
||||
mock_client.embeddings.create.assert_called_once_with(
|
||||
model="text-embedding-3-small", input="test text"
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_generate_embedding_no_api_key():
|
||||
"""Test embedding generation without API key."""
|
||||
# Patch at the point of use in embeddings.py
|
||||
with patch(
|
||||
"backend.api.features.store.embeddings.get_openai_client"
|
||||
) as mock_get_client:
|
||||
mock_get_client.return_value = None
|
||||
|
||||
result = await embeddings.generate_embedding("test text")
|
||||
|
||||
assert result is None
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_generate_embedding_api_error():
|
||||
"""Test embedding generation with API error."""
|
||||
mock_client = MagicMock()
|
||||
mock_client.embeddings.create = AsyncMock(side_effect=Exception("API Error"))
|
||||
|
||||
# Patch at the point of use in embeddings.py
|
||||
with patch(
|
||||
"backend.api.features.store.embeddings.get_openai_client"
|
||||
) as mock_get_client:
|
||||
mock_get_client.return_value = mock_client
|
||||
|
||||
result = await embeddings.generate_embedding("test text")
|
||||
|
||||
assert result is None
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_generate_embedding_text_truncation():
|
||||
"""Test that long text is properly truncated using tiktoken."""
|
||||
from tiktoken import encoding_for_model
|
||||
|
||||
mock_client = MagicMock()
|
||||
mock_response = MagicMock()
|
||||
mock_response.data = [MagicMock()]
|
||||
mock_response.data[0].embedding = [0.1] * 1536
|
||||
|
||||
# Use AsyncMock for async embeddings.create method
|
||||
mock_client.embeddings.create = AsyncMock(return_value=mock_response)
|
||||
|
||||
# Patch at the point of use in embeddings.py
|
||||
with patch(
|
||||
"backend.api.features.store.embeddings.get_openai_client"
|
||||
) as mock_get_client:
|
||||
mock_get_client.return_value = mock_client
|
||||
|
||||
# Create text that will exceed 8191 tokens
|
||||
# Use varied characters to ensure token-heavy text: each word is ~1 token
|
||||
words = [f"word{i}" for i in range(10000)]
|
||||
long_text = " ".join(words) # ~10000 tokens
|
||||
|
||||
await embeddings.generate_embedding(long_text)
|
||||
|
||||
# Verify text was truncated to 8191 tokens
|
||||
call_args = mock_client.embeddings.create.call_args
|
||||
truncated_text = call_args.kwargs["input"]
|
||||
|
||||
# Count actual tokens in truncated text
|
||||
enc = encoding_for_model("text-embedding-3-small")
|
||||
actual_tokens = len(enc.encode(truncated_text))
|
||||
|
||||
# Should be at or just under 8191 tokens
|
||||
assert actual_tokens <= 8191
|
||||
# Should be close to the limit (not over-truncated)
|
||||
assert actual_tokens >= 8100
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_store_embedding_success(mocker):
|
||||
"""Test successful embedding storage."""
|
||||
mock_client = mocker.AsyncMock()
|
||||
mock_client.execute_raw = mocker.AsyncMock()
|
||||
|
||||
embedding = [0.1, 0.2, 0.3]
|
||||
|
||||
result = await embeddings.store_embedding(
|
||||
version_id="test-version-id", embedding=embedding, tx=mock_client
|
||||
)
|
||||
|
||||
assert result is True
|
||||
# execute_raw is called twice: once for SET search_path, once for INSERT
|
||||
assert mock_client.execute_raw.call_count == 2
|
||||
|
||||
# First call: SET search_path
|
||||
first_call_args = mock_client.execute_raw.call_args_list[0][0]
|
||||
assert "SET search_path" in first_call_args[0]
|
||||
|
||||
# Second call: INSERT query with the actual data
|
||||
second_call_args = mock_client.execute_raw.call_args_list[1][0]
|
||||
assert "test-version-id" in second_call_args
|
||||
assert "[0.1,0.2,0.3]" in second_call_args
|
||||
assert None in second_call_args # userId should be None for store agents
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_store_embedding_database_error(mocker):
|
||||
"""Test embedding storage with database error."""
|
||||
mock_client = mocker.AsyncMock()
|
||||
mock_client.execute_raw.side_effect = Exception("Database error")
|
||||
|
||||
embedding = [0.1, 0.2, 0.3]
|
||||
|
||||
result = await embeddings.store_embedding(
|
||||
version_id="test-version-id", embedding=embedding, tx=mock_client
|
||||
)
|
||||
|
||||
assert result is False
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_get_embedding_success():
|
||||
"""Test successful embedding retrieval."""
|
||||
mock_result = [
|
||||
{
|
||||
"contentType": "STORE_AGENT",
|
||||
"contentId": "test-version-id",
|
||||
"userId": None,
|
||||
"embedding": "[0.1,0.2,0.3]",
|
||||
"searchableText": "Test text",
|
||||
"metadata": {},
|
||||
"createdAt": "2024-01-01T00:00:00Z",
|
||||
"updatedAt": "2024-01-01T00:00:00Z",
|
||||
}
|
||||
]
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.embeddings.query_raw_with_schema",
|
||||
return_value=mock_result,
|
||||
):
|
||||
result = await embeddings.get_embedding("test-version-id")
|
||||
|
||||
assert result is not None
|
||||
assert result["storeListingVersionId"] == "test-version-id"
|
||||
assert result["embedding"] == "[0.1,0.2,0.3]"
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_get_embedding_not_found():
|
||||
"""Test embedding retrieval when not found."""
|
||||
with patch(
|
||||
"backend.api.features.store.embeddings.query_raw_with_schema",
|
||||
return_value=[],
|
||||
):
|
||||
result = await embeddings.get_embedding("test-version-id")
|
||||
|
||||
assert result is None
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@patch("backend.api.features.store.embeddings.generate_embedding")
|
||||
@patch("backend.api.features.store.embeddings.store_embedding")
|
||||
@patch("backend.api.features.store.embeddings.get_embedding")
|
||||
async def test_ensure_embedding_already_exists(mock_get, mock_store, mock_generate):
|
||||
"""Test ensure_embedding when embedding already exists."""
|
||||
mock_get.return_value = {"embedding": "[0.1,0.2,0.3]"}
|
||||
|
||||
result = await embeddings.ensure_embedding(
|
||||
version_id="test-id",
|
||||
name="Test",
|
||||
description="Test description",
|
||||
sub_heading="Test heading",
|
||||
categories=["test"],
|
||||
)
|
||||
|
||||
assert result is True
|
||||
mock_generate.assert_not_called()
|
||||
mock_store.assert_not_called()
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@patch("backend.api.features.store.embeddings.generate_embedding")
|
||||
@patch("backend.api.features.store.embeddings.store_content_embedding")
|
||||
@patch("backend.api.features.store.embeddings.get_embedding")
|
||||
async def test_ensure_embedding_create_new(mock_get, mock_store, mock_generate):
|
||||
"""Test ensure_embedding creating new embedding."""
|
||||
mock_get.return_value = None
|
||||
mock_generate.return_value = [0.1, 0.2, 0.3]
|
||||
mock_store.return_value = True
|
||||
|
||||
result = await embeddings.ensure_embedding(
|
||||
version_id="test-id",
|
||||
name="Test",
|
||||
description="Test description",
|
||||
sub_heading="Test heading",
|
||||
categories=["test"],
|
||||
)
|
||||
|
||||
assert result is True
|
||||
mock_generate.assert_called_once_with("Test Test heading Test description test")
|
||||
mock_store.assert_called_once_with(
|
||||
content_type=ContentType.STORE_AGENT,
|
||||
content_id="test-id",
|
||||
embedding=[0.1, 0.2, 0.3],
|
||||
searchable_text="Test Test heading Test description test",
|
||||
metadata={"name": "Test", "subHeading": "Test heading", "categories": ["test"]},
|
||||
user_id=None,
|
||||
tx=None,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@patch("backend.api.features.store.embeddings.generate_embedding")
|
||||
@patch("backend.api.features.store.embeddings.get_embedding")
|
||||
async def test_ensure_embedding_generation_fails(mock_get, mock_generate):
|
||||
"""Test ensure_embedding when generation fails."""
|
||||
mock_get.return_value = None
|
||||
mock_generate.return_value = None
|
||||
|
||||
result = await embeddings.ensure_embedding(
|
||||
version_id="test-id",
|
||||
name="Test",
|
||||
description="Test description",
|
||||
sub_heading="Test heading",
|
||||
categories=["test"],
|
||||
)
|
||||
|
||||
assert result is False
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_get_embedding_stats():
|
||||
"""Test embedding statistics retrieval."""
|
||||
# Mock approved count query and embedded count query
|
||||
mock_approved_result = [{"count": 100}]
|
||||
mock_embedded_result = [{"count": 75}]
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.embeddings.query_raw_with_schema",
|
||||
side_effect=[mock_approved_result, mock_embedded_result],
|
||||
):
|
||||
result = await embeddings.get_embedding_stats()
|
||||
|
||||
assert result["total_approved"] == 100
|
||||
assert result["with_embeddings"] == 75
|
||||
assert result["without_embeddings"] == 25
|
||||
assert result["coverage_percent"] == 75.0
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@patch("backend.api.features.store.embeddings.ensure_embedding")
|
||||
async def test_backfill_missing_embeddings_success(mock_ensure):
|
||||
"""Test backfill with successful embedding generation."""
|
||||
# Mock missing embeddings query
|
||||
mock_missing = [
|
||||
{
|
||||
"id": "version-1",
|
||||
"name": "Agent 1",
|
||||
"description": "Description 1",
|
||||
"subHeading": "Heading 1",
|
||||
"categories": ["AI"],
|
||||
},
|
||||
{
|
||||
"id": "version-2",
|
||||
"name": "Agent 2",
|
||||
"description": "Description 2",
|
||||
"subHeading": "Heading 2",
|
||||
"categories": ["Productivity"],
|
||||
},
|
||||
]
|
||||
|
||||
# Mock ensure_embedding to succeed for first, fail for second
|
||||
mock_ensure.side_effect = [True, False]
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.embeddings.query_raw_with_schema",
|
||||
return_value=mock_missing,
|
||||
):
|
||||
result = await embeddings.backfill_missing_embeddings(batch_size=5)
|
||||
|
||||
assert result["processed"] == 2
|
||||
assert result["success"] == 1
|
||||
assert result["failed"] == 1
|
||||
assert mock_ensure.call_count == 2
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_backfill_missing_embeddings_no_missing():
|
||||
"""Test backfill when no embeddings are missing."""
|
||||
with patch(
|
||||
"backend.api.features.store.embeddings.query_raw_with_schema",
|
||||
return_value=[],
|
||||
):
|
||||
result = await embeddings.backfill_missing_embeddings(batch_size=5)
|
||||
|
||||
assert result["processed"] == 0
|
||||
assert result["success"] == 0
|
||||
assert result["failed"] == 0
|
||||
assert result["message"] == "No missing embeddings"
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_embedding_to_vector_string():
|
||||
"""Test embedding to PostgreSQL vector string conversion."""
|
||||
embedding = [0.1, 0.2, 0.3, -0.4]
|
||||
result = embeddings.embedding_to_vector_string(embedding)
|
||||
assert result == "[0.1,0.2,0.3,-0.4]"
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_embed_query():
|
||||
"""Test embed_query function (alias for generate_embedding)."""
|
||||
with patch(
|
||||
"backend.api.features.store.embeddings.generate_embedding"
|
||||
) as mock_generate:
|
||||
mock_generate.return_value = [0.1, 0.2, 0.3]
|
||||
|
||||
result = await embeddings.embed_query("test query")
|
||||
|
||||
assert result == [0.1, 0.2, 0.3]
|
||||
mock_generate.assert_called_once_with("test query")
|
||||
@@ -1,393 +0,0 @@
|
||||
"""
|
||||
Hybrid Search for Store Agents
|
||||
|
||||
Combines semantic (embedding) search with lexical (tsvector) search
|
||||
for improved relevance in marketplace agent discovery.
|
||||
"""
|
||||
|
||||
import logging
|
||||
from dataclasses import dataclass
|
||||
from datetime import datetime
|
||||
from typing import Any, Literal
|
||||
|
||||
from backend.api.features.store.embeddings import (
|
||||
embed_query,
|
||||
embedding_to_vector_string,
|
||||
)
|
||||
from backend.data.db import query_raw_with_schema
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class HybridSearchWeights:
|
||||
"""Weights for combining search signals."""
|
||||
|
||||
semantic: float = 0.30 # Embedding cosine similarity
|
||||
lexical: float = 0.30 # tsvector ts_rank_cd score
|
||||
category: float = 0.20 # Category match boost
|
||||
recency: float = 0.10 # Newer agents ranked higher
|
||||
popularity: float = 0.10 # Agent usage/runs (PageRank-like)
|
||||
|
||||
def __post_init__(self):
|
||||
"""Validate weights are non-negative and sum to approximately 1.0."""
|
||||
total = (
|
||||
self.semantic
|
||||
+ self.lexical
|
||||
+ self.category
|
||||
+ self.recency
|
||||
+ self.popularity
|
||||
)
|
||||
|
||||
if any(
|
||||
w < 0
|
||||
for w in [
|
||||
self.semantic,
|
||||
self.lexical,
|
||||
self.category,
|
||||
self.recency,
|
||||
self.popularity,
|
||||
]
|
||||
):
|
||||
raise ValueError("All weights must be non-negative")
|
||||
|
||||
if not (0.99 <= total <= 1.01):
|
||||
raise ValueError(f"Weights must sum to ~1.0, got {total:.3f}")
|
||||
|
||||
|
||||
DEFAULT_WEIGHTS = HybridSearchWeights()
|
||||
|
||||
# Minimum relevance score threshold - agents below this are filtered out
|
||||
# With weights (0.30 semantic + 0.30 lexical + 0.20 category + 0.10 recency + 0.10 popularity):
|
||||
# - 0.20 means at least ~60% semantic match OR strong lexical match required
|
||||
# - Ensures only genuinely relevant results are returned
|
||||
# - Recency/popularity alone (0.10 each) won't pass the threshold
|
||||
DEFAULT_MIN_SCORE = 0.20
|
||||
|
||||
|
||||
@dataclass
|
||||
class HybridSearchResult:
|
||||
"""A single search result with score breakdown."""
|
||||
|
||||
slug: str
|
||||
agent_name: str
|
||||
agent_image: str
|
||||
creator_username: str
|
||||
creator_avatar: str
|
||||
sub_heading: str
|
||||
description: str
|
||||
runs: int
|
||||
rating: float
|
||||
categories: list[str]
|
||||
featured: bool
|
||||
is_available: bool
|
||||
updated_at: datetime
|
||||
|
||||
# Score breakdown (for debugging/tuning)
|
||||
combined_score: float
|
||||
semantic_score: float = 0.0
|
||||
lexical_score: float = 0.0
|
||||
category_score: float = 0.0
|
||||
recency_score: float = 0.0
|
||||
popularity_score: float = 0.0
|
||||
|
||||
|
||||
async def hybrid_search(
|
||||
query: str,
|
||||
featured: bool = False,
|
||||
creators: list[str] | None = None,
|
||||
category: str | None = None,
|
||||
sorted_by: (
|
||||
Literal["relevance", "rating", "runs", "name", "updated_at"] | None
|
||||
) = None,
|
||||
page: int = 1,
|
||||
page_size: int = 20,
|
||||
weights: HybridSearchWeights | None = None,
|
||||
min_score: float | None = None,
|
||||
) -> tuple[list[dict[str, Any]], int]:
|
||||
"""
|
||||
Perform hybrid search combining semantic and lexical signals.
|
||||
|
||||
Args:
|
||||
query: Search query string
|
||||
featured: Filter for featured agents only
|
||||
creators: Filter by creator usernames
|
||||
category: Filter by category
|
||||
sorted_by: Sort order (relevance uses hybrid scoring)
|
||||
page: Page number (1-indexed)
|
||||
page_size: Results per page
|
||||
weights: Custom weights for search signals
|
||||
min_score: Minimum relevance score threshold (0-1). Results below
|
||||
this score are filtered out. Defaults to DEFAULT_MIN_SCORE.
|
||||
|
||||
Returns:
|
||||
Tuple of (results list, total count). Returns empty list if no
|
||||
results meet the minimum relevance threshold.
|
||||
"""
|
||||
# Validate inputs
|
||||
query = query.strip()
|
||||
if not query:
|
||||
return [], 0 # Empty query returns no results
|
||||
|
||||
if page < 1:
|
||||
page = 1
|
||||
if page_size < 1:
|
||||
page_size = 1
|
||||
if page_size > 100: # Cap at reasonable limit to prevent performance issues
|
||||
page_size = 100
|
||||
|
||||
if weights is None:
|
||||
weights = DEFAULT_WEIGHTS
|
||||
if min_score is None:
|
||||
min_score = DEFAULT_MIN_SCORE
|
||||
|
||||
offset = (page - 1) * page_size
|
||||
|
||||
# Generate query embedding
|
||||
query_embedding = await embed_query(query)
|
||||
|
||||
# Build WHERE clause conditions
|
||||
where_parts: list[str] = ["sa.is_available = true"]
|
||||
params: list[Any] = []
|
||||
param_index = 1
|
||||
|
||||
# Add search query for lexical matching
|
||||
params.append(query)
|
||||
query_param = f"${param_index}"
|
||||
param_index += 1
|
||||
|
||||
# Add lowercased query for category matching
|
||||
params.append(query.lower())
|
||||
query_lower_param = f"${param_index}"
|
||||
param_index += 1
|
||||
|
||||
if featured:
|
||||
where_parts.append("sa.featured = true")
|
||||
|
||||
if creators:
|
||||
where_parts.append(f"sa.creator_username = ANY(${param_index})")
|
||||
params.append(creators)
|
||||
param_index += 1
|
||||
|
||||
if category:
|
||||
where_parts.append(f"${param_index} = ANY(sa.categories)")
|
||||
params.append(category)
|
||||
param_index += 1
|
||||
|
||||
# Safe: where_parts only contains hardcoded strings with $N parameter placeholders
|
||||
# No user input is concatenated directly into the SQL string
|
||||
where_clause = " AND ".join(where_parts)
|
||||
|
||||
# Embedding is required for hybrid search - fail fast if unavailable
|
||||
if query_embedding is None or not query_embedding:
|
||||
# Log detailed error server-side
|
||||
logger.error(
|
||||
"Failed to generate query embedding. "
|
||||
"Check that openai_internal_api_key is configured and OpenAI API is accessible."
|
||||
)
|
||||
# Raise generic error to client
|
||||
raise ValueError("Search service temporarily unavailable")
|
||||
|
||||
# Add embedding parameter
|
||||
embedding_str = embedding_to_vector_string(query_embedding)
|
||||
params.append(embedding_str)
|
||||
embedding_param = f"${param_index}"
|
||||
param_index += 1
|
||||
|
||||
# Add weight parameters for SQL calculation
|
||||
params.append(weights.semantic)
|
||||
weight_semantic_param = f"${param_index}"
|
||||
param_index += 1
|
||||
|
||||
params.append(weights.lexical)
|
||||
weight_lexical_param = f"${param_index}"
|
||||
param_index += 1
|
||||
|
||||
params.append(weights.category)
|
||||
weight_category_param = f"${param_index}"
|
||||
param_index += 1
|
||||
|
||||
params.append(weights.recency)
|
||||
weight_recency_param = f"${param_index}"
|
||||
param_index += 1
|
||||
|
||||
params.append(weights.popularity)
|
||||
weight_popularity_param = f"${param_index}"
|
||||
param_index += 1
|
||||
|
||||
# Add min_score parameter
|
||||
params.append(min_score)
|
||||
min_score_param = f"${param_index}"
|
||||
param_index += 1
|
||||
|
||||
# Optimized hybrid search query:
|
||||
# 1. Direct join to UnifiedContentEmbedding via contentId=storeListingVersionId (no redundant JOINs)
|
||||
# 2. UNION approach (deduplicates agents matching both branches)
|
||||
# 3. COUNT(*) OVER() to get total count in single query
|
||||
# 4. Optimized category matching with EXISTS + unnest
|
||||
# 5. Pre-calculated max values for lexical and popularity normalization
|
||||
# 6. Simplified recency calculation with linear decay
|
||||
# 7. Logarithmic popularity scaling to prevent viral agents from dominating
|
||||
sql_query = f"""
|
||||
WITH candidates AS (
|
||||
-- Lexical matches (uses GIN index on search column)
|
||||
SELECT sa."storeListingVersionId"
|
||||
FROM {{schema_prefix}}"StoreAgent" sa
|
||||
WHERE {where_clause}
|
||||
AND sa.search @@ plainto_tsquery('english', {query_param})
|
||||
|
||||
UNION
|
||||
|
||||
-- Semantic matches (uses HNSW index on embedding with KNN)
|
||||
SELECT "storeListingVersionId"
|
||||
FROM (
|
||||
SELECT sa."storeListingVersionId", uce.embedding
|
||||
FROM {{schema_prefix}}"StoreAgent" sa
|
||||
INNER JOIN {{schema_prefix}}"UnifiedContentEmbedding" uce
|
||||
ON sa."storeListingVersionId" = uce."contentId" AND uce."contentType" = 'STORE_AGENT'::{{schema_prefix}}"ContentType"
|
||||
WHERE {where_clause}
|
||||
ORDER BY uce.embedding <=> {embedding_param}::vector
|
||||
LIMIT 200
|
||||
) semantic_results
|
||||
),
|
||||
search_scores AS (
|
||||
SELECT
|
||||
sa.slug,
|
||||
sa.agent_name,
|
||||
sa.agent_image,
|
||||
sa.creator_username,
|
||||
sa.creator_avatar,
|
||||
sa.sub_heading,
|
||||
sa.description,
|
||||
sa.runs,
|
||||
sa.rating,
|
||||
sa.categories,
|
||||
sa.featured,
|
||||
sa.is_available,
|
||||
sa.updated_at,
|
||||
-- Semantic score: cosine similarity (1 - distance)
|
||||
COALESCE(1 - (uce.embedding <=> {embedding_param}::vector), 0) as semantic_score,
|
||||
-- Lexical score: ts_rank_cd (will be normalized later)
|
||||
COALESCE(ts_rank_cd(sa.search, plainto_tsquery('english', {query_param})), 0) as lexical_raw,
|
||||
-- Category match: optimized with unnest for better performance
|
||||
CASE
|
||||
WHEN EXISTS (
|
||||
SELECT 1 FROM unnest(sa.categories) cat
|
||||
WHERE LOWER(cat) LIKE '%' || {query_lower_param} || '%'
|
||||
)
|
||||
THEN 1.0
|
||||
ELSE 0.0
|
||||
END as category_score,
|
||||
-- Recency score: linear decay over 90 days (simpler than exponential)
|
||||
GREATEST(0, 1 - EXTRACT(EPOCH FROM (NOW() - sa.updated_at)) / (90 * 24 * 3600)) as recency_score,
|
||||
-- Popularity raw: agent runs count (will be normalized with log scaling)
|
||||
sa.runs as popularity_raw
|
||||
FROM candidates c
|
||||
INNER JOIN {{schema_prefix}}"StoreAgent" sa
|
||||
ON c."storeListingVersionId" = sa."storeListingVersionId"
|
||||
LEFT JOIN {{schema_prefix}}"UnifiedContentEmbedding" uce
|
||||
ON sa."storeListingVersionId" = uce."contentId" AND uce."contentType" = 'STORE_AGENT'::{{schema_prefix}}"ContentType"
|
||||
),
|
||||
max_lexical AS (
|
||||
SELECT MAX(lexical_raw) as max_val FROM search_scores
|
||||
),
|
||||
max_popularity AS (
|
||||
SELECT MAX(popularity_raw) as max_val FROM search_scores
|
||||
),
|
||||
normalized AS (
|
||||
SELECT
|
||||
ss.*,
|
||||
-- Normalize lexical score by pre-calculated max
|
||||
CASE
|
||||
WHEN ml.max_val > 0
|
||||
THEN ss.lexical_raw / ml.max_val
|
||||
ELSE 0
|
||||
END as lexical_score,
|
||||
-- Normalize popularity with logarithmic scaling to prevent viral agents from dominating
|
||||
-- LOG(1 + runs) / LOG(1 + max_runs) ensures score is 0-1 range
|
||||
CASE
|
||||
WHEN mp.max_val > 0 AND ss.popularity_raw > 0
|
||||
THEN LN(1 + ss.popularity_raw) / LN(1 + mp.max_val)
|
||||
ELSE 0
|
||||
END as popularity_score
|
||||
FROM search_scores ss
|
||||
CROSS JOIN max_lexical ml
|
||||
CROSS JOIN max_popularity mp
|
||||
),
|
||||
scored AS (
|
||||
SELECT
|
||||
slug,
|
||||
agent_name,
|
||||
agent_image,
|
||||
creator_username,
|
||||
creator_avatar,
|
||||
sub_heading,
|
||||
description,
|
||||
runs,
|
||||
rating,
|
||||
categories,
|
||||
featured,
|
||||
is_available,
|
||||
updated_at,
|
||||
semantic_score,
|
||||
lexical_score,
|
||||
category_score,
|
||||
recency_score,
|
||||
popularity_score,
|
||||
(
|
||||
{weight_semantic_param} * semantic_score +
|
||||
{weight_lexical_param} * lexical_score +
|
||||
{weight_category_param} * category_score +
|
||||
{weight_recency_param} * recency_score +
|
||||
{weight_popularity_param} * popularity_score
|
||||
) as combined_score
|
||||
FROM normalized
|
||||
),
|
||||
filtered AS (
|
||||
SELECT
|
||||
*,
|
||||
COUNT(*) OVER () as total_count
|
||||
FROM scored
|
||||
WHERE combined_score >= {min_score_param}
|
||||
)
|
||||
SELECT * FROM filtered
|
||||
ORDER BY combined_score DESC
|
||||
LIMIT ${param_index} OFFSET ${param_index + 1}
|
||||
"""
|
||||
|
||||
# Add pagination params
|
||||
params.extend([page_size, offset])
|
||||
|
||||
# Execute search query - includes total_count via window function
|
||||
results = await query_raw_with_schema(
|
||||
sql_query, *params, set_public_search_path=True
|
||||
)
|
||||
|
||||
# Extract total count from first result (all rows have same count)
|
||||
total = results[0]["total_count"] if results else 0
|
||||
|
||||
# Remove total_count from results before returning
|
||||
for result in results:
|
||||
result.pop("total_count", None)
|
||||
|
||||
# Log without sensitive query content
|
||||
logger.info(f"Hybrid search: {len(results)} results, {total} total")
|
||||
|
||||
return results, total
|
||||
|
||||
|
||||
async def hybrid_search_simple(
|
||||
query: str,
|
||||
page: int = 1,
|
||||
page_size: int = 20,
|
||||
) -> tuple[list[dict[str, Any]], int]:
|
||||
"""
|
||||
Simplified hybrid search for common use cases.
|
||||
|
||||
Uses default weights and no filters.
|
||||
"""
|
||||
return await hybrid_search(
|
||||
query=query,
|
||||
page=page,
|
||||
page_size=page_size,
|
||||
)
|
||||
@@ -1,334 +0,0 @@
|
||||
"""
|
||||
Integration tests for hybrid search with schema handling.
|
||||
|
||||
These tests verify that hybrid search works correctly across different database schemas.
|
||||
"""
|
||||
|
||||
from unittest.mock import patch
|
||||
|
||||
import pytest
|
||||
|
||||
from backend.api.features.store.hybrid_search import HybridSearchWeights, hybrid_search
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.integration
|
||||
async def test_hybrid_search_with_schema_handling():
|
||||
"""Test that hybrid search correctly handles database schema prefixes."""
|
||||
# Test with a mock query to ensure schema handling works
|
||||
query = "test agent"
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.hybrid_search.query_raw_with_schema"
|
||||
) as mock_query:
|
||||
# Mock the query result
|
||||
mock_query.return_value = [
|
||||
{
|
||||
"slug": "test/agent",
|
||||
"agent_name": "Test Agent",
|
||||
"agent_image": "test.png",
|
||||
"creator_username": "test",
|
||||
"creator_avatar": "avatar.png",
|
||||
"sub_heading": "Test sub-heading",
|
||||
"description": "Test description",
|
||||
"runs": 10,
|
||||
"rating": 4.5,
|
||||
"categories": ["test"],
|
||||
"featured": False,
|
||||
"is_available": True,
|
||||
"updated_at": "2024-01-01T00:00:00Z",
|
||||
"combined_score": 0.8,
|
||||
"semantic_score": 0.7,
|
||||
"lexical_score": 0.6,
|
||||
"category_score": 0.5,
|
||||
"recency_score": 0.4,
|
||||
"total_count": 1,
|
||||
}
|
||||
]
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.hybrid_search.embed_query"
|
||||
) as mock_embed:
|
||||
mock_embed.return_value = [0.1] * 1536 # Mock embedding
|
||||
|
||||
results, total = await hybrid_search(
|
||||
query=query,
|
||||
page=1,
|
||||
page_size=20,
|
||||
)
|
||||
|
||||
# Verify the query was called
|
||||
assert mock_query.called
|
||||
# Verify the SQL template uses schema_prefix placeholder
|
||||
call_args = mock_query.call_args
|
||||
sql_template = call_args[0][0]
|
||||
assert "{schema_prefix}" in sql_template
|
||||
|
||||
# Verify results
|
||||
assert len(results) == 1
|
||||
assert total == 1
|
||||
assert results[0]["slug"] == "test/agent"
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.integration
|
||||
async def test_hybrid_search_with_public_schema():
|
||||
"""Test hybrid search when using public schema (no prefix needed)."""
|
||||
with patch("backend.data.db.get_database_schema") as mock_schema:
|
||||
mock_schema.return_value = "public"
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.hybrid_search.query_raw_with_schema"
|
||||
) as mock_query:
|
||||
mock_query.return_value = []
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.hybrid_search.embed_query"
|
||||
) as mock_embed:
|
||||
mock_embed.return_value = [0.1] * 1536
|
||||
|
||||
results, total = await hybrid_search(
|
||||
query="test",
|
||||
page=1,
|
||||
page_size=20,
|
||||
)
|
||||
|
||||
# Verify the mock was set up correctly
|
||||
assert mock_schema.return_value == "public"
|
||||
|
||||
# Results should work even with empty results
|
||||
assert results == []
|
||||
assert total == 0
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.integration
|
||||
async def test_hybrid_search_with_custom_schema():
|
||||
"""Test hybrid search when using custom schema (e.g., 'platform')."""
|
||||
with patch("backend.data.db.get_database_schema") as mock_schema:
|
||||
mock_schema.return_value = "platform"
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.hybrid_search.query_raw_with_schema"
|
||||
) as mock_query:
|
||||
mock_query.return_value = []
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.hybrid_search.embed_query"
|
||||
) as mock_embed:
|
||||
mock_embed.return_value = [0.1] * 1536
|
||||
|
||||
results, total = await hybrid_search(
|
||||
query="test",
|
||||
page=1,
|
||||
page_size=20,
|
||||
)
|
||||
|
||||
# Verify the mock was set up correctly
|
||||
assert mock_schema.return_value == "platform"
|
||||
|
||||
assert results == []
|
||||
assert total == 0
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.integration
|
||||
async def test_hybrid_search_without_embeddings():
|
||||
"""Test hybrid search fails fast when embeddings are unavailable."""
|
||||
# Patch where the function is used, not where it's defined
|
||||
with patch("backend.api.features.store.hybrid_search.embed_query") as mock_embed:
|
||||
# Simulate embedding failure
|
||||
mock_embed.return_value = None
|
||||
|
||||
# Should raise ValueError with helpful message
|
||||
with pytest.raises(ValueError) as exc_info:
|
||||
await hybrid_search(
|
||||
query="test",
|
||||
page=1,
|
||||
page_size=20,
|
||||
)
|
||||
|
||||
# Verify error message is generic (doesn't leak implementation details)
|
||||
assert "Search service temporarily unavailable" in str(exc_info.value)
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.integration
|
||||
async def test_hybrid_search_with_filters():
|
||||
"""Test hybrid search with various filters."""
|
||||
with patch(
|
||||
"backend.api.features.store.hybrid_search.query_raw_with_schema"
|
||||
) as mock_query:
|
||||
mock_query.return_value = []
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.hybrid_search.embed_query"
|
||||
) as mock_embed:
|
||||
mock_embed.return_value = [0.1] * 1536
|
||||
|
||||
# Test with featured filter
|
||||
results, total = await hybrid_search(
|
||||
query="test",
|
||||
featured=True,
|
||||
creators=["user1", "user2"],
|
||||
category="productivity",
|
||||
page=1,
|
||||
page_size=10,
|
||||
)
|
||||
|
||||
# Verify filters were applied in the query
|
||||
call_args = mock_query.call_args
|
||||
params = call_args[0][1:] # Skip SQL template
|
||||
|
||||
# Should have query, query_lower, creators array, category
|
||||
assert len(params) >= 4
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.integration
|
||||
async def test_hybrid_search_weights():
|
||||
"""Test hybrid search with custom weights."""
|
||||
custom_weights = HybridSearchWeights(
|
||||
semantic=0.5,
|
||||
lexical=0.3,
|
||||
category=0.1,
|
||||
recency=0.1,
|
||||
popularity=0.0,
|
||||
)
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.hybrid_search.query_raw_with_schema"
|
||||
) as mock_query:
|
||||
mock_query.return_value = []
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.hybrid_search.embed_query"
|
||||
) as mock_embed:
|
||||
mock_embed.return_value = [0.1] * 1536
|
||||
|
||||
results, total = await hybrid_search(
|
||||
query="test",
|
||||
weights=custom_weights,
|
||||
page=1,
|
||||
page_size=20,
|
||||
)
|
||||
|
||||
# Verify custom weights were used in the query
|
||||
call_args = mock_query.call_args
|
||||
sql_template = call_args[0][0]
|
||||
params = call_args[0][1:] # Get all parameters passed
|
||||
|
||||
# Check that SQL uses parameterized weights (not f-string interpolation)
|
||||
assert "$" in sql_template # Verify parameterization is used
|
||||
|
||||
# Check that custom weights are in the params
|
||||
assert 0.5 in params # semantic weight
|
||||
assert 0.3 in params # lexical weight
|
||||
assert 0.1 in params # category and recency weights
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.integration
|
||||
async def test_hybrid_search_min_score_filtering():
|
||||
"""Test hybrid search minimum score threshold."""
|
||||
with patch(
|
||||
"backend.api.features.store.hybrid_search.query_raw_with_schema"
|
||||
) as mock_query:
|
||||
# Return results with varying scores
|
||||
mock_query.return_value = [
|
||||
{
|
||||
"slug": "high-score/agent",
|
||||
"agent_name": "High Score Agent",
|
||||
"combined_score": 0.8,
|
||||
"total_count": 1,
|
||||
# ... other fields
|
||||
}
|
||||
]
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.hybrid_search.embed_query"
|
||||
) as mock_embed:
|
||||
mock_embed.return_value = [0.1] * 1536
|
||||
|
||||
# Test with custom min_score
|
||||
results, total = await hybrid_search(
|
||||
query="test",
|
||||
min_score=0.5, # High threshold
|
||||
page=1,
|
||||
page_size=20,
|
||||
)
|
||||
|
||||
# Verify min_score was applied in query
|
||||
call_args = mock_query.call_args
|
||||
sql_template = call_args[0][0]
|
||||
params = call_args[0][1:] # Get all parameters
|
||||
|
||||
# Check that SQL uses parameterized min_score
|
||||
assert "combined_score >=" in sql_template
|
||||
assert "$" in sql_template # Verify parameterization
|
||||
|
||||
# Check that custom min_score is in the params
|
||||
assert 0.5 in params
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.integration
|
||||
async def test_hybrid_search_pagination():
|
||||
"""Test hybrid search pagination."""
|
||||
with patch(
|
||||
"backend.api.features.store.hybrid_search.query_raw_with_schema"
|
||||
) as mock_query:
|
||||
mock_query.return_value = []
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.hybrid_search.embed_query"
|
||||
) as mock_embed:
|
||||
mock_embed.return_value = [0.1] * 1536
|
||||
|
||||
# Test page 2 with page_size 10
|
||||
results, total = await hybrid_search(
|
||||
query="test",
|
||||
page=2,
|
||||
page_size=10,
|
||||
)
|
||||
|
||||
# Verify pagination parameters
|
||||
call_args = mock_query.call_args
|
||||
params = call_args[0]
|
||||
|
||||
# Last two params should be LIMIT and OFFSET
|
||||
limit = params[-2]
|
||||
offset = params[-1]
|
||||
|
||||
assert limit == 10 # page_size
|
||||
assert offset == 10 # (page - 1) * page_size = (2 - 1) * 10
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.integration
|
||||
async def test_hybrid_search_error_handling():
|
||||
"""Test hybrid search error handling."""
|
||||
with patch(
|
||||
"backend.api.features.store.hybrid_search.query_raw_with_schema"
|
||||
) as mock_query:
|
||||
# Simulate database error
|
||||
mock_query.side_effect = Exception("Database connection error")
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.hybrid_search.embed_query"
|
||||
) as mock_embed:
|
||||
mock_embed.return_value = [0.1] * 1536
|
||||
|
||||
# Should raise exception
|
||||
with pytest.raises(Exception) as exc_info:
|
||||
await hybrid_search(
|
||||
query="test",
|
||||
page=1,
|
||||
page_size=20,
|
||||
)
|
||||
|
||||
assert "Database connection error" in str(exc_info.value)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
pytest.main([__file__, "-v", "-s"])
|
||||
@@ -110,7 +110,6 @@ class Profile(pydantic.BaseModel):
|
||||
|
||||
|
||||
class StoreSubmission(pydantic.BaseModel):
|
||||
listing_id: str
|
||||
agent_id: str
|
||||
agent_version: int
|
||||
name: str
|
||||
@@ -165,12 +164,8 @@ class StoreListingsWithVersionsResponse(pydantic.BaseModel):
|
||||
|
||||
|
||||
class StoreSubmissionRequest(pydantic.BaseModel):
|
||||
agent_id: str = pydantic.Field(
|
||||
..., min_length=1, description="Agent ID cannot be empty"
|
||||
)
|
||||
agent_version: int = pydantic.Field(
|
||||
..., gt=0, description="Agent version must be greater than 0"
|
||||
)
|
||||
agent_id: str
|
||||
agent_version: int
|
||||
slug: str
|
||||
name: str
|
||||
sub_heading: str
|
||||
|
||||
@@ -138,7 +138,6 @@ def test_creator_details():
|
||||
|
||||
def test_store_submission():
|
||||
submission = store_model.StoreSubmission(
|
||||
listing_id="listing123",
|
||||
agent_id="agent123",
|
||||
agent_version=1,
|
||||
sub_heading="Test subheading",
|
||||
@@ -160,7 +159,6 @@ def test_store_submissions_response():
|
||||
response = store_model.StoreSubmissionsResponse(
|
||||
submissions=[
|
||||
store_model.StoreSubmission(
|
||||
listing_id="listing123",
|
||||
agent_id="agent123",
|
||||
agent_version=1,
|
||||
sub_heading="Test subheading",
|
||||
|
||||
@@ -294,6 +294,7 @@ async def get_creators(
|
||||
@router.get(
|
||||
"/creator/{username}",
|
||||
summary="Get creator details",
|
||||
operation_id="getV2GetCreatorDetails",
|
||||
tags=["store", "public"],
|
||||
response_model=store_model.CreatorDetails,
|
||||
)
|
||||
|
||||
@@ -521,7 +521,6 @@ def test_get_submissions_success(
|
||||
mocked_value = store_model.StoreSubmissionsResponse(
|
||||
submissions=[
|
||||
store_model.StoreSubmission(
|
||||
listing_id="test-listing-id",
|
||||
name="Test Agent",
|
||||
description="Test agent description",
|
||||
image_urls=["test.jpg"],
|
||||
|
||||
@@ -18,6 +18,7 @@ from prisma.errors import PrismaError
|
||||
|
||||
import backend.api.features.admin.credit_admin_routes
|
||||
import backend.api.features.admin.execution_analytics_routes
|
||||
import backend.api.features.admin.llm_routes
|
||||
import backend.api.features.admin.store_admin_routes
|
||||
import backend.api.features.builder
|
||||
import backend.api.features.builder.routes
|
||||
@@ -37,9 +38,11 @@ import backend.data.db
|
||||
import backend.data.graph
|
||||
import backend.data.user
|
||||
import backend.integrations.webhooks.utils
|
||||
import backend.server.v2.llm.routes as public_llm_routes
|
||||
import backend.util.service
|
||||
import backend.util.settings
|
||||
from backend.blocks.llm import DEFAULT_LLM_MODEL
|
||||
from backend.data import llm_registry
|
||||
from backend.data.block_cost_config import refresh_llm_costs
|
||||
from backend.data.model import Credentials
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.monitoring.instrumentation import instrument_fastapi
|
||||
@@ -109,11 +112,27 @@ async def lifespan_context(app: fastapi.FastAPI):
|
||||
|
||||
AutoRegistry.patch_integrations()
|
||||
|
||||
# Refresh LLM registry before initializing blocks so blocks can use registry data
|
||||
await llm_registry.refresh_llm_registry()
|
||||
refresh_llm_costs()
|
||||
|
||||
# Clear block schema caches so they're regenerated with updated discriminator_mapping
|
||||
from backend.data.block import BlockSchema
|
||||
|
||||
BlockSchema.clear_all_schema_caches()
|
||||
|
||||
await backend.data.block.initialize_blocks()
|
||||
|
||||
await backend.data.user.migrate_and_encrypt_user_integrations()
|
||||
await backend.data.graph.fix_llm_provider_credentials()
|
||||
await backend.data.graph.migrate_llm_models(DEFAULT_LLM_MODEL)
|
||||
# migrate_llm_models uses registry default model
|
||||
from backend.blocks.llm import LlmModel
|
||||
|
||||
default_model_slug = llm_registry.get_default_model_slug()
|
||||
if default_model_slug:
|
||||
await backend.data.graph.migrate_llm_models(LlmModel(default_model_slug))
|
||||
else:
|
||||
logger.warning("Skipping LLM model migration: no default model available")
|
||||
await backend.integrations.webhooks.utils.migrate_legacy_triggered_graphs()
|
||||
|
||||
with launch_darkly_context():
|
||||
@@ -298,6 +317,16 @@ app.include_router(
|
||||
tags=["v2", "executions", "review"],
|
||||
prefix="/api/review",
|
||||
)
|
||||
app.include_router(
|
||||
backend.api.features.admin.llm_routes.router,
|
||||
tags=["v2", "admin", "llm"],
|
||||
prefix="/api/llm/admin",
|
||||
)
|
||||
app.include_router(
|
||||
public_llm_routes.router,
|
||||
tags=["v2", "llm"],
|
||||
prefix="/api",
|
||||
)
|
||||
app.include_router(
|
||||
backend.api.features.library.routes.router, tags=["v2"], prefix="/api/library"
|
||||
)
|
||||
|
||||
@@ -77,7 +77,39 @@ async def event_broadcaster(manager: ConnectionManager):
|
||||
payload=notification.payload,
|
||||
)
|
||||
|
||||
await asyncio.gather(execution_worker(), notification_worker())
|
||||
async def registry_refresh_worker():
|
||||
"""Listen for LLM registry refresh notifications and broadcast to all clients."""
|
||||
from backend.data.llm_registry import REGISTRY_REFRESH_CHANNEL
|
||||
from backend.data.redis_client import connect_async
|
||||
|
||||
redis = await connect_async()
|
||||
pubsub = redis.pubsub()
|
||||
await pubsub.subscribe(REGISTRY_REFRESH_CHANNEL)
|
||||
logger.info(
|
||||
"Subscribed to LLM registry refresh notifications for WebSocket broadcast"
|
||||
)
|
||||
|
||||
async for message in pubsub.listen():
|
||||
if (
|
||||
message["type"] == "message"
|
||||
and message["channel"] == REGISTRY_REFRESH_CHANNEL
|
||||
):
|
||||
logger.info(
|
||||
"Broadcasting LLM registry refresh to all WebSocket clients"
|
||||
)
|
||||
await manager.broadcast_to_all(
|
||||
method=WSMethod.NOTIFICATION,
|
||||
data={
|
||||
"type": "LLM_REGISTRY_REFRESH",
|
||||
"event": "registry_updated",
|
||||
},
|
||||
)
|
||||
|
||||
await asyncio.gather(
|
||||
execution_worker(),
|
||||
notification_worker(),
|
||||
registry_refresh_worker(),
|
||||
)
|
||||
|
||||
|
||||
async def authenticate_websocket(websocket: WebSocket) -> str:
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
from typing import Any
|
||||
|
||||
from backend.blocks.llm import (
|
||||
DEFAULT_LLM_MODEL,
|
||||
TEST_CREDENTIALS,
|
||||
TEST_CREDENTIALS_INPUT,
|
||||
AIBlockBase,
|
||||
@@ -10,6 +9,7 @@ from backend.blocks.llm import (
|
||||
LlmModel,
|
||||
LLMResponse,
|
||||
llm_call,
|
||||
llm_model_schema_extra,
|
||||
)
|
||||
from backend.data.block import (
|
||||
BlockCategory,
|
||||
@@ -50,9 +50,10 @@ class AIConditionBlock(AIBlockBase):
|
||||
)
|
||||
model: LlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
default=DEFAULT_LLM_MODEL,
|
||||
default_factory=LlmModel.default,
|
||||
description="The language model to use for evaluating the condition.",
|
||||
advanced=False,
|
||||
json_schema_extra=llm_model_schema_extra(),
|
||||
)
|
||||
credentials: AICredentials = AICredentialsField()
|
||||
|
||||
@@ -82,7 +83,7 @@ class AIConditionBlock(AIBlockBase):
|
||||
"condition": "the input is an email address",
|
||||
"yes_value": "Valid email",
|
||||
"no_value": "Not an email",
|
||||
"model": DEFAULT_LLM_MODEL,
|
||||
"model": "gpt-4o", # Using string value - enum accepts any model slug dynamically
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
|
||||
@@ -6,9 +6,6 @@ import hashlib
|
||||
import hmac
|
||||
import logging
|
||||
from enum import Enum
|
||||
from typing import cast
|
||||
|
||||
from prisma.types import Serializable
|
||||
|
||||
from backend.sdk import (
|
||||
BaseWebhooksManager,
|
||||
@@ -87,9 +84,7 @@ class AirtableWebhookManager(BaseWebhooksManager):
|
||||
# update webhook config
|
||||
await update_webhook(
|
||||
webhook.id,
|
||||
config=cast(
|
||||
dict[str, Serializable], {"base_id": base_id, "cursor": response.cursor}
|
||||
),
|
||||
config={"base_id": base_id, "cursor": response.cursor},
|
||||
)
|
||||
|
||||
event_type = "notification"
|
||||
|
||||
@@ -1,184 +0,0 @@
|
||||
"""
|
||||
Shared helpers for Human-In-The-Loop (HITL) review functionality.
|
||||
Used by both the dedicated HumanInTheLoopBlock and blocks that require human review.
|
||||
"""
|
||||
|
||||
import logging
|
||||
from typing import Any, Optional
|
||||
|
||||
from prisma.enums import ReviewStatus
|
||||
from pydantic import BaseModel
|
||||
|
||||
from backend.data.execution import ExecutionContext, ExecutionStatus
|
||||
from backend.data.human_review import ReviewResult
|
||||
from backend.executor.manager import async_update_node_execution_status
|
||||
from backend.util.clients import get_database_manager_async_client
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ReviewDecision(BaseModel):
|
||||
"""Result of a review decision."""
|
||||
|
||||
should_proceed: bool
|
||||
message: str
|
||||
review_result: ReviewResult
|
||||
|
||||
|
||||
class HITLReviewHelper:
|
||||
"""Helper class for Human-In-The-Loop review operations."""
|
||||
|
||||
@staticmethod
|
||||
async def get_or_create_human_review(**kwargs) -> Optional[ReviewResult]:
|
||||
"""Create or retrieve a human review from the database."""
|
||||
return await get_database_manager_async_client().get_or_create_human_review(
|
||||
**kwargs
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
async def update_node_execution_status(**kwargs) -> None:
|
||||
"""Update the execution status of a node."""
|
||||
await async_update_node_execution_status(
|
||||
db_client=get_database_manager_async_client(), **kwargs
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
async def update_review_processed_status(
|
||||
node_exec_id: str, processed: bool
|
||||
) -> None:
|
||||
"""Update the processed status of a review."""
|
||||
return await get_database_manager_async_client().update_review_processed_status(
|
||||
node_exec_id, processed
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
async def _handle_review_request(
|
||||
input_data: Any,
|
||||
user_id: str,
|
||||
node_exec_id: str,
|
||||
graph_exec_id: str,
|
||||
graph_id: str,
|
||||
graph_version: int,
|
||||
execution_context: ExecutionContext,
|
||||
block_name: str = "Block",
|
||||
editable: bool = False,
|
||||
) -> Optional[ReviewResult]:
|
||||
"""
|
||||
Handle a review request for a block that requires human review.
|
||||
|
||||
Args:
|
||||
input_data: The input data to be reviewed
|
||||
user_id: ID of the user requesting the review
|
||||
node_exec_id: ID of the node execution
|
||||
graph_exec_id: ID of the graph execution
|
||||
graph_id: ID of the graph
|
||||
graph_version: Version of the graph
|
||||
execution_context: Current execution context
|
||||
block_name: Name of the block requesting review
|
||||
editable: Whether the reviewer can edit the data
|
||||
|
||||
Returns:
|
||||
ReviewResult if review is complete, None if waiting for human input
|
||||
|
||||
Raises:
|
||||
Exception: If review creation or status update fails
|
||||
"""
|
||||
# Skip review if safe mode is disabled - return auto-approved result
|
||||
if not execution_context.safe_mode:
|
||||
logger.info(
|
||||
f"Block {block_name} skipping review for node {node_exec_id} - safe mode disabled"
|
||||
)
|
||||
return ReviewResult(
|
||||
data=input_data,
|
||||
status=ReviewStatus.APPROVED,
|
||||
message="Auto-approved (safe mode disabled)",
|
||||
processed=True,
|
||||
node_exec_id=node_exec_id,
|
||||
)
|
||||
|
||||
result = await HITLReviewHelper.get_or_create_human_review(
|
||||
user_id=user_id,
|
||||
node_exec_id=node_exec_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
graph_id=graph_id,
|
||||
graph_version=graph_version,
|
||||
input_data=input_data,
|
||||
message=f"Review required for {block_name} execution",
|
||||
editable=editable,
|
||||
)
|
||||
|
||||
if result is None:
|
||||
logger.info(
|
||||
f"Block {block_name} pausing execution for node {node_exec_id} - awaiting human review"
|
||||
)
|
||||
await HITLReviewHelper.update_node_execution_status(
|
||||
exec_id=node_exec_id,
|
||||
status=ExecutionStatus.REVIEW,
|
||||
)
|
||||
return None # Signal that execution should pause
|
||||
|
||||
# Mark review as processed if not already done
|
||||
if not result.processed:
|
||||
await HITLReviewHelper.update_review_processed_status(
|
||||
node_exec_id=node_exec_id, processed=True
|
||||
)
|
||||
|
||||
return result
|
||||
|
||||
@staticmethod
|
||||
async def handle_review_decision(
|
||||
input_data: Any,
|
||||
user_id: str,
|
||||
node_exec_id: str,
|
||||
graph_exec_id: str,
|
||||
graph_id: str,
|
||||
graph_version: int,
|
||||
execution_context: ExecutionContext,
|
||||
block_name: str = "Block",
|
||||
editable: bool = False,
|
||||
) -> Optional[ReviewDecision]:
|
||||
"""
|
||||
Handle a review request and return the decision in a single call.
|
||||
|
||||
Args:
|
||||
input_data: The input data to be reviewed
|
||||
user_id: ID of the user requesting the review
|
||||
node_exec_id: ID of the node execution
|
||||
graph_exec_id: ID of the graph execution
|
||||
graph_id: ID of the graph
|
||||
graph_version: Version of the graph
|
||||
execution_context: Current execution context
|
||||
block_name: Name of the block requesting review
|
||||
editable: Whether the reviewer can edit the data
|
||||
|
||||
Returns:
|
||||
ReviewDecision if review is complete (approved/rejected),
|
||||
None if execution should pause (awaiting review)
|
||||
"""
|
||||
review_result = await HITLReviewHelper._handle_review_request(
|
||||
input_data=input_data,
|
||||
user_id=user_id,
|
||||
node_exec_id=node_exec_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
graph_id=graph_id,
|
||||
graph_version=graph_version,
|
||||
execution_context=execution_context,
|
||||
block_name=block_name,
|
||||
editable=editable,
|
||||
)
|
||||
|
||||
if review_result is None:
|
||||
# Still awaiting review - return None to pause execution
|
||||
return None
|
||||
|
||||
# Review is complete, determine outcome
|
||||
should_proceed = review_result.status == ReviewStatus.APPROVED
|
||||
message = review_result.message or (
|
||||
"Execution approved by reviewer"
|
||||
if should_proceed
|
||||
else "Execution rejected by reviewer"
|
||||
)
|
||||
|
||||
return ReviewDecision(
|
||||
should_proceed=should_proceed, message=message, review_result=review_result
|
||||
)
|
||||
@@ -3,7 +3,6 @@ from typing import Any
|
||||
|
||||
from prisma.enums import ReviewStatus
|
||||
|
||||
from backend.blocks.helpers.review import HITLReviewHelper
|
||||
from backend.data.block import (
|
||||
Block,
|
||||
BlockCategory,
|
||||
@@ -12,9 +11,11 @@ from backend.data.block import (
|
||||
BlockSchemaOutput,
|
||||
BlockType,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.execution import ExecutionContext, ExecutionStatus
|
||||
from backend.data.human_review import ReviewResult
|
||||
from backend.data.model import SchemaField
|
||||
from backend.executor.manager import async_update_node_execution_status
|
||||
from backend.util.clients import get_database_manager_async_client
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -71,26 +72,32 @@ class HumanInTheLoopBlock(Block):
|
||||
("approved_data", {"name": "John Doe", "age": 30}),
|
||||
],
|
||||
test_mock={
|
||||
"handle_review_decision": lambda **kwargs: type(
|
||||
"ReviewDecision",
|
||||
(),
|
||||
{
|
||||
"should_proceed": True,
|
||||
"message": "Test approval message",
|
||||
"review_result": ReviewResult(
|
||||
data={"name": "John Doe", "age": 30},
|
||||
status=ReviewStatus.APPROVED,
|
||||
message="",
|
||||
processed=False,
|
||||
node_exec_id="test-node-exec-id",
|
||||
),
|
||||
},
|
||||
)(),
|
||||
"get_or_create_human_review": lambda *_args, **_kwargs: ReviewResult(
|
||||
data={"name": "John Doe", "age": 30},
|
||||
status=ReviewStatus.APPROVED,
|
||||
message="",
|
||||
processed=False,
|
||||
node_exec_id="test-node-exec-id",
|
||||
),
|
||||
"update_node_execution_status": lambda *_args, **_kwargs: None,
|
||||
"update_review_processed_status": lambda *_args, **_kwargs: None,
|
||||
},
|
||||
)
|
||||
|
||||
async def handle_review_decision(self, **kwargs):
|
||||
return await HITLReviewHelper.handle_review_decision(**kwargs)
|
||||
async def get_or_create_human_review(self, **kwargs):
|
||||
return await get_database_manager_async_client().get_or_create_human_review(
|
||||
**kwargs
|
||||
)
|
||||
|
||||
async def update_node_execution_status(self, **kwargs):
|
||||
return await async_update_node_execution_status(
|
||||
db_client=get_database_manager_async_client(), **kwargs
|
||||
)
|
||||
|
||||
async def update_review_processed_status(self, node_exec_id: str, processed: bool):
|
||||
return await get_database_manager_async_client().update_review_processed_status(
|
||||
node_exec_id, processed
|
||||
)
|
||||
|
||||
async def run(
|
||||
self,
|
||||
@@ -102,7 +109,7 @@ class HumanInTheLoopBlock(Block):
|
||||
graph_id: str,
|
||||
graph_version: int,
|
||||
execution_context: ExecutionContext,
|
||||
**_kwargs,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
if not execution_context.safe_mode:
|
||||
logger.info(
|
||||
@@ -112,28 +119,48 @@ class HumanInTheLoopBlock(Block):
|
||||
yield "review_message", "Auto-approved (safe mode disabled)"
|
||||
return
|
||||
|
||||
decision = await self.handle_review_decision(
|
||||
input_data=input_data.data,
|
||||
user_id=user_id,
|
||||
node_exec_id=node_exec_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
graph_id=graph_id,
|
||||
graph_version=graph_version,
|
||||
execution_context=execution_context,
|
||||
block_name=self.name,
|
||||
editable=input_data.editable,
|
||||
)
|
||||
try:
|
||||
result = await self.get_or_create_human_review(
|
||||
user_id=user_id,
|
||||
node_exec_id=node_exec_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
graph_id=graph_id,
|
||||
graph_version=graph_version,
|
||||
input_data=input_data.data,
|
||||
message=input_data.name,
|
||||
editable=input_data.editable,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error in HITL block for node {node_exec_id}: {str(e)}")
|
||||
raise
|
||||
|
||||
if decision is None:
|
||||
return
|
||||
if result is None:
|
||||
logger.info(
|
||||
f"HITL block pausing execution for node {node_exec_id} - awaiting human review"
|
||||
)
|
||||
try:
|
||||
await self.update_node_execution_status(
|
||||
exec_id=node_exec_id,
|
||||
status=ExecutionStatus.REVIEW,
|
||||
)
|
||||
return
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Failed to update node status for HITL block {node_exec_id}: {str(e)}"
|
||||
)
|
||||
raise
|
||||
|
||||
status = decision.review_result.status
|
||||
if status == ReviewStatus.APPROVED:
|
||||
yield "approved_data", decision.review_result.data
|
||||
elif status == ReviewStatus.REJECTED:
|
||||
yield "rejected_data", decision.review_result.data
|
||||
else:
|
||||
raise RuntimeError(f"Unexpected review status: {status}")
|
||||
if not result.processed:
|
||||
await self.update_review_processed_status(
|
||||
node_exec_id=node_exec_id, processed=True
|
||||
)
|
||||
|
||||
if decision.message:
|
||||
yield "review_message", decision.message
|
||||
if result.status == ReviewStatus.APPROVED:
|
||||
yield "approved_data", result.data
|
||||
if result.message:
|
||||
yield "review_message", result.message
|
||||
|
||||
elif result.status == ReviewStatus.REJECTED:
|
||||
yield "rejected_data", result.data
|
||||
if result.message:
|
||||
yield "review_message", result.message
|
||||
|
||||
@@ -4,17 +4,19 @@ import logging
|
||||
import re
|
||||
import secrets
|
||||
from abc import ABC
|
||||
from enum import Enum, EnumMeta
|
||||
from enum import Enum
|
||||
from json import JSONDecodeError
|
||||
from typing import Any, Iterable, List, Literal, NamedTuple, Optional
|
||||
from typing import Any, Iterable, List, Literal, Optional
|
||||
|
||||
import anthropic
|
||||
import ollama
|
||||
import openai
|
||||
from anthropic.types import ToolParam
|
||||
from groq import AsyncGroq
|
||||
from pydantic import BaseModel, SecretStr
|
||||
from pydantic import BaseModel, GetCoreSchemaHandler, SecretStr
|
||||
from pydantic_core import CoreSchema, core_schema
|
||||
|
||||
from backend.data import llm_registry
|
||||
from backend.data.block import (
|
||||
Block,
|
||||
BlockCategory,
|
||||
@@ -22,6 +24,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.llm_registry import ModelMetadata
|
||||
from backend.data.model import (
|
||||
APIKeyCredentials,
|
||||
CredentialsField,
|
||||
@@ -66,114 +69,117 @@ TEST_CREDENTIALS_INPUT = {
|
||||
|
||||
|
||||
def AICredentialsField() -> AICredentials:
|
||||
"""
|
||||
Returns a CredentialsField for LLM providers.
|
||||
The discriminator_mapping will be refreshed when the schema is generated
|
||||
if it's empty, ensuring the LLM registry is loaded.
|
||||
"""
|
||||
# Get the mapping now - it may be empty initially, but will be refreshed
|
||||
# when the schema is generated via CredentialsMetaInput._add_json_schema_extra
|
||||
mapping = llm_registry.get_llm_discriminator_mapping()
|
||||
|
||||
return CredentialsField(
|
||||
description="API key for the LLM provider.",
|
||||
discriminator="model",
|
||||
discriminator_mapping={
|
||||
model.value: model.metadata.provider for model in LlmModel
|
||||
},
|
||||
discriminator_mapping=mapping, # May be empty initially, refreshed later
|
||||
)
|
||||
|
||||
|
||||
class ModelMetadata(NamedTuple):
|
||||
provider: str
|
||||
context_window: int
|
||||
max_output_tokens: int | None
|
||||
def llm_model_schema_extra() -> dict[str, Any]:
|
||||
return {"options": llm_registry.get_llm_model_schema_options()}
|
||||
|
||||
|
||||
class LlmModelMeta(EnumMeta):
|
||||
pass
|
||||
class LlmModelMeta(type):
|
||||
"""
|
||||
Metaclass for LlmModel that enables attribute-style access to dynamic models.
|
||||
|
||||
This allows code like `LlmModel.GPT4O` to work by converting the attribute
|
||||
name to a slug format:
|
||||
- GPT4O -> gpt-4o
|
||||
- GPT4O_MINI -> gpt-4o-mini
|
||||
- CLAUDE_3_5_SONNET -> claude-3-5-sonnet
|
||||
"""
|
||||
|
||||
def __getattr__(cls, name: str):
|
||||
# Don't intercept private/dunder attributes
|
||||
if name.startswith("_"):
|
||||
raise AttributeError(f"type object 'LlmModel' has no attribute '{name}'")
|
||||
|
||||
# Convert attribute name to slug format:
|
||||
# 1. Lowercase: GPT4O -> gpt4o
|
||||
# 2. Underscores to hyphens: GPT4O_MINI -> gpt4o-mini
|
||||
# 3. Insert hyphen between letter and digit: gpt4o -> gpt-4o
|
||||
slug = name.lower().replace("_", "-")
|
||||
slug = re.sub(r"([a-z])(\d)", r"\1-\2", slug)
|
||||
|
||||
return cls(slug)
|
||||
|
||||
|
||||
class LlmModel(str, Enum, metaclass=LlmModelMeta):
|
||||
# OpenAI models
|
||||
O3_MINI = "o3-mini"
|
||||
O3 = "o3-2025-04-16"
|
||||
O1 = "o1"
|
||||
O1_MINI = "o1-mini"
|
||||
# GPT-5 models
|
||||
GPT5_2 = "gpt-5.2-2025-12-11"
|
||||
GPT5_1 = "gpt-5.1-2025-11-13"
|
||||
GPT5 = "gpt-5-2025-08-07"
|
||||
GPT5_MINI = "gpt-5-mini-2025-08-07"
|
||||
GPT5_NANO = "gpt-5-nano-2025-08-07"
|
||||
GPT5_CHAT = "gpt-5-chat-latest"
|
||||
GPT41 = "gpt-4.1-2025-04-14"
|
||||
GPT41_MINI = "gpt-4.1-mini-2025-04-14"
|
||||
GPT4O_MINI = "gpt-4o-mini"
|
||||
GPT4O = "gpt-4o"
|
||||
GPT4_TURBO = "gpt-4-turbo"
|
||||
GPT3_5_TURBO = "gpt-3.5-turbo"
|
||||
# Anthropic models
|
||||
CLAUDE_4_1_OPUS = "claude-opus-4-1-20250805"
|
||||
CLAUDE_4_OPUS = "claude-opus-4-20250514"
|
||||
CLAUDE_4_SONNET = "claude-sonnet-4-20250514"
|
||||
CLAUDE_4_5_OPUS = "claude-opus-4-5-20251101"
|
||||
CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
|
||||
CLAUDE_4_5_HAIKU = "claude-haiku-4-5-20251001"
|
||||
CLAUDE_3_7_SONNET = "claude-3-7-sonnet-20250219"
|
||||
CLAUDE_3_HAIKU = "claude-3-haiku-20240307"
|
||||
# AI/ML API models
|
||||
AIML_API_QWEN2_5_72B = "Qwen/Qwen2.5-72B-Instruct-Turbo"
|
||||
AIML_API_LLAMA3_1_70B = "nvidia/llama-3.1-nemotron-70b-instruct"
|
||||
AIML_API_LLAMA3_3_70B = "meta-llama/Llama-3.3-70B-Instruct-Turbo"
|
||||
AIML_API_META_LLAMA_3_1_70B = "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo"
|
||||
AIML_API_LLAMA_3_2_3B = "meta-llama/Llama-3.2-3B-Instruct-Turbo"
|
||||
# Groq models
|
||||
LLAMA3_3_70B = "llama-3.3-70b-versatile"
|
||||
LLAMA3_1_8B = "llama-3.1-8b-instant"
|
||||
# Ollama models
|
||||
OLLAMA_LLAMA3_3 = "llama3.3"
|
||||
OLLAMA_LLAMA3_2 = "llama3.2"
|
||||
OLLAMA_LLAMA3_8B = "llama3"
|
||||
OLLAMA_LLAMA3_405B = "llama3.1:405b"
|
||||
OLLAMA_DOLPHIN = "dolphin-mistral:latest"
|
||||
# OpenRouter models
|
||||
OPENAI_GPT_OSS_120B = "openai/gpt-oss-120b"
|
||||
OPENAI_GPT_OSS_20B = "openai/gpt-oss-20b"
|
||||
GEMINI_2_5_PRO = "google/gemini-2.5-pro-preview-03-25"
|
||||
GEMINI_3_PRO_PREVIEW = "google/gemini-3-pro-preview"
|
||||
GEMINI_2_5_FLASH = "google/gemini-2.5-flash"
|
||||
GEMINI_2_0_FLASH = "google/gemini-2.0-flash-001"
|
||||
GEMINI_2_5_FLASH_LITE_PREVIEW = "google/gemini-2.5-flash-lite-preview-06-17"
|
||||
GEMINI_2_0_FLASH_LITE = "google/gemini-2.0-flash-lite-001"
|
||||
MISTRAL_NEMO = "mistralai/mistral-nemo"
|
||||
COHERE_COMMAND_R_08_2024 = "cohere/command-r-08-2024"
|
||||
COHERE_COMMAND_R_PLUS_08_2024 = "cohere/command-r-plus-08-2024"
|
||||
DEEPSEEK_CHAT = "deepseek/deepseek-chat" # Actually: DeepSeek V3
|
||||
DEEPSEEK_R1_0528 = "deepseek/deepseek-r1-0528"
|
||||
PERPLEXITY_SONAR = "perplexity/sonar"
|
||||
PERPLEXITY_SONAR_PRO = "perplexity/sonar-pro"
|
||||
PERPLEXITY_SONAR_DEEP_RESEARCH = "perplexity/sonar-deep-research"
|
||||
NOUSRESEARCH_HERMES_3_LLAMA_3_1_405B = "nousresearch/hermes-3-llama-3.1-405b"
|
||||
NOUSRESEARCH_HERMES_3_LLAMA_3_1_70B = "nousresearch/hermes-3-llama-3.1-70b"
|
||||
AMAZON_NOVA_LITE_V1 = "amazon/nova-lite-v1"
|
||||
AMAZON_NOVA_MICRO_V1 = "amazon/nova-micro-v1"
|
||||
AMAZON_NOVA_PRO_V1 = "amazon/nova-pro-v1"
|
||||
MICROSOFT_WIZARDLM_2_8X22B = "microsoft/wizardlm-2-8x22b"
|
||||
GRYPHE_MYTHOMAX_L2_13B = "gryphe/mythomax-l2-13b"
|
||||
META_LLAMA_4_SCOUT = "meta-llama/llama-4-scout"
|
||||
META_LLAMA_4_MAVERICK = "meta-llama/llama-4-maverick"
|
||||
GROK_4 = "x-ai/grok-4"
|
||||
GROK_4_FAST = "x-ai/grok-4-fast"
|
||||
GROK_4_1_FAST = "x-ai/grok-4.1-fast"
|
||||
GROK_CODE_FAST_1 = "x-ai/grok-code-fast-1"
|
||||
KIMI_K2 = "moonshotai/kimi-k2"
|
||||
QWEN3_235B_A22B_THINKING = "qwen/qwen3-235b-a22b-thinking-2507"
|
||||
QWEN3_CODER = "qwen/qwen3-coder"
|
||||
# Llama API models
|
||||
LLAMA_API_LLAMA_4_SCOUT = "Llama-4-Scout-17B-16E-Instruct-FP8"
|
||||
LLAMA_API_LLAMA4_MAVERICK = "Llama-4-Maverick-17B-128E-Instruct-FP8"
|
||||
LLAMA_API_LLAMA3_3_8B = "Llama-3.3-8B-Instruct"
|
||||
LLAMA_API_LLAMA3_3_70B = "Llama-3.3-70B-Instruct"
|
||||
# v0 by Vercel models
|
||||
V0_1_5_MD = "v0-1.5-md"
|
||||
V0_1_5_LG = "v0-1.5-lg"
|
||||
V0_1_0_MD = "v0-1.0-md"
|
||||
class LlmModel(str, metaclass=LlmModelMeta):
|
||||
"""
|
||||
Dynamic LLM model type that accepts any model slug from the registry.
|
||||
|
||||
This is a string subclass (not an Enum) that allows any model slug value.
|
||||
All models are managed via the LLM Registry in the database.
|
||||
|
||||
Usage:
|
||||
model = LlmModel("gpt-4o") # Direct construction
|
||||
model = LlmModel.GPT4O # Attribute access (converted to "gpt-4o")
|
||||
model.value # Returns the slug string
|
||||
model.provider # Returns the provider from registry
|
||||
"""
|
||||
|
||||
def __new__(cls, value: str):
|
||||
if isinstance(value, LlmModel):
|
||||
return value
|
||||
return str.__new__(cls, value)
|
||||
|
||||
@classmethod
|
||||
def __get_pydantic_core_schema__(
|
||||
cls, source_type: Any, handler: GetCoreSchemaHandler
|
||||
) -> CoreSchema:
|
||||
"""
|
||||
Tell Pydantic how to validate LlmModel.
|
||||
|
||||
Accepts strings and converts them to LlmModel instances.
|
||||
"""
|
||||
return core_schema.no_info_after_validator_function(
|
||||
cls, # The validator function (LlmModel constructor)
|
||||
core_schema.str_schema(), # Accept string input
|
||||
serialization=core_schema.to_string_ser_schema(), # Serialize as string
|
||||
)
|
||||
|
||||
@property
|
||||
def value(self) -> str:
|
||||
"""Return the model slug (for compatibility with enum-style access)."""
|
||||
return str(self)
|
||||
|
||||
@classmethod
|
||||
def default(cls) -> "LlmModel":
|
||||
"""
|
||||
Get the default model from the registry.
|
||||
|
||||
Returns the recommended model if set, otherwise gpt-4o if available
|
||||
and enabled, otherwise the first enabled model from the registry.
|
||||
Falls back to "gpt-4o" if registry is empty (e.g., at module import time).
|
||||
"""
|
||||
from backend.data.llm_registry import get_default_model_slug
|
||||
|
||||
slug = get_default_model_slug()
|
||||
if slug is None:
|
||||
# Registry is empty (e.g., at module import time before DB connection).
|
||||
# Fall back to gpt-4o for backward compatibility.
|
||||
slug = "gpt-4o"
|
||||
return cls(slug)
|
||||
|
||||
@property
|
||||
def metadata(self) -> ModelMetadata:
|
||||
return MODEL_METADATA[self]
|
||||
metadata = llm_registry.get_llm_model_metadata(self.value)
|
||||
if metadata:
|
||||
return metadata
|
||||
raise ValueError(
|
||||
f"Missing metadata for model: {self.value}. Model not found in LLM registry."
|
||||
)
|
||||
|
||||
@property
|
||||
def provider(self) -> str:
|
||||
@@ -188,128 +194,11 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
|
||||
return self.metadata.max_output_tokens
|
||||
|
||||
|
||||
MODEL_METADATA = {
|
||||
# https://platform.openai.com/docs/models
|
||||
LlmModel.O3: ModelMetadata("openai", 200000, 100000),
|
||||
LlmModel.O3_MINI: ModelMetadata("openai", 200000, 100000), # o3-mini-2025-01-31
|
||||
LlmModel.O1: ModelMetadata("openai", 200000, 100000), # o1-2024-12-17
|
||||
LlmModel.O1_MINI: ModelMetadata("openai", 128000, 65536), # o1-mini-2024-09-12
|
||||
# GPT-5 models
|
||||
LlmModel.GPT5_2: ModelMetadata("openai", 400000, 128000),
|
||||
LlmModel.GPT5_1: ModelMetadata("openai", 400000, 128000),
|
||||
LlmModel.GPT5: ModelMetadata("openai", 400000, 128000),
|
||||
LlmModel.GPT5_MINI: ModelMetadata("openai", 400000, 128000),
|
||||
LlmModel.GPT5_NANO: ModelMetadata("openai", 400000, 128000),
|
||||
LlmModel.GPT5_CHAT: ModelMetadata("openai", 400000, 16384),
|
||||
LlmModel.GPT41: ModelMetadata("openai", 1047576, 32768),
|
||||
LlmModel.GPT41_MINI: ModelMetadata("openai", 1047576, 32768),
|
||||
LlmModel.GPT4O_MINI: ModelMetadata(
|
||||
"openai", 128000, 16384
|
||||
), # gpt-4o-mini-2024-07-18
|
||||
LlmModel.GPT4O: ModelMetadata("openai", 128000, 16384), # gpt-4o-2024-08-06
|
||||
LlmModel.GPT4_TURBO: ModelMetadata(
|
||||
"openai", 128000, 4096
|
||||
), # gpt-4-turbo-2024-04-09
|
||||
LlmModel.GPT3_5_TURBO: ModelMetadata("openai", 16385, 4096), # gpt-3.5-turbo-0125
|
||||
# https://docs.anthropic.com/en/docs/about-claude/models
|
||||
LlmModel.CLAUDE_4_1_OPUS: ModelMetadata(
|
||||
"anthropic", 200000, 32000
|
||||
), # claude-opus-4-1-20250805
|
||||
LlmModel.CLAUDE_4_OPUS: ModelMetadata(
|
||||
"anthropic", 200000, 32000
|
||||
), # claude-4-opus-20250514
|
||||
LlmModel.CLAUDE_4_SONNET: ModelMetadata(
|
||||
"anthropic", 200000, 64000
|
||||
), # claude-4-sonnet-20250514
|
||||
LlmModel.CLAUDE_4_5_OPUS: ModelMetadata(
|
||||
"anthropic", 200000, 64000
|
||||
), # claude-opus-4-5-20251101
|
||||
LlmModel.CLAUDE_4_5_SONNET: ModelMetadata(
|
||||
"anthropic", 200000, 64000
|
||||
), # claude-sonnet-4-5-20250929
|
||||
LlmModel.CLAUDE_4_5_HAIKU: ModelMetadata(
|
||||
"anthropic", 200000, 64000
|
||||
), # claude-haiku-4-5-20251001
|
||||
LlmModel.CLAUDE_3_7_SONNET: ModelMetadata(
|
||||
"anthropic", 200000, 64000
|
||||
), # claude-3-7-sonnet-20250219
|
||||
LlmModel.CLAUDE_3_HAIKU: ModelMetadata(
|
||||
"anthropic", 200000, 4096
|
||||
), # claude-3-haiku-20240307
|
||||
# https://docs.aimlapi.com/api-overview/model-database/text-models
|
||||
LlmModel.AIML_API_QWEN2_5_72B: ModelMetadata("aiml_api", 32000, 8000),
|
||||
LlmModel.AIML_API_LLAMA3_1_70B: ModelMetadata("aiml_api", 128000, 40000),
|
||||
LlmModel.AIML_API_LLAMA3_3_70B: ModelMetadata("aiml_api", 128000, None),
|
||||
LlmModel.AIML_API_META_LLAMA_3_1_70B: ModelMetadata("aiml_api", 131000, 2000),
|
||||
LlmModel.AIML_API_LLAMA_3_2_3B: ModelMetadata("aiml_api", 128000, None),
|
||||
# https://console.groq.com/docs/models
|
||||
LlmModel.LLAMA3_3_70B: ModelMetadata("groq", 128000, 32768),
|
||||
LlmModel.LLAMA3_1_8B: ModelMetadata("groq", 128000, 8192),
|
||||
# https://ollama.com/library
|
||||
LlmModel.OLLAMA_LLAMA3_3: ModelMetadata("ollama", 8192, None),
|
||||
LlmModel.OLLAMA_LLAMA3_2: ModelMetadata("ollama", 8192, None),
|
||||
LlmModel.OLLAMA_LLAMA3_8B: ModelMetadata("ollama", 8192, None),
|
||||
LlmModel.OLLAMA_LLAMA3_405B: ModelMetadata("ollama", 8192, None),
|
||||
LlmModel.OLLAMA_DOLPHIN: ModelMetadata("ollama", 32768, None),
|
||||
# https://openrouter.ai/models
|
||||
LlmModel.GEMINI_2_5_PRO: ModelMetadata("open_router", 1050000, 8192),
|
||||
LlmModel.GEMINI_3_PRO_PREVIEW: ModelMetadata("open_router", 1048576, 65535),
|
||||
LlmModel.GEMINI_2_5_FLASH: ModelMetadata("open_router", 1048576, 65535),
|
||||
LlmModel.GEMINI_2_0_FLASH: ModelMetadata("open_router", 1048576, 8192),
|
||||
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: ModelMetadata(
|
||||
"open_router", 1048576, 65535
|
||||
),
|
||||
LlmModel.GEMINI_2_0_FLASH_LITE: ModelMetadata("open_router", 1048576, 8192),
|
||||
LlmModel.MISTRAL_NEMO: ModelMetadata("open_router", 128000, 4096),
|
||||
LlmModel.COHERE_COMMAND_R_08_2024: ModelMetadata("open_router", 128000, 4096),
|
||||
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: ModelMetadata("open_router", 128000, 4096),
|
||||
LlmModel.DEEPSEEK_CHAT: ModelMetadata("open_router", 64000, 2048),
|
||||
LlmModel.DEEPSEEK_R1_0528: ModelMetadata("open_router", 163840, 163840),
|
||||
LlmModel.PERPLEXITY_SONAR: ModelMetadata("open_router", 127000, 8000),
|
||||
LlmModel.PERPLEXITY_SONAR_PRO: ModelMetadata("open_router", 200000, 8000),
|
||||
LlmModel.PERPLEXITY_SONAR_DEEP_RESEARCH: ModelMetadata(
|
||||
"open_router",
|
||||
128000,
|
||||
16000,
|
||||
),
|
||||
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_405B: ModelMetadata(
|
||||
"open_router", 131000, 4096
|
||||
),
|
||||
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_70B: ModelMetadata(
|
||||
"open_router", 12288, 12288
|
||||
),
|
||||
LlmModel.OPENAI_GPT_OSS_120B: ModelMetadata("open_router", 131072, 131072),
|
||||
LlmModel.OPENAI_GPT_OSS_20B: ModelMetadata("open_router", 131072, 32768),
|
||||
LlmModel.AMAZON_NOVA_LITE_V1: ModelMetadata("open_router", 300000, 5120),
|
||||
LlmModel.AMAZON_NOVA_MICRO_V1: ModelMetadata("open_router", 128000, 5120),
|
||||
LlmModel.AMAZON_NOVA_PRO_V1: ModelMetadata("open_router", 300000, 5120),
|
||||
LlmModel.MICROSOFT_WIZARDLM_2_8X22B: ModelMetadata("open_router", 65536, 4096),
|
||||
LlmModel.GRYPHE_MYTHOMAX_L2_13B: ModelMetadata("open_router", 4096, 4096),
|
||||
LlmModel.META_LLAMA_4_SCOUT: ModelMetadata("open_router", 131072, 131072),
|
||||
LlmModel.META_LLAMA_4_MAVERICK: ModelMetadata("open_router", 1048576, 1000000),
|
||||
LlmModel.GROK_4: ModelMetadata("open_router", 256000, 256000),
|
||||
LlmModel.GROK_4_FAST: ModelMetadata("open_router", 2000000, 30000),
|
||||
LlmModel.GROK_4_1_FAST: ModelMetadata("open_router", 2000000, 30000),
|
||||
LlmModel.GROK_CODE_FAST_1: ModelMetadata("open_router", 256000, 10000),
|
||||
LlmModel.KIMI_K2: ModelMetadata("open_router", 131000, 131000),
|
||||
LlmModel.QWEN3_235B_A22B_THINKING: ModelMetadata("open_router", 262144, 262144),
|
||||
LlmModel.QWEN3_CODER: ModelMetadata("open_router", 262144, 262144),
|
||||
# Llama API models
|
||||
LlmModel.LLAMA_API_LLAMA_4_SCOUT: ModelMetadata("llama_api", 128000, 4028),
|
||||
LlmModel.LLAMA_API_LLAMA4_MAVERICK: ModelMetadata("llama_api", 128000, 4028),
|
||||
LlmModel.LLAMA_API_LLAMA3_3_8B: ModelMetadata("llama_api", 128000, 4028),
|
||||
LlmModel.LLAMA_API_LLAMA3_3_70B: ModelMetadata("llama_api", 128000, 4028),
|
||||
# v0 by Vercel models
|
||||
LlmModel.V0_1_5_MD: ModelMetadata("v0", 128000, 64000),
|
||||
LlmModel.V0_1_5_LG: ModelMetadata("v0", 512000, 64000),
|
||||
LlmModel.V0_1_0_MD: ModelMetadata("v0", 128000, 64000),
|
||||
}
|
||||
# MODEL_METADATA removed - all models now come from the database via llm_registry
|
||||
|
||||
DEFAULT_LLM_MODEL = LlmModel.GPT5_2
|
||||
|
||||
for model in LlmModel:
|
||||
if model not in MODEL_METADATA:
|
||||
raise ValueError(f"Missing MODEL_METADATA metadata for model: {model}")
|
||||
# Default model constant for backward compatibility
|
||||
# Uses the dynamic registry to get the default model
|
||||
DEFAULT_LLM_MODEL = LlmModel.default()
|
||||
|
||||
|
||||
class ToolCall(BaseModel):
|
||||
@@ -438,19 +327,94 @@ async def llm_call(
|
||||
- prompt_tokens: The number of tokens used in the prompt.
|
||||
- completion_tokens: The number of tokens used in the completion.
|
||||
"""
|
||||
provider = llm_model.metadata.provider
|
||||
context_window = llm_model.context_window
|
||||
# Get model metadata and check if enabled - with fallback support
|
||||
# The model we'll actually use (may differ if original is disabled)
|
||||
model_to_use = llm_model.value
|
||||
|
||||
# Check if model is in registry and if it's enabled
|
||||
from backend.data.llm_registry import (
|
||||
get_fallback_model_for_disabled,
|
||||
get_model_info,
|
||||
)
|
||||
|
||||
model_info = get_model_info(llm_model.value)
|
||||
|
||||
if model_info and not model_info.is_enabled:
|
||||
# Model is disabled - try to find a fallback from the same provider
|
||||
fallback = get_fallback_model_for_disabled(llm_model.value)
|
||||
if fallback:
|
||||
logger.warning(
|
||||
f"Model '{llm_model.value}' is disabled. Using fallback model '{fallback.slug}' from the same provider ({fallback.metadata.provider})."
|
||||
)
|
||||
model_to_use = fallback.slug
|
||||
# Use fallback model's metadata
|
||||
provider = fallback.metadata.provider
|
||||
context_window = fallback.metadata.context_window
|
||||
model_max_output = fallback.metadata.max_output_tokens or int(2**15)
|
||||
else:
|
||||
# No fallback available - raise error
|
||||
raise ValueError(
|
||||
f"LLM model '{llm_model.value}' is disabled and no fallback model "
|
||||
f"from the same provider is available. Please enable the model or "
|
||||
f"select a different model in the block configuration."
|
||||
)
|
||||
else:
|
||||
# Model is enabled or not in registry (legacy/static model)
|
||||
try:
|
||||
provider = llm_model.metadata.provider
|
||||
context_window = llm_model.context_window
|
||||
model_max_output = llm_model.max_output_tokens or int(2**15)
|
||||
except ValueError:
|
||||
# Model not in cache - try refreshing the registry once if we have DB access
|
||||
logger.warning(f"Model {llm_model.value} not found in registry cache")
|
||||
|
||||
# Try refreshing the registry if we have database access
|
||||
from backend.data.db import is_connected
|
||||
|
||||
if is_connected():
|
||||
try:
|
||||
logger.info(
|
||||
f"Refreshing LLM registry and retrying lookup for {llm_model.value}"
|
||||
)
|
||||
await llm_registry.refresh_llm_registry()
|
||||
# Try again after refresh
|
||||
try:
|
||||
provider = llm_model.metadata.provider
|
||||
context_window = llm_model.context_window
|
||||
model_max_output = llm_model.max_output_tokens or int(2**15)
|
||||
logger.info(
|
||||
f"Successfully loaded model {llm_model.value} metadata after registry refresh"
|
||||
)
|
||||
except ValueError:
|
||||
# Still not found after refresh
|
||||
raise ValueError(
|
||||
f"LLM model '{llm_model.value}' not found in registry after refresh. "
|
||||
"Please ensure the model is added and enabled in the LLM registry via the admin UI."
|
||||
)
|
||||
except Exception as refresh_exc:
|
||||
logger.error(f"Failed to refresh LLM registry: {refresh_exc}")
|
||||
raise ValueError(
|
||||
f"LLM model '{llm_model.value}' not found in registry and failed to refresh. "
|
||||
"Please ensure the model is added to the LLM registry via the admin UI."
|
||||
) from refresh_exc
|
||||
else:
|
||||
# No DB access (e.g., in executor without direct DB connection)
|
||||
# The registry should have been loaded on startup
|
||||
raise ValueError(
|
||||
f"LLM model '{llm_model.value}' not found in registry cache. "
|
||||
"The registry may need to be refreshed. Please contact support or try again later."
|
||||
)
|
||||
|
||||
if compress_prompt_to_fit:
|
||||
prompt = compress_prompt(
|
||||
messages=prompt,
|
||||
target_tokens=llm_model.context_window // 2,
|
||||
target_tokens=context_window // 2,
|
||||
lossy_ok=True,
|
||||
)
|
||||
|
||||
# Calculate available tokens based on context window and input length
|
||||
estimated_input_tokens = estimate_token_count(prompt)
|
||||
model_max_output = llm_model.max_output_tokens or int(2**15)
|
||||
# model_max_output already set above
|
||||
user_max = max_tokens or model_max_output
|
||||
available_tokens = max(context_window - estimated_input_tokens, 0)
|
||||
max_tokens = max(min(available_tokens, model_max_output, user_max), 1)
|
||||
@@ -468,7 +432,7 @@ async def llm_call(
|
||||
response_format = {"type": "json_object"}
|
||||
|
||||
response = await oai_client.chat.completions.create(
|
||||
model=llm_model.value,
|
||||
model=model_to_use,
|
||||
messages=prompt, # type: ignore
|
||||
response_format=response_format, # type: ignore
|
||||
max_completion_tokens=max_tokens,
|
||||
@@ -515,7 +479,7 @@ async def llm_call(
|
||||
)
|
||||
try:
|
||||
resp = await client.messages.create(
|
||||
model=llm_model.value,
|
||||
model=model_to_use,
|
||||
system=sysprompt,
|
||||
messages=messages,
|
||||
max_tokens=max_tokens,
|
||||
@@ -579,7 +543,7 @@ async def llm_call(
|
||||
client = AsyncGroq(api_key=credentials.api_key.get_secret_value())
|
||||
response_format = {"type": "json_object"} if force_json_output else None
|
||||
response = await client.chat.completions.create(
|
||||
model=llm_model.value,
|
||||
model=model_to_use,
|
||||
messages=prompt, # type: ignore
|
||||
response_format=response_format, # type: ignore
|
||||
max_tokens=max_tokens,
|
||||
@@ -601,7 +565,7 @@ async def llm_call(
|
||||
sys_messages = [p["content"] for p in prompt if p["role"] == "system"]
|
||||
usr_messages = [p["content"] for p in prompt if p["role"] != "system"]
|
||||
response = await client.generate(
|
||||
model=llm_model.value,
|
||||
model=model_to_use,
|
||||
prompt=f"{sys_messages}\n\n{usr_messages}",
|
||||
stream=False,
|
||||
options={"num_ctx": max_tokens},
|
||||
@@ -631,7 +595,7 @@ async def llm_call(
|
||||
"HTTP-Referer": "https://agpt.co",
|
||||
"X-Title": "AutoGPT",
|
||||
},
|
||||
model=llm_model.value,
|
||||
model=model_to_use,
|
||||
messages=prompt, # type: ignore
|
||||
max_tokens=max_tokens,
|
||||
tools=tools_param, # type: ignore
|
||||
@@ -673,7 +637,7 @@ async def llm_call(
|
||||
"HTTP-Referer": "https://agpt.co",
|
||||
"X-Title": "AutoGPT",
|
||||
},
|
||||
model=llm_model.value,
|
||||
model=model_to_use,
|
||||
messages=prompt, # type: ignore
|
||||
max_tokens=max_tokens,
|
||||
tools=tools_param, # type: ignore
|
||||
@@ -700,7 +664,7 @@ async def llm_call(
|
||||
reasoning=reasoning,
|
||||
)
|
||||
elif provider == "aiml_api":
|
||||
client = openai.OpenAI(
|
||||
client = openai.AsyncOpenAI(
|
||||
base_url="https://api.aimlapi.com/v2",
|
||||
api_key=credentials.api_key.get_secret_value(),
|
||||
default_headers={
|
||||
@@ -710,8 +674,8 @@ async def llm_call(
|
||||
},
|
||||
)
|
||||
|
||||
completion = client.chat.completions.create(
|
||||
model=llm_model.value,
|
||||
completion = await client.chat.completions.create(
|
||||
model=model_to_use,
|
||||
messages=prompt, # type: ignore
|
||||
max_tokens=max_tokens,
|
||||
)
|
||||
@@ -743,7 +707,7 @@ async def llm_call(
|
||||
)
|
||||
|
||||
response = await client.chat.completions.create(
|
||||
model=llm_model.value,
|
||||
model=model_to_use,
|
||||
messages=prompt, # type: ignore
|
||||
response_format=response_format, # type: ignore
|
||||
max_tokens=max_tokens,
|
||||
@@ -794,9 +758,10 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
|
||||
)
|
||||
model: LlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
default=DEFAULT_LLM_MODEL,
|
||||
default_factory=LlmModel.default,
|
||||
description="The language model to use for answering the prompt.",
|
||||
advanced=False,
|
||||
json_schema_extra=llm_model_schema_extra(),
|
||||
)
|
||||
force_json_output: bool = SchemaField(
|
||||
title="Restrict LLM to pure JSON output",
|
||||
@@ -859,7 +824,7 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
|
||||
input_schema=AIStructuredResponseGeneratorBlock.Input,
|
||||
output_schema=AIStructuredResponseGeneratorBlock.Output,
|
||||
test_input={
|
||||
"model": DEFAULT_LLM_MODEL,
|
||||
"model": "gpt-4o", # Using string value - enum accepts any model slug dynamically
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
"expected_format": {
|
||||
"key1": "value1",
|
||||
@@ -1225,9 +1190,10 @@ class AITextGeneratorBlock(AIBlockBase):
|
||||
)
|
||||
model: LlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
default=DEFAULT_LLM_MODEL,
|
||||
default_factory=LlmModel.default,
|
||||
description="The language model to use for answering the prompt.",
|
||||
advanced=False,
|
||||
json_schema_extra=llm_model_schema_extra(),
|
||||
)
|
||||
credentials: AICredentials = AICredentialsField()
|
||||
sys_prompt: str = SchemaField(
|
||||
@@ -1321,8 +1287,9 @@ class AITextSummarizerBlock(AIBlockBase):
|
||||
)
|
||||
model: LlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
default=DEFAULT_LLM_MODEL,
|
||||
default_factory=LlmModel.default,
|
||||
description="The language model to use for summarizing the text.",
|
||||
json_schema_extra=llm_model_schema_extra(),
|
||||
)
|
||||
focus: str = SchemaField(
|
||||
title="Focus",
|
||||
@@ -1538,8 +1505,9 @@ class AIConversationBlock(AIBlockBase):
|
||||
)
|
||||
model: LlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
default=DEFAULT_LLM_MODEL,
|
||||
default_factory=LlmModel.default,
|
||||
description="The language model to use for the conversation.",
|
||||
json_schema_extra=llm_model_schema_extra(),
|
||||
)
|
||||
credentials: AICredentials = AICredentialsField()
|
||||
max_tokens: int | None = SchemaField(
|
||||
@@ -1576,7 +1544,7 @@ class AIConversationBlock(AIBlockBase):
|
||||
},
|
||||
{"role": "user", "content": "Where was it played?"},
|
||||
],
|
||||
"model": DEFAULT_LLM_MODEL,
|
||||
"model": "gpt-4o", # Using string value - enum accepts any model slug dynamically
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
@@ -1639,9 +1607,10 @@ class AIListGeneratorBlock(AIBlockBase):
|
||||
)
|
||||
model: LlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
default=DEFAULT_LLM_MODEL,
|
||||
default_factory=LlmModel.default,
|
||||
description="The language model to use for generating the list.",
|
||||
advanced=True,
|
||||
json_schema_extra=llm_model_schema_extra(),
|
||||
)
|
||||
credentials: AICredentials = AICredentialsField()
|
||||
max_retries: int = SchemaField(
|
||||
@@ -1696,7 +1665,7 @@ class AIListGeneratorBlock(AIBlockBase):
|
||||
"drawing explorers to uncover its mysteries. Each planet showcases the limitless possibilities of "
|
||||
"fictional worlds."
|
||||
),
|
||||
"model": DEFAULT_LLM_MODEL,
|
||||
"model": "gpt-4o", # Using string value - enum accepts any model slug dynamically
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
"max_retries": 3,
|
||||
"force_json_output": False,
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -18,7 +18,6 @@ from backend.data.model import (
|
||||
SchemaField,
|
||||
)
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.request import DEFAULT_USER_AGENT
|
||||
|
||||
|
||||
class GetWikipediaSummaryBlock(Block, GetRequest):
|
||||
@@ -40,27 +39,17 @@ class GetWikipediaSummaryBlock(Block, GetRequest):
|
||||
output_schema=GetWikipediaSummaryBlock.Output,
|
||||
test_input={"topic": "Artificial Intelligence"},
|
||||
test_output=("summary", "summary content"),
|
||||
test_mock={
|
||||
"get_request": lambda url, headers, json: {"extract": "summary content"}
|
||||
},
|
||||
test_mock={"get_request": lambda url, json: {"extract": "summary content"}},
|
||||
)
|
||||
|
||||
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
|
||||
topic = input_data.topic
|
||||
# URL-encode the topic to handle spaces and special characters
|
||||
encoded_topic = quote(topic, safe="")
|
||||
url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{encoded_topic}"
|
||||
|
||||
# Set headers per Wikimedia robot policy (https://w.wiki/4wJS)
|
||||
# - User-Agent: Required, must identify the bot
|
||||
# - Accept-Encoding: gzip recommended to reduce bandwidth
|
||||
headers = {
|
||||
"User-Agent": DEFAULT_USER_AGENT,
|
||||
"Accept-Encoding": "gzip, deflate",
|
||||
}
|
||||
url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{topic}"
|
||||
|
||||
# Note: User-Agent is now automatically set by the request library
|
||||
# to comply with Wikimedia's robot policy (https://w.wiki/4wJS)
|
||||
try:
|
||||
response = await self.get_request(url, headers=headers, json=True)
|
||||
response = await self.get_request(url, json=True)
|
||||
if "extract" not in response:
|
||||
raise ValueError(f"Unable to parse Wikipedia response: {response}")
|
||||
yield "summary", response["extract"]
|
||||
|
||||
@@ -226,9 +226,10 @@ class SmartDecisionMakerBlock(Block):
|
||||
)
|
||||
model: llm.LlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
default=llm.DEFAULT_LLM_MODEL,
|
||||
default_factory=llm.LlmModel.default,
|
||||
description="The language model to use for answering the prompt.",
|
||||
advanced=False,
|
||||
json_schema_extra=llm.llm_model_schema_extra(),
|
||||
)
|
||||
credentials: llm.AICredentials = llm.AICredentialsField()
|
||||
multiple_tool_calls: bool = SchemaField(
|
||||
@@ -391,12 +392,8 @@ class SmartDecisionMakerBlock(Block):
|
||||
"""
|
||||
block = sink_node.block
|
||||
|
||||
# Use custom name from node metadata if set, otherwise fall back to block.name
|
||||
custom_name = sink_node.metadata.get("customized_name")
|
||||
tool_name = custom_name if custom_name else block.name
|
||||
|
||||
tool_function: dict[str, Any] = {
|
||||
"name": SmartDecisionMakerBlock.cleanup(tool_name),
|
||||
"name": SmartDecisionMakerBlock.cleanup(block.name),
|
||||
"description": block.description,
|
||||
}
|
||||
sink_block_input_schema = block.input_schema
|
||||
@@ -493,24 +490,14 @@ class SmartDecisionMakerBlock(Block):
|
||||
f"Sink graph metadata not found: {graph_id} {graph_version}"
|
||||
)
|
||||
|
||||
# Use custom name from node metadata if set, otherwise fall back to graph name
|
||||
custom_name = sink_node.metadata.get("customized_name")
|
||||
tool_name = custom_name if custom_name else sink_graph_meta.name
|
||||
|
||||
tool_function: dict[str, Any] = {
|
||||
"name": SmartDecisionMakerBlock.cleanup(tool_name),
|
||||
"name": SmartDecisionMakerBlock.cleanup(sink_graph_meta.name),
|
||||
"description": sink_graph_meta.description,
|
||||
}
|
||||
|
||||
properties = {}
|
||||
field_mapping = {}
|
||||
|
||||
for link in links:
|
||||
field_name = link.sink_name
|
||||
|
||||
clean_field_name = SmartDecisionMakerBlock.cleanup(field_name)
|
||||
field_mapping[clean_field_name] = field_name
|
||||
|
||||
sink_block_input_schema = sink_node.input_default["input_schema"]
|
||||
sink_block_properties = sink_block_input_schema.get("properties", {}).get(
|
||||
link.sink_name, {}
|
||||
@@ -520,7 +507,7 @@ class SmartDecisionMakerBlock(Block):
|
||||
if "description" in sink_block_properties
|
||||
else f"The {link.sink_name} of the tool"
|
||||
)
|
||||
properties[clean_field_name] = {
|
||||
properties[link.sink_name] = {
|
||||
"type": "string",
|
||||
"description": description,
|
||||
"default": json.dumps(sink_block_properties.get("default", None)),
|
||||
@@ -533,7 +520,7 @@ class SmartDecisionMakerBlock(Block):
|
||||
"strict": True,
|
||||
}
|
||||
|
||||
tool_function["_field_mapping"] = field_mapping
|
||||
# Store node info for later use in output processing
|
||||
tool_function["_sink_node_id"] = sink_node.id
|
||||
|
||||
return {"type": "function", "function": tool_function}
|
||||
@@ -989,28 +976,10 @@ class SmartDecisionMakerBlock(Block):
|
||||
graph_version: int,
|
||||
execution_context: ExecutionContext,
|
||||
execution_processor: "ExecutionProcessor",
|
||||
nodes_to_skip: set[str] | None = None,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
|
||||
tool_functions = await self._create_tool_node_signatures(node_id)
|
||||
original_tool_count = len(tool_functions)
|
||||
|
||||
# Filter out tools for nodes that should be skipped (e.g., missing optional credentials)
|
||||
if nodes_to_skip:
|
||||
tool_functions = [
|
||||
tf
|
||||
for tf in tool_functions
|
||||
if tf.get("function", {}).get("_sink_node_id") not in nodes_to_skip
|
||||
]
|
||||
|
||||
# Only raise error if we had tools but they were all filtered out
|
||||
if original_tool_count > 0 and not tool_functions:
|
||||
raise ValueError(
|
||||
"No available tools to execute - all downstream nodes are unavailable "
|
||||
"(possibly due to missing optional credentials)"
|
||||
)
|
||||
|
||||
yield "tool_functions", json.dumps(tool_functions)
|
||||
|
||||
conversation_history = input_data.conversation_history or []
|
||||
@@ -1161,9 +1130,8 @@ class SmartDecisionMakerBlock(Block):
|
||||
original_field_name = field_mapping.get(clean_arg_name, clean_arg_name)
|
||||
arg_value = tool_args.get(clean_arg_name)
|
||||
|
||||
# Use original_field_name directly (not sanitized) to match link sink_name
|
||||
# The field_mapping already translates from LLM's cleaned names to original names
|
||||
emit_key = f"tools_^_{sink_node_id}_~_{original_field_name}"
|
||||
sanitized_arg_name = self.cleanup(original_field_name)
|
||||
emit_key = f"tools_^_{sink_node_id}_~_{sanitized_arg_name}"
|
||||
|
||||
logger.debug(
|
||||
"[SmartDecisionMakerBlock|geid:%s|neid:%s] emit %s",
|
||||
|
||||
@@ -10,13 +10,13 @@ import stagehand.main
|
||||
from stagehand import Stagehand
|
||||
|
||||
from backend.blocks.llm import (
|
||||
MODEL_METADATA,
|
||||
AICredentials,
|
||||
AICredentialsField,
|
||||
LlmModel,
|
||||
ModelMetadata,
|
||||
)
|
||||
from backend.blocks.stagehand._config import stagehand as stagehand_provider
|
||||
from backend.data import llm_registry
|
||||
from backend.sdk import (
|
||||
APIKeyCredentials,
|
||||
Block,
|
||||
@@ -91,7 +91,7 @@ class StagehandRecommendedLlmModel(str, Enum):
|
||||
Returns the provider name for the model in the required format for Stagehand:
|
||||
provider/model_name
|
||||
"""
|
||||
model_metadata = MODEL_METADATA[LlmModel(self.value)]
|
||||
model_metadata = self.metadata
|
||||
model_name = self.value
|
||||
|
||||
if len(model_name.split("/")) == 1 and not self.value.startswith(
|
||||
@@ -107,19 +107,23 @@ class StagehandRecommendedLlmModel(str, Enum):
|
||||
|
||||
@property
|
||||
def provider(self) -> str:
|
||||
return MODEL_METADATA[LlmModel(self.value)].provider
|
||||
return self.metadata.provider
|
||||
|
||||
@property
|
||||
def metadata(self) -> ModelMetadata:
|
||||
return MODEL_METADATA[LlmModel(self.value)]
|
||||
metadata = llm_registry.get_llm_model_metadata(self.value)
|
||||
if metadata:
|
||||
return metadata
|
||||
# Fallback to LlmModel enum if registry lookup fails
|
||||
return LlmModel(self.value).metadata
|
||||
|
||||
@property
|
||||
def context_window(self) -> int:
|
||||
return MODEL_METADATA[LlmModel(self.value)].context_window
|
||||
return self.metadata.context_window
|
||||
|
||||
@property
|
||||
def max_output_tokens(self) -> int | None:
|
||||
return MODEL_METADATA[LlmModel(self.value)].max_output_tokens
|
||||
return self.metadata.max_output_tokens
|
||||
|
||||
|
||||
class StagehandObserveBlock(Block):
|
||||
|
||||
@@ -196,15 +196,6 @@ class TestXMLParserBlockSecurity:
|
||||
async for _ in block.run(XMLParserBlock.Input(input_xml=large_xml)):
|
||||
pass
|
||||
|
||||
async def test_rejects_text_outside_root(self):
|
||||
"""Ensure parser surfaces readable errors for invalid root text."""
|
||||
block = XMLParserBlock()
|
||||
invalid_xml = "<root><child>value</child></root> trailing"
|
||||
|
||||
with pytest.raises(ValueError, match="text outside the root element"):
|
||||
async for _ in block.run(XMLParserBlock.Input(input_xml=invalid_xml)):
|
||||
pass
|
||||
|
||||
|
||||
class TestStoreMediaFileSecurity:
|
||||
"""Test file storage security limits."""
|
||||
|
||||
@@ -1057,153 +1057,3 @@ async def test_smart_decision_maker_traditional_mode_default():
|
||||
) # Should yield individual tool parameters
|
||||
assert "tools_^_test-sink-node-id_~_max_keyword_difficulty" in outputs
|
||||
assert "conversations" in outputs
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_smart_decision_maker_uses_customized_name_for_blocks():
|
||||
"""Test that SmartDecisionMakerBlock uses customized_name from node metadata for tool names."""
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
from backend.blocks.basic import StoreValueBlock
|
||||
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
|
||||
from backend.data.graph import Link, Node
|
||||
|
||||
# Create a mock node with customized_name in metadata
|
||||
mock_node = MagicMock(spec=Node)
|
||||
mock_node.id = "test-node-id"
|
||||
mock_node.block_id = StoreValueBlock().id
|
||||
mock_node.metadata = {"customized_name": "My Custom Tool Name"}
|
||||
mock_node.block = StoreValueBlock()
|
||||
|
||||
# Create a mock link
|
||||
mock_link = MagicMock(spec=Link)
|
||||
mock_link.sink_name = "input"
|
||||
|
||||
# Call the function directly
|
||||
result = await SmartDecisionMakerBlock._create_block_function_signature(
|
||||
mock_node, [mock_link]
|
||||
)
|
||||
|
||||
# Verify the tool name uses the customized name (cleaned up)
|
||||
assert result["type"] == "function"
|
||||
assert result["function"]["name"] == "my_custom_tool_name" # Cleaned version
|
||||
assert result["function"]["_sink_node_id"] == "test-node-id"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_smart_decision_maker_falls_back_to_block_name():
|
||||
"""Test that SmartDecisionMakerBlock falls back to block.name when no customized_name."""
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
from backend.blocks.basic import StoreValueBlock
|
||||
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
|
||||
from backend.data.graph import Link, Node
|
||||
|
||||
# Create a mock node without customized_name
|
||||
mock_node = MagicMock(spec=Node)
|
||||
mock_node.id = "test-node-id"
|
||||
mock_node.block_id = StoreValueBlock().id
|
||||
mock_node.metadata = {} # No customized_name
|
||||
mock_node.block = StoreValueBlock()
|
||||
|
||||
# Create a mock link
|
||||
mock_link = MagicMock(spec=Link)
|
||||
mock_link.sink_name = "input"
|
||||
|
||||
# Call the function directly
|
||||
result = await SmartDecisionMakerBlock._create_block_function_signature(
|
||||
mock_node, [mock_link]
|
||||
)
|
||||
|
||||
# Verify the tool name uses the block's default name
|
||||
assert result["type"] == "function"
|
||||
assert result["function"]["name"] == "storevalueblock" # Default block name cleaned
|
||||
assert result["function"]["_sink_node_id"] == "test-node-id"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_smart_decision_maker_uses_customized_name_for_agents():
|
||||
"""Test that SmartDecisionMakerBlock uses customized_name from metadata for agent nodes."""
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
|
||||
from backend.data.graph import Link, Node
|
||||
|
||||
# Create a mock node with customized_name in metadata
|
||||
mock_node = MagicMock(spec=Node)
|
||||
mock_node.id = "test-agent-node-id"
|
||||
mock_node.metadata = {"customized_name": "My Custom Agent"}
|
||||
mock_node.input_default = {
|
||||
"graph_id": "test-graph-id",
|
||||
"graph_version": 1,
|
||||
"input_schema": {"properties": {"test_input": {"description": "Test input"}}},
|
||||
}
|
||||
|
||||
# Create a mock link
|
||||
mock_link = MagicMock(spec=Link)
|
||||
mock_link.sink_name = "test_input"
|
||||
|
||||
# Mock the database client
|
||||
mock_graph_meta = MagicMock()
|
||||
mock_graph_meta.name = "Original Agent Name"
|
||||
mock_graph_meta.description = "Agent description"
|
||||
|
||||
mock_db_client = AsyncMock()
|
||||
mock_db_client.get_graph_metadata.return_value = mock_graph_meta
|
||||
|
||||
with patch(
|
||||
"backend.blocks.smart_decision_maker.get_database_manager_async_client",
|
||||
return_value=mock_db_client,
|
||||
):
|
||||
result = await SmartDecisionMakerBlock._create_agent_function_signature(
|
||||
mock_node, [mock_link]
|
||||
)
|
||||
|
||||
# Verify the tool name uses the customized name (cleaned up)
|
||||
assert result["type"] == "function"
|
||||
assert result["function"]["name"] == "my_custom_agent" # Cleaned version
|
||||
assert result["function"]["_sink_node_id"] == "test-agent-node-id"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_smart_decision_maker_agent_falls_back_to_graph_name():
|
||||
"""Test that agent node falls back to graph name when no customized_name."""
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
|
||||
from backend.data.graph import Link, Node
|
||||
|
||||
# Create a mock node without customized_name
|
||||
mock_node = MagicMock(spec=Node)
|
||||
mock_node.id = "test-agent-node-id"
|
||||
mock_node.metadata = {} # No customized_name
|
||||
mock_node.input_default = {
|
||||
"graph_id": "test-graph-id",
|
||||
"graph_version": 1,
|
||||
"input_schema": {"properties": {"test_input": {"description": "Test input"}}},
|
||||
}
|
||||
|
||||
# Create a mock link
|
||||
mock_link = MagicMock(spec=Link)
|
||||
mock_link.sink_name = "test_input"
|
||||
|
||||
# Mock the database client
|
||||
mock_graph_meta = MagicMock()
|
||||
mock_graph_meta.name = "Original Agent Name"
|
||||
mock_graph_meta.description = "Agent description"
|
||||
|
||||
mock_db_client = AsyncMock()
|
||||
mock_db_client.get_graph_metadata.return_value = mock_graph_meta
|
||||
|
||||
with patch(
|
||||
"backend.blocks.smart_decision_maker.get_database_manager_async_client",
|
||||
return_value=mock_db_client,
|
||||
):
|
||||
result = await SmartDecisionMakerBlock._create_agent_function_signature(
|
||||
mock_node, [mock_link]
|
||||
)
|
||||
|
||||
# Verify the tool name uses the graph's default name
|
||||
assert result["type"] == "function"
|
||||
assert result["function"]["name"] == "original_agent_name" # Graph name cleaned
|
||||
assert result["function"]["_sink_node_id"] == "test-agent-node-id"
|
||||
|
||||
@@ -15,7 +15,6 @@ async def test_smart_decision_maker_handles_dynamic_dict_fields():
|
||||
mock_node.block = CreateDictionaryBlock()
|
||||
mock_node.block_id = CreateDictionaryBlock().id
|
||||
mock_node.input_default = {}
|
||||
mock_node.metadata = {}
|
||||
|
||||
# Create mock links with dynamic dictionary fields
|
||||
mock_links = [
|
||||
@@ -78,7 +77,6 @@ async def test_smart_decision_maker_handles_dynamic_list_fields():
|
||||
mock_node.block = AddToListBlock()
|
||||
mock_node.block_id = AddToListBlock().id
|
||||
mock_node.input_default = {}
|
||||
mock_node.metadata = {}
|
||||
|
||||
# Create mock links with dynamic list fields
|
||||
mock_links = [
|
||||
|
||||
@@ -44,7 +44,6 @@ async def test_create_block_function_signature_with_dict_fields():
|
||||
mock_node.block = CreateDictionaryBlock()
|
||||
mock_node.block_id = CreateDictionaryBlock().id
|
||||
mock_node.input_default = {}
|
||||
mock_node.metadata = {}
|
||||
|
||||
# Create mock links with dynamic dictionary fields (source sanitized, sink original)
|
||||
mock_links = [
|
||||
@@ -107,7 +106,6 @@ async def test_create_block_function_signature_with_list_fields():
|
||||
mock_node.block = AddToListBlock()
|
||||
mock_node.block_id = AddToListBlock().id
|
||||
mock_node.input_default = {}
|
||||
mock_node.metadata = {}
|
||||
|
||||
# Create mock links with dynamic list fields
|
||||
mock_links = [
|
||||
@@ -161,7 +159,6 @@ async def test_create_block_function_signature_with_object_fields():
|
||||
mock_node.block = MatchTextPatternBlock()
|
||||
mock_node.block_id = MatchTextPatternBlock().id
|
||||
mock_node.input_default = {}
|
||||
mock_node.metadata = {}
|
||||
|
||||
# Create mock links with dynamic object fields
|
||||
mock_links = [
|
||||
@@ -211,13 +208,11 @@ async def test_create_tool_node_signatures():
|
||||
mock_dict_node.block = CreateDictionaryBlock()
|
||||
mock_dict_node.block_id = CreateDictionaryBlock().id
|
||||
mock_dict_node.input_default = {}
|
||||
mock_dict_node.metadata = {}
|
||||
|
||||
mock_list_node = Mock()
|
||||
mock_list_node.block = AddToListBlock()
|
||||
mock_list_node.block_id = AddToListBlock().id
|
||||
mock_list_node.input_default = {}
|
||||
mock_list_node.metadata = {}
|
||||
|
||||
# Mock links with dynamic fields
|
||||
dict_link1 = Mock(
|
||||
@@ -428,7 +423,6 @@ async def test_mixed_regular_and_dynamic_fields():
|
||||
mock_node.block.name = "TestBlock"
|
||||
mock_node.block.description = "A test block"
|
||||
mock_node.block.input_schema = Mock()
|
||||
mock_node.metadata = {}
|
||||
|
||||
# Mock the get_field_schema to return a proper schema for regular fields
|
||||
def get_field_schema(field_name):
|
||||
|
||||
@@ -1,3 +1,3 @@
|
||||
from .blog import WordPressCreatePostBlock, WordPressGetAllPostsBlock
|
||||
from .blog import WordPressCreatePostBlock
|
||||
|
||||
__all__ = ["WordPressCreatePostBlock", "WordPressGetAllPostsBlock"]
|
||||
__all__ = ["WordPressCreatePostBlock"]
|
||||
|
||||
@@ -161,7 +161,7 @@ async def oauth_exchange_code_for_tokens(
|
||||
grant_type="authorization_code",
|
||||
).model_dump(exclude_none=True)
|
||||
|
||||
response = await Requests(raise_for_status=False).post(
|
||||
response = await Requests().post(
|
||||
f"{WORDPRESS_BASE_URL}oauth2/token",
|
||||
headers=headers,
|
||||
data=data,
|
||||
@@ -205,7 +205,7 @@ async def oauth_refresh_tokens(
|
||||
grant_type="refresh_token",
|
||||
).model_dump(exclude_none=True)
|
||||
|
||||
response = await Requests(raise_for_status=False).post(
|
||||
response = await Requests().post(
|
||||
f"{WORDPRESS_BASE_URL}oauth2/token",
|
||||
headers=headers,
|
||||
data=data,
|
||||
@@ -252,7 +252,7 @@ async def validate_token(
|
||||
"token": token,
|
||||
}
|
||||
|
||||
response = await Requests(raise_for_status=False).get(
|
||||
response = await Requests().get(
|
||||
f"{WORDPRESS_BASE_URL}oauth2/token-info",
|
||||
params=params,
|
||||
)
|
||||
@@ -296,7 +296,7 @@ async def make_api_request(
|
||||
|
||||
url = f"{WORDPRESS_BASE_URL.rstrip('/')}{endpoint}"
|
||||
|
||||
request_method = getattr(Requests(raise_for_status=False), method.lower())
|
||||
request_method = getattr(Requests(), method.lower())
|
||||
response = await request_method(
|
||||
url,
|
||||
headers=headers,
|
||||
@@ -476,7 +476,6 @@ async def create_post(
|
||||
data["tags"] = ",".join(str(t) for t in data["tags"])
|
||||
|
||||
# Make the API request
|
||||
site = normalize_site(site)
|
||||
endpoint = f"/rest/v1.1/sites/{site}/posts/new"
|
||||
|
||||
headers = {
|
||||
@@ -484,7 +483,7 @@ async def create_post(
|
||||
"Content-Type": "application/x-www-form-urlencoded",
|
||||
}
|
||||
|
||||
response = await Requests(raise_for_status=False).post(
|
||||
response = await Requests().post(
|
||||
f"{WORDPRESS_BASE_URL.rstrip('/')}{endpoint}",
|
||||
headers=headers,
|
||||
data=data,
|
||||
@@ -500,132 +499,3 @@ async def create_post(
|
||||
)
|
||||
error_message = error_data.get("message", response.text)
|
||||
raise ValueError(f"Failed to create post: {response.status} - {error_message}")
|
||||
|
||||
|
||||
class Post(BaseModel):
|
||||
"""Response model for individual posts in a posts list response.
|
||||
|
||||
This is a simplified version compared to PostResponse, as the list endpoint
|
||||
returns less detailed information than the create/get single post endpoints.
|
||||
"""
|
||||
|
||||
ID: int
|
||||
site_ID: int
|
||||
author: PostAuthor
|
||||
date: datetime
|
||||
modified: datetime
|
||||
title: str
|
||||
URL: str
|
||||
short_URL: str
|
||||
content: str | None = None
|
||||
excerpt: str | None = None
|
||||
slug: str
|
||||
guid: str
|
||||
status: str
|
||||
sticky: bool
|
||||
password: str | None = ""
|
||||
parent: Union[Dict[str, Any], bool, None] = None
|
||||
type: str
|
||||
discussion: Dict[str, Union[str, bool, int]] | None = None
|
||||
likes_enabled: bool | None = None
|
||||
sharing_enabled: bool | None = None
|
||||
like_count: int | None = None
|
||||
i_like: bool | None = None
|
||||
is_reblogged: bool | None = None
|
||||
is_following: bool | None = None
|
||||
global_ID: str | None = None
|
||||
featured_image: str | None = None
|
||||
post_thumbnail: Dict[str, Any] | None = None
|
||||
format: str | None = None
|
||||
geo: Union[Dict[str, Any], bool, None] = None
|
||||
menu_order: int | None = None
|
||||
page_template: str | None = None
|
||||
publicize_URLs: List[str] | None = None
|
||||
terms: Dict[str, Dict[str, Any]] | None = None
|
||||
tags: Dict[str, Dict[str, Any]] | None = None
|
||||
categories: Dict[str, Dict[str, Any]] | None = None
|
||||
attachments: Dict[str, Dict[str, Any]] | None = None
|
||||
attachment_count: int | None = None
|
||||
metadata: List[Dict[str, Any]] | None = None
|
||||
meta: Dict[str, Any] | None = None
|
||||
capabilities: Dict[str, bool] | None = None
|
||||
revisions: List[int] | None = None
|
||||
other_URLs: Dict[str, Any] | None = None
|
||||
|
||||
|
||||
class PostsResponse(BaseModel):
|
||||
"""Response model for WordPress posts list."""
|
||||
|
||||
found: int
|
||||
posts: List[Post]
|
||||
meta: Dict[str, Any]
|
||||
|
||||
|
||||
def normalize_site(site: str) -> str:
|
||||
"""
|
||||
Normalize a site identifier by stripping protocol and trailing slashes.
|
||||
|
||||
Args:
|
||||
site: Site URL, domain, or ID (e.g., "https://myblog.wordpress.com/", "myblog.wordpress.com", "123456789")
|
||||
|
||||
Returns:
|
||||
Normalized site identifier (domain or ID only)
|
||||
"""
|
||||
site = site.strip()
|
||||
if site.startswith("https://"):
|
||||
site = site[8:]
|
||||
elif site.startswith("http://"):
|
||||
site = site[7:]
|
||||
return site.rstrip("/")
|
||||
|
||||
|
||||
async def get_posts(
|
||||
credentials: Credentials,
|
||||
site: str,
|
||||
status: PostStatus | None = None,
|
||||
number: int = 100,
|
||||
offset: int = 0,
|
||||
) -> PostsResponse:
|
||||
"""
|
||||
Get posts from a WordPress site.
|
||||
|
||||
Args:
|
||||
credentials: OAuth credentials
|
||||
site: Site ID or domain (e.g., "myblog.wordpress.com" or "123456789")
|
||||
status: Filter by post status using PostStatus enum, or None for all
|
||||
number: Number of posts to retrieve (max 100)
|
||||
offset: Number of posts to skip (for pagination)
|
||||
|
||||
Returns:
|
||||
PostsResponse with the list of posts
|
||||
"""
|
||||
site = normalize_site(site)
|
||||
endpoint = f"/rest/v1.1/sites/{site}/posts"
|
||||
|
||||
headers = {
|
||||
"Authorization": credentials.auth_header(),
|
||||
}
|
||||
|
||||
params: Dict[str, Any] = {
|
||||
"number": max(1, min(number, 100)), # 1–100 posts per request
|
||||
"offset": offset,
|
||||
}
|
||||
|
||||
if status:
|
||||
params["status"] = status.value
|
||||
response = await Requests(raise_for_status=False).get(
|
||||
f"{WORDPRESS_BASE_URL.rstrip('/')}{endpoint}",
|
||||
headers=headers,
|
||||
params=params,
|
||||
)
|
||||
|
||||
if response.ok:
|
||||
return PostsResponse.model_validate(response.json())
|
||||
|
||||
error_data = (
|
||||
response.json()
|
||||
if response.headers.get("content-type", "").startswith("application/json")
|
||||
else {}
|
||||
)
|
||||
error_message = error_data.get("message", response.text)
|
||||
raise ValueError(f"Failed to get posts: {response.status} - {error_message}")
|
||||
|
||||
@@ -9,15 +9,7 @@ from backend.sdk import (
|
||||
SchemaField,
|
||||
)
|
||||
|
||||
from ._api import (
|
||||
CreatePostRequest,
|
||||
Post,
|
||||
PostResponse,
|
||||
PostsResponse,
|
||||
PostStatus,
|
||||
create_post,
|
||||
get_posts,
|
||||
)
|
||||
from ._api import CreatePostRequest, PostResponse, PostStatus, create_post
|
||||
from ._config import wordpress
|
||||
|
||||
|
||||
@@ -57,15 +49,8 @@ class WordPressCreatePostBlock(Block):
|
||||
media_urls: list[str] = SchemaField(
|
||||
description="URLs of images to sideload and attach to the post", default=[]
|
||||
)
|
||||
publish_as_draft: bool = SchemaField(
|
||||
description="If True, publishes the post as a draft. If False, publishes it publicly.",
|
||||
default=False,
|
||||
)
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
site: str = SchemaField(
|
||||
description="The site ID or domain (pass-through for chaining with other blocks)"
|
||||
)
|
||||
post_id: int = SchemaField(description="The ID of the created post")
|
||||
post_url: str = SchemaField(description="The full URL of the created post")
|
||||
short_url: str = SchemaField(description="The shortened wp.me URL")
|
||||
@@ -93,9 +78,7 @@ class WordPressCreatePostBlock(Block):
|
||||
tags=input_data.tags,
|
||||
featured_image=input_data.featured_image,
|
||||
media_urls=input_data.media_urls,
|
||||
status=(
|
||||
PostStatus.DRAFT if input_data.publish_as_draft else PostStatus.PUBLISH
|
||||
),
|
||||
status=PostStatus.PUBLISH,
|
||||
)
|
||||
|
||||
post_response: PostResponse = await create_post(
|
||||
@@ -104,69 +87,7 @@ class WordPressCreatePostBlock(Block):
|
||||
post_data=post_request,
|
||||
)
|
||||
|
||||
yield "site", input_data.site
|
||||
yield "post_id", post_response.ID
|
||||
yield "post_url", post_response.URL
|
||||
yield "short_url", post_response.short_URL
|
||||
yield "post_data", post_response.model_dump()
|
||||
|
||||
|
||||
class WordPressGetAllPostsBlock(Block):
|
||||
"""
|
||||
Fetches all posts from a WordPress.com site or Jetpack-enabled site.
|
||||
Supports filtering by status and pagination.
|
||||
"""
|
||||
|
||||
class Input(BlockSchemaInput):
|
||||
credentials: CredentialsMetaInput = wordpress.credentials_field()
|
||||
site: str = SchemaField(
|
||||
description="Site ID or domain (e.g., 'myblog.wordpress.com' or '123456789')"
|
||||
)
|
||||
status: PostStatus | None = SchemaField(
|
||||
description="Filter by post status, or None for all",
|
||||
default=None,
|
||||
)
|
||||
number: int = SchemaField(
|
||||
description="Number of posts to retrieve (max 100 per request)", default=20
|
||||
)
|
||||
offset: int = SchemaField(
|
||||
description="Number of posts to skip (for pagination)", default=0
|
||||
)
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
site: str = SchemaField(
|
||||
description="The site ID or domain (pass-through for chaining with other blocks)"
|
||||
)
|
||||
found: int = SchemaField(description="Total number of posts found")
|
||||
posts: list[Post] = SchemaField(
|
||||
description="List of post objects with their details"
|
||||
)
|
||||
post: Post = SchemaField(
|
||||
description="Individual post object (yielded for each post)"
|
||||
)
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="97728fa7-7f6f-4789-ba0c-f2c114119536",
|
||||
description="Fetch all posts from WordPress.com or Jetpack sites",
|
||||
categories={BlockCategory.SOCIAL},
|
||||
input_schema=self.Input,
|
||||
output_schema=self.Output,
|
||||
)
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, credentials: Credentials, **kwargs
|
||||
) -> BlockOutput:
|
||||
posts_response: PostsResponse = await get_posts(
|
||||
credentials=credentials,
|
||||
site=input_data.site,
|
||||
status=input_data.status,
|
||||
number=input_data.number,
|
||||
offset=input_data.offset,
|
||||
)
|
||||
|
||||
yield "site", input_data.site
|
||||
yield "found", posts_response.found
|
||||
yield "posts", posts_response.posts
|
||||
for post in posts_response.posts:
|
||||
yield "post", post
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
from gravitasml.parser import Parser
|
||||
from gravitasml.token import Token, tokenize
|
||||
from gravitasml.token import tokenize
|
||||
|
||||
from backend.data.block import Block, BlockOutput, BlockSchemaInput, BlockSchemaOutput
|
||||
from backend.data.model import SchemaField
|
||||
@@ -25,38 +25,6 @@ class XMLParserBlock(Block):
|
||||
],
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _validate_tokens(tokens: list[Token]) -> None:
|
||||
"""Ensure the XML has a single root element and no stray text."""
|
||||
if not tokens:
|
||||
raise ValueError("XML input is empty.")
|
||||
|
||||
depth = 0
|
||||
root_seen = False
|
||||
|
||||
for token in tokens:
|
||||
if token.type == "TAG_OPEN":
|
||||
if depth == 0 and root_seen:
|
||||
raise ValueError("XML must have a single root element.")
|
||||
depth += 1
|
||||
if depth == 1:
|
||||
root_seen = True
|
||||
elif token.type == "TAG_CLOSE":
|
||||
depth -= 1
|
||||
if depth < 0:
|
||||
raise SyntaxError("Unexpected closing tag in XML input.")
|
||||
elif token.type in {"TEXT", "ESCAPE"}:
|
||||
if depth == 0 and token.value:
|
||||
raise ValueError(
|
||||
"XML contains text outside the root element; "
|
||||
"wrap content in a single root tag."
|
||||
)
|
||||
|
||||
if depth != 0:
|
||||
raise SyntaxError("Unclosed tag detected in XML input.")
|
||||
if not root_seen:
|
||||
raise ValueError("XML must include a root element.")
|
||||
|
||||
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
|
||||
# Security fix: Add size limits to prevent XML bomb attacks
|
||||
MAX_XML_SIZE = 10 * 1024 * 1024 # 10MB limit for XML input
|
||||
@@ -67,9 +35,7 @@ class XMLParserBlock(Block):
|
||||
)
|
||||
|
||||
try:
|
||||
tokens = list(tokenize(input_data.input_xml))
|
||||
self._validate_tokens(tokens)
|
||||
|
||||
tokens = tokenize(input_data.input_xml)
|
||||
parser = Parser(tokens)
|
||||
parsed_result = parser.parse()
|
||||
yield "parsed_xml", parsed_result
|
||||
|
||||
@@ -25,6 +25,7 @@ from prisma.models import AgentBlock
|
||||
from prisma.types import AgentBlockCreateInput
|
||||
from pydantic import BaseModel
|
||||
|
||||
from backend.data.llm_registry import update_schema_with_llm_registry
|
||||
from backend.data.model import NodeExecutionStats
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util import json
|
||||
@@ -50,8 +51,6 @@ from .model import (
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from backend.data.execution import ExecutionContext
|
||||
|
||||
from .graph import Link
|
||||
|
||||
app_config = Config()
|
||||
@@ -143,35 +142,59 @@ class BlockInfo(BaseModel):
|
||||
|
||||
|
||||
class BlockSchema(BaseModel):
|
||||
cached_jsonschema: ClassVar[dict[str, Any]]
|
||||
cached_jsonschema: ClassVar[dict[str, Any] | None] = None
|
||||
|
||||
@classmethod
|
||||
def clear_schema_cache(cls) -> None:
|
||||
"""Clear the cached JSON schema for this class."""
|
||||
# Use None instead of {} because {} is truthy and would prevent regeneration
|
||||
cls.cached_jsonschema = None # type: ignore
|
||||
|
||||
@staticmethod
|
||||
def clear_all_schema_caches() -> None:
|
||||
"""Clear cached JSON schemas for all BlockSchema subclasses."""
|
||||
|
||||
def clear_recursive(cls: type) -> None:
|
||||
"""Recursively clear cache for class and all subclasses."""
|
||||
if hasattr(cls, "clear_schema_cache"):
|
||||
cls.clear_schema_cache()
|
||||
for subclass in cls.__subclasses__():
|
||||
clear_recursive(subclass)
|
||||
|
||||
clear_recursive(BlockSchema)
|
||||
|
||||
@classmethod
|
||||
def jsonschema(cls) -> dict[str, Any]:
|
||||
if cls.cached_jsonschema:
|
||||
return cls.cached_jsonschema
|
||||
# Generate schema if not cached
|
||||
if not cls.cached_jsonschema:
|
||||
model = jsonref.replace_refs(cls.model_json_schema(), merge_props=True)
|
||||
|
||||
model = jsonref.replace_refs(cls.model_json_schema(), merge_props=True)
|
||||
def ref_to_dict(obj):
|
||||
if isinstance(obj, dict):
|
||||
# OpenAPI <3.1 does not support sibling fields that has a $ref key
|
||||
# So sometimes, the schema has an "allOf"/"anyOf"/"oneOf" with 1 item.
|
||||
keys = {"allOf", "anyOf", "oneOf"}
|
||||
one_key = next(
|
||||
(k for k in keys if k in obj and len(obj[k]) == 1), None
|
||||
)
|
||||
if one_key:
|
||||
obj.update(obj[one_key][0])
|
||||
|
||||
def ref_to_dict(obj):
|
||||
if isinstance(obj, dict):
|
||||
# OpenAPI <3.1 does not support sibling fields that has a $ref key
|
||||
# So sometimes, the schema has an "allOf"/"anyOf"/"oneOf" with 1 item.
|
||||
keys = {"allOf", "anyOf", "oneOf"}
|
||||
one_key = next((k for k in keys if k in obj and len(obj[k]) == 1), None)
|
||||
if one_key:
|
||||
obj.update(obj[one_key][0])
|
||||
return {
|
||||
key: ref_to_dict(value)
|
||||
for key, value in obj.items()
|
||||
if not key.startswith("$") and key != one_key
|
||||
}
|
||||
elif isinstance(obj, list):
|
||||
return [ref_to_dict(item) for item in obj]
|
||||
|
||||
return {
|
||||
key: ref_to_dict(value)
|
||||
for key, value in obj.items()
|
||||
if not key.startswith("$") and key != one_key
|
||||
}
|
||||
elif isinstance(obj, list):
|
||||
return [ref_to_dict(item) for item in obj]
|
||||
return obj
|
||||
|
||||
return obj
|
||||
cls.cached_jsonschema = cast(dict[str, Any], ref_to_dict(model))
|
||||
|
||||
cls.cached_jsonschema = cast(dict[str, Any], ref_to_dict(model))
|
||||
# Always post-process to ensure LLM registry data is up-to-date
|
||||
# This refreshes model options and discriminator mappings even if schema was cached
|
||||
update_schema_with_llm_registry(cls.cached_jsonschema, cls)
|
||||
|
||||
return cls.cached_jsonschema
|
||||
|
||||
@@ -474,7 +497,6 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
|
||||
self.block_type = block_type
|
||||
self.webhook_config = webhook_config
|
||||
self.execution_stats: NodeExecutionStats = NodeExecutionStats()
|
||||
self.requires_human_review: bool = False
|
||||
|
||||
if self.webhook_config:
|
||||
if isinstance(self.webhook_config, BlockWebhookConfig):
|
||||
@@ -617,77 +639,7 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
|
||||
block_id=self.id,
|
||||
) from ex
|
||||
|
||||
async def is_block_exec_need_review(
|
||||
self,
|
||||
input_data: BlockInput,
|
||||
*,
|
||||
user_id: str,
|
||||
node_exec_id: str,
|
||||
graph_exec_id: str,
|
||||
graph_id: str,
|
||||
graph_version: int,
|
||||
execution_context: "ExecutionContext",
|
||||
**kwargs,
|
||||
) -> tuple[bool, BlockInput]:
|
||||
"""
|
||||
Check if this block execution needs human review and handle the review process.
|
||||
|
||||
Returns:
|
||||
Tuple of (should_pause, input_data_to_use)
|
||||
- should_pause: True if execution should be paused for review
|
||||
- input_data_to_use: The input data to use (may be modified by reviewer)
|
||||
"""
|
||||
# Skip review if not required or safe mode is disabled
|
||||
if not self.requires_human_review or not execution_context.safe_mode:
|
||||
return False, input_data
|
||||
|
||||
from backend.blocks.helpers.review import HITLReviewHelper
|
||||
|
||||
# Handle the review request and get decision
|
||||
decision = await HITLReviewHelper.handle_review_decision(
|
||||
input_data=input_data,
|
||||
user_id=user_id,
|
||||
node_exec_id=node_exec_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
graph_id=graph_id,
|
||||
graph_version=graph_version,
|
||||
execution_context=execution_context,
|
||||
block_name=self.name,
|
||||
editable=True,
|
||||
)
|
||||
|
||||
if decision is None:
|
||||
# We're awaiting review - pause execution
|
||||
return True, input_data
|
||||
|
||||
if not decision.should_proceed:
|
||||
# Review was rejected, raise an error to stop execution
|
||||
raise BlockExecutionError(
|
||||
message=f"Block execution rejected by reviewer: {decision.message}",
|
||||
block_name=self.name,
|
||||
block_id=self.id,
|
||||
)
|
||||
|
||||
# Review was approved - use the potentially modified data
|
||||
# ReviewResult.data must be a dict for block inputs
|
||||
reviewed_data = decision.review_result.data
|
||||
if not isinstance(reviewed_data, dict):
|
||||
raise BlockExecutionError(
|
||||
message=f"Review data must be a dict for block input, got {type(reviewed_data).__name__}",
|
||||
block_name=self.name,
|
||||
block_id=self.id,
|
||||
)
|
||||
return False, reviewed_data
|
||||
|
||||
async def _execute(self, input_data: BlockInput, **kwargs) -> BlockOutput:
|
||||
# Check for review requirement and get potentially modified input data
|
||||
should_pause, input_data = await self.is_block_exec_need_review(
|
||||
input_data, **kwargs
|
||||
)
|
||||
if should_pause:
|
||||
return
|
||||
|
||||
# Validate the input data (original or reviewer-modified) once
|
||||
if error := self.input_schema.validate_data(input_data):
|
||||
raise BlockInputError(
|
||||
message=f"Unable to execute block with invalid input data: {error}",
|
||||
@@ -695,7 +647,6 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
|
||||
block_id=self.id,
|
||||
)
|
||||
|
||||
# Use the validated input data
|
||||
async for output_name, output_data in self.run(
|
||||
self.input_schema(**{k: v for k, v in input_data.items() if v is not None}),
|
||||
**kwargs,
|
||||
@@ -859,6 +810,28 @@ def is_block_auth_configured(
|
||||
|
||||
|
||||
async def initialize_blocks() -> None:
|
||||
# Refresh LLM registry before initializing blocks so blocks can use registry data
|
||||
# This ensures the registry cache is populated even in executor context
|
||||
try:
|
||||
from backend.data import llm_registry
|
||||
from backend.data.block_cost_config import refresh_llm_costs
|
||||
|
||||
# Only refresh if we have DB access (check if Prisma is connected)
|
||||
from backend.data.db import is_connected
|
||||
|
||||
if is_connected():
|
||||
await llm_registry.refresh_llm_registry()
|
||||
refresh_llm_costs()
|
||||
logger.info("LLM registry refreshed during block initialization")
|
||||
else:
|
||||
logger.warning(
|
||||
"Prisma not connected, skipping LLM registry refresh during block initialization"
|
||||
)
|
||||
except Exception as exc:
|
||||
logger.warning(
|
||||
"Failed to refresh LLM registry during block initialization: %s", exc
|
||||
)
|
||||
|
||||
# First, sync all provider costs to blocks
|
||||
# Imported here to avoid circular import
|
||||
from backend.sdk.cost_integration import sync_all_provider_costs
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import logging
|
||||
from typing import Type
|
||||
|
||||
from backend.blocks.ai_image_customizer import AIImageCustomizerBlock, GeminiImageModel
|
||||
@@ -23,19 +24,18 @@ from backend.blocks.ideogram import IdeogramModelBlock
|
||||
from backend.blocks.jina.embeddings import JinaEmbeddingBlock
|
||||
from backend.blocks.jina.search import ExtractWebsiteContentBlock, SearchTheWebBlock
|
||||
from backend.blocks.llm import (
|
||||
MODEL_METADATA,
|
||||
AIConversationBlock,
|
||||
AIListGeneratorBlock,
|
||||
AIStructuredResponseGeneratorBlock,
|
||||
AITextGeneratorBlock,
|
||||
AITextSummarizerBlock,
|
||||
LlmModel,
|
||||
)
|
||||
from backend.blocks.replicate.flux_advanced import ReplicateFluxAdvancedModelBlock
|
||||
from backend.blocks.replicate.replicate_block import ReplicateModelBlock
|
||||
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
|
||||
from backend.blocks.talking_head import CreateTalkingAvatarVideoBlock
|
||||
from backend.blocks.text_to_speech_block import UnrealTextToSpeechBlock
|
||||
from backend.data import llm_registry
|
||||
from backend.data.block import Block, BlockCost, BlockCostType
|
||||
from backend.integrations.credentials_store import (
|
||||
aiml_api_credentials,
|
||||
@@ -55,210 +55,63 @@ from backend.integrations.credentials_store import (
|
||||
v0_credentials,
|
||||
)
|
||||
|
||||
# =============== Configure the cost for each LLM Model call =============== #
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
MODEL_COST: dict[LlmModel, int] = {
|
||||
LlmModel.O3: 4,
|
||||
LlmModel.O3_MINI: 2,
|
||||
LlmModel.O1: 16,
|
||||
LlmModel.O1_MINI: 4,
|
||||
# GPT-5 models
|
||||
LlmModel.GPT5_2: 6,
|
||||
LlmModel.GPT5_1: 5,
|
||||
LlmModel.GPT5: 2,
|
||||
LlmModel.GPT5_MINI: 1,
|
||||
LlmModel.GPT5_NANO: 1,
|
||||
LlmModel.GPT5_CHAT: 5,
|
||||
LlmModel.GPT41: 2,
|
||||
LlmModel.GPT41_MINI: 1,
|
||||
LlmModel.GPT4O_MINI: 1,
|
||||
LlmModel.GPT4O: 3,
|
||||
LlmModel.GPT4_TURBO: 10,
|
||||
LlmModel.GPT3_5_TURBO: 1,
|
||||
LlmModel.CLAUDE_4_1_OPUS: 21,
|
||||
LlmModel.CLAUDE_4_OPUS: 21,
|
||||
LlmModel.CLAUDE_4_SONNET: 5,
|
||||
LlmModel.CLAUDE_4_5_HAIKU: 4,
|
||||
LlmModel.CLAUDE_4_5_OPUS: 14,
|
||||
LlmModel.CLAUDE_4_5_SONNET: 9,
|
||||
LlmModel.CLAUDE_3_7_SONNET: 5,
|
||||
LlmModel.CLAUDE_3_HAIKU: 1,
|
||||
LlmModel.AIML_API_QWEN2_5_72B: 1,
|
||||
LlmModel.AIML_API_LLAMA3_1_70B: 1,
|
||||
LlmModel.AIML_API_LLAMA3_3_70B: 1,
|
||||
LlmModel.AIML_API_META_LLAMA_3_1_70B: 1,
|
||||
LlmModel.AIML_API_LLAMA_3_2_3B: 1,
|
||||
LlmModel.LLAMA3_3_70B: 1,
|
||||
LlmModel.LLAMA3_1_8B: 1,
|
||||
LlmModel.OLLAMA_LLAMA3_3: 1,
|
||||
LlmModel.OLLAMA_LLAMA3_2: 1,
|
||||
LlmModel.OLLAMA_LLAMA3_8B: 1,
|
||||
LlmModel.OLLAMA_LLAMA3_405B: 1,
|
||||
LlmModel.OLLAMA_DOLPHIN: 1,
|
||||
LlmModel.OPENAI_GPT_OSS_120B: 1,
|
||||
LlmModel.OPENAI_GPT_OSS_20B: 1,
|
||||
LlmModel.GEMINI_2_5_PRO: 4,
|
||||
LlmModel.GEMINI_3_PRO_PREVIEW: 5,
|
||||
LlmModel.MISTRAL_NEMO: 1,
|
||||
LlmModel.COHERE_COMMAND_R_08_2024: 1,
|
||||
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: 3,
|
||||
LlmModel.DEEPSEEK_CHAT: 2,
|
||||
LlmModel.PERPLEXITY_SONAR: 1,
|
||||
LlmModel.PERPLEXITY_SONAR_PRO: 5,
|
||||
LlmModel.PERPLEXITY_SONAR_DEEP_RESEARCH: 10,
|
||||
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_405B: 1,
|
||||
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_70B: 1,
|
||||
LlmModel.AMAZON_NOVA_LITE_V1: 1,
|
||||
LlmModel.AMAZON_NOVA_MICRO_V1: 1,
|
||||
LlmModel.AMAZON_NOVA_PRO_V1: 1,
|
||||
LlmModel.MICROSOFT_WIZARDLM_2_8X22B: 1,
|
||||
LlmModel.GRYPHE_MYTHOMAX_L2_13B: 1,
|
||||
LlmModel.META_LLAMA_4_SCOUT: 1,
|
||||
LlmModel.META_LLAMA_4_MAVERICK: 1,
|
||||
LlmModel.LLAMA_API_LLAMA_4_SCOUT: 1,
|
||||
LlmModel.LLAMA_API_LLAMA4_MAVERICK: 1,
|
||||
LlmModel.LLAMA_API_LLAMA3_3_8B: 1,
|
||||
LlmModel.LLAMA_API_LLAMA3_3_70B: 1,
|
||||
LlmModel.GROK_4: 9,
|
||||
LlmModel.GROK_4_FAST: 1,
|
||||
LlmModel.GROK_4_1_FAST: 1,
|
||||
LlmModel.GROK_CODE_FAST_1: 1,
|
||||
LlmModel.KIMI_K2: 1,
|
||||
LlmModel.QWEN3_235B_A22B_THINKING: 1,
|
||||
LlmModel.QWEN3_CODER: 9,
|
||||
LlmModel.GEMINI_2_5_FLASH: 1,
|
||||
LlmModel.GEMINI_2_0_FLASH: 1,
|
||||
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: 1,
|
||||
LlmModel.GEMINI_2_0_FLASH_LITE: 1,
|
||||
LlmModel.DEEPSEEK_R1_0528: 1,
|
||||
# v0 by Vercel models
|
||||
LlmModel.V0_1_5_MD: 1,
|
||||
LlmModel.V0_1_5_LG: 2,
|
||||
LlmModel.V0_1_0_MD: 1,
|
||||
PROVIDER_CREDENTIALS = {
|
||||
"openai": openai_credentials,
|
||||
"anthropic": anthropic_credentials,
|
||||
"groq": groq_credentials,
|
||||
"open_router": open_router_credentials,
|
||||
"llama_api": llama_api_credentials,
|
||||
"aiml_api": aiml_api_credentials,
|
||||
"v0": v0_credentials,
|
||||
}
|
||||
|
||||
for model in LlmModel:
|
||||
if model not in MODEL_COST:
|
||||
raise ValueError(f"Missing MODEL_COST for model: {model}")
|
||||
# =============== Configure the cost for each LLM Model call =============== #
|
||||
# All LLM costs now come from the database via llm_registry
|
||||
|
||||
LLM_COST: list[BlockCost] = []
|
||||
|
||||
|
||||
LLM_COST = (
|
||||
# Anthropic Models
|
||||
[
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter={
|
||||
"model": model,
|
||||
def _build_llm_costs_from_registry() -> list[BlockCost]:
|
||||
"""Build BlockCost list from all models in the LLM registry."""
|
||||
costs: list[BlockCost] = []
|
||||
for model in llm_registry.iter_dynamic_models():
|
||||
for cost in model.costs:
|
||||
credentials = PROVIDER_CREDENTIALS.get(cost.credential_provider)
|
||||
if not credentials:
|
||||
logger.warning(
|
||||
"Skipping cost entry for %s due to unknown credentials provider %s",
|
||||
model.slug,
|
||||
cost.credential_provider,
|
||||
)
|
||||
continue
|
||||
cost_filter = {
|
||||
"model": model.slug,
|
||||
"credentials": {
|
||||
"id": anthropic_credentials.id,
|
||||
"provider": anthropic_credentials.provider,
|
||||
"type": anthropic_credentials.type,
|
||||
"id": credentials.id,
|
||||
"provider": credentials.provider,
|
||||
"type": credentials.type,
|
||||
},
|
||||
},
|
||||
cost_amount=cost,
|
||||
)
|
||||
for model, cost in MODEL_COST.items()
|
||||
if MODEL_METADATA[model].provider == "anthropic"
|
||||
]
|
||||
# OpenAI Models
|
||||
+ [
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter={
|
||||
"model": model,
|
||||
"credentials": {
|
||||
"id": openai_credentials.id,
|
||||
"provider": openai_credentials.provider,
|
||||
"type": openai_credentials.type,
|
||||
},
|
||||
},
|
||||
cost_amount=cost,
|
||||
)
|
||||
for model, cost in MODEL_COST.items()
|
||||
if MODEL_METADATA[model].provider == "openai"
|
||||
]
|
||||
# Groq Models
|
||||
+ [
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter={
|
||||
"model": model,
|
||||
"credentials": {"id": groq_credentials.id},
|
||||
},
|
||||
cost_amount=cost,
|
||||
)
|
||||
for model, cost in MODEL_COST.items()
|
||||
if MODEL_METADATA[model].provider == "groq"
|
||||
]
|
||||
# Open Router Models
|
||||
+ [
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter={
|
||||
"model": model,
|
||||
"credentials": {
|
||||
"id": open_router_credentials.id,
|
||||
"provider": open_router_credentials.provider,
|
||||
"type": open_router_credentials.type,
|
||||
},
|
||||
},
|
||||
cost_amount=cost,
|
||||
)
|
||||
for model, cost in MODEL_COST.items()
|
||||
if MODEL_METADATA[model].provider == "open_router"
|
||||
]
|
||||
# Llama API Models
|
||||
+ [
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter={
|
||||
"model": model,
|
||||
"credentials": {
|
||||
"id": llama_api_credentials.id,
|
||||
"provider": llama_api_credentials.provider,
|
||||
"type": llama_api_credentials.type,
|
||||
},
|
||||
},
|
||||
cost_amount=cost,
|
||||
)
|
||||
for model, cost in MODEL_COST.items()
|
||||
if MODEL_METADATA[model].provider == "llama_api"
|
||||
]
|
||||
# v0 by Vercel Models
|
||||
+ [
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter={
|
||||
"model": model,
|
||||
"credentials": {
|
||||
"id": v0_credentials.id,
|
||||
"provider": v0_credentials.provider,
|
||||
"type": v0_credentials.type,
|
||||
},
|
||||
},
|
||||
cost_amount=cost,
|
||||
)
|
||||
for model, cost in MODEL_COST.items()
|
||||
if MODEL_METADATA[model].provider == "v0"
|
||||
]
|
||||
# AI/ML Api Models
|
||||
+ [
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter={
|
||||
"model": model,
|
||||
"credentials": {
|
||||
"id": aiml_api_credentials.id,
|
||||
"provider": aiml_api_credentials.provider,
|
||||
"type": aiml_api_credentials.type,
|
||||
},
|
||||
},
|
||||
cost_amount=cost,
|
||||
)
|
||||
for model, cost in MODEL_COST.items()
|
||||
if MODEL_METADATA[model].provider == "aiml_api"
|
||||
]
|
||||
)
|
||||
}
|
||||
costs.append(
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter=cost_filter,
|
||||
cost_amount=cost.credit_cost,
|
||||
)
|
||||
)
|
||||
return costs
|
||||
|
||||
|
||||
def refresh_llm_costs() -> None:
|
||||
"""Refresh LLM costs from the registry. All costs now come from the database."""
|
||||
LLM_COST.clear()
|
||||
LLM_COST.extend(_build_llm_costs_from_registry())
|
||||
|
||||
|
||||
# Initial load will happen after registry is refreshed at startup
|
||||
# Don't call refresh_llm_costs() here - it will be called after registry refresh
|
||||
|
||||
# =============== This is the exhaustive list of cost for each Block =============== #
|
||||
|
||||
|
||||
@@ -38,20 +38,6 @@ POOL_TIMEOUT = os.getenv("DB_POOL_TIMEOUT")
|
||||
if POOL_TIMEOUT:
|
||||
DATABASE_URL = add_param(DATABASE_URL, "pool_timeout", POOL_TIMEOUT)
|
||||
|
||||
# Add public schema to search_path for pgvector type access
|
||||
# The vector extension is in public schema, but search_path is determined by schema parameter
|
||||
# Extract the schema from DATABASE_URL or default to 'platform'
|
||||
parsed_url = urlparse(DATABASE_URL)
|
||||
url_params = dict(parse_qsl(parsed_url.query))
|
||||
db_schema = url_params.get("schema", "platform")
|
||||
# Build search_path, avoiding duplicates if db_schema is already 'public'
|
||||
search_path_schemas = list(
|
||||
dict.fromkeys([db_schema, "public"])
|
||||
) # Preserves order, removes duplicates
|
||||
search_path = ",".join(search_path_schemas)
|
||||
# This allows using ::vector without schema qualification
|
||||
DATABASE_URL = add_param(DATABASE_URL, "options", f"-c search_path={search_path}")
|
||||
|
||||
HTTP_TIMEOUT = int(POOL_TIMEOUT) if POOL_TIMEOUT else None
|
||||
|
||||
prisma = Prisma(
|
||||
@@ -122,102 +108,21 @@ def get_database_schema() -> str:
|
||||
return query_params.get("schema", "public")
|
||||
|
||||
|
||||
async def _raw_with_schema(
|
||||
query_template: str,
|
||||
*args,
|
||||
execute: bool = False,
|
||||
client: Prisma | None = None,
|
||||
set_public_search_path: bool = False,
|
||||
) -> list[dict] | int:
|
||||
"""Internal: Execute raw SQL with proper schema handling.
|
||||
|
||||
Use query_raw_with_schema() or execute_raw_with_schema() instead.
|
||||
|
||||
Args:
|
||||
query_template: SQL query with {schema_prefix} placeholder
|
||||
*args: Query parameters
|
||||
execute: If False, executes SELECT query. If True, executes INSERT/UPDATE/DELETE.
|
||||
client: Optional Prisma client for transactions (only used when execute=True).
|
||||
set_public_search_path: If True, sets search_path to include public schema.
|
||||
Needed for pgvector types and other public schema objects.
|
||||
|
||||
Returns:
|
||||
- list[dict] if execute=False (query results)
|
||||
- int if execute=True (number of affected rows)
|
||||
"""
|
||||
async def query_raw_with_schema(query_template: str, *args) -> list[dict]:
|
||||
"""Execute raw SQL query with proper schema handling."""
|
||||
schema = get_database_schema()
|
||||
schema_prefix = f'"{schema}".' if schema != "public" else ""
|
||||
formatted_query = query_template.format(schema_prefix=schema_prefix)
|
||||
|
||||
import prisma as prisma_module
|
||||
|
||||
db_client = client if client else prisma_module.get_client()
|
||||
|
||||
# Set search_path to include public schema if requested
|
||||
# Prisma doesn't support the 'options' connection parameter, so we set it per-session
|
||||
# This is idempotent and safe to call multiple times
|
||||
if set_public_search_path:
|
||||
await db_client.execute_raw(f"SET search_path = {schema}, public") # type: ignore
|
||||
|
||||
if execute:
|
||||
result = await db_client.execute_raw(formatted_query, *args) # type: ignore
|
||||
else:
|
||||
result = await db_client.query_raw(formatted_query, *args) # type: ignore
|
||||
result = await prisma_module.get_client().query_raw(
|
||||
formatted_query, *args # type: ignore
|
||||
)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
async def query_raw_with_schema(
|
||||
query_template: str, *args, set_public_search_path: bool = False
|
||||
) -> list[dict]:
|
||||
"""Execute raw SQL SELECT query with proper schema handling.
|
||||
|
||||
Args:
|
||||
query_template: SQL query with {schema_prefix} placeholder
|
||||
*args: Query parameters
|
||||
set_public_search_path: If True, sets search_path to include public schema.
|
||||
Needed for pgvector types and other public schema objects.
|
||||
|
||||
Returns:
|
||||
List of result rows as dictionaries
|
||||
|
||||
Example:
|
||||
results = await query_raw_with_schema(
|
||||
'SELECT * FROM {schema_prefix}"User" WHERE id = $1',
|
||||
user_id
|
||||
)
|
||||
"""
|
||||
return await _raw_with_schema(query_template, *args, execute=False, set_public_search_path=set_public_search_path) # type: ignore
|
||||
|
||||
|
||||
async def execute_raw_with_schema(
|
||||
query_template: str,
|
||||
*args,
|
||||
client: Prisma | None = None,
|
||||
set_public_search_path: bool = False,
|
||||
) -> int:
|
||||
"""Execute raw SQL command (INSERT/UPDATE/DELETE) with proper schema handling.
|
||||
|
||||
Args:
|
||||
query_template: SQL query with {schema_prefix} placeholder
|
||||
*args: Query parameters
|
||||
client: Optional Prisma client for transactions
|
||||
set_public_search_path: If True, sets search_path to include public schema.
|
||||
Needed for pgvector types and other public schema objects.
|
||||
|
||||
Returns:
|
||||
Number of affected rows
|
||||
|
||||
Example:
|
||||
await execute_raw_with_schema(
|
||||
'INSERT INTO {schema_prefix}"User" (id, name) VALUES ($1, $2)',
|
||||
user_id, name,
|
||||
client=tx # Optional transaction client
|
||||
)
|
||||
"""
|
||||
return await _raw_with_schema(query_template, *args, execute=True, client=client, set_public_search_path=set_public_search_path) # type: ignore
|
||||
|
||||
|
||||
class BaseDbModel(BaseModel):
|
||||
id: str = Field(default_factory=lambda: str(uuid4()))
|
||||
|
||||
|
||||
@@ -383,7 +383,6 @@ class GraphExecutionWithNodes(GraphExecution):
|
||||
self,
|
||||
execution_context: ExecutionContext,
|
||||
compiled_nodes_input_masks: Optional[NodesInputMasks] = None,
|
||||
nodes_to_skip: Optional[set[str]] = None,
|
||||
):
|
||||
return GraphExecutionEntry(
|
||||
user_id=self.user_id,
|
||||
@@ -391,7 +390,6 @@ class GraphExecutionWithNodes(GraphExecution):
|
||||
graph_version=self.graph_version or 0,
|
||||
graph_exec_id=self.id,
|
||||
nodes_input_masks=compiled_nodes_input_masks,
|
||||
nodes_to_skip=nodes_to_skip or set(),
|
||||
execution_context=execution_context,
|
||||
)
|
||||
|
||||
@@ -1147,8 +1145,6 @@ class GraphExecutionEntry(BaseModel):
|
||||
graph_id: str
|
||||
graph_version: int
|
||||
nodes_input_masks: Optional[NodesInputMasks] = None
|
||||
nodes_to_skip: set[str] = Field(default_factory=set)
|
||||
"""Node IDs that should be skipped due to optional credentials not being configured."""
|
||||
execution_context: ExecutionContext = Field(default_factory=ExecutionContext)
|
||||
|
||||
|
||||
|
||||
@@ -94,15 +94,6 @@ class Node(BaseDbModel):
|
||||
input_links: list[Link] = []
|
||||
output_links: list[Link] = []
|
||||
|
||||
@property
|
||||
def credentials_optional(self) -> bool:
|
||||
"""
|
||||
Whether credentials are optional for this node.
|
||||
When True and credentials are not configured, the node will be skipped
|
||||
during execution rather than causing a validation error.
|
||||
"""
|
||||
return self.metadata.get("credentials_optional", False)
|
||||
|
||||
@property
|
||||
def block(self) -> AnyBlockSchema | "_UnknownBlockBase":
|
||||
"""Get the block for this node. Returns UnknownBlock if block is deleted/missing."""
|
||||
@@ -244,10 +235,7 @@ class BaseGraph(BaseDbModel):
|
||||
return any(
|
||||
node.block_id
|
||||
for node in self.nodes
|
||||
if (
|
||||
node.block.block_type == BlockType.HUMAN_IN_THE_LOOP
|
||||
or node.block.requires_human_review
|
||||
)
|
||||
if node.block.block_type == BlockType.HUMAN_IN_THE_LOOP
|
||||
)
|
||||
|
||||
@property
|
||||
@@ -338,35 +326,7 @@ class Graph(BaseGraph):
|
||||
@computed_field
|
||||
@property
|
||||
def credentials_input_schema(self) -> dict[str, Any]:
|
||||
schema = self._credentials_input_schema.jsonschema()
|
||||
|
||||
# Determine which credential fields are required based on credentials_optional metadata
|
||||
graph_credentials_inputs = self.aggregate_credentials_inputs()
|
||||
required_fields = []
|
||||
|
||||
# Build a map of node_id -> node for quick lookup
|
||||
all_nodes = {node.id: node for node in self.nodes}
|
||||
for sub_graph in self.sub_graphs:
|
||||
for node in sub_graph.nodes:
|
||||
all_nodes[node.id] = node
|
||||
|
||||
for field_key, (
|
||||
_field_info,
|
||||
node_field_pairs,
|
||||
) in graph_credentials_inputs.items():
|
||||
# A field is required if ANY node using it has credentials_optional=False
|
||||
is_required = False
|
||||
for node_id, _field_name in node_field_pairs:
|
||||
node = all_nodes.get(node_id)
|
||||
if node and not node.credentials_optional:
|
||||
is_required = True
|
||||
break
|
||||
|
||||
if is_required:
|
||||
required_fields.append(field_key)
|
||||
|
||||
schema["required"] = required_fields
|
||||
return schema
|
||||
return self._credentials_input_schema.jsonschema()
|
||||
|
||||
@property
|
||||
def _credentials_input_schema(self) -> type[BlockSchema]:
|
||||
@@ -1483,8 +1443,10 @@ async def migrate_llm_models(migrate_to: LlmModel):
|
||||
if field.annotation == LlmModel:
|
||||
llm_model_fields[block.id] = field_name
|
||||
|
||||
# Convert enum values to a list of strings for the SQL query
|
||||
enum_values = [v.value for v in LlmModel]
|
||||
# Get all model slugs from the registry (dynamic, not hardcoded enum)
|
||||
from backend.data import llm_registry
|
||||
|
||||
enum_values = list(llm_registry.get_all_model_slugs_for_validation())
|
||||
escaped_enum_values = repr(tuple(enum_values)) # hack but works
|
||||
|
||||
# Update each block
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
import json
|
||||
from typing import Any
|
||||
from unittest.mock import AsyncMock, patch
|
||||
from uuid import UUID
|
||||
|
||||
import fastapi.exceptions
|
||||
@@ -19,17 +18,6 @@ from backend.usecases.sample import create_test_user
|
||||
from backend.util.test import SpinTestServer
|
||||
|
||||
|
||||
@pytest.fixture(scope="session", autouse=True)
|
||||
def mock_embedding_functions():
|
||||
"""Mock embedding functions for all tests to avoid database/API dependencies."""
|
||||
with patch(
|
||||
"backend.api.features.store.db.ensure_embedding",
|
||||
new_callable=AsyncMock,
|
||||
return_value=True,
|
||||
):
|
||||
yield
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_graph_creation(server: SpinTestServer, snapshot: Snapshot):
|
||||
"""
|
||||
@@ -408,58 +396,3 @@ async def test_access_store_listing_graph(server: SpinTestServer):
|
||||
created_graph.id, created_graph.version, "3e53486c-cf57-477e-ba2a-cb02dc828e1b"
|
||||
)
|
||||
assert got_graph is not None
|
||||
|
||||
|
||||
# ============================================================================
|
||||
# Tests for Optional Credentials Feature
|
||||
# ============================================================================
|
||||
|
||||
|
||||
def test_node_credentials_optional_default():
|
||||
"""Test that credentials_optional defaults to False when not set in metadata."""
|
||||
node = Node(
|
||||
id="test_node",
|
||||
block_id=StoreValueBlock().id,
|
||||
input_default={},
|
||||
metadata={},
|
||||
)
|
||||
assert node.credentials_optional is False
|
||||
|
||||
|
||||
def test_node_credentials_optional_true():
|
||||
"""Test that credentials_optional returns True when explicitly set."""
|
||||
node = Node(
|
||||
id="test_node",
|
||||
block_id=StoreValueBlock().id,
|
||||
input_default={},
|
||||
metadata={"credentials_optional": True},
|
||||
)
|
||||
assert node.credentials_optional is True
|
||||
|
||||
|
||||
def test_node_credentials_optional_false():
|
||||
"""Test that credentials_optional returns False when explicitly set to False."""
|
||||
node = Node(
|
||||
id="test_node",
|
||||
block_id=StoreValueBlock().id,
|
||||
input_default={},
|
||||
metadata={"credentials_optional": False},
|
||||
)
|
||||
assert node.credentials_optional is False
|
||||
|
||||
|
||||
def test_node_credentials_optional_with_other_metadata():
|
||||
"""Test that credentials_optional works correctly with other metadata present."""
|
||||
node = Node(
|
||||
id="test_node",
|
||||
block_id=StoreValueBlock().id,
|
||||
input_default={},
|
||||
metadata={
|
||||
"position": {"x": 100, "y": 200},
|
||||
"customized_name": "My Custom Node",
|
||||
"credentials_optional": True,
|
||||
},
|
||||
)
|
||||
assert node.credentials_optional is True
|
||||
assert node.metadata["position"] == {"x": 100, "y": 200}
|
||||
assert node.metadata["customized_name"] == "My Custom Node"
|
||||
|
||||
@@ -0,0 +1,72 @@
|
||||
"""
|
||||
LLM Registry module for managing LLM models, providers, and costs dynamically.
|
||||
|
||||
This module provides a database-driven registry system for LLM models,
|
||||
replacing hardcoded model configurations with a flexible admin-managed system.
|
||||
"""
|
||||
|
||||
from backend.data.llm_registry.model_types import ModelMetadata
|
||||
|
||||
# Re-export for backwards compatibility
|
||||
from backend.data.llm_registry.notifications import (
|
||||
REGISTRY_REFRESH_CHANNEL,
|
||||
publish_registry_refresh_notification,
|
||||
subscribe_to_registry_refresh,
|
||||
)
|
||||
from backend.data.llm_registry.registry import (
|
||||
RegistryModel,
|
||||
RegistryModelCost,
|
||||
RegistryModelCreator,
|
||||
get_all_model_slugs_for_validation,
|
||||
get_default_model_slug,
|
||||
get_dynamic_model_slugs,
|
||||
get_fallback_model_for_disabled,
|
||||
get_llm_discriminator_mapping,
|
||||
get_llm_model_cost,
|
||||
get_llm_model_metadata,
|
||||
get_llm_model_schema_options,
|
||||
get_model_info,
|
||||
is_model_enabled,
|
||||
iter_dynamic_models,
|
||||
refresh_llm_registry,
|
||||
register_static_costs,
|
||||
register_static_metadata,
|
||||
)
|
||||
from backend.data.llm_registry.schema_utils import (
|
||||
is_llm_model_field,
|
||||
refresh_llm_discriminator_mapping,
|
||||
refresh_llm_model_options,
|
||||
update_schema_with_llm_registry,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
# Types
|
||||
"ModelMetadata",
|
||||
"RegistryModel",
|
||||
"RegistryModelCost",
|
||||
"RegistryModelCreator",
|
||||
# Registry functions
|
||||
"get_all_model_slugs_for_validation",
|
||||
"get_default_model_slug",
|
||||
"get_dynamic_model_slugs",
|
||||
"get_fallback_model_for_disabled",
|
||||
"get_llm_discriminator_mapping",
|
||||
"get_llm_model_cost",
|
||||
"get_llm_model_metadata",
|
||||
"get_llm_model_schema_options",
|
||||
"get_model_info",
|
||||
"is_model_enabled",
|
||||
"iter_dynamic_models",
|
||||
"refresh_llm_registry",
|
||||
"register_static_costs",
|
||||
"register_static_metadata",
|
||||
# Notifications
|
||||
"REGISTRY_REFRESH_CHANNEL",
|
||||
"publish_registry_refresh_notification",
|
||||
"subscribe_to_registry_refresh",
|
||||
# Schema utilities
|
||||
"is_llm_model_field",
|
||||
"refresh_llm_discriminator_mapping",
|
||||
"refresh_llm_model_options",
|
||||
"update_schema_with_llm_registry",
|
||||
]
|
||||
@@ -0,0 +1,11 @@
|
||||
"""Type definitions for LLM model metadata."""
|
||||
|
||||
from typing import NamedTuple
|
||||
|
||||
|
||||
class ModelMetadata(NamedTuple):
|
||||
"""Metadata for an LLM model."""
|
||||
|
||||
provider: str
|
||||
context_window: int
|
||||
max_output_tokens: int | None
|
||||
@@ -0,0 +1,89 @@
|
||||
"""
|
||||
Redis pub/sub notifications for LLM registry updates.
|
||||
|
||||
When models are added/updated/removed via the admin UI, this module
|
||||
publishes notifications to Redis that all executor services subscribe to,
|
||||
ensuring they refresh their registry cache in real-time.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from backend.data.redis_client import connect_async
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Redis channel name for LLM registry refresh notifications
|
||||
REGISTRY_REFRESH_CHANNEL = "llm_registry:refresh"
|
||||
|
||||
|
||||
async def publish_registry_refresh_notification() -> None:
|
||||
"""
|
||||
Publish a notification to Redis that the LLM registry has been updated.
|
||||
All executor services subscribed to this channel will refresh their registry.
|
||||
"""
|
||||
try:
|
||||
redis = await connect_async()
|
||||
await redis.publish(REGISTRY_REFRESH_CHANNEL, "refresh")
|
||||
logger.info("Published LLM registry refresh notification to Redis")
|
||||
except Exception as exc:
|
||||
logger.warning(
|
||||
"Failed to publish LLM registry refresh notification: %s",
|
||||
exc,
|
||||
exc_info=True,
|
||||
)
|
||||
|
||||
|
||||
async def subscribe_to_registry_refresh(
|
||||
on_refresh: Any, # Async callable that takes no args
|
||||
) -> None:
|
||||
"""
|
||||
Subscribe to Redis notifications for LLM registry updates.
|
||||
This runs in a loop and processes messages as they arrive.
|
||||
|
||||
Args:
|
||||
on_refresh: Async callable to execute when a refresh notification is received
|
||||
"""
|
||||
try:
|
||||
redis = await connect_async()
|
||||
pubsub = redis.pubsub()
|
||||
await pubsub.subscribe(REGISTRY_REFRESH_CHANNEL)
|
||||
logger.info(
|
||||
"Subscribed to LLM registry refresh notifications on channel: %s",
|
||||
REGISTRY_REFRESH_CHANNEL,
|
||||
)
|
||||
|
||||
# Process messages in a loop
|
||||
while True:
|
||||
try:
|
||||
message = await pubsub.get_message(
|
||||
ignore_subscribe_messages=True, timeout=1.0
|
||||
)
|
||||
if (
|
||||
message
|
||||
and message["type"] == "message"
|
||||
and message["channel"] == REGISTRY_REFRESH_CHANNEL
|
||||
):
|
||||
logger.info("Received LLM registry refresh notification")
|
||||
try:
|
||||
await on_refresh()
|
||||
except Exception as exc:
|
||||
logger.error(
|
||||
"Error refreshing LLM registry from notification: %s",
|
||||
exc,
|
||||
exc_info=True,
|
||||
)
|
||||
except Exception as exc:
|
||||
logger.warning(
|
||||
"Error processing registry refresh message: %s", exc, exc_info=True
|
||||
)
|
||||
# Continue listening even if one message fails
|
||||
await asyncio.sleep(1)
|
||||
except Exception as exc:
|
||||
logger.error(
|
||||
"Failed to subscribe to LLM registry refresh notifications: %s",
|
||||
exc,
|
||||
exc_info=True,
|
||||
)
|
||||
raise
|
||||
370
autogpt_platform/backend/backend/data/llm_registry/registry.py
Normal file
370
autogpt_platform/backend/backend/data/llm_registry/registry.py
Normal file
@@ -0,0 +1,370 @@
|
||||
"""Core LLM registry implementation for managing models dynamically."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Any, Iterable
|
||||
|
||||
import prisma.models
|
||||
|
||||
from backend.data.llm_registry.model_types import ModelMetadata
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _json_to_dict(value: Any) -> dict[str, Any]:
|
||||
"""Convert Prisma Json type to dict, with fallback to empty dict."""
|
||||
if value is None:
|
||||
return {}
|
||||
if isinstance(value, dict):
|
||||
return value
|
||||
# Prisma Json type should always be a dict at runtime
|
||||
return dict(value) if value else {}
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class RegistryModelCost:
|
||||
"""Cost configuration for an LLM model."""
|
||||
|
||||
credit_cost: int
|
||||
credential_provider: str
|
||||
credential_id: str | None
|
||||
credential_type: str | None
|
||||
currency: str | None
|
||||
metadata: dict[str, Any]
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class RegistryModelCreator:
|
||||
"""Creator information for an LLM model."""
|
||||
|
||||
id: str
|
||||
name: str
|
||||
display_name: str
|
||||
description: str | None
|
||||
website_url: str | None
|
||||
logo_url: str | None
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class RegistryModel:
|
||||
"""Represents a model in the LLM registry."""
|
||||
|
||||
slug: str
|
||||
display_name: str
|
||||
description: str | None
|
||||
metadata: ModelMetadata
|
||||
capabilities: dict[str, Any]
|
||||
extra_metadata: dict[str, Any]
|
||||
provider_display_name: str
|
||||
is_enabled: bool
|
||||
is_recommended: bool = False
|
||||
costs: tuple[RegistryModelCost, ...] = field(default_factory=tuple)
|
||||
creator: RegistryModelCreator | None = None
|
||||
|
||||
|
||||
_static_metadata: dict[str, ModelMetadata] = {}
|
||||
_static_costs: dict[str, int] = {}
|
||||
_dynamic_models: dict[str, RegistryModel] = {}
|
||||
_schema_options: list[dict[str, str]] = []
|
||||
_discriminator_mapping: dict[str, str] = {}
|
||||
_lock = asyncio.Lock()
|
||||
|
||||
|
||||
def register_static_metadata(metadata: dict[Any, ModelMetadata]) -> None:
|
||||
"""Register static metadata for legacy models (deprecated)."""
|
||||
_static_metadata.update({str(key): value for key, value in metadata.items()})
|
||||
_refresh_cached_schema()
|
||||
|
||||
|
||||
def register_static_costs(costs: dict[Any, int]) -> None:
|
||||
"""Register static costs for legacy models (deprecated)."""
|
||||
_static_costs.update({str(key): value for key, value in costs.items()})
|
||||
|
||||
|
||||
def _build_schema_options() -> list[dict[str, str]]:
|
||||
"""Build schema options for model selection dropdown. Only includes enabled models."""
|
||||
options: list[dict[str, str]] = []
|
||||
# Only include enabled models in the dropdown options
|
||||
for model in sorted(_dynamic_models.values(), key=lambda m: m.display_name.lower()):
|
||||
if model.is_enabled:
|
||||
options.append(
|
||||
{
|
||||
"label": model.display_name,
|
||||
"value": model.slug,
|
||||
"group": model.metadata.provider,
|
||||
"description": model.description or "",
|
||||
}
|
||||
)
|
||||
|
||||
for slug, metadata in _static_metadata.items():
|
||||
if slug in _dynamic_models:
|
||||
continue
|
||||
options.append(
|
||||
{
|
||||
"label": slug,
|
||||
"value": slug,
|
||||
"group": metadata.provider,
|
||||
"description": "",
|
||||
}
|
||||
)
|
||||
return options
|
||||
|
||||
|
||||
async def refresh_llm_registry() -> None:
|
||||
"""Refresh the LLM registry from the database. Loads all models (enabled and disabled)."""
|
||||
async with _lock:
|
||||
try:
|
||||
records = await prisma.models.LlmModel.prisma().find_many(
|
||||
include={
|
||||
"Provider": True,
|
||||
"Costs": True,
|
||||
"Creator": True,
|
||||
}
|
||||
)
|
||||
logger.debug("Found %d LLM model records in database", len(records))
|
||||
except Exception as exc:
|
||||
logger.error(
|
||||
"Failed to refresh LLM registry from DB: %s", exc, exc_info=True
|
||||
)
|
||||
return
|
||||
|
||||
dynamic: dict[str, RegistryModel] = {}
|
||||
for record in records:
|
||||
provider_name = (
|
||||
record.Provider.name if record.Provider else record.providerId
|
||||
)
|
||||
metadata = ModelMetadata(
|
||||
provider=provider_name,
|
||||
context_window=record.contextWindow,
|
||||
max_output_tokens=record.maxOutputTokens,
|
||||
)
|
||||
costs = tuple(
|
||||
RegistryModelCost(
|
||||
credit_cost=cost.creditCost,
|
||||
credential_provider=cost.credentialProvider,
|
||||
credential_id=cost.credentialId,
|
||||
credential_type=cost.credentialType,
|
||||
currency=cost.currency,
|
||||
metadata=_json_to_dict(cost.metadata),
|
||||
)
|
||||
for cost in (record.Costs or [])
|
||||
)
|
||||
|
||||
# Map creator if present
|
||||
creator = None
|
||||
if record.Creator:
|
||||
creator = RegistryModelCreator(
|
||||
id=record.Creator.id,
|
||||
name=record.Creator.name,
|
||||
display_name=record.Creator.displayName,
|
||||
description=record.Creator.description,
|
||||
website_url=record.Creator.websiteUrl,
|
||||
logo_url=record.Creator.logoUrl,
|
||||
)
|
||||
|
||||
dynamic[record.slug] = RegistryModel(
|
||||
slug=record.slug,
|
||||
display_name=record.displayName,
|
||||
description=record.description,
|
||||
metadata=metadata,
|
||||
capabilities=_json_to_dict(record.capabilities),
|
||||
extra_metadata=_json_to_dict(record.metadata),
|
||||
provider_display_name=(
|
||||
record.Provider.displayName
|
||||
if record.Provider
|
||||
else record.providerId
|
||||
),
|
||||
is_enabled=record.isEnabled,
|
||||
is_recommended=record.isRecommended,
|
||||
costs=costs,
|
||||
creator=creator,
|
||||
)
|
||||
|
||||
# Atomic swap - build new structures then replace references
|
||||
# This ensures readers never see partially updated state
|
||||
global _dynamic_models
|
||||
_dynamic_models = dynamic
|
||||
_refresh_cached_schema()
|
||||
logger.info(
|
||||
"LLM registry refreshed with %s dynamic models (enabled: %s, disabled: %s)",
|
||||
len(dynamic),
|
||||
sum(1 for m in dynamic.values() if m.is_enabled),
|
||||
sum(1 for m in dynamic.values() if not m.is_enabled),
|
||||
)
|
||||
|
||||
|
||||
def _refresh_cached_schema() -> None:
|
||||
"""Refresh cached schema options and discriminator mapping."""
|
||||
global _schema_options, _discriminator_mapping
|
||||
|
||||
# Build new structures
|
||||
new_options = _build_schema_options()
|
||||
new_mapping = {slug: entry.metadata.provider for slug, entry in _dynamic_models.items()}
|
||||
for slug, metadata in _static_metadata.items():
|
||||
new_mapping.setdefault(slug, metadata.provider)
|
||||
|
||||
# Atomic swap - replace references to ensure readers see consistent state
|
||||
_schema_options = new_options
|
||||
_discriminator_mapping = new_mapping
|
||||
|
||||
|
||||
def get_llm_model_metadata(slug: str) -> ModelMetadata | None:
|
||||
"""Get model metadata by slug. Checks dynamic models first, then static metadata."""
|
||||
if slug in _dynamic_models:
|
||||
return _dynamic_models[slug].metadata
|
||||
return _static_metadata.get(slug)
|
||||
|
||||
|
||||
def get_llm_model_cost(slug: str) -> tuple[RegistryModelCost, ...]:
|
||||
"""Get model cost configuration by slug."""
|
||||
if slug in _dynamic_models:
|
||||
return _dynamic_models[slug].costs
|
||||
cost_value = _static_costs.get(slug)
|
||||
if cost_value is None:
|
||||
return tuple()
|
||||
return (
|
||||
RegistryModelCost(
|
||||
credit_cost=cost_value,
|
||||
credential_provider="static",
|
||||
credential_id=None,
|
||||
credential_type=None,
|
||||
currency=None,
|
||||
metadata={},
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def get_llm_model_schema_options() -> list[dict[str, str]]:
|
||||
"""
|
||||
Get schema options for LLM model selection dropdown.
|
||||
|
||||
Returns a copy of cached schema options that are refreshed when the registry is
|
||||
updated via refresh_llm_registry() (called on startup and via Redis pub/sub).
|
||||
"""
|
||||
# Return a copy to prevent external mutation
|
||||
return list(_schema_options)
|
||||
|
||||
|
||||
def get_llm_discriminator_mapping() -> dict[str, str]:
|
||||
"""
|
||||
Get discriminator mapping for LLM models.
|
||||
|
||||
Returns a copy of cached discriminator mapping that is refreshed when the registry
|
||||
is updated via refresh_llm_registry() (called on startup and via Redis pub/sub).
|
||||
"""
|
||||
# Return a copy to prevent external mutation
|
||||
return dict(_discriminator_mapping)
|
||||
|
||||
|
||||
def get_dynamic_model_slugs() -> set[str]:
|
||||
"""Get all dynamic model slugs from the registry."""
|
||||
return set(_dynamic_models.keys())
|
||||
|
||||
|
||||
def get_all_model_slugs_for_validation() -> set[str]:
|
||||
"""
|
||||
Get ALL model slugs (both enabled and disabled) for validation purposes.
|
||||
|
||||
This is used for JSON schema enum validation - we need to accept any known
|
||||
model value (even disabled ones) so that existing graphs don't fail validation.
|
||||
The actual fallback/enforcement happens at runtime in llm_call().
|
||||
"""
|
||||
all_slugs = set(_dynamic_models.keys())
|
||||
all_slugs.update(_static_metadata.keys())
|
||||
return all_slugs
|
||||
|
||||
|
||||
def iter_dynamic_models() -> Iterable[RegistryModel]:
|
||||
"""Iterate over all dynamic models in the registry."""
|
||||
return tuple(_dynamic_models.values())
|
||||
|
||||
|
||||
def get_fallback_model_for_disabled(disabled_model_slug: str) -> RegistryModel | None:
|
||||
"""
|
||||
Find a fallback model when the requested model is disabled.
|
||||
|
||||
Looks for an enabled model from the same provider. Prefers models with
|
||||
similar names or capabilities if possible.
|
||||
|
||||
Args:
|
||||
disabled_model_slug: The slug of the disabled model
|
||||
|
||||
Returns:
|
||||
An enabled RegistryModel from the same provider, or None if no fallback found
|
||||
"""
|
||||
disabled_model = _dynamic_models.get(disabled_model_slug)
|
||||
if not disabled_model:
|
||||
return None
|
||||
|
||||
provider = disabled_model.metadata.provider
|
||||
|
||||
# Find all enabled models from the same provider
|
||||
candidates = [
|
||||
model
|
||||
for model in _dynamic_models.values()
|
||||
if model.is_enabled and model.metadata.provider == provider
|
||||
]
|
||||
|
||||
if not candidates:
|
||||
return None
|
||||
|
||||
# Sort by: prefer models with similar context window, then by name
|
||||
candidates.sort(
|
||||
key=lambda m: (
|
||||
abs(m.metadata.context_window - disabled_model.metadata.context_window),
|
||||
m.display_name.lower(),
|
||||
)
|
||||
)
|
||||
|
||||
return candidates[0]
|
||||
|
||||
|
||||
def is_model_enabled(model_slug: str) -> bool:
|
||||
"""Check if a model is enabled in the registry."""
|
||||
model = _dynamic_models.get(model_slug)
|
||||
if not model:
|
||||
# Model not in registry - assume it's a static/legacy model and allow it
|
||||
return True
|
||||
return model.is_enabled
|
||||
|
||||
|
||||
def get_model_info(model_slug: str) -> RegistryModel | None:
|
||||
"""Get model info from the registry."""
|
||||
return _dynamic_models.get(model_slug)
|
||||
|
||||
|
||||
def get_default_model_slug() -> str | None:
|
||||
"""
|
||||
Get the default model slug to use for block defaults.
|
||||
|
||||
Returns the recommended model if set (configured via admin UI),
|
||||
otherwise returns the first enabled model alphabetically.
|
||||
Returns None if no models are available or enabled.
|
||||
"""
|
||||
# Return the recommended model if one is set and enabled
|
||||
for model in _dynamic_models.values():
|
||||
if model.is_recommended and model.is_enabled:
|
||||
return model.slug
|
||||
|
||||
# No recommended model set - find first enabled model alphabetically
|
||||
for model in sorted(_dynamic_models.values(), key=lambda m: m.display_name.lower()):
|
||||
if model.is_enabled:
|
||||
logger.warning(
|
||||
"No recommended model set, using '%s' as default",
|
||||
model.slug,
|
||||
)
|
||||
return model.slug
|
||||
|
||||
# No enabled models available
|
||||
if _dynamic_models:
|
||||
logger.error(
|
||||
"No enabled models found in registry (%d models registered but all disabled)",
|
||||
len(_dynamic_models),
|
||||
)
|
||||
else:
|
||||
logger.error("No models registered in LLM registry")
|
||||
|
||||
return None
|
||||
@@ -0,0 +1,130 @@
|
||||
"""
|
||||
Helper utilities for LLM registry integration with block schemas.
|
||||
|
||||
This module handles the dynamic injection of discriminator mappings
|
||||
and model options from the LLM registry into block schemas.
|
||||
"""
|
||||
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from backend.data.llm_registry.registry import (
|
||||
get_all_model_slugs_for_validation,
|
||||
get_default_model_slug,
|
||||
get_llm_discriminator_mapping,
|
||||
get_llm_model_schema_options,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def is_llm_model_field(field_name: str, field_info: Any) -> bool:
|
||||
"""
|
||||
Check if a field is an LLM model selection field.
|
||||
|
||||
Returns True if the field has 'options' in json_schema_extra
|
||||
(set by llm_model_schema_extra() in blocks/llm.py).
|
||||
"""
|
||||
if not hasattr(field_info, "json_schema_extra"):
|
||||
return False
|
||||
|
||||
extra = field_info.json_schema_extra
|
||||
if isinstance(extra, dict):
|
||||
return "options" in extra
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def refresh_llm_model_options(field_schema: dict[str, Any]) -> None:
|
||||
"""
|
||||
Refresh LLM model options from the registry.
|
||||
|
||||
Updates 'options' (for frontend dropdown) to show only enabled models,
|
||||
but keeps the 'enum' (for validation) inclusive of ALL known models.
|
||||
|
||||
This is important because:
|
||||
- Options: What users see in the dropdown (enabled models only)
|
||||
- Enum: What values pass validation (all known models, including disabled)
|
||||
|
||||
Existing graphs may have disabled models selected - they should pass validation
|
||||
and the fallback logic in llm_call() will handle using an alternative model.
|
||||
"""
|
||||
fresh_options = get_llm_model_schema_options()
|
||||
if not fresh_options:
|
||||
return
|
||||
|
||||
# Update options array (UI dropdown) - only enabled models
|
||||
if "options" in field_schema:
|
||||
field_schema["options"] = fresh_options
|
||||
|
||||
all_known_slugs = get_all_model_slugs_for_validation()
|
||||
if all_known_slugs and "enum" in field_schema:
|
||||
existing_enum = set(field_schema.get("enum", []))
|
||||
combined_enum = existing_enum | all_known_slugs
|
||||
field_schema["enum"] = sorted(combined_enum)
|
||||
|
||||
# Set the default value from the registry (gpt-4o if available, else first enabled)
|
||||
# This ensures new blocks have a sensible default pre-selected
|
||||
default_slug = get_default_model_slug()
|
||||
if default_slug:
|
||||
field_schema["default"] = default_slug
|
||||
|
||||
|
||||
def refresh_llm_discriminator_mapping(field_schema: dict[str, Any]) -> None:
|
||||
"""
|
||||
Refresh discriminator_mapping for fields that use model-based discrimination.
|
||||
|
||||
The discriminator is already set when AICredentialsField() creates the field.
|
||||
We only need to refresh the mapping when models are added/removed.
|
||||
"""
|
||||
if field_schema.get("discriminator") != "model":
|
||||
return
|
||||
|
||||
# Always refresh the mapping to get latest models
|
||||
fresh_mapping = get_llm_discriminator_mapping()
|
||||
if fresh_mapping:
|
||||
field_schema["discriminator_mapping"] = fresh_mapping
|
||||
|
||||
|
||||
def update_schema_with_llm_registry(
|
||||
schema: dict[str, Any], model_class: type | None = None
|
||||
) -> None:
|
||||
"""
|
||||
Update a JSON schema with current LLM registry data.
|
||||
|
||||
Refreshes:
|
||||
1. Model options for LLM model selection fields (dropdown choices)
|
||||
2. Discriminator mappings for credentials fields (model → provider)
|
||||
|
||||
Args:
|
||||
schema: The JSON schema to update (mutated in-place)
|
||||
model_class: The Pydantic model class (optional, for field introspection)
|
||||
"""
|
||||
properties = schema.get("properties", {})
|
||||
|
||||
for field_name, field_schema in properties.items():
|
||||
if not isinstance(field_schema, dict):
|
||||
continue
|
||||
|
||||
# Refresh model options for LLM model fields
|
||||
if model_class and hasattr(model_class, "model_fields"):
|
||||
field_info = model_class.model_fields.get(field_name)
|
||||
if field_info and is_llm_model_field(field_name, field_info):
|
||||
try:
|
||||
refresh_llm_model_options(field_schema)
|
||||
except Exception as exc:
|
||||
logger.warning(
|
||||
"Failed to refresh LLM options for field %s: %s",
|
||||
field_name,
|
||||
exc,
|
||||
)
|
||||
|
||||
# Refresh discriminator mapping for fields that use model discrimination
|
||||
try:
|
||||
refresh_llm_discriminator_mapping(field_schema)
|
||||
except Exception as exc:
|
||||
logger.warning(
|
||||
"Failed to refresh discriminator mapping for field %s: %s",
|
||||
field_name,
|
||||
exc,
|
||||
)
|
||||
@@ -40,6 +40,7 @@ from pydantic_core import (
|
||||
)
|
||||
from typing_extensions import TypedDict
|
||||
|
||||
from backend.data.llm_registry import update_schema_with_llm_registry
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.json import loads as json_loads
|
||||
from backend.util.settings import Secrets
|
||||
@@ -544,7 +545,9 @@ class CredentialsMetaInput(BaseModel, Generic[CP, CT]):
|
||||
else:
|
||||
schema["credentials_provider"] = allowed_providers
|
||||
schema["credentials_types"] = model_class.allowed_cred_types()
|
||||
# Do not return anything, just mutate schema in place
|
||||
|
||||
# Ensure LLM discriminators are populated (delegates to shared helper)
|
||||
update_schema_with_llm_registry(schema, model_class)
|
||||
|
||||
model_config = ConfigDict(
|
||||
json_schema_extra=_add_json_schema_extra, # type: ignore
|
||||
@@ -693,16 +696,20 @@ def CredentialsField(
|
||||
This is enforced by the `BlockSchema` base class.
|
||||
"""
|
||||
|
||||
field_schema_extra = {
|
||||
k: v
|
||||
for k, v in {
|
||||
"credentials_scopes": list(required_scopes) or None,
|
||||
"discriminator": discriminator,
|
||||
"discriminator_mapping": discriminator_mapping,
|
||||
"discriminator_values": discriminator_values,
|
||||
}.items()
|
||||
if v is not None
|
||||
}
|
||||
# Build field_schema_extra - always include discriminator and mapping if discriminator is set
|
||||
field_schema_extra: dict[str, Any] = {}
|
||||
|
||||
# Always include discriminator if provided
|
||||
if discriminator is not None:
|
||||
field_schema_extra["discriminator"] = discriminator
|
||||
# Always include discriminator_mapping when discriminator is set (even if empty initially)
|
||||
field_schema_extra["discriminator_mapping"] = discriminator_mapping or {}
|
||||
|
||||
# Include other optional fields (only if not None)
|
||||
if required_scopes:
|
||||
field_schema_extra["credentials_scopes"] = list(required_scopes)
|
||||
if discriminator_values:
|
||||
field_schema_extra["discriminator_values"] = discriminator_values
|
||||
|
||||
# Merge any json_schema_extra passed in kwargs
|
||||
if "json_schema_extra" in kwargs:
|
||||
|
||||
@@ -7,10 +7,6 @@ from backend.api.features.library.db import (
|
||||
list_library_agents,
|
||||
)
|
||||
from backend.api.features.store.db import get_store_agent_details, get_store_agents
|
||||
from backend.api.features.store.embeddings import (
|
||||
backfill_missing_embeddings,
|
||||
get_embedding_stats,
|
||||
)
|
||||
from backend.data import db
|
||||
from backend.data.analytics import (
|
||||
get_accuracy_trends_and_alerts,
|
||||
@@ -212,10 +208,6 @@ class DatabaseManager(AppService):
|
||||
get_store_agents = _(get_store_agents)
|
||||
get_store_agent_details = _(get_store_agent_details)
|
||||
|
||||
# Store Embeddings
|
||||
get_embedding_stats = _(get_embedding_stats)
|
||||
backfill_missing_embeddings = _(backfill_missing_embeddings)
|
||||
|
||||
# Summary data - async
|
||||
get_user_execution_summary_data = _(get_user_execution_summary_data)
|
||||
|
||||
@@ -267,10 +259,6 @@ class DatabaseManagerClient(AppServiceClient):
|
||||
get_store_agents = _(d.get_store_agents)
|
||||
get_store_agent_details = _(d.get_store_agent_details)
|
||||
|
||||
# Store Embeddings
|
||||
get_embedding_stats = _(d.get_embedding_stats)
|
||||
backfill_missing_embeddings = _(d.backfill_missing_embeddings)
|
||||
|
||||
|
||||
class DatabaseManagerAsyncClient(AppServiceClient):
|
||||
d = DatabaseManager
|
||||
|
||||
@@ -0,0 +1,66 @@
|
||||
"""
|
||||
Helper functions for LLM registry initialization in executor context.
|
||||
|
||||
These functions handle refreshing the LLM registry when the executor starts
|
||||
and subscribing to real-time updates via Redis pub/sub.
|
||||
"""
|
||||
|
||||
import logging
|
||||
|
||||
from backend.data import db, llm_registry
|
||||
from backend.data.block import BlockSchema, initialize_blocks
|
||||
from backend.data.block_cost_config import refresh_llm_costs
|
||||
from backend.data.llm_registry import subscribe_to_registry_refresh
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
async def initialize_registry_for_executor() -> None:
|
||||
"""
|
||||
Initialize blocks and refresh LLM registry in the executor context.
|
||||
|
||||
This must run in the executor's event loop to have access to the database.
|
||||
"""
|
||||
try:
|
||||
# Connect to database if not already connected
|
||||
if not db.is_connected():
|
||||
await db.connect()
|
||||
logger.info("[GraphExecutor] Connected to database for registry refresh")
|
||||
|
||||
# Initialize blocks (internally refreshes LLM registry and costs)
|
||||
await initialize_blocks()
|
||||
logger.info("[GraphExecutor] Blocks initialized")
|
||||
except Exception as exc:
|
||||
logger.warning(
|
||||
"[GraphExecutor] Failed to refresh LLM registry on startup: %s",
|
||||
exc,
|
||||
exc_info=True,
|
||||
)
|
||||
|
||||
|
||||
async def refresh_registry_on_notification() -> None:
|
||||
"""Refresh LLM registry when notified via Redis pub/sub."""
|
||||
try:
|
||||
# Ensure DB is connected
|
||||
if not db.is_connected():
|
||||
await db.connect()
|
||||
|
||||
# Refresh registry and costs
|
||||
await llm_registry.refresh_llm_registry()
|
||||
refresh_llm_costs()
|
||||
|
||||
# Clear block schema caches so they regenerate with new model options
|
||||
BlockSchema.clear_all_schema_caches()
|
||||
|
||||
logger.info("[GraphExecutor] LLM registry refreshed from notification")
|
||||
except Exception as exc:
|
||||
logger.error(
|
||||
"[GraphExecutor] Failed to refresh LLM registry from notification: %s",
|
||||
exc,
|
||||
exc_info=True,
|
||||
)
|
||||
|
||||
|
||||
async def subscribe_to_registry_updates() -> None:
|
||||
"""Subscribe to Redis pub/sub for LLM registry refresh notifications."""
|
||||
await subscribe_to_registry_refresh(refresh_registry_on_notification)
|
||||
@@ -178,7 +178,6 @@ async def execute_node(
|
||||
execution_processor: "ExecutionProcessor",
|
||||
execution_stats: NodeExecutionStats | None = None,
|
||||
nodes_input_masks: Optional[NodesInputMasks] = None,
|
||||
nodes_to_skip: Optional[set[str]] = None,
|
||||
) -> BlockOutput:
|
||||
"""
|
||||
Execute a node in the graph. This will trigger a block execution on a node,
|
||||
@@ -246,7 +245,6 @@ async def execute_node(
|
||||
"user_id": user_id,
|
||||
"execution_context": execution_context,
|
||||
"execution_processor": execution_processor,
|
||||
"nodes_to_skip": nodes_to_skip or set(),
|
||||
}
|
||||
|
||||
# Last-minute fetch credentials + acquire a system-wide read-write lock to prevent
|
||||
@@ -544,7 +542,6 @@ class ExecutionProcessor:
|
||||
node_exec_progress: NodeExecutionProgress,
|
||||
nodes_input_masks: Optional[NodesInputMasks],
|
||||
graph_stats_pair: tuple[GraphExecutionStats, threading.Lock],
|
||||
nodes_to_skip: Optional[set[str]] = None,
|
||||
) -> NodeExecutionStats:
|
||||
log_metadata = LogMetadata(
|
||||
logger=_logger,
|
||||
@@ -567,7 +564,6 @@ class ExecutionProcessor:
|
||||
db_client=db_client,
|
||||
log_metadata=log_metadata,
|
||||
nodes_input_masks=nodes_input_masks,
|
||||
nodes_to_skip=nodes_to_skip,
|
||||
)
|
||||
if isinstance(status, BaseException):
|
||||
raise status
|
||||
@@ -613,7 +609,6 @@ class ExecutionProcessor:
|
||||
db_client: "DatabaseManagerAsyncClient",
|
||||
log_metadata: LogMetadata,
|
||||
nodes_input_masks: Optional[NodesInputMasks] = None,
|
||||
nodes_to_skip: Optional[set[str]] = None,
|
||||
) -> ExecutionStatus:
|
||||
status = ExecutionStatus.RUNNING
|
||||
|
||||
@@ -650,7 +645,6 @@ class ExecutionProcessor:
|
||||
execution_processor=self,
|
||||
execution_stats=stats,
|
||||
nodes_input_masks=nodes_input_masks,
|
||||
nodes_to_skip=nodes_to_skip,
|
||||
):
|
||||
await persist_output(output_name, output_data)
|
||||
|
||||
@@ -702,6 +696,20 @@ class ExecutionProcessor:
|
||||
)
|
||||
self.node_execution_thread.start()
|
||||
self.node_evaluation_thread.start()
|
||||
|
||||
# Initialize LLM registry and subscribe to updates
|
||||
from backend.executor.llm_registry_init import (
|
||||
initialize_registry_for_executor,
|
||||
subscribe_to_registry_updates,
|
||||
)
|
||||
|
||||
asyncio.run_coroutine_threadsafe(
|
||||
initialize_registry_for_executor(), self.node_execution_loop
|
||||
)
|
||||
asyncio.run_coroutine_threadsafe(
|
||||
subscribe_to_registry_updates(), self.node_execution_loop
|
||||
)
|
||||
|
||||
logger.info(f"[GraphExecutor] {self.tid} started")
|
||||
|
||||
@error_logged(swallow=False)
|
||||
@@ -962,21 +970,6 @@ class ExecutionProcessor:
|
||||
|
||||
queued_node_exec = execution_queue.get()
|
||||
|
||||
# Check if this node should be skipped due to optional credentials
|
||||
if queued_node_exec.node_id in graph_exec.nodes_to_skip:
|
||||
log_metadata.info(
|
||||
f"Skipping node execution {queued_node_exec.node_exec_id} "
|
||||
f"for node {queued_node_exec.node_id} - optional credentials not configured"
|
||||
)
|
||||
# Mark the node as completed without executing
|
||||
# No outputs will be produced, so downstream nodes won't trigger
|
||||
update_node_execution_status(
|
||||
db_client=db_client,
|
||||
exec_id=queued_node_exec.node_exec_id,
|
||||
status=ExecutionStatus.COMPLETED,
|
||||
)
|
||||
continue
|
||||
|
||||
log_metadata.debug(
|
||||
f"Dispatching node execution {queued_node_exec.node_exec_id} "
|
||||
f"for node {queued_node_exec.node_id}",
|
||||
@@ -1037,7 +1030,6 @@ class ExecutionProcessor:
|
||||
execution_stats,
|
||||
execution_stats_lock,
|
||||
),
|
||||
nodes_to_skip=graph_exec.nodes_to_skip,
|
||||
),
|
||||
self.node_execution_loop,
|
||||
)
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
import logging
|
||||
from unittest.mock import AsyncMock, patch
|
||||
|
||||
import fastapi.responses
|
||||
import pytest
|
||||
@@ -20,17 +19,6 @@ from backend.util.test import SpinTestServer, wait_execution
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@pytest.fixture(scope="session", autouse=True)
|
||||
def mock_embedding_functions():
|
||||
"""Mock embedding functions for all tests to avoid database/API dependencies."""
|
||||
with patch(
|
||||
"backend.api.features.store.db.ensure_embedding",
|
||||
new_callable=AsyncMock,
|
||||
return_value=True,
|
||||
):
|
||||
yield
|
||||
|
||||
|
||||
async def create_graph(s: SpinTestServer, g: graph.Graph, u: User) -> graph.Graph:
|
||||
logger.info(f"Creating graph for user {u.id}")
|
||||
return await s.agent_server.test_create_graph(CreateGraph(graph=g), u.id)
|
||||
|
||||
@@ -2,7 +2,6 @@ import asyncio
|
||||
import logging
|
||||
import os
|
||||
import threading
|
||||
import time
|
||||
import uuid
|
||||
from enum import Enum
|
||||
from typing import Optional
|
||||
@@ -38,7 +37,7 @@ from backend.monitoring import (
|
||||
report_execution_accuracy_alerts,
|
||||
report_late_executions,
|
||||
)
|
||||
from backend.util.clients import get_database_manager_client, get_scheduler_client
|
||||
from backend.util.clients import get_scheduler_client
|
||||
from backend.util.cloud_storage import cleanup_expired_files_async
|
||||
from backend.util.exceptions import (
|
||||
GraphNotFoundError,
|
||||
@@ -255,88 +254,6 @@ def execution_accuracy_alerts():
|
||||
return report_execution_accuracy_alerts()
|
||||
|
||||
|
||||
def ensure_embeddings_coverage():
|
||||
"""
|
||||
Ensure all content types (store agents, blocks, docs) have embeddings for search.
|
||||
|
||||
Processes ALL missing embeddings in batches of 10 per content type until 100% coverage.
|
||||
Missing embeddings = content invisible in hybrid search.
|
||||
|
||||
Schedule: Runs every 6 hours (balanced between coverage and API costs).
|
||||
- Catches new content added between scheduled runs
|
||||
- Batch size 10 per content type: gradual processing to avoid rate limits
|
||||
- Manual trigger available via execute_ensure_embeddings_coverage endpoint
|
||||
"""
|
||||
db_client = get_database_manager_client()
|
||||
stats = db_client.get_embedding_stats()
|
||||
|
||||
# Check for error from get_embedding_stats() first
|
||||
if "error" in stats:
|
||||
logger.error(
|
||||
f"Failed to get embedding stats: {stats['error']} - skipping backfill"
|
||||
)
|
||||
return {"processed": 0, "success": 0, "failed": 0, "error": stats["error"]}
|
||||
|
||||
# Extract totals from new stats structure
|
||||
totals = stats.get("totals", {})
|
||||
without_embeddings = totals.get("without_embeddings", 0)
|
||||
coverage_percent = totals.get("coverage_percent", 0)
|
||||
|
||||
if without_embeddings == 0:
|
||||
logger.info("All content has embeddings, skipping backfill")
|
||||
return {"processed": 0, "success": 0, "failed": 0}
|
||||
|
||||
# Log per-content-type stats for visibility
|
||||
by_type = stats.get("by_type", {})
|
||||
for content_type, type_stats in by_type.items():
|
||||
if type_stats.get("without_embeddings", 0) > 0:
|
||||
logger.info(
|
||||
f"{content_type}: {type_stats['without_embeddings']} items without embeddings "
|
||||
f"({type_stats['coverage_percent']}% coverage)"
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"Total: {without_embeddings} items without embeddings "
|
||||
f"({coverage_percent}% coverage) - processing all"
|
||||
)
|
||||
|
||||
total_processed = 0
|
||||
total_success = 0
|
||||
total_failed = 0
|
||||
|
||||
# Process in batches until no more missing embeddings
|
||||
while True:
|
||||
result = db_client.backfill_missing_embeddings(batch_size=10)
|
||||
|
||||
total_processed += result["processed"]
|
||||
total_success += result["success"]
|
||||
total_failed += result["failed"]
|
||||
|
||||
if result["processed"] == 0:
|
||||
# No more missing embeddings
|
||||
break
|
||||
|
||||
if result["success"] == 0 and result["processed"] > 0:
|
||||
# All attempts in this batch failed - stop to avoid infinite loop
|
||||
logger.error(
|
||||
f"All {result['processed']} embedding attempts failed - stopping backfill"
|
||||
)
|
||||
break
|
||||
|
||||
# Small delay between batches to avoid rate limits
|
||||
time.sleep(1)
|
||||
|
||||
logger.info(
|
||||
f"Embedding backfill completed: {total_success}/{total_processed} succeeded, "
|
||||
f"{total_failed} failed"
|
||||
)
|
||||
return {
|
||||
"processed": total_processed,
|
||||
"success": total_success,
|
||||
"failed": total_failed,
|
||||
}
|
||||
|
||||
|
||||
# Monitoring functions are now imported from monitoring module
|
||||
|
||||
|
||||
@@ -558,19 +475,6 @@ class Scheduler(AppService):
|
||||
jobstore=Jobstores.EXECUTION.value,
|
||||
)
|
||||
|
||||
# Embedding Coverage - Every 6 hours
|
||||
# Ensures all approved agents have embeddings for hybrid search
|
||||
# Critical: missing embeddings = agents invisible in search
|
||||
self.scheduler.add_job(
|
||||
ensure_embeddings_coverage,
|
||||
id="ensure_embeddings_coverage",
|
||||
trigger="interval",
|
||||
hours=6,
|
||||
replace_existing=True,
|
||||
max_instances=1, # Prevent overlapping runs
|
||||
jobstore=Jobstores.EXECUTION.value,
|
||||
)
|
||||
|
||||
self.scheduler.add_listener(job_listener, EVENT_JOB_EXECUTED | EVENT_JOB_ERROR)
|
||||
self.scheduler.add_listener(job_missed_listener, EVENT_JOB_MISSED)
|
||||
self.scheduler.add_listener(job_max_instances_listener, EVENT_JOB_MAX_INSTANCES)
|
||||
@@ -728,11 +632,6 @@ class Scheduler(AppService):
|
||||
"""Manually trigger execution accuracy alert checking."""
|
||||
return execution_accuracy_alerts()
|
||||
|
||||
@expose
|
||||
def execute_ensure_embeddings_coverage(self):
|
||||
"""Manually trigger embedding backfill for approved store agents."""
|
||||
return ensure_embeddings_coverage()
|
||||
|
||||
|
||||
class SchedulerClient(AppServiceClient):
|
||||
@classmethod
|
||||
|
||||
@@ -239,19 +239,14 @@ async def _validate_node_input_credentials(
|
||||
graph: GraphModel,
|
||||
user_id: str,
|
||||
nodes_input_masks: Optional[NodesInputMasks] = None,
|
||||
) -> tuple[dict[str, dict[str, str]], set[str]]:
|
||||
) -> dict[str, dict[str, str]]:
|
||||
"""
|
||||
Checks all credentials for all nodes of the graph and returns structured errors
|
||||
and a set of nodes that should be skipped due to optional missing credentials.
|
||||
Checks all credentials for all nodes of the graph and returns structured errors.
|
||||
|
||||
Returns:
|
||||
tuple[
|
||||
dict[node_id, dict[field_name, error_message]]: Credential validation errors per node,
|
||||
set[node_id]: Nodes that should be skipped (optional credentials not configured)
|
||||
]
|
||||
dict[node_id, dict[field_name, error_message]]: Credential validation errors per node
|
||||
"""
|
||||
credential_errors: dict[str, dict[str, str]] = defaultdict(dict)
|
||||
nodes_to_skip: set[str] = set()
|
||||
|
||||
for node in graph.nodes:
|
||||
block = node.block
|
||||
@@ -261,46 +256,27 @@ async def _validate_node_input_credentials(
|
||||
if not credentials_fields:
|
||||
continue
|
||||
|
||||
# Track if any credential field is missing for this node
|
||||
has_missing_credentials = False
|
||||
|
||||
for field_name, credentials_meta_type in credentials_fields.items():
|
||||
try:
|
||||
# Check nodes_input_masks first, then input_default
|
||||
field_value = None
|
||||
if (
|
||||
nodes_input_masks
|
||||
and (node_input_mask := nodes_input_masks.get(node.id))
|
||||
and field_name in node_input_mask
|
||||
):
|
||||
field_value = node_input_mask[field_name]
|
||||
credentials_meta = credentials_meta_type.model_validate(
|
||||
node_input_mask[field_name]
|
||||
)
|
||||
elif field_name in node.input_default:
|
||||
# For optional credentials, don't use input_default - treat as missing
|
||||
# This prevents stale credential IDs from failing validation
|
||||
if node.credentials_optional:
|
||||
field_value = None
|
||||
else:
|
||||
field_value = node.input_default[field_name]
|
||||
|
||||
# Check if credentials are missing (None, empty, or not present)
|
||||
if field_value is None or (
|
||||
isinstance(field_value, dict) and not field_value.get("id")
|
||||
):
|
||||
has_missing_credentials = True
|
||||
# If node has credentials_optional flag, mark for skipping instead of error
|
||||
if node.credentials_optional:
|
||||
continue # Don't add error, will be marked for skip after loop
|
||||
else:
|
||||
credential_errors[node.id][
|
||||
field_name
|
||||
] = "These credentials are required"
|
||||
continue
|
||||
|
||||
credentials_meta = credentials_meta_type.model_validate(field_value)
|
||||
|
||||
credentials_meta = credentials_meta_type.model_validate(
|
||||
node.input_default[field_name]
|
||||
)
|
||||
else:
|
||||
# Missing credentials
|
||||
credential_errors[node.id][
|
||||
field_name
|
||||
] = "These credentials are required"
|
||||
continue
|
||||
except ValidationError as e:
|
||||
# Validation error means credentials were provided but invalid
|
||||
# This should always be an error, even if optional
|
||||
credential_errors[node.id][field_name] = f"Invalid credentials: {e}"
|
||||
continue
|
||||
|
||||
@@ -311,7 +287,6 @@ async def _validate_node_input_credentials(
|
||||
)
|
||||
except Exception as e:
|
||||
# Handle any errors fetching credentials
|
||||
# If credentials were explicitly configured but unavailable, it's an error
|
||||
credential_errors[node.id][
|
||||
field_name
|
||||
] = f"Credentials not available: {e}"
|
||||
@@ -338,19 +313,7 @@ async def _validate_node_input_credentials(
|
||||
] = "Invalid credentials: type/provider mismatch"
|
||||
continue
|
||||
|
||||
# If node has optional credentials and any are missing, mark for skipping
|
||||
# But only if there are no other errors for this node
|
||||
if (
|
||||
has_missing_credentials
|
||||
and node.credentials_optional
|
||||
and node.id not in credential_errors
|
||||
):
|
||||
nodes_to_skip.add(node.id)
|
||||
logger.info(
|
||||
f"Node #{node.id} will be skipped: optional credentials not configured"
|
||||
)
|
||||
|
||||
return credential_errors, nodes_to_skip
|
||||
return credential_errors
|
||||
|
||||
|
||||
def make_node_credentials_input_map(
|
||||
@@ -392,25 +355,21 @@ async def validate_graph_with_credentials(
|
||||
graph: GraphModel,
|
||||
user_id: str,
|
||||
nodes_input_masks: Optional[NodesInputMasks] = None,
|
||||
) -> tuple[Mapping[str, Mapping[str, str]], set[str]]:
|
||||
) -> Mapping[str, Mapping[str, str]]:
|
||||
"""
|
||||
Validate graph including credentials and return structured errors per node,
|
||||
along with a set of nodes that should be skipped due to optional missing credentials.
|
||||
Validate graph including credentials and return structured errors per node.
|
||||
|
||||
Returns:
|
||||
tuple[
|
||||
dict[node_id, dict[field_name, error_message]]: Validation errors per node,
|
||||
set[node_id]: Nodes that should be skipped (optional credentials not configured)
|
||||
]
|
||||
dict[node_id, dict[field_name, error_message]]: Validation errors per node
|
||||
"""
|
||||
# Get input validation errors
|
||||
node_input_errors = GraphModel.validate_graph_get_errors(
|
||||
graph, for_run=True, nodes_input_masks=nodes_input_masks
|
||||
)
|
||||
|
||||
# Get credential input/availability/validation errors and nodes to skip
|
||||
node_credential_input_errors, nodes_to_skip = (
|
||||
await _validate_node_input_credentials(graph, user_id, nodes_input_masks)
|
||||
# Get credential input/availability/validation errors
|
||||
node_credential_input_errors = await _validate_node_input_credentials(
|
||||
graph, user_id, nodes_input_masks
|
||||
)
|
||||
|
||||
# Merge credential errors with structural errors
|
||||
@@ -419,7 +378,7 @@ async def validate_graph_with_credentials(
|
||||
node_input_errors[node_id] = {}
|
||||
node_input_errors[node_id].update(field_errors)
|
||||
|
||||
return node_input_errors, nodes_to_skip
|
||||
return node_input_errors
|
||||
|
||||
|
||||
async def _construct_starting_node_execution_input(
|
||||
@@ -427,7 +386,7 @@ async def _construct_starting_node_execution_input(
|
||||
user_id: str,
|
||||
graph_inputs: BlockInput,
|
||||
nodes_input_masks: Optional[NodesInputMasks] = None,
|
||||
) -> tuple[list[tuple[str, BlockInput]], set[str]]:
|
||||
) -> list[tuple[str, BlockInput]]:
|
||||
"""
|
||||
Validates and prepares the input data for executing a graph.
|
||||
This function checks the graph for starting nodes, validates the input data
|
||||
@@ -441,14 +400,11 @@ async def _construct_starting_node_execution_input(
|
||||
node_credentials_map: `dict[node_id, dict[input_name, CredentialsMetaInput]]`
|
||||
|
||||
Returns:
|
||||
tuple[
|
||||
list[tuple[str, BlockInput]]: A list of tuples, each containing the node ID
|
||||
and the corresponding input data for that node.
|
||||
set[str]: Node IDs that should be skipped (optional credentials not configured)
|
||||
]
|
||||
list[tuple[str, BlockInput]]: A list of tuples, each containing the node ID and
|
||||
the corresponding input data for that node.
|
||||
"""
|
||||
# Use new validation function that includes credentials
|
||||
validation_errors, nodes_to_skip = await validate_graph_with_credentials(
|
||||
validation_errors = await validate_graph_with_credentials(
|
||||
graph, user_id, nodes_input_masks
|
||||
)
|
||||
n_error_nodes = len(validation_errors)
|
||||
@@ -489,7 +445,7 @@ async def _construct_starting_node_execution_input(
|
||||
"No starting nodes found for the graph, make sure an AgentInput or blocks with no inbound links are present as starting nodes."
|
||||
)
|
||||
|
||||
return nodes_input, nodes_to_skip
|
||||
return nodes_input
|
||||
|
||||
|
||||
async def validate_and_construct_node_execution_input(
|
||||
@@ -500,7 +456,7 @@ async def validate_and_construct_node_execution_input(
|
||||
graph_credentials_inputs: Optional[Mapping[str, CredentialsMetaInput]] = None,
|
||||
nodes_input_masks: Optional[NodesInputMasks] = None,
|
||||
is_sub_graph: bool = False,
|
||||
) -> tuple[GraphModel, list[tuple[str, BlockInput]], NodesInputMasks, set[str]]:
|
||||
) -> tuple[GraphModel, list[tuple[str, BlockInput]], NodesInputMasks]:
|
||||
"""
|
||||
Public wrapper that handles graph fetching, credential mapping, and validation+construction.
|
||||
This centralizes the logic used by both scheduler validation and actual execution.
|
||||
@@ -517,7 +473,6 @@ async def validate_and_construct_node_execution_input(
|
||||
GraphModel: Full graph object for the given `graph_id`.
|
||||
list[tuple[node_id, BlockInput]]: Starting node IDs with corresponding inputs.
|
||||
dict[str, BlockInput]: Node input masks including all passed-in credentials.
|
||||
set[str]: Node IDs that should be skipped (optional credentials not configured).
|
||||
|
||||
Raises:
|
||||
NotFoundError: If the graph is not found.
|
||||
@@ -559,16 +514,14 @@ async def validate_and_construct_node_execution_input(
|
||||
nodes_input_masks or {},
|
||||
)
|
||||
|
||||
starting_nodes_input, nodes_to_skip = (
|
||||
await _construct_starting_node_execution_input(
|
||||
graph=graph,
|
||||
user_id=user_id,
|
||||
graph_inputs=graph_inputs,
|
||||
nodes_input_masks=nodes_input_masks,
|
||||
)
|
||||
starting_nodes_input = await _construct_starting_node_execution_input(
|
||||
graph=graph,
|
||||
user_id=user_id,
|
||||
graph_inputs=graph_inputs,
|
||||
nodes_input_masks=nodes_input_masks,
|
||||
)
|
||||
|
||||
return graph, starting_nodes_input, nodes_input_masks, nodes_to_skip
|
||||
return graph, starting_nodes_input, nodes_input_masks
|
||||
|
||||
|
||||
def _merge_nodes_input_masks(
|
||||
@@ -826,9 +779,6 @@ async def add_graph_execution(
|
||||
|
||||
# Use existing execution's compiled input masks
|
||||
compiled_nodes_input_masks = graph_exec.nodes_input_masks or {}
|
||||
# For resumed executions, nodes_to_skip was already determined at creation time
|
||||
# TODO: Consider storing nodes_to_skip in DB if we need to preserve it across resumes
|
||||
nodes_to_skip: set[str] = set()
|
||||
|
||||
logger.info(f"Resuming graph execution #{graph_exec.id} for graph #{graph_id}")
|
||||
else:
|
||||
@@ -837,7 +787,7 @@ async def add_graph_execution(
|
||||
)
|
||||
|
||||
# Create new execution
|
||||
graph, starting_nodes_input, compiled_nodes_input_masks, nodes_to_skip = (
|
||||
graph, starting_nodes_input, compiled_nodes_input_masks = (
|
||||
await validate_and_construct_node_execution_input(
|
||||
graph_id=graph_id,
|
||||
user_id=user_id,
|
||||
@@ -886,7 +836,6 @@ async def add_graph_execution(
|
||||
try:
|
||||
graph_exec_entry = graph_exec.to_graph_execution_entry(
|
||||
compiled_nodes_input_masks=compiled_nodes_input_masks,
|
||||
nodes_to_skip=nodes_to_skip,
|
||||
execution_context=execution_context,
|
||||
)
|
||||
logger.info(f"Publishing execution {graph_exec.id} to execution queue")
|
||||
|
||||
@@ -367,13 +367,10 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
|
||||
)
|
||||
|
||||
# Setup mock returns
|
||||
# The function returns (graph, starting_nodes_input, compiled_nodes_input_masks, nodes_to_skip)
|
||||
nodes_to_skip: set[str] = set()
|
||||
mock_validate.return_value = (
|
||||
mock_graph,
|
||||
starting_nodes_input,
|
||||
compiled_nodes_input_masks,
|
||||
nodes_to_skip,
|
||||
)
|
||||
mock_prisma.is_connected.return_value = True
|
||||
mock_edb.create_graph_execution = mocker.AsyncMock(return_value=mock_graph_exec)
|
||||
@@ -459,212 +456,3 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
|
||||
# Both executions should succeed (though they create different objects)
|
||||
assert result1 == mock_graph_exec
|
||||
assert result2 == mock_graph_exec_2
|
||||
|
||||
|
||||
# ============================================================================
|
||||
# Tests for Optional Credentials Feature
|
||||
# ============================================================================
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_validate_node_input_credentials_returns_nodes_to_skip(
|
||||
mocker: MockerFixture,
|
||||
):
|
||||
"""
|
||||
Test that _validate_node_input_credentials returns nodes_to_skip set
|
||||
for nodes with credentials_optional=True and missing credentials.
|
||||
"""
|
||||
from backend.executor.utils import _validate_node_input_credentials
|
||||
|
||||
# Create a mock node with credentials_optional=True
|
||||
mock_node = mocker.MagicMock()
|
||||
mock_node.id = "node-with-optional-creds"
|
||||
mock_node.credentials_optional = True
|
||||
mock_node.input_default = {} # No credentials configured
|
||||
|
||||
# Create a mock block with credentials field
|
||||
mock_block = mocker.MagicMock()
|
||||
mock_credentials_field_type = mocker.MagicMock()
|
||||
mock_block.input_schema.get_credentials_fields.return_value = {
|
||||
"credentials": mock_credentials_field_type
|
||||
}
|
||||
mock_node.block = mock_block
|
||||
|
||||
# Create mock graph
|
||||
mock_graph = mocker.MagicMock()
|
||||
mock_graph.nodes = [mock_node]
|
||||
|
||||
# Call the function
|
||||
errors, nodes_to_skip = await _validate_node_input_credentials(
|
||||
graph=mock_graph,
|
||||
user_id="test-user-id",
|
||||
nodes_input_masks=None,
|
||||
)
|
||||
|
||||
# Node should be in nodes_to_skip, not in errors
|
||||
assert mock_node.id in nodes_to_skip
|
||||
assert mock_node.id not in errors
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_validate_node_input_credentials_required_missing_creds_error(
|
||||
mocker: MockerFixture,
|
||||
):
|
||||
"""
|
||||
Test that _validate_node_input_credentials returns errors
|
||||
for nodes with credentials_optional=False and missing credentials.
|
||||
"""
|
||||
from backend.executor.utils import _validate_node_input_credentials
|
||||
|
||||
# Create a mock node with credentials_optional=False (required)
|
||||
mock_node = mocker.MagicMock()
|
||||
mock_node.id = "node-with-required-creds"
|
||||
mock_node.credentials_optional = False
|
||||
mock_node.input_default = {} # No credentials configured
|
||||
|
||||
# Create a mock block with credentials field
|
||||
mock_block = mocker.MagicMock()
|
||||
mock_credentials_field_type = mocker.MagicMock()
|
||||
mock_block.input_schema.get_credentials_fields.return_value = {
|
||||
"credentials": mock_credentials_field_type
|
||||
}
|
||||
mock_node.block = mock_block
|
||||
|
||||
# Create mock graph
|
||||
mock_graph = mocker.MagicMock()
|
||||
mock_graph.nodes = [mock_node]
|
||||
|
||||
# Call the function
|
||||
errors, nodes_to_skip = await _validate_node_input_credentials(
|
||||
graph=mock_graph,
|
||||
user_id="test-user-id",
|
||||
nodes_input_masks=None,
|
||||
)
|
||||
|
||||
# Node should be in errors, not in nodes_to_skip
|
||||
assert mock_node.id in errors
|
||||
assert "credentials" in errors[mock_node.id]
|
||||
assert "required" in errors[mock_node.id]["credentials"].lower()
|
||||
assert mock_node.id not in nodes_to_skip
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_validate_graph_with_credentials_returns_nodes_to_skip(
|
||||
mocker: MockerFixture,
|
||||
):
|
||||
"""
|
||||
Test that validate_graph_with_credentials returns nodes_to_skip set
|
||||
from _validate_node_input_credentials.
|
||||
"""
|
||||
from backend.executor.utils import validate_graph_with_credentials
|
||||
|
||||
# Mock _validate_node_input_credentials to return specific values
|
||||
mock_validate = mocker.patch(
|
||||
"backend.executor.utils._validate_node_input_credentials"
|
||||
)
|
||||
expected_errors = {"node1": {"field": "error"}}
|
||||
expected_nodes_to_skip = {"node2", "node3"}
|
||||
mock_validate.return_value = (expected_errors, expected_nodes_to_skip)
|
||||
|
||||
# Mock GraphModel with validate_graph_get_errors method
|
||||
mock_graph = mocker.MagicMock()
|
||||
mock_graph.validate_graph_get_errors.return_value = {}
|
||||
|
||||
# Call the function
|
||||
errors, nodes_to_skip = await validate_graph_with_credentials(
|
||||
graph=mock_graph,
|
||||
user_id="test-user-id",
|
||||
nodes_input_masks=None,
|
||||
)
|
||||
|
||||
# Verify nodes_to_skip is passed through
|
||||
assert nodes_to_skip == expected_nodes_to_skip
|
||||
assert "node1" in errors
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_add_graph_execution_with_nodes_to_skip(mocker: MockerFixture):
|
||||
"""
|
||||
Test that add_graph_execution properly passes nodes_to_skip
|
||||
to the graph execution entry.
|
||||
"""
|
||||
from backend.data.execution import GraphExecutionWithNodes
|
||||
from backend.executor.utils import add_graph_execution
|
||||
|
||||
# Mock data
|
||||
graph_id = "test-graph-id"
|
||||
user_id = "test-user-id"
|
||||
inputs = {"test_input": "test_value"}
|
||||
graph_version = 1
|
||||
|
||||
# Mock the graph object
|
||||
mock_graph = mocker.MagicMock()
|
||||
mock_graph.version = graph_version
|
||||
|
||||
# Starting nodes and masks
|
||||
starting_nodes_input = [("node1", {"input1": "value1"})]
|
||||
compiled_nodes_input_masks = {}
|
||||
nodes_to_skip = {"skipped-node-1", "skipped-node-2"}
|
||||
|
||||
# Mock the graph execution object
|
||||
mock_graph_exec = mocker.MagicMock(spec=GraphExecutionWithNodes)
|
||||
mock_graph_exec.id = "execution-id-123"
|
||||
mock_graph_exec.node_executions = []
|
||||
|
||||
# Track what's passed to to_graph_execution_entry
|
||||
captured_kwargs = {}
|
||||
|
||||
def capture_to_entry(**kwargs):
|
||||
captured_kwargs.update(kwargs)
|
||||
return mocker.MagicMock()
|
||||
|
||||
mock_graph_exec.to_graph_execution_entry.side_effect = capture_to_entry
|
||||
|
||||
# Setup mocks
|
||||
mock_validate = mocker.patch(
|
||||
"backend.executor.utils.validate_and_construct_node_execution_input"
|
||||
)
|
||||
mock_edb = mocker.patch("backend.executor.utils.execution_db")
|
||||
mock_prisma = mocker.patch("backend.executor.utils.prisma")
|
||||
mock_udb = mocker.patch("backend.executor.utils.user_db")
|
||||
mock_gdb = mocker.patch("backend.executor.utils.graph_db")
|
||||
mock_get_queue = mocker.patch("backend.executor.utils.get_async_execution_queue")
|
||||
mock_get_event_bus = mocker.patch(
|
||||
"backend.executor.utils.get_async_execution_event_bus"
|
||||
)
|
||||
|
||||
# Setup returns - include nodes_to_skip in the tuple
|
||||
mock_validate.return_value = (
|
||||
mock_graph,
|
||||
starting_nodes_input,
|
||||
compiled_nodes_input_masks,
|
||||
nodes_to_skip, # This should be passed through
|
||||
)
|
||||
mock_prisma.is_connected.return_value = True
|
||||
mock_edb.create_graph_execution = mocker.AsyncMock(return_value=mock_graph_exec)
|
||||
mock_edb.update_graph_execution_stats = mocker.AsyncMock(
|
||||
return_value=mock_graph_exec
|
||||
)
|
||||
mock_edb.update_node_execution_status_batch = mocker.AsyncMock()
|
||||
|
||||
mock_user = mocker.MagicMock()
|
||||
mock_user.timezone = "UTC"
|
||||
mock_settings = mocker.MagicMock()
|
||||
mock_settings.human_in_the_loop_safe_mode = True
|
||||
|
||||
mock_udb.get_user_by_id = mocker.AsyncMock(return_value=mock_user)
|
||||
mock_gdb.get_graph_settings = mocker.AsyncMock(return_value=mock_settings)
|
||||
mock_get_queue.return_value = mocker.AsyncMock()
|
||||
mock_get_event_bus.return_value = mocker.MagicMock(publish=mocker.AsyncMock())
|
||||
|
||||
# Call the function
|
||||
await add_graph_execution(
|
||||
graph_id=graph_id,
|
||||
user_id=user_id,
|
||||
inputs=inputs,
|
||||
graph_version=graph_version,
|
||||
)
|
||||
|
||||
# Verify nodes_to_skip was passed to to_graph_execution_entry
|
||||
assert "nodes_to_skip" in captured_kwargs
|
||||
assert captured_kwargs["nodes_to_skip"] == nodes_to_skip
|
||||
|
||||
@@ -8,7 +8,6 @@ from .discord import DiscordOAuthHandler
|
||||
from .github import GitHubOAuthHandler
|
||||
from .google import GoogleOAuthHandler
|
||||
from .notion import NotionOAuthHandler
|
||||
from .reddit import RedditOAuthHandler
|
||||
from .twitter import TwitterOAuthHandler
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@@ -21,7 +20,6 @@ _ORIGINAL_HANDLERS = [
|
||||
GitHubOAuthHandler,
|
||||
GoogleOAuthHandler,
|
||||
NotionOAuthHandler,
|
||||
RedditOAuthHandler,
|
||||
TwitterOAuthHandler,
|
||||
TodoistOAuthHandler,
|
||||
]
|
||||
|
||||
@@ -1,208 +0,0 @@
|
||||
import time
|
||||
import urllib.parse
|
||||
from typing import ClassVar, Optional
|
||||
|
||||
from pydantic import SecretStr
|
||||
|
||||
from backend.data.model import OAuth2Credentials
|
||||
from backend.integrations.oauth.base import BaseOAuthHandler
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.request import Requests
|
||||
from backend.util.settings import Settings
|
||||
|
||||
settings = Settings()
|
||||
|
||||
|
||||
class RedditOAuthHandler(BaseOAuthHandler):
|
||||
"""
|
||||
Reddit OAuth 2.0 handler.
|
||||
|
||||
Based on the documentation at:
|
||||
- https://github.com/reddit-archive/reddit/wiki/OAuth2
|
||||
|
||||
Notes:
|
||||
- Reddit requires `duration=permanent` to get refresh tokens
|
||||
- Access tokens expire after 1 hour (3600 seconds)
|
||||
- Reddit requires HTTP Basic Auth for token requests
|
||||
- Reddit requires a unique User-Agent header
|
||||
"""
|
||||
|
||||
PROVIDER_NAME = ProviderName.REDDIT
|
||||
DEFAULT_SCOPES: ClassVar[list[str]] = [
|
||||
"identity", # Get username, verify auth
|
||||
"read", # Access posts and comments
|
||||
"submit", # Submit new posts and comments
|
||||
"edit", # Edit own posts and comments
|
||||
"history", # Access user's post history
|
||||
"privatemessages", # Access inbox and send private messages
|
||||
"flair", # Access and set flair on posts/subreddits
|
||||
]
|
||||
|
||||
AUTHORIZE_URL = "https://www.reddit.com/api/v1/authorize"
|
||||
TOKEN_URL = "https://www.reddit.com/api/v1/access_token"
|
||||
USERNAME_URL = "https://oauth.reddit.com/api/v1/me"
|
||||
REVOKE_URL = "https://www.reddit.com/api/v1/revoke_token"
|
||||
|
||||
def __init__(self, client_id: str, client_secret: str, redirect_uri: str):
|
||||
self.client_id = client_id
|
||||
self.client_secret = client_secret
|
||||
self.redirect_uri = redirect_uri
|
||||
|
||||
def get_login_url(
|
||||
self, scopes: list[str], state: str, code_challenge: Optional[str]
|
||||
) -> str:
|
||||
"""Generate Reddit OAuth 2.0 authorization URL"""
|
||||
scopes = self.handle_default_scopes(scopes)
|
||||
|
||||
params = {
|
||||
"response_type": "code",
|
||||
"client_id": self.client_id,
|
||||
"redirect_uri": self.redirect_uri,
|
||||
"scope": " ".join(scopes),
|
||||
"state": state,
|
||||
"duration": "permanent", # Required for refresh tokens
|
||||
}
|
||||
|
||||
return f"{self.AUTHORIZE_URL}?{urllib.parse.urlencode(params)}"
|
||||
|
||||
async def exchange_code_for_tokens(
|
||||
self, code: str, scopes: list[str], code_verifier: Optional[str]
|
||||
) -> OAuth2Credentials:
|
||||
"""Exchange authorization code for access tokens"""
|
||||
scopes = self.handle_default_scopes(scopes)
|
||||
|
||||
headers = {
|
||||
"Content-Type": "application/x-www-form-urlencoded",
|
||||
"User-Agent": settings.config.reddit_user_agent,
|
||||
}
|
||||
|
||||
data = {
|
||||
"grant_type": "authorization_code",
|
||||
"code": code,
|
||||
"redirect_uri": self.redirect_uri,
|
||||
}
|
||||
|
||||
# Reddit requires HTTP Basic Auth for token requests
|
||||
auth = (self.client_id, self.client_secret)
|
||||
|
||||
response = await Requests().post(
|
||||
self.TOKEN_URL, headers=headers, data=data, auth=auth
|
||||
)
|
||||
|
||||
if not response.ok:
|
||||
error_text = response.text()
|
||||
raise ValueError(
|
||||
f"Reddit token exchange failed: {response.status} - {error_text}"
|
||||
)
|
||||
|
||||
tokens = response.json()
|
||||
|
||||
if "error" in tokens:
|
||||
raise ValueError(f"Reddit OAuth error: {tokens.get('error')}")
|
||||
|
||||
username = await self._get_username(tokens["access_token"])
|
||||
|
||||
return OAuth2Credentials(
|
||||
provider=self.PROVIDER_NAME,
|
||||
title=None,
|
||||
username=username,
|
||||
access_token=tokens["access_token"],
|
||||
refresh_token=tokens.get("refresh_token"),
|
||||
access_token_expires_at=int(time.time()) + tokens.get("expires_in", 3600),
|
||||
refresh_token_expires_at=None, # Reddit refresh tokens don't expire
|
||||
scopes=scopes,
|
||||
)
|
||||
|
||||
async def _get_username(self, access_token: str) -> str:
|
||||
"""Get the username from the access token"""
|
||||
headers = {
|
||||
"Authorization": f"Bearer {access_token}",
|
||||
"User-Agent": settings.config.reddit_user_agent,
|
||||
}
|
||||
|
||||
response = await Requests().get(self.USERNAME_URL, headers=headers)
|
||||
|
||||
if not response.ok:
|
||||
raise ValueError(f"Failed to get Reddit username: {response.status}")
|
||||
|
||||
data = response.json()
|
||||
return data.get("name", "unknown")
|
||||
|
||||
async def _refresh_tokens(
|
||||
self, credentials: OAuth2Credentials
|
||||
) -> OAuth2Credentials:
|
||||
"""Refresh access tokens using refresh token"""
|
||||
if not credentials.refresh_token:
|
||||
raise ValueError("No refresh token available")
|
||||
|
||||
headers = {
|
||||
"Content-Type": "application/x-www-form-urlencoded",
|
||||
"User-Agent": settings.config.reddit_user_agent,
|
||||
}
|
||||
|
||||
data = {
|
||||
"grant_type": "refresh_token",
|
||||
"refresh_token": credentials.refresh_token.get_secret_value(),
|
||||
}
|
||||
|
||||
auth = (self.client_id, self.client_secret)
|
||||
|
||||
response = await Requests().post(
|
||||
self.TOKEN_URL, headers=headers, data=data, auth=auth
|
||||
)
|
||||
|
||||
if not response.ok:
|
||||
error_text = response.text()
|
||||
raise ValueError(
|
||||
f"Reddit token refresh failed: {response.status} - {error_text}"
|
||||
)
|
||||
|
||||
tokens = response.json()
|
||||
|
||||
if "error" in tokens:
|
||||
raise ValueError(f"Reddit OAuth error: {tokens.get('error')}")
|
||||
|
||||
username = await self._get_username(tokens["access_token"])
|
||||
|
||||
# Reddit may or may not return a new refresh token
|
||||
new_refresh_token = tokens.get("refresh_token")
|
||||
if new_refresh_token:
|
||||
refresh_token: SecretStr | None = SecretStr(new_refresh_token)
|
||||
elif credentials.refresh_token:
|
||||
# Keep the existing refresh token
|
||||
refresh_token = credentials.refresh_token
|
||||
else:
|
||||
refresh_token = None
|
||||
|
||||
return OAuth2Credentials(
|
||||
id=credentials.id,
|
||||
provider=self.PROVIDER_NAME,
|
||||
title=credentials.title,
|
||||
username=username,
|
||||
access_token=tokens["access_token"],
|
||||
refresh_token=refresh_token,
|
||||
access_token_expires_at=int(time.time()) + tokens.get("expires_in", 3600),
|
||||
refresh_token_expires_at=None,
|
||||
scopes=credentials.scopes,
|
||||
)
|
||||
|
||||
async def revoke_tokens(self, credentials: OAuth2Credentials) -> bool:
|
||||
"""Revoke the access token"""
|
||||
headers = {
|
||||
"Content-Type": "application/x-www-form-urlencoded",
|
||||
"User-Agent": settings.config.reddit_user_agent,
|
||||
}
|
||||
|
||||
data = {
|
||||
"token": credentials.access_token.get_secret_value(),
|
||||
"token_type_hint": "access_token",
|
||||
}
|
||||
|
||||
auth = (self.client_id, self.client_secret)
|
||||
|
||||
response = await Requests().post(
|
||||
self.REVOKE_URL, headers=headers, data=data, auth=auth
|
||||
)
|
||||
|
||||
# Reddit returns 204 No Content on successful revocation
|
||||
return response.ok
|
||||
849
autogpt_platform/backend/backend/server/v2/llm/db.py
Normal file
849
autogpt_platform/backend/backend/server/v2/llm/db.py
Normal file
@@ -0,0 +1,849 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Any, Iterable, Sequence, cast
|
||||
|
||||
import prisma
|
||||
import prisma.models
|
||||
|
||||
from backend.data.db import transaction
|
||||
from backend.server.v2.llm import model as llm_model
|
||||
|
||||
|
||||
def _json_dict(value: Any | None) -> dict[str, Any]:
|
||||
if not value:
|
||||
return {}
|
||||
if isinstance(value, dict):
|
||||
return value
|
||||
return {}
|
||||
|
||||
|
||||
def _map_cost(record: prisma.models.LlmModelCost) -> llm_model.LlmModelCost:
|
||||
return llm_model.LlmModelCost(
|
||||
id=record.id,
|
||||
unit=record.unit,
|
||||
credit_cost=record.creditCost,
|
||||
credential_provider=record.credentialProvider,
|
||||
credential_id=record.credentialId,
|
||||
credential_type=record.credentialType,
|
||||
currency=record.currency,
|
||||
metadata=_json_dict(record.metadata),
|
||||
)
|
||||
|
||||
|
||||
def _map_creator(
|
||||
record: prisma.models.LlmModelCreator,
|
||||
) -> llm_model.LlmModelCreator:
|
||||
return llm_model.LlmModelCreator(
|
||||
id=record.id,
|
||||
name=record.name,
|
||||
display_name=record.displayName,
|
||||
description=record.description,
|
||||
website_url=record.websiteUrl,
|
||||
logo_url=record.logoUrl,
|
||||
metadata=_json_dict(record.metadata),
|
||||
)
|
||||
|
||||
|
||||
def _map_model(record: prisma.models.LlmModel) -> llm_model.LlmModel:
|
||||
costs = []
|
||||
if record.Costs:
|
||||
costs = [_map_cost(cost) for cost in record.Costs]
|
||||
|
||||
creator = None
|
||||
if hasattr(record, "Creator") and record.Creator:
|
||||
creator = _map_creator(record.Creator)
|
||||
|
||||
return llm_model.LlmModel(
|
||||
id=record.id,
|
||||
slug=record.slug,
|
||||
display_name=record.displayName,
|
||||
description=record.description,
|
||||
provider_id=record.providerId,
|
||||
creator_id=record.creatorId,
|
||||
creator=creator,
|
||||
context_window=record.contextWindow,
|
||||
max_output_tokens=record.maxOutputTokens,
|
||||
is_enabled=record.isEnabled,
|
||||
is_recommended=record.isRecommended,
|
||||
capabilities=_json_dict(record.capabilities),
|
||||
metadata=_json_dict(record.metadata),
|
||||
costs=costs,
|
||||
)
|
||||
|
||||
|
||||
def _map_provider(record: prisma.models.LlmProvider) -> llm_model.LlmProvider:
|
||||
models: list[llm_model.LlmModel] = []
|
||||
if record.Models:
|
||||
models = [_map_model(model) for model in record.Models]
|
||||
|
||||
return llm_model.LlmProvider(
|
||||
id=record.id,
|
||||
name=record.name,
|
||||
display_name=record.displayName,
|
||||
description=record.description,
|
||||
default_credential_provider=record.defaultCredentialProvider,
|
||||
default_credential_id=record.defaultCredentialId,
|
||||
default_credential_type=record.defaultCredentialType,
|
||||
supports_tools=record.supportsTools,
|
||||
supports_json_output=record.supportsJsonOutput,
|
||||
supports_reasoning=record.supportsReasoning,
|
||||
supports_parallel_tool=record.supportsParallelTool,
|
||||
metadata=_json_dict(record.metadata),
|
||||
models=models,
|
||||
)
|
||||
|
||||
|
||||
async def list_providers(
|
||||
include_models: bool = True, enabled_only: bool = False
|
||||
) -> list[llm_model.LlmProvider]:
|
||||
"""
|
||||
List all LLM providers.
|
||||
|
||||
Args:
|
||||
include_models: Whether to include models for each provider
|
||||
enabled_only: If True, only include enabled models (for public routes)
|
||||
"""
|
||||
include: Any = None
|
||||
if include_models:
|
||||
model_where = {"isEnabled": True} if enabled_only else None
|
||||
include = {
|
||||
"Models": {
|
||||
"include": {"Costs": True, "Creator": True},
|
||||
"where": model_where,
|
||||
}
|
||||
}
|
||||
records = await prisma.models.LlmProvider.prisma().find_many(include=include)
|
||||
return [_map_provider(record) for record in records]
|
||||
|
||||
|
||||
async def upsert_provider(
|
||||
request: llm_model.UpsertLlmProviderRequest,
|
||||
provider_id: str | None = None,
|
||||
) -> llm_model.LlmProvider:
|
||||
data: Any = {
|
||||
"name": request.name,
|
||||
"displayName": request.display_name,
|
||||
"description": request.description,
|
||||
"defaultCredentialProvider": request.default_credential_provider,
|
||||
"defaultCredentialId": request.default_credential_id,
|
||||
"defaultCredentialType": request.default_credential_type,
|
||||
"supportsTools": request.supports_tools,
|
||||
"supportsJsonOutput": request.supports_json_output,
|
||||
"supportsReasoning": request.supports_reasoning,
|
||||
"supportsParallelTool": request.supports_parallel_tool,
|
||||
"metadata": request.metadata,
|
||||
}
|
||||
include: Any = {"Models": {"include": {"Costs": True, "Creator": True}}}
|
||||
if provider_id:
|
||||
record = await prisma.models.LlmProvider.prisma().update(
|
||||
where={"id": provider_id},
|
||||
data=data,
|
||||
include=include,
|
||||
)
|
||||
else:
|
||||
record = await prisma.models.LlmProvider.prisma().create(
|
||||
data=data,
|
||||
include=include,
|
||||
)
|
||||
if record is None:
|
||||
raise ValueError("Failed to create/update provider")
|
||||
return _map_provider(record)
|
||||
|
||||
|
||||
async def list_models(
|
||||
provider_id: str | None = None, enabled_only: bool = False
|
||||
) -> list[llm_model.LlmModel]:
|
||||
"""
|
||||
List LLM models.
|
||||
|
||||
Args:
|
||||
provider_id: Optional filter by provider ID
|
||||
enabled_only: If True, only return enabled models (for public routes)
|
||||
"""
|
||||
where: Any = {}
|
||||
if provider_id:
|
||||
where["providerId"] = provider_id
|
||||
if enabled_only:
|
||||
where["isEnabled"] = True
|
||||
|
||||
records = await prisma.models.LlmModel.prisma().find_many(
|
||||
where=where if where else None,
|
||||
include={"Costs": True, "Creator": True},
|
||||
)
|
||||
return [_map_model(record) for record in records]
|
||||
|
||||
|
||||
def _cost_create_payload(
|
||||
costs: Sequence[llm_model.LlmModelCostInput],
|
||||
) -> dict[str, Iterable[dict[str, Any]]]:
|
||||
|
||||
create_items = []
|
||||
for cost in costs:
|
||||
item: dict[str, Any] = {
|
||||
"unit": cost.unit,
|
||||
"creditCost": cost.credit_cost,
|
||||
"credentialProvider": cost.credential_provider,
|
||||
}
|
||||
# Only include optional fields if they have values
|
||||
if cost.credential_id:
|
||||
item["credentialId"] = cost.credential_id
|
||||
if cost.credential_type:
|
||||
item["credentialType"] = cost.credential_type
|
||||
if cost.currency:
|
||||
item["currency"] = cost.currency
|
||||
# Handle metadata - use Prisma Json type
|
||||
if cost.metadata is not None and cost.metadata != {}:
|
||||
item["metadata"] = prisma.Json(cost.metadata)
|
||||
create_items.append(item)
|
||||
return {"create": create_items}
|
||||
|
||||
|
||||
async def create_model(
|
||||
request: llm_model.CreateLlmModelRequest,
|
||||
) -> llm_model.LlmModel:
|
||||
data: Any = {
|
||||
"slug": request.slug,
|
||||
"displayName": request.display_name,
|
||||
"description": request.description,
|
||||
"providerId": request.provider_id,
|
||||
"contextWindow": request.context_window,
|
||||
"maxOutputTokens": request.max_output_tokens,
|
||||
"isEnabled": request.is_enabled,
|
||||
"capabilities": request.capabilities,
|
||||
"metadata": request.metadata,
|
||||
"Costs": _cost_create_payload(request.costs),
|
||||
}
|
||||
if request.creator_id:
|
||||
data["creatorId"] = request.creator_id
|
||||
|
||||
record = await prisma.models.LlmModel.prisma().create(
|
||||
data=data,
|
||||
include={"Costs": True, "Creator": True},
|
||||
)
|
||||
return _map_model(record)
|
||||
|
||||
|
||||
async def update_model(
|
||||
model_id: str,
|
||||
request: llm_model.UpdateLlmModelRequest,
|
||||
) -> llm_model.LlmModel:
|
||||
# Build scalar field updates (non-relation fields)
|
||||
scalar_data: Any = {}
|
||||
if request.display_name is not None:
|
||||
scalar_data["displayName"] = request.display_name
|
||||
if request.description is not None:
|
||||
scalar_data["description"] = request.description
|
||||
if request.context_window is not None:
|
||||
scalar_data["contextWindow"] = request.context_window
|
||||
if request.max_output_tokens is not None:
|
||||
scalar_data["maxOutputTokens"] = request.max_output_tokens
|
||||
if request.is_enabled is not None:
|
||||
scalar_data["isEnabled"] = request.is_enabled
|
||||
if request.capabilities is not None:
|
||||
scalar_data["capabilities"] = request.capabilities
|
||||
if request.metadata is not None:
|
||||
scalar_data["metadata"] = request.metadata
|
||||
# Foreign keys can be updated directly as scalar fields
|
||||
if request.provider_id is not None:
|
||||
scalar_data["providerId"] = request.provider_id
|
||||
if request.creator_id is not None:
|
||||
# Empty string means remove the creator
|
||||
scalar_data["creatorId"] = request.creator_id if request.creator_id else None
|
||||
|
||||
# If we have costs to update, we need to handle them separately
|
||||
# because nested writes have different constraints
|
||||
if request.costs is not None:
|
||||
# Wrap cost replacement in a transaction for atomicity
|
||||
async with transaction() as tx:
|
||||
# First update scalar fields
|
||||
if scalar_data:
|
||||
await tx.llmmodel.update(
|
||||
where={"id": model_id},
|
||||
data=scalar_data,
|
||||
)
|
||||
# Then handle costs: delete existing and create new
|
||||
await tx.llmmodelcost.delete_many(where={"llmModelId": model_id})
|
||||
if request.costs:
|
||||
cost_payload = _cost_create_payload(request.costs)
|
||||
for cost_item in cost_payload["create"]:
|
||||
cost_item["llmModelId"] = model_id
|
||||
await tx.llmmodelcost.create(data=cast(Any, cost_item))
|
||||
# Fetch the updated record (outside transaction)
|
||||
record = await prisma.models.LlmModel.prisma().find_unique(
|
||||
where={"id": model_id},
|
||||
include={"Costs": True, "Creator": True},
|
||||
)
|
||||
else:
|
||||
# No costs update - simple update
|
||||
record = await prisma.models.LlmModel.prisma().update(
|
||||
where={"id": model_id},
|
||||
data=scalar_data,
|
||||
include={"Costs": True, "Creator": True},
|
||||
)
|
||||
|
||||
if not record:
|
||||
raise ValueError(f"Model with id '{model_id}' not found")
|
||||
return _map_model(record)
|
||||
|
||||
|
||||
async def toggle_model(
|
||||
model_id: str,
|
||||
is_enabled: bool,
|
||||
migrate_to_slug: str | None = None,
|
||||
migration_reason: str | None = None,
|
||||
custom_credit_cost: int | None = None,
|
||||
) -> llm_model.ToggleLlmModelResponse:
|
||||
"""
|
||||
Toggle a model's enabled status, optionally migrating workflows when disabling.
|
||||
|
||||
Args:
|
||||
model_id: UUID of the model to toggle
|
||||
is_enabled: New enabled status
|
||||
migrate_to_slug: If disabling and this is provided, migrate all workflows
|
||||
using this model to the specified replacement model
|
||||
migration_reason: Optional reason for the migration (e.g., "Provider outage")
|
||||
custom_credit_cost: Optional custom pricing override for migrated workflows.
|
||||
When set, the billing system should use this cost instead
|
||||
of the target model's cost for affected nodes.
|
||||
|
||||
Returns:
|
||||
ToggleLlmModelResponse with the updated model and optional migration stats
|
||||
"""
|
||||
import json
|
||||
|
||||
# Get the model being toggled
|
||||
model = await prisma.models.LlmModel.prisma().find_unique(
|
||||
where={"id": model_id}, include={"Costs": True}
|
||||
)
|
||||
if not model:
|
||||
raise ValueError(f"Model with id '{model_id}' not found")
|
||||
|
||||
nodes_migrated = 0
|
||||
migration_id: str | None = None
|
||||
|
||||
# If disabling with migration, perform migration first
|
||||
if not is_enabled and migrate_to_slug:
|
||||
# Validate replacement model exists and is enabled
|
||||
replacement = await prisma.models.LlmModel.prisma().find_unique(
|
||||
where={"slug": migrate_to_slug}
|
||||
)
|
||||
if not replacement:
|
||||
raise ValueError(f"Replacement model '{migrate_to_slug}' not found")
|
||||
if not replacement.isEnabled:
|
||||
raise ValueError(
|
||||
f"Replacement model '{migrate_to_slug}' is disabled. "
|
||||
f"Please enable it before using it as a replacement."
|
||||
)
|
||||
|
||||
# Perform all operations atomically within a single transaction
|
||||
# This ensures no nodes are missed between query and update
|
||||
async with transaction() as tx:
|
||||
# Get the IDs of nodes that will be migrated (inside transaction for consistency)
|
||||
node_ids_result = await tx.query_raw(
|
||||
"""
|
||||
SELECT id
|
||||
FROM "AgentNode"
|
||||
WHERE "constantInput"::jsonb->>'model' = $1
|
||||
FOR UPDATE
|
||||
""",
|
||||
model.slug,
|
||||
)
|
||||
migrated_node_ids = (
|
||||
[row["id"] for row in node_ids_result] if node_ids_result else []
|
||||
)
|
||||
nodes_migrated = len(migrated_node_ids)
|
||||
|
||||
if nodes_migrated > 0:
|
||||
# Update by IDs to ensure we only update the exact nodes we queried
|
||||
node_ids_pg_array = "{" + ",".join(migrated_node_ids) + "}"
|
||||
await tx.execute_raw(
|
||||
"""
|
||||
UPDATE "AgentNode"
|
||||
SET "constantInput" = JSONB_SET(
|
||||
"constantInput"::jsonb,
|
||||
'{model}',
|
||||
to_jsonb($1::text)
|
||||
)
|
||||
WHERE id::text = ANY($2::text[])
|
||||
""",
|
||||
migrate_to_slug,
|
||||
node_ids_pg_array,
|
||||
)
|
||||
|
||||
record = await tx.llmmodel.update(
|
||||
where={"id": model_id},
|
||||
data={"isEnabled": is_enabled},
|
||||
include={"Costs": True},
|
||||
)
|
||||
|
||||
# Create migration record for revert capability
|
||||
if nodes_migrated > 0:
|
||||
migration_data: Any = {
|
||||
"sourceModelSlug": model.slug,
|
||||
"targetModelSlug": migrate_to_slug,
|
||||
"reason": migration_reason,
|
||||
"migratedNodeIds": json.dumps(migrated_node_ids),
|
||||
"nodeCount": nodes_migrated,
|
||||
"customCreditCost": custom_credit_cost,
|
||||
}
|
||||
migration_record = await tx.llmmodelmigration.create(
|
||||
data=migration_data
|
||||
)
|
||||
migration_id = migration_record.id
|
||||
else:
|
||||
# Simple toggle without migration
|
||||
record = await prisma.models.LlmModel.prisma().update(
|
||||
where={"id": model_id},
|
||||
data={"isEnabled": is_enabled},
|
||||
include={"Costs": True},
|
||||
)
|
||||
|
||||
if record is None:
|
||||
raise ValueError(f"Model with id '{model_id}' not found")
|
||||
return llm_model.ToggleLlmModelResponse(
|
||||
model=_map_model(record),
|
||||
nodes_migrated=nodes_migrated,
|
||||
migrated_to_slug=migrate_to_slug if nodes_migrated > 0 else None,
|
||||
migration_id=migration_id,
|
||||
)
|
||||
|
||||
|
||||
async def get_model_usage(model_id: str) -> llm_model.LlmModelUsageResponse:
|
||||
"""Get usage count for a model."""
|
||||
import prisma as prisma_module
|
||||
|
||||
model = await prisma.models.LlmModel.prisma().find_unique(where={"id": model_id})
|
||||
if not model:
|
||||
raise ValueError(f"Model with id '{model_id}' not found")
|
||||
|
||||
count_result = await prisma_module.get_client().query_raw(
|
||||
"""
|
||||
SELECT COUNT(*) as count
|
||||
FROM "AgentNode"
|
||||
WHERE "constantInput"::jsonb->>'model' = $1
|
||||
""",
|
||||
model.slug,
|
||||
)
|
||||
node_count = int(count_result[0]["count"]) if count_result else 0
|
||||
|
||||
return llm_model.LlmModelUsageResponse(model_slug=model.slug, node_count=node_count)
|
||||
|
||||
|
||||
async def delete_model(
|
||||
model_id: str, replacement_model_slug: str
|
||||
) -> llm_model.DeleteLlmModelResponse:
|
||||
"""
|
||||
Delete a model and migrate all AgentNodes using it to a replacement model.
|
||||
|
||||
This performs an atomic operation within a database transaction:
|
||||
1. Validates the model exists
|
||||
2. Validates the replacement model exists and is enabled
|
||||
3. Counts affected nodes
|
||||
4. Migrates all AgentNode.constantInput->model to replacement (in transaction)
|
||||
5. Deletes the LlmModel record (CASCADE deletes costs) (in transaction)
|
||||
|
||||
Args:
|
||||
model_id: UUID of the model to delete
|
||||
replacement_model_slug: Slug of the model to migrate to
|
||||
|
||||
Returns:
|
||||
DeleteLlmModelResponse with migration stats
|
||||
|
||||
Raises:
|
||||
ValueError: If model not found, replacement not found, or replacement is disabled
|
||||
"""
|
||||
# 1. Get the model being deleted (validation - outside transaction)
|
||||
model = await prisma.models.LlmModel.prisma().find_unique(
|
||||
where={"id": model_id}, include={"Costs": True}
|
||||
)
|
||||
if not model:
|
||||
raise ValueError(f"Model with id '{model_id}' not found")
|
||||
|
||||
deleted_slug = model.slug
|
||||
deleted_display_name = model.displayName
|
||||
|
||||
# 2. Validate replacement model exists and is enabled (validation - outside transaction)
|
||||
replacement = await prisma.models.LlmModel.prisma().find_unique(
|
||||
where={"slug": replacement_model_slug}
|
||||
)
|
||||
if not replacement:
|
||||
raise ValueError(f"Replacement model '{replacement_model_slug}' not found")
|
||||
if not replacement.isEnabled:
|
||||
raise ValueError(
|
||||
f"Replacement model '{replacement_model_slug}' is disabled. "
|
||||
f"Please enable it before using it as a replacement."
|
||||
)
|
||||
|
||||
# 3 & 4. Perform count, migration and deletion atomically within a transaction
|
||||
nodes_affected = 0
|
||||
async with transaction() as tx:
|
||||
# Count affected nodes (inside transaction for consistency)
|
||||
count_result = await tx.query_raw(
|
||||
"""
|
||||
SELECT COUNT(*) as count
|
||||
FROM "AgentNode"
|
||||
WHERE "constantInput"::jsonb->>'model' = $1
|
||||
""",
|
||||
deleted_slug,
|
||||
)
|
||||
nodes_affected = int(count_result[0]["count"]) if count_result else 0
|
||||
|
||||
# Migrate all AgentNode.constantInput->model to replacement
|
||||
if nodes_affected > 0:
|
||||
await tx.execute_raw(
|
||||
"""
|
||||
UPDATE "AgentNode"
|
||||
SET "constantInput" = JSONB_SET(
|
||||
"constantInput"::jsonb,
|
||||
'{model}',
|
||||
to_jsonb($1::text)
|
||||
)
|
||||
WHERE "constantInput"::jsonb->>'model' = $2
|
||||
""",
|
||||
replacement_model_slug,
|
||||
deleted_slug,
|
||||
)
|
||||
|
||||
# Delete the model (CASCADE will delete costs automatically)
|
||||
await tx.llmmodel.delete(where={"id": model_id})
|
||||
|
||||
return llm_model.DeleteLlmModelResponse(
|
||||
deleted_model_slug=deleted_slug,
|
||||
deleted_model_display_name=deleted_display_name,
|
||||
replacement_model_slug=replacement_model_slug,
|
||||
nodes_migrated=nodes_affected,
|
||||
message=(
|
||||
f"Successfully deleted model '{deleted_display_name}' ({deleted_slug}) "
|
||||
f"and migrated {nodes_affected} workflow node(s) to '{replacement_model_slug}'."
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def _map_migration(
|
||||
record: prisma.models.LlmModelMigration,
|
||||
) -> llm_model.LlmModelMigration:
|
||||
return llm_model.LlmModelMigration(
|
||||
id=record.id,
|
||||
source_model_slug=record.sourceModelSlug,
|
||||
target_model_slug=record.targetModelSlug,
|
||||
reason=record.reason,
|
||||
node_count=record.nodeCount,
|
||||
custom_credit_cost=record.customCreditCost,
|
||||
is_reverted=record.isReverted,
|
||||
created_at=record.createdAt.isoformat(),
|
||||
reverted_at=record.revertedAt.isoformat() if record.revertedAt else None,
|
||||
)
|
||||
|
||||
|
||||
async def list_migrations(
|
||||
include_reverted: bool = False,
|
||||
) -> list[llm_model.LlmModelMigration]:
|
||||
"""
|
||||
List model migrations, optionally including reverted ones.
|
||||
|
||||
Args:
|
||||
include_reverted: If True, include reverted migrations. Default is False.
|
||||
|
||||
Returns:
|
||||
List of LlmModelMigration records
|
||||
"""
|
||||
where: Any = None if include_reverted else {"isReverted": False}
|
||||
records = await prisma.models.LlmModelMigration.prisma().find_many(
|
||||
where=where,
|
||||
order={"createdAt": "desc"},
|
||||
)
|
||||
return [_map_migration(record) for record in records]
|
||||
|
||||
|
||||
async def get_migration(migration_id: str) -> llm_model.LlmModelMigration | None:
|
||||
"""Get a specific migration by ID."""
|
||||
record = await prisma.models.LlmModelMigration.prisma().find_unique(
|
||||
where={"id": migration_id}
|
||||
)
|
||||
return _map_migration(record) if record else None
|
||||
|
||||
|
||||
async def revert_migration(
|
||||
migration_id: str,
|
||||
re_enable_source_model: bool = True,
|
||||
) -> llm_model.RevertMigrationResponse:
|
||||
"""
|
||||
Revert a model migration, restoring affected nodes to their original model.
|
||||
|
||||
This only reverts the specific nodes that were migrated, not all nodes
|
||||
currently using the target model.
|
||||
|
||||
Args:
|
||||
migration_id: UUID of the migration to revert
|
||||
re_enable_source_model: Whether to re-enable the source model if it's disabled
|
||||
|
||||
Returns:
|
||||
RevertMigrationResponse with revert stats
|
||||
|
||||
Raises:
|
||||
ValueError: If migration not found, already reverted, or source model not available
|
||||
"""
|
||||
import json
|
||||
from datetime import datetime, timezone
|
||||
|
||||
# Get the migration record
|
||||
migration = await prisma.models.LlmModelMigration.prisma().find_unique(
|
||||
where={"id": migration_id}
|
||||
)
|
||||
if not migration:
|
||||
raise ValueError(f"Migration with id '{migration_id}' not found")
|
||||
|
||||
if migration.isReverted:
|
||||
raise ValueError(
|
||||
f"Migration '{migration_id}' has already been reverted "
|
||||
f"on {migration.revertedAt.isoformat() if migration.revertedAt else 'unknown date'}"
|
||||
)
|
||||
|
||||
# Check if source model exists
|
||||
source_model = await prisma.models.LlmModel.prisma().find_unique(
|
||||
where={"slug": migration.sourceModelSlug}
|
||||
)
|
||||
if not source_model:
|
||||
raise ValueError(
|
||||
f"Source model '{migration.sourceModelSlug}' no longer exists. "
|
||||
f"Cannot revert migration."
|
||||
)
|
||||
|
||||
# Get the migrated node IDs (Prisma auto-parses JSONB to list)
|
||||
migrated_node_ids: list[str] = (
|
||||
migration.migratedNodeIds
|
||||
if isinstance(migration.migratedNodeIds, list)
|
||||
else json.loads(migration.migratedNodeIds) # type: ignore
|
||||
)
|
||||
if not migrated_node_ids:
|
||||
raise ValueError("No nodes to revert in this migration")
|
||||
|
||||
# Track if we need to re-enable the source model
|
||||
source_model_was_disabled = not source_model.isEnabled
|
||||
should_re_enable = source_model_was_disabled and re_enable_source_model
|
||||
source_model_re_enabled = False
|
||||
|
||||
# Perform revert atomically
|
||||
async with transaction() as tx:
|
||||
# Re-enable the source model if requested and it was disabled
|
||||
if should_re_enable:
|
||||
await tx.llmmodel.update(
|
||||
where={"id": source_model.id},
|
||||
data={"isEnabled": True},
|
||||
)
|
||||
source_model_re_enabled = True
|
||||
|
||||
# Update only the specific nodes that were migrated
|
||||
# We need to check that they still have the target model (haven't been changed since)
|
||||
# Use a single batch update for efficiency
|
||||
# Format node IDs as PostgreSQL text array literal for comparison
|
||||
node_ids_pg_array = "{" + ",".join(migrated_node_ids) + "}"
|
||||
result = await tx.execute_raw(
|
||||
"""
|
||||
UPDATE "AgentNode"
|
||||
SET "constantInput" = JSONB_SET(
|
||||
"constantInput"::jsonb,
|
||||
'{model}',
|
||||
to_jsonb($1::text)
|
||||
)
|
||||
WHERE id::text = ANY($2::text[])
|
||||
AND "constantInput"::jsonb->>'model' = $3
|
||||
""",
|
||||
migration.sourceModelSlug,
|
||||
node_ids_pg_array,
|
||||
migration.targetModelSlug,
|
||||
)
|
||||
nodes_reverted = result if result else 0
|
||||
|
||||
# Mark migration as reverted
|
||||
await tx.llmmodelmigration.update(
|
||||
where={"id": migration_id},
|
||||
data={
|
||||
"isReverted": True,
|
||||
"revertedAt": datetime.now(timezone.utc),
|
||||
},
|
||||
)
|
||||
|
||||
# Calculate nodes that were already changed since migration
|
||||
nodes_already_changed = len(migrated_node_ids) - nodes_reverted
|
||||
|
||||
# Build appropriate message
|
||||
message_parts = [
|
||||
f"Successfully reverted migration: {nodes_reverted} node(s) restored "
|
||||
f"from '{migration.targetModelSlug}' to '{migration.sourceModelSlug}'."
|
||||
]
|
||||
if nodes_already_changed > 0:
|
||||
message_parts.append(
|
||||
f" {nodes_already_changed} node(s) were already changed and not reverted."
|
||||
)
|
||||
if source_model_re_enabled:
|
||||
message_parts.append(
|
||||
f" Model '{migration.sourceModelSlug}' has been re-enabled."
|
||||
)
|
||||
|
||||
return llm_model.RevertMigrationResponse(
|
||||
migration_id=migration_id,
|
||||
source_model_slug=migration.sourceModelSlug,
|
||||
target_model_slug=migration.targetModelSlug,
|
||||
nodes_reverted=nodes_reverted,
|
||||
nodes_already_changed=nodes_already_changed,
|
||||
source_model_re_enabled=source_model_re_enabled,
|
||||
message="".join(message_parts),
|
||||
)
|
||||
|
||||
|
||||
# ============================================================================
|
||||
# Creator CRUD operations
|
||||
# ============================================================================
|
||||
|
||||
|
||||
async def list_creators() -> list[llm_model.LlmModelCreator]:
|
||||
"""List all LLM model creators."""
|
||||
records = await prisma.models.LlmModelCreator.prisma().find_many(
|
||||
order={"displayName": "asc"}
|
||||
)
|
||||
return [_map_creator(record) for record in records]
|
||||
|
||||
|
||||
async def get_creator(creator_id: str) -> llm_model.LlmModelCreator | None:
|
||||
"""Get a specific creator by ID."""
|
||||
record = await prisma.models.LlmModelCreator.prisma().find_unique(
|
||||
where={"id": creator_id}
|
||||
)
|
||||
return _map_creator(record) if record else None
|
||||
|
||||
|
||||
async def upsert_creator(
|
||||
request: llm_model.UpsertLlmCreatorRequest,
|
||||
creator_id: str | None = None,
|
||||
) -> llm_model.LlmModelCreator:
|
||||
"""Create or update a model creator."""
|
||||
data: Any = {
|
||||
"name": request.name,
|
||||
"displayName": request.display_name,
|
||||
"description": request.description,
|
||||
"websiteUrl": request.website_url,
|
||||
"logoUrl": request.logo_url,
|
||||
"metadata": request.metadata,
|
||||
}
|
||||
if creator_id:
|
||||
record = await prisma.models.LlmModelCreator.prisma().update(
|
||||
where={"id": creator_id},
|
||||
data=data,
|
||||
)
|
||||
else:
|
||||
record = await prisma.models.LlmModelCreator.prisma().create(data=data)
|
||||
if record is None:
|
||||
raise ValueError("Failed to create/update creator")
|
||||
return _map_creator(record)
|
||||
|
||||
|
||||
async def delete_creator(creator_id: str) -> bool:
|
||||
"""
|
||||
Delete a model creator.
|
||||
|
||||
This will set creatorId to NULL on all associated models (due to onDelete: SetNull).
|
||||
|
||||
Args:
|
||||
creator_id: UUID of the creator to delete
|
||||
|
||||
Returns:
|
||||
True if deleted successfully
|
||||
|
||||
Raises:
|
||||
ValueError: If creator not found
|
||||
"""
|
||||
creator = await prisma.models.LlmModelCreator.prisma().find_unique(
|
||||
where={"id": creator_id}
|
||||
)
|
||||
if not creator:
|
||||
raise ValueError(f"Creator with id '{creator_id}' not found")
|
||||
|
||||
await prisma.models.LlmModelCreator.prisma().delete(where={"id": creator_id})
|
||||
return True
|
||||
|
||||
|
||||
async def get_recommended_model() -> llm_model.LlmModel | None:
|
||||
"""
|
||||
Get the currently recommended LLM model.
|
||||
|
||||
Returns:
|
||||
The recommended model, or None if no model is marked as recommended.
|
||||
"""
|
||||
record = await prisma.models.LlmModel.prisma().find_first(
|
||||
where={"isRecommended": True, "isEnabled": True},
|
||||
include={"Costs": True, "Creator": True},
|
||||
)
|
||||
return _map_model(record) if record else None
|
||||
|
||||
|
||||
async def set_recommended_model(
|
||||
model_id: str,
|
||||
) -> tuple[llm_model.LlmModel, str | None]:
|
||||
"""
|
||||
Set a model as the recommended model.
|
||||
|
||||
This will clear the isRecommended flag from any other model and set it
|
||||
on the specified model. The model must be enabled.
|
||||
|
||||
Args:
|
||||
model_id: UUID of the model to set as recommended
|
||||
|
||||
Returns:
|
||||
Tuple of (the updated model, previous recommended model slug or None)
|
||||
|
||||
Raises:
|
||||
ValueError: If model not found or not enabled
|
||||
"""
|
||||
# First, verify the model exists and is enabled
|
||||
target_model = await prisma.models.LlmModel.prisma().find_unique(
|
||||
where={"id": model_id}
|
||||
)
|
||||
if not target_model:
|
||||
raise ValueError(f"Model with id '{model_id}' not found")
|
||||
if not target_model.isEnabled:
|
||||
raise ValueError(
|
||||
f"Cannot set disabled model '{target_model.slug}' as recommended"
|
||||
)
|
||||
|
||||
# Get the current recommended model (if any)
|
||||
current_recommended = await prisma.models.LlmModel.prisma().find_first(
|
||||
where={"isRecommended": True}
|
||||
)
|
||||
previous_slug = current_recommended.slug if current_recommended else None
|
||||
|
||||
# Use a transaction to ensure atomicity
|
||||
async with transaction() as tx:
|
||||
# Clear isRecommended from all models
|
||||
await tx.llmmodel.update_many(
|
||||
where={"isRecommended": True},
|
||||
data={"isRecommended": False},
|
||||
)
|
||||
# Set the new recommended model
|
||||
await tx.llmmodel.update(
|
||||
where={"id": model_id},
|
||||
data={"isRecommended": True},
|
||||
)
|
||||
|
||||
# Fetch and return the updated model
|
||||
updated_record = await prisma.models.LlmModel.prisma().find_unique(
|
||||
where={"id": model_id},
|
||||
include={"Costs": True, "Creator": True},
|
||||
)
|
||||
if not updated_record:
|
||||
raise ValueError("Failed to fetch updated model")
|
||||
|
||||
return _map_model(updated_record), previous_slug
|
||||
|
||||
|
||||
async def get_recommended_model_slug() -> str | None:
|
||||
"""
|
||||
Get the slug of the currently recommended LLM model.
|
||||
|
||||
Returns:
|
||||
The slug of the recommended model, or None if no model is marked as recommended.
|
||||
"""
|
||||
record = await prisma.models.LlmModel.prisma().find_first(
|
||||
where={"isRecommended": True, "isEnabled": True},
|
||||
)
|
||||
return record.slug if record else None
|
||||
231
autogpt_platform/backend/backend/server/v2/llm/model.py
Normal file
231
autogpt_platform/backend/backend/server/v2/llm/model.py
Normal file
@@ -0,0 +1,231 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import re
|
||||
from typing import Any, Optional
|
||||
|
||||
import prisma.enums
|
||||
import pydantic
|
||||
|
||||
# Pattern for valid model slugs: alphanumeric start, then alphanumeric, dots, underscores, slashes, hyphens
|
||||
SLUG_PATTERN = re.compile(r"^[a-zA-Z0-9][a-zA-Z0-9._/-]*$")
|
||||
|
||||
|
||||
class LlmModelCost(pydantic.BaseModel):
|
||||
id: str
|
||||
unit: prisma.enums.LlmCostUnit = prisma.enums.LlmCostUnit.RUN
|
||||
credit_cost: int
|
||||
credential_provider: str
|
||||
credential_id: Optional[str] = None
|
||||
credential_type: Optional[str] = None
|
||||
currency: Optional[str] = None
|
||||
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
|
||||
|
||||
|
||||
class LlmModelCreator(pydantic.BaseModel):
|
||||
"""Represents the organization that created/trained the model (e.g., OpenAI, Meta)."""
|
||||
|
||||
id: str
|
||||
name: str
|
||||
display_name: str
|
||||
description: Optional[str] = None
|
||||
website_url: Optional[str] = None
|
||||
logo_url: Optional[str] = None
|
||||
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
|
||||
|
||||
|
||||
class LlmModel(pydantic.BaseModel):
|
||||
id: str
|
||||
slug: str
|
||||
display_name: str
|
||||
description: Optional[str] = None
|
||||
provider_id: str
|
||||
creator_id: Optional[str] = None
|
||||
creator: Optional[LlmModelCreator] = None
|
||||
context_window: int
|
||||
max_output_tokens: Optional[int] = None
|
||||
is_enabled: bool = True
|
||||
is_recommended: bool = False
|
||||
capabilities: dict[str, Any] = pydantic.Field(default_factory=dict)
|
||||
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
|
||||
costs: list[LlmModelCost] = pydantic.Field(default_factory=list)
|
||||
|
||||
|
||||
class LlmProvider(pydantic.BaseModel):
|
||||
id: str
|
||||
name: str
|
||||
display_name: str
|
||||
description: Optional[str] = None
|
||||
default_credential_provider: Optional[str] = None
|
||||
default_credential_id: Optional[str] = None
|
||||
default_credential_type: Optional[str] = None
|
||||
supports_tools: bool = True
|
||||
supports_json_output: bool = True
|
||||
supports_reasoning: bool = False
|
||||
supports_parallel_tool: bool = False
|
||||
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
|
||||
models: list[LlmModel] = pydantic.Field(default_factory=list)
|
||||
|
||||
|
||||
class LlmProvidersResponse(pydantic.BaseModel):
|
||||
providers: list[LlmProvider]
|
||||
|
||||
|
||||
class LlmModelsResponse(pydantic.BaseModel):
|
||||
models: list[LlmModel]
|
||||
|
||||
|
||||
class LlmCreatorsResponse(pydantic.BaseModel):
|
||||
creators: list[LlmModelCreator]
|
||||
|
||||
|
||||
class UpsertLlmProviderRequest(pydantic.BaseModel):
|
||||
name: str
|
||||
display_name: str
|
||||
description: Optional[str] = None
|
||||
default_credential_provider: Optional[str] = None
|
||||
default_credential_id: Optional[str] = None
|
||||
default_credential_type: Optional[str] = "api_key"
|
||||
supports_tools: bool = True
|
||||
supports_json_output: bool = True
|
||||
supports_reasoning: bool = False
|
||||
supports_parallel_tool: bool = False
|
||||
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
|
||||
|
||||
|
||||
class UpsertLlmCreatorRequest(pydantic.BaseModel):
|
||||
name: str
|
||||
display_name: str
|
||||
description: Optional[str] = None
|
||||
website_url: Optional[str] = None
|
||||
logo_url: Optional[str] = None
|
||||
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
|
||||
|
||||
|
||||
class LlmModelCostInput(pydantic.BaseModel):
|
||||
unit: prisma.enums.LlmCostUnit = prisma.enums.LlmCostUnit.RUN
|
||||
credit_cost: int
|
||||
credential_provider: str
|
||||
credential_id: Optional[str] = None
|
||||
credential_type: Optional[str] = "api_key"
|
||||
currency: Optional[str] = None
|
||||
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
|
||||
|
||||
|
||||
class CreateLlmModelRequest(pydantic.BaseModel):
|
||||
slug: str
|
||||
display_name: str
|
||||
description: Optional[str] = None
|
||||
provider_id: str
|
||||
creator_id: Optional[str] = None
|
||||
context_window: int
|
||||
max_output_tokens: Optional[int] = None
|
||||
is_enabled: bool = True
|
||||
capabilities: dict[str, Any] = pydantic.Field(default_factory=dict)
|
||||
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
|
||||
costs: list[LlmModelCostInput]
|
||||
|
||||
@pydantic.field_validator("slug")
|
||||
@classmethod
|
||||
def validate_slug(cls, v: str) -> str:
|
||||
if not v or len(v) > 100:
|
||||
raise ValueError("Slug must be 1-100 characters")
|
||||
if not SLUG_PATTERN.match(v):
|
||||
raise ValueError(
|
||||
"Slug must start with alphanumeric and contain only "
|
||||
"alphanumeric characters, dots, underscores, slashes, or hyphens"
|
||||
)
|
||||
return v
|
||||
|
||||
|
||||
class UpdateLlmModelRequest(pydantic.BaseModel):
|
||||
display_name: Optional[str] = None
|
||||
description: Optional[str] = None
|
||||
context_window: Optional[int] = None
|
||||
max_output_tokens: Optional[int] = None
|
||||
is_enabled: Optional[bool] = None
|
||||
capabilities: Optional[dict[str, Any]] = None
|
||||
metadata: Optional[dict[str, Any]] = None
|
||||
provider_id: Optional[str] = None
|
||||
creator_id: Optional[str] = None
|
||||
costs: Optional[list[LlmModelCostInput]] = None
|
||||
|
||||
|
||||
class ToggleLlmModelRequest(pydantic.BaseModel):
|
||||
is_enabled: bool
|
||||
migrate_to_slug: Optional[str] = None
|
||||
migration_reason: Optional[str] = None # e.g., "Provider outage"
|
||||
# Custom pricing override for migrated workflows. When set, billing should use
|
||||
# this cost instead of the target model's cost for affected nodes.
|
||||
# See LlmModelMigration in schema.prisma for full documentation.
|
||||
custom_credit_cost: Optional[int] = None
|
||||
|
||||
|
||||
class ToggleLlmModelResponse(pydantic.BaseModel):
|
||||
model: LlmModel
|
||||
nodes_migrated: int = 0
|
||||
migrated_to_slug: Optional[str] = None
|
||||
migration_id: Optional[str] = None # ID of the migration record for revert
|
||||
|
||||
|
||||
class DeleteLlmModelResponse(pydantic.BaseModel):
|
||||
deleted_model_slug: str
|
||||
deleted_model_display_name: str
|
||||
replacement_model_slug: str
|
||||
nodes_migrated: int
|
||||
message: str
|
||||
|
||||
|
||||
class LlmModelUsageResponse(pydantic.BaseModel):
|
||||
model_slug: str
|
||||
node_count: int
|
||||
|
||||
|
||||
# Migration tracking models
|
||||
class LlmModelMigration(pydantic.BaseModel):
|
||||
id: str
|
||||
source_model_slug: str
|
||||
target_model_slug: str
|
||||
reason: Optional[str] = None
|
||||
node_count: int
|
||||
# Custom pricing override - billing should use this instead of target model's cost
|
||||
custom_credit_cost: Optional[int] = None
|
||||
is_reverted: bool = False
|
||||
created_at: str # ISO datetime string
|
||||
reverted_at: Optional[str] = None
|
||||
|
||||
|
||||
class LlmMigrationsResponse(pydantic.BaseModel):
|
||||
migrations: list[LlmModelMigration]
|
||||
|
||||
|
||||
class RevertMigrationRequest(pydantic.BaseModel):
|
||||
re_enable_source_model: bool = (
|
||||
True # Whether to re-enable the source model if disabled
|
||||
)
|
||||
|
||||
|
||||
class RevertMigrationResponse(pydantic.BaseModel):
|
||||
migration_id: str
|
||||
source_model_slug: str
|
||||
target_model_slug: str
|
||||
nodes_reverted: int
|
||||
nodes_already_changed: int = (
|
||||
0 # Nodes that were modified since migration (not reverted)
|
||||
)
|
||||
source_model_re_enabled: bool = False # Whether the source model was re-enabled
|
||||
message: str
|
||||
|
||||
|
||||
class SetRecommendedModelRequest(pydantic.BaseModel):
|
||||
model_id: str
|
||||
|
||||
|
||||
class SetRecommendedModelResponse(pydantic.BaseModel):
|
||||
model: LlmModel
|
||||
previous_recommended_slug: Optional[str] = None
|
||||
message: str
|
||||
|
||||
|
||||
class RecommendedModelResponse(pydantic.BaseModel):
|
||||
model: Optional[LlmModel] = None
|
||||
slug: Optional[str] = None
|
||||
25
autogpt_platform/backend/backend/server/v2/llm/routes.py
Normal file
25
autogpt_platform/backend/backend/server/v2/llm/routes.py
Normal file
@@ -0,0 +1,25 @@
|
||||
import autogpt_libs.auth
|
||||
import fastapi
|
||||
|
||||
from backend.server.v2.llm import db as llm_db
|
||||
from backend.server.v2.llm import model as llm_model
|
||||
|
||||
router = fastapi.APIRouter(
|
||||
prefix="/llm",
|
||||
tags=["llm"],
|
||||
dependencies=[fastapi.Security(autogpt_libs.auth.requires_user)],
|
||||
)
|
||||
|
||||
|
||||
@router.get("/models", response_model=llm_model.LlmModelsResponse)
|
||||
async def list_models():
|
||||
"""List all enabled LLM models available to users."""
|
||||
models = await llm_db.list_models(enabled_only=True)
|
||||
return llm_model.LlmModelsResponse(models=models)
|
||||
|
||||
|
||||
@router.get("/providers", response_model=llm_model.LlmProvidersResponse)
|
||||
async def list_providers():
|
||||
"""List all LLM providers with their enabled models."""
|
||||
providers = await llm_db.list_providers(include_models=True, enabled_only=True)
|
||||
return llm_model.LlmProvidersResponse(providers=providers)
|
||||
@@ -10,7 +10,6 @@ from backend.util.settings import Settings
|
||||
settings = Settings()
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from openai import AsyncOpenAI
|
||||
from supabase import AClient, Client
|
||||
|
||||
from backend.data.execution import (
|
||||
@@ -140,24 +139,6 @@ async def get_async_supabase() -> "AClient":
|
||||
)
|
||||
|
||||
|
||||
# ============ OpenAI Client ============ #
|
||||
|
||||
|
||||
@cached(ttl_seconds=3600)
|
||||
def get_openai_client() -> "AsyncOpenAI | None":
|
||||
"""
|
||||
Get a process-cached async OpenAI client for embeddings.
|
||||
|
||||
Returns None if API key is not configured.
|
||||
"""
|
||||
from openai import AsyncOpenAI
|
||||
|
||||
api_key = settings.secrets.openai_internal_api_key
|
||||
if not api_key:
|
||||
return None
|
||||
return AsyncOpenAI(api_key=api_key)
|
||||
|
||||
|
||||
# ============ Notification Queue Helpers ============ #
|
||||
|
||||
|
||||
|
||||
@@ -264,7 +264,7 @@ class Config(UpdateTrackingModel["Config"], BaseSettings):
|
||||
)
|
||||
|
||||
reddit_user_agent: str = Field(
|
||||
default="web:AutoGPT:v0.6.0 (by /u/autogpt)",
|
||||
default="AutoGPT:1.0 (by /u/autogpt)",
|
||||
description="The user agent for the Reddit API",
|
||||
)
|
||||
|
||||
|
||||
@@ -1,227 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Generate a lightweight stub for prisma/types.py that collapses all exported
|
||||
symbols to Any. This prevents Pyright from spending time/budget on Prisma's
|
||||
query DSL types while keeping runtime behavior unchanged.
|
||||
|
||||
Usage:
|
||||
poetry run gen-prisma-stub
|
||||
|
||||
This script automatically finds the prisma package location and generates
|
||||
the types.pyi stub file in the same directory as types.py.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import ast
|
||||
import importlib.util
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Iterable, Set
|
||||
|
||||
|
||||
def _iter_assigned_names(target: ast.expr) -> Iterable[str]:
|
||||
"""Extract names from assignment targets (handles tuple unpacking)."""
|
||||
if isinstance(target, ast.Name):
|
||||
yield target.id
|
||||
elif isinstance(target, (ast.Tuple, ast.List)):
|
||||
for elt in target.elts:
|
||||
yield from _iter_assigned_names(elt)
|
||||
|
||||
|
||||
def _is_private(name: str) -> bool:
|
||||
"""Check if a name is private (starts with _ but not __)."""
|
||||
return name.startswith("_") and not name.startswith("__")
|
||||
|
||||
|
||||
def _is_safe_type_alias(node: ast.Assign) -> bool:
|
||||
"""Check if an assignment is a safe type alias that shouldn't be stubbed.
|
||||
|
||||
Safe types are:
|
||||
- Literal types (don't cause type budget issues)
|
||||
- Simple type references (SortMode, SortOrder, etc.)
|
||||
- TypeVar definitions
|
||||
"""
|
||||
if not node.value:
|
||||
return False
|
||||
|
||||
# Check if it's a Subscript (like Literal[...], Union[...], TypeVar[...])
|
||||
if isinstance(node.value, ast.Subscript):
|
||||
# Get the base type name
|
||||
if isinstance(node.value.value, ast.Name):
|
||||
base_name = node.value.value.id
|
||||
# Literal types are safe
|
||||
if base_name == "Literal":
|
||||
return True
|
||||
# TypeVar is safe
|
||||
if base_name == "TypeVar":
|
||||
return True
|
||||
elif isinstance(node.value.value, ast.Attribute):
|
||||
# Handle typing_extensions.Literal etc.
|
||||
if node.value.value.attr == "Literal":
|
||||
return True
|
||||
|
||||
# Check if it's a simple Name reference (like SortMode = _types.SortMode)
|
||||
if isinstance(node.value, ast.Attribute):
|
||||
return True
|
||||
|
||||
# Check if it's a Call (like TypeVar(...))
|
||||
if isinstance(node.value, ast.Call):
|
||||
if isinstance(node.value.func, ast.Name):
|
||||
if node.value.func.id == "TypeVar":
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def collect_top_level_symbols(
|
||||
tree: ast.Module, source_lines: list[str]
|
||||
) -> tuple[Set[str], Set[str], list[str], Set[str]]:
|
||||
"""Collect all top-level symbols from an AST module.
|
||||
|
||||
Returns:
|
||||
Tuple of (class_names, function_names, safe_variable_sources, unsafe_variable_names)
|
||||
safe_variable_sources contains the actual source code lines for safe variables
|
||||
"""
|
||||
classes: Set[str] = set()
|
||||
functions: Set[str] = set()
|
||||
safe_variable_sources: list[str] = []
|
||||
unsafe_variables: Set[str] = set()
|
||||
|
||||
for node in tree.body:
|
||||
if isinstance(node, ast.ClassDef):
|
||||
if not _is_private(node.name):
|
||||
classes.add(node.name)
|
||||
elif isinstance(node, (ast.FunctionDef, ast.AsyncFunctionDef)):
|
||||
if not _is_private(node.name):
|
||||
functions.add(node.name)
|
||||
elif isinstance(node, ast.Assign):
|
||||
is_safe = _is_safe_type_alias(node)
|
||||
names = []
|
||||
for t in node.targets:
|
||||
for n in _iter_assigned_names(t):
|
||||
if not _is_private(n):
|
||||
names.append(n)
|
||||
if names:
|
||||
if is_safe:
|
||||
# Extract the source code for this assignment
|
||||
start_line = node.lineno - 1 # 0-indexed
|
||||
end_line = node.end_lineno if node.end_lineno else node.lineno
|
||||
source = "\n".join(source_lines[start_line:end_line])
|
||||
safe_variable_sources.append(source)
|
||||
else:
|
||||
unsafe_variables.update(names)
|
||||
elif isinstance(node, ast.AnnAssign) and node.target:
|
||||
# Annotated assignments are always stubbed
|
||||
for n in _iter_assigned_names(node.target):
|
||||
if not _is_private(n):
|
||||
unsafe_variables.add(n)
|
||||
|
||||
return classes, functions, safe_variable_sources, unsafe_variables
|
||||
|
||||
|
||||
def find_prisma_types_path() -> Path:
|
||||
"""Find the prisma types.py file in the installed package."""
|
||||
spec = importlib.util.find_spec("prisma")
|
||||
if spec is None or spec.origin is None:
|
||||
raise RuntimeError("Could not find prisma package. Is it installed?")
|
||||
|
||||
prisma_dir = Path(spec.origin).parent
|
||||
types_path = prisma_dir / "types.py"
|
||||
|
||||
if not types_path.exists():
|
||||
raise RuntimeError(f"prisma/types.py not found at {types_path}")
|
||||
|
||||
return types_path
|
||||
|
||||
|
||||
def generate_stub(src_path: Path, stub_path: Path) -> int:
|
||||
"""Generate the .pyi stub file from the source types.py."""
|
||||
code = src_path.read_text(encoding="utf-8", errors="ignore")
|
||||
source_lines = code.splitlines()
|
||||
tree = ast.parse(code, filename=str(src_path))
|
||||
classes, functions, safe_variable_sources, unsafe_variables = (
|
||||
collect_top_level_symbols(tree, source_lines)
|
||||
)
|
||||
|
||||
header = """\
|
||||
# -*- coding: utf-8 -*-
|
||||
# Auto-generated stub file - DO NOT EDIT
|
||||
# Generated by gen_prisma_types_stub.py
|
||||
#
|
||||
# This stub intentionally collapses complex Prisma query DSL types to Any.
|
||||
# Prisma's generated types can explode Pyright's type inference budgets
|
||||
# on large schemas. We collapse them to Any so the rest of the codebase
|
||||
# can remain strongly typed while keeping runtime behavior unchanged.
|
||||
#
|
||||
# Safe types (Literal, TypeVar, simple references) are preserved from the
|
||||
# original types.py to maintain proper type checking where possible.
|
||||
|
||||
from __future__ import annotations
|
||||
from typing import Any
|
||||
from typing_extensions import Literal
|
||||
|
||||
# Re-export commonly used typing constructs that may be imported from this module
|
||||
from typing import TYPE_CHECKING, TypeVar, Generic, Union, Optional, List, Dict
|
||||
|
||||
# Base type alias for stubbed Prisma types - allows any dict structure
|
||||
_PrismaDict = dict[str, Any]
|
||||
|
||||
"""
|
||||
|
||||
lines = [header]
|
||||
|
||||
# Include safe variable definitions (Literal types, TypeVars, etc.)
|
||||
lines.append("# Safe type definitions preserved from original types.py")
|
||||
for source in safe_variable_sources:
|
||||
lines.append(source)
|
||||
lines.append("")
|
||||
|
||||
# Stub all classes and unsafe variables uniformly as dict[str, Any] aliases
|
||||
# This allows:
|
||||
# 1. Use in type annotations: x: SomeType
|
||||
# 2. Constructor calls: SomeType(...)
|
||||
# 3. Dict literal assignments: x: SomeType = {...}
|
||||
lines.append(
|
||||
"# Stubbed types (collapsed to dict[str, Any] to prevent type budget exhaustion)"
|
||||
)
|
||||
all_stubbed = sorted(classes | unsafe_variables)
|
||||
for name in all_stubbed:
|
||||
lines.append(f"{name} = _PrismaDict")
|
||||
|
||||
lines.append("")
|
||||
|
||||
# Stub functions
|
||||
for name in sorted(functions):
|
||||
lines.append(f"def {name}(*args: Any, **kwargs: Any) -> Any: ...")
|
||||
|
||||
lines.append("")
|
||||
|
||||
stub_path.write_text("\n".join(lines), encoding="utf-8")
|
||||
return (
|
||||
len(classes)
|
||||
+ len(functions)
|
||||
+ len(safe_variable_sources)
|
||||
+ len(unsafe_variables)
|
||||
)
|
||||
|
||||
|
||||
def main() -> None:
|
||||
"""Main entry point."""
|
||||
try:
|
||||
types_path = find_prisma_types_path()
|
||||
stub_path = types_path.with_suffix(".pyi")
|
||||
|
||||
print(f"Found prisma types.py at: {types_path}")
|
||||
print(f"Generating stub at: {stub_path}")
|
||||
|
||||
num_symbols = generate_stub(types_path, stub_path)
|
||||
print(f"Generated {stub_path.name} with {num_symbols} Any-typed symbols")
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error: {e}", file=sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -25,9 +25,6 @@ def run(*command: str) -> None:
|
||||
|
||||
|
||||
def lint():
|
||||
# Generate Prisma types stub before running pyright to prevent type budget exhaustion
|
||||
run("gen-prisma-stub")
|
||||
|
||||
lint_step_args: list[list[str]] = [
|
||||
["ruff", "check", *TARGET_DIRS, "--exit-zero"],
|
||||
["ruff", "format", "--diff", "--check", LIBS_DIR],
|
||||
@@ -52,6 +49,4 @@ def format():
|
||||
run("ruff", "format", LIBS_DIR)
|
||||
run("isort", "--profile", "black", BACKEND_DIR)
|
||||
run("black", BACKEND_DIR)
|
||||
# Generate Prisma types stub before running pyright to prevent type budget exhaustion
|
||||
run("gen-prisma-stub")
|
||||
run("pyright", *TARGET_DIRS)
|
||||
|
||||
@@ -0,0 +1,78 @@
|
||||
-- CreateEnum
|
||||
CREATE TYPE "LlmCostUnit" AS ENUM ('RUN', 'TOKENS');
|
||||
|
||||
-- CreateTable
|
||||
CREATE TABLE "LlmProvider" (
|
||||
"id" TEXT NOT NULL,
|
||||
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"updatedAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"name" TEXT NOT NULL,
|
||||
"displayName" TEXT NOT NULL,
|
||||
"description" TEXT,
|
||||
"defaultCredentialProvider" TEXT,
|
||||
"defaultCredentialId" TEXT,
|
||||
"defaultCredentialType" TEXT,
|
||||
"supportsTools" BOOLEAN NOT NULL DEFAULT TRUE,
|
||||
"supportsJsonOutput" BOOLEAN NOT NULL DEFAULT TRUE,
|
||||
"supportsReasoning" BOOLEAN NOT NULL DEFAULT FALSE,
|
||||
"supportsParallelTool" BOOLEAN NOT NULL DEFAULT FALSE,
|
||||
"metadata" JSONB NOT NULL DEFAULT '{}'::jsonb,
|
||||
|
||||
CONSTRAINT "LlmProvider_pkey" PRIMARY KEY ("id"),
|
||||
CONSTRAINT "LlmProvider_name_key" UNIQUE ("name")
|
||||
);
|
||||
|
||||
-- CreateTable
|
||||
CREATE TABLE "LlmModel" (
|
||||
"id" TEXT NOT NULL,
|
||||
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"updatedAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"slug" TEXT NOT NULL,
|
||||
"displayName" TEXT NOT NULL,
|
||||
"description" TEXT,
|
||||
"providerId" TEXT NOT NULL,
|
||||
"contextWindow" INTEGER NOT NULL,
|
||||
"maxOutputTokens" INTEGER,
|
||||
"isEnabled" BOOLEAN NOT NULL DEFAULT TRUE,
|
||||
"capabilities" JSONB NOT NULL DEFAULT '{}'::jsonb,
|
||||
"metadata" JSONB NOT NULL DEFAULT '{}'::jsonb,
|
||||
|
||||
CONSTRAINT "LlmModel_pkey" PRIMARY KEY ("id"),
|
||||
CONSTRAINT "LlmModel_slug_key" UNIQUE ("slug")
|
||||
);
|
||||
|
||||
-- CreateTable
|
||||
CREATE TABLE "LlmModelCost" (
|
||||
"id" TEXT NOT NULL,
|
||||
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"updatedAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"unit" "LlmCostUnit" NOT NULL DEFAULT 'RUN',
|
||||
"creditCost" INTEGER NOT NULL,
|
||||
"credentialProvider" TEXT NOT NULL,
|
||||
"credentialId" TEXT,
|
||||
"credentialType" TEXT,
|
||||
"currency" TEXT,
|
||||
"metadata" JSONB NOT NULL DEFAULT '{}'::jsonb,
|
||||
"llmModelId" TEXT NOT NULL,
|
||||
|
||||
CONSTRAINT "LlmModelCost_pkey" PRIMARY KEY ("id")
|
||||
);
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "LlmModel_providerId_isEnabled_idx" ON "LlmModel"("providerId", "isEnabled");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "LlmModel_slug_idx" ON "LlmModel"("slug");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "LlmModelCost_llmModelId_idx" ON "LlmModelCost"("llmModelId");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "LlmModelCost_credentialProvider_idx" ON "LlmModelCost"("credentialProvider");
|
||||
|
||||
-- AddForeignKey
|
||||
ALTER TABLE "LlmModel" ADD CONSTRAINT "LlmModel_providerId_fkey" FOREIGN KEY ("providerId") REFERENCES "LlmProvider"("id") ON DELETE RESTRICT ON UPDATE CASCADE;
|
||||
|
||||
-- AddForeignKey
|
||||
ALTER TABLE "LlmModelCost" ADD CONSTRAINT "LlmModelCost_llmModelId_fkey" FOREIGN KEY ("llmModelId") REFERENCES "LlmModel"("id") ON DELETE CASCADE ON UPDATE CASCADE;
|
||||
|
||||
@@ -0,0 +1,225 @@
|
||||
-- Seed LLM Registry from existing hard-coded data
|
||||
-- This migration populates the LlmProvider, LlmModel, and LlmModelCost tables
|
||||
-- with data from the existing MODEL_METADATA and MODEL_COST dictionaries
|
||||
|
||||
-- Insert Providers
|
||||
INSERT INTO "LlmProvider" ("id", "name", "displayName", "description", "defaultCredentialProvider", "defaultCredentialType", "supportsTools", "supportsJsonOutput", "supportsReasoning", "supportsParallelTool", "metadata")
|
||||
VALUES
|
||||
(gen_random_uuid(), 'openai', 'OpenAI', 'OpenAI language models', 'openai', 'api_key', true, true, true, true, '{}'::jsonb),
|
||||
(gen_random_uuid(), 'anthropic', 'Anthropic', 'Anthropic Claude models', 'anthropic', 'api_key', true, true, true, false, '{}'::jsonb),
|
||||
(gen_random_uuid(), 'groq', 'Groq', 'Groq inference API', 'groq', 'api_key', false, true, false, false, '{}'::jsonb),
|
||||
(gen_random_uuid(), 'open_router', 'OpenRouter', 'OpenRouter unified API', 'open_router', 'api_key', true, true, false, false, '{}'::jsonb),
|
||||
(gen_random_uuid(), 'aiml_api', 'AI/ML API', 'AI/ML API models', 'aiml_api', 'api_key', false, true, false, false, '{}'::jsonb),
|
||||
(gen_random_uuid(), 'ollama', 'Ollama', 'Ollama local models', 'ollama', 'api_key', false, true, false, false, '{}'::jsonb),
|
||||
(gen_random_uuid(), 'llama_api', 'Llama API', 'Llama API models', 'llama_api', 'api_key', false, true, false, false, '{}'::jsonb),
|
||||
(gen_random_uuid(), 'v0', 'v0', 'v0 by Vercel models', 'v0', 'api_key', true, true, false, false, '{}'::jsonb)
|
||||
ON CONFLICT ("name") DO NOTHING;
|
||||
|
||||
-- Insert Models (using CTEs to reference provider IDs)
|
||||
WITH provider_ids AS (
|
||||
SELECT "id", "name" FROM "LlmProvider"
|
||||
)
|
||||
INSERT INTO "LlmModel" ("id", "slug", "displayName", "description", "providerId", "contextWindow", "maxOutputTokens", "isEnabled", "capabilities", "metadata")
|
||||
SELECT
|
||||
gen_random_uuid(),
|
||||
model_slug,
|
||||
model_display_name,
|
||||
NULL,
|
||||
p."id",
|
||||
context_window,
|
||||
max_output_tokens,
|
||||
true,
|
||||
'{}'::jsonb,
|
||||
'{}'::jsonb
|
||||
FROM (VALUES
|
||||
-- OpenAI models
|
||||
('o3', 'O3', 'openai', 200000, 100000),
|
||||
('o3-mini', 'O3 Mini', 'openai', 200000, 100000),
|
||||
('o1', 'O1', 'openai', 200000, 100000),
|
||||
('o1-mini', 'O1 Mini', 'openai', 128000, 65536),
|
||||
('gpt-5-2025-08-07', 'GPT 5', 'openai', 400000, 128000),
|
||||
('gpt-5.1-2025-11-13', 'GPT 5.1', 'openai', 400000, 128000),
|
||||
('gpt-5-mini-2025-08-07', 'GPT 5 Mini', 'openai', 400000, 128000),
|
||||
('gpt-5-nano-2025-08-07', 'GPT 5 Nano', 'openai', 400000, 128000),
|
||||
('gpt-5-chat-latest', 'GPT 5 Chat', 'openai', 400000, 16384),
|
||||
('gpt-4.1-2025-04-14', 'GPT 4.1', 'openai', 1047576, 32768),
|
||||
('gpt-4.1-mini-2025-04-14', 'GPT 4.1 Mini', 'openai', 1047576, 32768),
|
||||
('gpt-4o-mini', 'GPT 4o Mini', 'openai', 128000, 16384),
|
||||
('gpt-4o', 'GPT 4o', 'openai', 128000, 16384),
|
||||
('gpt-4-turbo', 'GPT 4 Turbo', 'openai', 128000, 4096),
|
||||
('gpt-3.5-turbo', 'GPT 3.5 Turbo', 'openai', 16385, 4096),
|
||||
-- Anthropic models
|
||||
('claude-opus-4-1-20250805', 'Claude 4.1 Opus', 'anthropic', 200000, 32000),
|
||||
('claude-opus-4-20250514', 'Claude 4 Opus', 'anthropic', 200000, 32000),
|
||||
('claude-sonnet-4-20250514', 'Claude 4 Sonnet', 'anthropic', 200000, 64000),
|
||||
('claude-opus-4-5-20251101', 'Claude 4.5 Opus', 'anthropic', 200000, 64000),
|
||||
('claude-sonnet-4-5-20250929', 'Claude 4.5 Sonnet', 'anthropic', 200000, 64000),
|
||||
('claude-haiku-4-5-20251001', 'Claude 4.5 Haiku', 'anthropic', 200000, 64000),
|
||||
('claude-3-7-sonnet-20250219', 'Claude 3.7 Sonnet', 'anthropic', 200000, 64000),
|
||||
('claude-3-haiku-20240307', 'Claude 3 Haiku', 'anthropic', 200000, 4096),
|
||||
-- AI/ML API models
|
||||
('Qwen/Qwen2.5-72B-Instruct-Turbo', 'Qwen 2.5 72B', 'aiml_api', 32000, 8000),
|
||||
('nvidia/llama-3.1-nemotron-70b-instruct', 'Llama 3.1 Nemotron 70B', 'aiml_api', 128000, 40000),
|
||||
('meta-llama/Llama-3.3-70B-Instruct-Turbo', 'Llama 3.3 70B', 'aiml_api', 128000, NULL),
|
||||
('meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo', 'Meta Llama 3.1 70B', 'aiml_api', 131000, 2000),
|
||||
('meta-llama/Llama-3.2-3B-Instruct-Turbo', 'Llama 3.2 3B', 'aiml_api', 128000, NULL),
|
||||
-- Groq models
|
||||
('llama-3.3-70b-versatile', 'Llama 3.3 70B', 'groq', 128000, 32768),
|
||||
('llama-3.1-8b-instant', 'Llama 3.1 8B', 'groq', 128000, 8192),
|
||||
-- Ollama models
|
||||
('llama3.3', 'Llama 3.3', 'ollama', 8192, NULL),
|
||||
('llama3.2', 'Llama 3.2', 'ollama', 8192, NULL),
|
||||
('llama3', 'Llama 3', 'ollama', 8192, NULL),
|
||||
('llama3.1:405b', 'Llama 3.1 405B', 'ollama', 8192, NULL),
|
||||
('dolphin-mistral:latest', 'Dolphin Mistral', 'ollama', 32768, NULL),
|
||||
-- OpenRouter models
|
||||
('google/gemini-2.5-pro-preview-03-25', 'Gemini 2.5 Pro', 'open_router', 1050000, 8192),
|
||||
('google/gemini-3-pro-preview', 'Gemini 3 Pro Preview', 'open_router', 1048576, 65535),
|
||||
('google/gemini-2.5-flash', 'Gemini 2.5 Flash', 'open_router', 1048576, 65535),
|
||||
('google/gemini-2.0-flash-001', 'Gemini 2.0 Flash', 'open_router', 1048576, 8192),
|
||||
('google/gemini-2.5-flash-lite-preview-06-17', 'Gemini 2.5 Flash Lite Preview', 'open_router', 1048576, 65535),
|
||||
('google/gemini-2.0-flash-lite-001', 'Gemini 2.0 Flash Lite', 'open_router', 1048576, 8192),
|
||||
('mistralai/mistral-nemo', 'Mistral Nemo', 'open_router', 128000, 4096),
|
||||
('cohere/command-r-08-2024', 'Command R', 'open_router', 128000, 4096),
|
||||
('cohere/command-r-plus-08-2024', 'Command R Plus', 'open_router', 128000, 4096),
|
||||
('deepseek/deepseek-chat', 'DeepSeek Chat', 'open_router', 64000, 2048),
|
||||
('deepseek/deepseek-r1-0528', 'DeepSeek R1', 'open_router', 163840, 163840),
|
||||
('perplexity/sonar', 'Perplexity Sonar', 'open_router', 127000, 8000),
|
||||
('perplexity/sonar-pro', 'Perplexity Sonar Pro', 'open_router', 200000, 8000),
|
||||
('perplexity/sonar-deep-research', 'Perplexity Sonar Deep Research', 'open_router', 128000, 16000),
|
||||
('nousresearch/hermes-3-llama-3.1-405b', 'Hermes 3 Llama 3.1 405B', 'open_router', 131000, 4096),
|
||||
('nousresearch/hermes-3-llama-3.1-70b', 'Hermes 3 Llama 3.1 70B', 'open_router', 12288, 12288),
|
||||
('openai/gpt-oss-120b', 'GPT OSS 120B', 'open_router', 131072, 131072),
|
||||
('openai/gpt-oss-20b', 'GPT OSS 20B', 'open_router', 131072, 32768),
|
||||
('amazon/nova-lite-v1', 'Amazon Nova Lite', 'open_router', 300000, 5120),
|
||||
('amazon/nova-micro-v1', 'Amazon Nova Micro', 'open_router', 128000, 5120),
|
||||
('amazon/nova-pro-v1', 'Amazon Nova Pro', 'open_router', 300000, 5120),
|
||||
('microsoft/wizardlm-2-8x22b', 'WizardLM 2 8x22B', 'open_router', 65536, 4096),
|
||||
('gryphe/mythomax-l2-13b', 'MythoMax L2 13B', 'open_router', 4096, 4096),
|
||||
('meta-llama/llama-4-scout', 'Llama 4 Scout', 'open_router', 131072, 131072),
|
||||
('meta-llama/llama-4-maverick', 'Llama 4 Maverick', 'open_router', 1048576, 1000000),
|
||||
('x-ai/grok-4', 'Grok 4', 'open_router', 256000, 256000),
|
||||
('x-ai/grok-4-fast', 'Grok 4 Fast', 'open_router', 2000000, 30000),
|
||||
('x-ai/grok-4.1-fast', 'Grok 4.1 Fast', 'open_router', 2000000, 30000),
|
||||
('x-ai/grok-code-fast-1', 'Grok Code Fast 1', 'open_router', 256000, 10000),
|
||||
('moonshotai/kimi-k2', 'Kimi K2', 'open_router', 131000, 131000),
|
||||
('qwen/qwen3-235b-a22b-thinking-2507', 'Qwen 3 235B Thinking', 'open_router', 262144, 262144),
|
||||
('qwen/qwen3-coder', 'Qwen 3 Coder', 'open_router', 262144, 262144),
|
||||
-- Llama API models
|
||||
('Llama-4-Scout-17B-16E-Instruct-FP8', 'Llama 4 Scout', 'llama_api', 128000, 4028),
|
||||
('Llama-4-Maverick-17B-128E-Instruct-FP8', 'Llama 4 Maverick', 'llama_api', 128000, 4028),
|
||||
('Llama-3.3-8B-Instruct', 'Llama 3.3 8B', 'llama_api', 128000, 4028),
|
||||
('Llama-3.3-70B-Instruct', 'Llama 3.3 70B', 'llama_api', 128000, 4028),
|
||||
-- v0 models
|
||||
('v0-1.5-md', 'v0 1.5 MD', 'v0', 128000, 64000),
|
||||
('v0-1.5-lg', 'v0 1.5 LG', 'v0', 512000, 64000),
|
||||
('v0-1.0-md', 'v0 1.0 MD', 'v0', 128000, 64000)
|
||||
) AS models(model_slug, model_display_name, provider_name, context_window, max_output_tokens)
|
||||
JOIN provider_ids p ON p."name" = models.provider_name
|
||||
ON CONFLICT ("slug") DO NOTHING;
|
||||
|
||||
-- Insert Costs (using CTEs to reference model IDs)
|
||||
WITH model_ids AS (
|
||||
SELECT "id", "slug", "providerId" FROM "LlmModel"
|
||||
),
|
||||
provider_ids AS (
|
||||
SELECT "id", "name" FROM "LlmProvider"
|
||||
)
|
||||
INSERT INTO "LlmModelCost" ("id", "unit", "creditCost", "credentialProvider", "credentialId", "credentialType", "currency", "metadata", "llmModelId")
|
||||
SELECT
|
||||
gen_random_uuid(),
|
||||
'RUN'::"LlmCostUnit",
|
||||
cost,
|
||||
p."name",
|
||||
NULL,
|
||||
'api_key',
|
||||
NULL,
|
||||
'{}'::jsonb,
|
||||
m."id"
|
||||
FROM (VALUES
|
||||
-- OpenAI costs
|
||||
('o3', 4),
|
||||
('o3-mini', 2),
|
||||
('o1', 16),
|
||||
('o1-mini', 4),
|
||||
('gpt-5-2025-08-07', 2),
|
||||
('gpt-5.1-2025-11-13', 5),
|
||||
('gpt-5-mini-2025-08-07', 1),
|
||||
('gpt-5-nano-2025-08-07', 1),
|
||||
('gpt-5-chat-latest', 5),
|
||||
('gpt-4.1-2025-04-14', 2),
|
||||
('gpt-4.1-mini-2025-04-14', 1),
|
||||
('gpt-4o-mini', 1),
|
||||
('gpt-4o', 3),
|
||||
('gpt-4-turbo', 10),
|
||||
('gpt-3.5-turbo', 1),
|
||||
-- Anthropic costs
|
||||
('claude-opus-4-1-20250805', 21),
|
||||
('claude-opus-4-20250514', 21),
|
||||
('claude-sonnet-4-20250514', 5),
|
||||
('claude-haiku-4-5-20251001', 4),
|
||||
('claude-opus-4-5-20251101', 14),
|
||||
('claude-sonnet-4-5-20250929', 9),
|
||||
('claude-3-7-sonnet-20250219', 5),
|
||||
('claude-3-haiku-20240307', 1),
|
||||
-- AI/ML API costs
|
||||
('Qwen/Qwen2.5-72B-Instruct-Turbo', 1),
|
||||
('nvidia/llama-3.1-nemotron-70b-instruct', 1),
|
||||
('meta-llama/Llama-3.3-70B-Instruct-Turbo', 1),
|
||||
('meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo', 1),
|
||||
('meta-llama/Llama-3.2-3B-Instruct-Turbo', 1),
|
||||
-- Groq costs
|
||||
('llama-3.3-70b-versatile', 1),
|
||||
('llama-3.1-8b-instant', 1),
|
||||
-- Ollama costs
|
||||
('llama3.3', 1),
|
||||
('llama3.2', 1),
|
||||
('llama3', 1),
|
||||
('llama3.1:405b', 1),
|
||||
('dolphin-mistral:latest', 1),
|
||||
-- OpenRouter costs
|
||||
('google/gemini-2.5-pro-preview-03-25', 4),
|
||||
('google/gemini-3-pro-preview', 5),
|
||||
('mistralai/mistral-nemo', 1),
|
||||
('cohere/command-r-08-2024', 1),
|
||||
('cohere/command-r-plus-08-2024', 3),
|
||||
('deepseek/deepseek-chat', 2),
|
||||
('perplexity/sonar', 1),
|
||||
('perplexity/sonar-pro', 5),
|
||||
('perplexity/sonar-deep-research', 10),
|
||||
('nousresearch/hermes-3-llama-3.1-405b', 1),
|
||||
('nousresearch/hermes-3-llama-3.1-70b', 1),
|
||||
('amazon/nova-lite-v1', 1),
|
||||
('amazon/nova-micro-v1', 1),
|
||||
('amazon/nova-pro-v1', 1),
|
||||
('microsoft/wizardlm-2-8x22b', 1),
|
||||
('gryphe/mythomax-l2-13b', 1),
|
||||
('meta-llama/llama-4-scout', 1),
|
||||
('meta-llama/llama-4-maverick', 1),
|
||||
('x-ai/grok-4', 9),
|
||||
('x-ai/grok-4-fast', 1),
|
||||
('x-ai/grok-4.1-fast', 1),
|
||||
('x-ai/grok-code-fast-1', 1),
|
||||
('moonshotai/kimi-k2', 1),
|
||||
('qwen/qwen3-235b-a22b-thinking-2507', 1),
|
||||
('qwen/qwen3-coder', 9),
|
||||
('google/gemini-2.5-flash', 1),
|
||||
('google/gemini-2.0-flash-001', 1),
|
||||
('google/gemini-2.5-flash-lite-preview-06-17', 1),
|
||||
('google/gemini-2.0-flash-lite-001', 1),
|
||||
('deepseek/deepseek-r1-0528', 1),
|
||||
('openai/gpt-oss-120b', 1),
|
||||
('openai/gpt-oss-20b', 1),
|
||||
-- Llama API costs
|
||||
('Llama-4-Scout-17B-16E-Instruct-FP8', 1),
|
||||
('Llama-4-Maverick-17B-128E-Instruct-FP8', 1),
|
||||
('Llama-3.3-8B-Instruct', 1),
|
||||
('Llama-3.3-70B-Instruct', 1),
|
||||
-- v0 costs
|
||||
('v0-1.5-md', 1),
|
||||
('v0-1.5-lg', 2),
|
||||
('v0-1.0-md', 1)
|
||||
) AS costs(model_slug, cost)
|
||||
JOIN model_ids m ON m."slug" = costs.model_slug
|
||||
JOIN provider_ids p ON p."id" = m."providerId";
|
||||
|
||||
@@ -0,0 +1,25 @@
|
||||
-- CreateTable
|
||||
CREATE TABLE "LlmModelMigration" (
|
||||
"id" TEXT NOT NULL,
|
||||
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"updatedAt" TIMESTAMP(3) NOT NULL,
|
||||
"sourceModelSlug" TEXT NOT NULL,
|
||||
"targetModelSlug" TEXT NOT NULL,
|
||||
"reason" TEXT,
|
||||
"migratedNodeIds" JSONB NOT NULL DEFAULT '[]',
|
||||
"nodeCount" INTEGER NOT NULL,
|
||||
"customCreditCost" INTEGER,
|
||||
"isReverted" BOOLEAN NOT NULL DEFAULT false,
|
||||
"revertedAt" TIMESTAMP(3),
|
||||
|
||||
CONSTRAINT "LlmModelMigration_pkey" PRIMARY KEY ("id")
|
||||
);
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "LlmModelMigration_sourceModelSlug_idx" ON "LlmModelMigration"("sourceModelSlug");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "LlmModelMigration_targetModelSlug_idx" ON "LlmModelMigration"("targetModelSlug");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "LlmModelMigration_isReverted_idx" ON "LlmModelMigration"("isReverted");
|
||||
@@ -0,0 +1,127 @@
|
||||
-- Add LlmModelCreator table
|
||||
-- Creator represents who made/trained the model (e.g., OpenAI, Meta)
|
||||
-- This is distinct from Provider who hosts/serves the model (e.g., OpenRouter)
|
||||
|
||||
-- Create the LlmModelCreator table
|
||||
CREATE TABLE "LlmModelCreator" (
|
||||
"id" TEXT NOT NULL,
|
||||
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"updatedAt" TIMESTAMP(3) NOT NULL,
|
||||
"name" TEXT NOT NULL,
|
||||
"displayName" TEXT NOT NULL,
|
||||
"description" TEXT,
|
||||
"websiteUrl" TEXT,
|
||||
"logoUrl" TEXT,
|
||||
"metadata" JSONB NOT NULL DEFAULT '{}',
|
||||
|
||||
CONSTRAINT "LlmModelCreator_pkey" PRIMARY KEY ("id")
|
||||
);
|
||||
|
||||
-- Create unique index on name
|
||||
CREATE UNIQUE INDEX "LlmModelCreator_name_key" ON "LlmModelCreator"("name");
|
||||
|
||||
-- Add creatorId column to LlmModel
|
||||
ALTER TABLE "LlmModel" ADD COLUMN "creatorId" TEXT;
|
||||
|
||||
-- Add foreign key constraint
|
||||
ALTER TABLE "LlmModel" ADD CONSTRAINT "LlmModel_creatorId_fkey"
|
||||
FOREIGN KEY ("creatorId") REFERENCES "LlmModelCreator"("id") ON DELETE SET NULL ON UPDATE CASCADE;
|
||||
|
||||
-- Create index on creatorId
|
||||
CREATE INDEX "LlmModel_creatorId_idx" ON "LlmModel"("creatorId");
|
||||
|
||||
-- Seed creators based on known model creators
|
||||
INSERT INTO "LlmModelCreator" ("id", "updatedAt", "name", "displayName", "description", "websiteUrl", "metadata")
|
||||
VALUES
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'openai', 'OpenAI', 'Creator of GPT models', 'https://openai.com', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'anthropic', 'Anthropic', 'Creator of Claude models', 'https://anthropic.com', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'meta', 'Meta', 'Creator of Llama models', 'https://ai.meta.com', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'google', 'Google', 'Creator of Gemini models', 'https://deepmind.google', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'mistral', 'Mistral AI', 'Creator of Mistral models', 'https://mistral.ai', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'cohere', 'Cohere', 'Creator of Command models', 'https://cohere.com', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'deepseek', 'DeepSeek', 'Creator of DeepSeek models', 'https://deepseek.com', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'perplexity', 'Perplexity AI', 'Creator of Sonar models', 'https://perplexity.ai', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'qwen', 'Qwen (Alibaba)', 'Creator of Qwen models', 'https://qwenlm.github.io', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'xai', 'xAI', 'Creator of Grok models', 'https://x.ai', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'amazon', 'Amazon', 'Creator of Nova models', 'https://aws.amazon.com/bedrock', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'microsoft', 'Microsoft', 'Creator of WizardLM models', 'https://microsoft.com', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'moonshot', 'Moonshot AI', 'Creator of Kimi models', 'https://moonshot.cn', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'nvidia', 'NVIDIA', 'Creator of Nemotron models', 'https://nvidia.com', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'nous_research', 'Nous Research', 'Creator of Hermes models', 'https://nousresearch.com', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'vercel', 'Vercel', 'Creator of v0 models', 'https://vercel.com', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'cognitive_computations', 'Cognitive Computations', 'Creator of Dolphin models', 'https://erichartford.com', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'gryphe', 'Gryphe', 'Creator of MythoMax models', 'https://huggingface.co/Gryphe', '{}')
|
||||
ON CONFLICT ("name") DO NOTHING;
|
||||
|
||||
-- Update existing models with their creators
|
||||
-- OpenAI models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'openai')
|
||||
WHERE "slug" LIKE 'gpt-%' OR "slug" LIKE 'o1%' OR "slug" LIKE 'o3%' OR "slug" LIKE 'openai/%';
|
||||
|
||||
-- Anthropic models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'anthropic')
|
||||
WHERE "slug" LIKE 'claude-%';
|
||||
|
||||
-- Meta/Llama models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'meta')
|
||||
WHERE "slug" LIKE 'llama%' OR "slug" LIKE 'Llama%' OR "slug" LIKE 'meta-llama/%' OR "slug" LIKE '%/llama-%';
|
||||
|
||||
-- Google models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'google')
|
||||
WHERE "slug" LIKE 'google/%' OR "slug" LIKE 'gemini%';
|
||||
|
||||
-- Mistral models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'mistral')
|
||||
WHERE "slug" LIKE 'mistral%' OR "slug" LIKE 'mistralai/%';
|
||||
|
||||
-- Cohere models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'cohere')
|
||||
WHERE "slug" LIKE 'cohere/%' OR "slug" LIKE 'command-%';
|
||||
|
||||
-- DeepSeek models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'deepseek')
|
||||
WHERE "slug" LIKE 'deepseek/%' OR "slug" LIKE 'deepseek-%';
|
||||
|
||||
-- Perplexity models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'perplexity')
|
||||
WHERE "slug" LIKE 'perplexity/%' OR "slug" LIKE 'sonar%';
|
||||
|
||||
-- Qwen models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'qwen')
|
||||
WHERE "slug" LIKE 'Qwen/%' OR "slug" LIKE 'qwen/%';
|
||||
|
||||
-- xAI/Grok models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'xai')
|
||||
WHERE "slug" LIKE 'x-ai/%' OR "slug" LIKE 'grok%';
|
||||
|
||||
-- Amazon models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'amazon')
|
||||
WHERE "slug" LIKE 'amazon/%' OR "slug" LIKE 'nova-%';
|
||||
|
||||
-- Microsoft models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'microsoft')
|
||||
WHERE "slug" LIKE 'microsoft/%' OR "slug" LIKE 'wizardlm%';
|
||||
|
||||
-- Moonshot models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'moonshot')
|
||||
WHERE "slug" LIKE 'moonshotai/%' OR "slug" LIKE 'kimi%';
|
||||
|
||||
-- NVIDIA models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'nvidia')
|
||||
WHERE "slug" LIKE 'nvidia/%' OR "slug" LIKE '%nemotron%';
|
||||
|
||||
-- Nous Research models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'nous_research')
|
||||
WHERE "slug" LIKE 'nousresearch/%' OR "slug" LIKE 'hermes%';
|
||||
|
||||
-- Vercel/v0 models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'vercel')
|
||||
WHERE "slug" LIKE 'v0-%';
|
||||
|
||||
-- Dolphin models (Cognitive Computations / Eric Hartford)
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'cognitive_computations')
|
||||
WHERE "slug" LIKE 'dolphin-%';
|
||||
|
||||
-- Gryphe models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'gryphe')
|
||||
WHERE "slug" LIKE 'gryphe/%' OR "slug" LIKE 'mythomax%';
|
||||
@@ -0,0 +1,4 @@
|
||||
-- CreateIndex
|
||||
-- Index for efficient LLM model lookups on AgentNode.constantInput->>'model'
|
||||
-- This improves performance of model migration queries in the LLM registry
|
||||
CREATE INDEX "AgentNode_constantInput_model_idx" ON "AgentNode" ((("constantInput"->>'model')));
|
||||
@@ -0,0 +1,52 @@
|
||||
-- Add GPT-5.2 model and update O3 slug
|
||||
-- This migration adds the new GPT-5.2 model added in dev branch
|
||||
|
||||
-- Update O3 slug to match dev branch format
|
||||
UPDATE "LlmModel"
|
||||
SET "slug" = 'o3-2025-04-16'
|
||||
WHERE "slug" = 'o3';
|
||||
|
||||
-- Update cost reference for O3 if needed
|
||||
-- (costs are linked by model ID, so no update needed)
|
||||
|
||||
-- Add GPT-5.2 model
|
||||
WITH provider_id AS (
|
||||
SELECT "id" FROM "LlmProvider" WHERE "name" = 'openai'
|
||||
)
|
||||
INSERT INTO "LlmModel" ("id", "slug", "displayName", "description", "providerId", "contextWindow", "maxOutputTokens", "isEnabled", "capabilities", "metadata")
|
||||
SELECT
|
||||
gen_random_uuid(),
|
||||
'gpt-5.2-2025-12-11',
|
||||
'GPT 5.2',
|
||||
'OpenAI GPT-5.2 model',
|
||||
p."id",
|
||||
400000,
|
||||
128000,
|
||||
true,
|
||||
'{}'::jsonb,
|
||||
'{}'::jsonb
|
||||
FROM provider_id p
|
||||
ON CONFLICT ("slug") DO NOTHING;
|
||||
|
||||
-- Add cost for GPT-5.2
|
||||
WITH model_id AS (
|
||||
SELECT m."id", p."name" as provider_name
|
||||
FROM "LlmModel" m
|
||||
JOIN "LlmProvider" p ON p."id" = m."providerId"
|
||||
WHERE m."slug" = 'gpt-5.2-2025-12-11'
|
||||
)
|
||||
INSERT INTO "LlmModelCost" ("id", "unit", "creditCost", "credentialProvider", "credentialId", "credentialType", "currency", "metadata", "llmModelId")
|
||||
SELECT
|
||||
gen_random_uuid(),
|
||||
'RUN'::"LlmCostUnit",
|
||||
3, -- Same cost tier as GPT-5.1
|
||||
m.provider_name,
|
||||
NULL,
|
||||
'api_key',
|
||||
NULL,
|
||||
'{}'::jsonb,
|
||||
m."id"
|
||||
FROM model_id m
|
||||
WHERE NOT EXISTS (
|
||||
SELECT 1 FROM "LlmModelCost" c WHERE c."llmModelId" = m."id"
|
||||
);
|
||||
@@ -0,0 +1,11 @@
|
||||
-- Add isRecommended field to LlmModel table
|
||||
-- This allows admins to mark a model as the recommended default
|
||||
|
||||
ALTER TABLE "LlmModel" ADD COLUMN "isRecommended" BOOLEAN NOT NULL DEFAULT false;
|
||||
|
||||
-- Set gpt-4o-mini as the default recommended model (if it exists)
|
||||
UPDATE "LlmModel" SET "isRecommended" = true WHERE "slug" = 'gpt-4o-mini' AND "isEnabled" = true;
|
||||
|
||||
-- Create unique partial index to enforce only one recommended model at the database level
|
||||
-- This prevents multiple rows from having isRecommended = true
|
||||
CREATE UNIQUE INDEX "LlmModel_single_recommended_idx" ON "LlmModel" ("isRecommended") WHERE "isRecommended" = true;
|
||||
@@ -1,46 +0,0 @@
|
||||
-- CreateExtension
|
||||
-- Supabase: pgvector must be enabled via Dashboard → Database → Extensions first
|
||||
-- Create in public schema so vector type is available across all schemas
|
||||
DO $$
|
||||
BEGIN
|
||||
CREATE EXTENSION IF NOT EXISTS "vector" WITH SCHEMA "public";
|
||||
EXCEPTION WHEN OTHERS THEN
|
||||
RAISE NOTICE 'vector extension not available or already exists, skipping';
|
||||
END $$;
|
||||
|
||||
-- CreateEnum
|
||||
CREATE TYPE "ContentType" AS ENUM ('STORE_AGENT', 'BLOCK', 'INTEGRATION', 'DOCUMENTATION', 'LIBRARY_AGENT');
|
||||
|
||||
-- CreateTable
|
||||
CREATE TABLE "UnifiedContentEmbedding" (
|
||||
"id" TEXT NOT NULL,
|
||||
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"updatedAt" TIMESTAMP(3) NOT NULL,
|
||||
"contentType" "ContentType" NOT NULL,
|
||||
"contentId" TEXT NOT NULL,
|
||||
"userId" TEXT,
|
||||
"embedding" public.vector(1536) NOT NULL,
|
||||
"searchableText" TEXT NOT NULL,
|
||||
"metadata" JSONB NOT NULL DEFAULT '{}',
|
||||
|
||||
CONSTRAINT "UnifiedContentEmbedding_pkey" PRIMARY KEY ("id")
|
||||
);
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "UnifiedContentEmbedding_contentType_idx" ON "UnifiedContentEmbedding"("contentType");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "UnifiedContentEmbedding_userId_idx" ON "UnifiedContentEmbedding"("userId");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "UnifiedContentEmbedding_contentType_userId_idx" ON "UnifiedContentEmbedding"("contentType", "userId");
|
||||
|
||||
-- CreateIndex
|
||||
-- NULLS NOT DISTINCT ensures only one public (NULL userId) embedding per contentType+contentId
|
||||
-- Requires PostgreSQL 15+. Supabase uses PostgreSQL 15+.
|
||||
CREATE UNIQUE INDEX "UnifiedContentEmbedding_contentType_contentId_userId_key" ON "UnifiedContentEmbedding"("contentType", "contentId", "userId") NULLS NOT DISTINCT;
|
||||
|
||||
-- CreateIndex
|
||||
-- HNSW index for fast vector similarity search on embeddings
|
||||
-- Uses cosine distance operator (<=>), which matches the query in hybrid_search.py
|
||||
CREATE INDEX "UnifiedContentEmbedding_embedding_idx" ON "UnifiedContentEmbedding" USING hnsw ("embedding" public.vector_cosine_ops);
|
||||
@@ -1,71 +0,0 @@
|
||||
-- Acknowledge Supabase-managed extensions to prevent drift warnings
|
||||
-- These extensions are pre-installed by Supabase in specific schemas
|
||||
-- This migration ensures they exist where available (Supabase) or skips gracefully (CI)
|
||||
|
||||
-- Create schemas (safe in both CI and Supabase)
|
||||
CREATE SCHEMA IF NOT EXISTS "extensions";
|
||||
|
||||
-- Extensions that exist in both CI and Supabase
|
||||
DO $$
|
||||
BEGIN
|
||||
CREATE EXTENSION IF NOT EXISTS "pgcrypto" WITH SCHEMA "extensions";
|
||||
EXCEPTION WHEN OTHERS THEN
|
||||
RAISE NOTICE 'pgcrypto extension not available, skipping';
|
||||
END $$;
|
||||
|
||||
DO $$
|
||||
BEGIN
|
||||
CREATE EXTENSION IF NOT EXISTS "uuid-ossp" WITH SCHEMA "extensions";
|
||||
EXCEPTION WHEN OTHERS THEN
|
||||
RAISE NOTICE 'uuid-ossp extension not available, skipping';
|
||||
END $$;
|
||||
|
||||
-- Supabase-specific extensions (skip gracefully in CI)
|
||||
DO $$
|
||||
BEGIN
|
||||
CREATE EXTENSION IF NOT EXISTS "pg_stat_statements" WITH SCHEMA "extensions";
|
||||
EXCEPTION WHEN OTHERS THEN
|
||||
RAISE NOTICE 'pg_stat_statements extension not available, skipping';
|
||||
END $$;
|
||||
|
||||
DO $$
|
||||
BEGIN
|
||||
CREATE EXTENSION IF NOT EXISTS "pg_net" WITH SCHEMA "extensions";
|
||||
EXCEPTION WHEN OTHERS THEN
|
||||
RAISE NOTICE 'pg_net extension not available, skipping';
|
||||
END $$;
|
||||
|
||||
DO $$
|
||||
BEGIN
|
||||
CREATE EXTENSION IF NOT EXISTS "pgjwt" WITH SCHEMA "extensions";
|
||||
EXCEPTION WHEN OTHERS THEN
|
||||
RAISE NOTICE 'pgjwt extension not available, skipping';
|
||||
END $$;
|
||||
|
||||
DO $$
|
||||
BEGIN
|
||||
CREATE SCHEMA IF NOT EXISTS "graphql";
|
||||
CREATE EXTENSION IF NOT EXISTS "pg_graphql" WITH SCHEMA "graphql";
|
||||
EXCEPTION WHEN OTHERS THEN
|
||||
RAISE NOTICE 'pg_graphql extension not available, skipping';
|
||||
END $$;
|
||||
|
||||
DO $$
|
||||
BEGIN
|
||||
CREATE SCHEMA IF NOT EXISTS "pgsodium";
|
||||
CREATE EXTENSION IF NOT EXISTS "pgsodium" WITH SCHEMA "pgsodium";
|
||||
EXCEPTION WHEN OTHERS THEN
|
||||
RAISE NOTICE 'pgsodium extension not available, skipping';
|
||||
END $$;
|
||||
|
||||
DO $$
|
||||
BEGIN
|
||||
CREATE SCHEMA IF NOT EXISTS "vault";
|
||||
CREATE EXTENSION IF NOT EXISTS "supabase_vault" WITH SCHEMA "vault";
|
||||
EXCEPTION WHEN OTHERS THEN
|
||||
RAISE NOTICE 'supabase_vault extension not available, skipping';
|
||||
END $$;
|
||||
|
||||
|
||||
-- Return to platform
|
||||
CREATE SCHEMA IF NOT EXISTS "platform";
|
||||
8
autogpt_platform/backend/poetry.lock
generated
8
autogpt_platform/backend/poetry.lock
generated
@@ -1924,14 +1924,14 @@ google = ["google-api-python-client (>=2.0.0)", "google-auth (>=2.0.0)"]
|
||||
|
||||
[[package]]
|
||||
name = "gravitasml"
|
||||
version = "0.1.4"
|
||||
version = "0.1.3"
|
||||
description = ""
|
||||
optional = false
|
||||
python-versions = "<4.0,>=3.10"
|
||||
groups = ["main"]
|
||||
files = [
|
||||
{file = "gravitasml-0.1.4-py3-none-any.whl", hash = "sha256:671a18b11d3d8a0e270c6a80c72cd058458b18d5ef7560d00010e962ab1bca74"},
|
||||
{file = "gravitasml-0.1.4.tar.gz", hash = "sha256:35d0d9fec7431817482d53d9c976e375557c3e041d1eb6928e809324a8c866e3"},
|
||||
{file = "gravitasml-0.1.3-py3-none-any.whl", hash = "sha256:51ff98b4564b7a61f7796f18d5f2558b919d30b3722579296089645b7bc18b85"},
|
||||
{file = "gravitasml-0.1.3.tar.gz", hash = "sha256:04d240b9fa35878252d57a36032130b6516487468847fcdced1022c032a20f57"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@@ -7295,4 +7295,4 @@ cffi = ["cffi (>=1.11)"]
|
||||
[metadata]
|
||||
lock-version = "2.1"
|
||||
python-versions = ">=3.10,<3.14"
|
||||
content-hash = "a93ba0cea3b465cb6ec3e3f258b383b09f84ea352ccfdbfa112902cde5653fc6"
|
||||
content-hash = "b762806d5d58fcf811220890c4705a16dc62b33387af43e3a29399c62a641098"
|
||||
|
||||
@@ -27,7 +27,7 @@ google-api-python-client = "^2.177.0"
|
||||
google-auth-oauthlib = "^1.2.2"
|
||||
google-cloud-storage = "^3.2.0"
|
||||
googlemaps = "^4.10.0"
|
||||
gravitasml = "^0.1.4"
|
||||
gravitasml = "^0.1.3"
|
||||
groq = "^0.30.0"
|
||||
html2text = "^2024.2.26"
|
||||
jinja2 = "^3.1.6"
|
||||
@@ -117,7 +117,6 @@ lint = "linter:lint"
|
||||
test = "run_tests:test"
|
||||
load-store-agents = "test.load_store_agents:run"
|
||||
export-api-schema = "backend.cli.generate_openapi_json:main"
|
||||
gen-prisma-stub = "gen_prisma_types_stub:main"
|
||||
oauth-tool = "backend.cli.oauth_tool:cli"
|
||||
|
||||
[tool.isort]
|
||||
@@ -135,9 +134,6 @@ ignore_patterns = []
|
||||
[tool.pytest.ini_options]
|
||||
asyncio_mode = "auto"
|
||||
asyncio_default_fixture_loop_scope = "session"
|
||||
# Disable syrupy plugin to avoid conflict with pytest-snapshot
|
||||
# Both provide --snapshot-update argument causing ArgumentError
|
||||
addopts = "-p no:syrupy"
|
||||
filterwarnings = [
|
||||
"ignore:'audioop' is deprecated:DeprecationWarning:discord.player",
|
||||
"ignore:invalid escape sequence:DeprecationWarning:tweepy.api",
|
||||
|
||||
@@ -1,15 +1,14 @@
|
||||
datasource db {
|
||||
provider = "postgresql"
|
||||
url = env("DATABASE_URL")
|
||||
directUrl = env("DIRECT_URL")
|
||||
extensions = [pgvector(map: "vector")]
|
||||
provider = "postgresql"
|
||||
url = env("DATABASE_URL")
|
||||
directUrl = env("DIRECT_URL")
|
||||
}
|
||||
|
||||
generator client {
|
||||
provider = "prisma-client-py"
|
||||
recursive_type_depth = -1
|
||||
interface = "asyncio"
|
||||
previewFeatures = ["views", "fullTextSearch", "postgresqlExtensions"]
|
||||
previewFeatures = ["views", "fullTextSearch"]
|
||||
partial_type_generator = "backend/data/partial_types.py"
|
||||
}
|
||||
|
||||
@@ -128,8 +127,8 @@ model BuilderSearchHistory {
|
||||
updatedAt DateTime @default(now()) @updatedAt
|
||||
|
||||
searchQuery String
|
||||
filter String[] @default([])
|
||||
byCreator String[] @default([])
|
||||
filter String[] @default([])
|
||||
byCreator String[] @default([])
|
||||
|
||||
userId String
|
||||
User User @relation(fields: [userId], references: [id], onDelete: Cascade)
|
||||
@@ -722,25 +721,26 @@ view StoreAgent {
|
||||
storeListingVersionId String
|
||||
updated_at DateTime
|
||||
|
||||
slug String
|
||||
agent_name String
|
||||
agent_video String?
|
||||
agent_output_demo String?
|
||||
agent_image String[]
|
||||
slug String
|
||||
agent_name String
|
||||
agent_video String?
|
||||
agent_output_demo String?
|
||||
agent_image String[]
|
||||
|
||||
featured Boolean @default(false)
|
||||
creator_username String?
|
||||
creator_avatar String?
|
||||
sub_heading String
|
||||
description String
|
||||
categories String[]
|
||||
runs Int
|
||||
rating Float
|
||||
versions String[]
|
||||
agentGraphVersions String[]
|
||||
agentGraphId String
|
||||
is_available Boolean @default(true)
|
||||
useForOnboarding Boolean @default(false)
|
||||
featured Boolean @default(false)
|
||||
creator_username String?
|
||||
creator_avatar String?
|
||||
sub_heading String
|
||||
description String
|
||||
categories String[]
|
||||
search Unsupported("tsvector")? @default(dbgenerated("''::tsvector"))
|
||||
runs Int
|
||||
rating Float
|
||||
versions String[]
|
||||
agentGraphVersions String[]
|
||||
agentGraphId String
|
||||
is_available Boolean @default(true)
|
||||
useForOnboarding Boolean @default(false)
|
||||
|
||||
// Materialized views used (refreshed every 15 minutes via pg_cron):
|
||||
// - mv_agent_run_counts - Pre-aggregated agent execution counts by agentGraphId
|
||||
@@ -856,14 +856,14 @@ model StoreListingVersion {
|
||||
AgentGraph AgentGraph @relation(fields: [agentGraphId, agentGraphVersion], references: [id, version])
|
||||
|
||||
// Content fields
|
||||
name String
|
||||
subHeading String
|
||||
videoUrl String?
|
||||
agentOutputDemoUrl String?
|
||||
imageUrls String[]
|
||||
description String
|
||||
instructions String?
|
||||
categories String[]
|
||||
name String
|
||||
subHeading String
|
||||
videoUrl String?
|
||||
agentOutputDemoUrl String?
|
||||
imageUrls String[]
|
||||
description String
|
||||
instructions String?
|
||||
categories String[]
|
||||
|
||||
isFeatured Boolean @default(false)
|
||||
|
||||
@@ -899,9 +899,6 @@ model StoreListingVersion {
|
||||
// Reviews for this specific version
|
||||
Reviews StoreListingReview[]
|
||||
|
||||
// Note: Embeddings now stored in UnifiedContentEmbedding table
|
||||
// Use contentType=STORE_AGENT and contentId=storeListingVersionId
|
||||
|
||||
@@unique([storeListingId, version])
|
||||
@@index([storeListingId, submissionStatus, isAvailable])
|
||||
@@index([submissionStatus])
|
||||
@@ -909,42 +906,6 @@ model StoreListingVersion {
|
||||
@@index([agentGraphId, agentGraphVersion]) // Non-unique index for efficient lookups
|
||||
}
|
||||
|
||||
// Content type enum for unified search across store agents, blocks, docs
|
||||
// Note: BLOCK/INTEGRATION are file-based (Python classes), not DB records
|
||||
// DOCUMENTATION are file-based (.md files), not DB records
|
||||
// Only STORE_AGENT and LIBRARY_AGENT are stored in database
|
||||
enum ContentType {
|
||||
STORE_AGENT // Database: StoreListingVersion
|
||||
BLOCK // File-based: Python classes in /backend/blocks/
|
||||
INTEGRATION // File-based: Python classes (blocks with credentials)
|
||||
DOCUMENTATION // File-based: .md/.mdx files
|
||||
LIBRARY_AGENT // Database: User's personal agents
|
||||
}
|
||||
|
||||
// Unified embeddings table for all searchable content types
|
||||
// Supports both public content (userId=null) and user-specific content (userId=userID)
|
||||
model UnifiedContentEmbedding {
|
||||
id String @id @default(uuid())
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
|
||||
// Content identification
|
||||
contentType ContentType
|
||||
contentId String // DB ID (storeListingVersionId) or file identifier (block.id, file_path)
|
||||
userId String? // NULL for public content (store, blocks, docs), userId for private content (library agents)
|
||||
|
||||
// Search data
|
||||
embedding Unsupported("vector(1536)") // pgvector embedding (extension in platform schema)
|
||||
searchableText String // Combined text for search and fallback
|
||||
metadata Json @default("{}") // Content-specific metadata
|
||||
|
||||
@@unique([contentType, contentId, userId], map: "UnifiedContentEmbedding_contentType_contentId_userId_key")
|
||||
@@index([contentType])
|
||||
@@index([userId])
|
||||
@@index([contentType, userId])
|
||||
@@index([embedding], map: "UnifiedContentEmbedding_embedding_idx")
|
||||
}
|
||||
|
||||
model StoreListingReview {
|
||||
id String @id @default(uuid())
|
||||
createdAt DateTime @default(now())
|
||||
@@ -1026,6 +987,151 @@ enum APIKeyStatus {
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
////////////////////////////////////////////////////////////
|
||||
///////////// LLM REGISTRY AND BILLING DATA /////////////
|
||||
////////////////////////////////////////////////////////////
|
||||
////////////////////////////////////////////////////////////
|
||||
|
||||
// LlmCostUnit: Defines how LLM MODEL costs are calculated (per run or per token).
|
||||
// This is distinct from BlockCostType (in backend/data/block.py) which defines
|
||||
// how BLOCK EXECUTION costs are calculated (per run, per byte, or per second).
|
||||
// LlmCostUnit is for pricing individual LLM model API calls in the registry,
|
||||
// while BlockCostType is for billing platform block executions.
|
||||
enum LlmCostUnit {
|
||||
RUN
|
||||
TOKENS
|
||||
}
|
||||
|
||||
model LlmModelCreator {
|
||||
id String @id @default(uuid())
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
|
||||
name String @unique // e.g., "openai", "anthropic", "meta"
|
||||
displayName String // e.g., "OpenAI", "Anthropic", "Meta"
|
||||
description String?
|
||||
websiteUrl String? // Link to creator's website
|
||||
logoUrl String? // URL to creator's logo
|
||||
|
||||
metadata Json @default("{}")
|
||||
|
||||
Models LlmModel[]
|
||||
}
|
||||
|
||||
model LlmProvider {
|
||||
id String @id @default(uuid())
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
|
||||
name String @unique
|
||||
displayName String
|
||||
description String?
|
||||
|
||||
defaultCredentialProvider String?
|
||||
defaultCredentialId String?
|
||||
defaultCredentialType String?
|
||||
|
||||
supportsTools Boolean @default(true)
|
||||
supportsJsonOutput Boolean @default(true)
|
||||
supportsReasoning Boolean @default(false)
|
||||
supportsParallelTool Boolean @default(false)
|
||||
|
||||
metadata Json @default("{}")
|
||||
|
||||
Models LlmModel[]
|
||||
}
|
||||
|
||||
model LlmModel {
|
||||
id String @id @default(uuid())
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
|
||||
slug String @unique
|
||||
displayName String
|
||||
description String?
|
||||
|
||||
providerId String
|
||||
Provider LlmProvider @relation(fields: [providerId], references: [id], onDelete: Restrict)
|
||||
|
||||
// Creator is the organization that created/trained the model (e.g., OpenAI, Meta)
|
||||
// This is distinct from the provider who hosts/serves the model (e.g., OpenRouter)
|
||||
creatorId String?
|
||||
Creator LlmModelCreator? @relation(fields: [creatorId], references: [id], onDelete: SetNull)
|
||||
|
||||
contextWindow Int
|
||||
maxOutputTokens Int?
|
||||
isEnabled Boolean @default(true)
|
||||
isRecommended Boolean @default(false)
|
||||
|
||||
capabilities Json @default("{}")
|
||||
metadata Json @default("{}")
|
||||
|
||||
Costs LlmModelCost[]
|
||||
|
||||
@@index([providerId, isEnabled])
|
||||
@@index([creatorId])
|
||||
@@index([slug])
|
||||
}
|
||||
|
||||
model LlmModelCost {
|
||||
id String @id @default(uuid())
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
unit LlmCostUnit @default(RUN)
|
||||
|
||||
creditCost Int
|
||||
|
||||
credentialProvider String
|
||||
credentialId String?
|
||||
credentialType String?
|
||||
currency String?
|
||||
|
||||
metadata Json @default("{}")
|
||||
|
||||
llmModelId String
|
||||
Model LlmModel @relation(fields: [llmModelId], references: [id], onDelete: Cascade)
|
||||
|
||||
@@index([llmModelId])
|
||||
@@index([credentialProvider])
|
||||
}
|
||||
|
||||
// Tracks model migrations for revert capability
|
||||
// When a model is disabled with migration, we record which nodes were affected
|
||||
// so they can be reverted when the original model is back online
|
||||
model LlmModelMigration {
|
||||
id String @id @default(uuid())
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
|
||||
sourceModelSlug String // The original model that was disabled
|
||||
targetModelSlug String // The model workflows were migrated to
|
||||
reason String? // Why the migration happened (e.g., "Provider outage")
|
||||
|
||||
// Track affected nodes as JSON array of node IDs
|
||||
// Format: ["node-uuid-1", "node-uuid-2", ...]
|
||||
migratedNodeIds Json @default("[]")
|
||||
nodeCount Int // Number of nodes migrated
|
||||
|
||||
// Custom pricing override for migrated workflows during the migration period.
|
||||
// Use case: When migrating users from an expensive model (e.g., GPT-4) to a cheaper
|
||||
// one (e.g., GPT-3.5), you may want to temporarily maintain the original pricing
|
||||
// to avoid billing surprises, or offer a discount during the transition.
|
||||
//
|
||||
// IMPORTANT: This field is intended for integration with the billing system.
|
||||
// When billing calculates costs for nodes affected by this migration, it should
|
||||
// check if customCreditCost is set and use it instead of the target model's cost.
|
||||
// If null, the target model's normal cost applies.
|
||||
//
|
||||
// TODO: Integrate with billing system to apply this override during cost calculation.
|
||||
customCreditCost Int?
|
||||
|
||||
// Revert tracking
|
||||
isReverted Boolean @default(false)
|
||||
revertedAt DateTime?
|
||||
|
||||
@@index([sourceModelSlug])
|
||||
@@index([targetModelSlug])
|
||||
@@index([isReverted])
|
||||
}
|
||||
////////////// OAUTH PROVIDER TABLES //////////////////
|
||||
////////////////////////////////////////////////////////////
|
||||
////////////////////////////////////////////////////////////
|
||||
@@ -1037,16 +1143,16 @@ model OAuthApplication {
|
||||
updatedAt DateTime @updatedAt
|
||||
|
||||
// Application metadata
|
||||
name String
|
||||
description String?
|
||||
logoUrl String? // URL to app logo stored in GCS
|
||||
clientId String @unique
|
||||
clientSecret String // Hashed with Scrypt (same as API keys)
|
||||
clientSecretSalt String // Salt for Scrypt hashing
|
||||
name String
|
||||
description String?
|
||||
logoUrl String? // URL to app logo stored in GCS
|
||||
clientId String @unique
|
||||
clientSecret String // Hashed with Scrypt (same as API keys)
|
||||
clientSecretSalt String // Salt for Scrypt hashing
|
||||
|
||||
// OAuth configuration
|
||||
redirectUris String[] // Allowed callback URLs
|
||||
grantTypes String[] @default(["authorization_code", "refresh_token"])
|
||||
grantTypes String[] @default(["authorization_code", "refresh_token"])
|
||||
scopes APIKeyPermission[] // Which permissions the app can request
|
||||
|
||||
// Application management
|
||||
|
||||
@@ -2,7 +2,6 @@
|
||||
"created_at": "2025-09-04T13:37:00",
|
||||
"credentials_input_schema": {
|
||||
"properties": {},
|
||||
"required": [],
|
||||
"title": "TestGraphCredentialsInputSchema",
|
||||
"type": "object"
|
||||
},
|
||||
|
||||
@@ -2,7 +2,6 @@
|
||||
{
|
||||
"credentials_input_schema": {
|
||||
"properties": {},
|
||||
"required": [],
|
||||
"title": "TestGraphCredentialsInputSchema",
|
||||
"type": "object"
|
||||
},
|
||||
|
||||
@@ -4,7 +4,6 @@
|
||||
"id": "test-agent-1",
|
||||
"graph_id": "test-agent-1",
|
||||
"graph_version": 1,
|
||||
"owner_user_id": "3e53486c-cf57-477e-ba2a-cb02dc828e1a",
|
||||
"image_url": null,
|
||||
"creator_name": "Test Creator",
|
||||
"creator_image_url": "",
|
||||
@@ -42,7 +41,6 @@
|
||||
"id": "test-agent-2",
|
||||
"graph_id": "test-agent-2",
|
||||
"graph_version": 1,
|
||||
"owner_user_id": "3e53486c-cf57-477e-ba2a-cb02dc828e1a",
|
||||
"image_url": null,
|
||||
"creator_name": "Test Creator",
|
||||
"creator_image_url": "",
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
{
|
||||
"submissions": [
|
||||
{
|
||||
"listing_id": "test-listing-id",
|
||||
"agent_id": "test-agent-id",
|
||||
"agent_version": 1,
|
||||
"name": "Test Agent",
|
||||
|
||||
@@ -1,146 +0,0 @@
|
||||
/**
|
||||
* Cloudflare Workers Script for docs.agpt.co → agpt.co/docs migration
|
||||
*
|
||||
* Deploy this script to handle all redirects with a single JavaScript file.
|
||||
* No rule limits, easy to maintain, handles all edge cases.
|
||||
*/
|
||||
|
||||
// URL mapping for special cases that don't follow patterns
|
||||
const SPECIAL_MAPPINGS = {
|
||||
// Root page
|
||||
'/': '/docs/platform',
|
||||
|
||||
// Special cases that don't follow standard patterns
|
||||
'/platform/d_id/': '/docs/integrations/block-integrations/d-id',
|
||||
'/platform/blocks/blocks/': '/docs/integrations',
|
||||
'/platform/blocks/decoder_block/': '/docs/integrations/block-integrations/text-decoder',
|
||||
'/platform/blocks/http': '/docs/integrations/block-integrations/send-web-request',
|
||||
'/platform/blocks/llm/': '/docs/integrations/block-integrations/ai-and-llm',
|
||||
'/platform/blocks/time_blocks': '/docs/integrations/block-integrations/time-and-date',
|
||||
'/platform/blocks/text_to_speech_block': '/docs/integrations/block-integrations/text-to-speech',
|
||||
'/platform/blocks/ai_shortform_video_block': '/docs/integrations/block-integrations/ai-shortform-video',
|
||||
'/platform/blocks/replicate_flux_advanced': '/docs/integrations/block-integrations/replicate-flux-advanced',
|
||||
'/platform/blocks/flux_kontext': '/docs/integrations/block-integrations/flux-kontext',
|
||||
'/platform/blocks/ai_condition/': '/docs/integrations/block-integrations/ai-condition',
|
||||
'/platform/blocks/email_block': '/docs/integrations/block-integrations/email',
|
||||
'/platform/blocks/google_maps': '/docs/integrations/block-integrations/google-maps',
|
||||
'/platform/blocks/google/gmail': '/docs/integrations/block-integrations/gmail',
|
||||
'/platform/blocks/github/issues/': '/docs/integrations/block-integrations/github-issues',
|
||||
'/platform/blocks/github/repo/': '/docs/integrations/block-integrations/github-repo',
|
||||
'/platform/blocks/github/pull_requests': '/docs/integrations/block-integrations/github-pull-requests',
|
||||
'/platform/blocks/twitter/twitter': '/docs/integrations/block-integrations/twitter',
|
||||
'/classic/setup/': '/docs/classic/setup/setting-up-autogpt-classic',
|
||||
'/code-of-conduct/': '/docs/classic/help-us-improve-autogpt/code-of-conduct',
|
||||
'/contributing/': '/docs/classic/contributing',
|
||||
'/contribute/': '/docs/contribute',
|
||||
'/forge/components/introduction/': '/docs/classic/forge/introduction'
|
||||
};
|
||||
|
||||
/**
|
||||
* Transform path by replacing underscores with hyphens and removing trailing slashes
|
||||
*/
|
||||
function transformPath(path) {
|
||||
return path.replace(/_/g, '-').replace(/\/$/, '');
|
||||
}
|
||||
|
||||
/**
|
||||
* Handle docs.agpt.co redirects
|
||||
*/
|
||||
function handleDocsRedirect(url) {
|
||||
const pathname = url.pathname;
|
||||
|
||||
// Check special mappings first
|
||||
if (SPECIAL_MAPPINGS[pathname]) {
|
||||
return `https://agpt.co${SPECIAL_MAPPINGS[pathname]}`;
|
||||
}
|
||||
|
||||
// Pattern-based redirects
|
||||
|
||||
// Platform blocks: /platform/blocks/* → /docs/integrations/block-integrations/*
|
||||
if (pathname.startsWith('/platform/blocks/')) {
|
||||
const blockName = pathname.substring('/platform/blocks/'.length);
|
||||
const transformedName = transformPath(blockName);
|
||||
return `https://agpt.co/docs/integrations/block-integrations/${transformedName}`;
|
||||
}
|
||||
|
||||
// Platform contributing: /platform/contributing/* → /docs/platform/contributing/*
|
||||
if (pathname.startsWith('/platform/contributing/')) {
|
||||
const subPath = pathname.substring('/platform/contributing/'.length);
|
||||
return `https://agpt.co/docs/platform/contributing/${subPath}`;
|
||||
}
|
||||
|
||||
// Platform general: /platform/* → /docs/platform/* (with underscore→hyphen)
|
||||
if (pathname.startsWith('/platform/')) {
|
||||
const subPath = pathname.substring('/platform/'.length);
|
||||
const transformedPath = transformPath(subPath);
|
||||
return `https://agpt.co/docs/platform/${transformedPath}`;
|
||||
}
|
||||
|
||||
// Forge components: /forge/components/* → /docs/classic/forge/introduction/*
|
||||
if (pathname.startsWith('/forge/components/')) {
|
||||
const subPath = pathname.substring('/forge/components/'.length);
|
||||
return `https://agpt.co/docs/classic/forge/introduction/${subPath}`;
|
||||
}
|
||||
|
||||
// Forge general: /forge/* → /docs/classic/forge/*
|
||||
if (pathname.startsWith('/forge/')) {
|
||||
const subPath = pathname.substring('/forge/'.length);
|
||||
return `https://agpt.co/docs/classic/forge/${subPath}`;
|
||||
}
|
||||
|
||||
// Classic: /classic/* → /docs/classic/*
|
||||
if (pathname.startsWith('/classic/')) {
|
||||
const subPath = pathname.substring('/classic/'.length);
|
||||
return `https://agpt.co/docs/classic/${subPath}`;
|
||||
}
|
||||
|
||||
// Default fallback
|
||||
return 'https://agpt.co/docs/';
|
||||
}
|
||||
|
||||
/**
|
||||
* Main Worker function
|
||||
*/
|
||||
export default {
|
||||
async fetch(request, env, ctx) {
|
||||
const url = new URL(request.url);
|
||||
|
||||
// Only handle docs.agpt.co requests
|
||||
if (url.hostname === 'docs.agpt.co') {
|
||||
const redirectUrl = handleDocsRedirect(url);
|
||||
|
||||
return new Response(null, {
|
||||
status: 301,
|
||||
headers: {
|
||||
'Location': redirectUrl,
|
||||
'Cache-Control': 'max-age=300' // Cache redirects for 5 minutes
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// For non-docs requests, pass through or return 404
|
||||
return new Response('Not Found', { status: 404 });
|
||||
}
|
||||
};
|
||||
|
||||
// Test function for local development
|
||||
export function testRedirects() {
|
||||
const testCases = [
|
||||
'https://docs.agpt.co/',
|
||||
'https://docs.agpt.co/platform/getting-started/',
|
||||
'https://docs.agpt.co/platform/advanced_setup/',
|
||||
'https://docs.agpt.co/platform/blocks/basic/',
|
||||
'https://docs.agpt.co/platform/blocks/ai_condition/',
|
||||
'https://docs.agpt.co/classic/setup/',
|
||||
'https://docs.agpt.co/forge/components/agents/',
|
||||
'https://docs.agpt.co/contributing/',
|
||||
'https://docs.agpt.co/unknown-page'
|
||||
];
|
||||
|
||||
console.log('Testing redirects:');
|
||||
testCases.forEach(testUrl => {
|
||||
const url = new URL(testUrl);
|
||||
const result = handleDocsRedirect(url);
|
||||
console.log(`${testUrl} → ${result}`);
|
||||
});
|
||||
}
|
||||
@@ -37,7 +37,7 @@ services:
|
||||
context: ../
|
||||
dockerfile: autogpt_platform/backend/Dockerfile
|
||||
target: migrate
|
||||
command: ["sh", "-c", "poetry run prisma generate && poetry run gen-prisma-stub && poetry run prisma migrate deploy"]
|
||||
command: ["sh", "-c", "poetry run prisma generate && poetry run prisma migrate deploy"]
|
||||
develop:
|
||||
watch:
|
||||
- path: ./
|
||||
|
||||
@@ -46,15 +46,14 @@
|
||||
"@radix-ui/react-scroll-area": "1.2.10",
|
||||
"@radix-ui/react-select": "2.2.6",
|
||||
"@radix-ui/react-separator": "1.1.7",
|
||||
"@radix-ui/react-slider": "1.3.6",
|
||||
"@radix-ui/react-slot": "1.2.3",
|
||||
"@radix-ui/react-switch": "1.2.6",
|
||||
"@radix-ui/react-tabs": "1.1.13",
|
||||
"@radix-ui/react-toast": "1.2.15",
|
||||
"@radix-ui/react-tooltip": "1.2.8",
|
||||
"@rjsf/core": "6.1.2",
|
||||
"@rjsf/utils": "6.1.2",
|
||||
"@rjsf/validator-ajv8": "6.1.2",
|
||||
"@rjsf/core": "5.24.13",
|
||||
"@rjsf/utils": "5.24.13",
|
||||
"@rjsf/validator-ajv8": "5.24.13",
|
||||
"@sentry/nextjs": "10.27.0",
|
||||
"@supabase/ssr": "0.7.0",
|
||||
"@supabase/supabase-js": "2.78.0",
|
||||
@@ -92,6 +91,7 @@
|
||||
"react-currency-input-field": "4.0.3",
|
||||
"react-day-picker": "9.11.1",
|
||||
"react-dom": "18.3.1",
|
||||
"react-drag-drop-files": "2.4.0",
|
||||
"react-hook-form": "7.66.0",
|
||||
"react-icons": "5.5.0",
|
||||
"react-markdown": "9.0.3",
|
||||
|
||||
3868
autogpt_platform/frontend/pnpm-lock.yaml
generated
3868
autogpt_platform/frontend/pnpm-lock.yaml
generated
File diff suppressed because it is too large
Load Diff
Binary file not shown.
|
Before Width: | Height: | Size: 2.6 KiB |
Binary file not shown.
|
Before Width: | Height: | Size: 16 KiB |
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user