Compare commits

..

29 Commits

Author SHA1 Message Date
Bentlybro
69c9136060 Improve LLM registry consistency and frontend UX
Backend: Refactored LLM registry state updates to use atomic swaps for consistency, made Redis notification publishing async, and improved schema/discriminator mapping access to prevent external mutation. Added stricter slug validation for model creation. Frontend: Enhanced Edit and Delete Model modals to refresh data after actions and show error states, and wrapped the LLM Registry Dashboard in an error boundary for better error handling.
2026-01-12 12:52:40 +00:00
Bentlybro
6ed8bb4f14 Clarify custom pricing override for LLM migrations
Improved documentation and comments for the custom_credit_cost field in backend, frontend, and schema files to clarify its use as a billing override during LLM model migrations. Also removed unused LLM registry types and API methods from frontend code, and renamed useLlmRegistryPage.ts to getLlmRegistryPage.ts for consistency.
2026-01-12 11:40:49 +00:00
Bentlybro
6cf28e58d3 Improve LLM model default selection and admin actions
Backend logic for selecting the default LLM model now prioritizes the recommended model, with improved fallbacks and error handling if no models are enabled. The migration enforces a single recommended model at the database level. Frontend admin actions for LLM models and providers now correctly interpret form values for boolean fields and fix the return type for the delete action.
2026-01-09 15:18:54 +00:00
Bentlybro
632ef24408 Add recommended LLM model feature to admin UI and API
Introduces the ability for admins to mark a model as the recommended default via a new boolean field `isRecommended` on LlmModel. Adds backend endpoints and logic to set, get, and persist the recommended model, including a migration and schema update. Updates the frontend admin UI to allow selecting and displaying the recommended model, and reflects the recommended status in model tables and dropdowns.
2026-01-07 19:43:16 +00:00
Bentlybro
6dc767aafa Improve admin LLM registry UX and error handling
Adds user feedback and error handling to LLM registry modals (add/edit creator, model, provider) in the admin UI, including loading states and error messages. Ensures atomic updates for model costs in the backend using transactions. Improves display of creator website URLs and handles the case where no LLM models are available in analytics config. Updates icon usage and removes unnecessary 'use server' directive.
2026-01-07 14:17:37 +00:00
Bentlybro
23e37fd163 Replace delete button with DeleteCreatorModal
Refactored the creator deletion flow in CreatorsTable to use a new DeleteCreatorModal component, providing a confirmation dialog and improved error handling. The previous DeleteCreatorButton was removed and replaced for better user experience and safety.
2026-01-06 14:22:21 +00:00
Bentlybro
63869fe710 format 2026-01-06 13:40:16 +00:00
Bentlybro
90ae75d475 Delete settings.local.json 2026-01-06 13:07:46 +00:00
Bentlybro
9b6dc3be12 prettier 2026-01-06 13:01:51 +00:00
Bentlybro
9b8b6252c5 Refactor LLM registry admin backend and frontend
Refactored backend imports and test mocks to use new admin LLM routes location. Cleaned up and reordered imports for clarity and consistency. Improved code formatting and readability across backend and frontend files. Renamed useLlmRegistryPage to getLlmRegistryPageData for clarity and updated all usages. No functional changes to business logic.
2026-01-06 12:57:33 +00:00
Bentlybro
0d321323f5 Add GPT-5.2 model and admin LLM endpoints
Introduces a migration to add the GPT-5.2 model and updates the O3 model slug in the database. Refactors backend LLM model registry usage for search and migration logic. Expands the OpenAPI spec with new admin endpoints for managing LLM models, providers, creators, and migrations.
2026-01-06 12:46:20 +00:00
Bentlybro
3ee3ea8f02 Merge branch 'dev' into add-llm-manager-ui 2026-01-06 10:28:43 +00:00
Bentlybro
7a842d35ae Refactor LLM admin to use generated API and types
Replaces usage of the custom BackendApi client and legacy types in admin LLM actions and components with generated OpenAPI endpoints and types. Updates API calls, error handling, and type imports throughout the admin LLM dashboard. Also corrects operationId fields in backend routes and OpenAPI spec for consistency.
2026-01-06 09:43:15 +00:00
Bentlybro
07e8568f57 Refactor LLM admin UI for improved consistency and API support
Refactored admin LLM actions and components to improve code organization, update color schemes to use design tokens, and enhance UI consistency. Updated API types and endpoints to support model creators and migrations, and switched tables to use shared Table components. Added and documented new API endpoints for model migrations, creators, and usage in openapi.json.
2026-01-05 17:10:04 +00:00
Bentlybro
13a0caa5d8 Improve model modal UX and credential provider selection
Add auto-selection of creator based on provider in AddModelModal for better usability. Update EditModelModal to use a select dropdown for credential provider, add helper text, and set credential_type as a hidden default input.
2026-01-05 16:01:36 +00:00
Bentlybro
664523a721 Refactor LLM model cost and update logic, remove 'Enabled' checkbox
Improves backend handling of LLM model cost updates by separating scalar and relation field updates, ensuring costs are deleted and recreated as needed. Optional cost fields are now only included if present, and metadata is handled as a Prisma Json type. On the frontend, removes the 'Enabled' checkbox from the EditModelModal component.
2026-01-05 15:56:45 +00:00
Bentlybro
33b103d09b Improve LLM model migration and add AgentNode index
Refactored model migration and revert logic for atomicity and consistency, including transactional node selection and updates. Enhanced revert API to support optional re-enabling of source models and reporting of nodes not reverted. Added a database index on AgentNode.constantInput->>'model' to optimize migration queries and performance.
2026-01-05 15:22:33 +00:00
Bentlybro
2e3fc99caa Add LLM model creator support to registry and admin UI
Introduces the LlmModelCreator entity to distinguish model creators (e.g., OpenAI, Meta) from providers, with full CRUD API endpoints, database migration, and Prisma schema updates. Backend and frontend are updated to support associating models with creators, including admin UI for managing creators and selecting them when creating or editing models. Existing models are backfilled with known creators via migration.
2026-01-05 10:17:00 +00:00
Bently
52c7b223df Add migration management for LLM models
Introduced a new LlmModelMigration model to track migrations when disabling LLM models, allowing for revert capability. Updated the toggle model API to create migration records with optional reason and custom pricing. Added endpoints for listing and reverting migrations, along with corresponding frontend actions and UI components to manage migrations effectively. Enhanced the admin dashboard to display active migrations, improving overall usability and tracking of model changes.
2025-12-19 00:06:03 +00:00
Bently
24d86fde30 Enhance LLM model toggle functionality with migration support
Updated the toggle LLM model API to include an optional migration feature, allowing workflows to be migrated to a specified replacement model when disabling a model. Refactored related request and response models to accommodate this change. Improved error handling and logging for better debugging. Updated frontend actions and components to support the new migration parameter.
2025-12-18 23:32:41 +00:00
Bentlybro
df7be39724 Refactor add model/provider forms to modal dialogs
Replaces AddModelForm and AddProviderForm components with AddModelModal and AddProviderModal, converting the add model/provider flows to use modal dialogs instead of inline forms. Updates LlmRegistryDashboard to use the new modal components and removes dropdown/form selection logic for a cleaner UI.
2025-12-13 19:39:30 +00:00
Bentlybro
8c7b1af409 Refactor LLM registry to modular structure and improve admin UI
Moved LLM registry backend code into a dedicated llm_registry module with submodules for model types, notifications, schema utilities, and registry logic. Updated all backend imports to use the new structure. On the frontend, redesigned the admin LLM registry page with a dashboard layout, modularized data fetching, and improved forms for adding/editing providers and models. Updated UI components for better usability and maintainability.
2025-12-12 11:32:28 +00:00
Bentlybro
b6e2f05b63 Refactor LlmModel to support dynamic registry slugs
Replaces hardcoded LlmModel enum values with a dynamic approach that accepts any model slug from the registry. Updates block defaults to use a default_factory method that pulls the preferred model from the registry. Refactors model validation, migration, and admin analytics routes to use registry-based model lists, ensuring only enabled models are selectable and recommended. Adds get_default_model_slug to llm_registry for consistent default selection.
2025-12-09 15:49:44 +00:00
Bentlybro
7435739053 Add fallback logic for disabled LLM models
Introduces fallback selection for disabled LLM models in llm_call, preferring enabled models from the same provider. Updates registry utilities to support fallback lookup, model info retrieval, and validation of all known model slugs. Schema utilities now keep all known models in validation enums while showing only enabled models in UI options.
2025-12-08 11:29:31 +00:00
Bentlybro
a97fdba554 Restrict LLM model and provider listings to enabled items
Updated public LLM model and provider listing endpoints to only return enabled models and providers. Refactored database access functions to support filtering by enabled status, and improved transaction safety for model deletion. Adjusted tests and internal documentation to reflect these changes.
2025-12-04 15:56:25 +00:00
Bentlybro
ec705bbbcf format 2025-12-02 14:49:03 +00:00
Bentlybro
7fe6b576ae Add LLM model deletion and migration feature
Introduces backend and frontend support for deleting LLM models with automatic workflow migration to a replacement model. Adds API endpoints, database logic, response models, frontend modal, and actions for safe deletion, including usage count display and error handling. Updates table components to use new modal and refactors table imports.
2025-12-02 14:41:13 +00:00
Bentlybro
dfc42003a1 Refactor LLM registry integration and schema updates
Moved LLM registry schema update logic to a shared utility (llm_schema_utils.py) and refactored block and credentials schema post-processing to use this helper. Extracted executor registry initialization and notification handling into llm_registry_init.py for better separation of concerns. Updated manager.py to use new initialization and subscription functions, improving maintainability and clarity of LLM registry refresh logic.
2025-12-01 17:55:43 +00:00
Bentlybro
6bbeb22943 Refactor LLM model registry to use database
Migrates LLM model metadata and cost configuration from static code to a dynamic database-driven registry. Adds new backend modules for LLM registry and model types, updates block and cost configuration logic to fetch model info and costs from the database, and ensures block schemas and UI options reflect enabled/disabled models. This enables dynamic management of LLM models and costs via the admin UI and database migrations.
2025-12-01 14:37:46 +00:00
403 changed files with 16718 additions and 17345 deletions

View File

@@ -1,37 +0,0 @@
{
"worktreeCopyPatterns": [
".env*",
".vscode/**",
".auth/**",
".claude/**",
"autogpt_platform/.env*",
"autogpt_platform/backend/.env*",
"autogpt_platform/frontend/.env*",
"autogpt_platform/frontend/.auth/**",
"autogpt_platform/db/docker/.env*"
],
"worktreeCopyIgnores": [
"**/node_modules/**",
"**/dist/**",
"**/.git/**",
"**/Thumbs.db",
"**/.DS_Store",
"**/.next/**",
"**/__pycache__/**",
"**/.ruff_cache/**",
"**/.pytest_cache/**",
"**/*.pyc",
"**/playwright-report/**",
"**/logs/**",
"**/site/**"
],
"worktreePathTemplate": "$BASE_PATH.worktree",
"postCreateCmd": [
"cd autogpt_platform/autogpt_libs && poetry install",
"cd autogpt_platform/backend && poetry install && poetry run prisma generate",
"cd autogpt_platform/frontend && pnpm install",
"cd docs && pip install -r requirements.txt"
],
"terminalCommand": "code .",
"deleteBranchWithWorktree": false
}

View File

@@ -16,7 +16,6 @@
!autogpt_platform/backend/poetry.lock
!autogpt_platform/backend/README.md
!autogpt_platform/backend/.env
!autogpt_platform/backend/gen_prisma_types_stub.py
# Platform - Market
!autogpt_platform/market/market/

View File

@@ -74,7 +74,7 @@ jobs:
- name: Generate Prisma Client
working-directory: autogpt_platform/backend
run: poetry run prisma generate && poetry run gen-prisma-stub
run: poetry run prisma generate
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
- name: Set up Node.js

View File

@@ -90,7 +90,7 @@ jobs:
- name: Generate Prisma Client
working-directory: autogpt_platform/backend
run: poetry run prisma generate && poetry run gen-prisma-stub
run: poetry run prisma generate
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
- name: Set up Node.js

View File

@@ -72,7 +72,7 @@ jobs:
- name: Generate Prisma Client
working-directory: autogpt_platform/backend
run: poetry run prisma generate && poetry run gen-prisma-stub
run: poetry run prisma generate
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
- name: Set up Node.js
@@ -108,16 +108,6 @@ jobs:
# run: pnpm playwright install --with-deps chromium
# Docker setup for development environment
- name: Free up disk space
run: |
# Remove large unused tools to free disk space for Docker builds
sudo rm -rf /usr/share/dotnet
sudo rm -rf /usr/local/lib/android
sudo rm -rf /opt/ghc
sudo rm -rf /opt/hostedtoolcache/CodeQL
sudo docker system prune -af
df -h
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3

View File

@@ -134,7 +134,7 @@ jobs:
run: poetry install
- name: Generate Prisma Client
run: poetry run prisma generate && poetry run gen-prisma-stub
run: poetry run prisma generate
- id: supabase
name: Start Supabase
@@ -176,7 +176,7 @@ jobs:
}
- name: Run Database Migrations
run: poetry run prisma migrate deploy
run: poetry run prisma migrate dev --name updates
env:
DATABASE_URL: ${{ steps.supabase.outputs.DB_URL }}
DIRECT_URL: ${{ steps.supabase.outputs.DB_URL }}

View File

@@ -12,7 +12,6 @@ reset-db:
rm -rf db/docker/volumes/db/data
cd backend && poetry run prisma migrate deploy
cd backend && poetry run prisma generate
cd backend && poetry run gen-prisma-stub
# View logs for core services
logs-core:
@@ -34,7 +33,6 @@ init-env:
migrate:
cd backend && poetry run prisma migrate deploy
cd backend && poetry run prisma generate
cd backend && poetry run gen-prisma-stub
run-backend:
cd backend && poetry run app

View File

@@ -18,4 +18,3 @@ load-tests/results/
load-tests/*.json
load-tests/*.log
load-tests/node_modules/*
migrations/*/rollback*.sql

View File

@@ -48,8 +48,7 @@ RUN poetry install --no-ansi --no-root
# Generate Prisma client
COPY autogpt_platform/backend/schema.prisma ./
COPY autogpt_platform/backend/backend/data/partial_types.py ./backend/data/partial_types.py
COPY autogpt_platform/backend/gen_prisma_types_stub.py ./
RUN poetry run prisma generate && poetry run gen-prisma-stub
RUN poetry run prisma generate
FROM debian:13-slim AS server_dependencies

View File

@@ -122,6 +122,24 @@ class ConnectionManager:
return len(connections)
async def broadcast_to_all(self, *, method: WSMethod, data: dict) -> int:
"""Broadcast a message to all active websocket connections."""
message = WSMessage(
method=method,
data=data,
).model_dump_json()
connections = tuple(self.active_connections)
if not connections:
return 0
await asyncio.gather(
*(connection.send_text(message) for connection in connections),
return_exceptions=True,
)
return len(connections)
async def _subscribe(self, channel_key: str, websocket: WebSocket) -> str:
if channel_key not in self.subscriptions:
self.subscriptions[channel_key] = set()

View File

@@ -173,30 +173,64 @@ async def get_execution_analytics_config(
# Return with provider prefix for clarity
return f"{provider_name}: {model_name}"
# Include all LlmModel values (no more filtering by hardcoded list)
recommended_model = LlmModel.GPT4O_MINI.value
for model in LlmModel:
label = generate_model_label(model)
# Get all models from the registry (dynamic, not hardcoded enum)
from backend.data import llm_registry
from backend.server.v2.llm import db as llm_db
# Get the recommended model from the database (configurable via admin UI)
recommended_model_slug = await llm_db.get_recommended_model_slug()
# Build the available models list
first_enabled_slug = None
for registry_model in llm_registry.iter_dynamic_models():
# Only include enabled models in the list
if not registry_model.is_enabled:
continue
# Track first enabled model as fallback
if first_enabled_slug is None:
first_enabled_slug = registry_model.slug
model_enum = LlmModel(registry_model.slug) # Create enum instance from slug
label = generate_model_label(model_enum)
# Add "(Recommended)" suffix to the recommended model
if model.value == recommended_model:
if registry_model.slug == recommended_model_slug:
label += " (Recommended)"
available_models.append(
ModelInfo(
value=model.value,
value=registry_model.slug,
label=label,
provider=model.provider,
provider=registry_model.metadata.provider,
)
)
# Sort models by provider and name for better UX
available_models.sort(key=lambda x: (x.provider, x.label))
# Handle case where no models are available
if not available_models:
logger.warning(
"No enabled LLM models found in registry. "
"Ensure models are configured and enabled in the LLM Registry."
)
# Provide a placeholder entry so admins see meaningful feedback
available_models.append(
ModelInfo(
value="",
label="No models available - configure in LLM Registry",
provider="none",
)
)
# Use the DB recommended model, or fallback to first enabled model
final_recommended = recommended_model_slug or first_enabled_slug or ""
return ExecutionAnalyticsConfig(
available_models=available_models,
default_system_prompt=DEFAULT_SYSTEM_PROMPT,
default_user_prompt=DEFAULT_USER_PROMPT,
recommended_model=recommended_model,
recommended_model=final_recommended,
)

View File

@@ -0,0 +1,554 @@
import logging
import autogpt_libs.auth
import fastapi
from backend.data import llm_registry
from backend.data.block_cost_config import refresh_llm_costs
from backend.server.v2.llm import db as llm_db
from backend.server.v2.llm import model as llm_model
logger = logging.getLogger(__name__)
router = fastapi.APIRouter(
prefix="/admin/llm",
tags=["llm", "admin"],
dependencies=[fastapi.Security(autogpt_libs.auth.requires_admin_user)],
)
async def _refresh_runtime_state() -> None:
"""Refresh the LLM registry and clear all related caches to ensure real-time updates."""
logger.info("Refreshing LLM registry runtime state...")
# Refresh registry from database
await llm_registry.refresh_llm_registry()
refresh_llm_costs()
# Clear block schema caches so they're regenerated with updated model options
from backend.data.block import BlockSchema
BlockSchema.clear_all_schema_caches()
logger.info("Cleared all block schema caches")
# Clear the /blocks endpoint cache so frontend gets updated schemas
try:
from backend.api.features.v1 import _get_cached_blocks
_get_cached_blocks.cache_clear()
logger.info("Cleared /blocks endpoint cache")
except Exception as e:
logger.warning("Failed to clear /blocks cache: %s", e)
# Clear the v2 builder providers cache (if it exists)
try:
from backend.api.features.builder import db as builder_db
if hasattr(builder_db, "_get_all_providers"):
builder_db._get_all_providers.cache_clear()
logger.info("Cleared v2 builder providers cache")
except Exception as e:
logger.debug("Could not clear v2 builder cache: %s", e)
# Notify all executor services to refresh their registry cache
from backend.data.llm_registry import publish_registry_refresh_notification
await publish_registry_refresh_notification()
logger.info("Published registry refresh notification")
@router.get(
"/providers",
summary="List LLM providers",
response_model=llm_model.LlmProvidersResponse,
)
async def list_llm_providers(include_models: bool = True):
providers = await llm_db.list_providers(include_models=include_models)
return llm_model.LlmProvidersResponse(providers=providers)
@router.post(
"/providers",
summary="Create LLM provider",
response_model=llm_model.LlmProvider,
)
async def create_llm_provider(request: llm_model.UpsertLlmProviderRequest):
provider = await llm_db.upsert_provider(request=request)
await _refresh_runtime_state()
return provider
@router.patch(
"/providers/{provider_id}",
summary="Update LLM provider",
response_model=llm_model.LlmProvider,
)
async def update_llm_provider(
provider_id: str,
request: llm_model.UpsertLlmProviderRequest,
):
provider = await llm_db.upsert_provider(request=request, provider_id=provider_id)
await _refresh_runtime_state()
return provider
@router.get(
"/models",
summary="List LLM models",
response_model=llm_model.LlmModelsResponse,
)
async def list_llm_models(provider_id: str | None = fastapi.Query(default=None)):
models = await llm_db.list_models(provider_id=provider_id)
return llm_model.LlmModelsResponse(models=models)
@router.post(
"/models",
summary="Create LLM model",
response_model=llm_model.LlmModel,
)
async def create_llm_model(request: llm_model.CreateLlmModelRequest):
model = await llm_db.create_model(request=request)
await _refresh_runtime_state()
return model
@router.patch(
"/models/{model_id}",
summary="Update LLM model",
response_model=llm_model.LlmModel,
)
async def update_llm_model(
model_id: str,
request: llm_model.UpdateLlmModelRequest,
):
model = await llm_db.update_model(model_id=model_id, request=request)
await _refresh_runtime_state()
return model
@router.patch(
"/models/{model_id}/toggle",
summary="Toggle LLM model availability",
response_model=llm_model.ToggleLlmModelResponse,
)
async def toggle_llm_model(
model_id: str,
request: llm_model.ToggleLlmModelRequest,
):
"""
Toggle a model's enabled status, optionally migrating workflows when disabling.
If disabling a model and `migrate_to_slug` is provided, all workflows using
this model will be migrated to the specified replacement model before disabling.
A migration record is created which can be reverted later using the revert endpoint.
Optional fields:
- `migration_reason`: Reason for the migration (e.g., "Provider outage")
- `custom_credit_cost`: Custom pricing override for billing during migration
"""
try:
result = await llm_db.toggle_model(
model_id=model_id,
is_enabled=request.is_enabled,
migrate_to_slug=request.migrate_to_slug,
migration_reason=request.migration_reason,
custom_credit_cost=request.custom_credit_cost,
)
await _refresh_runtime_state()
if result.nodes_migrated > 0:
logger.info(
"Toggled model '%s' to %s and migrated %d nodes to '%s' (migration_id=%s)",
result.model.slug,
"enabled" if request.is_enabled else "disabled",
result.nodes_migrated,
result.migrated_to_slug,
result.migration_id,
)
return result
except ValueError as exc:
logger.warning("Model toggle validation failed: %s", exc)
raise fastapi.HTTPException(status_code=400, detail=str(exc)) from exc
except Exception as exc:
logger.exception("Failed to toggle LLM model %s: %s", model_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to toggle model availability",
) from exc
@router.get(
"/models/{model_id}/usage",
summary="Get model usage count",
response_model=llm_model.LlmModelUsageResponse,
)
async def get_llm_model_usage(model_id: str):
"""Get the number of workflow nodes using this model."""
try:
return await llm_db.get_model_usage(model_id=model_id)
except ValueError as exc:
raise fastapi.HTTPException(status_code=404, detail=str(exc)) from exc
except Exception as exc:
logger.exception("Failed to get model usage %s: %s", model_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to get model usage",
) from exc
@router.delete(
"/models/{model_id}",
summary="Delete LLM model and migrate workflows",
response_model=llm_model.DeleteLlmModelResponse,
)
async def delete_llm_model(
model_id: str,
replacement_model_slug: str = fastapi.Query(
..., description="Slug of the model to migrate existing workflows to"
),
):
"""
Delete a model and automatically migrate all workflows using it to a replacement model.
This endpoint:
1. Validates the replacement model exists and is enabled
2. Counts how many workflow nodes use the model being deleted
3. Updates all AgentNode.constantInput->model fields to the replacement
4. Deletes the model record
5. Refreshes all caches and notifies executors
Example: DELETE /admin/llm/models/{id}?replacement_model_slug=gpt-4o
"""
try:
result = await llm_db.delete_model(
model_id=model_id, replacement_model_slug=replacement_model_slug
)
await _refresh_runtime_state()
logger.info(
"Deleted model '%s' and migrated %d nodes to '%s'",
result.deleted_model_slug,
result.nodes_migrated,
result.replacement_model_slug,
)
return result
except ValueError as exc:
# Validation errors (model not found, replacement invalid, etc.)
logger.warning("Model deletion validation failed: %s", exc)
raise fastapi.HTTPException(status_code=400, detail=str(exc)) from exc
except Exception as exc:
logger.exception("Failed to delete LLM model %s: %s", model_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to delete model and migrate workflows",
) from exc
# ============================================================================
# Migration Management Endpoints
# ============================================================================
@router.get(
"/migrations",
summary="List model migrations",
response_model=llm_model.LlmMigrationsResponse,
)
async def list_llm_migrations(
include_reverted: bool = fastapi.Query(
default=False, description="Include reverted migrations in the list"
),
):
"""
List all model migrations.
Migrations are created when disabling a model with the migrate_to_slug option.
They can be reverted to restore the original model configuration.
"""
try:
migrations = await llm_db.list_migrations(include_reverted=include_reverted)
return llm_model.LlmMigrationsResponse(migrations=migrations)
except Exception as exc:
logger.exception("Failed to list migrations: %s", exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to list migrations",
) from exc
@router.get(
"/migrations/{migration_id}",
summary="Get migration details",
response_model=llm_model.LlmModelMigration,
)
async def get_llm_migration(migration_id: str):
"""Get details of a specific migration."""
try:
migration = await llm_db.get_migration(migration_id)
if not migration:
raise fastapi.HTTPException(
status_code=404, detail=f"Migration '{migration_id}' not found"
)
return migration
except fastapi.HTTPException:
raise
except Exception as exc:
logger.exception("Failed to get migration %s: %s", migration_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to get migration",
) from exc
@router.post(
"/migrations/{migration_id}/revert",
summary="Revert a model migration",
response_model=llm_model.RevertMigrationResponse,
)
async def revert_llm_migration(
migration_id: str,
request: llm_model.RevertMigrationRequest | None = None,
):
"""
Revert a model migration, restoring affected workflows to their original model.
This only reverts the specific nodes that were part of the migration.
The source model must exist for the revert to succeed.
Options:
- `re_enable_source_model`: Whether to re-enable the source model if disabled (default: True)
Response includes:
- `nodes_reverted`: Number of nodes successfully reverted
- `nodes_already_changed`: Number of nodes that were modified since migration (not reverted)
- `source_model_re_enabled`: Whether the source model was re-enabled
Requirements:
- Migration must not already be reverted
- Source model must exist
"""
try:
re_enable = request.re_enable_source_model if request else True
result = await llm_db.revert_migration(
migration_id,
re_enable_source_model=re_enable,
)
await _refresh_runtime_state()
logger.info(
"Reverted migration '%s': %d nodes restored from '%s' to '%s' "
"(%d already changed, source re-enabled=%s)",
migration_id,
result.nodes_reverted,
result.target_model_slug,
result.source_model_slug,
result.nodes_already_changed,
result.source_model_re_enabled,
)
return result
except ValueError as exc:
logger.warning("Migration revert validation failed: %s", exc)
raise fastapi.HTTPException(status_code=400, detail=str(exc)) from exc
except Exception as exc:
logger.exception("Failed to revert migration %s: %s", migration_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to revert migration",
) from exc
# ============================================================================
# Creator Management Endpoints
# ============================================================================
@router.get(
"/creators",
summary="List model creators",
response_model=llm_model.LlmCreatorsResponse,
)
async def list_llm_creators():
"""
List all model creators.
Creators are organizations that create/train models (e.g., OpenAI, Meta, Anthropic).
This is distinct from providers who host/serve the models (e.g., OpenRouter).
"""
try:
creators = await llm_db.list_creators()
return llm_model.LlmCreatorsResponse(creators=creators)
except Exception as exc:
logger.exception("Failed to list creators: %s", exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to list creators",
) from exc
@router.get(
"/creators/{creator_id}",
summary="Get creator details",
operation_id="getV2GetLlmCreatorDetails",
response_model=llm_model.LlmModelCreator,
)
async def get_llm_creator(creator_id: str):
"""Get details of a specific model creator."""
try:
creator = await llm_db.get_creator(creator_id)
if not creator:
raise fastapi.HTTPException(
status_code=404, detail=f"Creator '{creator_id}' not found"
)
return creator
except fastapi.HTTPException:
raise
except Exception as exc:
logger.exception("Failed to get creator %s: %s", creator_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to get creator",
) from exc
@router.post(
"/creators",
summary="Create model creator",
response_model=llm_model.LlmModelCreator,
)
async def create_llm_creator(request: llm_model.UpsertLlmCreatorRequest):
"""
Create a new model creator.
A creator represents an organization that creates/trains AI models,
such as OpenAI, Anthropic, Meta, or Google.
"""
try:
creator = await llm_db.upsert_creator(request=request)
await _refresh_runtime_state()
logger.info("Created model creator '%s' (%s)", creator.display_name, creator.id)
return creator
except Exception as exc:
logger.exception("Failed to create creator: %s", exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to create creator",
) from exc
@router.patch(
"/creators/{creator_id}",
summary="Update model creator",
response_model=llm_model.LlmModelCreator,
)
async def update_llm_creator(
creator_id: str,
request: llm_model.UpsertLlmCreatorRequest,
):
"""Update an existing model creator."""
try:
creator = await llm_db.upsert_creator(request=request, creator_id=creator_id)
await _refresh_runtime_state()
logger.info("Updated model creator '%s' (%s)", creator.display_name, creator_id)
return creator
except Exception as exc:
logger.exception("Failed to update creator %s: %s", creator_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to update creator",
) from exc
@router.delete(
"/creators/{creator_id}",
summary="Delete model creator",
response_model=dict,
)
async def delete_llm_creator(creator_id: str):
"""
Delete a model creator.
This will remove the creator association from all models that reference it
(sets creatorId to NULL), but will not delete the models themselves.
"""
try:
await llm_db.delete_creator(creator_id)
await _refresh_runtime_state()
logger.info("Deleted model creator '%s'", creator_id)
return {"success": True, "message": f"Creator '{creator_id}' deleted"}
except ValueError as exc:
logger.warning("Creator deletion validation failed: %s", exc)
raise fastapi.HTTPException(status_code=404, detail=str(exc)) from exc
except Exception as exc:
logger.exception("Failed to delete creator %s: %s", creator_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to delete creator",
) from exc
# ============================================================================
# Recommended Model Endpoints
# ============================================================================
@router.get(
"/recommended-model",
summary="Get recommended model",
response_model=llm_model.RecommendedModelResponse,
)
async def get_recommended_model():
"""
Get the currently recommended LLM model.
The recommended model is shown to users as the default/suggested option
in model selection dropdowns.
"""
try:
model = await llm_db.get_recommended_model()
return llm_model.RecommendedModelResponse(
model=model,
slug=model.slug if model else None,
)
except Exception as exc:
logger.exception("Failed to get recommended model: %s", exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to get recommended model",
) from exc
@router.post(
"/recommended-model",
summary="Set recommended model",
response_model=llm_model.SetRecommendedModelResponse,
)
async def set_recommended_model(request: llm_model.SetRecommendedModelRequest):
"""
Set a model as the recommended model.
This clears the recommended flag from any other model and sets it on
the specified model. The model must be enabled to be set as recommended.
The recommended model is displayed to users as the default/suggested
option in model selection dropdowns throughout the platform.
"""
try:
model, previous_slug = await llm_db.set_recommended_model(request.model_id)
await _refresh_runtime_state()
logger.info(
"Set recommended model to '%s' (previous: %s)",
model.slug,
previous_slug or "none",
)
return llm_model.SetRecommendedModelResponse(
model=model,
previous_recommended_slug=previous_slug,
message=f"Model '{model.display_name}' is now the recommended model",
)
except ValueError as exc:
logger.warning("Set recommended model validation failed: %s", exc)
raise fastapi.HTTPException(status_code=400, detail=str(exc)) from exc
except Exception as exc:
logger.exception("Failed to set recommended model: %s", exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to set recommended model",
) from exc

View File

@@ -0,0 +1,405 @@
from unittest.mock import AsyncMock
import fastapi
import fastapi.testclient
import pytest
import pytest_mock
from autogpt_libs.auth.jwt_utils import get_jwt_payload
from pytest_snapshot.plugin import Snapshot
import backend.api.features.admin.llm_routes as llm_routes
app = fastapi.FastAPI()
app.include_router(llm_routes.router)
client = fastapi.testclient.TestClient(app)
@pytest.fixture(autouse=True)
def setup_app_admin_auth(mock_jwt_admin):
"""Setup admin auth overrides for all tests in this module"""
app.dependency_overrides[get_jwt_payload] = mock_jwt_admin["get_jwt_payload"]
yield
app.dependency_overrides.clear()
def test_list_llm_providers_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful listing of LLM providers"""
# Mock the database function
mock_providers = [
{
"id": "provider-1",
"name": "openai",
"display_name": "OpenAI",
"description": "OpenAI LLM provider",
"supports_tools": True,
"supports_json_output": True,
"supports_reasoning": False,
"supports_parallel_tool": True,
"metadata": {},
"models": [],
},
{
"id": "provider-2",
"name": "anthropic",
"display_name": "Anthropic",
"description": "Anthropic LLM provider",
"supports_tools": True,
"supports_json_output": True,
"supports_reasoning": False,
"supports_parallel_tool": True,
"metadata": {},
"models": [],
},
]
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.list_providers",
new=AsyncMock(return_value=mock_providers),
)
response = client.get("/admin/llm/providers")
assert response.status_code == 200
response_data = response.json()
assert len(response_data["providers"]) == 2
assert response_data["providers"][0]["name"] == "openai"
# Snapshot test the response
configured_snapshot.assert_match(response_data, "list_llm_providers_success.json")
def test_list_llm_models_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful listing of LLM models"""
# Mock the database function
mock_models = [
{
"id": "model-1",
"slug": "gpt-4o",
"display_name": "GPT-4o",
"description": "GPT-4 Optimized",
"provider_id": "provider-1",
"context_window": 128000,
"max_output_tokens": 16384,
"is_enabled": True,
"capabilities": {},
"metadata": {},
"costs": [
{
"id": "cost-1",
"credit_cost": 10,
"credential_provider": "openai",
"metadata": {},
}
],
}
]
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.list_models",
new=AsyncMock(return_value=mock_models),
)
response = client.get("/admin/llm/models")
assert response.status_code == 200
response_data = response.json()
assert len(response_data["models"]) == 1
assert response_data["models"][0]["slug"] == "gpt-4o"
# Snapshot test the response
configured_snapshot.assert_match(response_data, "list_llm_models_success.json")
def test_create_llm_provider_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful creation of LLM provider"""
mock_provider = {
"id": "new-provider-id",
"name": "groq",
"display_name": "Groq",
"description": "Groq LLM provider",
"supports_tools": True,
"supports_json_output": True,
"supports_reasoning": False,
"supports_parallel_tool": False,
"metadata": {},
}
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.upsert_provider",
new=AsyncMock(return_value=mock_provider),
)
mock_refresh = mocker.patch(
"backend.api.features.admin.llm_routes._refresh_runtime_state",
new=AsyncMock(),
)
request_data = {
"name": "groq",
"display_name": "Groq",
"description": "Groq LLM provider",
"supports_tools": True,
"supports_json_output": True,
"supports_reasoning": False,
"supports_parallel_tool": False,
"metadata": {},
}
response = client.post("/admin/llm/providers", json=request_data)
assert response.status_code == 200
response_data = response.json()
assert response_data["name"] == "groq"
assert response_data["display_name"] == "Groq"
# Verify refresh was called
mock_refresh.assert_called_once()
# Snapshot test the response
configured_snapshot.assert_match(response_data, "create_llm_provider_success.json")
def test_create_llm_model_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful creation of LLM model"""
mock_model = {
"id": "new-model-id",
"slug": "gpt-4.1-mini",
"display_name": "GPT-4.1 Mini",
"description": "Latest GPT-4.1 Mini model",
"provider_id": "provider-1",
"context_window": 128000,
"max_output_tokens": 16384,
"is_enabled": True,
"capabilities": {},
"metadata": {},
"costs": [
{
"id": "cost-id",
"credit_cost": 5,
"credential_provider": "openai",
"metadata": {},
}
],
}
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.create_model",
new=AsyncMock(return_value=mock_model),
)
mock_refresh = mocker.patch(
"backend.api.features.admin.llm_routes._refresh_runtime_state",
new=AsyncMock(),
)
request_data = {
"slug": "gpt-4.1-mini",
"display_name": "GPT-4.1 Mini",
"description": "Latest GPT-4.1 Mini model",
"provider_id": "provider-1",
"context_window": 128000,
"max_output_tokens": 16384,
"is_enabled": True,
"capabilities": {},
"metadata": {},
"costs": [
{
"credit_cost": 5,
"credential_provider": "openai",
"metadata": {},
}
],
}
response = client.post("/admin/llm/models", json=request_data)
assert response.status_code == 200
response_data = response.json()
assert response_data["slug"] == "gpt-4.1-mini"
assert response_data["is_enabled"] is True
# Verify refresh was called
mock_refresh.assert_called_once()
# Snapshot test the response
configured_snapshot.assert_match(response_data, "create_llm_model_success.json")
def test_update_llm_model_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful update of LLM model"""
mock_model = {
"id": "model-1",
"slug": "gpt-4o",
"display_name": "GPT-4o Updated",
"description": "Updated description",
"provider_id": "provider-1",
"context_window": 256000,
"max_output_tokens": 32768,
"is_enabled": True,
"capabilities": {},
"metadata": {},
"costs": [
{
"id": "cost-1",
"credit_cost": 15,
"credential_provider": "openai",
"metadata": {},
}
],
}
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.update_model",
new=AsyncMock(return_value=mock_model),
)
mock_refresh = mocker.patch(
"backend.api.features.admin.llm_routes._refresh_runtime_state",
new=AsyncMock(),
)
request_data = {
"display_name": "GPT-4o Updated",
"description": "Updated description",
"context_window": 256000,
"max_output_tokens": 32768,
}
response = client.patch("/admin/llm/models/model-1", json=request_data)
assert response.status_code == 200
response_data = response.json()
assert response_data["display_name"] == "GPT-4o Updated"
assert response_data["context_window"] == 256000
# Verify refresh was called
mock_refresh.assert_called_once()
# Snapshot test the response
configured_snapshot.assert_match(response_data, "update_llm_model_success.json")
def test_toggle_llm_model_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful toggling of LLM model enabled status"""
mock_model = {
"id": "model-1",
"slug": "gpt-4o",
"display_name": "GPT-4o",
"description": "GPT-4 Optimized",
"provider_id": "provider-1",
"context_window": 128000,
"max_output_tokens": 16384,
"is_enabled": False,
"capabilities": {},
"metadata": {},
"costs": [],
}
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.toggle_model",
new=AsyncMock(return_value=mock_model),
)
mock_refresh = mocker.patch(
"backend.api.features.admin.llm_routes._refresh_runtime_state",
new=AsyncMock(),
)
request_data = {"is_enabled": False}
response = client.patch("/admin/llm/models/model-1/toggle", json=request_data)
assert response.status_code == 200
response_data = response.json()
assert response_data["is_enabled"] is False
# Verify refresh was called
mock_refresh.assert_called_once()
# Snapshot test the response
configured_snapshot.assert_match(response_data, "toggle_llm_model_success.json")
def test_delete_llm_model_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful deletion of LLM model with migration"""
mock_response = {
"deleted_model_slug": "gpt-3.5-turbo",
"deleted_model_display_name": "GPT-3.5 Turbo",
"replacement_model_slug": "gpt-4o-mini",
"nodes_migrated": 42,
"message": "Successfully deleted model 'GPT-3.5 Turbo' (gpt-3.5-turbo) "
"and migrated 42 workflow node(s) to 'gpt-4o-mini'.",
}
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.delete_model",
new=AsyncMock(return_value=type("obj", (object,), mock_response)()),
)
mock_refresh = mocker.patch(
"backend.api.features.admin.llm_routes._refresh_runtime_state",
new=AsyncMock(),
)
response = client.delete(
"/admin/llm/models/model-1?replacement_model_slug=gpt-4o-mini"
)
assert response.status_code == 200
response_data = response.json()
assert response_data["deleted_model_slug"] == "gpt-3.5-turbo"
assert response_data["nodes_migrated"] == 42
assert response_data["replacement_model_slug"] == "gpt-4o-mini"
# Verify refresh was called
mock_refresh.assert_called_once()
# Snapshot test the response
configured_snapshot.assert_match(response_data, "delete_llm_model_success.json")
def test_delete_llm_model_validation_error(
mocker: pytest_mock.MockFixture,
) -> None:
"""Test deletion fails with proper error when validation fails"""
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.delete_model",
new=AsyncMock(side_effect=ValueError("Replacement model 'invalid' not found")),
)
response = client.delete("/admin/llm/models/model-1?replacement_model_slug=invalid")
assert response.status_code == 400
assert "Replacement model 'invalid' not found" in response.json()["detail"]
def test_delete_llm_model_missing_replacement(
mocker: pytest_mock.MockFixture,
) -> None:
"""Test deletion fails when replacement_model_slug is not provided"""
response = client.delete("/admin/llm/models/model-1")
# FastAPI will return 422 for missing required query params
assert response.status_code == 422

View File

@@ -15,6 +15,7 @@ from backend.blocks import load_all_blocks
from backend.blocks.llm import LlmModel
from backend.data.block import AnyBlockSchema, BlockCategory, BlockInfo, BlockSchema
from backend.data.db import query_raw_with_schema
from backend.data.llm_registry import get_all_model_slugs_for_validation
from backend.integrations.providers import ProviderName
from backend.util.cache import cached
from backend.util.models import Pagination
@@ -31,7 +32,14 @@ from .model import (
)
logger = logging.getLogger(__name__)
llm_models = [name.name.lower().replace("_", " ") for name in LlmModel]
def _get_llm_models() -> list[str]:
"""Get LLM model names for search matching from the registry."""
return [
slug.lower().replace("-", " ") for slug in get_all_model_slugs_for_validation()
]
MAX_LIBRARY_AGENT_RESULTS = 100
MAX_MARKETPLACE_AGENT_RESULTS = 100
@@ -496,8 +504,8 @@ async def _get_static_counts():
def _matches_llm_model(schema_cls: type[BlockSchema], query: str) -> bool:
for field in schema_cls.model_fields.values():
if field.annotation == LlmModel:
# Check if query matches any value in llm_models
if any(query in name for name in llm_models):
# Check if query matches any value in llm_models from registry
if any(query in name for name in _get_llm_models()):
return True
return False

View File

@@ -1,5 +1,4 @@
import uuid
from unittest.mock import AsyncMock, patch
import orjson
import pytest
@@ -18,17 +17,6 @@ setup_test_data = setup_test_data
setup_firecrawl_test_data = setup_firecrawl_test_data
@pytest.fixture(scope="session", autouse=True)
def mock_embedding_functions():
"""Mock embedding functions for all tests to avoid database/API dependencies."""
with patch(
"backend.api.features.store.db.ensure_embedding",
new_callable=AsyncMock,
return_value=True,
):
yield
@pytest.mark.asyncio(scope="session")
async def test_run_agent(setup_test_data):
"""Test that the run_agent tool successfully executes an approved agent"""

View File

@@ -489,7 +489,7 @@ async def update_agent_version_in_library(
agent_graph_version: int,
) -> library_model.LibraryAgent:
"""
Updates the agent version in the library for any agent owned by the user.
Updates the agent version in the library if useGraphIsActiveVersion is True.
Args:
user_id: Owner of the LibraryAgent.
@@ -498,31 +498,20 @@ async def update_agent_version_in_library(
Raises:
DatabaseError: If there's an error with the update.
NotFoundError: If no library agent is found for this user and agent.
"""
logger.debug(
f"Updating agent version in library for user #{user_id}, "
f"agent #{agent_graph_id} v{agent_graph_version}"
)
async with transaction() as tx:
library_agent = await prisma.models.LibraryAgent.prisma(tx).find_first_or_raise(
try:
library_agent = await prisma.models.LibraryAgent.prisma().find_first_or_raise(
where={
"userId": user_id,
"agentGraphId": agent_graph_id,
"useGraphIsActiveVersion": True,
},
)
# Delete any conflicting LibraryAgent for the target version
await prisma.models.LibraryAgent.prisma(tx).delete_many(
where={
"userId": user_id,
"agentGraphId": agent_graph_id,
"agentGraphVersion": agent_graph_version,
"id": {"not": library_agent.id},
}
)
lib = await prisma.models.LibraryAgent.prisma(tx).update(
lib = await prisma.models.LibraryAgent.prisma().update(
where={"id": library_agent.id},
data={
"AgentGraph": {
@@ -536,13 +525,13 @@ async def update_agent_version_in_library(
},
include={"AgentGraph": True},
)
if lib is None:
raise NotFoundError(f"Library agent {library_agent.id} not found")
if lib is None:
raise NotFoundError(
f"Failed to update library agent for {agent_graph_id} v{agent_graph_version}"
)
return library_model.LibraryAgent.from_db(lib)
return library_model.LibraryAgent.from_db(lib)
except prisma.errors.PrismaError as e:
logger.error(f"Database error updating agent version in library: {e}")
raise DatabaseError("Failed to update agent version in library") from e
async def update_library_agent(
@@ -836,7 +825,6 @@ async def add_store_agent_to_library(
}
},
"isCreatedByUser": False,
"useGraphIsActiveVersion": False,
"settings": SafeJson(
_initialize_graph_settings(graph_model).model_dump()
),

View File

@@ -48,7 +48,6 @@ class LibraryAgent(pydantic.BaseModel):
id: str
graph_id: str
graph_version: int
owner_user_id: str # ID of user who owns/created this agent graph
image_url: str | None
@@ -164,7 +163,6 @@ class LibraryAgent(pydantic.BaseModel):
id=agent.id,
graph_id=agent.agentGraphId,
graph_version=agent.agentGraphVersion,
owner_user_id=agent.userId,
image_url=agent.imageUrl,
creator_name=creator_name,
creator_image_url=creator_image_url,

View File

@@ -42,7 +42,6 @@ async def test_get_library_agents_success(
id="test-agent-1",
graph_id="test-agent-1",
graph_version=1,
owner_user_id=test_user_id,
name="Test Agent 1",
description="Test Description 1",
image_url=None,
@@ -65,7 +64,6 @@ async def test_get_library_agents_success(
id="test-agent-2",
graph_id="test-agent-2",
graph_version=1,
owner_user_id=test_user_id,
name="Test Agent 2",
description="Test Description 2",
image_url=None,
@@ -140,7 +138,6 @@ async def test_get_favorite_library_agents_success(
id="test-agent-1",
graph_id="test-agent-1",
graph_version=1,
owner_user_id=test_user_id,
name="Favorite Agent 1",
description="Test Favorite Description 1",
image_url=None,
@@ -208,7 +205,6 @@ def test_add_agent_to_library_success(
id="test-library-agent-id",
graph_id="test-agent-1",
graph_version=1,
owner_user_id=test_user_id,
name="Test Agent 1",
description="Test Description 1",
image_url=None,

View File

@@ -1,417 +0,0 @@
"""
Content Type Handlers for Unified Embeddings
Pluggable system for different content sources (store agents, blocks, docs).
Each handler knows how to fetch and process its content type for embedding.
"""
import logging
from abc import ABC, abstractmethod
from dataclasses import dataclass
from pathlib import Path
from typing import Any
from prisma.enums import ContentType
from backend.data.db import query_raw_with_schema
logger = logging.getLogger(__name__)
@dataclass
class ContentItem:
"""Represents a piece of content to be embedded."""
content_id: str # Unique identifier (DB ID or file path)
content_type: ContentType
searchable_text: str # Combined text for embedding
metadata: dict[str, Any] # Content-specific metadata
user_id: str | None = None # For user-scoped content
class ContentHandler(ABC):
"""Base handler for fetching and processing content for embeddings."""
@property
@abstractmethod
def content_type(self) -> ContentType:
"""The ContentType this handler manages."""
pass
@abstractmethod
async def get_missing_items(self, batch_size: int) -> list[ContentItem]:
"""
Fetch items that don't have embeddings yet.
Args:
batch_size: Maximum number of items to return
Returns:
List of ContentItem objects ready for embedding
"""
pass
@abstractmethod
async def get_stats(self) -> dict[str, int]:
"""
Get statistics about embedding coverage.
Returns:
Dict with keys: total, with_embeddings, without_embeddings
"""
pass
class StoreAgentHandler(ContentHandler):
"""Handler for marketplace store agent listings."""
@property
def content_type(self) -> ContentType:
return ContentType.STORE_AGENT
async def get_missing_items(self, batch_size: int) -> list[ContentItem]:
"""Fetch approved store listings without embeddings."""
from backend.api.features.store.embeddings import build_searchable_text
missing = await query_raw_with_schema(
"""
SELECT
slv.id,
slv.name,
slv.description,
slv."subHeading",
slv.categories
FROM {schema_prefix}"StoreListingVersion" slv
LEFT JOIN {schema_prefix}"UnifiedContentEmbedding" uce
ON slv.id = uce."contentId" AND uce."contentType" = 'STORE_AGENT'::{schema_prefix}"ContentType"
WHERE slv."submissionStatus" = 'APPROVED'
AND slv."isDeleted" = false
AND uce."contentId" IS NULL
LIMIT $1
""",
batch_size,
)
return [
ContentItem(
content_id=row["id"],
content_type=ContentType.STORE_AGENT,
searchable_text=build_searchable_text(
name=row["name"],
description=row["description"],
sub_heading=row["subHeading"],
categories=row["categories"] or [],
),
metadata={
"name": row["name"],
"categories": row["categories"] or [],
},
user_id=None, # Store agents are public
)
for row in missing
]
async def get_stats(self) -> dict[str, int]:
"""Get statistics about store agent embedding coverage."""
# Count approved versions
approved_result = await query_raw_with_schema(
"""
SELECT COUNT(*) as count
FROM {schema_prefix}"StoreListingVersion"
WHERE "submissionStatus" = 'APPROVED'
AND "isDeleted" = false
"""
)
total_approved = approved_result[0]["count"] if approved_result else 0
# Count versions with embeddings
embedded_result = await query_raw_with_schema(
"""
SELECT COUNT(*) as count
FROM {schema_prefix}"StoreListingVersion" slv
JOIN {schema_prefix}"UnifiedContentEmbedding" uce ON slv.id = uce."contentId" AND uce."contentType" = 'STORE_AGENT'::{schema_prefix}"ContentType"
WHERE slv."submissionStatus" = 'APPROVED'
AND slv."isDeleted" = false
"""
)
with_embeddings = embedded_result[0]["count"] if embedded_result else 0
return {
"total": total_approved,
"with_embeddings": with_embeddings,
"without_embeddings": total_approved - with_embeddings,
}
class BlockHandler(ContentHandler):
"""Handler for block definitions (Python classes)."""
@property
def content_type(self) -> ContentType:
return ContentType.BLOCK
async def get_missing_items(self, batch_size: int) -> list[ContentItem]:
"""Fetch blocks without embeddings."""
from backend.data.block import get_blocks
# Get all available blocks
all_blocks = get_blocks()
# Check which ones have embeddings
if not all_blocks:
return []
block_ids = list(all_blocks.keys())
# Query for existing embeddings
placeholders = ",".join([f"${i+1}" for i in range(len(block_ids))])
existing_result = await query_raw_with_schema(
f"""
SELECT "contentId"
FROM {{schema_prefix}}"UnifiedContentEmbedding"
WHERE "contentType" = 'BLOCK'::{{schema_prefix}}"ContentType"
AND "contentId" = ANY(ARRAY[{placeholders}])
""",
*block_ids,
)
existing_ids = {row["contentId"] for row in existing_result}
missing_blocks = [
(block_id, block_cls)
for block_id, block_cls in all_blocks.items()
if block_id not in existing_ids
]
# Convert to ContentItem
items = []
for block_id, block_cls in missing_blocks[:batch_size]:
try:
block_instance = block_cls()
# Build searchable text from block metadata
parts = []
if hasattr(block_instance, "name") and block_instance.name:
parts.append(block_instance.name)
if (
hasattr(block_instance, "description")
and block_instance.description
):
parts.append(block_instance.description)
if hasattr(block_instance, "categories") and block_instance.categories:
# Convert BlockCategory enum to strings
parts.append(
" ".join(str(cat.value) for cat in block_instance.categories)
)
# Add input/output schema info
if hasattr(block_instance, "input_schema"):
schema = block_instance.input_schema
if hasattr(schema, "model_json_schema"):
schema_dict = schema.model_json_schema()
if "properties" in schema_dict:
for prop_name, prop_info in schema_dict[
"properties"
].items():
if "description" in prop_info:
parts.append(
f"{prop_name}: {prop_info['description']}"
)
searchable_text = " ".join(parts)
items.append(
ContentItem(
content_id=block_id,
content_type=ContentType.BLOCK,
searchable_text=searchable_text,
metadata={
"name": getattr(block_instance, "name", ""),
"categories": getattr(block_instance, "categories", []),
},
user_id=None, # Blocks are public
)
)
except Exception as e:
logger.warning(f"Failed to process block {block_id}: {e}")
continue
return items
async def get_stats(self) -> dict[str, int]:
"""Get statistics about block embedding coverage."""
from backend.data.block import get_blocks
all_blocks = get_blocks()
total_blocks = len(all_blocks)
if total_blocks == 0:
return {"total": 0, "with_embeddings": 0, "without_embeddings": 0}
block_ids = list(all_blocks.keys())
placeholders = ",".join([f"${i+1}" for i in range(len(block_ids))])
embedded_result = await query_raw_with_schema(
f"""
SELECT COUNT(*) as count
FROM {{schema_prefix}}"UnifiedContentEmbedding"
WHERE "contentType" = 'BLOCK'::{{schema_prefix}}"ContentType"
AND "contentId" = ANY(ARRAY[{placeholders}])
""",
*block_ids,
)
with_embeddings = embedded_result[0]["count"] if embedded_result else 0
return {
"total": total_blocks,
"with_embeddings": with_embeddings,
"without_embeddings": total_blocks - with_embeddings,
}
class DocumentationHandler(ContentHandler):
"""Handler for documentation files (.md/.mdx)."""
@property
def content_type(self) -> ContentType:
return ContentType.DOCUMENTATION
def _get_docs_root(self) -> Path:
"""Get the documentation root directory."""
# Assuming docs are in /docs relative to project root
backend_root = Path(__file__).parent.parent.parent.parent
docs_root = backend_root.parent.parent / "docs"
return docs_root
def _extract_title_and_content(self, file_path: Path) -> tuple[str, str]:
"""Extract title and content from markdown file."""
try:
content = file_path.read_text(encoding="utf-8")
# Try to extract title from first # heading
lines = content.split("\n")
title = ""
body_lines = []
for line in lines:
if line.startswith("# ") and not title:
title = line[2:].strip()
else:
body_lines.append(line)
# If no title found, use filename
if not title:
title = file_path.stem.replace("-", " ").replace("_", " ").title()
body = "\n".join(body_lines)
return title, body
except Exception as e:
logger.warning(f"Failed to read {file_path}: {e}")
return file_path.stem, ""
async def get_missing_items(self, batch_size: int) -> list[ContentItem]:
"""Fetch documentation files without embeddings."""
docs_root = self._get_docs_root()
if not docs_root.exists():
logger.warning(f"Documentation root not found: {docs_root}")
return []
# Find all .md and .mdx files
all_docs = list(docs_root.rglob("*.md")) + list(docs_root.rglob("*.mdx"))
# Get relative paths for content IDs
doc_paths = [str(doc.relative_to(docs_root)) for doc in all_docs]
if not doc_paths:
return []
# Check which ones have embeddings
placeholders = ",".join([f"${i+1}" for i in range(len(doc_paths))])
existing_result = await query_raw_with_schema(
f"""
SELECT "contentId"
FROM {{schema_prefix}}"UnifiedContentEmbedding"
WHERE "contentType" = 'DOCUMENTATION'::{{schema_prefix}}"ContentType"
AND "contentId" = ANY(ARRAY[{placeholders}])
""",
*doc_paths,
)
existing_ids = {row["contentId"] for row in existing_result}
missing_docs = [
(doc_path, doc_file)
for doc_path, doc_file in zip(doc_paths, all_docs)
if doc_path not in existing_ids
]
# Convert to ContentItem
items = []
for doc_path, doc_file in missing_docs[:batch_size]:
try:
title, content = self._extract_title_and_content(doc_file)
# Build searchable text
searchable_text = f"{title} {content}"
items.append(
ContentItem(
content_id=doc_path,
content_type=ContentType.DOCUMENTATION,
searchable_text=searchable_text,
metadata={
"title": title,
"path": doc_path,
},
user_id=None, # Documentation is public
)
)
except Exception as e:
logger.warning(f"Failed to process doc {doc_path}: {e}")
continue
return items
async def get_stats(self) -> dict[str, int]:
"""Get statistics about documentation embedding coverage."""
docs_root = self._get_docs_root()
if not docs_root.exists():
return {"total": 0, "with_embeddings": 0, "without_embeddings": 0}
# Count all .md and .mdx files
all_docs = list(docs_root.rglob("*.md")) + list(docs_root.rglob("*.mdx"))
total_docs = len(all_docs)
if total_docs == 0:
return {"total": 0, "with_embeddings": 0, "without_embeddings": 0}
doc_paths = [str(doc.relative_to(docs_root)) for doc in all_docs]
placeholders = ",".join([f"${i+1}" for i in range(len(doc_paths))])
embedded_result = await query_raw_with_schema(
f"""
SELECT COUNT(*) as count
FROM {{schema_prefix}}"UnifiedContentEmbedding"
WHERE "contentType" = 'DOCUMENTATION'::{{schema_prefix}}"ContentType"
AND "contentId" = ANY(ARRAY[{placeholders}])
""",
*doc_paths,
)
with_embeddings = embedded_result[0]["count"] if embedded_result else 0
return {
"total": total_docs,
"with_embeddings": with_embeddings,
"without_embeddings": total_docs - with_embeddings,
}
# Content handler registry
CONTENT_HANDLERS: dict[ContentType, ContentHandler] = {
ContentType.STORE_AGENT: StoreAgentHandler(),
ContentType.BLOCK: BlockHandler(),
ContentType.DOCUMENTATION: DocumentationHandler(),
}

View File

@@ -1,214 +0,0 @@
"""
Integration tests for content handlers using real DB.
Run with: poetry run pytest backend/api/features/store/content_handlers_integration_test.py -xvs
These tests use the real database but mock OpenAI calls.
"""
from unittest.mock import patch
import pytest
from backend.api.features.store.content_handlers import (
CONTENT_HANDLERS,
BlockHandler,
DocumentationHandler,
StoreAgentHandler,
)
from backend.api.features.store.embeddings import (
backfill_all_content_types,
ensure_content_embedding,
get_embedding_stats,
)
@pytest.mark.asyncio(loop_scope="session")
async def test_store_agent_handler_real_db():
"""Test StoreAgentHandler with real database queries."""
handler = StoreAgentHandler()
# Get stats from real DB
stats = await handler.get_stats()
# Stats should have correct structure
assert "total" in stats
assert "with_embeddings" in stats
assert "without_embeddings" in stats
assert stats["total"] >= 0
assert stats["with_embeddings"] >= 0
assert stats["without_embeddings"] >= 0
# Get missing items (max 1 to keep test fast)
items = await handler.get_missing_items(batch_size=1)
# Items should be list (may be empty if all have embeddings)
assert isinstance(items, list)
if items:
item = items[0]
assert item.content_id is not None
assert item.content_type.value == "STORE_AGENT"
assert item.searchable_text != ""
assert item.user_id is None
@pytest.mark.asyncio(loop_scope="session")
async def test_block_handler_real_db():
"""Test BlockHandler with real database queries."""
handler = BlockHandler()
# Get stats from real DB
stats = await handler.get_stats()
# Stats should have correct structure
assert "total" in stats
assert "with_embeddings" in stats
assert "without_embeddings" in stats
assert stats["total"] >= 0 # Should have at least some blocks
assert stats["with_embeddings"] >= 0
assert stats["without_embeddings"] >= 0
# Get missing items (max 1 to keep test fast)
items = await handler.get_missing_items(batch_size=1)
# Items should be list
assert isinstance(items, list)
if items:
item = items[0]
assert item.content_id is not None # Should be block UUID
assert item.content_type.value == "BLOCK"
assert item.searchable_text != ""
assert item.user_id is None
@pytest.mark.asyncio(loop_scope="session")
async def test_documentation_handler_real_fs():
"""Test DocumentationHandler with real filesystem."""
handler = DocumentationHandler()
# Get stats from real filesystem
stats = await handler.get_stats()
# Stats should have correct structure
assert "total" in stats
assert "with_embeddings" in stats
assert "without_embeddings" in stats
assert stats["total"] >= 0
assert stats["with_embeddings"] >= 0
assert stats["without_embeddings"] >= 0
# Get missing items (max 1 to keep test fast)
items = await handler.get_missing_items(batch_size=1)
# Items should be list
assert isinstance(items, list)
if items:
item = items[0]
assert item.content_id is not None # Should be relative path
assert item.content_type.value == "DOCUMENTATION"
assert item.searchable_text != ""
assert item.user_id is None
@pytest.mark.asyncio(loop_scope="session")
async def test_get_embedding_stats_all_types():
"""Test get_embedding_stats aggregates all content types."""
stats = await get_embedding_stats()
# Should have structure with by_type and totals
assert "by_type" in stats
assert "totals" in stats
# Check each content type is present
by_type = stats["by_type"]
assert "STORE_AGENT" in by_type
assert "BLOCK" in by_type
assert "DOCUMENTATION" in by_type
# Check totals are aggregated
totals = stats["totals"]
assert totals["total"] >= 0
assert totals["with_embeddings"] >= 0
assert totals["without_embeddings"] >= 0
assert "coverage_percent" in totals
@pytest.mark.asyncio(loop_scope="session")
@patch("backend.api.features.store.embeddings.generate_embedding")
async def test_ensure_content_embedding_blocks(mock_generate):
"""Test creating embeddings for blocks (mocked OpenAI)."""
# Mock OpenAI to return fake embedding
mock_generate.return_value = [0.1] * 1536
# Get one block without embedding
handler = BlockHandler()
items = await handler.get_missing_items(batch_size=1)
if not items:
pytest.skip("No blocks without embeddings")
item = items[0]
# Try to create embedding (OpenAI mocked)
result = await ensure_content_embedding(
content_type=item.content_type,
content_id=item.content_id,
searchable_text=item.searchable_text,
metadata=item.metadata,
user_id=item.user_id,
)
# Should succeed with mocked OpenAI
assert result is True
mock_generate.assert_called_once()
@pytest.mark.asyncio(loop_scope="session")
@patch("backend.api.features.store.embeddings.generate_embedding")
async def test_backfill_all_content_types_dry_run(mock_generate):
"""Test backfill_all_content_types processes all handlers in order."""
# Mock OpenAI to return fake embedding
mock_generate.return_value = [0.1] * 1536
# Run backfill with batch_size=1 to process max 1 per type
result = await backfill_all_content_types(batch_size=1)
# Should have results for all content types
assert "by_type" in result
assert "totals" in result
by_type = result["by_type"]
assert "BLOCK" in by_type
assert "STORE_AGENT" in by_type
assert "DOCUMENTATION" in by_type
# Each type should have correct structure
for content_type, type_result in by_type.items():
assert "processed" in type_result
assert "success" in type_result
assert "failed" in type_result
# Totals should aggregate
totals = result["totals"]
assert totals["processed"] >= 0
assert totals["success"] >= 0
assert totals["failed"] >= 0
@pytest.mark.asyncio(loop_scope="session")
async def test_content_handler_registry():
"""Test all handlers are registered in correct order."""
from prisma.enums import ContentType
# All three types should be registered
assert ContentType.STORE_AGENT in CONTENT_HANDLERS
assert ContentType.BLOCK in CONTENT_HANDLERS
assert ContentType.DOCUMENTATION in CONTENT_HANDLERS
# Check handler types
assert isinstance(CONTENT_HANDLERS[ContentType.STORE_AGENT], StoreAgentHandler)
assert isinstance(CONTENT_HANDLERS[ContentType.BLOCK], BlockHandler)
assert isinstance(CONTENT_HANDLERS[ContentType.DOCUMENTATION], DocumentationHandler)

View File

@@ -1,324 +0,0 @@
"""
E2E tests for content handlers (blocks, store agents, documentation).
Tests the full flow: discovering content → generating embeddings → storing.
"""
from pathlib import Path
from unittest.mock import MagicMock, patch
import pytest
from prisma.enums import ContentType
from backend.api.features.store.content_handlers import (
CONTENT_HANDLERS,
BlockHandler,
DocumentationHandler,
StoreAgentHandler,
)
@pytest.mark.asyncio(loop_scope="session")
async def test_store_agent_handler_get_missing_items(mocker):
"""Test StoreAgentHandler fetches approved agents without embeddings."""
handler = StoreAgentHandler()
# Mock database query
mock_missing = [
{
"id": "agent-1",
"name": "Test Agent",
"description": "A test agent",
"subHeading": "Test heading",
"categories": ["AI", "Testing"],
}
]
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
return_value=mock_missing,
):
items = await handler.get_missing_items(batch_size=10)
assert len(items) == 1
assert items[0].content_id == "agent-1"
assert items[0].content_type == ContentType.STORE_AGENT
assert "Test Agent" in items[0].searchable_text
assert "A test agent" in items[0].searchable_text
assert items[0].metadata["name"] == "Test Agent"
assert items[0].user_id is None
@pytest.mark.asyncio(loop_scope="session")
async def test_store_agent_handler_get_stats(mocker):
"""Test StoreAgentHandler returns correct stats."""
handler = StoreAgentHandler()
# Mock approved count query
mock_approved = [{"count": 50}]
# Mock embedded count query
mock_embedded = [{"count": 30}]
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
side_effect=[mock_approved, mock_embedded],
):
stats = await handler.get_stats()
assert stats["total"] == 50
assert stats["with_embeddings"] == 30
assert stats["without_embeddings"] == 20
@pytest.mark.asyncio(loop_scope="session")
async def test_block_handler_get_missing_items(mocker):
"""Test BlockHandler discovers blocks without embeddings."""
handler = BlockHandler()
# Mock get_blocks to return test blocks
mock_block_class = MagicMock()
mock_block_instance = MagicMock()
mock_block_instance.name = "Calculator Block"
mock_block_instance.description = "Performs calculations"
mock_block_instance.categories = [MagicMock(value="MATH")]
mock_block_instance.input_schema.model_json_schema.return_value = {
"properties": {"expression": {"description": "Math expression to evaluate"}}
}
mock_block_class.return_value = mock_block_instance
mock_blocks = {"block-uuid-1": mock_block_class}
# Mock existing embeddings query (no embeddings exist)
mock_existing = []
with patch(
"backend.api.features.store.content_handlers.get_blocks",
return_value=mock_blocks,
):
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
return_value=mock_existing,
):
items = await handler.get_missing_items(batch_size=10)
assert len(items) == 1
assert items[0].content_id == "block-uuid-1"
assert items[0].content_type == ContentType.BLOCK
assert "Calculator Block" in items[0].searchable_text
assert "Performs calculations" in items[0].searchable_text
assert "MATH" in items[0].searchable_text
assert "expression: Math expression" in items[0].searchable_text
assert items[0].user_id is None
@pytest.mark.asyncio(loop_scope="session")
async def test_block_handler_get_stats(mocker):
"""Test BlockHandler returns correct stats."""
handler = BlockHandler()
# Mock get_blocks
mock_blocks = {
"block-1": MagicMock(),
"block-2": MagicMock(),
"block-3": MagicMock(),
}
# Mock embedded count query (2 blocks have embeddings)
mock_embedded = [{"count": 2}]
with patch(
"backend.api.features.store.content_handlers.get_blocks",
return_value=mock_blocks,
):
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
return_value=mock_embedded,
):
stats = await handler.get_stats()
assert stats["total"] == 3
assert stats["with_embeddings"] == 2
assert stats["without_embeddings"] == 1
@pytest.mark.asyncio(loop_scope="session")
async def test_documentation_handler_get_missing_items(tmp_path, mocker):
"""Test DocumentationHandler discovers docs without embeddings."""
handler = DocumentationHandler()
# Create temporary docs directory with test files
docs_root = tmp_path / "docs"
docs_root.mkdir()
(docs_root / "guide.md").write_text("# Getting Started\n\nThis is a guide.")
(docs_root / "api.mdx").write_text("# API Reference\n\nAPI documentation.")
# Mock _get_docs_root to return temp dir
with patch.object(handler, "_get_docs_root", return_value=docs_root):
# Mock existing embeddings query (no embeddings exist)
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
return_value=[],
):
items = await handler.get_missing_items(batch_size=10)
assert len(items) == 2
# Check guide.md
guide_item = next(
(item for item in items if item.content_id == "guide.md"), None
)
assert guide_item is not None
assert guide_item.content_type == ContentType.DOCUMENTATION
assert "Getting Started" in guide_item.searchable_text
assert "This is a guide" in guide_item.searchable_text
assert guide_item.metadata["title"] == "Getting Started"
assert guide_item.user_id is None
# Check api.mdx
api_item = next(
(item for item in items if item.content_id == "api.mdx"), None
)
assert api_item is not None
assert "API Reference" in api_item.searchable_text
@pytest.mark.asyncio(loop_scope="session")
async def test_documentation_handler_get_stats(tmp_path, mocker):
"""Test DocumentationHandler returns correct stats."""
handler = DocumentationHandler()
# Create temporary docs directory
docs_root = tmp_path / "docs"
docs_root.mkdir()
(docs_root / "doc1.md").write_text("# Doc 1")
(docs_root / "doc2.md").write_text("# Doc 2")
(docs_root / "doc3.mdx").write_text("# Doc 3")
# Mock embedded count query (1 doc has embedding)
mock_embedded = [{"count": 1}]
with patch.object(handler, "_get_docs_root", return_value=docs_root):
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
return_value=mock_embedded,
):
stats = await handler.get_stats()
assert stats["total"] == 3
assert stats["with_embeddings"] == 1
assert stats["without_embeddings"] == 2
@pytest.mark.asyncio(loop_scope="session")
async def test_documentation_handler_title_extraction(tmp_path):
"""Test DocumentationHandler extracts title from markdown heading."""
handler = DocumentationHandler()
# Test with heading
doc_with_heading = tmp_path / "with_heading.md"
doc_with_heading.write_text("# My Title\n\nContent here")
title, content = handler._extract_title_and_content(doc_with_heading)
assert title == "My Title"
assert "# My Title" not in content
assert "Content here" in content
# Test without heading
doc_without_heading = tmp_path / "no-heading.md"
doc_without_heading.write_text("Just content, no heading")
title, content = handler._extract_title_and_content(doc_without_heading)
assert title == "No Heading" # Uses filename
assert "Just content" in content
@pytest.mark.asyncio(loop_scope="session")
async def test_content_handlers_registry():
"""Test all content types are registered."""
assert ContentType.STORE_AGENT in CONTENT_HANDLERS
assert ContentType.BLOCK in CONTENT_HANDLERS
assert ContentType.DOCUMENTATION in CONTENT_HANDLERS
assert isinstance(CONTENT_HANDLERS[ContentType.STORE_AGENT], StoreAgentHandler)
assert isinstance(CONTENT_HANDLERS[ContentType.BLOCK], BlockHandler)
assert isinstance(CONTENT_HANDLERS[ContentType.DOCUMENTATION], DocumentationHandler)
@pytest.mark.asyncio(loop_scope="session")
async def test_block_handler_handles_missing_attributes():
"""Test BlockHandler gracefully handles blocks with missing attributes."""
handler = BlockHandler()
# Mock block with minimal attributes
mock_block_class = MagicMock()
mock_block_instance = MagicMock()
mock_block_instance.name = "Minimal Block"
# No description, categories, or schema
del mock_block_instance.description
del mock_block_instance.categories
del mock_block_instance.input_schema
mock_block_class.return_value = mock_block_instance
mock_blocks = {"block-minimal": mock_block_class}
with patch(
"backend.api.features.store.content_handlers.get_blocks",
return_value=mock_blocks,
):
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
return_value=[],
):
items = await handler.get_missing_items(batch_size=10)
assert len(items) == 1
assert items[0].searchable_text == "Minimal Block"
@pytest.mark.asyncio(loop_scope="session")
async def test_block_handler_skips_failed_blocks():
"""Test BlockHandler skips blocks that fail to instantiate."""
handler = BlockHandler()
# Mock one good block and one bad block
good_block = MagicMock()
good_instance = MagicMock()
good_instance.name = "Good Block"
good_instance.description = "Works fine"
good_instance.categories = []
good_block.return_value = good_instance
bad_block = MagicMock()
bad_block.side_effect = Exception("Instantiation failed")
mock_blocks = {"good-block": good_block, "bad-block": bad_block}
with patch(
"backend.api.features.store.content_handlers.get_blocks",
return_value=mock_blocks,
):
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
return_value=[],
):
items = await handler.get_missing_items(batch_size=10)
# Should only get the good block
assert len(items) == 1
assert items[0].content_id == "good-block"
@pytest.mark.asyncio(loop_scope="session")
async def test_documentation_handler_missing_docs_directory():
"""Test DocumentationHandler handles missing docs directory gracefully."""
handler = DocumentationHandler()
# Mock _get_docs_root to return non-existent path
fake_path = Path("/nonexistent/docs")
with patch.object(handler, "_get_docs_root", return_value=fake_path):
items = await handler.get_missing_items(batch_size=10)
assert items == []
stats = await handler.get_stats()
assert stats["total"] == 0
assert stats["with_embeddings"] == 0
assert stats["without_embeddings"] == 0

View File

@@ -1,7 +1,8 @@
import asyncio
import logging
import typing
from datetime import datetime, timezone
from typing import Any, Literal
from typing import Literal
import fastapi
import prisma.enums
@@ -9,7 +10,7 @@ import prisma.errors
import prisma.models
import prisma.types
from backend.data.db import transaction
from backend.data.db import query_raw_with_schema, transaction
from backend.data.graph import (
GraphMeta,
GraphModel,
@@ -29,8 +30,6 @@ from backend.util.settings import Settings
from . import exceptions as store_exceptions
from . import model as store_model
from .embeddings import ensure_embedding
from .hybrid_search import hybrid_search
logger = logging.getLogger(__name__)
settings = Settings()
@@ -51,77 +50,128 @@ async def get_store_agents(
page_size: int = 20,
) -> store_model.StoreAgentsResponse:
"""
Get PUBLIC store agents from the StoreAgent view.
Search behavior:
- With search_query: Uses hybrid search (semantic + lexical)
- Fallback: If embeddings unavailable, gracefully degrades to lexical-only
- Rationale: User-facing endpoint prioritizes availability over accuracy
Note: Admin operations (approval) use fail-fast to prevent inconsistent state.
Get PUBLIC store agents from the StoreAgent view
"""
logger.debug(
f"Getting store agents. featured={featured}, creators={creators}, sorted_by={sorted_by}, search={search_query}, category={category}, page={page}"
)
search_used_hybrid = False
store_agents: list[store_model.StoreAgent] = []
agents: list[dict[str, Any]] = []
total = 0
total_pages = 0
try:
# If search_query is provided, use hybrid search (embeddings + tsvector)
# If search_query is provided, use full-text search
if search_query:
# Try hybrid search combining semantic and lexical signals
# Falls back to lexical-only if OpenAI unavailable (user-facing, high SLA)
try:
agents, total = await hybrid_search(
query=search_query,
featured=featured,
creators=creators,
category=category,
sorted_by="relevance", # Use hybrid scoring for relevance
page=page,
page_size=page_size,
)
search_used_hybrid = True
except Exception as e:
# Log error but fall back to lexical search for better UX
logger.error(
f"Hybrid search failed (likely OpenAI unavailable), "
f"falling back to lexical search: {e}"
)
# search_used_hybrid remains False, will use fallback path below
offset = (page - 1) * page_size
# Convert hybrid search results (dict format) if hybrid succeeded
if search_used_hybrid:
total_pages = (total + page_size - 1) // page_size
store_agents: list[store_model.StoreAgent] = []
for agent in agents:
try:
store_agent = store_model.StoreAgent(
slug=agent["slug"],
agent_name=agent["agent_name"],
agent_image=(
agent["agent_image"][0] if agent["agent_image"] else ""
),
creator=agent["creator_username"] or "Needs Profile",
creator_avatar=agent["creator_avatar"] or "",
sub_heading=agent["sub_heading"],
description=agent["description"],
runs=agent["runs"],
rating=agent["rating"],
)
store_agents.append(store_agent)
except Exception as e:
logger.error(
f"Error parsing Store agent from hybrid search results: {e}"
)
continue
# Whitelist allowed order_by columns
ALLOWED_ORDER_BY = {
"rating": "rating DESC, rank DESC",
"runs": "runs DESC, rank DESC",
"name": "agent_name ASC, rank ASC",
"updated_at": "updated_at DESC, rank DESC",
}
if not search_used_hybrid:
# Fallback path - use basic search or no search
# Validate and get order clause
if sorted_by and sorted_by in ALLOWED_ORDER_BY:
order_by_clause = ALLOWED_ORDER_BY[sorted_by]
else:
order_by_clause = "updated_at DESC, rank DESC"
# Build WHERE conditions and parameters list
where_parts: list[str] = []
params: list[typing.Any] = [search_query] # $1 - search term
param_index = 2 # Start at $2 for next parameter
# Always filter for available agents
where_parts.append("is_available = true")
if featured:
where_parts.append("featured = true")
if creators and creators:
# Use ANY with array parameter
where_parts.append(f"creator_username = ANY(${param_index})")
params.append(creators)
param_index += 1
if category and category:
where_parts.append(f"${param_index} = ANY(categories)")
params.append(category)
param_index += 1
sql_where_clause: str = " AND ".join(where_parts) if where_parts else "1=1"
# Add pagination params
params.extend([page_size, offset])
limit_param = f"${param_index}"
offset_param = f"${param_index + 1}"
# Execute full-text search query with parameterized values
sql_query = f"""
SELECT
slug,
agent_name,
agent_image,
creator_username,
creator_avatar,
sub_heading,
description,
runs,
rating,
categories,
featured,
is_available,
updated_at,
ts_rank_cd(search, query) AS rank
FROM {{schema_prefix}}"StoreAgent",
plainto_tsquery('english', $1) AS query
WHERE {sql_where_clause}
AND search @@ query
ORDER BY {order_by_clause}
LIMIT {limit_param} OFFSET {offset_param}
"""
# Count query for pagination - only uses search term parameter
count_query = f"""
SELECT COUNT(*) as count
FROM {{schema_prefix}}"StoreAgent",
plainto_tsquery('english', $1) AS query
WHERE {sql_where_clause}
AND search @@ query
"""
# Execute both queries with parameters
agents = await query_raw_with_schema(sql_query, *params)
# For count, use params without pagination (last 2 params)
count_params = params[:-2]
count_result = await query_raw_with_schema(count_query, *count_params)
total = count_result[0]["count"] if count_result else 0
total_pages = (total + page_size - 1) // page_size
# Convert raw results to StoreAgent models
store_agents: list[store_model.StoreAgent] = []
for agent in agents:
try:
store_agent = store_model.StoreAgent(
slug=agent["slug"],
agent_name=agent["agent_name"],
agent_image=(
agent["agent_image"][0] if agent["agent_image"] else ""
),
creator=agent["creator_username"] or "Needs Profile",
creator_avatar=agent["creator_avatar"] or "",
sub_heading=agent["sub_heading"],
description=agent["description"],
runs=agent["runs"],
rating=agent["rating"],
)
store_agents.append(store_agent)
except Exception as e:
logger.error(f"Error parsing Store agent from search results: {e}")
continue
else:
# Non-search query path (original logic)
where_clause: prisma.types.StoreAgentWhereInput = {"is_available": True}
if featured:
where_clause["featured"] = featured
@@ -130,14 +180,6 @@ async def get_store_agents(
if category:
where_clause["categories"] = {"has": category}
# Add basic text search if search_query provided but hybrid failed
if search_query:
where_clause["OR"] = [
{"agent_name": {"contains": search_query, "mode": "insensitive"}},
{"sub_heading": {"contains": search_query, "mode": "insensitive"}},
{"description": {"contains": search_query, "mode": "insensitive"}},
]
order_by = []
if sorted_by == "rating":
order_by.append({"rating": "desc"})
@@ -146,7 +188,7 @@ async def get_store_agents(
elif sorted_by == "name":
order_by.append({"agent_name": "asc"})
db_agents = await prisma.models.StoreAgent.prisma().find_many(
agents = await prisma.models.StoreAgent.prisma().find_many(
where=where_clause,
order=order_by,
skip=(page - 1) * page_size,
@@ -157,7 +199,7 @@ async def get_store_agents(
total_pages = (total + page_size - 1) // page_size
store_agents: list[store_model.StoreAgent] = []
for agent in db_agents:
for agent in agents:
try:
# Create the StoreAgent object safely
store_agent = store_model.StoreAgent(
@@ -572,7 +614,6 @@ async def get_store_submissions(
submission_models = []
for sub in submissions:
submission_model = store_model.StoreSubmission(
listing_id=sub.listing_id,
agent_id=sub.agent_id,
agent_version=sub.agent_version,
name=sub.name,
@@ -626,48 +667,35 @@ async def delete_store_submission(
submission_id: str,
) -> bool:
"""
Delete a store submission version as the submitting user.
Delete a store listing submission as the submitting user.
Args:
user_id: ID of the authenticated user
submission_id: StoreListingVersion ID to delete
submission_id: ID of the submission to be deleted
Returns:
bool: True if successfully deleted
bool: True if the submission was successfully deleted, False otherwise
"""
logger.debug(f"Deleting store submission {submission_id} for user {user_id}")
try:
# Find the submission version with ownership check
version = await prisma.models.StoreListingVersion.prisma().find_first(
where={"id": submission_id}, include={"StoreListing": True}
# Verify the submission belongs to this user
submission = await prisma.models.StoreListing.prisma().find_first(
where={"agentGraphId": submission_id, "owningUserId": user_id}
)
if (
not version
or not version.StoreListing
or version.StoreListing.owningUserId != user_id
):
raise store_exceptions.SubmissionNotFoundError("Submission not found")
# Prevent deletion of approved submissions
if version.submissionStatus == prisma.enums.SubmissionStatus.APPROVED:
raise store_exceptions.InvalidOperationError(
"Cannot delete approved submissions"
if not submission:
logger.warning(f"Submission not found for user {user_id}: {submission_id}")
raise store_exceptions.SubmissionNotFoundError(
f"Submission not found for this user. User ID: {user_id}, Submission ID: {submission_id}"
)
# Delete the version
await prisma.models.StoreListingVersion.prisma().delete(
where={"id": version.id}
)
# Delete the submission
await prisma.models.StoreListing.prisma().delete(where={"id": submission.id})
# Clean up empty listing if this was the last version
remaining = await prisma.models.StoreListingVersion.prisma().count(
where={"storeListingId": version.storeListingId}
logger.debug(
f"Successfully deleted submission {submission_id} for user {user_id}"
)
if remaining == 0:
await prisma.models.StoreListing.prisma().delete(
where={"id": version.storeListingId}
)
return True
except Exception as e:
@@ -731,15 +759,9 @@ async def create_store_submission(
logger.warning(
f"Agent not found for user {user_id}: {agent_id} v{agent_version}"
)
# Provide more user-friendly error message when agent_id is empty
if not agent_id or agent_id.strip() == "":
raise store_exceptions.AgentNotFoundError(
"No agent selected. Please select an agent before submitting to the store."
)
else:
raise store_exceptions.AgentNotFoundError(
f"Agent not found for this user. User ID: {user_id}, Agent ID: {agent_id}, Version: {agent_version}"
)
raise store_exceptions.AgentNotFoundError(
f"Agent not found for this user. User ID: {user_id}, Agent ID: {agent_id}, Version: {agent_version}"
)
# Check if listing already exists for this agent
existing_listing = await prisma.models.StoreListing.prisma().find_first(
@@ -811,7 +833,6 @@ async def create_store_submission(
logger.debug(f"Created store listing for agent {agent_id}")
# Return submission details
return store_model.StoreSubmission(
listing_id=listing.id,
agent_id=agent_id,
agent_version=agent_version,
name=name,
@@ -923,56 +944,81 @@ async def edit_store_submission(
# Currently we are not allowing user to update the agent associated with a submission
# If we allow it in future, then we need a check here to verify the agent belongs to this user.
# Only allow editing of PENDING submissions
if current_version.submissionStatus != prisma.enums.SubmissionStatus.PENDING:
# Check if we can edit this submission
if current_version.submissionStatus == prisma.enums.SubmissionStatus.REJECTED:
raise store_exceptions.InvalidOperationError(
f"Cannot edit a {current_version.submissionStatus.value.lower()} submission. Only pending submissions can be edited."
"Cannot edit a rejected submission"
)
# For APPROVED submissions, we need to create a new version
if current_version.submissionStatus == prisma.enums.SubmissionStatus.APPROVED:
# Create a new version for the existing listing
return await create_store_version(
user_id=user_id,
agent_id=current_version.agentGraphId,
agent_version=current_version.agentGraphVersion,
store_listing_id=current_version.storeListingId,
name=name,
video_url=video_url,
agent_output_demo_url=agent_output_demo_url,
image_urls=image_urls,
description=description,
sub_heading=sub_heading,
categories=categories,
changes_summary=changes_summary,
recommended_schedule_cron=recommended_schedule_cron,
instructions=instructions,
)
# For PENDING submissions, we can update the existing version
# Update the existing version
updated_version = await prisma.models.StoreListingVersion.prisma().update(
where={"id": store_listing_version_id},
data=prisma.types.StoreListingVersionUpdateInput(
elif current_version.submissionStatus == prisma.enums.SubmissionStatus.PENDING:
# Update the existing version
updated_version = await prisma.models.StoreListingVersion.prisma().update(
where={"id": store_listing_version_id},
data=prisma.types.StoreListingVersionUpdateInput(
name=name,
videoUrl=video_url,
agentOutputDemoUrl=agent_output_demo_url,
imageUrls=image_urls,
description=description,
categories=categories,
subHeading=sub_heading,
changesSummary=changes_summary,
recommendedScheduleCron=recommended_schedule_cron,
instructions=instructions,
),
)
logger.debug(
f"Updated existing version {store_listing_version_id} for agent {current_version.agentGraphId}"
)
if not updated_version:
raise DatabaseError("Failed to update store listing version")
return store_model.StoreSubmission(
agent_id=current_version.agentGraphId,
agent_version=current_version.agentGraphVersion,
name=name,
videoUrl=video_url,
agentOutputDemoUrl=agent_output_demo_url,
imageUrls=image_urls,
sub_heading=sub_heading,
slug=current_version.StoreListing.slug,
description=description,
categories=categories,
subHeading=sub_heading,
changesSummary=changes_summary,
recommendedScheduleCron=recommended_schedule_cron,
instructions=instructions,
),
)
image_urls=image_urls,
date_submitted=updated_version.submittedAt or updated_version.createdAt,
status=updated_version.submissionStatus,
runs=0,
rating=0.0,
store_listing_version_id=updated_version.id,
changes_summary=changes_summary,
video_url=video_url,
categories=categories,
version=updated_version.version,
)
logger.debug(
f"Updated existing version {store_listing_version_id} for agent {current_version.agentGraphId}"
)
if not updated_version:
raise DatabaseError("Failed to update store listing version")
return store_model.StoreSubmission(
listing_id=current_version.StoreListing.id,
agent_id=current_version.agentGraphId,
agent_version=current_version.agentGraphVersion,
name=name,
sub_heading=sub_heading,
slug=current_version.StoreListing.slug,
description=description,
instructions=instructions,
image_urls=image_urls,
date_submitted=updated_version.submittedAt or updated_version.createdAt,
status=updated_version.submissionStatus,
runs=0,
rating=0.0,
store_listing_version_id=updated_version.id,
changes_summary=changes_summary,
video_url=video_url,
categories=categories,
version=updated_version.version,
)
else:
raise store_exceptions.InvalidOperationError(
f"Cannot edit submission with status: {current_version.submissionStatus}"
)
except (
store_exceptions.SubmissionNotFoundError,
@@ -1051,78 +1097,38 @@ async def create_store_version(
f"Agent not found for this user. User ID: {user_id}, Agent ID: {agent_id}, Version: {agent_version}"
)
# Check if there's already a PENDING submission for this agent (any version)
existing_pending_submission = (
await prisma.models.StoreListingVersion.prisma().find_first(
where=prisma.types.StoreListingVersionWhereInput(
storeListingId=store_listing_id,
agentGraphId=agent_id,
submissionStatus=prisma.enums.SubmissionStatus.PENDING,
isDeleted=False,
)
# Get the latest version number
latest_version = listing.Versions[0] if listing.Versions else None
next_version = (latest_version.version + 1) if latest_version else 1
# Create a new version for the existing listing
new_version = await prisma.models.StoreListingVersion.prisma().create(
data=prisma.types.StoreListingVersionCreateInput(
version=next_version,
agentGraphId=agent_id,
agentGraphVersion=agent_version,
name=name,
videoUrl=video_url,
agentOutputDemoUrl=agent_output_demo_url,
imageUrls=image_urls,
description=description,
instructions=instructions,
categories=categories,
subHeading=sub_heading,
submissionStatus=prisma.enums.SubmissionStatus.PENDING,
submittedAt=datetime.now(),
changesSummary=changes_summary,
recommendedScheduleCron=recommended_schedule_cron,
storeListingId=store_listing_id,
)
)
# Handle existing pending submission and create new one atomically
async with transaction() as tx:
# Get the latest version number first
latest_listing = await prisma.models.StoreListing.prisma(tx).find_first(
where=prisma.types.StoreListingWhereInput(
id=store_listing_id, owningUserId=user_id
),
include={"Versions": {"order_by": {"version": "desc"}, "take": 1}},
)
if not latest_listing:
raise store_exceptions.ListingNotFoundError(
f"Store listing not found. User ID: {user_id}, Listing ID: {store_listing_id}"
)
latest_version = (
latest_listing.Versions[0] if latest_listing.Versions else None
)
next_version = (latest_version.version + 1) if latest_version else 1
# If there's an existing pending submission, delete it atomically before creating new one
if existing_pending_submission:
logger.info(
f"Found existing PENDING submission for agent {agent_id} (was v{existing_pending_submission.agentGraphVersion}, now v{agent_version}), replacing existing submission instead of creating duplicate"
)
await prisma.models.StoreListingVersion.prisma(tx).delete(
where={"id": existing_pending_submission.id}
)
logger.debug(
f"Deleted existing pending submission {existing_pending_submission.id}"
)
# Create a new version for the existing listing
new_version = await prisma.models.StoreListingVersion.prisma(tx).create(
data=prisma.types.StoreListingVersionCreateInput(
version=next_version,
agentGraphId=agent_id,
agentGraphVersion=agent_version,
name=name,
videoUrl=video_url,
agentOutputDemoUrl=agent_output_demo_url,
imageUrls=image_urls,
description=description,
instructions=instructions,
categories=categories,
subHeading=sub_heading,
submissionStatus=prisma.enums.SubmissionStatus.PENDING,
submittedAt=datetime.now(),
changesSummary=changes_summary,
recommendedScheduleCron=recommended_schedule_cron,
storeListingId=store_listing_id,
)
)
logger.debug(
f"Created new version for listing {store_listing_id} of agent {agent_id}"
)
# Return submission details
return store_model.StoreSubmission(
listing_id=listing.id,
agent_id=agent_id,
agent_version=agent_version,
name=name,
@@ -1535,7 +1541,7 @@ async def review_store_submission(
)
# Update the AgentGraph with store listing data
await prisma.models.AgentGraph.prisma(tx).update(
await prisma.models.AgentGraph.prisma().update(
where={
"graphVersionId": {
"id": store_listing_version.agentGraphId,
@@ -1550,23 +1556,6 @@ async def review_store_submission(
},
)
# Generate embedding for approved listing (blocking - admin operation)
# Inside transaction: if embedding fails, entire transaction rolls back
embedding_success = await ensure_embedding(
version_id=store_listing_version_id,
name=store_listing_version.name,
description=store_listing_version.description,
sub_heading=store_listing_version.subHeading,
categories=store_listing_version.categories or [],
tx=tx,
)
if not embedding_success:
raise ValueError(
f"Failed to generate embedding for listing {store_listing_version_id}. "
"This is likely due to OpenAI API being unavailable. "
"Please try again later or contact support if the issue persists."
)
await prisma.models.StoreListing.prisma(tx).update(
where={"id": store_listing_version.StoreListing.id},
data={
@@ -1719,12 +1708,15 @@ async def review_store_submission(
# Convert to Pydantic model for consistency
return store_model.StoreSubmission(
listing_id=(submission.StoreListing.id if submission.StoreListing else ""),
agent_id=submission.agentGraphId,
agent_version=submission.agentGraphVersion,
name=submission.name,
sub_heading=submission.subHeading,
slug=(submission.StoreListing.slug if submission.StoreListing else ""),
slug=(
submission.StoreListing.slug
if hasattr(submission, "storeListing") and submission.StoreListing
else ""
),
description=submission.description,
instructions=submission.instructions,
image_urls=submission.imageUrls or [],
@@ -1826,7 +1818,9 @@ async def get_admin_listings_with_versions(
where = prisma.types.StoreListingWhereInput(**where_dict)
include = prisma.types.StoreListingInclude(
Versions=prisma.types.FindManyStoreListingVersionArgsFromStoreListing(
order_by={"version": "desc"}
order_by=prisma.types._StoreListingVersion_version_OrderByInput(
version="desc"
)
),
OwningUser=True,
)
@@ -1851,7 +1845,6 @@ async def get_admin_listings_with_versions(
# If we have versions, turn them into StoreSubmission models
for version in listing.Versions or []:
version_model = store_model.StoreSubmission(
listing_id=listing.id,
agent_id=version.agentGraphId,
agent_version=version.agentGraphVersion,
name=version.name,

View File

@@ -1,628 +0,0 @@
"""
Unified Content Embeddings Service
Handles generation and storage of OpenAI embeddings for all content types
(store listings, blocks, documentation, library agents) to enable semantic/hybrid search.
"""
import asyncio
import logging
import time
from typing import Any
import prisma
from prisma.enums import ContentType
from tiktoken import encoding_for_model
from backend.api.features.store.content_handlers import CONTENT_HANDLERS
from backend.data.db import execute_raw_with_schema, query_raw_with_schema
from backend.util.clients import get_openai_client
from backend.util.json import dumps
logger = logging.getLogger(__name__)
# OpenAI embedding model configuration
EMBEDDING_MODEL = "text-embedding-3-small"
# OpenAI embedding token limit (8,191 with 1 token buffer for safety)
EMBEDDING_MAX_TOKENS = 8191
def build_searchable_text(
name: str,
description: str,
sub_heading: str,
categories: list[str],
) -> str:
"""
Build searchable text from listing version fields.
Combines relevant fields into a single string for embedding.
"""
parts = []
# Name is important - include it
if name:
parts.append(name)
# Sub-heading provides context
if sub_heading:
parts.append(sub_heading)
# Description is the main content
if description:
parts.append(description)
# Categories help with semantic matching
if categories:
parts.append(" ".join(categories))
return " ".join(parts)
async def generate_embedding(text: str) -> list[float] | None:
"""
Generate embedding for text using OpenAI API.
Returns None if embedding generation fails.
Fail-fast: no retries to maintain consistency with approval flow.
"""
try:
client = get_openai_client()
if not client:
logger.error("openai_internal_api_key not set, cannot generate embedding")
return None
# Truncate text to token limit using tiktoken
# Character-based truncation is insufficient because token ratios vary by content type
enc = encoding_for_model(EMBEDDING_MODEL)
tokens = enc.encode(text)
if len(tokens) > EMBEDDING_MAX_TOKENS:
tokens = tokens[:EMBEDDING_MAX_TOKENS]
truncated_text = enc.decode(tokens)
logger.info(
f"Truncated text from {len(enc.encode(text))} to {len(tokens)} tokens"
)
else:
truncated_text = text
start_time = time.time()
response = await client.embeddings.create(
model=EMBEDDING_MODEL,
input=truncated_text,
)
latency_ms = (time.time() - start_time) * 1000
embedding = response.data[0].embedding
logger.info(
f"Generated embedding: {len(embedding)} dims, "
f"{len(tokens)} tokens, {latency_ms:.0f}ms"
)
return embedding
except Exception as e:
logger.error(f"Failed to generate embedding: {e}")
return None
async def store_embedding(
version_id: str,
embedding: list[float],
tx: prisma.Prisma | None = None,
) -> bool:
"""
Store embedding in the database.
BACKWARD COMPATIBILITY: Maintained for existing store listing usage.
DEPRECATED: Use ensure_embedding() instead (includes searchable_text).
"""
return await store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id=version_id,
embedding=embedding,
searchable_text="", # Empty for backward compat; ensure_embedding() populates this
metadata=None,
user_id=None, # Store agents are public
tx=tx,
)
async def store_content_embedding(
content_type: ContentType,
content_id: str,
embedding: list[float],
searchable_text: str,
metadata: dict | None = None,
user_id: str | None = None,
tx: prisma.Prisma | None = None,
) -> bool:
"""
Store embedding in the unified content embeddings table.
New function for unified content embedding storage.
Uses raw SQL since Prisma doesn't natively support pgvector.
"""
try:
client = tx if tx else prisma.get_client()
# Convert embedding to PostgreSQL vector format
embedding_str = embedding_to_vector_string(embedding)
metadata_json = dumps(metadata or {})
# Upsert the embedding
# WHERE clause in DO UPDATE prevents PostgreSQL 15 bug with NULLS NOT DISTINCT
await execute_raw_with_schema(
"""
INSERT INTO {schema_prefix}"UnifiedContentEmbedding" (
"id", "contentType", "contentId", "userId", "embedding", "searchableText", "metadata", "createdAt", "updatedAt"
)
VALUES (gen_random_uuid()::text, $1::{schema_prefix}"ContentType", $2, $3, $4::vector, $5, $6::jsonb, NOW(), NOW())
ON CONFLICT ("contentType", "contentId", "userId")
DO UPDATE SET
"embedding" = $4::vector,
"searchableText" = $5,
"metadata" = $6::jsonb,
"updatedAt" = NOW()
WHERE {schema_prefix}"UnifiedContentEmbedding"."contentType" = $1::{schema_prefix}"ContentType"
AND {schema_prefix}"UnifiedContentEmbedding"."contentId" = $2
AND ({schema_prefix}"UnifiedContentEmbedding"."userId" = $3 OR ($3 IS NULL AND {schema_prefix}"UnifiedContentEmbedding"."userId" IS NULL))
""",
content_type,
content_id,
user_id,
embedding_str,
searchable_text,
metadata_json,
client=client,
set_public_search_path=True,
)
logger.info(f"Stored embedding for {content_type}:{content_id}")
return True
except Exception as e:
logger.error(f"Failed to store embedding for {content_type}:{content_id}: {e}")
return False
async def get_embedding(version_id: str) -> dict[str, Any] | None:
"""
Retrieve embedding record for a listing version.
BACKWARD COMPATIBILITY: Maintained for existing store listing usage.
Returns dict with storeListingVersionId, embedding, timestamps or None if not found.
"""
result = await get_content_embedding(
ContentType.STORE_AGENT, version_id, user_id=None
)
if result:
# Transform to old format for backward compatibility
return {
"storeListingVersionId": result["contentId"],
"embedding": result["embedding"],
"createdAt": result["createdAt"],
"updatedAt": result["updatedAt"],
}
return None
async def get_content_embedding(
content_type: ContentType, content_id: str, user_id: str | None = None
) -> dict[str, Any] | None:
"""
Retrieve embedding record for any content type.
New function for unified content embedding retrieval.
Returns dict with contentType, contentId, embedding, timestamps or None if not found.
"""
try:
result = await query_raw_with_schema(
"""
SELECT
"contentType",
"contentId",
"userId",
"embedding"::text as "embedding",
"searchableText",
"metadata",
"createdAt",
"updatedAt"
FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" = $1::{schema_prefix}"ContentType" AND "contentId" = $2 AND ("userId" = $3 OR ($3 IS NULL AND "userId" IS NULL))
""",
content_type,
content_id,
user_id,
set_public_search_path=True,
)
if result and len(result) > 0:
return result[0]
return None
except Exception as e:
logger.error(f"Failed to get embedding for {content_type}:{content_id}: {e}")
return None
async def ensure_embedding(
version_id: str,
name: str,
description: str,
sub_heading: str,
categories: list[str],
force: bool = False,
tx: prisma.Prisma | None = None,
) -> bool:
"""
Ensure an embedding exists for the listing version.
Creates embedding if missing. Use force=True to regenerate.
Backward-compatible wrapper for store listings.
Args:
version_id: The StoreListingVersion ID
name: Agent name
description: Agent description
sub_heading: Agent sub-heading
categories: Agent categories
force: Force regeneration even if embedding exists
tx: Optional transaction client
Returns:
True if embedding exists/was created, False on failure
"""
try:
# Check if embedding already exists
if not force:
existing = await get_embedding(version_id)
if existing and existing.get("embedding"):
logger.debug(f"Embedding for version {version_id} already exists")
return True
# Build searchable text for embedding
searchable_text = build_searchable_text(
name, description, sub_heading, categories
)
# Generate new embedding
embedding = await generate_embedding(searchable_text)
if embedding is None:
logger.warning(f"Could not generate embedding for version {version_id}")
return False
# Store the embedding with metadata using new function
metadata = {
"name": name,
"subHeading": sub_heading,
"categories": categories,
}
return await store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id=version_id,
embedding=embedding,
searchable_text=searchable_text,
metadata=metadata,
user_id=None, # Store agents are public
tx=tx,
)
except Exception as e:
logger.error(f"Failed to ensure embedding for version {version_id}: {e}")
return False
async def delete_embedding(version_id: str) -> bool:
"""
Delete embedding for a listing version.
BACKWARD COMPATIBILITY: Maintained for existing store listing usage.
Note: This is usually handled automatically by CASCADE delete,
but provided for manual cleanup if needed.
"""
return await delete_content_embedding(ContentType.STORE_AGENT, version_id)
async def delete_content_embedding(
content_type: ContentType, content_id: str, user_id: str | None = None
) -> bool:
"""
Delete embedding for any content type.
New function for unified content embedding deletion.
Note: This is usually handled automatically by CASCADE delete,
but provided for manual cleanup if needed.
Args:
content_type: The type of content (STORE_AGENT, LIBRARY_AGENT, etc.)
content_id: The unique identifier for the content
user_id: Optional user ID. For public content (STORE_AGENT, BLOCK), pass None.
For user-scoped content (LIBRARY_AGENT), pass the user's ID to avoid
deleting embeddings belonging to other users.
Returns:
True if deletion succeeded, False otherwise
"""
try:
client = prisma.get_client()
await execute_raw_with_schema(
"""
DELETE FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" = $1::{schema_prefix}"ContentType"
AND "contentId" = $2
AND ("userId" = $3 OR ($3 IS NULL AND "userId" IS NULL))
""",
content_type,
content_id,
user_id,
client=client,
)
user_str = f" (user: {user_id})" if user_id else ""
logger.info(f"Deleted embedding for {content_type}:{content_id}{user_str}")
return True
except Exception as e:
logger.error(f"Failed to delete embedding for {content_type}:{content_id}: {e}")
return False
async def get_embedding_stats() -> dict[str, Any]:
"""
Get statistics about embedding coverage for all content types.
Returns stats per content type and overall totals.
"""
try:
stats_by_type = {}
total_items = 0
total_with_embeddings = 0
total_without_embeddings = 0
# Aggregate stats from all handlers
for content_type, handler in CONTENT_HANDLERS.items():
try:
stats = await handler.get_stats()
stats_by_type[content_type.value] = {
"total": stats["total"],
"with_embeddings": stats["with_embeddings"],
"without_embeddings": stats["without_embeddings"],
"coverage_percent": (
round(stats["with_embeddings"] / stats["total"] * 100, 1)
if stats["total"] > 0
else 0
),
}
total_items += stats["total"]
total_with_embeddings += stats["with_embeddings"]
total_without_embeddings += stats["without_embeddings"]
except Exception as e:
logger.error(f"Failed to get stats for {content_type.value}: {e}")
stats_by_type[content_type.value] = {
"total": 0,
"with_embeddings": 0,
"without_embeddings": 0,
"coverage_percent": 0,
"error": str(e),
}
return {
"by_type": stats_by_type,
"totals": {
"total": total_items,
"with_embeddings": total_with_embeddings,
"without_embeddings": total_without_embeddings,
"coverage_percent": (
round(total_with_embeddings / total_items * 100, 1)
if total_items > 0
else 0
),
},
}
except Exception as e:
logger.error(f"Failed to get embedding stats: {e}")
return {
"by_type": {},
"totals": {
"total": 0,
"with_embeddings": 0,
"without_embeddings": 0,
"coverage_percent": 0,
},
"error": str(e),
}
async def backfill_missing_embeddings(batch_size: int = 10) -> dict[str, Any]:
"""
Generate embeddings for approved listings that don't have them.
BACKWARD COMPATIBILITY: Maintained for existing usage.
This now delegates to backfill_all_content_types() to process all content types.
Args:
batch_size: Number of embeddings to generate per content type
Returns:
Dict with success/failure counts aggregated across all content types
"""
# Delegate to the new generic backfill system
result = await backfill_all_content_types(batch_size)
# Return in the old format for backward compatibility
return result["totals"]
async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
"""
Generate embeddings for all content types using registered handlers.
Processes content types in order: BLOCK → STORE_AGENT → DOCUMENTATION.
This ensures foundational content (blocks) are searchable first.
Args:
batch_size: Number of embeddings to generate per content type
Returns:
Dict with stats per content type and overall totals
"""
results_by_type = {}
total_processed = 0
total_success = 0
total_failed = 0
# Process content types in explicit order
processing_order = [
ContentType.BLOCK,
ContentType.STORE_AGENT,
ContentType.DOCUMENTATION,
]
for content_type in processing_order:
handler = CONTENT_HANDLERS.get(content_type)
if not handler:
logger.warning(f"No handler registered for {content_type.value}")
continue
try:
logger.info(f"Processing {content_type.value} content type...")
# Get missing items from handler
missing_items = await handler.get_missing_items(batch_size)
if not missing_items:
results_by_type[content_type.value] = {
"processed": 0,
"success": 0,
"failed": 0,
"message": "No missing embeddings",
}
continue
# Process embeddings concurrently for better performance
embedding_tasks = [
ensure_content_embedding(
content_type=item.content_type,
content_id=item.content_id,
searchable_text=item.searchable_text,
metadata=item.metadata,
user_id=item.user_id,
)
for item in missing_items
]
results = await asyncio.gather(*embedding_tasks, return_exceptions=True)
success = sum(1 for result in results if result is True)
failed = len(results) - success
results_by_type[content_type.value] = {
"processed": len(missing_items),
"success": success,
"failed": failed,
"message": f"Backfilled {success} embeddings, {failed} failed",
}
total_processed += len(missing_items)
total_success += success
total_failed += failed
logger.info(
f"{content_type.value}: processed {len(missing_items)}, "
f"success {success}, failed {failed}"
)
except Exception as e:
logger.error(f"Failed to process {content_type.value}: {e}")
results_by_type[content_type.value] = {
"processed": 0,
"success": 0,
"failed": 0,
"error": str(e),
}
return {
"by_type": results_by_type,
"totals": {
"processed": total_processed,
"success": total_success,
"failed": total_failed,
"message": f"Overall: {total_success} succeeded, {total_failed} failed",
},
}
async def embed_query(query: str) -> list[float] | None:
"""
Generate embedding for a search query.
Same as generate_embedding but with clearer intent.
"""
return await generate_embedding(query)
def embedding_to_vector_string(embedding: list[float]) -> str:
"""Convert embedding list to PostgreSQL vector string format."""
return "[" + ",".join(str(x) for x in embedding) + "]"
async def ensure_content_embedding(
content_type: ContentType,
content_id: str,
searchable_text: str,
metadata: dict | None = None,
user_id: str | None = None,
force: bool = False,
tx: prisma.Prisma | None = None,
) -> bool:
"""
Ensure an embedding exists for any content type.
Generic function for creating embeddings for store agents, blocks, docs, etc.
Args:
content_type: ContentType enum value (STORE_AGENT, BLOCK, etc.)
content_id: Unique identifier for the content
searchable_text: Combined text for embedding generation
metadata: Optional metadata to store with embedding
force: Force regeneration even if embedding exists
tx: Optional transaction client
Returns:
True if embedding exists/was created, False on failure
"""
try:
# Check if embedding already exists
if not force:
existing = await get_content_embedding(content_type, content_id, user_id)
if existing and existing.get("embedding"):
logger.debug(
f"Embedding for {content_type}:{content_id} already exists"
)
return True
# Generate new embedding
embedding = await generate_embedding(searchable_text)
if embedding is None:
logger.warning(
f"Could not generate embedding for {content_type}:{content_id}"
)
return False
# Store the embedding
return await store_content_embedding(
content_type=content_type,
content_id=content_id,
embedding=embedding,
searchable_text=searchable_text,
metadata=metadata or {},
user_id=user_id,
tx=tx,
)
except Exception as e:
logger.error(f"Failed to ensure embedding for {content_type}:{content_id}: {e}")
return False

View File

@@ -1,329 +0,0 @@
"""
Integration tests for embeddings with schema handling.
These tests verify that embeddings operations work correctly across different database schemas.
"""
from unittest.mock import AsyncMock, patch
import pytest
from prisma.enums import ContentType
from backend.api.features.store import embeddings
# Schema prefix tests removed - functionality moved to db.raw_with_schema() helper
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_store_content_embedding_with_schema():
"""Test storing embeddings with proper schema handling."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "platform"
with patch("prisma.get_client") as mock_get_client:
mock_client = AsyncMock()
mock_get_client.return_value = mock_client
result = await embeddings.store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id="test-id",
embedding=[0.1] * 1536,
searchable_text="test text",
metadata={"test": "data"},
user_id=None,
)
# Verify the query was called
assert mock_client.execute_raw.called
# Get the SQL query that was executed
call_args = mock_client.execute_raw.call_args
sql_query = call_args[0][0]
# Verify schema prefix is in the query
assert '"platform"."UnifiedContentEmbedding"' in sql_query
# Verify result
assert result is True
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_get_content_embedding_with_schema():
"""Test retrieving embeddings with proper schema handling."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "platform"
with patch("prisma.get_client") as mock_get_client:
mock_client = AsyncMock()
mock_client.query_raw.return_value = [
{
"contentType": "STORE_AGENT",
"contentId": "test-id",
"userId": None,
"embedding": "[0.1, 0.2]",
"searchableText": "test",
"metadata": {},
"createdAt": "2024-01-01",
"updatedAt": "2024-01-01",
}
]
mock_get_client.return_value = mock_client
result = await embeddings.get_content_embedding(
ContentType.STORE_AGENT,
"test-id",
user_id=None,
)
# Verify the query was called
assert mock_client.query_raw.called
# Get the SQL query that was executed
call_args = mock_client.query_raw.call_args
sql_query = call_args[0][0]
# Verify schema prefix is in the query
assert '"platform"."UnifiedContentEmbedding"' in sql_query
# Verify result
assert result is not None
assert result["contentId"] == "test-id"
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_delete_content_embedding_with_schema():
"""Test deleting embeddings with proper schema handling."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "platform"
with patch("prisma.get_client") as mock_get_client:
mock_client = AsyncMock()
mock_get_client.return_value = mock_client
result = await embeddings.delete_content_embedding(
ContentType.STORE_AGENT,
"test-id",
)
# Verify the query was called
assert mock_client.execute_raw.called
# Get the SQL query that was executed
call_args = mock_client.execute_raw.call_args
sql_query = call_args[0][0]
# Verify schema prefix is in the query
assert '"platform"."UnifiedContentEmbedding"' in sql_query
# Verify result
assert result is True
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_get_embedding_stats_with_schema():
"""Test embedding statistics with proper schema handling."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "platform"
with patch("prisma.get_client") as mock_get_client:
mock_client = AsyncMock()
# Mock both query results
mock_client.query_raw.side_effect = [
[{"count": 100}], # total_approved
[{"count": 80}], # with_embeddings
]
mock_get_client.return_value = mock_client
result = await embeddings.get_embedding_stats()
# Verify both queries were called
assert mock_client.query_raw.call_count == 2
# Get both SQL queries
first_call = mock_client.query_raw.call_args_list[0]
second_call = mock_client.query_raw.call_args_list[1]
first_sql = first_call[0][0]
second_sql = second_call[0][0]
# Verify schema prefix in both queries
assert '"platform"."StoreListingVersion"' in first_sql
assert '"platform"."StoreListingVersion"' in second_sql
assert '"platform"."UnifiedContentEmbedding"' in second_sql
# Verify results
assert result["total_approved"] == 100
assert result["with_embeddings"] == 80
assert result["without_embeddings"] == 20
assert result["coverage_percent"] == 80.0
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_backfill_missing_embeddings_with_schema():
"""Test backfilling embeddings with proper schema handling."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "platform"
with patch("prisma.get_client") as mock_get_client:
mock_client = AsyncMock()
# Mock missing embeddings query
mock_client.query_raw.return_value = [
{
"id": "version-1",
"name": "Test Agent",
"description": "Test description",
"subHeading": "Test heading",
"categories": ["test"],
}
]
mock_get_client.return_value = mock_client
with patch(
"backend.api.features.store.embeddings.ensure_embedding"
) as mock_ensure:
mock_ensure.return_value = True
result = await embeddings.backfill_missing_embeddings(batch_size=10)
# Verify the query was called
assert mock_client.query_raw.called
# Get the SQL query
call_args = mock_client.query_raw.call_args
sql_query = call_args[0][0]
# Verify schema prefix in query
assert '"platform"."StoreListingVersion"' in sql_query
assert '"platform"."UnifiedContentEmbedding"' in sql_query
# Verify ensure_embedding was called
assert mock_ensure.called
# Verify results
assert result["processed"] == 1
assert result["success"] == 1
assert result["failed"] == 0
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_ensure_content_embedding_with_schema():
"""Test ensuring embeddings exist with proper schema handling."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "platform"
with patch(
"backend.api.features.store.embeddings.get_content_embedding"
) as mock_get:
# Simulate no existing embedding
mock_get.return_value = None
with patch(
"backend.api.features.store.embeddings.generate_embedding"
) as mock_generate:
mock_generate.return_value = [0.1] * 1536
with patch(
"backend.api.features.store.embeddings.store_content_embedding"
) as mock_store:
mock_store.return_value = True
result = await embeddings.ensure_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id="test-id",
searchable_text="test text",
metadata={"test": "data"},
user_id=None,
force=False,
)
# Verify the flow
assert mock_get.called
assert mock_generate.called
assert mock_store.called
assert result is True
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_backward_compatibility_store_embedding():
"""Test backward compatibility wrapper for store_embedding."""
with patch(
"backend.api.features.store.embeddings.store_content_embedding"
) as mock_store:
mock_store.return_value = True
result = await embeddings.store_embedding(
version_id="test-version-id",
embedding=[0.1] * 1536,
tx=None,
)
# Verify it calls the new function with correct parameters
assert mock_store.called
call_args = mock_store.call_args
assert call_args[1]["content_type"] == ContentType.STORE_AGENT
assert call_args[1]["content_id"] == "test-version-id"
assert call_args[1]["user_id"] is None
assert result is True
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_backward_compatibility_get_embedding():
"""Test backward compatibility wrapper for get_embedding."""
with patch(
"backend.api.features.store.embeddings.get_content_embedding"
) as mock_get:
mock_get.return_value = {
"contentType": "STORE_AGENT",
"contentId": "test-version-id",
"embedding": "[0.1, 0.2]",
"createdAt": "2024-01-01",
"updatedAt": "2024-01-01",
}
result = await embeddings.get_embedding("test-version-id")
# Verify it calls the new function
assert mock_get.called
# Verify it transforms to old format
assert result is not None
assert result["storeListingVersionId"] == "test-version-id"
assert "embedding" in result
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_schema_handling_error_cases():
"""Test error handling in schema-aware operations."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "platform"
with patch("prisma.get_client") as mock_get_client:
mock_client = AsyncMock()
mock_client.execute_raw.side_effect = Exception("Database error")
mock_get_client.return_value = mock_client
result = await embeddings.store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id="test-id",
embedding=[0.1] * 1536,
searchable_text="test",
metadata=None,
user_id=None,
)
# Should return False on error, not raise
assert result is False
if __name__ == "__main__":
pytest.main([__file__, "-v", "-s"])

View File

@@ -1,387 +0,0 @@
from unittest.mock import AsyncMock, MagicMock, patch
import prisma
import pytest
from prisma import Prisma
from prisma.enums import ContentType
from backend.api.features.store import embeddings
@pytest.fixture(autouse=True)
async def setup_prisma():
"""Setup Prisma client for tests."""
try:
Prisma()
except prisma.errors.ClientAlreadyRegisteredError:
pass
yield
@pytest.mark.asyncio(loop_scope="session")
async def test_build_searchable_text():
"""Test searchable text building from listing fields."""
result = embeddings.build_searchable_text(
name="AI Assistant",
description="A helpful AI assistant for productivity",
sub_heading="Boost your productivity",
categories=["AI", "Productivity"],
)
expected = "AI Assistant Boost your productivity A helpful AI assistant for productivity AI Productivity"
assert result == expected
@pytest.mark.asyncio(loop_scope="session")
async def test_build_searchable_text_empty_fields():
"""Test searchable text building with empty fields."""
result = embeddings.build_searchable_text(
name="", description="Test description", sub_heading="", categories=[]
)
assert result == "Test description"
@pytest.mark.asyncio(loop_scope="session")
async def test_generate_embedding_success():
"""Test successful embedding generation."""
# Mock OpenAI response
mock_client = MagicMock()
mock_response = MagicMock()
mock_response.data = [MagicMock()]
mock_response.data[0].embedding = [0.1, 0.2, 0.3] * 512 # 1536 dimensions
# Use AsyncMock for async embeddings.create method
mock_client.embeddings.create = AsyncMock(return_value=mock_response)
# Patch at the point of use in embeddings.py
with patch(
"backend.api.features.store.embeddings.get_openai_client"
) as mock_get_client:
mock_get_client.return_value = mock_client
result = await embeddings.generate_embedding("test text")
assert result is not None
assert len(result) == 1536
assert result[0] == 0.1
mock_client.embeddings.create.assert_called_once_with(
model="text-embedding-3-small", input="test text"
)
@pytest.mark.asyncio(loop_scope="session")
async def test_generate_embedding_no_api_key():
"""Test embedding generation without API key."""
# Patch at the point of use in embeddings.py
with patch(
"backend.api.features.store.embeddings.get_openai_client"
) as mock_get_client:
mock_get_client.return_value = None
result = await embeddings.generate_embedding("test text")
assert result is None
@pytest.mark.asyncio(loop_scope="session")
async def test_generate_embedding_api_error():
"""Test embedding generation with API error."""
mock_client = MagicMock()
mock_client.embeddings.create = AsyncMock(side_effect=Exception("API Error"))
# Patch at the point of use in embeddings.py
with patch(
"backend.api.features.store.embeddings.get_openai_client"
) as mock_get_client:
mock_get_client.return_value = mock_client
result = await embeddings.generate_embedding("test text")
assert result is None
@pytest.mark.asyncio(loop_scope="session")
async def test_generate_embedding_text_truncation():
"""Test that long text is properly truncated using tiktoken."""
from tiktoken import encoding_for_model
mock_client = MagicMock()
mock_response = MagicMock()
mock_response.data = [MagicMock()]
mock_response.data[0].embedding = [0.1] * 1536
# Use AsyncMock for async embeddings.create method
mock_client.embeddings.create = AsyncMock(return_value=mock_response)
# Patch at the point of use in embeddings.py
with patch(
"backend.api.features.store.embeddings.get_openai_client"
) as mock_get_client:
mock_get_client.return_value = mock_client
# Create text that will exceed 8191 tokens
# Use varied characters to ensure token-heavy text: each word is ~1 token
words = [f"word{i}" for i in range(10000)]
long_text = " ".join(words) # ~10000 tokens
await embeddings.generate_embedding(long_text)
# Verify text was truncated to 8191 tokens
call_args = mock_client.embeddings.create.call_args
truncated_text = call_args.kwargs["input"]
# Count actual tokens in truncated text
enc = encoding_for_model("text-embedding-3-small")
actual_tokens = len(enc.encode(truncated_text))
# Should be at or just under 8191 tokens
assert actual_tokens <= 8191
# Should be close to the limit (not over-truncated)
assert actual_tokens >= 8100
@pytest.mark.asyncio(loop_scope="session")
async def test_store_embedding_success(mocker):
"""Test successful embedding storage."""
mock_client = mocker.AsyncMock()
mock_client.execute_raw = mocker.AsyncMock()
embedding = [0.1, 0.2, 0.3]
result = await embeddings.store_embedding(
version_id="test-version-id", embedding=embedding, tx=mock_client
)
assert result is True
# execute_raw is called twice: once for SET search_path, once for INSERT
assert mock_client.execute_raw.call_count == 2
# First call: SET search_path
first_call_args = mock_client.execute_raw.call_args_list[0][0]
assert "SET search_path" in first_call_args[0]
# Second call: INSERT query with the actual data
second_call_args = mock_client.execute_raw.call_args_list[1][0]
assert "test-version-id" in second_call_args
assert "[0.1,0.2,0.3]" in second_call_args
assert None in second_call_args # userId should be None for store agents
@pytest.mark.asyncio(loop_scope="session")
async def test_store_embedding_database_error(mocker):
"""Test embedding storage with database error."""
mock_client = mocker.AsyncMock()
mock_client.execute_raw.side_effect = Exception("Database error")
embedding = [0.1, 0.2, 0.3]
result = await embeddings.store_embedding(
version_id="test-version-id", embedding=embedding, tx=mock_client
)
assert result is False
@pytest.mark.asyncio(loop_scope="session")
async def test_get_embedding_success():
"""Test successful embedding retrieval."""
mock_result = [
{
"contentType": "STORE_AGENT",
"contentId": "test-version-id",
"userId": None,
"embedding": "[0.1,0.2,0.3]",
"searchableText": "Test text",
"metadata": {},
"createdAt": "2024-01-01T00:00:00Z",
"updatedAt": "2024-01-01T00:00:00Z",
}
]
with patch(
"backend.api.features.store.embeddings.query_raw_with_schema",
return_value=mock_result,
):
result = await embeddings.get_embedding("test-version-id")
assert result is not None
assert result["storeListingVersionId"] == "test-version-id"
assert result["embedding"] == "[0.1,0.2,0.3]"
@pytest.mark.asyncio(loop_scope="session")
async def test_get_embedding_not_found():
"""Test embedding retrieval when not found."""
with patch(
"backend.api.features.store.embeddings.query_raw_with_schema",
return_value=[],
):
result = await embeddings.get_embedding("test-version-id")
assert result is None
@pytest.mark.asyncio(loop_scope="session")
@patch("backend.api.features.store.embeddings.generate_embedding")
@patch("backend.api.features.store.embeddings.store_embedding")
@patch("backend.api.features.store.embeddings.get_embedding")
async def test_ensure_embedding_already_exists(mock_get, mock_store, mock_generate):
"""Test ensure_embedding when embedding already exists."""
mock_get.return_value = {"embedding": "[0.1,0.2,0.3]"}
result = await embeddings.ensure_embedding(
version_id="test-id",
name="Test",
description="Test description",
sub_heading="Test heading",
categories=["test"],
)
assert result is True
mock_generate.assert_not_called()
mock_store.assert_not_called()
@pytest.mark.asyncio(loop_scope="session")
@patch("backend.api.features.store.embeddings.generate_embedding")
@patch("backend.api.features.store.embeddings.store_content_embedding")
@patch("backend.api.features.store.embeddings.get_embedding")
async def test_ensure_embedding_create_new(mock_get, mock_store, mock_generate):
"""Test ensure_embedding creating new embedding."""
mock_get.return_value = None
mock_generate.return_value = [0.1, 0.2, 0.3]
mock_store.return_value = True
result = await embeddings.ensure_embedding(
version_id="test-id",
name="Test",
description="Test description",
sub_heading="Test heading",
categories=["test"],
)
assert result is True
mock_generate.assert_called_once_with("Test Test heading Test description test")
mock_store.assert_called_once_with(
content_type=ContentType.STORE_AGENT,
content_id="test-id",
embedding=[0.1, 0.2, 0.3],
searchable_text="Test Test heading Test description test",
metadata={"name": "Test", "subHeading": "Test heading", "categories": ["test"]},
user_id=None,
tx=None,
)
@pytest.mark.asyncio(loop_scope="session")
@patch("backend.api.features.store.embeddings.generate_embedding")
@patch("backend.api.features.store.embeddings.get_embedding")
async def test_ensure_embedding_generation_fails(mock_get, mock_generate):
"""Test ensure_embedding when generation fails."""
mock_get.return_value = None
mock_generate.return_value = None
result = await embeddings.ensure_embedding(
version_id="test-id",
name="Test",
description="Test description",
sub_heading="Test heading",
categories=["test"],
)
assert result is False
@pytest.mark.asyncio(loop_scope="session")
async def test_get_embedding_stats():
"""Test embedding statistics retrieval."""
# Mock approved count query and embedded count query
mock_approved_result = [{"count": 100}]
mock_embedded_result = [{"count": 75}]
with patch(
"backend.api.features.store.embeddings.query_raw_with_schema",
side_effect=[mock_approved_result, mock_embedded_result],
):
result = await embeddings.get_embedding_stats()
assert result["total_approved"] == 100
assert result["with_embeddings"] == 75
assert result["without_embeddings"] == 25
assert result["coverage_percent"] == 75.0
@pytest.mark.asyncio(loop_scope="session")
@patch("backend.api.features.store.embeddings.ensure_embedding")
async def test_backfill_missing_embeddings_success(mock_ensure):
"""Test backfill with successful embedding generation."""
# Mock missing embeddings query
mock_missing = [
{
"id": "version-1",
"name": "Agent 1",
"description": "Description 1",
"subHeading": "Heading 1",
"categories": ["AI"],
},
{
"id": "version-2",
"name": "Agent 2",
"description": "Description 2",
"subHeading": "Heading 2",
"categories": ["Productivity"],
},
]
# Mock ensure_embedding to succeed for first, fail for second
mock_ensure.side_effect = [True, False]
with patch(
"backend.api.features.store.embeddings.query_raw_with_schema",
return_value=mock_missing,
):
result = await embeddings.backfill_missing_embeddings(batch_size=5)
assert result["processed"] == 2
assert result["success"] == 1
assert result["failed"] == 1
assert mock_ensure.call_count == 2
@pytest.mark.asyncio(loop_scope="session")
async def test_backfill_missing_embeddings_no_missing():
"""Test backfill when no embeddings are missing."""
with patch(
"backend.api.features.store.embeddings.query_raw_with_schema",
return_value=[],
):
result = await embeddings.backfill_missing_embeddings(batch_size=5)
assert result["processed"] == 0
assert result["success"] == 0
assert result["failed"] == 0
assert result["message"] == "No missing embeddings"
@pytest.mark.asyncio(loop_scope="session")
async def test_embedding_to_vector_string():
"""Test embedding to PostgreSQL vector string conversion."""
embedding = [0.1, 0.2, 0.3, -0.4]
result = embeddings.embedding_to_vector_string(embedding)
assert result == "[0.1,0.2,0.3,-0.4]"
@pytest.mark.asyncio(loop_scope="session")
async def test_embed_query():
"""Test embed_query function (alias for generate_embedding)."""
with patch(
"backend.api.features.store.embeddings.generate_embedding"
) as mock_generate:
mock_generate.return_value = [0.1, 0.2, 0.3]
result = await embeddings.embed_query("test query")
assert result == [0.1, 0.2, 0.3]
mock_generate.assert_called_once_with("test query")

View File

@@ -1,393 +0,0 @@
"""
Hybrid Search for Store Agents
Combines semantic (embedding) search with lexical (tsvector) search
for improved relevance in marketplace agent discovery.
"""
import logging
from dataclasses import dataclass
from datetime import datetime
from typing import Any, Literal
from backend.api.features.store.embeddings import (
embed_query,
embedding_to_vector_string,
)
from backend.data.db import query_raw_with_schema
logger = logging.getLogger(__name__)
@dataclass
class HybridSearchWeights:
"""Weights for combining search signals."""
semantic: float = 0.30 # Embedding cosine similarity
lexical: float = 0.30 # tsvector ts_rank_cd score
category: float = 0.20 # Category match boost
recency: float = 0.10 # Newer agents ranked higher
popularity: float = 0.10 # Agent usage/runs (PageRank-like)
def __post_init__(self):
"""Validate weights are non-negative and sum to approximately 1.0."""
total = (
self.semantic
+ self.lexical
+ self.category
+ self.recency
+ self.popularity
)
if any(
w < 0
for w in [
self.semantic,
self.lexical,
self.category,
self.recency,
self.popularity,
]
):
raise ValueError("All weights must be non-negative")
if not (0.99 <= total <= 1.01):
raise ValueError(f"Weights must sum to ~1.0, got {total:.3f}")
DEFAULT_WEIGHTS = HybridSearchWeights()
# Minimum relevance score threshold - agents below this are filtered out
# With weights (0.30 semantic + 0.30 lexical + 0.20 category + 0.10 recency + 0.10 popularity):
# - 0.20 means at least ~60% semantic match OR strong lexical match required
# - Ensures only genuinely relevant results are returned
# - Recency/popularity alone (0.10 each) won't pass the threshold
DEFAULT_MIN_SCORE = 0.20
@dataclass
class HybridSearchResult:
"""A single search result with score breakdown."""
slug: str
agent_name: str
agent_image: str
creator_username: str
creator_avatar: str
sub_heading: str
description: str
runs: int
rating: float
categories: list[str]
featured: bool
is_available: bool
updated_at: datetime
# Score breakdown (for debugging/tuning)
combined_score: float
semantic_score: float = 0.0
lexical_score: float = 0.0
category_score: float = 0.0
recency_score: float = 0.0
popularity_score: float = 0.0
async def hybrid_search(
query: str,
featured: bool = False,
creators: list[str] | None = None,
category: str | None = None,
sorted_by: (
Literal["relevance", "rating", "runs", "name", "updated_at"] | None
) = None,
page: int = 1,
page_size: int = 20,
weights: HybridSearchWeights | None = None,
min_score: float | None = None,
) -> tuple[list[dict[str, Any]], int]:
"""
Perform hybrid search combining semantic and lexical signals.
Args:
query: Search query string
featured: Filter for featured agents only
creators: Filter by creator usernames
category: Filter by category
sorted_by: Sort order (relevance uses hybrid scoring)
page: Page number (1-indexed)
page_size: Results per page
weights: Custom weights for search signals
min_score: Minimum relevance score threshold (0-1). Results below
this score are filtered out. Defaults to DEFAULT_MIN_SCORE.
Returns:
Tuple of (results list, total count). Returns empty list if no
results meet the minimum relevance threshold.
"""
# Validate inputs
query = query.strip()
if not query:
return [], 0 # Empty query returns no results
if page < 1:
page = 1
if page_size < 1:
page_size = 1
if page_size > 100: # Cap at reasonable limit to prevent performance issues
page_size = 100
if weights is None:
weights = DEFAULT_WEIGHTS
if min_score is None:
min_score = DEFAULT_MIN_SCORE
offset = (page - 1) * page_size
# Generate query embedding
query_embedding = await embed_query(query)
# Build WHERE clause conditions
where_parts: list[str] = ["sa.is_available = true"]
params: list[Any] = []
param_index = 1
# Add search query for lexical matching
params.append(query)
query_param = f"${param_index}"
param_index += 1
# Add lowercased query for category matching
params.append(query.lower())
query_lower_param = f"${param_index}"
param_index += 1
if featured:
where_parts.append("sa.featured = true")
if creators:
where_parts.append(f"sa.creator_username = ANY(${param_index})")
params.append(creators)
param_index += 1
if category:
where_parts.append(f"${param_index} = ANY(sa.categories)")
params.append(category)
param_index += 1
# Safe: where_parts only contains hardcoded strings with $N parameter placeholders
# No user input is concatenated directly into the SQL string
where_clause = " AND ".join(where_parts)
# Embedding is required for hybrid search - fail fast if unavailable
if query_embedding is None or not query_embedding:
# Log detailed error server-side
logger.error(
"Failed to generate query embedding. "
"Check that openai_internal_api_key is configured and OpenAI API is accessible."
)
# Raise generic error to client
raise ValueError("Search service temporarily unavailable")
# Add embedding parameter
embedding_str = embedding_to_vector_string(query_embedding)
params.append(embedding_str)
embedding_param = f"${param_index}"
param_index += 1
# Add weight parameters for SQL calculation
params.append(weights.semantic)
weight_semantic_param = f"${param_index}"
param_index += 1
params.append(weights.lexical)
weight_lexical_param = f"${param_index}"
param_index += 1
params.append(weights.category)
weight_category_param = f"${param_index}"
param_index += 1
params.append(weights.recency)
weight_recency_param = f"${param_index}"
param_index += 1
params.append(weights.popularity)
weight_popularity_param = f"${param_index}"
param_index += 1
# Add min_score parameter
params.append(min_score)
min_score_param = f"${param_index}"
param_index += 1
# Optimized hybrid search query:
# 1. Direct join to UnifiedContentEmbedding via contentId=storeListingVersionId (no redundant JOINs)
# 2. UNION approach (deduplicates agents matching both branches)
# 3. COUNT(*) OVER() to get total count in single query
# 4. Optimized category matching with EXISTS + unnest
# 5. Pre-calculated max values for lexical and popularity normalization
# 6. Simplified recency calculation with linear decay
# 7. Logarithmic popularity scaling to prevent viral agents from dominating
sql_query = f"""
WITH candidates AS (
-- Lexical matches (uses GIN index on search column)
SELECT sa."storeListingVersionId"
FROM {{schema_prefix}}"StoreAgent" sa
WHERE {where_clause}
AND sa.search @@ plainto_tsquery('english', {query_param})
UNION
-- Semantic matches (uses HNSW index on embedding with KNN)
SELECT "storeListingVersionId"
FROM (
SELECT sa."storeListingVersionId", uce.embedding
FROM {{schema_prefix}}"StoreAgent" sa
INNER JOIN {{schema_prefix}}"UnifiedContentEmbedding" uce
ON sa."storeListingVersionId" = uce."contentId" AND uce."contentType" = 'STORE_AGENT'::{{schema_prefix}}"ContentType"
WHERE {where_clause}
ORDER BY uce.embedding <=> {embedding_param}::vector
LIMIT 200
) semantic_results
),
search_scores AS (
SELECT
sa.slug,
sa.agent_name,
sa.agent_image,
sa.creator_username,
sa.creator_avatar,
sa.sub_heading,
sa.description,
sa.runs,
sa.rating,
sa.categories,
sa.featured,
sa.is_available,
sa.updated_at,
-- Semantic score: cosine similarity (1 - distance)
COALESCE(1 - (uce.embedding <=> {embedding_param}::vector), 0) as semantic_score,
-- Lexical score: ts_rank_cd (will be normalized later)
COALESCE(ts_rank_cd(sa.search, plainto_tsquery('english', {query_param})), 0) as lexical_raw,
-- Category match: optimized with unnest for better performance
CASE
WHEN EXISTS (
SELECT 1 FROM unnest(sa.categories) cat
WHERE LOWER(cat) LIKE '%' || {query_lower_param} || '%'
)
THEN 1.0
ELSE 0.0
END as category_score,
-- Recency score: linear decay over 90 days (simpler than exponential)
GREATEST(0, 1 - EXTRACT(EPOCH FROM (NOW() - sa.updated_at)) / (90 * 24 * 3600)) as recency_score,
-- Popularity raw: agent runs count (will be normalized with log scaling)
sa.runs as popularity_raw
FROM candidates c
INNER JOIN {{schema_prefix}}"StoreAgent" sa
ON c."storeListingVersionId" = sa."storeListingVersionId"
LEFT JOIN {{schema_prefix}}"UnifiedContentEmbedding" uce
ON sa."storeListingVersionId" = uce."contentId" AND uce."contentType" = 'STORE_AGENT'::{{schema_prefix}}"ContentType"
),
max_lexical AS (
SELECT MAX(lexical_raw) as max_val FROM search_scores
),
max_popularity AS (
SELECT MAX(popularity_raw) as max_val FROM search_scores
),
normalized AS (
SELECT
ss.*,
-- Normalize lexical score by pre-calculated max
CASE
WHEN ml.max_val > 0
THEN ss.lexical_raw / ml.max_val
ELSE 0
END as lexical_score,
-- Normalize popularity with logarithmic scaling to prevent viral agents from dominating
-- LOG(1 + runs) / LOG(1 + max_runs) ensures score is 0-1 range
CASE
WHEN mp.max_val > 0 AND ss.popularity_raw > 0
THEN LN(1 + ss.popularity_raw) / LN(1 + mp.max_val)
ELSE 0
END as popularity_score
FROM search_scores ss
CROSS JOIN max_lexical ml
CROSS JOIN max_popularity mp
),
scored AS (
SELECT
slug,
agent_name,
agent_image,
creator_username,
creator_avatar,
sub_heading,
description,
runs,
rating,
categories,
featured,
is_available,
updated_at,
semantic_score,
lexical_score,
category_score,
recency_score,
popularity_score,
(
{weight_semantic_param} * semantic_score +
{weight_lexical_param} * lexical_score +
{weight_category_param} * category_score +
{weight_recency_param} * recency_score +
{weight_popularity_param} * popularity_score
) as combined_score
FROM normalized
),
filtered AS (
SELECT
*,
COUNT(*) OVER () as total_count
FROM scored
WHERE combined_score >= {min_score_param}
)
SELECT * FROM filtered
ORDER BY combined_score DESC
LIMIT ${param_index} OFFSET ${param_index + 1}
"""
# Add pagination params
params.extend([page_size, offset])
# Execute search query - includes total_count via window function
results = await query_raw_with_schema(
sql_query, *params, set_public_search_path=True
)
# Extract total count from first result (all rows have same count)
total = results[0]["total_count"] if results else 0
# Remove total_count from results before returning
for result in results:
result.pop("total_count", None)
# Log without sensitive query content
logger.info(f"Hybrid search: {len(results)} results, {total} total")
return results, total
async def hybrid_search_simple(
query: str,
page: int = 1,
page_size: int = 20,
) -> tuple[list[dict[str, Any]], int]:
"""
Simplified hybrid search for common use cases.
Uses default weights and no filters.
"""
return await hybrid_search(
query=query,
page=page,
page_size=page_size,
)

View File

@@ -1,334 +0,0 @@
"""
Integration tests for hybrid search with schema handling.
These tests verify that hybrid search works correctly across different database schemas.
"""
from unittest.mock import patch
import pytest
from backend.api.features.store.hybrid_search import HybridSearchWeights, hybrid_search
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_with_schema_handling():
"""Test that hybrid search correctly handles database schema prefixes."""
# Test with a mock query to ensure schema handling works
query = "test agent"
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
# Mock the query result
mock_query.return_value = [
{
"slug": "test/agent",
"agent_name": "Test Agent",
"agent_image": "test.png",
"creator_username": "test",
"creator_avatar": "avatar.png",
"sub_heading": "Test sub-heading",
"description": "Test description",
"runs": 10,
"rating": 4.5,
"categories": ["test"],
"featured": False,
"is_available": True,
"updated_at": "2024-01-01T00:00:00Z",
"combined_score": 0.8,
"semantic_score": 0.7,
"lexical_score": 0.6,
"category_score": 0.5,
"recency_score": 0.4,
"total_count": 1,
}
]
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536 # Mock embedding
results, total = await hybrid_search(
query=query,
page=1,
page_size=20,
)
# Verify the query was called
assert mock_query.called
# Verify the SQL template uses schema_prefix placeholder
call_args = mock_query.call_args
sql_template = call_args[0][0]
assert "{schema_prefix}" in sql_template
# Verify results
assert len(results) == 1
assert total == 1
assert results[0]["slug"] == "test/agent"
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_with_public_schema():
"""Test hybrid search when using public schema (no prefix needed)."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "public"
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
mock_query.return_value = []
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536
results, total = await hybrid_search(
query="test",
page=1,
page_size=20,
)
# Verify the mock was set up correctly
assert mock_schema.return_value == "public"
# Results should work even with empty results
assert results == []
assert total == 0
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_with_custom_schema():
"""Test hybrid search when using custom schema (e.g., 'platform')."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "platform"
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
mock_query.return_value = []
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536
results, total = await hybrid_search(
query="test",
page=1,
page_size=20,
)
# Verify the mock was set up correctly
assert mock_schema.return_value == "platform"
assert results == []
assert total == 0
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_without_embeddings():
"""Test hybrid search fails fast when embeddings are unavailable."""
# Patch where the function is used, not where it's defined
with patch("backend.api.features.store.hybrid_search.embed_query") as mock_embed:
# Simulate embedding failure
mock_embed.return_value = None
# Should raise ValueError with helpful message
with pytest.raises(ValueError) as exc_info:
await hybrid_search(
query="test",
page=1,
page_size=20,
)
# Verify error message is generic (doesn't leak implementation details)
assert "Search service temporarily unavailable" in str(exc_info.value)
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_with_filters():
"""Test hybrid search with various filters."""
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
mock_query.return_value = []
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536
# Test with featured filter
results, total = await hybrid_search(
query="test",
featured=True,
creators=["user1", "user2"],
category="productivity",
page=1,
page_size=10,
)
# Verify filters were applied in the query
call_args = mock_query.call_args
params = call_args[0][1:] # Skip SQL template
# Should have query, query_lower, creators array, category
assert len(params) >= 4
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_weights():
"""Test hybrid search with custom weights."""
custom_weights = HybridSearchWeights(
semantic=0.5,
lexical=0.3,
category=0.1,
recency=0.1,
popularity=0.0,
)
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
mock_query.return_value = []
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536
results, total = await hybrid_search(
query="test",
weights=custom_weights,
page=1,
page_size=20,
)
# Verify custom weights were used in the query
call_args = mock_query.call_args
sql_template = call_args[0][0]
params = call_args[0][1:] # Get all parameters passed
# Check that SQL uses parameterized weights (not f-string interpolation)
assert "$" in sql_template # Verify parameterization is used
# Check that custom weights are in the params
assert 0.5 in params # semantic weight
assert 0.3 in params # lexical weight
assert 0.1 in params # category and recency weights
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_min_score_filtering():
"""Test hybrid search minimum score threshold."""
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
# Return results with varying scores
mock_query.return_value = [
{
"slug": "high-score/agent",
"agent_name": "High Score Agent",
"combined_score": 0.8,
"total_count": 1,
# ... other fields
}
]
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536
# Test with custom min_score
results, total = await hybrid_search(
query="test",
min_score=0.5, # High threshold
page=1,
page_size=20,
)
# Verify min_score was applied in query
call_args = mock_query.call_args
sql_template = call_args[0][0]
params = call_args[0][1:] # Get all parameters
# Check that SQL uses parameterized min_score
assert "combined_score >=" in sql_template
assert "$" in sql_template # Verify parameterization
# Check that custom min_score is in the params
assert 0.5 in params
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_pagination():
"""Test hybrid search pagination."""
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
mock_query.return_value = []
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536
# Test page 2 with page_size 10
results, total = await hybrid_search(
query="test",
page=2,
page_size=10,
)
# Verify pagination parameters
call_args = mock_query.call_args
params = call_args[0]
# Last two params should be LIMIT and OFFSET
limit = params[-2]
offset = params[-1]
assert limit == 10 # page_size
assert offset == 10 # (page - 1) * page_size = (2 - 1) * 10
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_error_handling():
"""Test hybrid search error handling."""
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
# Simulate database error
mock_query.side_effect = Exception("Database connection error")
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536
# Should raise exception
with pytest.raises(Exception) as exc_info:
await hybrid_search(
query="test",
page=1,
page_size=20,
)
assert "Database connection error" in str(exc_info.value)
if __name__ == "__main__":
pytest.main([__file__, "-v", "-s"])

View File

@@ -110,7 +110,6 @@ class Profile(pydantic.BaseModel):
class StoreSubmission(pydantic.BaseModel):
listing_id: str
agent_id: str
agent_version: int
name: str
@@ -165,12 +164,8 @@ class StoreListingsWithVersionsResponse(pydantic.BaseModel):
class StoreSubmissionRequest(pydantic.BaseModel):
agent_id: str = pydantic.Field(
..., min_length=1, description="Agent ID cannot be empty"
)
agent_version: int = pydantic.Field(
..., gt=0, description="Agent version must be greater than 0"
)
agent_id: str
agent_version: int
slug: str
name: str
sub_heading: str

View File

@@ -138,7 +138,6 @@ def test_creator_details():
def test_store_submission():
submission = store_model.StoreSubmission(
listing_id="listing123",
agent_id="agent123",
agent_version=1,
sub_heading="Test subheading",
@@ -160,7 +159,6 @@ def test_store_submissions_response():
response = store_model.StoreSubmissionsResponse(
submissions=[
store_model.StoreSubmission(
listing_id="listing123",
agent_id="agent123",
agent_version=1,
sub_heading="Test subheading",

View File

@@ -294,6 +294,7 @@ async def get_creators(
@router.get(
"/creator/{username}",
summary="Get creator details",
operation_id="getV2GetCreatorDetails",
tags=["store", "public"],
response_model=store_model.CreatorDetails,
)

View File

@@ -521,7 +521,6 @@ def test_get_submissions_success(
mocked_value = store_model.StoreSubmissionsResponse(
submissions=[
store_model.StoreSubmission(
listing_id="test-listing-id",
name="Test Agent",
description="Test agent description",
image_urls=["test.jpg"],

View File

@@ -18,6 +18,7 @@ from prisma.errors import PrismaError
import backend.api.features.admin.credit_admin_routes
import backend.api.features.admin.execution_analytics_routes
import backend.api.features.admin.llm_routes
import backend.api.features.admin.store_admin_routes
import backend.api.features.builder
import backend.api.features.builder.routes
@@ -37,9 +38,11 @@ import backend.data.db
import backend.data.graph
import backend.data.user
import backend.integrations.webhooks.utils
import backend.server.v2.llm.routes as public_llm_routes
import backend.util.service
import backend.util.settings
from backend.blocks.llm import DEFAULT_LLM_MODEL
from backend.data import llm_registry
from backend.data.block_cost_config import refresh_llm_costs
from backend.data.model import Credentials
from backend.integrations.providers import ProviderName
from backend.monitoring.instrumentation import instrument_fastapi
@@ -109,11 +112,27 @@ async def lifespan_context(app: fastapi.FastAPI):
AutoRegistry.patch_integrations()
# Refresh LLM registry before initializing blocks so blocks can use registry data
await llm_registry.refresh_llm_registry()
refresh_llm_costs()
# Clear block schema caches so they're regenerated with updated discriminator_mapping
from backend.data.block import BlockSchema
BlockSchema.clear_all_schema_caches()
await backend.data.block.initialize_blocks()
await backend.data.user.migrate_and_encrypt_user_integrations()
await backend.data.graph.fix_llm_provider_credentials()
await backend.data.graph.migrate_llm_models(DEFAULT_LLM_MODEL)
# migrate_llm_models uses registry default model
from backend.blocks.llm import LlmModel
default_model_slug = llm_registry.get_default_model_slug()
if default_model_slug:
await backend.data.graph.migrate_llm_models(LlmModel(default_model_slug))
else:
logger.warning("Skipping LLM model migration: no default model available")
await backend.integrations.webhooks.utils.migrate_legacy_triggered_graphs()
with launch_darkly_context():
@@ -298,6 +317,16 @@ app.include_router(
tags=["v2", "executions", "review"],
prefix="/api/review",
)
app.include_router(
backend.api.features.admin.llm_routes.router,
tags=["v2", "admin", "llm"],
prefix="/api/llm/admin",
)
app.include_router(
public_llm_routes.router,
tags=["v2", "llm"],
prefix="/api",
)
app.include_router(
backend.api.features.library.routes.router, tags=["v2"], prefix="/api/library"
)

View File

@@ -77,7 +77,39 @@ async def event_broadcaster(manager: ConnectionManager):
payload=notification.payload,
)
await asyncio.gather(execution_worker(), notification_worker())
async def registry_refresh_worker():
"""Listen for LLM registry refresh notifications and broadcast to all clients."""
from backend.data.llm_registry import REGISTRY_REFRESH_CHANNEL
from backend.data.redis_client import connect_async
redis = await connect_async()
pubsub = redis.pubsub()
await pubsub.subscribe(REGISTRY_REFRESH_CHANNEL)
logger.info(
"Subscribed to LLM registry refresh notifications for WebSocket broadcast"
)
async for message in pubsub.listen():
if (
message["type"] == "message"
and message["channel"] == REGISTRY_REFRESH_CHANNEL
):
logger.info(
"Broadcasting LLM registry refresh to all WebSocket clients"
)
await manager.broadcast_to_all(
method=WSMethod.NOTIFICATION,
data={
"type": "LLM_REGISTRY_REFRESH",
"event": "registry_updated",
},
)
await asyncio.gather(
execution_worker(),
notification_worker(),
registry_refresh_worker(),
)
async def authenticate_websocket(websocket: WebSocket) -> str:

View File

@@ -1,7 +1,6 @@
from typing import Any
from backend.blocks.llm import (
DEFAULT_LLM_MODEL,
TEST_CREDENTIALS,
TEST_CREDENTIALS_INPUT,
AIBlockBase,
@@ -10,6 +9,7 @@ from backend.blocks.llm import (
LlmModel,
LLMResponse,
llm_call,
llm_model_schema_extra,
)
from backend.data.block import (
BlockCategory,
@@ -50,9 +50,10 @@ class AIConditionBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default=DEFAULT_LLM_MODEL,
default_factory=LlmModel.default,
description="The language model to use for evaluating the condition.",
advanced=False,
json_schema_extra=llm_model_schema_extra(),
)
credentials: AICredentials = AICredentialsField()
@@ -82,7 +83,7 @@ class AIConditionBlock(AIBlockBase):
"condition": "the input is an email address",
"yes_value": "Valid email",
"no_value": "Not an email",
"model": DEFAULT_LLM_MODEL,
"model": "gpt-4o", # Using string value - enum accepts any model slug dynamically
"credentials": TEST_CREDENTIALS_INPUT,
},
test_credentials=TEST_CREDENTIALS,

View File

@@ -6,9 +6,6 @@ import hashlib
import hmac
import logging
from enum import Enum
from typing import cast
from prisma.types import Serializable
from backend.sdk import (
BaseWebhooksManager,
@@ -87,9 +84,7 @@ class AirtableWebhookManager(BaseWebhooksManager):
# update webhook config
await update_webhook(
webhook.id,
config=cast(
dict[str, Serializable], {"base_id": base_id, "cursor": response.cursor}
),
config={"base_id": base_id, "cursor": response.cursor},
)
event_type = "notification"

View File

@@ -1,184 +0,0 @@
"""
Shared helpers for Human-In-The-Loop (HITL) review functionality.
Used by both the dedicated HumanInTheLoopBlock and blocks that require human review.
"""
import logging
from typing import Any, Optional
from prisma.enums import ReviewStatus
from pydantic import BaseModel
from backend.data.execution import ExecutionContext, ExecutionStatus
from backend.data.human_review import ReviewResult
from backend.executor.manager import async_update_node_execution_status
from backend.util.clients import get_database_manager_async_client
logger = logging.getLogger(__name__)
class ReviewDecision(BaseModel):
"""Result of a review decision."""
should_proceed: bool
message: str
review_result: ReviewResult
class HITLReviewHelper:
"""Helper class for Human-In-The-Loop review operations."""
@staticmethod
async def get_or_create_human_review(**kwargs) -> Optional[ReviewResult]:
"""Create or retrieve a human review from the database."""
return await get_database_manager_async_client().get_or_create_human_review(
**kwargs
)
@staticmethod
async def update_node_execution_status(**kwargs) -> None:
"""Update the execution status of a node."""
await async_update_node_execution_status(
db_client=get_database_manager_async_client(), **kwargs
)
@staticmethod
async def update_review_processed_status(
node_exec_id: str, processed: bool
) -> None:
"""Update the processed status of a review."""
return await get_database_manager_async_client().update_review_processed_status(
node_exec_id, processed
)
@staticmethod
async def _handle_review_request(
input_data: Any,
user_id: str,
node_exec_id: str,
graph_exec_id: str,
graph_id: str,
graph_version: int,
execution_context: ExecutionContext,
block_name: str = "Block",
editable: bool = False,
) -> Optional[ReviewResult]:
"""
Handle a review request for a block that requires human review.
Args:
input_data: The input data to be reviewed
user_id: ID of the user requesting the review
node_exec_id: ID of the node execution
graph_exec_id: ID of the graph execution
graph_id: ID of the graph
graph_version: Version of the graph
execution_context: Current execution context
block_name: Name of the block requesting review
editable: Whether the reviewer can edit the data
Returns:
ReviewResult if review is complete, None if waiting for human input
Raises:
Exception: If review creation or status update fails
"""
# Skip review if safe mode is disabled - return auto-approved result
if not execution_context.safe_mode:
logger.info(
f"Block {block_name} skipping review for node {node_exec_id} - safe mode disabled"
)
return ReviewResult(
data=input_data,
status=ReviewStatus.APPROVED,
message="Auto-approved (safe mode disabled)",
processed=True,
node_exec_id=node_exec_id,
)
result = await HITLReviewHelper.get_or_create_human_review(
user_id=user_id,
node_exec_id=node_exec_id,
graph_exec_id=graph_exec_id,
graph_id=graph_id,
graph_version=graph_version,
input_data=input_data,
message=f"Review required for {block_name} execution",
editable=editable,
)
if result is None:
logger.info(
f"Block {block_name} pausing execution for node {node_exec_id} - awaiting human review"
)
await HITLReviewHelper.update_node_execution_status(
exec_id=node_exec_id,
status=ExecutionStatus.REVIEW,
)
return None # Signal that execution should pause
# Mark review as processed if not already done
if not result.processed:
await HITLReviewHelper.update_review_processed_status(
node_exec_id=node_exec_id, processed=True
)
return result
@staticmethod
async def handle_review_decision(
input_data: Any,
user_id: str,
node_exec_id: str,
graph_exec_id: str,
graph_id: str,
graph_version: int,
execution_context: ExecutionContext,
block_name: str = "Block",
editable: bool = False,
) -> Optional[ReviewDecision]:
"""
Handle a review request and return the decision in a single call.
Args:
input_data: The input data to be reviewed
user_id: ID of the user requesting the review
node_exec_id: ID of the node execution
graph_exec_id: ID of the graph execution
graph_id: ID of the graph
graph_version: Version of the graph
execution_context: Current execution context
block_name: Name of the block requesting review
editable: Whether the reviewer can edit the data
Returns:
ReviewDecision if review is complete (approved/rejected),
None if execution should pause (awaiting review)
"""
review_result = await HITLReviewHelper._handle_review_request(
input_data=input_data,
user_id=user_id,
node_exec_id=node_exec_id,
graph_exec_id=graph_exec_id,
graph_id=graph_id,
graph_version=graph_version,
execution_context=execution_context,
block_name=block_name,
editable=editable,
)
if review_result is None:
# Still awaiting review - return None to pause execution
return None
# Review is complete, determine outcome
should_proceed = review_result.status == ReviewStatus.APPROVED
message = review_result.message or (
"Execution approved by reviewer"
if should_proceed
else "Execution rejected by reviewer"
)
return ReviewDecision(
should_proceed=should_proceed, message=message, review_result=review_result
)

View File

@@ -3,7 +3,6 @@ from typing import Any
from prisma.enums import ReviewStatus
from backend.blocks.helpers.review import HITLReviewHelper
from backend.data.block import (
Block,
BlockCategory,
@@ -12,9 +11,11 @@ from backend.data.block import (
BlockSchemaOutput,
BlockType,
)
from backend.data.execution import ExecutionContext
from backend.data.execution import ExecutionContext, ExecutionStatus
from backend.data.human_review import ReviewResult
from backend.data.model import SchemaField
from backend.executor.manager import async_update_node_execution_status
from backend.util.clients import get_database_manager_async_client
logger = logging.getLogger(__name__)
@@ -71,26 +72,32 @@ class HumanInTheLoopBlock(Block):
("approved_data", {"name": "John Doe", "age": 30}),
],
test_mock={
"handle_review_decision": lambda **kwargs: type(
"ReviewDecision",
(),
{
"should_proceed": True,
"message": "Test approval message",
"review_result": ReviewResult(
data={"name": "John Doe", "age": 30},
status=ReviewStatus.APPROVED,
message="",
processed=False,
node_exec_id="test-node-exec-id",
),
},
)(),
"get_or_create_human_review": lambda *_args, **_kwargs: ReviewResult(
data={"name": "John Doe", "age": 30},
status=ReviewStatus.APPROVED,
message="",
processed=False,
node_exec_id="test-node-exec-id",
),
"update_node_execution_status": lambda *_args, **_kwargs: None,
"update_review_processed_status": lambda *_args, **_kwargs: None,
},
)
async def handle_review_decision(self, **kwargs):
return await HITLReviewHelper.handle_review_decision(**kwargs)
async def get_or_create_human_review(self, **kwargs):
return await get_database_manager_async_client().get_or_create_human_review(
**kwargs
)
async def update_node_execution_status(self, **kwargs):
return await async_update_node_execution_status(
db_client=get_database_manager_async_client(), **kwargs
)
async def update_review_processed_status(self, node_exec_id: str, processed: bool):
return await get_database_manager_async_client().update_review_processed_status(
node_exec_id, processed
)
async def run(
self,
@@ -102,7 +109,7 @@ class HumanInTheLoopBlock(Block):
graph_id: str,
graph_version: int,
execution_context: ExecutionContext,
**_kwargs,
**kwargs,
) -> BlockOutput:
if not execution_context.safe_mode:
logger.info(
@@ -112,28 +119,48 @@ class HumanInTheLoopBlock(Block):
yield "review_message", "Auto-approved (safe mode disabled)"
return
decision = await self.handle_review_decision(
input_data=input_data.data,
user_id=user_id,
node_exec_id=node_exec_id,
graph_exec_id=graph_exec_id,
graph_id=graph_id,
graph_version=graph_version,
execution_context=execution_context,
block_name=self.name,
editable=input_data.editable,
)
try:
result = await self.get_or_create_human_review(
user_id=user_id,
node_exec_id=node_exec_id,
graph_exec_id=graph_exec_id,
graph_id=graph_id,
graph_version=graph_version,
input_data=input_data.data,
message=input_data.name,
editable=input_data.editable,
)
except Exception as e:
logger.error(f"Error in HITL block for node {node_exec_id}: {str(e)}")
raise
if decision is None:
return
if result is None:
logger.info(
f"HITL block pausing execution for node {node_exec_id} - awaiting human review"
)
try:
await self.update_node_execution_status(
exec_id=node_exec_id,
status=ExecutionStatus.REVIEW,
)
return
except Exception as e:
logger.error(
f"Failed to update node status for HITL block {node_exec_id}: {str(e)}"
)
raise
status = decision.review_result.status
if status == ReviewStatus.APPROVED:
yield "approved_data", decision.review_result.data
elif status == ReviewStatus.REJECTED:
yield "rejected_data", decision.review_result.data
else:
raise RuntimeError(f"Unexpected review status: {status}")
if not result.processed:
await self.update_review_processed_status(
node_exec_id=node_exec_id, processed=True
)
if decision.message:
yield "review_message", decision.message
if result.status == ReviewStatus.APPROVED:
yield "approved_data", result.data
if result.message:
yield "review_message", result.message
elif result.status == ReviewStatus.REJECTED:
yield "rejected_data", result.data
if result.message:
yield "review_message", result.message

View File

@@ -4,17 +4,19 @@ import logging
import re
import secrets
from abc import ABC
from enum import Enum, EnumMeta
from enum import Enum
from json import JSONDecodeError
from typing import Any, Iterable, List, Literal, NamedTuple, Optional
from typing import Any, Iterable, List, Literal, Optional
import anthropic
import ollama
import openai
from anthropic.types import ToolParam
from groq import AsyncGroq
from pydantic import BaseModel, SecretStr
from pydantic import BaseModel, GetCoreSchemaHandler, SecretStr
from pydantic_core import CoreSchema, core_schema
from backend.data import llm_registry
from backend.data.block import (
Block,
BlockCategory,
@@ -22,6 +24,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.llm_registry import ModelMetadata
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -66,114 +69,117 @@ TEST_CREDENTIALS_INPUT = {
def AICredentialsField() -> AICredentials:
"""
Returns a CredentialsField for LLM providers.
The discriminator_mapping will be refreshed when the schema is generated
if it's empty, ensuring the LLM registry is loaded.
"""
# Get the mapping now - it may be empty initially, but will be refreshed
# when the schema is generated via CredentialsMetaInput._add_json_schema_extra
mapping = llm_registry.get_llm_discriminator_mapping()
return CredentialsField(
description="API key for the LLM provider.",
discriminator="model",
discriminator_mapping={
model.value: model.metadata.provider for model in LlmModel
},
discriminator_mapping=mapping, # May be empty initially, refreshed later
)
class ModelMetadata(NamedTuple):
provider: str
context_window: int
max_output_tokens: int | None
def llm_model_schema_extra() -> dict[str, Any]:
return {"options": llm_registry.get_llm_model_schema_options()}
class LlmModelMeta(EnumMeta):
pass
class LlmModelMeta(type):
"""
Metaclass for LlmModel that enables attribute-style access to dynamic models.
This allows code like `LlmModel.GPT4O` to work by converting the attribute
name to a slug format:
- GPT4O -> gpt-4o
- GPT4O_MINI -> gpt-4o-mini
- CLAUDE_3_5_SONNET -> claude-3-5-sonnet
"""
def __getattr__(cls, name: str):
# Don't intercept private/dunder attributes
if name.startswith("_"):
raise AttributeError(f"type object 'LlmModel' has no attribute '{name}'")
# Convert attribute name to slug format:
# 1. Lowercase: GPT4O -> gpt4o
# 2. Underscores to hyphens: GPT4O_MINI -> gpt4o-mini
# 3. Insert hyphen between letter and digit: gpt4o -> gpt-4o
slug = name.lower().replace("_", "-")
slug = re.sub(r"([a-z])(\d)", r"\1-\2", slug)
return cls(slug)
class LlmModel(str, Enum, metaclass=LlmModelMeta):
# OpenAI models
O3_MINI = "o3-mini"
O3 = "o3-2025-04-16"
O1 = "o1"
O1_MINI = "o1-mini"
# GPT-5 models
GPT5_2 = "gpt-5.2-2025-12-11"
GPT5_1 = "gpt-5.1-2025-11-13"
GPT5 = "gpt-5-2025-08-07"
GPT5_MINI = "gpt-5-mini-2025-08-07"
GPT5_NANO = "gpt-5-nano-2025-08-07"
GPT5_CHAT = "gpt-5-chat-latest"
GPT41 = "gpt-4.1-2025-04-14"
GPT41_MINI = "gpt-4.1-mini-2025-04-14"
GPT4O_MINI = "gpt-4o-mini"
GPT4O = "gpt-4o"
GPT4_TURBO = "gpt-4-turbo"
GPT3_5_TURBO = "gpt-3.5-turbo"
# Anthropic models
CLAUDE_4_1_OPUS = "claude-opus-4-1-20250805"
CLAUDE_4_OPUS = "claude-opus-4-20250514"
CLAUDE_4_SONNET = "claude-sonnet-4-20250514"
CLAUDE_4_5_OPUS = "claude-opus-4-5-20251101"
CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
CLAUDE_4_5_HAIKU = "claude-haiku-4-5-20251001"
CLAUDE_3_7_SONNET = "claude-3-7-sonnet-20250219"
CLAUDE_3_HAIKU = "claude-3-haiku-20240307"
# AI/ML API models
AIML_API_QWEN2_5_72B = "Qwen/Qwen2.5-72B-Instruct-Turbo"
AIML_API_LLAMA3_1_70B = "nvidia/llama-3.1-nemotron-70b-instruct"
AIML_API_LLAMA3_3_70B = "meta-llama/Llama-3.3-70B-Instruct-Turbo"
AIML_API_META_LLAMA_3_1_70B = "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo"
AIML_API_LLAMA_3_2_3B = "meta-llama/Llama-3.2-3B-Instruct-Turbo"
# Groq models
LLAMA3_3_70B = "llama-3.3-70b-versatile"
LLAMA3_1_8B = "llama-3.1-8b-instant"
# Ollama models
OLLAMA_LLAMA3_3 = "llama3.3"
OLLAMA_LLAMA3_2 = "llama3.2"
OLLAMA_LLAMA3_8B = "llama3"
OLLAMA_LLAMA3_405B = "llama3.1:405b"
OLLAMA_DOLPHIN = "dolphin-mistral:latest"
# OpenRouter models
OPENAI_GPT_OSS_120B = "openai/gpt-oss-120b"
OPENAI_GPT_OSS_20B = "openai/gpt-oss-20b"
GEMINI_2_5_PRO = "google/gemini-2.5-pro-preview-03-25"
GEMINI_3_PRO_PREVIEW = "google/gemini-3-pro-preview"
GEMINI_2_5_FLASH = "google/gemini-2.5-flash"
GEMINI_2_0_FLASH = "google/gemini-2.0-flash-001"
GEMINI_2_5_FLASH_LITE_PREVIEW = "google/gemini-2.5-flash-lite-preview-06-17"
GEMINI_2_0_FLASH_LITE = "google/gemini-2.0-flash-lite-001"
MISTRAL_NEMO = "mistralai/mistral-nemo"
COHERE_COMMAND_R_08_2024 = "cohere/command-r-08-2024"
COHERE_COMMAND_R_PLUS_08_2024 = "cohere/command-r-plus-08-2024"
DEEPSEEK_CHAT = "deepseek/deepseek-chat" # Actually: DeepSeek V3
DEEPSEEK_R1_0528 = "deepseek/deepseek-r1-0528"
PERPLEXITY_SONAR = "perplexity/sonar"
PERPLEXITY_SONAR_PRO = "perplexity/sonar-pro"
PERPLEXITY_SONAR_DEEP_RESEARCH = "perplexity/sonar-deep-research"
NOUSRESEARCH_HERMES_3_LLAMA_3_1_405B = "nousresearch/hermes-3-llama-3.1-405b"
NOUSRESEARCH_HERMES_3_LLAMA_3_1_70B = "nousresearch/hermes-3-llama-3.1-70b"
AMAZON_NOVA_LITE_V1 = "amazon/nova-lite-v1"
AMAZON_NOVA_MICRO_V1 = "amazon/nova-micro-v1"
AMAZON_NOVA_PRO_V1 = "amazon/nova-pro-v1"
MICROSOFT_WIZARDLM_2_8X22B = "microsoft/wizardlm-2-8x22b"
GRYPHE_MYTHOMAX_L2_13B = "gryphe/mythomax-l2-13b"
META_LLAMA_4_SCOUT = "meta-llama/llama-4-scout"
META_LLAMA_4_MAVERICK = "meta-llama/llama-4-maverick"
GROK_4 = "x-ai/grok-4"
GROK_4_FAST = "x-ai/grok-4-fast"
GROK_4_1_FAST = "x-ai/grok-4.1-fast"
GROK_CODE_FAST_1 = "x-ai/grok-code-fast-1"
KIMI_K2 = "moonshotai/kimi-k2"
QWEN3_235B_A22B_THINKING = "qwen/qwen3-235b-a22b-thinking-2507"
QWEN3_CODER = "qwen/qwen3-coder"
# Llama API models
LLAMA_API_LLAMA_4_SCOUT = "Llama-4-Scout-17B-16E-Instruct-FP8"
LLAMA_API_LLAMA4_MAVERICK = "Llama-4-Maverick-17B-128E-Instruct-FP8"
LLAMA_API_LLAMA3_3_8B = "Llama-3.3-8B-Instruct"
LLAMA_API_LLAMA3_3_70B = "Llama-3.3-70B-Instruct"
# v0 by Vercel models
V0_1_5_MD = "v0-1.5-md"
V0_1_5_LG = "v0-1.5-lg"
V0_1_0_MD = "v0-1.0-md"
class LlmModel(str, metaclass=LlmModelMeta):
"""
Dynamic LLM model type that accepts any model slug from the registry.
This is a string subclass (not an Enum) that allows any model slug value.
All models are managed via the LLM Registry in the database.
Usage:
model = LlmModel("gpt-4o") # Direct construction
model = LlmModel.GPT4O # Attribute access (converted to "gpt-4o")
model.value # Returns the slug string
model.provider # Returns the provider from registry
"""
def __new__(cls, value: str):
if isinstance(value, LlmModel):
return value
return str.__new__(cls, value)
@classmethod
def __get_pydantic_core_schema__(
cls, source_type: Any, handler: GetCoreSchemaHandler
) -> CoreSchema:
"""
Tell Pydantic how to validate LlmModel.
Accepts strings and converts them to LlmModel instances.
"""
return core_schema.no_info_after_validator_function(
cls, # The validator function (LlmModel constructor)
core_schema.str_schema(), # Accept string input
serialization=core_schema.to_string_ser_schema(), # Serialize as string
)
@property
def value(self) -> str:
"""Return the model slug (for compatibility with enum-style access)."""
return str(self)
@classmethod
def default(cls) -> "LlmModel":
"""
Get the default model from the registry.
Returns the recommended model if set, otherwise gpt-4o if available
and enabled, otherwise the first enabled model from the registry.
Falls back to "gpt-4o" if registry is empty (e.g., at module import time).
"""
from backend.data.llm_registry import get_default_model_slug
slug = get_default_model_slug()
if slug is None:
# Registry is empty (e.g., at module import time before DB connection).
# Fall back to gpt-4o for backward compatibility.
slug = "gpt-4o"
return cls(slug)
@property
def metadata(self) -> ModelMetadata:
return MODEL_METADATA[self]
metadata = llm_registry.get_llm_model_metadata(self.value)
if metadata:
return metadata
raise ValueError(
f"Missing metadata for model: {self.value}. Model not found in LLM registry."
)
@property
def provider(self) -> str:
@@ -188,128 +194,11 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
return self.metadata.max_output_tokens
MODEL_METADATA = {
# https://platform.openai.com/docs/models
LlmModel.O3: ModelMetadata("openai", 200000, 100000),
LlmModel.O3_MINI: ModelMetadata("openai", 200000, 100000), # o3-mini-2025-01-31
LlmModel.O1: ModelMetadata("openai", 200000, 100000), # o1-2024-12-17
LlmModel.O1_MINI: ModelMetadata("openai", 128000, 65536), # o1-mini-2024-09-12
# GPT-5 models
LlmModel.GPT5_2: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5_1: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5_MINI: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5_NANO: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5_CHAT: ModelMetadata("openai", 400000, 16384),
LlmModel.GPT41: ModelMetadata("openai", 1047576, 32768),
LlmModel.GPT41_MINI: ModelMetadata("openai", 1047576, 32768),
LlmModel.GPT4O_MINI: ModelMetadata(
"openai", 128000, 16384
), # gpt-4o-mini-2024-07-18
LlmModel.GPT4O: ModelMetadata("openai", 128000, 16384), # gpt-4o-2024-08-06
LlmModel.GPT4_TURBO: ModelMetadata(
"openai", 128000, 4096
), # gpt-4-turbo-2024-04-09
LlmModel.GPT3_5_TURBO: ModelMetadata("openai", 16385, 4096), # gpt-3.5-turbo-0125
# https://docs.anthropic.com/en/docs/about-claude/models
LlmModel.CLAUDE_4_1_OPUS: ModelMetadata(
"anthropic", 200000, 32000
), # claude-opus-4-1-20250805
LlmModel.CLAUDE_4_OPUS: ModelMetadata(
"anthropic", 200000, 32000
), # claude-4-opus-20250514
LlmModel.CLAUDE_4_SONNET: ModelMetadata(
"anthropic", 200000, 64000
), # claude-4-sonnet-20250514
LlmModel.CLAUDE_4_5_OPUS: ModelMetadata(
"anthropic", 200000, 64000
), # claude-opus-4-5-20251101
LlmModel.CLAUDE_4_5_SONNET: ModelMetadata(
"anthropic", 200000, 64000
), # claude-sonnet-4-5-20250929
LlmModel.CLAUDE_4_5_HAIKU: ModelMetadata(
"anthropic", 200000, 64000
), # claude-haiku-4-5-20251001
LlmModel.CLAUDE_3_7_SONNET: ModelMetadata(
"anthropic", 200000, 64000
), # claude-3-7-sonnet-20250219
LlmModel.CLAUDE_3_HAIKU: ModelMetadata(
"anthropic", 200000, 4096
), # claude-3-haiku-20240307
# https://docs.aimlapi.com/api-overview/model-database/text-models
LlmModel.AIML_API_QWEN2_5_72B: ModelMetadata("aiml_api", 32000, 8000),
LlmModel.AIML_API_LLAMA3_1_70B: ModelMetadata("aiml_api", 128000, 40000),
LlmModel.AIML_API_LLAMA3_3_70B: ModelMetadata("aiml_api", 128000, None),
LlmModel.AIML_API_META_LLAMA_3_1_70B: ModelMetadata("aiml_api", 131000, 2000),
LlmModel.AIML_API_LLAMA_3_2_3B: ModelMetadata("aiml_api", 128000, None),
# https://console.groq.com/docs/models
LlmModel.LLAMA3_3_70B: ModelMetadata("groq", 128000, 32768),
LlmModel.LLAMA3_1_8B: ModelMetadata("groq", 128000, 8192),
# https://ollama.com/library
LlmModel.OLLAMA_LLAMA3_3: ModelMetadata("ollama", 8192, None),
LlmModel.OLLAMA_LLAMA3_2: ModelMetadata("ollama", 8192, None),
LlmModel.OLLAMA_LLAMA3_8B: ModelMetadata("ollama", 8192, None),
LlmModel.OLLAMA_LLAMA3_405B: ModelMetadata("ollama", 8192, None),
LlmModel.OLLAMA_DOLPHIN: ModelMetadata("ollama", 32768, None),
# https://openrouter.ai/models
LlmModel.GEMINI_2_5_PRO: ModelMetadata("open_router", 1050000, 8192),
LlmModel.GEMINI_3_PRO_PREVIEW: ModelMetadata("open_router", 1048576, 65535),
LlmModel.GEMINI_2_5_FLASH: ModelMetadata("open_router", 1048576, 65535),
LlmModel.GEMINI_2_0_FLASH: ModelMetadata("open_router", 1048576, 8192),
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: ModelMetadata(
"open_router", 1048576, 65535
),
LlmModel.GEMINI_2_0_FLASH_LITE: ModelMetadata("open_router", 1048576, 8192),
LlmModel.MISTRAL_NEMO: ModelMetadata("open_router", 128000, 4096),
LlmModel.COHERE_COMMAND_R_08_2024: ModelMetadata("open_router", 128000, 4096),
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: ModelMetadata("open_router", 128000, 4096),
LlmModel.DEEPSEEK_CHAT: ModelMetadata("open_router", 64000, 2048),
LlmModel.DEEPSEEK_R1_0528: ModelMetadata("open_router", 163840, 163840),
LlmModel.PERPLEXITY_SONAR: ModelMetadata("open_router", 127000, 8000),
LlmModel.PERPLEXITY_SONAR_PRO: ModelMetadata("open_router", 200000, 8000),
LlmModel.PERPLEXITY_SONAR_DEEP_RESEARCH: ModelMetadata(
"open_router",
128000,
16000,
),
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_405B: ModelMetadata(
"open_router", 131000, 4096
),
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_70B: ModelMetadata(
"open_router", 12288, 12288
),
LlmModel.OPENAI_GPT_OSS_120B: ModelMetadata("open_router", 131072, 131072),
LlmModel.OPENAI_GPT_OSS_20B: ModelMetadata("open_router", 131072, 32768),
LlmModel.AMAZON_NOVA_LITE_V1: ModelMetadata("open_router", 300000, 5120),
LlmModel.AMAZON_NOVA_MICRO_V1: ModelMetadata("open_router", 128000, 5120),
LlmModel.AMAZON_NOVA_PRO_V1: ModelMetadata("open_router", 300000, 5120),
LlmModel.MICROSOFT_WIZARDLM_2_8X22B: ModelMetadata("open_router", 65536, 4096),
LlmModel.GRYPHE_MYTHOMAX_L2_13B: ModelMetadata("open_router", 4096, 4096),
LlmModel.META_LLAMA_4_SCOUT: ModelMetadata("open_router", 131072, 131072),
LlmModel.META_LLAMA_4_MAVERICK: ModelMetadata("open_router", 1048576, 1000000),
LlmModel.GROK_4: ModelMetadata("open_router", 256000, 256000),
LlmModel.GROK_4_FAST: ModelMetadata("open_router", 2000000, 30000),
LlmModel.GROK_4_1_FAST: ModelMetadata("open_router", 2000000, 30000),
LlmModel.GROK_CODE_FAST_1: ModelMetadata("open_router", 256000, 10000),
LlmModel.KIMI_K2: ModelMetadata("open_router", 131000, 131000),
LlmModel.QWEN3_235B_A22B_THINKING: ModelMetadata("open_router", 262144, 262144),
LlmModel.QWEN3_CODER: ModelMetadata("open_router", 262144, 262144),
# Llama API models
LlmModel.LLAMA_API_LLAMA_4_SCOUT: ModelMetadata("llama_api", 128000, 4028),
LlmModel.LLAMA_API_LLAMA4_MAVERICK: ModelMetadata("llama_api", 128000, 4028),
LlmModel.LLAMA_API_LLAMA3_3_8B: ModelMetadata("llama_api", 128000, 4028),
LlmModel.LLAMA_API_LLAMA3_3_70B: ModelMetadata("llama_api", 128000, 4028),
# v0 by Vercel models
LlmModel.V0_1_5_MD: ModelMetadata("v0", 128000, 64000),
LlmModel.V0_1_5_LG: ModelMetadata("v0", 512000, 64000),
LlmModel.V0_1_0_MD: ModelMetadata("v0", 128000, 64000),
}
# MODEL_METADATA removed - all models now come from the database via llm_registry
DEFAULT_LLM_MODEL = LlmModel.GPT5_2
for model in LlmModel:
if model not in MODEL_METADATA:
raise ValueError(f"Missing MODEL_METADATA metadata for model: {model}")
# Default model constant for backward compatibility
# Uses the dynamic registry to get the default model
DEFAULT_LLM_MODEL = LlmModel.default()
class ToolCall(BaseModel):
@@ -438,19 +327,94 @@ async def llm_call(
- prompt_tokens: The number of tokens used in the prompt.
- completion_tokens: The number of tokens used in the completion.
"""
provider = llm_model.metadata.provider
context_window = llm_model.context_window
# Get model metadata and check if enabled - with fallback support
# The model we'll actually use (may differ if original is disabled)
model_to_use = llm_model.value
# Check if model is in registry and if it's enabled
from backend.data.llm_registry import (
get_fallback_model_for_disabled,
get_model_info,
)
model_info = get_model_info(llm_model.value)
if model_info and not model_info.is_enabled:
# Model is disabled - try to find a fallback from the same provider
fallback = get_fallback_model_for_disabled(llm_model.value)
if fallback:
logger.warning(
f"Model '{llm_model.value}' is disabled. Using fallback model '{fallback.slug}' from the same provider ({fallback.metadata.provider})."
)
model_to_use = fallback.slug
# Use fallback model's metadata
provider = fallback.metadata.provider
context_window = fallback.metadata.context_window
model_max_output = fallback.metadata.max_output_tokens or int(2**15)
else:
# No fallback available - raise error
raise ValueError(
f"LLM model '{llm_model.value}' is disabled and no fallback model "
f"from the same provider is available. Please enable the model or "
f"select a different model in the block configuration."
)
else:
# Model is enabled or not in registry (legacy/static model)
try:
provider = llm_model.metadata.provider
context_window = llm_model.context_window
model_max_output = llm_model.max_output_tokens or int(2**15)
except ValueError:
# Model not in cache - try refreshing the registry once if we have DB access
logger.warning(f"Model {llm_model.value} not found in registry cache")
# Try refreshing the registry if we have database access
from backend.data.db import is_connected
if is_connected():
try:
logger.info(
f"Refreshing LLM registry and retrying lookup for {llm_model.value}"
)
await llm_registry.refresh_llm_registry()
# Try again after refresh
try:
provider = llm_model.metadata.provider
context_window = llm_model.context_window
model_max_output = llm_model.max_output_tokens or int(2**15)
logger.info(
f"Successfully loaded model {llm_model.value} metadata after registry refresh"
)
except ValueError:
# Still not found after refresh
raise ValueError(
f"LLM model '{llm_model.value}' not found in registry after refresh. "
"Please ensure the model is added and enabled in the LLM registry via the admin UI."
)
except Exception as refresh_exc:
logger.error(f"Failed to refresh LLM registry: {refresh_exc}")
raise ValueError(
f"LLM model '{llm_model.value}' not found in registry and failed to refresh. "
"Please ensure the model is added to the LLM registry via the admin UI."
) from refresh_exc
else:
# No DB access (e.g., in executor without direct DB connection)
# The registry should have been loaded on startup
raise ValueError(
f"LLM model '{llm_model.value}' not found in registry cache. "
"The registry may need to be refreshed. Please contact support or try again later."
)
if compress_prompt_to_fit:
prompt = compress_prompt(
messages=prompt,
target_tokens=llm_model.context_window // 2,
target_tokens=context_window // 2,
lossy_ok=True,
)
# Calculate available tokens based on context window and input length
estimated_input_tokens = estimate_token_count(prompt)
model_max_output = llm_model.max_output_tokens or int(2**15)
# model_max_output already set above
user_max = max_tokens or model_max_output
available_tokens = max(context_window - estimated_input_tokens, 0)
max_tokens = max(min(available_tokens, model_max_output, user_max), 1)
@@ -468,7 +432,7 @@ async def llm_call(
response_format = {"type": "json_object"}
response = await oai_client.chat.completions.create(
model=llm_model.value,
model=model_to_use,
messages=prompt, # type: ignore
response_format=response_format, # type: ignore
max_completion_tokens=max_tokens,
@@ -515,7 +479,7 @@ async def llm_call(
)
try:
resp = await client.messages.create(
model=llm_model.value,
model=model_to_use,
system=sysprompt,
messages=messages,
max_tokens=max_tokens,
@@ -579,7 +543,7 @@ async def llm_call(
client = AsyncGroq(api_key=credentials.api_key.get_secret_value())
response_format = {"type": "json_object"} if force_json_output else None
response = await client.chat.completions.create(
model=llm_model.value,
model=model_to_use,
messages=prompt, # type: ignore
response_format=response_format, # type: ignore
max_tokens=max_tokens,
@@ -601,7 +565,7 @@ async def llm_call(
sys_messages = [p["content"] for p in prompt if p["role"] == "system"]
usr_messages = [p["content"] for p in prompt if p["role"] != "system"]
response = await client.generate(
model=llm_model.value,
model=model_to_use,
prompt=f"{sys_messages}\n\n{usr_messages}",
stream=False,
options={"num_ctx": max_tokens},
@@ -631,7 +595,7 @@ async def llm_call(
"HTTP-Referer": "https://agpt.co",
"X-Title": "AutoGPT",
},
model=llm_model.value,
model=model_to_use,
messages=prompt, # type: ignore
max_tokens=max_tokens,
tools=tools_param, # type: ignore
@@ -673,7 +637,7 @@ async def llm_call(
"HTTP-Referer": "https://agpt.co",
"X-Title": "AutoGPT",
},
model=llm_model.value,
model=model_to_use,
messages=prompt, # type: ignore
max_tokens=max_tokens,
tools=tools_param, # type: ignore
@@ -700,7 +664,7 @@ async def llm_call(
reasoning=reasoning,
)
elif provider == "aiml_api":
client = openai.OpenAI(
client = openai.AsyncOpenAI(
base_url="https://api.aimlapi.com/v2",
api_key=credentials.api_key.get_secret_value(),
default_headers={
@@ -710,8 +674,8 @@ async def llm_call(
},
)
completion = client.chat.completions.create(
model=llm_model.value,
completion = await client.chat.completions.create(
model=model_to_use,
messages=prompt, # type: ignore
max_tokens=max_tokens,
)
@@ -743,7 +707,7 @@ async def llm_call(
)
response = await client.chat.completions.create(
model=llm_model.value,
model=model_to_use,
messages=prompt, # type: ignore
response_format=response_format, # type: ignore
max_tokens=max_tokens,
@@ -794,9 +758,10 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default=DEFAULT_LLM_MODEL,
default_factory=LlmModel.default,
description="The language model to use for answering the prompt.",
advanced=False,
json_schema_extra=llm_model_schema_extra(),
)
force_json_output: bool = SchemaField(
title="Restrict LLM to pure JSON output",
@@ -859,7 +824,7 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
input_schema=AIStructuredResponseGeneratorBlock.Input,
output_schema=AIStructuredResponseGeneratorBlock.Output,
test_input={
"model": DEFAULT_LLM_MODEL,
"model": "gpt-4o", # Using string value - enum accepts any model slug dynamically
"credentials": TEST_CREDENTIALS_INPUT,
"expected_format": {
"key1": "value1",
@@ -1225,9 +1190,10 @@ class AITextGeneratorBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default=DEFAULT_LLM_MODEL,
default_factory=LlmModel.default,
description="The language model to use for answering the prompt.",
advanced=False,
json_schema_extra=llm_model_schema_extra(),
)
credentials: AICredentials = AICredentialsField()
sys_prompt: str = SchemaField(
@@ -1321,8 +1287,9 @@ class AITextSummarizerBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default=DEFAULT_LLM_MODEL,
default_factory=LlmModel.default,
description="The language model to use for summarizing the text.",
json_schema_extra=llm_model_schema_extra(),
)
focus: str = SchemaField(
title="Focus",
@@ -1538,8 +1505,9 @@ class AIConversationBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default=DEFAULT_LLM_MODEL,
default_factory=LlmModel.default,
description="The language model to use for the conversation.",
json_schema_extra=llm_model_schema_extra(),
)
credentials: AICredentials = AICredentialsField()
max_tokens: int | None = SchemaField(
@@ -1576,7 +1544,7 @@ class AIConversationBlock(AIBlockBase):
},
{"role": "user", "content": "Where was it played?"},
],
"model": DEFAULT_LLM_MODEL,
"model": "gpt-4o", # Using string value - enum accepts any model slug dynamically
"credentials": TEST_CREDENTIALS_INPUT,
},
test_credentials=TEST_CREDENTIALS,
@@ -1639,9 +1607,10 @@ class AIListGeneratorBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default=DEFAULT_LLM_MODEL,
default_factory=LlmModel.default,
description="The language model to use for generating the list.",
advanced=True,
json_schema_extra=llm_model_schema_extra(),
)
credentials: AICredentials = AICredentialsField()
max_retries: int = SchemaField(
@@ -1696,7 +1665,7 @@ class AIListGeneratorBlock(AIBlockBase):
"drawing explorers to uncover its mysteries. Each planet showcases the limitless possibilities of "
"fictional worlds."
),
"model": DEFAULT_LLM_MODEL,
"model": "gpt-4o", # Using string value - enum accepts any model slug dynamically
"credentials": TEST_CREDENTIALS_INPUT,
"max_retries": 3,
"force_json_output": False,

File diff suppressed because it is too large Load Diff

View File

@@ -18,7 +18,6 @@ from backend.data.model import (
SchemaField,
)
from backend.integrations.providers import ProviderName
from backend.util.request import DEFAULT_USER_AGENT
class GetWikipediaSummaryBlock(Block, GetRequest):
@@ -40,27 +39,17 @@ class GetWikipediaSummaryBlock(Block, GetRequest):
output_schema=GetWikipediaSummaryBlock.Output,
test_input={"topic": "Artificial Intelligence"},
test_output=("summary", "summary content"),
test_mock={
"get_request": lambda url, headers, json: {"extract": "summary content"}
},
test_mock={"get_request": lambda url, json: {"extract": "summary content"}},
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
topic = input_data.topic
# URL-encode the topic to handle spaces and special characters
encoded_topic = quote(topic, safe="")
url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{encoded_topic}"
# Set headers per Wikimedia robot policy (https://w.wiki/4wJS)
# - User-Agent: Required, must identify the bot
# - Accept-Encoding: gzip recommended to reduce bandwidth
headers = {
"User-Agent": DEFAULT_USER_AGENT,
"Accept-Encoding": "gzip, deflate",
}
url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{topic}"
# Note: User-Agent is now automatically set by the request library
# to comply with Wikimedia's robot policy (https://w.wiki/4wJS)
try:
response = await self.get_request(url, headers=headers, json=True)
response = await self.get_request(url, json=True)
if "extract" not in response:
raise ValueError(f"Unable to parse Wikipedia response: {response}")
yield "summary", response["extract"]

View File

@@ -226,9 +226,10 @@ class SmartDecisionMakerBlock(Block):
)
model: llm.LlmModel = SchemaField(
title="LLM Model",
default=llm.DEFAULT_LLM_MODEL,
default_factory=llm.LlmModel.default,
description="The language model to use for answering the prompt.",
advanced=False,
json_schema_extra=llm.llm_model_schema_extra(),
)
credentials: llm.AICredentials = llm.AICredentialsField()
multiple_tool_calls: bool = SchemaField(
@@ -391,12 +392,8 @@ class SmartDecisionMakerBlock(Block):
"""
block = sink_node.block
# Use custom name from node metadata if set, otherwise fall back to block.name
custom_name = sink_node.metadata.get("customized_name")
tool_name = custom_name if custom_name else block.name
tool_function: dict[str, Any] = {
"name": SmartDecisionMakerBlock.cleanup(tool_name),
"name": SmartDecisionMakerBlock.cleanup(block.name),
"description": block.description,
}
sink_block_input_schema = block.input_schema
@@ -493,24 +490,14 @@ class SmartDecisionMakerBlock(Block):
f"Sink graph metadata not found: {graph_id} {graph_version}"
)
# Use custom name from node metadata if set, otherwise fall back to graph name
custom_name = sink_node.metadata.get("customized_name")
tool_name = custom_name if custom_name else sink_graph_meta.name
tool_function: dict[str, Any] = {
"name": SmartDecisionMakerBlock.cleanup(tool_name),
"name": SmartDecisionMakerBlock.cleanup(sink_graph_meta.name),
"description": sink_graph_meta.description,
}
properties = {}
field_mapping = {}
for link in links:
field_name = link.sink_name
clean_field_name = SmartDecisionMakerBlock.cleanup(field_name)
field_mapping[clean_field_name] = field_name
sink_block_input_schema = sink_node.input_default["input_schema"]
sink_block_properties = sink_block_input_schema.get("properties", {}).get(
link.sink_name, {}
@@ -520,7 +507,7 @@ class SmartDecisionMakerBlock(Block):
if "description" in sink_block_properties
else f"The {link.sink_name} of the tool"
)
properties[clean_field_name] = {
properties[link.sink_name] = {
"type": "string",
"description": description,
"default": json.dumps(sink_block_properties.get("default", None)),
@@ -533,7 +520,7 @@ class SmartDecisionMakerBlock(Block):
"strict": True,
}
tool_function["_field_mapping"] = field_mapping
# Store node info for later use in output processing
tool_function["_sink_node_id"] = sink_node.id
return {"type": "function", "function": tool_function}
@@ -989,28 +976,10 @@ class SmartDecisionMakerBlock(Block):
graph_version: int,
execution_context: ExecutionContext,
execution_processor: "ExecutionProcessor",
nodes_to_skip: set[str] | None = None,
**kwargs,
) -> BlockOutput:
tool_functions = await self._create_tool_node_signatures(node_id)
original_tool_count = len(tool_functions)
# Filter out tools for nodes that should be skipped (e.g., missing optional credentials)
if nodes_to_skip:
tool_functions = [
tf
for tf in tool_functions
if tf.get("function", {}).get("_sink_node_id") not in nodes_to_skip
]
# Only raise error if we had tools but they were all filtered out
if original_tool_count > 0 and not tool_functions:
raise ValueError(
"No available tools to execute - all downstream nodes are unavailable "
"(possibly due to missing optional credentials)"
)
yield "tool_functions", json.dumps(tool_functions)
conversation_history = input_data.conversation_history or []
@@ -1161,9 +1130,8 @@ class SmartDecisionMakerBlock(Block):
original_field_name = field_mapping.get(clean_arg_name, clean_arg_name)
arg_value = tool_args.get(clean_arg_name)
# Use original_field_name directly (not sanitized) to match link sink_name
# The field_mapping already translates from LLM's cleaned names to original names
emit_key = f"tools_^_{sink_node_id}_~_{original_field_name}"
sanitized_arg_name = self.cleanup(original_field_name)
emit_key = f"tools_^_{sink_node_id}_~_{sanitized_arg_name}"
logger.debug(
"[SmartDecisionMakerBlock|geid:%s|neid:%s] emit %s",

View File

@@ -10,13 +10,13 @@ import stagehand.main
from stagehand import Stagehand
from backend.blocks.llm import (
MODEL_METADATA,
AICredentials,
AICredentialsField,
LlmModel,
ModelMetadata,
)
from backend.blocks.stagehand._config import stagehand as stagehand_provider
from backend.data import llm_registry
from backend.sdk import (
APIKeyCredentials,
Block,
@@ -91,7 +91,7 @@ class StagehandRecommendedLlmModel(str, Enum):
Returns the provider name for the model in the required format for Stagehand:
provider/model_name
"""
model_metadata = MODEL_METADATA[LlmModel(self.value)]
model_metadata = self.metadata
model_name = self.value
if len(model_name.split("/")) == 1 and not self.value.startswith(
@@ -107,19 +107,23 @@ class StagehandRecommendedLlmModel(str, Enum):
@property
def provider(self) -> str:
return MODEL_METADATA[LlmModel(self.value)].provider
return self.metadata.provider
@property
def metadata(self) -> ModelMetadata:
return MODEL_METADATA[LlmModel(self.value)]
metadata = llm_registry.get_llm_model_metadata(self.value)
if metadata:
return metadata
# Fallback to LlmModel enum if registry lookup fails
return LlmModel(self.value).metadata
@property
def context_window(self) -> int:
return MODEL_METADATA[LlmModel(self.value)].context_window
return self.metadata.context_window
@property
def max_output_tokens(self) -> int | None:
return MODEL_METADATA[LlmModel(self.value)].max_output_tokens
return self.metadata.max_output_tokens
class StagehandObserveBlock(Block):

View File

@@ -196,15 +196,6 @@ class TestXMLParserBlockSecurity:
async for _ in block.run(XMLParserBlock.Input(input_xml=large_xml)):
pass
async def test_rejects_text_outside_root(self):
"""Ensure parser surfaces readable errors for invalid root text."""
block = XMLParserBlock()
invalid_xml = "<root><child>value</child></root> trailing"
with pytest.raises(ValueError, match="text outside the root element"):
async for _ in block.run(XMLParserBlock.Input(input_xml=invalid_xml)):
pass
class TestStoreMediaFileSecurity:
"""Test file storage security limits."""

View File

@@ -1057,153 +1057,3 @@ async def test_smart_decision_maker_traditional_mode_default():
) # Should yield individual tool parameters
assert "tools_^_test-sink-node-id_~_max_keyword_difficulty" in outputs
assert "conversations" in outputs
@pytest.mark.asyncio
async def test_smart_decision_maker_uses_customized_name_for_blocks():
"""Test that SmartDecisionMakerBlock uses customized_name from node metadata for tool names."""
from unittest.mock import MagicMock
from backend.blocks.basic import StoreValueBlock
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
from backend.data.graph import Link, Node
# Create a mock node with customized_name in metadata
mock_node = MagicMock(spec=Node)
mock_node.id = "test-node-id"
mock_node.block_id = StoreValueBlock().id
mock_node.metadata = {"customized_name": "My Custom Tool Name"}
mock_node.block = StoreValueBlock()
# Create a mock link
mock_link = MagicMock(spec=Link)
mock_link.sink_name = "input"
# Call the function directly
result = await SmartDecisionMakerBlock._create_block_function_signature(
mock_node, [mock_link]
)
# Verify the tool name uses the customized name (cleaned up)
assert result["type"] == "function"
assert result["function"]["name"] == "my_custom_tool_name" # Cleaned version
assert result["function"]["_sink_node_id"] == "test-node-id"
@pytest.mark.asyncio
async def test_smart_decision_maker_falls_back_to_block_name():
"""Test that SmartDecisionMakerBlock falls back to block.name when no customized_name."""
from unittest.mock import MagicMock
from backend.blocks.basic import StoreValueBlock
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
from backend.data.graph import Link, Node
# Create a mock node without customized_name
mock_node = MagicMock(spec=Node)
mock_node.id = "test-node-id"
mock_node.block_id = StoreValueBlock().id
mock_node.metadata = {} # No customized_name
mock_node.block = StoreValueBlock()
# Create a mock link
mock_link = MagicMock(spec=Link)
mock_link.sink_name = "input"
# Call the function directly
result = await SmartDecisionMakerBlock._create_block_function_signature(
mock_node, [mock_link]
)
# Verify the tool name uses the block's default name
assert result["type"] == "function"
assert result["function"]["name"] == "storevalueblock" # Default block name cleaned
assert result["function"]["_sink_node_id"] == "test-node-id"
@pytest.mark.asyncio
async def test_smart_decision_maker_uses_customized_name_for_agents():
"""Test that SmartDecisionMakerBlock uses customized_name from metadata for agent nodes."""
from unittest.mock import AsyncMock, MagicMock, patch
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
from backend.data.graph import Link, Node
# Create a mock node with customized_name in metadata
mock_node = MagicMock(spec=Node)
mock_node.id = "test-agent-node-id"
mock_node.metadata = {"customized_name": "My Custom Agent"}
mock_node.input_default = {
"graph_id": "test-graph-id",
"graph_version": 1,
"input_schema": {"properties": {"test_input": {"description": "Test input"}}},
}
# Create a mock link
mock_link = MagicMock(spec=Link)
mock_link.sink_name = "test_input"
# Mock the database client
mock_graph_meta = MagicMock()
mock_graph_meta.name = "Original Agent Name"
mock_graph_meta.description = "Agent description"
mock_db_client = AsyncMock()
mock_db_client.get_graph_metadata.return_value = mock_graph_meta
with patch(
"backend.blocks.smart_decision_maker.get_database_manager_async_client",
return_value=mock_db_client,
):
result = await SmartDecisionMakerBlock._create_agent_function_signature(
mock_node, [mock_link]
)
# Verify the tool name uses the customized name (cleaned up)
assert result["type"] == "function"
assert result["function"]["name"] == "my_custom_agent" # Cleaned version
assert result["function"]["_sink_node_id"] == "test-agent-node-id"
@pytest.mark.asyncio
async def test_smart_decision_maker_agent_falls_back_to_graph_name():
"""Test that agent node falls back to graph name when no customized_name."""
from unittest.mock import AsyncMock, MagicMock, patch
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
from backend.data.graph import Link, Node
# Create a mock node without customized_name
mock_node = MagicMock(spec=Node)
mock_node.id = "test-agent-node-id"
mock_node.metadata = {} # No customized_name
mock_node.input_default = {
"graph_id": "test-graph-id",
"graph_version": 1,
"input_schema": {"properties": {"test_input": {"description": "Test input"}}},
}
# Create a mock link
mock_link = MagicMock(spec=Link)
mock_link.sink_name = "test_input"
# Mock the database client
mock_graph_meta = MagicMock()
mock_graph_meta.name = "Original Agent Name"
mock_graph_meta.description = "Agent description"
mock_db_client = AsyncMock()
mock_db_client.get_graph_metadata.return_value = mock_graph_meta
with patch(
"backend.blocks.smart_decision_maker.get_database_manager_async_client",
return_value=mock_db_client,
):
result = await SmartDecisionMakerBlock._create_agent_function_signature(
mock_node, [mock_link]
)
# Verify the tool name uses the graph's default name
assert result["type"] == "function"
assert result["function"]["name"] == "original_agent_name" # Graph name cleaned
assert result["function"]["_sink_node_id"] == "test-agent-node-id"

View File

@@ -15,7 +15,6 @@ async def test_smart_decision_maker_handles_dynamic_dict_fields():
mock_node.block = CreateDictionaryBlock()
mock_node.block_id = CreateDictionaryBlock().id
mock_node.input_default = {}
mock_node.metadata = {}
# Create mock links with dynamic dictionary fields
mock_links = [
@@ -78,7 +77,6 @@ async def test_smart_decision_maker_handles_dynamic_list_fields():
mock_node.block = AddToListBlock()
mock_node.block_id = AddToListBlock().id
mock_node.input_default = {}
mock_node.metadata = {}
# Create mock links with dynamic list fields
mock_links = [

View File

@@ -44,7 +44,6 @@ async def test_create_block_function_signature_with_dict_fields():
mock_node.block = CreateDictionaryBlock()
mock_node.block_id = CreateDictionaryBlock().id
mock_node.input_default = {}
mock_node.metadata = {}
# Create mock links with dynamic dictionary fields (source sanitized, sink original)
mock_links = [
@@ -107,7 +106,6 @@ async def test_create_block_function_signature_with_list_fields():
mock_node.block = AddToListBlock()
mock_node.block_id = AddToListBlock().id
mock_node.input_default = {}
mock_node.metadata = {}
# Create mock links with dynamic list fields
mock_links = [
@@ -161,7 +159,6 @@ async def test_create_block_function_signature_with_object_fields():
mock_node.block = MatchTextPatternBlock()
mock_node.block_id = MatchTextPatternBlock().id
mock_node.input_default = {}
mock_node.metadata = {}
# Create mock links with dynamic object fields
mock_links = [
@@ -211,13 +208,11 @@ async def test_create_tool_node_signatures():
mock_dict_node.block = CreateDictionaryBlock()
mock_dict_node.block_id = CreateDictionaryBlock().id
mock_dict_node.input_default = {}
mock_dict_node.metadata = {}
mock_list_node = Mock()
mock_list_node.block = AddToListBlock()
mock_list_node.block_id = AddToListBlock().id
mock_list_node.input_default = {}
mock_list_node.metadata = {}
# Mock links with dynamic fields
dict_link1 = Mock(
@@ -428,7 +423,6 @@ async def test_mixed_regular_and_dynamic_fields():
mock_node.block.name = "TestBlock"
mock_node.block.description = "A test block"
mock_node.block.input_schema = Mock()
mock_node.metadata = {}
# Mock the get_field_schema to return a proper schema for regular fields
def get_field_schema(field_name):

View File

@@ -1,3 +1,3 @@
from .blog import WordPressCreatePostBlock, WordPressGetAllPostsBlock
from .blog import WordPressCreatePostBlock
__all__ = ["WordPressCreatePostBlock", "WordPressGetAllPostsBlock"]
__all__ = ["WordPressCreatePostBlock"]

View File

@@ -161,7 +161,7 @@ async def oauth_exchange_code_for_tokens(
grant_type="authorization_code",
).model_dump(exclude_none=True)
response = await Requests(raise_for_status=False).post(
response = await Requests().post(
f"{WORDPRESS_BASE_URL}oauth2/token",
headers=headers,
data=data,
@@ -205,7 +205,7 @@ async def oauth_refresh_tokens(
grant_type="refresh_token",
).model_dump(exclude_none=True)
response = await Requests(raise_for_status=False).post(
response = await Requests().post(
f"{WORDPRESS_BASE_URL}oauth2/token",
headers=headers,
data=data,
@@ -252,7 +252,7 @@ async def validate_token(
"token": token,
}
response = await Requests(raise_for_status=False).get(
response = await Requests().get(
f"{WORDPRESS_BASE_URL}oauth2/token-info",
params=params,
)
@@ -296,7 +296,7 @@ async def make_api_request(
url = f"{WORDPRESS_BASE_URL.rstrip('/')}{endpoint}"
request_method = getattr(Requests(raise_for_status=False), method.lower())
request_method = getattr(Requests(), method.lower())
response = await request_method(
url,
headers=headers,
@@ -476,7 +476,6 @@ async def create_post(
data["tags"] = ",".join(str(t) for t in data["tags"])
# Make the API request
site = normalize_site(site)
endpoint = f"/rest/v1.1/sites/{site}/posts/new"
headers = {
@@ -484,7 +483,7 @@ async def create_post(
"Content-Type": "application/x-www-form-urlencoded",
}
response = await Requests(raise_for_status=False).post(
response = await Requests().post(
f"{WORDPRESS_BASE_URL.rstrip('/')}{endpoint}",
headers=headers,
data=data,
@@ -500,132 +499,3 @@ async def create_post(
)
error_message = error_data.get("message", response.text)
raise ValueError(f"Failed to create post: {response.status} - {error_message}")
class Post(BaseModel):
"""Response model for individual posts in a posts list response.
This is a simplified version compared to PostResponse, as the list endpoint
returns less detailed information than the create/get single post endpoints.
"""
ID: int
site_ID: int
author: PostAuthor
date: datetime
modified: datetime
title: str
URL: str
short_URL: str
content: str | None = None
excerpt: str | None = None
slug: str
guid: str
status: str
sticky: bool
password: str | None = ""
parent: Union[Dict[str, Any], bool, None] = None
type: str
discussion: Dict[str, Union[str, bool, int]] | None = None
likes_enabled: bool | None = None
sharing_enabled: bool | None = None
like_count: int | None = None
i_like: bool | None = None
is_reblogged: bool | None = None
is_following: bool | None = None
global_ID: str | None = None
featured_image: str | None = None
post_thumbnail: Dict[str, Any] | None = None
format: str | None = None
geo: Union[Dict[str, Any], bool, None] = None
menu_order: int | None = None
page_template: str | None = None
publicize_URLs: List[str] | None = None
terms: Dict[str, Dict[str, Any]] | None = None
tags: Dict[str, Dict[str, Any]] | None = None
categories: Dict[str, Dict[str, Any]] | None = None
attachments: Dict[str, Dict[str, Any]] | None = None
attachment_count: int | None = None
metadata: List[Dict[str, Any]] | None = None
meta: Dict[str, Any] | None = None
capabilities: Dict[str, bool] | None = None
revisions: List[int] | None = None
other_URLs: Dict[str, Any] | None = None
class PostsResponse(BaseModel):
"""Response model for WordPress posts list."""
found: int
posts: List[Post]
meta: Dict[str, Any]
def normalize_site(site: str) -> str:
"""
Normalize a site identifier by stripping protocol and trailing slashes.
Args:
site: Site URL, domain, or ID (e.g., "https://myblog.wordpress.com/", "myblog.wordpress.com", "123456789")
Returns:
Normalized site identifier (domain or ID only)
"""
site = site.strip()
if site.startswith("https://"):
site = site[8:]
elif site.startswith("http://"):
site = site[7:]
return site.rstrip("/")
async def get_posts(
credentials: Credentials,
site: str,
status: PostStatus | None = None,
number: int = 100,
offset: int = 0,
) -> PostsResponse:
"""
Get posts from a WordPress site.
Args:
credentials: OAuth credentials
site: Site ID or domain (e.g., "myblog.wordpress.com" or "123456789")
status: Filter by post status using PostStatus enum, or None for all
number: Number of posts to retrieve (max 100)
offset: Number of posts to skip (for pagination)
Returns:
PostsResponse with the list of posts
"""
site = normalize_site(site)
endpoint = f"/rest/v1.1/sites/{site}/posts"
headers = {
"Authorization": credentials.auth_header(),
}
params: Dict[str, Any] = {
"number": max(1, min(number, 100)), # 1100 posts per request
"offset": offset,
}
if status:
params["status"] = status.value
response = await Requests(raise_for_status=False).get(
f"{WORDPRESS_BASE_URL.rstrip('/')}{endpoint}",
headers=headers,
params=params,
)
if response.ok:
return PostsResponse.model_validate(response.json())
error_data = (
response.json()
if response.headers.get("content-type", "").startswith("application/json")
else {}
)
error_message = error_data.get("message", response.text)
raise ValueError(f"Failed to get posts: {response.status} - {error_message}")

View File

@@ -9,15 +9,7 @@ from backend.sdk import (
SchemaField,
)
from ._api import (
CreatePostRequest,
Post,
PostResponse,
PostsResponse,
PostStatus,
create_post,
get_posts,
)
from ._api import CreatePostRequest, PostResponse, PostStatus, create_post
from ._config import wordpress
@@ -57,15 +49,8 @@ class WordPressCreatePostBlock(Block):
media_urls: list[str] = SchemaField(
description="URLs of images to sideload and attach to the post", default=[]
)
publish_as_draft: bool = SchemaField(
description="If True, publishes the post as a draft. If False, publishes it publicly.",
default=False,
)
class Output(BlockSchemaOutput):
site: str = SchemaField(
description="The site ID or domain (pass-through for chaining with other blocks)"
)
post_id: int = SchemaField(description="The ID of the created post")
post_url: str = SchemaField(description="The full URL of the created post")
short_url: str = SchemaField(description="The shortened wp.me URL")
@@ -93,9 +78,7 @@ class WordPressCreatePostBlock(Block):
tags=input_data.tags,
featured_image=input_data.featured_image,
media_urls=input_data.media_urls,
status=(
PostStatus.DRAFT if input_data.publish_as_draft else PostStatus.PUBLISH
),
status=PostStatus.PUBLISH,
)
post_response: PostResponse = await create_post(
@@ -104,69 +87,7 @@ class WordPressCreatePostBlock(Block):
post_data=post_request,
)
yield "site", input_data.site
yield "post_id", post_response.ID
yield "post_url", post_response.URL
yield "short_url", post_response.short_URL
yield "post_data", post_response.model_dump()
class WordPressGetAllPostsBlock(Block):
"""
Fetches all posts from a WordPress.com site or Jetpack-enabled site.
Supports filtering by status and pagination.
"""
class Input(BlockSchemaInput):
credentials: CredentialsMetaInput = wordpress.credentials_field()
site: str = SchemaField(
description="Site ID or domain (e.g., 'myblog.wordpress.com' or '123456789')"
)
status: PostStatus | None = SchemaField(
description="Filter by post status, or None for all",
default=None,
)
number: int = SchemaField(
description="Number of posts to retrieve (max 100 per request)", default=20
)
offset: int = SchemaField(
description="Number of posts to skip (for pagination)", default=0
)
class Output(BlockSchemaOutput):
site: str = SchemaField(
description="The site ID or domain (pass-through for chaining with other blocks)"
)
found: int = SchemaField(description="Total number of posts found")
posts: list[Post] = SchemaField(
description="List of post objects with their details"
)
post: Post = SchemaField(
description="Individual post object (yielded for each post)"
)
def __init__(self):
super().__init__(
id="97728fa7-7f6f-4789-ba0c-f2c114119536",
description="Fetch all posts from WordPress.com or Jetpack sites",
categories={BlockCategory.SOCIAL},
input_schema=self.Input,
output_schema=self.Output,
)
async def run(
self, input_data: Input, *, credentials: Credentials, **kwargs
) -> BlockOutput:
posts_response: PostsResponse = await get_posts(
credentials=credentials,
site=input_data.site,
status=input_data.status,
number=input_data.number,
offset=input_data.offset,
)
yield "site", input_data.site
yield "found", posts_response.found
yield "posts", posts_response.posts
for post in posts_response.posts:
yield "post", post

View File

@@ -1,5 +1,5 @@
from gravitasml.parser import Parser
from gravitasml.token import Token, tokenize
from gravitasml.token import tokenize
from backend.data.block import Block, BlockOutput, BlockSchemaInput, BlockSchemaOutput
from backend.data.model import SchemaField
@@ -25,38 +25,6 @@ class XMLParserBlock(Block):
],
)
@staticmethod
def _validate_tokens(tokens: list[Token]) -> None:
"""Ensure the XML has a single root element and no stray text."""
if not tokens:
raise ValueError("XML input is empty.")
depth = 0
root_seen = False
for token in tokens:
if token.type == "TAG_OPEN":
if depth == 0 and root_seen:
raise ValueError("XML must have a single root element.")
depth += 1
if depth == 1:
root_seen = True
elif token.type == "TAG_CLOSE":
depth -= 1
if depth < 0:
raise SyntaxError("Unexpected closing tag in XML input.")
elif token.type in {"TEXT", "ESCAPE"}:
if depth == 0 and token.value:
raise ValueError(
"XML contains text outside the root element; "
"wrap content in a single root tag."
)
if depth != 0:
raise SyntaxError("Unclosed tag detected in XML input.")
if not root_seen:
raise ValueError("XML must include a root element.")
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
# Security fix: Add size limits to prevent XML bomb attacks
MAX_XML_SIZE = 10 * 1024 * 1024 # 10MB limit for XML input
@@ -67,9 +35,7 @@ class XMLParserBlock(Block):
)
try:
tokens = list(tokenize(input_data.input_xml))
self._validate_tokens(tokens)
tokens = tokenize(input_data.input_xml)
parser = Parser(tokens)
parsed_result = parser.parse()
yield "parsed_xml", parsed_result

View File

@@ -25,6 +25,7 @@ from prisma.models import AgentBlock
from prisma.types import AgentBlockCreateInput
from pydantic import BaseModel
from backend.data.llm_registry import update_schema_with_llm_registry
from backend.data.model import NodeExecutionStats
from backend.integrations.providers import ProviderName
from backend.util import json
@@ -50,8 +51,6 @@ from .model import (
logger = logging.getLogger(__name__)
if TYPE_CHECKING:
from backend.data.execution import ExecutionContext
from .graph import Link
app_config = Config()
@@ -143,35 +142,59 @@ class BlockInfo(BaseModel):
class BlockSchema(BaseModel):
cached_jsonschema: ClassVar[dict[str, Any]]
cached_jsonschema: ClassVar[dict[str, Any] | None] = None
@classmethod
def clear_schema_cache(cls) -> None:
"""Clear the cached JSON schema for this class."""
# Use None instead of {} because {} is truthy and would prevent regeneration
cls.cached_jsonschema = None # type: ignore
@staticmethod
def clear_all_schema_caches() -> None:
"""Clear cached JSON schemas for all BlockSchema subclasses."""
def clear_recursive(cls: type) -> None:
"""Recursively clear cache for class and all subclasses."""
if hasattr(cls, "clear_schema_cache"):
cls.clear_schema_cache()
for subclass in cls.__subclasses__():
clear_recursive(subclass)
clear_recursive(BlockSchema)
@classmethod
def jsonschema(cls) -> dict[str, Any]:
if cls.cached_jsonschema:
return cls.cached_jsonschema
# Generate schema if not cached
if not cls.cached_jsonschema:
model = jsonref.replace_refs(cls.model_json_schema(), merge_props=True)
model = jsonref.replace_refs(cls.model_json_schema(), merge_props=True)
def ref_to_dict(obj):
if isinstance(obj, dict):
# OpenAPI <3.1 does not support sibling fields that has a $ref key
# So sometimes, the schema has an "allOf"/"anyOf"/"oneOf" with 1 item.
keys = {"allOf", "anyOf", "oneOf"}
one_key = next(
(k for k in keys if k in obj and len(obj[k]) == 1), None
)
if one_key:
obj.update(obj[one_key][0])
def ref_to_dict(obj):
if isinstance(obj, dict):
# OpenAPI <3.1 does not support sibling fields that has a $ref key
# So sometimes, the schema has an "allOf"/"anyOf"/"oneOf" with 1 item.
keys = {"allOf", "anyOf", "oneOf"}
one_key = next((k for k in keys if k in obj and len(obj[k]) == 1), None)
if one_key:
obj.update(obj[one_key][0])
return {
key: ref_to_dict(value)
for key, value in obj.items()
if not key.startswith("$") and key != one_key
}
elif isinstance(obj, list):
return [ref_to_dict(item) for item in obj]
return {
key: ref_to_dict(value)
for key, value in obj.items()
if not key.startswith("$") and key != one_key
}
elif isinstance(obj, list):
return [ref_to_dict(item) for item in obj]
return obj
return obj
cls.cached_jsonschema = cast(dict[str, Any], ref_to_dict(model))
cls.cached_jsonschema = cast(dict[str, Any], ref_to_dict(model))
# Always post-process to ensure LLM registry data is up-to-date
# This refreshes model options and discriminator mappings even if schema was cached
update_schema_with_llm_registry(cls.cached_jsonschema, cls)
return cls.cached_jsonschema
@@ -474,7 +497,6 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
self.block_type = block_type
self.webhook_config = webhook_config
self.execution_stats: NodeExecutionStats = NodeExecutionStats()
self.requires_human_review: bool = False
if self.webhook_config:
if isinstance(self.webhook_config, BlockWebhookConfig):
@@ -617,77 +639,7 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
block_id=self.id,
) from ex
async def is_block_exec_need_review(
self,
input_data: BlockInput,
*,
user_id: str,
node_exec_id: str,
graph_exec_id: str,
graph_id: str,
graph_version: int,
execution_context: "ExecutionContext",
**kwargs,
) -> tuple[bool, BlockInput]:
"""
Check if this block execution needs human review and handle the review process.
Returns:
Tuple of (should_pause, input_data_to_use)
- should_pause: True if execution should be paused for review
- input_data_to_use: The input data to use (may be modified by reviewer)
"""
# Skip review if not required or safe mode is disabled
if not self.requires_human_review or not execution_context.safe_mode:
return False, input_data
from backend.blocks.helpers.review import HITLReviewHelper
# Handle the review request and get decision
decision = await HITLReviewHelper.handle_review_decision(
input_data=input_data,
user_id=user_id,
node_exec_id=node_exec_id,
graph_exec_id=graph_exec_id,
graph_id=graph_id,
graph_version=graph_version,
execution_context=execution_context,
block_name=self.name,
editable=True,
)
if decision is None:
# We're awaiting review - pause execution
return True, input_data
if not decision.should_proceed:
# Review was rejected, raise an error to stop execution
raise BlockExecutionError(
message=f"Block execution rejected by reviewer: {decision.message}",
block_name=self.name,
block_id=self.id,
)
# Review was approved - use the potentially modified data
# ReviewResult.data must be a dict for block inputs
reviewed_data = decision.review_result.data
if not isinstance(reviewed_data, dict):
raise BlockExecutionError(
message=f"Review data must be a dict for block input, got {type(reviewed_data).__name__}",
block_name=self.name,
block_id=self.id,
)
return False, reviewed_data
async def _execute(self, input_data: BlockInput, **kwargs) -> BlockOutput:
# Check for review requirement and get potentially modified input data
should_pause, input_data = await self.is_block_exec_need_review(
input_data, **kwargs
)
if should_pause:
return
# Validate the input data (original or reviewer-modified) once
if error := self.input_schema.validate_data(input_data):
raise BlockInputError(
message=f"Unable to execute block with invalid input data: {error}",
@@ -695,7 +647,6 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
block_id=self.id,
)
# Use the validated input data
async for output_name, output_data in self.run(
self.input_schema(**{k: v for k, v in input_data.items() if v is not None}),
**kwargs,
@@ -859,6 +810,28 @@ def is_block_auth_configured(
async def initialize_blocks() -> None:
# Refresh LLM registry before initializing blocks so blocks can use registry data
# This ensures the registry cache is populated even in executor context
try:
from backend.data import llm_registry
from backend.data.block_cost_config import refresh_llm_costs
# Only refresh if we have DB access (check if Prisma is connected)
from backend.data.db import is_connected
if is_connected():
await llm_registry.refresh_llm_registry()
refresh_llm_costs()
logger.info("LLM registry refreshed during block initialization")
else:
logger.warning(
"Prisma not connected, skipping LLM registry refresh during block initialization"
)
except Exception as exc:
logger.warning(
"Failed to refresh LLM registry during block initialization: %s", exc
)
# First, sync all provider costs to blocks
# Imported here to avoid circular import
from backend.sdk.cost_integration import sync_all_provider_costs

View File

@@ -1,3 +1,4 @@
import logging
from typing import Type
from backend.blocks.ai_image_customizer import AIImageCustomizerBlock, GeminiImageModel
@@ -23,19 +24,18 @@ from backend.blocks.ideogram import IdeogramModelBlock
from backend.blocks.jina.embeddings import JinaEmbeddingBlock
from backend.blocks.jina.search import ExtractWebsiteContentBlock, SearchTheWebBlock
from backend.blocks.llm import (
MODEL_METADATA,
AIConversationBlock,
AIListGeneratorBlock,
AIStructuredResponseGeneratorBlock,
AITextGeneratorBlock,
AITextSummarizerBlock,
LlmModel,
)
from backend.blocks.replicate.flux_advanced import ReplicateFluxAdvancedModelBlock
from backend.blocks.replicate.replicate_block import ReplicateModelBlock
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
from backend.blocks.talking_head import CreateTalkingAvatarVideoBlock
from backend.blocks.text_to_speech_block import UnrealTextToSpeechBlock
from backend.data import llm_registry
from backend.data.block import Block, BlockCost, BlockCostType
from backend.integrations.credentials_store import (
aiml_api_credentials,
@@ -55,210 +55,63 @@ from backend.integrations.credentials_store import (
v0_credentials,
)
# =============== Configure the cost for each LLM Model call =============== #
logger = logging.getLogger(__name__)
MODEL_COST: dict[LlmModel, int] = {
LlmModel.O3: 4,
LlmModel.O3_MINI: 2,
LlmModel.O1: 16,
LlmModel.O1_MINI: 4,
# GPT-5 models
LlmModel.GPT5_2: 6,
LlmModel.GPT5_1: 5,
LlmModel.GPT5: 2,
LlmModel.GPT5_MINI: 1,
LlmModel.GPT5_NANO: 1,
LlmModel.GPT5_CHAT: 5,
LlmModel.GPT41: 2,
LlmModel.GPT41_MINI: 1,
LlmModel.GPT4O_MINI: 1,
LlmModel.GPT4O: 3,
LlmModel.GPT4_TURBO: 10,
LlmModel.GPT3_5_TURBO: 1,
LlmModel.CLAUDE_4_1_OPUS: 21,
LlmModel.CLAUDE_4_OPUS: 21,
LlmModel.CLAUDE_4_SONNET: 5,
LlmModel.CLAUDE_4_5_HAIKU: 4,
LlmModel.CLAUDE_4_5_OPUS: 14,
LlmModel.CLAUDE_4_5_SONNET: 9,
LlmModel.CLAUDE_3_7_SONNET: 5,
LlmModel.CLAUDE_3_HAIKU: 1,
LlmModel.AIML_API_QWEN2_5_72B: 1,
LlmModel.AIML_API_LLAMA3_1_70B: 1,
LlmModel.AIML_API_LLAMA3_3_70B: 1,
LlmModel.AIML_API_META_LLAMA_3_1_70B: 1,
LlmModel.AIML_API_LLAMA_3_2_3B: 1,
LlmModel.LLAMA3_3_70B: 1,
LlmModel.LLAMA3_1_8B: 1,
LlmModel.OLLAMA_LLAMA3_3: 1,
LlmModel.OLLAMA_LLAMA3_2: 1,
LlmModel.OLLAMA_LLAMA3_8B: 1,
LlmModel.OLLAMA_LLAMA3_405B: 1,
LlmModel.OLLAMA_DOLPHIN: 1,
LlmModel.OPENAI_GPT_OSS_120B: 1,
LlmModel.OPENAI_GPT_OSS_20B: 1,
LlmModel.GEMINI_2_5_PRO: 4,
LlmModel.GEMINI_3_PRO_PREVIEW: 5,
LlmModel.MISTRAL_NEMO: 1,
LlmModel.COHERE_COMMAND_R_08_2024: 1,
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: 3,
LlmModel.DEEPSEEK_CHAT: 2,
LlmModel.PERPLEXITY_SONAR: 1,
LlmModel.PERPLEXITY_SONAR_PRO: 5,
LlmModel.PERPLEXITY_SONAR_DEEP_RESEARCH: 10,
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_405B: 1,
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_70B: 1,
LlmModel.AMAZON_NOVA_LITE_V1: 1,
LlmModel.AMAZON_NOVA_MICRO_V1: 1,
LlmModel.AMAZON_NOVA_PRO_V1: 1,
LlmModel.MICROSOFT_WIZARDLM_2_8X22B: 1,
LlmModel.GRYPHE_MYTHOMAX_L2_13B: 1,
LlmModel.META_LLAMA_4_SCOUT: 1,
LlmModel.META_LLAMA_4_MAVERICK: 1,
LlmModel.LLAMA_API_LLAMA_4_SCOUT: 1,
LlmModel.LLAMA_API_LLAMA4_MAVERICK: 1,
LlmModel.LLAMA_API_LLAMA3_3_8B: 1,
LlmModel.LLAMA_API_LLAMA3_3_70B: 1,
LlmModel.GROK_4: 9,
LlmModel.GROK_4_FAST: 1,
LlmModel.GROK_4_1_FAST: 1,
LlmModel.GROK_CODE_FAST_1: 1,
LlmModel.KIMI_K2: 1,
LlmModel.QWEN3_235B_A22B_THINKING: 1,
LlmModel.QWEN3_CODER: 9,
LlmModel.GEMINI_2_5_FLASH: 1,
LlmModel.GEMINI_2_0_FLASH: 1,
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: 1,
LlmModel.GEMINI_2_0_FLASH_LITE: 1,
LlmModel.DEEPSEEK_R1_0528: 1,
# v0 by Vercel models
LlmModel.V0_1_5_MD: 1,
LlmModel.V0_1_5_LG: 2,
LlmModel.V0_1_0_MD: 1,
PROVIDER_CREDENTIALS = {
"openai": openai_credentials,
"anthropic": anthropic_credentials,
"groq": groq_credentials,
"open_router": open_router_credentials,
"llama_api": llama_api_credentials,
"aiml_api": aiml_api_credentials,
"v0": v0_credentials,
}
for model in LlmModel:
if model not in MODEL_COST:
raise ValueError(f"Missing MODEL_COST for model: {model}")
# =============== Configure the cost for each LLM Model call =============== #
# All LLM costs now come from the database via llm_registry
LLM_COST: list[BlockCost] = []
LLM_COST = (
# Anthropic Models
[
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter={
"model": model,
def _build_llm_costs_from_registry() -> list[BlockCost]:
"""Build BlockCost list from all models in the LLM registry."""
costs: list[BlockCost] = []
for model in llm_registry.iter_dynamic_models():
for cost in model.costs:
credentials = PROVIDER_CREDENTIALS.get(cost.credential_provider)
if not credentials:
logger.warning(
"Skipping cost entry for %s due to unknown credentials provider %s",
model.slug,
cost.credential_provider,
)
continue
cost_filter = {
"model": model.slug,
"credentials": {
"id": anthropic_credentials.id,
"provider": anthropic_credentials.provider,
"type": anthropic_credentials.type,
"id": credentials.id,
"provider": credentials.provider,
"type": credentials.type,
},
},
cost_amount=cost,
)
for model, cost in MODEL_COST.items()
if MODEL_METADATA[model].provider == "anthropic"
]
# OpenAI Models
+ [
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter={
"model": model,
"credentials": {
"id": openai_credentials.id,
"provider": openai_credentials.provider,
"type": openai_credentials.type,
},
},
cost_amount=cost,
)
for model, cost in MODEL_COST.items()
if MODEL_METADATA[model].provider == "openai"
]
# Groq Models
+ [
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter={
"model": model,
"credentials": {"id": groq_credentials.id},
},
cost_amount=cost,
)
for model, cost in MODEL_COST.items()
if MODEL_METADATA[model].provider == "groq"
]
# Open Router Models
+ [
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter={
"model": model,
"credentials": {
"id": open_router_credentials.id,
"provider": open_router_credentials.provider,
"type": open_router_credentials.type,
},
},
cost_amount=cost,
)
for model, cost in MODEL_COST.items()
if MODEL_METADATA[model].provider == "open_router"
]
# Llama API Models
+ [
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter={
"model": model,
"credentials": {
"id": llama_api_credentials.id,
"provider": llama_api_credentials.provider,
"type": llama_api_credentials.type,
},
},
cost_amount=cost,
)
for model, cost in MODEL_COST.items()
if MODEL_METADATA[model].provider == "llama_api"
]
# v0 by Vercel Models
+ [
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter={
"model": model,
"credentials": {
"id": v0_credentials.id,
"provider": v0_credentials.provider,
"type": v0_credentials.type,
},
},
cost_amount=cost,
)
for model, cost in MODEL_COST.items()
if MODEL_METADATA[model].provider == "v0"
]
# AI/ML Api Models
+ [
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter={
"model": model,
"credentials": {
"id": aiml_api_credentials.id,
"provider": aiml_api_credentials.provider,
"type": aiml_api_credentials.type,
},
},
cost_amount=cost,
)
for model, cost in MODEL_COST.items()
if MODEL_METADATA[model].provider == "aiml_api"
]
)
}
costs.append(
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter=cost_filter,
cost_amount=cost.credit_cost,
)
)
return costs
def refresh_llm_costs() -> None:
"""Refresh LLM costs from the registry. All costs now come from the database."""
LLM_COST.clear()
LLM_COST.extend(_build_llm_costs_from_registry())
# Initial load will happen after registry is refreshed at startup
# Don't call refresh_llm_costs() here - it will be called after registry refresh
# =============== This is the exhaustive list of cost for each Block =============== #

View File

@@ -38,20 +38,6 @@ POOL_TIMEOUT = os.getenv("DB_POOL_TIMEOUT")
if POOL_TIMEOUT:
DATABASE_URL = add_param(DATABASE_URL, "pool_timeout", POOL_TIMEOUT)
# Add public schema to search_path for pgvector type access
# The vector extension is in public schema, but search_path is determined by schema parameter
# Extract the schema from DATABASE_URL or default to 'platform'
parsed_url = urlparse(DATABASE_URL)
url_params = dict(parse_qsl(parsed_url.query))
db_schema = url_params.get("schema", "platform")
# Build search_path, avoiding duplicates if db_schema is already 'public'
search_path_schemas = list(
dict.fromkeys([db_schema, "public"])
) # Preserves order, removes duplicates
search_path = ",".join(search_path_schemas)
# This allows using ::vector without schema qualification
DATABASE_URL = add_param(DATABASE_URL, "options", f"-c search_path={search_path}")
HTTP_TIMEOUT = int(POOL_TIMEOUT) if POOL_TIMEOUT else None
prisma = Prisma(
@@ -122,102 +108,21 @@ def get_database_schema() -> str:
return query_params.get("schema", "public")
async def _raw_with_schema(
query_template: str,
*args,
execute: bool = False,
client: Prisma | None = None,
set_public_search_path: bool = False,
) -> list[dict] | int:
"""Internal: Execute raw SQL with proper schema handling.
Use query_raw_with_schema() or execute_raw_with_schema() instead.
Args:
query_template: SQL query with {schema_prefix} placeholder
*args: Query parameters
execute: If False, executes SELECT query. If True, executes INSERT/UPDATE/DELETE.
client: Optional Prisma client for transactions (only used when execute=True).
set_public_search_path: If True, sets search_path to include public schema.
Needed for pgvector types and other public schema objects.
Returns:
- list[dict] if execute=False (query results)
- int if execute=True (number of affected rows)
"""
async def query_raw_with_schema(query_template: str, *args) -> list[dict]:
"""Execute raw SQL query with proper schema handling."""
schema = get_database_schema()
schema_prefix = f'"{schema}".' if schema != "public" else ""
formatted_query = query_template.format(schema_prefix=schema_prefix)
import prisma as prisma_module
db_client = client if client else prisma_module.get_client()
# Set search_path to include public schema if requested
# Prisma doesn't support the 'options' connection parameter, so we set it per-session
# This is idempotent and safe to call multiple times
if set_public_search_path:
await db_client.execute_raw(f"SET search_path = {schema}, public") # type: ignore
if execute:
result = await db_client.execute_raw(formatted_query, *args) # type: ignore
else:
result = await db_client.query_raw(formatted_query, *args) # type: ignore
result = await prisma_module.get_client().query_raw(
formatted_query, *args # type: ignore
)
return result
async def query_raw_with_schema(
query_template: str, *args, set_public_search_path: bool = False
) -> list[dict]:
"""Execute raw SQL SELECT query with proper schema handling.
Args:
query_template: SQL query with {schema_prefix} placeholder
*args: Query parameters
set_public_search_path: If True, sets search_path to include public schema.
Needed for pgvector types and other public schema objects.
Returns:
List of result rows as dictionaries
Example:
results = await query_raw_with_schema(
'SELECT * FROM {schema_prefix}"User" WHERE id = $1',
user_id
)
"""
return await _raw_with_schema(query_template, *args, execute=False, set_public_search_path=set_public_search_path) # type: ignore
async def execute_raw_with_schema(
query_template: str,
*args,
client: Prisma | None = None,
set_public_search_path: bool = False,
) -> int:
"""Execute raw SQL command (INSERT/UPDATE/DELETE) with proper schema handling.
Args:
query_template: SQL query with {schema_prefix} placeholder
*args: Query parameters
client: Optional Prisma client for transactions
set_public_search_path: If True, sets search_path to include public schema.
Needed for pgvector types and other public schema objects.
Returns:
Number of affected rows
Example:
await execute_raw_with_schema(
'INSERT INTO {schema_prefix}"User" (id, name) VALUES ($1, $2)',
user_id, name,
client=tx # Optional transaction client
)
"""
return await _raw_with_schema(query_template, *args, execute=True, client=client, set_public_search_path=set_public_search_path) # type: ignore
class BaseDbModel(BaseModel):
id: str = Field(default_factory=lambda: str(uuid4()))

View File

@@ -383,7 +383,6 @@ class GraphExecutionWithNodes(GraphExecution):
self,
execution_context: ExecutionContext,
compiled_nodes_input_masks: Optional[NodesInputMasks] = None,
nodes_to_skip: Optional[set[str]] = None,
):
return GraphExecutionEntry(
user_id=self.user_id,
@@ -391,7 +390,6 @@ class GraphExecutionWithNodes(GraphExecution):
graph_version=self.graph_version or 0,
graph_exec_id=self.id,
nodes_input_masks=compiled_nodes_input_masks,
nodes_to_skip=nodes_to_skip or set(),
execution_context=execution_context,
)
@@ -1147,8 +1145,6 @@ class GraphExecutionEntry(BaseModel):
graph_id: str
graph_version: int
nodes_input_masks: Optional[NodesInputMasks] = None
nodes_to_skip: set[str] = Field(default_factory=set)
"""Node IDs that should be skipped due to optional credentials not being configured."""
execution_context: ExecutionContext = Field(default_factory=ExecutionContext)

View File

@@ -94,15 +94,6 @@ class Node(BaseDbModel):
input_links: list[Link] = []
output_links: list[Link] = []
@property
def credentials_optional(self) -> bool:
"""
Whether credentials are optional for this node.
When True and credentials are not configured, the node will be skipped
during execution rather than causing a validation error.
"""
return self.metadata.get("credentials_optional", False)
@property
def block(self) -> AnyBlockSchema | "_UnknownBlockBase":
"""Get the block for this node. Returns UnknownBlock if block is deleted/missing."""
@@ -244,10 +235,7 @@ class BaseGraph(BaseDbModel):
return any(
node.block_id
for node in self.nodes
if (
node.block.block_type == BlockType.HUMAN_IN_THE_LOOP
or node.block.requires_human_review
)
if node.block.block_type == BlockType.HUMAN_IN_THE_LOOP
)
@property
@@ -338,35 +326,7 @@ class Graph(BaseGraph):
@computed_field
@property
def credentials_input_schema(self) -> dict[str, Any]:
schema = self._credentials_input_schema.jsonschema()
# Determine which credential fields are required based on credentials_optional metadata
graph_credentials_inputs = self.aggregate_credentials_inputs()
required_fields = []
# Build a map of node_id -> node for quick lookup
all_nodes = {node.id: node for node in self.nodes}
for sub_graph in self.sub_graphs:
for node in sub_graph.nodes:
all_nodes[node.id] = node
for field_key, (
_field_info,
node_field_pairs,
) in graph_credentials_inputs.items():
# A field is required if ANY node using it has credentials_optional=False
is_required = False
for node_id, _field_name in node_field_pairs:
node = all_nodes.get(node_id)
if node and not node.credentials_optional:
is_required = True
break
if is_required:
required_fields.append(field_key)
schema["required"] = required_fields
return schema
return self._credentials_input_schema.jsonschema()
@property
def _credentials_input_schema(self) -> type[BlockSchema]:
@@ -1483,8 +1443,10 @@ async def migrate_llm_models(migrate_to: LlmModel):
if field.annotation == LlmModel:
llm_model_fields[block.id] = field_name
# Convert enum values to a list of strings for the SQL query
enum_values = [v.value for v in LlmModel]
# Get all model slugs from the registry (dynamic, not hardcoded enum)
from backend.data import llm_registry
enum_values = list(llm_registry.get_all_model_slugs_for_validation())
escaped_enum_values = repr(tuple(enum_values)) # hack but works
# Update each block

View File

@@ -1,6 +1,5 @@
import json
from typing import Any
from unittest.mock import AsyncMock, patch
from uuid import UUID
import fastapi.exceptions
@@ -19,17 +18,6 @@ from backend.usecases.sample import create_test_user
from backend.util.test import SpinTestServer
@pytest.fixture(scope="session", autouse=True)
def mock_embedding_functions():
"""Mock embedding functions for all tests to avoid database/API dependencies."""
with patch(
"backend.api.features.store.db.ensure_embedding",
new_callable=AsyncMock,
return_value=True,
):
yield
@pytest.mark.asyncio(loop_scope="session")
async def test_graph_creation(server: SpinTestServer, snapshot: Snapshot):
"""
@@ -408,58 +396,3 @@ async def test_access_store_listing_graph(server: SpinTestServer):
created_graph.id, created_graph.version, "3e53486c-cf57-477e-ba2a-cb02dc828e1b"
)
assert got_graph is not None
# ============================================================================
# Tests for Optional Credentials Feature
# ============================================================================
def test_node_credentials_optional_default():
"""Test that credentials_optional defaults to False when not set in metadata."""
node = Node(
id="test_node",
block_id=StoreValueBlock().id,
input_default={},
metadata={},
)
assert node.credentials_optional is False
def test_node_credentials_optional_true():
"""Test that credentials_optional returns True when explicitly set."""
node = Node(
id="test_node",
block_id=StoreValueBlock().id,
input_default={},
metadata={"credentials_optional": True},
)
assert node.credentials_optional is True
def test_node_credentials_optional_false():
"""Test that credentials_optional returns False when explicitly set to False."""
node = Node(
id="test_node",
block_id=StoreValueBlock().id,
input_default={},
metadata={"credentials_optional": False},
)
assert node.credentials_optional is False
def test_node_credentials_optional_with_other_metadata():
"""Test that credentials_optional works correctly with other metadata present."""
node = Node(
id="test_node",
block_id=StoreValueBlock().id,
input_default={},
metadata={
"position": {"x": 100, "y": 200},
"customized_name": "My Custom Node",
"credentials_optional": True,
},
)
assert node.credentials_optional is True
assert node.metadata["position"] == {"x": 100, "y": 200}
assert node.metadata["customized_name"] == "My Custom Node"

View File

@@ -0,0 +1,72 @@
"""
LLM Registry module for managing LLM models, providers, and costs dynamically.
This module provides a database-driven registry system for LLM models,
replacing hardcoded model configurations with a flexible admin-managed system.
"""
from backend.data.llm_registry.model_types import ModelMetadata
# Re-export for backwards compatibility
from backend.data.llm_registry.notifications import (
REGISTRY_REFRESH_CHANNEL,
publish_registry_refresh_notification,
subscribe_to_registry_refresh,
)
from backend.data.llm_registry.registry import (
RegistryModel,
RegistryModelCost,
RegistryModelCreator,
get_all_model_slugs_for_validation,
get_default_model_slug,
get_dynamic_model_slugs,
get_fallback_model_for_disabled,
get_llm_discriminator_mapping,
get_llm_model_cost,
get_llm_model_metadata,
get_llm_model_schema_options,
get_model_info,
is_model_enabled,
iter_dynamic_models,
refresh_llm_registry,
register_static_costs,
register_static_metadata,
)
from backend.data.llm_registry.schema_utils import (
is_llm_model_field,
refresh_llm_discriminator_mapping,
refresh_llm_model_options,
update_schema_with_llm_registry,
)
__all__ = [
# Types
"ModelMetadata",
"RegistryModel",
"RegistryModelCost",
"RegistryModelCreator",
# Registry functions
"get_all_model_slugs_for_validation",
"get_default_model_slug",
"get_dynamic_model_slugs",
"get_fallback_model_for_disabled",
"get_llm_discriminator_mapping",
"get_llm_model_cost",
"get_llm_model_metadata",
"get_llm_model_schema_options",
"get_model_info",
"is_model_enabled",
"iter_dynamic_models",
"refresh_llm_registry",
"register_static_costs",
"register_static_metadata",
# Notifications
"REGISTRY_REFRESH_CHANNEL",
"publish_registry_refresh_notification",
"subscribe_to_registry_refresh",
# Schema utilities
"is_llm_model_field",
"refresh_llm_discriminator_mapping",
"refresh_llm_model_options",
"update_schema_with_llm_registry",
]

View File

@@ -0,0 +1,11 @@
"""Type definitions for LLM model metadata."""
from typing import NamedTuple
class ModelMetadata(NamedTuple):
"""Metadata for an LLM model."""
provider: str
context_window: int
max_output_tokens: int | None

View File

@@ -0,0 +1,89 @@
"""
Redis pub/sub notifications for LLM registry updates.
When models are added/updated/removed via the admin UI, this module
publishes notifications to Redis that all executor services subscribe to,
ensuring they refresh their registry cache in real-time.
"""
import asyncio
import logging
from typing import Any
from backend.data.redis_client import connect_async
logger = logging.getLogger(__name__)
# Redis channel name for LLM registry refresh notifications
REGISTRY_REFRESH_CHANNEL = "llm_registry:refresh"
async def publish_registry_refresh_notification() -> None:
"""
Publish a notification to Redis that the LLM registry has been updated.
All executor services subscribed to this channel will refresh their registry.
"""
try:
redis = await connect_async()
await redis.publish(REGISTRY_REFRESH_CHANNEL, "refresh")
logger.info("Published LLM registry refresh notification to Redis")
except Exception as exc:
logger.warning(
"Failed to publish LLM registry refresh notification: %s",
exc,
exc_info=True,
)
async def subscribe_to_registry_refresh(
on_refresh: Any, # Async callable that takes no args
) -> None:
"""
Subscribe to Redis notifications for LLM registry updates.
This runs in a loop and processes messages as they arrive.
Args:
on_refresh: Async callable to execute when a refresh notification is received
"""
try:
redis = await connect_async()
pubsub = redis.pubsub()
await pubsub.subscribe(REGISTRY_REFRESH_CHANNEL)
logger.info(
"Subscribed to LLM registry refresh notifications on channel: %s",
REGISTRY_REFRESH_CHANNEL,
)
# Process messages in a loop
while True:
try:
message = await pubsub.get_message(
ignore_subscribe_messages=True, timeout=1.0
)
if (
message
and message["type"] == "message"
and message["channel"] == REGISTRY_REFRESH_CHANNEL
):
logger.info("Received LLM registry refresh notification")
try:
await on_refresh()
except Exception as exc:
logger.error(
"Error refreshing LLM registry from notification: %s",
exc,
exc_info=True,
)
except Exception as exc:
logger.warning(
"Error processing registry refresh message: %s", exc, exc_info=True
)
# Continue listening even if one message fails
await asyncio.sleep(1)
except Exception as exc:
logger.error(
"Failed to subscribe to LLM registry refresh notifications: %s",
exc,
exc_info=True,
)
raise

View File

@@ -0,0 +1,370 @@
"""Core LLM registry implementation for managing models dynamically."""
from __future__ import annotations
import asyncio
import logging
from dataclasses import dataclass, field
from typing import Any, Iterable
import prisma.models
from backend.data.llm_registry.model_types import ModelMetadata
logger = logging.getLogger(__name__)
def _json_to_dict(value: Any) -> dict[str, Any]:
"""Convert Prisma Json type to dict, with fallback to empty dict."""
if value is None:
return {}
if isinstance(value, dict):
return value
# Prisma Json type should always be a dict at runtime
return dict(value) if value else {}
@dataclass(frozen=True)
class RegistryModelCost:
"""Cost configuration for an LLM model."""
credit_cost: int
credential_provider: str
credential_id: str | None
credential_type: str | None
currency: str | None
metadata: dict[str, Any]
@dataclass(frozen=True)
class RegistryModelCreator:
"""Creator information for an LLM model."""
id: str
name: str
display_name: str
description: str | None
website_url: str | None
logo_url: str | None
@dataclass(frozen=True)
class RegistryModel:
"""Represents a model in the LLM registry."""
slug: str
display_name: str
description: str | None
metadata: ModelMetadata
capabilities: dict[str, Any]
extra_metadata: dict[str, Any]
provider_display_name: str
is_enabled: bool
is_recommended: bool = False
costs: tuple[RegistryModelCost, ...] = field(default_factory=tuple)
creator: RegistryModelCreator | None = None
_static_metadata: dict[str, ModelMetadata] = {}
_static_costs: dict[str, int] = {}
_dynamic_models: dict[str, RegistryModel] = {}
_schema_options: list[dict[str, str]] = []
_discriminator_mapping: dict[str, str] = {}
_lock = asyncio.Lock()
def register_static_metadata(metadata: dict[Any, ModelMetadata]) -> None:
"""Register static metadata for legacy models (deprecated)."""
_static_metadata.update({str(key): value for key, value in metadata.items()})
_refresh_cached_schema()
def register_static_costs(costs: dict[Any, int]) -> None:
"""Register static costs for legacy models (deprecated)."""
_static_costs.update({str(key): value for key, value in costs.items()})
def _build_schema_options() -> list[dict[str, str]]:
"""Build schema options for model selection dropdown. Only includes enabled models."""
options: list[dict[str, str]] = []
# Only include enabled models in the dropdown options
for model in sorted(_dynamic_models.values(), key=lambda m: m.display_name.lower()):
if model.is_enabled:
options.append(
{
"label": model.display_name,
"value": model.slug,
"group": model.metadata.provider,
"description": model.description or "",
}
)
for slug, metadata in _static_metadata.items():
if slug in _dynamic_models:
continue
options.append(
{
"label": slug,
"value": slug,
"group": metadata.provider,
"description": "",
}
)
return options
async def refresh_llm_registry() -> None:
"""Refresh the LLM registry from the database. Loads all models (enabled and disabled)."""
async with _lock:
try:
records = await prisma.models.LlmModel.prisma().find_many(
include={
"Provider": True,
"Costs": True,
"Creator": True,
}
)
logger.debug("Found %d LLM model records in database", len(records))
except Exception as exc:
logger.error(
"Failed to refresh LLM registry from DB: %s", exc, exc_info=True
)
return
dynamic: dict[str, RegistryModel] = {}
for record in records:
provider_name = (
record.Provider.name if record.Provider else record.providerId
)
metadata = ModelMetadata(
provider=provider_name,
context_window=record.contextWindow,
max_output_tokens=record.maxOutputTokens,
)
costs = tuple(
RegistryModelCost(
credit_cost=cost.creditCost,
credential_provider=cost.credentialProvider,
credential_id=cost.credentialId,
credential_type=cost.credentialType,
currency=cost.currency,
metadata=_json_to_dict(cost.metadata),
)
for cost in (record.Costs or [])
)
# Map creator if present
creator = None
if record.Creator:
creator = RegistryModelCreator(
id=record.Creator.id,
name=record.Creator.name,
display_name=record.Creator.displayName,
description=record.Creator.description,
website_url=record.Creator.websiteUrl,
logo_url=record.Creator.logoUrl,
)
dynamic[record.slug] = RegistryModel(
slug=record.slug,
display_name=record.displayName,
description=record.description,
metadata=metadata,
capabilities=_json_to_dict(record.capabilities),
extra_metadata=_json_to_dict(record.metadata),
provider_display_name=(
record.Provider.displayName
if record.Provider
else record.providerId
),
is_enabled=record.isEnabled,
is_recommended=record.isRecommended,
costs=costs,
creator=creator,
)
# Atomic swap - build new structures then replace references
# This ensures readers never see partially updated state
global _dynamic_models
_dynamic_models = dynamic
_refresh_cached_schema()
logger.info(
"LLM registry refreshed with %s dynamic models (enabled: %s, disabled: %s)",
len(dynamic),
sum(1 for m in dynamic.values() if m.is_enabled),
sum(1 for m in dynamic.values() if not m.is_enabled),
)
def _refresh_cached_schema() -> None:
"""Refresh cached schema options and discriminator mapping."""
global _schema_options, _discriminator_mapping
# Build new structures
new_options = _build_schema_options()
new_mapping = {slug: entry.metadata.provider for slug, entry in _dynamic_models.items()}
for slug, metadata in _static_metadata.items():
new_mapping.setdefault(slug, metadata.provider)
# Atomic swap - replace references to ensure readers see consistent state
_schema_options = new_options
_discriminator_mapping = new_mapping
def get_llm_model_metadata(slug: str) -> ModelMetadata | None:
"""Get model metadata by slug. Checks dynamic models first, then static metadata."""
if slug in _dynamic_models:
return _dynamic_models[slug].metadata
return _static_metadata.get(slug)
def get_llm_model_cost(slug: str) -> tuple[RegistryModelCost, ...]:
"""Get model cost configuration by slug."""
if slug in _dynamic_models:
return _dynamic_models[slug].costs
cost_value = _static_costs.get(slug)
if cost_value is None:
return tuple()
return (
RegistryModelCost(
credit_cost=cost_value,
credential_provider="static",
credential_id=None,
credential_type=None,
currency=None,
metadata={},
),
)
def get_llm_model_schema_options() -> list[dict[str, str]]:
"""
Get schema options for LLM model selection dropdown.
Returns a copy of cached schema options that are refreshed when the registry is
updated via refresh_llm_registry() (called on startup and via Redis pub/sub).
"""
# Return a copy to prevent external mutation
return list(_schema_options)
def get_llm_discriminator_mapping() -> dict[str, str]:
"""
Get discriminator mapping for LLM models.
Returns a copy of cached discriminator mapping that is refreshed when the registry
is updated via refresh_llm_registry() (called on startup and via Redis pub/sub).
"""
# Return a copy to prevent external mutation
return dict(_discriminator_mapping)
def get_dynamic_model_slugs() -> set[str]:
"""Get all dynamic model slugs from the registry."""
return set(_dynamic_models.keys())
def get_all_model_slugs_for_validation() -> set[str]:
"""
Get ALL model slugs (both enabled and disabled) for validation purposes.
This is used for JSON schema enum validation - we need to accept any known
model value (even disabled ones) so that existing graphs don't fail validation.
The actual fallback/enforcement happens at runtime in llm_call().
"""
all_slugs = set(_dynamic_models.keys())
all_slugs.update(_static_metadata.keys())
return all_slugs
def iter_dynamic_models() -> Iterable[RegistryModel]:
"""Iterate over all dynamic models in the registry."""
return tuple(_dynamic_models.values())
def get_fallback_model_for_disabled(disabled_model_slug: str) -> RegistryModel | None:
"""
Find a fallback model when the requested model is disabled.
Looks for an enabled model from the same provider. Prefers models with
similar names or capabilities if possible.
Args:
disabled_model_slug: The slug of the disabled model
Returns:
An enabled RegistryModel from the same provider, or None if no fallback found
"""
disabled_model = _dynamic_models.get(disabled_model_slug)
if not disabled_model:
return None
provider = disabled_model.metadata.provider
# Find all enabled models from the same provider
candidates = [
model
for model in _dynamic_models.values()
if model.is_enabled and model.metadata.provider == provider
]
if not candidates:
return None
# Sort by: prefer models with similar context window, then by name
candidates.sort(
key=lambda m: (
abs(m.metadata.context_window - disabled_model.metadata.context_window),
m.display_name.lower(),
)
)
return candidates[0]
def is_model_enabled(model_slug: str) -> bool:
"""Check if a model is enabled in the registry."""
model = _dynamic_models.get(model_slug)
if not model:
# Model not in registry - assume it's a static/legacy model and allow it
return True
return model.is_enabled
def get_model_info(model_slug: str) -> RegistryModel | None:
"""Get model info from the registry."""
return _dynamic_models.get(model_slug)
def get_default_model_slug() -> str | None:
"""
Get the default model slug to use for block defaults.
Returns the recommended model if set (configured via admin UI),
otherwise returns the first enabled model alphabetically.
Returns None if no models are available or enabled.
"""
# Return the recommended model if one is set and enabled
for model in _dynamic_models.values():
if model.is_recommended and model.is_enabled:
return model.slug
# No recommended model set - find first enabled model alphabetically
for model in sorted(_dynamic_models.values(), key=lambda m: m.display_name.lower()):
if model.is_enabled:
logger.warning(
"No recommended model set, using '%s' as default",
model.slug,
)
return model.slug
# No enabled models available
if _dynamic_models:
logger.error(
"No enabled models found in registry (%d models registered but all disabled)",
len(_dynamic_models),
)
else:
logger.error("No models registered in LLM registry")
return None

View File

@@ -0,0 +1,130 @@
"""
Helper utilities for LLM registry integration with block schemas.
This module handles the dynamic injection of discriminator mappings
and model options from the LLM registry into block schemas.
"""
import logging
from typing import Any
from backend.data.llm_registry.registry import (
get_all_model_slugs_for_validation,
get_default_model_slug,
get_llm_discriminator_mapping,
get_llm_model_schema_options,
)
logger = logging.getLogger(__name__)
def is_llm_model_field(field_name: str, field_info: Any) -> bool:
"""
Check if a field is an LLM model selection field.
Returns True if the field has 'options' in json_schema_extra
(set by llm_model_schema_extra() in blocks/llm.py).
"""
if not hasattr(field_info, "json_schema_extra"):
return False
extra = field_info.json_schema_extra
if isinstance(extra, dict):
return "options" in extra
return False
def refresh_llm_model_options(field_schema: dict[str, Any]) -> None:
"""
Refresh LLM model options from the registry.
Updates 'options' (for frontend dropdown) to show only enabled models,
but keeps the 'enum' (for validation) inclusive of ALL known models.
This is important because:
- Options: What users see in the dropdown (enabled models only)
- Enum: What values pass validation (all known models, including disabled)
Existing graphs may have disabled models selected - they should pass validation
and the fallback logic in llm_call() will handle using an alternative model.
"""
fresh_options = get_llm_model_schema_options()
if not fresh_options:
return
# Update options array (UI dropdown) - only enabled models
if "options" in field_schema:
field_schema["options"] = fresh_options
all_known_slugs = get_all_model_slugs_for_validation()
if all_known_slugs and "enum" in field_schema:
existing_enum = set(field_schema.get("enum", []))
combined_enum = existing_enum | all_known_slugs
field_schema["enum"] = sorted(combined_enum)
# Set the default value from the registry (gpt-4o if available, else first enabled)
# This ensures new blocks have a sensible default pre-selected
default_slug = get_default_model_slug()
if default_slug:
field_schema["default"] = default_slug
def refresh_llm_discriminator_mapping(field_schema: dict[str, Any]) -> None:
"""
Refresh discriminator_mapping for fields that use model-based discrimination.
The discriminator is already set when AICredentialsField() creates the field.
We only need to refresh the mapping when models are added/removed.
"""
if field_schema.get("discriminator") != "model":
return
# Always refresh the mapping to get latest models
fresh_mapping = get_llm_discriminator_mapping()
if fresh_mapping:
field_schema["discriminator_mapping"] = fresh_mapping
def update_schema_with_llm_registry(
schema: dict[str, Any], model_class: type | None = None
) -> None:
"""
Update a JSON schema with current LLM registry data.
Refreshes:
1. Model options for LLM model selection fields (dropdown choices)
2. Discriminator mappings for credentials fields (model → provider)
Args:
schema: The JSON schema to update (mutated in-place)
model_class: The Pydantic model class (optional, for field introspection)
"""
properties = schema.get("properties", {})
for field_name, field_schema in properties.items():
if not isinstance(field_schema, dict):
continue
# Refresh model options for LLM model fields
if model_class and hasattr(model_class, "model_fields"):
field_info = model_class.model_fields.get(field_name)
if field_info and is_llm_model_field(field_name, field_info):
try:
refresh_llm_model_options(field_schema)
except Exception as exc:
logger.warning(
"Failed to refresh LLM options for field %s: %s",
field_name,
exc,
)
# Refresh discriminator mapping for fields that use model discrimination
try:
refresh_llm_discriminator_mapping(field_schema)
except Exception as exc:
logger.warning(
"Failed to refresh discriminator mapping for field %s: %s",
field_name,
exc,
)

View File

@@ -40,6 +40,7 @@ from pydantic_core import (
)
from typing_extensions import TypedDict
from backend.data.llm_registry import update_schema_with_llm_registry
from backend.integrations.providers import ProviderName
from backend.util.json import loads as json_loads
from backend.util.settings import Secrets
@@ -544,7 +545,9 @@ class CredentialsMetaInput(BaseModel, Generic[CP, CT]):
else:
schema["credentials_provider"] = allowed_providers
schema["credentials_types"] = model_class.allowed_cred_types()
# Do not return anything, just mutate schema in place
# Ensure LLM discriminators are populated (delegates to shared helper)
update_schema_with_llm_registry(schema, model_class)
model_config = ConfigDict(
json_schema_extra=_add_json_schema_extra, # type: ignore
@@ -693,16 +696,20 @@ def CredentialsField(
This is enforced by the `BlockSchema` base class.
"""
field_schema_extra = {
k: v
for k, v in {
"credentials_scopes": list(required_scopes) or None,
"discriminator": discriminator,
"discriminator_mapping": discriminator_mapping,
"discriminator_values": discriminator_values,
}.items()
if v is not None
}
# Build field_schema_extra - always include discriminator and mapping if discriminator is set
field_schema_extra: dict[str, Any] = {}
# Always include discriminator if provided
if discriminator is not None:
field_schema_extra["discriminator"] = discriminator
# Always include discriminator_mapping when discriminator is set (even if empty initially)
field_schema_extra["discriminator_mapping"] = discriminator_mapping or {}
# Include other optional fields (only if not None)
if required_scopes:
field_schema_extra["credentials_scopes"] = list(required_scopes)
if discriminator_values:
field_schema_extra["discriminator_values"] = discriminator_values
# Merge any json_schema_extra passed in kwargs
if "json_schema_extra" in kwargs:

View File

@@ -7,10 +7,6 @@ from backend.api.features.library.db import (
list_library_agents,
)
from backend.api.features.store.db import get_store_agent_details, get_store_agents
from backend.api.features.store.embeddings import (
backfill_missing_embeddings,
get_embedding_stats,
)
from backend.data import db
from backend.data.analytics import (
get_accuracy_trends_and_alerts,
@@ -212,10 +208,6 @@ class DatabaseManager(AppService):
get_store_agents = _(get_store_agents)
get_store_agent_details = _(get_store_agent_details)
# Store Embeddings
get_embedding_stats = _(get_embedding_stats)
backfill_missing_embeddings = _(backfill_missing_embeddings)
# Summary data - async
get_user_execution_summary_data = _(get_user_execution_summary_data)
@@ -267,10 +259,6 @@ class DatabaseManagerClient(AppServiceClient):
get_store_agents = _(d.get_store_agents)
get_store_agent_details = _(d.get_store_agent_details)
# Store Embeddings
get_embedding_stats = _(d.get_embedding_stats)
backfill_missing_embeddings = _(d.backfill_missing_embeddings)
class DatabaseManagerAsyncClient(AppServiceClient):
d = DatabaseManager

View File

@@ -0,0 +1,66 @@
"""
Helper functions for LLM registry initialization in executor context.
These functions handle refreshing the LLM registry when the executor starts
and subscribing to real-time updates via Redis pub/sub.
"""
import logging
from backend.data import db, llm_registry
from backend.data.block import BlockSchema, initialize_blocks
from backend.data.block_cost_config import refresh_llm_costs
from backend.data.llm_registry import subscribe_to_registry_refresh
logger = logging.getLogger(__name__)
async def initialize_registry_for_executor() -> None:
"""
Initialize blocks and refresh LLM registry in the executor context.
This must run in the executor's event loop to have access to the database.
"""
try:
# Connect to database if not already connected
if not db.is_connected():
await db.connect()
logger.info("[GraphExecutor] Connected to database for registry refresh")
# Initialize blocks (internally refreshes LLM registry and costs)
await initialize_blocks()
logger.info("[GraphExecutor] Blocks initialized")
except Exception as exc:
logger.warning(
"[GraphExecutor] Failed to refresh LLM registry on startup: %s",
exc,
exc_info=True,
)
async def refresh_registry_on_notification() -> None:
"""Refresh LLM registry when notified via Redis pub/sub."""
try:
# Ensure DB is connected
if not db.is_connected():
await db.connect()
# Refresh registry and costs
await llm_registry.refresh_llm_registry()
refresh_llm_costs()
# Clear block schema caches so they regenerate with new model options
BlockSchema.clear_all_schema_caches()
logger.info("[GraphExecutor] LLM registry refreshed from notification")
except Exception as exc:
logger.error(
"[GraphExecutor] Failed to refresh LLM registry from notification: %s",
exc,
exc_info=True,
)
async def subscribe_to_registry_updates() -> None:
"""Subscribe to Redis pub/sub for LLM registry refresh notifications."""
await subscribe_to_registry_refresh(refresh_registry_on_notification)

View File

@@ -178,7 +178,6 @@ async def execute_node(
execution_processor: "ExecutionProcessor",
execution_stats: NodeExecutionStats | None = None,
nodes_input_masks: Optional[NodesInputMasks] = None,
nodes_to_skip: Optional[set[str]] = None,
) -> BlockOutput:
"""
Execute a node in the graph. This will trigger a block execution on a node,
@@ -246,7 +245,6 @@ async def execute_node(
"user_id": user_id,
"execution_context": execution_context,
"execution_processor": execution_processor,
"nodes_to_skip": nodes_to_skip or set(),
}
# Last-minute fetch credentials + acquire a system-wide read-write lock to prevent
@@ -544,7 +542,6 @@ class ExecutionProcessor:
node_exec_progress: NodeExecutionProgress,
nodes_input_masks: Optional[NodesInputMasks],
graph_stats_pair: tuple[GraphExecutionStats, threading.Lock],
nodes_to_skip: Optional[set[str]] = None,
) -> NodeExecutionStats:
log_metadata = LogMetadata(
logger=_logger,
@@ -567,7 +564,6 @@ class ExecutionProcessor:
db_client=db_client,
log_metadata=log_metadata,
nodes_input_masks=nodes_input_masks,
nodes_to_skip=nodes_to_skip,
)
if isinstance(status, BaseException):
raise status
@@ -613,7 +609,6 @@ class ExecutionProcessor:
db_client: "DatabaseManagerAsyncClient",
log_metadata: LogMetadata,
nodes_input_masks: Optional[NodesInputMasks] = None,
nodes_to_skip: Optional[set[str]] = None,
) -> ExecutionStatus:
status = ExecutionStatus.RUNNING
@@ -650,7 +645,6 @@ class ExecutionProcessor:
execution_processor=self,
execution_stats=stats,
nodes_input_masks=nodes_input_masks,
nodes_to_skip=nodes_to_skip,
):
await persist_output(output_name, output_data)
@@ -702,6 +696,20 @@ class ExecutionProcessor:
)
self.node_execution_thread.start()
self.node_evaluation_thread.start()
# Initialize LLM registry and subscribe to updates
from backend.executor.llm_registry_init import (
initialize_registry_for_executor,
subscribe_to_registry_updates,
)
asyncio.run_coroutine_threadsafe(
initialize_registry_for_executor(), self.node_execution_loop
)
asyncio.run_coroutine_threadsafe(
subscribe_to_registry_updates(), self.node_execution_loop
)
logger.info(f"[GraphExecutor] {self.tid} started")
@error_logged(swallow=False)
@@ -962,21 +970,6 @@ class ExecutionProcessor:
queued_node_exec = execution_queue.get()
# Check if this node should be skipped due to optional credentials
if queued_node_exec.node_id in graph_exec.nodes_to_skip:
log_metadata.info(
f"Skipping node execution {queued_node_exec.node_exec_id} "
f"for node {queued_node_exec.node_id} - optional credentials not configured"
)
# Mark the node as completed without executing
# No outputs will be produced, so downstream nodes won't trigger
update_node_execution_status(
db_client=db_client,
exec_id=queued_node_exec.node_exec_id,
status=ExecutionStatus.COMPLETED,
)
continue
log_metadata.debug(
f"Dispatching node execution {queued_node_exec.node_exec_id} "
f"for node {queued_node_exec.node_id}",
@@ -1037,7 +1030,6 @@ class ExecutionProcessor:
execution_stats,
execution_stats_lock,
),
nodes_to_skip=graph_exec.nodes_to_skip,
),
self.node_execution_loop,
)

View File

@@ -1,5 +1,4 @@
import logging
from unittest.mock import AsyncMock, patch
import fastapi.responses
import pytest
@@ -20,17 +19,6 @@ from backend.util.test import SpinTestServer, wait_execution
logger = logging.getLogger(__name__)
@pytest.fixture(scope="session", autouse=True)
def mock_embedding_functions():
"""Mock embedding functions for all tests to avoid database/API dependencies."""
with patch(
"backend.api.features.store.db.ensure_embedding",
new_callable=AsyncMock,
return_value=True,
):
yield
async def create_graph(s: SpinTestServer, g: graph.Graph, u: User) -> graph.Graph:
logger.info(f"Creating graph for user {u.id}")
return await s.agent_server.test_create_graph(CreateGraph(graph=g), u.id)

View File

@@ -2,7 +2,6 @@ import asyncio
import logging
import os
import threading
import time
import uuid
from enum import Enum
from typing import Optional
@@ -38,7 +37,7 @@ from backend.monitoring import (
report_execution_accuracy_alerts,
report_late_executions,
)
from backend.util.clients import get_database_manager_client, get_scheduler_client
from backend.util.clients import get_scheduler_client
from backend.util.cloud_storage import cleanup_expired_files_async
from backend.util.exceptions import (
GraphNotFoundError,
@@ -255,88 +254,6 @@ def execution_accuracy_alerts():
return report_execution_accuracy_alerts()
def ensure_embeddings_coverage():
"""
Ensure all content types (store agents, blocks, docs) have embeddings for search.
Processes ALL missing embeddings in batches of 10 per content type until 100% coverage.
Missing embeddings = content invisible in hybrid search.
Schedule: Runs every 6 hours (balanced between coverage and API costs).
- Catches new content added between scheduled runs
- Batch size 10 per content type: gradual processing to avoid rate limits
- Manual trigger available via execute_ensure_embeddings_coverage endpoint
"""
db_client = get_database_manager_client()
stats = db_client.get_embedding_stats()
# Check for error from get_embedding_stats() first
if "error" in stats:
logger.error(
f"Failed to get embedding stats: {stats['error']} - skipping backfill"
)
return {"processed": 0, "success": 0, "failed": 0, "error": stats["error"]}
# Extract totals from new stats structure
totals = stats.get("totals", {})
without_embeddings = totals.get("without_embeddings", 0)
coverage_percent = totals.get("coverage_percent", 0)
if without_embeddings == 0:
logger.info("All content has embeddings, skipping backfill")
return {"processed": 0, "success": 0, "failed": 0}
# Log per-content-type stats for visibility
by_type = stats.get("by_type", {})
for content_type, type_stats in by_type.items():
if type_stats.get("without_embeddings", 0) > 0:
logger.info(
f"{content_type}: {type_stats['without_embeddings']} items without embeddings "
f"({type_stats['coverage_percent']}% coverage)"
)
logger.info(
f"Total: {without_embeddings} items without embeddings "
f"({coverage_percent}% coverage) - processing all"
)
total_processed = 0
total_success = 0
total_failed = 0
# Process in batches until no more missing embeddings
while True:
result = db_client.backfill_missing_embeddings(batch_size=10)
total_processed += result["processed"]
total_success += result["success"]
total_failed += result["failed"]
if result["processed"] == 0:
# No more missing embeddings
break
if result["success"] == 0 and result["processed"] > 0:
# All attempts in this batch failed - stop to avoid infinite loop
logger.error(
f"All {result['processed']} embedding attempts failed - stopping backfill"
)
break
# Small delay between batches to avoid rate limits
time.sleep(1)
logger.info(
f"Embedding backfill completed: {total_success}/{total_processed} succeeded, "
f"{total_failed} failed"
)
return {
"processed": total_processed,
"success": total_success,
"failed": total_failed,
}
# Monitoring functions are now imported from monitoring module
@@ -558,19 +475,6 @@ class Scheduler(AppService):
jobstore=Jobstores.EXECUTION.value,
)
# Embedding Coverage - Every 6 hours
# Ensures all approved agents have embeddings for hybrid search
# Critical: missing embeddings = agents invisible in search
self.scheduler.add_job(
ensure_embeddings_coverage,
id="ensure_embeddings_coverage",
trigger="interval",
hours=6,
replace_existing=True,
max_instances=1, # Prevent overlapping runs
jobstore=Jobstores.EXECUTION.value,
)
self.scheduler.add_listener(job_listener, EVENT_JOB_EXECUTED | EVENT_JOB_ERROR)
self.scheduler.add_listener(job_missed_listener, EVENT_JOB_MISSED)
self.scheduler.add_listener(job_max_instances_listener, EVENT_JOB_MAX_INSTANCES)
@@ -728,11 +632,6 @@ class Scheduler(AppService):
"""Manually trigger execution accuracy alert checking."""
return execution_accuracy_alerts()
@expose
def execute_ensure_embeddings_coverage(self):
"""Manually trigger embedding backfill for approved store agents."""
return ensure_embeddings_coverage()
class SchedulerClient(AppServiceClient):
@classmethod

View File

@@ -239,19 +239,14 @@ async def _validate_node_input_credentials(
graph: GraphModel,
user_id: str,
nodes_input_masks: Optional[NodesInputMasks] = None,
) -> tuple[dict[str, dict[str, str]], set[str]]:
) -> dict[str, dict[str, str]]:
"""
Checks all credentials for all nodes of the graph and returns structured errors
and a set of nodes that should be skipped due to optional missing credentials.
Checks all credentials for all nodes of the graph and returns structured errors.
Returns:
tuple[
dict[node_id, dict[field_name, error_message]]: Credential validation errors per node,
set[node_id]: Nodes that should be skipped (optional credentials not configured)
]
dict[node_id, dict[field_name, error_message]]: Credential validation errors per node
"""
credential_errors: dict[str, dict[str, str]] = defaultdict(dict)
nodes_to_skip: set[str] = set()
for node in graph.nodes:
block = node.block
@@ -261,46 +256,27 @@ async def _validate_node_input_credentials(
if not credentials_fields:
continue
# Track if any credential field is missing for this node
has_missing_credentials = False
for field_name, credentials_meta_type in credentials_fields.items():
try:
# Check nodes_input_masks first, then input_default
field_value = None
if (
nodes_input_masks
and (node_input_mask := nodes_input_masks.get(node.id))
and field_name in node_input_mask
):
field_value = node_input_mask[field_name]
credentials_meta = credentials_meta_type.model_validate(
node_input_mask[field_name]
)
elif field_name in node.input_default:
# For optional credentials, don't use input_default - treat as missing
# This prevents stale credential IDs from failing validation
if node.credentials_optional:
field_value = None
else:
field_value = node.input_default[field_name]
# Check if credentials are missing (None, empty, or not present)
if field_value is None or (
isinstance(field_value, dict) and not field_value.get("id")
):
has_missing_credentials = True
# If node has credentials_optional flag, mark for skipping instead of error
if node.credentials_optional:
continue # Don't add error, will be marked for skip after loop
else:
credential_errors[node.id][
field_name
] = "These credentials are required"
continue
credentials_meta = credentials_meta_type.model_validate(field_value)
credentials_meta = credentials_meta_type.model_validate(
node.input_default[field_name]
)
else:
# Missing credentials
credential_errors[node.id][
field_name
] = "These credentials are required"
continue
except ValidationError as e:
# Validation error means credentials were provided but invalid
# This should always be an error, even if optional
credential_errors[node.id][field_name] = f"Invalid credentials: {e}"
continue
@@ -311,7 +287,6 @@ async def _validate_node_input_credentials(
)
except Exception as e:
# Handle any errors fetching credentials
# If credentials were explicitly configured but unavailable, it's an error
credential_errors[node.id][
field_name
] = f"Credentials not available: {e}"
@@ -338,19 +313,7 @@ async def _validate_node_input_credentials(
] = "Invalid credentials: type/provider mismatch"
continue
# If node has optional credentials and any are missing, mark for skipping
# But only if there are no other errors for this node
if (
has_missing_credentials
and node.credentials_optional
and node.id not in credential_errors
):
nodes_to_skip.add(node.id)
logger.info(
f"Node #{node.id} will be skipped: optional credentials not configured"
)
return credential_errors, nodes_to_skip
return credential_errors
def make_node_credentials_input_map(
@@ -392,25 +355,21 @@ async def validate_graph_with_credentials(
graph: GraphModel,
user_id: str,
nodes_input_masks: Optional[NodesInputMasks] = None,
) -> tuple[Mapping[str, Mapping[str, str]], set[str]]:
) -> Mapping[str, Mapping[str, str]]:
"""
Validate graph including credentials and return structured errors per node,
along with a set of nodes that should be skipped due to optional missing credentials.
Validate graph including credentials and return structured errors per node.
Returns:
tuple[
dict[node_id, dict[field_name, error_message]]: Validation errors per node,
set[node_id]: Nodes that should be skipped (optional credentials not configured)
]
dict[node_id, dict[field_name, error_message]]: Validation errors per node
"""
# Get input validation errors
node_input_errors = GraphModel.validate_graph_get_errors(
graph, for_run=True, nodes_input_masks=nodes_input_masks
)
# Get credential input/availability/validation errors and nodes to skip
node_credential_input_errors, nodes_to_skip = (
await _validate_node_input_credentials(graph, user_id, nodes_input_masks)
# Get credential input/availability/validation errors
node_credential_input_errors = await _validate_node_input_credentials(
graph, user_id, nodes_input_masks
)
# Merge credential errors with structural errors
@@ -419,7 +378,7 @@ async def validate_graph_with_credentials(
node_input_errors[node_id] = {}
node_input_errors[node_id].update(field_errors)
return node_input_errors, nodes_to_skip
return node_input_errors
async def _construct_starting_node_execution_input(
@@ -427,7 +386,7 @@ async def _construct_starting_node_execution_input(
user_id: str,
graph_inputs: BlockInput,
nodes_input_masks: Optional[NodesInputMasks] = None,
) -> tuple[list[tuple[str, BlockInput]], set[str]]:
) -> list[tuple[str, BlockInput]]:
"""
Validates and prepares the input data for executing a graph.
This function checks the graph for starting nodes, validates the input data
@@ -441,14 +400,11 @@ async def _construct_starting_node_execution_input(
node_credentials_map: `dict[node_id, dict[input_name, CredentialsMetaInput]]`
Returns:
tuple[
list[tuple[str, BlockInput]]: A list of tuples, each containing the node ID
and the corresponding input data for that node.
set[str]: Node IDs that should be skipped (optional credentials not configured)
]
list[tuple[str, BlockInput]]: A list of tuples, each containing the node ID and
the corresponding input data for that node.
"""
# Use new validation function that includes credentials
validation_errors, nodes_to_skip = await validate_graph_with_credentials(
validation_errors = await validate_graph_with_credentials(
graph, user_id, nodes_input_masks
)
n_error_nodes = len(validation_errors)
@@ -489,7 +445,7 @@ async def _construct_starting_node_execution_input(
"No starting nodes found for the graph, make sure an AgentInput or blocks with no inbound links are present as starting nodes."
)
return nodes_input, nodes_to_skip
return nodes_input
async def validate_and_construct_node_execution_input(
@@ -500,7 +456,7 @@ async def validate_and_construct_node_execution_input(
graph_credentials_inputs: Optional[Mapping[str, CredentialsMetaInput]] = None,
nodes_input_masks: Optional[NodesInputMasks] = None,
is_sub_graph: bool = False,
) -> tuple[GraphModel, list[tuple[str, BlockInput]], NodesInputMasks, set[str]]:
) -> tuple[GraphModel, list[tuple[str, BlockInput]], NodesInputMasks]:
"""
Public wrapper that handles graph fetching, credential mapping, and validation+construction.
This centralizes the logic used by both scheduler validation and actual execution.
@@ -517,7 +473,6 @@ async def validate_and_construct_node_execution_input(
GraphModel: Full graph object for the given `graph_id`.
list[tuple[node_id, BlockInput]]: Starting node IDs with corresponding inputs.
dict[str, BlockInput]: Node input masks including all passed-in credentials.
set[str]: Node IDs that should be skipped (optional credentials not configured).
Raises:
NotFoundError: If the graph is not found.
@@ -559,16 +514,14 @@ async def validate_and_construct_node_execution_input(
nodes_input_masks or {},
)
starting_nodes_input, nodes_to_skip = (
await _construct_starting_node_execution_input(
graph=graph,
user_id=user_id,
graph_inputs=graph_inputs,
nodes_input_masks=nodes_input_masks,
)
starting_nodes_input = await _construct_starting_node_execution_input(
graph=graph,
user_id=user_id,
graph_inputs=graph_inputs,
nodes_input_masks=nodes_input_masks,
)
return graph, starting_nodes_input, nodes_input_masks, nodes_to_skip
return graph, starting_nodes_input, nodes_input_masks
def _merge_nodes_input_masks(
@@ -826,9 +779,6 @@ async def add_graph_execution(
# Use existing execution's compiled input masks
compiled_nodes_input_masks = graph_exec.nodes_input_masks or {}
# For resumed executions, nodes_to_skip was already determined at creation time
# TODO: Consider storing nodes_to_skip in DB if we need to preserve it across resumes
nodes_to_skip: set[str] = set()
logger.info(f"Resuming graph execution #{graph_exec.id} for graph #{graph_id}")
else:
@@ -837,7 +787,7 @@ async def add_graph_execution(
)
# Create new execution
graph, starting_nodes_input, compiled_nodes_input_masks, nodes_to_skip = (
graph, starting_nodes_input, compiled_nodes_input_masks = (
await validate_and_construct_node_execution_input(
graph_id=graph_id,
user_id=user_id,
@@ -886,7 +836,6 @@ async def add_graph_execution(
try:
graph_exec_entry = graph_exec.to_graph_execution_entry(
compiled_nodes_input_masks=compiled_nodes_input_masks,
nodes_to_skip=nodes_to_skip,
execution_context=execution_context,
)
logger.info(f"Publishing execution {graph_exec.id} to execution queue")

View File

@@ -367,13 +367,10 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
)
# Setup mock returns
# The function returns (graph, starting_nodes_input, compiled_nodes_input_masks, nodes_to_skip)
nodes_to_skip: set[str] = set()
mock_validate.return_value = (
mock_graph,
starting_nodes_input,
compiled_nodes_input_masks,
nodes_to_skip,
)
mock_prisma.is_connected.return_value = True
mock_edb.create_graph_execution = mocker.AsyncMock(return_value=mock_graph_exec)
@@ -459,212 +456,3 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
# Both executions should succeed (though they create different objects)
assert result1 == mock_graph_exec
assert result2 == mock_graph_exec_2
# ============================================================================
# Tests for Optional Credentials Feature
# ============================================================================
@pytest.mark.asyncio
async def test_validate_node_input_credentials_returns_nodes_to_skip(
mocker: MockerFixture,
):
"""
Test that _validate_node_input_credentials returns nodes_to_skip set
for nodes with credentials_optional=True and missing credentials.
"""
from backend.executor.utils import _validate_node_input_credentials
# Create a mock node with credentials_optional=True
mock_node = mocker.MagicMock()
mock_node.id = "node-with-optional-creds"
mock_node.credentials_optional = True
mock_node.input_default = {} # No credentials configured
# Create a mock block with credentials field
mock_block = mocker.MagicMock()
mock_credentials_field_type = mocker.MagicMock()
mock_block.input_schema.get_credentials_fields.return_value = {
"credentials": mock_credentials_field_type
}
mock_node.block = mock_block
# Create mock graph
mock_graph = mocker.MagicMock()
mock_graph.nodes = [mock_node]
# Call the function
errors, nodes_to_skip = await _validate_node_input_credentials(
graph=mock_graph,
user_id="test-user-id",
nodes_input_masks=None,
)
# Node should be in nodes_to_skip, not in errors
assert mock_node.id in nodes_to_skip
assert mock_node.id not in errors
@pytest.mark.asyncio
async def test_validate_node_input_credentials_required_missing_creds_error(
mocker: MockerFixture,
):
"""
Test that _validate_node_input_credentials returns errors
for nodes with credentials_optional=False and missing credentials.
"""
from backend.executor.utils import _validate_node_input_credentials
# Create a mock node with credentials_optional=False (required)
mock_node = mocker.MagicMock()
mock_node.id = "node-with-required-creds"
mock_node.credentials_optional = False
mock_node.input_default = {} # No credentials configured
# Create a mock block with credentials field
mock_block = mocker.MagicMock()
mock_credentials_field_type = mocker.MagicMock()
mock_block.input_schema.get_credentials_fields.return_value = {
"credentials": mock_credentials_field_type
}
mock_node.block = mock_block
# Create mock graph
mock_graph = mocker.MagicMock()
mock_graph.nodes = [mock_node]
# Call the function
errors, nodes_to_skip = await _validate_node_input_credentials(
graph=mock_graph,
user_id="test-user-id",
nodes_input_masks=None,
)
# Node should be in errors, not in nodes_to_skip
assert mock_node.id in errors
assert "credentials" in errors[mock_node.id]
assert "required" in errors[mock_node.id]["credentials"].lower()
assert mock_node.id not in nodes_to_skip
@pytest.mark.asyncio
async def test_validate_graph_with_credentials_returns_nodes_to_skip(
mocker: MockerFixture,
):
"""
Test that validate_graph_with_credentials returns nodes_to_skip set
from _validate_node_input_credentials.
"""
from backend.executor.utils import validate_graph_with_credentials
# Mock _validate_node_input_credentials to return specific values
mock_validate = mocker.patch(
"backend.executor.utils._validate_node_input_credentials"
)
expected_errors = {"node1": {"field": "error"}}
expected_nodes_to_skip = {"node2", "node3"}
mock_validate.return_value = (expected_errors, expected_nodes_to_skip)
# Mock GraphModel with validate_graph_get_errors method
mock_graph = mocker.MagicMock()
mock_graph.validate_graph_get_errors.return_value = {}
# Call the function
errors, nodes_to_skip = await validate_graph_with_credentials(
graph=mock_graph,
user_id="test-user-id",
nodes_input_masks=None,
)
# Verify nodes_to_skip is passed through
assert nodes_to_skip == expected_nodes_to_skip
assert "node1" in errors
@pytest.mark.asyncio
async def test_add_graph_execution_with_nodes_to_skip(mocker: MockerFixture):
"""
Test that add_graph_execution properly passes nodes_to_skip
to the graph execution entry.
"""
from backend.data.execution import GraphExecutionWithNodes
from backend.executor.utils import add_graph_execution
# Mock data
graph_id = "test-graph-id"
user_id = "test-user-id"
inputs = {"test_input": "test_value"}
graph_version = 1
# Mock the graph object
mock_graph = mocker.MagicMock()
mock_graph.version = graph_version
# Starting nodes and masks
starting_nodes_input = [("node1", {"input1": "value1"})]
compiled_nodes_input_masks = {}
nodes_to_skip = {"skipped-node-1", "skipped-node-2"}
# Mock the graph execution object
mock_graph_exec = mocker.MagicMock(spec=GraphExecutionWithNodes)
mock_graph_exec.id = "execution-id-123"
mock_graph_exec.node_executions = []
# Track what's passed to to_graph_execution_entry
captured_kwargs = {}
def capture_to_entry(**kwargs):
captured_kwargs.update(kwargs)
return mocker.MagicMock()
mock_graph_exec.to_graph_execution_entry.side_effect = capture_to_entry
# Setup mocks
mock_validate = mocker.patch(
"backend.executor.utils.validate_and_construct_node_execution_input"
)
mock_edb = mocker.patch("backend.executor.utils.execution_db")
mock_prisma = mocker.patch("backend.executor.utils.prisma")
mock_udb = mocker.patch("backend.executor.utils.user_db")
mock_gdb = mocker.patch("backend.executor.utils.graph_db")
mock_get_queue = mocker.patch("backend.executor.utils.get_async_execution_queue")
mock_get_event_bus = mocker.patch(
"backend.executor.utils.get_async_execution_event_bus"
)
# Setup returns - include nodes_to_skip in the tuple
mock_validate.return_value = (
mock_graph,
starting_nodes_input,
compiled_nodes_input_masks,
nodes_to_skip, # This should be passed through
)
mock_prisma.is_connected.return_value = True
mock_edb.create_graph_execution = mocker.AsyncMock(return_value=mock_graph_exec)
mock_edb.update_graph_execution_stats = mocker.AsyncMock(
return_value=mock_graph_exec
)
mock_edb.update_node_execution_status_batch = mocker.AsyncMock()
mock_user = mocker.MagicMock()
mock_user.timezone = "UTC"
mock_settings = mocker.MagicMock()
mock_settings.human_in_the_loop_safe_mode = True
mock_udb.get_user_by_id = mocker.AsyncMock(return_value=mock_user)
mock_gdb.get_graph_settings = mocker.AsyncMock(return_value=mock_settings)
mock_get_queue.return_value = mocker.AsyncMock()
mock_get_event_bus.return_value = mocker.MagicMock(publish=mocker.AsyncMock())
# Call the function
await add_graph_execution(
graph_id=graph_id,
user_id=user_id,
inputs=inputs,
graph_version=graph_version,
)
# Verify nodes_to_skip was passed to to_graph_execution_entry
assert "nodes_to_skip" in captured_kwargs
assert captured_kwargs["nodes_to_skip"] == nodes_to_skip

View File

@@ -8,7 +8,6 @@ from .discord import DiscordOAuthHandler
from .github import GitHubOAuthHandler
from .google import GoogleOAuthHandler
from .notion import NotionOAuthHandler
from .reddit import RedditOAuthHandler
from .twitter import TwitterOAuthHandler
if TYPE_CHECKING:
@@ -21,7 +20,6 @@ _ORIGINAL_HANDLERS = [
GitHubOAuthHandler,
GoogleOAuthHandler,
NotionOAuthHandler,
RedditOAuthHandler,
TwitterOAuthHandler,
TodoistOAuthHandler,
]

View File

@@ -1,208 +0,0 @@
import time
import urllib.parse
from typing import ClassVar, Optional
from pydantic import SecretStr
from backend.data.model import OAuth2Credentials
from backend.integrations.oauth.base import BaseOAuthHandler
from backend.integrations.providers import ProviderName
from backend.util.request import Requests
from backend.util.settings import Settings
settings = Settings()
class RedditOAuthHandler(BaseOAuthHandler):
"""
Reddit OAuth 2.0 handler.
Based on the documentation at:
- https://github.com/reddit-archive/reddit/wiki/OAuth2
Notes:
- Reddit requires `duration=permanent` to get refresh tokens
- Access tokens expire after 1 hour (3600 seconds)
- Reddit requires HTTP Basic Auth for token requests
- Reddit requires a unique User-Agent header
"""
PROVIDER_NAME = ProviderName.REDDIT
DEFAULT_SCOPES: ClassVar[list[str]] = [
"identity", # Get username, verify auth
"read", # Access posts and comments
"submit", # Submit new posts and comments
"edit", # Edit own posts and comments
"history", # Access user's post history
"privatemessages", # Access inbox and send private messages
"flair", # Access and set flair on posts/subreddits
]
AUTHORIZE_URL = "https://www.reddit.com/api/v1/authorize"
TOKEN_URL = "https://www.reddit.com/api/v1/access_token"
USERNAME_URL = "https://oauth.reddit.com/api/v1/me"
REVOKE_URL = "https://www.reddit.com/api/v1/revoke_token"
def __init__(self, client_id: str, client_secret: str, redirect_uri: str):
self.client_id = client_id
self.client_secret = client_secret
self.redirect_uri = redirect_uri
def get_login_url(
self, scopes: list[str], state: str, code_challenge: Optional[str]
) -> str:
"""Generate Reddit OAuth 2.0 authorization URL"""
scopes = self.handle_default_scopes(scopes)
params = {
"response_type": "code",
"client_id": self.client_id,
"redirect_uri": self.redirect_uri,
"scope": " ".join(scopes),
"state": state,
"duration": "permanent", # Required for refresh tokens
}
return f"{self.AUTHORIZE_URL}?{urllib.parse.urlencode(params)}"
async def exchange_code_for_tokens(
self, code: str, scopes: list[str], code_verifier: Optional[str]
) -> OAuth2Credentials:
"""Exchange authorization code for access tokens"""
scopes = self.handle_default_scopes(scopes)
headers = {
"Content-Type": "application/x-www-form-urlencoded",
"User-Agent": settings.config.reddit_user_agent,
}
data = {
"grant_type": "authorization_code",
"code": code,
"redirect_uri": self.redirect_uri,
}
# Reddit requires HTTP Basic Auth for token requests
auth = (self.client_id, self.client_secret)
response = await Requests().post(
self.TOKEN_URL, headers=headers, data=data, auth=auth
)
if not response.ok:
error_text = response.text()
raise ValueError(
f"Reddit token exchange failed: {response.status} - {error_text}"
)
tokens = response.json()
if "error" in tokens:
raise ValueError(f"Reddit OAuth error: {tokens.get('error')}")
username = await self._get_username(tokens["access_token"])
return OAuth2Credentials(
provider=self.PROVIDER_NAME,
title=None,
username=username,
access_token=tokens["access_token"],
refresh_token=tokens.get("refresh_token"),
access_token_expires_at=int(time.time()) + tokens.get("expires_in", 3600),
refresh_token_expires_at=None, # Reddit refresh tokens don't expire
scopes=scopes,
)
async def _get_username(self, access_token: str) -> str:
"""Get the username from the access token"""
headers = {
"Authorization": f"Bearer {access_token}",
"User-Agent": settings.config.reddit_user_agent,
}
response = await Requests().get(self.USERNAME_URL, headers=headers)
if not response.ok:
raise ValueError(f"Failed to get Reddit username: {response.status}")
data = response.json()
return data.get("name", "unknown")
async def _refresh_tokens(
self, credentials: OAuth2Credentials
) -> OAuth2Credentials:
"""Refresh access tokens using refresh token"""
if not credentials.refresh_token:
raise ValueError("No refresh token available")
headers = {
"Content-Type": "application/x-www-form-urlencoded",
"User-Agent": settings.config.reddit_user_agent,
}
data = {
"grant_type": "refresh_token",
"refresh_token": credentials.refresh_token.get_secret_value(),
}
auth = (self.client_id, self.client_secret)
response = await Requests().post(
self.TOKEN_URL, headers=headers, data=data, auth=auth
)
if not response.ok:
error_text = response.text()
raise ValueError(
f"Reddit token refresh failed: {response.status} - {error_text}"
)
tokens = response.json()
if "error" in tokens:
raise ValueError(f"Reddit OAuth error: {tokens.get('error')}")
username = await self._get_username(tokens["access_token"])
# Reddit may or may not return a new refresh token
new_refresh_token = tokens.get("refresh_token")
if new_refresh_token:
refresh_token: SecretStr | None = SecretStr(new_refresh_token)
elif credentials.refresh_token:
# Keep the existing refresh token
refresh_token = credentials.refresh_token
else:
refresh_token = None
return OAuth2Credentials(
id=credentials.id,
provider=self.PROVIDER_NAME,
title=credentials.title,
username=username,
access_token=tokens["access_token"],
refresh_token=refresh_token,
access_token_expires_at=int(time.time()) + tokens.get("expires_in", 3600),
refresh_token_expires_at=None,
scopes=credentials.scopes,
)
async def revoke_tokens(self, credentials: OAuth2Credentials) -> bool:
"""Revoke the access token"""
headers = {
"Content-Type": "application/x-www-form-urlencoded",
"User-Agent": settings.config.reddit_user_agent,
}
data = {
"token": credentials.access_token.get_secret_value(),
"token_type_hint": "access_token",
}
auth = (self.client_id, self.client_secret)
response = await Requests().post(
self.REVOKE_URL, headers=headers, data=data, auth=auth
)
# Reddit returns 204 No Content on successful revocation
return response.ok

View File

@@ -0,0 +1,849 @@
from __future__ import annotations
from typing import Any, Iterable, Sequence, cast
import prisma
import prisma.models
from backend.data.db import transaction
from backend.server.v2.llm import model as llm_model
def _json_dict(value: Any | None) -> dict[str, Any]:
if not value:
return {}
if isinstance(value, dict):
return value
return {}
def _map_cost(record: prisma.models.LlmModelCost) -> llm_model.LlmModelCost:
return llm_model.LlmModelCost(
id=record.id,
unit=record.unit,
credit_cost=record.creditCost,
credential_provider=record.credentialProvider,
credential_id=record.credentialId,
credential_type=record.credentialType,
currency=record.currency,
metadata=_json_dict(record.metadata),
)
def _map_creator(
record: prisma.models.LlmModelCreator,
) -> llm_model.LlmModelCreator:
return llm_model.LlmModelCreator(
id=record.id,
name=record.name,
display_name=record.displayName,
description=record.description,
website_url=record.websiteUrl,
logo_url=record.logoUrl,
metadata=_json_dict(record.metadata),
)
def _map_model(record: prisma.models.LlmModel) -> llm_model.LlmModel:
costs = []
if record.Costs:
costs = [_map_cost(cost) for cost in record.Costs]
creator = None
if hasattr(record, "Creator") and record.Creator:
creator = _map_creator(record.Creator)
return llm_model.LlmModel(
id=record.id,
slug=record.slug,
display_name=record.displayName,
description=record.description,
provider_id=record.providerId,
creator_id=record.creatorId,
creator=creator,
context_window=record.contextWindow,
max_output_tokens=record.maxOutputTokens,
is_enabled=record.isEnabled,
is_recommended=record.isRecommended,
capabilities=_json_dict(record.capabilities),
metadata=_json_dict(record.metadata),
costs=costs,
)
def _map_provider(record: prisma.models.LlmProvider) -> llm_model.LlmProvider:
models: list[llm_model.LlmModel] = []
if record.Models:
models = [_map_model(model) for model in record.Models]
return llm_model.LlmProvider(
id=record.id,
name=record.name,
display_name=record.displayName,
description=record.description,
default_credential_provider=record.defaultCredentialProvider,
default_credential_id=record.defaultCredentialId,
default_credential_type=record.defaultCredentialType,
supports_tools=record.supportsTools,
supports_json_output=record.supportsJsonOutput,
supports_reasoning=record.supportsReasoning,
supports_parallel_tool=record.supportsParallelTool,
metadata=_json_dict(record.metadata),
models=models,
)
async def list_providers(
include_models: bool = True, enabled_only: bool = False
) -> list[llm_model.LlmProvider]:
"""
List all LLM providers.
Args:
include_models: Whether to include models for each provider
enabled_only: If True, only include enabled models (for public routes)
"""
include: Any = None
if include_models:
model_where = {"isEnabled": True} if enabled_only else None
include = {
"Models": {
"include": {"Costs": True, "Creator": True},
"where": model_where,
}
}
records = await prisma.models.LlmProvider.prisma().find_many(include=include)
return [_map_provider(record) for record in records]
async def upsert_provider(
request: llm_model.UpsertLlmProviderRequest,
provider_id: str | None = None,
) -> llm_model.LlmProvider:
data: Any = {
"name": request.name,
"displayName": request.display_name,
"description": request.description,
"defaultCredentialProvider": request.default_credential_provider,
"defaultCredentialId": request.default_credential_id,
"defaultCredentialType": request.default_credential_type,
"supportsTools": request.supports_tools,
"supportsJsonOutput": request.supports_json_output,
"supportsReasoning": request.supports_reasoning,
"supportsParallelTool": request.supports_parallel_tool,
"metadata": request.metadata,
}
include: Any = {"Models": {"include": {"Costs": True, "Creator": True}}}
if provider_id:
record = await prisma.models.LlmProvider.prisma().update(
where={"id": provider_id},
data=data,
include=include,
)
else:
record = await prisma.models.LlmProvider.prisma().create(
data=data,
include=include,
)
if record is None:
raise ValueError("Failed to create/update provider")
return _map_provider(record)
async def list_models(
provider_id: str | None = None, enabled_only: bool = False
) -> list[llm_model.LlmModel]:
"""
List LLM models.
Args:
provider_id: Optional filter by provider ID
enabled_only: If True, only return enabled models (for public routes)
"""
where: Any = {}
if provider_id:
where["providerId"] = provider_id
if enabled_only:
where["isEnabled"] = True
records = await prisma.models.LlmModel.prisma().find_many(
where=where if where else None,
include={"Costs": True, "Creator": True},
)
return [_map_model(record) for record in records]
def _cost_create_payload(
costs: Sequence[llm_model.LlmModelCostInput],
) -> dict[str, Iterable[dict[str, Any]]]:
create_items = []
for cost in costs:
item: dict[str, Any] = {
"unit": cost.unit,
"creditCost": cost.credit_cost,
"credentialProvider": cost.credential_provider,
}
# Only include optional fields if they have values
if cost.credential_id:
item["credentialId"] = cost.credential_id
if cost.credential_type:
item["credentialType"] = cost.credential_type
if cost.currency:
item["currency"] = cost.currency
# Handle metadata - use Prisma Json type
if cost.metadata is not None and cost.metadata != {}:
item["metadata"] = prisma.Json(cost.metadata)
create_items.append(item)
return {"create": create_items}
async def create_model(
request: llm_model.CreateLlmModelRequest,
) -> llm_model.LlmModel:
data: Any = {
"slug": request.slug,
"displayName": request.display_name,
"description": request.description,
"providerId": request.provider_id,
"contextWindow": request.context_window,
"maxOutputTokens": request.max_output_tokens,
"isEnabled": request.is_enabled,
"capabilities": request.capabilities,
"metadata": request.metadata,
"Costs": _cost_create_payload(request.costs),
}
if request.creator_id:
data["creatorId"] = request.creator_id
record = await prisma.models.LlmModel.prisma().create(
data=data,
include={"Costs": True, "Creator": True},
)
return _map_model(record)
async def update_model(
model_id: str,
request: llm_model.UpdateLlmModelRequest,
) -> llm_model.LlmModel:
# Build scalar field updates (non-relation fields)
scalar_data: Any = {}
if request.display_name is not None:
scalar_data["displayName"] = request.display_name
if request.description is not None:
scalar_data["description"] = request.description
if request.context_window is not None:
scalar_data["contextWindow"] = request.context_window
if request.max_output_tokens is not None:
scalar_data["maxOutputTokens"] = request.max_output_tokens
if request.is_enabled is not None:
scalar_data["isEnabled"] = request.is_enabled
if request.capabilities is not None:
scalar_data["capabilities"] = request.capabilities
if request.metadata is not None:
scalar_data["metadata"] = request.metadata
# Foreign keys can be updated directly as scalar fields
if request.provider_id is not None:
scalar_data["providerId"] = request.provider_id
if request.creator_id is not None:
# Empty string means remove the creator
scalar_data["creatorId"] = request.creator_id if request.creator_id else None
# If we have costs to update, we need to handle them separately
# because nested writes have different constraints
if request.costs is not None:
# Wrap cost replacement in a transaction for atomicity
async with transaction() as tx:
# First update scalar fields
if scalar_data:
await tx.llmmodel.update(
where={"id": model_id},
data=scalar_data,
)
# Then handle costs: delete existing and create new
await tx.llmmodelcost.delete_many(where={"llmModelId": model_id})
if request.costs:
cost_payload = _cost_create_payload(request.costs)
for cost_item in cost_payload["create"]:
cost_item["llmModelId"] = model_id
await tx.llmmodelcost.create(data=cast(Any, cost_item))
# Fetch the updated record (outside transaction)
record = await prisma.models.LlmModel.prisma().find_unique(
where={"id": model_id},
include={"Costs": True, "Creator": True},
)
else:
# No costs update - simple update
record = await prisma.models.LlmModel.prisma().update(
where={"id": model_id},
data=scalar_data,
include={"Costs": True, "Creator": True},
)
if not record:
raise ValueError(f"Model with id '{model_id}' not found")
return _map_model(record)
async def toggle_model(
model_id: str,
is_enabled: bool,
migrate_to_slug: str | None = None,
migration_reason: str | None = None,
custom_credit_cost: int | None = None,
) -> llm_model.ToggleLlmModelResponse:
"""
Toggle a model's enabled status, optionally migrating workflows when disabling.
Args:
model_id: UUID of the model to toggle
is_enabled: New enabled status
migrate_to_slug: If disabling and this is provided, migrate all workflows
using this model to the specified replacement model
migration_reason: Optional reason for the migration (e.g., "Provider outage")
custom_credit_cost: Optional custom pricing override for migrated workflows.
When set, the billing system should use this cost instead
of the target model's cost for affected nodes.
Returns:
ToggleLlmModelResponse with the updated model and optional migration stats
"""
import json
# Get the model being toggled
model = await prisma.models.LlmModel.prisma().find_unique(
where={"id": model_id}, include={"Costs": True}
)
if not model:
raise ValueError(f"Model with id '{model_id}' not found")
nodes_migrated = 0
migration_id: str | None = None
# If disabling with migration, perform migration first
if not is_enabled and migrate_to_slug:
# Validate replacement model exists and is enabled
replacement = await prisma.models.LlmModel.prisma().find_unique(
where={"slug": migrate_to_slug}
)
if not replacement:
raise ValueError(f"Replacement model '{migrate_to_slug}' not found")
if not replacement.isEnabled:
raise ValueError(
f"Replacement model '{migrate_to_slug}' is disabled. "
f"Please enable it before using it as a replacement."
)
# Perform all operations atomically within a single transaction
# This ensures no nodes are missed between query and update
async with transaction() as tx:
# Get the IDs of nodes that will be migrated (inside transaction for consistency)
node_ids_result = await tx.query_raw(
"""
SELECT id
FROM "AgentNode"
WHERE "constantInput"::jsonb->>'model' = $1
FOR UPDATE
""",
model.slug,
)
migrated_node_ids = (
[row["id"] for row in node_ids_result] if node_ids_result else []
)
nodes_migrated = len(migrated_node_ids)
if nodes_migrated > 0:
# Update by IDs to ensure we only update the exact nodes we queried
node_ids_pg_array = "{" + ",".join(migrated_node_ids) + "}"
await tx.execute_raw(
"""
UPDATE "AgentNode"
SET "constantInput" = JSONB_SET(
"constantInput"::jsonb,
'{model}',
to_jsonb($1::text)
)
WHERE id::text = ANY($2::text[])
""",
migrate_to_slug,
node_ids_pg_array,
)
record = await tx.llmmodel.update(
where={"id": model_id},
data={"isEnabled": is_enabled},
include={"Costs": True},
)
# Create migration record for revert capability
if nodes_migrated > 0:
migration_data: Any = {
"sourceModelSlug": model.slug,
"targetModelSlug": migrate_to_slug,
"reason": migration_reason,
"migratedNodeIds": json.dumps(migrated_node_ids),
"nodeCount": nodes_migrated,
"customCreditCost": custom_credit_cost,
}
migration_record = await tx.llmmodelmigration.create(
data=migration_data
)
migration_id = migration_record.id
else:
# Simple toggle without migration
record = await prisma.models.LlmModel.prisma().update(
where={"id": model_id},
data={"isEnabled": is_enabled},
include={"Costs": True},
)
if record is None:
raise ValueError(f"Model with id '{model_id}' not found")
return llm_model.ToggleLlmModelResponse(
model=_map_model(record),
nodes_migrated=nodes_migrated,
migrated_to_slug=migrate_to_slug if nodes_migrated > 0 else None,
migration_id=migration_id,
)
async def get_model_usage(model_id: str) -> llm_model.LlmModelUsageResponse:
"""Get usage count for a model."""
import prisma as prisma_module
model = await prisma.models.LlmModel.prisma().find_unique(where={"id": model_id})
if not model:
raise ValueError(f"Model with id '{model_id}' not found")
count_result = await prisma_module.get_client().query_raw(
"""
SELECT COUNT(*) as count
FROM "AgentNode"
WHERE "constantInput"::jsonb->>'model' = $1
""",
model.slug,
)
node_count = int(count_result[0]["count"]) if count_result else 0
return llm_model.LlmModelUsageResponse(model_slug=model.slug, node_count=node_count)
async def delete_model(
model_id: str, replacement_model_slug: str
) -> llm_model.DeleteLlmModelResponse:
"""
Delete a model and migrate all AgentNodes using it to a replacement model.
This performs an atomic operation within a database transaction:
1. Validates the model exists
2. Validates the replacement model exists and is enabled
3. Counts affected nodes
4. Migrates all AgentNode.constantInput->model to replacement (in transaction)
5. Deletes the LlmModel record (CASCADE deletes costs) (in transaction)
Args:
model_id: UUID of the model to delete
replacement_model_slug: Slug of the model to migrate to
Returns:
DeleteLlmModelResponse with migration stats
Raises:
ValueError: If model not found, replacement not found, or replacement is disabled
"""
# 1. Get the model being deleted (validation - outside transaction)
model = await prisma.models.LlmModel.prisma().find_unique(
where={"id": model_id}, include={"Costs": True}
)
if not model:
raise ValueError(f"Model with id '{model_id}' not found")
deleted_slug = model.slug
deleted_display_name = model.displayName
# 2. Validate replacement model exists and is enabled (validation - outside transaction)
replacement = await prisma.models.LlmModel.prisma().find_unique(
where={"slug": replacement_model_slug}
)
if not replacement:
raise ValueError(f"Replacement model '{replacement_model_slug}' not found")
if not replacement.isEnabled:
raise ValueError(
f"Replacement model '{replacement_model_slug}' is disabled. "
f"Please enable it before using it as a replacement."
)
# 3 & 4. Perform count, migration and deletion atomically within a transaction
nodes_affected = 0
async with transaction() as tx:
# Count affected nodes (inside transaction for consistency)
count_result = await tx.query_raw(
"""
SELECT COUNT(*) as count
FROM "AgentNode"
WHERE "constantInput"::jsonb->>'model' = $1
""",
deleted_slug,
)
nodes_affected = int(count_result[0]["count"]) if count_result else 0
# Migrate all AgentNode.constantInput->model to replacement
if nodes_affected > 0:
await tx.execute_raw(
"""
UPDATE "AgentNode"
SET "constantInput" = JSONB_SET(
"constantInput"::jsonb,
'{model}',
to_jsonb($1::text)
)
WHERE "constantInput"::jsonb->>'model' = $2
""",
replacement_model_slug,
deleted_slug,
)
# Delete the model (CASCADE will delete costs automatically)
await tx.llmmodel.delete(where={"id": model_id})
return llm_model.DeleteLlmModelResponse(
deleted_model_slug=deleted_slug,
deleted_model_display_name=deleted_display_name,
replacement_model_slug=replacement_model_slug,
nodes_migrated=nodes_affected,
message=(
f"Successfully deleted model '{deleted_display_name}' ({deleted_slug}) "
f"and migrated {nodes_affected} workflow node(s) to '{replacement_model_slug}'."
),
)
def _map_migration(
record: prisma.models.LlmModelMigration,
) -> llm_model.LlmModelMigration:
return llm_model.LlmModelMigration(
id=record.id,
source_model_slug=record.sourceModelSlug,
target_model_slug=record.targetModelSlug,
reason=record.reason,
node_count=record.nodeCount,
custom_credit_cost=record.customCreditCost,
is_reverted=record.isReverted,
created_at=record.createdAt.isoformat(),
reverted_at=record.revertedAt.isoformat() if record.revertedAt else None,
)
async def list_migrations(
include_reverted: bool = False,
) -> list[llm_model.LlmModelMigration]:
"""
List model migrations, optionally including reverted ones.
Args:
include_reverted: If True, include reverted migrations. Default is False.
Returns:
List of LlmModelMigration records
"""
where: Any = None if include_reverted else {"isReverted": False}
records = await prisma.models.LlmModelMigration.prisma().find_many(
where=where,
order={"createdAt": "desc"},
)
return [_map_migration(record) for record in records]
async def get_migration(migration_id: str) -> llm_model.LlmModelMigration | None:
"""Get a specific migration by ID."""
record = await prisma.models.LlmModelMigration.prisma().find_unique(
where={"id": migration_id}
)
return _map_migration(record) if record else None
async def revert_migration(
migration_id: str,
re_enable_source_model: bool = True,
) -> llm_model.RevertMigrationResponse:
"""
Revert a model migration, restoring affected nodes to their original model.
This only reverts the specific nodes that were migrated, not all nodes
currently using the target model.
Args:
migration_id: UUID of the migration to revert
re_enable_source_model: Whether to re-enable the source model if it's disabled
Returns:
RevertMigrationResponse with revert stats
Raises:
ValueError: If migration not found, already reverted, or source model not available
"""
import json
from datetime import datetime, timezone
# Get the migration record
migration = await prisma.models.LlmModelMigration.prisma().find_unique(
where={"id": migration_id}
)
if not migration:
raise ValueError(f"Migration with id '{migration_id}' not found")
if migration.isReverted:
raise ValueError(
f"Migration '{migration_id}' has already been reverted "
f"on {migration.revertedAt.isoformat() if migration.revertedAt else 'unknown date'}"
)
# Check if source model exists
source_model = await prisma.models.LlmModel.prisma().find_unique(
where={"slug": migration.sourceModelSlug}
)
if not source_model:
raise ValueError(
f"Source model '{migration.sourceModelSlug}' no longer exists. "
f"Cannot revert migration."
)
# Get the migrated node IDs (Prisma auto-parses JSONB to list)
migrated_node_ids: list[str] = (
migration.migratedNodeIds
if isinstance(migration.migratedNodeIds, list)
else json.loads(migration.migratedNodeIds) # type: ignore
)
if not migrated_node_ids:
raise ValueError("No nodes to revert in this migration")
# Track if we need to re-enable the source model
source_model_was_disabled = not source_model.isEnabled
should_re_enable = source_model_was_disabled and re_enable_source_model
source_model_re_enabled = False
# Perform revert atomically
async with transaction() as tx:
# Re-enable the source model if requested and it was disabled
if should_re_enable:
await tx.llmmodel.update(
where={"id": source_model.id},
data={"isEnabled": True},
)
source_model_re_enabled = True
# Update only the specific nodes that were migrated
# We need to check that they still have the target model (haven't been changed since)
# Use a single batch update for efficiency
# Format node IDs as PostgreSQL text array literal for comparison
node_ids_pg_array = "{" + ",".join(migrated_node_ids) + "}"
result = await tx.execute_raw(
"""
UPDATE "AgentNode"
SET "constantInput" = JSONB_SET(
"constantInput"::jsonb,
'{model}',
to_jsonb($1::text)
)
WHERE id::text = ANY($2::text[])
AND "constantInput"::jsonb->>'model' = $3
""",
migration.sourceModelSlug,
node_ids_pg_array,
migration.targetModelSlug,
)
nodes_reverted = result if result else 0
# Mark migration as reverted
await tx.llmmodelmigration.update(
where={"id": migration_id},
data={
"isReverted": True,
"revertedAt": datetime.now(timezone.utc),
},
)
# Calculate nodes that were already changed since migration
nodes_already_changed = len(migrated_node_ids) - nodes_reverted
# Build appropriate message
message_parts = [
f"Successfully reverted migration: {nodes_reverted} node(s) restored "
f"from '{migration.targetModelSlug}' to '{migration.sourceModelSlug}'."
]
if nodes_already_changed > 0:
message_parts.append(
f" {nodes_already_changed} node(s) were already changed and not reverted."
)
if source_model_re_enabled:
message_parts.append(
f" Model '{migration.sourceModelSlug}' has been re-enabled."
)
return llm_model.RevertMigrationResponse(
migration_id=migration_id,
source_model_slug=migration.sourceModelSlug,
target_model_slug=migration.targetModelSlug,
nodes_reverted=nodes_reverted,
nodes_already_changed=nodes_already_changed,
source_model_re_enabled=source_model_re_enabled,
message="".join(message_parts),
)
# ============================================================================
# Creator CRUD operations
# ============================================================================
async def list_creators() -> list[llm_model.LlmModelCreator]:
"""List all LLM model creators."""
records = await prisma.models.LlmModelCreator.prisma().find_many(
order={"displayName": "asc"}
)
return [_map_creator(record) for record in records]
async def get_creator(creator_id: str) -> llm_model.LlmModelCreator | None:
"""Get a specific creator by ID."""
record = await prisma.models.LlmModelCreator.prisma().find_unique(
where={"id": creator_id}
)
return _map_creator(record) if record else None
async def upsert_creator(
request: llm_model.UpsertLlmCreatorRequest,
creator_id: str | None = None,
) -> llm_model.LlmModelCreator:
"""Create or update a model creator."""
data: Any = {
"name": request.name,
"displayName": request.display_name,
"description": request.description,
"websiteUrl": request.website_url,
"logoUrl": request.logo_url,
"metadata": request.metadata,
}
if creator_id:
record = await prisma.models.LlmModelCreator.prisma().update(
where={"id": creator_id},
data=data,
)
else:
record = await prisma.models.LlmModelCreator.prisma().create(data=data)
if record is None:
raise ValueError("Failed to create/update creator")
return _map_creator(record)
async def delete_creator(creator_id: str) -> bool:
"""
Delete a model creator.
This will set creatorId to NULL on all associated models (due to onDelete: SetNull).
Args:
creator_id: UUID of the creator to delete
Returns:
True if deleted successfully
Raises:
ValueError: If creator not found
"""
creator = await prisma.models.LlmModelCreator.prisma().find_unique(
where={"id": creator_id}
)
if not creator:
raise ValueError(f"Creator with id '{creator_id}' not found")
await prisma.models.LlmModelCreator.prisma().delete(where={"id": creator_id})
return True
async def get_recommended_model() -> llm_model.LlmModel | None:
"""
Get the currently recommended LLM model.
Returns:
The recommended model, or None if no model is marked as recommended.
"""
record = await prisma.models.LlmModel.prisma().find_first(
where={"isRecommended": True, "isEnabled": True},
include={"Costs": True, "Creator": True},
)
return _map_model(record) if record else None
async def set_recommended_model(
model_id: str,
) -> tuple[llm_model.LlmModel, str | None]:
"""
Set a model as the recommended model.
This will clear the isRecommended flag from any other model and set it
on the specified model. The model must be enabled.
Args:
model_id: UUID of the model to set as recommended
Returns:
Tuple of (the updated model, previous recommended model slug or None)
Raises:
ValueError: If model not found or not enabled
"""
# First, verify the model exists and is enabled
target_model = await prisma.models.LlmModel.prisma().find_unique(
where={"id": model_id}
)
if not target_model:
raise ValueError(f"Model with id '{model_id}' not found")
if not target_model.isEnabled:
raise ValueError(
f"Cannot set disabled model '{target_model.slug}' as recommended"
)
# Get the current recommended model (if any)
current_recommended = await prisma.models.LlmModel.prisma().find_first(
where={"isRecommended": True}
)
previous_slug = current_recommended.slug if current_recommended else None
# Use a transaction to ensure atomicity
async with transaction() as tx:
# Clear isRecommended from all models
await tx.llmmodel.update_many(
where={"isRecommended": True},
data={"isRecommended": False},
)
# Set the new recommended model
await tx.llmmodel.update(
where={"id": model_id},
data={"isRecommended": True},
)
# Fetch and return the updated model
updated_record = await prisma.models.LlmModel.prisma().find_unique(
where={"id": model_id},
include={"Costs": True, "Creator": True},
)
if not updated_record:
raise ValueError("Failed to fetch updated model")
return _map_model(updated_record), previous_slug
async def get_recommended_model_slug() -> str | None:
"""
Get the slug of the currently recommended LLM model.
Returns:
The slug of the recommended model, or None if no model is marked as recommended.
"""
record = await prisma.models.LlmModel.prisma().find_first(
where={"isRecommended": True, "isEnabled": True},
)
return record.slug if record else None

View File

@@ -0,0 +1,231 @@
from __future__ import annotations
import re
from typing import Any, Optional
import prisma.enums
import pydantic
# Pattern for valid model slugs: alphanumeric start, then alphanumeric, dots, underscores, slashes, hyphens
SLUG_PATTERN = re.compile(r"^[a-zA-Z0-9][a-zA-Z0-9._/-]*$")
class LlmModelCost(pydantic.BaseModel):
id: str
unit: prisma.enums.LlmCostUnit = prisma.enums.LlmCostUnit.RUN
credit_cost: int
credential_provider: str
credential_id: Optional[str] = None
credential_type: Optional[str] = None
currency: Optional[str] = None
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
class LlmModelCreator(pydantic.BaseModel):
"""Represents the organization that created/trained the model (e.g., OpenAI, Meta)."""
id: str
name: str
display_name: str
description: Optional[str] = None
website_url: Optional[str] = None
logo_url: Optional[str] = None
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
class LlmModel(pydantic.BaseModel):
id: str
slug: str
display_name: str
description: Optional[str] = None
provider_id: str
creator_id: Optional[str] = None
creator: Optional[LlmModelCreator] = None
context_window: int
max_output_tokens: Optional[int] = None
is_enabled: bool = True
is_recommended: bool = False
capabilities: dict[str, Any] = pydantic.Field(default_factory=dict)
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
costs: list[LlmModelCost] = pydantic.Field(default_factory=list)
class LlmProvider(pydantic.BaseModel):
id: str
name: str
display_name: str
description: Optional[str] = None
default_credential_provider: Optional[str] = None
default_credential_id: Optional[str] = None
default_credential_type: Optional[str] = None
supports_tools: bool = True
supports_json_output: bool = True
supports_reasoning: bool = False
supports_parallel_tool: bool = False
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
models: list[LlmModel] = pydantic.Field(default_factory=list)
class LlmProvidersResponse(pydantic.BaseModel):
providers: list[LlmProvider]
class LlmModelsResponse(pydantic.BaseModel):
models: list[LlmModel]
class LlmCreatorsResponse(pydantic.BaseModel):
creators: list[LlmModelCreator]
class UpsertLlmProviderRequest(pydantic.BaseModel):
name: str
display_name: str
description: Optional[str] = None
default_credential_provider: Optional[str] = None
default_credential_id: Optional[str] = None
default_credential_type: Optional[str] = "api_key"
supports_tools: bool = True
supports_json_output: bool = True
supports_reasoning: bool = False
supports_parallel_tool: bool = False
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
class UpsertLlmCreatorRequest(pydantic.BaseModel):
name: str
display_name: str
description: Optional[str] = None
website_url: Optional[str] = None
logo_url: Optional[str] = None
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
class LlmModelCostInput(pydantic.BaseModel):
unit: prisma.enums.LlmCostUnit = prisma.enums.LlmCostUnit.RUN
credit_cost: int
credential_provider: str
credential_id: Optional[str] = None
credential_type: Optional[str] = "api_key"
currency: Optional[str] = None
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
class CreateLlmModelRequest(pydantic.BaseModel):
slug: str
display_name: str
description: Optional[str] = None
provider_id: str
creator_id: Optional[str] = None
context_window: int
max_output_tokens: Optional[int] = None
is_enabled: bool = True
capabilities: dict[str, Any] = pydantic.Field(default_factory=dict)
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
costs: list[LlmModelCostInput]
@pydantic.field_validator("slug")
@classmethod
def validate_slug(cls, v: str) -> str:
if not v or len(v) > 100:
raise ValueError("Slug must be 1-100 characters")
if not SLUG_PATTERN.match(v):
raise ValueError(
"Slug must start with alphanumeric and contain only "
"alphanumeric characters, dots, underscores, slashes, or hyphens"
)
return v
class UpdateLlmModelRequest(pydantic.BaseModel):
display_name: Optional[str] = None
description: Optional[str] = None
context_window: Optional[int] = None
max_output_tokens: Optional[int] = None
is_enabled: Optional[bool] = None
capabilities: Optional[dict[str, Any]] = None
metadata: Optional[dict[str, Any]] = None
provider_id: Optional[str] = None
creator_id: Optional[str] = None
costs: Optional[list[LlmModelCostInput]] = None
class ToggleLlmModelRequest(pydantic.BaseModel):
is_enabled: bool
migrate_to_slug: Optional[str] = None
migration_reason: Optional[str] = None # e.g., "Provider outage"
# Custom pricing override for migrated workflows. When set, billing should use
# this cost instead of the target model's cost for affected nodes.
# See LlmModelMigration in schema.prisma for full documentation.
custom_credit_cost: Optional[int] = None
class ToggleLlmModelResponse(pydantic.BaseModel):
model: LlmModel
nodes_migrated: int = 0
migrated_to_slug: Optional[str] = None
migration_id: Optional[str] = None # ID of the migration record for revert
class DeleteLlmModelResponse(pydantic.BaseModel):
deleted_model_slug: str
deleted_model_display_name: str
replacement_model_slug: str
nodes_migrated: int
message: str
class LlmModelUsageResponse(pydantic.BaseModel):
model_slug: str
node_count: int
# Migration tracking models
class LlmModelMigration(pydantic.BaseModel):
id: str
source_model_slug: str
target_model_slug: str
reason: Optional[str] = None
node_count: int
# Custom pricing override - billing should use this instead of target model's cost
custom_credit_cost: Optional[int] = None
is_reverted: bool = False
created_at: str # ISO datetime string
reverted_at: Optional[str] = None
class LlmMigrationsResponse(pydantic.BaseModel):
migrations: list[LlmModelMigration]
class RevertMigrationRequest(pydantic.BaseModel):
re_enable_source_model: bool = (
True # Whether to re-enable the source model if disabled
)
class RevertMigrationResponse(pydantic.BaseModel):
migration_id: str
source_model_slug: str
target_model_slug: str
nodes_reverted: int
nodes_already_changed: int = (
0 # Nodes that were modified since migration (not reverted)
)
source_model_re_enabled: bool = False # Whether the source model was re-enabled
message: str
class SetRecommendedModelRequest(pydantic.BaseModel):
model_id: str
class SetRecommendedModelResponse(pydantic.BaseModel):
model: LlmModel
previous_recommended_slug: Optional[str] = None
message: str
class RecommendedModelResponse(pydantic.BaseModel):
model: Optional[LlmModel] = None
slug: Optional[str] = None

View File

@@ -0,0 +1,25 @@
import autogpt_libs.auth
import fastapi
from backend.server.v2.llm import db as llm_db
from backend.server.v2.llm import model as llm_model
router = fastapi.APIRouter(
prefix="/llm",
tags=["llm"],
dependencies=[fastapi.Security(autogpt_libs.auth.requires_user)],
)
@router.get("/models", response_model=llm_model.LlmModelsResponse)
async def list_models():
"""List all enabled LLM models available to users."""
models = await llm_db.list_models(enabled_only=True)
return llm_model.LlmModelsResponse(models=models)
@router.get("/providers", response_model=llm_model.LlmProvidersResponse)
async def list_providers():
"""List all LLM providers with their enabled models."""
providers = await llm_db.list_providers(include_models=True, enabled_only=True)
return llm_model.LlmProvidersResponse(providers=providers)

View File

@@ -10,7 +10,6 @@ from backend.util.settings import Settings
settings = Settings()
if TYPE_CHECKING:
from openai import AsyncOpenAI
from supabase import AClient, Client
from backend.data.execution import (
@@ -140,24 +139,6 @@ async def get_async_supabase() -> "AClient":
)
# ============ OpenAI Client ============ #
@cached(ttl_seconds=3600)
def get_openai_client() -> "AsyncOpenAI | None":
"""
Get a process-cached async OpenAI client for embeddings.
Returns None if API key is not configured.
"""
from openai import AsyncOpenAI
api_key = settings.secrets.openai_internal_api_key
if not api_key:
return None
return AsyncOpenAI(api_key=api_key)
# ============ Notification Queue Helpers ============ #

View File

@@ -264,7 +264,7 @@ class Config(UpdateTrackingModel["Config"], BaseSettings):
)
reddit_user_agent: str = Field(
default="web:AutoGPT:v0.6.0 (by /u/autogpt)",
default="AutoGPT:1.0 (by /u/autogpt)",
description="The user agent for the Reddit API",
)

View File

@@ -1,227 +0,0 @@
#!/usr/bin/env python3
"""
Generate a lightweight stub for prisma/types.py that collapses all exported
symbols to Any. This prevents Pyright from spending time/budget on Prisma's
query DSL types while keeping runtime behavior unchanged.
Usage:
poetry run gen-prisma-stub
This script automatically finds the prisma package location and generates
the types.pyi stub file in the same directory as types.py.
"""
from __future__ import annotations
import ast
import importlib.util
import sys
from pathlib import Path
from typing import Iterable, Set
def _iter_assigned_names(target: ast.expr) -> Iterable[str]:
"""Extract names from assignment targets (handles tuple unpacking)."""
if isinstance(target, ast.Name):
yield target.id
elif isinstance(target, (ast.Tuple, ast.List)):
for elt in target.elts:
yield from _iter_assigned_names(elt)
def _is_private(name: str) -> bool:
"""Check if a name is private (starts with _ but not __)."""
return name.startswith("_") and not name.startswith("__")
def _is_safe_type_alias(node: ast.Assign) -> bool:
"""Check if an assignment is a safe type alias that shouldn't be stubbed.
Safe types are:
- Literal types (don't cause type budget issues)
- Simple type references (SortMode, SortOrder, etc.)
- TypeVar definitions
"""
if not node.value:
return False
# Check if it's a Subscript (like Literal[...], Union[...], TypeVar[...])
if isinstance(node.value, ast.Subscript):
# Get the base type name
if isinstance(node.value.value, ast.Name):
base_name = node.value.value.id
# Literal types are safe
if base_name == "Literal":
return True
# TypeVar is safe
if base_name == "TypeVar":
return True
elif isinstance(node.value.value, ast.Attribute):
# Handle typing_extensions.Literal etc.
if node.value.value.attr == "Literal":
return True
# Check if it's a simple Name reference (like SortMode = _types.SortMode)
if isinstance(node.value, ast.Attribute):
return True
# Check if it's a Call (like TypeVar(...))
if isinstance(node.value, ast.Call):
if isinstance(node.value.func, ast.Name):
if node.value.func.id == "TypeVar":
return True
return False
def collect_top_level_symbols(
tree: ast.Module, source_lines: list[str]
) -> tuple[Set[str], Set[str], list[str], Set[str]]:
"""Collect all top-level symbols from an AST module.
Returns:
Tuple of (class_names, function_names, safe_variable_sources, unsafe_variable_names)
safe_variable_sources contains the actual source code lines for safe variables
"""
classes: Set[str] = set()
functions: Set[str] = set()
safe_variable_sources: list[str] = []
unsafe_variables: Set[str] = set()
for node in tree.body:
if isinstance(node, ast.ClassDef):
if not _is_private(node.name):
classes.add(node.name)
elif isinstance(node, (ast.FunctionDef, ast.AsyncFunctionDef)):
if not _is_private(node.name):
functions.add(node.name)
elif isinstance(node, ast.Assign):
is_safe = _is_safe_type_alias(node)
names = []
for t in node.targets:
for n in _iter_assigned_names(t):
if not _is_private(n):
names.append(n)
if names:
if is_safe:
# Extract the source code for this assignment
start_line = node.lineno - 1 # 0-indexed
end_line = node.end_lineno if node.end_lineno else node.lineno
source = "\n".join(source_lines[start_line:end_line])
safe_variable_sources.append(source)
else:
unsafe_variables.update(names)
elif isinstance(node, ast.AnnAssign) and node.target:
# Annotated assignments are always stubbed
for n in _iter_assigned_names(node.target):
if not _is_private(n):
unsafe_variables.add(n)
return classes, functions, safe_variable_sources, unsafe_variables
def find_prisma_types_path() -> Path:
"""Find the prisma types.py file in the installed package."""
spec = importlib.util.find_spec("prisma")
if spec is None or spec.origin is None:
raise RuntimeError("Could not find prisma package. Is it installed?")
prisma_dir = Path(spec.origin).parent
types_path = prisma_dir / "types.py"
if not types_path.exists():
raise RuntimeError(f"prisma/types.py not found at {types_path}")
return types_path
def generate_stub(src_path: Path, stub_path: Path) -> int:
"""Generate the .pyi stub file from the source types.py."""
code = src_path.read_text(encoding="utf-8", errors="ignore")
source_lines = code.splitlines()
tree = ast.parse(code, filename=str(src_path))
classes, functions, safe_variable_sources, unsafe_variables = (
collect_top_level_symbols(tree, source_lines)
)
header = """\
# -*- coding: utf-8 -*-
# Auto-generated stub file - DO NOT EDIT
# Generated by gen_prisma_types_stub.py
#
# This stub intentionally collapses complex Prisma query DSL types to Any.
# Prisma's generated types can explode Pyright's type inference budgets
# on large schemas. We collapse them to Any so the rest of the codebase
# can remain strongly typed while keeping runtime behavior unchanged.
#
# Safe types (Literal, TypeVar, simple references) are preserved from the
# original types.py to maintain proper type checking where possible.
from __future__ import annotations
from typing import Any
from typing_extensions import Literal
# Re-export commonly used typing constructs that may be imported from this module
from typing import TYPE_CHECKING, TypeVar, Generic, Union, Optional, List, Dict
# Base type alias for stubbed Prisma types - allows any dict structure
_PrismaDict = dict[str, Any]
"""
lines = [header]
# Include safe variable definitions (Literal types, TypeVars, etc.)
lines.append("# Safe type definitions preserved from original types.py")
for source in safe_variable_sources:
lines.append(source)
lines.append("")
# Stub all classes and unsafe variables uniformly as dict[str, Any] aliases
# This allows:
# 1. Use in type annotations: x: SomeType
# 2. Constructor calls: SomeType(...)
# 3. Dict literal assignments: x: SomeType = {...}
lines.append(
"# Stubbed types (collapsed to dict[str, Any] to prevent type budget exhaustion)"
)
all_stubbed = sorted(classes | unsafe_variables)
for name in all_stubbed:
lines.append(f"{name} = _PrismaDict")
lines.append("")
# Stub functions
for name in sorted(functions):
lines.append(f"def {name}(*args: Any, **kwargs: Any) -> Any: ...")
lines.append("")
stub_path.write_text("\n".join(lines), encoding="utf-8")
return (
len(classes)
+ len(functions)
+ len(safe_variable_sources)
+ len(unsafe_variables)
)
def main() -> None:
"""Main entry point."""
try:
types_path = find_prisma_types_path()
stub_path = types_path.with_suffix(".pyi")
print(f"Found prisma types.py at: {types_path}")
print(f"Generating stub at: {stub_path}")
num_symbols = generate_stub(types_path, stub_path)
print(f"Generated {stub_path.name} with {num_symbols} Any-typed symbols")
except Exception as e:
print(f"Error: {e}", file=sys.stderr)
sys.exit(1)
if __name__ == "__main__":
main()

View File

@@ -25,9 +25,6 @@ def run(*command: str) -> None:
def lint():
# Generate Prisma types stub before running pyright to prevent type budget exhaustion
run("gen-prisma-stub")
lint_step_args: list[list[str]] = [
["ruff", "check", *TARGET_DIRS, "--exit-zero"],
["ruff", "format", "--diff", "--check", LIBS_DIR],
@@ -52,6 +49,4 @@ def format():
run("ruff", "format", LIBS_DIR)
run("isort", "--profile", "black", BACKEND_DIR)
run("black", BACKEND_DIR)
# Generate Prisma types stub before running pyright to prevent type budget exhaustion
run("gen-prisma-stub")
run("pyright", *TARGET_DIRS)

View File

@@ -0,0 +1,78 @@
-- CreateEnum
CREATE TYPE "LlmCostUnit" AS ENUM ('RUN', 'TOKENS');
-- CreateTable
CREATE TABLE "LlmProvider" (
"id" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"name" TEXT NOT NULL,
"displayName" TEXT NOT NULL,
"description" TEXT,
"defaultCredentialProvider" TEXT,
"defaultCredentialId" TEXT,
"defaultCredentialType" TEXT,
"supportsTools" BOOLEAN NOT NULL DEFAULT TRUE,
"supportsJsonOutput" BOOLEAN NOT NULL DEFAULT TRUE,
"supportsReasoning" BOOLEAN NOT NULL DEFAULT FALSE,
"supportsParallelTool" BOOLEAN NOT NULL DEFAULT FALSE,
"metadata" JSONB NOT NULL DEFAULT '{}'::jsonb,
CONSTRAINT "LlmProvider_pkey" PRIMARY KEY ("id"),
CONSTRAINT "LlmProvider_name_key" UNIQUE ("name")
);
-- CreateTable
CREATE TABLE "LlmModel" (
"id" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"slug" TEXT NOT NULL,
"displayName" TEXT NOT NULL,
"description" TEXT,
"providerId" TEXT NOT NULL,
"contextWindow" INTEGER NOT NULL,
"maxOutputTokens" INTEGER,
"isEnabled" BOOLEAN NOT NULL DEFAULT TRUE,
"capabilities" JSONB NOT NULL DEFAULT '{}'::jsonb,
"metadata" JSONB NOT NULL DEFAULT '{}'::jsonb,
CONSTRAINT "LlmModel_pkey" PRIMARY KEY ("id"),
CONSTRAINT "LlmModel_slug_key" UNIQUE ("slug")
);
-- CreateTable
CREATE TABLE "LlmModelCost" (
"id" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"unit" "LlmCostUnit" NOT NULL DEFAULT 'RUN',
"creditCost" INTEGER NOT NULL,
"credentialProvider" TEXT NOT NULL,
"credentialId" TEXT,
"credentialType" TEXT,
"currency" TEXT,
"metadata" JSONB NOT NULL DEFAULT '{}'::jsonb,
"llmModelId" TEXT NOT NULL,
CONSTRAINT "LlmModelCost_pkey" PRIMARY KEY ("id")
);
-- CreateIndex
CREATE INDEX "LlmModel_providerId_isEnabled_idx" ON "LlmModel"("providerId", "isEnabled");
-- CreateIndex
CREATE INDEX "LlmModel_slug_idx" ON "LlmModel"("slug");
-- CreateIndex
CREATE INDEX "LlmModelCost_llmModelId_idx" ON "LlmModelCost"("llmModelId");
-- CreateIndex
CREATE INDEX "LlmModelCost_credentialProvider_idx" ON "LlmModelCost"("credentialProvider");
-- AddForeignKey
ALTER TABLE "LlmModel" ADD CONSTRAINT "LlmModel_providerId_fkey" FOREIGN KEY ("providerId") REFERENCES "LlmProvider"("id") ON DELETE RESTRICT ON UPDATE CASCADE;
-- AddForeignKey
ALTER TABLE "LlmModelCost" ADD CONSTRAINT "LlmModelCost_llmModelId_fkey" FOREIGN KEY ("llmModelId") REFERENCES "LlmModel"("id") ON DELETE CASCADE ON UPDATE CASCADE;

View File

@@ -0,0 +1,225 @@
-- Seed LLM Registry from existing hard-coded data
-- This migration populates the LlmProvider, LlmModel, and LlmModelCost tables
-- with data from the existing MODEL_METADATA and MODEL_COST dictionaries
-- Insert Providers
INSERT INTO "LlmProvider" ("id", "name", "displayName", "description", "defaultCredentialProvider", "defaultCredentialType", "supportsTools", "supportsJsonOutput", "supportsReasoning", "supportsParallelTool", "metadata")
VALUES
(gen_random_uuid(), 'openai', 'OpenAI', 'OpenAI language models', 'openai', 'api_key', true, true, true, true, '{}'::jsonb),
(gen_random_uuid(), 'anthropic', 'Anthropic', 'Anthropic Claude models', 'anthropic', 'api_key', true, true, true, false, '{}'::jsonb),
(gen_random_uuid(), 'groq', 'Groq', 'Groq inference API', 'groq', 'api_key', false, true, false, false, '{}'::jsonb),
(gen_random_uuid(), 'open_router', 'OpenRouter', 'OpenRouter unified API', 'open_router', 'api_key', true, true, false, false, '{}'::jsonb),
(gen_random_uuid(), 'aiml_api', 'AI/ML API', 'AI/ML API models', 'aiml_api', 'api_key', false, true, false, false, '{}'::jsonb),
(gen_random_uuid(), 'ollama', 'Ollama', 'Ollama local models', 'ollama', 'api_key', false, true, false, false, '{}'::jsonb),
(gen_random_uuid(), 'llama_api', 'Llama API', 'Llama API models', 'llama_api', 'api_key', false, true, false, false, '{}'::jsonb),
(gen_random_uuid(), 'v0', 'v0', 'v0 by Vercel models', 'v0', 'api_key', true, true, false, false, '{}'::jsonb)
ON CONFLICT ("name") DO NOTHING;
-- Insert Models (using CTEs to reference provider IDs)
WITH provider_ids AS (
SELECT "id", "name" FROM "LlmProvider"
)
INSERT INTO "LlmModel" ("id", "slug", "displayName", "description", "providerId", "contextWindow", "maxOutputTokens", "isEnabled", "capabilities", "metadata")
SELECT
gen_random_uuid(),
model_slug,
model_display_name,
NULL,
p."id",
context_window,
max_output_tokens,
true,
'{}'::jsonb,
'{}'::jsonb
FROM (VALUES
-- OpenAI models
('o3', 'O3', 'openai', 200000, 100000),
('o3-mini', 'O3 Mini', 'openai', 200000, 100000),
('o1', 'O1', 'openai', 200000, 100000),
('o1-mini', 'O1 Mini', 'openai', 128000, 65536),
('gpt-5-2025-08-07', 'GPT 5', 'openai', 400000, 128000),
('gpt-5.1-2025-11-13', 'GPT 5.1', 'openai', 400000, 128000),
('gpt-5-mini-2025-08-07', 'GPT 5 Mini', 'openai', 400000, 128000),
('gpt-5-nano-2025-08-07', 'GPT 5 Nano', 'openai', 400000, 128000),
('gpt-5-chat-latest', 'GPT 5 Chat', 'openai', 400000, 16384),
('gpt-4.1-2025-04-14', 'GPT 4.1', 'openai', 1047576, 32768),
('gpt-4.1-mini-2025-04-14', 'GPT 4.1 Mini', 'openai', 1047576, 32768),
('gpt-4o-mini', 'GPT 4o Mini', 'openai', 128000, 16384),
('gpt-4o', 'GPT 4o', 'openai', 128000, 16384),
('gpt-4-turbo', 'GPT 4 Turbo', 'openai', 128000, 4096),
('gpt-3.5-turbo', 'GPT 3.5 Turbo', 'openai', 16385, 4096),
-- Anthropic models
('claude-opus-4-1-20250805', 'Claude 4.1 Opus', 'anthropic', 200000, 32000),
('claude-opus-4-20250514', 'Claude 4 Opus', 'anthropic', 200000, 32000),
('claude-sonnet-4-20250514', 'Claude 4 Sonnet', 'anthropic', 200000, 64000),
('claude-opus-4-5-20251101', 'Claude 4.5 Opus', 'anthropic', 200000, 64000),
('claude-sonnet-4-5-20250929', 'Claude 4.5 Sonnet', 'anthropic', 200000, 64000),
('claude-haiku-4-5-20251001', 'Claude 4.5 Haiku', 'anthropic', 200000, 64000),
('claude-3-7-sonnet-20250219', 'Claude 3.7 Sonnet', 'anthropic', 200000, 64000),
('claude-3-haiku-20240307', 'Claude 3 Haiku', 'anthropic', 200000, 4096),
-- AI/ML API models
('Qwen/Qwen2.5-72B-Instruct-Turbo', 'Qwen 2.5 72B', 'aiml_api', 32000, 8000),
('nvidia/llama-3.1-nemotron-70b-instruct', 'Llama 3.1 Nemotron 70B', 'aiml_api', 128000, 40000),
('meta-llama/Llama-3.3-70B-Instruct-Turbo', 'Llama 3.3 70B', 'aiml_api', 128000, NULL),
('meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo', 'Meta Llama 3.1 70B', 'aiml_api', 131000, 2000),
('meta-llama/Llama-3.2-3B-Instruct-Turbo', 'Llama 3.2 3B', 'aiml_api', 128000, NULL),
-- Groq models
('llama-3.3-70b-versatile', 'Llama 3.3 70B', 'groq', 128000, 32768),
('llama-3.1-8b-instant', 'Llama 3.1 8B', 'groq', 128000, 8192),
-- Ollama models
('llama3.3', 'Llama 3.3', 'ollama', 8192, NULL),
('llama3.2', 'Llama 3.2', 'ollama', 8192, NULL),
('llama3', 'Llama 3', 'ollama', 8192, NULL),
('llama3.1:405b', 'Llama 3.1 405B', 'ollama', 8192, NULL),
('dolphin-mistral:latest', 'Dolphin Mistral', 'ollama', 32768, NULL),
-- OpenRouter models
('google/gemini-2.5-pro-preview-03-25', 'Gemini 2.5 Pro', 'open_router', 1050000, 8192),
('google/gemini-3-pro-preview', 'Gemini 3 Pro Preview', 'open_router', 1048576, 65535),
('google/gemini-2.5-flash', 'Gemini 2.5 Flash', 'open_router', 1048576, 65535),
('google/gemini-2.0-flash-001', 'Gemini 2.0 Flash', 'open_router', 1048576, 8192),
('google/gemini-2.5-flash-lite-preview-06-17', 'Gemini 2.5 Flash Lite Preview', 'open_router', 1048576, 65535),
('google/gemini-2.0-flash-lite-001', 'Gemini 2.0 Flash Lite', 'open_router', 1048576, 8192),
('mistralai/mistral-nemo', 'Mistral Nemo', 'open_router', 128000, 4096),
('cohere/command-r-08-2024', 'Command R', 'open_router', 128000, 4096),
('cohere/command-r-plus-08-2024', 'Command R Plus', 'open_router', 128000, 4096),
('deepseek/deepseek-chat', 'DeepSeek Chat', 'open_router', 64000, 2048),
('deepseek/deepseek-r1-0528', 'DeepSeek R1', 'open_router', 163840, 163840),
('perplexity/sonar', 'Perplexity Sonar', 'open_router', 127000, 8000),
('perplexity/sonar-pro', 'Perplexity Sonar Pro', 'open_router', 200000, 8000),
('perplexity/sonar-deep-research', 'Perplexity Sonar Deep Research', 'open_router', 128000, 16000),
('nousresearch/hermes-3-llama-3.1-405b', 'Hermes 3 Llama 3.1 405B', 'open_router', 131000, 4096),
('nousresearch/hermes-3-llama-3.1-70b', 'Hermes 3 Llama 3.1 70B', 'open_router', 12288, 12288),
('openai/gpt-oss-120b', 'GPT OSS 120B', 'open_router', 131072, 131072),
('openai/gpt-oss-20b', 'GPT OSS 20B', 'open_router', 131072, 32768),
('amazon/nova-lite-v1', 'Amazon Nova Lite', 'open_router', 300000, 5120),
('amazon/nova-micro-v1', 'Amazon Nova Micro', 'open_router', 128000, 5120),
('amazon/nova-pro-v1', 'Amazon Nova Pro', 'open_router', 300000, 5120),
('microsoft/wizardlm-2-8x22b', 'WizardLM 2 8x22B', 'open_router', 65536, 4096),
('gryphe/mythomax-l2-13b', 'MythoMax L2 13B', 'open_router', 4096, 4096),
('meta-llama/llama-4-scout', 'Llama 4 Scout', 'open_router', 131072, 131072),
('meta-llama/llama-4-maverick', 'Llama 4 Maverick', 'open_router', 1048576, 1000000),
('x-ai/grok-4', 'Grok 4', 'open_router', 256000, 256000),
('x-ai/grok-4-fast', 'Grok 4 Fast', 'open_router', 2000000, 30000),
('x-ai/grok-4.1-fast', 'Grok 4.1 Fast', 'open_router', 2000000, 30000),
('x-ai/grok-code-fast-1', 'Grok Code Fast 1', 'open_router', 256000, 10000),
('moonshotai/kimi-k2', 'Kimi K2', 'open_router', 131000, 131000),
('qwen/qwen3-235b-a22b-thinking-2507', 'Qwen 3 235B Thinking', 'open_router', 262144, 262144),
('qwen/qwen3-coder', 'Qwen 3 Coder', 'open_router', 262144, 262144),
-- Llama API models
('Llama-4-Scout-17B-16E-Instruct-FP8', 'Llama 4 Scout', 'llama_api', 128000, 4028),
('Llama-4-Maverick-17B-128E-Instruct-FP8', 'Llama 4 Maverick', 'llama_api', 128000, 4028),
('Llama-3.3-8B-Instruct', 'Llama 3.3 8B', 'llama_api', 128000, 4028),
('Llama-3.3-70B-Instruct', 'Llama 3.3 70B', 'llama_api', 128000, 4028),
-- v0 models
('v0-1.5-md', 'v0 1.5 MD', 'v0', 128000, 64000),
('v0-1.5-lg', 'v0 1.5 LG', 'v0', 512000, 64000),
('v0-1.0-md', 'v0 1.0 MD', 'v0', 128000, 64000)
) AS models(model_slug, model_display_name, provider_name, context_window, max_output_tokens)
JOIN provider_ids p ON p."name" = models.provider_name
ON CONFLICT ("slug") DO NOTHING;
-- Insert Costs (using CTEs to reference model IDs)
WITH model_ids AS (
SELECT "id", "slug", "providerId" FROM "LlmModel"
),
provider_ids AS (
SELECT "id", "name" FROM "LlmProvider"
)
INSERT INTO "LlmModelCost" ("id", "unit", "creditCost", "credentialProvider", "credentialId", "credentialType", "currency", "metadata", "llmModelId")
SELECT
gen_random_uuid(),
'RUN'::"LlmCostUnit",
cost,
p."name",
NULL,
'api_key',
NULL,
'{}'::jsonb,
m."id"
FROM (VALUES
-- OpenAI costs
('o3', 4),
('o3-mini', 2),
('o1', 16),
('o1-mini', 4),
('gpt-5-2025-08-07', 2),
('gpt-5.1-2025-11-13', 5),
('gpt-5-mini-2025-08-07', 1),
('gpt-5-nano-2025-08-07', 1),
('gpt-5-chat-latest', 5),
('gpt-4.1-2025-04-14', 2),
('gpt-4.1-mini-2025-04-14', 1),
('gpt-4o-mini', 1),
('gpt-4o', 3),
('gpt-4-turbo', 10),
('gpt-3.5-turbo', 1),
-- Anthropic costs
('claude-opus-4-1-20250805', 21),
('claude-opus-4-20250514', 21),
('claude-sonnet-4-20250514', 5),
('claude-haiku-4-5-20251001', 4),
('claude-opus-4-5-20251101', 14),
('claude-sonnet-4-5-20250929', 9),
('claude-3-7-sonnet-20250219', 5),
('claude-3-haiku-20240307', 1),
-- AI/ML API costs
('Qwen/Qwen2.5-72B-Instruct-Turbo', 1),
('nvidia/llama-3.1-nemotron-70b-instruct', 1),
('meta-llama/Llama-3.3-70B-Instruct-Turbo', 1),
('meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo', 1),
('meta-llama/Llama-3.2-3B-Instruct-Turbo', 1),
-- Groq costs
('llama-3.3-70b-versatile', 1),
('llama-3.1-8b-instant', 1),
-- Ollama costs
('llama3.3', 1),
('llama3.2', 1),
('llama3', 1),
('llama3.1:405b', 1),
('dolphin-mistral:latest', 1),
-- OpenRouter costs
('google/gemini-2.5-pro-preview-03-25', 4),
('google/gemini-3-pro-preview', 5),
('mistralai/mistral-nemo', 1),
('cohere/command-r-08-2024', 1),
('cohere/command-r-plus-08-2024', 3),
('deepseek/deepseek-chat', 2),
('perplexity/sonar', 1),
('perplexity/sonar-pro', 5),
('perplexity/sonar-deep-research', 10),
('nousresearch/hermes-3-llama-3.1-405b', 1),
('nousresearch/hermes-3-llama-3.1-70b', 1),
('amazon/nova-lite-v1', 1),
('amazon/nova-micro-v1', 1),
('amazon/nova-pro-v1', 1),
('microsoft/wizardlm-2-8x22b', 1),
('gryphe/mythomax-l2-13b', 1),
('meta-llama/llama-4-scout', 1),
('meta-llama/llama-4-maverick', 1),
('x-ai/grok-4', 9),
('x-ai/grok-4-fast', 1),
('x-ai/grok-4.1-fast', 1),
('x-ai/grok-code-fast-1', 1),
('moonshotai/kimi-k2', 1),
('qwen/qwen3-235b-a22b-thinking-2507', 1),
('qwen/qwen3-coder', 9),
('google/gemini-2.5-flash', 1),
('google/gemini-2.0-flash-001', 1),
('google/gemini-2.5-flash-lite-preview-06-17', 1),
('google/gemini-2.0-flash-lite-001', 1),
('deepseek/deepseek-r1-0528', 1),
('openai/gpt-oss-120b', 1),
('openai/gpt-oss-20b', 1),
-- Llama API costs
('Llama-4-Scout-17B-16E-Instruct-FP8', 1),
('Llama-4-Maverick-17B-128E-Instruct-FP8', 1),
('Llama-3.3-8B-Instruct', 1),
('Llama-3.3-70B-Instruct', 1),
-- v0 costs
('v0-1.5-md', 1),
('v0-1.5-lg', 2),
('v0-1.0-md', 1)
) AS costs(model_slug, cost)
JOIN model_ids m ON m."slug" = costs.model_slug
JOIN provider_ids p ON p."id" = m."providerId";

View File

@@ -0,0 +1,25 @@
-- CreateTable
CREATE TABLE "LlmModelMigration" (
"id" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL,
"sourceModelSlug" TEXT NOT NULL,
"targetModelSlug" TEXT NOT NULL,
"reason" TEXT,
"migratedNodeIds" JSONB NOT NULL DEFAULT '[]',
"nodeCount" INTEGER NOT NULL,
"customCreditCost" INTEGER,
"isReverted" BOOLEAN NOT NULL DEFAULT false,
"revertedAt" TIMESTAMP(3),
CONSTRAINT "LlmModelMigration_pkey" PRIMARY KEY ("id")
);
-- CreateIndex
CREATE INDEX "LlmModelMigration_sourceModelSlug_idx" ON "LlmModelMigration"("sourceModelSlug");
-- CreateIndex
CREATE INDEX "LlmModelMigration_targetModelSlug_idx" ON "LlmModelMigration"("targetModelSlug");
-- CreateIndex
CREATE INDEX "LlmModelMigration_isReverted_idx" ON "LlmModelMigration"("isReverted");

View File

@@ -0,0 +1,127 @@
-- Add LlmModelCreator table
-- Creator represents who made/trained the model (e.g., OpenAI, Meta)
-- This is distinct from Provider who hosts/serves the model (e.g., OpenRouter)
-- Create the LlmModelCreator table
CREATE TABLE "LlmModelCreator" (
"id" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL,
"name" TEXT NOT NULL,
"displayName" TEXT NOT NULL,
"description" TEXT,
"websiteUrl" TEXT,
"logoUrl" TEXT,
"metadata" JSONB NOT NULL DEFAULT '{}',
CONSTRAINT "LlmModelCreator_pkey" PRIMARY KEY ("id")
);
-- Create unique index on name
CREATE UNIQUE INDEX "LlmModelCreator_name_key" ON "LlmModelCreator"("name");
-- Add creatorId column to LlmModel
ALTER TABLE "LlmModel" ADD COLUMN "creatorId" TEXT;
-- Add foreign key constraint
ALTER TABLE "LlmModel" ADD CONSTRAINT "LlmModel_creatorId_fkey"
FOREIGN KEY ("creatorId") REFERENCES "LlmModelCreator"("id") ON DELETE SET NULL ON UPDATE CASCADE;
-- Create index on creatorId
CREATE INDEX "LlmModel_creatorId_idx" ON "LlmModel"("creatorId");
-- Seed creators based on known model creators
INSERT INTO "LlmModelCreator" ("id", "updatedAt", "name", "displayName", "description", "websiteUrl", "metadata")
VALUES
(gen_random_uuid(), CURRENT_TIMESTAMP, 'openai', 'OpenAI', 'Creator of GPT models', 'https://openai.com', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'anthropic', 'Anthropic', 'Creator of Claude models', 'https://anthropic.com', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'meta', 'Meta', 'Creator of Llama models', 'https://ai.meta.com', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'google', 'Google', 'Creator of Gemini models', 'https://deepmind.google', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'mistral', 'Mistral AI', 'Creator of Mistral models', 'https://mistral.ai', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'cohere', 'Cohere', 'Creator of Command models', 'https://cohere.com', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'deepseek', 'DeepSeek', 'Creator of DeepSeek models', 'https://deepseek.com', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'perplexity', 'Perplexity AI', 'Creator of Sonar models', 'https://perplexity.ai', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'qwen', 'Qwen (Alibaba)', 'Creator of Qwen models', 'https://qwenlm.github.io', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'xai', 'xAI', 'Creator of Grok models', 'https://x.ai', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'amazon', 'Amazon', 'Creator of Nova models', 'https://aws.amazon.com/bedrock', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'microsoft', 'Microsoft', 'Creator of WizardLM models', 'https://microsoft.com', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'moonshot', 'Moonshot AI', 'Creator of Kimi models', 'https://moonshot.cn', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'nvidia', 'NVIDIA', 'Creator of Nemotron models', 'https://nvidia.com', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'nous_research', 'Nous Research', 'Creator of Hermes models', 'https://nousresearch.com', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'vercel', 'Vercel', 'Creator of v0 models', 'https://vercel.com', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'cognitive_computations', 'Cognitive Computations', 'Creator of Dolphin models', 'https://erichartford.com', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'gryphe', 'Gryphe', 'Creator of MythoMax models', 'https://huggingface.co/Gryphe', '{}')
ON CONFLICT ("name") DO NOTHING;
-- Update existing models with their creators
-- OpenAI models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'openai')
WHERE "slug" LIKE 'gpt-%' OR "slug" LIKE 'o1%' OR "slug" LIKE 'o3%' OR "slug" LIKE 'openai/%';
-- Anthropic models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'anthropic')
WHERE "slug" LIKE 'claude-%';
-- Meta/Llama models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'meta')
WHERE "slug" LIKE 'llama%' OR "slug" LIKE 'Llama%' OR "slug" LIKE 'meta-llama/%' OR "slug" LIKE '%/llama-%';
-- Google models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'google')
WHERE "slug" LIKE 'google/%' OR "slug" LIKE 'gemini%';
-- Mistral models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'mistral')
WHERE "slug" LIKE 'mistral%' OR "slug" LIKE 'mistralai/%';
-- Cohere models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'cohere')
WHERE "slug" LIKE 'cohere/%' OR "slug" LIKE 'command-%';
-- DeepSeek models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'deepseek')
WHERE "slug" LIKE 'deepseek/%' OR "slug" LIKE 'deepseek-%';
-- Perplexity models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'perplexity')
WHERE "slug" LIKE 'perplexity/%' OR "slug" LIKE 'sonar%';
-- Qwen models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'qwen')
WHERE "slug" LIKE 'Qwen/%' OR "slug" LIKE 'qwen/%';
-- xAI/Grok models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'xai')
WHERE "slug" LIKE 'x-ai/%' OR "slug" LIKE 'grok%';
-- Amazon models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'amazon')
WHERE "slug" LIKE 'amazon/%' OR "slug" LIKE 'nova-%';
-- Microsoft models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'microsoft')
WHERE "slug" LIKE 'microsoft/%' OR "slug" LIKE 'wizardlm%';
-- Moonshot models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'moonshot')
WHERE "slug" LIKE 'moonshotai/%' OR "slug" LIKE 'kimi%';
-- NVIDIA models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'nvidia')
WHERE "slug" LIKE 'nvidia/%' OR "slug" LIKE '%nemotron%';
-- Nous Research models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'nous_research')
WHERE "slug" LIKE 'nousresearch/%' OR "slug" LIKE 'hermes%';
-- Vercel/v0 models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'vercel')
WHERE "slug" LIKE 'v0-%';
-- Dolphin models (Cognitive Computations / Eric Hartford)
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'cognitive_computations')
WHERE "slug" LIKE 'dolphin-%';
-- Gryphe models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'gryphe')
WHERE "slug" LIKE 'gryphe/%' OR "slug" LIKE 'mythomax%';

View File

@@ -0,0 +1,4 @@
-- CreateIndex
-- Index for efficient LLM model lookups on AgentNode.constantInput->>'model'
-- This improves performance of model migration queries in the LLM registry
CREATE INDEX "AgentNode_constantInput_model_idx" ON "AgentNode" ((("constantInput"->>'model')));

View File

@@ -0,0 +1,52 @@
-- Add GPT-5.2 model and update O3 slug
-- This migration adds the new GPT-5.2 model added in dev branch
-- Update O3 slug to match dev branch format
UPDATE "LlmModel"
SET "slug" = 'o3-2025-04-16'
WHERE "slug" = 'o3';
-- Update cost reference for O3 if needed
-- (costs are linked by model ID, so no update needed)
-- Add GPT-5.2 model
WITH provider_id AS (
SELECT "id" FROM "LlmProvider" WHERE "name" = 'openai'
)
INSERT INTO "LlmModel" ("id", "slug", "displayName", "description", "providerId", "contextWindow", "maxOutputTokens", "isEnabled", "capabilities", "metadata")
SELECT
gen_random_uuid(),
'gpt-5.2-2025-12-11',
'GPT 5.2',
'OpenAI GPT-5.2 model',
p."id",
400000,
128000,
true,
'{}'::jsonb,
'{}'::jsonb
FROM provider_id p
ON CONFLICT ("slug") DO NOTHING;
-- Add cost for GPT-5.2
WITH model_id AS (
SELECT m."id", p."name" as provider_name
FROM "LlmModel" m
JOIN "LlmProvider" p ON p."id" = m."providerId"
WHERE m."slug" = 'gpt-5.2-2025-12-11'
)
INSERT INTO "LlmModelCost" ("id", "unit", "creditCost", "credentialProvider", "credentialId", "credentialType", "currency", "metadata", "llmModelId")
SELECT
gen_random_uuid(),
'RUN'::"LlmCostUnit",
3, -- Same cost tier as GPT-5.1
m.provider_name,
NULL,
'api_key',
NULL,
'{}'::jsonb,
m."id"
FROM model_id m
WHERE NOT EXISTS (
SELECT 1 FROM "LlmModelCost" c WHERE c."llmModelId" = m."id"
);

View File

@@ -0,0 +1,11 @@
-- Add isRecommended field to LlmModel table
-- This allows admins to mark a model as the recommended default
ALTER TABLE "LlmModel" ADD COLUMN "isRecommended" BOOLEAN NOT NULL DEFAULT false;
-- Set gpt-4o-mini as the default recommended model (if it exists)
UPDATE "LlmModel" SET "isRecommended" = true WHERE "slug" = 'gpt-4o-mini' AND "isEnabled" = true;
-- Create unique partial index to enforce only one recommended model at the database level
-- This prevents multiple rows from having isRecommended = true
CREATE UNIQUE INDEX "LlmModel_single_recommended_idx" ON "LlmModel" ("isRecommended") WHERE "isRecommended" = true;

View File

@@ -1,46 +0,0 @@
-- CreateExtension
-- Supabase: pgvector must be enabled via Dashboard → Database → Extensions first
-- Create in public schema so vector type is available across all schemas
DO $$
BEGIN
CREATE EXTENSION IF NOT EXISTS "vector" WITH SCHEMA "public";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'vector extension not available or already exists, skipping';
END $$;
-- CreateEnum
CREATE TYPE "ContentType" AS ENUM ('STORE_AGENT', 'BLOCK', 'INTEGRATION', 'DOCUMENTATION', 'LIBRARY_AGENT');
-- CreateTable
CREATE TABLE "UnifiedContentEmbedding" (
"id" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL,
"contentType" "ContentType" NOT NULL,
"contentId" TEXT NOT NULL,
"userId" TEXT,
"embedding" public.vector(1536) NOT NULL,
"searchableText" TEXT NOT NULL,
"metadata" JSONB NOT NULL DEFAULT '{}',
CONSTRAINT "UnifiedContentEmbedding_pkey" PRIMARY KEY ("id")
);
-- CreateIndex
CREATE INDEX "UnifiedContentEmbedding_contentType_idx" ON "UnifiedContentEmbedding"("contentType");
-- CreateIndex
CREATE INDEX "UnifiedContentEmbedding_userId_idx" ON "UnifiedContentEmbedding"("userId");
-- CreateIndex
CREATE INDEX "UnifiedContentEmbedding_contentType_userId_idx" ON "UnifiedContentEmbedding"("contentType", "userId");
-- CreateIndex
-- NULLS NOT DISTINCT ensures only one public (NULL userId) embedding per contentType+contentId
-- Requires PostgreSQL 15+. Supabase uses PostgreSQL 15+.
CREATE UNIQUE INDEX "UnifiedContentEmbedding_contentType_contentId_userId_key" ON "UnifiedContentEmbedding"("contentType", "contentId", "userId") NULLS NOT DISTINCT;
-- CreateIndex
-- HNSW index for fast vector similarity search on embeddings
-- Uses cosine distance operator (<=>), which matches the query in hybrid_search.py
CREATE INDEX "UnifiedContentEmbedding_embedding_idx" ON "UnifiedContentEmbedding" USING hnsw ("embedding" public.vector_cosine_ops);

View File

@@ -1,71 +0,0 @@
-- Acknowledge Supabase-managed extensions to prevent drift warnings
-- These extensions are pre-installed by Supabase in specific schemas
-- This migration ensures they exist where available (Supabase) or skips gracefully (CI)
-- Create schemas (safe in both CI and Supabase)
CREATE SCHEMA IF NOT EXISTS "extensions";
-- Extensions that exist in both CI and Supabase
DO $$
BEGIN
CREATE EXTENSION IF NOT EXISTS "pgcrypto" WITH SCHEMA "extensions";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'pgcrypto extension not available, skipping';
END $$;
DO $$
BEGIN
CREATE EXTENSION IF NOT EXISTS "uuid-ossp" WITH SCHEMA "extensions";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'uuid-ossp extension not available, skipping';
END $$;
-- Supabase-specific extensions (skip gracefully in CI)
DO $$
BEGIN
CREATE EXTENSION IF NOT EXISTS "pg_stat_statements" WITH SCHEMA "extensions";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'pg_stat_statements extension not available, skipping';
END $$;
DO $$
BEGIN
CREATE EXTENSION IF NOT EXISTS "pg_net" WITH SCHEMA "extensions";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'pg_net extension not available, skipping';
END $$;
DO $$
BEGIN
CREATE EXTENSION IF NOT EXISTS "pgjwt" WITH SCHEMA "extensions";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'pgjwt extension not available, skipping';
END $$;
DO $$
BEGIN
CREATE SCHEMA IF NOT EXISTS "graphql";
CREATE EXTENSION IF NOT EXISTS "pg_graphql" WITH SCHEMA "graphql";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'pg_graphql extension not available, skipping';
END $$;
DO $$
BEGIN
CREATE SCHEMA IF NOT EXISTS "pgsodium";
CREATE EXTENSION IF NOT EXISTS "pgsodium" WITH SCHEMA "pgsodium";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'pgsodium extension not available, skipping';
END $$;
DO $$
BEGIN
CREATE SCHEMA IF NOT EXISTS "vault";
CREATE EXTENSION IF NOT EXISTS "supabase_vault" WITH SCHEMA "vault";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'supabase_vault extension not available, skipping';
END $$;
-- Return to platform
CREATE SCHEMA IF NOT EXISTS "platform";

View File

@@ -1924,14 +1924,14 @@ google = ["google-api-python-client (>=2.0.0)", "google-auth (>=2.0.0)"]
[[package]]
name = "gravitasml"
version = "0.1.4"
version = "0.1.3"
description = ""
optional = false
python-versions = "<4.0,>=3.10"
groups = ["main"]
files = [
{file = "gravitasml-0.1.4-py3-none-any.whl", hash = "sha256:671a18b11d3d8a0e270c6a80c72cd058458b18d5ef7560d00010e962ab1bca74"},
{file = "gravitasml-0.1.4.tar.gz", hash = "sha256:35d0d9fec7431817482d53d9c976e375557c3e041d1eb6928e809324a8c866e3"},
{file = "gravitasml-0.1.3-py3-none-any.whl", hash = "sha256:51ff98b4564b7a61f7796f18d5f2558b919d30b3722579296089645b7bc18b85"},
{file = "gravitasml-0.1.3.tar.gz", hash = "sha256:04d240b9fa35878252d57a36032130b6516487468847fcdced1022c032a20f57"},
]
[package.dependencies]
@@ -7295,4 +7295,4 @@ cffi = ["cffi (>=1.11)"]
[metadata]
lock-version = "2.1"
python-versions = ">=3.10,<3.14"
content-hash = "a93ba0cea3b465cb6ec3e3f258b383b09f84ea352ccfdbfa112902cde5653fc6"
content-hash = "b762806d5d58fcf811220890c4705a16dc62b33387af43e3a29399c62a641098"

View File

@@ -27,7 +27,7 @@ google-api-python-client = "^2.177.0"
google-auth-oauthlib = "^1.2.2"
google-cloud-storage = "^3.2.0"
googlemaps = "^4.10.0"
gravitasml = "^0.1.4"
gravitasml = "^0.1.3"
groq = "^0.30.0"
html2text = "^2024.2.26"
jinja2 = "^3.1.6"
@@ -117,7 +117,6 @@ lint = "linter:lint"
test = "run_tests:test"
load-store-agents = "test.load_store_agents:run"
export-api-schema = "backend.cli.generate_openapi_json:main"
gen-prisma-stub = "gen_prisma_types_stub:main"
oauth-tool = "backend.cli.oauth_tool:cli"
[tool.isort]
@@ -135,9 +134,6 @@ ignore_patterns = []
[tool.pytest.ini_options]
asyncio_mode = "auto"
asyncio_default_fixture_loop_scope = "session"
# Disable syrupy plugin to avoid conflict with pytest-snapshot
# Both provide --snapshot-update argument causing ArgumentError
addopts = "-p no:syrupy"
filterwarnings = [
"ignore:'audioop' is deprecated:DeprecationWarning:discord.player",
"ignore:invalid escape sequence:DeprecationWarning:tweepy.api",

View File

@@ -1,15 +1,14 @@
datasource db {
provider = "postgresql"
url = env("DATABASE_URL")
directUrl = env("DIRECT_URL")
extensions = [pgvector(map: "vector")]
provider = "postgresql"
url = env("DATABASE_URL")
directUrl = env("DIRECT_URL")
}
generator client {
provider = "prisma-client-py"
recursive_type_depth = -1
interface = "asyncio"
previewFeatures = ["views", "fullTextSearch", "postgresqlExtensions"]
previewFeatures = ["views", "fullTextSearch"]
partial_type_generator = "backend/data/partial_types.py"
}
@@ -128,8 +127,8 @@ model BuilderSearchHistory {
updatedAt DateTime @default(now()) @updatedAt
searchQuery String
filter String[] @default([])
byCreator String[] @default([])
filter String[] @default([])
byCreator String[] @default([])
userId String
User User @relation(fields: [userId], references: [id], onDelete: Cascade)
@@ -722,25 +721,26 @@ view StoreAgent {
storeListingVersionId String
updated_at DateTime
slug String
agent_name String
agent_video String?
agent_output_demo String?
agent_image String[]
slug String
agent_name String
agent_video String?
agent_output_demo String?
agent_image String[]
featured Boolean @default(false)
creator_username String?
creator_avatar String?
sub_heading String
description String
categories String[]
runs Int
rating Float
versions String[]
agentGraphVersions String[]
agentGraphId String
is_available Boolean @default(true)
useForOnboarding Boolean @default(false)
featured Boolean @default(false)
creator_username String?
creator_avatar String?
sub_heading String
description String
categories String[]
search Unsupported("tsvector")? @default(dbgenerated("''::tsvector"))
runs Int
rating Float
versions String[]
agentGraphVersions String[]
agentGraphId String
is_available Boolean @default(true)
useForOnboarding Boolean @default(false)
// Materialized views used (refreshed every 15 minutes via pg_cron):
// - mv_agent_run_counts - Pre-aggregated agent execution counts by agentGraphId
@@ -856,14 +856,14 @@ model StoreListingVersion {
AgentGraph AgentGraph @relation(fields: [agentGraphId, agentGraphVersion], references: [id, version])
// Content fields
name String
subHeading String
videoUrl String?
agentOutputDemoUrl String?
imageUrls String[]
description String
instructions String?
categories String[]
name String
subHeading String
videoUrl String?
agentOutputDemoUrl String?
imageUrls String[]
description String
instructions String?
categories String[]
isFeatured Boolean @default(false)
@@ -899,9 +899,6 @@ model StoreListingVersion {
// Reviews for this specific version
Reviews StoreListingReview[]
// Note: Embeddings now stored in UnifiedContentEmbedding table
// Use contentType=STORE_AGENT and contentId=storeListingVersionId
@@unique([storeListingId, version])
@@index([storeListingId, submissionStatus, isAvailable])
@@index([submissionStatus])
@@ -909,42 +906,6 @@ model StoreListingVersion {
@@index([agentGraphId, agentGraphVersion]) // Non-unique index for efficient lookups
}
// Content type enum for unified search across store agents, blocks, docs
// Note: BLOCK/INTEGRATION are file-based (Python classes), not DB records
// DOCUMENTATION are file-based (.md files), not DB records
// Only STORE_AGENT and LIBRARY_AGENT are stored in database
enum ContentType {
STORE_AGENT // Database: StoreListingVersion
BLOCK // File-based: Python classes in /backend/blocks/
INTEGRATION // File-based: Python classes (blocks with credentials)
DOCUMENTATION // File-based: .md/.mdx files
LIBRARY_AGENT // Database: User's personal agents
}
// Unified embeddings table for all searchable content types
// Supports both public content (userId=null) and user-specific content (userId=userID)
model UnifiedContentEmbedding {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
// Content identification
contentType ContentType
contentId String // DB ID (storeListingVersionId) or file identifier (block.id, file_path)
userId String? // NULL for public content (store, blocks, docs), userId for private content (library agents)
// Search data
embedding Unsupported("vector(1536)") // pgvector embedding (extension in platform schema)
searchableText String // Combined text for search and fallback
metadata Json @default("{}") // Content-specific metadata
@@unique([contentType, contentId, userId], map: "UnifiedContentEmbedding_contentType_contentId_userId_key")
@@index([contentType])
@@index([userId])
@@index([contentType, userId])
@@index([embedding], map: "UnifiedContentEmbedding_embedding_idx")
}
model StoreListingReview {
id String @id @default(uuid())
createdAt DateTime @default(now())
@@ -1026,6 +987,151 @@ enum APIKeyStatus {
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
///////////// LLM REGISTRY AND BILLING DATA /////////////
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// LlmCostUnit: Defines how LLM MODEL costs are calculated (per run or per token).
// This is distinct from BlockCostType (in backend/data/block.py) which defines
// how BLOCK EXECUTION costs are calculated (per run, per byte, or per second).
// LlmCostUnit is for pricing individual LLM model API calls in the registry,
// while BlockCostType is for billing platform block executions.
enum LlmCostUnit {
RUN
TOKENS
}
model LlmModelCreator {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
name String @unique // e.g., "openai", "anthropic", "meta"
displayName String // e.g., "OpenAI", "Anthropic", "Meta"
description String?
websiteUrl String? // Link to creator's website
logoUrl String? // URL to creator's logo
metadata Json @default("{}")
Models LlmModel[]
}
model LlmProvider {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
name String @unique
displayName String
description String?
defaultCredentialProvider String?
defaultCredentialId String?
defaultCredentialType String?
supportsTools Boolean @default(true)
supportsJsonOutput Boolean @default(true)
supportsReasoning Boolean @default(false)
supportsParallelTool Boolean @default(false)
metadata Json @default("{}")
Models LlmModel[]
}
model LlmModel {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
slug String @unique
displayName String
description String?
providerId String
Provider LlmProvider @relation(fields: [providerId], references: [id], onDelete: Restrict)
// Creator is the organization that created/trained the model (e.g., OpenAI, Meta)
// This is distinct from the provider who hosts/serves the model (e.g., OpenRouter)
creatorId String?
Creator LlmModelCreator? @relation(fields: [creatorId], references: [id], onDelete: SetNull)
contextWindow Int
maxOutputTokens Int?
isEnabled Boolean @default(true)
isRecommended Boolean @default(false)
capabilities Json @default("{}")
metadata Json @default("{}")
Costs LlmModelCost[]
@@index([providerId, isEnabled])
@@index([creatorId])
@@index([slug])
}
model LlmModelCost {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
unit LlmCostUnit @default(RUN)
creditCost Int
credentialProvider String
credentialId String?
credentialType String?
currency String?
metadata Json @default("{}")
llmModelId String
Model LlmModel @relation(fields: [llmModelId], references: [id], onDelete: Cascade)
@@index([llmModelId])
@@index([credentialProvider])
}
// Tracks model migrations for revert capability
// When a model is disabled with migration, we record which nodes were affected
// so they can be reverted when the original model is back online
model LlmModelMigration {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
sourceModelSlug String // The original model that was disabled
targetModelSlug String // The model workflows were migrated to
reason String? // Why the migration happened (e.g., "Provider outage")
// Track affected nodes as JSON array of node IDs
// Format: ["node-uuid-1", "node-uuid-2", ...]
migratedNodeIds Json @default("[]")
nodeCount Int // Number of nodes migrated
// Custom pricing override for migrated workflows during the migration period.
// Use case: When migrating users from an expensive model (e.g., GPT-4) to a cheaper
// one (e.g., GPT-3.5), you may want to temporarily maintain the original pricing
// to avoid billing surprises, or offer a discount during the transition.
//
// IMPORTANT: This field is intended for integration with the billing system.
// When billing calculates costs for nodes affected by this migration, it should
// check if customCreditCost is set and use it instead of the target model's cost.
// If null, the target model's normal cost applies.
//
// TODO: Integrate with billing system to apply this override during cost calculation.
customCreditCost Int?
// Revert tracking
isReverted Boolean @default(false)
revertedAt DateTime?
@@index([sourceModelSlug])
@@index([targetModelSlug])
@@index([isReverted])
}
////////////// OAUTH PROVIDER TABLES //////////////////
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
@@ -1037,16 +1143,16 @@ model OAuthApplication {
updatedAt DateTime @updatedAt
// Application metadata
name String
description String?
logoUrl String? // URL to app logo stored in GCS
clientId String @unique
clientSecret String // Hashed with Scrypt (same as API keys)
clientSecretSalt String // Salt for Scrypt hashing
name String
description String?
logoUrl String? // URL to app logo stored in GCS
clientId String @unique
clientSecret String // Hashed with Scrypt (same as API keys)
clientSecretSalt String // Salt for Scrypt hashing
// OAuth configuration
redirectUris String[] // Allowed callback URLs
grantTypes String[] @default(["authorization_code", "refresh_token"])
grantTypes String[] @default(["authorization_code", "refresh_token"])
scopes APIKeyPermission[] // Which permissions the app can request
// Application management

View File

@@ -2,7 +2,6 @@
"created_at": "2025-09-04T13:37:00",
"credentials_input_schema": {
"properties": {},
"required": [],
"title": "TestGraphCredentialsInputSchema",
"type": "object"
},

View File

@@ -2,7 +2,6 @@
{
"credentials_input_schema": {
"properties": {},
"required": [],
"title": "TestGraphCredentialsInputSchema",
"type": "object"
},

View File

@@ -4,7 +4,6 @@
"id": "test-agent-1",
"graph_id": "test-agent-1",
"graph_version": 1,
"owner_user_id": "3e53486c-cf57-477e-ba2a-cb02dc828e1a",
"image_url": null,
"creator_name": "Test Creator",
"creator_image_url": "",
@@ -42,7 +41,6 @@
"id": "test-agent-2",
"graph_id": "test-agent-2",
"graph_version": 1,
"owner_user_id": "3e53486c-cf57-477e-ba2a-cb02dc828e1a",
"image_url": null,
"creator_name": "Test Creator",
"creator_image_url": "",

View File

@@ -1,7 +1,6 @@
{
"submissions": [
{
"listing_id": "test-listing-id",
"agent_id": "test-agent-id",
"agent_version": 1,
"name": "Test Agent",

View File

@@ -1,146 +0,0 @@
/**
* Cloudflare Workers Script for docs.agpt.co → agpt.co/docs migration
*
* Deploy this script to handle all redirects with a single JavaScript file.
* No rule limits, easy to maintain, handles all edge cases.
*/
// URL mapping for special cases that don't follow patterns
const SPECIAL_MAPPINGS = {
// Root page
'/': '/docs/platform',
// Special cases that don't follow standard patterns
'/platform/d_id/': '/docs/integrations/block-integrations/d-id',
'/platform/blocks/blocks/': '/docs/integrations',
'/platform/blocks/decoder_block/': '/docs/integrations/block-integrations/text-decoder',
'/platform/blocks/http': '/docs/integrations/block-integrations/send-web-request',
'/platform/blocks/llm/': '/docs/integrations/block-integrations/ai-and-llm',
'/platform/blocks/time_blocks': '/docs/integrations/block-integrations/time-and-date',
'/platform/blocks/text_to_speech_block': '/docs/integrations/block-integrations/text-to-speech',
'/platform/blocks/ai_shortform_video_block': '/docs/integrations/block-integrations/ai-shortform-video',
'/platform/blocks/replicate_flux_advanced': '/docs/integrations/block-integrations/replicate-flux-advanced',
'/platform/blocks/flux_kontext': '/docs/integrations/block-integrations/flux-kontext',
'/platform/blocks/ai_condition/': '/docs/integrations/block-integrations/ai-condition',
'/platform/blocks/email_block': '/docs/integrations/block-integrations/email',
'/platform/blocks/google_maps': '/docs/integrations/block-integrations/google-maps',
'/platform/blocks/google/gmail': '/docs/integrations/block-integrations/gmail',
'/platform/blocks/github/issues/': '/docs/integrations/block-integrations/github-issues',
'/platform/blocks/github/repo/': '/docs/integrations/block-integrations/github-repo',
'/platform/blocks/github/pull_requests': '/docs/integrations/block-integrations/github-pull-requests',
'/platform/blocks/twitter/twitter': '/docs/integrations/block-integrations/twitter',
'/classic/setup/': '/docs/classic/setup/setting-up-autogpt-classic',
'/code-of-conduct/': '/docs/classic/help-us-improve-autogpt/code-of-conduct',
'/contributing/': '/docs/classic/contributing',
'/contribute/': '/docs/contribute',
'/forge/components/introduction/': '/docs/classic/forge/introduction'
};
/**
* Transform path by replacing underscores with hyphens and removing trailing slashes
*/
function transformPath(path) {
return path.replace(/_/g, '-').replace(/\/$/, '');
}
/**
* Handle docs.agpt.co redirects
*/
function handleDocsRedirect(url) {
const pathname = url.pathname;
// Check special mappings first
if (SPECIAL_MAPPINGS[pathname]) {
return `https://agpt.co${SPECIAL_MAPPINGS[pathname]}`;
}
// Pattern-based redirects
// Platform blocks: /platform/blocks/* → /docs/integrations/block-integrations/*
if (pathname.startsWith('/platform/blocks/')) {
const blockName = pathname.substring('/platform/blocks/'.length);
const transformedName = transformPath(blockName);
return `https://agpt.co/docs/integrations/block-integrations/${transformedName}`;
}
// Platform contributing: /platform/contributing/* → /docs/platform/contributing/*
if (pathname.startsWith('/platform/contributing/')) {
const subPath = pathname.substring('/platform/contributing/'.length);
return `https://agpt.co/docs/platform/contributing/${subPath}`;
}
// Platform general: /platform/* → /docs/platform/* (with underscore→hyphen)
if (pathname.startsWith('/platform/')) {
const subPath = pathname.substring('/platform/'.length);
const transformedPath = transformPath(subPath);
return `https://agpt.co/docs/platform/${transformedPath}`;
}
// Forge components: /forge/components/* → /docs/classic/forge/introduction/*
if (pathname.startsWith('/forge/components/')) {
const subPath = pathname.substring('/forge/components/'.length);
return `https://agpt.co/docs/classic/forge/introduction/${subPath}`;
}
// Forge general: /forge/* → /docs/classic/forge/*
if (pathname.startsWith('/forge/')) {
const subPath = pathname.substring('/forge/'.length);
return `https://agpt.co/docs/classic/forge/${subPath}`;
}
// Classic: /classic/* → /docs/classic/*
if (pathname.startsWith('/classic/')) {
const subPath = pathname.substring('/classic/'.length);
return `https://agpt.co/docs/classic/${subPath}`;
}
// Default fallback
return 'https://agpt.co/docs/';
}
/**
* Main Worker function
*/
export default {
async fetch(request, env, ctx) {
const url = new URL(request.url);
// Only handle docs.agpt.co requests
if (url.hostname === 'docs.agpt.co') {
const redirectUrl = handleDocsRedirect(url);
return new Response(null, {
status: 301,
headers: {
'Location': redirectUrl,
'Cache-Control': 'max-age=300' // Cache redirects for 5 minutes
}
});
}
// For non-docs requests, pass through or return 404
return new Response('Not Found', { status: 404 });
}
};
// Test function for local development
export function testRedirects() {
const testCases = [
'https://docs.agpt.co/',
'https://docs.agpt.co/platform/getting-started/',
'https://docs.agpt.co/platform/advanced_setup/',
'https://docs.agpt.co/platform/blocks/basic/',
'https://docs.agpt.co/platform/blocks/ai_condition/',
'https://docs.agpt.co/classic/setup/',
'https://docs.agpt.co/forge/components/agents/',
'https://docs.agpt.co/contributing/',
'https://docs.agpt.co/unknown-page'
];
console.log('Testing redirects:');
testCases.forEach(testUrl => {
const url = new URL(testUrl);
const result = handleDocsRedirect(url);
console.log(`${testUrl}${result}`);
});
}

View File

@@ -37,7 +37,7 @@ services:
context: ../
dockerfile: autogpt_platform/backend/Dockerfile
target: migrate
command: ["sh", "-c", "poetry run prisma generate && poetry run gen-prisma-stub && poetry run prisma migrate deploy"]
command: ["sh", "-c", "poetry run prisma generate && poetry run prisma migrate deploy"]
develop:
watch:
- path: ./

View File

@@ -46,15 +46,14 @@
"@radix-ui/react-scroll-area": "1.2.10",
"@radix-ui/react-select": "2.2.6",
"@radix-ui/react-separator": "1.1.7",
"@radix-ui/react-slider": "1.3.6",
"@radix-ui/react-slot": "1.2.3",
"@radix-ui/react-switch": "1.2.6",
"@radix-ui/react-tabs": "1.1.13",
"@radix-ui/react-toast": "1.2.15",
"@radix-ui/react-tooltip": "1.2.8",
"@rjsf/core": "6.1.2",
"@rjsf/utils": "6.1.2",
"@rjsf/validator-ajv8": "6.1.2",
"@rjsf/core": "5.24.13",
"@rjsf/utils": "5.24.13",
"@rjsf/validator-ajv8": "5.24.13",
"@sentry/nextjs": "10.27.0",
"@supabase/ssr": "0.7.0",
"@supabase/supabase-js": "2.78.0",
@@ -92,6 +91,7 @@
"react-currency-input-field": "4.0.3",
"react-day-picker": "9.11.1",
"react-dom": "18.3.1",
"react-drag-drop-files": "2.4.0",
"react-hook-form": "7.66.0",
"react-icons": "5.5.0",
"react-markdown": "9.0.3",

File diff suppressed because it is too large Load Diff

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.6 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

Some files were not shown because too many files have changed in this diff Show More