Compare commits

..

1 Commits

Author SHA1 Message Date
Swifty
f135a33b3a testing linting 2026-01-08 11:16:53 +01:00
222 changed files with 2456 additions and 11405 deletions

View File

@@ -1,37 +0,0 @@
{
"worktreeCopyPatterns": [
".env*",
".vscode/**",
".auth/**",
".claude/**",
"autogpt_platform/.env*",
"autogpt_platform/backend/.env*",
"autogpt_platform/frontend/.env*",
"autogpt_platform/frontend/.auth/**",
"autogpt_platform/db/docker/.env*"
],
"worktreeCopyIgnores": [
"**/node_modules/**",
"**/dist/**",
"**/.git/**",
"**/Thumbs.db",
"**/.DS_Store",
"**/.next/**",
"**/__pycache__/**",
"**/.ruff_cache/**",
"**/.pytest_cache/**",
"**/*.pyc",
"**/playwright-report/**",
"**/logs/**",
"**/site/**"
],
"worktreePathTemplate": "$BASE_PATH.worktree",
"postCreateCmd": [
"cd autogpt_platform/autogpt_libs && poetry install",
"cd autogpt_platform/backend && poetry install && poetry run prisma generate",
"cd autogpt_platform/frontend && pnpm install",
"cd docs && pip install -r requirements.txt"
],
"terminalCommand": "code .",
"deleteBranchWithWorktree": false
}

View File

@@ -16,7 +16,6 @@
!autogpt_platform/backend/poetry.lock
!autogpt_platform/backend/README.md
!autogpt_platform/backend/.env
!autogpt_platform/backend/gen_prisma_types_stub.py
# Platform - Market
!autogpt_platform/market/market/

View File

@@ -74,7 +74,7 @@ jobs:
- name: Generate Prisma Client
working-directory: autogpt_platform/backend
run: poetry run prisma generate && poetry run gen-prisma-stub
run: poetry run prisma generate
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
- name: Set up Node.js

View File

@@ -90,7 +90,7 @@ jobs:
- name: Generate Prisma Client
working-directory: autogpt_platform/backend
run: poetry run prisma generate && poetry run gen-prisma-stub
run: poetry run prisma generate
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
- name: Set up Node.js

View File

@@ -72,7 +72,7 @@ jobs:
- name: Generate Prisma Client
working-directory: autogpt_platform/backend
run: poetry run prisma generate && poetry run gen-prisma-stub
run: poetry run prisma generate
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
- name: Set up Node.js
@@ -108,16 +108,6 @@ jobs:
# run: pnpm playwright install --with-deps chromium
# Docker setup for development environment
- name: Free up disk space
run: |
# Remove large unused tools to free disk space for Docker builds
sudo rm -rf /usr/share/dotnet
sudo rm -rf /usr/local/lib/android
sudo rm -rf /opt/ghc
sudo rm -rf /opt/hostedtoolcache/CodeQL
sudo docker system prune -af
df -h
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3

View File

@@ -134,7 +134,7 @@ jobs:
run: poetry install
- name: Generate Prisma Client
run: poetry run prisma generate && poetry run gen-prisma-stub
run: poetry run prisma generate
- id: supabase
name: Start Supabase
@@ -176,7 +176,7 @@ jobs:
}
- name: Run Database Migrations
run: poetry run prisma migrate deploy
run: poetry run prisma migrate dev --name updates
env:
DATABASE_URL: ${{ steps.supabase.outputs.DB_URL }}
DIRECT_URL: ${{ steps.supabase.outputs.DB_URL }}

View File

@@ -12,7 +12,6 @@ reset-db:
rm -rf db/docker/volumes/db/data
cd backend && poetry run prisma migrate deploy
cd backend && poetry run prisma generate
cd backend && poetry run gen-prisma-stub
# View logs for core services
logs-core:
@@ -34,7 +33,6 @@ init-env:
migrate:
cd backend && poetry run prisma migrate deploy
cd backend && poetry run prisma generate
cd backend && poetry run gen-prisma-stub
run-backend:
cd backend && poetry run app

View File

@@ -18,4 +18,3 @@ load-tests/results/
load-tests/*.json
load-tests/*.log
load-tests/node_modules/*
migrations/*/rollback*.sql

View File

@@ -48,8 +48,7 @@ RUN poetry install --no-ansi --no-root
# Generate Prisma client
COPY autogpt_platform/backend/schema.prisma ./
COPY autogpt_platform/backend/backend/data/partial_types.py ./backend/data/partial_types.py
COPY autogpt_platform/backend/gen_prisma_types_stub.py ./
RUN poetry run prisma generate && poetry run gen-prisma-stub
RUN poetry run prisma generate
FROM debian:13-slim AS server_dependencies

View File

@@ -1,5 +1,4 @@
import uuid
from unittest.mock import AsyncMock, patch
import orjson
import pytest
@@ -18,17 +17,6 @@ setup_test_data = setup_test_data
setup_firecrawl_test_data = setup_firecrawl_test_data
@pytest.fixture(scope="session", autouse=True)
def mock_embedding_functions():
"""Mock embedding functions for all tests to avoid database/API dependencies."""
with patch(
"backend.api.features.store.db.ensure_embedding",
new_callable=AsyncMock,
return_value=True,
):
yield
@pytest.mark.asyncio(scope="session")
async def test_run_agent(setup_test_data):
"""Test that the run_agent tool successfully executes an approved agent"""

View File

@@ -489,7 +489,7 @@ async def update_agent_version_in_library(
agent_graph_version: int,
) -> library_model.LibraryAgent:
"""
Updates the agent version in the library for any agent owned by the user.
Updates the agent version in the library if useGraphIsActiveVersion is True.
Args:
user_id: Owner of the LibraryAgent.
@@ -498,31 +498,20 @@ async def update_agent_version_in_library(
Raises:
DatabaseError: If there's an error with the update.
NotFoundError: If no library agent is found for this user and agent.
"""
logger.debug(
f"Updating agent version in library for user #{user_id}, "
f"agent #{agent_graph_id} v{agent_graph_version}"
)
async with transaction() as tx:
library_agent = await prisma.models.LibraryAgent.prisma(tx).find_first_or_raise(
try:
library_agent = await prisma.models.LibraryAgent.prisma().find_first_or_raise(
where={
"userId": user_id,
"agentGraphId": agent_graph_id,
"useGraphIsActiveVersion": True,
},
)
# Delete any conflicting LibraryAgent for the target version
await prisma.models.LibraryAgent.prisma(tx).delete_many(
where={
"userId": user_id,
"agentGraphId": agent_graph_id,
"agentGraphVersion": agent_graph_version,
"id": {"not": library_agent.id},
}
)
lib = await prisma.models.LibraryAgent.prisma(tx).update(
lib = await prisma.models.LibraryAgent.prisma().update(
where={"id": library_agent.id},
data={
"AgentGraph": {
@@ -536,13 +525,13 @@ async def update_agent_version_in_library(
},
include={"AgentGraph": True},
)
if lib is None:
raise NotFoundError(f"Library agent {library_agent.id} not found")
if lib is None:
raise NotFoundError(
f"Failed to update library agent for {agent_graph_id} v{agent_graph_version}"
)
return library_model.LibraryAgent.from_db(lib)
return library_model.LibraryAgent.from_db(lib)
except prisma.errors.PrismaError as e:
logger.error(f"Database error updating agent version in library: {e}")
raise DatabaseError("Failed to update agent version in library") from e
async def update_library_agent(
@@ -836,7 +825,6 @@ async def add_store_agent_to_library(
}
},
"isCreatedByUser": False,
"useGraphIsActiveVersion": False,
"settings": SafeJson(
_initialize_graph_settings(graph_model).model_dump()
),

View File

@@ -48,7 +48,6 @@ class LibraryAgent(pydantic.BaseModel):
id: str
graph_id: str
graph_version: int
owner_user_id: str # ID of user who owns/created this agent graph
image_url: str | None
@@ -164,7 +163,6 @@ class LibraryAgent(pydantic.BaseModel):
id=agent.id,
graph_id=agent.agentGraphId,
graph_version=agent.agentGraphVersion,
owner_user_id=agent.userId,
image_url=agent.imageUrl,
creator_name=creator_name,
creator_image_url=creator_image_url,

View File

@@ -42,7 +42,6 @@ async def test_get_library_agents_success(
id="test-agent-1",
graph_id="test-agent-1",
graph_version=1,
owner_user_id=test_user_id,
name="Test Agent 1",
description="Test Description 1",
image_url=None,
@@ -65,7 +64,6 @@ async def test_get_library_agents_success(
id="test-agent-2",
graph_id="test-agent-2",
graph_version=1,
owner_user_id=test_user_id,
name="Test Agent 2",
description="Test Description 2",
image_url=None,
@@ -140,7 +138,6 @@ async def test_get_favorite_library_agents_success(
id="test-agent-1",
graph_id="test-agent-1",
graph_version=1,
owner_user_id=test_user_id,
name="Favorite Agent 1",
description="Test Favorite Description 1",
image_url=None,
@@ -208,7 +205,6 @@ def test_add_agent_to_library_success(
id="test-library-agent-id",
graph_id="test-agent-1",
graph_version=1,
owner_user_id=test_user_id,
name="Test Agent 1",
description="Test Description 1",
image_url=None,

View File

@@ -1,417 +0,0 @@
"""
Content Type Handlers for Unified Embeddings
Pluggable system for different content sources (store agents, blocks, docs).
Each handler knows how to fetch and process its content type for embedding.
"""
import logging
from abc import ABC, abstractmethod
from dataclasses import dataclass
from pathlib import Path
from typing import Any
from prisma.enums import ContentType
from backend.data.db import query_raw_with_schema
logger = logging.getLogger(__name__)
@dataclass
class ContentItem:
"""Represents a piece of content to be embedded."""
content_id: str # Unique identifier (DB ID or file path)
content_type: ContentType
searchable_text: str # Combined text for embedding
metadata: dict[str, Any] # Content-specific metadata
user_id: str | None = None # For user-scoped content
class ContentHandler(ABC):
"""Base handler for fetching and processing content for embeddings."""
@property
@abstractmethod
def content_type(self) -> ContentType:
"""The ContentType this handler manages."""
pass
@abstractmethod
async def get_missing_items(self, batch_size: int) -> list[ContentItem]:
"""
Fetch items that don't have embeddings yet.
Args:
batch_size: Maximum number of items to return
Returns:
List of ContentItem objects ready for embedding
"""
pass
@abstractmethod
async def get_stats(self) -> dict[str, int]:
"""
Get statistics about embedding coverage.
Returns:
Dict with keys: total, with_embeddings, without_embeddings
"""
pass
class StoreAgentHandler(ContentHandler):
"""Handler for marketplace store agent listings."""
@property
def content_type(self) -> ContentType:
return ContentType.STORE_AGENT
async def get_missing_items(self, batch_size: int) -> list[ContentItem]:
"""Fetch approved store listings without embeddings."""
from backend.api.features.store.embeddings import build_searchable_text
missing = await query_raw_with_schema(
"""
SELECT
slv.id,
slv.name,
slv.description,
slv."subHeading",
slv.categories
FROM {schema_prefix}"StoreListingVersion" slv
LEFT JOIN {schema_prefix}"UnifiedContentEmbedding" uce
ON slv.id = uce."contentId" AND uce."contentType" = 'STORE_AGENT'::{schema_prefix}"ContentType"
WHERE slv."submissionStatus" = 'APPROVED'
AND slv."isDeleted" = false
AND uce."contentId" IS NULL
LIMIT $1
""",
batch_size,
)
return [
ContentItem(
content_id=row["id"],
content_type=ContentType.STORE_AGENT,
searchable_text=build_searchable_text(
name=row["name"],
description=row["description"],
sub_heading=row["subHeading"],
categories=row["categories"] or [],
),
metadata={
"name": row["name"],
"categories": row["categories"] or [],
},
user_id=None, # Store agents are public
)
for row in missing
]
async def get_stats(self) -> dict[str, int]:
"""Get statistics about store agent embedding coverage."""
# Count approved versions
approved_result = await query_raw_with_schema(
"""
SELECT COUNT(*) as count
FROM {schema_prefix}"StoreListingVersion"
WHERE "submissionStatus" = 'APPROVED'
AND "isDeleted" = false
"""
)
total_approved = approved_result[0]["count"] if approved_result else 0
# Count versions with embeddings
embedded_result = await query_raw_with_schema(
"""
SELECT COUNT(*) as count
FROM {schema_prefix}"StoreListingVersion" slv
JOIN {schema_prefix}"UnifiedContentEmbedding" uce ON slv.id = uce."contentId" AND uce."contentType" = 'STORE_AGENT'::{schema_prefix}"ContentType"
WHERE slv."submissionStatus" = 'APPROVED'
AND slv."isDeleted" = false
"""
)
with_embeddings = embedded_result[0]["count"] if embedded_result else 0
return {
"total": total_approved,
"with_embeddings": with_embeddings,
"without_embeddings": total_approved - with_embeddings,
}
class BlockHandler(ContentHandler):
"""Handler for block definitions (Python classes)."""
@property
def content_type(self) -> ContentType:
return ContentType.BLOCK
async def get_missing_items(self, batch_size: int) -> list[ContentItem]:
"""Fetch blocks without embeddings."""
from backend.data.block import get_blocks
# Get all available blocks
all_blocks = get_blocks()
# Check which ones have embeddings
if not all_blocks:
return []
block_ids = list(all_blocks.keys())
# Query for existing embeddings
placeholders = ",".join([f"${i+1}" for i in range(len(block_ids))])
existing_result = await query_raw_with_schema(
f"""
SELECT "contentId"
FROM {{schema_prefix}}"UnifiedContentEmbedding"
WHERE "contentType" = 'BLOCK'::{{schema_prefix}}"ContentType"
AND "contentId" = ANY(ARRAY[{placeholders}])
""",
*block_ids,
)
existing_ids = {row["contentId"] for row in existing_result}
missing_blocks = [
(block_id, block_cls)
for block_id, block_cls in all_blocks.items()
if block_id not in existing_ids
]
# Convert to ContentItem
items = []
for block_id, block_cls in missing_blocks[:batch_size]:
try:
block_instance = block_cls()
# Build searchable text from block metadata
parts = []
if hasattr(block_instance, "name") and block_instance.name:
parts.append(block_instance.name)
if (
hasattr(block_instance, "description")
and block_instance.description
):
parts.append(block_instance.description)
if hasattr(block_instance, "categories") and block_instance.categories:
# Convert BlockCategory enum to strings
parts.append(
" ".join(str(cat.value) for cat in block_instance.categories)
)
# Add input/output schema info
if hasattr(block_instance, "input_schema"):
schema = block_instance.input_schema
if hasattr(schema, "model_json_schema"):
schema_dict = schema.model_json_schema()
if "properties" in schema_dict:
for prop_name, prop_info in schema_dict[
"properties"
].items():
if "description" in prop_info:
parts.append(
f"{prop_name}: {prop_info['description']}"
)
searchable_text = " ".join(parts)
items.append(
ContentItem(
content_id=block_id,
content_type=ContentType.BLOCK,
searchable_text=searchable_text,
metadata={
"name": getattr(block_instance, "name", ""),
"categories": getattr(block_instance, "categories", []),
},
user_id=None, # Blocks are public
)
)
except Exception as e:
logger.warning(f"Failed to process block {block_id}: {e}")
continue
return items
async def get_stats(self) -> dict[str, int]:
"""Get statistics about block embedding coverage."""
from backend.data.block import get_blocks
all_blocks = get_blocks()
total_blocks = len(all_blocks)
if total_blocks == 0:
return {"total": 0, "with_embeddings": 0, "without_embeddings": 0}
block_ids = list(all_blocks.keys())
placeholders = ",".join([f"${i+1}" for i in range(len(block_ids))])
embedded_result = await query_raw_with_schema(
f"""
SELECT COUNT(*) as count
FROM {{schema_prefix}}"UnifiedContentEmbedding"
WHERE "contentType" = 'BLOCK'::{{schema_prefix}}"ContentType"
AND "contentId" = ANY(ARRAY[{placeholders}])
""",
*block_ids,
)
with_embeddings = embedded_result[0]["count"] if embedded_result else 0
return {
"total": total_blocks,
"with_embeddings": with_embeddings,
"without_embeddings": total_blocks - with_embeddings,
}
class DocumentationHandler(ContentHandler):
"""Handler for documentation files (.md/.mdx)."""
@property
def content_type(self) -> ContentType:
return ContentType.DOCUMENTATION
def _get_docs_root(self) -> Path:
"""Get the documentation root directory."""
# Assuming docs are in /docs relative to project root
backend_root = Path(__file__).parent.parent.parent.parent
docs_root = backend_root.parent.parent / "docs"
return docs_root
def _extract_title_and_content(self, file_path: Path) -> tuple[str, str]:
"""Extract title and content from markdown file."""
try:
content = file_path.read_text(encoding="utf-8")
# Try to extract title from first # heading
lines = content.split("\n")
title = ""
body_lines = []
for line in lines:
if line.startswith("# ") and not title:
title = line[2:].strip()
else:
body_lines.append(line)
# If no title found, use filename
if not title:
title = file_path.stem.replace("-", " ").replace("_", " ").title()
body = "\n".join(body_lines)
return title, body
except Exception as e:
logger.warning(f"Failed to read {file_path}: {e}")
return file_path.stem, ""
async def get_missing_items(self, batch_size: int) -> list[ContentItem]:
"""Fetch documentation files without embeddings."""
docs_root = self._get_docs_root()
if not docs_root.exists():
logger.warning(f"Documentation root not found: {docs_root}")
return []
# Find all .md and .mdx files
all_docs = list(docs_root.rglob("*.md")) + list(docs_root.rglob("*.mdx"))
# Get relative paths for content IDs
doc_paths = [str(doc.relative_to(docs_root)) for doc in all_docs]
if not doc_paths:
return []
# Check which ones have embeddings
placeholders = ",".join([f"${i+1}" for i in range(len(doc_paths))])
existing_result = await query_raw_with_schema(
f"""
SELECT "contentId"
FROM {{schema_prefix}}"UnifiedContentEmbedding"
WHERE "contentType" = 'DOCUMENTATION'::{{schema_prefix}}"ContentType"
AND "contentId" = ANY(ARRAY[{placeholders}])
""",
*doc_paths,
)
existing_ids = {row["contentId"] for row in existing_result}
missing_docs = [
(doc_path, doc_file)
for doc_path, doc_file in zip(doc_paths, all_docs)
if doc_path not in existing_ids
]
# Convert to ContentItem
items = []
for doc_path, doc_file in missing_docs[:batch_size]:
try:
title, content = self._extract_title_and_content(doc_file)
# Build searchable text
searchable_text = f"{title} {content}"
items.append(
ContentItem(
content_id=doc_path,
content_type=ContentType.DOCUMENTATION,
searchable_text=searchable_text,
metadata={
"title": title,
"path": doc_path,
},
user_id=None, # Documentation is public
)
)
except Exception as e:
logger.warning(f"Failed to process doc {doc_path}: {e}")
continue
return items
async def get_stats(self) -> dict[str, int]:
"""Get statistics about documentation embedding coverage."""
docs_root = self._get_docs_root()
if not docs_root.exists():
return {"total": 0, "with_embeddings": 0, "without_embeddings": 0}
# Count all .md and .mdx files
all_docs = list(docs_root.rglob("*.md")) + list(docs_root.rglob("*.mdx"))
total_docs = len(all_docs)
if total_docs == 0:
return {"total": 0, "with_embeddings": 0, "without_embeddings": 0}
doc_paths = [str(doc.relative_to(docs_root)) for doc in all_docs]
placeholders = ",".join([f"${i+1}" for i in range(len(doc_paths))])
embedded_result = await query_raw_with_schema(
f"""
SELECT COUNT(*) as count
FROM {{schema_prefix}}"UnifiedContentEmbedding"
WHERE "contentType" = 'DOCUMENTATION'::{{schema_prefix}}"ContentType"
AND "contentId" = ANY(ARRAY[{placeholders}])
""",
*doc_paths,
)
with_embeddings = embedded_result[0]["count"] if embedded_result else 0
return {
"total": total_docs,
"with_embeddings": with_embeddings,
"without_embeddings": total_docs - with_embeddings,
}
# Content handler registry
CONTENT_HANDLERS: dict[ContentType, ContentHandler] = {
ContentType.STORE_AGENT: StoreAgentHandler(),
ContentType.BLOCK: BlockHandler(),
ContentType.DOCUMENTATION: DocumentationHandler(),
}

View File

@@ -1,214 +0,0 @@
"""
Integration tests for content handlers using real DB.
Run with: poetry run pytest backend/api/features/store/content_handlers_integration_test.py -xvs
These tests use the real database but mock OpenAI calls.
"""
from unittest.mock import patch
import pytest
from backend.api.features.store.content_handlers import (
CONTENT_HANDLERS,
BlockHandler,
DocumentationHandler,
StoreAgentHandler,
)
from backend.api.features.store.embeddings import (
backfill_all_content_types,
ensure_content_embedding,
get_embedding_stats,
)
@pytest.mark.asyncio(loop_scope="session")
async def test_store_agent_handler_real_db():
"""Test StoreAgentHandler with real database queries."""
handler = StoreAgentHandler()
# Get stats from real DB
stats = await handler.get_stats()
# Stats should have correct structure
assert "total" in stats
assert "with_embeddings" in stats
assert "without_embeddings" in stats
assert stats["total"] >= 0
assert stats["with_embeddings"] >= 0
assert stats["without_embeddings"] >= 0
# Get missing items (max 1 to keep test fast)
items = await handler.get_missing_items(batch_size=1)
# Items should be list (may be empty if all have embeddings)
assert isinstance(items, list)
if items:
item = items[0]
assert item.content_id is not None
assert item.content_type.value == "STORE_AGENT"
assert item.searchable_text != ""
assert item.user_id is None
@pytest.mark.asyncio(loop_scope="session")
async def test_block_handler_real_db():
"""Test BlockHandler with real database queries."""
handler = BlockHandler()
# Get stats from real DB
stats = await handler.get_stats()
# Stats should have correct structure
assert "total" in stats
assert "with_embeddings" in stats
assert "without_embeddings" in stats
assert stats["total"] >= 0 # Should have at least some blocks
assert stats["with_embeddings"] >= 0
assert stats["without_embeddings"] >= 0
# Get missing items (max 1 to keep test fast)
items = await handler.get_missing_items(batch_size=1)
# Items should be list
assert isinstance(items, list)
if items:
item = items[0]
assert item.content_id is not None # Should be block UUID
assert item.content_type.value == "BLOCK"
assert item.searchable_text != ""
assert item.user_id is None
@pytest.mark.asyncio(loop_scope="session")
async def test_documentation_handler_real_fs():
"""Test DocumentationHandler with real filesystem."""
handler = DocumentationHandler()
# Get stats from real filesystem
stats = await handler.get_stats()
# Stats should have correct structure
assert "total" in stats
assert "with_embeddings" in stats
assert "without_embeddings" in stats
assert stats["total"] >= 0
assert stats["with_embeddings"] >= 0
assert stats["without_embeddings"] >= 0
# Get missing items (max 1 to keep test fast)
items = await handler.get_missing_items(batch_size=1)
# Items should be list
assert isinstance(items, list)
if items:
item = items[0]
assert item.content_id is not None # Should be relative path
assert item.content_type.value == "DOCUMENTATION"
assert item.searchable_text != ""
assert item.user_id is None
@pytest.mark.asyncio(loop_scope="session")
async def test_get_embedding_stats_all_types():
"""Test get_embedding_stats aggregates all content types."""
stats = await get_embedding_stats()
# Should have structure with by_type and totals
assert "by_type" in stats
assert "totals" in stats
# Check each content type is present
by_type = stats["by_type"]
assert "STORE_AGENT" in by_type
assert "BLOCK" in by_type
assert "DOCUMENTATION" in by_type
# Check totals are aggregated
totals = stats["totals"]
assert totals["total"] >= 0
assert totals["with_embeddings"] >= 0
assert totals["without_embeddings"] >= 0
assert "coverage_percent" in totals
@pytest.mark.asyncio(loop_scope="session")
@patch("backend.api.features.store.embeddings.generate_embedding")
async def test_ensure_content_embedding_blocks(mock_generate):
"""Test creating embeddings for blocks (mocked OpenAI)."""
# Mock OpenAI to return fake embedding
mock_generate.return_value = [0.1] * 1536
# Get one block without embedding
handler = BlockHandler()
items = await handler.get_missing_items(batch_size=1)
if not items:
pytest.skip("No blocks without embeddings")
item = items[0]
# Try to create embedding (OpenAI mocked)
result = await ensure_content_embedding(
content_type=item.content_type,
content_id=item.content_id,
searchable_text=item.searchable_text,
metadata=item.metadata,
user_id=item.user_id,
)
# Should succeed with mocked OpenAI
assert result is True
mock_generate.assert_called_once()
@pytest.mark.asyncio(loop_scope="session")
@patch("backend.api.features.store.embeddings.generate_embedding")
async def test_backfill_all_content_types_dry_run(mock_generate):
"""Test backfill_all_content_types processes all handlers in order."""
# Mock OpenAI to return fake embedding
mock_generate.return_value = [0.1] * 1536
# Run backfill with batch_size=1 to process max 1 per type
result = await backfill_all_content_types(batch_size=1)
# Should have results for all content types
assert "by_type" in result
assert "totals" in result
by_type = result["by_type"]
assert "BLOCK" in by_type
assert "STORE_AGENT" in by_type
assert "DOCUMENTATION" in by_type
# Each type should have correct structure
for content_type, type_result in by_type.items():
assert "processed" in type_result
assert "success" in type_result
assert "failed" in type_result
# Totals should aggregate
totals = result["totals"]
assert totals["processed"] >= 0
assert totals["success"] >= 0
assert totals["failed"] >= 0
@pytest.mark.asyncio(loop_scope="session")
async def test_content_handler_registry():
"""Test all handlers are registered in correct order."""
from prisma.enums import ContentType
# All three types should be registered
assert ContentType.STORE_AGENT in CONTENT_HANDLERS
assert ContentType.BLOCK in CONTENT_HANDLERS
assert ContentType.DOCUMENTATION in CONTENT_HANDLERS
# Check handler types
assert isinstance(CONTENT_HANDLERS[ContentType.STORE_AGENT], StoreAgentHandler)
assert isinstance(CONTENT_HANDLERS[ContentType.BLOCK], BlockHandler)
assert isinstance(CONTENT_HANDLERS[ContentType.DOCUMENTATION], DocumentationHandler)

View File

@@ -1,324 +0,0 @@
"""
E2E tests for content handlers (blocks, store agents, documentation).
Tests the full flow: discovering content → generating embeddings → storing.
"""
from pathlib import Path
from unittest.mock import MagicMock, patch
import pytest
from prisma.enums import ContentType
from backend.api.features.store.content_handlers import (
CONTENT_HANDLERS,
BlockHandler,
DocumentationHandler,
StoreAgentHandler,
)
@pytest.mark.asyncio(loop_scope="session")
async def test_store_agent_handler_get_missing_items(mocker):
"""Test StoreAgentHandler fetches approved agents without embeddings."""
handler = StoreAgentHandler()
# Mock database query
mock_missing = [
{
"id": "agent-1",
"name": "Test Agent",
"description": "A test agent",
"subHeading": "Test heading",
"categories": ["AI", "Testing"],
}
]
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
return_value=mock_missing,
):
items = await handler.get_missing_items(batch_size=10)
assert len(items) == 1
assert items[0].content_id == "agent-1"
assert items[0].content_type == ContentType.STORE_AGENT
assert "Test Agent" in items[0].searchable_text
assert "A test agent" in items[0].searchable_text
assert items[0].metadata["name"] == "Test Agent"
assert items[0].user_id is None
@pytest.mark.asyncio(loop_scope="session")
async def test_store_agent_handler_get_stats(mocker):
"""Test StoreAgentHandler returns correct stats."""
handler = StoreAgentHandler()
# Mock approved count query
mock_approved = [{"count": 50}]
# Mock embedded count query
mock_embedded = [{"count": 30}]
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
side_effect=[mock_approved, mock_embedded],
):
stats = await handler.get_stats()
assert stats["total"] == 50
assert stats["with_embeddings"] == 30
assert stats["without_embeddings"] == 20
@pytest.mark.asyncio(loop_scope="session")
async def test_block_handler_get_missing_items(mocker):
"""Test BlockHandler discovers blocks without embeddings."""
handler = BlockHandler()
# Mock get_blocks to return test blocks
mock_block_class = MagicMock()
mock_block_instance = MagicMock()
mock_block_instance.name = "Calculator Block"
mock_block_instance.description = "Performs calculations"
mock_block_instance.categories = [MagicMock(value="MATH")]
mock_block_instance.input_schema.model_json_schema.return_value = {
"properties": {"expression": {"description": "Math expression to evaluate"}}
}
mock_block_class.return_value = mock_block_instance
mock_blocks = {"block-uuid-1": mock_block_class}
# Mock existing embeddings query (no embeddings exist)
mock_existing = []
with patch(
"backend.api.features.store.content_handlers.get_blocks",
return_value=mock_blocks,
):
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
return_value=mock_existing,
):
items = await handler.get_missing_items(batch_size=10)
assert len(items) == 1
assert items[0].content_id == "block-uuid-1"
assert items[0].content_type == ContentType.BLOCK
assert "Calculator Block" in items[0].searchable_text
assert "Performs calculations" in items[0].searchable_text
assert "MATH" in items[0].searchable_text
assert "expression: Math expression" in items[0].searchable_text
assert items[0].user_id is None
@pytest.mark.asyncio(loop_scope="session")
async def test_block_handler_get_stats(mocker):
"""Test BlockHandler returns correct stats."""
handler = BlockHandler()
# Mock get_blocks
mock_blocks = {
"block-1": MagicMock(),
"block-2": MagicMock(),
"block-3": MagicMock(),
}
# Mock embedded count query (2 blocks have embeddings)
mock_embedded = [{"count": 2}]
with patch(
"backend.api.features.store.content_handlers.get_blocks",
return_value=mock_blocks,
):
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
return_value=mock_embedded,
):
stats = await handler.get_stats()
assert stats["total"] == 3
assert stats["with_embeddings"] == 2
assert stats["without_embeddings"] == 1
@pytest.mark.asyncio(loop_scope="session")
async def test_documentation_handler_get_missing_items(tmp_path, mocker):
"""Test DocumentationHandler discovers docs without embeddings."""
handler = DocumentationHandler()
# Create temporary docs directory with test files
docs_root = tmp_path / "docs"
docs_root.mkdir()
(docs_root / "guide.md").write_text("# Getting Started\n\nThis is a guide.")
(docs_root / "api.mdx").write_text("# API Reference\n\nAPI documentation.")
# Mock _get_docs_root to return temp dir
with patch.object(handler, "_get_docs_root", return_value=docs_root):
# Mock existing embeddings query (no embeddings exist)
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
return_value=[],
):
items = await handler.get_missing_items(batch_size=10)
assert len(items) == 2
# Check guide.md
guide_item = next(
(item for item in items if item.content_id == "guide.md"), None
)
assert guide_item is not None
assert guide_item.content_type == ContentType.DOCUMENTATION
assert "Getting Started" in guide_item.searchable_text
assert "This is a guide" in guide_item.searchable_text
assert guide_item.metadata["title"] == "Getting Started"
assert guide_item.user_id is None
# Check api.mdx
api_item = next(
(item for item in items if item.content_id == "api.mdx"), None
)
assert api_item is not None
assert "API Reference" in api_item.searchable_text
@pytest.mark.asyncio(loop_scope="session")
async def test_documentation_handler_get_stats(tmp_path, mocker):
"""Test DocumentationHandler returns correct stats."""
handler = DocumentationHandler()
# Create temporary docs directory
docs_root = tmp_path / "docs"
docs_root.mkdir()
(docs_root / "doc1.md").write_text("# Doc 1")
(docs_root / "doc2.md").write_text("# Doc 2")
(docs_root / "doc3.mdx").write_text("# Doc 3")
# Mock embedded count query (1 doc has embedding)
mock_embedded = [{"count": 1}]
with patch.object(handler, "_get_docs_root", return_value=docs_root):
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
return_value=mock_embedded,
):
stats = await handler.get_stats()
assert stats["total"] == 3
assert stats["with_embeddings"] == 1
assert stats["without_embeddings"] == 2
@pytest.mark.asyncio(loop_scope="session")
async def test_documentation_handler_title_extraction(tmp_path):
"""Test DocumentationHandler extracts title from markdown heading."""
handler = DocumentationHandler()
# Test with heading
doc_with_heading = tmp_path / "with_heading.md"
doc_with_heading.write_text("# My Title\n\nContent here")
title, content = handler._extract_title_and_content(doc_with_heading)
assert title == "My Title"
assert "# My Title" not in content
assert "Content here" in content
# Test without heading
doc_without_heading = tmp_path / "no-heading.md"
doc_without_heading.write_text("Just content, no heading")
title, content = handler._extract_title_and_content(doc_without_heading)
assert title == "No Heading" # Uses filename
assert "Just content" in content
@pytest.mark.asyncio(loop_scope="session")
async def test_content_handlers_registry():
"""Test all content types are registered."""
assert ContentType.STORE_AGENT in CONTENT_HANDLERS
assert ContentType.BLOCK in CONTENT_HANDLERS
assert ContentType.DOCUMENTATION in CONTENT_HANDLERS
assert isinstance(CONTENT_HANDLERS[ContentType.STORE_AGENT], StoreAgentHandler)
assert isinstance(CONTENT_HANDLERS[ContentType.BLOCK], BlockHandler)
assert isinstance(CONTENT_HANDLERS[ContentType.DOCUMENTATION], DocumentationHandler)
@pytest.mark.asyncio(loop_scope="session")
async def test_block_handler_handles_missing_attributes():
"""Test BlockHandler gracefully handles blocks with missing attributes."""
handler = BlockHandler()
# Mock block with minimal attributes
mock_block_class = MagicMock()
mock_block_instance = MagicMock()
mock_block_instance.name = "Minimal Block"
# No description, categories, or schema
del mock_block_instance.description
del mock_block_instance.categories
del mock_block_instance.input_schema
mock_block_class.return_value = mock_block_instance
mock_blocks = {"block-minimal": mock_block_class}
with patch(
"backend.api.features.store.content_handlers.get_blocks",
return_value=mock_blocks,
):
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
return_value=[],
):
items = await handler.get_missing_items(batch_size=10)
assert len(items) == 1
assert items[0].searchable_text == "Minimal Block"
@pytest.mark.asyncio(loop_scope="session")
async def test_block_handler_skips_failed_blocks():
"""Test BlockHandler skips blocks that fail to instantiate."""
handler = BlockHandler()
# Mock one good block and one bad block
good_block = MagicMock()
good_instance = MagicMock()
good_instance.name = "Good Block"
good_instance.description = "Works fine"
good_instance.categories = []
good_block.return_value = good_instance
bad_block = MagicMock()
bad_block.side_effect = Exception("Instantiation failed")
mock_blocks = {"good-block": good_block, "bad-block": bad_block}
with patch(
"backend.api.features.store.content_handlers.get_blocks",
return_value=mock_blocks,
):
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
return_value=[],
):
items = await handler.get_missing_items(batch_size=10)
# Should only get the good block
assert len(items) == 1
assert items[0].content_id == "good-block"
@pytest.mark.asyncio(loop_scope="session")
async def test_documentation_handler_missing_docs_directory():
"""Test DocumentationHandler handles missing docs directory gracefully."""
handler = DocumentationHandler()
# Mock _get_docs_root to return non-existent path
fake_path = Path("/nonexistent/docs")
with patch.object(handler, "_get_docs_root", return_value=fake_path):
items = await handler.get_missing_items(batch_size=10)
assert items == []
stats = await handler.get_stats()
assert stats["total"] == 0
assert stats["with_embeddings"] == 0
assert stats["without_embeddings"] == 0

View File

@@ -1,7 +1,8 @@
import asyncio
import logging
import typing
from datetime import datetime, timezone
from typing import Any, Literal
from typing import Literal
import fastapi
import prisma.enums
@@ -9,7 +10,7 @@ import prisma.errors
import prisma.models
import prisma.types
from backend.data.db import transaction
from backend.data.db import query_raw_with_schema, transaction
from backend.data.graph import (
GraphMeta,
GraphModel,
@@ -29,8 +30,6 @@ from backend.util.settings import Settings
from . import exceptions as store_exceptions
from . import model as store_model
from .embeddings import ensure_embedding
from .hybrid_search import hybrid_search
logger = logging.getLogger(__name__)
settings = Settings()
@@ -51,77 +50,128 @@ async def get_store_agents(
page_size: int = 20,
) -> store_model.StoreAgentsResponse:
"""
Get PUBLIC store agents from the StoreAgent view.
Search behavior:
- With search_query: Uses hybrid search (semantic + lexical)
- Fallback: If embeddings unavailable, gracefully degrades to lexical-only
- Rationale: User-facing endpoint prioritizes availability over accuracy
Note: Admin operations (approval) use fail-fast to prevent inconsistent state.
Get PUBLIC store agents from the StoreAgent view
"""
logger.debug(
f"Getting store agents. featured={featured}, creators={creators}, sorted_by={sorted_by}, search={search_query}, category={category}, page={page}"
)
search_used_hybrid = False
store_agents: list[store_model.StoreAgent] = []
agents: list[dict[str, Any]] = []
total = 0
total_pages = 0
try:
# If search_query is provided, use hybrid search (embeddings + tsvector)
# If search_query is provided, use full-text search
if search_query:
# Try hybrid search combining semantic and lexical signals
# Falls back to lexical-only if OpenAI unavailable (user-facing, high SLA)
try:
agents, total = await hybrid_search(
query=search_query,
featured=featured,
creators=creators,
category=category,
sorted_by="relevance", # Use hybrid scoring for relevance
page=page,
page_size=page_size,
)
search_used_hybrid = True
except Exception as e:
# Log error but fall back to lexical search for better UX
logger.error(
f"Hybrid search failed (likely OpenAI unavailable), "
f"falling back to lexical search: {e}"
)
# search_used_hybrid remains False, will use fallback path below
offset = (page - 1) * page_size
# Convert hybrid search results (dict format) if hybrid succeeded
if search_used_hybrid:
total_pages = (total + page_size - 1) // page_size
store_agents: list[store_model.StoreAgent] = []
for agent in agents:
try:
store_agent = store_model.StoreAgent(
slug=agent["slug"],
agent_name=agent["agent_name"],
agent_image=(
agent["agent_image"][0] if agent["agent_image"] else ""
),
creator=agent["creator_username"] or "Needs Profile",
creator_avatar=agent["creator_avatar"] or "",
sub_heading=agent["sub_heading"],
description=agent["description"],
runs=agent["runs"],
rating=agent["rating"],
)
store_agents.append(store_agent)
except Exception as e:
logger.error(
f"Error parsing Store agent from hybrid search results: {e}"
)
continue
# Whitelist allowed order_by columns
ALLOWED_ORDER_BY = {
"rating": "rating DESC, rank DESC",
"runs": "runs DESC, rank DESC",
"name": "agent_name ASC, rank ASC",
"updated_at": "updated_at DESC, rank DESC",
}
if not search_used_hybrid:
# Fallback path - use basic search or no search
# Validate and get order clause
if sorted_by and sorted_by in ALLOWED_ORDER_BY:
order_by_clause = ALLOWED_ORDER_BY[sorted_by]
else:
order_by_clause = "updated_at DESC, rank DESC"
# Build WHERE conditions and parameters list
where_parts: list[str] = []
params: list[typing.Any] = [search_query] # $1 - search term
param_index = 2 # Start at $2 for next parameter
# Always filter for available agents
where_parts.append("is_available = true")
if featured:
where_parts.append("featured = true")
if creators and creators:
# Use ANY with array parameter
where_parts.append(f"creator_username = ANY(${param_index})")
params.append(creators)
param_index += 1
if category and category:
where_parts.append(f"${param_index} = ANY(categories)")
params.append(category)
param_index += 1
sql_where_clause: str = " AND ".join(where_parts) if where_parts else "1=1"
# Add pagination params
params.extend([page_size, offset])
limit_param = f"${param_index}"
offset_param = f"${param_index + 1}"
# Execute full-text search query with parameterized values
sql_query = f"""
SELECT
slug,
agent_name,
agent_image,
creator_username,
creator_avatar,
sub_heading,
description,
runs,
rating,
categories,
featured,
is_available,
updated_at,
ts_rank_cd(search, query) AS rank
FROM {{schema_prefix}}"StoreAgent",
plainto_tsquery('english', $1) AS query
WHERE {sql_where_clause}
AND search @@ query
ORDER BY {order_by_clause}
LIMIT {limit_param} OFFSET {offset_param}
"""
# Count query for pagination - only uses search term parameter
count_query = f"""
SELECT COUNT(*) as count
FROM {{schema_prefix}}"StoreAgent",
plainto_tsquery('english', $1) AS query
WHERE {sql_where_clause}
AND search @@ query
"""
# Execute both queries with parameters
agents = await query_raw_with_schema(sql_query, *params)
# For count, use params without pagination (last 2 params)
count_params = params[:-2]
count_result = await query_raw_with_schema(count_query, *count_params)
total = count_result[0]["count"] if count_result else 0
total_pages = (total + page_size - 1) // page_size
# Convert raw results to StoreAgent models
store_agents: list[store_model.StoreAgent] = []
for agent in agents:
try:
store_agent = store_model.StoreAgent(
slug=agent["slug"],
agent_name=agent["agent_name"],
agent_image=(
agent["agent_image"][0] if agent["agent_image"] else ""
),
creator=agent["creator_username"] or "Needs Profile",
creator_avatar=agent["creator_avatar"] or "",
sub_heading=agent["sub_heading"],
description=agent["description"],
runs=agent["runs"],
rating=agent["rating"],
)
store_agents.append(store_agent)
except Exception as e:
logger.error(f"Error parsing Store agent from search results: {e}")
continue
else:
# Non-search query path (original logic)
where_clause: prisma.types.StoreAgentWhereInput = {"is_available": True}
if featured:
where_clause["featured"] = featured
@@ -130,14 +180,6 @@ async def get_store_agents(
if category:
where_clause["categories"] = {"has": category}
# Add basic text search if search_query provided but hybrid failed
if search_query:
where_clause["OR"] = [
{"agent_name": {"contains": search_query, "mode": "insensitive"}},
{"sub_heading": {"contains": search_query, "mode": "insensitive"}},
{"description": {"contains": search_query, "mode": "insensitive"}},
]
order_by = []
if sorted_by == "rating":
order_by.append({"rating": "desc"})
@@ -146,7 +188,7 @@ async def get_store_agents(
elif sorted_by == "name":
order_by.append({"agent_name": "asc"})
db_agents = await prisma.models.StoreAgent.prisma().find_many(
agents = await prisma.models.StoreAgent.prisma().find_many(
where=where_clause,
order=order_by,
skip=(page - 1) * page_size,
@@ -157,7 +199,7 @@ async def get_store_agents(
total_pages = (total + page_size - 1) // page_size
store_agents: list[store_model.StoreAgent] = []
for agent in db_agents:
for agent in agents:
try:
# Create the StoreAgent object safely
store_agent = store_model.StoreAgent(
@@ -572,7 +614,6 @@ async def get_store_submissions(
submission_models = []
for sub in submissions:
submission_model = store_model.StoreSubmission(
listing_id=sub.listing_id,
agent_id=sub.agent_id,
agent_version=sub.agent_version,
name=sub.name,
@@ -626,48 +667,35 @@ async def delete_store_submission(
submission_id: str,
) -> bool:
"""
Delete a store submission version as the submitting user.
Delete a store listing submission as the submitting user.
Args:
user_id: ID of the authenticated user
submission_id: StoreListingVersion ID to delete
submission_id: ID of the submission to be deleted
Returns:
bool: True if successfully deleted
bool: True if the submission was successfully deleted, False otherwise
"""
logger.debug(f"Deleting store submission {submission_id} for user {user_id}")
try:
# Find the submission version with ownership check
version = await prisma.models.StoreListingVersion.prisma().find_first(
where={"id": submission_id}, include={"StoreListing": True}
# Verify the submission belongs to this user
submission = await prisma.models.StoreListing.prisma().find_first(
where={"agentGraphId": submission_id, "owningUserId": user_id}
)
if (
not version
or not version.StoreListing
or version.StoreListing.owningUserId != user_id
):
raise store_exceptions.SubmissionNotFoundError("Submission not found")
# Prevent deletion of approved submissions
if version.submissionStatus == prisma.enums.SubmissionStatus.APPROVED:
raise store_exceptions.InvalidOperationError(
"Cannot delete approved submissions"
if not submission:
logger.warning(f"Submission not found for user {user_id}: {submission_id}")
raise store_exceptions.SubmissionNotFoundError(
f"Submission not found for this user. User ID: {user_id}, Submission ID: {submission_id}"
)
# Delete the version
await prisma.models.StoreListingVersion.prisma().delete(
where={"id": version.id}
)
# Delete the submission
await prisma.models.StoreListing.prisma().delete(where={"id": submission.id})
# Clean up empty listing if this was the last version
remaining = await prisma.models.StoreListingVersion.prisma().count(
where={"storeListingId": version.storeListingId}
logger.debug(
f"Successfully deleted submission {submission_id} for user {user_id}"
)
if remaining == 0:
await prisma.models.StoreListing.prisma().delete(
where={"id": version.storeListingId}
)
return True
except Exception as e:
@@ -731,15 +759,9 @@ async def create_store_submission(
logger.warning(
f"Agent not found for user {user_id}: {agent_id} v{agent_version}"
)
# Provide more user-friendly error message when agent_id is empty
if not agent_id or agent_id.strip() == "":
raise store_exceptions.AgentNotFoundError(
"No agent selected. Please select an agent before submitting to the store."
)
else:
raise store_exceptions.AgentNotFoundError(
f"Agent not found for this user. User ID: {user_id}, Agent ID: {agent_id}, Version: {agent_version}"
)
raise store_exceptions.AgentNotFoundError(
f"Agent not found for this user. User ID: {user_id}, Agent ID: {agent_id}, Version: {agent_version}"
)
# Check if listing already exists for this agent
existing_listing = await prisma.models.StoreListing.prisma().find_first(
@@ -811,7 +833,6 @@ async def create_store_submission(
logger.debug(f"Created store listing for agent {agent_id}")
# Return submission details
return store_model.StoreSubmission(
listing_id=listing.id,
agent_id=agent_id,
agent_version=agent_version,
name=name,
@@ -923,56 +944,81 @@ async def edit_store_submission(
# Currently we are not allowing user to update the agent associated with a submission
# If we allow it in future, then we need a check here to verify the agent belongs to this user.
# Only allow editing of PENDING submissions
if current_version.submissionStatus != prisma.enums.SubmissionStatus.PENDING:
# Check if we can edit this submission
if current_version.submissionStatus == prisma.enums.SubmissionStatus.REJECTED:
raise store_exceptions.InvalidOperationError(
f"Cannot edit a {current_version.submissionStatus.value.lower()} submission. Only pending submissions can be edited."
"Cannot edit a rejected submission"
)
# For APPROVED submissions, we need to create a new version
if current_version.submissionStatus == prisma.enums.SubmissionStatus.APPROVED:
# Create a new version for the existing listing
return await create_store_version(
user_id=user_id,
agent_id=current_version.agentGraphId,
agent_version=current_version.agentGraphVersion,
store_listing_id=current_version.storeListingId,
name=name,
video_url=video_url,
agent_output_demo_url=agent_output_demo_url,
image_urls=image_urls,
description=description,
sub_heading=sub_heading,
categories=categories,
changes_summary=changes_summary,
recommended_schedule_cron=recommended_schedule_cron,
instructions=instructions,
)
# For PENDING submissions, we can update the existing version
# Update the existing version
updated_version = await prisma.models.StoreListingVersion.prisma().update(
where={"id": store_listing_version_id},
data=prisma.types.StoreListingVersionUpdateInput(
elif current_version.submissionStatus == prisma.enums.SubmissionStatus.PENDING:
# Update the existing version
updated_version = await prisma.models.StoreListingVersion.prisma().update(
where={"id": store_listing_version_id},
data=prisma.types.StoreListingVersionUpdateInput(
name=name,
videoUrl=video_url,
agentOutputDemoUrl=agent_output_demo_url,
imageUrls=image_urls,
description=description,
categories=categories,
subHeading=sub_heading,
changesSummary=changes_summary,
recommendedScheduleCron=recommended_schedule_cron,
instructions=instructions,
),
)
logger.debug(
f"Updated existing version {store_listing_version_id} for agent {current_version.agentGraphId}"
)
if not updated_version:
raise DatabaseError("Failed to update store listing version")
return store_model.StoreSubmission(
agent_id=current_version.agentGraphId,
agent_version=current_version.agentGraphVersion,
name=name,
videoUrl=video_url,
agentOutputDemoUrl=agent_output_demo_url,
imageUrls=image_urls,
sub_heading=sub_heading,
slug=current_version.StoreListing.slug,
description=description,
categories=categories,
subHeading=sub_heading,
changesSummary=changes_summary,
recommendedScheduleCron=recommended_schedule_cron,
instructions=instructions,
),
)
image_urls=image_urls,
date_submitted=updated_version.submittedAt or updated_version.createdAt,
status=updated_version.submissionStatus,
runs=0,
rating=0.0,
store_listing_version_id=updated_version.id,
changes_summary=changes_summary,
video_url=video_url,
categories=categories,
version=updated_version.version,
)
logger.debug(
f"Updated existing version {store_listing_version_id} for agent {current_version.agentGraphId}"
)
if not updated_version:
raise DatabaseError("Failed to update store listing version")
return store_model.StoreSubmission(
listing_id=current_version.StoreListing.id,
agent_id=current_version.agentGraphId,
agent_version=current_version.agentGraphVersion,
name=name,
sub_heading=sub_heading,
slug=current_version.StoreListing.slug,
description=description,
instructions=instructions,
image_urls=image_urls,
date_submitted=updated_version.submittedAt or updated_version.createdAt,
status=updated_version.submissionStatus,
runs=0,
rating=0.0,
store_listing_version_id=updated_version.id,
changes_summary=changes_summary,
video_url=video_url,
categories=categories,
version=updated_version.version,
)
else:
raise store_exceptions.InvalidOperationError(
f"Cannot edit submission with status: {current_version.submissionStatus}"
)
except (
store_exceptions.SubmissionNotFoundError,
@@ -1051,78 +1097,38 @@ async def create_store_version(
f"Agent not found for this user. User ID: {user_id}, Agent ID: {agent_id}, Version: {agent_version}"
)
# Check if there's already a PENDING submission for this agent (any version)
existing_pending_submission = (
await prisma.models.StoreListingVersion.prisma().find_first(
where=prisma.types.StoreListingVersionWhereInput(
storeListingId=store_listing_id,
agentGraphId=agent_id,
submissionStatus=prisma.enums.SubmissionStatus.PENDING,
isDeleted=False,
)
# Get the latest version number
latest_version = listing.Versions[0] if listing.Versions else None
next_version = (latest_version.version + 1) if latest_version else 1
# Create a new version for the existing listing
new_version = await prisma.models.StoreListingVersion.prisma().create(
data=prisma.types.StoreListingVersionCreateInput(
version=next_version,
agentGraphId=agent_id,
agentGraphVersion=agent_version,
name=name,
videoUrl=video_url,
agentOutputDemoUrl=agent_output_demo_url,
imageUrls=image_urls,
description=description,
instructions=instructions,
categories=categories,
subHeading=sub_heading,
submissionStatus=prisma.enums.SubmissionStatus.PENDING,
submittedAt=datetime.now(),
changesSummary=changes_summary,
recommendedScheduleCron=recommended_schedule_cron,
storeListingId=store_listing_id,
)
)
# Handle existing pending submission and create new one atomically
async with transaction() as tx:
# Get the latest version number first
latest_listing = await prisma.models.StoreListing.prisma(tx).find_first(
where=prisma.types.StoreListingWhereInput(
id=store_listing_id, owningUserId=user_id
),
include={"Versions": {"order_by": {"version": "desc"}, "take": 1}},
)
if not latest_listing:
raise store_exceptions.ListingNotFoundError(
f"Store listing not found. User ID: {user_id}, Listing ID: {store_listing_id}"
)
latest_version = (
latest_listing.Versions[0] if latest_listing.Versions else None
)
next_version = (latest_version.version + 1) if latest_version else 1
# If there's an existing pending submission, delete it atomically before creating new one
if existing_pending_submission:
logger.info(
f"Found existing PENDING submission for agent {agent_id} (was v{existing_pending_submission.agentGraphVersion}, now v{agent_version}), replacing existing submission instead of creating duplicate"
)
await prisma.models.StoreListingVersion.prisma(tx).delete(
where={"id": existing_pending_submission.id}
)
logger.debug(
f"Deleted existing pending submission {existing_pending_submission.id}"
)
# Create a new version for the existing listing
new_version = await prisma.models.StoreListingVersion.prisma(tx).create(
data=prisma.types.StoreListingVersionCreateInput(
version=next_version,
agentGraphId=agent_id,
agentGraphVersion=agent_version,
name=name,
videoUrl=video_url,
agentOutputDemoUrl=agent_output_demo_url,
imageUrls=image_urls,
description=description,
instructions=instructions,
categories=categories,
subHeading=sub_heading,
submissionStatus=prisma.enums.SubmissionStatus.PENDING,
submittedAt=datetime.now(),
changesSummary=changes_summary,
recommendedScheduleCron=recommended_schedule_cron,
storeListingId=store_listing_id,
)
)
logger.debug(
f"Created new version for listing {store_listing_id} of agent {agent_id}"
)
# Return submission details
return store_model.StoreSubmission(
listing_id=listing.id,
agent_id=agent_id,
agent_version=agent_version,
name=name,
@@ -1535,7 +1541,7 @@ async def review_store_submission(
)
# Update the AgentGraph with store listing data
await prisma.models.AgentGraph.prisma(tx).update(
await prisma.models.AgentGraph.prisma().update(
where={
"graphVersionId": {
"id": store_listing_version.agentGraphId,
@@ -1550,23 +1556,6 @@ async def review_store_submission(
},
)
# Generate embedding for approved listing (blocking - admin operation)
# Inside transaction: if embedding fails, entire transaction rolls back
embedding_success = await ensure_embedding(
version_id=store_listing_version_id,
name=store_listing_version.name,
description=store_listing_version.description,
sub_heading=store_listing_version.subHeading,
categories=store_listing_version.categories or [],
tx=tx,
)
if not embedding_success:
raise ValueError(
f"Failed to generate embedding for listing {store_listing_version_id}. "
"This is likely due to OpenAI API being unavailable. "
"Please try again later or contact support if the issue persists."
)
await prisma.models.StoreListing.prisma(tx).update(
where={"id": store_listing_version.StoreListing.id},
data={
@@ -1719,12 +1708,15 @@ async def review_store_submission(
# Convert to Pydantic model for consistency
return store_model.StoreSubmission(
listing_id=(submission.StoreListing.id if submission.StoreListing else ""),
agent_id=submission.agentGraphId,
agent_version=submission.agentGraphVersion,
name=submission.name,
sub_heading=submission.subHeading,
slug=(submission.StoreListing.slug if submission.StoreListing else ""),
slug=(
submission.StoreListing.slug
if hasattr(submission, "storeListing") and submission.StoreListing
else ""
),
description=submission.description,
instructions=submission.instructions,
image_urls=submission.imageUrls or [],
@@ -1826,7 +1818,9 @@ async def get_admin_listings_with_versions(
where = prisma.types.StoreListingWhereInput(**where_dict)
include = prisma.types.StoreListingInclude(
Versions=prisma.types.FindManyStoreListingVersionArgsFromStoreListing(
order_by={"version": "desc"}
order_by=prisma.types._StoreListingVersion_version_OrderByInput(
version="desc"
)
),
OwningUser=True,
)
@@ -1851,7 +1845,6 @@ async def get_admin_listings_with_versions(
# If we have versions, turn them into StoreSubmission models
for version in listing.Versions or []:
version_model = store_model.StoreSubmission(
listing_id=listing.id,
agent_id=version.agentGraphId,
agent_version=version.agentGraphVersion,
name=version.name,

View File

@@ -1,628 +0,0 @@
"""
Unified Content Embeddings Service
Handles generation and storage of OpenAI embeddings for all content types
(store listings, blocks, documentation, library agents) to enable semantic/hybrid search.
"""
import asyncio
import logging
import time
from typing import Any
import prisma
from prisma.enums import ContentType
from tiktoken import encoding_for_model
from backend.api.features.store.content_handlers import CONTENT_HANDLERS
from backend.data.db import execute_raw_with_schema, query_raw_with_schema
from backend.util.clients import get_openai_client
from backend.util.json import dumps
logger = logging.getLogger(__name__)
# OpenAI embedding model configuration
EMBEDDING_MODEL = "text-embedding-3-small"
# OpenAI embedding token limit (8,191 with 1 token buffer for safety)
EMBEDDING_MAX_TOKENS = 8191
def build_searchable_text(
name: str,
description: str,
sub_heading: str,
categories: list[str],
) -> str:
"""
Build searchable text from listing version fields.
Combines relevant fields into a single string for embedding.
"""
parts = []
# Name is important - include it
if name:
parts.append(name)
# Sub-heading provides context
if sub_heading:
parts.append(sub_heading)
# Description is the main content
if description:
parts.append(description)
# Categories help with semantic matching
if categories:
parts.append(" ".join(categories))
return " ".join(parts)
async def generate_embedding(text: str) -> list[float] | None:
"""
Generate embedding for text using OpenAI API.
Returns None if embedding generation fails.
Fail-fast: no retries to maintain consistency with approval flow.
"""
try:
client = get_openai_client()
if not client:
logger.error("openai_internal_api_key not set, cannot generate embedding")
return None
# Truncate text to token limit using tiktoken
# Character-based truncation is insufficient because token ratios vary by content type
enc = encoding_for_model(EMBEDDING_MODEL)
tokens = enc.encode(text)
if len(tokens) > EMBEDDING_MAX_TOKENS:
tokens = tokens[:EMBEDDING_MAX_TOKENS]
truncated_text = enc.decode(tokens)
logger.info(
f"Truncated text from {len(enc.encode(text))} to {len(tokens)} tokens"
)
else:
truncated_text = text
start_time = time.time()
response = await client.embeddings.create(
model=EMBEDDING_MODEL,
input=truncated_text,
)
latency_ms = (time.time() - start_time) * 1000
embedding = response.data[0].embedding
logger.info(
f"Generated embedding: {len(embedding)} dims, "
f"{len(tokens)} tokens, {latency_ms:.0f}ms"
)
return embedding
except Exception as e:
logger.error(f"Failed to generate embedding: {e}")
return None
async def store_embedding(
version_id: str,
embedding: list[float],
tx: prisma.Prisma | None = None,
) -> bool:
"""
Store embedding in the database.
BACKWARD COMPATIBILITY: Maintained for existing store listing usage.
DEPRECATED: Use ensure_embedding() instead (includes searchable_text).
"""
return await store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id=version_id,
embedding=embedding,
searchable_text="", # Empty for backward compat; ensure_embedding() populates this
metadata=None,
user_id=None, # Store agents are public
tx=tx,
)
async def store_content_embedding(
content_type: ContentType,
content_id: str,
embedding: list[float],
searchable_text: str,
metadata: dict | None = None,
user_id: str | None = None,
tx: prisma.Prisma | None = None,
) -> bool:
"""
Store embedding in the unified content embeddings table.
New function for unified content embedding storage.
Uses raw SQL since Prisma doesn't natively support pgvector.
"""
try:
client = tx if tx else prisma.get_client()
# Convert embedding to PostgreSQL vector format
embedding_str = embedding_to_vector_string(embedding)
metadata_json = dumps(metadata or {})
# Upsert the embedding
# WHERE clause in DO UPDATE prevents PostgreSQL 15 bug with NULLS NOT DISTINCT
await execute_raw_with_schema(
"""
INSERT INTO {schema_prefix}"UnifiedContentEmbedding" (
"id", "contentType", "contentId", "userId", "embedding", "searchableText", "metadata", "createdAt", "updatedAt"
)
VALUES (gen_random_uuid()::text, $1::{schema_prefix}"ContentType", $2, $3, $4::vector, $5, $6::jsonb, NOW(), NOW())
ON CONFLICT ("contentType", "contentId", "userId")
DO UPDATE SET
"embedding" = $4::vector,
"searchableText" = $5,
"metadata" = $6::jsonb,
"updatedAt" = NOW()
WHERE {schema_prefix}"UnifiedContentEmbedding"."contentType" = $1::{schema_prefix}"ContentType"
AND {schema_prefix}"UnifiedContentEmbedding"."contentId" = $2
AND ({schema_prefix}"UnifiedContentEmbedding"."userId" = $3 OR ($3 IS NULL AND {schema_prefix}"UnifiedContentEmbedding"."userId" IS NULL))
""",
content_type,
content_id,
user_id,
embedding_str,
searchable_text,
metadata_json,
client=client,
set_public_search_path=True,
)
logger.info(f"Stored embedding for {content_type}:{content_id}")
return True
except Exception as e:
logger.error(f"Failed to store embedding for {content_type}:{content_id}: {e}")
return False
async def get_embedding(version_id: str) -> dict[str, Any] | None:
"""
Retrieve embedding record for a listing version.
BACKWARD COMPATIBILITY: Maintained for existing store listing usage.
Returns dict with storeListingVersionId, embedding, timestamps or None if not found.
"""
result = await get_content_embedding(
ContentType.STORE_AGENT, version_id, user_id=None
)
if result:
# Transform to old format for backward compatibility
return {
"storeListingVersionId": result["contentId"],
"embedding": result["embedding"],
"createdAt": result["createdAt"],
"updatedAt": result["updatedAt"],
}
return None
async def get_content_embedding(
content_type: ContentType, content_id: str, user_id: str | None = None
) -> dict[str, Any] | None:
"""
Retrieve embedding record for any content type.
New function for unified content embedding retrieval.
Returns dict with contentType, contentId, embedding, timestamps or None if not found.
"""
try:
result = await query_raw_with_schema(
"""
SELECT
"contentType",
"contentId",
"userId",
"embedding"::text as "embedding",
"searchableText",
"metadata",
"createdAt",
"updatedAt"
FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" = $1::{schema_prefix}"ContentType" AND "contentId" = $2 AND ("userId" = $3 OR ($3 IS NULL AND "userId" IS NULL))
""",
content_type,
content_id,
user_id,
set_public_search_path=True,
)
if result and len(result) > 0:
return result[0]
return None
except Exception as e:
logger.error(f"Failed to get embedding for {content_type}:{content_id}: {e}")
return None
async def ensure_embedding(
version_id: str,
name: str,
description: str,
sub_heading: str,
categories: list[str],
force: bool = False,
tx: prisma.Prisma | None = None,
) -> bool:
"""
Ensure an embedding exists for the listing version.
Creates embedding if missing. Use force=True to regenerate.
Backward-compatible wrapper for store listings.
Args:
version_id: The StoreListingVersion ID
name: Agent name
description: Agent description
sub_heading: Agent sub-heading
categories: Agent categories
force: Force regeneration even if embedding exists
tx: Optional transaction client
Returns:
True if embedding exists/was created, False on failure
"""
try:
# Check if embedding already exists
if not force:
existing = await get_embedding(version_id)
if existing and existing.get("embedding"):
logger.debug(f"Embedding for version {version_id} already exists")
return True
# Build searchable text for embedding
searchable_text = build_searchable_text(
name, description, sub_heading, categories
)
# Generate new embedding
embedding = await generate_embedding(searchable_text)
if embedding is None:
logger.warning(f"Could not generate embedding for version {version_id}")
return False
# Store the embedding with metadata using new function
metadata = {
"name": name,
"subHeading": sub_heading,
"categories": categories,
}
return await store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id=version_id,
embedding=embedding,
searchable_text=searchable_text,
metadata=metadata,
user_id=None, # Store agents are public
tx=tx,
)
except Exception as e:
logger.error(f"Failed to ensure embedding for version {version_id}: {e}")
return False
async def delete_embedding(version_id: str) -> bool:
"""
Delete embedding for a listing version.
BACKWARD COMPATIBILITY: Maintained for existing store listing usage.
Note: This is usually handled automatically by CASCADE delete,
but provided for manual cleanup if needed.
"""
return await delete_content_embedding(ContentType.STORE_AGENT, version_id)
async def delete_content_embedding(
content_type: ContentType, content_id: str, user_id: str | None = None
) -> bool:
"""
Delete embedding for any content type.
New function for unified content embedding deletion.
Note: This is usually handled automatically by CASCADE delete,
but provided for manual cleanup if needed.
Args:
content_type: The type of content (STORE_AGENT, LIBRARY_AGENT, etc.)
content_id: The unique identifier for the content
user_id: Optional user ID. For public content (STORE_AGENT, BLOCK), pass None.
For user-scoped content (LIBRARY_AGENT), pass the user's ID to avoid
deleting embeddings belonging to other users.
Returns:
True if deletion succeeded, False otherwise
"""
try:
client = prisma.get_client()
await execute_raw_with_schema(
"""
DELETE FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" = $1::{schema_prefix}"ContentType"
AND "contentId" = $2
AND ("userId" = $3 OR ($3 IS NULL AND "userId" IS NULL))
""",
content_type,
content_id,
user_id,
client=client,
)
user_str = f" (user: {user_id})" if user_id else ""
logger.info(f"Deleted embedding for {content_type}:{content_id}{user_str}")
return True
except Exception as e:
logger.error(f"Failed to delete embedding for {content_type}:{content_id}: {e}")
return False
async def get_embedding_stats() -> dict[str, Any]:
"""
Get statistics about embedding coverage for all content types.
Returns stats per content type and overall totals.
"""
try:
stats_by_type = {}
total_items = 0
total_with_embeddings = 0
total_without_embeddings = 0
# Aggregate stats from all handlers
for content_type, handler in CONTENT_HANDLERS.items():
try:
stats = await handler.get_stats()
stats_by_type[content_type.value] = {
"total": stats["total"],
"with_embeddings": stats["with_embeddings"],
"without_embeddings": stats["without_embeddings"],
"coverage_percent": (
round(stats["with_embeddings"] / stats["total"] * 100, 1)
if stats["total"] > 0
else 0
),
}
total_items += stats["total"]
total_with_embeddings += stats["with_embeddings"]
total_without_embeddings += stats["without_embeddings"]
except Exception as e:
logger.error(f"Failed to get stats for {content_type.value}: {e}")
stats_by_type[content_type.value] = {
"total": 0,
"with_embeddings": 0,
"without_embeddings": 0,
"coverage_percent": 0,
"error": str(e),
}
return {
"by_type": stats_by_type,
"totals": {
"total": total_items,
"with_embeddings": total_with_embeddings,
"without_embeddings": total_without_embeddings,
"coverage_percent": (
round(total_with_embeddings / total_items * 100, 1)
if total_items > 0
else 0
),
},
}
except Exception as e:
logger.error(f"Failed to get embedding stats: {e}")
return {
"by_type": {},
"totals": {
"total": 0,
"with_embeddings": 0,
"without_embeddings": 0,
"coverage_percent": 0,
},
"error": str(e),
}
async def backfill_missing_embeddings(batch_size: int = 10) -> dict[str, Any]:
"""
Generate embeddings for approved listings that don't have them.
BACKWARD COMPATIBILITY: Maintained for existing usage.
This now delegates to backfill_all_content_types() to process all content types.
Args:
batch_size: Number of embeddings to generate per content type
Returns:
Dict with success/failure counts aggregated across all content types
"""
# Delegate to the new generic backfill system
result = await backfill_all_content_types(batch_size)
# Return in the old format for backward compatibility
return result["totals"]
async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
"""
Generate embeddings for all content types using registered handlers.
Processes content types in order: BLOCK → STORE_AGENT → DOCUMENTATION.
This ensures foundational content (blocks) are searchable first.
Args:
batch_size: Number of embeddings to generate per content type
Returns:
Dict with stats per content type and overall totals
"""
results_by_type = {}
total_processed = 0
total_success = 0
total_failed = 0
# Process content types in explicit order
processing_order = [
ContentType.BLOCK,
ContentType.STORE_AGENT,
ContentType.DOCUMENTATION,
]
for content_type in processing_order:
handler = CONTENT_HANDLERS.get(content_type)
if not handler:
logger.warning(f"No handler registered for {content_type.value}")
continue
try:
logger.info(f"Processing {content_type.value} content type...")
# Get missing items from handler
missing_items = await handler.get_missing_items(batch_size)
if not missing_items:
results_by_type[content_type.value] = {
"processed": 0,
"success": 0,
"failed": 0,
"message": "No missing embeddings",
}
continue
# Process embeddings concurrently for better performance
embedding_tasks = [
ensure_content_embedding(
content_type=item.content_type,
content_id=item.content_id,
searchable_text=item.searchable_text,
metadata=item.metadata,
user_id=item.user_id,
)
for item in missing_items
]
results = await asyncio.gather(*embedding_tasks, return_exceptions=True)
success = sum(1 for result in results if result is True)
failed = len(results) - success
results_by_type[content_type.value] = {
"processed": len(missing_items),
"success": success,
"failed": failed,
"message": f"Backfilled {success} embeddings, {failed} failed",
}
total_processed += len(missing_items)
total_success += success
total_failed += failed
logger.info(
f"{content_type.value}: processed {len(missing_items)}, "
f"success {success}, failed {failed}"
)
except Exception as e:
logger.error(f"Failed to process {content_type.value}: {e}")
results_by_type[content_type.value] = {
"processed": 0,
"success": 0,
"failed": 0,
"error": str(e),
}
return {
"by_type": results_by_type,
"totals": {
"processed": total_processed,
"success": total_success,
"failed": total_failed,
"message": f"Overall: {total_success} succeeded, {total_failed} failed",
},
}
async def embed_query(query: str) -> list[float] | None:
"""
Generate embedding for a search query.
Same as generate_embedding but with clearer intent.
"""
return await generate_embedding(query)
def embedding_to_vector_string(embedding: list[float]) -> str:
"""Convert embedding list to PostgreSQL vector string format."""
return "[" + ",".join(str(x) for x in embedding) + "]"
async def ensure_content_embedding(
content_type: ContentType,
content_id: str,
searchable_text: str,
metadata: dict | None = None,
user_id: str | None = None,
force: bool = False,
tx: prisma.Prisma | None = None,
) -> bool:
"""
Ensure an embedding exists for any content type.
Generic function for creating embeddings for store agents, blocks, docs, etc.
Args:
content_type: ContentType enum value (STORE_AGENT, BLOCK, etc.)
content_id: Unique identifier for the content
searchable_text: Combined text for embedding generation
metadata: Optional metadata to store with embedding
force: Force regeneration even if embedding exists
tx: Optional transaction client
Returns:
True if embedding exists/was created, False on failure
"""
try:
# Check if embedding already exists
if not force:
existing = await get_content_embedding(content_type, content_id, user_id)
if existing and existing.get("embedding"):
logger.debug(
f"Embedding for {content_type}:{content_id} already exists"
)
return True
# Generate new embedding
embedding = await generate_embedding(searchable_text)
if embedding is None:
logger.warning(
f"Could not generate embedding for {content_type}:{content_id}"
)
return False
# Store the embedding
return await store_content_embedding(
content_type=content_type,
content_id=content_id,
embedding=embedding,
searchable_text=searchable_text,
metadata=metadata or {},
user_id=user_id,
tx=tx,
)
except Exception as e:
logger.error(f"Failed to ensure embedding for {content_type}:{content_id}: {e}")
return False

View File

@@ -1,329 +0,0 @@
"""
Integration tests for embeddings with schema handling.
These tests verify that embeddings operations work correctly across different database schemas.
"""
from unittest.mock import AsyncMock, patch
import pytest
from prisma.enums import ContentType
from backend.api.features.store import embeddings
# Schema prefix tests removed - functionality moved to db.raw_with_schema() helper
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_store_content_embedding_with_schema():
"""Test storing embeddings with proper schema handling."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "platform"
with patch("prisma.get_client") as mock_get_client:
mock_client = AsyncMock()
mock_get_client.return_value = mock_client
result = await embeddings.store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id="test-id",
embedding=[0.1] * 1536,
searchable_text="test text",
metadata={"test": "data"},
user_id=None,
)
# Verify the query was called
assert mock_client.execute_raw.called
# Get the SQL query that was executed
call_args = mock_client.execute_raw.call_args
sql_query = call_args[0][0]
# Verify schema prefix is in the query
assert '"platform"."UnifiedContentEmbedding"' in sql_query
# Verify result
assert result is True
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_get_content_embedding_with_schema():
"""Test retrieving embeddings with proper schema handling."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "platform"
with patch("prisma.get_client") as mock_get_client:
mock_client = AsyncMock()
mock_client.query_raw.return_value = [
{
"contentType": "STORE_AGENT",
"contentId": "test-id",
"userId": None,
"embedding": "[0.1, 0.2]",
"searchableText": "test",
"metadata": {},
"createdAt": "2024-01-01",
"updatedAt": "2024-01-01",
}
]
mock_get_client.return_value = mock_client
result = await embeddings.get_content_embedding(
ContentType.STORE_AGENT,
"test-id",
user_id=None,
)
# Verify the query was called
assert mock_client.query_raw.called
# Get the SQL query that was executed
call_args = mock_client.query_raw.call_args
sql_query = call_args[0][0]
# Verify schema prefix is in the query
assert '"platform"."UnifiedContentEmbedding"' in sql_query
# Verify result
assert result is not None
assert result["contentId"] == "test-id"
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_delete_content_embedding_with_schema():
"""Test deleting embeddings with proper schema handling."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "platform"
with patch("prisma.get_client") as mock_get_client:
mock_client = AsyncMock()
mock_get_client.return_value = mock_client
result = await embeddings.delete_content_embedding(
ContentType.STORE_AGENT,
"test-id",
)
# Verify the query was called
assert mock_client.execute_raw.called
# Get the SQL query that was executed
call_args = mock_client.execute_raw.call_args
sql_query = call_args[0][0]
# Verify schema prefix is in the query
assert '"platform"."UnifiedContentEmbedding"' in sql_query
# Verify result
assert result is True
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_get_embedding_stats_with_schema():
"""Test embedding statistics with proper schema handling."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "platform"
with patch("prisma.get_client") as mock_get_client:
mock_client = AsyncMock()
# Mock both query results
mock_client.query_raw.side_effect = [
[{"count": 100}], # total_approved
[{"count": 80}], # with_embeddings
]
mock_get_client.return_value = mock_client
result = await embeddings.get_embedding_stats()
# Verify both queries were called
assert mock_client.query_raw.call_count == 2
# Get both SQL queries
first_call = mock_client.query_raw.call_args_list[0]
second_call = mock_client.query_raw.call_args_list[1]
first_sql = first_call[0][0]
second_sql = second_call[0][0]
# Verify schema prefix in both queries
assert '"platform"."StoreListingVersion"' in first_sql
assert '"platform"."StoreListingVersion"' in second_sql
assert '"platform"."UnifiedContentEmbedding"' in second_sql
# Verify results
assert result["total_approved"] == 100
assert result["with_embeddings"] == 80
assert result["without_embeddings"] == 20
assert result["coverage_percent"] == 80.0
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_backfill_missing_embeddings_with_schema():
"""Test backfilling embeddings with proper schema handling."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "platform"
with patch("prisma.get_client") as mock_get_client:
mock_client = AsyncMock()
# Mock missing embeddings query
mock_client.query_raw.return_value = [
{
"id": "version-1",
"name": "Test Agent",
"description": "Test description",
"subHeading": "Test heading",
"categories": ["test"],
}
]
mock_get_client.return_value = mock_client
with patch(
"backend.api.features.store.embeddings.ensure_embedding"
) as mock_ensure:
mock_ensure.return_value = True
result = await embeddings.backfill_missing_embeddings(batch_size=10)
# Verify the query was called
assert mock_client.query_raw.called
# Get the SQL query
call_args = mock_client.query_raw.call_args
sql_query = call_args[0][0]
# Verify schema prefix in query
assert '"platform"."StoreListingVersion"' in sql_query
assert '"platform"."UnifiedContentEmbedding"' in sql_query
# Verify ensure_embedding was called
assert mock_ensure.called
# Verify results
assert result["processed"] == 1
assert result["success"] == 1
assert result["failed"] == 0
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_ensure_content_embedding_with_schema():
"""Test ensuring embeddings exist with proper schema handling."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "platform"
with patch(
"backend.api.features.store.embeddings.get_content_embedding"
) as mock_get:
# Simulate no existing embedding
mock_get.return_value = None
with patch(
"backend.api.features.store.embeddings.generate_embedding"
) as mock_generate:
mock_generate.return_value = [0.1] * 1536
with patch(
"backend.api.features.store.embeddings.store_content_embedding"
) as mock_store:
mock_store.return_value = True
result = await embeddings.ensure_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id="test-id",
searchable_text="test text",
metadata={"test": "data"},
user_id=None,
force=False,
)
# Verify the flow
assert mock_get.called
assert mock_generate.called
assert mock_store.called
assert result is True
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_backward_compatibility_store_embedding():
"""Test backward compatibility wrapper for store_embedding."""
with patch(
"backend.api.features.store.embeddings.store_content_embedding"
) as mock_store:
mock_store.return_value = True
result = await embeddings.store_embedding(
version_id="test-version-id",
embedding=[0.1] * 1536,
tx=None,
)
# Verify it calls the new function with correct parameters
assert mock_store.called
call_args = mock_store.call_args
assert call_args[1]["content_type"] == ContentType.STORE_AGENT
assert call_args[1]["content_id"] == "test-version-id"
assert call_args[1]["user_id"] is None
assert result is True
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_backward_compatibility_get_embedding():
"""Test backward compatibility wrapper for get_embedding."""
with patch(
"backend.api.features.store.embeddings.get_content_embedding"
) as mock_get:
mock_get.return_value = {
"contentType": "STORE_AGENT",
"contentId": "test-version-id",
"embedding": "[0.1, 0.2]",
"createdAt": "2024-01-01",
"updatedAt": "2024-01-01",
}
result = await embeddings.get_embedding("test-version-id")
# Verify it calls the new function
assert mock_get.called
# Verify it transforms to old format
assert result is not None
assert result["storeListingVersionId"] == "test-version-id"
assert "embedding" in result
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_schema_handling_error_cases():
"""Test error handling in schema-aware operations."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "platform"
with patch("prisma.get_client") as mock_get_client:
mock_client = AsyncMock()
mock_client.execute_raw.side_effect = Exception("Database error")
mock_get_client.return_value = mock_client
result = await embeddings.store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id="test-id",
embedding=[0.1] * 1536,
searchable_text="test",
metadata=None,
user_id=None,
)
# Should return False on error, not raise
assert result is False
if __name__ == "__main__":
pytest.main([__file__, "-v", "-s"])

View File

@@ -1,387 +0,0 @@
from unittest.mock import AsyncMock, MagicMock, patch
import prisma
import pytest
from prisma import Prisma
from prisma.enums import ContentType
from backend.api.features.store import embeddings
@pytest.fixture(autouse=True)
async def setup_prisma():
"""Setup Prisma client for tests."""
try:
Prisma()
except prisma.errors.ClientAlreadyRegisteredError:
pass
yield
@pytest.mark.asyncio(loop_scope="session")
async def test_build_searchable_text():
"""Test searchable text building from listing fields."""
result = embeddings.build_searchable_text(
name="AI Assistant",
description="A helpful AI assistant for productivity",
sub_heading="Boost your productivity",
categories=["AI", "Productivity"],
)
expected = "AI Assistant Boost your productivity A helpful AI assistant for productivity AI Productivity"
assert result == expected
@pytest.mark.asyncio(loop_scope="session")
async def test_build_searchable_text_empty_fields():
"""Test searchable text building with empty fields."""
result = embeddings.build_searchable_text(
name="", description="Test description", sub_heading="", categories=[]
)
assert result == "Test description"
@pytest.mark.asyncio(loop_scope="session")
async def test_generate_embedding_success():
"""Test successful embedding generation."""
# Mock OpenAI response
mock_client = MagicMock()
mock_response = MagicMock()
mock_response.data = [MagicMock()]
mock_response.data[0].embedding = [0.1, 0.2, 0.3] * 512 # 1536 dimensions
# Use AsyncMock for async embeddings.create method
mock_client.embeddings.create = AsyncMock(return_value=mock_response)
# Patch at the point of use in embeddings.py
with patch(
"backend.api.features.store.embeddings.get_openai_client"
) as mock_get_client:
mock_get_client.return_value = mock_client
result = await embeddings.generate_embedding("test text")
assert result is not None
assert len(result) == 1536
assert result[0] == 0.1
mock_client.embeddings.create.assert_called_once_with(
model="text-embedding-3-small", input="test text"
)
@pytest.mark.asyncio(loop_scope="session")
async def test_generate_embedding_no_api_key():
"""Test embedding generation without API key."""
# Patch at the point of use in embeddings.py
with patch(
"backend.api.features.store.embeddings.get_openai_client"
) as mock_get_client:
mock_get_client.return_value = None
result = await embeddings.generate_embedding("test text")
assert result is None
@pytest.mark.asyncio(loop_scope="session")
async def test_generate_embedding_api_error():
"""Test embedding generation with API error."""
mock_client = MagicMock()
mock_client.embeddings.create = AsyncMock(side_effect=Exception("API Error"))
# Patch at the point of use in embeddings.py
with patch(
"backend.api.features.store.embeddings.get_openai_client"
) as mock_get_client:
mock_get_client.return_value = mock_client
result = await embeddings.generate_embedding("test text")
assert result is None
@pytest.mark.asyncio(loop_scope="session")
async def test_generate_embedding_text_truncation():
"""Test that long text is properly truncated using tiktoken."""
from tiktoken import encoding_for_model
mock_client = MagicMock()
mock_response = MagicMock()
mock_response.data = [MagicMock()]
mock_response.data[0].embedding = [0.1] * 1536
# Use AsyncMock for async embeddings.create method
mock_client.embeddings.create = AsyncMock(return_value=mock_response)
# Patch at the point of use in embeddings.py
with patch(
"backend.api.features.store.embeddings.get_openai_client"
) as mock_get_client:
mock_get_client.return_value = mock_client
# Create text that will exceed 8191 tokens
# Use varied characters to ensure token-heavy text: each word is ~1 token
words = [f"word{i}" for i in range(10000)]
long_text = " ".join(words) # ~10000 tokens
await embeddings.generate_embedding(long_text)
# Verify text was truncated to 8191 tokens
call_args = mock_client.embeddings.create.call_args
truncated_text = call_args.kwargs["input"]
# Count actual tokens in truncated text
enc = encoding_for_model("text-embedding-3-small")
actual_tokens = len(enc.encode(truncated_text))
# Should be at or just under 8191 tokens
assert actual_tokens <= 8191
# Should be close to the limit (not over-truncated)
assert actual_tokens >= 8100
@pytest.mark.asyncio(loop_scope="session")
async def test_store_embedding_success(mocker):
"""Test successful embedding storage."""
mock_client = mocker.AsyncMock()
mock_client.execute_raw = mocker.AsyncMock()
embedding = [0.1, 0.2, 0.3]
result = await embeddings.store_embedding(
version_id="test-version-id", embedding=embedding, tx=mock_client
)
assert result is True
# execute_raw is called twice: once for SET search_path, once for INSERT
assert mock_client.execute_raw.call_count == 2
# First call: SET search_path
first_call_args = mock_client.execute_raw.call_args_list[0][0]
assert "SET search_path" in first_call_args[0]
# Second call: INSERT query with the actual data
second_call_args = mock_client.execute_raw.call_args_list[1][0]
assert "test-version-id" in second_call_args
assert "[0.1,0.2,0.3]" in second_call_args
assert None in second_call_args # userId should be None for store agents
@pytest.mark.asyncio(loop_scope="session")
async def test_store_embedding_database_error(mocker):
"""Test embedding storage with database error."""
mock_client = mocker.AsyncMock()
mock_client.execute_raw.side_effect = Exception("Database error")
embedding = [0.1, 0.2, 0.3]
result = await embeddings.store_embedding(
version_id="test-version-id", embedding=embedding, tx=mock_client
)
assert result is False
@pytest.mark.asyncio(loop_scope="session")
async def test_get_embedding_success():
"""Test successful embedding retrieval."""
mock_result = [
{
"contentType": "STORE_AGENT",
"contentId": "test-version-id",
"userId": None,
"embedding": "[0.1,0.2,0.3]",
"searchableText": "Test text",
"metadata": {},
"createdAt": "2024-01-01T00:00:00Z",
"updatedAt": "2024-01-01T00:00:00Z",
}
]
with patch(
"backend.api.features.store.embeddings.query_raw_with_schema",
return_value=mock_result,
):
result = await embeddings.get_embedding("test-version-id")
assert result is not None
assert result["storeListingVersionId"] == "test-version-id"
assert result["embedding"] == "[0.1,0.2,0.3]"
@pytest.mark.asyncio(loop_scope="session")
async def test_get_embedding_not_found():
"""Test embedding retrieval when not found."""
with patch(
"backend.api.features.store.embeddings.query_raw_with_schema",
return_value=[],
):
result = await embeddings.get_embedding("test-version-id")
assert result is None
@pytest.mark.asyncio(loop_scope="session")
@patch("backend.api.features.store.embeddings.generate_embedding")
@patch("backend.api.features.store.embeddings.store_embedding")
@patch("backend.api.features.store.embeddings.get_embedding")
async def test_ensure_embedding_already_exists(mock_get, mock_store, mock_generate):
"""Test ensure_embedding when embedding already exists."""
mock_get.return_value = {"embedding": "[0.1,0.2,0.3]"}
result = await embeddings.ensure_embedding(
version_id="test-id",
name="Test",
description="Test description",
sub_heading="Test heading",
categories=["test"],
)
assert result is True
mock_generate.assert_not_called()
mock_store.assert_not_called()
@pytest.mark.asyncio(loop_scope="session")
@patch("backend.api.features.store.embeddings.generate_embedding")
@patch("backend.api.features.store.embeddings.store_content_embedding")
@patch("backend.api.features.store.embeddings.get_embedding")
async def test_ensure_embedding_create_new(mock_get, mock_store, mock_generate):
"""Test ensure_embedding creating new embedding."""
mock_get.return_value = None
mock_generate.return_value = [0.1, 0.2, 0.3]
mock_store.return_value = True
result = await embeddings.ensure_embedding(
version_id="test-id",
name="Test",
description="Test description",
sub_heading="Test heading",
categories=["test"],
)
assert result is True
mock_generate.assert_called_once_with("Test Test heading Test description test")
mock_store.assert_called_once_with(
content_type=ContentType.STORE_AGENT,
content_id="test-id",
embedding=[0.1, 0.2, 0.3],
searchable_text="Test Test heading Test description test",
metadata={"name": "Test", "subHeading": "Test heading", "categories": ["test"]},
user_id=None,
tx=None,
)
@pytest.mark.asyncio(loop_scope="session")
@patch("backend.api.features.store.embeddings.generate_embedding")
@patch("backend.api.features.store.embeddings.get_embedding")
async def test_ensure_embedding_generation_fails(mock_get, mock_generate):
"""Test ensure_embedding when generation fails."""
mock_get.return_value = None
mock_generate.return_value = None
result = await embeddings.ensure_embedding(
version_id="test-id",
name="Test",
description="Test description",
sub_heading="Test heading",
categories=["test"],
)
assert result is False
@pytest.mark.asyncio(loop_scope="session")
async def test_get_embedding_stats():
"""Test embedding statistics retrieval."""
# Mock approved count query and embedded count query
mock_approved_result = [{"count": 100}]
mock_embedded_result = [{"count": 75}]
with patch(
"backend.api.features.store.embeddings.query_raw_with_schema",
side_effect=[mock_approved_result, mock_embedded_result],
):
result = await embeddings.get_embedding_stats()
assert result["total_approved"] == 100
assert result["with_embeddings"] == 75
assert result["without_embeddings"] == 25
assert result["coverage_percent"] == 75.0
@pytest.mark.asyncio(loop_scope="session")
@patch("backend.api.features.store.embeddings.ensure_embedding")
async def test_backfill_missing_embeddings_success(mock_ensure):
"""Test backfill with successful embedding generation."""
# Mock missing embeddings query
mock_missing = [
{
"id": "version-1",
"name": "Agent 1",
"description": "Description 1",
"subHeading": "Heading 1",
"categories": ["AI"],
},
{
"id": "version-2",
"name": "Agent 2",
"description": "Description 2",
"subHeading": "Heading 2",
"categories": ["Productivity"],
},
]
# Mock ensure_embedding to succeed for first, fail for second
mock_ensure.side_effect = [True, False]
with patch(
"backend.api.features.store.embeddings.query_raw_with_schema",
return_value=mock_missing,
):
result = await embeddings.backfill_missing_embeddings(batch_size=5)
assert result["processed"] == 2
assert result["success"] == 1
assert result["failed"] == 1
assert mock_ensure.call_count == 2
@pytest.mark.asyncio(loop_scope="session")
async def test_backfill_missing_embeddings_no_missing():
"""Test backfill when no embeddings are missing."""
with patch(
"backend.api.features.store.embeddings.query_raw_with_schema",
return_value=[],
):
result = await embeddings.backfill_missing_embeddings(batch_size=5)
assert result["processed"] == 0
assert result["success"] == 0
assert result["failed"] == 0
assert result["message"] == "No missing embeddings"
@pytest.mark.asyncio(loop_scope="session")
async def test_embedding_to_vector_string():
"""Test embedding to PostgreSQL vector string conversion."""
embedding = [0.1, 0.2, 0.3, -0.4]
result = embeddings.embedding_to_vector_string(embedding)
assert result == "[0.1,0.2,0.3,-0.4]"
@pytest.mark.asyncio(loop_scope="session")
async def test_embed_query():
"""Test embed_query function (alias for generate_embedding)."""
with patch(
"backend.api.features.store.embeddings.generate_embedding"
) as mock_generate:
mock_generate.return_value = [0.1, 0.2, 0.3]
result = await embeddings.embed_query("test query")
assert result == [0.1, 0.2, 0.3]
mock_generate.assert_called_once_with("test query")

View File

@@ -1,393 +0,0 @@
"""
Hybrid Search for Store Agents
Combines semantic (embedding) search with lexical (tsvector) search
for improved relevance in marketplace agent discovery.
"""
import logging
from dataclasses import dataclass
from datetime import datetime
from typing import Any, Literal
from backend.api.features.store.embeddings import (
embed_query,
embedding_to_vector_string,
)
from backend.data.db import query_raw_with_schema
logger = logging.getLogger(__name__)
@dataclass
class HybridSearchWeights:
"""Weights for combining search signals."""
semantic: float = 0.30 # Embedding cosine similarity
lexical: float = 0.30 # tsvector ts_rank_cd score
category: float = 0.20 # Category match boost
recency: float = 0.10 # Newer agents ranked higher
popularity: float = 0.10 # Agent usage/runs (PageRank-like)
def __post_init__(self):
"""Validate weights are non-negative and sum to approximately 1.0."""
total = (
self.semantic
+ self.lexical
+ self.category
+ self.recency
+ self.popularity
)
if any(
w < 0
for w in [
self.semantic,
self.lexical,
self.category,
self.recency,
self.popularity,
]
):
raise ValueError("All weights must be non-negative")
if not (0.99 <= total <= 1.01):
raise ValueError(f"Weights must sum to ~1.0, got {total:.3f}")
DEFAULT_WEIGHTS = HybridSearchWeights()
# Minimum relevance score threshold - agents below this are filtered out
# With weights (0.30 semantic + 0.30 lexical + 0.20 category + 0.10 recency + 0.10 popularity):
# - 0.20 means at least ~60% semantic match OR strong lexical match required
# - Ensures only genuinely relevant results are returned
# - Recency/popularity alone (0.10 each) won't pass the threshold
DEFAULT_MIN_SCORE = 0.20
@dataclass
class HybridSearchResult:
"""A single search result with score breakdown."""
slug: str
agent_name: str
agent_image: str
creator_username: str
creator_avatar: str
sub_heading: str
description: str
runs: int
rating: float
categories: list[str]
featured: bool
is_available: bool
updated_at: datetime
# Score breakdown (for debugging/tuning)
combined_score: float
semantic_score: float = 0.0
lexical_score: float = 0.0
category_score: float = 0.0
recency_score: float = 0.0
popularity_score: float = 0.0
async def hybrid_search(
query: str,
featured: bool = False,
creators: list[str] | None = None,
category: str | None = None,
sorted_by: (
Literal["relevance", "rating", "runs", "name", "updated_at"] | None
) = None,
page: int = 1,
page_size: int = 20,
weights: HybridSearchWeights | None = None,
min_score: float | None = None,
) -> tuple[list[dict[str, Any]], int]:
"""
Perform hybrid search combining semantic and lexical signals.
Args:
query: Search query string
featured: Filter for featured agents only
creators: Filter by creator usernames
category: Filter by category
sorted_by: Sort order (relevance uses hybrid scoring)
page: Page number (1-indexed)
page_size: Results per page
weights: Custom weights for search signals
min_score: Minimum relevance score threshold (0-1). Results below
this score are filtered out. Defaults to DEFAULT_MIN_SCORE.
Returns:
Tuple of (results list, total count). Returns empty list if no
results meet the minimum relevance threshold.
"""
# Validate inputs
query = query.strip()
if not query:
return [], 0 # Empty query returns no results
if page < 1:
page = 1
if page_size < 1:
page_size = 1
if page_size > 100: # Cap at reasonable limit to prevent performance issues
page_size = 100
if weights is None:
weights = DEFAULT_WEIGHTS
if min_score is None:
min_score = DEFAULT_MIN_SCORE
offset = (page - 1) * page_size
# Generate query embedding
query_embedding = await embed_query(query)
# Build WHERE clause conditions
where_parts: list[str] = ["sa.is_available = true"]
params: list[Any] = []
param_index = 1
# Add search query for lexical matching
params.append(query)
query_param = f"${param_index}"
param_index += 1
# Add lowercased query for category matching
params.append(query.lower())
query_lower_param = f"${param_index}"
param_index += 1
if featured:
where_parts.append("sa.featured = true")
if creators:
where_parts.append(f"sa.creator_username = ANY(${param_index})")
params.append(creators)
param_index += 1
if category:
where_parts.append(f"${param_index} = ANY(sa.categories)")
params.append(category)
param_index += 1
# Safe: where_parts only contains hardcoded strings with $N parameter placeholders
# No user input is concatenated directly into the SQL string
where_clause = " AND ".join(where_parts)
# Embedding is required for hybrid search - fail fast if unavailable
if query_embedding is None or not query_embedding:
# Log detailed error server-side
logger.error(
"Failed to generate query embedding. "
"Check that openai_internal_api_key is configured and OpenAI API is accessible."
)
# Raise generic error to client
raise ValueError("Search service temporarily unavailable")
# Add embedding parameter
embedding_str = embedding_to_vector_string(query_embedding)
params.append(embedding_str)
embedding_param = f"${param_index}"
param_index += 1
# Add weight parameters for SQL calculation
params.append(weights.semantic)
weight_semantic_param = f"${param_index}"
param_index += 1
params.append(weights.lexical)
weight_lexical_param = f"${param_index}"
param_index += 1
params.append(weights.category)
weight_category_param = f"${param_index}"
param_index += 1
params.append(weights.recency)
weight_recency_param = f"${param_index}"
param_index += 1
params.append(weights.popularity)
weight_popularity_param = f"${param_index}"
param_index += 1
# Add min_score parameter
params.append(min_score)
min_score_param = f"${param_index}"
param_index += 1
# Optimized hybrid search query:
# 1. Direct join to UnifiedContentEmbedding via contentId=storeListingVersionId (no redundant JOINs)
# 2. UNION approach (deduplicates agents matching both branches)
# 3. COUNT(*) OVER() to get total count in single query
# 4. Optimized category matching with EXISTS + unnest
# 5. Pre-calculated max values for lexical and popularity normalization
# 6. Simplified recency calculation with linear decay
# 7. Logarithmic popularity scaling to prevent viral agents from dominating
sql_query = f"""
WITH candidates AS (
-- Lexical matches (uses GIN index on search column)
SELECT sa."storeListingVersionId"
FROM {{schema_prefix}}"StoreAgent" sa
WHERE {where_clause}
AND sa.search @@ plainto_tsquery('english', {query_param})
UNION
-- Semantic matches (uses HNSW index on embedding with KNN)
SELECT "storeListingVersionId"
FROM (
SELECT sa."storeListingVersionId", uce.embedding
FROM {{schema_prefix}}"StoreAgent" sa
INNER JOIN {{schema_prefix}}"UnifiedContentEmbedding" uce
ON sa."storeListingVersionId" = uce."contentId" AND uce."contentType" = 'STORE_AGENT'::{{schema_prefix}}"ContentType"
WHERE {where_clause}
ORDER BY uce.embedding <=> {embedding_param}::vector
LIMIT 200
) semantic_results
),
search_scores AS (
SELECT
sa.slug,
sa.agent_name,
sa.agent_image,
sa.creator_username,
sa.creator_avatar,
sa.sub_heading,
sa.description,
sa.runs,
sa.rating,
sa.categories,
sa.featured,
sa.is_available,
sa.updated_at,
-- Semantic score: cosine similarity (1 - distance)
COALESCE(1 - (uce.embedding <=> {embedding_param}::vector), 0) as semantic_score,
-- Lexical score: ts_rank_cd (will be normalized later)
COALESCE(ts_rank_cd(sa.search, plainto_tsquery('english', {query_param})), 0) as lexical_raw,
-- Category match: optimized with unnest for better performance
CASE
WHEN EXISTS (
SELECT 1 FROM unnest(sa.categories) cat
WHERE LOWER(cat) LIKE '%' || {query_lower_param} || '%'
)
THEN 1.0
ELSE 0.0
END as category_score,
-- Recency score: linear decay over 90 days (simpler than exponential)
GREATEST(0, 1 - EXTRACT(EPOCH FROM (NOW() - sa.updated_at)) / (90 * 24 * 3600)) as recency_score,
-- Popularity raw: agent runs count (will be normalized with log scaling)
sa.runs as popularity_raw
FROM candidates c
INNER JOIN {{schema_prefix}}"StoreAgent" sa
ON c."storeListingVersionId" = sa."storeListingVersionId"
LEFT JOIN {{schema_prefix}}"UnifiedContentEmbedding" uce
ON sa."storeListingVersionId" = uce."contentId" AND uce."contentType" = 'STORE_AGENT'::{{schema_prefix}}"ContentType"
),
max_lexical AS (
SELECT MAX(lexical_raw) as max_val FROM search_scores
),
max_popularity AS (
SELECT MAX(popularity_raw) as max_val FROM search_scores
),
normalized AS (
SELECT
ss.*,
-- Normalize lexical score by pre-calculated max
CASE
WHEN ml.max_val > 0
THEN ss.lexical_raw / ml.max_val
ELSE 0
END as lexical_score,
-- Normalize popularity with logarithmic scaling to prevent viral agents from dominating
-- LOG(1 + runs) / LOG(1 + max_runs) ensures score is 0-1 range
CASE
WHEN mp.max_val > 0 AND ss.popularity_raw > 0
THEN LN(1 + ss.popularity_raw) / LN(1 + mp.max_val)
ELSE 0
END as popularity_score
FROM search_scores ss
CROSS JOIN max_lexical ml
CROSS JOIN max_popularity mp
),
scored AS (
SELECT
slug,
agent_name,
agent_image,
creator_username,
creator_avatar,
sub_heading,
description,
runs,
rating,
categories,
featured,
is_available,
updated_at,
semantic_score,
lexical_score,
category_score,
recency_score,
popularity_score,
(
{weight_semantic_param} * semantic_score +
{weight_lexical_param} * lexical_score +
{weight_category_param} * category_score +
{weight_recency_param} * recency_score +
{weight_popularity_param} * popularity_score
) as combined_score
FROM normalized
),
filtered AS (
SELECT
*,
COUNT(*) OVER () as total_count
FROM scored
WHERE combined_score >= {min_score_param}
)
SELECT * FROM filtered
ORDER BY combined_score DESC
LIMIT ${param_index} OFFSET ${param_index + 1}
"""
# Add pagination params
params.extend([page_size, offset])
# Execute search query - includes total_count via window function
results = await query_raw_with_schema(
sql_query, *params, set_public_search_path=True
)
# Extract total count from first result (all rows have same count)
total = results[0]["total_count"] if results else 0
# Remove total_count from results before returning
for result in results:
result.pop("total_count", None)
# Log without sensitive query content
logger.info(f"Hybrid search: {len(results)} results, {total} total")
return results, total
async def hybrid_search_simple(
query: str,
page: int = 1,
page_size: int = 20,
) -> tuple[list[dict[str, Any]], int]:
"""
Simplified hybrid search for common use cases.
Uses default weights and no filters.
"""
return await hybrid_search(
query=query,
page=page,
page_size=page_size,
)

View File

@@ -1,334 +0,0 @@
"""
Integration tests for hybrid search with schema handling.
These tests verify that hybrid search works correctly across different database schemas.
"""
from unittest.mock import patch
import pytest
from backend.api.features.store.hybrid_search import HybridSearchWeights, hybrid_search
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_with_schema_handling():
"""Test that hybrid search correctly handles database schema prefixes."""
# Test with a mock query to ensure schema handling works
query = "test agent"
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
# Mock the query result
mock_query.return_value = [
{
"slug": "test/agent",
"agent_name": "Test Agent",
"agent_image": "test.png",
"creator_username": "test",
"creator_avatar": "avatar.png",
"sub_heading": "Test sub-heading",
"description": "Test description",
"runs": 10,
"rating": 4.5,
"categories": ["test"],
"featured": False,
"is_available": True,
"updated_at": "2024-01-01T00:00:00Z",
"combined_score": 0.8,
"semantic_score": 0.7,
"lexical_score": 0.6,
"category_score": 0.5,
"recency_score": 0.4,
"total_count": 1,
}
]
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536 # Mock embedding
results, total = await hybrid_search(
query=query,
page=1,
page_size=20,
)
# Verify the query was called
assert mock_query.called
# Verify the SQL template uses schema_prefix placeholder
call_args = mock_query.call_args
sql_template = call_args[0][0]
assert "{schema_prefix}" in sql_template
# Verify results
assert len(results) == 1
assert total == 1
assert results[0]["slug"] == "test/agent"
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_with_public_schema():
"""Test hybrid search when using public schema (no prefix needed)."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "public"
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
mock_query.return_value = []
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536
results, total = await hybrid_search(
query="test",
page=1,
page_size=20,
)
# Verify the mock was set up correctly
assert mock_schema.return_value == "public"
# Results should work even with empty results
assert results == []
assert total == 0
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_with_custom_schema():
"""Test hybrid search when using custom schema (e.g., 'platform')."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "platform"
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
mock_query.return_value = []
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536
results, total = await hybrid_search(
query="test",
page=1,
page_size=20,
)
# Verify the mock was set up correctly
assert mock_schema.return_value == "platform"
assert results == []
assert total == 0
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_without_embeddings():
"""Test hybrid search fails fast when embeddings are unavailable."""
# Patch where the function is used, not where it's defined
with patch("backend.api.features.store.hybrid_search.embed_query") as mock_embed:
# Simulate embedding failure
mock_embed.return_value = None
# Should raise ValueError with helpful message
with pytest.raises(ValueError) as exc_info:
await hybrid_search(
query="test",
page=1,
page_size=20,
)
# Verify error message is generic (doesn't leak implementation details)
assert "Search service temporarily unavailable" in str(exc_info.value)
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_with_filters():
"""Test hybrid search with various filters."""
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
mock_query.return_value = []
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536
# Test with featured filter
results, total = await hybrid_search(
query="test",
featured=True,
creators=["user1", "user2"],
category="productivity",
page=1,
page_size=10,
)
# Verify filters were applied in the query
call_args = mock_query.call_args
params = call_args[0][1:] # Skip SQL template
# Should have query, query_lower, creators array, category
assert len(params) >= 4
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_weights():
"""Test hybrid search with custom weights."""
custom_weights = HybridSearchWeights(
semantic=0.5,
lexical=0.3,
category=0.1,
recency=0.1,
popularity=0.0,
)
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
mock_query.return_value = []
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536
results, total = await hybrid_search(
query="test",
weights=custom_weights,
page=1,
page_size=20,
)
# Verify custom weights were used in the query
call_args = mock_query.call_args
sql_template = call_args[0][0]
params = call_args[0][1:] # Get all parameters passed
# Check that SQL uses parameterized weights (not f-string interpolation)
assert "$" in sql_template # Verify parameterization is used
# Check that custom weights are in the params
assert 0.5 in params # semantic weight
assert 0.3 in params # lexical weight
assert 0.1 in params # category and recency weights
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_min_score_filtering():
"""Test hybrid search minimum score threshold."""
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
# Return results with varying scores
mock_query.return_value = [
{
"slug": "high-score/agent",
"agent_name": "High Score Agent",
"combined_score": 0.8,
"total_count": 1,
# ... other fields
}
]
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536
# Test with custom min_score
results, total = await hybrid_search(
query="test",
min_score=0.5, # High threshold
page=1,
page_size=20,
)
# Verify min_score was applied in query
call_args = mock_query.call_args
sql_template = call_args[0][0]
params = call_args[0][1:] # Get all parameters
# Check that SQL uses parameterized min_score
assert "combined_score >=" in sql_template
assert "$" in sql_template # Verify parameterization
# Check that custom min_score is in the params
assert 0.5 in params
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_pagination():
"""Test hybrid search pagination."""
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
mock_query.return_value = []
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536
# Test page 2 with page_size 10
results, total = await hybrid_search(
query="test",
page=2,
page_size=10,
)
# Verify pagination parameters
call_args = mock_query.call_args
params = call_args[0]
# Last two params should be LIMIT and OFFSET
limit = params[-2]
offset = params[-1]
assert limit == 10 # page_size
assert offset == 10 # (page - 1) * page_size = (2 - 1) * 10
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_error_handling():
"""Test hybrid search error handling."""
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
# Simulate database error
mock_query.side_effect = Exception("Database connection error")
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536
# Should raise exception
with pytest.raises(Exception) as exc_info:
await hybrid_search(
query="test",
page=1,
page_size=20,
)
assert "Database connection error" in str(exc_info.value)
if __name__ == "__main__":
pytest.main([__file__, "-v", "-s"])

View File

@@ -110,7 +110,6 @@ class Profile(pydantic.BaseModel):
class StoreSubmission(pydantic.BaseModel):
listing_id: str
agent_id: str
agent_version: int
name: str
@@ -165,12 +164,8 @@ class StoreListingsWithVersionsResponse(pydantic.BaseModel):
class StoreSubmissionRequest(pydantic.BaseModel):
agent_id: str = pydantic.Field(
..., min_length=1, description="Agent ID cannot be empty"
)
agent_version: int = pydantic.Field(
..., gt=0, description="Agent version must be greater than 0"
)
agent_id: str
agent_version: int
slug: str
name: str
sub_heading: str

View File

@@ -138,7 +138,6 @@ def test_creator_details():
def test_store_submission():
submission = store_model.StoreSubmission(
listing_id="listing123",
agent_id="agent123",
agent_version=1,
sub_heading="Test subheading",
@@ -160,7 +159,6 @@ def test_store_submissions_response():
response = store_model.StoreSubmissionsResponse(
submissions=[
store_model.StoreSubmission(
listing_id="listing123",
agent_id="agent123",
agent_version=1,
sub_heading="Test subheading",

View File

@@ -521,7 +521,6 @@ def test_get_submissions_success(
mocked_value = store_model.StoreSubmissionsResponse(
submissions=[
store_model.StoreSubmission(
listing_id="test-listing-id",
name="Test Agent",
description="Test agent description",
image_urls=["test.jpg"],

View File

@@ -6,9 +6,6 @@ import hashlib
import hmac
import logging
from enum import Enum
from typing import cast
from prisma.types import Serializable
from backend.sdk import (
BaseWebhooksManager,
@@ -87,9 +84,7 @@ class AirtableWebhookManager(BaseWebhooksManager):
# update webhook config
await update_webhook(
webhook.id,
config=cast(
dict[str, Serializable], {"base_id": base_id, "cursor": response.cursor}
),
config={"base_id": base_id, "cursor": response.cursor},
)
event_type = "notification"

View File

@@ -1,184 +0,0 @@
"""
Shared helpers for Human-In-The-Loop (HITL) review functionality.
Used by both the dedicated HumanInTheLoopBlock and blocks that require human review.
"""
import logging
from typing import Any, Optional
from prisma.enums import ReviewStatus
from pydantic import BaseModel
from backend.data.execution import ExecutionContext, ExecutionStatus
from backend.data.human_review import ReviewResult
from backend.executor.manager import async_update_node_execution_status
from backend.util.clients import get_database_manager_async_client
logger = logging.getLogger(__name__)
class ReviewDecision(BaseModel):
"""Result of a review decision."""
should_proceed: bool
message: str
review_result: ReviewResult
class HITLReviewHelper:
"""Helper class for Human-In-The-Loop review operations."""
@staticmethod
async def get_or_create_human_review(**kwargs) -> Optional[ReviewResult]:
"""Create or retrieve a human review from the database."""
return await get_database_manager_async_client().get_or_create_human_review(
**kwargs
)
@staticmethod
async def update_node_execution_status(**kwargs) -> None:
"""Update the execution status of a node."""
await async_update_node_execution_status(
db_client=get_database_manager_async_client(), **kwargs
)
@staticmethod
async def update_review_processed_status(
node_exec_id: str, processed: bool
) -> None:
"""Update the processed status of a review."""
return await get_database_manager_async_client().update_review_processed_status(
node_exec_id, processed
)
@staticmethod
async def _handle_review_request(
input_data: Any,
user_id: str,
node_exec_id: str,
graph_exec_id: str,
graph_id: str,
graph_version: int,
execution_context: ExecutionContext,
block_name: str = "Block",
editable: bool = False,
) -> Optional[ReviewResult]:
"""
Handle a review request for a block that requires human review.
Args:
input_data: The input data to be reviewed
user_id: ID of the user requesting the review
node_exec_id: ID of the node execution
graph_exec_id: ID of the graph execution
graph_id: ID of the graph
graph_version: Version of the graph
execution_context: Current execution context
block_name: Name of the block requesting review
editable: Whether the reviewer can edit the data
Returns:
ReviewResult if review is complete, None if waiting for human input
Raises:
Exception: If review creation or status update fails
"""
# Skip review if safe mode is disabled - return auto-approved result
if not execution_context.safe_mode:
logger.info(
f"Block {block_name} skipping review for node {node_exec_id} - safe mode disabled"
)
return ReviewResult(
data=input_data,
status=ReviewStatus.APPROVED,
message="Auto-approved (safe mode disabled)",
processed=True,
node_exec_id=node_exec_id,
)
result = await HITLReviewHelper.get_or_create_human_review(
user_id=user_id,
node_exec_id=node_exec_id,
graph_exec_id=graph_exec_id,
graph_id=graph_id,
graph_version=graph_version,
input_data=input_data,
message=f"Review required for {block_name} execution",
editable=editable,
)
if result is None:
logger.info(
f"Block {block_name} pausing execution for node {node_exec_id} - awaiting human review"
)
await HITLReviewHelper.update_node_execution_status(
exec_id=node_exec_id,
status=ExecutionStatus.REVIEW,
)
return None # Signal that execution should pause
# Mark review as processed if not already done
if not result.processed:
await HITLReviewHelper.update_review_processed_status(
node_exec_id=node_exec_id, processed=True
)
return result
@staticmethod
async def handle_review_decision(
input_data: Any,
user_id: str,
node_exec_id: str,
graph_exec_id: str,
graph_id: str,
graph_version: int,
execution_context: ExecutionContext,
block_name: str = "Block",
editable: bool = False,
) -> Optional[ReviewDecision]:
"""
Handle a review request and return the decision in a single call.
Args:
input_data: The input data to be reviewed
user_id: ID of the user requesting the review
node_exec_id: ID of the node execution
graph_exec_id: ID of the graph execution
graph_id: ID of the graph
graph_version: Version of the graph
execution_context: Current execution context
block_name: Name of the block requesting review
editable: Whether the reviewer can edit the data
Returns:
ReviewDecision if review is complete (approved/rejected),
None if execution should pause (awaiting review)
"""
review_result = await HITLReviewHelper._handle_review_request(
input_data=input_data,
user_id=user_id,
node_exec_id=node_exec_id,
graph_exec_id=graph_exec_id,
graph_id=graph_id,
graph_version=graph_version,
execution_context=execution_context,
block_name=block_name,
editable=editable,
)
if review_result is None:
# Still awaiting review - return None to pause execution
return None
# Review is complete, determine outcome
should_proceed = review_result.status == ReviewStatus.APPROVED
message = review_result.message or (
"Execution approved by reviewer"
if should_proceed
else "Execution rejected by reviewer"
)
return ReviewDecision(
should_proceed=should_proceed, message=message, review_result=review_result
)

View File

@@ -3,7 +3,6 @@ from typing import Any
from prisma.enums import ReviewStatus
from backend.blocks.helpers.review import HITLReviewHelper
from backend.data.block import (
Block,
BlockCategory,
@@ -12,9 +11,11 @@ from backend.data.block import (
BlockSchemaOutput,
BlockType,
)
from backend.data.execution import ExecutionContext
from backend.data.execution import ExecutionContext, ExecutionStatus
from backend.data.human_review import ReviewResult
from backend.data.model import SchemaField
from backend.executor.manager import async_update_node_execution_status
from backend.util.clients import get_database_manager_async_client
logger = logging.getLogger(__name__)
@@ -71,26 +72,32 @@ class HumanInTheLoopBlock(Block):
("approved_data", {"name": "John Doe", "age": 30}),
],
test_mock={
"handle_review_decision": lambda **kwargs: type(
"ReviewDecision",
(),
{
"should_proceed": True,
"message": "Test approval message",
"review_result": ReviewResult(
data={"name": "John Doe", "age": 30},
status=ReviewStatus.APPROVED,
message="",
processed=False,
node_exec_id="test-node-exec-id",
),
},
)(),
"get_or_create_human_review": lambda *_args, **_kwargs: ReviewResult(
data={"name": "John Doe", "age": 30},
status=ReviewStatus.APPROVED,
message="",
processed=False,
node_exec_id="test-node-exec-id",
),
"update_node_execution_status": lambda *_args, **_kwargs: None,
"update_review_processed_status": lambda *_args, **_kwargs: None,
},
)
async def handle_review_decision(self, **kwargs):
return await HITLReviewHelper.handle_review_decision(**kwargs)
async def get_or_create_human_review(self, **kwargs):
return await get_database_manager_async_client().get_or_create_human_review(
**kwargs
)
async def update_node_execution_status(self, **kwargs):
return await async_update_node_execution_status(
db_client=get_database_manager_async_client(), **kwargs
)
async def update_review_processed_status(self, node_exec_id: str, processed: bool):
return await get_database_manager_async_client().update_review_processed_status(
node_exec_id, processed
)
async def run(
self,
@@ -102,7 +109,7 @@ class HumanInTheLoopBlock(Block):
graph_id: str,
graph_version: int,
execution_context: ExecutionContext,
**_kwargs,
**kwargs,
) -> BlockOutput:
if not execution_context.safe_mode:
logger.info(
@@ -112,28 +119,48 @@ class HumanInTheLoopBlock(Block):
yield "review_message", "Auto-approved (safe mode disabled)"
return
decision = await self.handle_review_decision(
input_data=input_data.data,
user_id=user_id,
node_exec_id=node_exec_id,
graph_exec_id=graph_exec_id,
graph_id=graph_id,
graph_version=graph_version,
execution_context=execution_context,
block_name=self.name,
editable=input_data.editable,
)
try:
result = await self.get_or_create_human_review(
user_id=user_id,
node_exec_id=node_exec_id,
graph_exec_id=graph_exec_id,
graph_id=graph_id,
graph_version=graph_version,
input_data=input_data.data,
message=input_data.name,
editable=input_data.editable,
)
except Exception as e:
logger.error(f"Error in HITL block for node {node_exec_id}: {str(e)}")
raise
if decision is None:
return
if result is None:
logger.info(
f"HITL block pausing execution for node {node_exec_id} - awaiting human review"
)
try:
await self.update_node_execution_status(
exec_id=node_exec_id,
status=ExecutionStatus.REVIEW,
)
return
except Exception as e:
logger.error(
f"Failed to update node status for HITL block {node_exec_id}: {str(e)}"
)
raise
status = decision.review_result.status
if status == ReviewStatus.APPROVED:
yield "approved_data", decision.review_result.data
elif status == ReviewStatus.REJECTED:
yield "rejected_data", decision.review_result.data
else:
raise RuntimeError(f"Unexpected review status: {status}")
if not result.processed:
await self.update_review_processed_status(
node_exec_id=node_exec_id, processed=True
)
if decision.message:
yield "review_message", decision.message
if result.status == ReviewStatus.APPROVED:
yield "approved_data", result.data
if result.message:
yield "review_message", result.message
elif result.status == ReviewStatus.REJECTED:
yield "rejected_data", result.data
if result.message:
yield "review_message", result.message

File diff suppressed because it is too large Load Diff

View File

@@ -18,7 +18,6 @@ from backend.data.model import (
SchemaField,
)
from backend.integrations.providers import ProviderName
from backend.util.request import DEFAULT_USER_AGENT
class GetWikipediaSummaryBlock(Block, GetRequest):
@@ -40,27 +39,17 @@ class GetWikipediaSummaryBlock(Block, GetRequest):
output_schema=GetWikipediaSummaryBlock.Output,
test_input={"topic": "Artificial Intelligence"},
test_output=("summary", "summary content"),
test_mock={
"get_request": lambda url, headers, json: {"extract": "summary content"}
},
test_mock={"get_request": lambda url, json: {"extract": "summary content"}},
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
topic = input_data.topic
# URL-encode the topic to handle spaces and special characters
encoded_topic = quote(topic, safe="")
url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{encoded_topic}"
# Set headers per Wikimedia robot policy (https://w.wiki/4wJS)
# - User-Agent: Required, must identify the bot
# - Accept-Encoding: gzip recommended to reduce bandwidth
headers = {
"User-Agent": DEFAULT_USER_AGENT,
"Accept-Encoding": "gzip, deflate",
}
url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{topic}"
# Note: User-Agent is now automatically set by the request library
# to comply with Wikimedia's robot policy (https://w.wiki/4wJS)
try:
response = await self.get_request(url, headers=headers, json=True)
response = await self.get_request(url, json=True)
if "extract" not in response:
raise ValueError(f"Unable to parse Wikipedia response: {response}")
yield "summary", response["extract"]

View File

@@ -391,12 +391,8 @@ class SmartDecisionMakerBlock(Block):
"""
block = sink_node.block
# Use custom name from node metadata if set, otherwise fall back to block.name
custom_name = sink_node.metadata.get("customized_name")
tool_name = custom_name if custom_name else block.name
tool_function: dict[str, Any] = {
"name": SmartDecisionMakerBlock.cleanup(tool_name),
"name": SmartDecisionMakerBlock.cleanup(block.name),
"description": block.description,
}
sink_block_input_schema = block.input_schema
@@ -493,24 +489,14 @@ class SmartDecisionMakerBlock(Block):
f"Sink graph metadata not found: {graph_id} {graph_version}"
)
# Use custom name from node metadata if set, otherwise fall back to graph name
custom_name = sink_node.metadata.get("customized_name")
tool_name = custom_name if custom_name else sink_graph_meta.name
tool_function: dict[str, Any] = {
"name": SmartDecisionMakerBlock.cleanup(tool_name),
"name": SmartDecisionMakerBlock.cleanup(sink_graph_meta.name),
"description": sink_graph_meta.description,
}
properties = {}
field_mapping = {}
for link in links:
field_name = link.sink_name
clean_field_name = SmartDecisionMakerBlock.cleanup(field_name)
field_mapping[clean_field_name] = field_name
sink_block_input_schema = sink_node.input_default["input_schema"]
sink_block_properties = sink_block_input_schema.get("properties", {}).get(
link.sink_name, {}
@@ -520,7 +506,7 @@ class SmartDecisionMakerBlock(Block):
if "description" in sink_block_properties
else f"The {link.sink_name} of the tool"
)
properties[clean_field_name] = {
properties[link.sink_name] = {
"type": "string",
"description": description,
"default": json.dumps(sink_block_properties.get("default", None)),
@@ -533,7 +519,7 @@ class SmartDecisionMakerBlock(Block):
"strict": True,
}
tool_function["_field_mapping"] = field_mapping
# Store node info for later use in output processing
tool_function["_sink_node_id"] = sink_node.id
return {"type": "function", "function": tool_function}
@@ -989,28 +975,10 @@ class SmartDecisionMakerBlock(Block):
graph_version: int,
execution_context: ExecutionContext,
execution_processor: "ExecutionProcessor",
nodes_to_skip: set[str] | None = None,
**kwargs,
) -> BlockOutput:
tool_functions = await self._create_tool_node_signatures(node_id)
original_tool_count = len(tool_functions)
# Filter out tools for nodes that should be skipped (e.g., missing optional credentials)
if nodes_to_skip:
tool_functions = [
tf
for tf in tool_functions
if tf.get("function", {}).get("_sink_node_id") not in nodes_to_skip
]
# Only raise error if we had tools but they were all filtered out
if original_tool_count > 0 and not tool_functions:
raise ValueError(
"No available tools to execute - all downstream nodes are unavailable "
"(possibly due to missing optional credentials)"
)
yield "tool_functions", json.dumps(tool_functions)
conversation_history = input_data.conversation_history or []
@@ -1161,9 +1129,8 @@ class SmartDecisionMakerBlock(Block):
original_field_name = field_mapping.get(clean_arg_name, clean_arg_name)
arg_value = tool_args.get(clean_arg_name)
# Use original_field_name directly (not sanitized) to match link sink_name
# The field_mapping already translates from LLM's cleaned names to original names
emit_key = f"tools_^_{sink_node_id}_~_{original_field_name}"
sanitized_arg_name = self.cleanup(original_field_name)
emit_key = f"tools_^_{sink_node_id}_~_{sanitized_arg_name}"
logger.debug(
"[SmartDecisionMakerBlock|geid:%s|neid:%s] emit %s",

View File

@@ -1057,153 +1057,3 @@ async def test_smart_decision_maker_traditional_mode_default():
) # Should yield individual tool parameters
assert "tools_^_test-sink-node-id_~_max_keyword_difficulty" in outputs
assert "conversations" in outputs
@pytest.mark.asyncio
async def test_smart_decision_maker_uses_customized_name_for_blocks():
"""Test that SmartDecisionMakerBlock uses customized_name from node metadata for tool names."""
from unittest.mock import MagicMock
from backend.blocks.basic import StoreValueBlock
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
from backend.data.graph import Link, Node
# Create a mock node with customized_name in metadata
mock_node = MagicMock(spec=Node)
mock_node.id = "test-node-id"
mock_node.block_id = StoreValueBlock().id
mock_node.metadata = {"customized_name": "My Custom Tool Name"}
mock_node.block = StoreValueBlock()
# Create a mock link
mock_link = MagicMock(spec=Link)
mock_link.sink_name = "input"
# Call the function directly
result = await SmartDecisionMakerBlock._create_block_function_signature(
mock_node, [mock_link]
)
# Verify the tool name uses the customized name (cleaned up)
assert result["type"] == "function"
assert result["function"]["name"] == "my_custom_tool_name" # Cleaned version
assert result["function"]["_sink_node_id"] == "test-node-id"
@pytest.mark.asyncio
async def test_smart_decision_maker_falls_back_to_block_name():
"""Test that SmartDecisionMakerBlock falls back to block.name when no customized_name."""
from unittest.mock import MagicMock
from backend.blocks.basic import StoreValueBlock
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
from backend.data.graph import Link, Node
# Create a mock node without customized_name
mock_node = MagicMock(spec=Node)
mock_node.id = "test-node-id"
mock_node.block_id = StoreValueBlock().id
mock_node.metadata = {} # No customized_name
mock_node.block = StoreValueBlock()
# Create a mock link
mock_link = MagicMock(spec=Link)
mock_link.sink_name = "input"
# Call the function directly
result = await SmartDecisionMakerBlock._create_block_function_signature(
mock_node, [mock_link]
)
# Verify the tool name uses the block's default name
assert result["type"] == "function"
assert result["function"]["name"] == "storevalueblock" # Default block name cleaned
assert result["function"]["_sink_node_id"] == "test-node-id"
@pytest.mark.asyncio
async def test_smart_decision_maker_uses_customized_name_for_agents():
"""Test that SmartDecisionMakerBlock uses customized_name from metadata for agent nodes."""
from unittest.mock import AsyncMock, MagicMock, patch
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
from backend.data.graph import Link, Node
# Create a mock node with customized_name in metadata
mock_node = MagicMock(spec=Node)
mock_node.id = "test-agent-node-id"
mock_node.metadata = {"customized_name": "My Custom Agent"}
mock_node.input_default = {
"graph_id": "test-graph-id",
"graph_version": 1,
"input_schema": {"properties": {"test_input": {"description": "Test input"}}},
}
# Create a mock link
mock_link = MagicMock(spec=Link)
mock_link.sink_name = "test_input"
# Mock the database client
mock_graph_meta = MagicMock()
mock_graph_meta.name = "Original Agent Name"
mock_graph_meta.description = "Agent description"
mock_db_client = AsyncMock()
mock_db_client.get_graph_metadata.return_value = mock_graph_meta
with patch(
"backend.blocks.smart_decision_maker.get_database_manager_async_client",
return_value=mock_db_client,
):
result = await SmartDecisionMakerBlock._create_agent_function_signature(
mock_node, [mock_link]
)
# Verify the tool name uses the customized name (cleaned up)
assert result["type"] == "function"
assert result["function"]["name"] == "my_custom_agent" # Cleaned version
assert result["function"]["_sink_node_id"] == "test-agent-node-id"
@pytest.mark.asyncio
async def test_smart_decision_maker_agent_falls_back_to_graph_name():
"""Test that agent node falls back to graph name when no customized_name."""
from unittest.mock import AsyncMock, MagicMock, patch
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
from backend.data.graph import Link, Node
# Create a mock node without customized_name
mock_node = MagicMock(spec=Node)
mock_node.id = "test-agent-node-id"
mock_node.metadata = {} # No customized_name
mock_node.input_default = {
"graph_id": "test-graph-id",
"graph_version": 1,
"input_schema": {"properties": {"test_input": {"description": "Test input"}}},
}
# Create a mock link
mock_link = MagicMock(spec=Link)
mock_link.sink_name = "test_input"
# Mock the database client
mock_graph_meta = MagicMock()
mock_graph_meta.name = "Original Agent Name"
mock_graph_meta.description = "Agent description"
mock_db_client = AsyncMock()
mock_db_client.get_graph_metadata.return_value = mock_graph_meta
with patch(
"backend.blocks.smart_decision_maker.get_database_manager_async_client",
return_value=mock_db_client,
):
result = await SmartDecisionMakerBlock._create_agent_function_signature(
mock_node, [mock_link]
)
# Verify the tool name uses the graph's default name
assert result["type"] == "function"
assert result["function"]["name"] == "original_agent_name" # Graph name cleaned
assert result["function"]["_sink_node_id"] == "test-agent-node-id"

View File

@@ -15,7 +15,6 @@ async def test_smart_decision_maker_handles_dynamic_dict_fields():
mock_node.block = CreateDictionaryBlock()
mock_node.block_id = CreateDictionaryBlock().id
mock_node.input_default = {}
mock_node.metadata = {}
# Create mock links with dynamic dictionary fields
mock_links = [
@@ -78,7 +77,6 @@ async def test_smart_decision_maker_handles_dynamic_list_fields():
mock_node.block = AddToListBlock()
mock_node.block_id = AddToListBlock().id
mock_node.input_default = {}
mock_node.metadata = {}
# Create mock links with dynamic list fields
mock_links = [

View File

@@ -44,7 +44,6 @@ async def test_create_block_function_signature_with_dict_fields():
mock_node.block = CreateDictionaryBlock()
mock_node.block_id = CreateDictionaryBlock().id
mock_node.input_default = {}
mock_node.metadata = {}
# Create mock links with dynamic dictionary fields (source sanitized, sink original)
mock_links = [
@@ -107,7 +106,6 @@ async def test_create_block_function_signature_with_list_fields():
mock_node.block = AddToListBlock()
mock_node.block_id = AddToListBlock().id
mock_node.input_default = {}
mock_node.metadata = {}
# Create mock links with dynamic list fields
mock_links = [
@@ -161,7 +159,6 @@ async def test_create_block_function_signature_with_object_fields():
mock_node.block = MatchTextPatternBlock()
mock_node.block_id = MatchTextPatternBlock().id
mock_node.input_default = {}
mock_node.metadata = {}
# Create mock links with dynamic object fields
mock_links = [
@@ -211,13 +208,11 @@ async def test_create_tool_node_signatures():
mock_dict_node.block = CreateDictionaryBlock()
mock_dict_node.block_id = CreateDictionaryBlock().id
mock_dict_node.input_default = {}
mock_dict_node.metadata = {}
mock_list_node = Mock()
mock_list_node.block = AddToListBlock()
mock_list_node.block_id = AddToListBlock().id
mock_list_node.input_default = {}
mock_list_node.metadata = {}
# Mock links with dynamic fields
dict_link1 = Mock(
@@ -428,7 +423,6 @@ async def test_mixed_regular_and_dynamic_fields():
mock_node.block.name = "TestBlock"
mock_node.block.description = "A test block"
mock_node.block.input_schema = Mock()
mock_node.metadata = {}
# Mock the get_field_schema to return a proper schema for regular fields
def get_field_schema(field_name):

View File

@@ -1,3 +1,3 @@
from .blog import WordPressCreatePostBlock, WordPressGetAllPostsBlock
from .blog import WordPressCreatePostBlock
__all__ = ["WordPressCreatePostBlock", "WordPressGetAllPostsBlock"]
__all__ = ["WordPressCreatePostBlock"]

View File

@@ -161,7 +161,7 @@ async def oauth_exchange_code_for_tokens(
grant_type="authorization_code",
).model_dump(exclude_none=True)
response = await Requests(raise_for_status=False).post(
response = await Requests().post(
f"{WORDPRESS_BASE_URL}oauth2/token",
headers=headers,
data=data,
@@ -205,7 +205,7 @@ async def oauth_refresh_tokens(
grant_type="refresh_token",
).model_dump(exclude_none=True)
response = await Requests(raise_for_status=False).post(
response = await Requests().post(
f"{WORDPRESS_BASE_URL}oauth2/token",
headers=headers,
data=data,
@@ -252,7 +252,7 @@ async def validate_token(
"token": token,
}
response = await Requests(raise_for_status=False).get(
response = await Requests().get(
f"{WORDPRESS_BASE_URL}oauth2/token-info",
params=params,
)
@@ -296,7 +296,7 @@ async def make_api_request(
url = f"{WORDPRESS_BASE_URL.rstrip('/')}{endpoint}"
request_method = getattr(Requests(raise_for_status=False), method.lower())
request_method = getattr(Requests(), method.lower())
response = await request_method(
url,
headers=headers,
@@ -476,7 +476,6 @@ async def create_post(
data["tags"] = ",".join(str(t) for t in data["tags"])
# Make the API request
site = normalize_site(site)
endpoint = f"/rest/v1.1/sites/{site}/posts/new"
headers = {
@@ -484,7 +483,7 @@ async def create_post(
"Content-Type": "application/x-www-form-urlencoded",
}
response = await Requests(raise_for_status=False).post(
response = await Requests().post(
f"{WORDPRESS_BASE_URL.rstrip('/')}{endpoint}",
headers=headers,
data=data,
@@ -500,132 +499,3 @@ async def create_post(
)
error_message = error_data.get("message", response.text)
raise ValueError(f"Failed to create post: {response.status} - {error_message}")
class Post(BaseModel):
"""Response model for individual posts in a posts list response.
This is a simplified version compared to PostResponse, as the list endpoint
returns less detailed information than the create/get single post endpoints.
"""
ID: int
site_ID: int
author: PostAuthor
date: datetime
modified: datetime
title: str
URL: str
short_URL: str
content: str | None = None
excerpt: str | None = None
slug: str
guid: str
status: str
sticky: bool
password: str | None = ""
parent: Union[Dict[str, Any], bool, None] = None
type: str
discussion: Dict[str, Union[str, bool, int]] | None = None
likes_enabled: bool | None = None
sharing_enabled: bool | None = None
like_count: int | None = None
i_like: bool | None = None
is_reblogged: bool | None = None
is_following: bool | None = None
global_ID: str | None = None
featured_image: str | None = None
post_thumbnail: Dict[str, Any] | None = None
format: str | None = None
geo: Union[Dict[str, Any], bool, None] = None
menu_order: int | None = None
page_template: str | None = None
publicize_URLs: List[str] | None = None
terms: Dict[str, Dict[str, Any]] | None = None
tags: Dict[str, Dict[str, Any]] | None = None
categories: Dict[str, Dict[str, Any]] | None = None
attachments: Dict[str, Dict[str, Any]] | None = None
attachment_count: int | None = None
metadata: List[Dict[str, Any]] | None = None
meta: Dict[str, Any] | None = None
capabilities: Dict[str, bool] | None = None
revisions: List[int] | None = None
other_URLs: Dict[str, Any] | None = None
class PostsResponse(BaseModel):
"""Response model for WordPress posts list."""
found: int
posts: List[Post]
meta: Dict[str, Any]
def normalize_site(site: str) -> str:
"""
Normalize a site identifier by stripping protocol and trailing slashes.
Args:
site: Site URL, domain, or ID (e.g., "https://myblog.wordpress.com/", "myblog.wordpress.com", "123456789")
Returns:
Normalized site identifier (domain or ID only)
"""
site = site.strip()
if site.startswith("https://"):
site = site[8:]
elif site.startswith("http://"):
site = site[7:]
return site.rstrip("/")
async def get_posts(
credentials: Credentials,
site: str,
status: PostStatus | None = None,
number: int = 100,
offset: int = 0,
) -> PostsResponse:
"""
Get posts from a WordPress site.
Args:
credentials: OAuth credentials
site: Site ID or domain (e.g., "myblog.wordpress.com" or "123456789")
status: Filter by post status using PostStatus enum, or None for all
number: Number of posts to retrieve (max 100)
offset: Number of posts to skip (for pagination)
Returns:
PostsResponse with the list of posts
"""
site = normalize_site(site)
endpoint = f"/rest/v1.1/sites/{site}/posts"
headers = {
"Authorization": credentials.auth_header(),
}
params: Dict[str, Any] = {
"number": max(1, min(number, 100)), # 1100 posts per request
"offset": offset,
}
if status:
params["status"] = status.value
response = await Requests(raise_for_status=False).get(
f"{WORDPRESS_BASE_URL.rstrip('/')}{endpoint}",
headers=headers,
params=params,
)
if response.ok:
return PostsResponse.model_validate(response.json())
error_data = (
response.json()
if response.headers.get("content-type", "").startswith("application/json")
else {}
)
error_message = error_data.get("message", response.text)
raise ValueError(f"Failed to get posts: {response.status} - {error_message}")

View File

@@ -9,15 +9,7 @@ from backend.sdk import (
SchemaField,
)
from ._api import (
CreatePostRequest,
Post,
PostResponse,
PostsResponse,
PostStatus,
create_post,
get_posts,
)
from ._api import CreatePostRequest, PostResponse, PostStatus, create_post
from ._config import wordpress
@@ -57,15 +49,8 @@ class WordPressCreatePostBlock(Block):
media_urls: list[str] = SchemaField(
description="URLs of images to sideload and attach to the post", default=[]
)
publish_as_draft: bool = SchemaField(
description="If True, publishes the post as a draft. If False, publishes it publicly.",
default=False,
)
class Output(BlockSchemaOutput):
site: str = SchemaField(
description="The site ID or domain (pass-through for chaining with other blocks)"
)
post_id: int = SchemaField(description="The ID of the created post")
post_url: str = SchemaField(description="The full URL of the created post")
short_url: str = SchemaField(description="The shortened wp.me URL")
@@ -93,9 +78,7 @@ class WordPressCreatePostBlock(Block):
tags=input_data.tags,
featured_image=input_data.featured_image,
media_urls=input_data.media_urls,
status=(
PostStatus.DRAFT if input_data.publish_as_draft else PostStatus.PUBLISH
),
status=PostStatus.PUBLISH,
)
post_response: PostResponse = await create_post(
@@ -104,69 +87,7 @@ class WordPressCreatePostBlock(Block):
post_data=post_request,
)
yield "site", input_data.site
yield "post_id", post_response.ID
yield "post_url", post_response.URL
yield "short_url", post_response.short_URL
yield "post_data", post_response.model_dump()
class WordPressGetAllPostsBlock(Block):
"""
Fetches all posts from a WordPress.com site or Jetpack-enabled site.
Supports filtering by status and pagination.
"""
class Input(BlockSchemaInput):
credentials: CredentialsMetaInput = wordpress.credentials_field()
site: str = SchemaField(
description="Site ID or domain (e.g., 'myblog.wordpress.com' or '123456789')"
)
status: PostStatus | None = SchemaField(
description="Filter by post status, or None for all",
default=None,
)
number: int = SchemaField(
description="Number of posts to retrieve (max 100 per request)", default=20
)
offset: int = SchemaField(
description="Number of posts to skip (for pagination)", default=0
)
class Output(BlockSchemaOutput):
site: str = SchemaField(
description="The site ID or domain (pass-through for chaining with other blocks)"
)
found: int = SchemaField(description="Total number of posts found")
posts: list[Post] = SchemaField(
description="List of post objects with their details"
)
post: Post = SchemaField(
description="Individual post object (yielded for each post)"
)
def __init__(self):
super().__init__(
id="97728fa7-7f6f-4789-ba0c-f2c114119536",
description="Fetch all posts from WordPress.com or Jetpack sites",
categories={BlockCategory.SOCIAL},
input_schema=self.Input,
output_schema=self.Output,
)
async def run(
self, input_data: Input, *, credentials: Credentials, **kwargs
) -> BlockOutput:
posts_response: PostsResponse = await get_posts(
credentials=credentials,
site=input_data.site,
status=input_data.status,
number=input_data.number,
offset=input_data.offset,
)
yield "site", input_data.site
yield "found", posts_response.found
yield "posts", posts_response.posts
for post in posts_response.posts:
yield "post", post

View File

@@ -50,8 +50,6 @@ from .model import (
logger = logging.getLogger(__name__)
if TYPE_CHECKING:
from backend.data.execution import ExecutionContext
from .graph import Link
app_config = Config()
@@ -474,7 +472,6 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
self.block_type = block_type
self.webhook_config = webhook_config
self.execution_stats: NodeExecutionStats = NodeExecutionStats()
self.requires_human_review: bool = False
if self.webhook_config:
if isinstance(self.webhook_config, BlockWebhookConfig):
@@ -617,77 +614,7 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
block_id=self.id,
) from ex
async def is_block_exec_need_review(
self,
input_data: BlockInput,
*,
user_id: str,
node_exec_id: str,
graph_exec_id: str,
graph_id: str,
graph_version: int,
execution_context: "ExecutionContext",
**kwargs,
) -> tuple[bool, BlockInput]:
"""
Check if this block execution needs human review and handle the review process.
Returns:
Tuple of (should_pause, input_data_to_use)
- should_pause: True if execution should be paused for review
- input_data_to_use: The input data to use (may be modified by reviewer)
"""
# Skip review if not required or safe mode is disabled
if not self.requires_human_review or not execution_context.safe_mode:
return False, input_data
from backend.blocks.helpers.review import HITLReviewHelper
# Handle the review request and get decision
decision = await HITLReviewHelper.handle_review_decision(
input_data=input_data,
user_id=user_id,
node_exec_id=node_exec_id,
graph_exec_id=graph_exec_id,
graph_id=graph_id,
graph_version=graph_version,
execution_context=execution_context,
block_name=self.name,
editable=True,
)
if decision is None:
# We're awaiting review - pause execution
return True, input_data
if not decision.should_proceed:
# Review was rejected, raise an error to stop execution
raise BlockExecutionError(
message=f"Block execution rejected by reviewer: {decision.message}",
block_name=self.name,
block_id=self.id,
)
# Review was approved - use the potentially modified data
# ReviewResult.data must be a dict for block inputs
reviewed_data = decision.review_result.data
if not isinstance(reviewed_data, dict):
raise BlockExecutionError(
message=f"Review data must be a dict for block input, got {type(reviewed_data).__name__}",
block_name=self.name,
block_id=self.id,
)
return False, reviewed_data
async def _execute(self, input_data: BlockInput, **kwargs) -> BlockOutput:
# Check for review requirement and get potentially modified input data
should_pause, input_data = await self.is_block_exec_need_review(
input_data, **kwargs
)
if should_pause:
return
# Validate the input data (original or reviewer-modified) once
if error := self.input_schema.validate_data(input_data):
raise BlockInputError(
message=f"Unable to execute block with invalid input data: {error}",
@@ -695,7 +622,6 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
block_id=self.id,
)
# Use the validated input data
async for output_name, output_data in self.run(
self.input_schema(**{k: v for k, v in input_data.items() if v is not None}),
**kwargs,

View File

@@ -38,20 +38,6 @@ POOL_TIMEOUT = os.getenv("DB_POOL_TIMEOUT")
if POOL_TIMEOUT:
DATABASE_URL = add_param(DATABASE_URL, "pool_timeout", POOL_TIMEOUT)
# Add public schema to search_path for pgvector type access
# The vector extension is in public schema, but search_path is determined by schema parameter
# Extract the schema from DATABASE_URL or default to 'platform'
parsed_url = urlparse(DATABASE_URL)
url_params = dict(parse_qsl(parsed_url.query))
db_schema = url_params.get("schema", "platform")
# Build search_path, avoiding duplicates if db_schema is already 'public'
search_path_schemas = list(
dict.fromkeys([db_schema, "public"])
) # Preserves order, removes duplicates
search_path = ",".join(search_path_schemas)
# This allows using ::vector without schema qualification
DATABASE_URL = add_param(DATABASE_URL, "options", f"-c search_path={search_path}")
HTTP_TIMEOUT = int(POOL_TIMEOUT) if POOL_TIMEOUT else None
prisma = Prisma(
@@ -122,102 +108,21 @@ def get_database_schema() -> str:
return query_params.get("schema", "public")
async def _raw_with_schema(
query_template: str,
*args,
execute: bool = False,
client: Prisma | None = None,
set_public_search_path: bool = False,
) -> list[dict] | int:
"""Internal: Execute raw SQL with proper schema handling.
Use query_raw_with_schema() or execute_raw_with_schema() instead.
Args:
query_template: SQL query with {schema_prefix} placeholder
*args: Query parameters
execute: If False, executes SELECT query. If True, executes INSERT/UPDATE/DELETE.
client: Optional Prisma client for transactions (only used when execute=True).
set_public_search_path: If True, sets search_path to include public schema.
Needed for pgvector types and other public schema objects.
Returns:
- list[dict] if execute=False (query results)
- int if execute=True (number of affected rows)
"""
async def query_raw_with_schema(query_template: str, *args) -> list[dict]:
"""Execute raw SQL query with proper schema handling."""
schema = get_database_schema()
schema_prefix = f'"{schema}".' if schema != "public" else ""
formatted_query = query_template.format(schema_prefix=schema_prefix)
import prisma as prisma_module
db_client = client if client else prisma_module.get_client()
# Set search_path to include public schema if requested
# Prisma doesn't support the 'options' connection parameter, so we set it per-session
# This is idempotent and safe to call multiple times
if set_public_search_path:
await db_client.execute_raw(f"SET search_path = {schema}, public") # type: ignore
if execute:
result = await db_client.execute_raw(formatted_query, *args) # type: ignore
else:
result = await db_client.query_raw(formatted_query, *args) # type: ignore
result = await prisma_module.get_client().query_raw(
formatted_query, *args # type: ignore
)
return result
async def query_raw_with_schema(
query_template: str, *args, set_public_search_path: bool = False
) -> list[dict]:
"""Execute raw SQL SELECT query with proper schema handling.
Args:
query_template: SQL query with {schema_prefix} placeholder
*args: Query parameters
set_public_search_path: If True, sets search_path to include public schema.
Needed for pgvector types and other public schema objects.
Returns:
List of result rows as dictionaries
Example:
results = await query_raw_with_schema(
'SELECT * FROM {schema_prefix}"User" WHERE id = $1',
user_id
)
"""
return await _raw_with_schema(query_template, *args, execute=False, set_public_search_path=set_public_search_path) # type: ignore
async def execute_raw_with_schema(
query_template: str,
*args,
client: Prisma | None = None,
set_public_search_path: bool = False,
) -> int:
"""Execute raw SQL command (INSERT/UPDATE/DELETE) with proper schema handling.
Args:
query_template: SQL query with {schema_prefix} placeholder
*args: Query parameters
client: Optional Prisma client for transactions
set_public_search_path: If True, sets search_path to include public schema.
Needed for pgvector types and other public schema objects.
Returns:
Number of affected rows
Example:
await execute_raw_with_schema(
'INSERT INTO {schema_prefix}"User" (id, name) VALUES ($1, $2)',
user_id, name,
client=tx # Optional transaction client
)
"""
return await _raw_with_schema(query_template, *args, execute=True, client=client, set_public_search_path=set_public_search_path) # type: ignore
class BaseDbModel(BaseModel):
id: str = Field(default_factory=lambda: str(uuid4()))

View File

@@ -383,7 +383,6 @@ class GraphExecutionWithNodes(GraphExecution):
self,
execution_context: ExecutionContext,
compiled_nodes_input_masks: Optional[NodesInputMasks] = None,
nodes_to_skip: Optional[set[str]] = None,
):
return GraphExecutionEntry(
user_id=self.user_id,
@@ -391,7 +390,6 @@ class GraphExecutionWithNodes(GraphExecution):
graph_version=self.graph_version or 0,
graph_exec_id=self.id,
nodes_input_masks=compiled_nodes_input_masks,
nodes_to_skip=nodes_to_skip or set(),
execution_context=execution_context,
)
@@ -1147,8 +1145,6 @@ class GraphExecutionEntry(BaseModel):
graph_id: str
graph_version: int
nodes_input_masks: Optional[NodesInputMasks] = None
nodes_to_skip: set[str] = Field(default_factory=set)
"""Node IDs that should be skipped due to optional credentials not being configured."""
execution_context: ExecutionContext = Field(default_factory=ExecutionContext)

View File

@@ -94,15 +94,6 @@ class Node(BaseDbModel):
input_links: list[Link] = []
output_links: list[Link] = []
@property
def credentials_optional(self) -> bool:
"""
Whether credentials are optional for this node.
When True and credentials are not configured, the node will be skipped
during execution rather than causing a validation error.
"""
return self.metadata.get("credentials_optional", False)
@property
def block(self) -> AnyBlockSchema | "_UnknownBlockBase":
"""Get the block for this node. Returns UnknownBlock if block is deleted/missing."""
@@ -244,10 +235,7 @@ class BaseGraph(BaseDbModel):
return any(
node.block_id
for node in self.nodes
if (
node.block.block_type == BlockType.HUMAN_IN_THE_LOOP
or node.block.requires_human_review
)
if node.block.block_type == BlockType.HUMAN_IN_THE_LOOP
)
@property
@@ -338,35 +326,7 @@ class Graph(BaseGraph):
@computed_field
@property
def credentials_input_schema(self) -> dict[str, Any]:
schema = self._credentials_input_schema.jsonschema()
# Determine which credential fields are required based on credentials_optional metadata
graph_credentials_inputs = self.aggregate_credentials_inputs()
required_fields = []
# Build a map of node_id -> node for quick lookup
all_nodes = {node.id: node for node in self.nodes}
for sub_graph in self.sub_graphs:
for node in sub_graph.nodes:
all_nodes[node.id] = node
for field_key, (
_field_info,
node_field_pairs,
) in graph_credentials_inputs.items():
# A field is required if ANY node using it has credentials_optional=False
is_required = False
for node_id, _field_name in node_field_pairs:
node = all_nodes.get(node_id)
if node and not node.credentials_optional:
is_required = True
break
if is_required:
required_fields.append(field_key)
schema["required"] = required_fields
return schema
return self._credentials_input_schema.jsonschema()
@property
def _credentials_input_schema(self) -> type[BlockSchema]:

View File

@@ -1,6 +1,5 @@
import json
from typing import Any
from unittest.mock import AsyncMock, patch
from uuid import UUID
import fastapi.exceptions
@@ -19,17 +18,6 @@ from backend.usecases.sample import create_test_user
from backend.util.test import SpinTestServer
@pytest.fixture(scope="session", autouse=True)
def mock_embedding_functions():
"""Mock embedding functions for all tests to avoid database/API dependencies."""
with patch(
"backend.api.features.store.db.ensure_embedding",
new_callable=AsyncMock,
return_value=True,
):
yield
@pytest.mark.asyncio(loop_scope="session")
async def test_graph_creation(server: SpinTestServer, snapshot: Snapshot):
"""
@@ -408,58 +396,3 @@ async def test_access_store_listing_graph(server: SpinTestServer):
created_graph.id, created_graph.version, "3e53486c-cf57-477e-ba2a-cb02dc828e1b"
)
assert got_graph is not None
# ============================================================================
# Tests for Optional Credentials Feature
# ============================================================================
def test_node_credentials_optional_default():
"""Test that credentials_optional defaults to False when not set in metadata."""
node = Node(
id="test_node",
block_id=StoreValueBlock().id,
input_default={},
metadata={},
)
assert node.credentials_optional is False
def test_node_credentials_optional_true():
"""Test that credentials_optional returns True when explicitly set."""
node = Node(
id="test_node",
block_id=StoreValueBlock().id,
input_default={},
metadata={"credentials_optional": True},
)
assert node.credentials_optional is True
def test_node_credentials_optional_false():
"""Test that credentials_optional returns False when explicitly set to False."""
node = Node(
id="test_node",
block_id=StoreValueBlock().id,
input_default={},
metadata={"credentials_optional": False},
)
assert node.credentials_optional is False
def test_node_credentials_optional_with_other_metadata():
"""Test that credentials_optional works correctly with other metadata present."""
node = Node(
id="test_node",
block_id=StoreValueBlock().id,
input_default={},
metadata={
"position": {"x": 100, "y": 200},
"customized_name": "My Custom Node",
"credentials_optional": True,
},
)
assert node.credentials_optional is True
assert node.metadata["position"] == {"x": 100, "y": 200}
assert node.metadata["customized_name"] == "My Custom Node"

View File

@@ -7,10 +7,6 @@ from backend.api.features.library.db import (
list_library_agents,
)
from backend.api.features.store.db import get_store_agent_details, get_store_agents
from backend.api.features.store.embeddings import (
backfill_missing_embeddings,
get_embedding_stats,
)
from backend.data import db
from backend.data.analytics import (
get_accuracy_trends_and_alerts,
@@ -212,10 +208,6 @@ class DatabaseManager(AppService):
get_store_agents = _(get_store_agents)
get_store_agent_details = _(get_store_agent_details)
# Store Embeddings
get_embedding_stats = _(get_embedding_stats)
backfill_missing_embeddings = _(backfill_missing_embeddings)
# Summary data - async
get_user_execution_summary_data = _(get_user_execution_summary_data)
@@ -267,10 +259,6 @@ class DatabaseManagerClient(AppServiceClient):
get_store_agents = _(d.get_store_agents)
get_store_agent_details = _(d.get_store_agent_details)
# Store Embeddings
get_embedding_stats = _(d.get_embedding_stats)
backfill_missing_embeddings = _(d.backfill_missing_embeddings)
class DatabaseManagerAsyncClient(AppServiceClient):
d = DatabaseManager

View File

@@ -178,7 +178,6 @@ async def execute_node(
execution_processor: "ExecutionProcessor",
execution_stats: NodeExecutionStats | None = None,
nodes_input_masks: Optional[NodesInputMasks] = None,
nodes_to_skip: Optional[set[str]] = None,
) -> BlockOutput:
"""
Execute a node in the graph. This will trigger a block execution on a node,
@@ -246,7 +245,6 @@ async def execute_node(
"user_id": user_id,
"execution_context": execution_context,
"execution_processor": execution_processor,
"nodes_to_skip": nodes_to_skip or set(),
}
# Last-minute fetch credentials + acquire a system-wide read-write lock to prevent
@@ -544,7 +542,6 @@ class ExecutionProcessor:
node_exec_progress: NodeExecutionProgress,
nodes_input_masks: Optional[NodesInputMasks],
graph_stats_pair: tuple[GraphExecutionStats, threading.Lock],
nodes_to_skip: Optional[set[str]] = None,
) -> NodeExecutionStats:
log_metadata = LogMetadata(
logger=_logger,
@@ -567,7 +564,6 @@ class ExecutionProcessor:
db_client=db_client,
log_metadata=log_metadata,
nodes_input_masks=nodes_input_masks,
nodes_to_skip=nodes_to_skip,
)
if isinstance(status, BaseException):
raise status
@@ -613,7 +609,6 @@ class ExecutionProcessor:
db_client: "DatabaseManagerAsyncClient",
log_metadata: LogMetadata,
nodes_input_masks: Optional[NodesInputMasks] = None,
nodes_to_skip: Optional[set[str]] = None,
) -> ExecutionStatus:
status = ExecutionStatus.RUNNING
@@ -650,7 +645,6 @@ class ExecutionProcessor:
execution_processor=self,
execution_stats=stats,
nodes_input_masks=nodes_input_masks,
nodes_to_skip=nodes_to_skip,
):
await persist_output(output_name, output_data)
@@ -962,21 +956,6 @@ class ExecutionProcessor:
queued_node_exec = execution_queue.get()
# Check if this node should be skipped due to optional credentials
if queued_node_exec.node_id in graph_exec.nodes_to_skip:
log_metadata.info(
f"Skipping node execution {queued_node_exec.node_exec_id} "
f"for node {queued_node_exec.node_id} - optional credentials not configured"
)
# Mark the node as completed without executing
# No outputs will be produced, so downstream nodes won't trigger
update_node_execution_status(
db_client=db_client,
exec_id=queued_node_exec.node_exec_id,
status=ExecutionStatus.COMPLETED,
)
continue
log_metadata.debug(
f"Dispatching node execution {queued_node_exec.node_exec_id} "
f"for node {queued_node_exec.node_id}",
@@ -1037,7 +1016,6 @@ class ExecutionProcessor:
execution_stats,
execution_stats_lock,
),
nodes_to_skip=graph_exec.nodes_to_skip,
),
self.node_execution_loop,
)

View File

@@ -1,5 +1,4 @@
import logging
from unittest.mock import AsyncMock, patch
import fastapi.responses
import pytest
@@ -20,17 +19,6 @@ from backend.util.test import SpinTestServer, wait_execution
logger = logging.getLogger(__name__)
@pytest.fixture(scope="session", autouse=True)
def mock_embedding_functions():
"""Mock embedding functions for all tests to avoid database/API dependencies."""
with patch(
"backend.api.features.store.db.ensure_embedding",
new_callable=AsyncMock,
return_value=True,
):
yield
async def create_graph(s: SpinTestServer, g: graph.Graph, u: User) -> graph.Graph:
logger.info(f"Creating graph for user {u.id}")
return await s.agent_server.test_create_graph(CreateGraph(graph=g), u.id)

View File

@@ -2,7 +2,6 @@ import asyncio
import logging
import os
import threading
import time
import uuid
from enum import Enum
from typing import Optional
@@ -38,7 +37,7 @@ from backend.monitoring import (
report_execution_accuracy_alerts,
report_late_executions,
)
from backend.util.clients import get_database_manager_client, get_scheduler_client
from backend.util.clients import get_scheduler_client
from backend.util.cloud_storage import cleanup_expired_files_async
from backend.util.exceptions import (
GraphNotFoundError,
@@ -255,88 +254,6 @@ def execution_accuracy_alerts():
return report_execution_accuracy_alerts()
def ensure_embeddings_coverage():
"""
Ensure all content types (store agents, blocks, docs) have embeddings for search.
Processes ALL missing embeddings in batches of 10 per content type until 100% coverage.
Missing embeddings = content invisible in hybrid search.
Schedule: Runs every 6 hours (balanced between coverage and API costs).
- Catches new content added between scheduled runs
- Batch size 10 per content type: gradual processing to avoid rate limits
- Manual trigger available via execute_ensure_embeddings_coverage endpoint
"""
db_client = get_database_manager_client()
stats = db_client.get_embedding_stats()
# Check for error from get_embedding_stats() first
if "error" in stats:
logger.error(
f"Failed to get embedding stats: {stats['error']} - skipping backfill"
)
return {"processed": 0, "success": 0, "failed": 0, "error": stats["error"]}
# Extract totals from new stats structure
totals = stats.get("totals", {})
without_embeddings = totals.get("without_embeddings", 0)
coverage_percent = totals.get("coverage_percent", 0)
if without_embeddings == 0:
logger.info("All content has embeddings, skipping backfill")
return {"processed": 0, "success": 0, "failed": 0}
# Log per-content-type stats for visibility
by_type = stats.get("by_type", {})
for content_type, type_stats in by_type.items():
if type_stats.get("without_embeddings", 0) > 0:
logger.info(
f"{content_type}: {type_stats['without_embeddings']} items without embeddings "
f"({type_stats['coverage_percent']}% coverage)"
)
logger.info(
f"Total: {without_embeddings} items without embeddings "
f"({coverage_percent}% coverage) - processing all"
)
total_processed = 0
total_success = 0
total_failed = 0
# Process in batches until no more missing embeddings
while True:
result = db_client.backfill_missing_embeddings(batch_size=10)
total_processed += result["processed"]
total_success += result["success"]
total_failed += result["failed"]
if result["processed"] == 0:
# No more missing embeddings
break
if result["success"] == 0 and result["processed"] > 0:
# All attempts in this batch failed - stop to avoid infinite loop
logger.error(
f"All {result['processed']} embedding attempts failed - stopping backfill"
)
break
# Small delay between batches to avoid rate limits
time.sleep(1)
logger.info(
f"Embedding backfill completed: {total_success}/{total_processed} succeeded, "
f"{total_failed} failed"
)
return {
"processed": total_processed,
"success": total_success,
"failed": total_failed,
}
# Monitoring functions are now imported from monitoring module
@@ -558,19 +475,6 @@ class Scheduler(AppService):
jobstore=Jobstores.EXECUTION.value,
)
# Embedding Coverage - Every 6 hours
# Ensures all approved agents have embeddings for hybrid search
# Critical: missing embeddings = agents invisible in search
self.scheduler.add_job(
ensure_embeddings_coverage,
id="ensure_embeddings_coverage",
trigger="interval",
hours=6,
replace_existing=True,
max_instances=1, # Prevent overlapping runs
jobstore=Jobstores.EXECUTION.value,
)
self.scheduler.add_listener(job_listener, EVENT_JOB_EXECUTED | EVENT_JOB_ERROR)
self.scheduler.add_listener(job_missed_listener, EVENT_JOB_MISSED)
self.scheduler.add_listener(job_max_instances_listener, EVENT_JOB_MAX_INSTANCES)
@@ -728,11 +632,6 @@ class Scheduler(AppService):
"""Manually trigger execution accuracy alert checking."""
return execution_accuracy_alerts()
@expose
def execute_ensure_embeddings_coverage(self):
"""Manually trigger embedding backfill for approved store agents."""
return ensure_embeddings_coverage()
class SchedulerClient(AppServiceClient):
@classmethod

View File

@@ -239,19 +239,14 @@ async def _validate_node_input_credentials(
graph: GraphModel,
user_id: str,
nodes_input_masks: Optional[NodesInputMasks] = None,
) -> tuple[dict[str, dict[str, str]], set[str]]:
) -> dict[str, dict[str, str]]:
"""
Checks all credentials for all nodes of the graph and returns structured errors
and a set of nodes that should be skipped due to optional missing credentials.
Checks all credentials for all nodes of the graph and returns structured errors.
Returns:
tuple[
dict[node_id, dict[field_name, error_message]]: Credential validation errors per node,
set[node_id]: Nodes that should be skipped (optional credentials not configured)
]
dict[node_id, dict[field_name, error_message]]: Credential validation errors per node
"""
credential_errors: dict[str, dict[str, str]] = defaultdict(dict)
nodes_to_skip: set[str] = set()
for node in graph.nodes:
block = node.block
@@ -261,46 +256,27 @@ async def _validate_node_input_credentials(
if not credentials_fields:
continue
# Track if any credential field is missing for this node
has_missing_credentials = False
for field_name, credentials_meta_type in credentials_fields.items():
try:
# Check nodes_input_masks first, then input_default
field_value = None
if (
nodes_input_masks
and (node_input_mask := nodes_input_masks.get(node.id))
and field_name in node_input_mask
):
field_value = node_input_mask[field_name]
credentials_meta = credentials_meta_type.model_validate(
node_input_mask[field_name]
)
elif field_name in node.input_default:
# For optional credentials, don't use input_default - treat as missing
# This prevents stale credential IDs from failing validation
if node.credentials_optional:
field_value = None
else:
field_value = node.input_default[field_name]
# Check if credentials are missing (None, empty, or not present)
if field_value is None or (
isinstance(field_value, dict) and not field_value.get("id")
):
has_missing_credentials = True
# If node has credentials_optional flag, mark for skipping instead of error
if node.credentials_optional:
continue # Don't add error, will be marked for skip after loop
else:
credential_errors[node.id][
field_name
] = "These credentials are required"
continue
credentials_meta = credentials_meta_type.model_validate(field_value)
credentials_meta = credentials_meta_type.model_validate(
node.input_default[field_name]
)
else:
# Missing credentials
credential_errors[node.id][
field_name
] = "These credentials are required"
continue
except ValidationError as e:
# Validation error means credentials were provided but invalid
# This should always be an error, even if optional
credential_errors[node.id][field_name] = f"Invalid credentials: {e}"
continue
@@ -311,7 +287,6 @@ async def _validate_node_input_credentials(
)
except Exception as e:
# Handle any errors fetching credentials
# If credentials were explicitly configured but unavailable, it's an error
credential_errors[node.id][
field_name
] = f"Credentials not available: {e}"
@@ -338,19 +313,7 @@ async def _validate_node_input_credentials(
] = "Invalid credentials: type/provider mismatch"
continue
# If node has optional credentials and any are missing, mark for skipping
# But only if there are no other errors for this node
if (
has_missing_credentials
and node.credentials_optional
and node.id not in credential_errors
):
nodes_to_skip.add(node.id)
logger.info(
f"Node #{node.id} will be skipped: optional credentials not configured"
)
return credential_errors, nodes_to_skip
return credential_errors
def make_node_credentials_input_map(
@@ -392,25 +355,21 @@ async def validate_graph_with_credentials(
graph: GraphModel,
user_id: str,
nodes_input_masks: Optional[NodesInputMasks] = None,
) -> tuple[Mapping[str, Mapping[str, str]], set[str]]:
) -> Mapping[str, Mapping[str, str]]:
"""
Validate graph including credentials and return structured errors per node,
along with a set of nodes that should be skipped due to optional missing credentials.
Validate graph including credentials and return structured errors per node.
Returns:
tuple[
dict[node_id, dict[field_name, error_message]]: Validation errors per node,
set[node_id]: Nodes that should be skipped (optional credentials not configured)
]
dict[node_id, dict[field_name, error_message]]: Validation errors per node
"""
# Get input validation errors
node_input_errors = GraphModel.validate_graph_get_errors(
graph, for_run=True, nodes_input_masks=nodes_input_masks
)
# Get credential input/availability/validation errors and nodes to skip
node_credential_input_errors, nodes_to_skip = (
await _validate_node_input_credentials(graph, user_id, nodes_input_masks)
# Get credential input/availability/validation errors
node_credential_input_errors = await _validate_node_input_credentials(
graph, user_id, nodes_input_masks
)
# Merge credential errors with structural errors
@@ -419,7 +378,7 @@ async def validate_graph_with_credentials(
node_input_errors[node_id] = {}
node_input_errors[node_id].update(field_errors)
return node_input_errors, nodes_to_skip
return node_input_errors
async def _construct_starting_node_execution_input(
@@ -427,7 +386,7 @@ async def _construct_starting_node_execution_input(
user_id: str,
graph_inputs: BlockInput,
nodes_input_masks: Optional[NodesInputMasks] = None,
) -> tuple[list[tuple[str, BlockInput]], set[str]]:
) -> list[tuple[str, BlockInput]]:
"""
Validates and prepares the input data for executing a graph.
This function checks the graph for starting nodes, validates the input data
@@ -441,14 +400,11 @@ async def _construct_starting_node_execution_input(
node_credentials_map: `dict[node_id, dict[input_name, CredentialsMetaInput]]`
Returns:
tuple[
list[tuple[str, BlockInput]]: A list of tuples, each containing the node ID
and the corresponding input data for that node.
set[str]: Node IDs that should be skipped (optional credentials not configured)
]
list[tuple[str, BlockInput]]: A list of tuples, each containing the node ID and
the corresponding input data for that node.
"""
# Use new validation function that includes credentials
validation_errors, nodes_to_skip = await validate_graph_with_credentials(
validation_errors = await validate_graph_with_credentials(
graph, user_id, nodes_input_masks
)
n_error_nodes = len(validation_errors)
@@ -489,7 +445,7 @@ async def _construct_starting_node_execution_input(
"No starting nodes found for the graph, make sure an AgentInput or blocks with no inbound links are present as starting nodes."
)
return nodes_input, nodes_to_skip
return nodes_input
async def validate_and_construct_node_execution_input(
@@ -500,7 +456,7 @@ async def validate_and_construct_node_execution_input(
graph_credentials_inputs: Optional[Mapping[str, CredentialsMetaInput]] = None,
nodes_input_masks: Optional[NodesInputMasks] = None,
is_sub_graph: bool = False,
) -> tuple[GraphModel, list[tuple[str, BlockInput]], NodesInputMasks, set[str]]:
) -> tuple[GraphModel, list[tuple[str, BlockInput]], NodesInputMasks]:
"""
Public wrapper that handles graph fetching, credential mapping, and validation+construction.
This centralizes the logic used by both scheduler validation and actual execution.
@@ -517,7 +473,6 @@ async def validate_and_construct_node_execution_input(
GraphModel: Full graph object for the given `graph_id`.
list[tuple[node_id, BlockInput]]: Starting node IDs with corresponding inputs.
dict[str, BlockInput]: Node input masks including all passed-in credentials.
set[str]: Node IDs that should be skipped (optional credentials not configured).
Raises:
NotFoundError: If the graph is not found.
@@ -559,16 +514,14 @@ async def validate_and_construct_node_execution_input(
nodes_input_masks or {},
)
starting_nodes_input, nodes_to_skip = (
await _construct_starting_node_execution_input(
graph=graph,
user_id=user_id,
graph_inputs=graph_inputs,
nodes_input_masks=nodes_input_masks,
)
starting_nodes_input = await _construct_starting_node_execution_input(
graph=graph,
user_id=user_id,
graph_inputs=graph_inputs,
nodes_input_masks=nodes_input_masks,
)
return graph, starting_nodes_input, nodes_input_masks, nodes_to_skip
return graph, starting_nodes_input, nodes_input_masks
def _merge_nodes_input_masks(
@@ -826,9 +779,6 @@ async def add_graph_execution(
# Use existing execution's compiled input masks
compiled_nodes_input_masks = graph_exec.nodes_input_masks or {}
# For resumed executions, nodes_to_skip was already determined at creation time
# TODO: Consider storing nodes_to_skip in DB if we need to preserve it across resumes
nodes_to_skip: set[str] = set()
logger.info(f"Resuming graph execution #{graph_exec.id} for graph #{graph_id}")
else:
@@ -837,7 +787,7 @@ async def add_graph_execution(
)
# Create new execution
graph, starting_nodes_input, compiled_nodes_input_masks, nodes_to_skip = (
graph, starting_nodes_input, compiled_nodes_input_masks = (
await validate_and_construct_node_execution_input(
graph_id=graph_id,
user_id=user_id,
@@ -886,7 +836,6 @@ async def add_graph_execution(
try:
graph_exec_entry = graph_exec.to_graph_execution_entry(
compiled_nodes_input_masks=compiled_nodes_input_masks,
nodes_to_skip=nodes_to_skip,
execution_context=execution_context,
)
logger.info(f"Publishing execution {graph_exec.id} to execution queue")

View File

@@ -367,13 +367,10 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
)
# Setup mock returns
# The function returns (graph, starting_nodes_input, compiled_nodes_input_masks, nodes_to_skip)
nodes_to_skip: set[str] = set()
mock_validate.return_value = (
mock_graph,
starting_nodes_input,
compiled_nodes_input_masks,
nodes_to_skip,
)
mock_prisma.is_connected.return_value = True
mock_edb.create_graph_execution = mocker.AsyncMock(return_value=mock_graph_exec)
@@ -459,212 +456,3 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
# Both executions should succeed (though they create different objects)
assert result1 == mock_graph_exec
assert result2 == mock_graph_exec_2
# ============================================================================
# Tests for Optional Credentials Feature
# ============================================================================
@pytest.mark.asyncio
async def test_validate_node_input_credentials_returns_nodes_to_skip(
mocker: MockerFixture,
):
"""
Test that _validate_node_input_credentials returns nodes_to_skip set
for nodes with credentials_optional=True and missing credentials.
"""
from backend.executor.utils import _validate_node_input_credentials
# Create a mock node with credentials_optional=True
mock_node = mocker.MagicMock()
mock_node.id = "node-with-optional-creds"
mock_node.credentials_optional = True
mock_node.input_default = {} # No credentials configured
# Create a mock block with credentials field
mock_block = mocker.MagicMock()
mock_credentials_field_type = mocker.MagicMock()
mock_block.input_schema.get_credentials_fields.return_value = {
"credentials": mock_credentials_field_type
}
mock_node.block = mock_block
# Create mock graph
mock_graph = mocker.MagicMock()
mock_graph.nodes = [mock_node]
# Call the function
errors, nodes_to_skip = await _validate_node_input_credentials(
graph=mock_graph,
user_id="test-user-id",
nodes_input_masks=None,
)
# Node should be in nodes_to_skip, not in errors
assert mock_node.id in nodes_to_skip
assert mock_node.id not in errors
@pytest.mark.asyncio
async def test_validate_node_input_credentials_required_missing_creds_error(
mocker: MockerFixture,
):
"""
Test that _validate_node_input_credentials returns errors
for nodes with credentials_optional=False and missing credentials.
"""
from backend.executor.utils import _validate_node_input_credentials
# Create a mock node with credentials_optional=False (required)
mock_node = mocker.MagicMock()
mock_node.id = "node-with-required-creds"
mock_node.credentials_optional = False
mock_node.input_default = {} # No credentials configured
# Create a mock block with credentials field
mock_block = mocker.MagicMock()
mock_credentials_field_type = mocker.MagicMock()
mock_block.input_schema.get_credentials_fields.return_value = {
"credentials": mock_credentials_field_type
}
mock_node.block = mock_block
# Create mock graph
mock_graph = mocker.MagicMock()
mock_graph.nodes = [mock_node]
# Call the function
errors, nodes_to_skip = await _validate_node_input_credentials(
graph=mock_graph,
user_id="test-user-id",
nodes_input_masks=None,
)
# Node should be in errors, not in nodes_to_skip
assert mock_node.id in errors
assert "credentials" in errors[mock_node.id]
assert "required" in errors[mock_node.id]["credentials"].lower()
assert mock_node.id not in nodes_to_skip
@pytest.mark.asyncio
async def test_validate_graph_with_credentials_returns_nodes_to_skip(
mocker: MockerFixture,
):
"""
Test that validate_graph_with_credentials returns nodes_to_skip set
from _validate_node_input_credentials.
"""
from backend.executor.utils import validate_graph_with_credentials
# Mock _validate_node_input_credentials to return specific values
mock_validate = mocker.patch(
"backend.executor.utils._validate_node_input_credentials"
)
expected_errors = {"node1": {"field": "error"}}
expected_nodes_to_skip = {"node2", "node3"}
mock_validate.return_value = (expected_errors, expected_nodes_to_skip)
# Mock GraphModel with validate_graph_get_errors method
mock_graph = mocker.MagicMock()
mock_graph.validate_graph_get_errors.return_value = {}
# Call the function
errors, nodes_to_skip = await validate_graph_with_credentials(
graph=mock_graph,
user_id="test-user-id",
nodes_input_masks=None,
)
# Verify nodes_to_skip is passed through
assert nodes_to_skip == expected_nodes_to_skip
assert "node1" in errors
@pytest.mark.asyncio
async def test_add_graph_execution_with_nodes_to_skip(mocker: MockerFixture):
"""
Test that add_graph_execution properly passes nodes_to_skip
to the graph execution entry.
"""
from backend.data.execution import GraphExecutionWithNodes
from backend.executor.utils import add_graph_execution
# Mock data
graph_id = "test-graph-id"
user_id = "test-user-id"
inputs = {"test_input": "test_value"}
graph_version = 1
# Mock the graph object
mock_graph = mocker.MagicMock()
mock_graph.version = graph_version
# Starting nodes and masks
starting_nodes_input = [("node1", {"input1": "value1"})]
compiled_nodes_input_masks = {}
nodes_to_skip = {"skipped-node-1", "skipped-node-2"}
# Mock the graph execution object
mock_graph_exec = mocker.MagicMock(spec=GraphExecutionWithNodes)
mock_graph_exec.id = "execution-id-123"
mock_graph_exec.node_executions = []
# Track what's passed to to_graph_execution_entry
captured_kwargs = {}
def capture_to_entry(**kwargs):
captured_kwargs.update(kwargs)
return mocker.MagicMock()
mock_graph_exec.to_graph_execution_entry.side_effect = capture_to_entry
# Setup mocks
mock_validate = mocker.patch(
"backend.executor.utils.validate_and_construct_node_execution_input"
)
mock_edb = mocker.patch("backend.executor.utils.execution_db")
mock_prisma = mocker.patch("backend.executor.utils.prisma")
mock_udb = mocker.patch("backend.executor.utils.user_db")
mock_gdb = mocker.patch("backend.executor.utils.graph_db")
mock_get_queue = mocker.patch("backend.executor.utils.get_async_execution_queue")
mock_get_event_bus = mocker.patch(
"backend.executor.utils.get_async_execution_event_bus"
)
# Setup returns - include nodes_to_skip in the tuple
mock_validate.return_value = (
mock_graph,
starting_nodes_input,
compiled_nodes_input_masks,
nodes_to_skip, # This should be passed through
)
mock_prisma.is_connected.return_value = True
mock_edb.create_graph_execution = mocker.AsyncMock(return_value=mock_graph_exec)
mock_edb.update_graph_execution_stats = mocker.AsyncMock(
return_value=mock_graph_exec
)
mock_edb.update_node_execution_status_batch = mocker.AsyncMock()
mock_user = mocker.MagicMock()
mock_user.timezone = "UTC"
mock_settings = mocker.MagicMock()
mock_settings.human_in_the_loop_safe_mode = True
mock_udb.get_user_by_id = mocker.AsyncMock(return_value=mock_user)
mock_gdb.get_graph_settings = mocker.AsyncMock(return_value=mock_settings)
mock_get_queue.return_value = mocker.AsyncMock()
mock_get_event_bus.return_value = mocker.MagicMock(publish=mocker.AsyncMock())
# Call the function
await add_graph_execution(
graph_id=graph_id,
user_id=user_id,
inputs=inputs,
graph_version=graph_version,
)
# Verify nodes_to_skip was passed to to_graph_execution_entry
assert "nodes_to_skip" in captured_kwargs
assert captured_kwargs["nodes_to_skip"] == nodes_to_skip

View File

@@ -8,7 +8,6 @@ from .discord import DiscordOAuthHandler
from .github import GitHubOAuthHandler
from .google import GoogleOAuthHandler
from .notion import NotionOAuthHandler
from .reddit import RedditOAuthHandler
from .twitter import TwitterOAuthHandler
if TYPE_CHECKING:
@@ -21,7 +20,6 @@ _ORIGINAL_HANDLERS = [
GitHubOAuthHandler,
GoogleOAuthHandler,
NotionOAuthHandler,
RedditOAuthHandler,
TwitterOAuthHandler,
TodoistOAuthHandler,
]

View File

@@ -1,208 +0,0 @@
import time
import urllib.parse
from typing import ClassVar, Optional
from pydantic import SecretStr
from backend.data.model import OAuth2Credentials
from backend.integrations.oauth.base import BaseOAuthHandler
from backend.integrations.providers import ProviderName
from backend.util.request import Requests
from backend.util.settings import Settings
settings = Settings()
class RedditOAuthHandler(BaseOAuthHandler):
"""
Reddit OAuth 2.0 handler.
Based on the documentation at:
- https://github.com/reddit-archive/reddit/wiki/OAuth2
Notes:
- Reddit requires `duration=permanent` to get refresh tokens
- Access tokens expire after 1 hour (3600 seconds)
- Reddit requires HTTP Basic Auth for token requests
- Reddit requires a unique User-Agent header
"""
PROVIDER_NAME = ProviderName.REDDIT
DEFAULT_SCOPES: ClassVar[list[str]] = [
"identity", # Get username, verify auth
"read", # Access posts and comments
"submit", # Submit new posts and comments
"edit", # Edit own posts and comments
"history", # Access user's post history
"privatemessages", # Access inbox and send private messages
"flair", # Access and set flair on posts/subreddits
]
AUTHORIZE_URL = "https://www.reddit.com/api/v1/authorize"
TOKEN_URL = "https://www.reddit.com/api/v1/access_token"
USERNAME_URL = "https://oauth.reddit.com/api/v1/me"
REVOKE_URL = "https://www.reddit.com/api/v1/revoke_token"
def __init__(self, client_id: str, client_secret: str, redirect_uri: str):
self.client_id = client_id
self.client_secret = client_secret
self.redirect_uri = redirect_uri
def get_login_url(
self, scopes: list[str], state: str, code_challenge: Optional[str]
) -> str:
"""Generate Reddit OAuth 2.0 authorization URL"""
scopes = self.handle_default_scopes(scopes)
params = {
"response_type": "code",
"client_id": self.client_id,
"redirect_uri": self.redirect_uri,
"scope": " ".join(scopes),
"state": state,
"duration": "permanent", # Required for refresh tokens
}
return f"{self.AUTHORIZE_URL}?{urllib.parse.urlencode(params)}"
async def exchange_code_for_tokens(
self, code: str, scopes: list[str], code_verifier: Optional[str]
) -> OAuth2Credentials:
"""Exchange authorization code for access tokens"""
scopes = self.handle_default_scopes(scopes)
headers = {
"Content-Type": "application/x-www-form-urlencoded",
"User-Agent": settings.config.reddit_user_agent,
}
data = {
"grant_type": "authorization_code",
"code": code,
"redirect_uri": self.redirect_uri,
}
# Reddit requires HTTP Basic Auth for token requests
auth = (self.client_id, self.client_secret)
response = await Requests().post(
self.TOKEN_URL, headers=headers, data=data, auth=auth
)
if not response.ok:
error_text = response.text()
raise ValueError(
f"Reddit token exchange failed: {response.status} - {error_text}"
)
tokens = response.json()
if "error" in tokens:
raise ValueError(f"Reddit OAuth error: {tokens.get('error')}")
username = await self._get_username(tokens["access_token"])
return OAuth2Credentials(
provider=self.PROVIDER_NAME,
title=None,
username=username,
access_token=tokens["access_token"],
refresh_token=tokens.get("refresh_token"),
access_token_expires_at=int(time.time()) + tokens.get("expires_in", 3600),
refresh_token_expires_at=None, # Reddit refresh tokens don't expire
scopes=scopes,
)
async def _get_username(self, access_token: str) -> str:
"""Get the username from the access token"""
headers = {
"Authorization": f"Bearer {access_token}",
"User-Agent": settings.config.reddit_user_agent,
}
response = await Requests().get(self.USERNAME_URL, headers=headers)
if not response.ok:
raise ValueError(f"Failed to get Reddit username: {response.status}")
data = response.json()
return data.get("name", "unknown")
async def _refresh_tokens(
self, credentials: OAuth2Credentials
) -> OAuth2Credentials:
"""Refresh access tokens using refresh token"""
if not credentials.refresh_token:
raise ValueError("No refresh token available")
headers = {
"Content-Type": "application/x-www-form-urlencoded",
"User-Agent": settings.config.reddit_user_agent,
}
data = {
"grant_type": "refresh_token",
"refresh_token": credentials.refresh_token.get_secret_value(),
}
auth = (self.client_id, self.client_secret)
response = await Requests().post(
self.TOKEN_URL, headers=headers, data=data, auth=auth
)
if not response.ok:
error_text = response.text()
raise ValueError(
f"Reddit token refresh failed: {response.status} - {error_text}"
)
tokens = response.json()
if "error" in tokens:
raise ValueError(f"Reddit OAuth error: {tokens.get('error')}")
username = await self._get_username(tokens["access_token"])
# Reddit may or may not return a new refresh token
new_refresh_token = tokens.get("refresh_token")
if new_refresh_token:
refresh_token: SecretStr | None = SecretStr(new_refresh_token)
elif credentials.refresh_token:
# Keep the existing refresh token
refresh_token = credentials.refresh_token
else:
refresh_token = None
return OAuth2Credentials(
id=credentials.id,
provider=self.PROVIDER_NAME,
title=credentials.title,
username=username,
access_token=tokens["access_token"],
refresh_token=refresh_token,
access_token_expires_at=int(time.time()) + tokens.get("expires_in", 3600),
refresh_token_expires_at=None,
scopes=credentials.scopes,
)
async def revoke_tokens(self, credentials: OAuth2Credentials) -> bool:
"""Revoke the access token"""
headers = {
"Content-Type": "application/x-www-form-urlencoded",
"User-Agent": settings.config.reddit_user_agent,
}
data = {
"token": credentials.access_token.get_secret_value(),
"token_type_hint": "access_token",
}
auth = (self.client_id, self.client_secret)
response = await Requests().post(
self.REVOKE_URL, headers=headers, data=data, auth=auth
)
# Reddit returns 204 No Content on successful revocation
return response.ok

View File

@@ -10,7 +10,6 @@ from backend.util.settings import Settings
settings = Settings()
if TYPE_CHECKING:
from openai import AsyncOpenAI
from supabase import AClient, Client
from backend.data.execution import (
@@ -140,24 +139,6 @@ async def get_async_supabase() -> "AClient":
)
# ============ OpenAI Client ============ #
@cached(ttl_seconds=3600)
def get_openai_client() -> "AsyncOpenAI | None":
"""
Get a process-cached async OpenAI client for embeddings.
Returns None if API key is not configured.
"""
from openai import AsyncOpenAI
api_key = settings.secrets.openai_internal_api_key
if not api_key:
return None
return AsyncOpenAI(api_key=api_key)
# ============ Notification Queue Helpers ============ #

View File

@@ -264,7 +264,7 @@ class Config(UpdateTrackingModel["Config"], BaseSettings):
)
reddit_user_agent: str = Field(
default="web:AutoGPT:v0.6.0 (by /u/autogpt)",
default="AutoGPT:1.0 (by /u/autogpt)",
description="The user agent for the Reddit API",
)

View File

@@ -1,227 +0,0 @@
#!/usr/bin/env python3
"""
Generate a lightweight stub for prisma/types.py that collapses all exported
symbols to Any. This prevents Pyright from spending time/budget on Prisma's
query DSL types while keeping runtime behavior unchanged.
Usage:
poetry run gen-prisma-stub
This script automatically finds the prisma package location and generates
the types.pyi stub file in the same directory as types.py.
"""
from __future__ import annotations
import ast
import importlib.util
import sys
from pathlib import Path
from typing import Iterable, Set
def _iter_assigned_names(target: ast.expr) -> Iterable[str]:
"""Extract names from assignment targets (handles tuple unpacking)."""
if isinstance(target, ast.Name):
yield target.id
elif isinstance(target, (ast.Tuple, ast.List)):
for elt in target.elts:
yield from _iter_assigned_names(elt)
def _is_private(name: str) -> bool:
"""Check if a name is private (starts with _ but not __)."""
return name.startswith("_") and not name.startswith("__")
def _is_safe_type_alias(node: ast.Assign) -> bool:
"""Check if an assignment is a safe type alias that shouldn't be stubbed.
Safe types are:
- Literal types (don't cause type budget issues)
- Simple type references (SortMode, SortOrder, etc.)
- TypeVar definitions
"""
if not node.value:
return False
# Check if it's a Subscript (like Literal[...], Union[...], TypeVar[...])
if isinstance(node.value, ast.Subscript):
# Get the base type name
if isinstance(node.value.value, ast.Name):
base_name = node.value.value.id
# Literal types are safe
if base_name == "Literal":
return True
# TypeVar is safe
if base_name == "TypeVar":
return True
elif isinstance(node.value.value, ast.Attribute):
# Handle typing_extensions.Literal etc.
if node.value.value.attr == "Literal":
return True
# Check if it's a simple Name reference (like SortMode = _types.SortMode)
if isinstance(node.value, ast.Attribute):
return True
# Check if it's a Call (like TypeVar(...))
if isinstance(node.value, ast.Call):
if isinstance(node.value.func, ast.Name):
if node.value.func.id == "TypeVar":
return True
return False
def collect_top_level_symbols(
tree: ast.Module, source_lines: list[str]
) -> tuple[Set[str], Set[str], list[str], Set[str]]:
"""Collect all top-level symbols from an AST module.
Returns:
Tuple of (class_names, function_names, safe_variable_sources, unsafe_variable_names)
safe_variable_sources contains the actual source code lines for safe variables
"""
classes: Set[str] = set()
functions: Set[str] = set()
safe_variable_sources: list[str] = []
unsafe_variables: Set[str] = set()
for node in tree.body:
if isinstance(node, ast.ClassDef):
if not _is_private(node.name):
classes.add(node.name)
elif isinstance(node, (ast.FunctionDef, ast.AsyncFunctionDef)):
if not _is_private(node.name):
functions.add(node.name)
elif isinstance(node, ast.Assign):
is_safe = _is_safe_type_alias(node)
names = []
for t in node.targets:
for n in _iter_assigned_names(t):
if not _is_private(n):
names.append(n)
if names:
if is_safe:
# Extract the source code for this assignment
start_line = node.lineno - 1 # 0-indexed
end_line = node.end_lineno if node.end_lineno else node.lineno
source = "\n".join(source_lines[start_line:end_line])
safe_variable_sources.append(source)
else:
unsafe_variables.update(names)
elif isinstance(node, ast.AnnAssign) and node.target:
# Annotated assignments are always stubbed
for n in _iter_assigned_names(node.target):
if not _is_private(n):
unsafe_variables.add(n)
return classes, functions, safe_variable_sources, unsafe_variables
def find_prisma_types_path() -> Path:
"""Find the prisma types.py file in the installed package."""
spec = importlib.util.find_spec("prisma")
if spec is None or spec.origin is None:
raise RuntimeError("Could not find prisma package. Is it installed?")
prisma_dir = Path(spec.origin).parent
types_path = prisma_dir / "types.py"
if not types_path.exists():
raise RuntimeError(f"prisma/types.py not found at {types_path}")
return types_path
def generate_stub(src_path: Path, stub_path: Path) -> int:
"""Generate the .pyi stub file from the source types.py."""
code = src_path.read_text(encoding="utf-8", errors="ignore")
source_lines = code.splitlines()
tree = ast.parse(code, filename=str(src_path))
classes, functions, safe_variable_sources, unsafe_variables = (
collect_top_level_symbols(tree, source_lines)
)
header = """\
# -*- coding: utf-8 -*-
# Auto-generated stub file - DO NOT EDIT
# Generated by gen_prisma_types_stub.py
#
# This stub intentionally collapses complex Prisma query DSL types to Any.
# Prisma's generated types can explode Pyright's type inference budgets
# on large schemas. We collapse them to Any so the rest of the codebase
# can remain strongly typed while keeping runtime behavior unchanged.
#
# Safe types (Literal, TypeVar, simple references) are preserved from the
# original types.py to maintain proper type checking where possible.
from __future__ import annotations
from typing import Any
from typing_extensions import Literal
# Re-export commonly used typing constructs that may be imported from this module
from typing import TYPE_CHECKING, TypeVar, Generic, Union, Optional, List, Dict
# Base type alias for stubbed Prisma types - allows any dict structure
_PrismaDict = dict[str, Any]
"""
lines = [header]
# Include safe variable definitions (Literal types, TypeVars, etc.)
lines.append("# Safe type definitions preserved from original types.py")
for source in safe_variable_sources:
lines.append(source)
lines.append("")
# Stub all classes and unsafe variables uniformly as dict[str, Any] aliases
# This allows:
# 1. Use in type annotations: x: SomeType
# 2. Constructor calls: SomeType(...)
# 3. Dict literal assignments: x: SomeType = {...}
lines.append(
"# Stubbed types (collapsed to dict[str, Any] to prevent type budget exhaustion)"
)
all_stubbed = sorted(classes | unsafe_variables)
for name in all_stubbed:
lines.append(f"{name} = _PrismaDict")
lines.append("")
# Stub functions
for name in sorted(functions):
lines.append(f"def {name}(*args: Any, **kwargs: Any) -> Any: ...")
lines.append("")
stub_path.write_text("\n".join(lines), encoding="utf-8")
return (
len(classes)
+ len(functions)
+ len(safe_variable_sources)
+ len(unsafe_variables)
)
def main() -> None:
"""Main entry point."""
try:
types_path = find_prisma_types_path()
stub_path = types_path.with_suffix(".pyi")
print(f"Found prisma types.py at: {types_path}")
print(f"Generating stub at: {stub_path}")
num_symbols = generate_stub(types_path, stub_path)
print(f"Generated {stub_path.name} with {num_symbols} Any-typed symbols")
except Exception as e:
print(f"Error: {e}", file=sys.stderr)
sys.exit(1)
if __name__ == "__main__":
main()

View File

@@ -25,9 +25,6 @@ def run(*command: str) -> None:
def lint():
# Generate Prisma types stub before running pyright to prevent type budget exhaustion
run("gen-prisma-stub")
lint_step_args: list[list[str]] = [
["ruff", "check", *TARGET_DIRS, "--exit-zero"],
["ruff", "format", "--diff", "--check", LIBS_DIR],
@@ -52,6 +49,4 @@ def format():
run("ruff", "format", LIBS_DIR)
run("isort", "--profile", "black", BACKEND_DIR)
run("black", BACKEND_DIR)
# Generate Prisma types stub before running pyright to prevent type budget exhaustion
run("gen-prisma-stub")
run("pyright", *TARGET_DIRS)

View File

@@ -0,0 +1,7 @@
-- CreateTable
CREATE TABLE "Testing" (
"id" TEXT NOT NULL,
"maxEmailsPerDay" INTEGER NOT NULL DEFAULT 3,
CONSTRAINT "Testing_pkey" PRIMARY KEY ("id")
);

View File

@@ -1,46 +0,0 @@
-- CreateExtension
-- Supabase: pgvector must be enabled via Dashboard → Database → Extensions first
-- Create in public schema so vector type is available across all schemas
DO $$
BEGIN
CREATE EXTENSION IF NOT EXISTS "vector" WITH SCHEMA "public";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'vector extension not available or already exists, skipping';
END $$;
-- CreateEnum
CREATE TYPE "ContentType" AS ENUM ('STORE_AGENT', 'BLOCK', 'INTEGRATION', 'DOCUMENTATION', 'LIBRARY_AGENT');
-- CreateTable
CREATE TABLE "UnifiedContentEmbedding" (
"id" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL,
"contentType" "ContentType" NOT NULL,
"contentId" TEXT NOT NULL,
"userId" TEXT,
"embedding" public.vector(1536) NOT NULL,
"searchableText" TEXT NOT NULL,
"metadata" JSONB NOT NULL DEFAULT '{}',
CONSTRAINT "UnifiedContentEmbedding_pkey" PRIMARY KEY ("id")
);
-- CreateIndex
CREATE INDEX "UnifiedContentEmbedding_contentType_idx" ON "UnifiedContentEmbedding"("contentType");
-- CreateIndex
CREATE INDEX "UnifiedContentEmbedding_userId_idx" ON "UnifiedContentEmbedding"("userId");
-- CreateIndex
CREATE INDEX "UnifiedContentEmbedding_contentType_userId_idx" ON "UnifiedContentEmbedding"("contentType", "userId");
-- CreateIndex
-- NULLS NOT DISTINCT ensures only one public (NULL userId) embedding per contentType+contentId
-- Requires PostgreSQL 15+. Supabase uses PostgreSQL 15+.
CREATE UNIQUE INDEX "UnifiedContentEmbedding_contentType_contentId_userId_key" ON "UnifiedContentEmbedding"("contentType", "contentId", "userId") NULLS NOT DISTINCT;
-- CreateIndex
-- HNSW index for fast vector similarity search on embeddings
-- Uses cosine distance operator (<=>), which matches the query in hybrid_search.py
CREATE INDEX "UnifiedContentEmbedding_embedding_idx" ON "UnifiedContentEmbedding" USING hnsw ("embedding" public.vector_cosine_ops);

View File

@@ -1,71 +0,0 @@
-- Acknowledge Supabase-managed extensions to prevent drift warnings
-- These extensions are pre-installed by Supabase in specific schemas
-- This migration ensures they exist where available (Supabase) or skips gracefully (CI)
-- Create schemas (safe in both CI and Supabase)
CREATE SCHEMA IF NOT EXISTS "extensions";
-- Extensions that exist in both CI and Supabase
DO $$
BEGIN
CREATE EXTENSION IF NOT EXISTS "pgcrypto" WITH SCHEMA "extensions";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'pgcrypto extension not available, skipping';
END $$;
DO $$
BEGIN
CREATE EXTENSION IF NOT EXISTS "uuid-ossp" WITH SCHEMA "extensions";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'uuid-ossp extension not available, skipping';
END $$;
-- Supabase-specific extensions (skip gracefully in CI)
DO $$
BEGIN
CREATE EXTENSION IF NOT EXISTS "pg_stat_statements" WITH SCHEMA "extensions";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'pg_stat_statements extension not available, skipping';
END $$;
DO $$
BEGIN
CREATE EXTENSION IF NOT EXISTS "pg_net" WITH SCHEMA "extensions";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'pg_net extension not available, skipping';
END $$;
DO $$
BEGIN
CREATE EXTENSION IF NOT EXISTS "pgjwt" WITH SCHEMA "extensions";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'pgjwt extension not available, skipping';
END $$;
DO $$
BEGIN
CREATE SCHEMA IF NOT EXISTS "graphql";
CREATE EXTENSION IF NOT EXISTS "pg_graphql" WITH SCHEMA "graphql";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'pg_graphql extension not available, skipping';
END $$;
DO $$
BEGIN
CREATE SCHEMA IF NOT EXISTS "pgsodium";
CREATE EXTENSION IF NOT EXISTS "pgsodium" WITH SCHEMA "pgsodium";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'pgsodium extension not available, skipping';
END $$;
DO $$
BEGIN
CREATE SCHEMA IF NOT EXISTS "vault";
CREATE EXTENSION IF NOT EXISTS "supabase_vault" WITH SCHEMA "vault";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'supabase_vault extension not available, skipping';
END $$;
-- Return to platform
CREATE SCHEMA IF NOT EXISTS "platform";

View File

@@ -117,7 +117,6 @@ lint = "linter:lint"
test = "run_tests:test"
load-store-agents = "test.load_store_agents:run"
export-api-schema = "backend.cli.generate_openapi_json:main"
gen-prisma-stub = "gen_prisma_types_stub:main"
oauth-tool = "backend.cli.oauth_tool:cli"
[tool.isort]
@@ -135,9 +134,6 @@ ignore_patterns = []
[tool.pytest.ini_options]
asyncio_mode = "auto"
asyncio_default_fixture_loop_scope = "session"
# Disable syrupy plugin to avoid conflict with pytest-snapshot
# Both provide --snapshot-update argument causing ArgumentError
addopts = "-p no:syrupy"
filterwarnings = [
"ignore:'audioop' is deprecated:DeprecationWarning:discord.player",
"ignore:invalid escape sequence:DeprecationWarning:tweepy.api",

View File

@@ -1,18 +1,22 @@
datasource db {
provider = "postgresql"
url = env("DATABASE_URL")
directUrl = env("DIRECT_URL")
extensions = [pgvector(map: "vector")]
provider = "postgresql"
url = env("DATABASE_URL")
directUrl = env("DIRECT_URL")
}
generator client {
provider = "prisma-client-py"
recursive_type_depth = -1
interface = "asyncio"
previewFeatures = ["views", "fullTextSearch", "postgresqlExtensions"]
previewFeatures = ["views", "fullTextSearch"]
partial_type_generator = "backend/data/partial_types.py"
}
model Testing {
id String @id // This should match the Supabase user ID
maxEmailsPerDay Int @default(3)
}
// User model to mirror Auth provider users
model User {
id String @id // This should match the Supabase user ID
@@ -728,19 +732,20 @@ view StoreAgent {
agent_output_demo String?
agent_image String[]
featured Boolean @default(false)
featured Boolean @default(false)
creator_username String?
creator_avatar String?
sub_heading String
description String
categories String[]
search Unsupported("tsvector")? @default(dbgenerated("''::tsvector"))
runs Int
rating Float
versions String[]
agentGraphVersions String[]
agentGraphId String
is_available Boolean @default(true)
useForOnboarding Boolean @default(false)
is_available Boolean @default(true)
useForOnboarding Boolean @default(false)
// Materialized views used (refreshed every 15 minutes via pg_cron):
// - mv_agent_run_counts - Pre-aggregated agent execution counts by agentGraphId
@@ -899,9 +904,6 @@ model StoreListingVersion {
// Reviews for this specific version
Reviews StoreListingReview[]
// Note: Embeddings now stored in UnifiedContentEmbedding table
// Use contentType=STORE_AGENT and contentId=storeListingVersionId
@@unique([storeListingId, version])
@@index([storeListingId, submissionStatus, isAvailable])
@@index([submissionStatus])
@@ -909,42 +911,6 @@ model StoreListingVersion {
@@index([agentGraphId, agentGraphVersion]) // Non-unique index for efficient lookups
}
// Content type enum for unified search across store agents, blocks, docs
// Note: BLOCK/INTEGRATION are file-based (Python classes), not DB records
// DOCUMENTATION are file-based (.md files), not DB records
// Only STORE_AGENT and LIBRARY_AGENT are stored in database
enum ContentType {
STORE_AGENT // Database: StoreListingVersion
BLOCK // File-based: Python classes in /backend/blocks/
INTEGRATION // File-based: Python classes (blocks with credentials)
DOCUMENTATION // File-based: .md/.mdx files
LIBRARY_AGENT // Database: User's personal agents
}
// Unified embeddings table for all searchable content types
// Supports both public content (userId=null) and user-specific content (userId=userID)
model UnifiedContentEmbedding {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
// Content identification
contentType ContentType
contentId String // DB ID (storeListingVersionId) or file identifier (block.id, file_path)
userId String? // NULL for public content (store, blocks, docs), userId for private content (library agents)
// Search data
embedding Unsupported("vector(1536)") // pgvector embedding (extension in platform schema)
searchableText String // Combined text for search and fallback
metadata Json @default("{}") // Content-specific metadata
@@unique([contentType, contentId, userId], map: "UnifiedContentEmbedding_contentType_contentId_userId_key")
@@index([contentType])
@@index([userId])
@@index([contentType, userId])
@@index([embedding], map: "UnifiedContentEmbedding_embedding_idx")
}
model StoreListingReview {
id String @id @default(uuid())
createdAt DateTime @default(now())

View File

@@ -2,7 +2,6 @@
"created_at": "2025-09-04T13:37:00",
"credentials_input_schema": {
"properties": {},
"required": [],
"title": "TestGraphCredentialsInputSchema",
"type": "object"
},

View File

@@ -2,7 +2,6 @@
{
"credentials_input_schema": {
"properties": {},
"required": [],
"title": "TestGraphCredentialsInputSchema",
"type": "object"
},

View File

@@ -4,7 +4,6 @@
"id": "test-agent-1",
"graph_id": "test-agent-1",
"graph_version": 1,
"owner_user_id": "3e53486c-cf57-477e-ba2a-cb02dc828e1a",
"image_url": null,
"creator_name": "Test Creator",
"creator_image_url": "",
@@ -42,7 +41,6 @@
"id": "test-agent-2",
"graph_id": "test-agent-2",
"graph_version": 1,
"owner_user_id": "3e53486c-cf57-477e-ba2a-cb02dc828e1a",
"image_url": null,
"creator_name": "Test Creator",
"creator_image_url": "",

View File

@@ -1,7 +1,6 @@
{
"submissions": [
{
"listing_id": "test-listing-id",
"agent_id": "test-agent-id",
"agent_version": 1,
"name": "Test Agent",

View File

@@ -37,7 +37,7 @@ services:
context: ../
dockerfile: autogpt_platform/backend/Dockerfile
target: migrate
command: ["sh", "-c", "poetry run prisma generate && poetry run gen-prisma-stub && poetry run prisma migrate deploy"]
command: ["sh", "-c", "poetry run prisma generate && poetry run prisma migrate deploy"]
develop:
watch:
- path: ./

View File

@@ -92,6 +92,7 @@
"react-currency-input-field": "4.0.3",
"react-day-picker": "9.11.1",
"react-dom": "18.3.1",
"react-drag-drop-files": "2.4.0",
"react-hook-form": "7.66.0",
"react-icons": "5.5.0",
"react-markdown": "9.0.3",

View File

@@ -200,6 +200,9 @@ importers:
react-dom:
specifier: 18.3.1
version: 18.3.1(react@18.3.1)
react-drag-drop-files:
specifier: 2.4.0
version: 2.4.0(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
react-hook-form:
specifier: 7.66.0
version: 7.66.0(react@18.3.1)
@@ -1001,6 +1004,9 @@ packages:
'@emotion/memoize@0.8.1':
resolution: {integrity: sha512-W2P2c/VRW1/1tLox0mVUalvnWXxavmv/Oum2aPsRcoDJuob75FC3Y8FbpfLwUegRcxINtGUMPq0tFCvYNTBXNA==}
'@emotion/unitless@0.8.1':
resolution: {integrity: sha512-KOEGMu6dmJZtpadb476IsZBclKvILjopjUii3V+7MnXIQCYh8W3NgNcgwo21n9LXZX6EDIKvqfjYxXebDwxKmQ==}
'@epic-web/invariant@1.0.0':
resolution: {integrity: sha512-lrTPqgvfFQtR/eY/qkIzp98OGdNJu0m5ji3q/nJI8v3SXkRKEnWiOxMmbvcSoAIzv/cGiuvRy57k4suKQSAdwA==}
@@ -3116,6 +3122,9 @@ packages:
'@types/statuses@2.0.6':
resolution: {integrity: sha512-xMAgYwceFhRA2zY+XbEA7mxYbA093wdiW8Vu6gZPGWy9cmOyU9XesH1tNcEWsKFd5Vzrqx5T3D38PWx1FIIXkA==}
'@types/stylis@4.2.7':
resolution: {integrity: sha512-VgDNokpBoKF+wrdvhAAfS55OMQpL6QRglwTwNC3kIgBrzZxA4WsFj+2eLfEA/uMUDzBcEhYmjSbwQakn/i3ajA==}
'@types/tedious@4.0.14':
resolution: {integrity: sha512-KHPsfX/FoVbUGbyYvk1q9MMQHLPeRZhRJZdO45Q4YjvFkv4hMNghCWTvy7rdKessBsmtz4euWCWAB6/tVpI1Iw==}
@@ -3772,6 +3781,9 @@ packages:
resolution: {integrity: sha512-QOSvevhslijgYwRx6Rv7zKdMF8lbRmx+uQGx2+vDc+KI/eBnsy9kit5aj23AgGu3pa4t9AgwbnXWqS+iOY+2aA==}
engines: {node: '>= 6'}
camelize@1.0.1:
resolution: {integrity: sha512-dU+Tx2fsypxTgtLoE36npi3UqcjSSMNYfkqgmoEhtZrraP5VWq0K7FkWVTYa8eMPtnU/G2txVsfdCJTn9uzpuQ==}
caniuse-lite@1.0.30001762:
resolution: {integrity: sha512-PxZwGNvH7Ak8WX5iXzoK1KPZttBXNPuaOvI2ZYU7NrlM+d9Ov+TUvlLOBNGzVXAntMSMMlJPd+jY6ovrVjSmUw==}
@@ -3985,6 +3997,10 @@ packages:
resolution: {integrity: sha512-r4ESw/IlusD17lgQi1O20Fa3qNnsckR126TdUuBgAu7GBYSIPvdNyONd3Zrxh0xCwA4+6w/TDArBPsMvhur+KQ==}
engines: {node: '>= 0.10'}
css-color-keywords@1.0.0:
resolution: {integrity: sha512-FyyrDHZKEjXDpNJYvVsV960FiqQyXc/LlYmsxl2BcdMb2WPx0OGRVgTg55rPSyLSNMqP52R9r8geSp7apN3Ofg==}
engines: {node: '>=4'}
css-loader@6.11.0:
resolution: {integrity: sha512-CTJ+AEQJjq5NzLga5pE39qdiSV56F8ywCIsqNIRF0r7BDgWsN25aazToqAFg7ZrtA/U016xudB3ffgweORxX7g==}
engines: {node: '>= 12.13.0'}
@@ -4000,6 +4016,9 @@ packages:
css-select@4.3.0:
resolution: {integrity: sha512-wPpOYtnsVontu2mODhA19JrqWxNsfdatRKd64kmpRbQgh1KtItko5sTnEpPdpSaJszTOhEMlF/RPz28qj4HqhQ==}
css-to-react-native@3.2.0:
resolution: {integrity: sha512-e8RKaLXMOFii+02mOlqwjbD00KSEKqblnpO9e++1aXS1fPQOpS1YoqdVHBqPjHNoxeF2mimzVqawm2KCbEdtHQ==}
css-what@6.2.2:
resolution: {integrity: sha512-u/O3vwbptzhMs3L1fQE82ZSLHQQfto5gyZzwteVIEyeaY5Fc7R4dapF/BvRoSYFeqfBk4m0V1Vafq5Pjv25wvA==}
engines: {node: '>= 6'}
@@ -6112,6 +6131,10 @@ packages:
resolution: {integrity: sha512-PS08Iboia9mts/2ygV3eLpY5ghnUcfLV/EXTOW1E2qYxJKGGBUtNjN76FYHnMs36RmARn41bC0AZmn+rR0OVpQ==}
engines: {node: ^10 || ^12 || >=14}
postcss@8.4.49:
resolution: {integrity: sha512-OCVPnIObs4N29kxTjzLfUryOkvZEq+pf8jTF0lg8E7uETuWHA+v7j3c/xJmiqpX450191LlmZfUKkXxkTry7nA==}
engines: {node: ^10 || ^12 || >=14}
postcss@8.5.6:
resolution: {integrity: sha512-3Ybi1tAuwAP9s0r1UQ2J4n5Y0G05bJkpUIO0/bI9MhwmD70S5aTWbXGBwxHrelT+XM1k6dM0pk+SwNkpTRN7Pg==}
engines: {node: ^10 || ^12 || >=14}
@@ -6283,6 +6306,12 @@ packages:
peerDependencies:
react: ^18.3.1
react-drag-drop-files@2.4.0:
resolution: {integrity: sha512-MGPV3HVVnwXEXq3gQfLtSU3jz5j5jrabvGedokpiSEMoONrDHgYl/NpIOlfsqGQ4zBv1bzzv7qbKURZNOX32PA==}
peerDependencies:
react: ^18.0.0
react-dom: ^18.0.0
react-hook-form@7.66.0:
resolution: {integrity: sha512-xXBqsWGKrY46ZqaHDo+ZUYiMUgi8suYu5kdrS20EG8KiL7VRQitEbNjm+UcrDYrNi1YLyfpmAeGjCZYXLT9YBw==}
engines: {node: '>=18.0.0'}
@@ -6649,6 +6678,9 @@ packages:
engines: {node: '>= 0.10'}
hasBin: true
shallowequal@1.1.0:
resolution: {integrity: sha512-y0m1JoUZSlPAjXVtPPW70aZWfIL/dSP7AFkRnniLCrK/8MDKog3TySTBmckD+RObVxH0v4Tox67+F14PdED2oQ==}
sharp@0.34.5:
resolution: {integrity: sha512-Ou9I5Ft9WNcCbXrU9cMgPBcCK8LiwLqcbywW3t4oDV37n1pzpuNLsYiAV8eODnjbtQlSDwZ2cUEeQz4E54Hltg==}
engines: {node: ^18.17.0 || ^20.3.0 || >=21.0.0}
@@ -6862,6 +6894,13 @@ packages:
style-to-object@1.0.14:
resolution: {integrity: sha512-LIN7rULI0jBscWQYaSswptyderlarFkjQ+t79nzty8tcIAceVomEVlLzH5VP4Cmsv6MtKhs7qaAiwlcp+Mgaxw==}
styled-components@6.2.0:
resolution: {integrity: sha512-ryFCkETE++8jlrBmC+BoGPUN96ld1/Yp0s7t5bcXDobrs4XoXroY1tN+JbFi09hV6a5h3MzbcVi8/BGDP0eCgQ==}
engines: {node: '>= 16'}
peerDependencies:
react: '>= 16.8.0'
react-dom: '>= 16.8.0'
styled-jsx@5.1.6:
resolution: {integrity: sha512-qSVyDTeMotdvQYoHWLNGwRFJHC+i+ZvdBRYosOFgC+Wg1vx4frN2/RG/NA7SYqqvKNLf39P2LSRA2pu6n0XYZA==}
engines: {node: '>= 12.0.0'}
@@ -6888,6 +6927,9 @@ packages:
babel-plugin-macros:
optional: true
stylis@4.3.6:
resolution: {integrity: sha512-yQ3rwFWRfwNUY7H5vpU0wfdkNSnvnJinhF9830Swlaxl03zsOjCfmX0ugac+3LtK0lYSgwL/KXc8oYL3mG4YFQ==}
sucrase@3.35.1:
resolution: {integrity: sha512-DhuTmvZWux4H1UOnWMB3sk0sbaCVOoQZjv8u1rDoTV0HTdGem9hkAZtl4JZy8P2z4Bg0nT+YMeOFyVr4zcG5Tw==}
engines: {node: '>=16 || 14 >=14.17'}
@@ -7054,6 +7096,9 @@ packages:
tslib@1.14.1:
resolution: {integrity: sha512-Xni35NKzjgMrwevysHTCArtLDpPvye8zV/0E4EyYn43P7/7qvQwPh9BGkHewbMulVntbigmcT7rdX3BNo9wRJg==}
tslib@2.6.2:
resolution: {integrity: sha512-AEYxH93jGFPn/a2iVAwW87VuUIkR1FVUKB77NwMF7nBTDkDrrT/Hpt/IrCJ0QXhW27jTBDcf5ZY7w6RiqTMw2Q==}
tslib@2.8.1:
resolution: {integrity: sha512-oJFu94HQb+KVduSUQL7wnpmqnfmLsOA/nAh6b6EH0wCEoK0/mPeXU6c3wKDV83MkOuHPRHtSXKKU99IBazS/2w==}
@@ -8290,10 +8335,10 @@ snapshots:
'@emotion/is-prop-valid@1.2.2':
dependencies:
'@emotion/memoize': 0.8.1
optional: true
'@emotion/memoize@0.8.1':
optional: true
'@emotion/memoize@0.8.1': {}
'@emotion/unitless@0.8.1': {}
'@epic-web/invariant@1.0.0': {}
@@ -10689,6 +10734,8 @@ snapshots:
'@types/statuses@2.0.6': {}
'@types/stylis@4.2.7': {}
'@types/tedious@4.0.14':
dependencies:
'@types/node': 24.10.0
@@ -11385,6 +11432,8 @@ snapshots:
camelcase-css@2.0.1: {}
camelize@1.0.1: {}
caniuse-lite@1.0.30001762: {}
case-sensitive-paths-webpack-plugin@2.4.0: {}
@@ -11596,6 +11645,8 @@ snapshots:
randombytes: 2.1.0
randomfill: 1.0.4
css-color-keywords@1.0.0: {}
css-loader@6.11.0(webpack@5.104.1(esbuild@0.25.12)):
dependencies:
icss-utils: 5.1.0(postcss@8.5.6)
@@ -11617,6 +11668,12 @@ snapshots:
domutils: 2.8.0
nth-check: 2.1.1
css-to-react-native@3.2.0:
dependencies:
camelize: 1.0.1
css-color-keywords: 1.0.0
postcss-value-parser: 4.2.0
css-what@6.2.2: {}
css.escape@1.5.1: {}
@@ -12070,8 +12127,8 @@ snapshots:
'@typescript-eslint/parser': 8.52.0(eslint@8.57.1)(typescript@5.9.3)
eslint: 8.57.1
eslint-import-resolver-node: 0.3.9
eslint-import-resolver-typescript: 3.10.1(eslint-plugin-import@2.32.0)(eslint@8.57.1)
eslint-plugin-import: 2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1)
eslint-import-resolver-typescript: 3.10.1(eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1))(eslint@8.57.1)
eslint-plugin-import: 2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-typescript@3.10.1(eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1))(eslint@8.57.1))(eslint@8.57.1)
eslint-plugin-jsx-a11y: 6.10.2(eslint@8.57.1)
eslint-plugin-react: 7.37.5(eslint@8.57.1)
eslint-plugin-react-hooks: 5.2.0(eslint@8.57.1)
@@ -12090,7 +12147,7 @@ snapshots:
transitivePeerDependencies:
- supports-color
eslint-import-resolver-typescript@3.10.1(eslint-plugin-import@2.32.0)(eslint@8.57.1):
eslint-import-resolver-typescript@3.10.1(eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1))(eslint@8.57.1):
dependencies:
'@nolyfill/is-core-module': 1.0.39
debug: 4.4.3
@@ -12101,22 +12158,22 @@ snapshots:
tinyglobby: 0.2.15
unrs-resolver: 1.11.1
optionalDependencies:
eslint-plugin-import: 2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1)
eslint-plugin-import: 2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-typescript@3.10.1(eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1))(eslint@8.57.1))(eslint@8.57.1)
transitivePeerDependencies:
- supports-color
eslint-module-utils@2.12.1(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-node@0.3.9)(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1):
eslint-module-utils@2.12.1(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-node@0.3.9)(eslint-import-resolver-typescript@3.10.1(eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1))(eslint@8.57.1))(eslint@8.57.1):
dependencies:
debug: 3.2.7
optionalDependencies:
'@typescript-eslint/parser': 8.52.0(eslint@8.57.1)(typescript@5.9.3)
eslint: 8.57.1
eslint-import-resolver-node: 0.3.9
eslint-import-resolver-typescript: 3.10.1(eslint-plugin-import@2.32.0)(eslint@8.57.1)
eslint-import-resolver-typescript: 3.10.1(eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1))(eslint@8.57.1)
transitivePeerDependencies:
- supports-color
eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1):
eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-typescript@3.10.1(eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1))(eslint@8.57.1))(eslint@8.57.1):
dependencies:
'@rtsao/scc': 1.1.0
array-includes: 3.1.9
@@ -12127,7 +12184,7 @@ snapshots:
doctrine: 2.1.0
eslint: 8.57.1
eslint-import-resolver-node: 0.3.9
eslint-module-utils: 2.12.1(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-node@0.3.9)(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1)
eslint-module-utils: 2.12.1(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-node@0.3.9)(eslint-import-resolver-typescript@3.10.1(eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1))(eslint@8.57.1))(eslint@8.57.1)
hasown: 2.0.2
is-core-module: 2.16.1
is-glob: 4.0.3
@@ -14202,6 +14259,12 @@ snapshots:
picocolors: 1.1.1
source-map-js: 1.2.1
postcss@8.4.49:
dependencies:
nanoid: 3.3.11
picocolors: 1.1.1
source-map-js: 1.2.1
postcss@8.5.6:
dependencies:
nanoid: 3.3.11
@@ -14323,6 +14386,13 @@ snapshots:
react: 18.3.1
scheduler: 0.23.2
react-drag-drop-files@2.4.0(react-dom@18.3.1(react@18.3.1))(react@18.3.1):
dependencies:
prop-types: 15.8.1
react: 18.3.1
react-dom: 18.3.1(react@18.3.1)
styled-components: 6.2.0(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
react-hook-form@7.66.0(react@18.3.1):
dependencies:
react: 18.3.1
@@ -14816,6 +14886,8 @@ snapshots:
safe-buffer: 5.2.1
to-buffer: 1.2.2
shallowequal@1.1.0: {}
sharp@0.34.5:
dependencies:
'@img/colour': 1.0.0
@@ -15106,6 +15178,20 @@ snapshots:
dependencies:
inline-style-parser: 0.2.7
styled-components@6.2.0(react-dom@18.3.1(react@18.3.1))(react@18.3.1):
dependencies:
'@emotion/is-prop-valid': 1.2.2
'@emotion/unitless': 0.8.1
'@types/stylis': 4.2.7
css-to-react-native: 3.2.0
csstype: 3.2.3
postcss: 8.4.49
react: 18.3.1
react-dom: 18.3.1(react@18.3.1)
shallowequal: 1.1.0
stylis: 4.3.6
tslib: 2.6.2
styled-jsx@5.1.6(@babel/core@7.28.5)(react@18.3.1):
dependencies:
client-only: 0.0.1
@@ -15120,6 +15206,8 @@ snapshots:
optionalDependencies:
'@babel/core': 7.28.5
stylis@4.3.6: {}
sucrase@3.35.1:
dependencies:
'@jridgewell/gen-mapping': 0.3.13
@@ -15302,6 +15390,8 @@ snapshots:
tslib@1.14.1: {}
tslib@2.6.2: {}
tslib@2.8.1: {}
tty-browserify@0.0.1: {}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.6 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

View File

@@ -66,7 +66,6 @@ export const RunInputDialog = ({
formContext={{
showHandles: false,
size: "large",
showOptionalToggle: false,
}}
/>
</div>

View File

@@ -66,7 +66,7 @@ export const useRunInputDialog = ({
if (isCredentialFieldSchema(fieldSchema)) {
dynamicUiSchema[fieldName] = {
...dynamicUiSchema[fieldName],
"ui:field": "custom/credential_field",
"ui:field": "credentials",
};
}
});
@@ -76,18 +76,12 @@ export const useRunInputDialog = ({
}, [credentialsSchema]);
const handleManualRun = async () => {
// Filter out incomplete credentials (those without a valid id)
// RJSF auto-populates const values (provider, type) but not id field
const validCredentials = Object.fromEntries(
Object.entries(credentialValues).filter(([_, cred]) => cred && cred.id),
);
await executeGraph({
graphId: flowID ?? "",
graphVersion: flowVersion || null,
data: {
inputs: inputValues,
credentials_inputs: validCredentials,
credentials_inputs: credentialValues,
source: "builder",
},
});

View File

@@ -97,9 +97,6 @@ export const Flow = () => {
onConnect={onConnect}
onEdgesChange={onEdgesChange}
onNodeDragStop={onNodeDragStop}
onNodeContextMenu={(event) => {
event.preventDefault();
}}
maxZoom={2}
minZoom={0.1}
onDragOver={onDragOver}

View File

@@ -1,25 +1,24 @@
import { AgentExecutionStatus } from "@/app/api/__generated__/models/agentExecutionStatus";
import { BlockCost } from "@/app/api/__generated__/models/blockCost";
import { BlockInfoCategoriesItem } from "@/app/api/__generated__/models/blockInfoCategoriesItem";
import { NodeExecutionResult } from "@/app/api/__generated__/models/nodeExecutionResult";
import { NodeModelMetadata } from "@/app/api/__generated__/models/nodeModelMetadata";
import { preprocessInputSchema } from "@/components/renderers/InputRenderer/utils/input-schema-pre-processor";
import { cn } from "@/lib/utils";
import { RJSFSchema } from "@rjsf/utils";
import { NodeProps, Node as XYNode } from "@xyflow/react";
import React from "react";
import { Node as XYNode, NodeProps } from "@xyflow/react";
import { RJSFSchema } from "@rjsf/utils";
import { BlockUIType } from "../../../types";
import { FormCreator } from "../FormCreator";
import { OutputHandler } from "../OutputHandler";
import { AyrshareConnectButton } from "./components/AyrshareConnectButton";
import { NodeAdvancedToggle } from "./components/NodeAdvancedToggle";
import { NodeContainer } from "./components/NodeContainer";
import { NodeExecutionBadge } from "./components/NodeExecutionBadge";
import { NodeHeader } from "./components/NodeHeader";
import { NodeDataRenderer } from "./components/NodeOutput/NodeOutput";
import { NodeRightClickMenu } from "./components/NodeRightClickMenu";
import { StickyNoteBlock } from "./components/StickyNoteBlock";
import { BlockInfoCategoriesItem } from "@/app/api/__generated__/models/blockInfoCategoriesItem";
import { BlockCost } from "@/app/api/__generated__/models/blockCost";
import { AgentExecutionStatus } from "@/app/api/__generated__/models/agentExecutionStatus";
import { NodeExecutionResult } from "@/app/api/__generated__/models/nodeExecutionResult";
import { NodeContainer } from "./components/NodeContainer";
import { NodeHeader } from "./components/NodeHeader";
import { FormCreator } from "../FormCreator";
import { preprocessInputSchema } from "@/components/renderers/InputRenderer/utils/input-schema-pre-processor";
import { OutputHandler } from "../OutputHandler";
import { NodeAdvancedToggle } from "./components/NodeAdvancedToggle";
import { NodeDataRenderer } from "./components/NodeOutput/NodeOutput";
import { NodeExecutionBadge } from "./components/NodeExecutionBadge";
import { cn } from "@/lib/utils";
import { WebhookDisclaimer } from "./components/WebhookDisclaimer";
import { AyrshareConnectButton } from "./components/AyrshareConnectButton";
import { NodeModelMetadata } from "@/app/api/__generated__/models/nodeModelMetadata";
export type CustomNodeData = {
hardcodedValues: {
@@ -89,7 +88,7 @@ export const CustomNode: React.FC<NodeProps<CustomNode>> = React.memo(
// Currently all blockTypes design are similar - that's why i am using the same component for all of them
// If in future - if we need some drastic change in some blockTypes design - we can create separate components for them
const node = (
return (
<NodeContainer selected={selected} nodeId={nodeId} hasErrors={hasErrors}>
<div className="rounded-xlarge bg-white">
<NodeHeader data={data} nodeId={nodeId} />
@@ -118,15 +117,6 @@ export const CustomNode: React.FC<NodeProps<CustomNode>> = React.memo(
<NodeExecutionBadge nodeId={nodeId} />
</NodeContainer>
);
return (
<NodeRightClickMenu
nodeId={nodeId}
subGraphID={data.hardcodedValues?.graph_id}
>
{node}
</NodeRightClickMenu>
);
},
);

View File

@@ -1,31 +1,26 @@
import { useCopyPasteStore } from "@/app/(platform)/build/stores/copyPasteStore";
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
import { Separator } from "@/components/__legacy__/ui/separator";
import {
DropdownMenu,
DropdownMenuContent,
DropdownMenuItem,
DropdownMenuTrigger,
} from "@/components/molecules/DropdownMenu/DropdownMenu";
import {
SecondaryDropdownMenuContent,
SecondaryDropdownMenuItem,
SecondaryDropdownMenuSeparator,
} from "@/components/molecules/SecondaryMenu/SecondaryMenu";
import {
ArrowSquareOutIcon,
CopyIcon,
DotsThreeOutlineVerticalIcon,
TrashIcon,
} from "@phosphor-icons/react";
import { DotsThreeOutlineVerticalIcon } from "@phosphor-icons/react";
import { Copy, Trash2, ExternalLink } from "lucide-react";
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
import { useCopyPasteStore } from "@/app/(platform)/build/stores/copyPasteStore";
import { useReactFlow } from "@xyflow/react";
type Props = {
export const NodeContextMenu = ({
nodeId,
subGraphID,
}: {
nodeId: string;
subGraphID?: string;
};
export const NodeContextMenu = ({ nodeId, subGraphID }: Props) => {
}) => {
const { deleteElements } = useReactFlow();
function handleCopy() {
const handleCopy = () => {
useNodeStore.setState((state) => ({
nodes: state.nodes.map((node) => ({
...node,
@@ -35,47 +30,47 @@ export const NodeContextMenu = ({ nodeId, subGraphID }: Props) => {
useCopyPasteStore.getState().copySelectedNodes();
useCopyPasteStore.getState().pasteNodes();
}
};
function handleDelete() {
const handleDelete = () => {
deleteElements({ nodes: [{ id: nodeId }] });
}
};
return (
<DropdownMenu>
<DropdownMenuTrigger className="py-2">
<DotsThreeOutlineVerticalIcon size={16} weight="fill" />
</DropdownMenuTrigger>
<SecondaryDropdownMenuContent side="right" align="start">
<SecondaryDropdownMenuItem onClick={handleCopy}>
<CopyIcon size={20} className="mr-2 dark:text-gray-100" />
<span className="dark:text-gray-100">Copy</span>
</SecondaryDropdownMenuItem>
<SecondaryDropdownMenuSeparator />
<DropdownMenuContent
side="right"
align="start"
className="rounded-xlarge"
>
<DropdownMenuItem onClick={handleCopy} className="hover:rounded-xlarge">
<Copy className="mr-2 h-4 w-4" />
Copy Node
</DropdownMenuItem>
{subGraphID && (
<>
<SecondaryDropdownMenuItem
onClick={() => window.open(`/build?flowID=${subGraphID}`)}
>
<ArrowSquareOutIcon
size={20}
className="mr-2 dark:text-gray-100"
/>
<span className="dark:text-gray-100">Open agent</span>
</SecondaryDropdownMenuItem>
<SecondaryDropdownMenuSeparator />
</>
<DropdownMenuItem
onClick={() => window.open(`/build?flowID=${subGraphID}`)}
className="hover:rounded-xlarge"
>
<ExternalLink className="mr-2 h-4 w-4" />
Open Agent
</DropdownMenuItem>
)}
<SecondaryDropdownMenuItem variant="destructive" onClick={handleDelete}>
<TrashIcon
size={20}
className="mr-2 text-red-500 dark:text-red-400"
/>
<span className="dark:text-red-400">Delete</span>
</SecondaryDropdownMenuItem>
</SecondaryDropdownMenuContent>
<Separator className="my-2" />
<DropdownMenuItem
onClick={handleDelete}
className="text-red-600 hover:rounded-xlarge"
>
<Trash2 className="mr-2 h-4 w-4" />
Delete
</DropdownMenuItem>
</DropdownMenuContent>
</DropdownMenu>
);
};

View File

@@ -1,24 +1,25 @@
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
import { Text } from "@/components/atoms/Text/Text";
import { beautifyString, cn } from "@/lib/utils";
import { NodeCost } from "./NodeCost";
import { NodeBadges } from "./NodeBadges";
import { NodeContextMenu } from "./NodeContextMenu";
import { CustomNodeData } from "../CustomNode";
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
import { useState } from "react";
import {
Tooltip,
TooltipContent,
TooltipProvider,
TooltipTrigger,
} from "@/components/atoms/Tooltip/BaseTooltip";
import { beautifyString, cn } from "@/lib/utils";
import { useState } from "react";
import { CustomNodeData } from "../CustomNode";
import { NodeBadges } from "./NodeBadges";
import { NodeContextMenu } from "./NodeContextMenu";
import { NodeCost } from "./NodeCost";
type Props = {
export const NodeHeader = ({
data,
nodeId,
}: {
data: CustomNodeData;
nodeId: string;
};
export const NodeHeader = ({ data, nodeId }: Props) => {
}) => {
const updateNodeData = useNodeStore((state) => state.updateNodeData);
const title = (data.metadata?.customized_name as string) || data.title;
const [isEditingTitle, setIsEditingTitle] = useState(false);
@@ -68,10 +69,7 @@ export const NodeHeader = ({ data, nodeId }: Props) => {
<Tooltip>
<TooltipTrigger asChild>
<div>
<Text
variant="large-semibold"
className="line-clamp-1 hover:cursor-text"
>
<Text variant="large-semibold" className="line-clamp-1">
{beautifyString(title).replace("Block", "").trim()}
</Text>
</div>

View File

@@ -151,7 +151,7 @@ export const NodeDataViewer: FC<NodeDataViewerProps> = ({
</div>
<div className="flex justify-end pt-4">
{outputItems.length > 1 && (
{outputItems.length > 0 && (
<OutputActions
items={outputItems.map((item) => ({
value: item.value,

View File

@@ -1,104 +0,0 @@
import { useCopyPasteStore } from "@/app/(platform)/build/stores/copyPasteStore";
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
import {
SecondaryMenuContent,
SecondaryMenuItem,
SecondaryMenuSeparator,
} from "@/components/molecules/SecondaryMenu/SecondaryMenu";
import { ArrowSquareOutIcon, CopyIcon, TrashIcon } from "@phosphor-icons/react";
import * as ContextMenu from "@radix-ui/react-context-menu";
import { useReactFlow } from "@xyflow/react";
import { useEffect, useRef } from "react";
import { CustomNode } from "../CustomNode";
type Props = {
nodeId: string;
subGraphID?: string;
children: React.ReactNode;
};
const DOUBLE_CLICK_TIMEOUT = 300;
export function NodeRightClickMenu({ nodeId, subGraphID, children }: Props) {
const { deleteElements } = useReactFlow<CustomNode>();
const lastRightClickTime = useRef<number>(0);
const containerRef = useRef<HTMLDivElement>(null);
function copyNode() {
useNodeStore.setState((state) => ({
nodes: state.nodes.map((node) => ({
...node,
selected: node.id === nodeId,
})),
}));
useCopyPasteStore.getState().copySelectedNodes();
useCopyPasteStore.getState().pasteNodes();
}
function deleteNode() {
deleteElements({ nodes: [{ id: nodeId }] });
}
useEffect(() => {
const container = containerRef.current;
if (!container) return;
function handleContextMenu(e: MouseEvent) {
const now = Date.now();
const timeSinceLastClick = now - lastRightClickTime.current;
if (timeSinceLastClick < DOUBLE_CLICK_TIMEOUT) {
e.stopImmediatePropagation();
lastRightClickTime.current = 0;
return;
}
lastRightClickTime.current = now;
}
container.addEventListener("contextmenu", handleContextMenu, true);
return () => {
container.removeEventListener("contextmenu", handleContextMenu, true);
};
}, []);
return (
<ContextMenu.Root>
<ContextMenu.Trigger asChild>
<div ref={containerRef}>{children}</div>
</ContextMenu.Trigger>
<SecondaryMenuContent>
<SecondaryMenuItem onSelect={copyNode}>
<CopyIcon size={20} className="mr-2 dark:text-gray-100" />
<span className="dark:text-gray-100">Copy</span>
</SecondaryMenuItem>
<SecondaryMenuSeparator />
{subGraphID && (
<>
<SecondaryMenuItem
onClick={() => window.open(`/build?flowID=${subGraphID}`)}
>
<ArrowSquareOutIcon
size={20}
className="mr-2 dark:text-gray-100"
/>
<span className="dark:text-gray-100">Open agent</span>
</SecondaryMenuItem>
<SecondaryMenuSeparator />
</>
)}
<SecondaryMenuItem variant="destructive" onSelect={deleteNode}>
<TrashIcon
size={20}
className="mr-2 text-red-500 dark:text-red-400"
/>
<span className="dark:text-red-400">Delete</span>
</SecondaryMenuItem>
</SecondaryMenuContent>
</ContextMenu.Root>
);
}

View File

@@ -89,18 +89,6 @@ export function extractOptions(
// get display type and color for schema types [need for type display next to field name]
export const getTypeDisplayInfo = (schema: any) => {
if (
schema?.type === "array" &&
"format" in schema &&
schema.format === "table"
) {
return {
displayType: "table",
colorClass: "!text-indigo-500",
hexColor: "#6366f1",
};
}
if (schema?.type === "string" && schema?.format) {
const formatMap: Record<
string,

View File

@@ -1,6 +1,6 @@
export const uiSchema = {
credentials: {
"ui:field": "custom/credential_field",
"ui:field": "credentials",
provider: { "ui:widget": "hidden" },
type: { "ui:widget": "hidden" },
id: { "ui:autofocus": true },

View File

@@ -68,9 +68,6 @@ type NodeStore = {
clearAllNodeErrors: () => void; // Add this
syncHardcodedValuesWithHandleIds: (nodeId: string) => void;
// Credentials optional helpers
setCredentialsOptional: (nodeId: string, optional: boolean) => void;
};
export const useNodeStore = create<NodeStore>((set, get) => ({
@@ -229,9 +226,6 @@ export const useNodeStore = create<NodeStore>((set, get) => ({
...(node.data.metadata?.customized_name !== undefined && {
customized_name: node.data.metadata.customized_name,
}),
...(node.data.metadata?.credentials_optional !== undefined && {
credentials_optional: node.data.metadata.credentials_optional,
}),
},
};
},
@@ -348,30 +342,4 @@ export const useNodeStore = create<NodeStore>((set, get) => ({
}));
}
},
setCredentialsOptional: (nodeId: string, optional: boolean) => {
set((state) => ({
nodes: state.nodes.map((n) =>
n.id === nodeId
? {
...n,
data: {
...n.data,
metadata: {
...n.data.metadata,
credentials_optional: optional,
},
},
}
: n,
),
}));
const newState = {
nodes: get().nodes,
edges: useEdgeStore.getState().edges,
};
useHistoryStore.getState().pushState(newState);
},
}));

View File

@@ -34,9 +34,7 @@ type Props = {
onSelectCredentials: (newValue?: CredentialsMetaInput) => void;
onLoaded?: (loaded: boolean) => void;
readOnly?: boolean;
isOptional?: boolean;
showTitle?: boolean;
variant?: "default" | "node";
};
export function CredentialsInput({
@@ -47,9 +45,7 @@ export function CredentialsInput({
siblingInputs,
onLoaded,
readOnly = false,
isOptional = false,
showTitle = true,
variant = "default",
}: Props) {
const hookData = useCredentialsInput({
schema,
@@ -58,7 +54,6 @@ export function CredentialsInput({
siblingInputs,
onLoaded,
readOnly,
isOptional,
});
if (!isLoaded(hookData)) {
@@ -99,14 +94,7 @@ export function CredentialsInput({
<div className={cn("mb-6", className)}>
{showTitle && (
<div className="mb-2 flex items-center gap-2">
<Text variant="large-medium">
{displayName} credentials
{isOptional && (
<span className="ml-1 text-sm font-normal text-gray-500">
(optional)
</span>
)}
</Text>
<Text variant="large-medium">{displayName} credentials</Text>
{schema.description && (
<InformationTooltip description={schema.description} />
)}
@@ -115,17 +103,14 @@ export function CredentialsInput({
{hasCredentialsToShow ? (
<>
{(credentialsToShow.length > 1 || isOptional) && !readOnly ? (
{credentialsToShow.length > 1 && !readOnly ? (
<CredentialsSelect
credentials={credentialsToShow}
provider={provider}
displayName={displayName}
selectedCredentials={selectedCredential}
onSelectCredential={handleCredentialSelect}
onClearCredential={() => onSelectCredential(undefined)}
readOnly={readOnly}
allowNone={isOptional}
variant={variant}
/>
) : (
<div className="mb-4 space-y-2">

View File

@@ -30,8 +30,6 @@ type CredentialRowProps = {
readOnly?: boolean;
showCaret?: boolean;
asSelectTrigger?: boolean;
/** When "node", applies compact styling for node context */
variant?: "default" | "node";
};
export function CredentialRow({
@@ -43,22 +41,14 @@ export function CredentialRow({
readOnly = false,
showCaret = false,
asSelectTrigger = false,
variant = "default",
}: CredentialRowProps) {
const ProviderIcon = providerIcons[provider] || fallbackIcon;
const isNodeVariant = variant === "node";
return (
<div
className={cn(
"flex items-center gap-3 rounded-medium border border-zinc-200 bg-white p-3 transition-colors",
asSelectTrigger && isNodeVariant
? "min-w-0 flex-1 overflow-hidden border-0 bg-transparent"
: asSelectTrigger
? "border-0 bg-transparent"
: readOnly
? "w-fit"
: "",
asSelectTrigger ? "border-0 bg-transparent" : readOnly ? "w-fit" : "",
)}
onClick={readOnly || showCaret || asSelectTrigger ? undefined : onSelect}
style={
@@ -71,31 +61,19 @@ export function CredentialRow({
<ProviderIcon className="h-3 w-3 text-white" />
</div>
<IconKey className="h-5 w-5 shrink-0 text-zinc-800" />
<div
className={cn(
"flex min-w-0 flex-1 flex-nowrap items-center gap-4",
isNodeVariant && "overflow-hidden",
)}
>
<div className="flex min-w-0 flex-1 flex-nowrap items-center gap-4">
<Text
variant="body"
className={cn(
"tracking-tight",
isNodeVariant
? "truncate"
: "line-clamp-1 flex-[0_0_50%] text-ellipsis",
)}
className="line-clamp-1 flex-[0_0_50%] text-ellipsis tracking-tight"
>
{getCredentialDisplayName(credential, displayName)}
</Text>
{!(asSelectTrigger && isNodeVariant) && (
<Text
variant="large"
className="relative top-1 hidden overflow-hidden whitespace-nowrap font-mono tracking-tight md:block"
>
{"*".repeat(MASKED_KEY_LENGTH)}
</Text>
)}
<Text
variant="large"
className="lex-[0_0_40%] relative top-1 hidden overflow-hidden whitespace-nowrap font-mono tracking-tight md:block"
>
{"*".repeat(MASKED_KEY_LENGTH)}
</Text>
</div>
{showCaret && !asSelectTrigger && (
<CaretDown className="h-4 w-4 shrink-0 text-gray-400" />

View File

@@ -7,7 +7,6 @@ import {
} from "@/components/__legacy__/ui/select";
import { Text } from "@/components/atoms/Text/Text";
import { CredentialsMetaInput } from "@/lib/autogpt-server-api/types";
import { cn } from "@/lib/utils";
import { useEffect } from "react";
import { getCredentialDisplayName } from "../../helpers";
import { CredentialRow } from "../CredentialRow/CredentialRow";
@@ -24,11 +23,7 @@ interface Props {
displayName: string;
selectedCredentials?: CredentialsMetaInput;
onSelectCredential: (credentialId: string) => void;
onClearCredential?: () => void;
readOnly?: boolean;
allowNone?: boolean;
/** When "node", applies compact styling for node context */
variant?: "default" | "node";
}
export function CredentialsSelect({
@@ -37,38 +32,22 @@ export function CredentialsSelect({
displayName,
selectedCredentials,
onSelectCredential,
onClearCredential,
readOnly = false,
allowNone = true,
variant = "default",
}: Props) {
// Auto-select first credential if none is selected (only if allowNone is false)
// Auto-select first credential if none is selected
useEffect(() => {
if (!allowNone && !selectedCredentials && credentials.length > 0) {
if (!selectedCredentials && credentials.length > 0) {
onSelectCredential(credentials[0].id);
}
}, [allowNone, selectedCredentials, credentials, onSelectCredential]);
const handleValueChange = (value: string) => {
if (value === "__none__") {
onClearCredential?.();
} else {
onSelectCredential(value);
}
};
}, [selectedCredentials, credentials, onSelectCredential]);
return (
<div className="mb-4 w-full">
<Select
value={selectedCredentials?.id || (allowNone ? "__none__" : "")}
onValueChange={handleValueChange}
value={selectedCredentials?.id || ""}
onValueChange={(value) => onSelectCredential(value)}
>
<SelectTrigger
className={cn(
"h-auto min-h-12 w-full rounded-medium border-zinc-200 p-0 pr-4 shadow-none",
variant === "node" && "overflow-hidden",
)}
>
<SelectTrigger className="h-auto min-h-12 w-full rounded-medium border-zinc-200 p-0 pr-4 shadow-none">
{selectedCredentials ? (
<SelectValue key={selectedCredentials.id} asChild>
<CredentialRow
@@ -84,7 +63,6 @@ export function CredentialsSelect({
onDelete={() => {}}
readOnly={readOnly}
asSelectTrigger={true}
variant={variant}
/>
</SelectValue>
) : (
@@ -92,15 +70,6 @@ export function CredentialsSelect({
)}
</SelectTrigger>
<SelectContent>
{allowNone && (
<SelectItem key="__none__" value="__none__">
<div className="flex items-center gap-2">
<Text variant="body" className="tracking-tight text-gray-500">
None (skip this credential)
</Text>
</div>
</SelectItem>
)}
{credentials.map((credential) => (
<SelectItem key={credential.id} value={credential.id}>
<div className="flex items-center gap-2">

View File

@@ -22,7 +22,6 @@ type Params = {
siblingInputs?: Record<string, any>;
onLoaded?: (loaded: boolean) => void;
readOnly?: boolean;
isOptional?: boolean;
};
export function useCredentialsInput({
@@ -32,7 +31,6 @@ export function useCredentialsInput({
siblingInputs,
onLoaded,
readOnly = false,
isOptional = false,
}: Params) {
const [isAPICredentialsModalOpen, setAPICredentialsModalOpen] =
useState(false);
@@ -101,20 +99,13 @@ export function useCredentialsInput({
: null;
}, [credentials]);
// Auto-select the one available credential (only if not optional)
// Auto-select the one available credential
useEffect(() => {
if (readOnly) return;
if (isOptional) return; // Don't auto-select when credential is optional
if (singleCredential && !selectedCredential) {
onSelectCredential(singleCredential);
}
}, [
singleCredential,
selectedCredential,
onSelectCredential,
readOnly,
isOptional,
]);
}, [singleCredential, selectedCredential, onSelectCredential, readOnly]);
if (
!credentials ||

View File

@@ -8,7 +8,6 @@ import { WebhookTriggerBanner } from "../WebhookTriggerBanner/WebhookTriggerBann
export function ModalRunSection() {
const {
agent,
defaultRunType,
presetName,
setPresetName,
@@ -25,11 +24,6 @@ export function ModalRunSection() {
const inputFields = Object.entries(agentInputFields || {});
const credentialFields = Object.entries(agentCredentialsInputFields || {});
// Get the list of required credentials from the schema
const requiredCredentials = new Set(
(agent.credentials_input_schema?.required as string[]) || [],
);
return (
<div className="flex flex-col gap-4">
{defaultRunType === "automatic-trigger" ||
@@ -105,12 +99,14 @@ export function ModalRunSection() {
schema={
{ ...inputSubSchema, discriminator: undefined } as any
}
selectedCredentials={inputCredentials?.[key]}
selectedCredentials={
(inputCredentials && inputCredentials[key]) ??
inputSubSchema.default
}
onSelectCredentials={(value) =>
setInputCredentialsValue(key, value)
}
siblingInputs={inputValues}
isOptional={!requiredCredentials.has(key)}
/>
),
)}

View File

@@ -163,21 +163,15 @@ export function useAgentRunModal(
}, [agentInputSchema.required, inputValues]);
const [allCredentialsAreSet, missingCredentials] = useMemo(() => {
// Only check required credentials from schema, not all properties
// Credentials marked as optional in node metadata won't be in the required array
const requiredCredentials = new Set(
(agent.credentials_input_schema?.required as string[]) || [],
const availableCredentials = new Set(Object.keys(inputCredentials));
const allCredentials = new Set(
Object.keys(agentCredentialsInputFields || {}) ?? [],
);
const missing = [...allCredentials].filter(
(key) => !availableCredentials.has(key),
);
// Check if required credentials have valid id (not just key existence)
// A credential is valid only if it has an id field set
const missing = [...requiredCredentials].filter((key) => {
const cred = inputCredentials[key];
return !cred || !cred.id;
});
return [missing.length === 0, missing];
}, [agent.credentials_input_schema, inputCredentials]);
}, [agentCredentialsInputFields, inputCredentials]);
const credentialsRequired = useMemo(
() => Object.keys(agentCredentialsInputFields || {}).length > 0,
@@ -245,18 +239,12 @@ export function useAgentRunModal(
});
} else {
// Manual execution
// Filter out incomplete credentials (optional ones not selected)
// Only send credentials that have a valid id field
const validCredentials = Object.fromEntries(
Object.entries(inputCredentials).filter(([_, cred]) => cred && cred.id),
);
executeGraphMutation.mutate({
graphId: agent.graph_id,
graphVersion: agent.graph_version,
data: {
inputs: inputValues,
credentials_inputs: validCredentials,
credentials_inputs: inputCredentials,
source: "library",
},
});

View File

@@ -1,25 +1,17 @@
"use client";
import { getV1GetGraphVersion } from "@/app/api/__generated__/endpoints/graphs/graphs";
import {
getGetV2ListLibraryAgentsQueryKey,
useDeleteV2DeleteLibraryAgent,
} from "@/app/api/__generated__/endpoints/library/library";
import { GraphExecutionJobInfo } from "@/app/api/__generated__/models/graphExecutionJobInfo";
import { GraphExecutionMeta } from "@/app/api/__generated__/models/graphExecutionMeta";
import { LibraryAgent } from "@/app/api/__generated__/models/libraryAgent";
import { LibraryAgentPreset } from "@/app/api/__generated__/models/libraryAgentPreset";
import { Button } from "@/components/atoms/Button/Button";
import { Text } from "@/components/atoms/Text/Text";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { ShowMoreText } from "@/components/molecules/ShowMoreText/ShowMoreText";
import { useToast } from "@/components/molecules/Toast/use-toast";
import { exportAsJSONFile } from "@/lib/utils";
import { formatDate } from "@/lib/utils/time";
import { useQueryClient } from "@tanstack/react-query";
import Link from "next/link";
import { useRouter } from "next/navigation";
import { useState } from "react";
import { RunAgentModal } from "../modals/RunAgentModal/RunAgentModal";
import { RunDetailCard } from "../selected-views/RunDetailCard/RunDetailCard";
import { EmptyTasksIllustration } from "./EmptyTasksIllustration";
@@ -38,41 +30,6 @@ export function EmptyTasks({
onScheduleCreated,
}: Props) {
const { toast } = useToast();
const queryClient = useQueryClient();
const router = useRouter();
const [showDeleteDialog, setShowDeleteDialog] = useState(false);
const [isDeletingAgent, setIsDeletingAgent] = useState(false);
const { mutateAsync: deleteAgent } = useDeleteV2DeleteLibraryAgent();
async function handleDeleteAgent() {
if (!agent.id) return;
setIsDeletingAgent(true);
try {
await deleteAgent({ libraryAgentId: agent.id });
await queryClient.refetchQueries({
queryKey: getGetV2ListLibraryAgentsQueryKey(),
});
toast({ title: "Agent deleted" });
setShowDeleteDialog(false);
router.push("/library");
} catch (error: unknown) {
toast({
title: "Failed to delete agent",
description:
error instanceof Error
? error.message
: "An unexpected error occurred.",
variant: "destructive",
});
} finally {
setIsDeletingAgent(false);
}
}
async function handleExport() {
try {
@@ -190,50 +147,9 @@ export function EmptyTasks({
<Button variant="secondary" size="small" onClick={handleExport}>
Export agent to file
</Button>
<Button
variant="secondary"
size="small"
onClick={() => setShowDeleteDialog(true)}
>
Delete agent
</Button>
</div>
</div>
</div>
<Dialog
controlled={{
isOpen: showDeleteDialog,
set: setShowDeleteDialog,
}}
styling={{ maxWidth: "32rem" }}
title="Delete agent"
>
<Dialog.Content>
<div>
<Text variant="large">
Are you sure you want to delete this agent? This action cannot be
undone.
</Text>
<Dialog.Footer>
<Button
variant="secondary"
disabled={isDeletingAgent}
onClick={() => setShowDeleteDialog(false)}
>
Cancel
</Button>
<Button
variant="destructive"
onClick={handleDeleteAgent}
loading={isDeletingAgent}
>
Delete Agent
</Button>
</Dialog.Footer>
</div>
</Dialog.Content>
</Dialog>
</div>
);
}

View File

@@ -83,9 +83,7 @@ function renderCode(
</div>
)}
<pre className="overflow-x-auto rounded-md bg-muted p-3">
<code className="whitespace-pre-wrap break-words font-mono text-sm">
{codeValue}
</code>
<code className="font-mono text-sm">{codeValue}</code>
</pre>
</div>
);

View File

@@ -13,7 +13,7 @@ import { LoadingSelectedContent } from "../LoadingSelectedContent";
import { RunDetailCard } from "../RunDetailCard/RunDetailCard";
import { RunDetailHeader } from "../RunDetailHeader/RunDetailHeader";
import { SelectedViewLayout } from "../SelectedViewLayout";
import { SelectedScheduleActions } from "./components/SelectedScheduleActions/SelectedScheduleActions";
import { SelectedScheduleActions } from "./components/SelectedScheduleActions";
import { useSelectedScheduleView } from "./useSelectedScheduleView";
interface Props {

View File

@@ -0,0 +1,40 @@
import { LibraryAgent } from "@/app/api/__generated__/models/libraryAgent";
import { Button } from "@/components/atoms/Button/Button";
import { EyeIcon } from "@phosphor-icons/react";
import { AgentActionsDropdown } from "../../AgentActionsDropdown";
import { useScheduleDetailHeader } from "../../RunDetailHeader/useScheduleDetailHeader";
import { SelectedActionsWrap } from "../../SelectedActionsWrap";
type Props = {
agent: LibraryAgent;
scheduleId: string;
onDeleted?: () => void;
};
export function SelectedScheduleActions({ agent, scheduleId }: Props) {
const { openInBuilderHref } = useScheduleDetailHeader(
agent.graph_id,
scheduleId,
agent.graph_version,
);
return (
<>
<SelectedActionsWrap>
{openInBuilderHref && (
<Button
variant="icon"
size="icon"
as="NextLink"
href={openInBuilderHref}
target="_blank"
aria-label="View scheduled task details"
>
<EyeIcon weight="bold" size={18} className="text-zinc-700" />
</Button>
)}
<AgentActionsDropdown agent={agent} scheduleId={scheduleId} />
</SelectedActionsWrap>
</>
);
}

View File

@@ -1,96 +0,0 @@
"use client";
import { LibraryAgent } from "@/app/api/__generated__/models/libraryAgent";
import { Button } from "@/components/atoms/Button/Button";
import { LoadingSpinner } from "@/components/atoms/LoadingSpinner/LoadingSpinner";
import { Text } from "@/components/atoms/Text/Text";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { EyeIcon, TrashIcon } from "@phosphor-icons/react";
import { AgentActionsDropdown } from "../../../AgentActionsDropdown";
import { SelectedActionsWrap } from "../../../SelectedActionsWrap";
import { useSelectedScheduleActions } from "./useSelectedScheduleActions";
type Props = {
agent: LibraryAgent;
scheduleId: string;
onDeleted?: () => void;
};
export function SelectedScheduleActions({
agent,
scheduleId,
onDeleted,
}: Props) {
const {
openInBuilderHref,
showDeleteDialog,
setShowDeleteDialog,
handleDelete,
isDeleting,
} = useSelectedScheduleActions({ agent, scheduleId, onDeleted });
return (
<>
<SelectedActionsWrap>
{openInBuilderHref && (
<Button
variant="icon"
size="icon"
as="NextLink"
href={openInBuilderHref}
target="_blank"
aria-label="View scheduled task details"
>
<EyeIcon weight="bold" size={18} className="text-zinc-700" />
</Button>
)}
<Button
variant="icon"
size="icon"
aria-label="Delete schedule"
onClick={() => setShowDeleteDialog(true)}
disabled={isDeleting}
>
{isDeleting ? (
<LoadingSpinner size="small" />
) : (
<TrashIcon weight="bold" size={18} />
)}
</Button>
<AgentActionsDropdown agent={agent} scheduleId={scheduleId} />
</SelectedActionsWrap>
<Dialog
controlled={{
isOpen: showDeleteDialog,
set: setShowDeleteDialog,
}}
styling={{ maxWidth: "32rem" }}
title="Delete schedule"
>
<Dialog.Content>
<Text variant="large">
Are you sure you want to delete this schedule? This action cannot be
undone.
</Text>
<Dialog.Footer>
<Button
variant="secondary"
onClick={() => setShowDeleteDialog(false)}
disabled={isDeleting}
>
Cancel
</Button>
<Button
variant="destructive"
onClick={handleDelete}
loading={isDeleting}
>
Delete Schedule
</Button>
</Dialog.Footer>
</Dialog.Content>
</Dialog>
</>
);
}

View File

@@ -1,65 +0,0 @@
"use client";
import {
getGetV1ListExecutionSchedulesForAGraphQueryOptions,
useDeleteV1DeleteExecutionSchedule,
} from "@/app/api/__generated__/endpoints/schedules/schedules";
import { LibraryAgent } from "@/app/api/__generated__/models/libraryAgent";
import { useToast } from "@/components/molecules/Toast/use-toast";
import { useQueryClient } from "@tanstack/react-query";
import { useState } from "react";
interface UseSelectedScheduleActionsProps {
agent: LibraryAgent;
scheduleId: string;
onDeleted?: () => void;
}
export function useSelectedScheduleActions({
agent,
scheduleId,
onDeleted,
}: UseSelectedScheduleActionsProps) {
const { toast } = useToast();
const queryClient = useQueryClient();
const [showDeleteDialog, setShowDeleteDialog] = useState(false);
const deleteMutation = useDeleteV1DeleteExecutionSchedule({
mutation: {
onSuccess: () => {
toast({ title: "Schedule deleted" });
queryClient.invalidateQueries({
queryKey: getGetV1ListExecutionSchedulesForAGraphQueryOptions(
agent.graph_id,
).queryKey,
});
setShowDeleteDialog(false);
onDeleted?.();
},
onError: (error: unknown) =>
toast({
title: "Failed to delete schedule",
description:
error instanceof Error
? error.message
: "An unexpected error occurred.",
variant: "destructive",
}),
},
});
function handleDelete() {
if (!scheduleId) return;
deleteMutation.mutate({ scheduleId });
}
const openInBuilderHref = `/build?flowID=${agent.graph_id}&flowVersion=${agent.graph_version}`;
return {
openInBuilderHref,
showDeleteDialog,
setShowDeleteDialog,
handleDelete,
isDeleting: deleteMutation.isPending,
};
}

View File

@@ -40,17 +40,15 @@ export function useMarketplaceUpdate({ agent }: UseMarketplaceUpdateProps) {
},
);
// Get user's submissions - only fetch if user is the creator
const { data: submissionsData, isLoading: isSubmissionsLoading } =
useGetV2ListMySubmissions(
{ page: 1, page_size: 50 },
{
query: {
// Only fetch if user is the creator
enabled: !!(user?.id && agent?.owner_user_id === user.id),
},
// Get user's submissions to check for pending submissions
const { data: submissionsData } = useGetV2ListMySubmissions(
{ page: 1, page_size: 50 }, // Get enough to cover recent submissions
{
query: {
enabled: !!user?.id, // Only fetch if user is authenticated
},
);
},
);
const updateToLatestMutation = usePatchV2UpdateLibraryAgent({
mutation: {
@@ -80,45 +78,16 @@ export function useMarketplaceUpdate({ agent }: UseMarketplaceUpdateProps) {
// Check if marketplace has a newer version than user's current version
const marketplaceUpdateInfo = React.useMemo(() => {
const storeAgent = okData(storeAgentData) as any;
if (!agent || isSubmissionsLoading) {
if (!agent || !storeAgent) {
return {
hasUpdate: false,
latestVersion: undefined,
isUserCreator: false,
hasPublishUpdate: false,
};
}
const isUserCreator = agent?.owner_user_id === user?.id;
const submissionsResponse = okData(submissionsData) as any;
const agentSubmissions =
submissionsResponse?.submissions?.filter(
(submission: StoreSubmission) => submission.agent_id === agent.graph_id,
) || [];
const highestSubmittedVersion =
agentSubmissions.length > 0
? Math.max(
...agentSubmissions.map(
(submission: StoreSubmission) => submission.agent_version,
),
)
: 0;
const hasUnpublishedChanges =
isUserCreator && agent.graph_version > highestSubmittedVersion;
if (!storeAgent) {
return {
hasUpdate: false,
latestVersion: undefined,
isUserCreator,
hasPublishUpdate: agentSubmissions.length > 0 && hasUnpublishedChanges,
};
}
// Get the latest version from the marketplace
// agentGraphVersions array contains graph version numbers as strings, get the highest one
const latestMarketplaceVersion =
storeAgent.agentGraphVersions?.length > 0
? Math.max(
@@ -128,11 +97,32 @@ export function useMarketplaceUpdate({ agent }: UseMarketplaceUpdateProps) {
)
: undefined;
// Determine if the user is the creator of this agent
// Compare current user ID with the marketplace listing creator ID
const isUserCreator =
user?.id && agent.marketplace_listing?.creator.id === user.id;
// Check if there's a pending submission for this specific agent version
const submissionsResponse = okData(submissionsData) as any;
const hasPendingSubmissionForCurrentVersion =
isUserCreator &&
submissionsResponse?.submissions?.some(
(submission: StoreSubmission) =>
submission.agent_id === agent.graph_id &&
submission.agent_version === agent.graph_version &&
submission.status === "PENDING",
);
// If user is creator and their version is newer than marketplace, show publish update banner
// BUT only if there's no pending submission for this version
const hasPublishUpdate =
isUserCreator &&
agent.graph_version >
Math.max(latestMarketplaceVersion || 0, highestSubmittedVersion);
!hasPendingSubmissionForCurrentVersion &&
latestMarketplaceVersion !== undefined &&
agent.graph_version > latestMarketplaceVersion;
// If marketplace version is newer than user's version, show update banner
// This applies to both creators and non-creators
const hasMarketplaceUpdate =
latestMarketplaceVersion !== undefined &&
latestMarketplaceVersion > agent.graph_version;
@@ -143,7 +133,7 @@ export function useMarketplaceUpdate({ agent }: UseMarketplaceUpdateProps) {
isUserCreator,
hasPublishUpdate,
};
}, [agent, storeAgentData, user, submissionsData, isSubmissionsLoading]);
}, [agent, storeAgentData, user, submissionsData]);
const handlePublishUpdate = () => {
setModalOpen(true);

View File

@@ -1,17 +1,16 @@
"use client";
import { LibraryAgent } from "@/app/api/__generated__/models/libraryAgent";
import { Text } from "@/components/atoms/Text/Text";
import { InfiniteScroll } from "@/components/contextual/InfiniteScroll/InfiniteScroll";
import { HeartIcon } from "@phosphor-icons/react";
import React from "react";
import { useFavoriteAgents } from "../../hooks/useFavoriteAgents";
import { LibraryAgentCard } from "../LibraryAgentCard/LibraryAgentCard";
import LibraryAgentCard from "../LibraryAgentCard/LibraryAgentCard";
import { useGetFlag, Flag } from "@/services/feature-flags/use-get-flag";
import { Heart } from "lucide-react";
import { Skeleton } from "@/components/__legacy__/ui/skeleton";
import { InfiniteScroll } from "@/components/contextual/InfiniteScroll/InfiniteScroll";
import { LibraryAgent } from "@/app/api/__generated__/models/libraryAgent";
interface Props {
searchTerm: string;
}
export function FavoritesSection({ searchTerm }: Props) {
export default function FavoritesSection() {
const isAgentFavoritingEnabled = useGetFlag(Flag.AGENT_FAVORITING);
const {
allAgents: favoriteAgents,
agentLoading: isLoading,
@@ -19,50 +18,60 @@ export function FavoritesSection({ searchTerm }: Props) {
hasNextPage,
fetchNextPage,
isFetchingNextPage,
} = useFavoriteAgents({ searchTerm });
} = useFavoriteAgents();
if (isLoading || favoriteAgents.length === 0) {
// Only show this section if the feature flag is enabled
if (!isAgentFavoritingEnabled) {
return null;
}
// Don't show the section if there are no favorites
if (!isLoading && favoriteAgents.length === 0) {
return null;
}
return (
<div className="!mb-8">
<div className="mb-3 flex items-center gap-2 p-2">
<HeartIcon className="h-5 w-5" weight="fill" />
<div className="flex items-baseline gap-2">
<Text variant="h4">Favorites</Text>
{!isLoading && (
<Text
variant="body"
data-testid="agents-count"
className="relative bottom-px text-zinc-500"
>
{agentCount}
</Text>
)}
</div>
<div className="mb-8">
<div className="flex items-center gap-[10px] p-2 pb-[10px]">
<Heart className="h-5 w-5 fill-red-500 text-red-500" />
<span className="font-poppin text-[18px] font-semibold leading-[28px] text-neutral-800">
Favorites
</span>
{!isLoading && (
<span className="font-sans text-[14px] font-normal leading-6">
{agentCount} {agentCount === 1 ? "agent" : "agents"}
</span>
)}
</div>
<div className="relative">
<InfiniteScroll
isFetchingNextPage={isFetchingNextPage}
fetchNextPage={fetchNextPage}
hasNextPage={hasNextPage}
loader={
<div className="flex h-8 w-full items-center justify-center">
<div className="h-6 w-6 animate-spin rounded-full border-b-2 border-t-2 border-neutral-800" />
</div>
}
>
{isLoading ? (
<div className="grid grid-cols-1 gap-4 sm:grid-cols-2 lg:grid-cols-3 xl:grid-cols-4">
{favoriteAgents.map((agent: LibraryAgent) => (
<LibraryAgentCard key={agent.id} agent={agent} />
{[...Array(4)].map((_, i) => (
<Skeleton key={i} className="h-48 w-full rounded-lg" />
))}
</div>
</InfiniteScroll>
) : (
<InfiniteScroll
isFetchingNextPage={isFetchingNextPage}
fetchNextPage={fetchNextPage}
hasNextPage={hasNextPage}
loader={
<div className="flex h-8 w-full items-center justify-center">
<div className="h-6 w-6 animate-spin rounded-full border-b-2 border-t-2 border-neutral-800" />
</div>
}
>
<div className="grid grid-cols-1 gap-4 sm:grid-cols-2 lg:grid-cols-3 xl:grid-cols-4">
{favoriteAgents.map((agent: LibraryAgent) => (
<LibraryAgentCard key={agent.id} agent={agent} />
))}
</div>
</InfiniteScroll>
)}
</div>
{favoriteAgents.length > 0 && <div className="!mt-10 border-t" />}
{favoriteAgents.length > 0 && <div className="mt-6 border-t pt-6" />}
</div>
);
}

View File

@@ -1,28 +1,34 @@
import { LibrarySearchBar } from "../LibrarySearchBar/LibrarySearchBar";
// import LibraryNotificationDropdown from "./library-notification-dropdown";
import LibraryUploadAgentDialog from "../LibraryUploadAgentDialog/LibraryUploadAgentDialog";
import LibrarySearchBar from "../LibrarySearchBar/LibrarySearchBar";
interface Props {
setSearchTerm: (value: string) => void;
}
type LibraryActionHeaderProps = Record<string, never>;
export function LibraryActionHeader({ setSearchTerm }: Props) {
/**
* LibraryActionHeader component - Renders a header with search, notifications and filters
*/
const LibraryActionHeader: React.FC<LibraryActionHeaderProps> = ({}) => {
return (
<>
<div className="mb-[32px] hidden items-center justify-center gap-4 md:flex">
<LibrarySearchBar setSearchTerm={setSearchTerm} />
<div className="mb-[32px] hidden items-start justify-between md:flex">
{/* <LibraryNotificationDropdown /> */}
<LibrarySearchBar />
<LibraryUploadAgentDialog />
</div>
{/* Mobile and tablet */}
<div className="flex flex-col gap-4 p-4 pt-[52px] md:hidden">
<div className="flex w-full justify-between">
{/* <LibraryNotificationDropdown /> */}
<LibraryUploadAgentDialog />
</div>
<div className="flex items-center justify-center">
<LibrarySearchBar setSearchTerm={setSearchTerm} />
<LibrarySearchBar />
</div>
</div>
</>
);
}
};
export default LibraryActionHeader;

View File

@@ -1,28 +1,28 @@
"use client";
import { LibraryAgentSort } from "@/app/api/__generated__/models/libraryAgentSort";
import { Text } from "@/components/atoms/Text/Text";
import { LibrarySortMenu } from "../LibrarySortMenu/LibrarySortMenu";
import LibrarySortMenu from "../LibrarySortMenu/LibrarySortMenu";
interface Props {
interface LibraryActionSubHeaderProps {
agentCount: number;
setLibrarySort: (value: LibraryAgentSort) => void;
}
export function LibraryActionSubHeader({ agentCount, setLibrarySort }: Props) {
export default function LibraryActionSubHeader({
agentCount,
}: LibraryActionSubHeaderProps) {
return (
<div className="flex items-baseline justify-between">
<div className="flex items-baseline gap-4">
<Text variant="h4">My agents</Text>
<Text
variant="body"
<div className="flex items-center justify-between pb-[10px]">
<div className="flex items-center gap-[10px] p-2">
<span className="font-poppin w-[96px] text-[18px] font-semibold leading-[28px] text-neutral-800">
My agents
</span>
<span
className="w-[70px] font-sans text-[14px] font-normal leading-6"
data-testid="agents-count"
className="text-zinc-500"
>
{agentCount}
</Text>
{agentCount} agents
</span>
</div>
<LibrarySortMenu setLibrarySort={setLibrarySort} />
<LibrarySortMenu />
</div>
);
}

View File

@@ -1,126 +1,332 @@
"use client";
import { Text } from "@/components/atoms/Text/Text";
import { CaretCircleRightIcon } from "@phosphor-icons/react";
import Link from "next/link";
import Image from "next/image";
import NextLink from "next/link";
import { Heart } from "@phosphor-icons/react";
import { useState, useEffect } from "react";
import { getQueryClient } from "@/lib/react-query/queryClient";
import { InfiniteData } from "@tanstack/react-query";
import { LibraryAgent } from "@/app/api/__generated__/models/libraryAgent";
import {
getV2ListLibraryAgentsResponse,
getV2ListFavoriteLibraryAgentsResponse,
} from "@/app/api/__generated__/endpoints/library/library";
import BackendAPI, { LibraryAgentID } from "@/lib/autogpt-server-api";
import { cn } from "@/lib/utils";
import { useToast } from "@/components/molecules/Toast/use-toast";
import { Flag, useGetFlag } from "@/services/feature-flags/use-get-flag";
import Avatar, {
AvatarFallback,
AvatarImage,
} from "@/components/atoms/Avatar/Avatar";
import { Link } from "@/components/atoms/Link/Link";
import { AgentCardMenu } from "./components/AgentCardMenu";
import { FavoriteButton } from "./components/FavoriteButton";
import { useLibraryAgentCard } from "./useLibraryAgentCard";
interface Props {
interface LibraryAgentCardProps {
agent: LibraryAgent;
}
export function LibraryAgentCard({ agent }: Props) {
const { id, name, graph_id, can_access_graph, image_url } = agent;
const {
isFromMarketplace,
isFavorite,
profile,
export default function LibraryAgentCard({
agent: {
id,
name,
description,
graph_id,
can_access_graph,
creator_image_url,
handleToggleFavorite,
} = useLibraryAgentCard({ agent });
image_url,
is_favorite,
},
}: LibraryAgentCardProps) {
const isAgentFavoritingEnabled = useGetFlag(Flag.AGENT_FAVORITING);
const [isFavorite, setIsFavorite] = useState(is_favorite);
const [isUpdating, setIsUpdating] = useState(false);
const { toast } = useToast();
const api = new BackendAPI();
const queryClient = getQueryClient();
// Sync local state with prop when it changes (e.g., after query invalidation)
useEffect(() => {
setIsFavorite(is_favorite);
}, [is_favorite]);
const updateQueryData = (newIsFavorite: boolean) => {
// Update the agent in all library agent queries
queryClient.setQueriesData(
{ queryKey: ["/api/library/agents"] },
(
oldData:
| InfiniteData<getV2ListLibraryAgentsResponse, number | undefined>
| undefined,
) => {
if (!oldData?.pages) return oldData;
return {
...oldData,
pages: oldData.pages.map((page) => {
if (page.status !== 200) return page;
return {
...page,
data: {
...page.data,
agents: page.data.agents.map((agent: LibraryAgent) =>
agent.id === id
? { ...agent, is_favorite: newIsFavorite }
: agent,
),
},
};
}),
};
},
);
// Update or remove from favorites query based on new state
queryClient.setQueriesData(
{ queryKey: ["/api/library/agents/favorites"] },
(
oldData:
| InfiniteData<
getV2ListFavoriteLibraryAgentsResponse,
number | undefined
>
| undefined,
) => {
if (!oldData?.pages) return oldData;
if (newIsFavorite) {
// Add to favorites if not already there
const exists = oldData.pages.some(
(page) =>
page.status === 200 &&
page.data.agents.some((agent: LibraryAgent) => agent.id === id),
);
if (!exists) {
const firstPage = oldData.pages[0];
if (firstPage?.status === 200) {
const updatedAgent = {
id,
name,
description,
graph_id,
can_access_graph,
creator_image_url,
image_url,
is_favorite: true,
};
return {
...oldData,
pages: [
{
...firstPage,
data: {
...firstPage.data,
agents: [updatedAgent, ...firstPage.data.agents],
pagination: {
...firstPage.data.pagination,
total_items: firstPage.data.pagination.total_items + 1,
},
},
},
...oldData.pages.slice(1).map((page) =>
page.status === 200
? {
...page,
data: {
...page.data,
pagination: {
...page.data.pagination,
total_items: page.data.pagination.total_items + 1,
},
},
}
: page,
),
],
};
}
}
} else {
// Remove from favorites
let removedCount = 0;
return {
...oldData,
pages: oldData.pages.map((page) => {
if (page.status !== 200) return page;
const filteredAgents = page.data.agents.filter(
(agent: LibraryAgent) => agent.id !== id,
);
if (filteredAgents.length < page.data.agents.length) {
removedCount = 1;
}
return {
...page,
data: {
...page.data,
agents: filteredAgents,
pagination: {
...page.data.pagination,
total_items:
page.data.pagination.total_items - removedCount,
},
},
};
}),
};
}
return oldData;
},
);
};
const handleToggleFavorite = async (e: React.MouseEvent) => {
e.preventDefault(); // Prevent navigation when clicking the heart
e.stopPropagation();
if (isUpdating || !isAgentFavoritingEnabled) return;
const newIsFavorite = !isFavorite;
// Optimistic update
setIsFavorite(newIsFavorite);
updateQueryData(newIsFavorite);
setIsUpdating(true);
try {
await api.updateLibraryAgent(id as LibraryAgentID, {
is_favorite: newIsFavorite,
});
toast({
title: newIsFavorite ? "Added to favorites" : "Removed from favorites",
description: `${name} has been ${newIsFavorite ? "added to" : "removed from"} your favorites.`,
});
} catch (error) {
// Revert on error
console.error("Failed to update favorite status:", error);
setIsFavorite(!newIsFavorite);
updateQueryData(!newIsFavorite);
toast({
title: "Error",
description: "Failed to update favorite status. Please try again.",
variant: "destructive",
});
} finally {
setIsUpdating(false);
}
};
return (
<div
data-testid="library-agent-card"
data-agent-id={id}
className="group relative inline-flex h-[10.625rem] w-full max-w-[25rem] flex-col items-start justify-start gap-2.5 rounded-medium border border-zinc-100 bg-white transition-all duration-300 hover:shadow-md"
className="group inline-flex w-full max-w-[434px] flex-col items-start justify-start gap-2.5 rounded-[26px] bg-white transition-all duration-300 hover:shadow-lg dark:bg-transparent dark:hover:shadow-gray-700"
>
<NextLink href={`/library/agents/${id}`} className="flex-shrink-0">
<div className="relative flex items-center gap-2 px-4 pt-3">
<Avatar className="h-4 w-4 rounded-full">
<Link
href={`/library/agents/${id}`}
className="relative h-[200px] w-full overflow-hidden rounded-[20px]"
>
{!image_url ? (
<div
className={`h-full w-full ${
[
"bg-gradient-to-r from-green-200 to-blue-200",
"bg-gradient-to-r from-pink-200 to-purple-200",
"bg-gradient-to-r from-yellow-200 to-orange-200",
"bg-gradient-to-r from-blue-200 to-cyan-200",
"bg-gradient-to-r from-indigo-200 to-purple-200",
][parseInt(id.slice(0, 8), 16) % 5]
}`}
style={{
backgroundSize: "200% 200%",
animation: "gradient 15s ease infinite",
}}
/>
) : (
<Image
src={image_url}
alt={`${name} preview image`}
fill
className="object-cover"
/>
)}
{isAgentFavoritingEnabled && (
<button
onClick={handleToggleFavorite}
className={cn(
"absolute right-4 top-4 rounded-full bg-white/90 p-2 backdrop-blur-sm transition-all duration-200",
"hover:scale-110 hover:bg-white",
"focus:outline-none focus:ring-2 focus:ring-red-500 focus:ring-offset-2",
isUpdating && "cursor-not-allowed opacity-50",
!isFavorite && "opacity-0 group-hover:opacity-100",
)}
disabled={isUpdating}
aria-label={
isFavorite ? "Remove from favorites" : "Add to favorites"
}
>
<Heart
size={20}
weight={isFavorite ? "fill" : "regular"}
className={cn(
"transition-colors duration-200",
isFavorite
? "text-red-500"
: "text-gray-600 hover:text-red-500",
)}
/>
</button>
)}
<div className="absolute bottom-4 left-4">
<Avatar className="h-16 w-16">
<AvatarImage
src={
isFromMarketplace
? creator_image_url || "/avatar-placeholder.png"
: profile?.avatar_url || "/avatar-placeholder.png"
creator_image_url
? creator_image_url
: "/avatar-placeholder.png"
}
alt={`${name} creator avatar`}
/>
<AvatarFallback size={48}>{name.charAt(0)}</AvatarFallback>
<AvatarFallback size={64}>{name.charAt(0)}</AvatarFallback>
</Avatar>
<Text
variant="small-medium"
className="uppercase tracking-wide text-zinc-400"
>
{isFromMarketplace ? "FROM MARKETPLACE" : "Built by you"}
</Text>
</div>
</NextLink>
<FavoriteButton
isFavorite={isFavorite}
onClick={handleToggleFavorite}
className="absolute right-10 top-0"
/>
<AgentCardMenu agent={agent} />
</Link>
<div className="flex w-full flex-1 flex-col px-4 pb-2">
<Link
href={`/library/agents/${id}`}
className="flex w-full items-start justify-between gap-2 no-underline hover:no-underline"
>
<Text
variant="h5"
data-testid="library-agent-card-name"
className="line-clamp-3 hyphens-auto break-words no-underline hover:no-underline"
>
<div className="flex w-full flex-1 flex-col px-4 py-4">
<Link href={`/library/agents/${id}`}>
<h3 className="mb-2 line-clamp-2 font-poppins text-2xl font-semibold leading-tight text-[#272727] dark:text-neutral-100">
{name}
</Text>
</h3>
{!image_url ? (
<div
className={`h-[3.64rem] w-[6.70rem] flex-shrink-0 rounded-small ${
[
"bg-gradient-to-r from-green-200 to-blue-200",
"bg-gradient-to-r from-pink-200 to-purple-200",
"bg-gradient-to-r from-yellow-200 to-orange-200",
"bg-gradient-to-r from-blue-200 to-cyan-200",
"bg-gradient-to-r from-indigo-200 to-purple-200",
][parseInt(id.slice(0, 8), 16) % 5]
}`}
style={{
backgroundSize: "200% 200%",
animation: "gradient 15s ease infinite",
}}
/>
) : (
<Image
src={image_url}
alt={`${name} preview image`}
width={107}
height={58}
className="flex-shrink-0 rounded-small object-cover"
/>
)}
<p className="line-clamp-3 flex-1 text-sm text-gray-600 dark:text-gray-400">
{description}
</p>
</Link>
<div className="mt-auto flex w-full justify-start gap-6 border-t border-zinc-100 pb-1 pt-3">
<div className="flex-grow" />
{/* Spacer */}
<div className="items-between mt-4 flex w-full justify-between gap-3">
<Link
href={`/library/agents/${id}`}
data-testid="library-agent-card-see-runs-link"
className="flex items-center gap-1 text-[13px]"
className="text-lg font-semibold text-neutral-800 hover:underline dark:text-neutral-200"
>
See runs <CaretCircleRightIcon size={20} />
See runs
</Link>
{can_access_graph && (
<Link
href={`/build?flowID=${graph_id}`}
data-testid="library-agent-card-open-in-builder-link"
className="flex items-center gap-1 text-[13px]"
isExternal
className="text-lg font-semibold text-neutral-800 hover:underline dark:text-neutral-200"
>
Open in builder <CaretCircleRightIcon size={20} />
Open in builder
</Link>
)}
</div>

View File

@@ -1,188 +0,0 @@
"use client";
import {
getGetV2ListLibraryAgentsQueryKey,
useDeleteV2DeleteLibraryAgent,
usePostV2ForkLibraryAgent,
} from "@/app/api/__generated__/endpoints/library/library";
import { LibraryAgent } from "@/app/api/__generated__/models/libraryAgent";
import { Button } from "@/components/atoms/Button/Button";
import { Text } from "@/components/atoms/Text/Text";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import {
DropdownMenu,
DropdownMenuContent,
DropdownMenuItem,
DropdownMenuSeparator,
DropdownMenuTrigger,
} from "@/components/molecules/DropdownMenu/DropdownMenu";
import { useToast } from "@/components/molecules/Toast/use-toast";
import { DotsThree } from "@phosphor-icons/react";
import { useQueryClient } from "@tanstack/react-query";
import Link from "next/link";
import { useRouter } from "next/navigation";
import { useState } from "react";
interface AgentCardMenuProps {
agent: LibraryAgent;
}
export function AgentCardMenu({ agent }: AgentCardMenuProps) {
const { toast } = useToast();
const queryClient = useQueryClient();
const router = useRouter();
const [showDeleteDialog, setShowDeleteDialog] = useState(false);
const [isDeletingAgent, setIsDeletingAgent] = useState(false);
const [isDuplicatingAgent, setIsDuplicatingAgent] = useState(false);
const { mutateAsync: deleteAgent } = useDeleteV2DeleteLibraryAgent();
const { mutateAsync: forkAgent } = usePostV2ForkLibraryAgent();
async function handleDuplicateAgent() {
if (!agent.id) return;
setIsDuplicatingAgent(true);
try {
const result = await forkAgent({ libraryAgentId: agent.id });
if (result.status === 200) {
await queryClient.refetchQueries({
queryKey: getGetV2ListLibraryAgentsQueryKey(),
});
toast({
title: "Agent duplicated",
description: `${result.data.name} has been created.`,
});
}
} catch (error: unknown) {
toast({
title: "Failed to duplicate agent",
description:
error instanceof Error
? error.message
: "An unexpected error occurred.",
variant: "destructive",
});
} finally {
setIsDuplicatingAgent(false);
}
}
async function handleDeleteAgent() {
if (!agent.id) return;
setIsDeletingAgent(true);
try {
await deleteAgent({ libraryAgentId: agent.id });
await queryClient.refetchQueries({
queryKey: getGetV2ListLibraryAgentsQueryKey(),
});
toast({ title: "Agent deleted" });
setShowDeleteDialog(false);
router.push("/library");
} catch (error: unknown) {
toast({
title: "Failed to delete agent",
description:
error instanceof Error
? error.message
: "An unexpected error occurred.",
variant: "destructive",
});
} finally {
setIsDeletingAgent(false);
}
}
return (
<>
<DropdownMenu>
<DropdownMenuTrigger asChild>
<button
className="absolute right-2 top-1 rounded p-1.5 transition-opacity hover:bg-neutral-100"
onClick={(e) => e.stopPropagation()}
aria-label="More actions"
>
<DotsThree className="h-5 w-5 text-neutral-600" />
</button>
</DropdownMenuTrigger>
<DropdownMenuContent align="end">
{agent.can_access_graph && (
<>
<DropdownMenuItem asChild>
<Link
href={`/build?flowID=${agent.graph_id}&flowVersion=${agent.graph_version}`}
target="_blank"
className="flex items-center gap-2"
onClick={(e) => e.stopPropagation()}
>
Edit agent
</Link>
</DropdownMenuItem>
<DropdownMenuSeparator />
</>
)}
<DropdownMenuItem
onClick={(e) => {
e.stopPropagation();
handleDuplicateAgent();
}}
disabled={isDuplicatingAgent}
className="flex items-center gap-2"
>
Duplicate agent
</DropdownMenuItem>
<DropdownMenuSeparator />
<DropdownMenuItem
onClick={(e) => {
e.stopPropagation();
setShowDeleteDialog(true);
}}
className="flex items-center gap-2 text-red-600 focus:bg-red-50 focus:text-red-600"
>
Delete agent
</DropdownMenuItem>
</DropdownMenuContent>
</DropdownMenu>
<Dialog
controlled={{
isOpen: showDeleteDialog,
set: setShowDeleteDialog,
}}
styling={{ maxWidth: "32rem" }}
title="Delete agent"
>
<Dialog.Content>
<div>
<Text variant="large">
Are you sure you want to delete this agent? This action cannot be
undone.
</Text>
<Dialog.Footer>
<Button
variant="secondary"
disabled={isDeletingAgent}
onClick={() => setShowDeleteDialog(false)}
>
Cancel
</Button>
<Button
variant="destructive"
onClick={handleDeleteAgent}
loading={isDeletingAgent}
>
Delete Agent
</Button>
</Dialog.Footer>
</div>
</Dialog.Content>
</Dialog>
</>
);
}

View File

@@ -1,39 +0,0 @@
"use client";
import { cn } from "@/lib/utils";
import { HeartIcon } from "@phosphor-icons/react";
import type { MouseEvent } from "react";
interface FavoriteButtonProps {
isFavorite: boolean;
onClick: (e: MouseEvent<HTMLButtonElement>) => void;
className?: string;
}
export function FavoriteButton({
isFavorite,
onClick,
className,
}: FavoriteButtonProps) {
return (
<button
onClick={onClick}
className={cn(
"rounded-full p-2 transition-all duration-200",
"hover:scale-110",
!isFavorite && "opacity-0 group-hover:opacity-100",
className,
)}
aria-label={isFavorite ? "Remove from favorites" : "Add to favorites"}
>
<HeartIcon
size={20}
weight={isFavorite ? "fill" : "regular"}
className={cn(
"transition-colors duration-200",
isFavorite ? "text-red-500" : "text-gray-600 hover:text-red-500",
)}
/>
</button>
);
}

View File

@@ -1,150 +0,0 @@
import { InfiniteData, QueryClient } from "@tanstack/react-query";
import {
getV2ListFavoriteLibraryAgentsResponse,
getV2ListLibraryAgentsResponse,
} from "@/app/api/__generated__/endpoints/library/library";
import { LibraryAgent } from "@/app/api/__generated__/models/libraryAgent";
interface UpdateFavoriteInQueriesParams {
queryClient: QueryClient;
agentId: string;
agent: LibraryAgent;
newIsFavorite: boolean;
}
export function updateFavoriteInQueries({
queryClient,
agentId,
agent,
newIsFavorite,
}: UpdateFavoriteInQueriesParams) {
queryClient.setQueriesData(
{ queryKey: ["/api/library/agents"] },
(
oldData:
| InfiniteData<getV2ListLibraryAgentsResponse, number | undefined>
| undefined,
) => {
if (!oldData?.pages) return oldData;
return {
...oldData,
pages: oldData.pages.map((page) => {
if (page.status !== 200) return page;
return {
...page,
data: {
...page.data,
agents: page.data.agents.map((currentAgent: LibraryAgent) =>
currentAgent.id === agentId
? { ...currentAgent, is_favorite: newIsFavorite }
: currentAgent,
),
},
};
}),
};
},
);
queryClient.setQueriesData(
{ queryKey: ["/api/library/agents/favorites"] },
(
oldData:
| InfiniteData<
getV2ListFavoriteLibraryAgentsResponse,
number | undefined
>
| undefined,
) => {
if (!oldData?.pages) return oldData;
if (newIsFavorite) {
const exists = oldData.pages.some(
(page) =>
page.status === 200 &&
page.data.agents.some(
(currentAgent: LibraryAgent) => currentAgent.id === agentId,
),
);
if (!exists) {
const firstPage = oldData.pages[0];
if (firstPage?.status === 200) {
const updatedAgent = {
id: agent.id,
name: agent.name,
description: agent.description,
graph_id: agent.graph_id,
can_access_graph: agent.can_access_graph,
creator_image_url: agent.creator_image_url,
image_url: agent.image_url,
is_favorite: true,
};
return {
...oldData,
pages: [
{
...firstPage,
data: {
...firstPage.data,
agents: [updatedAgent, ...firstPage.data.agents],
pagination: {
...firstPage.data.pagination,
total_items: firstPage.data.pagination.total_items + 1,
},
},
},
...oldData.pages.slice(1).map((page) =>
page.status === 200
? {
...page,
data: {
...page.data,
pagination: {
...page.data.pagination,
total_items: page.data.pagination.total_items + 1,
},
},
}
: page,
),
],
};
}
}
} else {
return {
...oldData,
pages: oldData.pages.map((page) => {
if (page.status !== 200) return page;
const filteredAgents = page.data.agents.filter(
(currentAgent: LibraryAgent) => currentAgent.id !== agentId,
);
const removedCount =
filteredAgents.length < page.data.agents.length ? 1 : 0;
return {
...page,
data: {
...page.data,
agents: filteredAgents,
pagination: {
...page.data.pagination,
total_items: page.data.pagination.total_items - removedCount,
},
},
};
}),
};
}
return oldData;
},
);
}

View File

@@ -1,84 +0,0 @@
"use client";
import { getQueryClient } from "@/lib/react-query/queryClient";
import { useEffect, useState } from "react";
import { usePatchV2UpdateLibraryAgent } from "@/app/api/__generated__/endpoints/library/library";
import { useGetV2GetUserProfile } from "@/app/api/__generated__/endpoints/store/store";
import { LibraryAgent } from "@/app/api/__generated__/models/libraryAgent";
import { okData } from "@/app/api/helpers";
import { useToast } from "@/components/molecules/Toast/use-toast";
import { updateFavoriteInQueries } from "./helpers";
interface Props {
agent: LibraryAgent;
}
export function useLibraryAgentCard({ agent }: Props) {
const { id, name, is_favorite, creator_image_url, marketplace_listing } =
agent;
const isFromMarketplace = Boolean(marketplace_listing);
const [isFavorite, setIsFavorite] = useState(is_favorite);
const { toast } = useToast();
const queryClient = getQueryClient();
const { mutateAsync: updateLibraryAgent } = usePatchV2UpdateLibraryAgent();
const { data: profile } = useGetV2GetUserProfile({
query: {
select: okData,
},
});
useEffect(() => {
setIsFavorite(is_favorite);
}, [is_favorite]);
function updateQueryData(newIsFavorite: boolean) {
updateFavoriteInQueries({
queryClient,
agentId: id,
agent,
newIsFavorite,
});
}
async function handleToggleFavorite(e: React.MouseEvent) {
e.preventDefault();
e.stopPropagation();
const newIsFavorite = !isFavorite;
setIsFavorite(newIsFavorite);
updateQueryData(newIsFavorite);
try {
await updateLibraryAgent({
libraryAgentId: id,
data: { is_favorite: newIsFavorite },
});
toast({
title: newIsFavorite ? "Added to favorites" : "Removed from favorites",
description: `${name} has been ${newIsFavorite ? "added to" : "removed from"} your favorites.`,
});
} catch {
setIsFavorite(!newIsFavorite);
updateQueryData(!newIsFavorite);
toast({
title: "Error",
description: "Failed to update favorite status. Please try again.",
variant: "destructive",
});
}
}
return {
isFromMarketplace,
isFavorite,
profile,
creator_image_url,
handleToggleFavorite,
};
}

Some files were not shown because too many files have changed in this diff Show More