Compare commits

..

2 Commits

Author SHA1 Message Date
Nicholas Tindle
d58df37238 Merge branch 'dev' into fix/sentry-performance-integrations 2026-02-04 21:32:12 -06:00
Otto
9c41512944 feat(backend): Add Sentry FastAPI and HTTPX integrations for better performance tracing
Adds FastApiIntegration and HttpxIntegration to Sentry SDK initialization to enable:
- Detailed span tracking for FastAPI request handling
- Automatic tracing of outgoing HTTP calls (OpenAI, external APIs, etc.)

This improves visibility in Sentry Performance for debugging slow requests and identifying bottlenecks in external API calls.
2026-02-04 22:47:35 +00:00
526 changed files with 15705 additions and 39338 deletions

View File

@@ -5,13 +5,42 @@
!docs/
# Platform - Libs
!autogpt_platform/autogpt_libs/
!autogpt_platform/autogpt_libs/autogpt_libs/
!autogpt_platform/autogpt_libs/pyproject.toml
!autogpt_platform/autogpt_libs/poetry.lock
!autogpt_platform/autogpt_libs/README.md
# Platform - Backend
!autogpt_platform/backend/
!autogpt_platform/backend/backend/
!autogpt_platform/backend/test/e2e_test_data.py
!autogpt_platform/backend/migrations/
!autogpt_platform/backend/schema.prisma
!autogpt_platform/backend/pyproject.toml
!autogpt_platform/backend/poetry.lock
!autogpt_platform/backend/README.md
!autogpt_platform/backend/.env
!autogpt_platform/backend/gen_prisma_types_stub.py
# Platform - Market
!autogpt_platform/market/market/
!autogpt_platform/market/scripts.py
!autogpt_platform/market/schema.prisma
!autogpt_platform/market/pyproject.toml
!autogpt_platform/market/poetry.lock
!autogpt_platform/market/README.md
# Platform - Frontend
!autogpt_platform/frontend/
!autogpt_platform/frontend/src/
!autogpt_platform/frontend/public/
!autogpt_platform/frontend/scripts/
!autogpt_platform/frontend/package.json
!autogpt_platform/frontend/pnpm-lock.yaml
!autogpt_platform/frontend/tsconfig.json
!autogpt_platform/frontend/README.md
## config
!autogpt_platform/frontend/*.config.*
!autogpt_platform/frontend/.env.*
!autogpt_platform/frontend/.env
# Classic - AutoGPT
!classic/original_autogpt/autogpt/
@@ -35,38 +64,6 @@
# Classic - Frontend
!classic/frontend/build/web/
# Explicitly re-ignore unwanted files from whitelisted directories
# Note: These patterns MUST come after the whitelist rules to take effect
# Hidden files and directories (but keep frontend .env files needed for build)
**/.*
!autogpt_platform/frontend/.env
!autogpt_platform/frontend/.env.default
!autogpt_platform/frontend/.env.production
# Python artifacts
**/__pycache__/
**/*.pyc
**/*.pyo
**/.venv/
**/.ruff_cache/
**/.pytest_cache/
**/.coverage
**/htmlcov/
# Node artifacts
**/node_modules/
**/.next/
**/storybook-static/
**/playwright-report/
**/test-results/
# Build artifacts
**/dist/
**/build/
!autogpt_platform/frontend/src/**/build/
**/target/
# Logs and temp files
**/*.log
**/*.tmp
# Explicitly re-ignore some folders
.*
**/__pycache__

File diff suppressed because it is too large Load Diff

View File

@@ -49,7 +49,7 @@ jobs:
- name: Create PR ${{ env.BUILD_BRANCH }} -> ${{ github.ref_name }}
if: github.event_name == 'push'
uses: peter-evans/create-pull-request@v8
uses: peter-evans/create-pull-request@v7
with:
add-paths: classic/frontend/build/web
base: ${{ github.ref_name }}

View File

@@ -22,7 +22,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
ref: ${{ github.event.workflow_run.head_branch }}
fetch-depth: 0
@@ -40,51 +40,9 @@ jobs:
git checkout -b "$BRANCH_NAME"
echo "branch_name=$BRANCH_NAME" >> $GITHUB_OUTPUT
# Backend Python/Poetry setup (so Claude can run linting/tests)
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Set up Python dependency cache
uses: actions/cache@v5
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
- name: Install Poetry
run: |
cd autogpt_platform/backend
HEAD_POETRY_VERSION=$(python3 ../../.github/workflows/scripts/get_package_version_from_lockfile.py poetry)
curl -sSL https://install.python-poetry.org | POETRY_VERSION=$HEAD_POETRY_VERSION python3 -
echo "$HOME/.local/bin" >> $GITHUB_PATH
- name: Install Python dependencies
working-directory: autogpt_platform/backend
run: poetry install
- name: Generate Prisma Client
working-directory: autogpt_platform/backend
run: poetry run prisma generate && poetry run gen-prisma-stub
# Frontend Node.js/pnpm setup (so Claude can run linting/tests)
- name: Enable corepack
run: corepack enable
- name: Set up Node.js
uses: actions/setup-node@v6
with:
node-version: "22"
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
- name: Install JavaScript dependencies
working-directory: autogpt_platform/frontend
run: pnpm install --frozen-lockfile
- name: Get CI failure details
id: failure_details
uses: actions/github-script@v8
uses: actions/github-script@v7
with:
script: |
const run = await github.rest.actions.getWorkflowRun({

View File

@@ -30,7 +30,7 @@ jobs:
actions: read # Required for CI access
steps:
- name: Checkout code
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
fetch-depth: 1
@@ -41,7 +41,7 @@ jobs:
python-version: "3.11" # Use standard version matching CI
- name: Set up Python dependency cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
@@ -77,15 +77,27 @@ jobs:
run: poetry run prisma generate && poetry run gen-prisma-stub
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
- name: Set up Node.js
uses: actions/setup-node@v4
with:
node-version: "22"
- name: Enable corepack
run: corepack enable
- name: Set up Node.js
uses: actions/setup-node@v6
- name: Set pnpm store directory
run: |
pnpm config set store-dir ~/.pnpm-store
echo "PNPM_HOME=$HOME/.pnpm-store" >> $GITHUB_ENV
- name: Cache frontend dependencies
uses: actions/cache@v4
with:
node-version: "22"
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
path: ~/.pnpm-store
key: ${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
- name: Install JavaScript dependencies
working-directory: autogpt_platform/frontend
@@ -112,7 +124,7 @@ jobs:
# Phase 1: Cache and load Docker images for faster setup
- name: Set up Docker image cache
id: docker-cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/docker-cache
# Use a versioned key for cache invalidation when image list changes
@@ -297,7 +309,6 @@ jobs:
uses: anthropics/claude-code-action@v1
with:
claude_code_oauth_token: ${{ secrets.CLAUDE_CODE_OAUTH_TOKEN }}
allowed_bots: "dependabot[bot]"
claude_args: |
--allowedTools "Bash(npm:*),Bash(pnpm:*),Bash(poetry:*),Bash(git:*),Edit,Replace,NotebookEditCell,mcp__github_inline_comment__create_inline_comment,Bash(gh pr comment:*), Bash(gh pr diff:*), Bash(gh pr view:*)"
prompt: |

View File

@@ -40,7 +40,7 @@ jobs:
actions: read # Required for CI access
steps:
- name: Checkout code
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
fetch-depth: 1
@@ -57,7 +57,7 @@ jobs:
python-version: "3.11" # Use standard version matching CI
- name: Set up Python dependency cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
@@ -93,15 +93,27 @@ jobs:
run: poetry run prisma generate && poetry run gen-prisma-stub
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
- name: Set up Node.js
uses: actions/setup-node@v4
with:
node-version: "22"
- name: Enable corepack
run: corepack enable
- name: Set up Node.js
uses: actions/setup-node@v6
- name: Set pnpm store directory
run: |
pnpm config set store-dir ~/.pnpm-store
echo "PNPM_HOME=$HOME/.pnpm-store" >> $GITHUB_ENV
- name: Cache frontend dependencies
uses: actions/cache@v4
with:
node-version: "22"
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
path: ~/.pnpm-store
key: ${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
- name: Install JavaScript dependencies
working-directory: autogpt_platform/frontend
@@ -128,7 +140,7 @@ jobs:
# Phase 1: Cache and load Docker images for faster setup
- name: Set up Docker image cache
id: docker-cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/docker-cache
# Use a versioned key for cache invalidation when image list changes

View File

@@ -58,11 +58,11 @@ jobs:
# your codebase is analyzed, see https://docs.github.com/en/code-security/code-scanning/creating-an-advanced-setup-for-code-scanning/codeql-code-scanning-for-compiled-languages
steps:
- name: Checkout repository
uses: actions/checkout@v6
uses: actions/checkout@v4
# Initializes the CodeQL tools for scanning.
- name: Initialize CodeQL
uses: github/codeql-action/init@v4
uses: github/codeql-action/init@v3
with:
languages: ${{ matrix.language }}
build-mode: ${{ matrix.build-mode }}
@@ -93,6 +93,6 @@ jobs:
exit 1
- name: Perform CodeQL Analysis
uses: github/codeql-action/analyze@v4
uses: github/codeql-action/analyze@v3
with:
category: "/language:${{matrix.language}}"

View File

@@ -27,7 +27,7 @@ jobs:
# If you do not check out your code, Copilot will do this for you.
steps:
- name: Checkout code
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
fetch-depth: 0
submodules: true
@@ -39,7 +39,7 @@ jobs:
python-version: "3.11" # Use standard version matching CI
- name: Set up Python dependency cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
@@ -76,7 +76,7 @@ jobs:
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
- name: Set up Node.js
uses: actions/setup-node@v6
uses: actions/setup-node@v4
with:
node-version: "22"
@@ -89,7 +89,7 @@ jobs:
echo "PNPM_HOME=$HOME/.pnpm-store" >> $GITHUB_ENV
- name: Cache frontend dependencies
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}
@@ -132,7 +132,7 @@ jobs:
# Phase 1: Cache and load Docker images for faster setup
- name: Set up Docker image cache
id: docker-cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/docker-cache
# Use a versioned key for cache invalidation when image list changes

View File

@@ -23,7 +23,7 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
fetch-depth: 1
@@ -33,7 +33,7 @@ jobs:
python-version: "3.11"
- name: Set up Python dependency cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}

View File

@@ -7,10 +7,6 @@ on:
- "docs/integrations/**"
- "autogpt_platform/backend/backend/blocks/**"
concurrency:
group: claude-docs-review-${{ github.event.pull_request.number }}
cancel-in-progress: true
jobs:
claude-review:
# Only run for PRs from members/collaborators
@@ -27,7 +23,7 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
fetch-depth: 0
@@ -37,7 +33,7 @@ jobs:
python-version: "3.11"
- name: Set up Python dependency cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
@@ -95,35 +91,5 @@ jobs:
3. Read corresponding documentation files to verify accuracy
4. Provide your feedback as a PR comment
## IMPORTANT: Comment Marker
Start your PR comment with exactly this HTML comment marker on its own line:
<!-- CLAUDE_DOCS_REVIEW -->
This marker is used to identify and replace your comment on subsequent runs.
Be constructive and specific. If everything looks good, say so!
If there are issues, explain what's wrong and suggest how to fix it.
- name: Delete old Claude review comments
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
# Get all comment IDs with our marker, sorted by creation date (oldest first)
COMMENT_IDS=$(gh api \
repos/${{ github.repository }}/issues/${{ github.event.pull_request.number }}/comments \
--jq '[.[] | select(.body | contains("<!-- CLAUDE_DOCS_REVIEW -->"))] | sort_by(.created_at) | .[].id')
# Count comments
COMMENT_COUNT=$(echo "$COMMENT_IDS" | grep -c . || true)
if [ "$COMMENT_COUNT" -gt 1 ]; then
# Delete all but the last (newest) comment
echo "$COMMENT_IDS" | head -n -1 | while read -r COMMENT_ID; do
if [ -n "$COMMENT_ID" ]; then
echo "Deleting old review comment: $COMMENT_ID"
gh api -X DELETE repos/${{ github.repository }}/issues/comments/$COMMENT_ID
fi
done
else
echo "No old review comments to clean up"
fi

View File

@@ -28,7 +28,7 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
fetch-depth: 1
@@ -38,7 +38,7 @@ jobs:
python-version: "3.11"
- name: Set up Python dependency cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}

View File

@@ -25,7 +25,7 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
ref: ${{ github.event.inputs.git_ref || github.ref_name }}
@@ -52,7 +52,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Trigger deploy workflow
uses: peter-evans/repository-dispatch@v4
uses: peter-evans/repository-dispatch@v3
with:
token: ${{ secrets.DEPLOY_TOKEN }}
repository: Significant-Gravitas/AutoGPT_cloud_infrastructure

View File

@@ -17,7 +17,7 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
ref: ${{ github.ref_name || 'master' }}
@@ -45,7 +45,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Trigger deploy workflow
uses: peter-evans/repository-dispatch@v4
uses: peter-evans/repository-dispatch@v3
with:
token: ${{ secrets.DEPLOY_TOKEN }}
repository: Significant-Gravitas/AutoGPT_cloud_infrastructure

View File

@@ -68,7 +68,7 @@ jobs:
steps:
- name: Checkout repository
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
fetch-depth: 0
submodules: true
@@ -88,7 +88,7 @@ jobs:
run: echo "date=$(date +'%Y-%m-%d')" >> $GITHUB_OUTPUT
- name: Set up Python dependency cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}

View File

@@ -17,7 +17,7 @@ jobs:
- name: Check comment permissions and deployment status
id: check_status
if: github.event_name == 'issue_comment' && github.event.issue.pull_request
uses: actions/github-script@v8
uses: actions/github-script@v7
with:
script: |
const commentBody = context.payload.comment.body.trim();
@@ -55,7 +55,7 @@ jobs:
- name: Post permission denied comment
if: steps.check_status.outputs.permission_denied == 'true'
uses: actions/github-script@v8
uses: actions/github-script@v7
with:
script: |
await github.rest.issues.createComment({
@@ -68,7 +68,7 @@ jobs:
- name: Get PR details for deployment
id: pr_details
if: steps.check_status.outputs.should_deploy == 'true' || steps.check_status.outputs.should_undeploy == 'true'
uses: actions/github-script@v8
uses: actions/github-script@v7
with:
script: |
const pr = await github.rest.pulls.get({
@@ -82,7 +82,7 @@ jobs:
- name: Dispatch Deploy Event
if: steps.check_status.outputs.should_deploy == 'true'
uses: peter-evans/repository-dispatch@v4
uses: peter-evans/repository-dispatch@v3
with:
token: ${{ secrets.DISPATCH_TOKEN }}
repository: Significant-Gravitas/AutoGPT_cloud_infrastructure
@@ -98,7 +98,7 @@ jobs:
- name: Post deploy success comment
if: steps.check_status.outputs.should_deploy == 'true'
uses: actions/github-script@v8
uses: actions/github-script@v7
with:
script: |
await github.rest.issues.createComment({
@@ -110,7 +110,7 @@ jobs:
- name: Dispatch Undeploy Event (from comment)
if: steps.check_status.outputs.should_undeploy == 'true'
uses: peter-evans/repository-dispatch@v4
uses: peter-evans/repository-dispatch@v3
with:
token: ${{ secrets.DISPATCH_TOKEN }}
repository: Significant-Gravitas/AutoGPT_cloud_infrastructure
@@ -126,7 +126,7 @@ jobs:
- name: Post undeploy success comment
if: steps.check_status.outputs.should_undeploy == 'true'
uses: actions/github-script@v8
uses: actions/github-script@v7
with:
script: |
await github.rest.issues.createComment({
@@ -139,7 +139,7 @@ jobs:
- name: Check deployment status on PR close
id: check_pr_close
if: github.event_name == 'pull_request' && github.event.action == 'closed'
uses: actions/github-script@v8
uses: actions/github-script@v7
with:
script: |
const comments = await github.rest.issues.listComments({
@@ -168,7 +168,7 @@ jobs:
github.event_name == 'pull_request' &&
github.event.action == 'closed' &&
steps.check_pr_close.outputs.should_undeploy == 'true'
uses: peter-evans/repository-dispatch@v4
uses: peter-evans/repository-dispatch@v3
with:
token: ${{ secrets.DISPATCH_TOKEN }}
repository: Significant-Gravitas/AutoGPT_cloud_infrastructure
@@ -187,7 +187,7 @@ jobs:
github.event_name == 'pull_request' &&
github.event.action == 'closed' &&
steps.check_pr_close.outputs.should_undeploy == 'true'
uses: actions/github-script@v8
uses: actions/github-script@v7
with:
script: |
await github.rest.issues.createComment({

View File

@@ -26,31 +26,34 @@ jobs:
setup:
runs-on: ubuntu-latest
outputs:
components-changed: ${{ steps.filter.outputs.components }}
cache-key: ${{ steps.cache-key.outputs.key }}
steps:
- name: Checkout repository
uses: actions/checkout@v6
uses: actions/checkout@v4
- name: Check for component changes
uses: dorny/paths-filter@v3
id: filter
- name: Set up Node.js
uses: actions/setup-node@v4
with:
filters: |
components:
- 'autogpt_platform/frontend/src/components/**'
node-version: "22.18.0"
- name: Enable corepack
run: corepack enable
- name: Set up Node
uses: actions/setup-node@v6
with:
node-version: "22.18.0"
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
- name: Generate cache key
id: cache-key
run: echo "key=${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}" >> $GITHUB_OUTPUT
- name: Install dependencies to populate cache
- name: Cache dependencies
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ steps.cache-key.outputs.key }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
- name: Install dependencies
run: pnpm install --frozen-lockfile
lint:
@@ -59,17 +62,24 @@ jobs:
steps:
- name: Checkout repository
uses: actions/checkout@v6
uses: actions/checkout@v4
- name: Set up Node.js
uses: actions/setup-node@v4
with:
node-version: "22.18.0"
- name: Enable corepack
run: corepack enable
- name: Set up Node
uses: actions/setup-node@v6
- name: Restore dependencies cache
uses: actions/cache@v4
with:
node-version: "22.18.0"
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
- name: Install dependencies
run: pnpm install --frozen-lockfile
@@ -80,27 +90,31 @@ jobs:
chromatic:
runs-on: ubuntu-latest
needs: setup
# Disabled: to re-enable, remove 'false &&' from the condition below
if: >-
false
&& (github.ref == 'refs/heads/dev' || github.base_ref == 'dev')
&& needs.setup.outputs.components-changed == 'true'
# Only run on dev branch pushes or PRs targeting dev
if: github.ref == 'refs/heads/dev' || github.base_ref == 'dev'
steps:
- name: Checkout repository
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Set up Node.js
uses: actions/setup-node@v4
with:
node-version: "22.18.0"
- name: Enable corepack
run: corepack enable
- name: Set up Node
uses: actions/setup-node@v6
- name: Restore dependencies cache
uses: actions/cache@v4
with:
node-version: "22.18.0"
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
- name: Install dependencies
run: pnpm install --frozen-lockfile
@@ -115,20 +129,30 @@ jobs:
exitOnceUploaded: true
e2e_test:
name: end-to-end tests
runs-on: big-boi
needs: setup
strategy:
fail-fast: false
steps:
- name: Checkout repository
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
submodules: recursive
- name: Set up Platform - Copy default supabase .env
- name: Set up Node.js
uses: actions/setup-node@v4
with:
node-version: "22.18.0"
- name: Enable corepack
run: corepack enable
- name: Copy default supabase .env
run: |
cp ../.env.default ../.env
- name: Set up Platform - Copy backend .env and set OpenAI API key
- name: Copy backend .env and set OpenAI API key
run: |
cp ../backend/.env.default ../backend/.env
echo "OPENAI_INTERNAL_API_KEY=${{ secrets.OPENAI_API_KEY }}" >> ../backend/.env
@@ -136,125 +160,77 @@ jobs:
# Used by E2E test data script to generate embeddings for approved store agents
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
- name: Set up Platform - Set up Docker Buildx
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Cache Docker layers
uses: actions/cache@v4
with:
driver: docker-container
driver-opts: network=host
path: /tmp/.buildx-cache
key: ${{ runner.os }}-buildx-frontend-test-${{ hashFiles('autogpt_platform/docker-compose.yml', 'autogpt_platform/backend/Dockerfile', 'autogpt_platform/backend/pyproject.toml', 'autogpt_platform/backend/poetry.lock') }}
restore-keys: |
${{ runner.os }}-buildx-frontend-test-
- name: Set up Platform - Expose GHA cache to docker buildx CLI
uses: crazy-max/ghaction-github-runtime@v3
- name: Set up Platform - Build Docker images (with cache)
working-directory: autogpt_platform
- name: Run docker compose
run: |
pip install pyyaml
# Resolve extends and generate a flat compose file that bake can understand
docker compose -f docker-compose.yml config > docker-compose.resolved.yml
# Add cache configuration to the resolved compose file
python ../.github/workflows/scripts/docker-ci-fix-compose-build-cache.py \
--source docker-compose.resolved.yml \
--cache-from "type=gha" \
--cache-to "type=gha,mode=max" \
--backend-hash "${{ hashFiles('autogpt_platform/backend/Dockerfile', 'autogpt_platform/backend/poetry.lock', 'autogpt_platform/backend/backend') }}" \
--frontend-hash "${{ hashFiles('autogpt_platform/frontend/Dockerfile', 'autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/src') }}" \
--git-ref "${{ github.ref }}"
# Build with bake using the resolved compose file (now includes cache config)
docker buildx bake --allow=fs.read=.. -f docker-compose.resolved.yml --load
NEXT_PUBLIC_PW_TEST=true docker compose -f ../docker-compose.yml up -d
env:
NEXT_PUBLIC_PW_TEST: true
DOCKER_BUILDKIT: 1
BUILDX_CACHE_FROM: type=local,src=/tmp/.buildx-cache
BUILDX_CACHE_TO: type=local,dest=/tmp/.buildx-cache-new,mode=max
- name: Set up tests - Cache E2E test data
id: e2e-data-cache
uses: actions/cache@v5
with:
path: /tmp/e2e_test_data.sql
key: e2e-test-data-${{ hashFiles('autogpt_platform/backend/test/e2e_test_data.py', 'autogpt_platform/backend/migrations/**', '.github/workflows/platform-frontend-ci.yml') }}
- name: Set up Platform - Start Supabase DB + Auth
- name: Move cache
run: |
docker compose -f ../docker-compose.resolved.yml up -d db auth --no-build
echo "Waiting for database to be ready..."
timeout 60 sh -c 'until docker compose -f ../docker-compose.resolved.yml exec -T db pg_isready -U postgres 2>/dev/null; do sleep 2; done'
echo "Waiting for auth service to be ready..."
timeout 60 sh -c 'until docker compose -f ../docker-compose.resolved.yml exec -T db psql -U postgres -d postgres -c "SELECT 1 FROM auth.users LIMIT 1" 2>/dev/null; do sleep 2; done' || echo "Auth schema check timeout, continuing..."
rm -rf /tmp/.buildx-cache
if [ -d "/tmp/.buildx-cache-new" ]; then
mv /tmp/.buildx-cache-new /tmp/.buildx-cache
fi
- name: Set up Platform - Run migrations
- name: Wait for services to be ready
run: |
echo "Running migrations..."
docker compose -f ../docker-compose.resolved.yml run --rm migrate
echo "✅ Migrations completed"
env:
NEXT_PUBLIC_PW_TEST: true
- name: Set up tests - Load cached E2E test data
if: steps.e2e-data-cache.outputs.cache-hit == 'true'
run: |
echo "✅ Found cached E2E test data, restoring..."
{
echo "SET session_replication_role = 'replica';"
cat /tmp/e2e_test_data.sql
echo "SET session_replication_role = 'origin';"
} | docker compose -f ../docker-compose.resolved.yml exec -T db psql -U postgres -d postgres -b
# Refresh materialized views after restore
docker compose -f ../docker-compose.resolved.yml exec -T db \
psql -U postgres -d postgres -b -c "SET search_path TO platform; SELECT refresh_store_materialized_views();" || true
echo "✅ E2E test data restored from cache"
- name: Set up Platform - Start (all other services)
run: |
docker compose -f ../docker-compose.resolved.yml up -d --no-build
echo "Waiting for rest_server to be ready..."
timeout 60 sh -c 'until curl -f http://localhost:8006/health 2>/dev/null; do sleep 2; done' || echo "Rest server health check timeout, continuing..."
env:
NEXT_PUBLIC_PW_TEST: true
echo "Waiting for database to be ready..."
timeout 60 sh -c 'until docker compose -f ../docker-compose.yml exec -T db pg_isready -U postgres 2>/dev/null; do sleep 2; done' || echo "Database ready check timeout, continuing..."
- name: Set up tests - Create E2E test data
if: steps.e2e-data-cache.outputs.cache-hit != 'true'
- name: Create E2E test data
run: |
echo "Creating E2E test data..."
docker cp ../backend/test/e2e_test_data.py $(docker compose -f ../docker-compose.resolved.yml ps -q rest_server):/tmp/e2e_test_data.py
docker compose -f ../docker-compose.resolved.yml exec -T rest_server sh -c "cd /app/autogpt_platform && python /tmp/e2e_test_data.py" || {
echo "❌ E2E test data creation failed!"
docker compose -f ../docker-compose.resolved.yml logs --tail=50 rest_server
exit 1
}
# First try to run the script from inside the container
if docker compose -f ../docker-compose.yml exec -T rest_server test -f /app/autogpt_platform/backend/test/e2e_test_data.py; then
echo "✅ Found e2e_test_data.py in container, running it..."
docker compose -f ../docker-compose.yml exec -T rest_server sh -c "cd /app/autogpt_platform && python backend/test/e2e_test_data.py" || {
echo "❌ E2E test data creation failed!"
docker compose -f ../docker-compose.yml logs --tail=50 rest_server
exit 1
}
else
echo "⚠️ e2e_test_data.py not found in container, copying and running..."
# Copy the script into the container and run it
docker cp ../backend/test/e2e_test_data.py $(docker compose -f ../docker-compose.yml ps -q rest_server):/tmp/e2e_test_data.py || {
echo "❌ Failed to copy script to container"
exit 1
}
docker compose -f ../docker-compose.yml exec -T rest_server sh -c "cd /app/autogpt_platform && python /tmp/e2e_test_data.py" || {
echo "❌ E2E test data creation failed!"
docker compose -f ../docker-compose.yml logs --tail=50 rest_server
exit 1
}
fi
# Dump auth.users + platform schema for cache (two separate dumps)
echo "Dumping database for cache..."
{
docker compose -f ../docker-compose.resolved.yml exec -T db \
pg_dump -U postgres --data-only --column-inserts \
--table='auth.users' postgres
docker compose -f ../docker-compose.resolved.yml exec -T db \
pg_dump -U postgres --data-only --column-inserts \
--schema=platform \
--exclude-table='platform._prisma_migrations' \
--exclude-table='platform.apscheduler_jobs' \
--exclude-table='platform.apscheduler_jobs_batched_notifications' \
postgres
} > /tmp/e2e_test_data.sql
echo "✅ Database dump created for caching ($(wc -l < /tmp/e2e_test_data.sql) lines)"
- name: Set up tests - Enable corepack
run: corepack enable
- name: Set up tests - Set up Node
uses: actions/setup-node@v6
- name: Restore dependencies cache
uses: actions/cache@v4
with:
node-version: "22.18.0"
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
- name: Set up tests - Install dependencies
- name: Install dependencies
run: pnpm install --frozen-lockfile
- name: Set up tests - Install browser 'chromium'
- name: Install Browser 'chromium'
run: pnpm playwright install --with-deps chromium
- name: Run Playwright tests
@@ -281,7 +257,7 @@ jobs:
- name: Print Final Docker Compose logs
if: always()
run: docker compose -f ../docker-compose.resolved.yml logs
run: docker compose -f ../docker-compose.yml logs
integration_test:
runs-on: ubuntu-latest
@@ -289,19 +265,26 @@ jobs:
steps:
- name: Checkout repository
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
submodules: recursive
- name: Set up Node.js
uses: actions/setup-node@v4
with:
node-version: "22.18.0"
- name: Enable corepack
run: corepack enable
- name: Set up Node
uses: actions/setup-node@v6
- name: Restore dependencies cache
uses: actions/cache@v4
with:
node-version: "22.18.0"
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
- name: Install dependencies
run: pnpm install --frozen-lockfile

View File

@@ -29,10 +29,10 @@ jobs:
steps:
- name: Checkout repository
uses: actions/checkout@v6
uses: actions/checkout@v4
- name: Set up Node.js
uses: actions/setup-node@v6
uses: actions/setup-node@v4
with:
node-version: "22.18.0"
@@ -44,7 +44,7 @@ jobs:
run: echo "key=${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}" >> $GITHUB_OUTPUT
- name: Cache dependencies
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ steps.cache-key.outputs.key }}
@@ -56,19 +56,19 @@ jobs:
run: pnpm install --frozen-lockfile
types:
runs-on: big-boi
runs-on: ubuntu-latest
needs: setup
strategy:
fail-fast: false
steps:
- name: Checkout repository
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
submodules: recursive
- name: Set up Node.js
uses: actions/setup-node@v6
uses: actions/setup-node@v4
with:
node-version: "22.18.0"
@@ -85,10 +85,10 @@ jobs:
- name: Run docker compose
run: |
docker compose -f ../docker-compose.yml --profile local up -d deps_backend
docker compose -f ../docker-compose.yml --profile local --profile deps_backend up -d
- name: Restore dependencies cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}

View File

@@ -1,39 +0,0 @@
name: PR Overlap Detection
on:
pull_request:
types: [opened, synchronize, reopened]
branches:
- dev
- master
permissions:
contents: read
pull-requests: write
jobs:
check-overlaps:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
with:
fetch-depth: 0 # Need full history for merge testing
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: '3.11'
- name: Configure git
run: |
git config user.email "github-actions[bot]@users.noreply.github.com"
git config user.name "github-actions[bot]"
- name: Run overlap detection
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
# Always succeed - this check informs contributors, it shouldn't block merging
continue-on-error: true
run: |
python .github/scripts/detect_overlaps.py ${{ github.event.pull_request.number }}

View File

@@ -11,7 +11,7 @@ jobs:
steps:
# - name: Wait some time for all actions to start
# run: sleep 30
- uses: actions/checkout@v6
- uses: actions/checkout@v4
# with:
# fetch-depth: 0
- name: Set up Python

View File

@@ -1,195 +0,0 @@
#!/usr/bin/env python3
"""
Add cache configuration to a resolved docker-compose file for all services
that have a build key, and ensure image names match what docker compose expects.
"""
import argparse
import yaml
DEFAULT_BRANCH = "dev"
CACHE_BUILDS_FOR_COMPONENTS = ["backend", "frontend"]
def main():
parser = argparse.ArgumentParser(
description="Add cache config to a resolved compose file"
)
parser.add_argument(
"--source",
required=True,
help="Source compose file to read (should be output of `docker compose config`)",
)
parser.add_argument(
"--cache-from",
default="type=gha",
help="Cache source configuration",
)
parser.add_argument(
"--cache-to",
default="type=gha,mode=max",
help="Cache destination configuration",
)
for component in CACHE_BUILDS_FOR_COMPONENTS:
parser.add_argument(
f"--{component}-hash",
default="",
help=f"Hash for {component} cache scope (e.g., from hashFiles())",
)
parser.add_argument(
"--git-ref",
default="",
help="Git ref for branch-based cache scope (e.g., refs/heads/master)",
)
args = parser.parse_args()
# Normalize git ref to a safe scope name (e.g., refs/heads/master -> master)
git_ref_scope = ""
if args.git_ref:
git_ref_scope = args.git_ref.replace("refs/heads/", "").replace("/", "-")
with open(args.source, "r") as f:
compose = yaml.safe_load(f)
# Get project name from compose file or default
project_name = compose.get("name", "autogpt_platform")
def get_image_name(dockerfile: str, target: str) -> str:
"""Generate image name based on Dockerfile folder and build target."""
dockerfile_parts = dockerfile.replace("\\", "/").split("/")
if len(dockerfile_parts) >= 2:
folder_name = dockerfile_parts[-2] # e.g., "backend" or "frontend"
else:
folder_name = "app"
return f"{project_name}-{folder_name}:{target}"
def get_build_key(dockerfile: str, target: str) -> str:
"""Generate a unique key for a Dockerfile+target combination."""
return f"{dockerfile}:{target}"
def get_component(dockerfile: str) -> str | None:
"""Get component name (frontend/backend) from dockerfile path."""
for component in CACHE_BUILDS_FOR_COMPONENTS:
if component in dockerfile:
return component
return None
# First pass: collect all services with build configs and identify duplicates
# Track which (dockerfile, target) combinations we've seen
build_key_to_first_service: dict[str, str] = {}
services_to_build: list[str] = []
services_to_dedupe: list[str] = []
for service_name, service_config in compose.get("services", {}).items():
if "build" not in service_config:
continue
build_config = service_config["build"]
dockerfile = build_config.get("dockerfile", "Dockerfile")
target = build_config.get("target", "default")
build_key = get_build_key(dockerfile, target)
if build_key not in build_key_to_first_service:
# First service with this build config - it will do the actual build
build_key_to_first_service[build_key] = service_name
services_to_build.append(service_name)
else:
# Duplicate - will just use the image from the first service
services_to_dedupe.append(service_name)
# Second pass: configure builds and deduplicate
modified_services = []
for service_name, service_config in compose.get("services", {}).items():
if "build" not in service_config:
continue
build_config = service_config["build"]
dockerfile = build_config.get("dockerfile", "Dockerfile")
target = build_config.get("target", "latest")
image_name = get_image_name(dockerfile, target)
# Set image name for all services (needed for both builders and deduped)
service_config["image"] = image_name
if service_name in services_to_dedupe:
# Remove build config - this service will use the pre-built image
del service_config["build"]
continue
# This service will do the actual build - add cache config
cache_from_list = []
cache_to_list = []
component = get_component(dockerfile)
if not component:
# Skip services that don't clearly match frontend/backend
continue
# Get the hash for this component
component_hash = getattr(args, f"{component}_hash")
# Scope format: platform-{component}-{target}-{hash|ref}
# Example: platform-backend-server-abc123
if "type=gha" in args.cache_from:
# 1. Primary: exact hash match (most specific)
if component_hash:
hash_scope = f"platform-{component}-{target}-{component_hash}"
cache_from_list.append(f"{args.cache_from},scope={hash_scope}")
# 2. Fallback: branch-based cache
if git_ref_scope:
ref_scope = f"platform-{component}-{target}-{git_ref_scope}"
cache_from_list.append(f"{args.cache_from},scope={ref_scope}")
# 3. Fallback: dev branch cache (for PRs/feature branches)
if git_ref_scope and git_ref_scope != DEFAULT_BRANCH:
master_scope = f"platform-{component}-{target}-{DEFAULT_BRANCH}"
cache_from_list.append(f"{args.cache_from},scope={master_scope}")
if "type=gha" in args.cache_to:
# Write to both hash-based and branch-based scopes
if component_hash:
hash_scope = f"platform-{component}-{target}-{component_hash}"
cache_to_list.append(f"{args.cache_to},scope={hash_scope}")
if git_ref_scope:
ref_scope = f"platform-{component}-{target}-{git_ref_scope}"
cache_to_list.append(f"{args.cache_to},scope={ref_scope}")
# Ensure we have at least one cache source/target
if not cache_from_list:
cache_from_list.append(args.cache_from)
if not cache_to_list:
cache_to_list.append(args.cache_to)
build_config["cache_from"] = cache_from_list
build_config["cache_to"] = cache_to_list
modified_services.append(service_name)
# Write back to the same file
with open(args.source, "w") as f:
yaml.dump(compose, f, default_flow_style=False, sort_keys=False)
print(f"Added cache config to {len(modified_services)} services in {args.source}:")
for svc in modified_services:
svc_config = compose["services"][svc]
build_cfg = svc_config.get("build", {})
cache_from_list = build_cfg.get("cache_from", ["none"])
cache_to_list = build_cfg.get("cache_to", ["none"])
print(f" - {svc}")
print(f" image: {svc_config.get('image', 'N/A')}")
print(f" cache_from: {cache_from_list}")
print(f" cache_to: {cache_to_list}")
if services_to_dedupe:
print(
f"Deduplicated {len(services_to_dedupe)} services (will use pre-built images):"
)
for svc in services_to_dedupe:
print(f" - {svc} -> {compose['services'][svc].get('image', 'N/A')}")
if __name__ == "__main__":
main()

View File

@@ -45,11 +45,6 @@ AutoGPT Platform is a monorepo containing:
- Backend/Frontend services use YAML anchors for consistent configuration
- Supabase services (`db/docker/docker-compose.yml`) follow the same pattern
### Branching Strategy
- **`dev`** is the main development branch. All PRs should target `dev`.
- **`master`** is the production branch. Only used for production releases.
### Creating Pull Requests
- Create the PR against the `dev` branch of the repository.

File diff suppressed because it is too large Load Diff

View File

@@ -9,25 +9,25 @@ packages = [{ include = "autogpt_libs" }]
[tool.poetry.dependencies]
python = ">=3.10,<4.0"
colorama = "^0.4.6"
cryptography = "^46.0"
cryptography = "^45.0"
expiringdict = "^1.2.2"
fastapi = "^0.128.7"
google-cloud-logging = "^3.13.0"
launchdarkly-server-sdk = "^9.15.0"
pydantic = "^2.12.5"
pydantic-settings = "^2.12.0"
pyjwt = { version = "^2.11.0", extras = ["crypto"] }
fastapi = "^0.116.1"
google-cloud-logging = "^3.12.1"
launchdarkly-server-sdk = "^9.12.0"
pydantic = "^2.11.7"
pydantic-settings = "^2.10.1"
pyjwt = { version = "^2.10.1", extras = ["crypto"] }
redis = "^6.2.0"
supabase = "^2.28.0"
uvicorn = "^0.40.0"
supabase = "^2.16.0"
uvicorn = "^0.35.0"
[tool.poetry.group.dev.dependencies]
pyright = "^1.1.408"
pyright = "^1.1.404"
pytest = "^8.4.1"
pytest-asyncio = "^1.3.0"
pytest-mock = "^3.15.1"
pytest-cov = "^7.0.0"
ruff = "^0.15.0"
pytest-asyncio = "^1.1.0"
pytest-mock = "^3.14.1"
pytest-cov = "^6.2.1"
ruff = "^0.12.11"
[build-system]
requires = ["poetry-core"]

View File

@@ -104,12 +104,6 @@ TWITTER_CLIENT_SECRET=
# Make a new workspace for your OAuth APP -- trust me
# https://linear.app/settings/api/applications/new
# Callback URL: http://localhost:3000/auth/integrations/oauth_callback
LINEAR_API_KEY=
# Linear project and team IDs for the feature request tracker.
# Find these in your Linear workspace URL: linear.app/<workspace>/project/<project-id>
# and in team settings. Used by the chat copilot to file and search feature requests.
LINEAR_FEATURE_REQUEST_PROJECT_ID=
LINEAR_FEATURE_REQUEST_TEAM_ID=
LINEAR_CLIENT_ID=
LINEAR_CLIENT_SECRET=
@@ -158,7 +152,6 @@ REPLICATE_API_KEY=
REVID_API_KEY=
SCREENSHOTONE_API_KEY=
UNREAL_SPEECH_API_KEY=
ELEVENLABS_API_KEY=
# Data & Search Services
E2B_API_KEY=

View File

@@ -19,6 +19,3 @@ load-tests/*.json
load-tests/*.log
load-tests/node_modules/*
migrations/*/rollback*.sql
# Workspace files
workspaces/

View File

@@ -1,5 +1,3 @@
# ============================ DEPENDENCY BUILDER ============================ #
FROM debian:13-slim AS builder
# Set environment variables
@@ -53,9 +51,7 @@ COPY autogpt_platform/backend/backend/data/partial_types.py ./backend/data/parti
COPY autogpt_platform/backend/gen_prisma_types_stub.py ./
RUN poetry run prisma generate && poetry run gen-prisma-stub
# ============================== BACKEND SERVER ============================== #
FROM debian:13-slim AS server
FROM debian:13-slim AS server_dependencies
WORKDIR /app
@@ -66,21 +62,14 @@ ENV POETRY_HOME=/opt/poetry \
DEBIAN_FRONTEND=noninteractive
ENV PATH=/opt/poetry/bin:$PATH
# Install Python, FFmpeg, ImageMagick, and CLI tools for agent use.
# bubblewrap provides OS-level sandbox (whitelist-only FS + no network)
# for the bash_exec MCP tool.
# Using --no-install-recommends saves ~650MB by skipping unnecessary deps like llvm, mesa, etc.
RUN apt-get update && apt-get install -y --no-install-recommends \
# Install Python without upgrading system-managed packages
RUN apt-get update && apt-get install -y \
python3.13 \
python3-pip \
ffmpeg \
imagemagick \
jq \
ripgrep \
tree \
bubblewrap \
&& rm -rf /var/lib/apt/lists/*
# Copy only necessary files from builder
COPY --from=builder /app /app
COPY --from=builder /usr/local/lib/python3* /usr/local/lib/python3*
COPY --from=builder /usr/local/bin/poetry /usr/local/bin/poetry
# Copy Node.js installation for Prisma
@@ -90,54 +79,30 @@ COPY --from=builder /usr/bin/npm /usr/bin/npm
COPY --from=builder /usr/bin/npx /usr/bin/npx
COPY --from=builder /root/.cache/prisma-python/binaries /root/.cache/prisma-python/binaries
WORKDIR /app/autogpt_platform/backend
# Copy only the .venv from builder (not the entire /app directory)
# The .venv includes the generated Prisma client
COPY --from=builder /app/autogpt_platform/backend/.venv ./.venv
ENV PATH="/app/autogpt_platform/backend/.venv/bin:$PATH"
# Copy dependency files + autogpt_libs (path dependency)
COPY autogpt_platform/autogpt_libs /app/autogpt_platform/autogpt_libs
COPY autogpt_platform/backend/poetry.lock autogpt_platform/backend/pyproject.toml ./
RUN mkdir -p /app/autogpt_platform/autogpt_libs
RUN mkdir -p /app/autogpt_platform/backend
# Copy backend code + docs (for Copilot docs search)
COPY autogpt_platform/backend ./
COPY autogpt_platform/autogpt_libs /app/autogpt_platform/autogpt_libs
COPY autogpt_platform/backend/poetry.lock autogpt_platform/backend/pyproject.toml /app/autogpt_platform/backend/
WORKDIR /app/autogpt_platform/backend
FROM server_dependencies AS migrate
# Migration stage only needs schema and migrations - much lighter than full backend
COPY autogpt_platform/backend/schema.prisma /app/autogpt_platform/backend/
COPY autogpt_platform/backend/backend/data/partial_types.py /app/autogpt_platform/backend/backend/data/partial_types.py
COPY autogpt_platform/backend/migrations /app/autogpt_platform/backend/migrations
FROM server_dependencies AS server
COPY autogpt_platform/backend /app/autogpt_platform/backend
COPY docs /app/docs
RUN poetry install --no-ansi --only-root
ENV PORT=8000
CMD ["poetry", "run", "rest"]
# =============================== DB MIGRATOR =============================== #
# Lightweight migrate stage - only needs Prisma CLI, not full Python environment
FROM debian:13-slim AS migrate
WORKDIR /app/autogpt_platform/backend
ENV DEBIAN_FRONTEND=noninteractive
# Install only what's needed for prisma migrate: Node.js and minimal Python for prisma-python
RUN apt-get update && apt-get install -y --no-install-recommends \
python3.13 \
python3-pip \
ca-certificates \
&& rm -rf /var/lib/apt/lists/*
# Copy Node.js from builder (needed for Prisma CLI)
COPY --from=builder /usr/bin/node /usr/bin/node
COPY --from=builder /usr/lib/node_modules /usr/lib/node_modules
COPY --from=builder /usr/bin/npm /usr/bin/npm
# Copy Prisma binaries
COPY --from=builder /root/.cache/prisma-python/binaries /root/.cache/prisma-python/binaries
# Install prisma-client-py directly (much smaller than copying full venv)
RUN pip3 install prisma>=0.15.0 --break-system-packages
COPY autogpt_platform/backend/schema.prisma ./
COPY autogpt_platform/backend/backend/data/partial_types.py ./backend/data/partial_types.py
COPY autogpt_platform/backend/gen_prisma_types_stub.py ./
COPY autogpt_platform/backend/migrations ./migrations

View File

@@ -10,7 +10,7 @@ from typing_extensions import TypedDict
import backend.api.features.store.cache as store_cache
import backend.api.features.store.model as store_model
import backend.blocks
import backend.data.block
from backend.api.external.middleware import require_permission
from backend.data import execution as execution_db
from backend.data import graph as graph_db
@@ -67,7 +67,7 @@ async def get_user_info(
dependencies=[Security(require_permission(APIKeyPermission.READ_BLOCK))],
)
async def get_graph_blocks() -> Sequence[dict[Any, Any]]:
blocks = [block() for block in backend.blocks.get_blocks().values()]
blocks = [block() for block in backend.data.block.get_blocks().values()]
return [b.to_dict() for b in blocks if not b.disabled]
@@ -83,7 +83,7 @@ async def execute_graph_block(
require_permission(APIKeyPermission.EXECUTE_BLOCK)
),
) -> CompletedBlockOutput:
obj = backend.blocks.get_block(block_id)
obj = backend.data.block.get_block(block_id)
if not obj:
raise HTTPException(status_code=404, detail=f"Block #{block_id} not found.")
if obj.disabled:

View File

@@ -10,15 +10,10 @@ import backend.api.features.library.db as library_db
import backend.api.features.library.model as library_model
import backend.api.features.store.db as store_db
import backend.api.features.store.model as store_model
import backend.data.block
from backend.blocks import load_all_blocks
from backend.blocks._base import (
AnyBlockSchema,
BlockCategory,
BlockInfo,
BlockSchema,
BlockType,
)
from backend.blocks.llm import LlmModel
from backend.data.block import AnyBlockSchema, BlockCategory, BlockInfo, BlockSchema
from backend.data.db import query_raw_with_schema
from backend.integrations.providers import ProviderName
from backend.util.cache import cached
@@ -27,7 +22,7 @@ from backend.util.models import Pagination
from .model import (
BlockCategoryResponse,
BlockResponse,
BlockTypeFilter,
BlockType,
CountResponse,
FilterType,
Provider,
@@ -93,7 +88,7 @@ def get_block_categories(category_blocks: int = 3) -> list[BlockCategoryResponse
def get_blocks(
*,
category: str | None = None,
type: BlockTypeFilter | None = None,
type: BlockType | None = None,
provider: ProviderName | None = None,
page: int = 1,
page_size: int = 50,
@@ -674,9 +669,9 @@ async def get_suggested_blocks(count: int = 5) -> list[BlockInfo]:
for block_type in load_all_blocks().values():
block: AnyBlockSchema = block_type()
if block.disabled or block.block_type in (
BlockType.INPUT,
BlockType.OUTPUT,
BlockType.AGENT,
backend.data.block.BlockType.INPUT,
backend.data.block.BlockType.OUTPUT,
backend.data.block.BlockType.AGENT,
):
continue
# Find the execution count for this block

View File

@@ -4,7 +4,7 @@ from pydantic import BaseModel
import backend.api.features.library.model as library_model
import backend.api.features.store.model as store_model
from backend.blocks._base import BlockInfo
from backend.data.block import BlockInfo
from backend.integrations.providers import ProviderName
from backend.util.models import Pagination
@@ -15,7 +15,7 @@ FilterType = Literal[
"my_agents",
]
BlockTypeFilter = Literal["all", "input", "action", "output"]
BlockType = Literal["all", "input", "action", "output"]
class SearchEntry(BaseModel):

View File

@@ -88,7 +88,7 @@ async def get_block_categories(
)
async def get_blocks(
category: Annotated[str | None, fastapi.Query()] = None,
type: Annotated[builder_model.BlockTypeFilter | None, fastapi.Query()] = None,
type: Annotated[builder_model.BlockType | None, fastapi.Query()] = None,
provider: Annotated[ProviderName | None, fastapi.Query()] = None,
page: Annotated[int, fastapi.Query()] = 1,
page_size: Annotated[int, fastapi.Query()] = 50,

View File

@@ -11,7 +11,7 @@ class ChatConfig(BaseSettings):
# OpenAI API Configuration
model: str = Field(
default="anthropic/claude-opus-4.6", description="Default model to use"
default="anthropic/claude-opus-4.5", description="Default model to use"
)
title_model: str = Field(
default="openai/gpt-4o-mini",
@@ -27,11 +27,12 @@ class ChatConfig(BaseSettings):
session_ttl: int = Field(default=43200, description="Session TTL in seconds")
# Streaming Configuration
stream_timeout: int = Field(default=300, description="Stream timeout in seconds")
max_retries: int = Field(
default=3,
description="Max retries for fallback path (SDK handles retries internally)",
max_context_messages: int = Field(
default=50, ge=1, le=200, description="Maximum context messages"
)
stream_timeout: int = Field(default=300, description="Stream timeout in seconds")
max_retries: int = Field(default=3, description="Maximum number of retries")
max_agent_runs: int = Field(default=30, description="Maximum number of agent runs")
max_agent_schedules: int = Field(
default=30, description="Maximum number of agent schedules"
@@ -92,37 +93,6 @@ class ChatConfig(BaseSettings):
description="Name of the prompt in Langfuse to fetch",
)
# Claude Agent SDK Configuration
use_claude_agent_sdk: bool = Field(
default=True,
description="Use Claude Agent SDK for chat completions",
)
claude_agent_model: str | None = Field(
default=None,
description="Model for the Claude Agent SDK path. If None, derives from "
"the `model` field by stripping the OpenRouter provider prefix.",
)
claude_agent_max_buffer_size: int = Field(
default=10 * 1024 * 1024, # 10MB (default SDK is 1MB)
description="Max buffer size in bytes for Claude Agent SDK JSON message parsing. "
"Increase if tool outputs exceed the limit.",
)
claude_agent_max_subtasks: int = Field(
default=10,
description="Max number of sub-agent Tasks the SDK can spawn per session.",
)
claude_agent_use_resume: bool = Field(
default=True,
description="Use --resume for multi-turn conversations instead of "
"history compression. Falls back to compression when unavailable.",
)
# Extended thinking configuration for Claude models
thinking_enabled: bool = Field(
default=True,
description="Enable adaptive thinking for Claude models via OpenRouter",
)
@field_validator("api_key", mode="before")
@classmethod
def get_api_key(cls, v):
@@ -162,17 +132,6 @@ class ChatConfig(BaseSettings):
v = os.getenv("CHAT_INTERNAL_API_KEY")
return v
@field_validator("use_claude_agent_sdk", mode="before")
@classmethod
def get_use_claude_agent_sdk(cls, v):
"""Get use_claude_agent_sdk from environment if not provided."""
# Check environment variable - default to True if not set
env_val = os.getenv("CHAT_USE_CLAUDE_AGENT_SDK", "").lower()
if env_val:
return env_val in ("true", "1", "yes", "on")
# Default to True (SDK enabled by default)
return True if v is None else v
# Prompt paths for different contexts
PROMPT_PATHS: dict[str, str] = {
"default": "prompts/chat_system.md",

View File

@@ -45,7 +45,10 @@ async def create_chat_session(
successfulAgentRuns=SafeJson({}),
successfulAgentSchedules=SafeJson({}),
)
return await PrismaChatSession.prisma().create(data=data)
return await PrismaChatSession.prisma().create(
data=data,
include={"Messages": True},
)
async def update_chat_session(

View File

@@ -2,7 +2,7 @@ import asyncio
import logging
import uuid
from datetime import UTC, datetime
from typing import Any, cast
from typing import Any
from weakref import WeakValueDictionary
from openai.types.chat import (
@@ -104,26 +104,6 @@ class ChatSession(BaseModel):
successful_agent_runs: dict[str, int] = {}
successful_agent_schedules: dict[str, int] = {}
def add_tool_call_to_current_turn(self, tool_call: dict) -> None:
"""Attach a tool_call to the current turn's assistant message.
Searches backwards for the most recent assistant message (stopping at
any user message boundary). If found, appends the tool_call to it.
Otherwise creates a new assistant message with the tool_call.
"""
for msg in reversed(self.messages):
if msg.role == "user":
break
if msg.role == "assistant":
if not msg.tool_calls:
msg.tool_calls = []
msg.tool_calls.append(tool_call)
return
self.messages.append(
ChatMessage(role="assistant", content="", tool_calls=[tool_call])
)
@staticmethod
def new(user_id: str) -> "ChatSession":
return ChatSession(
@@ -192,47 +172,6 @@ class ChatSession(BaseModel):
successful_agent_schedules=successful_agent_schedules,
)
@staticmethod
def _merge_consecutive_assistant_messages(
messages: list[ChatCompletionMessageParam],
) -> list[ChatCompletionMessageParam]:
"""Merge consecutive assistant messages into single messages.
Long-running tool flows can create split assistant messages: one with
text content and another with tool_calls. Anthropic's API requires
tool_result blocks to reference a tool_use in the immediately preceding
assistant message, so these splits cause 400 errors via OpenRouter.
"""
if len(messages) < 2:
return messages
result: list[ChatCompletionMessageParam] = [messages[0]]
for msg in messages[1:]:
prev = result[-1]
if prev.get("role") != "assistant" or msg.get("role") != "assistant":
result.append(msg)
continue
prev = cast(ChatCompletionAssistantMessageParam, prev)
curr = cast(ChatCompletionAssistantMessageParam, msg)
curr_content = curr.get("content") or ""
if curr_content:
prev_content = prev.get("content") or ""
prev["content"] = (
f"{prev_content}\n{curr_content}" if prev_content else curr_content
)
curr_tool_calls = curr.get("tool_calls")
if curr_tool_calls:
prev_tool_calls = prev.get("tool_calls")
prev["tool_calls"] = (
list(prev_tool_calls) + list(curr_tool_calls)
if prev_tool_calls
else list(curr_tool_calls)
)
return result
def to_openai_messages(self) -> list[ChatCompletionMessageParam]:
messages = []
for message in self.messages:
@@ -319,7 +258,7 @@ class ChatSession(BaseModel):
name=message.name or "",
)
)
return self._merge_consecutive_assistant_messages(messages)
return messages
async def _get_session_from_cache(session_id: str) -> ChatSession | None:
@@ -334,8 +273,9 @@ async def _get_session_from_cache(session_id: str) -> ChatSession | None:
try:
session = ChatSession.model_validate_json(raw_session)
logger.info(
f"[CACHE] Loaded session {session_id}: {len(session.messages)} messages, "
f"last_roles={[m.role for m in session.messages[-3:]]}" # Last 3 roles
f"Loading session {session_id} from cache: "
f"message_count={len(session.messages)}, "
f"roles={[m.role for m in session.messages]}"
)
return session
except Exception as e:
@@ -377,9 +317,11 @@ async def _get_session_from_db(session_id: str) -> ChatSession | None:
return None
messages = prisma_session.Messages
logger.debug(
f"[DB] Loaded session {session_id}: {len(messages) if messages else 0} messages, "
f"roles={[m.role for m in messages[-3:]] if messages else []}" # Last 3 roles
logger.info(
f"Loading session {session_id} from DB: "
f"has_messages={messages is not None}, "
f"message_count={len(messages) if messages else 0}, "
f"roles={[m.role for m in messages] if messages else []}"
)
return ChatSession.from_db(prisma_session, messages)
@@ -430,9 +372,10 @@ async def _save_session_to_db(
"function_call": msg.function_call,
}
)
logger.debug(
f"[DB] Saving {len(new_messages)} messages to session {session.session_id}, "
f"roles={[m['role'] for m in messages_data]}"
logger.info(
f"Saving {len(new_messages)} new messages to DB for session {session.session_id}: "
f"roles={[m['role'] for m in messages_data]}, "
f"start_sequence={existing_message_count}"
)
await chat_db.add_chat_messages_batch(
session_id=session.session_id,
@@ -472,7 +415,7 @@ async def get_chat_session(
logger.warning(f"Unexpected cache error for session {session_id}: {e}")
# Fall back to database
logger.debug(f"Session {session_id} not in cache, checking database")
logger.info(f"Session {session_id} not in cache, checking database")
session = await _get_session_from_db(session_id)
if session is None:
@@ -489,6 +432,7 @@ async def get_chat_session(
# Cache the session from DB
try:
await _cache_session(session)
logger.info(f"Cached session {session_id} from database")
except Exception as e:
logger.warning(f"Failed to cache session {session_id}: {e}")
@@ -553,40 +497,6 @@ async def upsert_chat_session(
return session
async def append_and_save_message(session_id: str, message: ChatMessage) -> ChatSession:
"""Atomically append a message to a session and persist it.
Acquires the session lock, re-fetches the latest session state,
appends the message, and saves — preventing message loss when
concurrent requests modify the same session.
"""
lock = await _get_session_lock(session_id)
async with lock:
session = await get_chat_session(session_id)
if session is None:
raise ValueError(f"Session {session_id} not found")
session.messages.append(message)
existing_message_count = await chat_db.get_chat_session_message_count(
session_id
)
try:
await _save_session_to_db(session, existing_message_count)
except Exception as e:
raise DatabaseError(
f"Failed to persist message to session {session_id}"
) from e
try:
await _cache_session(session)
except Exception as e:
logger.warning(f"Cache write failed for session {session_id}: {e}")
return session
async def create_chat_session(user_id: str) -> ChatSession:
"""Create a new chat session and persist it.
@@ -693,19 +603,13 @@ async def update_session_title(session_id: str, title: str) -> bool:
logger.warning(f"Session {session_id} not found for title update")
return False
# Update title in cache if it exists (instead of invalidating).
# This prevents race conditions where cache invalidation causes
# the frontend to see stale DB data while streaming is still in progress.
# Invalidate cache so next fetch gets updated title
try:
cached = await _get_session_from_cache(session_id)
if cached:
cached.title = title
await _cache_session(cached)
redis_key = _get_session_cache_key(session_id)
async_redis = await get_redis_async()
await async_redis.delete(redis_key)
except Exception as e:
# Not critical - title will be correct on next full cache refresh
logger.warning(
f"Failed to update title in cache for session {session_id}: {e}"
)
logger.warning(f"Failed to invalidate cache for session {session_id}: {e}")
return True
except Exception as e:

View File

@@ -1,16 +1,4 @@
from typing import cast
import pytest
from openai.types.chat import (
ChatCompletionAssistantMessageParam,
ChatCompletionMessageParam,
ChatCompletionToolMessageParam,
ChatCompletionUserMessageParam,
)
from openai.types.chat.chat_completion_message_tool_call_param import (
ChatCompletionMessageToolCallParam,
Function,
)
from .model import (
ChatMessage,
@@ -129,205 +117,3 @@ async def test_chatsession_db_storage(setup_test_user, test_user_id):
loaded.tool_calls is not None
), f"Tool calls missing for {orig.role} message"
assert len(orig.tool_calls) == len(loaded.tool_calls)
# --------------------------------------------------------------------------- #
# _merge_consecutive_assistant_messages #
# --------------------------------------------------------------------------- #
_tc = ChatCompletionMessageToolCallParam(
id="tc1", type="function", function=Function(name="do_stuff", arguments="{}")
)
_tc2 = ChatCompletionMessageToolCallParam(
id="tc2", type="function", function=Function(name="other", arguments="{}")
)
def test_merge_noop_when_no_consecutive_assistants():
"""Messages without consecutive assistants are returned unchanged."""
msgs = [
ChatCompletionUserMessageParam(role="user", content="hi"),
ChatCompletionAssistantMessageParam(role="assistant", content="hello"),
ChatCompletionUserMessageParam(role="user", content="bye"),
]
merged = ChatSession._merge_consecutive_assistant_messages(msgs)
assert len(merged) == 3
assert [m["role"] for m in merged] == ["user", "assistant", "user"]
def test_merge_splits_text_and_tool_calls():
"""The exact bug scenario: text-only assistant followed by tool_calls-only assistant."""
msgs = [
ChatCompletionUserMessageParam(role="user", content="build agent"),
ChatCompletionAssistantMessageParam(
role="assistant", content="Let me build that"
),
ChatCompletionAssistantMessageParam(
role="assistant", content="", tool_calls=[_tc]
),
ChatCompletionToolMessageParam(role="tool", content="ok", tool_call_id="tc1"),
]
merged = ChatSession._merge_consecutive_assistant_messages(msgs)
assert len(merged) == 3
assert merged[0]["role"] == "user"
assert merged[2]["role"] == "tool"
a = cast(ChatCompletionAssistantMessageParam, merged[1])
assert a["role"] == "assistant"
assert a.get("content") == "Let me build that"
assert a.get("tool_calls") == [_tc]
def test_merge_combines_tool_calls_from_both():
"""Both consecutive assistants have tool_calls — they get merged."""
msgs: list[ChatCompletionAssistantMessageParam] = [
ChatCompletionAssistantMessageParam(
role="assistant", content="text", tool_calls=[_tc]
),
ChatCompletionAssistantMessageParam(
role="assistant", content="", tool_calls=[_tc2]
),
]
merged = ChatSession._merge_consecutive_assistant_messages(msgs) # type: ignore[arg-type]
assert len(merged) == 1
a = cast(ChatCompletionAssistantMessageParam, merged[0])
assert a.get("tool_calls") == [_tc, _tc2]
assert a.get("content") == "text"
def test_merge_three_consecutive_assistants():
"""Three consecutive assistants collapse into one."""
msgs: list[ChatCompletionAssistantMessageParam] = [
ChatCompletionAssistantMessageParam(role="assistant", content="a"),
ChatCompletionAssistantMessageParam(role="assistant", content="b"),
ChatCompletionAssistantMessageParam(
role="assistant", content="", tool_calls=[_tc]
),
]
merged = ChatSession._merge_consecutive_assistant_messages(msgs) # type: ignore[arg-type]
assert len(merged) == 1
a = cast(ChatCompletionAssistantMessageParam, merged[0])
assert a.get("content") == "a\nb"
assert a.get("tool_calls") == [_tc]
def test_merge_empty_and_single_message():
"""Edge cases: empty list and single message."""
assert ChatSession._merge_consecutive_assistant_messages([]) == []
single: list[ChatCompletionMessageParam] = [
ChatCompletionUserMessageParam(role="user", content="hi")
]
assert ChatSession._merge_consecutive_assistant_messages(single) == single
# --------------------------------------------------------------------------- #
# add_tool_call_to_current_turn #
# --------------------------------------------------------------------------- #
_raw_tc = {
"id": "tc1",
"type": "function",
"function": {"name": "f", "arguments": "{}"},
}
_raw_tc2 = {
"id": "tc2",
"type": "function",
"function": {"name": "g", "arguments": "{}"},
}
def test_add_tool_call_appends_to_existing_assistant():
"""When the last assistant is from the current turn, tool_call is added to it."""
session = ChatSession.new(user_id="u")
session.messages = [
ChatMessage(role="user", content="hi"),
ChatMessage(role="assistant", content="working on it"),
]
session.add_tool_call_to_current_turn(_raw_tc)
assert len(session.messages) == 2 # no new message created
assert session.messages[1].tool_calls == [_raw_tc]
def test_add_tool_call_creates_assistant_when_none_exists():
"""When there's no current-turn assistant, a new one is created."""
session = ChatSession.new(user_id="u")
session.messages = [
ChatMessage(role="user", content="hi"),
]
session.add_tool_call_to_current_turn(_raw_tc)
assert len(session.messages) == 2
assert session.messages[1].role == "assistant"
assert session.messages[1].tool_calls == [_raw_tc]
def test_add_tool_call_does_not_cross_user_boundary():
"""A user message acts as a boundary — previous assistant is not modified."""
session = ChatSession.new(user_id="u")
session.messages = [
ChatMessage(role="assistant", content="old turn"),
ChatMessage(role="user", content="new message"),
]
session.add_tool_call_to_current_turn(_raw_tc)
assert len(session.messages) == 3 # new assistant was created
assert session.messages[0].tool_calls is None # old assistant untouched
assert session.messages[2].role == "assistant"
assert session.messages[2].tool_calls == [_raw_tc]
def test_add_tool_call_multiple_times():
"""Multiple long-running tool calls accumulate on the same assistant."""
session = ChatSession.new(user_id="u")
session.messages = [
ChatMessage(role="user", content="hi"),
ChatMessage(role="assistant", content="doing stuff"),
]
session.add_tool_call_to_current_turn(_raw_tc)
# Simulate a pending tool result in between (like _yield_tool_call does)
session.messages.append(
ChatMessage(role="tool", content="pending", tool_call_id="tc1")
)
session.add_tool_call_to_current_turn(_raw_tc2)
assert len(session.messages) == 3 # user, assistant, tool — no extra assistant
assert session.messages[1].tool_calls == [_raw_tc, _raw_tc2]
def test_to_openai_messages_merges_split_assistants():
"""End-to-end: session with split assistants produces valid OpenAI messages."""
session = ChatSession.new(user_id="u")
session.messages = [
ChatMessage(role="user", content="build agent"),
ChatMessage(role="assistant", content="Let me build that"),
ChatMessage(
role="assistant",
content="",
tool_calls=[
{
"id": "tc1",
"type": "function",
"function": {"name": "create_agent", "arguments": "{}"},
}
],
),
ChatMessage(role="tool", content="done", tool_call_id="tc1"),
ChatMessage(role="assistant", content="Saved!"),
ChatMessage(role="user", content="show me an example run"),
]
openai_msgs = session.to_openai_messages()
# The two consecutive assistants at index 1,2 should be merged
roles = [m["role"] for m in openai_msgs]
assert roles == ["user", "assistant", "tool", "assistant", "user"]
# The merged assistant should have both content and tool_calls
merged = cast(ChatCompletionAssistantMessageParam, openai_msgs[1])
assert merged.get("content") == "Let me build that"
tc_list = merged.get("tool_calls")
assert tc_list is not None and len(list(tc_list)) == 1
assert list(tc_list)[0]["id"] == "tc1"

View File

@@ -10,8 +10,6 @@ from typing import Any
from pydantic import BaseModel, Field
from backend.util.json import dumps as json_dumps
class ResponseType(str, Enum):
"""Types of streaming responses following AI SDK protocol."""
@@ -20,10 +18,6 @@ class ResponseType(str, Enum):
START = "start"
FINISH = "finish"
# Step lifecycle (one LLM API call within a message)
START_STEP = "start-step"
FINISH_STEP = "finish-step"
# Text streaming
TEXT_START = "text-start"
TEXT_DELTA = "text-delta"
@@ -63,16 +57,6 @@ class StreamStart(StreamBaseResponse):
description="Task ID for SSE reconnection. Clients can reconnect using GET /tasks/{taskId}/stream",
)
def to_sse(self) -> str:
"""Convert to SSE format, excluding non-protocol fields like taskId."""
import json
data: dict[str, Any] = {
"type": self.type.value,
"messageId": self.messageId,
}
return f"data: {json.dumps(data)}\n\n"
class StreamFinish(StreamBaseResponse):
"""End of message/stream."""
@@ -80,26 +64,6 @@ class StreamFinish(StreamBaseResponse):
type: ResponseType = ResponseType.FINISH
class StreamStartStep(StreamBaseResponse):
"""Start of a step (one LLM API call within a message).
The AI SDK uses this to add a step-start boundary to message.parts,
enabling visual separation between multiple LLM calls in a single message.
"""
type: ResponseType = ResponseType.START_STEP
class StreamFinishStep(StreamBaseResponse):
"""End of a step (one LLM API call within a message).
The AI SDK uses this to reset activeTextParts and activeReasoningParts,
so the next LLM call in a tool-call continuation starts with clean state.
"""
type: ResponseType = ResponseType.FINISH_STEP
# ========== Text Streaming ==========
@@ -153,7 +117,7 @@ class StreamToolOutputAvailable(StreamBaseResponse):
type: ResponseType = ResponseType.TOOL_OUTPUT_AVAILABLE
toolCallId: str = Field(..., description="Tool call ID this responds to")
output: str | dict[str, Any] = Field(..., description="Tool execution output")
# Keep these for internal backend use
# Additional fields for internal use (not part of AI SDK spec but useful)
toolName: str | None = Field(
default=None, description="Name of the tool that was executed"
)
@@ -161,17 +125,6 @@ class StreamToolOutputAvailable(StreamBaseResponse):
default=True, description="Whether the tool execution succeeded"
)
def to_sse(self) -> str:
"""Convert to SSE format, excluding non-spec fields."""
import json
data = {
"type": self.type.value,
"toolCallId": self.toolCallId,
"output": self.output,
}
return f"data: {json.dumps(data)}\n\n"
# ========== Other ==========
@@ -195,18 +148,6 @@ class StreamError(StreamBaseResponse):
default=None, description="Additional error details"
)
def to_sse(self) -> str:
"""Convert to SSE format, only emitting fields required by AI SDK protocol.
The AI SDK uses z.strictObject({type, errorText}) which rejects
any extra fields like `code` or `details`.
"""
data = {
"type": self.type.value,
"errorText": self.errorText,
}
return f"data: {json_dumps(data)}\n\n"
class StreamHeartbeat(StreamBaseResponse):
"""Heartbeat to keep SSE connection alive during long-running operations.

View File

@@ -1,57 +1,23 @@
"""Chat API routes for chat session management and streaming via SSE."""
import asyncio
import logging
import uuid as uuid_module
from collections.abc import AsyncGenerator
from typing import Annotated
from autogpt_libs import auth
from fastapi import APIRouter, Depends, Header, HTTPException, Query, Response, Security
from fastapi import APIRouter, Depends, Header, HTTPException, Query, Security
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from backend.util.exceptions import NotFoundError
from backend.util.feature_flag import Flag, is_feature_enabled
from . import service as chat_service
from . import stream_registry
from .completion_handler import process_operation_failure, process_operation_success
from .config import ChatConfig
from .model import (
ChatMessage,
ChatSession,
append_and_save_message,
create_chat_session,
get_chat_session,
get_user_sessions,
)
from .response_model import StreamError, StreamFinish, StreamHeartbeat, StreamStart
from .sdk import service as sdk_service
from .tools.models import (
AgentDetailsResponse,
AgentOutputResponse,
AgentPreviewResponse,
AgentSavedResponse,
AgentsFoundResponse,
BlockDetailsResponse,
BlockListResponse,
BlockOutputResponse,
ClarificationNeededResponse,
DocPageResponse,
DocSearchResultsResponse,
ErrorResponse,
ExecutionStartedResponse,
InputValidationErrorResponse,
NeedLoginResponse,
NoResultsResponse,
OperationInProgressResponse,
OperationPendingResponse,
OperationStartedResponse,
SetupRequirementsResponse,
UnderstandingUpdatedResponse,
)
from .tracking import track_user_message
from .model import ChatSession, create_chat_session, get_chat_session, get_user_sessions
from .response_model import StreamFinish, StreamHeartbeat, StreamStart
config = ChatConfig()
@@ -243,10 +209,6 @@ async def get_session(
active_task, last_message_id = await stream_registry.get_active_task_for_session(
session_id, user_id
)
logger.info(
f"[GET_SESSION] session={session_id}, active_task={active_task is not None}, "
f"msg_count={len(messages)}, last_role={messages[-1].get('role') if messages else 'none'}"
)
if active_task:
# Filter out the in-progress assistant message from the session response.
# The client will receive the complete assistant response through the SSE
@@ -304,54 +266,12 @@ async def stream_chat_post(
"""
import asyncio
import time
stream_start_time = time.perf_counter()
log_meta = {"component": "ChatStream", "session_id": session_id}
if user_id:
log_meta["user_id"] = user_id
logger.info(
f"[TIMING] stream_chat_post STARTED, session={session_id}, "
f"user={user_id}, message_len={len(request.message)}",
extra={"json_fields": log_meta},
)
session = await _validate_and_get_session(session_id, user_id)
logger.info(
f"[TIMING] session validated in {(time.perf_counter() - stream_start_time) * 1000:.1f}ms",
extra={
"json_fields": {
**log_meta,
"duration_ms": (time.perf_counter() - stream_start_time) * 1000,
}
},
)
# Atomically append user message to session BEFORE creating task to avoid
# race condition where GET_SESSION sees task as "running" but message isn't
# saved yet. append_and_save_message re-fetches inside a lock to prevent
# message loss from concurrent requests.
if request.message:
message = ChatMessage(
role="user" if request.is_user_message else "assistant",
content=request.message,
)
if request.is_user_message:
track_user_message(
user_id=user_id,
session_id=session_id,
message_length=len(request.message),
)
logger.info(f"[STREAM] Saving user message to session {session_id}")
session = await append_and_save_message(session_id, message)
logger.info(f"[STREAM] User message saved for session {session_id}")
# Create a task in the stream registry for reconnection support
task_id = str(uuid_module.uuid4())
operation_id = str(uuid_module.uuid4())
log_meta["task_id"] = task_id
task_create_start = time.perf_counter()
await stream_registry.create_task(
task_id=task_id,
session_id=session_id,
@@ -360,151 +280,40 @@ async def stream_chat_post(
tool_name="chat",
operation_id=operation_id,
)
logger.info(
f"[TIMING] create_task completed in {(time.perf_counter() - task_create_start) * 1000:.1f}ms",
extra={
"json_fields": {
**log_meta,
"duration_ms": (time.perf_counter() - task_create_start) * 1000,
}
},
)
# Background task that runs the AI generation independently of SSE connection
async def run_ai_generation():
import time as time_module
gen_start_time = time_module.perf_counter()
logger.info(
f"[TIMING] run_ai_generation STARTED, task={task_id}, session={session_id}, user={user_id}",
extra={"json_fields": log_meta},
)
first_chunk_time, ttfc = None, None
chunk_count = 0
try:
# Emit a start event with task_id for reconnection
start_chunk = StreamStart(messageId=task_id, taskId=task_id)
await stream_registry.publish_chunk(task_id, start_chunk)
logger.info(
f"[TIMING] StreamStart published at {(time_module.perf_counter() - gen_start_time) * 1000:.1f}ms",
extra={
"json_fields": {
**log_meta,
"elapsed_ms": (time_module.perf_counter() - gen_start_time)
* 1000,
}
},
)
# Choose service based on LaunchDarkly flag (falls back to config default)
use_sdk = await is_feature_enabled(
Flag.COPILOT_SDK,
user_id or "anonymous",
default=config.use_claude_agent_sdk,
)
stream_fn = (
sdk_service.stream_chat_completion_sdk
if use_sdk
else chat_service.stream_chat_completion
)
logger.info(
f"[TIMING] Calling {'sdk' if use_sdk else 'standard'} stream_chat_completion",
extra={"json_fields": log_meta},
)
# Pass message=None since we already added it to the session above
async for chunk in stream_fn(
async for chunk in chat_service.stream_chat_completion(
session_id,
None, # Message already in session
request.message,
is_user_message=request.is_user_message,
user_id=user_id,
session=session, # Pass session with message already added
session=session, # Pass pre-fetched session to avoid double-fetch
context=request.context,
):
# Skip duplicate StreamStart — we already published one above
if isinstance(chunk, StreamStart):
continue
chunk_count += 1
if first_chunk_time is None:
first_chunk_time = time_module.perf_counter()
ttfc = first_chunk_time - gen_start_time
logger.info(
f"[TIMING] FIRST AI CHUNK at {ttfc:.2f}s, type={type(chunk).__name__}",
extra={
"json_fields": {
**log_meta,
"chunk_type": type(chunk).__name__,
"time_to_first_chunk_ms": ttfc * 1000,
}
},
)
# Write to Redis (subscribers will receive via XREAD)
await stream_registry.publish_chunk(task_id, chunk)
gen_end_time = time_module.perf_counter()
total_time = (gen_end_time - gen_start_time) * 1000
logger.info(
f"[TIMING] run_ai_generation FINISHED in {total_time / 1000:.1f}s; "
f"task={task_id}, session={session_id}, "
f"ttfc={ttfc or -1:.2f}s, n_chunks={chunk_count}",
extra={
"json_fields": {
**log_meta,
"total_time_ms": total_time,
"time_to_first_chunk_ms": (
ttfc * 1000 if ttfc is not None else None
),
"n_chunks": chunk_count,
}
},
)
# Mark task as completed
await stream_registry.mark_task_completed(task_id, "completed")
except Exception as e:
elapsed = time_module.perf_counter() - gen_start_time
logger.error(
f"[TIMING] run_ai_generation ERROR after {elapsed:.2f}s: {e}",
extra={
"json_fields": {
**log_meta,
"elapsed_ms": elapsed * 1000,
"error": str(e),
}
},
f"Error in background AI generation for session {session_id}: {e}"
)
# Publish a StreamError so the frontend can display an error message
try:
await stream_registry.publish_chunk(
task_id,
StreamError(
errorText="An error occurred. Please try again.",
code="stream_error",
),
)
except Exception:
pass # Best-effort; mark_task_completed will publish StreamFinish
await stream_registry.mark_task_completed(task_id, "failed")
# Start the AI generation in a background task
bg_task = asyncio.create_task(run_ai_generation())
await stream_registry.set_task_asyncio_task(task_id, bg_task)
setup_time = (time.perf_counter() - stream_start_time) * 1000
logger.info(
f"[TIMING] Background task started, setup={setup_time:.1f}ms",
extra={"json_fields": {**log_meta, "setup_time_ms": setup_time}},
)
# SSE endpoint that subscribes to the task's stream
async def event_generator() -> AsyncGenerator[str, None]:
import time as time_module
event_gen_start = time_module.perf_counter()
logger.info(
f"[TIMING] event_generator STARTED, task={task_id}, session={session_id}, "
f"user={user_id}",
extra={"json_fields": log_meta},
)
subscriber_queue = None
first_chunk_yielded = False
chunks_yielded = 0
try:
# Subscribe to the task stream (this replays existing messages + live updates)
subscriber_queue = await stream_registry.subscribe_to_task(
@@ -519,78 +328,24 @@ async def stream_chat_post(
return
# Read from the subscriber queue and yield to SSE
logger.info(
"[TIMING] Starting to read from subscriber_queue",
extra={"json_fields": log_meta},
)
while True:
try:
chunk = await asyncio.wait_for(subscriber_queue.get(), timeout=30.0)
chunks_yielded += 1
if not first_chunk_yielded:
first_chunk_yielded = True
elapsed = time_module.perf_counter() - event_gen_start
logger.info(
f"[TIMING] FIRST CHUNK from queue at {elapsed:.2f}s, "
f"type={type(chunk).__name__}",
extra={
"json_fields": {
**log_meta,
"chunk_type": type(chunk).__name__,
"elapsed_ms": elapsed * 1000,
}
},
)
yield chunk.to_sse()
# Check for finish signal
if isinstance(chunk, StreamFinish):
total_time = time_module.perf_counter() - event_gen_start
logger.info(
f"[TIMING] StreamFinish received in {total_time:.2f}s; "
f"n_chunks={chunks_yielded}",
extra={
"json_fields": {
**log_meta,
"chunks_yielded": chunks_yielded,
"total_time_ms": total_time * 1000,
}
},
)
break
except asyncio.TimeoutError:
# Send heartbeat to keep connection alive
yield StreamHeartbeat().to_sse()
except GeneratorExit:
logger.info(
f"[TIMING] GeneratorExit (client disconnected), chunks={chunks_yielded}",
extra={
"json_fields": {
**log_meta,
"chunks_yielded": chunks_yielded,
"reason": "client_disconnect",
}
},
)
pass # Client disconnected - background task continues
except Exception as e:
elapsed = (time_module.perf_counter() - event_gen_start) * 1000
logger.error(
f"[TIMING] event_generator ERROR after {elapsed:.1f}ms: {e}",
extra={
"json_fields": {**log_meta, "elapsed_ms": elapsed, "error": str(e)}
},
)
# Surface error to frontend so it doesn't appear stuck
yield StreamError(
errorText="An error occurred. Please try again.",
code="stream_error",
).to_sse()
yield StreamFinish().to_sse()
logger.error(f"Error in SSE stream for task {task_id}: {e}")
finally:
# Unsubscribe when client disconnects or stream ends
# Unsubscribe when client disconnects or stream ends to prevent resource leak
if subscriber_queue is not None:
try:
await stream_registry.unsubscribe_from_task(
@@ -602,18 +357,6 @@ async def stream_chat_post(
exc_info=True,
)
# AI SDK protocol termination - always yield even if unsubscribe fails
total_time = time_module.perf_counter() - event_gen_start
logger.info(
f"[TIMING] event_generator FINISHED in {total_time:.2f}s; "
f"task={task_id}, session={session_id}, n_chunks={chunks_yielded}",
extra={
"json_fields": {
**log_meta,
"total_time_ms": total_time * 1000,
"chunks_yielded": chunks_yielded,
}
},
)
yield "data: [DONE]\n\n"
return StreamingResponse(
@@ -631,90 +374,63 @@ async def stream_chat_post(
@router.get(
"/sessions/{session_id}/stream",
)
async def resume_session_stream(
async def stream_chat_get(
session_id: str,
message: Annotated[str, Query(min_length=1, max_length=10000)],
user_id: str | None = Depends(auth.get_user_id),
is_user_message: bool = Query(default=True),
):
"""
Resume an active stream for a session.
Stream chat responses for a session (GET - legacy endpoint).
Called by the AI SDK's ``useChat(resume: true)`` on page load.
Checks for an active (in-progress) task on the session and either replays
the full SSE stream or returns 204 No Content if nothing is running.
Streams the AI/completion responses in real time over Server-Sent Events (SSE), including:
- Text fragments as they are generated
- Tool call UI elements (if invoked)
- Tool execution results
Args:
session_id: The chat session identifier.
session_id: The chat session identifier to associate with the streamed messages.
message: The user's new message to process.
user_id: Optional authenticated user ID.
is_user_message: Whether the message is a user message.
Returns:
StreamingResponse (SSE) when an active stream exists,
or 204 No Content when there is nothing to resume.
StreamingResponse: SSE-formatted response chunks.
"""
import asyncio
active_task, _last_id = await stream_registry.get_active_task_for_session(
session_id, user_id
)
if not active_task:
return Response(status_code=204)
subscriber_queue = await stream_registry.subscribe_to_task(
task_id=active_task.task_id,
user_id=user_id,
last_message_id="0-0", # Full replay so useChat rebuilds the message
)
if subscriber_queue is None:
return Response(status_code=204)
session = await _validate_and_get_session(session_id, user_id)
async def event_generator() -> AsyncGenerator[str, None]:
chunk_count = 0
first_chunk_type: str | None = None
try:
while True:
try:
chunk = await asyncio.wait_for(subscriber_queue.get(), timeout=30.0)
if chunk_count < 3:
logger.info(
"Resume stream chunk",
extra={
"session_id": session_id,
"chunk_type": str(chunk.type),
},
)
if not first_chunk_type:
first_chunk_type = str(chunk.type)
chunk_count += 1
yield chunk.to_sse()
if isinstance(chunk, StreamFinish):
break
except asyncio.TimeoutError:
yield StreamHeartbeat().to_sse()
except GeneratorExit:
pass
except Exception as e:
logger.error(f"Error in resume stream for session {session_id}: {e}")
finally:
try:
await stream_registry.unsubscribe_from_task(
active_task.task_id, subscriber_queue
async for chunk in chat_service.stream_chat_completion(
session_id,
message,
is_user_message=is_user_message,
user_id=user_id,
session=session, # Pass pre-fetched session to avoid double-fetch
):
if chunk_count < 3:
logger.info(
"Chat stream chunk",
extra={
"session_id": session_id,
"chunk_type": str(chunk.type),
},
)
except Exception as unsub_err:
logger.error(
f"Error unsubscribing from task {active_task.task_id}: {unsub_err}",
exc_info=True,
)
logger.info(
"Resume stream completed",
extra={
"session_id": session_id,
"n_chunks": chunk_count,
"first_chunk_type": first_chunk_type,
},
)
yield "data: [DONE]\n\n"
if not first_chunk_type:
first_chunk_type = str(chunk.type)
chunk_count += 1
yield chunk.to_sse()
logger.info(
"Chat stream completed",
extra={
"session_id": session_id,
"chunk_count": chunk_count,
"first_chunk_type": first_chunk_type,
},
)
# AI SDK protocol termination
yield "data: [DONE]\n\n"
return StreamingResponse(
event_generator(),
@@ -722,8 +438,8 @@ async def resume_session_stream(
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no",
"x-vercel-ai-ui-message-stream": "v1",
"X-Accel-Buffering": "no", # Disable nginx buffering
"x-vercel-ai-ui-message-stream": "v1", # AI SDK protocol header
},
)
@@ -834,6 +550,8 @@ async def stream_task(
)
async def event_generator() -> AsyncGenerator[str, None]:
import asyncio
heartbeat_interval = 15.0 # Send heartbeat every 15 seconds
try:
while True:
@@ -1033,43 +751,3 @@ async def health_check() -> dict:
"service": "chat",
"version": "0.1.0",
}
# ========== Schema Export (for OpenAPI / Orval codegen) ==========
ToolResponseUnion = (
AgentsFoundResponse
| NoResultsResponse
| AgentDetailsResponse
| SetupRequirementsResponse
| ExecutionStartedResponse
| NeedLoginResponse
| ErrorResponse
| InputValidationErrorResponse
| AgentOutputResponse
| UnderstandingUpdatedResponse
| AgentPreviewResponse
| AgentSavedResponse
| ClarificationNeededResponse
| BlockListResponse
| BlockDetailsResponse
| BlockOutputResponse
| DocSearchResultsResponse
| DocPageResponse
| OperationStartedResponse
| OperationPendingResponse
| OperationInProgressResponse
)
@router.get(
"/schema/tool-responses",
response_model=ToolResponseUnion,
include_in_schema=True,
summary="[Dummy] Tool response type export for codegen",
description="This endpoint is not meant to be called. It exists solely to "
"expose tool response models in the OpenAPI schema for frontend codegen.",
)
async def _tool_response_schema() -> ToolResponseUnion: # type: ignore[return]
"""Never called at runtime. Exists only so Orval generates TS types."""
raise HTTPException(status_code=501, detail="Schema-only endpoint")

View File

@@ -1,14 +0,0 @@
"""Claude Agent SDK integration for CoPilot.
This module provides the integration layer between the Claude Agent SDK
and the existing CoPilot tool system, enabling drop-in replacement of
the current LLM orchestration with the battle-tested Claude Agent SDK.
"""
from .service import stream_chat_completion_sdk
from .tool_adapter import create_copilot_mcp_server
__all__ = [
"stream_chat_completion_sdk",
"create_copilot_mcp_server",
]

View File

@@ -1,203 +0,0 @@
"""Response adapter for converting Claude Agent SDK messages to Vercel AI SDK format.
This module provides the adapter layer that converts streaming messages from
the Claude Agent SDK into the Vercel AI SDK UI Stream Protocol format that
the frontend expects.
"""
import json
import logging
import uuid
from claude_agent_sdk import (
AssistantMessage,
Message,
ResultMessage,
SystemMessage,
TextBlock,
ToolResultBlock,
ToolUseBlock,
UserMessage,
)
from backend.api.features.chat.response_model import (
StreamBaseResponse,
StreamError,
StreamFinish,
StreamFinishStep,
StreamStart,
StreamStartStep,
StreamTextDelta,
StreamTextEnd,
StreamTextStart,
StreamToolInputAvailable,
StreamToolInputStart,
StreamToolOutputAvailable,
)
from backend.api.features.chat.sdk.tool_adapter import (
MCP_TOOL_PREFIX,
pop_pending_tool_output,
)
logger = logging.getLogger(__name__)
class SDKResponseAdapter:
"""Adapter for converting Claude Agent SDK messages to Vercel AI SDK format.
This class maintains state during a streaming session to properly track
text blocks, tool calls, and message lifecycle.
"""
def __init__(self, message_id: str | None = None):
self.message_id = message_id or str(uuid.uuid4())
self.text_block_id = str(uuid.uuid4())
self.has_started_text = False
self.has_ended_text = False
self.current_tool_calls: dict[str, dict[str, str]] = {}
self.task_id: str | None = None
self.step_open = False
def set_task_id(self, task_id: str) -> None:
"""Set the task ID for reconnection support."""
self.task_id = task_id
def convert_message(self, sdk_message: Message) -> list[StreamBaseResponse]:
"""Convert a single SDK message to Vercel AI SDK format."""
responses: list[StreamBaseResponse] = []
if isinstance(sdk_message, SystemMessage):
if sdk_message.subtype == "init":
responses.append(
StreamStart(messageId=self.message_id, taskId=self.task_id)
)
# Open the first step (matches non-SDK: StreamStart then StreamStartStep)
responses.append(StreamStartStep())
self.step_open = True
elif isinstance(sdk_message, AssistantMessage):
# After tool results, the SDK sends a new AssistantMessage for the
# next LLM turn. Open a new step if the previous one was closed.
if not self.step_open:
responses.append(StreamStartStep())
self.step_open = True
for block in sdk_message.content:
if isinstance(block, TextBlock):
if block.text:
self._ensure_text_started(responses)
responses.append(
StreamTextDelta(id=self.text_block_id, delta=block.text)
)
elif isinstance(block, ToolUseBlock):
self._end_text_if_open(responses)
# Strip MCP prefix so frontend sees "find_block"
# instead of "mcp__copilot__find_block".
tool_name = block.name.removeprefix(MCP_TOOL_PREFIX)
responses.append(
StreamToolInputStart(toolCallId=block.id, toolName=tool_name)
)
responses.append(
StreamToolInputAvailable(
toolCallId=block.id,
toolName=tool_name,
input=block.input,
)
)
self.current_tool_calls[block.id] = {"name": tool_name}
elif isinstance(sdk_message, UserMessage):
# UserMessage carries tool results back from tool execution.
content = sdk_message.content
blocks = content if isinstance(content, list) else []
for block in blocks:
if isinstance(block, ToolResultBlock) and block.tool_use_id:
tool_info = self.current_tool_calls.get(block.tool_use_id, {})
tool_name = tool_info.get("name", "unknown")
# Prefer the stashed full output over the SDK's
# (potentially truncated) ToolResultBlock content.
# The SDK truncates large results, writing them to disk,
# which breaks frontend widget parsing.
output = pop_pending_tool_output(tool_name) or (
_extract_tool_output(block.content)
)
responses.append(
StreamToolOutputAvailable(
toolCallId=block.tool_use_id,
toolName=tool_name,
output=output,
success=not (block.is_error or False),
)
)
# Close the current step after tool results — the next
# AssistantMessage will open a new step for the continuation.
if self.step_open:
responses.append(StreamFinishStep())
self.step_open = False
elif isinstance(sdk_message, ResultMessage):
self._end_text_if_open(responses)
# Close the step before finishing.
if self.step_open:
responses.append(StreamFinishStep())
self.step_open = False
if sdk_message.subtype == "success":
responses.append(StreamFinish())
elif sdk_message.subtype in ("error", "error_during_execution"):
error_msg = getattr(sdk_message, "result", None) or "Unknown error"
responses.append(
StreamError(errorText=str(error_msg), code="sdk_error")
)
responses.append(StreamFinish())
else:
logger.warning(
f"Unexpected ResultMessage subtype: {sdk_message.subtype}"
)
responses.append(StreamFinish())
else:
logger.debug(f"Unhandled SDK message type: {type(sdk_message).__name__}")
return responses
def _ensure_text_started(self, responses: list[StreamBaseResponse]) -> None:
"""Start (or restart) a text block if needed."""
if not self.has_started_text or self.has_ended_text:
if self.has_ended_text:
self.text_block_id = str(uuid.uuid4())
self.has_ended_text = False
responses.append(StreamTextStart(id=self.text_block_id))
self.has_started_text = True
def _end_text_if_open(self, responses: list[StreamBaseResponse]) -> None:
"""End the current text block if one is open."""
if self.has_started_text and not self.has_ended_text:
responses.append(StreamTextEnd(id=self.text_block_id))
self.has_ended_text = True
def _extract_tool_output(content: str | list[dict[str, str]] | None) -> str:
"""Extract a string output from a ToolResultBlock's content field."""
if isinstance(content, str):
return content
if isinstance(content, list):
parts = [item.get("text", "") for item in content if item.get("type") == "text"]
if parts:
return "".join(parts)
try:
return json.dumps(content)
except (TypeError, ValueError):
return str(content)
if content is None:
return ""
try:
return json.dumps(content)
except (TypeError, ValueError):
return str(content)

View File

@@ -1,366 +0,0 @@
"""Unit tests for the SDK response adapter."""
from claude_agent_sdk import (
AssistantMessage,
ResultMessage,
SystemMessage,
TextBlock,
ToolResultBlock,
ToolUseBlock,
UserMessage,
)
from backend.api.features.chat.response_model import (
StreamBaseResponse,
StreamError,
StreamFinish,
StreamFinishStep,
StreamStart,
StreamStartStep,
StreamTextDelta,
StreamTextEnd,
StreamTextStart,
StreamToolInputAvailable,
StreamToolInputStart,
StreamToolOutputAvailable,
)
from .response_adapter import SDKResponseAdapter
from .tool_adapter import MCP_TOOL_PREFIX
def _adapter() -> SDKResponseAdapter:
a = SDKResponseAdapter(message_id="msg-1")
a.set_task_id("task-1")
return a
# -- SystemMessage -----------------------------------------------------------
def test_system_init_emits_start_and_step():
adapter = _adapter()
results = adapter.convert_message(SystemMessage(subtype="init", data={}))
assert len(results) == 2
assert isinstance(results[0], StreamStart)
assert results[0].messageId == "msg-1"
assert results[0].taskId == "task-1"
assert isinstance(results[1], StreamStartStep)
def test_system_non_init_emits_nothing():
adapter = _adapter()
results = adapter.convert_message(SystemMessage(subtype="other", data={}))
assert results == []
# -- AssistantMessage with TextBlock -----------------------------------------
def test_text_block_emits_step_start_and_delta():
adapter = _adapter()
msg = AssistantMessage(content=[TextBlock(text="hello")], model="test")
results = adapter.convert_message(msg)
assert len(results) == 3
assert isinstance(results[0], StreamStartStep)
assert isinstance(results[1], StreamTextStart)
assert isinstance(results[2], StreamTextDelta)
assert results[2].delta == "hello"
def test_empty_text_block_emits_only_step():
adapter = _adapter()
msg = AssistantMessage(content=[TextBlock(text="")], model="test")
results = adapter.convert_message(msg)
# Empty text skipped, but step still opens
assert len(results) == 1
assert isinstance(results[0], StreamStartStep)
def test_multiple_text_deltas_reuse_block_id():
adapter = _adapter()
msg1 = AssistantMessage(content=[TextBlock(text="a")], model="test")
msg2 = AssistantMessage(content=[TextBlock(text="b")], model="test")
r1 = adapter.convert_message(msg1)
r2 = adapter.convert_message(msg2)
# First gets step+start+delta, second only delta (block & step already started)
assert len(r1) == 3
assert isinstance(r1[0], StreamStartStep)
assert isinstance(r1[1], StreamTextStart)
assert len(r2) == 1
assert isinstance(r2[0], StreamTextDelta)
assert r1[1].id == r2[0].id # same block ID
# -- AssistantMessage with ToolUseBlock --------------------------------------
def test_tool_use_emits_input_start_and_available():
"""Tool names arrive with MCP prefix and should be stripped for the frontend."""
adapter = _adapter()
msg = AssistantMessage(
content=[
ToolUseBlock(
id="tool-1",
name=f"{MCP_TOOL_PREFIX}find_agent",
input={"q": "x"},
)
],
model="test",
)
results = adapter.convert_message(msg)
assert len(results) == 3
assert isinstance(results[0], StreamStartStep)
assert isinstance(results[1], StreamToolInputStart)
assert results[1].toolCallId == "tool-1"
assert results[1].toolName == "find_agent" # prefix stripped
assert isinstance(results[2], StreamToolInputAvailable)
assert results[2].toolName == "find_agent" # prefix stripped
assert results[2].input == {"q": "x"}
def test_text_then_tool_ends_text_block():
adapter = _adapter()
text_msg = AssistantMessage(content=[TextBlock(text="thinking...")], model="test")
tool_msg = AssistantMessage(
content=[ToolUseBlock(id="t1", name=f"{MCP_TOOL_PREFIX}tool", input={})],
model="test",
)
adapter.convert_message(text_msg) # opens step + text
results = adapter.convert_message(tool_msg)
# Step already open, so: TextEnd, ToolInputStart, ToolInputAvailable
assert len(results) == 3
assert isinstance(results[0], StreamTextEnd)
assert isinstance(results[1], StreamToolInputStart)
# -- UserMessage with ToolResultBlock ----------------------------------------
def test_tool_result_emits_output_and_finish_step():
adapter = _adapter()
# First register the tool call (opens step) — SDK sends prefixed name
tool_msg = AssistantMessage(
content=[ToolUseBlock(id="t1", name=f"{MCP_TOOL_PREFIX}find_agent", input={})],
model="test",
)
adapter.convert_message(tool_msg)
# Now send tool result
result_msg = UserMessage(
content=[ToolResultBlock(tool_use_id="t1", content="found 3 agents")]
)
results = adapter.convert_message(result_msg)
assert len(results) == 2
assert isinstance(results[0], StreamToolOutputAvailable)
assert results[0].toolCallId == "t1"
assert results[0].toolName == "find_agent" # prefix stripped
assert results[0].output == "found 3 agents"
assert results[0].success is True
assert isinstance(results[1], StreamFinishStep)
def test_tool_result_error():
adapter = _adapter()
adapter.convert_message(
AssistantMessage(
content=[
ToolUseBlock(id="t1", name=f"{MCP_TOOL_PREFIX}run_agent", input={})
],
model="test",
)
)
result_msg = UserMessage(
content=[ToolResultBlock(tool_use_id="t1", content="timeout", is_error=True)]
)
results = adapter.convert_message(result_msg)
assert isinstance(results[0], StreamToolOutputAvailable)
assert results[0].success is False
assert isinstance(results[1], StreamFinishStep)
def test_tool_result_list_content():
adapter = _adapter()
adapter.convert_message(
AssistantMessage(
content=[ToolUseBlock(id="t1", name=f"{MCP_TOOL_PREFIX}tool", input={})],
model="test",
)
)
result_msg = UserMessage(
content=[
ToolResultBlock(
tool_use_id="t1",
content=[
{"type": "text", "text": "line1"},
{"type": "text", "text": "line2"},
],
)
]
)
results = adapter.convert_message(result_msg)
assert isinstance(results[0], StreamToolOutputAvailable)
assert results[0].output == "line1line2"
assert isinstance(results[1], StreamFinishStep)
def test_string_user_message_ignored():
"""A plain string UserMessage (not tool results) produces no output."""
adapter = _adapter()
results = adapter.convert_message(UserMessage(content="hello"))
assert results == []
# -- ResultMessage -----------------------------------------------------------
def test_result_success_emits_finish_step_and_finish():
adapter = _adapter()
# Start some text first (opens step)
adapter.convert_message(
AssistantMessage(content=[TextBlock(text="done")], model="test")
)
msg = ResultMessage(
subtype="success",
duration_ms=100,
duration_api_ms=50,
is_error=False,
num_turns=1,
session_id="s1",
)
results = adapter.convert_message(msg)
# TextEnd + FinishStep + StreamFinish
assert len(results) == 3
assert isinstance(results[0], StreamTextEnd)
assert isinstance(results[1], StreamFinishStep)
assert isinstance(results[2], StreamFinish)
def test_result_error_emits_error_and_finish():
adapter = _adapter()
msg = ResultMessage(
subtype="error",
duration_ms=100,
duration_api_ms=50,
is_error=True,
num_turns=0,
session_id="s1",
result="API rate limited",
)
results = adapter.convert_message(msg)
# No step was open, so no FinishStep — just Error + Finish
assert len(results) == 2
assert isinstance(results[0], StreamError)
assert "API rate limited" in results[0].errorText
assert isinstance(results[1], StreamFinish)
# -- Text after tools (new block ID) ----------------------------------------
def test_text_after_tool_gets_new_block_id():
adapter = _adapter()
# Text -> Tool -> ToolResult -> Text should get a new text block ID and step
adapter.convert_message(
AssistantMessage(content=[TextBlock(text="before")], model="test")
)
adapter.convert_message(
AssistantMessage(
content=[ToolUseBlock(id="t1", name=f"{MCP_TOOL_PREFIX}tool", input={})],
model="test",
)
)
# Send tool result (closes step)
adapter.convert_message(
UserMessage(content=[ToolResultBlock(tool_use_id="t1", content="ok")])
)
results = adapter.convert_message(
AssistantMessage(content=[TextBlock(text="after")], model="test")
)
# Should get StreamStartStep (new step) + StreamTextStart (new block) + StreamTextDelta
assert len(results) == 3
assert isinstance(results[0], StreamStartStep)
assert isinstance(results[1], StreamTextStart)
assert isinstance(results[2], StreamTextDelta)
assert results[2].delta == "after"
# -- Full conversation flow --------------------------------------------------
def test_full_conversation_flow():
"""Simulate a complete conversation: init -> text -> tool -> result -> text -> finish."""
adapter = _adapter()
all_responses: list[StreamBaseResponse] = []
# 1. Init
all_responses.extend(
adapter.convert_message(SystemMessage(subtype="init", data={}))
)
# 2. Assistant text
all_responses.extend(
adapter.convert_message(
AssistantMessage(content=[TextBlock(text="Let me search")], model="test")
)
)
# 3. Tool use
all_responses.extend(
adapter.convert_message(
AssistantMessage(
content=[
ToolUseBlock(
id="t1",
name=f"{MCP_TOOL_PREFIX}find_agent",
input={"query": "email"},
)
],
model="test",
)
)
)
# 4. Tool result
all_responses.extend(
adapter.convert_message(
UserMessage(
content=[ToolResultBlock(tool_use_id="t1", content="Found 2 agents")]
)
)
)
# 5. More text
all_responses.extend(
adapter.convert_message(
AssistantMessage(content=[TextBlock(text="I found 2")], model="test")
)
)
# 6. Result
all_responses.extend(
adapter.convert_message(
ResultMessage(
subtype="success",
duration_ms=500,
duration_api_ms=400,
is_error=False,
num_turns=2,
session_id="s1",
)
)
)
types = [type(r).__name__ for r in all_responses]
assert types == [
"StreamStart",
"StreamStartStep", # step 1: text + tool call
"StreamTextStart",
"StreamTextDelta", # "Let me search"
"StreamTextEnd", # closed before tool
"StreamToolInputStart",
"StreamToolInputAvailable",
"StreamToolOutputAvailable", # tool result
"StreamFinishStep", # step 1 closed after tool result
"StreamStartStep", # step 2: continuation text
"StreamTextStart", # new block after tool
"StreamTextDelta", # "I found 2"
"StreamTextEnd", # closed by result
"StreamFinishStep", # step 2 closed
"StreamFinish",
]

View File

@@ -1,305 +0,0 @@
"""Security hooks for Claude Agent SDK integration.
This module provides security hooks that validate tool calls before execution,
ensuring multi-user isolation and preventing unauthorized operations.
"""
import json
import logging
import os
import re
from collections.abc import Callable
from typing import Any, cast
from backend.api.features.chat.sdk.tool_adapter import (
BLOCKED_TOOLS,
DANGEROUS_PATTERNS,
MCP_TOOL_PREFIX,
WORKSPACE_SCOPED_TOOLS,
)
logger = logging.getLogger(__name__)
def _deny(reason: str) -> dict[str, Any]:
"""Return a hook denial response."""
return {
"hookSpecificOutput": {
"hookEventName": "PreToolUse",
"permissionDecision": "deny",
"permissionDecisionReason": reason,
}
}
def _validate_workspace_path(
tool_name: str, tool_input: dict[str, Any], sdk_cwd: str | None
) -> dict[str, Any]:
"""Validate that a workspace-scoped tool only accesses allowed paths.
Allowed directories:
- The SDK working directory (``/tmp/copilot-<session>/``)
- The SDK tool-results directory (``~/.claude/projects/…/tool-results/``)
"""
path = tool_input.get("file_path") or tool_input.get("path") or ""
if not path:
# Glob/Grep without a path default to cwd which is already sandboxed
return {}
# Resolve relative paths against sdk_cwd (the SDK sets cwd so the LLM
# naturally uses relative paths like "test.txt" instead of absolute ones).
# Tilde paths (~/) are home-dir references, not relative — expand first.
if path.startswith("~"):
resolved = os.path.realpath(os.path.expanduser(path))
elif not os.path.isabs(path) and sdk_cwd:
resolved = os.path.realpath(os.path.join(sdk_cwd, path))
else:
resolved = os.path.realpath(path)
# Allow access within the SDK working directory
if sdk_cwd:
norm_cwd = os.path.realpath(sdk_cwd)
if resolved.startswith(norm_cwd + os.sep) or resolved == norm_cwd:
return {}
# Allow access to ~/.claude/projects/*/tool-results/ (big tool results)
claude_dir = os.path.realpath(os.path.expanduser("~/.claude/projects"))
tool_results_seg = os.sep + "tool-results" + os.sep
if resolved.startswith(claude_dir + os.sep) and tool_results_seg in resolved:
return {}
logger.warning(
f"Blocked {tool_name} outside workspace: {path} (resolved={resolved})"
)
workspace_hint = f" Allowed workspace: {sdk_cwd}" if sdk_cwd else ""
return _deny(
f"[SECURITY] Tool '{tool_name}' can only access files within the workspace "
f"directory.{workspace_hint} "
"This is enforced by the platform and cannot be bypassed."
)
def _validate_tool_access(
tool_name: str, tool_input: dict[str, Any], sdk_cwd: str | None = None
) -> dict[str, Any]:
"""Validate that a tool call is allowed.
Returns:
Empty dict to allow, or dict with hookSpecificOutput to deny
"""
# Block forbidden tools
if tool_name in BLOCKED_TOOLS:
logger.warning(f"Blocked tool access attempt: {tool_name}")
return _deny(
f"[SECURITY] Tool '{tool_name}' is blocked for security. "
"This is enforced by the platform and cannot be bypassed. "
"Use the CoPilot-specific MCP tools instead."
)
# Workspace-scoped tools: allowed only within the SDK workspace directory
if tool_name in WORKSPACE_SCOPED_TOOLS:
return _validate_workspace_path(tool_name, tool_input, sdk_cwd)
# Check for dangerous patterns in tool input
# Use json.dumps for predictable format (str() produces Python repr)
input_str = json.dumps(tool_input) if tool_input else ""
for pattern in DANGEROUS_PATTERNS:
if re.search(pattern, input_str, re.IGNORECASE):
logger.warning(
f"Blocked dangerous pattern in tool input: {pattern} in {tool_name}"
)
return _deny(
"[SECURITY] Input contains a blocked pattern. "
"This is enforced by the platform and cannot be bypassed."
)
return {}
def _validate_user_isolation(
tool_name: str, tool_input: dict[str, Any], user_id: str | None
) -> dict[str, Any]:
"""Validate that tool calls respect user isolation."""
# For workspace file tools, ensure path doesn't escape
if "workspace" in tool_name.lower():
path = tool_input.get("path", "") or tool_input.get("file_path", "")
if path:
# Check for path traversal
if ".." in path or path.startswith("/"):
logger.warning(
f"Blocked path traversal attempt: {path} by user {user_id}"
)
return {
"hookSpecificOutput": {
"hookEventName": "PreToolUse",
"permissionDecision": "deny",
"permissionDecisionReason": "Path traversal not allowed",
}
}
return {}
def create_security_hooks(
user_id: str | None,
sdk_cwd: str | None = None,
max_subtasks: int = 3,
on_stop: Callable[[str, str], None] | None = None,
) -> dict[str, Any]:
"""Create the security hooks configuration for Claude Agent SDK.
Includes security validation and observability hooks:
- PreToolUse: Security validation before tool execution
- PostToolUse: Log successful tool executions
- PostToolUseFailure: Log and handle failed tool executions
- PreCompact: Log context compaction events (SDK handles compaction automatically)
- Stop: Capture transcript path for stateless resume (when *on_stop* is provided)
Args:
user_id: Current user ID for isolation validation
sdk_cwd: SDK working directory for workspace-scoped tool validation
max_subtasks: Maximum Task (sub-agent) spawns allowed per session
on_stop: Callback ``(transcript_path, sdk_session_id)`` invoked when
the SDK finishes processing — used to read the JSONL transcript
before the CLI process exits.
Returns:
Hooks configuration dict for ClaudeAgentOptions
"""
try:
from claude_agent_sdk import HookMatcher
from claude_agent_sdk.types import HookContext, HookInput, SyncHookJSONOutput
# Per-session counter for Task sub-agent spawns
task_spawn_count = 0
async def pre_tool_use_hook(
input_data: HookInput,
tool_use_id: str | None,
context: HookContext,
) -> SyncHookJSONOutput:
"""Combined pre-tool-use validation hook."""
nonlocal task_spawn_count
_ = context # unused but required by signature
tool_name = cast(str, input_data.get("tool_name", ""))
tool_input = cast(dict[str, Any], input_data.get("tool_input", {}))
# Rate-limit Task (sub-agent) spawns per session
if tool_name == "Task":
task_spawn_count += 1
if task_spawn_count > max_subtasks:
logger.warning(
f"[SDK] Task limit reached ({max_subtasks}), user={user_id}"
)
return cast(
SyncHookJSONOutput,
_deny(
f"Maximum {max_subtasks} sub-tasks per session. "
"Please continue in the main conversation."
),
)
# Strip MCP prefix for consistent validation
is_copilot_tool = tool_name.startswith(MCP_TOOL_PREFIX)
clean_name = tool_name.removeprefix(MCP_TOOL_PREFIX)
# Only block non-CoPilot tools; our MCP-registered tools
# (including Read for oversized results) are already sandboxed.
if not is_copilot_tool:
result = _validate_tool_access(clean_name, tool_input, sdk_cwd)
if result:
return cast(SyncHookJSONOutput, result)
# Validate user isolation
result = _validate_user_isolation(clean_name, tool_input, user_id)
if result:
return cast(SyncHookJSONOutput, result)
logger.debug(f"[SDK] Tool start: {tool_name}, user={user_id}")
return cast(SyncHookJSONOutput, {})
async def post_tool_use_hook(
input_data: HookInput,
tool_use_id: str | None,
context: HookContext,
) -> SyncHookJSONOutput:
"""Log successful tool executions for observability."""
_ = context
tool_name = cast(str, input_data.get("tool_name", ""))
logger.debug(f"[SDK] Tool success: {tool_name}, tool_use_id={tool_use_id}")
return cast(SyncHookJSONOutput, {})
async def post_tool_failure_hook(
input_data: HookInput,
tool_use_id: str | None,
context: HookContext,
) -> SyncHookJSONOutput:
"""Log failed tool executions for debugging."""
_ = context
tool_name = cast(str, input_data.get("tool_name", ""))
error = input_data.get("error", "Unknown error")
logger.warning(
f"[SDK] Tool failed: {tool_name}, error={error}, "
f"user={user_id}, tool_use_id={tool_use_id}"
)
return cast(SyncHookJSONOutput, {})
async def pre_compact_hook(
input_data: HookInput,
tool_use_id: str | None,
context: HookContext,
) -> SyncHookJSONOutput:
"""Log when SDK triggers context compaction.
The SDK automatically compacts conversation history when it grows too large.
This hook provides visibility into when compaction happens.
"""
_ = context, tool_use_id
trigger = input_data.get("trigger", "auto")
logger.info(
f"[SDK] Context compaction triggered: {trigger}, user={user_id}"
)
return cast(SyncHookJSONOutput, {})
# --- Stop hook: capture transcript path for stateless resume ---
async def stop_hook(
input_data: HookInput,
tool_use_id: str | None,
context: HookContext,
) -> SyncHookJSONOutput:
"""Capture transcript path when SDK finishes processing.
The Stop hook fires while the CLI process is still alive, giving us
a reliable window to read the JSONL transcript before SIGTERM.
"""
_ = context, tool_use_id
transcript_path = cast(str, input_data.get("transcript_path", ""))
sdk_session_id = cast(str, input_data.get("session_id", ""))
if transcript_path and on_stop:
logger.info(
f"[SDK] Stop hook: transcript_path={transcript_path}, "
f"sdk_session_id={sdk_session_id[:12]}..."
)
on_stop(transcript_path, sdk_session_id)
return cast(SyncHookJSONOutput, {})
hooks: dict[str, Any] = {
"PreToolUse": [HookMatcher(matcher="*", hooks=[pre_tool_use_hook])],
"PostToolUse": [HookMatcher(matcher="*", hooks=[post_tool_use_hook])],
"PostToolUseFailure": [
HookMatcher(matcher="*", hooks=[post_tool_failure_hook])
],
"PreCompact": [HookMatcher(matcher="*", hooks=[pre_compact_hook])],
}
if on_stop is not None:
hooks["Stop"] = [HookMatcher(matcher=None, hooks=[stop_hook])]
return hooks
except ImportError:
# Fallback for when SDK isn't available - return empty hooks
logger.warning("claude-agent-sdk not available, security hooks disabled")
return {}

View File

@@ -1,165 +0,0 @@
"""Unit tests for SDK security hooks."""
import os
from .security_hooks import _validate_tool_access, _validate_user_isolation
SDK_CWD = "/tmp/copilot-abc123"
def _is_denied(result: dict) -> bool:
hook = result.get("hookSpecificOutput", {})
return hook.get("permissionDecision") == "deny"
# -- Blocked tools -----------------------------------------------------------
def test_blocked_tools_denied():
for tool in ("bash", "shell", "exec", "terminal", "command"):
result = _validate_tool_access(tool, {})
assert _is_denied(result), f"{tool} should be blocked"
def test_unknown_tool_allowed():
result = _validate_tool_access("SomeCustomTool", {})
assert result == {}
# -- Workspace-scoped tools --------------------------------------------------
def test_read_within_workspace_allowed():
result = _validate_tool_access(
"Read", {"file_path": f"{SDK_CWD}/file.txt"}, sdk_cwd=SDK_CWD
)
assert result == {}
def test_write_within_workspace_allowed():
result = _validate_tool_access(
"Write", {"file_path": f"{SDK_CWD}/output.json"}, sdk_cwd=SDK_CWD
)
assert result == {}
def test_edit_within_workspace_allowed():
result = _validate_tool_access(
"Edit", {"file_path": f"{SDK_CWD}/src/main.py"}, sdk_cwd=SDK_CWD
)
assert result == {}
def test_glob_within_workspace_allowed():
result = _validate_tool_access("Glob", {"path": f"{SDK_CWD}/src"}, sdk_cwd=SDK_CWD)
assert result == {}
def test_grep_within_workspace_allowed():
result = _validate_tool_access("Grep", {"path": f"{SDK_CWD}/src"}, sdk_cwd=SDK_CWD)
assert result == {}
def test_read_outside_workspace_denied():
result = _validate_tool_access(
"Read", {"file_path": "/etc/passwd"}, sdk_cwd=SDK_CWD
)
assert _is_denied(result)
def test_write_outside_workspace_denied():
result = _validate_tool_access(
"Write", {"file_path": "/home/user/secrets.txt"}, sdk_cwd=SDK_CWD
)
assert _is_denied(result)
def test_traversal_attack_denied():
result = _validate_tool_access(
"Read",
{"file_path": f"{SDK_CWD}/../../etc/passwd"},
sdk_cwd=SDK_CWD,
)
assert _is_denied(result)
def test_no_path_allowed():
"""Glob/Grep without a path argument defaults to cwd — should pass."""
result = _validate_tool_access("Glob", {}, sdk_cwd=SDK_CWD)
assert result == {}
def test_read_no_cwd_denies_absolute():
"""If no sdk_cwd is set, absolute paths are denied."""
result = _validate_tool_access("Read", {"file_path": "/tmp/anything"})
assert _is_denied(result)
# -- Tool-results directory --------------------------------------------------
def test_read_tool_results_allowed():
home = os.path.expanduser("~")
path = f"{home}/.claude/projects/-tmp-copilot-abc123/tool-results/12345.txt"
result = _validate_tool_access("Read", {"file_path": path}, sdk_cwd=SDK_CWD)
assert result == {}
def test_read_claude_projects_without_tool_results_denied():
home = os.path.expanduser("~")
path = f"{home}/.claude/projects/-tmp-copilot-abc123/settings.json"
result = _validate_tool_access("Read", {"file_path": path}, sdk_cwd=SDK_CWD)
assert _is_denied(result)
# -- Built-in Bash is blocked (use bash_exec MCP tool instead) ---------------
def test_bash_builtin_always_blocked():
"""SDK built-in Bash is blocked — bash_exec MCP tool with bubblewrap is used instead."""
result = _validate_tool_access("Bash", {"command": "echo hello"}, sdk_cwd=SDK_CWD)
assert _is_denied(result)
# -- Dangerous patterns ------------------------------------------------------
def test_dangerous_pattern_blocked():
result = _validate_tool_access("SomeTool", {"cmd": "sudo rm -rf /"})
assert _is_denied(result)
def test_subprocess_pattern_blocked():
result = _validate_tool_access("SomeTool", {"code": "subprocess.run(...)"})
assert _is_denied(result)
# -- User isolation ----------------------------------------------------------
def test_workspace_path_traversal_blocked():
result = _validate_user_isolation(
"workspace_read", {"path": "../../../etc/shadow"}, user_id="user-1"
)
assert _is_denied(result)
def test_workspace_absolute_path_blocked():
result = _validate_user_isolation(
"workspace_read", {"path": "/etc/passwd"}, user_id="user-1"
)
assert _is_denied(result)
def test_workspace_normal_path_allowed():
result = _validate_user_isolation(
"workspace_read", {"path": "src/main.py"}, user_id="user-1"
)
assert result == {}
def test_non_workspace_tool_passes_isolation():
result = _validate_user_isolation(
"find_agent", {"query": "email"}, user_id="user-1"
)
assert result == {}

View File

@@ -1,752 +0,0 @@
"""Claude Agent SDK service layer for CoPilot chat completions."""
import asyncio
import json
import logging
import os
import uuid
from collections.abc import AsyncGenerator
from dataclasses import dataclass
from typing import Any
from backend.util.exceptions import NotFoundError
from .. import stream_registry
from ..config import ChatConfig
from ..model import (
ChatMessage,
ChatSession,
get_chat_session,
update_session_title,
upsert_chat_session,
)
from ..response_model import (
StreamBaseResponse,
StreamError,
StreamFinish,
StreamStart,
StreamTextDelta,
StreamToolInputAvailable,
StreamToolOutputAvailable,
)
from ..service import (
_build_system_prompt,
_execute_long_running_tool_with_streaming,
_generate_session_title,
)
from ..tools.models import OperationPendingResponse, OperationStartedResponse
from ..tools.sandbox import WORKSPACE_PREFIX, make_session_path
from ..tracking import track_user_message
from .response_adapter import SDKResponseAdapter
from .security_hooks import create_security_hooks
from .tool_adapter import (
COPILOT_TOOL_NAMES,
SDK_DISALLOWED_TOOLS,
LongRunningCallback,
create_copilot_mcp_server,
set_execution_context,
)
from .transcript import (
download_transcript,
read_transcript_file,
upload_transcript,
validate_transcript,
write_transcript_to_tempfile,
)
logger = logging.getLogger(__name__)
config = ChatConfig()
# Set to hold background tasks to prevent garbage collection
_background_tasks: set[asyncio.Task[Any]] = set()
@dataclass
class CapturedTranscript:
"""Info captured by the SDK Stop hook for stateless --resume."""
path: str = ""
sdk_session_id: str = ""
@property
def available(self) -> bool:
return bool(self.path)
_SDK_CWD_PREFIX = WORKSPACE_PREFIX
# Appended to the system prompt to inform the agent about available tools.
# The SDK built-in Bash is NOT available — use mcp__copilot__bash_exec instead,
# which has kernel-level network isolation (unshare --net).
_SDK_TOOL_SUPPLEMENT = """
## Tool notes
- The SDK built-in Bash tool is NOT available. Use the `bash_exec` MCP tool
for shell commands — it runs in a network-isolated sandbox.
- **Shared workspace**: The SDK Read/Write tools and `bash_exec` share the
same working directory. Files created by one are readable by the other.
These files are **ephemeral** — they exist only for the current session.
- **Persistent storage**: Use `write_workspace_file` / `read_workspace_file`
for files that should persist across sessions (stored in cloud storage).
- Long-running tools (create_agent, edit_agent, etc.) are handled
asynchronously. You will receive an immediate response; the actual result
is delivered to the user via a background stream.
"""
def _build_long_running_callback(user_id: str | None) -> LongRunningCallback:
"""Build a callback that delegates long-running tools to the non-SDK infrastructure.
Long-running tools (create_agent, edit_agent, etc.) are delegated to the
existing background infrastructure: stream_registry (Redis Streams),
database persistence, and SSE reconnection. This means results survive
page refreshes / pod restarts, and the frontend shows the proper loading
widget with progress updates.
The returned callback matches the ``LongRunningCallback`` signature:
``(tool_name, args, session) -> MCP response dict``.
"""
async def _callback(
tool_name: str, args: dict[str, Any], session: ChatSession
) -> dict[str, Any]:
operation_id = str(uuid.uuid4())
task_id = str(uuid.uuid4())
tool_call_id = f"sdk-{uuid.uuid4().hex[:12]}"
session_id = session.session_id
# --- Build user-friendly messages (matches non-SDK service) ---
if tool_name == "create_agent":
desc = args.get("description", "")
desc_preview = (desc[:100] + "...") if len(desc) > 100 else desc
pending_msg = (
f"Creating your agent: {desc_preview}"
if desc_preview
else "Creating agent... This may take a few minutes."
)
started_msg = (
"Agent creation started. You can close this tab - "
"check your library in a few minutes."
)
elif tool_name == "edit_agent":
changes = args.get("changes", "")
changes_preview = (changes[:100] + "...") if len(changes) > 100 else changes
pending_msg = (
f"Editing agent: {changes_preview}"
if changes_preview
else "Editing agent... This may take a few minutes."
)
started_msg = (
"Agent edit started. You can close this tab - "
"check your library in a few minutes."
)
else:
pending_msg = f"Running {tool_name}... This may take a few minutes."
started_msg = (
f"{tool_name} started. You can close this tab - "
"check back in a few minutes."
)
# --- Register task in Redis for SSE reconnection ---
await stream_registry.create_task(
task_id=task_id,
session_id=session_id,
user_id=user_id,
tool_call_id=tool_call_id,
tool_name=tool_name,
operation_id=operation_id,
)
# --- Save OperationPendingResponse to chat history ---
pending_message = ChatMessage(
role="tool",
content=OperationPendingResponse(
message=pending_msg,
operation_id=operation_id,
tool_name=tool_name,
).model_dump_json(),
tool_call_id=tool_call_id,
)
session.messages.append(pending_message)
await upsert_chat_session(session)
# --- Spawn background task (reuses non-SDK infrastructure) ---
bg_task = asyncio.create_task(
_execute_long_running_tool_with_streaming(
tool_name=tool_name,
parameters=args,
tool_call_id=tool_call_id,
operation_id=operation_id,
task_id=task_id,
session_id=session_id,
user_id=user_id,
)
)
_background_tasks.add(bg_task)
bg_task.add_done_callback(_background_tasks.discard)
await stream_registry.set_task_asyncio_task(task_id, bg_task)
logger.info(
f"[SDK] Long-running tool {tool_name} delegated to background "
f"(operation_id={operation_id}, task_id={task_id})"
)
# --- Return OperationStartedResponse as MCP tool result ---
# This flows through SDK → response adapter → frontend, triggering
# the loading widget with SSE reconnection support.
started_json = OperationStartedResponse(
message=started_msg,
operation_id=operation_id,
tool_name=tool_name,
task_id=task_id,
).model_dump_json()
return {
"content": [{"type": "text", "text": started_json}],
"isError": False,
}
return _callback
def _resolve_sdk_model() -> str | None:
"""Resolve the model name for the Claude Agent SDK CLI.
Uses ``config.claude_agent_model`` if set, otherwise derives from
``config.model`` by stripping the OpenRouter provider prefix (e.g.,
``"anthropic/claude-opus-4.6"`` → ``"claude-opus-4.6"``).
"""
if config.claude_agent_model:
return config.claude_agent_model
model = config.model
if "/" in model:
return model.split("/", 1)[1]
return model
def _build_sdk_env() -> dict[str, str]:
"""Build env vars for the SDK CLI process.
Routes API calls through OpenRouter (or a custom base_url) using
the same ``config.api_key`` / ``config.base_url`` as the non-SDK path.
This gives per-call token and cost tracking on the OpenRouter dashboard.
Only overrides ``ANTHROPIC_API_KEY`` when a valid proxy URL and auth
token are both present — otherwise returns an empty dict so the SDK
falls back to its default credentials.
"""
env: dict[str, str] = {}
if config.api_key and config.base_url:
# Strip /v1 suffix — SDK expects the base URL without a version path
base = config.base_url.rstrip("/")
if base.endswith("/v1"):
base = base[:-3]
if not base or not base.startswith("http"):
# Invalid base_url — don't override SDK defaults
return env
env["ANTHROPIC_BASE_URL"] = base
env["ANTHROPIC_AUTH_TOKEN"] = config.api_key
# Must be explicitly empty so the CLI uses AUTH_TOKEN instead
env["ANTHROPIC_API_KEY"] = ""
return env
def _make_sdk_cwd(session_id: str) -> str:
"""Create a safe, session-specific working directory path.
Delegates to :func:`~backend.api.features.chat.tools.sandbox.make_session_path`
(single source of truth for path sanitization) and adds a defence-in-depth
assertion.
"""
cwd = make_session_path(session_id)
# Defence-in-depth: normpath + startswith is a CodeQL-recognised sanitizer
cwd = os.path.normpath(cwd)
if not cwd.startswith(_SDK_CWD_PREFIX):
raise ValueError(f"SDK cwd escaped prefix: {cwd}")
return cwd
def _cleanup_sdk_tool_results(cwd: str) -> None:
"""Remove SDK tool-result files for a specific session working directory.
The SDK creates tool-result files under ~/.claude/projects/<encoded-cwd>/tool-results/.
We clean only the specific cwd's results to avoid race conditions between
concurrent sessions.
Security: cwd MUST be created by _make_sdk_cwd() which sanitizes session_id.
"""
import shutil
# Validate cwd is under the expected prefix
normalized = os.path.normpath(cwd)
if not normalized.startswith(_SDK_CWD_PREFIX):
logger.warning(f"[SDK] Rejecting cleanup for path outside workspace: {cwd}")
return
# SDK encodes the cwd path by replacing '/' with '-'
encoded_cwd = normalized.replace("/", "-")
# Construct the project directory path (known-safe home expansion)
claude_projects = os.path.expanduser("~/.claude/projects")
project_dir = os.path.join(claude_projects, encoded_cwd)
# Security check 3: Validate project_dir is under ~/.claude/projects
project_dir = os.path.normpath(project_dir)
if not project_dir.startswith(claude_projects):
logger.warning(
f"[SDK] Rejecting cleanup for escaped project path: {project_dir}"
)
return
results_dir = os.path.join(project_dir, "tool-results")
if os.path.isdir(results_dir):
for filename in os.listdir(results_dir):
file_path = os.path.join(results_dir, filename)
try:
if os.path.isfile(file_path):
os.remove(file_path)
except OSError:
pass
# Also clean up the temp cwd directory itself
try:
shutil.rmtree(normalized, ignore_errors=True)
except OSError:
pass
async def _compress_conversation_history(
session: ChatSession,
) -> list[ChatMessage]:
"""Compress prior conversation messages if they exceed the token threshold.
Uses the shared compress_context() from prompt.py which supports:
- LLM summarization of old messages (keeps recent ones intact)
- Progressive content truncation as fallback
- Middle-out deletion as last resort
Returns the compressed prior messages (everything except the current message).
"""
prior = session.messages[:-1]
if len(prior) < 2:
return prior
from backend.util.prompt import compress_context
# Convert ChatMessages to dicts for compress_context
messages_dict = []
for msg in prior:
msg_dict: dict[str, Any] = {"role": msg.role}
if msg.content:
msg_dict["content"] = msg.content
if msg.tool_calls:
msg_dict["tool_calls"] = msg.tool_calls
if msg.tool_call_id:
msg_dict["tool_call_id"] = msg.tool_call_id
messages_dict.append(msg_dict)
try:
import openai
async with openai.AsyncOpenAI(
api_key=config.api_key, base_url=config.base_url, timeout=30.0
) as client:
result = await compress_context(
messages=messages_dict,
model=config.model,
client=client,
)
except Exception as e:
logger.warning(f"[SDK] Context compression with LLM failed: {e}")
# Fall back to truncation-only (no LLM summarization)
result = await compress_context(
messages=messages_dict,
model=config.model,
client=None,
)
if result.was_compacted:
logger.info(
f"[SDK] Context compacted: {result.original_token_count} -> "
f"{result.token_count} tokens "
f"({result.messages_summarized} summarized, "
f"{result.messages_dropped} dropped)"
)
# Convert compressed dicts back to ChatMessages
return [
ChatMessage(
role=m["role"],
content=m.get("content"),
tool_calls=m.get("tool_calls"),
tool_call_id=m.get("tool_call_id"),
)
for m in result.messages
]
return prior
def _format_conversation_context(messages: list[ChatMessage]) -> str | None:
"""Format conversation messages into a context prefix for the user message.
Returns a string like:
<conversation_history>
User: hello
You responded: Hi! How can I help?
</conversation_history>
Returns None if there are no messages to format.
"""
if not messages:
return None
lines: list[str] = []
for msg in messages:
if not msg.content:
continue
if msg.role == "user":
lines.append(f"User: {msg.content}")
elif msg.role == "assistant":
lines.append(f"You responded: {msg.content}")
# Skip tool messages — they're internal details
if not lines:
return None
return "<conversation_history>\n" + "\n".join(lines) + "\n</conversation_history>"
async def stream_chat_completion_sdk(
session_id: str,
message: str | None = None,
tool_call_response: str | None = None, # noqa: ARG001
is_user_message: bool = True,
user_id: str | None = None,
retry_count: int = 0, # noqa: ARG001
session: ChatSession | None = None,
context: dict[str, str] | None = None, # noqa: ARG001
) -> AsyncGenerator[StreamBaseResponse, None]:
"""Stream chat completion using Claude Agent SDK.
Drop-in replacement for stream_chat_completion with improved reliability.
"""
if session is None:
session = await get_chat_session(session_id, user_id)
if not session:
raise NotFoundError(
f"Session {session_id} not found. Please create a new session first."
)
if message:
session.messages.append(
ChatMessage(
role="user" if is_user_message else "assistant", content=message
)
)
if is_user_message:
track_user_message(
user_id=user_id, session_id=session_id, message_length=len(message)
)
session = await upsert_chat_session(session)
# Generate title for new sessions (first user message)
if is_user_message and not session.title:
user_messages = [m for m in session.messages if m.role == "user"]
if len(user_messages) == 1:
first_message = user_messages[0].content or message or ""
if first_message:
task = asyncio.create_task(
_update_title_async(session_id, first_message, user_id)
)
_background_tasks.add(task)
task.add_done_callback(_background_tasks.discard)
# Build system prompt (reuses non-SDK path with Langfuse support)
has_history = len(session.messages) > 1
system_prompt, _ = await _build_system_prompt(
user_id, has_conversation_history=has_history
)
system_prompt += _SDK_TOOL_SUPPLEMENT
message_id = str(uuid.uuid4())
task_id = str(uuid.uuid4())
yield StreamStart(messageId=message_id, taskId=task_id)
stream_completed = False
# Initialise sdk_cwd before the try so the finally can reference it
# even if _make_sdk_cwd raises (in that case it stays as "").
sdk_cwd = ""
use_resume = False
try:
# Use a session-specific temp dir to avoid cleanup race conditions
# between concurrent sessions.
sdk_cwd = _make_sdk_cwd(session_id)
os.makedirs(sdk_cwd, exist_ok=True)
set_execution_context(
user_id,
session,
long_running_callback=_build_long_running_callback(user_id),
)
try:
from claude_agent_sdk import ClaudeAgentOptions, ClaudeSDKClient
# Fail fast when no API credentials are available at all
sdk_env = _build_sdk_env()
if not sdk_env and not os.environ.get("ANTHROPIC_API_KEY"):
raise RuntimeError(
"No API key configured. Set OPEN_ROUTER_API_KEY "
"(or CHAT_API_KEY) for OpenRouter routing, "
"or ANTHROPIC_API_KEY for direct Anthropic access."
)
mcp_server = create_copilot_mcp_server()
sdk_model = _resolve_sdk_model()
# --- Transcript capture via Stop hook ---
captured_transcript = CapturedTranscript()
def _on_stop(transcript_path: str, sdk_session_id: str) -> None:
captured_transcript.path = transcript_path
captured_transcript.sdk_session_id = sdk_session_id
security_hooks = create_security_hooks(
user_id,
sdk_cwd=sdk_cwd,
max_subtasks=config.claude_agent_max_subtasks,
on_stop=_on_stop if config.claude_agent_use_resume else None,
)
# --- Resume strategy: download transcript from bucket ---
resume_file: str | None = None
use_resume = False
if config.claude_agent_use_resume and user_id and len(session.messages) > 1:
transcript_content = await download_transcript(user_id, session_id)
if transcript_content and validate_transcript(transcript_content):
resume_file = write_transcript_to_tempfile(
transcript_content, session_id, sdk_cwd
)
if resume_file:
use_resume = True
logger.info(
f"[SDK] Using --resume with transcript "
f"({len(transcript_content)} bytes)"
)
sdk_options_kwargs: dict[str, Any] = {
"system_prompt": system_prompt,
"mcp_servers": {"copilot": mcp_server},
"allowed_tools": COPILOT_TOOL_NAMES,
"disallowed_tools": SDK_DISALLOWED_TOOLS,
"hooks": security_hooks,
"cwd": sdk_cwd,
"max_buffer_size": config.claude_agent_max_buffer_size,
}
if sdk_env:
sdk_options_kwargs["model"] = sdk_model
sdk_options_kwargs["env"] = sdk_env
if use_resume and resume_file:
sdk_options_kwargs["resume"] = resume_file
options = ClaudeAgentOptions(**sdk_options_kwargs) # type: ignore[arg-type]
adapter = SDKResponseAdapter(message_id=message_id)
adapter.set_task_id(task_id)
async with ClaudeSDKClient(options=options) as client:
current_message = message or ""
if not current_message and session.messages:
last_user = [m for m in session.messages if m.role == "user"]
if last_user:
current_message = last_user[-1].content or ""
if not current_message.strip():
yield StreamError(
errorText="Message cannot be empty.",
code="empty_prompt",
)
yield StreamFinish()
return
# Build query: with --resume the CLI already has full
# context, so we only send the new message. Without
# resume, compress history into a context prefix.
query_message = current_message
if not use_resume and len(session.messages) > 1:
logger.warning(
f"[SDK] Using compression fallback for session "
f"{session_id} ({len(session.messages)} messages) — "
f"no transcript available for --resume"
)
compressed = await _compress_conversation_history(session)
history_context = _format_conversation_context(compressed)
if history_context:
query_message = (
f"{history_context}\n\n"
f"Now, the user says:\n{current_message}"
)
logger.info(
f"[SDK] Sending query ({len(session.messages)} msgs in session)"
)
logger.debug(f"[SDK] Query preview: {current_message[:80]!r}")
await client.query(query_message, session_id=session_id)
assistant_response = ChatMessage(role="assistant", content="")
accumulated_tool_calls: list[dict[str, Any]] = []
has_appended_assistant = False
has_tool_results = False
async for sdk_msg in client.receive_messages():
logger.debug(
f"[SDK] Received: {type(sdk_msg).__name__} "
f"{getattr(sdk_msg, 'subtype', '')}"
)
for response in adapter.convert_message(sdk_msg):
if isinstance(response, StreamStart):
continue
yield response
if isinstance(response, StreamTextDelta):
delta = response.delta or ""
# After tool results, start a new assistant
# message for the post-tool text.
if has_tool_results and has_appended_assistant:
assistant_response = ChatMessage(
role="assistant", content=delta
)
accumulated_tool_calls = []
has_appended_assistant = False
has_tool_results = False
session.messages.append(assistant_response)
has_appended_assistant = True
else:
assistant_response.content = (
assistant_response.content or ""
) + delta
if not has_appended_assistant:
session.messages.append(assistant_response)
has_appended_assistant = True
elif isinstance(response, StreamToolInputAvailable):
accumulated_tool_calls.append(
{
"id": response.toolCallId,
"type": "function",
"function": {
"name": response.toolName,
"arguments": json.dumps(response.input or {}),
},
}
)
assistant_response.tool_calls = accumulated_tool_calls
if not has_appended_assistant:
session.messages.append(assistant_response)
has_appended_assistant = True
elif isinstance(response, StreamToolOutputAvailable):
session.messages.append(
ChatMessage(
role="tool",
content=(
response.output
if isinstance(response.output, str)
else str(response.output)
),
tool_call_id=response.toolCallId,
)
)
has_tool_results = True
elif isinstance(response, StreamFinish):
stream_completed = True
if stream_completed:
break
if (
assistant_response.content or assistant_response.tool_calls
) and not has_appended_assistant:
session.messages.append(assistant_response)
# --- Capture transcript while CLI is still alive ---
# Must happen INSIDE async with: close() sends SIGTERM
# which kills the CLI before it can flush the JSONL.
if (
config.claude_agent_use_resume
and user_id
and captured_transcript.available
):
# Give CLI time to flush JSONL writes before we read
await asyncio.sleep(0.5)
raw_transcript = read_transcript_file(captured_transcript.path)
if raw_transcript:
task = asyncio.create_task(
_upload_transcript_bg(user_id, session_id, raw_transcript)
)
_background_tasks.add(task)
task.add_done_callback(_background_tasks.discard)
else:
logger.debug("[SDK] Stop hook fired but transcript not usable")
except ImportError:
raise RuntimeError(
"claude-agent-sdk is not installed. "
"Disable SDK mode (CHAT_USE_CLAUDE_AGENT_SDK=false) "
"to use the OpenAI-compatible fallback."
)
await upsert_chat_session(session)
logger.debug(
f"[SDK] Session {session_id} saved with {len(session.messages)} messages"
)
if not stream_completed:
yield StreamFinish()
except Exception as e:
logger.error(f"[SDK] Error: {e}", exc_info=True)
try:
await upsert_chat_session(session)
except Exception as save_err:
logger.error(f"[SDK] Failed to save session on error: {save_err}")
yield StreamError(
errorText="An error occurred. Please try again.",
code="sdk_error",
)
yield StreamFinish()
finally:
if sdk_cwd:
_cleanup_sdk_tool_results(sdk_cwd)
async def _upload_transcript_bg(
user_id: str, session_id: str, raw_content: str
) -> None:
"""Background task to strip progress entries and upload transcript."""
try:
await upload_transcript(user_id, session_id, raw_content)
except Exception as e:
logger.error(f"[SDK] Failed to upload transcript for {session_id}: {e}")
async def _update_title_async(
session_id: str, message: str, user_id: str | None = None
) -> None:
"""Background task to update session title."""
try:
title = await _generate_session_title(
message, user_id=user_id, session_id=session_id
)
if title:
await update_session_title(session_id, title)
logger.debug(f"[SDK] Generated title for {session_id}: {title}")
except Exception as e:
logger.warning(f"[SDK] Failed to update session title: {e}")

View File

@@ -1,363 +0,0 @@
"""Tool adapter for wrapping existing CoPilot tools as Claude Agent SDK MCP tools.
This module provides the adapter layer that converts existing BaseTool implementations
into in-process MCP tools that can be used with the Claude Agent SDK.
Long-running tools (``is_long_running=True``) are delegated to the non-SDK
background infrastructure (stream_registry, Redis persistence, SSE reconnection)
via a callback provided by the service layer. This avoids wasteful SDK polling
and makes results survive page refreshes.
"""
import itertools
import json
import logging
import os
import uuid
from collections.abc import Awaitable, Callable
from contextvars import ContextVar
from typing import Any
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools import TOOL_REGISTRY
from backend.api.features.chat.tools.base import BaseTool
logger = logging.getLogger(__name__)
# Allowed base directory for the Read tool (SDK saves oversized tool results here).
# Restricted to ~/.claude/projects/ and further validated to require "tool-results"
# in the path — prevents reading settings, credentials, or other sensitive files.
_SDK_PROJECTS_DIR = os.path.expanduser("~/.claude/projects/")
# MCP server naming - the SDK prefixes tool names as "mcp__{server_name}__{tool}"
MCP_SERVER_NAME = "copilot"
MCP_TOOL_PREFIX = f"mcp__{MCP_SERVER_NAME}__"
# Context variables to pass user/session info to tool execution
_current_user_id: ContextVar[str | None] = ContextVar("current_user_id", default=None)
_current_session: ContextVar[ChatSession | None] = ContextVar(
"current_session", default=None
)
# Stash for MCP tool outputs before the SDK potentially truncates them.
# Keyed by tool_name → full output string. Consumed (popped) by the
# response adapter when it builds StreamToolOutputAvailable.
_pending_tool_outputs: ContextVar[dict[str, str]] = ContextVar(
"pending_tool_outputs", default=None # type: ignore[arg-type]
)
# Callback type for delegating long-running tools to the non-SDK infrastructure.
# Args: (tool_name, arguments, session) → MCP-formatted response dict.
LongRunningCallback = Callable[
[str, dict[str, Any], ChatSession], Awaitable[dict[str, Any]]
]
# ContextVar so the service layer can inject the callback per-request.
_long_running_callback: ContextVar[LongRunningCallback | None] = ContextVar(
"long_running_callback", default=None
)
def set_execution_context(
user_id: str | None,
session: ChatSession,
long_running_callback: LongRunningCallback | None = None,
) -> None:
"""Set the execution context for tool calls.
This must be called before streaming begins to ensure tools have access
to user_id and session information.
Args:
user_id: Current user's ID.
session: Current chat session.
long_running_callback: Optional callback to delegate long-running tools
to the non-SDK background infrastructure (stream_registry + Redis).
"""
_current_user_id.set(user_id)
_current_session.set(session)
_pending_tool_outputs.set({})
_long_running_callback.set(long_running_callback)
def get_execution_context() -> tuple[str | None, ChatSession | None]:
"""Get the current execution context."""
return (
_current_user_id.get(),
_current_session.get(),
)
def pop_pending_tool_output(tool_name: str) -> str | None:
"""Pop and return the stashed full output for *tool_name*.
The SDK CLI may truncate large tool results (writing them to disk and
replacing the content with a file reference). This stash keeps the
original MCP output so the response adapter can forward it to the
frontend for proper widget rendering.
Returns ``None`` if nothing was stashed for *tool_name*.
"""
pending = _pending_tool_outputs.get(None)
if pending is None:
return None
return pending.pop(tool_name, None)
async def _execute_tool_sync(
base_tool: BaseTool,
user_id: str | None,
session: ChatSession,
args: dict[str, Any],
) -> dict[str, Any]:
"""Execute a tool synchronously and return MCP-formatted response."""
effective_id = f"sdk-{uuid.uuid4().hex[:12]}"
result = await base_tool.execute(
user_id=user_id,
session=session,
tool_call_id=effective_id,
**args,
)
text = (
result.output if isinstance(result.output, str) else json.dumps(result.output)
)
# Stash the full output before the SDK potentially truncates it.
pending = _pending_tool_outputs.get(None)
if pending is not None:
pending[base_tool.name] = text
return {
"content": [{"type": "text", "text": text}],
"isError": not result.success,
}
def _mcp_error(message: str) -> dict[str, Any]:
return {
"content": [
{"type": "text", "text": json.dumps({"error": message, "type": "error"})}
],
"isError": True,
}
def create_tool_handler(base_tool: BaseTool):
"""Create an async handler function for a BaseTool.
This wraps the existing BaseTool._execute method to be compatible
with the Claude Agent SDK MCP tool format.
Long-running tools (``is_long_running=True``) are delegated to the
non-SDK background infrastructure via a callback set in the execution
context. The callback persists the operation in Redis (stream_registry)
so results survive page refreshes and pod restarts.
"""
async def tool_handler(args: dict[str, Any]) -> dict[str, Any]:
"""Execute the wrapped tool and return MCP-formatted response."""
user_id, session = get_execution_context()
if session is None:
return _mcp_error("No session context available")
# --- Long-running: delegate to non-SDK background infrastructure ---
if base_tool.is_long_running:
callback = _long_running_callback.get(None)
if callback:
try:
return await callback(base_tool.name, args, session)
except Exception as e:
logger.error(
f"Long-running callback failed for {base_tool.name}: {e}",
exc_info=True,
)
return _mcp_error(f"Failed to start {base_tool.name}: {e}")
# No callback — fall through to synchronous execution
logger.warning(
f"[SDK] No long-running callback for {base_tool.name}, "
f"executing synchronously (may block)"
)
# --- Normal (fast) tool: execute synchronously ---
try:
return await _execute_tool_sync(base_tool, user_id, session, args)
except Exception as e:
logger.error(f"Error executing tool {base_tool.name}: {e}", exc_info=True)
return _mcp_error(f"Failed to execute {base_tool.name}: {e}")
return tool_handler
def _build_input_schema(base_tool: BaseTool) -> dict[str, Any]:
"""Build a JSON Schema input schema for a tool."""
return {
"type": "object",
"properties": base_tool.parameters.get("properties", {}),
"required": base_tool.parameters.get("required", []),
}
async def _read_file_handler(args: dict[str, Any]) -> dict[str, Any]:
"""Read a file with optional offset/limit. Restricted to SDK working directory.
After reading, the file is deleted to prevent accumulation in long-running pods.
"""
file_path = args.get("file_path", "")
offset = args.get("offset", 0)
limit = args.get("limit", 2000)
# Security: only allow reads under ~/.claude/projects/**/tool-results/
real_path = os.path.realpath(file_path)
if not real_path.startswith(_SDK_PROJECTS_DIR) or "tool-results" not in real_path:
return {
"content": [{"type": "text", "text": f"Access denied: {file_path}"}],
"isError": True,
}
try:
with open(real_path) as f:
selected = list(itertools.islice(f, offset, offset + limit))
content = "".join(selected)
# Cleanup happens in _cleanup_sdk_tool_results after session ends;
# don't delete here — the SDK may read in multiple chunks.
return {"content": [{"type": "text", "text": content}], "isError": False}
except FileNotFoundError:
return {
"content": [{"type": "text", "text": f"File not found: {file_path}"}],
"isError": True,
}
except Exception as e:
return {
"content": [{"type": "text", "text": f"Error reading file: {e}"}],
"isError": True,
}
_READ_TOOL_NAME = "Read"
_READ_TOOL_DESCRIPTION = (
"Read a file from the local filesystem. "
"Use offset and limit to read specific line ranges for large files."
)
_READ_TOOL_SCHEMA = {
"type": "object",
"properties": {
"file_path": {
"type": "string",
"description": "The absolute path to the file to read",
},
"offset": {
"type": "integer",
"description": "Line number to start reading from (0-indexed). Default: 0",
},
"limit": {
"type": "integer",
"description": "Number of lines to read. Default: 2000",
},
},
"required": ["file_path"],
}
# Create the MCP server configuration
def create_copilot_mcp_server():
"""Create an in-process MCP server configuration for CoPilot tools.
This can be passed to ClaudeAgentOptions.mcp_servers.
Note: The actual SDK MCP server creation depends on the claude-agent-sdk
package being available. This function returns the configuration that
can be used with the SDK.
"""
try:
from claude_agent_sdk import create_sdk_mcp_server, tool
# Create decorated tool functions
sdk_tools = []
for tool_name, base_tool in TOOL_REGISTRY.items():
handler = create_tool_handler(base_tool)
decorated = tool(
tool_name,
base_tool.description,
_build_input_schema(base_tool),
)(handler)
sdk_tools.append(decorated)
# Add the Read tool so the SDK can read back oversized tool results
read_tool = tool(
_READ_TOOL_NAME,
_READ_TOOL_DESCRIPTION,
_READ_TOOL_SCHEMA,
)(_read_file_handler)
sdk_tools.append(read_tool)
server = create_sdk_mcp_server(
name=MCP_SERVER_NAME,
version="1.0.0",
tools=sdk_tools,
)
return server
except ImportError:
# Let ImportError propagate so service.py handles the fallback
raise
# SDK built-in tools allowed within the workspace directory.
# Security hooks validate that file paths stay within sdk_cwd.
# Bash is NOT included — use the sandboxed MCP bash_exec tool instead,
# which provides kernel-level network isolation via unshare --net.
# Task allows spawning sub-agents (rate-limited by security hooks).
# WebSearch uses Brave Search via Anthropic's API — safe, no SSRF risk.
_SDK_BUILTIN_TOOLS = ["Read", "Write", "Edit", "Glob", "Grep", "Task", "WebSearch"]
# SDK built-in tools that must be explicitly blocked.
# Bash: dangerous — agent uses mcp__copilot__bash_exec with kernel-level
# network isolation (unshare --net) instead.
# WebFetch: SSRF risk — can reach internal network (localhost, 10.x, etc.).
# Agent uses the SSRF-protected mcp__copilot__web_fetch tool instead.
SDK_DISALLOWED_TOOLS = ["Bash", "WebFetch"]
# Tools that are blocked entirely in security hooks (defence-in-depth).
# Includes SDK_DISALLOWED_TOOLS plus common aliases/synonyms.
BLOCKED_TOOLS = {
*SDK_DISALLOWED_TOOLS,
"bash",
"shell",
"exec",
"terminal",
"command",
}
# Tools allowed only when their path argument stays within the SDK workspace.
# The SDK uses these to handle oversized tool results (writes to tool-results/
# files, then reads them back) and for workspace file operations.
WORKSPACE_SCOPED_TOOLS = {"Read", "Write", "Edit", "Glob", "Grep"}
# Dangerous patterns in tool inputs
DANGEROUS_PATTERNS = [
r"sudo",
r"rm\s+-rf",
r"dd\s+if=",
r"/etc/passwd",
r"/etc/shadow",
r"chmod\s+777",
r"curl\s+.*\|.*sh",
r"wget\s+.*\|.*sh",
r"eval\s*\(",
r"exec\s*\(",
r"__import__",
r"os\.system",
r"subprocess",
]
# List of tool names for allowed_tools configuration
# Include MCP tools, the MCP Read tool for oversized results,
# and SDK built-in file tools for workspace operations.
COPILOT_TOOL_NAMES = [
*[f"{MCP_TOOL_PREFIX}{name}" for name in TOOL_REGISTRY.keys()],
f"{MCP_TOOL_PREFIX}{_READ_TOOL_NAME}",
*_SDK_BUILTIN_TOOLS,
]

View File

@@ -1,356 +0,0 @@
"""JSONL transcript management for stateless multi-turn resume.
The Claude Code CLI persists conversations as JSONL files (one JSON object per
line). When the SDK's ``Stop`` hook fires we read this file, strip bloat
(progress entries, metadata), and upload the result to bucket storage. On the
next turn we download the transcript, write it to a temp file, and pass
``--resume`` so the CLI can reconstruct the full conversation.
Storage is handled via ``WorkspaceStorageBackend`` (GCS in prod, local
filesystem for self-hosted) — no DB column needed.
"""
import json
import logging
import os
import re
logger = logging.getLogger(__name__)
# UUIDs are hex + hyphens; strip everything else to prevent path injection.
_SAFE_ID_RE = re.compile(r"[^0-9a-fA-F-]")
# Entry types that can be safely removed from the transcript without breaking
# the parentUuid conversation tree that ``--resume`` relies on.
# - progress: UI progress ticks, no message content (avg 97KB for agent_progress)
# - file-history-snapshot: undo tracking metadata
# - queue-operation: internal queue bookkeeping
# - summary: session summaries
# - pr-link: PR link metadata
STRIPPABLE_TYPES = frozenset(
{"progress", "file-history-snapshot", "queue-operation", "summary", "pr-link"}
)
# Workspace storage constants — deterministic path from session_id.
TRANSCRIPT_STORAGE_PREFIX = "chat-transcripts"
# ---------------------------------------------------------------------------
# Progress stripping
# ---------------------------------------------------------------------------
def strip_progress_entries(content: str) -> str:
"""Remove progress/metadata entries from a JSONL transcript.
Removes entries whose ``type`` is in ``STRIPPABLE_TYPES`` and reparents
any remaining child entries so the ``parentUuid`` chain stays intact.
Typically reduces transcript size by ~30%.
"""
lines = content.strip().split("\n")
entries: list[dict] = []
for line in lines:
try:
entries.append(json.loads(line))
except json.JSONDecodeError:
# Keep unparseable lines as-is (safety)
entries.append({"_raw": line})
stripped_uuids: set[str] = set()
uuid_to_parent: dict[str, str] = {}
kept: list[dict] = []
for entry in entries:
if "_raw" in entry:
kept.append(entry)
continue
uid = entry.get("uuid", "")
parent = entry.get("parentUuid", "")
entry_type = entry.get("type", "")
if uid:
uuid_to_parent[uid] = parent
if entry_type in STRIPPABLE_TYPES:
if uid:
stripped_uuids.add(uid)
else:
kept.append(entry)
# Reparent: walk up chain through stripped entries to find surviving ancestor
for entry in kept:
if "_raw" in entry:
continue
parent = entry.get("parentUuid", "")
original_parent = parent
while parent in stripped_uuids:
parent = uuid_to_parent.get(parent, "")
if parent != original_parent:
entry["parentUuid"] = parent
result_lines: list[str] = []
for entry in kept:
if "_raw" in entry:
result_lines.append(entry["_raw"])
else:
result_lines.append(json.dumps(entry, separators=(",", ":")))
return "\n".join(result_lines) + "\n"
# ---------------------------------------------------------------------------
# Local file I/O (read from CLI's JSONL, write temp file for --resume)
# ---------------------------------------------------------------------------
def read_transcript_file(transcript_path: str) -> str | None:
"""Read a JSONL transcript file from disk.
Returns the raw JSONL content, or ``None`` if the file is missing, empty,
or only contains metadata (≤2 lines with no conversation messages).
"""
if not transcript_path or not os.path.isfile(transcript_path):
logger.debug(f"[Transcript] File not found: {transcript_path}")
return None
try:
with open(transcript_path) as f:
content = f.read()
if not content.strip():
logger.debug(f"[Transcript] Empty file: {transcript_path}")
return None
lines = content.strip().split("\n")
if len(lines) < 3:
# Raw files with ≤2 lines are metadata-only
# (queue-operation + file-history-snapshot, no conversation).
logger.debug(
f"[Transcript] Too few lines ({len(lines)}): {transcript_path}"
)
return None
# Quick structural validation — parse first and last lines.
json.loads(lines[0])
json.loads(lines[-1])
logger.info(
f"[Transcript] Read {len(lines)} lines, "
f"{len(content)} bytes from {transcript_path}"
)
return content
except (json.JSONDecodeError, OSError) as e:
logger.warning(f"[Transcript] Failed to read {transcript_path}: {e}")
return None
def _sanitize_id(raw_id: str, max_len: int = 36) -> str:
"""Sanitize an ID for safe use in file paths.
Session/user IDs are expected to be UUIDs (hex + hyphens). Strip
everything else and truncate to *max_len* so the result cannot introduce
path separators or other special characters.
"""
cleaned = _SAFE_ID_RE.sub("", raw_id or "")[:max_len]
return cleaned or "unknown"
_SAFE_CWD_PREFIX = os.path.realpath("/tmp/copilot-")
def write_transcript_to_tempfile(
transcript_content: str,
session_id: str,
cwd: str,
) -> str | None:
"""Write JSONL transcript to a temp file inside *cwd* for ``--resume``.
The file lives in the session working directory so it is cleaned up
automatically when the session ends.
Returns the absolute path to the file, or ``None`` on failure.
"""
# Validate cwd is under the expected sandbox prefix (CodeQL sanitizer).
real_cwd = os.path.realpath(cwd)
if not real_cwd.startswith(_SAFE_CWD_PREFIX):
logger.warning(f"[Transcript] cwd outside sandbox: {cwd}")
return None
try:
os.makedirs(real_cwd, exist_ok=True)
safe_id = _sanitize_id(session_id, max_len=8)
jsonl_path = os.path.realpath(
os.path.join(real_cwd, f"transcript-{safe_id}.jsonl")
)
if not jsonl_path.startswith(real_cwd):
logger.warning(f"[Transcript] Path escaped cwd: {jsonl_path}")
return None
with open(jsonl_path, "w") as f:
f.write(transcript_content)
logger.info(f"[Transcript] Wrote resume file: {jsonl_path}")
return jsonl_path
except OSError as e:
logger.warning(f"[Transcript] Failed to write resume file: {e}")
return None
def validate_transcript(content: str | None) -> bool:
"""Check that a transcript has actual conversation messages.
A valid transcript for resume needs at least one user message and one
assistant message (not just queue-operation / file-history-snapshot
metadata).
"""
if not content or not content.strip():
return False
lines = content.strip().split("\n")
if len(lines) < 2:
return False
has_user = False
has_assistant = False
for line in lines:
try:
entry = json.loads(line)
msg_type = entry.get("type")
if msg_type == "user":
has_user = True
elif msg_type == "assistant":
has_assistant = True
except json.JSONDecodeError:
return False
return has_user and has_assistant
# ---------------------------------------------------------------------------
# Bucket storage (GCS / local via WorkspaceStorageBackend)
# ---------------------------------------------------------------------------
def _storage_path_parts(user_id: str, session_id: str) -> tuple[str, str, str]:
"""Return (workspace_id, file_id, filename) for a session's transcript.
Path structure: ``chat-transcripts/{user_id}/{session_id}.jsonl``
IDs are sanitized to hex+hyphen to prevent path traversal.
"""
return (
TRANSCRIPT_STORAGE_PREFIX,
_sanitize_id(user_id),
f"{_sanitize_id(session_id)}.jsonl",
)
def _build_storage_path(user_id: str, session_id: str, backend: object) -> str:
"""Build the full storage path string that ``retrieve()`` expects.
``store()`` returns a path like ``gcs://bucket/workspaces/...`` or
``local://workspace_id/file_id/filename``. Since we use deterministic
arguments we can reconstruct the same path for download/delete without
having stored the return value.
"""
from backend.util.workspace_storage import GCSWorkspaceStorage
wid, fid, fname = _storage_path_parts(user_id, session_id)
if isinstance(backend, GCSWorkspaceStorage):
blob = f"workspaces/{wid}/{fid}/{fname}"
return f"gcs://{backend.bucket_name}/{blob}"
else:
# LocalWorkspaceStorage returns local://{relative_path}
return f"local://{wid}/{fid}/{fname}"
async def upload_transcript(user_id: str, session_id: str, content: str) -> None:
"""Strip progress entries and upload transcript to bucket storage.
Safety: only overwrites when the new (stripped) transcript is larger than
what is already stored. Since JSONL is append-only, the latest transcript
is always the longest. This prevents a slow/stale background task from
clobbering a newer upload from a concurrent turn.
"""
from backend.util.workspace_storage import get_workspace_storage
stripped = strip_progress_entries(content)
if not validate_transcript(stripped):
logger.warning(
f"[Transcript] Skipping upload — stripped content is not a valid "
f"transcript for session {session_id}"
)
return
storage = await get_workspace_storage()
wid, fid, fname = _storage_path_parts(user_id, session_id)
encoded = stripped.encode("utf-8")
new_size = len(encoded)
# Check existing transcript size to avoid overwriting newer with older
path = _build_storage_path(user_id, session_id, storage)
try:
existing = await storage.retrieve(path)
if len(existing) >= new_size:
logger.info(
f"[Transcript] Skipping upload — existing transcript "
f"({len(existing)}B) >= new ({new_size}B) for session "
f"{session_id}"
)
return
except (FileNotFoundError, Exception):
pass # No existing transcript or retrieval error — proceed with upload
await storage.store(
workspace_id=wid,
file_id=fid,
filename=fname,
content=encoded,
)
logger.info(
f"[Transcript] Uploaded {new_size} bytes "
f"(stripped from {len(content)}) for session {session_id}"
)
async def download_transcript(user_id: str, session_id: str) -> str | None:
"""Download transcript from bucket storage.
Returns the JSONL content string, or ``None`` if not found.
"""
from backend.util.workspace_storage import get_workspace_storage
storage = await get_workspace_storage()
path = _build_storage_path(user_id, session_id, storage)
try:
data = await storage.retrieve(path)
content = data.decode("utf-8")
logger.info(
f"[Transcript] Downloaded {len(content)} bytes for session {session_id}"
)
return content
except FileNotFoundError:
logger.debug(f"[Transcript] No transcript in storage for {session_id}")
return None
except Exception as e:
logger.warning(f"[Transcript] Failed to download transcript: {e}")
return None
async def delete_transcript(user_id: str, session_id: str) -> None:
"""Delete transcript from bucket storage (e.g. after resume failure)."""
from backend.util.workspace_storage import get_workspace_storage
storage = await get_workspace_storage()
path = _build_storage_path(user_id, session_id, storage)
try:
await storage.delete(path)
logger.info(f"[Transcript] Deleted transcript for session {session_id}")
except Exception as e:
logger.warning(f"[Transcript] Failed to delete transcript: {e}")

View File

@@ -33,7 +33,7 @@ from backend.data.understanding import (
get_business_understanding,
)
from backend.util.exceptions import NotFoundError
from backend.util.settings import AppEnvironment, Settings
from backend.util.settings import Settings
from . import db as chat_db
from . import stream_registry
@@ -52,10 +52,8 @@ from .response_model import (
StreamBaseResponse,
StreamError,
StreamFinish,
StreamFinishStep,
StreamHeartbeat,
StreamStart,
StreamStartStep,
StreamTextDelta,
StreamTextEnd,
StreamTextStart,
@@ -224,18 +222,8 @@ async def _get_system_prompt_template(context: str) -> str:
try:
# cache_ttl_seconds=0 disables SDK caching to always get the latest prompt
# Use asyncio.to_thread to avoid blocking the event loop
# In non-production environments, fetch the latest prompt version
# instead of the production-labeled version for easier testing
label = (
None
if settings.config.app_env == AppEnvironment.PRODUCTION
else "latest"
)
prompt = await asyncio.to_thread(
langfuse.get_prompt,
config.langfuse_prompt_name,
label=label,
cache_ttl_seconds=0,
langfuse.get_prompt, config.langfuse_prompt_name, cache_ttl_seconds=0
)
return prompt.compile(users_information=context)
except Exception as e:
@@ -245,16 +233,12 @@ async def _get_system_prompt_template(context: str) -> str:
return DEFAULT_SYSTEM_PROMPT.format(users_information=context)
async def _build_system_prompt(
user_id: str | None, has_conversation_history: bool = False
) -> tuple[str, Any]:
async def _build_system_prompt(user_id: str | None) -> tuple[str, Any]:
"""Build the full system prompt including business understanding if available.
Args:
user_id: The user ID for fetching business understanding.
has_conversation_history: Whether there's existing conversation history.
If True, we don't tell the model to greet/introduce (since they're
already in a conversation).
user_id: The user ID for fetching business understanding
If "default" and this is the user's first session, will use "onboarding" instead.
Returns:
Tuple of (compiled prompt string, business understanding object)
@@ -270,8 +254,6 @@ async def _build_system_prompt(
if understanding:
context = format_understanding_for_prompt(understanding)
elif has_conversation_history:
context = "No prior understanding saved yet. Continue the existing conversation naturally."
else:
context = "This is the first time you are meeting the user. Greet them and introduce them to the platform"
@@ -359,10 +341,6 @@ async def stream_chat_completion(
retry_count: int = 0,
session: ChatSession | None = None,
context: dict[str, str] | None = None, # {url: str, content: str}
_continuation_message_id: (
str | None
) = None, # Internal: reuse message ID for tool call continuations
_task_id: str | None = None, # Internal: task ID for SSE reconnection support
) -> AsyncGenerator[StreamBaseResponse, None]:
"""Main entry point for streaming chat completions with database handling.
@@ -380,47 +358,24 @@ async def stream_chat_completion(
Raises:
NotFoundError: If session_id is invalid
ValueError: If max_context_messages is exceeded
"""
completion_start = time.monotonic()
# Build log metadata for structured logging
log_meta = {"component": "ChatService", "session_id": session_id}
if user_id:
log_meta["user_id"] = user_id
logger.info(
f"[TIMING] stream_chat_completion STARTED, session={session_id}, user={user_id}, "
f"message_len={len(message) if message else 0}, is_user={is_user_message}",
extra={
"json_fields": {
**log_meta,
"message_len": len(message) if message else 0,
"is_user_message": is_user_message,
}
},
f"Streaming chat completion for session {session_id} for message {message} and user id {user_id}. Message is user message: {is_user_message}"
)
# Only fetch from Redis if session not provided (initial call)
if session is None:
fetch_start = time.monotonic()
session = await get_chat_session(session_id, user_id)
fetch_time = (time.monotonic() - fetch_start) * 1000
logger.info(
f"[TIMING] get_chat_session took {fetch_time:.1f}ms, "
f"n_messages={len(session.messages) if session else 0}",
extra={
"json_fields": {
**log_meta,
"duration_ms": fetch_time,
"n_messages": len(session.messages) if session else 0,
}
},
f"Fetched session from Redis: {session.session_id if session else 'None'}, "
f"message_count={len(session.messages) if session else 0}"
)
else:
logger.info(
f"[TIMING] Using provided session, messages={len(session.messages)}",
extra={"json_fields": {**log_meta, "n_messages": len(session.messages)}},
f"Using provided session object: {session.session_id}, "
f"message_count={len(session.messages)}"
)
if not session:
@@ -441,32 +396,23 @@ async def stream_chat_completion(
# Track user message in PostHog
if is_user_message:
posthog_start = time.monotonic()
track_user_message(
user_id=user_id,
session_id=session_id,
message_length=len(message),
)
posthog_time = (time.monotonic() - posthog_start) * 1000
logger.info(
f"[TIMING] track_user_message took {posthog_time:.1f}ms",
extra={"json_fields": {**log_meta, "duration_ms": posthog_time}},
)
upsert_start = time.monotonic()
session = await upsert_chat_session(session)
upsert_time = (time.monotonic() - upsert_start) * 1000
logger.info(
f"[TIMING] upsert_chat_session took {upsert_time:.1f}ms",
extra={"json_fields": {**log_meta, "duration_ms": upsert_time}},
f"Upserting session: {session.session_id} with user id {session.user_id}, "
f"message_count={len(session.messages)}"
)
session = await upsert_chat_session(session)
assert session, "Session not found"
# Generate title for new sessions on first user message (non-blocking)
# Check: is_user_message, no title yet, and this is the first user message
user_messages = [m for m in session.messages if m.role == "user"]
first_user_msg = message or (user_messages[0].content if user_messages else None)
if is_user_message and first_user_msg and not session.title:
if is_user_message and message and not session.title:
user_messages = [m for m in session.messages if m.role == "user"]
if len(user_messages) == 1:
# First user message - generate title in background
import asyncio
@@ -474,7 +420,7 @@ async def stream_chat_completion(
# Capture only the values we need (not the session object) to avoid
# stale data issues when the main flow modifies the session
captured_session_id = session_id
captured_message = first_user_msg
captured_message = message
captured_user_id = user_id
async def _update_title():
@@ -498,13 +444,7 @@ async def stream_chat_completion(
asyncio.create_task(_update_title())
# Build system prompt with business understanding
prompt_start = time.monotonic()
system_prompt, understanding = await _build_system_prompt(user_id)
prompt_time = (time.monotonic() - prompt_start) * 1000
logger.info(
f"[TIMING] _build_system_prompt took {prompt_time:.1f}ms",
extra={"json_fields": {**log_meta, "duration_ms": prompt_time}},
)
# Initialize variables for streaming
assistant_response = ChatMessage(
@@ -529,27 +469,13 @@ async def stream_chat_completion(
# Generate unique IDs for AI SDK protocol
import uuid as uuid_module
is_continuation = _continuation_message_id is not None
message_id = _continuation_message_id or str(uuid_module.uuid4())
message_id = str(uuid_module.uuid4())
text_block_id = str(uuid_module.uuid4())
# Only yield message start for the initial call, not for continuations.
setup_time = (time.monotonic() - completion_start) * 1000
logger.info(
f"[TIMING] Setup complete, yielding StreamStart at {setup_time:.1f}ms",
extra={"json_fields": {**log_meta, "setup_time_ms": setup_time}},
)
if not is_continuation:
yield StreamStart(messageId=message_id, taskId=_task_id)
# Emit start-step before each LLM call (AI SDK uses this to add step boundaries)
yield StreamStartStep()
# Yield message start
yield StreamStart(messageId=message_id)
try:
logger.info(
"[TIMING] Calling _stream_chat_chunks",
extra={"json_fields": log_meta},
)
async for chunk in _stream_chat_chunks(
session=session,
tools=tools,
@@ -649,10 +575,6 @@ async def stream_chat_completion(
)
yield chunk
elif isinstance(chunk, StreamFinish):
if has_done_tool_call:
# Tool calls happened — close the step but don't send message-level finish.
# The continuation will open a new step, and finish will come at the end.
yield StreamFinishStep()
if not has_done_tool_call:
# Emit text-end before finish if we received text but haven't closed it
if has_received_text and not text_streaming_ended:
@@ -684,8 +606,6 @@ async def stream_chat_completion(
has_saved_assistant_message = True
has_yielded_end = True
# Emit finish-step before finish (resets AI SDK text/reasoning state)
yield StreamFinishStep()
yield chunk
elif isinstance(chunk, StreamError):
has_yielded_error = True
@@ -698,9 +618,6 @@ async def stream_chat_completion(
total_tokens=chunk.totalTokens,
)
)
elif isinstance(chunk, StreamHeartbeat):
# Pass through heartbeat to keep SSE connection alive
yield chunk
else:
logger.error(f"Unknown chunk type: {type(chunk)}", exc_info=True)
@@ -735,10 +652,6 @@ async def stream_chat_completion(
logger.info(
f"Retryable error encountered. Attempt {retry_count + 1}/{config.max_retries}"
)
# Close the current step before retrying so the recursive call's
# StreamStartStep doesn't produce unbalanced step events.
if not has_yielded_end:
yield StreamFinishStep()
should_retry = True
else:
# Non-retryable error or max retries exceeded
@@ -774,7 +687,6 @@ async def stream_chat_completion(
error_response = StreamError(errorText=error_message)
yield error_response
if not has_yielded_end:
yield StreamFinishStep()
yield StreamFinish()
return
@@ -789,8 +701,6 @@ async def stream_chat_completion(
retry_count=retry_count + 1,
session=session,
context=context,
_continuation_message_id=message_id, # Reuse message ID since start was already sent
_task_id=_task_id,
):
yield chunk
return # Exit after retry to avoid double-saving in finally block
@@ -806,13 +716,9 @@ async def stream_chat_completion(
# Build the messages list in the correct order
messages_to_save: list[ChatMessage] = []
# Add assistant message with tool_calls if any.
# Use extend (not assign) to preserve tool_calls already added by
# _yield_tool_call for long-running tools.
# Add assistant message with tool_calls if any
if accumulated_tool_calls:
if not assistant_response.tool_calls:
assistant_response.tool_calls = []
assistant_response.tool_calls.extend(accumulated_tool_calls)
assistant_response.tool_calls = accumulated_tool_calls
logger.info(
f"Added {len(accumulated_tool_calls)} tool calls to assistant message"
)
@@ -864,8 +770,6 @@ async def stream_chat_completion(
session=session, # Pass session object to avoid Redis refetch
context=context,
tool_call_response=str(tool_response_messages),
_continuation_message_id=message_id, # Reuse message ID to avoid duplicates
_task_id=_task_id,
):
yield chunk
@@ -976,21 +880,9 @@ async def _stream_chat_chunks(
SSE formatted JSON response objects
"""
import time as time_module
stream_chunks_start = time_module.perf_counter()
model = config.model
# Build log metadata for structured logging
log_meta = {"component": "ChatService", "session_id": session.session_id}
if session.user_id:
log_meta["user_id"] = session.user_id
logger.info(
f"[TIMING] _stream_chat_chunks STARTED, session={session.session_id}, "
f"user={session.user_id}, n_messages={len(session.messages)}",
extra={"json_fields": {**log_meta, "n_messages": len(session.messages)}},
)
logger.info("Starting pure chat stream")
messages = session.to_openai_messages()
if system_prompt:
@@ -1001,18 +893,12 @@ async def _stream_chat_chunks(
messages = [system_message] + messages
# Apply context window management
context_start = time_module.perf_counter()
context_result = await _manage_context_window(
messages=messages,
model=model,
api_key=config.api_key,
base_url=config.base_url,
)
context_time = (time_module.perf_counter() - context_start) * 1000
logger.info(
f"[TIMING] _manage_context_window took {context_time:.1f}ms",
extra={"json_fields": {**log_meta, "duration_ms": context_time}},
)
if context_result.error:
if "System prompt dropped" in context_result.error:
@@ -1047,19 +933,9 @@ async def _stream_chat_chunks(
while retry_count <= MAX_RETRIES:
try:
elapsed = (time_module.perf_counter() - stream_chunks_start) * 1000
retry_info = (
f" (retry {retry_count}/{MAX_RETRIES})" if retry_count > 0 else ""
)
logger.info(
f"[TIMING] Creating OpenAI stream at {elapsed:.1f}ms{retry_info}",
extra={
"json_fields": {
**log_meta,
"elapsed_ms": elapsed,
"retry_count": retry_count,
}
},
f"Creating OpenAI chat completion stream..."
f"{f' (retry {retry_count}/{MAX_RETRIES})' if retry_count > 0 else ''}"
)
# Build extra_body for OpenRouter tracing and PostHog analytics
@@ -1076,11 +952,6 @@ async def _stream_chat_chunks(
:128
] # OpenRouter limit
# Enable adaptive thinking for Anthropic models via OpenRouter
if config.thinking_enabled and "anthropic" in model.lower():
extra_body["reasoning"] = {"enabled": True}
api_call_start = time_module.perf_counter()
stream = await client.chat.completions.create(
model=model,
messages=cast(list[ChatCompletionMessageParam], messages),
@@ -1090,11 +961,6 @@ async def _stream_chat_chunks(
stream_options=ChatCompletionStreamOptionsParam(include_usage=True),
extra_body=extra_body,
)
api_init_time = (time_module.perf_counter() - api_call_start) * 1000
logger.info(
f"[TIMING] OpenAI stream object returned in {api_init_time:.1f}ms",
extra={"json_fields": {**log_meta, "duration_ms": api_init_time}},
)
# Variables to accumulate tool calls
tool_calls: list[dict[str, Any]] = []
@@ -1105,13 +971,10 @@ async def _stream_chat_chunks(
# Track if we've started the text block
text_started = False
first_content_chunk = True
chunk_count = 0
# Process the stream
chunk: ChatCompletionChunk
async for chunk in stream:
chunk_count += 1
if chunk.usage:
yield StreamUsage(
promptTokens=chunk.usage.prompt_tokens,
@@ -1134,23 +997,6 @@ async def _stream_chat_chunks(
if not text_started and text_block_id:
yield StreamTextStart(id=text_block_id)
text_started = True
# Log timing for first content chunk
if first_content_chunk:
first_content_chunk = False
ttfc = (
time_module.perf_counter() - api_call_start
) * 1000
logger.info(
f"[TIMING] FIRST CONTENT CHUNK at {ttfc:.1f}ms "
f"(since API call), n_chunks={chunk_count}",
extra={
"json_fields": {
**log_meta,
"time_to_first_chunk_ms": ttfc,
"n_chunks": chunk_count,
}
},
)
# Stream the text delta
text_response = StreamTextDelta(
id=text_block_id or "",
@@ -1207,21 +1053,7 @@ async def _stream_chat_chunks(
toolName=tool_calls[idx]["function"]["name"],
)
emitted_start_for_idx.add(idx)
stream_duration = time_module.perf_counter() - api_call_start
logger.info(
f"[TIMING] OpenAI stream COMPLETE, finish_reason={finish_reason}, "
f"duration={stream_duration:.2f}s, "
f"n_chunks={chunk_count}, n_tool_calls={len(tool_calls)}",
extra={
"json_fields": {
**log_meta,
"stream_duration_ms": stream_duration * 1000,
"finish_reason": finish_reason,
"n_chunks": chunk_count,
"n_tool_calls": len(tool_calls),
}
},
)
logger.info(f"Stream complete. Finish reason: {finish_reason}")
# Yield all accumulated tool calls after the stream is complete
# This ensures all tool call arguments have been fully received
@@ -1241,17 +1073,10 @@ async def _stream_chat_chunks(
# Re-raise to trigger retry logic in the parent function
raise
total_time = (time_module.perf_counter() - stream_chunks_start) * 1000
logger.info(
f"[TIMING] _stream_chat_chunks COMPLETED in {total_time / 1000:.1f}s; "
f"session={session.session_id}, user={session.user_id}",
extra={"json_fields": {**log_meta, "total_time_ms": total_time}},
)
yield StreamFinish()
return
except Exception as e:
last_error = e
if _is_retryable_error(e) and retry_count < MAX_RETRIES:
retry_count += 1
# Calculate delay with exponential backoff
@@ -1267,27 +1092,12 @@ async def _stream_chat_chunks(
continue # Retry the stream
else:
# Non-retryable error or max retries exceeded
_log_api_error(
error=e,
context="stream (not retrying)",
session_id=session.session_id if session else None,
message_count=len(messages) if messages else None,
model=model,
retry_count=retry_count,
logger.error(
f"Error in stream (not retrying): {e!s}",
exc_info=True,
)
error_code = None
error_text = str(e)
error_details = _extract_api_error_details(e)
if error_details.get("response_body"):
body = error_details["response_body"]
if isinstance(body, dict):
err = body.get("error")
if isinstance(err, dict) and err.get("message"):
error_text = err["message"]
elif body.get("message"):
error_text = body["message"]
if _is_region_blocked_error(e):
error_code = "MODEL_NOT_AVAILABLE_REGION"
error_text = (
@@ -1304,13 +1114,9 @@ async def _stream_chat_chunks(
# If we exit the retry loop without returning, it means we exhausted retries
if last_error:
_log_api_error(
error=last_error,
context=f"stream (max retries {MAX_RETRIES} exceeded)",
session_id=session.session_id if session else None,
message_count=len(messages) if messages else None,
model=model,
retry_count=MAX_RETRIES,
logger.error(
f"Max retries ({MAX_RETRIES}) exceeded. Last error: {last_error!s}",
exc_info=True,
)
yield StreamError(errorText=f"Max retries exceeded: {last_error!s}")
yield StreamFinish()
@@ -1434,9 +1240,13 @@ async def _yield_tool_call(
operation_id=operation_id,
)
# Attach the tool_call to the current turn's assistant message
# (or create one if this is a tool-only response with no text).
session.add_tool_call_to_current_turn(tool_calls[yield_idx])
# Save assistant message with tool_call FIRST (required by LLM)
assistant_message = ChatMessage(
role="assistant",
content="",
tool_calls=[tool_calls[yield_idx]],
)
session.messages.append(assistant_message)
# Then save pending tool result
pending_message = ChatMessage(
@@ -1742,7 +1552,6 @@ async def _execute_long_running_tool_with_streaming(
task_id,
StreamError(errorText=str(e)),
)
await stream_registry.publish_chunk(task_id, StreamFinishStep())
await stream_registry.publish_chunk(task_id, StreamFinish())
await _update_pending_operation(
@@ -1859,10 +1668,6 @@ async def _generate_llm_continuation(
if session_id:
extra_body["session_id"] = session_id[:128]
# Enable adaptive thinking for Anthropic models via OpenRouter
if config.thinking_enabled and "anthropic" in config.model.lower():
extra_body["reasoning"] = {"enabled": True}
retry_count = 0
last_error: Exception | None = None
response = None
@@ -1883,7 +1688,6 @@ async def _generate_llm_continuation(
break # Success, exit retry loop
except Exception as e:
last_error = e
if _is_retryable_error(e) and retry_count < MAX_RETRIES:
retry_count += 1
delay = min(
@@ -1897,25 +1701,17 @@ async def _generate_llm_continuation(
await asyncio.sleep(delay)
continue
else:
# Non-retryable error - log details and exit gracefully
_log_api_error(
error=e,
context="LLM continuation (not retrying)",
session_id=session_id,
message_count=len(messages) if messages else None,
model=config.model,
retry_count=retry_count,
# Non-retryable error - log and exit gracefully
logger.error(
f"Non-retryable error in LLM continuation: {e!s}",
exc_info=True,
)
return
if last_error:
_log_api_error(
error=last_error,
context=f"LLM continuation (max retries {MAX_RETRIES} exceeded)",
session_id=session_id,
message_count=len(messages) if messages else None,
model=config.model,
retry_count=MAX_RETRIES,
logger.error(
f"Max retries ({MAX_RETRIES}) exceeded for LLM continuation. "
f"Last error: {last_error!s}"
)
return
@@ -1955,91 +1751,6 @@ async def _generate_llm_continuation(
logger.error(f"Failed to generate LLM continuation: {e}", exc_info=True)
def _log_api_error(
error: Exception,
context: str,
session_id: str | None = None,
message_count: int | None = None,
model: str | None = None,
retry_count: int = 0,
) -> None:
"""Log detailed API error information for debugging."""
details = _extract_api_error_details(error)
details["context"] = context
details["session_id"] = session_id
details["message_count"] = message_count
details["model"] = model
details["retry_count"] = retry_count
if isinstance(error, RateLimitError):
logger.warning(f"Rate limit error in {context}: {details}", exc_info=error)
elif isinstance(error, APIConnectionError):
logger.warning(f"API connection error in {context}: {details}", exc_info=error)
elif isinstance(error, APIStatusError) and error.status_code >= 500:
logger.error(f"API server error (5xx) in {context}: {details}", exc_info=error)
else:
logger.error(f"API error in {context}: {details}", exc_info=error)
def _extract_api_error_details(error: Exception) -> dict[str, Any]:
"""Extract detailed information from OpenAI/OpenRouter API errors."""
error_msg = str(error)
details: dict[str, Any] = {
"error_type": type(error).__name__,
"error_message": error_msg[:500] + "..." if len(error_msg) > 500 else error_msg,
}
if hasattr(error, "code"):
details["code"] = getattr(error, "code", None)
if hasattr(error, "param"):
details["param"] = getattr(error, "param", None)
if isinstance(error, APIStatusError):
details["status_code"] = error.status_code
details["request_id"] = getattr(error, "request_id", None)
if hasattr(error, "body") and error.body:
details["response_body"] = _sanitize_error_body(error.body)
if hasattr(error, "response") and error.response:
headers = error.response.headers
details["openrouter_provider"] = headers.get("x-openrouter-provider")
details["openrouter_model"] = headers.get("x-openrouter-model")
details["retry_after"] = headers.get("retry-after")
details["rate_limit_remaining"] = headers.get("x-ratelimit-remaining")
return details
def _sanitize_error_body(
body: Any, max_length: int = 2000
) -> dict[str, Any] | str | None:
"""Extract only safe fields from error response body to avoid logging sensitive data."""
if not isinstance(body, dict):
# Non-dict bodies (e.g., HTML error pages) - return truncated string
if body is not None:
body_str = str(body)
if len(body_str) > max_length:
return body_str[:max_length] + "...[truncated]"
return body_str
return None
safe_fields = ("message", "type", "code", "param", "error")
sanitized: dict[str, Any] = {}
for field in safe_fields:
if field in body:
value = body[field]
if field == "error" and isinstance(value, dict):
sanitized[field] = _sanitize_error_body(value, max_length)
elif isinstance(value, str) and len(value) > max_length:
sanitized[field] = value[:max_length] + "...[truncated]"
else:
sanitized[field] = value
return sanitized if sanitized else None
async def _generate_llm_continuation_with_streaming(
session_id: str,
user_id: str | None,
@@ -2087,10 +1798,6 @@ async def _generate_llm_continuation_with_streaming(
if session_id:
extra_body["session_id"] = session_id[:128]
# Enable adaptive thinking for Anthropic models via OpenRouter
if config.thinking_enabled and "anthropic" in config.model.lower():
extra_body["reasoning"] = {"enabled": True}
# Make streaming LLM call (no tools - just text response)
from typing import cast
@@ -2102,7 +1809,6 @@ async def _generate_llm_continuation_with_streaming(
# Publish start event
await stream_registry.publish_chunk(task_id, StreamStart(messageId=message_id))
await stream_registry.publish_chunk(task_id, StreamStartStep())
await stream_registry.publish_chunk(task_id, StreamTextStart(id=text_block_id))
# Stream the response
@@ -2126,7 +1832,6 @@ async def _generate_llm_continuation_with_streaming(
# Publish end events
await stream_registry.publish_chunk(task_id, StreamTextEnd(id=text_block_id))
await stream_registry.publish_chunk(task_id, StreamFinishStep())
if assistant_content:
# Reload session from DB to avoid race condition with user messages
@@ -2168,5 +1873,4 @@ async def _generate_llm_continuation_with_streaming(
task_id,
StreamError(errorText=f"Failed to generate response: {e}"),
)
await stream_registry.publish_chunk(task_id, StreamFinishStep())
await stream_registry.publish_chunk(task_id, StreamFinish())

View File

@@ -1,4 +1,3 @@
import asyncio
import logging
from os import getenv
@@ -12,8 +11,6 @@ from .response_model import (
StreamTextDelta,
StreamToolOutputAvailable,
)
from .sdk import service as sdk_service
from .sdk.transcript import download_transcript
logger = logging.getLogger(__name__)
@@ -83,96 +80,3 @@ async def test_stream_chat_completion_with_tool_calls(setup_test_user, test_user
session = await get_chat_session(session.session_id)
assert session, "Session not found"
assert session.usage, "Usage is empty"
@pytest.mark.asyncio(loop_scope="session")
async def test_sdk_resume_multi_turn(setup_test_user, test_user_id):
"""Test that the SDK --resume path captures and uses transcripts across turns.
Turn 1: Send a message containing a unique keyword.
Turn 2: Ask the model to recall that keyword — proving the transcript was
persisted and restored via --resume.
"""
api_key: str | None = getenv("OPEN_ROUTER_API_KEY")
if not api_key:
return pytest.skip("OPEN_ROUTER_API_KEY is not set, skipping test")
from .config import ChatConfig
cfg = ChatConfig()
if not cfg.claude_agent_use_resume:
return pytest.skip("CLAUDE_AGENT_USE_RESUME is not enabled, skipping test")
session = await create_chat_session(test_user_id)
session = await upsert_chat_session(session)
# --- Turn 1: send a message with a unique keyword ---
keyword = "ZEPHYR42"
turn1_msg = (
f"Please remember this special keyword: {keyword}. "
"Just confirm you've noted it, keep your response brief."
)
turn1_text = ""
turn1_errors: list[str] = []
turn1_ended = False
async for chunk in sdk_service.stream_chat_completion_sdk(
session.session_id,
turn1_msg,
user_id=test_user_id,
):
if isinstance(chunk, StreamTextDelta):
turn1_text += chunk.delta
elif isinstance(chunk, StreamError):
turn1_errors.append(chunk.errorText)
elif isinstance(chunk, StreamFinish):
turn1_ended = True
assert turn1_ended, "Turn 1 did not finish"
assert not turn1_errors, f"Turn 1 errors: {turn1_errors}"
assert turn1_text, "Turn 1 produced no text"
# Wait for background upload task to complete (retry up to 5s)
transcript = None
for _ in range(10):
await asyncio.sleep(0.5)
transcript = await download_transcript(test_user_id, session.session_id)
if transcript:
break
assert transcript, (
"Transcript was not uploaded to bucket after turn 1 — "
"Stop hook may not have fired or transcript was too small"
)
logger.info(f"Turn 1 transcript uploaded: {len(transcript)} bytes")
# Reload session for turn 2
session = await get_chat_session(session.session_id, test_user_id)
assert session, "Session not found after turn 1"
# --- Turn 2: ask model to recall the keyword ---
turn2_msg = "What was the special keyword I asked you to remember?"
turn2_text = ""
turn2_errors: list[str] = []
turn2_ended = False
async for chunk in sdk_service.stream_chat_completion_sdk(
session.session_id,
turn2_msg,
user_id=test_user_id,
session=session,
):
if isinstance(chunk, StreamTextDelta):
turn2_text += chunk.delta
elif isinstance(chunk, StreamError):
turn2_errors.append(chunk.errorText)
elif isinstance(chunk, StreamFinish):
turn2_ended = True
assert turn2_ended, "Turn 2 did not finish"
assert not turn2_errors, f"Turn 2 errors: {turn2_errors}"
assert turn2_text, "Turn 2 produced no text"
assert keyword in turn2_text, (
f"Model did not recall keyword '{keyword}' in turn 2. "
f"Response: {turn2_text[:200]}"
)
logger.info(f"Turn 2 recalled keyword successfully: {turn2_text[:100]}")

View File

@@ -104,24 +104,6 @@ async def create_task(
Returns:
The created ActiveTask instance (metadata only)
"""
import time
start_time = time.perf_counter()
# Build log metadata for structured logging
log_meta = {
"component": "StreamRegistry",
"task_id": task_id,
"session_id": session_id,
}
if user_id:
log_meta["user_id"] = user_id
logger.info(
f"[TIMING] create_task STARTED, task={task_id}, session={session_id}, user={user_id}",
extra={"json_fields": log_meta},
)
task = ActiveTask(
task_id=task_id,
session_id=session_id,
@@ -132,18 +114,10 @@ async def create_task(
)
# Store metadata in Redis
redis_start = time.perf_counter()
redis = await get_redis_async()
redis_time = (time.perf_counter() - redis_start) * 1000
logger.info(
f"[TIMING] get_redis_async took {redis_time:.1f}ms",
extra={"json_fields": {**log_meta, "duration_ms": redis_time}},
)
meta_key = _get_task_meta_key(task_id)
op_key = _get_operation_mapping_key(operation_id)
hset_start = time.perf_counter()
await redis.hset( # type: ignore[misc]
meta_key,
mapping={
@@ -157,22 +131,12 @@ async def create_task(
"created_at": task.created_at.isoformat(),
},
)
hset_time = (time.perf_counter() - hset_start) * 1000
logger.info(
f"[TIMING] redis.hset took {hset_time:.1f}ms",
extra={"json_fields": {**log_meta, "duration_ms": hset_time}},
)
await redis.expire(meta_key, config.stream_ttl)
# Create operation_id -> task_id mapping for webhook lookups
await redis.set(op_key, task_id, ex=config.stream_ttl)
total_time = (time.perf_counter() - start_time) * 1000
logger.info(
f"[TIMING] create_task COMPLETED in {total_time:.1f}ms; task={task_id}, session={session_id}",
extra={"json_fields": {**log_meta, "total_time_ms": total_time}},
)
logger.debug(f"Created task {task_id} for session {session_id}")
return task
@@ -192,60 +156,26 @@ async def publish_chunk(
Returns:
The Redis Stream message ID
"""
import time
start_time = time.perf_counter()
chunk_type = type(chunk).__name__
chunk_json = chunk.model_dump_json()
message_id = "0-0"
# Build log metadata
log_meta = {
"component": "StreamRegistry",
"task_id": task_id,
"chunk_type": chunk_type,
}
try:
redis = await get_redis_async()
stream_key = _get_task_stream_key(task_id)
# Write to Redis Stream for persistence and real-time delivery
xadd_start = time.perf_counter()
raw_id = await redis.xadd(
stream_key,
{"data": chunk_json},
maxlen=config.stream_max_length,
)
xadd_time = (time.perf_counter() - xadd_start) * 1000
message_id = raw_id if isinstance(raw_id, str) else raw_id.decode()
# Set TTL on stream to match task metadata TTL
await redis.expire(stream_key, config.stream_ttl)
total_time = (time.perf_counter() - start_time) * 1000
# Only log timing for significant chunks or slow operations
if (
chunk_type
in ("StreamStart", "StreamFinish", "StreamTextStart", "StreamTextEnd")
or total_time > 50
):
logger.info(
f"[TIMING] publish_chunk {chunk_type} in {total_time:.1f}ms (xadd={xadd_time:.1f}ms)",
extra={
"json_fields": {
**log_meta,
"total_time_ms": total_time,
"xadd_time_ms": xadd_time,
"message_id": message_id,
}
},
)
except Exception as e:
elapsed = (time.perf_counter() - start_time) * 1000
logger.error(
f"[TIMING] Failed to publish chunk {chunk_type} after {elapsed:.1f}ms: {e}",
extra={"json_fields": {**log_meta, "elapsed_ms": elapsed, "error": str(e)}},
f"Failed to publish chunk for task {task_id}: {e}",
exc_info=True,
)
@@ -270,61 +200,24 @@ async def subscribe_to_task(
An asyncio Queue that will receive stream chunks, or None if task not found
or user doesn't have access
"""
import time
start_time = time.perf_counter()
# Build log metadata
log_meta = {"component": "StreamRegistry", "task_id": task_id}
if user_id:
log_meta["user_id"] = user_id
logger.info(
f"[TIMING] subscribe_to_task STARTED, task={task_id}, user={user_id}, last_msg={last_message_id}",
extra={"json_fields": {**log_meta, "last_message_id": last_message_id}},
)
redis_start = time.perf_counter()
redis = await get_redis_async()
meta_key = _get_task_meta_key(task_id)
meta: dict[Any, Any] = await redis.hgetall(meta_key) # type: ignore[misc]
hgetall_time = (time.perf_counter() - redis_start) * 1000
logger.info(
f"[TIMING] Redis hgetall took {hgetall_time:.1f}ms",
extra={"json_fields": {**log_meta, "duration_ms": hgetall_time}},
)
if not meta:
elapsed = (time.perf_counter() - start_time) * 1000
logger.info(
f"[TIMING] Task not found in Redis after {elapsed:.1f}ms",
extra={
"json_fields": {
**log_meta,
"elapsed_ms": elapsed,
"reason": "task_not_found",
}
},
)
logger.debug(f"Task {task_id} not found in Redis")
return None
# Note: Redis client uses decode_responses=True, so keys are strings
task_status = meta.get("status", "")
task_user_id = meta.get("user_id", "") or None
log_meta["session_id"] = meta.get("session_id", "")
# Validate ownership - if task has an owner, requester must match
if task_user_id:
if user_id != task_user_id:
logger.warning(
f"[TIMING] Access denied: user {user_id} tried to access task owned by {task_user_id}",
extra={
"json_fields": {
**log_meta,
"task_owner": task_user_id,
"reason": "access_denied",
}
},
f"User {user_id} denied access to task {task_id} "
f"owned by {task_user_id}"
)
return None
@@ -332,19 +225,7 @@ async def subscribe_to_task(
stream_key = _get_task_stream_key(task_id)
# Step 1: Replay messages from Redis Stream
xread_start = time.perf_counter()
messages = await redis.xread({stream_key: last_message_id}, block=0, count=1000)
xread_time = (time.perf_counter() - xread_start) * 1000
logger.info(
f"[TIMING] Redis xread (replay) took {xread_time:.1f}ms, status={task_status}",
extra={
"json_fields": {
**log_meta,
"duration_ms": xread_time,
"task_status": task_status,
}
},
)
replayed_count = 0
replay_last_id = last_message_id
@@ -363,48 +244,19 @@ async def subscribe_to_task(
except Exception as e:
logger.warning(f"Failed to replay message: {e}")
logger.info(
f"[TIMING] Replayed {replayed_count} messages, last_id={replay_last_id}",
extra={
"json_fields": {
**log_meta,
"n_messages_replayed": replayed_count,
"replay_last_id": replay_last_id,
}
},
)
logger.debug(f"Task {task_id}: replayed {replayed_count} messages")
# Step 2: If task is still running, start stream listener for live updates
if task_status == "running":
logger.info(
"[TIMING] Task still running, starting _stream_listener",
extra={"json_fields": {**log_meta, "task_status": task_status}},
)
listener_task = asyncio.create_task(
_stream_listener(task_id, subscriber_queue, replay_last_id, log_meta)
_stream_listener(task_id, subscriber_queue, replay_last_id)
)
# Track listener task for cleanup on unsubscribe
_listener_tasks[id(subscriber_queue)] = (task_id, listener_task)
else:
# Task is completed/failed - add finish marker
logger.info(
f"[TIMING] Task already {task_status}, adding StreamFinish",
extra={"json_fields": {**log_meta, "task_status": task_status}},
)
await subscriber_queue.put(StreamFinish())
total_time = (time.perf_counter() - start_time) * 1000
logger.info(
f"[TIMING] subscribe_to_task COMPLETED in {total_time:.1f}ms; task={task_id}, "
f"n_messages_replayed={replayed_count}",
extra={
"json_fields": {
**log_meta,
"total_time_ms": total_time,
"n_messages_replayed": replayed_count,
}
},
)
return subscriber_queue
@@ -412,7 +264,6 @@ async def _stream_listener(
task_id: str,
subscriber_queue: asyncio.Queue[StreamBaseResponse],
last_replayed_id: str,
log_meta: dict | None = None,
) -> None:
"""Listen to Redis Stream for new messages using blocking XREAD.
@@ -423,27 +274,10 @@ async def _stream_listener(
task_id: Task ID to listen for
subscriber_queue: Queue to deliver messages to
last_replayed_id: Last message ID from replay (continue from here)
log_meta: Structured logging metadata
"""
import time
start_time = time.perf_counter()
# Use provided log_meta or build minimal one
if log_meta is None:
log_meta = {"component": "StreamRegistry", "task_id": task_id}
logger.info(
f"[TIMING] _stream_listener STARTED, task={task_id}, last_id={last_replayed_id}",
extra={"json_fields": {**log_meta, "last_replayed_id": last_replayed_id}},
)
queue_id = id(subscriber_queue)
# Track the last successfully delivered message ID for recovery hints
last_delivered_id = last_replayed_id
messages_delivered = 0
first_message_time = None
xread_count = 0
try:
redis = await get_redis_async()
@@ -453,39 +287,9 @@ async def _stream_listener(
while True:
# Block for up to 30 seconds waiting for new messages
# This allows periodic checking if task is still running
xread_start = time.perf_counter()
xread_count += 1
messages = await redis.xread(
{stream_key: current_id}, block=30000, count=100
)
xread_time = (time.perf_counter() - xread_start) * 1000
if messages:
msg_count = sum(len(msgs) for _, msgs in messages)
logger.info(
f"[TIMING] xread #{xread_count} returned {msg_count} messages in {xread_time:.1f}ms",
extra={
"json_fields": {
**log_meta,
"xread_count": xread_count,
"n_messages": msg_count,
"duration_ms": xread_time,
}
},
)
elif xread_time > 1000:
# Only log timeouts (30s blocking)
logger.info(
f"[TIMING] xread #{xread_count} timeout after {xread_time:.1f}ms",
extra={
"json_fields": {
**log_meta,
"xread_count": xread_count,
"duration_ms": xread_time,
"reason": "timeout",
}
},
)
if not messages:
# Timeout - check if task is still running
@@ -522,30 +326,10 @@ async def _stream_listener(
)
# Update last delivered ID on successful delivery
last_delivered_id = current_id
messages_delivered += 1
if first_message_time is None:
first_message_time = time.perf_counter()
elapsed = (first_message_time - start_time) * 1000
logger.info(
f"[TIMING] FIRST live message at {elapsed:.1f}ms, type={type(chunk).__name__}",
extra={
"json_fields": {
**log_meta,
"elapsed_ms": elapsed,
"chunk_type": type(chunk).__name__,
}
},
)
except asyncio.TimeoutError:
logger.warning(
f"[TIMING] Subscriber queue full, delivery timed out after {QUEUE_PUT_TIMEOUT}s",
extra={
"json_fields": {
**log_meta,
"timeout_s": QUEUE_PUT_TIMEOUT,
"reason": "queue_full",
}
},
f"Subscriber queue full for task {task_id}, "
f"message delivery timed out after {QUEUE_PUT_TIMEOUT}s"
)
# Send overflow error with recovery info
try:
@@ -567,44 +351,15 @@ async def _stream_listener(
# Stop listening on finish
if isinstance(chunk, StreamFinish):
total_time = (time.perf_counter() - start_time) * 1000
logger.info(
f"[TIMING] StreamFinish received in {total_time/1000:.1f}s; delivered={messages_delivered}",
extra={
"json_fields": {
**log_meta,
"total_time_ms": total_time,
"messages_delivered": messages_delivered,
}
},
)
return
except Exception as e:
logger.warning(
f"Error processing stream message: {e}",
extra={"json_fields": {**log_meta, "error": str(e)}},
)
logger.warning(f"Error processing stream message: {e}")
except asyncio.CancelledError:
elapsed = (time.perf_counter() - start_time) * 1000
logger.info(
f"[TIMING] _stream_listener CANCELLED after {elapsed:.1f}ms, delivered={messages_delivered}",
extra={
"json_fields": {
**log_meta,
"elapsed_ms": elapsed,
"messages_delivered": messages_delivered,
"reason": "cancelled",
}
},
)
logger.debug(f"Stream listener cancelled for task {task_id}")
raise # Re-raise to propagate cancellation
except Exception as e:
elapsed = (time.perf_counter() - start_time) * 1000
logger.error(
f"[TIMING] _stream_listener ERROR after {elapsed:.1f}ms: {e}",
extra={"json_fields": {**log_meta, "elapsed_ms": elapsed, "error": str(e)}},
)
logger.error(f"Stream listener error for task {task_id}: {e}")
# On error, send finish to unblock subscriber
try:
await asyncio.wait_for(
@@ -613,24 +368,10 @@ async def _stream_listener(
)
except (asyncio.TimeoutError, asyncio.QueueFull):
logger.warning(
"Could not deliver finish event after error",
extra={"json_fields": log_meta},
f"Could not deliver finish event for task {task_id} after error"
)
finally:
# Clean up listener task mapping on exit
total_time = (time.perf_counter() - start_time) * 1000
logger.info(
f"[TIMING] _stream_listener FINISHED in {total_time/1000:.1f}s; task={task_id}, "
f"delivered={messages_delivered}, xread_count={xread_count}",
extra={
"json_fields": {
**log_meta,
"total_time_ms": total_time,
"messages_delivered": messages_delivered,
"xread_count": xread_count,
}
},
)
_listener_tasks.pop(queue_id, None)
@@ -814,28 +555,6 @@ async def get_active_task_for_session(
if task_user_id and user_id != task_user_id:
continue
# Auto-expire stale tasks that exceeded stream_timeout
created_at_str = meta.get("created_at", "")
if created_at_str:
try:
created_at = datetime.fromisoformat(created_at_str)
age_seconds = (
datetime.now(timezone.utc) - created_at
).total_seconds()
if age_seconds > config.stream_timeout:
logger.warning(
f"[TASK_LOOKUP] Auto-expiring stale task {task_id[:8]}... "
f"(age={age_seconds:.0f}s > timeout={config.stream_timeout}s)"
)
await mark_task_completed(task_id, "failed")
continue
except (ValueError, TypeError):
pass
logger.info(
f"[TASK_LOOKUP] Found running task {task_id[:8]}... for session {session_id[:8]}..."
)
# Get the last message ID from Redis Stream
stream_key = _get_task_stream_key(task_id)
last_id = "0-0"
@@ -879,10 +598,8 @@ def _reconstruct_chunk(chunk_data: dict) -> StreamBaseResponse | None:
ResponseType,
StreamError,
StreamFinish,
StreamFinishStep,
StreamHeartbeat,
StreamStart,
StreamStartStep,
StreamTextDelta,
StreamTextEnd,
StreamTextStart,
@@ -896,8 +613,6 @@ def _reconstruct_chunk(chunk_data: dict) -> StreamBaseResponse | None:
type_to_class: dict[str, type[StreamBaseResponse]] = {
ResponseType.START.value: StreamStart,
ResponseType.FINISH.value: StreamFinish,
ResponseType.START_STEP.value: StreamStartStep,
ResponseType.FINISH_STEP.value: StreamFinishStep,
ResponseType.TEXT_START.value: StreamTextStart,
ResponseType.TEXT_DELTA.value: StreamTextDelta,
ResponseType.TEXT_END.value: StreamTextEnd,

View File

@@ -9,12 +9,9 @@ from backend.api.features.chat.tracking import track_tool_called
from .add_understanding import AddUnderstandingTool
from .agent_output import AgentOutputTool
from .base import BaseTool
from .bash_exec import BashExecTool
from .check_operation_status import CheckOperationStatusTool
from .create_agent import CreateAgentTool
from .customize_agent import CustomizeAgentTool
from .edit_agent import EditAgentTool
from .feature_requests import CreateFeatureRequestTool, SearchFeatureRequestsTool
from .find_agent import FindAgentTool
from .find_block import FindBlockTool
from .find_library_agent import FindLibraryAgentTool
@@ -22,7 +19,6 @@ from .get_doc_page import GetDocPageTool
from .run_agent import RunAgentTool
from .run_block import RunBlockTool
from .search_docs import SearchDocsTool
from .web_fetch import WebFetchTool
from .workspace_files import (
DeleteWorkspaceFileTool,
ListWorkspaceFilesTool,
@@ -47,17 +43,8 @@ TOOL_REGISTRY: dict[str, BaseTool] = {
"run_agent": RunAgentTool(),
"run_block": RunBlockTool(),
"view_agent_output": AgentOutputTool(),
"check_operation_status": CheckOperationStatusTool(),
"search_docs": SearchDocsTool(),
"get_doc_page": GetDocPageTool(),
# Web fetch for safe URL retrieval
"web_fetch": WebFetchTool(),
# Sandboxed code execution (bubblewrap)
"bash_exec": BashExecTool(),
# Persistent workspace tools (cloud storage, survives across sessions)
# Feature request tools
"search_feature_requests": SearchFeatureRequestsTool(),
"create_feature_request": CreateFeatureRequestTool(),
# Workspace tools for CoPilot file operations
"list_workspace_files": ListWorkspaceFilesTool(),
"read_workspace_file": ReadWorkspaceFileTool(),

View File

@@ -7,7 +7,15 @@ from typing import Any, NotRequired, TypedDict
from backend.api.features.library import db as library_db
from backend.api.features.store import db as store_db
from backend.data.graph import Graph, Link, Node, get_graph, get_store_listed_graphs
from backend.data.graph import (
Graph,
Link,
Node,
create_graph,
get_graph,
get_graph_all_versions,
get_store_listed_graphs,
)
from backend.util.exceptions import DatabaseError, NotFoundError
from .service import (
@@ -20,6 +28,8 @@ from .service import (
logger = logging.getLogger(__name__)
AGENT_EXECUTOR_BLOCK_ID = "e189baac-8c20-45a1-94a7-55177ea42565"
class ExecutionSummary(TypedDict):
"""Summary of a single execution for quality assessment."""
@@ -659,6 +669,45 @@ def json_to_graph(agent_json: dict[str, Any]) -> Graph:
)
def _reassign_node_ids(graph: Graph) -> None:
"""Reassign all node and link IDs to new UUIDs.
This is needed when creating a new version to avoid unique constraint violations.
"""
id_map = {node.id: str(uuid.uuid4()) for node in graph.nodes}
for node in graph.nodes:
node.id = id_map[node.id]
for link in graph.links:
link.id = str(uuid.uuid4())
if link.source_id in id_map:
link.source_id = id_map[link.source_id]
if link.sink_id in id_map:
link.sink_id = id_map[link.sink_id]
def _populate_agent_executor_user_ids(agent_json: dict[str, Any], user_id: str) -> None:
"""Populate user_id in AgentExecutorBlock nodes.
The external agent generator creates AgentExecutorBlock nodes with empty user_id.
This function fills in the actual user_id so sub-agents run with correct permissions.
Args:
agent_json: Agent JSON dict (modified in place)
user_id: User ID to set
"""
for node in agent_json.get("nodes", []):
if node.get("block_id") == AGENT_EXECUTOR_BLOCK_ID:
input_default = node.get("input_default") or {}
if not input_default.get("user_id"):
input_default["user_id"] = user_id
node["input_default"] = input_default
logger.debug(
f"Set user_id for AgentExecutorBlock node {node.get('id')}"
)
async def save_agent_to_library(
agent_json: dict[str, Any], user_id: str, is_update: bool = False
) -> tuple[Graph, Any]:
@@ -672,10 +721,35 @@ async def save_agent_to_library(
Returns:
Tuple of (created Graph, LibraryAgent)
"""
# Populate user_id in AgentExecutorBlock nodes before conversion
_populate_agent_executor_user_ids(agent_json, user_id)
graph = json_to_graph(agent_json)
if is_update:
return await library_db.update_graph_in_library(graph, user_id)
return await library_db.create_graph_in_library(graph, user_id)
if graph.id:
existing_versions = await get_graph_all_versions(graph.id, user_id)
if existing_versions:
latest_version = max(v.version for v in existing_versions)
graph.version = latest_version + 1
_reassign_node_ids(graph)
logger.info(f"Updating agent {graph.id} to version {graph.version}")
else:
graph.id = str(uuid.uuid4())
graph.version = 1
_reassign_node_ids(graph)
logger.info(f"Creating new agent with ID {graph.id}")
created_graph = await create_graph(graph, user_id)
library_agents = await library_db.create_library_agent(
graph=created_graph,
user_id=user_id,
sensitive_action_safe_mode=True,
create_library_agents_for_sub_graphs=False,
)
return created_graph, library_agents[0]
def graph_to_json(graph: Graph) -> dict[str, Any]:

View File

@@ -1,154 +0,0 @@
"""Dummy Agent Generator for testing.
Returns mock responses matching the format expected from the external service.
Enable via AGENTGENERATOR_USE_DUMMY=true in settings.
WARNING: This is for testing only. Do not use in production.
"""
import asyncio
import logging
import uuid
from typing import Any
logger = logging.getLogger(__name__)
# Dummy decomposition result (instructions type)
DUMMY_DECOMPOSITION_RESULT: dict[str, Any] = {
"type": "instructions",
"steps": [
{
"description": "Get input from user",
"action": "input",
"block_name": "AgentInputBlock",
},
{
"description": "Process the input",
"action": "process",
"block_name": "TextFormatterBlock",
},
{
"description": "Return output to user",
"action": "output",
"block_name": "AgentOutputBlock",
},
],
}
# Block IDs from backend/blocks/io.py
AGENT_INPUT_BLOCK_ID = "c0a8e994-ebf1-4a9c-a4d8-89d09c86741b"
AGENT_OUTPUT_BLOCK_ID = "363ae599-353e-4804-937e-b2ee3cef3da4"
def _generate_dummy_agent_json() -> dict[str, Any]:
"""Generate a minimal valid agent JSON for testing."""
input_node_id = str(uuid.uuid4())
output_node_id = str(uuid.uuid4())
return {
"id": str(uuid.uuid4()),
"version": 1,
"is_active": True,
"name": "Dummy Test Agent",
"description": "A dummy agent generated for testing purposes",
"nodes": [
{
"id": input_node_id,
"block_id": AGENT_INPUT_BLOCK_ID,
"input_default": {
"name": "input",
"title": "Input",
"description": "Enter your input",
"placeholder_values": [],
},
"metadata": {"position": {"x": 0, "y": 0}},
},
{
"id": output_node_id,
"block_id": AGENT_OUTPUT_BLOCK_ID,
"input_default": {
"name": "output",
"title": "Output",
"description": "Agent output",
"format": "{output}",
},
"metadata": {"position": {"x": 400, "y": 0}},
},
],
"links": [
{
"id": str(uuid.uuid4()),
"source_id": input_node_id,
"sink_id": output_node_id,
"source_name": "result",
"sink_name": "value",
"is_static": False,
},
],
}
async def decompose_goal_dummy(
description: str,
context: str = "",
library_agents: list[dict[str, Any]] | None = None,
) -> dict[str, Any]:
"""Return dummy decomposition result."""
logger.info("Using dummy agent generator for decompose_goal")
return DUMMY_DECOMPOSITION_RESULT.copy()
async def generate_agent_dummy(
instructions: dict[str, Any],
library_agents: list[dict[str, Any]] | None = None,
operation_id: str | None = None,
task_id: str | None = None,
) -> dict[str, Any]:
"""Return dummy agent JSON after a simulated delay."""
logger.info("Using dummy agent generator for generate_agent (30s delay)")
await asyncio.sleep(30)
return _generate_dummy_agent_json()
async def generate_agent_patch_dummy(
update_request: str,
current_agent: dict[str, Any],
library_agents: list[dict[str, Any]] | None = None,
operation_id: str | None = None,
task_id: str | None = None,
) -> dict[str, Any]:
"""Return dummy patched agent (returns the current agent with updated description)."""
logger.info("Using dummy agent generator for generate_agent_patch")
patched = current_agent.copy()
patched["description"] = (
f"{current_agent.get('description', '')} (updated: {update_request})"
)
return patched
async def customize_template_dummy(
template_agent: dict[str, Any],
modification_request: str,
context: str = "",
) -> dict[str, Any]:
"""Return dummy customized template (returns template with updated description)."""
logger.info("Using dummy agent generator for customize_template")
customized = template_agent.copy()
customized["description"] = (
f"{template_agent.get('description', '')} (customized: {modification_request})"
)
return customized
async def get_blocks_dummy() -> list[dict[str, Any]]:
"""Return dummy blocks list."""
logger.info("Using dummy agent generator for get_blocks")
return [
{"id": AGENT_INPUT_BLOCK_ID, "name": "AgentInputBlock"},
{"id": AGENT_OUTPUT_BLOCK_ID, "name": "AgentOutputBlock"},
]
async def health_check_dummy() -> bool:
"""Always returns healthy for dummy service."""
return True

View File

@@ -12,19 +12,8 @@ import httpx
from backend.util.settings import Settings
from .dummy import (
customize_template_dummy,
decompose_goal_dummy,
generate_agent_dummy,
generate_agent_patch_dummy,
get_blocks_dummy,
health_check_dummy,
)
logger = logging.getLogger(__name__)
_dummy_mode_warned = False
def _create_error_response(
error_message: str,
@@ -101,26 +90,10 @@ def _get_settings() -> Settings:
return _settings
def _is_dummy_mode() -> bool:
"""Check if dummy mode is enabled for testing."""
global _dummy_mode_warned
settings = _get_settings()
is_dummy = bool(settings.config.agentgenerator_use_dummy)
if is_dummy and not _dummy_mode_warned:
logger.warning(
"Agent Generator running in DUMMY MODE - returning mock responses. "
"Do not use in production!"
)
_dummy_mode_warned = True
return is_dummy
def is_external_service_configured() -> bool:
"""Check if external Agent Generator service is configured (or dummy mode)."""
"""Check if external Agent Generator service is configured."""
settings = _get_settings()
return bool(settings.config.agentgenerator_host) or bool(
settings.config.agentgenerator_use_dummy
)
return bool(settings.config.agentgenerator_host)
def _get_base_url() -> str:
@@ -164,9 +137,6 @@ async def decompose_goal_external(
- {"type": "error", "error": "...", "error_type": "..."} on error
Or None on unexpected error
"""
if _is_dummy_mode():
return await decompose_goal_dummy(description, context, library_agents)
client = _get_client()
if context:
@@ -256,11 +226,6 @@ async def generate_agent_external(
Returns:
Agent JSON dict, {"status": "accepted"} for async, or error dict {"type": "error", ...} on error
"""
if _is_dummy_mode():
return await generate_agent_dummy(
instructions, library_agents, operation_id, task_id
)
client = _get_client()
# Build request payload
@@ -332,11 +297,6 @@ async def generate_agent_patch_external(
Returns:
Updated agent JSON, clarifying questions dict, {"status": "accepted"} for async, or error dict on error
"""
if _is_dummy_mode():
return await generate_agent_patch_dummy(
update_request, current_agent, library_agents, operation_id, task_id
)
client = _get_client()
# Build request payload
@@ -423,11 +383,6 @@ async def customize_template_external(
Returns:
Customized agent JSON, clarifying questions dict, or error dict on error
"""
if _is_dummy_mode():
return await customize_template_dummy(
template_agent, modification_request, context
)
client = _get_client()
request = modification_request
@@ -490,9 +445,6 @@ async def get_blocks_external() -> list[dict[str, Any]] | None:
Returns:
List of block info dicts or None on error
"""
if _is_dummy_mode():
return await get_blocks_dummy()
client = _get_client()
try:
@@ -526,9 +478,6 @@ async def health_check() -> bool:
if not is_external_service_configured():
return False
if _is_dummy_mode():
return await health_check_dummy()
client = _get_client()
try:

View File

@@ -206,9 +206,9 @@ async def search_agents(
]
)
no_results_msg = (
f"No agents found matching '{query}'. Let the user know they can try different keywords or browse the marketplace. Also let them know you can create a custom agent for them based on their needs."
f"No agents found matching '{query}'. Try different keywords or browse the marketplace."
if source == "marketplace"
else f"No agents matching '{query}' found in your library. Let the user know you can create a custom agent for them based on their needs."
else f"No agents matching '{query}' found in your library."
)
return NoResultsResponse(
message=no_results_msg, session_id=session_id, suggestions=suggestions
@@ -224,10 +224,10 @@ async def search_agents(
message = (
"Now you have found some options for the user to choose from. "
"You can add a link to a recommended agent at: /marketplace/agent/agent_id "
"Please ask the user if they would like to use any of these agents. Let the user know we can create a custom agent for them based on their needs."
"Please ask the user if they would like to use any of these agents."
if source == "marketplace"
else "Found agents in the user's library. You can provide a link to view an agent at: "
"/library/agents/{agent_id}. Use agent_output to get execution results, or run_agent to execute. Let the user know we can create a custom agent for them based on their needs."
"/library/agents/{agent_id}. Use agent_output to get execution results, or run_agent to execute."
)
return AgentsFoundResponse(

View File

@@ -1,131 +0,0 @@
"""Bash execution tool — run shell commands in a bubblewrap sandbox.
Full Bash scripting is allowed (loops, conditionals, pipes, functions, etc.).
Safety comes from OS-level isolation (bubblewrap): only system dirs visible
read-only, writable workspace only, clean env, no network.
Requires bubblewrap (``bwrap``) — the tool is disabled when bwrap is not
available (e.g. macOS development).
"""
import logging
from typing import Any
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
BashExecResponse,
ErrorResponse,
ToolResponseBase,
)
from backend.api.features.chat.tools.sandbox import (
get_workspace_dir,
has_full_sandbox,
run_sandboxed,
)
logger = logging.getLogger(__name__)
class BashExecTool(BaseTool):
"""Execute Bash commands in a bubblewrap sandbox."""
@property
def name(self) -> str:
return "bash_exec"
@property
def description(self) -> str:
if not has_full_sandbox():
return (
"Bash execution is DISABLED — bubblewrap sandbox is not "
"available on this platform. Do not call this tool."
)
return (
"Execute a Bash command or script in a bubblewrap sandbox. "
"Full Bash scripting is supported (loops, conditionals, pipes, "
"functions, etc.). "
"The sandbox shares the same working directory as the SDK Read/Write "
"tools — files created by either are accessible to both. "
"SECURITY: Only system directories (/usr, /bin, /lib, /etc) are "
"visible read-only, the per-session workspace is the only writable "
"path, environment variables are wiped (no secrets), all network "
"access is blocked at the kernel level, and resource limits are "
"enforced (max 64 processes, 512MB memory, 50MB file size). "
"Application code, configs, and other directories are NOT accessible. "
"To fetch web content, use the web_fetch tool instead. "
"Execution is killed after the timeout (default 30s, max 120s). "
"Returns stdout and stderr. "
"Useful for file manipulation, data processing with Unix tools "
"(grep, awk, sed, jq, etc.), and running shell scripts."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"command": {
"type": "string",
"description": "Bash command or script to execute.",
},
"timeout": {
"type": "integer",
"description": (
"Max execution time in seconds (default 30, max 120)."
),
"default": 30,
},
},
"required": ["command"],
}
@property
def requires_auth(self) -> bool:
return False
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs: Any,
) -> ToolResponseBase:
session_id = session.session_id if session else None
if not has_full_sandbox():
return ErrorResponse(
message="bash_exec requires bubblewrap sandbox (Linux only).",
error="sandbox_unavailable",
session_id=session_id,
)
command: str = (kwargs.get("command") or "").strip()
timeout: int = kwargs.get("timeout", 30)
if not command:
return ErrorResponse(
message="No command provided.",
error="empty_command",
session_id=session_id,
)
workspace = get_workspace_dir(session_id or "default")
stdout, stderr, exit_code, timed_out = await run_sandboxed(
command=["bash", "-c", command],
cwd=workspace,
timeout=timeout,
)
return BashExecResponse(
message=(
"Execution timed out"
if timed_out
else f"Command executed (exit {exit_code})"
),
stdout=stdout,
stderr=stderr,
exit_code=exit_code,
timed_out=timed_out,
session_id=session_id,
)

View File

@@ -1,127 +0,0 @@
"""CheckOperationStatusTool — query the status of a long-running operation."""
import logging
from typing import Any
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
ErrorResponse,
ResponseType,
ToolResponseBase,
)
logger = logging.getLogger(__name__)
class OperationStatusResponse(ToolResponseBase):
"""Response for check_operation_status tool."""
type: ResponseType = ResponseType.OPERATION_STATUS
task_id: str
operation_id: str
status: str # "running", "completed", "failed"
tool_name: str | None = None
message: str = ""
class CheckOperationStatusTool(BaseTool):
"""Check the status of a long-running operation (create_agent, edit_agent, etc.).
The CoPilot uses this tool to report back to the user whether an
operation that was started earlier has completed, failed, or is still
running.
"""
@property
def name(self) -> str:
return "check_operation_status"
@property
def description(self) -> str:
return (
"Check the current status of a long-running operation such as "
"create_agent or edit_agent. Accepts either an operation_id or "
"task_id from a previous operation_started response. "
"Returns the current status: running, completed, or failed."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"operation_id": {
"type": "string",
"description": (
"The operation_id from an operation_started response."
),
},
"task_id": {
"type": "string",
"description": (
"The task_id from an operation_started response. "
"Used as fallback if operation_id is not provided."
),
},
},
"required": [],
}
@property
def requires_auth(self) -> bool:
return False
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
from backend.api.features.chat import stream_registry
operation_id = (kwargs.get("operation_id") or "").strip()
task_id = (kwargs.get("task_id") or "").strip()
if not operation_id and not task_id:
return ErrorResponse(
message="Please provide an operation_id or task_id.",
error="missing_parameter",
)
task = None
if operation_id:
task = await stream_registry.find_task_by_operation_id(operation_id)
if task is None and task_id:
task = await stream_registry.get_task(task_id)
if task is None:
# Task not in Redis — it may have already expired (TTL).
# Check conversation history for the result instead.
return ErrorResponse(
message=(
"Operation not found — it may have already completed and "
"expired from the status tracker. Check the conversation "
"history for the result."
),
error="not_found",
)
status_messages = {
"running": (
f"The {task.tool_name or 'operation'} is still running. "
"Please wait for it to complete."
),
"completed": (
f"The {task.tool_name or 'operation'} has completed successfully."
),
"failed": f"The {task.tool_name or 'operation'} has failed.",
}
return OperationStatusResponse(
task_id=task.task_id,
operation_id=task.operation_id,
status=task.status,
tool_name=task.tool_name,
message=status_messages.get(task.status, f"Status: {task.status}"),
)

View File

@@ -1,448 +0,0 @@
"""Feature request tools - search and create feature requests via Linear."""
import logging
from typing import Any
from pydantic import SecretStr
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
ErrorResponse,
FeatureRequestCreatedResponse,
FeatureRequestInfo,
FeatureRequestSearchResponse,
NoResultsResponse,
ToolResponseBase,
)
from backend.blocks.linear._api import LinearClient
from backend.data.model import APIKeyCredentials
from backend.data.user import get_user_email_by_id
from backend.util.settings import Settings
logger = logging.getLogger(__name__)
MAX_SEARCH_RESULTS = 10
# GraphQL queries/mutations
SEARCH_ISSUES_QUERY = """
query SearchFeatureRequests($term: String!, $filter: IssueFilter, $first: Int) {
searchIssues(term: $term, filter: $filter, first: $first) {
nodes {
id
identifier
title
description
}
}
}
"""
CUSTOMER_UPSERT_MUTATION = """
mutation CustomerUpsert($input: CustomerUpsertInput!) {
customerUpsert(input: $input) {
success
customer {
id
name
externalIds
}
}
}
"""
ISSUE_CREATE_MUTATION = """
mutation IssueCreate($input: IssueCreateInput!) {
issueCreate(input: $input) {
success
issue {
id
identifier
title
url
}
}
}
"""
CUSTOMER_NEED_CREATE_MUTATION = """
mutation CustomerNeedCreate($input: CustomerNeedCreateInput!) {
customerNeedCreate(input: $input) {
success
need {
id
body
customer {
id
name
}
issue {
id
identifier
title
url
}
}
}
}
"""
_settings: Settings | None = None
def _get_settings() -> Settings:
global _settings
if _settings is None:
_settings = Settings()
return _settings
def _get_linear_config() -> tuple[LinearClient, str, str]:
"""Return a configured Linear client, project ID, and team ID.
Raises RuntimeError if any required setting is missing.
"""
secrets = _get_settings().secrets
if not secrets.linear_api_key:
raise RuntimeError("LINEAR_API_KEY is not configured")
if not secrets.linear_feature_request_project_id:
raise RuntimeError("LINEAR_FEATURE_REQUEST_PROJECT_ID is not configured")
if not secrets.linear_feature_request_team_id:
raise RuntimeError("LINEAR_FEATURE_REQUEST_TEAM_ID is not configured")
credentials = APIKeyCredentials(
id="system-linear",
provider="linear",
api_key=SecretStr(secrets.linear_api_key),
title="System Linear API Key",
)
client = LinearClient(credentials=credentials)
return (
client,
secrets.linear_feature_request_project_id,
secrets.linear_feature_request_team_id,
)
class SearchFeatureRequestsTool(BaseTool):
"""Tool for searching existing feature requests in Linear."""
@property
def name(self) -> str:
return "search_feature_requests"
@property
def description(self) -> str:
return (
"Search existing feature requests to check if a similar request "
"already exists before creating a new one. Returns matching feature "
"requests with their ID, title, and description."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "Search term to find matching feature requests.",
},
},
"required": ["query"],
}
@property
def requires_auth(self) -> bool:
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
query = kwargs.get("query", "").strip()
session_id = session.session_id if session else None
if not query:
return ErrorResponse(
message="Please provide a search query.",
error="Missing query parameter",
session_id=session_id,
)
try:
client, project_id, _team_id = _get_linear_config()
data = await client.query(
SEARCH_ISSUES_QUERY,
{
"term": query,
"filter": {
"project": {"id": {"eq": project_id}},
},
"first": MAX_SEARCH_RESULTS,
},
)
nodes = data.get("searchIssues", {}).get("nodes", [])
if not nodes:
return NoResultsResponse(
message=f"No feature requests found matching '{query}'.",
suggestions=[
"Try different keywords",
"Use broader search terms",
"You can create a new feature request if none exists",
],
session_id=session_id,
)
results = [
FeatureRequestInfo(
id=node["id"],
identifier=node["identifier"],
title=node["title"],
description=node.get("description"),
)
for node in nodes
]
return FeatureRequestSearchResponse(
message=f"Found {len(results)} feature request(s) matching '{query}'.",
results=results,
count=len(results),
query=query,
session_id=session_id,
)
except Exception as e:
logger.exception("Failed to search feature requests")
return ErrorResponse(
message="Failed to search feature requests.",
error=str(e),
session_id=session_id,
)
class CreateFeatureRequestTool(BaseTool):
"""Tool for creating feature requests (or adding needs to existing ones)."""
@property
def name(self) -> str:
return "create_feature_request"
@property
def description(self) -> str:
return (
"Create a new feature request or add a customer need to an existing one. "
"Always search first with search_feature_requests to avoid duplicates. "
"If a matching request exists, pass its ID as existing_issue_id to add "
"the user's need to it instead of creating a duplicate."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"title": {
"type": "string",
"description": "Title for the feature request.",
},
"description": {
"type": "string",
"description": "Detailed description of what the user wants and why.",
},
"existing_issue_id": {
"type": "string",
"description": (
"If adding a need to an existing feature request, "
"provide its Linear issue ID (from search results). "
"Omit to create a new feature request."
),
},
},
"required": ["title", "description"],
}
@property
def requires_auth(self) -> bool:
return True
async def _find_or_create_customer(
self, client: LinearClient, user_id: str, name: str
) -> dict:
"""Find existing customer by user_id or create a new one via upsert.
Args:
client: Linear API client.
user_id: Stable external ID used to deduplicate customers.
name: Human-readable display name (e.g. the user's email).
"""
data = await client.mutate(
CUSTOMER_UPSERT_MUTATION,
{
"input": {
"name": name,
"externalId": user_id,
},
},
)
result = data.get("customerUpsert", {})
if not result.get("success"):
raise RuntimeError(f"Failed to upsert customer: {data}")
return result["customer"]
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
title = kwargs.get("title", "").strip()
description = kwargs.get("description", "").strip()
existing_issue_id = kwargs.get("existing_issue_id")
session_id = session.session_id if session else None
if not title or not description:
return ErrorResponse(
message="Both title and description are required.",
error="Missing required parameters",
session_id=session_id,
)
if not user_id:
return ErrorResponse(
message="Authentication required to create feature requests.",
error="Missing user_id",
session_id=session_id,
)
try:
client, project_id, team_id = _get_linear_config()
except Exception as e:
logger.exception("Failed to initialize Linear client")
return ErrorResponse(
message="Failed to create feature request.",
error=str(e),
session_id=session_id,
)
# Resolve a human-readable name (email) for the Linear customer record.
# Fall back to user_id if the lookup fails or returns None.
try:
customer_display_name = await get_user_email_by_id(user_id) or user_id
except Exception:
customer_display_name = user_id
# Step 1: Find or create customer for this user
try:
customer = await self._find_or_create_customer(
client, user_id, customer_display_name
)
customer_id = customer["id"]
customer_name = customer["name"]
except Exception as e:
logger.exception("Failed to upsert customer in Linear")
return ErrorResponse(
message="Failed to create feature request.",
error=str(e),
session_id=session_id,
)
# Step 2: Create or reuse issue
issue_id: str | None = None
issue_identifier: str | None = None
if existing_issue_id:
# Add need to existing issue - we still need the issue details for response
is_new_issue = False
issue_id = existing_issue_id
else:
# Create new issue in the feature requests project
try:
data = await client.mutate(
ISSUE_CREATE_MUTATION,
{
"input": {
"title": title,
"description": description,
"teamId": team_id,
"projectId": project_id,
},
},
)
result = data.get("issueCreate", {})
if not result.get("success"):
return ErrorResponse(
message="Failed to create feature request issue.",
error=str(data),
session_id=session_id,
)
issue = result["issue"]
issue_id = issue["id"]
issue_identifier = issue.get("identifier")
except Exception as e:
logger.exception("Failed to create feature request issue")
return ErrorResponse(
message="Failed to create feature request.",
error=str(e),
session_id=session_id,
)
is_new_issue = True
# Step 3: Create customer need on the issue
try:
data = await client.mutate(
CUSTOMER_NEED_CREATE_MUTATION,
{
"input": {
"customerId": customer_id,
"issueId": issue_id,
"body": description,
"priority": 0,
},
},
)
need_result = data.get("customerNeedCreate", {})
if not need_result.get("success"):
orphaned = (
{"issue_id": issue_id, "issue_identifier": issue_identifier}
if is_new_issue
else None
)
return ErrorResponse(
message="Failed to attach customer need to the feature request.",
error=str(data),
details=orphaned,
session_id=session_id,
)
need = need_result["need"]
issue_info = need["issue"]
except Exception as e:
logger.exception("Failed to create customer need")
orphaned = (
{"issue_id": issue_id, "issue_identifier": issue_identifier}
if is_new_issue
else None
)
return ErrorResponse(
message="Failed to attach customer need to the feature request.",
error=str(e),
details=orphaned,
session_id=session_id,
)
return FeatureRequestCreatedResponse(
message=(
f"{'Created new feature request' if is_new_issue else 'Added your request to existing feature request'}: "
f"{issue_info['title']}."
),
issue_id=issue_info["id"],
issue_identifier=issue_info["identifier"],
issue_title=issue_info["title"],
issue_url=issue_info.get("url", ""),
is_new_issue=is_new_issue,
customer_name=customer_name,
session_id=session_id,
)

View File

@@ -1,615 +0,0 @@
"""Tests for SearchFeatureRequestsTool and CreateFeatureRequestTool."""
from unittest.mock import AsyncMock, patch
import pytest
from backend.api.features.chat.tools.feature_requests import (
CreateFeatureRequestTool,
SearchFeatureRequestsTool,
)
from backend.api.features.chat.tools.models import (
ErrorResponse,
FeatureRequestCreatedResponse,
FeatureRequestSearchResponse,
NoResultsResponse,
)
from ._test_data import make_session
_TEST_USER_ID = "test-user-feature-requests"
_TEST_USER_EMAIL = "testuser@example.com"
# ---------------------------------------------------------------------------
# Helpers
# ---------------------------------------------------------------------------
_FAKE_PROJECT_ID = "test-project-id"
_FAKE_TEAM_ID = "test-team-id"
def _mock_linear_config(*, query_return=None, mutate_return=None):
"""Return a patched _get_linear_config that yields a mock LinearClient."""
client = AsyncMock()
if query_return is not None:
client.query.return_value = query_return
if mutate_return is not None:
client.mutate.return_value = mutate_return
return (
patch(
"backend.api.features.chat.tools.feature_requests._get_linear_config",
return_value=(client, _FAKE_PROJECT_ID, _FAKE_TEAM_ID),
),
client,
)
def _search_response(nodes: list[dict]) -> dict:
return {"searchIssues": {"nodes": nodes}}
def _customer_upsert_response(
customer_id: str = "cust-1", name: str = _TEST_USER_EMAIL, success: bool = True
) -> dict:
return {
"customerUpsert": {
"success": success,
"customer": {"id": customer_id, "name": name, "externalIds": [name]},
}
}
def _issue_create_response(
issue_id: str = "issue-1",
identifier: str = "FR-1",
title: str = "New Feature",
success: bool = True,
) -> dict:
return {
"issueCreate": {
"success": success,
"issue": {
"id": issue_id,
"identifier": identifier,
"title": title,
"url": f"https://linear.app/issue/{identifier}",
},
}
}
def _need_create_response(
need_id: str = "need-1",
issue_id: str = "issue-1",
identifier: str = "FR-1",
title: str = "New Feature",
success: bool = True,
) -> dict:
return {
"customerNeedCreate": {
"success": success,
"need": {
"id": need_id,
"body": "description",
"customer": {"id": "cust-1", "name": _TEST_USER_EMAIL},
"issue": {
"id": issue_id,
"identifier": identifier,
"title": title,
"url": f"https://linear.app/issue/{identifier}",
},
},
}
}
# ===========================================================================
# SearchFeatureRequestsTool
# ===========================================================================
class TestSearchFeatureRequestsTool:
"""Tests for SearchFeatureRequestsTool._execute."""
@pytest.mark.asyncio(loop_scope="session")
async def test_successful_search(self):
session = make_session(user_id=_TEST_USER_ID)
nodes = [
{
"id": "id-1",
"identifier": "FR-1",
"title": "Dark mode",
"description": "Add dark mode support",
},
{
"id": "id-2",
"identifier": "FR-2",
"title": "Dark theme",
"description": None,
},
]
patcher, _ = _mock_linear_config(query_return=_search_response(nodes))
with patcher:
tool = SearchFeatureRequestsTool()
resp = await tool._execute(
user_id=_TEST_USER_ID, session=session, query="dark mode"
)
assert isinstance(resp, FeatureRequestSearchResponse)
assert resp.count == 2
assert resp.results[0].id == "id-1"
assert resp.results[1].identifier == "FR-2"
assert resp.query == "dark mode"
@pytest.mark.asyncio(loop_scope="session")
async def test_no_results(self):
session = make_session(user_id=_TEST_USER_ID)
patcher, _ = _mock_linear_config(query_return=_search_response([]))
with patcher:
tool = SearchFeatureRequestsTool()
resp = await tool._execute(
user_id=_TEST_USER_ID, session=session, query="nonexistent"
)
assert isinstance(resp, NoResultsResponse)
assert "nonexistent" in resp.message
@pytest.mark.asyncio(loop_scope="session")
async def test_empty_query_returns_error(self):
session = make_session(user_id=_TEST_USER_ID)
tool = SearchFeatureRequestsTool()
resp = await tool._execute(user_id=_TEST_USER_ID, session=session, query=" ")
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "query" in resp.error.lower()
@pytest.mark.asyncio(loop_scope="session")
async def test_missing_query_returns_error(self):
session = make_session(user_id=_TEST_USER_ID)
tool = SearchFeatureRequestsTool()
resp = await tool._execute(user_id=_TEST_USER_ID, session=session)
assert isinstance(resp, ErrorResponse)
@pytest.mark.asyncio(loop_scope="session")
async def test_api_failure(self):
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.query.side_effect = RuntimeError("Linear API down")
with patcher:
tool = SearchFeatureRequestsTool()
resp = await tool._execute(
user_id=_TEST_USER_ID, session=session, query="test"
)
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "Linear API down" in resp.error
@pytest.mark.asyncio(loop_scope="session")
async def test_malformed_node_returns_error(self):
"""A node missing required keys should be caught by the try/except."""
session = make_session(user_id=_TEST_USER_ID)
# Node missing 'identifier' key
bad_nodes = [{"id": "id-1", "title": "Missing identifier"}]
patcher, _ = _mock_linear_config(query_return=_search_response(bad_nodes))
with patcher:
tool = SearchFeatureRequestsTool()
resp = await tool._execute(
user_id=_TEST_USER_ID, session=session, query="test"
)
assert isinstance(resp, ErrorResponse)
@pytest.mark.asyncio(loop_scope="session")
async def test_linear_client_init_failure(self):
session = make_session(user_id=_TEST_USER_ID)
with patch(
"backend.api.features.chat.tools.feature_requests._get_linear_config",
side_effect=RuntimeError("No API key"),
):
tool = SearchFeatureRequestsTool()
resp = await tool._execute(
user_id=_TEST_USER_ID, session=session, query="test"
)
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "No API key" in resp.error
# ===========================================================================
# CreateFeatureRequestTool
# ===========================================================================
class TestCreateFeatureRequestTool:
"""Tests for CreateFeatureRequestTool._execute."""
@pytest.fixture(autouse=True)
def _patch_email_lookup(self):
with patch(
"backend.api.features.chat.tools.feature_requests.get_user_email_by_id",
new_callable=AsyncMock,
return_value=_TEST_USER_EMAIL,
):
yield
# ---- Happy paths -------------------------------------------------------
@pytest.mark.asyncio(loop_scope="session")
async def test_create_new_issue(self):
"""Full happy path: upsert customer -> create issue -> attach need."""
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
_issue_create_response(),
_need_create_response(),
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="New Feature",
description="Please add this",
)
assert isinstance(resp, FeatureRequestCreatedResponse)
assert resp.is_new_issue is True
assert resp.issue_identifier == "FR-1"
assert resp.customer_name == _TEST_USER_EMAIL
assert client.mutate.call_count == 3
@pytest.mark.asyncio(loop_scope="session")
async def test_add_need_to_existing_issue(self):
"""When existing_issue_id is provided, skip issue creation."""
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
_need_create_response(issue_id="existing-1", identifier="FR-99"),
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Existing Feature",
description="Me too",
existing_issue_id="existing-1",
)
assert isinstance(resp, FeatureRequestCreatedResponse)
assert resp.is_new_issue is False
assert resp.issue_id == "existing-1"
# Only 2 mutations: customer upsert + need create (no issue create)
assert client.mutate.call_count == 2
# ---- Validation errors -------------------------------------------------
@pytest.mark.asyncio(loop_scope="session")
async def test_missing_title(self):
session = make_session(user_id=_TEST_USER_ID)
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="",
description="some desc",
)
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "required" in resp.error.lower()
@pytest.mark.asyncio(loop_scope="session")
async def test_missing_description(self):
session = make_session(user_id=_TEST_USER_ID)
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Some title",
description="",
)
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "required" in resp.error.lower()
@pytest.mark.asyncio(loop_scope="session")
async def test_missing_user_id(self):
session = make_session(user_id=_TEST_USER_ID)
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=None,
session=session,
title="Some title",
description="Some desc",
)
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "user_id" in resp.error.lower()
# ---- Linear client init failure ----------------------------------------
@pytest.mark.asyncio(loop_scope="session")
async def test_linear_client_init_failure(self):
session = make_session(user_id=_TEST_USER_ID)
with patch(
"backend.api.features.chat.tools.feature_requests._get_linear_config",
side_effect=RuntimeError("No API key"),
):
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "No API key" in resp.error
# ---- Customer upsert failures ------------------------------------------
@pytest.mark.asyncio(loop_scope="session")
async def test_customer_upsert_api_error(self):
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = RuntimeError("Customer API error")
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "Customer API error" in resp.error
@pytest.mark.asyncio(loop_scope="session")
async def test_customer_upsert_not_success(self):
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.return_value = _customer_upsert_response(success=False)
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
@pytest.mark.asyncio(loop_scope="session")
async def test_customer_malformed_response(self):
"""Customer dict missing 'id' key should be caught."""
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
# success=True but customer has no 'id'
client.mutate.return_value = {
"customerUpsert": {
"success": True,
"customer": {"name": _TEST_USER_ID},
}
}
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
# ---- Issue creation failures -------------------------------------------
@pytest.mark.asyncio(loop_scope="session")
async def test_issue_create_api_error(self):
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
RuntimeError("Issue create failed"),
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "Issue create failed" in resp.error
@pytest.mark.asyncio(loop_scope="session")
async def test_issue_create_not_success(self):
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
_issue_create_response(success=False),
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
assert "Failed to create feature request issue" in resp.message
@pytest.mark.asyncio(loop_scope="session")
async def test_issue_create_malformed_response(self):
"""issueCreate success=True but missing 'issue' key."""
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
{"issueCreate": {"success": True}}, # no 'issue' key
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
# ---- Customer need attachment failures ---------------------------------
@pytest.mark.asyncio(loop_scope="session")
async def test_need_create_api_error_new_issue(self):
"""Need creation fails after new issue was created -> orphaned issue info."""
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
_issue_create_response(issue_id="orphan-1", identifier="FR-10"),
RuntimeError("Need attach failed"),
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "Need attach failed" in resp.error
assert resp.details is not None
assert resp.details["issue_id"] == "orphan-1"
assert resp.details["issue_identifier"] == "FR-10"
@pytest.mark.asyncio(loop_scope="session")
async def test_need_create_api_error_existing_issue(self):
"""Need creation fails on existing issue -> no orphaned info."""
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
RuntimeError("Need attach failed"),
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
existing_issue_id="existing-1",
)
assert isinstance(resp, ErrorResponse)
assert resp.details is None
@pytest.mark.asyncio(loop_scope="session")
async def test_need_create_not_success_includes_orphaned_info(self):
"""customerNeedCreate returns success=False -> includes orphaned issue."""
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
_issue_create_response(issue_id="orphan-2", identifier="FR-20"),
_need_create_response(success=False),
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
assert resp.details is not None
assert resp.details["issue_id"] == "orphan-2"
assert resp.details["issue_identifier"] == "FR-20"
@pytest.mark.asyncio(loop_scope="session")
async def test_need_create_not_success_existing_issue_no_details(self):
"""customerNeedCreate fails on existing issue -> no orphaned info."""
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
_need_create_response(success=False),
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
existing_issue_id="existing-1",
)
assert isinstance(resp, ErrorResponse)
assert resp.details is None
@pytest.mark.asyncio(loop_scope="session")
async def test_need_create_malformed_response(self):
"""need_result missing 'need' key after success=True."""
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
_issue_create_response(),
{"customerNeedCreate": {"success": True}}, # no 'need' key
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
assert resp.details is not None
assert resp.details["issue_id"] == "issue-1"

View File

@@ -7,38 +7,16 @@ from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool, ToolResponseBase
from backend.api.features.chat.tools.models import (
BlockInfoSummary,
BlockInputFieldInfo,
BlockListResponse,
ErrorResponse,
NoResultsResponse,
)
from backend.api.features.store.hybrid_search import unified_hybrid_search
from backend.blocks import get_block
from backend.blocks._base import BlockType
from backend.data.block import get_block
logger = logging.getLogger(__name__)
_TARGET_RESULTS = 10
# Over-fetch to compensate for post-hoc filtering of graph-only blocks.
# 40 is 2x current removed; speed of query 10 vs 40 is minimial
_OVERFETCH_PAGE_SIZE = 40
# Block types that only work within graphs and cannot run standalone in CoPilot.
COPILOT_EXCLUDED_BLOCK_TYPES = {
BlockType.INPUT, # Graph interface definition - data enters via chat, not graph inputs
BlockType.OUTPUT, # Graph interface definition - data exits via chat, not graph outputs
BlockType.WEBHOOK, # Wait for external events - would hang forever in CoPilot
BlockType.WEBHOOK_MANUAL, # Same as WEBHOOK
BlockType.NOTE, # Visual annotation only - no runtime behavior
BlockType.HUMAN_IN_THE_LOOP, # Pauses for human approval - CoPilot IS human-in-the-loop
BlockType.AGENT, # AgentExecutorBlock requires execution_context - use run_agent tool
}
# Specific block IDs excluded from CoPilot (STANDARD type but still require graph context)
COPILOT_EXCLUDED_BLOCK_IDS = {
# SmartDecisionMakerBlock - dynamically discovers downstream blocks via graph topology
"3b191d9f-356f-482d-8238-ba04b6d18381",
}
class FindBlockTool(BaseTool):
"""Tool for searching available blocks."""
@@ -54,8 +32,7 @@ class FindBlockTool(BaseTool):
"Blocks are reusable components that perform specific tasks like "
"sending emails, making API calls, processing text, etc. "
"IMPORTANT: Use this tool FIRST to get the block's 'id' before calling run_block. "
"The response includes each block's id, name, and description. "
"Call run_block with the block's id **with no inputs** to see detailed inputs/outputs and execute it."
"The response includes each block's id, required_inputs, and input_schema."
)
@property
@@ -111,7 +88,7 @@ class FindBlockTool(BaseTool):
query=query,
content_types=[ContentType.BLOCK],
page=1,
page_size=_OVERFETCH_PAGE_SIZE,
page_size=10,
)
if not results:
@@ -124,44 +101,67 @@ class FindBlockTool(BaseTool):
session_id=session_id,
)
# Enrich results with block information
# Enrich results with full block information
blocks: list[BlockInfoSummary] = []
for result in results:
block_id = result["content_id"]
block = get_block(block_id)
# Skip disabled blocks
if not block or block.disabled:
continue
if block and not block.disabled:
# Get input/output schemas
input_schema = {}
output_schema = {}
try:
input_schema = block.input_schema.jsonschema()
except Exception:
pass
try:
output_schema = block.output_schema.jsonschema()
except Exception:
pass
# Skip blocks excluded from CoPilot (graph-only blocks)
if (
block.block_type in COPILOT_EXCLUDED_BLOCK_TYPES
or block.id in COPILOT_EXCLUDED_BLOCK_IDS
):
continue
# Get categories from block instance
categories = []
if hasattr(block, "categories") and block.categories:
categories = [cat.value for cat in block.categories]
blocks.append(
BlockInfoSummary(
id=block_id,
name=block.name,
description=block.description or "",
categories=[c.value for c in block.categories],
# Extract required inputs for easier use
required_inputs: list[BlockInputFieldInfo] = []
if input_schema:
properties = input_schema.get("properties", {})
required_fields = set(input_schema.get("required", []))
# Get credential field names to exclude from required inputs
credentials_fields = set(
block.input_schema.get_credentials_fields().keys()
)
for field_name, field_schema in properties.items():
# Skip credential fields - they're handled separately
if field_name in credentials_fields:
continue
required_inputs.append(
BlockInputFieldInfo(
name=field_name,
type=field_schema.get("type", "string"),
description=field_schema.get("description", ""),
required=field_name in required_fields,
default=field_schema.get("default"),
)
)
blocks.append(
BlockInfoSummary(
id=block_id,
name=block.name,
description=block.description or "",
categories=categories,
input_schema=input_schema,
output_schema=output_schema,
required_inputs=required_inputs,
)
)
)
if len(blocks) >= _TARGET_RESULTS:
break
if blocks and len(blocks) < _TARGET_RESULTS:
logger.debug(
"find_block returned %d/%d results for query '%s' "
"(filtered %d excluded/disabled blocks)",
len(blocks),
_TARGET_RESULTS,
query,
len(results) - len(blocks),
)
if not blocks:
return NoResultsResponse(
@@ -175,7 +175,8 @@ class FindBlockTool(BaseTool):
return BlockListResponse(
message=(
f"Found {len(blocks)} block(s) matching '{query}'. "
"To see a block's inputs/outputs and execute it, use run_block with the block's 'id' - providing no inputs."
"To execute a block, use run_block with the block's 'id' field "
"and provide 'input_data' matching the block's input_schema."
),
blocks=blocks,
count=len(blocks),

View File

@@ -1,386 +0,0 @@
"""Tests for block filtering in FindBlockTool."""
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from backend.api.features.chat.tools.find_block import (
COPILOT_EXCLUDED_BLOCK_IDS,
COPILOT_EXCLUDED_BLOCK_TYPES,
FindBlockTool,
)
from backend.api.features.chat.tools.models import BlockListResponse
from backend.blocks._base import BlockType
from ._test_data import make_session
_TEST_USER_ID = "test-user-find-block"
def make_mock_block(
block_id: str,
name: str,
block_type: BlockType,
disabled: bool = False,
input_schema: dict | None = None,
output_schema: dict | None = None,
credentials_fields: dict | None = None,
):
"""Create a mock block for testing."""
mock = MagicMock()
mock.id = block_id
mock.name = name
mock.description = f"{name} description"
mock.block_type = block_type
mock.disabled = disabled
mock.input_schema = MagicMock()
mock.input_schema.jsonschema.return_value = input_schema or {
"properties": {},
"required": [],
}
mock.input_schema.get_credentials_fields.return_value = credentials_fields or {}
mock.output_schema = MagicMock()
mock.output_schema.jsonschema.return_value = output_schema or {}
mock.categories = []
return mock
class TestFindBlockFiltering:
"""Tests for block filtering in FindBlockTool."""
def test_excluded_block_types_contains_expected_types(self):
"""Verify COPILOT_EXCLUDED_BLOCK_TYPES contains all graph-only types."""
assert BlockType.INPUT in COPILOT_EXCLUDED_BLOCK_TYPES
assert BlockType.OUTPUT in COPILOT_EXCLUDED_BLOCK_TYPES
assert BlockType.WEBHOOK in COPILOT_EXCLUDED_BLOCK_TYPES
assert BlockType.WEBHOOK_MANUAL in COPILOT_EXCLUDED_BLOCK_TYPES
assert BlockType.NOTE in COPILOT_EXCLUDED_BLOCK_TYPES
assert BlockType.HUMAN_IN_THE_LOOP in COPILOT_EXCLUDED_BLOCK_TYPES
assert BlockType.AGENT in COPILOT_EXCLUDED_BLOCK_TYPES
def test_excluded_block_ids_contains_smart_decision_maker(self):
"""Verify SmartDecisionMakerBlock is in COPILOT_EXCLUDED_BLOCK_IDS."""
assert "3b191d9f-356f-482d-8238-ba04b6d18381" in COPILOT_EXCLUDED_BLOCK_IDS
@pytest.mark.asyncio(loop_scope="session")
async def test_excluded_block_type_filtered_from_results(self):
"""Verify blocks with excluded BlockTypes are filtered from search results."""
session = make_session(user_id=_TEST_USER_ID)
# Mock search returns an INPUT block (excluded) and a STANDARD block (included)
search_results = [
{"content_id": "input-block-id", "score": 0.9},
{"content_id": "standard-block-id", "score": 0.8},
]
input_block = make_mock_block("input-block-id", "Input Block", BlockType.INPUT)
standard_block = make_mock_block(
"standard-block-id", "HTTP Request", BlockType.STANDARD
)
def mock_get_block(block_id):
return {
"input-block-id": input_block,
"standard-block-id": standard_block,
}.get(block_id)
with patch(
"backend.api.features.chat.tools.find_block.unified_hybrid_search",
new_callable=AsyncMock,
return_value=(search_results, 2),
):
with patch(
"backend.api.features.chat.tools.find_block.get_block",
side_effect=mock_get_block,
):
tool = FindBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID, session=session, query="test"
)
# Should only return the standard block, not the INPUT block
assert isinstance(response, BlockListResponse)
assert len(response.blocks) == 1
assert response.blocks[0].id == "standard-block-id"
@pytest.mark.asyncio(loop_scope="session")
async def test_excluded_block_id_filtered_from_results(self):
"""Verify SmartDecisionMakerBlock is filtered from search results."""
session = make_session(user_id=_TEST_USER_ID)
smart_decision_id = "3b191d9f-356f-482d-8238-ba04b6d18381"
search_results = [
{"content_id": smart_decision_id, "score": 0.9},
{"content_id": "normal-block-id", "score": 0.8},
]
# SmartDecisionMakerBlock has STANDARD type but is excluded by ID
smart_block = make_mock_block(
smart_decision_id, "Smart Decision Maker", BlockType.STANDARD
)
normal_block = make_mock_block(
"normal-block-id", "Normal Block", BlockType.STANDARD
)
def mock_get_block(block_id):
return {
smart_decision_id: smart_block,
"normal-block-id": normal_block,
}.get(block_id)
with patch(
"backend.api.features.chat.tools.find_block.unified_hybrid_search",
new_callable=AsyncMock,
return_value=(search_results, 2),
):
with patch(
"backend.api.features.chat.tools.find_block.get_block",
side_effect=mock_get_block,
):
tool = FindBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID, session=session, query="decision"
)
# Should only return normal block, not SmartDecisionMakerBlock
assert isinstance(response, BlockListResponse)
assert len(response.blocks) == 1
assert response.blocks[0].id == "normal-block-id"
@pytest.mark.asyncio(loop_scope="session")
async def test_response_size_average_chars_per_block(self):
"""Measure average chars per block in the serialized response."""
session = make_session(user_id=_TEST_USER_ID)
# Realistic block definitions modeled after real blocks
block_defs = [
{
"id": "http-block-id",
"name": "Send Web Request",
"input_schema": {
"properties": {
"url": {
"type": "string",
"description": "The URL to send the request to",
},
"method": {
"type": "string",
"description": "The HTTP method to use",
},
"headers": {
"type": "object",
"description": "Headers to include in the request",
},
"json_format": {
"type": "boolean",
"description": "If true, send the body as JSON",
},
"body": {
"type": "object",
"description": "Form/JSON body payload",
},
"credentials": {
"type": "object",
"description": "HTTP credentials",
},
},
"required": ["url", "method"],
},
"output_schema": {
"properties": {
"response": {
"type": "object",
"description": "The response from the server",
},
"client_error": {
"type": "object",
"description": "Errors on 4xx status codes",
},
"server_error": {
"type": "object",
"description": "Errors on 5xx status codes",
},
"error": {
"type": "string",
"description": "Errors for all other exceptions",
},
},
},
"credentials_fields": {"credentials": True},
},
{
"id": "email-block-id",
"name": "Send Email",
"input_schema": {
"properties": {
"to_email": {
"type": "string",
"description": "Recipient email address",
},
"subject": {
"type": "string",
"description": "Subject of the email",
},
"body": {
"type": "string",
"description": "Body of the email",
},
"config": {
"type": "object",
"description": "SMTP Config",
},
"credentials": {
"type": "object",
"description": "SMTP credentials",
},
},
"required": ["to_email", "subject", "body", "credentials"],
},
"output_schema": {
"properties": {
"status": {
"type": "string",
"description": "Status of the email sending operation",
},
"error": {
"type": "string",
"description": "Error message if sending failed",
},
},
},
"credentials_fields": {"credentials": True},
},
{
"id": "claude-code-block-id",
"name": "Claude Code",
"input_schema": {
"properties": {
"e2b_credentials": {
"type": "object",
"description": "API key for E2B platform",
},
"anthropic_credentials": {
"type": "object",
"description": "API key for Anthropic",
},
"prompt": {
"type": "string",
"description": "Task or instruction for Claude Code",
},
"timeout": {
"type": "integer",
"description": "Sandbox timeout in seconds",
},
"setup_commands": {
"type": "array",
"description": "Shell commands to run before execution",
},
"working_directory": {
"type": "string",
"description": "Working directory for Claude Code",
},
"session_id": {
"type": "string",
"description": "Session ID to resume a conversation",
},
"sandbox_id": {
"type": "string",
"description": "Sandbox ID to reconnect to",
},
"conversation_history": {
"type": "string",
"description": "Previous conversation history",
},
"dispose_sandbox": {
"type": "boolean",
"description": "Whether to dispose sandbox after execution",
},
},
"required": [
"e2b_credentials",
"anthropic_credentials",
"prompt",
],
},
"output_schema": {
"properties": {
"response": {
"type": "string",
"description": "Output from Claude Code execution",
},
"files": {
"type": "array",
"description": "Files created/modified by Claude Code",
},
"conversation_history": {
"type": "string",
"description": "Full conversation history",
},
"session_id": {
"type": "string",
"description": "Session ID for this conversation",
},
"sandbox_id": {
"type": "string",
"description": "ID of the sandbox instance",
},
"error": {
"type": "string",
"description": "Error message if execution failed",
},
},
},
"credentials_fields": {
"e2b_credentials": True,
"anthropic_credentials": True,
},
},
]
search_results = [
{"content_id": d["id"], "score": 0.9 - i * 0.1}
for i, d in enumerate(block_defs)
]
mock_blocks = {
d["id"]: make_mock_block(
block_id=d["id"],
name=d["name"],
block_type=BlockType.STANDARD,
input_schema=d["input_schema"],
output_schema=d["output_schema"],
credentials_fields=d["credentials_fields"],
)
for d in block_defs
}
with patch(
"backend.api.features.chat.tools.find_block.unified_hybrid_search",
new_callable=AsyncMock,
return_value=(search_results, len(search_results)),
), patch(
"backend.api.features.chat.tools.find_block.get_block",
side_effect=lambda bid: mock_blocks.get(bid),
):
tool = FindBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID, session=session, query="test"
)
assert isinstance(response, BlockListResponse)
assert response.count == len(block_defs)
total_chars = len(response.model_dump_json())
avg_chars = total_chars // response.count
# Print for visibility in test output
print(f"\nTotal response size: {total_chars} chars")
print(f"Number of blocks: {response.count}")
print(f"Average chars per block: {avg_chars}")
# The old response was ~90K for 10 blocks (~9K per block).
# Previous optimization reduced it to ~1.5K per block (no raw JSON schemas).
# Now with only id/name/description, we expect ~300 chars per block.
assert avg_chars < 500, (
f"Average chars per block ({avg_chars}) exceeds 500. "
f"Total response: {total_chars} chars for {response.count} blocks."
)

View File

@@ -1,29 +0,0 @@
"""Shared helpers for chat tools."""
from typing import Any
def get_inputs_from_schema(
input_schema: dict[str, Any],
exclude_fields: set[str] | None = None,
) -> list[dict[str, Any]]:
"""Extract input field info from JSON schema."""
if not isinstance(input_schema, dict):
return []
exclude = exclude_fields or set()
properties = input_schema.get("properties", {})
required = set(input_schema.get("required", []))
return [
{
"name": name,
"title": schema.get("title", name),
"type": schema.get("type", "string"),
"description": schema.get("description", ""),
"required": name in required,
"default": schema.get("default"),
}
for name, schema in properties.items()
if name not in exclude
]

View File

@@ -25,7 +25,6 @@ class ResponseType(str, Enum):
AGENT_SAVED = "agent_saved"
CLARIFICATION_NEEDED = "clarification_needed"
BLOCK_LIST = "block_list"
BLOCK_DETAILS = "block_details"
BLOCK_OUTPUT = "block_output"
DOC_SEARCH_RESULTS = "doc_search_results"
DOC_PAGE = "doc_page"
@@ -41,15 +40,6 @@ class ResponseType(str, Enum):
OPERATION_IN_PROGRESS = "operation_in_progress"
# Input validation
INPUT_VALIDATION_ERROR = "input_validation_error"
# Web fetch
WEB_FETCH = "web_fetch"
# Code execution
BASH_EXEC = "bash_exec"
# Operation status check
OPERATION_STATUS = "operation_status"
# Feature request types
FEATURE_REQUEST_SEARCH = "feature_request_search"
FEATURE_REQUEST_CREATED = "feature_request_created"
# Base response model
@@ -345,17 +335,11 @@ class BlockInfoSummary(BaseModel):
name: str
description: str
categories: list[str]
input_schema: dict[str, Any] = Field(
default_factory=dict,
description="Full JSON schema for block inputs",
)
output_schema: dict[str, Any] = Field(
default_factory=dict,
description="Full JSON schema for block outputs",
)
input_schema: dict[str, Any]
output_schema: dict[str, Any]
required_inputs: list[BlockInputFieldInfo] = Field(
default_factory=list,
description="List of input fields for this block",
description="List of required input fields for this block",
)
@@ -368,29 +352,10 @@ class BlockListResponse(ToolResponseBase):
query: str
usage_hint: str = Field(
default="To execute a block, call run_block with block_id set to the block's "
"'id' field and input_data containing the fields listed in required_inputs."
"'id' field and input_data containing the required fields from input_schema."
)
class BlockDetails(BaseModel):
"""Detailed block information."""
id: str
name: str
description: str
inputs: dict[str, Any] = {}
outputs: dict[str, Any] = {}
credentials: list[CredentialsMetaInput] = []
class BlockDetailsResponse(ToolResponseBase):
"""Response for block details (first run_block attempt)."""
type: ResponseType = ResponseType.BLOCK_DETAILS
block: BlockDetails
user_authenticated: bool = False
class BlockOutputResponse(ToolResponseBase):
"""Response for run_block tool."""
@@ -456,55 +421,3 @@ class AsyncProcessingResponse(ToolResponseBase):
status: str = "accepted" # Must be "accepted" for detection
operation_id: str | None = None
task_id: str | None = None
class WebFetchResponse(ToolResponseBase):
"""Response for web_fetch tool."""
type: ResponseType = ResponseType.WEB_FETCH
url: str
status_code: int
content_type: str
content: str
truncated: bool = False
class BashExecResponse(ToolResponseBase):
"""Response for bash_exec tool."""
type: ResponseType = ResponseType.BASH_EXEC
stdout: str
stderr: str
exit_code: int
timed_out: bool = False
# Feature request models
class FeatureRequestInfo(BaseModel):
"""Information about a feature request issue."""
id: str
identifier: str
title: str
description: str | None = None
class FeatureRequestSearchResponse(ToolResponseBase):
"""Response for search_feature_requests tool."""
type: ResponseType = ResponseType.FEATURE_REQUEST_SEARCH
results: list[FeatureRequestInfo]
count: int
query: str
class FeatureRequestCreatedResponse(ToolResponseBase):
"""Response for create_feature_request tool."""
type: ResponseType = ResponseType.FEATURE_REQUEST_CREATED
issue_id: str
issue_identifier: str
issue_title: str
issue_url: str
is_new_issue: bool # False if added to existing
customer_name: str

View File

@@ -24,7 +24,6 @@ from backend.util.timezone_utils import (
)
from .base import BaseTool
from .helpers import get_inputs_from_schema
from .models import (
AgentDetails,
AgentDetailsResponse,
@@ -262,7 +261,7 @@ class RunAgentTool(BaseTool):
),
requirements={
"credentials": requirements_creds_list,
"inputs": get_inputs_from_schema(graph.input_schema),
"inputs": self._get_inputs_list(graph.input_schema),
"execution_modes": self._get_execution_modes(graph),
},
),
@@ -370,6 +369,22 @@ class RunAgentTool(BaseTool):
session_id=session_id,
)
def _get_inputs_list(self, input_schema: dict[str, Any]) -> list[dict[str, Any]]:
"""Extract inputs list from schema."""
inputs_list = []
if isinstance(input_schema, dict) and "properties" in input_schema:
for field_name, field_schema in input_schema["properties"].items():
inputs_list.append(
{
"name": field_name,
"title": field_schema.get("title", field_name),
"type": field_schema.get("type", "string"),
"description": field_schema.get("description", ""),
"required": field_name in input_schema.get("required", []),
}
)
return inputs_list
def _get_execution_modes(self, graph: GraphModel) -> list[str]:
"""Get available execution modes for the graph."""
trigger_info = graph.trigger_setup_info
@@ -383,7 +398,7 @@ class RunAgentTool(BaseTool):
suffix: str,
) -> str:
"""Build a message describing available inputs for an agent."""
inputs_list = get_inputs_from_schema(graph.input_schema)
inputs_list = self._get_inputs_list(graph.input_schema)
required_names = [i["name"] for i in inputs_list if i["required"]]
optional_names = [i["name"] for i in inputs_list if not i["required"]]

View File

@@ -8,35 +8,23 @@ from typing import Any
from pydantic_core import PydanticUndefined
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.find_block import (
COPILOT_EXCLUDED_BLOCK_IDS,
COPILOT_EXCLUDED_BLOCK_TYPES,
)
from backend.blocks import get_block
from backend.blocks._base import AnyBlockSchema
from backend.data.block import get_block
from backend.data.execution import ExecutionContext
from backend.data.model import CredentialsFieldInfo, CredentialsMetaInput
from backend.data.model import CredentialsMetaInput
from backend.data.workspace import get_or_create_workspace
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.util.exceptions import BlockError
from .base import BaseTool
from .helpers import get_inputs_from_schema
from .models import (
BlockDetails,
BlockDetailsResponse,
BlockOutputResponse,
ErrorResponse,
InputValidationErrorResponse,
SetupInfo,
SetupRequirementsResponse,
ToolResponseBase,
UserReadiness,
)
from .utils import (
build_missing_credentials_from_field_info,
match_credentials_to_requirements,
)
from .utils import build_missing_credentials_from_field_info
logger = logging.getLogger(__name__)
@@ -54,8 +42,8 @@ class RunBlockTool(BaseTool):
"Execute a specific block with the provided input data. "
"IMPORTANT: You MUST call find_block first to get the block's 'id' - "
"do NOT guess or make up block IDs. "
"On first attempt (without input_data), returns detailed schema showing "
"required inputs and outputs. Then call again with proper input_data to execute."
"Use the 'id' from find_block results and provide input_data "
"matching the block's required_inputs."
)
@property
@@ -70,19 +58,11 @@ class RunBlockTool(BaseTool):
"NEVER guess this - always get it from find_block first."
),
},
"block_name": {
"type": "string",
"description": (
"The block's human-readable name from find_block results. "
"Used for display purposes in the UI."
),
},
"input_data": {
"type": "object",
"description": (
"Input values for the block. "
"First call with empty {} to see the block's schema, "
"then call again with proper values to execute."
"Input values for the block. Use the 'required_inputs' field "
"from find_block to see what fields are needed."
),
},
},
@@ -93,6 +73,91 @@ class RunBlockTool(BaseTool):
def requires_auth(self) -> bool:
return True
async def _check_block_credentials(
self,
user_id: str,
block: Any,
input_data: dict[str, Any] | None = None,
) -> tuple[dict[str, CredentialsMetaInput], list[CredentialsMetaInput]]:
"""
Check if user has required credentials for a block.
Args:
user_id: User ID
block: Block to check credentials for
input_data: Input data for the block (used to determine provider via discriminator)
Returns:
tuple[matched_credentials, missing_credentials]
"""
matched_credentials: dict[str, CredentialsMetaInput] = {}
missing_credentials: list[CredentialsMetaInput] = []
input_data = input_data or {}
# Get credential field info from block's input schema
credentials_fields_info = block.input_schema.get_credentials_fields_info()
if not credentials_fields_info:
return matched_credentials, missing_credentials
# Get user's available credentials
creds_manager = IntegrationCredentialsManager()
available_creds = await creds_manager.store.get_all_creds(user_id)
for field_name, field_info in credentials_fields_info.items():
effective_field_info = field_info
if field_info.discriminator and field_info.discriminator_mapping:
# Get discriminator from input, falling back to schema default
discriminator_value = input_data.get(field_info.discriminator)
if discriminator_value is None:
field = block.input_schema.model_fields.get(
field_info.discriminator
)
if field and field.default is not PydanticUndefined:
discriminator_value = field.default
if (
discriminator_value
and discriminator_value in field_info.discriminator_mapping
):
effective_field_info = field_info.discriminate(discriminator_value)
logger.debug(
f"Discriminated provider for {field_name}: "
f"{discriminator_value} -> {effective_field_info.provider}"
)
matching_cred = next(
(
cred
for cred in available_creds
if cred.provider in effective_field_info.provider
and cred.type in effective_field_info.supported_types
),
None,
)
if matching_cred:
matched_credentials[field_name] = CredentialsMetaInput(
id=matching_cred.id,
provider=matching_cred.provider, # type: ignore
type=matching_cred.type,
title=matching_cred.title,
)
else:
# Create a placeholder for the missing credential
provider = next(iter(effective_field_info.provider), "unknown")
cred_type = next(iter(effective_field_info.supported_types), "api_key")
missing_credentials.append(
CredentialsMetaInput(
id=field_name,
provider=provider, # type: ignore
type=cred_type, # type: ignore
title=field_name.replace("_", " ").title(),
)
)
return matched_credentials, missing_credentials
async def _execute(
self,
user_id: str | None,
@@ -147,54 +212,13 @@ class RunBlockTool(BaseTool):
session_id=session_id,
)
# Check if block is excluded from CoPilot (graph-only blocks)
if (
block.block_type in COPILOT_EXCLUDED_BLOCK_TYPES
or block.id in COPILOT_EXCLUDED_BLOCK_IDS
):
return ErrorResponse(
message=(
f"Block '{block.name}' cannot be run directly in CoPilot. "
"This block is designed for use within graphs only."
),
session_id=session_id,
)
logger.info(f"Executing block {block.name} ({block_id}) for user {user_id}")
creds_manager = IntegrationCredentialsManager()
matched_credentials, missing_credentials = (
await self._resolve_block_credentials(user_id, block, input_data)
matched_credentials, missing_credentials = await self._check_block_credentials(
user_id, block, input_data
)
# Get block schemas for details/validation
try:
input_schema: dict[str, Any] = block.input_schema.jsonschema()
except Exception as e:
logger.warning(
"Failed to generate input schema for block %s: %s",
block_id,
e,
)
return ErrorResponse(
message=f"Block '{block.name}' has an invalid input schema",
error=str(e),
session_id=session_id,
)
try:
output_schema: dict[str, Any] = block.output_schema.jsonschema()
except Exception as e:
logger.warning(
"Failed to generate output schema for block %s: %s",
block_id,
e,
)
return ErrorResponse(
message=f"Block '{block.name}' has an invalid output schema",
error=str(e),
session_id=session_id,
)
if missing_credentials:
# Return setup requirements response with missing credentials
credentials_fields_info = block.input_schema.get_credentials_fields_info()
@@ -227,53 +251,6 @@ class RunBlockTool(BaseTool):
graph_version=None,
)
# Check if this is a first attempt (required inputs missing)
# Return block details so user can see what inputs are needed
credentials_fields = set(block.input_schema.get_credentials_fields().keys())
required_keys = set(input_schema.get("required", []))
required_non_credential_keys = required_keys - credentials_fields
provided_input_keys = set(input_data.keys()) - credentials_fields
# Check for unknown input fields
valid_fields = (
set(input_schema.get("properties", {}).keys()) - credentials_fields
)
unrecognized_fields = provided_input_keys - valid_fields
if unrecognized_fields:
return InputValidationErrorResponse(
message=(
f"Unknown input field(s) provided: {', '.join(sorted(unrecognized_fields))}. "
f"Block was not executed. Please use the correct field names from the schema."
),
session_id=session_id,
unrecognized_fields=sorted(unrecognized_fields),
inputs=input_schema,
)
# Show details when not all required non-credential inputs are provided
if not (required_non_credential_keys <= provided_input_keys):
# Get credentials info for the response
credentials_meta = []
for field_name, cred_meta in matched_credentials.items():
credentials_meta.append(cred_meta)
return BlockDetailsResponse(
message=(
f"Block '{block.name}' details. "
"Provide input_data matching the inputs schema to execute the block."
),
session_id=session_id,
block=BlockDetails(
id=block_id,
name=block.name,
description=block.description or "",
inputs=input_schema,
outputs=output_schema,
credentials=credentials_meta,
),
user_authenticated=True,
)
try:
# Get or create user's workspace for CoPilot file operations
workspace = await get_or_create_workspace(user_id)
@@ -368,75 +345,29 @@ class RunBlockTool(BaseTool):
session_id=session_id,
)
async def _resolve_block_credentials(
self,
user_id: str,
block: AnyBlockSchema,
input_data: dict[str, Any] | None = None,
) -> tuple[dict[str, CredentialsMetaInput], list[CredentialsMetaInput]]:
"""
Resolve credentials for a block by matching user's available credentials.
Args:
user_id: User ID
block: Block to resolve credentials for
input_data: Input data for the block (used to determine provider via discriminator)
Returns:
tuple of (matched_credentials, missing_credentials) - matched credentials
are used for block execution, missing ones indicate setup requirements.
"""
input_data = input_data or {}
requirements = self._resolve_discriminated_credentials(block, input_data)
if not requirements:
return {}, []
return await match_credentials_to_requirements(user_id, requirements)
def _get_inputs_list(self, block: AnyBlockSchema) -> list[dict[str, Any]]:
def _get_inputs_list(self, block: Any) -> list[dict[str, Any]]:
"""Extract non-credential inputs from block schema."""
inputs_list = []
schema = block.input_schema.jsonschema()
properties = schema.get("properties", {})
required_fields = set(schema.get("required", []))
# Get credential field names to exclude
credentials_fields = set(block.input_schema.get_credentials_fields().keys())
return get_inputs_from_schema(schema, exclude_fields=credentials_fields)
def _resolve_discriminated_credentials(
self,
block: AnyBlockSchema,
input_data: dict[str, Any],
) -> dict[str, CredentialsFieldInfo]:
"""Resolve credential requirements, applying discriminator logic where needed."""
credentials_fields_info = block.input_schema.get_credentials_fields_info()
if not credentials_fields_info:
return {}
for field_name, field_schema in properties.items():
# Skip credential fields
if field_name in credentials_fields:
continue
resolved: dict[str, CredentialsFieldInfo] = {}
inputs_list.append(
{
"name": field_name,
"title": field_schema.get("title", field_name),
"type": field_schema.get("type", "string"),
"description": field_schema.get("description", ""),
"required": field_name in required_fields,
}
)
for field_name, field_info in credentials_fields_info.items():
effective_field_info = field_info
if field_info.discriminator and field_info.discriminator_mapping:
discriminator_value = input_data.get(field_info.discriminator)
if discriminator_value is None:
field = block.input_schema.model_fields.get(
field_info.discriminator
)
if field and field.default is not PydanticUndefined:
discriminator_value = field.default
if (
discriminator_value
and discriminator_value in field_info.discriminator_mapping
):
effective_field_info = field_info.discriminate(discriminator_value)
# For host-scoped credentials, add the discriminator value
# (e.g., URL) so _credential_is_for_host can match it
effective_field_info.discriminator_values.add(discriminator_value)
logger.debug(
f"Discriminated provider for {field_name}: "
f"{discriminator_value} -> {effective_field_info.provider}"
)
resolved[field_name] = effective_field_info
return resolved
return inputs_list

View File

@@ -1,362 +0,0 @@
"""Tests for block execution guards and input validation in RunBlockTool."""
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from backend.api.features.chat.tools.models import (
BlockDetailsResponse,
BlockOutputResponse,
ErrorResponse,
InputValidationErrorResponse,
)
from backend.api.features.chat.tools.run_block import RunBlockTool
from backend.blocks._base import BlockType
from ._test_data import make_session
_TEST_USER_ID = "test-user-run-block"
def make_mock_block(
block_id: str, name: str, block_type: BlockType, disabled: bool = False
):
"""Create a mock block for testing."""
mock = MagicMock()
mock.id = block_id
mock.name = name
mock.block_type = block_type
mock.disabled = disabled
mock.input_schema = MagicMock()
mock.input_schema.jsonschema.return_value = {"properties": {}, "required": []}
mock.input_schema.get_credentials_fields_info.return_value = []
return mock
def make_mock_block_with_schema(
block_id: str,
name: str,
input_properties: dict,
required_fields: list[str],
output_properties: dict | None = None,
):
"""Create a mock block with a defined input/output schema for validation tests."""
mock = MagicMock()
mock.id = block_id
mock.name = name
mock.block_type = BlockType.STANDARD
mock.disabled = False
mock.description = f"Test block: {name}"
input_schema = {
"properties": input_properties,
"required": required_fields,
}
mock.input_schema = MagicMock()
mock.input_schema.jsonschema.return_value = input_schema
mock.input_schema.get_credentials_fields_info.return_value = {}
mock.input_schema.get_credentials_fields.return_value = {}
output_schema = {
"properties": output_properties or {"result": {"type": "string"}},
}
mock.output_schema = MagicMock()
mock.output_schema.jsonschema.return_value = output_schema
return mock
class TestRunBlockFiltering:
"""Tests for block execution guards in RunBlockTool."""
@pytest.mark.asyncio(loop_scope="session")
async def test_excluded_block_type_returns_error(self):
"""Attempting to execute a block with excluded BlockType returns error."""
session = make_session(user_id=_TEST_USER_ID)
input_block = make_mock_block("input-block-id", "Input Block", BlockType.INPUT)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=input_block,
):
tool = RunBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="input-block-id",
input_data={},
)
assert isinstance(response, ErrorResponse)
assert "cannot be run directly in CoPilot" in response.message
assert "designed for use within graphs only" in response.message
@pytest.mark.asyncio(loop_scope="session")
async def test_excluded_block_id_returns_error(self):
"""Attempting to execute SmartDecisionMakerBlock returns error."""
session = make_session(user_id=_TEST_USER_ID)
smart_decision_id = "3b191d9f-356f-482d-8238-ba04b6d18381"
smart_block = make_mock_block(
smart_decision_id, "Smart Decision Maker", BlockType.STANDARD
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=smart_block,
):
tool = RunBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id=smart_decision_id,
input_data={},
)
assert isinstance(response, ErrorResponse)
assert "cannot be run directly in CoPilot" in response.message
@pytest.mark.asyncio(loop_scope="session")
async def test_non_excluded_block_passes_guard(self):
"""Non-excluded blocks pass the filtering guard (may fail later for other reasons)."""
session = make_session(user_id=_TEST_USER_ID)
standard_block = make_mock_block(
"standard-id", "HTTP Request", BlockType.STANDARD
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=standard_block,
):
tool = RunBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="standard-id",
input_data={},
)
# Should NOT be an ErrorResponse about CoPilot exclusion
# (may be other errors like missing credentials, but not the exclusion guard)
if isinstance(response, ErrorResponse):
assert "cannot be run directly in CoPilot" not in response.message
class TestRunBlockInputValidation:
"""Tests for input field validation in RunBlockTool.
run_block rejects unknown input field names with InputValidationErrorResponse,
preventing silent failures where incorrect keys would be ignored and the block
would execute with default values instead of the caller's intended values.
"""
@pytest.mark.asyncio(loop_scope="session")
async def test_unknown_input_fields_are_rejected(self):
"""run_block rejects unknown input fields instead of silently ignoring them.
Scenario: The AI Text Generator block has a field called 'model' (for LLM model
selection), but the LLM calling the tool guesses wrong and sends 'LLM_Model'
instead. The block should reject the request and return the valid schema.
"""
session = make_session(user_id=_TEST_USER_ID)
mock_block = make_mock_block_with_schema(
block_id="ai-text-gen-id",
name="AI Text Generator",
input_properties={
"prompt": {"type": "string", "description": "The prompt to send"},
"model": {
"type": "string",
"description": "The LLM model to use",
"default": "gpt-4o-mini",
},
"sys_prompt": {
"type": "string",
"description": "System prompt",
"default": "",
},
},
required_fields=["prompt"],
output_properties={"response": {"type": "string"}},
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=mock_block,
):
tool = RunBlockTool()
# Provide 'prompt' (correct) but 'LLM_Model' instead of 'model' (wrong key)
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="ai-text-gen-id",
input_data={
"prompt": "Write a haiku about coding",
"LLM_Model": "claude-opus-4-6", # WRONG KEY - should be 'model'
},
)
assert isinstance(response, InputValidationErrorResponse)
assert "LLM_Model" in response.unrecognized_fields
assert "Block was not executed" in response.message
assert "inputs" in response.model_dump() # valid schema included
@pytest.mark.asyncio(loop_scope="session")
async def test_multiple_wrong_keys_are_all_reported(self):
"""All unrecognized field names are reported in a single error response."""
session = make_session(user_id=_TEST_USER_ID)
mock_block = make_mock_block_with_schema(
block_id="ai-text-gen-id",
name="AI Text Generator",
input_properties={
"prompt": {"type": "string"},
"model": {"type": "string", "default": "gpt-4o-mini"},
"sys_prompt": {"type": "string", "default": ""},
"retry": {"type": "integer", "default": 3},
},
required_fields=["prompt"],
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=mock_block,
):
tool = RunBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="ai-text-gen-id",
input_data={
"prompt": "Hello", # correct
"llm_model": "claude-opus-4-6", # WRONG - should be 'model'
"system_prompt": "Be helpful", # WRONG - should be 'sys_prompt'
"retries": 5, # WRONG - should be 'retry'
},
)
assert isinstance(response, InputValidationErrorResponse)
assert set(response.unrecognized_fields) == {
"llm_model",
"system_prompt",
"retries",
}
assert "Block was not executed" in response.message
@pytest.mark.asyncio(loop_scope="session")
async def test_unknown_fields_rejected_even_with_missing_required(self):
"""Unknown fields are caught before the missing-required-fields check."""
session = make_session(user_id=_TEST_USER_ID)
mock_block = make_mock_block_with_schema(
block_id="ai-text-gen-id",
name="AI Text Generator",
input_properties={
"prompt": {"type": "string"},
"model": {"type": "string", "default": "gpt-4o-mini"},
},
required_fields=["prompt"],
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=mock_block,
):
tool = RunBlockTool()
# 'prompt' is missing AND 'LLM_Model' is an unknown field
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="ai-text-gen-id",
input_data={
"LLM_Model": "claude-opus-4-6", # wrong key, and 'prompt' is missing
},
)
# Unknown fields are caught first
assert isinstance(response, InputValidationErrorResponse)
assert "LLM_Model" in response.unrecognized_fields
@pytest.mark.asyncio(loop_scope="session")
async def test_correct_inputs_still_execute(self):
"""Correct input field names pass validation and the block executes."""
session = make_session(user_id=_TEST_USER_ID)
mock_block = make_mock_block_with_schema(
block_id="ai-text-gen-id",
name="AI Text Generator",
input_properties={
"prompt": {"type": "string"},
"model": {"type": "string", "default": "gpt-4o-mini"},
},
required_fields=["prompt"],
)
async def mock_execute(input_data, **kwargs):
yield "response", "Generated text"
mock_block.execute = mock_execute
with (
patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=mock_block,
),
patch(
"backend.api.features.chat.tools.run_block.get_or_create_workspace",
new_callable=AsyncMock,
return_value=MagicMock(id="test-workspace-id"),
),
):
tool = RunBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="ai-text-gen-id",
input_data={
"prompt": "Write a haiku",
"model": "gpt-4o-mini", # correct field name
},
)
assert isinstance(response, BlockOutputResponse)
assert response.success is True
@pytest.mark.asyncio(loop_scope="session")
async def test_missing_required_fields_returns_details(self):
"""Missing required fields returns BlockDetailsResponse with schema."""
session = make_session(user_id=_TEST_USER_ID)
mock_block = make_mock_block_with_schema(
block_id="ai-text-gen-id",
name="AI Text Generator",
input_properties={
"prompt": {"type": "string"},
"model": {"type": "string", "default": "gpt-4o-mini"},
},
required_fields=["prompt"],
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=mock_block,
):
tool = RunBlockTool()
# Only provide valid optional field, missing required 'prompt'
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="ai-text-gen-id",
input_data={
"model": "gpt-4o-mini", # valid but optional
},
)
assert isinstance(response, BlockDetailsResponse)

View File

@@ -1,265 +0,0 @@
"""Sandbox execution utilities for code execution tools.
Provides filesystem + network isolated command execution using **bubblewrap**
(``bwrap``): whitelist-only filesystem (only system dirs visible read-only),
writable workspace only, clean environment, network blocked.
Tools that call :func:`run_sandboxed` must first check :func:`has_full_sandbox`
and refuse to run if bubblewrap is not available.
"""
import asyncio
import logging
import os
import platform
import shutil
logger = logging.getLogger(__name__)
_DEFAULT_TIMEOUT = 30
_MAX_TIMEOUT = 120
# ---------------------------------------------------------------------------
# Sandbox capability detection (cached at first call)
# ---------------------------------------------------------------------------
_BWRAP_AVAILABLE: bool | None = None
def has_full_sandbox() -> bool:
"""Return True if bubblewrap is available (filesystem + network isolation).
On non-Linux platforms (macOS), always returns False.
"""
global _BWRAP_AVAILABLE
if _BWRAP_AVAILABLE is None:
_BWRAP_AVAILABLE = (
platform.system() == "Linux" and shutil.which("bwrap") is not None
)
return _BWRAP_AVAILABLE
WORKSPACE_PREFIX = "/tmp/copilot-"
def make_session_path(session_id: str) -> str:
"""Build a sanitized, session-specific path under :data:`WORKSPACE_PREFIX`.
Shared by both the SDK working-directory setup and the sandbox tools so
they always resolve to the same directory for a given session.
Steps:
1. Strip all characters except ``[A-Za-z0-9-]``.
2. Construct ``/tmp/copilot-<safe_id>``.
3. Validate via ``os.path.normpath`` + ``startswith`` (CodeQL-recognised
sanitizer) to prevent path traversal.
Raises:
ValueError: If the resulting path escapes the prefix.
"""
import re
safe_id = re.sub(r"[^A-Za-z0-9-]", "", session_id)
if not safe_id:
safe_id = "default"
path = os.path.normpath(f"{WORKSPACE_PREFIX}{safe_id}")
if not path.startswith(WORKSPACE_PREFIX):
raise ValueError(f"Session path escaped prefix: {path}")
return path
def get_workspace_dir(session_id: str) -> str:
"""Get or create the workspace directory for a session.
Uses :func:`make_session_path` — the same path the SDK uses — so that
bash_exec shares the workspace with the SDK file tools.
"""
workspace = make_session_path(session_id)
os.makedirs(workspace, exist_ok=True)
return workspace
# ---------------------------------------------------------------------------
# Bubblewrap command builder
# ---------------------------------------------------------------------------
# System directories mounted read-only inside the sandbox.
# ONLY these are visible — /app, /root, /home, /opt, /var etc. are NOT accessible.
_SYSTEM_RO_BINDS = [
"/usr", # binaries, libraries, Python interpreter
"/etc", # system config: ld.so, locale, passwd, alternatives
]
# Compat paths: symlinks to /usr/* on modern Debian, real dirs on older systems.
# On Debian 13 these are symlinks (e.g. /bin -> usr/bin). bwrap --ro-bind
# can't create a symlink target, so we detect and use --symlink instead.
# /lib64 is critical: the ELF dynamic linker lives at /lib64/ld-linux-x86-64.so.2.
_COMPAT_PATHS = [
("/bin", "usr/bin"), # -> /usr/bin on Debian 13
("/sbin", "usr/sbin"), # -> /usr/sbin on Debian 13
("/lib", "usr/lib"), # -> /usr/lib on Debian 13
("/lib64", "usr/lib64"), # 64-bit libraries / ELF interpreter
]
# Resource limits to prevent fork bombs, memory exhaustion, and disk abuse.
# Applied via ulimit inside the sandbox before exec'ing the user command.
_RESOURCE_LIMITS = (
"ulimit -u 64" # max 64 processes (prevents fork bombs)
" -v 524288" # 512 MB virtual memory
" -f 51200" # 50 MB max file size (1024-byte blocks)
" -n 256" # 256 open file descriptors
" 2>/dev/null"
)
def _build_bwrap_command(
command: list[str], cwd: str, env: dict[str, str]
) -> list[str]:
"""Build a bubblewrap command with strict filesystem + network isolation.
Security model:
- **Whitelist-only filesystem**: only system directories (``/usr``, ``/etc``,
``/bin``, ``/lib``) are mounted read-only. Application code (``/app``),
home directories, ``/var``, ``/opt``, etc. are NOT accessible at all.
- **Writable workspace only**: the per-session workspace is the sole
writable path.
- **Clean environment**: ``--clearenv`` wipes all inherited env vars.
Only the explicitly-passed safe env vars are set inside the sandbox.
- **Network isolation**: ``--unshare-net`` blocks all network access.
- **Resource limits**: ulimit caps on processes (64), memory (512MB),
file size (50MB), and open FDs (256) to prevent fork bombs and abuse.
- **New session**: prevents terminal control escape.
- **Die with parent**: prevents orphaned sandbox processes.
"""
cmd = [
"bwrap",
# Create a new user namespace so bwrap can set up sandboxing
# inside unprivileged Docker containers (no CAP_SYS_ADMIN needed).
"--unshare-user",
# Wipe all inherited environment variables (API keys, secrets, etc.)
"--clearenv",
]
# Set only the safe env vars inside the sandbox
for key, value in env.items():
cmd.extend(["--setenv", key, value])
# System directories: read-only
for path in _SYSTEM_RO_BINDS:
cmd.extend(["--ro-bind", path, path])
# Compat paths: use --symlink when host path is a symlink (Debian 13),
# --ro-bind when it's a real directory (older distros).
for path, symlink_target in _COMPAT_PATHS:
if os.path.islink(path):
cmd.extend(["--symlink", symlink_target, path])
elif os.path.exists(path):
cmd.extend(["--ro-bind", path, path])
# Wrap the user command with resource limits:
# sh -c 'ulimit ...; exec "$@"' -- <original command>
# `exec "$@"` replaces the shell so there's no extra process overhead,
# and properly handles arguments with spaces.
limited_command = [
"sh",
"-c",
f'{_RESOURCE_LIMITS}; exec "$@"',
"--",
*command,
]
cmd.extend(
[
# Fresh virtual filesystems
"--dev",
"/dev",
"--proc",
"/proc",
"--tmpfs",
"/tmp",
# Workspace bind AFTER --tmpfs /tmp so it's visible through the tmpfs.
# (workspace lives under /tmp/copilot-<session>)
"--bind",
cwd,
cwd,
# Isolation
"--unshare-net",
"--die-with-parent",
"--new-session",
"--chdir",
cwd,
"--",
*limited_command,
]
)
return cmd
# ---------------------------------------------------------------------------
# Public API
# ---------------------------------------------------------------------------
async def run_sandboxed(
command: list[str],
cwd: str,
timeout: int = _DEFAULT_TIMEOUT,
env: dict[str, str] | None = None,
) -> tuple[str, str, int, bool]:
"""Run a command inside a bubblewrap sandbox.
Callers **must** check :func:`has_full_sandbox` before calling this
function. If bubblewrap is not available, this function raises
:class:`RuntimeError` rather than running unsandboxed.
Returns:
(stdout, stderr, exit_code, timed_out)
"""
if not has_full_sandbox():
raise RuntimeError(
"run_sandboxed() requires bubblewrap but bwrap is not available. "
"Callers must check has_full_sandbox() before calling this function."
)
timeout = min(max(timeout, 1), _MAX_TIMEOUT)
safe_env = {
"PATH": "/usr/local/bin:/usr/bin:/bin",
"HOME": cwd,
"TMPDIR": cwd,
"LANG": "en_US.UTF-8",
"PYTHONDONTWRITEBYTECODE": "1",
"PYTHONIOENCODING": "utf-8",
}
if env:
safe_env.update(env)
full_command = _build_bwrap_command(command, cwd, safe_env)
try:
proc = await asyncio.create_subprocess_exec(
*full_command,
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE,
cwd=cwd,
env=safe_env,
)
try:
stdout_bytes, stderr_bytes = await asyncio.wait_for(
proc.communicate(), timeout=timeout
)
stdout = stdout_bytes.decode("utf-8", errors="replace")
stderr = stderr_bytes.decode("utf-8", errors="replace")
return stdout, stderr, proc.returncode or 0, False
except asyncio.TimeoutError:
proc.kill()
await proc.communicate()
return "", f"Execution timed out after {timeout}s", -1, True
except RuntimeError:
raise
except Exception as e:
return "", f"Sandbox error: {e}", -1, False

View File

@@ -1,153 +0,0 @@
"""Tests for BlockDetailsResponse in RunBlockTool."""
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from backend.api.features.chat.tools.models import BlockDetailsResponse
from backend.api.features.chat.tools.run_block import RunBlockTool
from backend.blocks._base import BlockType
from backend.data.model import CredentialsMetaInput
from backend.integrations.providers import ProviderName
from ._test_data import make_session
_TEST_USER_ID = "test-user-run-block-details"
def make_mock_block_with_inputs(
block_id: str, name: str, description: str = "Test description"
):
"""Create a mock block with input/output schemas for testing."""
mock = MagicMock()
mock.id = block_id
mock.name = name
mock.description = description
mock.block_type = BlockType.STANDARD
mock.disabled = False
# Input schema with non-credential fields
mock.input_schema = MagicMock()
mock.input_schema.jsonschema.return_value = {
"properties": {
"url": {"type": "string", "description": "URL to fetch"},
"method": {"type": "string", "description": "HTTP method"},
},
"required": ["url"],
}
mock.input_schema.get_credentials_fields.return_value = {}
mock.input_schema.get_credentials_fields_info.return_value = {}
# Output schema
mock.output_schema = MagicMock()
mock.output_schema.jsonschema.return_value = {
"properties": {
"response": {"type": "object", "description": "HTTP response"},
"error": {"type": "string", "description": "Error message"},
}
}
return mock
@pytest.mark.asyncio(loop_scope="session")
async def test_run_block_returns_details_when_no_input_provided():
"""When run_block is called without input_data, it should return BlockDetailsResponse."""
session = make_session(user_id=_TEST_USER_ID)
# Create a block with inputs
http_block = make_mock_block_with_inputs(
"http-block-id", "HTTP Request", "Send HTTP requests"
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=http_block,
):
# Mock credentials check to return no missing credentials
with patch.object(
RunBlockTool,
"_resolve_block_credentials",
new_callable=AsyncMock,
return_value=({}, []), # (matched_credentials, missing_credentials)
):
tool = RunBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="http-block-id",
input_data={}, # Empty input data
)
# Should return BlockDetailsResponse showing the schema
assert isinstance(response, BlockDetailsResponse)
assert response.block.id == "http-block-id"
assert response.block.name == "HTTP Request"
assert response.block.description == "Send HTTP requests"
assert "url" in response.block.inputs["properties"]
assert "method" in response.block.inputs["properties"]
assert "response" in response.block.outputs["properties"]
assert response.user_authenticated is True
@pytest.mark.asyncio(loop_scope="session")
async def test_run_block_returns_details_when_only_credentials_provided():
"""When only credentials are provided (no actual input), should return details."""
session = make_session(user_id=_TEST_USER_ID)
# Create a block with both credential and non-credential inputs
mock = MagicMock()
mock.id = "api-block-id"
mock.name = "API Call"
mock.description = "Make API calls"
mock.block_type = BlockType.STANDARD
mock.disabled = False
mock.input_schema = MagicMock()
mock.input_schema.jsonschema.return_value = {
"properties": {
"credentials": {"type": "object", "description": "API credentials"},
"endpoint": {"type": "string", "description": "API endpoint"},
},
"required": ["credentials", "endpoint"],
}
mock.input_schema.get_credentials_fields.return_value = {"credentials": True}
mock.input_schema.get_credentials_fields_info.return_value = {}
mock.output_schema = MagicMock()
mock.output_schema.jsonschema.return_value = {
"properties": {"result": {"type": "object"}}
}
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=mock,
):
with patch.object(
RunBlockTool,
"_resolve_block_credentials",
new_callable=AsyncMock,
return_value=(
{
"credentials": CredentialsMetaInput(
id="cred-id",
provider=ProviderName("test_provider"),
type="api_key",
title="Test Credential",
)
},
[],
),
):
tool = RunBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="api-block-id",
input_data={"credentials": {"some": "cred"}}, # Only credential
)
# Should return details because no non-credential inputs provided
assert isinstance(response, BlockDetailsResponse)
assert response.block.id == "api-block-id"
assert response.block.name == "API Call"

View File

@@ -6,16 +6,15 @@ from typing import Any
from backend.api.features.library import db as library_db
from backend.api.features.library import model as library_model
from backend.api.features.store import db as store_db
from backend.data import graph as graph_db
from backend.data.graph import GraphModel
from backend.data.model import (
Credentials,
CredentialsFieldInfo,
CredentialsMetaInput,
HostScopedCredentials,
OAuth2Credentials,
)
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.integrations.providers import ProviderName
from backend.util.exceptions import NotFoundError
logger = logging.getLogger(__name__)
@@ -45,8 +44,14 @@ async def fetch_graph_from_store_slug(
return None, None
# Get the graph from store listing version
graph = await store_db.get_available_graph(
store_agent.store_listing_version_id, hide_nodes=False
graph_meta = await store_db.get_available_graph(
store_agent.store_listing_version_id
)
graph = await graph_db.get_graph(
graph_id=graph_meta.id,
version=graph_meta.version,
user_id=None, # Public access
include_subgraphs=True,
)
return graph, store_agent
@@ -123,7 +128,7 @@ def build_missing_credentials_from_graph(
return {
field_key: _serialize_missing_credential(field_key, field_info)
for field_key, (field_info, _, _) in aggregated_fields.items()
for field_key, (field_info, _node_fields) in aggregated_fields.items()
if field_key not in matched_keys
}
@@ -225,99 +230,6 @@ async def get_or_create_library_agent(
return library_agents[0]
async def match_credentials_to_requirements(
user_id: str,
requirements: dict[str, CredentialsFieldInfo],
) -> tuple[dict[str, CredentialsMetaInput], list[CredentialsMetaInput]]:
"""
Match user's credentials against a dictionary of credential requirements.
This is the core matching logic shared by both graph and block credential matching.
"""
matched: dict[str, CredentialsMetaInput] = {}
missing: list[CredentialsMetaInput] = []
if not requirements:
return matched, missing
available_creds = await get_user_credentials(user_id)
for field_name, field_info in requirements.items():
matching_cred = find_matching_credential(available_creds, field_info)
if matching_cred:
try:
matched[field_name] = create_credential_meta_from_match(matching_cred)
except Exception as e:
logger.error(
f"Failed to create CredentialsMetaInput for field '{field_name}': "
f"provider={matching_cred.provider}, type={matching_cred.type}, "
f"credential_id={matching_cred.id}",
exc_info=True,
)
provider = next(iter(field_info.provider), "unknown")
cred_type = next(iter(field_info.supported_types), "api_key")
missing.append(
CredentialsMetaInput(
id=field_name,
provider=provider, # type: ignore
type=cred_type, # type: ignore
title=f"{field_name} (validation failed: {e})",
)
)
else:
provider = next(iter(field_info.provider), "unknown")
cred_type = next(iter(field_info.supported_types), "api_key")
missing.append(
CredentialsMetaInput(
id=field_name,
provider=provider, # type: ignore
type=cred_type, # type: ignore
title=field_name.replace("_", " ").title(),
)
)
return matched, missing
async def get_user_credentials(user_id: str) -> list[Credentials]:
"""Get all available credentials for a user."""
creds_manager = IntegrationCredentialsManager()
return await creds_manager.store.get_all_creds(user_id)
def find_matching_credential(
available_creds: list[Credentials],
field_info: CredentialsFieldInfo,
) -> Credentials | None:
"""Find a credential that matches the required provider, type, scopes, and host."""
for cred in available_creds:
if cred.provider not in field_info.provider:
continue
if cred.type not in field_info.supported_types:
continue
if cred.type == "oauth2" and not _credential_has_required_scopes(
cred, field_info
):
continue
if cred.type == "host_scoped" and not _credential_is_for_host(cred, field_info):
continue
return cred
return None
def create_credential_meta_from_match(
matching_cred: Credentials,
) -> CredentialsMetaInput:
"""Create a CredentialsMetaInput from a matched credential."""
return CredentialsMetaInput(
id=matching_cred.id,
provider=matching_cred.provider, # type: ignore
type=matching_cred.type,
title=matching_cred.title,
)
async def match_user_credentials_to_graph(
user_id: str,
graph: GraphModel,
@@ -357,10 +269,9 @@ async def match_user_credentials_to_graph(
# provider is in the set of acceptable providers.
for credential_field_name, (
credential_requirements,
_,
_,
_node_fields,
) in aggregated_creds.items():
# Find first matching credential by provider, type, scopes, and host/URL
# Find first matching credential by provider, type, and scopes
matching_cred = next(
(
cred
@@ -375,10 +286,6 @@ async def match_user_credentials_to_graph(
cred.type != "host_scoped"
or _credential_is_for_host(cred, credential_requirements)
)
and (
cred.provider != ProviderName.MCP
or _credential_is_for_mcp_server(cred, credential_requirements)
)
),
None,
)
@@ -430,6 +337,8 @@ def _credential_has_required_scopes(
# If no scopes are required, any credential matches
if not requirements.required_scopes:
return True
# Check that credential scopes are a superset of required scopes
return set(credential.scopes).issuperset(requirements.required_scopes)
@@ -449,22 +358,6 @@ def _credential_is_for_host(
return credential.matches_url(list(requirements.discriminator_values)[0])
def _credential_is_for_mcp_server(
credential: Credentials,
requirements: CredentialsFieldInfo,
) -> bool:
"""Check if an MCP OAuth credential matches the required server URL."""
if not requirements.discriminator_values:
return True
server_url = (
credential.metadata.get("mcp_server_url")
if isinstance(credential, OAuth2Credentials)
else None
)
return server_url in requirements.discriminator_values if server_url else False
async def check_user_has_required_credentials(
user_id: str,
required_credentials: list[CredentialsMetaInput],

View File

@@ -1,151 +0,0 @@
"""Web fetch tool — safely retrieve public web page content."""
import logging
from typing import Any
import aiohttp
import html2text
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
ErrorResponse,
ToolResponseBase,
WebFetchResponse,
)
from backend.util.request import Requests
logger = logging.getLogger(__name__)
# Limits
_MAX_CONTENT_BYTES = 102_400 # 100 KB download cap
_REQUEST_TIMEOUT = aiohttp.ClientTimeout(total=15)
# Content types we'll read as text
_TEXT_CONTENT_TYPES = {
"text/html",
"text/plain",
"text/xml",
"text/csv",
"text/markdown",
"application/json",
"application/xml",
"application/xhtml+xml",
"application/rss+xml",
"application/atom+xml",
}
def _is_text_content(content_type: str) -> bool:
base = content_type.split(";")[0].strip().lower()
return base in _TEXT_CONTENT_TYPES or base.startswith("text/")
def _html_to_text(html: str) -> str:
h = html2text.HTML2Text()
h.ignore_links = False
h.ignore_images = True
h.body_width = 0
return h.handle(html)
class WebFetchTool(BaseTool):
"""Safely fetch content from a public URL using SSRF-protected HTTP."""
@property
def name(self) -> str:
return "web_fetch"
@property
def description(self) -> str:
return (
"Fetch the content of a public web page by URL. "
"Returns readable text extracted from HTML by default. "
"Useful for reading documentation, articles, and API responses. "
"Only supports HTTP/HTTPS GET requests to public URLs "
"(private/internal network addresses are blocked)."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"url": {
"type": "string",
"description": "The public HTTP/HTTPS URL to fetch.",
},
"extract_text": {
"type": "boolean",
"description": (
"If true (default), extract readable text from HTML. "
"If false, return raw content."
),
"default": True,
},
},
"required": ["url"],
}
@property
def requires_auth(self) -> bool:
return False
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs: Any,
) -> ToolResponseBase:
url: str = (kwargs.get("url") or "").strip()
extract_text: bool = kwargs.get("extract_text", True)
session_id = session.session_id if session else None
if not url:
return ErrorResponse(
message="Please provide a URL to fetch.",
error="missing_url",
session_id=session_id,
)
try:
client = Requests(raise_for_status=False, retry_max_attempts=1)
response = await client.get(url, timeout=_REQUEST_TIMEOUT)
except ValueError as e:
# validate_url raises ValueError for SSRF / blocked IPs
return ErrorResponse(
message=f"URL blocked: {e}",
error="url_blocked",
session_id=session_id,
)
except Exception as e:
logger.warning(f"[web_fetch] Request failed for {url}: {e}")
return ErrorResponse(
message=f"Failed to fetch URL: {e}",
error="fetch_failed",
session_id=session_id,
)
content_type = response.headers.get("content-type", "")
if not _is_text_content(content_type):
return ErrorResponse(
message=f"Non-text content type: {content_type.split(';')[0]}",
error="unsupported_content_type",
session_id=session_id,
)
raw = response.content[:_MAX_CONTENT_BYTES]
text = raw.decode("utf-8", errors="replace")
if extract_text and "html" in content_type.lower():
text = _html_to_text(text)
return WebFetchResponse(
message=f"Fetched {url}",
url=response.url,
status_code=response.status,
content_type=content_type.split(";")[0].strip(),
content=text,
truncated=False,
session_id=session_id,
)

View File

@@ -88,9 +88,7 @@ class ListWorkspaceFilesTool(BaseTool):
@property
def description(self) -> str:
return (
"List files in the user's persistent workspace (cloud storage). "
"These files survive across sessions. "
"For ephemeral session files, use the SDK Read/Glob tools instead. "
"List files in the user's workspace. "
"Returns file names, paths, sizes, and metadata. "
"Optionally filter by path prefix."
)
@@ -206,9 +204,7 @@ class ReadWorkspaceFileTool(BaseTool):
@property
def description(self) -> str:
return (
"Read a file from the user's persistent workspace (cloud storage). "
"These files survive across sessions. "
"For ephemeral session files, use the SDK Read tool instead. "
"Read a file from the user's workspace. "
"Specify either file_id or path to identify the file. "
"For small text files, returns content directly. "
"For large or binary files, returns metadata and a download URL. "
@@ -382,9 +378,7 @@ class WriteWorkspaceFileTool(BaseTool):
@property
def description(self) -> str:
return (
"Write or create a file in the user's persistent workspace (cloud storage). "
"These files survive across sessions. "
"For ephemeral session files, use the SDK Write tool instead. "
"Write or create a file in the user's workspace. "
"Provide the content as a base64-encoded string. "
f"Maximum file size is {Config().max_file_size_mb}MB. "
"Files are saved to the current session's folder by default. "
@@ -529,7 +523,7 @@ class DeleteWorkspaceFileTool(BaseTool):
@property
def description(self) -> str:
return (
"Delete a file from the user's persistent workspace (cloud storage). "
"Delete a file from the user's workspace. "
"Specify either file_id or path to identify the file. "
"Paths are scoped to the current session by default. "
"Use /sessions/<session_id>/... for cross-session access."

View File

@@ -1,7 +1,7 @@
import asyncio
import logging
from datetime import datetime, timedelta, timezone
from typing import TYPE_CHECKING, Annotated, Any, List, Literal
from typing import TYPE_CHECKING, Annotated, List, Literal
from autogpt_libs.auth import get_user_id
from fastapi import (
@@ -14,7 +14,7 @@ from fastapi import (
Security,
status,
)
from pydantic import BaseModel, Field, SecretStr, model_validator
from pydantic import BaseModel, Field, SecretStr
from starlette.status import HTTP_500_INTERNAL_SERVER_ERROR, HTTP_502_BAD_GATEWAY
from backend.api.features.library.db import set_preset_webhook, update_preset
@@ -39,11 +39,7 @@ from backend.data.onboarding import OnboardingStep, complete_onboarding_step
from backend.data.user import get_user_integrations
from backend.executor.utils import add_graph_execution
from backend.integrations.ayrshare import AyrshareClient, SocialPlatform
from backend.integrations.credentials_store import provider_matches
from backend.integrations.creds_manager import (
IntegrationCredentialsManager,
create_mcp_oauth_handler,
)
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.integrations.oauth import CREDENTIALS_BY_PROVIDER, HANDLERS_BY_NAME
from backend.integrations.providers import ProviderName
from backend.integrations.webhooks import get_webhook_manager
@@ -106,37 +102,9 @@ class CredentialsMetaResponse(BaseModel):
scopes: list[str] | None
username: str | None
host: str | None = Field(
default=None,
description="Host pattern for host-scoped or MCP server URL for MCP credentials",
default=None, description="Host pattern for host-scoped credentials"
)
@model_validator(mode="before")
@classmethod
def _normalize_provider(cls, data: Any) -> Any:
"""Fix ``ProviderName.X`` format from Python 3.13 ``str(Enum)`` bug."""
if isinstance(data, dict):
prov = data.get("provider", "")
if isinstance(prov, str) and prov.startswith("ProviderName."):
member = prov.removeprefix("ProviderName.")
try:
data = {**data, "provider": ProviderName[member].value}
except KeyError:
pass
return data
@staticmethod
def get_host(cred: Credentials) -> str | None:
"""Extract host from credential: HostScoped host or MCP server URL."""
if isinstance(cred, HostScopedCredentials):
return cred.host
if isinstance(cred, OAuth2Credentials) and cred.provider in (
ProviderName.MCP,
ProviderName.MCP.value,
"ProviderName.MCP",
):
return (cred.metadata or {}).get("mcp_server_url")
return None
@router.post("/{provider}/callback", summary="Exchange OAuth code for tokens")
async def callback(
@@ -211,7 +179,9 @@ async def callback(
title=credentials.title,
scopes=credentials.scopes,
username=credentials.username,
host=(CredentialsMetaResponse.get_host(credentials)),
host=(
credentials.host if isinstance(credentials, HostScopedCredentials) else None
),
)
@@ -229,7 +199,7 @@ async def list_credentials(
title=cred.title,
scopes=cred.scopes if isinstance(cred, OAuth2Credentials) else None,
username=cred.username if isinstance(cred, OAuth2Credentials) else None,
host=CredentialsMetaResponse.get_host(cred),
host=cred.host if isinstance(cred, HostScopedCredentials) else None,
)
for cred in credentials
]
@@ -252,7 +222,7 @@ async def list_credentials_by_provider(
title=cred.title,
scopes=cred.scopes if isinstance(cred, OAuth2Credentials) else None,
username=cred.username if isinstance(cred, OAuth2Credentials) else None,
host=CredentialsMetaResponse.get_host(cred),
host=cred.host if isinstance(cred, HostScopedCredentials) else None,
)
for cred in credentials
]
@@ -352,11 +322,7 @@ async def delete_credentials(
tokens_revoked = None
if isinstance(creds, OAuth2Credentials):
if provider_matches(provider.value, ProviderName.MCP.value):
# MCP uses dynamic per-server OAuth — create handler from metadata
handler = create_mcp_oauth_handler(creds)
else:
handler = _get_provider_oauth_handler(request, provider)
handler = _get_provider_oauth_handler(request, provider)
tokens_revoked = await handler.revoke_tokens(creds)
return CredentialsDeletionResponse(revoked=tokens_revoked)

View File

@@ -12,16 +12,14 @@ import backend.api.features.store.image_gen as store_image_gen
import backend.api.features.store.media as store_media
import backend.data.graph as graph_db
import backend.data.integrations as integrations_db
from backend.data.block import BlockInput
from backend.data.db import transaction
from backend.data.execution import get_graph_execution
from backend.data.graph import GraphSettings
from backend.data.includes import AGENT_PRESET_INCLUDE, library_agent_include
from backend.data.model import CredentialsMetaInput, GraphInput
from backend.data.model import CredentialsMetaInput
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.integrations.webhooks.graph_lifecycle_hooks import (
on_graph_activate,
on_graph_deactivate,
)
from backend.integrations.webhooks.graph_lifecycle_hooks import on_graph_activate
from backend.util.clients import get_scheduler_client
from backend.util.exceptions import DatabaseError, InvalidInputError, NotFoundError
from backend.util.json import SafeJson
@@ -373,7 +371,7 @@ async def get_library_agent_by_graph_id(
async def add_generated_agent_image(
graph: graph_db.GraphBaseMeta,
graph: graph_db.BaseGraph,
user_id: str,
library_agent_id: str,
) -> Optional[prisma.models.LibraryAgent]:
@@ -539,92 +537,6 @@ async def update_agent_version_in_library(
return library_model.LibraryAgent.from_db(lib)
async def create_graph_in_library(
graph: graph_db.Graph,
user_id: str,
) -> tuple[graph_db.GraphModel, library_model.LibraryAgent]:
"""Create a new graph and add it to the user's library."""
graph.version = 1
graph_model = graph_db.make_graph_model(graph, user_id)
graph_model.reassign_ids(user_id=user_id, reassign_graph_id=True)
created_graph = await graph_db.create_graph(graph_model, user_id)
library_agents = await create_library_agent(
graph=created_graph,
user_id=user_id,
sensitive_action_safe_mode=True,
create_library_agents_for_sub_graphs=False,
)
if created_graph.is_active:
created_graph = await on_graph_activate(created_graph, user_id=user_id)
return created_graph, library_agents[0]
async def update_graph_in_library(
graph: graph_db.Graph,
user_id: str,
) -> tuple[graph_db.GraphModel, library_model.LibraryAgent]:
"""Create a new version of an existing graph and update the library entry."""
existing_versions = await graph_db.get_graph_all_versions(graph.id, user_id)
current_active_version = (
next((v for v in existing_versions if v.is_active), None)
if existing_versions
else None
)
graph.version = (
max(v.version for v in existing_versions) + 1 if existing_versions else 1
)
graph_model = graph_db.make_graph_model(graph, user_id)
graph_model.reassign_ids(user_id=user_id, reassign_graph_id=False)
created_graph = await graph_db.create_graph(graph_model, user_id)
library_agent = await get_library_agent_by_graph_id(user_id, created_graph.id)
if not library_agent:
raise NotFoundError(f"Library agent not found for graph {created_graph.id}")
library_agent = await update_library_agent_version_and_settings(
user_id, created_graph
)
if created_graph.is_active:
created_graph = await on_graph_activate(created_graph, user_id=user_id)
await graph_db.set_graph_active_version(
graph_id=created_graph.id,
version=created_graph.version,
user_id=user_id,
)
if current_active_version:
await on_graph_deactivate(current_active_version, user_id=user_id)
return created_graph, library_agent
async def update_library_agent_version_and_settings(
user_id: str, agent_graph: graph_db.GraphModel
) -> library_model.LibraryAgent:
"""Update library agent to point to new graph version and sync settings."""
library = await update_agent_version_in_library(
user_id, agent_graph.id, agent_graph.version
)
updated_settings = GraphSettings.from_graph(
graph=agent_graph,
hitl_safe_mode=library.settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=library.settings.sensitive_action_safe_mode,
)
if updated_settings != library.settings:
library = await update_library_agent(
library_agent_id=library.id,
user_id=user_id,
settings=updated_settings,
)
return library
async def update_library_agent(
library_agent_id: str,
user_id: str,
@@ -1129,7 +1041,7 @@ async def create_preset_from_graph_execution(
async def update_preset(
user_id: str,
preset_id: str,
inputs: Optional[GraphInput] = None,
inputs: Optional[BlockInput] = None,
credentials: Optional[dict[str, CredentialsMetaInput]] = None,
name: Optional[str] = None,
description: Optional[str] = None,

View File

@@ -6,12 +6,9 @@ import prisma.enums
import prisma.models
import pydantic
from backend.data.block import BlockInput
from backend.data.graph import GraphModel, GraphSettings, GraphTriggerInfo
from backend.data.model import (
CredentialsMetaInput,
GraphInput,
is_credentials_field_name,
)
from backend.data.model import CredentialsMetaInput, is_credentials_field_name
from backend.util.json import loads as json_loads
from backend.util.models import Pagination
@@ -326,7 +323,7 @@ class LibraryAgentPresetCreatable(pydantic.BaseModel):
graph_id: str
graph_version: int
inputs: GraphInput
inputs: BlockInput
credentials: dict[str, CredentialsMetaInput]
name: str
@@ -355,7 +352,7 @@ class LibraryAgentPresetUpdatable(pydantic.BaseModel):
Request model used when updating a preset for a library agent.
"""
inputs: Optional[GraphInput] = None
inputs: Optional[BlockInput] = None
credentials: Optional[dict[str, CredentialsMetaInput]] = None
name: Optional[str] = None
@@ -398,7 +395,7 @@ class LibraryAgentPreset(LibraryAgentPresetCreatable):
"Webhook must be included in AgentPreset query when webhookId is set"
)
input_data: GraphInput = {}
input_data: BlockInput = {}
input_credentials: dict[str, CredentialsMetaInput] = {}
for preset_input in preset.InputPresets:

View File

@@ -1,404 +0,0 @@
"""
MCP (Model Context Protocol) API routes.
Provides endpoints for MCP tool discovery and OAuth authentication so the
frontend can list available tools on an MCP server before placing a block.
"""
import logging
from typing import Annotated, Any
from urllib.parse import urlparse
import fastapi
from autogpt_libs.auth import get_user_id
from fastapi import Security
from pydantic import BaseModel, Field
from backend.api.features.integrations.router import CredentialsMetaResponse
from backend.blocks.mcp.client import MCPClient, MCPClientError
from backend.blocks.mcp.oauth import MCPOAuthHandler
from backend.data.model import OAuth2Credentials
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.integrations.providers import ProviderName
from backend.util.request import HTTPClientError, Requests
from backend.util.settings import Settings
logger = logging.getLogger(__name__)
settings = Settings()
router = fastapi.APIRouter(tags=["mcp"])
creds_manager = IntegrationCredentialsManager()
# ====================== Tool Discovery ====================== #
class DiscoverToolsRequest(BaseModel):
"""Request to discover tools on an MCP server."""
server_url: str = Field(description="URL of the MCP server")
auth_token: str | None = Field(
default=None,
description="Optional Bearer token for authenticated MCP servers",
)
class MCPToolResponse(BaseModel):
"""A single MCP tool returned by discovery."""
name: str
description: str
input_schema: dict[str, Any]
class DiscoverToolsResponse(BaseModel):
"""Response containing the list of tools available on an MCP server."""
tools: list[MCPToolResponse]
server_name: str | None = None
protocol_version: str | None = None
@router.post(
"/discover-tools",
summary="Discover available tools on an MCP server",
response_model=DiscoverToolsResponse,
)
async def discover_tools(
request: DiscoverToolsRequest,
user_id: Annotated[str, Security(get_user_id)],
) -> DiscoverToolsResponse:
"""
Connect to an MCP server and return its available tools.
If the user has a stored MCP credential for this server URL, it will be
used automatically — no need to pass an explicit auth token.
"""
auth_token = request.auth_token
# Auto-use stored MCP credential when no explicit token is provided.
if not auth_token:
mcp_creds = await creds_manager.store.get_creds_by_provider(
user_id, ProviderName.MCP.value
)
# Find the freshest credential for this server URL
best_cred: OAuth2Credentials | None = None
for cred in mcp_creds:
if (
isinstance(cred, OAuth2Credentials)
and (cred.metadata or {}).get("mcp_server_url") == request.server_url
):
if best_cred is None or (
(cred.access_token_expires_at or 0)
> (best_cred.access_token_expires_at or 0)
):
best_cred = cred
if best_cred:
# Refresh the token if expired before using it
best_cred = await creds_manager.refresh_if_needed(user_id, best_cred)
logger.info(
f"Using MCP credential {best_cred.id} for {request.server_url}, "
f"expires_at={best_cred.access_token_expires_at}"
)
auth_token = best_cred.access_token.get_secret_value()
client = MCPClient(request.server_url, auth_token=auth_token)
try:
init_result = await client.initialize()
tools = await client.list_tools()
except HTTPClientError as e:
if e.status_code in (401, 403):
raise fastapi.HTTPException(
status_code=401,
detail="This MCP server requires authentication. "
"Please provide a valid auth token.",
)
raise fastapi.HTTPException(status_code=502, detail=str(e))
except MCPClientError as e:
raise fastapi.HTTPException(status_code=502, detail=str(e))
except Exception as e:
raise fastapi.HTTPException(
status_code=502,
detail=f"Failed to connect to MCP server: {e}",
)
return DiscoverToolsResponse(
tools=[
MCPToolResponse(
name=t.name,
description=t.description,
input_schema=t.input_schema,
)
for t in tools
],
server_name=(
init_result.get("serverInfo", {}).get("name")
or urlparse(request.server_url).hostname
or "MCP"
),
protocol_version=init_result.get("protocolVersion"),
)
# ======================== OAuth Flow ======================== #
class MCPOAuthLoginRequest(BaseModel):
"""Request to start an OAuth flow for an MCP server."""
server_url: str = Field(description="URL of the MCP server that requires OAuth")
class MCPOAuthLoginResponse(BaseModel):
"""Response with the OAuth login URL for the user to authenticate."""
login_url: str
state_token: str
@router.post(
"/oauth/login",
summary="Initiate OAuth login for an MCP server",
)
async def mcp_oauth_login(
request: MCPOAuthLoginRequest,
user_id: Annotated[str, Security(get_user_id)],
) -> MCPOAuthLoginResponse:
"""
Discover OAuth metadata from the MCP server and return a login URL.
1. Discovers the protected-resource metadata (RFC 9728)
2. Fetches the authorization server metadata (RFC 8414)
3. Performs Dynamic Client Registration (RFC 7591) if available
4. Returns the authorization URL for the frontend to open in a popup
"""
client = MCPClient(request.server_url)
# Step 1: Discover protected-resource metadata (RFC 9728)
protected_resource = await client.discover_auth()
metadata: dict[str, Any] | None = None
if protected_resource and protected_resource.get("authorization_servers"):
auth_server_url = protected_resource["authorization_servers"][0]
resource_url = protected_resource.get("resource", request.server_url)
# Step 2a: Discover auth-server metadata (RFC 8414)
metadata = await client.discover_auth_server_metadata(auth_server_url)
else:
# Fallback: Some MCP servers (e.g. Linear) are their own auth server
# and serve OAuth metadata directly without protected-resource metadata.
# Don't assume a resource_url — omitting it lets the auth server choose
# the correct audience for the token (RFC 8707 resource is optional).
resource_url = None
metadata = await client.discover_auth_server_metadata(request.server_url)
if (
not metadata
or "authorization_endpoint" not in metadata
or "token_endpoint" not in metadata
):
raise fastapi.HTTPException(
status_code=400,
detail="This MCP server does not advertise OAuth support. "
"You may need to provide an auth token manually.",
)
authorize_url = metadata["authorization_endpoint"]
token_url = metadata["token_endpoint"]
registration_endpoint = metadata.get("registration_endpoint")
revoke_url = metadata.get("revocation_endpoint")
# Step 3: Dynamic Client Registration (RFC 7591) if available
frontend_base_url = settings.config.frontend_base_url
if not frontend_base_url:
raise fastapi.HTTPException(
status_code=500,
detail="Frontend base URL is not configured.",
)
redirect_uri = f"{frontend_base_url}/auth/integrations/mcp_callback"
client_id = ""
client_secret = ""
if registration_endpoint:
reg_result = await _register_mcp_client(
registration_endpoint, redirect_uri, request.server_url
)
if reg_result:
client_id = reg_result.get("client_id", "")
client_secret = reg_result.get("client_secret", "")
if not client_id:
client_id = "autogpt-platform"
# Step 4: Store state token with OAuth metadata for the callback
scopes = (protected_resource or {}).get("scopes_supported") or metadata.get(
"scopes_supported", []
)
state_token, code_challenge = await creds_manager.store.store_state_token(
user_id,
ProviderName.MCP.value,
scopes,
state_metadata={
"authorize_url": authorize_url,
"token_url": token_url,
"revoke_url": revoke_url,
"resource_url": resource_url,
"server_url": request.server_url,
"client_id": client_id,
"client_secret": client_secret,
},
)
# Step 5: Build and return the login URL
handler = MCPOAuthHandler(
client_id=client_id,
client_secret=client_secret,
redirect_uri=redirect_uri,
authorize_url=authorize_url,
token_url=token_url,
resource_url=resource_url,
)
login_url = handler.get_login_url(
scopes, state_token, code_challenge=code_challenge
)
return MCPOAuthLoginResponse(login_url=login_url, state_token=state_token)
class MCPOAuthCallbackRequest(BaseModel):
"""Request to exchange an OAuth code for tokens."""
code: str = Field(description="Authorization code from OAuth callback")
state_token: str = Field(description="State token for CSRF verification")
class MCPOAuthCallbackResponse(BaseModel):
"""Response after successfully storing OAuth credentials."""
credential_id: str
@router.post(
"/oauth/callback",
summary="Exchange OAuth code for MCP tokens",
)
async def mcp_oauth_callback(
request: MCPOAuthCallbackRequest,
user_id: Annotated[str, Security(get_user_id)],
) -> CredentialsMetaResponse:
"""
Exchange the authorization code for tokens and store the credential.
The frontend calls this after receiving the OAuth code from the popup.
On success, subsequent ``/discover-tools`` calls for the same server URL
will automatically use the stored credential.
"""
valid_state = await creds_manager.store.verify_state_token(
user_id, request.state_token, ProviderName.MCP.value
)
if not valid_state:
raise fastapi.HTTPException(
status_code=400,
detail="Invalid or expired state token.",
)
meta = valid_state.state_metadata
frontend_base_url = settings.config.frontend_base_url
if not frontend_base_url:
raise fastapi.HTTPException(
status_code=500,
detail="Frontend base URL is not configured.",
)
redirect_uri = f"{frontend_base_url}/auth/integrations/mcp_callback"
handler = MCPOAuthHandler(
client_id=meta["client_id"],
client_secret=meta.get("client_secret", ""),
redirect_uri=redirect_uri,
authorize_url=meta["authorize_url"],
token_url=meta["token_url"],
revoke_url=meta.get("revoke_url"),
resource_url=meta.get("resource_url"),
)
try:
credentials = await handler.exchange_code_for_tokens(
request.code, valid_state.scopes, valid_state.code_verifier
)
except Exception as e:
raise fastapi.HTTPException(
status_code=400,
detail=f"OAuth token exchange failed: {e}",
)
# Enrich credential metadata for future lookup and token refresh
if credentials.metadata is None:
credentials.metadata = {}
credentials.metadata["mcp_server_url"] = meta["server_url"]
credentials.metadata["mcp_client_id"] = meta["client_id"]
credentials.metadata["mcp_client_secret"] = meta.get("client_secret", "")
credentials.metadata["mcp_token_url"] = meta["token_url"]
credentials.metadata["mcp_resource_url"] = meta.get("resource_url", "")
hostname = urlparse(meta["server_url"]).hostname or meta["server_url"]
credentials.title = f"MCP: {hostname}"
# Remove old MCP credentials for the same server to prevent stale token buildup.
try:
old_creds = await creds_manager.store.get_creds_by_provider(
user_id, ProviderName.MCP.value
)
for old in old_creds:
if (
isinstance(old, OAuth2Credentials)
and (old.metadata or {}).get("mcp_server_url") == meta["server_url"]
):
await creds_manager.store.delete_creds_by_id(user_id, old.id)
logger.info(
f"Removed old MCP credential {old.id} for {meta['server_url']}"
)
except Exception:
logger.debug("Could not clean up old MCP credentials", exc_info=True)
await creds_manager.create(user_id, credentials)
return CredentialsMetaResponse(
id=credentials.id,
provider=credentials.provider,
type=credentials.type,
title=credentials.title,
scopes=credentials.scopes,
username=credentials.username,
host=credentials.metadata.get("mcp_server_url"),
)
# ======================== Helpers ======================== #
async def _register_mcp_client(
registration_endpoint: str,
redirect_uri: str,
server_url: str,
) -> dict[str, Any] | None:
"""Attempt Dynamic Client Registration (RFC 7591) with an MCP auth server."""
try:
response = await Requests(raise_for_status=True).post(
registration_endpoint,
json={
"client_name": "AutoGPT Platform",
"redirect_uris": [redirect_uri],
"grant_types": ["authorization_code"],
"response_types": ["code"],
"token_endpoint_auth_method": "client_secret_post",
},
)
data = response.json()
if isinstance(data, dict) and "client_id" in data:
return data
return None
except Exception as e:
logger.warning(f"Dynamic client registration failed for {server_url}: {e}")
return None

View File

@@ -1,436 +0,0 @@
"""Tests for MCP API routes.
Uses httpx.AsyncClient with ASGITransport instead of fastapi.testclient.TestClient
to avoid creating blocking portals that can corrupt pytest-asyncio's session event loop.
"""
from unittest.mock import AsyncMock, patch
import fastapi
import httpx
import pytest
import pytest_asyncio
from autogpt_libs.auth import get_user_id
from backend.api.features.mcp.routes import router
from backend.blocks.mcp.client import MCPClientError, MCPTool
from backend.util.request import HTTPClientError
app = fastapi.FastAPI()
app.include_router(router)
app.dependency_overrides[get_user_id] = lambda: "test-user-id"
@pytest_asyncio.fixture(scope="module")
async def client():
transport = httpx.ASGITransport(app=app)
async with httpx.AsyncClient(transport=transport, base_url="http://test") as c:
yield c
class TestDiscoverTools:
@pytest.mark.asyncio(loop_scope="session")
async def test_discover_tools_success(self, client):
mock_tools = [
MCPTool(
name="get_weather",
description="Get weather for a city",
input_schema={
"type": "object",
"properties": {"city": {"type": "string"}},
"required": ["city"],
},
),
MCPTool(
name="add_numbers",
description="Add two numbers",
input_schema={
"type": "object",
"properties": {
"a": {"type": "number"},
"b": {"type": "number"},
},
},
),
]
with (
patch("backend.api.features.mcp.routes.MCPClient") as MockClient,
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
):
mock_cm.store.get_creds_by_provider = AsyncMock(return_value=[])
instance = MockClient.return_value
instance.initialize = AsyncMock(
return_value={
"protocolVersion": "2025-03-26",
"serverInfo": {"name": "test-server"},
}
)
instance.list_tools = AsyncMock(return_value=mock_tools)
response = await client.post(
"/discover-tools",
json={"server_url": "https://mcp.example.com/mcp"},
)
assert response.status_code == 200
data = response.json()
assert len(data["tools"]) == 2
assert data["tools"][0]["name"] == "get_weather"
assert data["tools"][1]["name"] == "add_numbers"
assert data["server_name"] == "test-server"
assert data["protocol_version"] == "2025-03-26"
@pytest.mark.asyncio(loop_scope="session")
async def test_discover_tools_with_auth_token(self, client):
with patch("backend.api.features.mcp.routes.MCPClient") as MockClient:
instance = MockClient.return_value
instance.initialize = AsyncMock(
return_value={"serverInfo": {}, "protocolVersion": "2025-03-26"}
)
instance.list_tools = AsyncMock(return_value=[])
response = await client.post(
"/discover-tools",
json={
"server_url": "https://mcp.example.com/mcp",
"auth_token": "my-secret-token",
},
)
assert response.status_code == 200
MockClient.assert_called_once_with(
"https://mcp.example.com/mcp",
auth_token="my-secret-token",
)
@pytest.mark.asyncio(loop_scope="session")
async def test_discover_tools_auto_uses_stored_credential(self, client):
"""When no explicit token is given, stored MCP credentials are used."""
from pydantic import SecretStr
from backend.data.model import OAuth2Credentials
stored_cred = OAuth2Credentials(
provider="mcp",
title="MCP: example.com",
access_token=SecretStr("stored-token-123"),
refresh_token=None,
access_token_expires_at=None,
refresh_token_expires_at=None,
scopes=[],
metadata={"mcp_server_url": "https://mcp.example.com/mcp"},
)
with (
patch("backend.api.features.mcp.routes.MCPClient") as MockClient,
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
):
mock_cm.store.get_creds_by_provider = AsyncMock(return_value=[stored_cred])
mock_cm.refresh_if_needed = AsyncMock(return_value=stored_cred)
instance = MockClient.return_value
instance.initialize = AsyncMock(
return_value={"serverInfo": {}, "protocolVersion": "2025-03-26"}
)
instance.list_tools = AsyncMock(return_value=[])
response = await client.post(
"/discover-tools",
json={"server_url": "https://mcp.example.com/mcp"},
)
assert response.status_code == 200
MockClient.assert_called_once_with(
"https://mcp.example.com/mcp",
auth_token="stored-token-123",
)
@pytest.mark.asyncio(loop_scope="session")
async def test_discover_tools_mcp_error(self, client):
with (
patch("backend.api.features.mcp.routes.MCPClient") as MockClient,
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
):
mock_cm.store.get_creds_by_provider = AsyncMock(return_value=[])
instance = MockClient.return_value
instance.initialize = AsyncMock(
side_effect=MCPClientError("Connection refused")
)
response = await client.post(
"/discover-tools",
json={"server_url": "https://bad-server.example.com/mcp"},
)
assert response.status_code == 502
assert "Connection refused" in response.json()["detail"]
@pytest.mark.asyncio(loop_scope="session")
async def test_discover_tools_generic_error(self, client):
with (
patch("backend.api.features.mcp.routes.MCPClient") as MockClient,
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
):
mock_cm.store.get_creds_by_provider = AsyncMock(return_value=[])
instance = MockClient.return_value
instance.initialize = AsyncMock(side_effect=Exception("Network timeout"))
response = await client.post(
"/discover-tools",
json={"server_url": "https://timeout.example.com/mcp"},
)
assert response.status_code == 502
assert "Failed to connect" in response.json()["detail"]
@pytest.mark.asyncio(loop_scope="session")
async def test_discover_tools_auth_required(self, client):
with (
patch("backend.api.features.mcp.routes.MCPClient") as MockClient,
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
):
mock_cm.store.get_creds_by_provider = AsyncMock(return_value=[])
instance = MockClient.return_value
instance.initialize = AsyncMock(
side_effect=HTTPClientError("HTTP 401 Error: Unauthorized", 401)
)
response = await client.post(
"/discover-tools",
json={"server_url": "https://auth-server.example.com/mcp"},
)
assert response.status_code == 401
assert "requires authentication" in response.json()["detail"]
@pytest.mark.asyncio(loop_scope="session")
async def test_discover_tools_forbidden(self, client):
with (
patch("backend.api.features.mcp.routes.MCPClient") as MockClient,
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
):
mock_cm.store.get_creds_by_provider = AsyncMock(return_value=[])
instance = MockClient.return_value
instance.initialize = AsyncMock(
side_effect=HTTPClientError("HTTP 403 Error: Forbidden", 403)
)
response = await client.post(
"/discover-tools",
json={"server_url": "https://auth-server.example.com/mcp"},
)
assert response.status_code == 401
assert "requires authentication" in response.json()["detail"]
@pytest.mark.asyncio(loop_scope="session")
async def test_discover_tools_missing_url(self, client):
response = await client.post("/discover-tools", json={})
assert response.status_code == 422
class TestOAuthLogin:
@pytest.mark.asyncio(loop_scope="session")
async def test_oauth_login_success(self, client):
with (
patch("backend.api.features.mcp.routes.MCPClient") as MockClient,
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
patch("backend.api.features.mcp.routes.settings") as mock_settings,
patch(
"backend.api.features.mcp.routes._register_mcp_client"
) as mock_register,
):
instance = MockClient.return_value
instance.discover_auth = AsyncMock(
return_value={
"authorization_servers": ["https://auth.sentry.io"],
"resource": "https://mcp.sentry.dev/mcp",
"scopes_supported": ["openid"],
}
)
instance.discover_auth_server_metadata = AsyncMock(
return_value={
"authorization_endpoint": "https://auth.sentry.io/authorize",
"token_endpoint": "https://auth.sentry.io/token",
"registration_endpoint": "https://auth.sentry.io/register",
}
)
mock_register.return_value = {
"client_id": "registered-client-id",
"client_secret": "registered-secret",
}
mock_cm.store.store_state_token = AsyncMock(
return_value=("state-token-123", "code-challenge-abc")
)
mock_settings.config.frontend_base_url = "http://localhost:3000"
response = await client.post(
"/oauth/login",
json={"server_url": "https://mcp.sentry.dev/mcp"},
)
assert response.status_code == 200
data = response.json()
assert "login_url" in data
assert data["state_token"] == "state-token-123"
assert "auth.sentry.io/authorize" in data["login_url"]
assert "registered-client-id" in data["login_url"]
@pytest.mark.asyncio(loop_scope="session")
async def test_oauth_login_no_oauth_support(self, client):
with patch("backend.api.features.mcp.routes.MCPClient") as MockClient:
instance = MockClient.return_value
instance.discover_auth = AsyncMock(return_value=None)
instance.discover_auth_server_metadata = AsyncMock(return_value=None)
response = await client.post(
"/oauth/login",
json={"server_url": "https://simple-server.example.com/mcp"},
)
assert response.status_code == 400
assert "does not advertise OAuth" in response.json()["detail"]
@pytest.mark.asyncio(loop_scope="session")
async def test_oauth_login_fallback_to_public_client(self, client):
"""When DCR is unavailable, falls back to default public client ID."""
with (
patch("backend.api.features.mcp.routes.MCPClient") as MockClient,
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
patch("backend.api.features.mcp.routes.settings") as mock_settings,
):
instance = MockClient.return_value
instance.discover_auth = AsyncMock(
return_value={
"authorization_servers": ["https://auth.example.com"],
"resource": "https://mcp.example.com/mcp",
}
)
instance.discover_auth_server_metadata = AsyncMock(
return_value={
"authorization_endpoint": "https://auth.example.com/authorize",
"token_endpoint": "https://auth.example.com/token",
# No registration_endpoint
}
)
mock_cm.store.store_state_token = AsyncMock(
return_value=("state-abc", "challenge-xyz")
)
mock_settings.config.frontend_base_url = "http://localhost:3000"
response = await client.post(
"/oauth/login",
json={"server_url": "https://mcp.example.com/mcp"},
)
assert response.status_code == 200
data = response.json()
assert "autogpt-platform" in data["login_url"]
class TestOAuthCallback:
@pytest.mark.asyncio(loop_scope="session")
async def test_oauth_callback_success(self, client):
from pydantic import SecretStr
from backend.data.model import OAuth2Credentials
mock_creds = OAuth2Credentials(
provider="mcp",
title=None,
access_token=SecretStr("access-token-xyz"),
refresh_token=None,
access_token_expires_at=None,
refresh_token_expires_at=None,
scopes=[],
metadata={
"mcp_token_url": "https://auth.sentry.io/token",
"mcp_resource_url": "https://mcp.sentry.dev/mcp",
},
)
with (
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
patch("backend.api.features.mcp.routes.settings") as mock_settings,
patch("backend.api.features.mcp.routes.MCPOAuthHandler") as MockHandler,
):
mock_settings.config.frontend_base_url = "http://localhost:3000"
# Mock state verification
mock_state = AsyncMock()
mock_state.state_metadata = {
"authorize_url": "https://auth.sentry.io/authorize",
"token_url": "https://auth.sentry.io/token",
"client_id": "test-client-id",
"client_secret": "test-secret",
"server_url": "https://mcp.sentry.dev/mcp",
}
mock_state.scopes = ["openid"]
mock_state.code_verifier = "verifier-123"
mock_cm.store.verify_state_token = AsyncMock(return_value=mock_state)
mock_cm.create = AsyncMock()
handler_instance = MockHandler.return_value
handler_instance.exchange_code_for_tokens = AsyncMock(
return_value=mock_creds
)
# Mock old credential cleanup
mock_cm.store.get_creds_by_provider = AsyncMock(return_value=[])
response = await client.post(
"/oauth/callback",
json={"code": "auth-code-abc", "state_token": "state-token-123"},
)
assert response.status_code == 200
data = response.json()
assert "id" in data
assert data["provider"] == "mcp"
assert data["type"] == "oauth2"
mock_cm.create.assert_called_once()
@pytest.mark.asyncio(loop_scope="session")
async def test_oauth_callback_invalid_state(self, client):
with patch("backend.api.features.mcp.routes.creds_manager") as mock_cm:
mock_cm.store.verify_state_token = AsyncMock(return_value=None)
response = await client.post(
"/oauth/callback",
json={"code": "auth-code", "state_token": "bad-state"},
)
assert response.status_code == 400
assert "Invalid or expired" in response.json()["detail"]
@pytest.mark.asyncio(loop_scope="session")
async def test_oauth_callback_token_exchange_fails(self, client):
with (
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
patch("backend.api.features.mcp.routes.settings") as mock_settings,
patch("backend.api.features.mcp.routes.MCPOAuthHandler") as MockHandler,
):
mock_settings.config.frontend_base_url = "http://localhost:3000"
mock_state = AsyncMock()
mock_state.state_metadata = {
"authorize_url": "https://auth.example.com/authorize",
"token_url": "https://auth.example.com/token",
"client_id": "cid",
"server_url": "https://mcp.example.com/mcp",
}
mock_state.scopes = []
mock_state.code_verifier = "v"
mock_cm.store.verify_state_token = AsyncMock(return_value=mock_state)
handler_instance = MockHandler.return_value
handler_instance.exchange_code_for_tokens = AsyncMock(
side_effect=RuntimeError("Token exchange failed")
)
response = await client.post(
"/oauth/callback",
json={"code": "bad-code", "state_token": "state"},
)
assert response.status_code == 400
assert "token exchange failed" in response.json()["detail"].lower()

View File

@@ -5,8 +5,8 @@ from typing import Optional
import aiohttp
from fastapi import HTTPException
from backend.blocks import get_block
from backend.data import graph as graph_db
from backend.data.block import get_block
from backend.util.settings import Settings
from .models import ApiResponse, ChatRequest, GraphData

View File

@@ -152,7 +152,7 @@ class BlockHandler(ContentHandler):
async def get_missing_items(self, batch_size: int) -> list[ContentItem]:
"""Fetch blocks without embeddings."""
from backend.blocks import get_blocks
from backend.data.block import get_blocks
# Get all available blocks
all_blocks = get_blocks()
@@ -249,7 +249,7 @@ class BlockHandler(ContentHandler):
async def get_stats(self) -> dict[str, int]:
"""Get statistics about block embedding coverage."""
from backend.blocks import get_blocks
from backend.data.block import get_blocks
all_blocks = get_blocks()

View File

@@ -93,7 +93,7 @@ async def test_block_handler_get_missing_items(mocker):
mock_existing = []
with patch(
"backend.blocks.get_blocks",
"backend.data.block.get_blocks",
return_value=mock_blocks,
):
with patch(
@@ -135,7 +135,7 @@ async def test_block_handler_get_stats(mocker):
mock_embedded = [{"count": 2}]
with patch(
"backend.blocks.get_blocks",
"backend.data.block.get_blocks",
return_value=mock_blocks,
):
with patch(
@@ -327,7 +327,7 @@ async def test_block_handler_handles_missing_attributes():
mock_blocks = {"block-minimal": mock_block_class}
with patch(
"backend.blocks.get_blocks",
"backend.data.block.get_blocks",
return_value=mock_blocks,
):
with patch(
@@ -360,7 +360,7 @@ async def test_block_handler_skips_failed_blocks():
mock_blocks = {"good-block": good_block, "bad-block": bad_block}
with patch(
"backend.blocks.get_blocks",
"backend.data.block.get_blocks",
return_value=mock_blocks,
):
with patch(

View File

@@ -1,7 +1,7 @@
import asyncio
import logging
from datetime import datetime, timezone
from typing import Any, Literal, overload
from typing import Any, Literal
import fastapi
import prisma.enums
@@ -11,8 +11,8 @@ import prisma.types
from backend.data.db import transaction
from backend.data.graph import (
GraphMeta,
GraphModel,
GraphModelWithoutNodes,
get_graph,
get_graph_as_admin,
get_sub_graphs,
@@ -334,22 +334,7 @@ async def get_store_agent_details(
raise DatabaseError("Failed to fetch agent details") from e
@overload
async def get_available_graph(
store_listing_version_id: str, hide_nodes: Literal[False]
) -> GraphModel: ...
@overload
async def get_available_graph(
store_listing_version_id: str, hide_nodes: Literal[True] = True
) -> GraphModelWithoutNodes: ...
async def get_available_graph(
store_listing_version_id: str,
hide_nodes: bool = True,
) -> GraphModelWithoutNodes | GraphModel:
async def get_available_graph(store_listing_version_id: str) -> GraphMeta:
try:
# Get avaialble, non-deleted store listing version
store_listing_version = (
@@ -359,7 +344,7 @@ async def get_available_graph(
"isAvailable": True,
"isDeleted": False,
},
include={"AgentGraph": {"include": AGENT_GRAPH_INCLUDE}},
include={"AgentGraph": {"include": {"Nodes": True}}},
)
)
@@ -369,9 +354,7 @@ async def get_available_graph(
detail=f"Store listing version {store_listing_version_id} not found",
)
return (GraphModelWithoutNodes if hide_nodes else GraphModel).from_db(
store_listing_version.AgentGraph
)
return GraphModel.from_db(store_listing_version.AgentGraph).meta()
except Exception as e:
logger.error(f"Error getting agent: {e}")

View File

@@ -662,7 +662,7 @@ async def cleanup_orphaned_embeddings() -> dict[str, Any]:
)
current_ids = {row["id"] for row in valid_agents}
elif content_type == ContentType.BLOCK:
from backend.blocks import get_blocks
from backend.data.block import get_blocks
current_ids = set(get_blocks().keys())
elif content_type == ContentType.DOCUMENTATION:

View File

@@ -8,7 +8,6 @@ Includes BM25 reranking for improved lexical relevance.
import logging
import re
import time
from dataclasses import dataclass
from typing import Any, Literal
@@ -363,11 +362,7 @@ async def unified_hybrid_search(
LIMIT {limit_param} OFFSET {offset_param}
"""
try:
results = await query_raw_with_schema(sql_query, *params)
except Exception as e:
await _log_vector_error_diagnostics(e)
raise
results = await query_raw_with_schema(sql_query, *params)
total = results[0]["total_count"] if results else 0
# Apply BM25 reranking
@@ -691,11 +686,7 @@ async def hybrid_search(
LIMIT {limit_param} OFFSET {offset_param}
"""
try:
results = await query_raw_with_schema(sql_query, *params)
except Exception as e:
await _log_vector_error_diagnostics(e)
raise
results = await query_raw_with_schema(sql_query, *params)
total = results[0]["total_count"] if results else 0
@@ -727,87 +718,6 @@ async def hybrid_search_simple(
return await hybrid_search(query=query, page=page, page_size=page_size)
# ============================================================================
# Diagnostics
# ============================================================================
# Rate limit: only log vector error diagnostics once per this interval
_VECTOR_DIAG_INTERVAL_SECONDS = 60
_last_vector_diag_time: float = 0
async def _log_vector_error_diagnostics(error: Exception) -> None:
"""Log diagnostic info when 'type vector does not exist' error occurs.
Note: Diagnostic queries use query_raw_with_schema which may run on a different
pooled connection than the one that failed. Session-level search_path can differ,
so these diagnostics show cluster-wide state, not necessarily the failed session.
Includes rate limiting to avoid log spam - only logs once per minute.
Caller should re-raise the error after calling this function.
"""
global _last_vector_diag_time
# Check if this is the vector type error
error_str = str(error).lower()
if not (
"type" in error_str and "vector" in error_str and "does not exist" in error_str
):
return
# Rate limit: only log once per interval
now = time.time()
if now - _last_vector_diag_time < _VECTOR_DIAG_INTERVAL_SECONDS:
return
_last_vector_diag_time = now
try:
diagnostics: dict[str, object] = {}
try:
search_path_result = await query_raw_with_schema("SHOW search_path")
diagnostics["search_path"] = search_path_result
except Exception as e:
diagnostics["search_path"] = f"Error: {e}"
try:
schema_result = await query_raw_with_schema("SELECT current_schema()")
diagnostics["current_schema"] = schema_result
except Exception as e:
diagnostics["current_schema"] = f"Error: {e}"
try:
user_result = await query_raw_with_schema(
"SELECT current_user, session_user, current_database()"
)
diagnostics["user_info"] = user_result
except Exception as e:
diagnostics["user_info"] = f"Error: {e}"
try:
# Check pgvector extension installation (cluster-wide, stable info)
ext_result = await query_raw_with_schema(
"SELECT extname, extversion, nspname as schema "
"FROM pg_extension e "
"JOIN pg_namespace n ON e.extnamespace = n.oid "
"WHERE extname = 'vector'"
)
diagnostics["pgvector_extension"] = ext_result
except Exception as e:
diagnostics["pgvector_extension"] = f"Error: {e}"
logger.error(
f"Vector type error diagnostics:\n"
f" Error: {error}\n"
f" search_path: {diagnostics.get('search_path')}\n"
f" current_schema: {diagnostics.get('current_schema')}\n"
f" user_info: {diagnostics.get('user_info')}\n"
f" pgvector_extension: {diagnostics.get('pgvector_extension')}"
)
except Exception as diag_error:
logger.error(f"Failed to collect vector error diagnostics: {diag_error}")
# Backward compatibility alias - HybridSearchWeights maps to StoreAgentSearchWeights
# for existing code that expects the popularity parameter
HybridSearchWeights = StoreAgentSearchWeights

View File

@@ -7,7 +7,16 @@ from replicate.client import Client as ReplicateClient
from replicate.exceptions import ReplicateError
from replicate.helpers import FileOutput
from backend.data.graph import GraphBaseMeta
from backend.blocks.ideogram import (
AspectRatio,
ColorPalettePreset,
IdeogramModelBlock,
IdeogramModelName,
MagicPromptOption,
StyleType,
UpscaleOption,
)
from backend.data.graph import BaseGraph
from backend.data.model import CredentialsMetaInput, ProviderName
from backend.integrations.credentials_store import ideogram_credentials
from backend.util.request import Requests
@@ -25,14 +34,14 @@ class ImageStyle(str, Enum):
DIGITAL_ART = "digital art"
async def generate_agent_image(agent: GraphBaseMeta | AgentGraph) -> io.BytesIO:
async def generate_agent_image(agent: BaseGraph | AgentGraph) -> io.BytesIO:
if settings.config.use_agent_image_generation_v2:
return await generate_agent_image_v2(graph=agent)
else:
return await generate_agent_image_v1(agent=agent)
async def generate_agent_image_v2(graph: GraphBaseMeta | AgentGraph) -> io.BytesIO:
async def generate_agent_image_v2(graph: BaseGraph | AgentGraph) -> io.BytesIO:
"""
Generate an image for an agent using Ideogram model.
Returns:
@@ -41,31 +50,18 @@ async def generate_agent_image_v2(graph: GraphBaseMeta | AgentGraph) -> io.Bytes
if not ideogram_credentials.api_key:
raise ValueError("Missing Ideogram API key")
from backend.blocks.ideogram import (
AspectRatio,
ColorPalettePreset,
IdeogramModelBlock,
IdeogramModelName,
MagicPromptOption,
StyleType,
UpscaleOption,
)
name = graph.name
description = f"{name} ({graph.description})" if graph.description else name
prompt = (
"Create a visually striking retro-futuristic vector pop art illustration "
f'prominently featuring "{name}" in bold typography. The image clearly and '
f"literally depicts a {description}, along with recognizable objects directly "
f"associated with the primary function of a {name}. "
f"Ensure the imagery is concrete, intuitive, and immediately understandable, "
f"clearly conveying the purpose of a {name}. "
"Maintain vibrant, limited-palette colors, sharp vector lines, "
"geometric shapes, flat illustration techniques, and solid colors "
"without gradients or shading. Preserve a retro-futuristic aesthetic "
"influenced by mid-century futurism and 1960s psychedelia, "
"prioritizing clear visual storytelling and thematic clarity above all else."
f"Create a visually striking retro-futuristic vector pop art illustration prominently featuring "
f'"{name}" in bold typography. The image clearly and literally depicts a {description}, '
f"along with recognizable objects directly associated with the primary function of a {name}. "
f"Ensure the imagery is concrete, intuitive, and immediately understandable, clearly conveying the "
f"purpose of a {name}. Maintain vibrant, limited-palette colors, sharp vector lines, geometric "
f"shapes, flat illustration techniques, and solid colors without gradients or shading. Preserve a "
f"retro-futuristic aesthetic influenced by mid-century futurism and 1960s psychedelia, "
f"prioritizing clear visual storytelling and thematic clarity above all else."
)
custom_colors = [
@@ -103,12 +99,12 @@ async def generate_agent_image_v2(graph: GraphBaseMeta | AgentGraph) -> io.Bytes
return io.BytesIO(response.content)
async def generate_agent_image_v1(agent: GraphBaseMeta | AgentGraph) -> io.BytesIO:
async def generate_agent_image_v1(agent: BaseGraph | AgentGraph) -> io.BytesIO:
"""
Generate an image for an agent using Flux model via Replicate API.
Args:
agent (GraphBaseMeta | AgentGraph): The agent to generate an image for
agent (Graph): The agent to generate an image for
Returns:
io.BytesIO: The generated image as bytes
@@ -118,13 +114,7 @@ async def generate_agent_image_v1(agent: GraphBaseMeta | AgentGraph) -> io.Bytes
raise ValueError("Missing Replicate API key in settings")
# Construct prompt from agent details
prompt = (
"Create a visually engaging app store thumbnail for the AI agent "
"that highlights what it does in a clear and captivating way:\n"
f"- **Name**: {agent.name}\n"
f"- **Description**: {agent.description}\n"
f"Focus on showcasing its core functionality with an appealing design."
)
prompt = f"Create a visually engaging app store thumbnail for the AI agent that highlights what it does in a clear and captivating way:\n- **Name**: {agent.name}\n- **Description**: {agent.description}\nFocus on showcasing its core functionality with an appealing design."
# Set up Replicate client
client = ReplicateClient(api_token=settings.secrets.replicate_api_key)

View File

@@ -278,7 +278,7 @@ async def get_agent(
)
async def get_graph_meta_by_store_listing_version_id(
store_listing_version_id: str,
) -> backend.data.graph.GraphModelWithoutNodes:
) -> backend.data.graph.GraphMeta:
"""
Get Agent Graph from Store Listing Version ID.
"""

View File

@@ -40,11 +40,10 @@ from backend.api.model import (
UpdateTimezoneRequest,
UploadFileResponse,
)
from backend.blocks import get_block, get_blocks
from backend.data import execution as execution_db
from backend.data import graph as graph_db
from backend.data.auth import api_key as api_key_db
from backend.data.block import BlockInput, CompletedBlockOutput
from backend.data.block import BlockInput, CompletedBlockOutput, get_block, get_blocks
from backend.data.credit import (
AutoTopUpConfig,
RefundRequest,
@@ -102,6 +101,7 @@ from backend.util.timezone_utils import (
from backend.util.virus_scanner import scan_content_safe
from .library import db as library_db
from .library import model as library_model
from .store.model import StoreAgentDetails
@@ -823,16 +823,18 @@ async def update_graph(
graph: graph_db.Graph,
user_id: Annotated[str, Security(get_user_id)],
) -> graph_db.GraphModel:
# Sanity check
if graph.id and graph.id != graph_id:
raise HTTPException(400, detail="Graph ID does not match ID in URI")
# Determine new version
existing_versions = await graph_db.get_graph_all_versions(graph_id, user_id=user_id)
if not existing_versions:
raise HTTPException(404, detail=f"Graph #{graph_id} not found")
latest_version_number = max(g.version for g in existing_versions)
graph.version = latest_version_number + 1
graph.version = max(g.version for g in existing_versions) + 1
current_active_version = next((v for v in existing_versions if v.is_active), None)
graph = graph_db.make_graph_model(graph, user_id)
graph.reassign_ids(user_id=user_id, reassign_graph_id=False)
graph.validate_graph(for_run=False)
@@ -840,23 +842,27 @@ async def update_graph(
new_graph_version = await graph_db.create_graph(graph, user_id=user_id)
if new_graph_version.is_active:
await library_db.update_library_agent_version_and_settings(
user_id, new_graph_version
)
# Keep the library agent up to date with the new active version
await _update_library_agent_version_and_settings(user_id, new_graph_version)
# Handle activation of the new graph first to ensure continuity
new_graph_version = await on_graph_activate(new_graph_version, user_id=user_id)
# Ensure new version is the only active version
await graph_db.set_graph_active_version(
graph_id=graph_id, version=new_graph_version.version, user_id=user_id
)
if current_active_version:
# Handle deactivation of the previously active version
await on_graph_deactivate(current_active_version, user_id=user_id)
# Fetch new graph version *with sub-graphs* (needed for credentials input schema)
new_graph_version_with_subgraphs = await graph_db.get_graph(
graph_id,
new_graph_version.version,
user_id=user_id,
include_subgraphs=True,
)
assert new_graph_version_with_subgraphs
assert new_graph_version_with_subgraphs # make type checker happy
return new_graph_version_with_subgraphs
@@ -894,15 +900,33 @@ async def set_graph_active_version(
)
# Keep the library agent up to date with the new active version
await library_db.update_library_agent_version_and_settings(
user_id, new_active_graph
)
await _update_library_agent_version_and_settings(user_id, new_active_graph)
if current_active_graph and current_active_graph.version != new_active_version:
# Handle deactivation of the previously active version
await on_graph_deactivate(current_active_graph, user_id=user_id)
async def _update_library_agent_version_and_settings(
user_id: str, agent_graph: graph_db.GraphModel
) -> library_model.LibraryAgent:
library = await library_db.update_agent_version_in_library(
user_id, agent_graph.id, agent_graph.version
)
updated_settings = GraphSettings.from_graph(
graph=agent_graph,
hitl_safe_mode=library.settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=library.settings.sensitive_action_safe_mode,
)
if updated_settings != library.settings:
library = await library_db.update_library_agent(
library_agent_id=library.id,
user_id=user_id,
settings=updated_settings,
)
return library
@v1_router.patch(
path="/graphs/{graph_id}/settings",
summary="Update graph settings",

View File

@@ -26,7 +26,6 @@ import backend.api.features.executions.review.routes
import backend.api.features.library.db
import backend.api.features.library.model
import backend.api.features.library.routes
import backend.api.features.mcp.routes as mcp_routes
import backend.api.features.oauth
import backend.api.features.otto.routes
import backend.api.features.postmark.postmark
@@ -344,11 +343,6 @@ app.include_router(
tags=["workspace"],
prefix="/api/workspace",
)
app.include_router(
mcp_routes.router,
tags=["v2", "mcp"],
prefix="/api/mcp",
)
app.include_router(
backend.api.features.oauth.router,
tags=["oauth"],

View File

@@ -3,19 +3,22 @@ import logging
import os
import re
from pathlib import Path
from typing import Sequence, Type, TypeVar
from typing import TYPE_CHECKING, TypeVar
from backend.blocks._base import AnyBlockSchema, BlockType
from backend.util.cache import cached
logger = logging.getLogger(__name__)
if TYPE_CHECKING:
from backend.data.block import Block
T = TypeVar("T")
@cached(ttl_seconds=3600)
def load_all_blocks() -> dict[str, type["AnyBlockSchema"]]:
from backend.blocks._base import Block
def load_all_blocks() -> dict[str, type["Block"]]:
from backend.data.block import Block
from backend.util.settings import Config
# Check if example blocks should be loaded from settings
@@ -47,8 +50,8 @@ def load_all_blocks() -> dict[str, type["AnyBlockSchema"]]:
importlib.import_module(f".{module}", package=__name__)
# Load all Block instances from the available modules
available_blocks: dict[str, type["AnyBlockSchema"]] = {}
for block_cls in _all_subclasses(Block):
available_blocks: dict[str, type["Block"]] = {}
for block_cls in all_subclasses(Block):
class_name = block_cls.__name__
if class_name.endswith("Base"):
@@ -61,7 +64,7 @@ def load_all_blocks() -> dict[str, type["AnyBlockSchema"]]:
"please name the class with 'Base' at the end"
)
block = block_cls() # pyright: ignore[reportAbstractUsage]
block = block_cls.create()
if not isinstance(block.id, str) or len(block.id) != 36:
raise ValueError(
@@ -102,7 +105,7 @@ def load_all_blocks() -> dict[str, type["AnyBlockSchema"]]:
available_blocks[block.id] = block_cls
# Filter out blocks with incomplete auth configs, e.g. missing OAuth server secrets
from ._utils import is_block_auth_configured
from backend.data.block import is_block_auth_configured
filtered_blocks = {}
for block_id, block_cls in available_blocks.items():
@@ -112,48 +115,11 @@ def load_all_blocks() -> dict[str, type["AnyBlockSchema"]]:
return filtered_blocks
def _all_subclasses(cls: type[T]) -> list[type[T]]:
__all__ = ["load_all_blocks"]
def all_subclasses(cls: type[T]) -> list[type[T]]:
subclasses = cls.__subclasses__()
for subclass in subclasses:
subclasses += _all_subclasses(subclass)
subclasses += all_subclasses(subclass)
return subclasses
# ============== Block access helper functions ============== #
def get_blocks() -> dict[str, Type["AnyBlockSchema"]]:
return load_all_blocks()
# Note on the return type annotation: https://github.com/microsoft/pyright/issues/10281
def get_block(block_id: str) -> "AnyBlockSchema | None":
cls = get_blocks().get(block_id)
return cls() if cls else None
@cached(ttl_seconds=3600)
def get_webhook_block_ids() -> Sequence[str]:
return [
id
for id, B in get_blocks().items()
if B().block_type in (BlockType.WEBHOOK, BlockType.WEBHOOK_MANUAL)
]
@cached(ttl_seconds=3600)
def get_io_block_ids() -> Sequence[str]:
return [
id
for id, B in get_blocks().items()
if B().block_type in (BlockType.INPUT, BlockType.OUTPUT)
]
@cached(ttl_seconds=3600)
def get_human_in_the_loop_block_ids() -> Sequence[str]:
return [
id
for id, B in get_blocks().items()
if B().block_type == BlockType.HUMAN_IN_THE_LOOP
]

View File

@@ -1,740 +0,0 @@
import inspect
import logging
from abc import ABC, abstractmethod
from enum import Enum
from typing import (
TYPE_CHECKING,
Any,
Callable,
ClassVar,
Generic,
Optional,
Type,
TypeAlias,
TypeVar,
cast,
get_origin,
)
import jsonref
import jsonschema
from pydantic import BaseModel
from backend.data.block import BlockInput, BlockOutput, BlockOutputEntry
from backend.data.model import (
Credentials,
CredentialsFieldInfo,
CredentialsMetaInput,
SchemaField,
is_credentials_field_name,
)
from backend.integrations.providers import ProviderName
from backend.util import json
from backend.util.exceptions import (
BlockError,
BlockExecutionError,
BlockInputError,
BlockOutputError,
BlockUnknownError,
)
from backend.util.settings import Config
logger = logging.getLogger(__name__)
if TYPE_CHECKING:
from backend.data.execution import ExecutionContext
from backend.data.model import ContributorDetails, NodeExecutionStats
from ..data.graph import Link
app_config = Config()
BlockTestOutput = BlockOutputEntry | tuple[str, Callable[[Any], bool]]
class BlockType(Enum):
STANDARD = "Standard"
INPUT = "Input"
OUTPUT = "Output"
NOTE = "Note"
WEBHOOK = "Webhook"
WEBHOOK_MANUAL = "Webhook (manual)"
AGENT = "Agent"
AI = "AI"
AYRSHARE = "Ayrshare"
HUMAN_IN_THE_LOOP = "Human In The Loop"
MCP_TOOL = "MCP Tool"
class BlockCategory(Enum):
AI = "Block that leverages AI to perform a task."
SOCIAL = "Block that interacts with social media platforms."
TEXT = "Block that processes text data."
SEARCH = "Block that searches or extracts information from the internet."
BASIC = "Block that performs basic operations."
INPUT = "Block that interacts with input of the graph."
OUTPUT = "Block that interacts with output of the graph."
LOGIC = "Programming logic to control the flow of your agent"
COMMUNICATION = "Block that interacts with communication platforms."
DEVELOPER_TOOLS = "Developer tools such as GitHub blocks."
DATA = "Block that interacts with structured data."
HARDWARE = "Block that interacts with hardware."
AGENT = "Block that interacts with other agents."
CRM = "Block that interacts with CRM services."
SAFETY = (
"Block that provides AI safety mechanisms such as detecting harmful content"
)
PRODUCTIVITY = "Block that helps with productivity"
ISSUE_TRACKING = "Block that helps with issue tracking"
MULTIMEDIA = "Block that interacts with multimedia content"
MARKETING = "Block that helps with marketing"
def dict(self) -> dict[str, str]:
return {"category": self.name, "description": self.value}
class BlockCostType(str, Enum):
RUN = "run" # cost X credits per run
BYTE = "byte" # cost X credits per byte
SECOND = "second" # cost X credits per second
class BlockCost(BaseModel):
cost_amount: int
cost_filter: BlockInput
cost_type: BlockCostType
def __init__(
self,
cost_amount: int,
cost_type: BlockCostType = BlockCostType.RUN,
cost_filter: Optional[BlockInput] = None,
**data: Any,
) -> None:
super().__init__(
cost_amount=cost_amount,
cost_filter=cost_filter or {},
cost_type=cost_type,
**data,
)
class BlockInfo(BaseModel):
id: str
name: str
inputSchema: dict[str, Any]
outputSchema: dict[str, Any]
costs: list[BlockCost]
description: str
categories: list[dict[str, str]]
contributors: list[dict[str, Any]]
staticOutput: bool
uiType: str
class BlockSchema(BaseModel):
cached_jsonschema: ClassVar[dict[str, Any]]
@classmethod
def jsonschema(cls) -> dict[str, Any]:
if cls.cached_jsonschema:
return cls.cached_jsonschema
model = jsonref.replace_refs(cls.model_json_schema(), merge_props=True)
def ref_to_dict(obj):
if isinstance(obj, dict):
# OpenAPI <3.1 does not support sibling fields that has a $ref key
# So sometimes, the schema has an "allOf"/"anyOf"/"oneOf" with 1 item.
keys = {"allOf", "anyOf", "oneOf"}
one_key = next((k for k in keys if k in obj and len(obj[k]) == 1), None)
if one_key:
obj.update(obj[one_key][0])
return {
key: ref_to_dict(value)
for key, value in obj.items()
if not key.startswith("$") and key != one_key
}
elif isinstance(obj, list):
return [ref_to_dict(item) for item in obj]
return obj
cls.cached_jsonschema = cast(dict[str, Any], ref_to_dict(model))
return cls.cached_jsonschema
@classmethod
def validate_data(cls, data: BlockInput) -> str | None:
return json.validate_with_jsonschema(
schema=cls.jsonschema(),
data={k: v for k, v in data.items() if v is not None},
)
@classmethod
def get_mismatch_error(cls, data: BlockInput) -> str | None:
return cls.validate_data(data)
@classmethod
def get_field_schema(cls, field_name: str) -> dict[str, Any]:
model_schema = cls.jsonschema().get("properties", {})
if not model_schema:
raise ValueError(f"Invalid model schema {cls}")
property_schema = model_schema.get(field_name)
if not property_schema:
raise ValueError(f"Invalid property name {field_name}")
return property_schema
@classmethod
def validate_field(cls, field_name: str, data: BlockInput) -> str | None:
"""
Validate the data against a specific property (one of the input/output name).
Returns the validation error message if the data does not match the schema.
"""
try:
property_schema = cls.get_field_schema(field_name)
jsonschema.validate(json.to_dict(data), property_schema)
return None
except jsonschema.ValidationError as e:
return str(e)
@classmethod
def get_fields(cls) -> set[str]:
return set(cls.model_fields.keys())
@classmethod
def get_required_fields(cls) -> set[str]:
return {
field
for field, field_info in cls.model_fields.items()
if field_info.is_required()
}
@classmethod
def __pydantic_init_subclass__(cls, **kwargs):
"""Validates the schema definition. Rules:
- Fields with annotation `CredentialsMetaInput` MUST be
named `credentials` or `*_credentials`
- Fields named `credentials` or `*_credentials` MUST be
of type `CredentialsMetaInput`
"""
super().__pydantic_init_subclass__(**kwargs)
# Reset cached JSON schema to prevent inheriting it from parent class
cls.cached_jsonschema = {}
credentials_fields = cls.get_credentials_fields()
for field_name in cls.get_fields():
if is_credentials_field_name(field_name):
if field_name not in credentials_fields:
raise TypeError(
f"Credentials field '{field_name}' on {cls.__qualname__} "
f"is not of type {CredentialsMetaInput.__name__}"
)
CredentialsMetaInput.validate_credentials_field_schema(
cls.get_field_schema(field_name), field_name
)
elif field_name in credentials_fields:
raise KeyError(
f"Credentials field '{field_name}' on {cls.__qualname__} "
"has invalid name: must be 'credentials' or *_credentials"
)
@classmethod
def get_credentials_fields(cls) -> dict[str, type[CredentialsMetaInput]]:
return {
field_name: info.annotation
for field_name, info in cls.model_fields.items()
if (
inspect.isclass(info.annotation)
and issubclass(
get_origin(info.annotation) or info.annotation,
CredentialsMetaInput,
)
)
}
@classmethod
def get_auto_credentials_fields(cls) -> dict[str, dict[str, Any]]:
"""
Get fields that have auto_credentials metadata (e.g., GoogleDriveFileInput).
Returns a dict mapping kwarg_name -> {field_name, auto_credentials_config}
Raises:
ValueError: If multiple fields have the same kwarg_name, as this would
cause silent overwriting and only the last field would be processed.
"""
result: dict[str, dict[str, Any]] = {}
schema = cls.jsonschema()
properties = schema.get("properties", {})
for field_name, field_schema in properties.items():
auto_creds = field_schema.get("auto_credentials")
if auto_creds:
kwarg_name = auto_creds.get("kwarg_name", "credentials")
if kwarg_name in result:
raise ValueError(
f"Duplicate auto_credentials kwarg_name '{kwarg_name}' "
f"in fields '{result[kwarg_name]['field_name']}' and "
f"'{field_name}' on {cls.__qualname__}"
)
result[kwarg_name] = {
"field_name": field_name,
"config": auto_creds,
}
return result
@classmethod
def get_credentials_fields_info(cls) -> dict[str, CredentialsFieldInfo]:
result = {}
# Regular credentials fields
for field_name in cls.get_credentials_fields().keys():
result[field_name] = CredentialsFieldInfo.model_validate(
cls.get_field_schema(field_name), by_alias=True
)
# Auto-generated credentials fields (from GoogleDriveFileInput etc.)
for kwarg_name, info in cls.get_auto_credentials_fields().items():
config = info["config"]
# Build a schema-like dict that CredentialsFieldInfo can parse
auto_schema = {
"credentials_provider": [config.get("provider", "google")],
"credentials_types": [config.get("type", "oauth2")],
"credentials_scopes": config.get("scopes"),
}
result[kwarg_name] = CredentialsFieldInfo.model_validate(
auto_schema, by_alias=True
)
return result
@classmethod
def get_input_defaults(cls, data: BlockInput) -> BlockInput:
return data # Return as is, by default.
@classmethod
def get_missing_links(cls, data: BlockInput, links: list["Link"]) -> set[str]:
input_fields_from_nodes = {link.sink_name for link in links}
return input_fields_from_nodes - set(data)
@classmethod
def get_missing_input(cls, data: BlockInput) -> set[str]:
return cls.get_required_fields() - set(data)
class BlockSchemaInput(BlockSchema):
"""
Base schema class for block inputs.
All block input schemas should extend this class for consistency.
"""
pass
class BlockSchemaOutput(BlockSchema):
"""
Base schema class for block outputs that includes a standard error field.
All block output schemas should extend this class to ensure consistent error handling.
"""
error: str = SchemaField(
description="Error message if the operation failed", default=""
)
BlockSchemaInputType = TypeVar("BlockSchemaInputType", bound=BlockSchemaInput)
BlockSchemaOutputType = TypeVar("BlockSchemaOutputType", bound=BlockSchemaOutput)
class EmptyInputSchema(BlockSchemaInput):
pass
class EmptyOutputSchema(BlockSchemaOutput):
pass
# For backward compatibility - will be deprecated
EmptySchema = EmptyOutputSchema
# --8<-- [start:BlockWebhookConfig]
class BlockManualWebhookConfig(BaseModel):
"""
Configuration model for webhook-triggered blocks on which
the user has to manually set up the webhook at the provider.
"""
provider: ProviderName
"""The service provider that the webhook connects to"""
webhook_type: str
"""
Identifier for the webhook type. E.g. GitHub has repo and organization level hooks.
Only for use in the corresponding `WebhooksManager`.
"""
event_filter_input: str = ""
"""
Name of the block's event filter input.
Leave empty if the corresponding webhook doesn't have distinct event/payload types.
"""
event_format: str = "{event}"
"""
Template string for the event(s) that a block instance subscribes to.
Applied individually to each event selected in the event filter input.
Example: `"pull_request.{event}"` -> `"pull_request.opened"`
"""
class BlockWebhookConfig(BlockManualWebhookConfig):
"""
Configuration model for webhook-triggered blocks for which
the webhook can be automatically set up through the provider's API.
"""
resource_format: str
"""
Template string for the resource that a block instance subscribes to.
Fields will be filled from the block's inputs (except `payload`).
Example: `f"{repo}/pull_requests"` (note: not how it's actually implemented)
Only for use in the corresponding `WebhooksManager`.
"""
# --8<-- [end:BlockWebhookConfig]
class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
def __init__(
self,
id: str = "",
description: str = "",
contributors: list["ContributorDetails"] = [],
categories: set[BlockCategory] | None = None,
input_schema: Type[BlockSchemaInputType] = EmptyInputSchema,
output_schema: Type[BlockSchemaOutputType] = EmptyOutputSchema,
test_input: BlockInput | list[BlockInput] | None = None,
test_output: BlockTestOutput | list[BlockTestOutput] | None = None,
test_mock: dict[str, Any] | None = None,
test_credentials: Optional[Credentials | dict[str, Credentials]] = None,
disabled: bool = False,
static_output: bool = False,
block_type: BlockType = BlockType.STANDARD,
webhook_config: Optional[BlockWebhookConfig | BlockManualWebhookConfig] = None,
is_sensitive_action: bool = False,
):
"""
Initialize the block with the given schema.
Args:
id: The unique identifier for the block, this value will be persisted in the
DB. So it should be a unique and constant across the application run.
Use the UUID format for the ID.
description: The description of the block, explaining what the block does.
contributors: The list of contributors who contributed to the block.
input_schema: The schema, defined as a Pydantic model, for the input data.
output_schema: The schema, defined as a Pydantic model, for the output data.
test_input: The list or single sample input data for the block, for testing.
test_output: The list or single expected output if the test_input is run.
test_mock: function names on the block implementation to mock on test run.
disabled: If the block is disabled, it will not be available for execution.
static_output: Whether the output links of the block are static by default.
"""
from backend.data.model import NodeExecutionStats
self.id = id
self.input_schema = input_schema
self.output_schema = output_schema
self.test_input = test_input
self.test_output = test_output
self.test_mock = test_mock
self.test_credentials = test_credentials
self.description = description
self.categories = categories or set()
self.contributors = contributors or set()
self.disabled = disabled
self.static_output = static_output
self.block_type = block_type
self.webhook_config = webhook_config
self.is_sensitive_action = is_sensitive_action
self.execution_stats: "NodeExecutionStats" = NodeExecutionStats()
if self.webhook_config:
if isinstance(self.webhook_config, BlockWebhookConfig):
# Enforce presence of credentials field on auto-setup webhook blocks
if not (cred_fields := self.input_schema.get_credentials_fields()):
raise TypeError(
"credentials field is required on auto-setup webhook blocks"
)
# Disallow multiple credentials inputs on webhook blocks
elif len(cred_fields) > 1:
raise ValueError(
"Multiple credentials inputs not supported on webhook blocks"
)
self.block_type = BlockType.WEBHOOK
else:
self.block_type = BlockType.WEBHOOK_MANUAL
# Enforce shape of webhook event filter, if present
if self.webhook_config.event_filter_input:
event_filter_field = self.input_schema.model_fields[
self.webhook_config.event_filter_input
]
if not (
isinstance(event_filter_field.annotation, type)
and issubclass(event_filter_field.annotation, BaseModel)
and all(
field.annotation is bool
for field in event_filter_field.annotation.model_fields.values()
)
):
raise NotImplementedError(
f"{self.name} has an invalid webhook event selector: "
"field must be a BaseModel and all its fields must be boolean"
)
# Enforce presence of 'payload' input
if "payload" not in self.input_schema.model_fields:
raise TypeError(
f"{self.name} is webhook-triggered but has no 'payload' input"
)
# Disable webhook-triggered block if webhook functionality not available
if not app_config.platform_base_url:
self.disabled = True
@abstractmethod
async def run(self, input_data: BlockSchemaInputType, **kwargs) -> BlockOutput:
"""
Run the block with the given input data.
Args:
input_data: The input data with the structure of input_schema.
Kwargs: Currently 14/02/2025 these include
graph_id: The ID of the graph.
node_id: The ID of the node.
graph_exec_id: The ID of the graph execution.
node_exec_id: The ID of the node execution.
user_id: The ID of the user.
Returns:
A Generator that yields (output_name, output_data).
output_name: One of the output name defined in Block's output_schema.
output_data: The data for the output_name, matching the defined schema.
"""
# --- satisfy the type checker, never executed -------------
if False: # noqa: SIM115
yield "name", "value" # pyright: ignore[reportMissingYield]
raise NotImplementedError(f"{self.name} does not implement the run method.")
async def run_once(
self, input_data: BlockSchemaInputType, output: str, **kwargs
) -> Any:
async for item in self.run(input_data, **kwargs):
name, data = item
if name == output:
return data
raise ValueError(f"{self.name} did not produce any output for {output}")
def merge_stats(self, stats: "NodeExecutionStats") -> "NodeExecutionStats":
self.execution_stats += stats
return self.execution_stats
@property
def name(self):
return self.__class__.__name__
def to_dict(self):
return {
"id": self.id,
"name": self.name,
"inputSchema": self.input_schema.jsonschema(),
"outputSchema": self.output_schema.jsonschema(),
"description": self.description,
"categories": [category.dict() for category in self.categories],
"contributors": [
contributor.model_dump() for contributor in self.contributors
],
"staticOutput": self.static_output,
"uiType": self.block_type.value,
}
def get_info(self) -> BlockInfo:
from backend.data.credit import get_block_cost
return BlockInfo(
id=self.id,
name=self.name,
inputSchema=self.input_schema.jsonschema(),
outputSchema=self.output_schema.jsonschema(),
costs=get_block_cost(self),
description=self.description,
categories=[category.dict() for category in self.categories],
contributors=[
contributor.model_dump() for contributor in self.contributors
],
staticOutput=self.static_output,
uiType=self.block_type.value,
)
async def execute(self, input_data: BlockInput, **kwargs) -> BlockOutput:
try:
async for output_name, output_data in self._execute(input_data, **kwargs):
yield output_name, output_data
except Exception as ex:
if isinstance(ex, BlockError):
raise ex
else:
raise (
BlockExecutionError
if isinstance(ex, ValueError)
else BlockUnknownError
)(
message=str(ex),
block_name=self.name,
block_id=self.id,
) from ex
async def is_block_exec_need_review(
self,
input_data: BlockInput,
*,
user_id: str,
node_id: str,
node_exec_id: str,
graph_exec_id: str,
graph_id: str,
graph_version: int,
execution_context: "ExecutionContext",
**kwargs,
) -> tuple[bool, BlockInput]:
"""
Check if this block execution needs human review and handle the review process.
Returns:
Tuple of (should_pause, input_data_to_use)
- should_pause: True if execution should be paused for review
- input_data_to_use: The input data to use (may be modified by reviewer)
"""
if not (
self.is_sensitive_action and execution_context.sensitive_action_safe_mode
):
return False, input_data
from backend.blocks.helpers.review import HITLReviewHelper
# Handle the review request and get decision
decision = await HITLReviewHelper.handle_review_decision(
input_data=input_data,
user_id=user_id,
node_id=node_id,
node_exec_id=node_exec_id,
graph_exec_id=graph_exec_id,
graph_id=graph_id,
graph_version=graph_version,
block_name=self.name,
editable=True,
)
if decision is None:
# We're awaiting review - pause execution
return True, input_data
if not decision.should_proceed:
# Review was rejected, raise an error to stop execution
raise BlockExecutionError(
message=f"Block execution rejected by reviewer: {decision.message}",
block_name=self.name,
block_id=self.id,
)
# Review was approved - use the potentially modified data
# ReviewResult.data must be a dict for block inputs
reviewed_data = decision.review_result.data
if not isinstance(reviewed_data, dict):
raise BlockExecutionError(
message=f"Review data must be a dict for block input, got {type(reviewed_data).__name__}",
block_name=self.name,
block_id=self.id,
)
return False, reviewed_data
async def _execute(self, input_data: BlockInput, **kwargs) -> BlockOutput:
# Check for review requirement only if running within a graph execution context
# Direct block execution (e.g., from chat) skips the review process
has_graph_context = all(
key in kwargs
for key in (
"node_exec_id",
"graph_exec_id",
"graph_id",
"execution_context",
)
)
if has_graph_context:
should_pause, input_data = await self.is_block_exec_need_review(
input_data, **kwargs
)
if should_pause:
return
# Validate the input data (original or reviewer-modified) once
if error := self.input_schema.validate_data(input_data):
raise BlockInputError(
message=f"Unable to execute block with invalid input data: {error}",
block_name=self.name,
block_id=self.id,
)
# Use the validated input data
async for output_name, output_data in self.run(
self.input_schema(**{k: v for k, v in input_data.items() if v is not None}),
**kwargs,
):
if output_name == "error":
raise BlockExecutionError(
message=output_data, block_name=self.name, block_id=self.id
)
if self.block_type == BlockType.STANDARD and (
error := self.output_schema.validate_field(output_name, output_data)
):
raise BlockOutputError(
message=f"Block produced an invalid output data: {error}",
block_name=self.name,
block_id=self.id,
)
yield output_name, output_data
def is_triggered_by_event_type(
self, trigger_config: dict[str, Any], event_type: str
) -> bool:
if not self.webhook_config:
raise TypeError("This method can't be used on non-trigger blocks")
if not self.webhook_config.event_filter_input:
return True
event_filter = trigger_config.get(self.webhook_config.event_filter_input)
if not event_filter:
raise ValueError("Event filter is not configured on trigger")
return event_type in [
self.webhook_config.event_format.format(event=k)
for k in event_filter
if event_filter[k] is True
]
# Type alias for any block with standard input/output schemas
AnyBlockSchema: TypeAlias = Block[BlockSchemaInput, BlockSchemaOutput]

View File

@@ -1,122 +0,0 @@
import logging
import os
from backend.integrations.providers import ProviderName
from ._base import AnyBlockSchema
logger = logging.getLogger(__name__)
def is_block_auth_configured(
block_cls: type[AnyBlockSchema],
) -> bool:
"""
Check if a block has a valid authentication method configured at runtime.
For example if a block is an OAuth-only block and there env vars are not set,
do not show it in the UI.
"""
from backend.sdk.registry import AutoRegistry
# Create an instance to access input_schema
try:
block = block_cls()
except Exception as e:
# If we can't create a block instance, assume it's not OAuth-only
logger.error(f"Error creating block instance for {block_cls.__name__}: {e}")
return True
logger.debug(
f"Checking if block {block_cls.__name__} has a valid provider configured"
)
# Get all credential inputs from input schema
credential_inputs = block.input_schema.get_credentials_fields_info()
required_inputs = block.input_schema.get_required_fields()
if not credential_inputs:
logger.debug(
f"Block {block_cls.__name__} has no credential inputs - Treating as valid"
)
return True
# Check credential inputs
if len(required_inputs.intersection(credential_inputs.keys())) == 0:
logger.debug(
f"Block {block_cls.__name__} has only optional credential inputs"
" - will work without credentials configured"
)
# Check if the credential inputs for this block are correctly configured
for field_name, field_info in credential_inputs.items():
provider_names = field_info.provider
if not provider_names:
logger.warning(
f"Block {block_cls.__name__} "
f"has credential input '{field_name}' with no provider options"
" - Disabling"
)
return False
# If a field has multiple possible providers, each one needs to be usable to
# prevent breaking the UX
for _provider_name in provider_names:
provider_name = _provider_name.value
if provider_name in ProviderName.__members__.values():
logger.debug(
f"Block {block_cls.__name__} credential input '{field_name}' "
f"provider '{provider_name}' is part of the legacy provider system"
" - Treating as valid"
)
break
provider = AutoRegistry.get_provider(provider_name)
if not provider:
logger.warning(
f"Block {block_cls.__name__} credential input '{field_name}' "
f"refers to unknown provider '{provider_name}' - Disabling"
)
return False
# Check the provider's supported auth types
if field_info.supported_types != provider.supported_auth_types:
logger.warning(
f"Block {block_cls.__name__} credential input '{field_name}' "
f"has mismatched supported auth types (field <> Provider): "
f"{field_info.supported_types} != {provider.supported_auth_types}"
)
if not (supported_auth_types := provider.supported_auth_types):
# No auth methods are been configured for this provider
logger.warning(
f"Block {block_cls.__name__} credential input '{field_name}' "
f"provider '{provider_name}' "
"has no authentication methods configured - Disabling"
)
return False
# Check if provider supports OAuth
if "oauth2" in supported_auth_types:
# Check if OAuth environment variables are set
if (oauth_config := provider.oauth_config) and bool(
os.getenv(oauth_config.client_id_env_var)
and os.getenv(oauth_config.client_secret_env_var)
):
logger.debug(
f"Block {block_cls.__name__} credential input '{field_name}' "
f"provider '{provider_name}' is configured for OAuth"
)
else:
logger.error(
f"Block {block_cls.__name__} credential input '{field_name}' "
f"provider '{provider_name}' "
"is missing OAuth client ID or secret - Disabling"
)
return False
logger.debug(
f"Block {block_cls.__name__} credential input '{field_name}' is valid; "
f"supported credential types: {', '.join(field_info.supported_types)}"
)
return True

View File

@@ -1,7 +1,7 @@
import logging
from typing import TYPE_CHECKING, Any, Optional
from typing import Any, Optional
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockInput,
@@ -9,15 +9,13 @@ from backend.blocks._base import (
BlockSchema,
BlockSchemaInput,
BlockType,
get_block,
)
from backend.data.execution import ExecutionContext, ExecutionStatus, NodesInputMasks
from backend.data.model import NodeExecutionStats, SchemaField
from backend.util.json import validate_with_jsonschema
from backend.util.retry import func_retry
if TYPE_CHECKING:
from backend.executor.utils import LogMetadata
_logger = logging.getLogger(__name__)
@@ -126,10 +124,9 @@ class AgentExecutorBlock(Block):
graph_version: int,
graph_exec_id: str,
user_id: str,
logger: "LogMetadata",
logger,
) -> BlockOutput:
from backend.blocks import get_block
from backend.data.execution import ExecutionEventType
from backend.executor import utils as execution_utils
@@ -201,7 +198,7 @@ class AgentExecutorBlock(Block):
self,
graph_exec_id: str,
user_id: str,
logger: "LogMetadata",
logger,
) -> None:
from backend.executor import utils as execution_utils

View File

@@ -1,11 +1,5 @@
from typing import Any
from backend.blocks._base import (
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.blocks.llm import (
DEFAULT_LLM_MODEL,
TEST_CREDENTIALS,
@@ -17,6 +11,12 @@ from backend.blocks.llm import (
LLMResponse,
llm_call,
)
from backend.data.block import (
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.model import APIKeyCredentials, NodeExecutionStats, SchemaField

View File

@@ -6,7 +6,7 @@ from pydantic import SecretStr
from replicate.client import Client as ReplicateClient
from replicate.helpers import FileOutput
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -5,12 +5,7 @@ from pydantic import SecretStr
from replicate.client import Client as ReplicateClient
from replicate.helpers import FileOutput
from backend.blocks._base import (
Block,
BlockCategory,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.block import Block, BlockCategory, BlockSchemaInput, BlockSchemaOutput
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,

View File

@@ -6,7 +6,7 @@ from typing import Literal
from pydantic import SecretStr
from replicate.client import Client as ReplicateClient
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -6,7 +6,7 @@ from typing import Literal
from pydantic import SecretStr
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -1,10 +1,3 @@
from backend.blocks._base import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.blocks.apollo._api import ApolloClient
from backend.blocks.apollo._auth import (
TEST_CREDENTIALS,
@@ -17,6 +10,13 @@ from backend.blocks.apollo.models import (
PrimaryPhone,
SearchOrganizationsRequest,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.model import CredentialsField, SchemaField

View File

@@ -1,12 +1,5 @@
import asyncio
from backend.blocks._base import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.blocks.apollo._api import ApolloClient
from backend.blocks.apollo._auth import (
TEST_CREDENTIALS,
@@ -21,6 +14,13 @@ from backend.blocks.apollo.models import (
SearchPeopleRequest,
SenorityLevels,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.model import CredentialsField, SchemaField

View File

@@ -1,10 +1,3 @@
from backend.blocks._base import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.blocks.apollo._api import ApolloClient
from backend.blocks.apollo._auth import (
TEST_CREDENTIALS,
@@ -13,6 +6,13 @@ from backend.blocks.apollo._auth import (
ApolloCredentialsInput,
)
from backend.blocks.apollo.models import Contact, EnrichPersonRequest
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.model import CredentialsField, SchemaField

View File

@@ -3,7 +3,7 @@ from typing import Optional
from pydantic import BaseModel, Field
from backend.blocks._base import BlockSchemaInput
from backend.data.block import BlockSchemaInput
from backend.data.model import SchemaField, UserIntegrations
from backend.integrations.ayrshare import AyrshareClient
from backend.util.clients import get_database_manager_async_client

View File

@@ -1,7 +1,7 @@
import enum
from typing import Any
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
@@ -126,7 +126,6 @@ class PrintToConsoleBlock(Block):
output_schema=PrintToConsoleBlock.Output,
test_input={"text": "Hello, World!"},
is_sensitive_action=True,
disabled=True, # Disabled per Nick Tindle's request (OPEN-3000)
test_output=[
("output", "Hello, World!"),
("status", "printed"),

View File

@@ -2,7 +2,7 @@ import os
import re
from typing import Type
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -1,7 +1,7 @@
from enum import Enum
from typing import Any
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

Some files were not shown because too many files have changed in this diff Show More