Compare commits

..

2 Commits

Author SHA1 Message Date
Nicholas Tindle
d58df37238 Merge branch 'dev' into fix/sentry-performance-integrations 2026-02-04 21:32:12 -06:00
Otto
9c41512944 feat(backend): Add Sentry FastAPI and HTTPX integrations for better performance tracing
Adds FastApiIntegration and HttpxIntegration to Sentry SDK initialization to enable:
- Detailed span tracking for FastAPI request handling
- Automatic tracing of outgoing HTTP calls (OpenAI, external APIs, etc.)

This improves visibility in Sentry Performance for debugging slow requests and identifying bottlenecks in external API calls.
2026-02-04 22:47:35 +00:00
316 changed files with 13464 additions and 22801 deletions

View File

@@ -49,7 +49,7 @@ jobs:
- name: Create PR ${{ env.BUILD_BRANCH }} -> ${{ github.ref_name }}
if: github.event_name == 'push'
uses: peter-evans/create-pull-request@v8
uses: peter-evans/create-pull-request@v7
with:
add-paths: classic/frontend/build/web
base: ${{ github.ref_name }}

View File

@@ -42,7 +42,7 @@ jobs:
- name: Get CI failure details
id: failure_details
uses: actions/github-script@v8
uses: actions/github-script@v7
with:
script: |
const run = await github.rest.actions.getWorkflowRun({

View File

@@ -41,7 +41,7 @@ jobs:
python-version: "3.11" # Use standard version matching CI
- name: Set up Python dependency cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
@@ -78,7 +78,7 @@ jobs:
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
- name: Set up Node.js
uses: actions/setup-node@v6
uses: actions/setup-node@v4
with:
node-version: "22"
@@ -91,7 +91,7 @@ jobs:
echo "PNPM_HOME=$HOME/.pnpm-store" >> $GITHUB_ENV
- name: Cache frontend dependencies
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}
@@ -124,7 +124,7 @@ jobs:
# Phase 1: Cache and load Docker images for faster setup
- name: Set up Docker image cache
id: docker-cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/docker-cache
# Use a versioned key for cache invalidation when image list changes
@@ -309,7 +309,6 @@ jobs:
uses: anthropics/claude-code-action@v1
with:
claude_code_oauth_token: ${{ secrets.CLAUDE_CODE_OAUTH_TOKEN }}
allowed_bots: "dependabot[bot]"
claude_args: |
--allowedTools "Bash(npm:*),Bash(pnpm:*),Bash(poetry:*),Bash(git:*),Edit,Replace,NotebookEditCell,mcp__github_inline_comment__create_inline_comment,Bash(gh pr comment:*), Bash(gh pr diff:*), Bash(gh pr view:*)"
prompt: |

View File

@@ -57,7 +57,7 @@ jobs:
python-version: "3.11" # Use standard version matching CI
- name: Set up Python dependency cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
@@ -94,7 +94,7 @@ jobs:
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
- name: Set up Node.js
uses: actions/setup-node@v6
uses: actions/setup-node@v4
with:
node-version: "22"
@@ -107,7 +107,7 @@ jobs:
echo "PNPM_HOME=$HOME/.pnpm-store" >> $GITHUB_ENV
- name: Cache frontend dependencies
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}
@@ -140,7 +140,7 @@ jobs:
# Phase 1: Cache and load Docker images for faster setup
- name: Set up Docker image cache
id: docker-cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/docker-cache
# Use a versioned key for cache invalidation when image list changes

View File

@@ -39,7 +39,7 @@ jobs:
python-version: "3.11" # Use standard version matching CI
- name: Set up Python dependency cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
@@ -76,7 +76,7 @@ jobs:
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
- name: Set up Node.js
uses: actions/setup-node@v6
uses: actions/setup-node@v4
with:
node-version: "22"
@@ -89,7 +89,7 @@ jobs:
echo "PNPM_HOME=$HOME/.pnpm-store" >> $GITHUB_ENV
- name: Cache frontend dependencies
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}
@@ -132,7 +132,7 @@ jobs:
# Phase 1: Cache and load Docker images for faster setup
- name: Set up Docker image cache
id: docker-cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/docker-cache
# Use a versioned key for cache invalidation when image list changes

View File

@@ -33,7 +33,7 @@ jobs:
python-version: "3.11"
- name: Set up Python dependency cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}

View File

@@ -33,7 +33,7 @@ jobs:
python-version: "3.11"
- name: Set up Python dependency cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}

View File

@@ -38,7 +38,7 @@ jobs:
python-version: "3.11"
- name: Set up Python dependency cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}

View File

@@ -88,7 +88,7 @@ jobs:
run: echo "date=$(date +'%Y-%m-%d')" >> $GITHUB_OUTPUT
- name: Set up Python dependency cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}

View File

@@ -17,7 +17,7 @@ jobs:
- name: Check comment permissions and deployment status
id: check_status
if: github.event_name == 'issue_comment' && github.event.issue.pull_request
uses: actions/github-script@v8
uses: actions/github-script@v7
with:
script: |
const commentBody = context.payload.comment.body.trim();
@@ -55,7 +55,7 @@ jobs:
- name: Post permission denied comment
if: steps.check_status.outputs.permission_denied == 'true'
uses: actions/github-script@v8
uses: actions/github-script@v7
with:
script: |
await github.rest.issues.createComment({
@@ -68,7 +68,7 @@ jobs:
- name: Get PR details for deployment
id: pr_details
if: steps.check_status.outputs.should_deploy == 'true' || steps.check_status.outputs.should_undeploy == 'true'
uses: actions/github-script@v8
uses: actions/github-script@v7
with:
script: |
const pr = await github.rest.pulls.get({
@@ -98,7 +98,7 @@ jobs:
- name: Post deploy success comment
if: steps.check_status.outputs.should_deploy == 'true'
uses: actions/github-script@v8
uses: actions/github-script@v7
with:
script: |
await github.rest.issues.createComment({
@@ -126,7 +126,7 @@ jobs:
- name: Post undeploy success comment
if: steps.check_status.outputs.should_undeploy == 'true'
uses: actions/github-script@v8
uses: actions/github-script@v7
with:
script: |
await github.rest.issues.createComment({
@@ -139,7 +139,7 @@ jobs:
- name: Check deployment status on PR close
id: check_pr_close
if: github.event_name == 'pull_request' && github.event.action == 'closed'
uses: actions/github-script@v8
uses: actions/github-script@v7
with:
script: |
const comments = await github.rest.issues.listComments({
@@ -187,7 +187,7 @@ jobs:
github.event_name == 'pull_request' &&
github.event.action == 'closed' &&
steps.check_pr_close.outputs.should_undeploy == 'true'
uses: actions/github-script@v8
uses: actions/github-script@v7
with:
script: |
await github.rest.issues.createComment({

View File

@@ -27,22 +27,13 @@ jobs:
runs-on: ubuntu-latest
outputs:
cache-key: ${{ steps.cache-key.outputs.key }}
components-changed: ${{ steps.filter.outputs.components }}
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Check for component changes
uses: dorny/paths-filter@v3
id: filter
with:
filters: |
components:
- 'autogpt_platform/frontend/src/components/**'
- name: Set up Node.js
uses: actions/setup-node@v6
uses: actions/setup-node@v4
with:
node-version: "22.18.0"
@@ -54,7 +45,7 @@ jobs:
run: echo "key=${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}" >> $GITHUB_OUTPUT
- name: Cache dependencies
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ steps.cache-key.outputs.key }}
@@ -74,7 +65,7 @@ jobs:
uses: actions/checkout@v4
- name: Set up Node.js
uses: actions/setup-node@v6
uses: actions/setup-node@v4
with:
node-version: "22.18.0"
@@ -82,7 +73,7 @@ jobs:
run: corepack enable
- name: Restore dependencies cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}
@@ -99,11 +90,8 @@ jobs:
chromatic:
runs-on: ubuntu-latest
needs: setup
# Disabled: to re-enable, remove 'false &&' from the condition below
if: >-
false
&& (github.ref == 'refs/heads/dev' || github.base_ref == 'dev')
&& needs.setup.outputs.components-changed == 'true'
# Only run on dev branch pushes or PRs targeting dev
if: github.ref == 'refs/heads/dev' || github.base_ref == 'dev'
steps:
- name: Checkout repository
@@ -112,7 +100,7 @@ jobs:
fetch-depth: 0
- name: Set up Node.js
uses: actions/setup-node@v6
uses: actions/setup-node@v4
with:
node-version: "22.18.0"
@@ -120,7 +108,7 @@ jobs:
run: corepack enable
- name: Restore dependencies cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}
@@ -153,7 +141,7 @@ jobs:
submodules: recursive
- name: Set up Node.js
uses: actions/setup-node@v6
uses: actions/setup-node@v4
with:
node-version: "22.18.0"
@@ -176,7 +164,7 @@ jobs:
uses: docker/setup-buildx-action@v3
- name: Cache Docker layers
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: /tmp/.buildx-cache
key: ${{ runner.os }}-buildx-frontend-test-${{ hashFiles('autogpt_platform/docker-compose.yml', 'autogpt_platform/backend/Dockerfile', 'autogpt_platform/backend/pyproject.toml', 'autogpt_platform/backend/poetry.lock') }}
@@ -231,7 +219,7 @@ jobs:
fi
- name: Restore dependencies cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}
@@ -282,7 +270,7 @@ jobs:
submodules: recursive
- name: Set up Node.js
uses: actions/setup-node@v6
uses: actions/setup-node@v4
with:
node-version: "22.18.0"
@@ -290,7 +278,7 @@ jobs:
run: corepack enable
- name: Restore dependencies cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}

View File

@@ -32,7 +32,7 @@ jobs:
uses: actions/checkout@v4
- name: Set up Node.js
uses: actions/setup-node@v6
uses: actions/setup-node@v4
with:
node-version: "22.18.0"
@@ -44,7 +44,7 @@ jobs:
run: echo "key=${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}" >> $GITHUB_OUTPUT
- name: Cache dependencies
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ steps.cache-key.outputs.key }}
@@ -56,7 +56,7 @@ jobs:
run: pnpm install --frozen-lockfile
types:
runs-on: big-boi
runs-on: ubuntu-latest
needs: setup
strategy:
fail-fast: false
@@ -68,7 +68,7 @@ jobs:
submodules: recursive
- name: Set up Node.js
uses: actions/setup-node@v6
uses: actions/setup-node@v4
with:
node-version: "22.18.0"
@@ -85,10 +85,10 @@ jobs:
- name: Run docker compose
run: |
docker compose -f ../docker-compose.yml --profile local up -d deps_backend
docker compose -f ../docker-compose.yml --profile local --profile deps_backend up -d
- name: Restore dependencies cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}

File diff suppressed because it is too large Load Diff

View File

@@ -9,25 +9,25 @@ packages = [{ include = "autogpt_libs" }]
[tool.poetry.dependencies]
python = ">=3.10,<4.0"
colorama = "^0.4.6"
cryptography = "^46.0"
cryptography = "^45.0"
expiringdict = "^1.2.2"
fastapi = "^0.128.0"
google-cloud-logging = "^3.13.0"
launchdarkly-server-sdk = "^9.14.1"
pydantic = "^2.12.5"
pydantic-settings = "^2.12.0"
pyjwt = { version = "^2.11.0", extras = ["crypto"] }
fastapi = "^0.116.1"
google-cloud-logging = "^3.12.1"
launchdarkly-server-sdk = "^9.12.0"
pydantic = "^2.11.7"
pydantic-settings = "^2.10.1"
pyjwt = { version = "^2.10.1", extras = ["crypto"] }
redis = "^6.2.0"
supabase = "^2.27.2"
uvicorn = "^0.40.0"
supabase = "^2.16.0"
uvicorn = "^0.35.0"
[tool.poetry.group.dev.dependencies]
pyright = "^1.1.408"
pyright = "^1.1.404"
pytest = "^8.4.1"
pytest-asyncio = "^1.3.0"
pytest-mock = "^3.15.1"
pytest-cov = "^7.0.0"
ruff = "^0.15.0"
pytest-asyncio = "^1.1.0"
pytest-mock = "^3.14.1"
pytest-cov = "^6.2.1"
ruff = "^0.12.11"
[build-system]
requires = ["poetry-core"]

View File

@@ -152,7 +152,6 @@ REPLICATE_API_KEY=
REVID_API_KEY=
SCREENSHOTONE_API_KEY=
UNREAL_SPEECH_API_KEY=
ELEVENLABS_API_KEY=
# Data & Search Services
E2B_API_KEY=

View File

@@ -19,6 +19,3 @@ load-tests/*.json
load-tests/*.log
load-tests/node_modules/*
migrations/*/rollback*.sql
# Workspace files
workspaces/

View File

@@ -62,12 +62,10 @@ ENV POETRY_HOME=/opt/poetry \
DEBIAN_FRONTEND=noninteractive
ENV PATH=/opt/poetry/bin:$PATH
# Install Python, FFmpeg, and ImageMagick (required for video processing blocks)
# Install Python without upgrading system-managed packages
RUN apt-get update && apt-get install -y \
python3.13 \
python3-pip \
ffmpeg \
imagemagick \
&& rm -rf /var/lib/apt/lists/*
# Copy only necessary files from builder

View File

@@ -15,9 +15,9 @@ from prisma.enums import APIKeyPermission
from pydantic import BaseModel, Field
from backend.api.external.middleware import require_permission
from backend.copilot.model import ChatSession
from backend.copilot.tools import find_agent_tool, run_agent_tool
from backend.copilot.tools.models import ToolResponseBase
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools import find_agent_tool, run_agent_tool
from backend.api.features.chat.tools.models import ToolResponseBase
from backend.data.auth.base import APIAuthorizationInfo
logger = logging.getLogger(__name__)

View File

@@ -119,9 +119,8 @@ class ChatCompletionConsumer:
"""Lazily initialize Prisma client on first use."""
if self._prisma is None:
database_url = os.getenv("DATABASE_URL", "postgresql://localhost:5432")
prisma = Prisma(datasource={"url": database_url})
await prisma.connect()
self._prisma = prisma
self._prisma = Prisma(datasource={"url": database_url})
await self._prisma.connect()
logger.info("[COMPLETION] Consumer Prisma client connected (lazy init)")
return self._prisma

View File

@@ -11,7 +11,7 @@ class ChatConfig(BaseSettings):
# OpenAI API Configuration
model: str = Field(
default="anthropic/claude-opus-4.6", description="Default model to use"
default="anthropic/claude-opus-4.5", description="Default model to use"
)
title_model: str = Field(
default="openai/gpt-4o-mini",
@@ -93,12 +93,6 @@ class ChatConfig(BaseSettings):
description="Name of the prompt in Langfuse to fetch",
)
# Extended thinking configuration for Claude models
thinking_enabled: bool = Field(
default=True,
description="Enable adaptive thinking for Claude models via OpenRouter",
)
@field_validator("api_key", mode="before")
@classmethod
def get_api_key(cls, v):

View File

@@ -45,7 +45,10 @@ async def create_chat_session(
successfulAgentRuns=SafeJson({}),
successfulAgentSchedules=SafeJson({}),
)
return await PrismaChatSession.prisma().create(data=data)
return await PrismaChatSession.prisma().create(
data=data,
include={"Messages": True},
)
async def update_chat_session(

View File

@@ -18,10 +18,6 @@ class ResponseType(str, Enum):
START = "start"
FINISH = "finish"
# Step lifecycle (one LLM API call within a message)
START_STEP = "start-step"
FINISH_STEP = "finish-step"
# Text streaming
TEXT_START = "text-start"
TEXT_DELTA = "text-delta"
@@ -61,16 +57,6 @@ class StreamStart(StreamBaseResponse):
description="Task ID for SSE reconnection. Clients can reconnect using GET /tasks/{taskId}/stream",
)
def to_sse(self) -> str:
"""Convert to SSE format, excluding non-protocol fields like taskId."""
import json
data: dict[str, Any] = {
"type": self.type.value,
"messageId": self.messageId,
}
return f"data: {json.dumps(data)}\n\n"
class StreamFinish(StreamBaseResponse):
"""End of message/stream."""
@@ -78,26 +64,6 @@ class StreamFinish(StreamBaseResponse):
type: ResponseType = ResponseType.FINISH
class StreamStartStep(StreamBaseResponse):
"""Start of a step (one LLM API call within a message).
The AI SDK uses this to add a step-start boundary to message.parts,
enabling visual separation between multiple LLM calls in a single message.
"""
type: ResponseType = ResponseType.START_STEP
class StreamFinishStep(StreamBaseResponse):
"""End of a step (one LLM API call within a message).
The AI SDK uses this to reset activeTextParts and activeReasoningParts,
so the next LLM call in a tool-call continuation starts with clean state.
"""
type: ResponseType = ResponseType.FINISH_STEP
# ========== Text Streaming ==========
@@ -151,7 +117,7 @@ class StreamToolOutputAvailable(StreamBaseResponse):
type: ResponseType = ResponseType.TOOL_OUTPUT_AVAILABLE
toolCallId: str = Field(..., description="Tool call ID this responds to")
output: str | dict[str, Any] = Field(..., description="Tool execution output")
# Keep these for internal backend use
# Additional fields for internal use (not part of AI SDK spec but useful)
toolName: str | None = Field(
default=None, description="Name of the tool that was executed"
)
@@ -159,17 +125,6 @@ class StreamToolOutputAvailable(StreamBaseResponse):
default=True, description="Whether the tool execution succeeded"
)
def to_sse(self) -> str:
"""Convert to SSE format, excluding non-spec fields."""
import json
data = {
"type": self.type.value,
"toolCallId": self.toolCallId,
"output": self.output,
}
return f"data: {json.dumps(data)}\n\n"
# ========== Other ==========

View File

@@ -6,49 +6,19 @@ from collections.abc import AsyncGenerator
from typing import Annotated
from autogpt_libs import auth
from fastapi import APIRouter, Depends, Header, HTTPException, Query, Response, Security
from fastapi import APIRouter, Depends, Header, HTTPException, Query, Security
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from backend.copilot import service as chat_service
from backend.copilot import stream_registry
from backend.copilot.completion_handler import (
process_operation_failure,
process_operation_success,
)
from backend.copilot.config import ChatConfig
from backend.copilot.executor.utils import enqueue_copilot_task
from backend.copilot.model import (
ChatSession,
create_chat_session,
get_chat_session,
get_user_sessions,
)
from backend.copilot.response_model import StreamFinish, StreamHeartbeat
from backend.copilot.tools.models import (
AgentDetailsResponse,
AgentOutputResponse,
AgentPreviewResponse,
AgentSavedResponse,
AgentsFoundResponse,
BlockListResponse,
BlockOutputResponse,
ClarificationNeededResponse,
DocPageResponse,
DocSearchResultsResponse,
ErrorResponse,
ExecutionStartedResponse,
InputValidationErrorResponse,
NeedLoginResponse,
NoResultsResponse,
OperationInProgressResponse,
OperationPendingResponse,
OperationStartedResponse,
SetupRequirementsResponse,
UnderstandingUpdatedResponse,
)
from backend.util.exceptions import NotFoundError
from . import service as chat_service
from . import stream_registry
from .completion_handler import process_operation_failure, process_operation_success
from .config import ChatConfig
from .model import ChatSession, create_chat_session, get_chat_session, get_user_sessions
from .response_model import StreamFinish, StreamHeartbeat, StreamStart
config = ChatConfig()
@@ -296,36 +266,12 @@ async def stream_chat_post(
"""
import asyncio
import time
stream_start_time = time.perf_counter()
log_meta = {"component": "ChatStream", "session_id": session_id}
if user_id:
log_meta["user_id"] = user_id
logger.info(
f"[TIMING] stream_chat_post STARTED, session={session_id}, "
f"user={user_id}, message_len={len(request.message)}",
extra={"json_fields": log_meta},
)
_session = await _validate_and_get_session(session_id, user_id) # noqa: F841
logger.info(
f"[TIMING] session validated in {(time.perf_counter() - stream_start_time)*1000:.1f}ms",
extra={
"json_fields": {
**log_meta,
"duration_ms": (time.perf_counter() - stream_start_time) * 1000,
}
},
)
session = await _validate_and_get_session(session_id, user_id)
# Create a task in the stream registry for reconnection support
task_id = str(uuid_module.uuid4())
operation_id = str(uuid_module.uuid4())
log_meta["task_id"] = task_id
task_create_start = time.perf_counter()
await stream_registry.create_task(
task_id=task_id,
session_id=session_id,
@@ -334,46 +280,40 @@ async def stream_chat_post(
tool_name="chat",
operation_id=operation_id,
)
logger.info(
f"[TIMING] create_task completed in {(time.perf_counter() - task_create_start)*1000:.1f}ms",
extra={
"json_fields": {
**log_meta,
"duration_ms": (time.perf_counter() - task_create_start) * 1000,
}
},
)
# Enqueue the task to RabbitMQ for processing by the CoPilot executor
await enqueue_copilot_task(
task_id=task_id,
session_id=session_id,
user_id=user_id,
operation_id=operation_id,
message=request.message,
is_user_message=request.is_user_message,
context=request.context,
)
# Background task that runs the AI generation independently of SSE connection
async def run_ai_generation():
try:
# Emit a start event with task_id for reconnection
start_chunk = StreamStart(messageId=task_id, taskId=task_id)
await stream_registry.publish_chunk(task_id, start_chunk)
setup_time = (time.perf_counter() - stream_start_time) * 1000
logger.info(
f"[TIMING] Task enqueued to RabbitMQ, setup={setup_time:.1f}ms",
extra={"json_fields": {**log_meta, "setup_time_ms": setup_time}},
)
async for chunk in chat_service.stream_chat_completion(
session_id,
request.message,
is_user_message=request.is_user_message,
user_id=user_id,
session=session, # Pass pre-fetched session to avoid double-fetch
context=request.context,
):
# Write to Redis (subscribers will receive via XREAD)
await stream_registry.publish_chunk(task_id, chunk)
# Mark task as completed
await stream_registry.mark_task_completed(task_id, "completed")
except Exception as e:
logger.error(
f"Error in background AI generation for session {session_id}: {e}"
)
await stream_registry.mark_task_completed(task_id, "failed")
# Start the AI generation in a background task
bg_task = asyncio.create_task(run_ai_generation())
await stream_registry.set_task_asyncio_task(task_id, bg_task)
# SSE endpoint that subscribes to the task's stream
async def event_generator() -> AsyncGenerator[str, None]:
import time as time_module
event_gen_start = time_module.perf_counter()
logger.info(
f"[TIMING] event_generator STARTED, task={task_id}, session={session_id}, "
f"user={user_id}",
extra={"json_fields": log_meta},
)
subscriber_queue = None
first_chunk_yielded = False
chunks_yielded = 0
try:
# Subscribe to the task stream (this replays existing messages + live updates)
subscriber_queue = await stream_registry.subscribe_to_task(
@@ -388,70 +328,22 @@ async def stream_chat_post(
return
# Read from the subscriber queue and yield to SSE
logger.info(
"[TIMING] Starting to read from subscriber_queue",
extra={"json_fields": log_meta},
)
while True:
try:
chunk = await asyncio.wait_for(subscriber_queue.get(), timeout=30.0)
chunks_yielded += 1
if not first_chunk_yielded:
first_chunk_yielded = True
elapsed = time_module.perf_counter() - event_gen_start
logger.info(
f"[TIMING] FIRST CHUNK from queue at {elapsed:.2f}s, "
f"type={type(chunk).__name__}",
extra={
"json_fields": {
**log_meta,
"chunk_type": type(chunk).__name__,
"elapsed_ms": elapsed * 1000,
}
},
)
yield chunk.to_sse()
# Check for finish signal
if isinstance(chunk, StreamFinish):
total_time = time_module.perf_counter() - event_gen_start
logger.info(
f"[TIMING] StreamFinish received in {total_time:.2f}s; "
f"n_chunks={chunks_yielded}",
extra={
"json_fields": {
**log_meta,
"chunks_yielded": chunks_yielded,
"total_time_ms": total_time * 1000,
}
},
)
break
except asyncio.TimeoutError:
# Send heartbeat to keep connection alive
yield StreamHeartbeat().to_sse()
except GeneratorExit:
logger.info(
f"[TIMING] GeneratorExit (client disconnected), chunks={chunks_yielded}",
extra={
"json_fields": {
**log_meta,
"chunks_yielded": chunks_yielded,
"reason": "client_disconnect",
}
},
)
pass # Client disconnected - background task continues
except Exception as e:
elapsed = (time_module.perf_counter() - event_gen_start) * 1000
logger.error(
f"[TIMING] event_generator ERROR after {elapsed:.1f}ms: {e}",
extra={
"json_fields": {**log_meta, "elapsed_ms": elapsed, "error": str(e)}
},
)
logger.error(f"Error in SSE stream for task {task_id}: {e}")
finally:
# Unsubscribe when client disconnects or stream ends to prevent resource leak
if subscriber_queue is not None:
@@ -465,18 +357,6 @@ async def stream_chat_post(
exc_info=True,
)
# AI SDK protocol termination - always yield even if unsubscribe fails
total_time = time_module.perf_counter() - event_gen_start
logger.info(
f"[TIMING] event_generator FINISHED in {total_time:.2f}s; "
f"task={task_id}, session={session_id}, n_chunks={chunks_yielded}",
extra={
"json_fields": {
**log_meta,
"total_time_ms": total_time * 1000,
"chunks_yielded": chunks_yielded,
}
},
)
yield "data: [DONE]\n\n"
return StreamingResponse(
@@ -494,90 +374,63 @@ async def stream_chat_post(
@router.get(
"/sessions/{session_id}/stream",
)
async def resume_session_stream(
async def stream_chat_get(
session_id: str,
message: Annotated[str, Query(min_length=1, max_length=10000)],
user_id: str | None = Depends(auth.get_user_id),
is_user_message: bool = Query(default=True),
):
"""
Resume an active stream for a session.
Stream chat responses for a session (GET - legacy endpoint).
Called by the AI SDK's ``useChat(resume: true)`` on page load.
Checks for an active (in-progress) task on the session and either replays
the full SSE stream or returns 204 No Content if nothing is running.
Streams the AI/completion responses in real time over Server-Sent Events (SSE), including:
- Text fragments as they are generated
- Tool call UI elements (if invoked)
- Tool execution results
Args:
session_id: The chat session identifier.
session_id: The chat session identifier to associate with the streamed messages.
message: The user's new message to process.
user_id: Optional authenticated user ID.
is_user_message: Whether the message is a user message.
Returns:
StreamingResponse (SSE) when an active stream exists,
or 204 No Content when there is nothing to resume.
StreamingResponse: SSE-formatted response chunks.
"""
import asyncio
active_task, _last_id = await stream_registry.get_active_task_for_session(
session_id, user_id
)
if not active_task:
return Response(status_code=204)
subscriber_queue = await stream_registry.subscribe_to_task(
task_id=active_task.task_id,
user_id=user_id,
last_message_id="0-0", # Full replay so useChat rebuilds the message
)
if subscriber_queue is None:
return Response(status_code=204)
session = await _validate_and_get_session(session_id, user_id)
async def event_generator() -> AsyncGenerator[str, None]:
chunk_count = 0
first_chunk_type: str | None = None
try:
while True:
try:
chunk = await asyncio.wait_for(subscriber_queue.get(), timeout=30.0)
if chunk_count < 3:
logger.info(
"Resume stream chunk",
extra={
"session_id": session_id,
"chunk_type": str(chunk.type),
},
)
if not first_chunk_type:
first_chunk_type = str(chunk.type)
chunk_count += 1
yield chunk.to_sse()
if isinstance(chunk, StreamFinish):
break
except asyncio.TimeoutError:
yield StreamHeartbeat().to_sse()
except GeneratorExit:
pass
except Exception as e:
logger.error(f"Error in resume stream for session {session_id}: {e}")
finally:
try:
await stream_registry.unsubscribe_from_task(
active_task.task_id, subscriber_queue
async for chunk in chat_service.stream_chat_completion(
session_id,
message,
is_user_message=is_user_message,
user_id=user_id,
session=session, # Pass pre-fetched session to avoid double-fetch
):
if chunk_count < 3:
logger.info(
"Chat stream chunk",
extra={
"session_id": session_id,
"chunk_type": str(chunk.type),
},
)
except Exception as unsub_err:
logger.error(
f"Error unsubscribing from task {active_task.task_id}: {unsub_err}",
exc_info=True,
)
logger.info(
"Resume stream completed",
extra={
"session_id": session_id,
"n_chunks": chunk_count,
"first_chunk_type": first_chunk_type,
},
)
yield "data: [DONE]\n\n"
if not first_chunk_type:
first_chunk_type = str(chunk.type)
chunk_count += 1
yield chunk.to_sse()
logger.info(
"Chat stream completed",
extra={
"session_id": session_id,
"chunk_count": chunk_count,
"first_chunk_type": first_chunk_type,
},
)
# AI SDK protocol termination
yield "data: [DONE]\n\n"
return StreamingResponse(
event_generator(),
@@ -585,8 +438,8 @@ async def resume_session_stream(
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no",
"x-vercel-ai-ui-message-stream": "v1",
"X-Accel-Buffering": "no", # Disable nginx buffering
"x-vercel-ai-ui-message-stream": "v1", # AI SDK protocol header
},
)
@@ -898,42 +751,3 @@ async def health_check() -> dict:
"service": "chat",
"version": "0.1.0",
}
# ========== Schema Export (for OpenAPI / Orval codegen) ==========
ToolResponseUnion = (
AgentsFoundResponse
| NoResultsResponse
| AgentDetailsResponse
| SetupRequirementsResponse
| ExecutionStartedResponse
| NeedLoginResponse
| ErrorResponse
| InputValidationErrorResponse
| AgentOutputResponse
| UnderstandingUpdatedResponse
| AgentPreviewResponse
| AgentSavedResponse
| ClarificationNeededResponse
| BlockListResponse
| BlockOutputResponse
| DocSearchResultsResponse
| DocPageResponse
| OperationStartedResponse
| OperationPendingResponse
| OperationInProgressResponse
)
@router.get(
"/schema/tool-responses",
response_model=ToolResponseUnion,
include_in_schema=True,
summary="[Dummy] Tool response type export for codegen",
description="This endpoint is not meant to be called. It exists solely to "
"expose tool response models in the OpenAPI schema for frontend codegen.",
)
async def _tool_response_schema() -> ToolResponseUnion: # type: ignore[return]
"""Never called at runtime. Exists only so Orval generates TS types."""
raise HTTPException(status_code=501, detail="Schema-only endpoint")

View File

@@ -33,7 +33,7 @@ from backend.data.understanding import (
get_business_understanding,
)
from backend.util.exceptions import NotFoundError
from backend.util.settings import AppEnvironment, Settings
from backend.util.settings import Settings
from . import db as chat_db
from . import stream_registry
@@ -52,10 +52,8 @@ from .response_model import (
StreamBaseResponse,
StreamError,
StreamFinish,
StreamFinishStep,
StreamHeartbeat,
StreamStart,
StreamStartStep,
StreamTextDelta,
StreamTextEnd,
StreamTextStart,
@@ -224,18 +222,8 @@ async def _get_system_prompt_template(context: str) -> str:
try:
# cache_ttl_seconds=0 disables SDK caching to always get the latest prompt
# Use asyncio.to_thread to avoid blocking the event loop
# In non-production environments, fetch the latest prompt version
# instead of the production-labeled version for easier testing
label = (
None
if settings.config.app_env == AppEnvironment.PRODUCTION
else "latest"
)
prompt = await asyncio.to_thread(
langfuse.get_prompt,
config.langfuse_prompt_name,
label=label,
cache_ttl_seconds=0,
langfuse.get_prompt, config.langfuse_prompt_name, cache_ttl_seconds=0
)
return prompt.compile(users_information=context)
except Exception as e:
@@ -353,10 +341,6 @@ async def stream_chat_completion(
retry_count: int = 0,
session: ChatSession | None = None,
context: dict[str, str] | None = None, # {url: str, content: str}
_continuation_message_id: (
str | None
) = None, # Internal: reuse message ID for tool call continuations
_task_id: str | None = None, # Internal: task ID for SSE reconnection support
) -> AsyncGenerator[StreamBaseResponse, None]:
"""Main entry point for streaming chat completions with database handling.
@@ -377,45 +361,21 @@ async def stream_chat_completion(
ValueError: If max_context_messages is exceeded
"""
completion_start = time.monotonic()
# Build log metadata for structured logging
log_meta = {"component": "ChatService", "session_id": session_id}
if user_id:
log_meta["user_id"] = user_id
logger.info(
f"[TIMING] stream_chat_completion STARTED, session={session_id}, user={user_id}, "
f"message_len={len(message) if message else 0}, is_user={is_user_message}",
extra={
"json_fields": {
**log_meta,
"message_len": len(message) if message else 0,
"is_user_message": is_user_message,
}
},
f"Streaming chat completion for session {session_id} for message {message} and user id {user_id}. Message is user message: {is_user_message}"
)
# Only fetch from Redis if session not provided (initial call)
if session is None:
fetch_start = time.monotonic()
session = await get_chat_session(session_id, user_id)
fetch_time = (time.monotonic() - fetch_start) * 1000
logger.info(
f"[TIMING] get_chat_session took {fetch_time:.1f}ms, "
f"n_messages={len(session.messages) if session else 0}",
extra={
"json_fields": {
**log_meta,
"duration_ms": fetch_time,
"n_messages": len(session.messages) if session else 0,
}
},
f"Fetched session from Redis: {session.session_id if session else 'None'}, "
f"message_count={len(session.messages) if session else 0}"
)
else:
logger.info(
f"[TIMING] Using provided session, messages={len(session.messages)}",
extra={"json_fields": {**log_meta, "n_messages": len(session.messages)}},
f"Using provided session object: {session.session_id}, "
f"message_count={len(session.messages)}"
)
if not session:
@@ -436,25 +396,17 @@ async def stream_chat_completion(
# Track user message in PostHog
if is_user_message:
posthog_start = time.monotonic()
track_user_message(
user_id=user_id,
session_id=session_id,
message_length=len(message),
)
posthog_time = (time.monotonic() - posthog_start) * 1000
logger.info(
f"[TIMING] track_user_message took {posthog_time:.1f}ms",
extra={"json_fields": {**log_meta, "duration_ms": posthog_time}},
)
upsert_start = time.monotonic()
session = await upsert_chat_session(session)
upsert_time = (time.monotonic() - upsert_start) * 1000
logger.info(
f"[TIMING] upsert_chat_session took {upsert_time:.1f}ms",
extra={"json_fields": {**log_meta, "duration_ms": upsert_time}},
f"Upserting session: {session.session_id} with user id {session.user_id}, "
f"message_count={len(session.messages)}"
)
session = await upsert_chat_session(session)
assert session, "Session not found"
# Generate title for new sessions on first user message (non-blocking)
@@ -492,13 +444,7 @@ async def stream_chat_completion(
asyncio.create_task(_update_title())
# Build system prompt with business understanding
prompt_start = time.monotonic()
system_prompt, understanding = await _build_system_prompt(user_id)
prompt_time = (time.monotonic() - prompt_start) * 1000
logger.info(
f"[TIMING] _build_system_prompt took {prompt_time:.1f}ms",
extra={"json_fields": {**log_meta, "duration_ms": prompt_time}},
)
# Initialize variables for streaming
assistant_response = ChatMessage(
@@ -523,27 +469,13 @@ async def stream_chat_completion(
# Generate unique IDs for AI SDK protocol
import uuid as uuid_module
is_continuation = _continuation_message_id is not None
message_id = _continuation_message_id or str(uuid_module.uuid4())
message_id = str(uuid_module.uuid4())
text_block_id = str(uuid_module.uuid4())
# Only yield message start for the initial call, not for continuations.
setup_time = (time.monotonic() - completion_start) * 1000
logger.info(
f"[TIMING] Setup complete, yielding StreamStart at {setup_time:.1f}ms",
extra={"json_fields": {**log_meta, "setup_time_ms": setup_time}},
)
if not is_continuation:
yield StreamStart(messageId=message_id, taskId=_task_id)
# Emit start-step before each LLM call (AI SDK uses this to add step boundaries)
yield StreamStartStep()
# Yield message start
yield StreamStart(messageId=message_id)
try:
logger.info(
"[TIMING] Calling _stream_chat_chunks",
extra={"json_fields": log_meta},
)
async for chunk in _stream_chat_chunks(
session=session,
tools=tools,
@@ -643,10 +575,6 @@ async def stream_chat_completion(
)
yield chunk
elif isinstance(chunk, StreamFinish):
if has_done_tool_call:
# Tool calls happened — close the step but don't send message-level finish.
# The continuation will open a new step, and finish will come at the end.
yield StreamFinishStep()
if not has_done_tool_call:
# Emit text-end before finish if we received text but haven't closed it
if has_received_text and not text_streaming_ended:
@@ -678,8 +606,6 @@ async def stream_chat_completion(
has_saved_assistant_message = True
has_yielded_end = True
# Emit finish-step before finish (resets AI SDK text/reasoning state)
yield StreamFinishStep()
yield chunk
elif isinstance(chunk, StreamError):
has_yielded_error = True
@@ -692,9 +618,6 @@ async def stream_chat_completion(
total_tokens=chunk.totalTokens,
)
)
elif isinstance(chunk, StreamHeartbeat):
# Pass through heartbeat to keep SSE connection alive
yield chunk
else:
logger.error(f"Unknown chunk type: {type(chunk)}", exc_info=True)
@@ -729,10 +652,6 @@ async def stream_chat_completion(
logger.info(
f"Retryable error encountered. Attempt {retry_count + 1}/{config.max_retries}"
)
# Close the current step before retrying so the recursive call's
# StreamStartStep doesn't produce unbalanced step events.
if not has_yielded_end:
yield StreamFinishStep()
should_retry = True
else:
# Non-retryable error or max retries exceeded
@@ -768,7 +687,6 @@ async def stream_chat_completion(
error_response = StreamError(errorText=error_message)
yield error_response
if not has_yielded_end:
yield StreamFinishStep()
yield StreamFinish()
return
@@ -783,8 +701,6 @@ async def stream_chat_completion(
retry_count=retry_count + 1,
session=session,
context=context,
_continuation_message_id=message_id, # Reuse message ID since start was already sent
_task_id=_task_id,
):
yield chunk
return # Exit after retry to avoid double-saving in finally block
@@ -854,8 +770,6 @@ async def stream_chat_completion(
session=session, # Pass session object to avoid Redis refetch
context=context,
tool_call_response=str(tool_response_messages),
_continuation_message_id=message_id, # Reuse message ID to avoid duplicates
_task_id=_task_id,
):
yield chunk
@@ -966,21 +880,9 @@ async def _stream_chat_chunks(
SSE formatted JSON response objects
"""
import time as time_module
stream_chunks_start = time_module.perf_counter()
model = config.model
# Build log metadata for structured logging
log_meta = {"component": "ChatService", "session_id": session.session_id}
if session.user_id:
log_meta["user_id"] = session.user_id
logger.info(
f"[TIMING] _stream_chat_chunks STARTED, session={session.session_id}, "
f"user={session.user_id}, n_messages={len(session.messages)}",
extra={"json_fields": {**log_meta, "n_messages": len(session.messages)}},
)
logger.info("Starting pure chat stream")
messages = session.to_openai_messages()
if system_prompt:
@@ -991,18 +893,12 @@ async def _stream_chat_chunks(
messages = [system_message] + messages
# Apply context window management
context_start = time_module.perf_counter()
context_result = await _manage_context_window(
messages=messages,
model=model,
api_key=config.api_key,
base_url=config.base_url,
)
context_time = (time_module.perf_counter() - context_start) * 1000
logger.info(
f"[TIMING] _manage_context_window took {context_time:.1f}ms",
extra={"json_fields": {**log_meta, "duration_ms": context_time}},
)
if context_result.error:
if "System prompt dropped" in context_result.error:
@@ -1037,19 +933,9 @@ async def _stream_chat_chunks(
while retry_count <= MAX_RETRIES:
try:
elapsed = (time_module.perf_counter() - stream_chunks_start) * 1000
retry_info = (
f" (retry {retry_count}/{MAX_RETRIES})" if retry_count > 0 else ""
)
logger.info(
f"[TIMING] Creating OpenAI stream at {elapsed:.1f}ms{retry_info}",
extra={
"json_fields": {
**log_meta,
"elapsed_ms": elapsed,
"retry_count": retry_count,
}
},
f"Creating OpenAI chat completion stream..."
f"{f' (retry {retry_count}/{MAX_RETRIES})' if retry_count > 0 else ''}"
)
# Build extra_body for OpenRouter tracing and PostHog analytics
@@ -1066,11 +952,6 @@ async def _stream_chat_chunks(
:128
] # OpenRouter limit
# Enable adaptive thinking for Anthropic models via OpenRouter
if config.thinking_enabled and "anthropic" in model.lower():
extra_body["reasoning"] = {"enabled": True}
api_call_start = time_module.perf_counter()
stream = await client.chat.completions.create(
model=model,
messages=cast(list[ChatCompletionMessageParam], messages),
@@ -1080,11 +961,6 @@ async def _stream_chat_chunks(
stream_options=ChatCompletionStreamOptionsParam(include_usage=True),
extra_body=extra_body,
)
api_init_time = (time_module.perf_counter() - api_call_start) * 1000
logger.info(
f"[TIMING] OpenAI stream object returned in {api_init_time:.1f}ms",
extra={"json_fields": {**log_meta, "duration_ms": api_init_time}},
)
# Variables to accumulate tool calls
tool_calls: list[dict[str, Any]] = []
@@ -1095,13 +971,10 @@ async def _stream_chat_chunks(
# Track if we've started the text block
text_started = False
first_content_chunk = True
chunk_count = 0
# Process the stream
chunk: ChatCompletionChunk
async for chunk in stream:
chunk_count += 1
if chunk.usage:
yield StreamUsage(
promptTokens=chunk.usage.prompt_tokens,
@@ -1124,23 +997,6 @@ async def _stream_chat_chunks(
if not text_started and text_block_id:
yield StreamTextStart(id=text_block_id)
text_started = True
# Log timing for first content chunk
if first_content_chunk:
first_content_chunk = False
ttfc = (
time_module.perf_counter() - api_call_start
) * 1000
logger.info(
f"[TIMING] FIRST CONTENT CHUNK at {ttfc:.1f}ms "
f"(since API call), n_chunks={chunk_count}",
extra={
"json_fields": {
**log_meta,
"time_to_first_chunk_ms": ttfc,
"n_chunks": chunk_count,
}
},
)
# Stream the text delta
text_response = StreamTextDelta(
id=text_block_id or "",
@@ -1197,21 +1053,7 @@ async def _stream_chat_chunks(
toolName=tool_calls[idx]["function"]["name"],
)
emitted_start_for_idx.add(idx)
stream_duration = time_module.perf_counter() - api_call_start
logger.info(
f"[TIMING] OpenAI stream COMPLETE, finish_reason={finish_reason}, "
f"duration={stream_duration:.2f}s, "
f"n_chunks={chunk_count}, n_tool_calls={len(tool_calls)}",
extra={
"json_fields": {
**log_meta,
"stream_duration_ms": stream_duration * 1000,
"finish_reason": finish_reason,
"n_chunks": chunk_count,
"n_tool_calls": len(tool_calls),
}
},
)
logger.info(f"Stream complete. Finish reason: {finish_reason}")
# Yield all accumulated tool calls after the stream is complete
# This ensures all tool call arguments have been fully received
@@ -1231,12 +1073,6 @@ async def _stream_chat_chunks(
# Re-raise to trigger retry logic in the parent function
raise
total_time = (time_module.perf_counter() - stream_chunks_start) * 1000
logger.info(
f"[TIMING] _stream_chat_chunks COMPLETED in {total_time/1000:.1f}s; "
f"session={session.session_id}, user={session.user_id}",
extra={"json_fields": {**log_meta, "total_time_ms": total_time}},
)
yield StreamFinish()
return
except Exception as e:
@@ -1716,7 +1552,6 @@ async def _execute_long_running_tool_with_streaming(
task_id,
StreamError(errorText=str(e)),
)
await stream_registry.publish_chunk(task_id, StreamFinishStep())
await stream_registry.publish_chunk(task_id, StreamFinish())
await _update_pending_operation(
@@ -1833,10 +1668,6 @@ async def _generate_llm_continuation(
if session_id:
extra_body["session_id"] = session_id[:128]
# Enable adaptive thinking for Anthropic models via OpenRouter
if config.thinking_enabled and "anthropic" in config.model.lower():
extra_body["reasoning"] = {"enabled": True}
retry_count = 0
last_error: Exception | None = None
response = None
@@ -1967,10 +1798,6 @@ async def _generate_llm_continuation_with_streaming(
if session_id:
extra_body["session_id"] = session_id[:128]
# Enable adaptive thinking for Anthropic models via OpenRouter
if config.thinking_enabled and "anthropic" in config.model.lower():
extra_body["reasoning"] = {"enabled": True}
# Make streaming LLM call (no tools - just text response)
from typing import cast
@@ -1982,7 +1809,6 @@ async def _generate_llm_continuation_with_streaming(
# Publish start event
await stream_registry.publish_chunk(task_id, StreamStart(messageId=message_id))
await stream_registry.publish_chunk(task_id, StreamStartStep())
await stream_registry.publish_chunk(task_id, StreamTextStart(id=text_block_id))
# Stream the response
@@ -2006,7 +1832,6 @@ async def _generate_llm_continuation_with_streaming(
# Publish end events
await stream_registry.publish_chunk(task_id, StreamTextEnd(id=text_block_id))
await stream_registry.publish_chunk(task_id, StreamFinishStep())
if assistant_content:
# Reload session from DB to avoid race condition with user messages
@@ -2048,5 +1873,4 @@ async def _generate_llm_continuation_with_streaming(
task_id,
StreamError(errorText=f"Failed to generate response: {e}"),
)
await stream_registry.publish_chunk(task_id, StreamFinishStep())
await stream_registry.publish_chunk(task_id, StreamFinish())

View File

@@ -104,24 +104,6 @@ async def create_task(
Returns:
The created ActiveTask instance (metadata only)
"""
import time
start_time = time.perf_counter()
# Build log metadata for structured logging
log_meta = {
"component": "StreamRegistry",
"task_id": task_id,
"session_id": session_id,
}
if user_id:
log_meta["user_id"] = user_id
logger.info(
f"[TIMING] create_task STARTED, task={task_id}, session={session_id}, user={user_id}",
extra={"json_fields": log_meta},
)
task = ActiveTask(
task_id=task_id,
session_id=session_id,
@@ -132,18 +114,10 @@ async def create_task(
)
# Store metadata in Redis
redis_start = time.perf_counter()
redis = await get_redis_async()
redis_time = (time.perf_counter() - redis_start) * 1000
logger.info(
f"[TIMING] get_redis_async took {redis_time:.1f}ms",
extra={"json_fields": {**log_meta, "duration_ms": redis_time}},
)
meta_key = _get_task_meta_key(task_id)
op_key = _get_operation_mapping_key(operation_id)
hset_start = time.perf_counter()
await redis.hset( # type: ignore[misc]
meta_key,
mapping={
@@ -157,22 +131,12 @@ async def create_task(
"created_at": task.created_at.isoformat(),
},
)
hset_time = (time.perf_counter() - hset_start) * 1000
logger.info(
f"[TIMING] redis.hset took {hset_time:.1f}ms",
extra={"json_fields": {**log_meta, "duration_ms": hset_time}},
)
await redis.expire(meta_key, config.stream_ttl)
# Create operation_id -> task_id mapping for webhook lookups
await redis.set(op_key, task_id, ex=config.stream_ttl)
total_time = (time.perf_counter() - start_time) * 1000
logger.info(
f"[TIMING] create_task COMPLETED in {total_time:.1f}ms; task={task_id}, session={session_id}",
extra={"json_fields": {**log_meta, "total_time_ms": total_time}},
)
logger.debug(f"Created task {task_id} for session {session_id}")
return task
@@ -192,60 +156,26 @@ async def publish_chunk(
Returns:
The Redis Stream message ID
"""
import time
start_time = time.perf_counter()
chunk_type = type(chunk).__name__
chunk_json = chunk.model_dump_json()
message_id = "0-0"
# Build log metadata
log_meta = {
"component": "StreamRegistry",
"task_id": task_id,
"chunk_type": chunk_type,
}
try:
redis = await get_redis_async()
stream_key = _get_task_stream_key(task_id)
# Write to Redis Stream for persistence and real-time delivery
xadd_start = time.perf_counter()
raw_id = await redis.xadd(
stream_key,
{"data": chunk_json},
maxlen=config.stream_max_length,
)
xadd_time = (time.perf_counter() - xadd_start) * 1000
message_id = raw_id if isinstance(raw_id, str) else raw_id.decode()
# Set TTL on stream to match task metadata TTL
await redis.expire(stream_key, config.stream_ttl)
total_time = (time.perf_counter() - start_time) * 1000
# Only log timing for significant chunks or slow operations
if (
chunk_type
in ("StreamStart", "StreamFinish", "StreamTextStart", "StreamTextEnd")
or total_time > 50
):
logger.info(
f"[TIMING] publish_chunk {chunk_type} in {total_time:.1f}ms (xadd={xadd_time:.1f}ms)",
extra={
"json_fields": {
**log_meta,
"total_time_ms": total_time,
"xadd_time_ms": xadd_time,
"message_id": message_id,
}
},
)
except Exception as e:
elapsed = (time.perf_counter() - start_time) * 1000
logger.error(
f"[TIMING] Failed to publish chunk {chunk_type} after {elapsed:.1f}ms: {e}",
extra={"json_fields": {**log_meta, "elapsed_ms": elapsed, "error": str(e)}},
f"Failed to publish chunk for task {task_id}: {e}",
exc_info=True,
)
@@ -270,61 +200,24 @@ async def subscribe_to_task(
An asyncio Queue that will receive stream chunks, or None if task not found
or user doesn't have access
"""
import time
start_time = time.perf_counter()
# Build log metadata
log_meta = {"component": "StreamRegistry", "task_id": task_id}
if user_id:
log_meta["user_id"] = user_id
logger.info(
f"[TIMING] subscribe_to_task STARTED, task={task_id}, user={user_id}, last_msg={last_message_id}",
extra={"json_fields": {**log_meta, "last_message_id": last_message_id}},
)
redis_start = time.perf_counter()
redis = await get_redis_async()
meta_key = _get_task_meta_key(task_id)
meta: dict[Any, Any] = await redis.hgetall(meta_key) # type: ignore[misc]
hgetall_time = (time.perf_counter() - redis_start) * 1000
logger.info(
f"[TIMING] Redis hgetall took {hgetall_time:.1f}ms",
extra={"json_fields": {**log_meta, "duration_ms": hgetall_time}},
)
if not meta:
elapsed = (time.perf_counter() - start_time) * 1000
logger.info(
f"[TIMING] Task not found in Redis after {elapsed:.1f}ms",
extra={
"json_fields": {
**log_meta,
"elapsed_ms": elapsed,
"reason": "task_not_found",
}
},
)
logger.debug(f"Task {task_id} not found in Redis")
return None
# Note: Redis client uses decode_responses=True, so keys are strings
task_status = meta.get("status", "")
task_user_id = meta.get("user_id", "") or None
log_meta["session_id"] = meta.get("session_id", "")
# Validate ownership - if task has an owner, requester must match
if task_user_id:
if user_id != task_user_id:
logger.warning(
f"[TIMING] Access denied: user {user_id} tried to access task owned by {task_user_id}",
extra={
"json_fields": {
**log_meta,
"task_owner": task_user_id,
"reason": "access_denied",
}
},
f"User {user_id} denied access to task {task_id} "
f"owned by {task_user_id}"
)
return None
@@ -332,19 +225,7 @@ async def subscribe_to_task(
stream_key = _get_task_stream_key(task_id)
# Step 1: Replay messages from Redis Stream
xread_start = time.perf_counter()
messages = await redis.xread({stream_key: last_message_id}, block=0, count=1000)
xread_time = (time.perf_counter() - xread_start) * 1000
logger.info(
f"[TIMING] Redis xread (replay) took {xread_time:.1f}ms, status={task_status}",
extra={
"json_fields": {
**log_meta,
"duration_ms": xread_time,
"task_status": task_status,
}
},
)
replayed_count = 0
replay_last_id = last_message_id
@@ -363,48 +244,19 @@ async def subscribe_to_task(
except Exception as e:
logger.warning(f"Failed to replay message: {e}")
logger.info(
f"[TIMING] Replayed {replayed_count} messages, last_id={replay_last_id}",
extra={
"json_fields": {
**log_meta,
"n_messages_replayed": replayed_count,
"replay_last_id": replay_last_id,
}
},
)
logger.debug(f"Task {task_id}: replayed {replayed_count} messages")
# Step 2: If task is still running, start stream listener for live updates
if task_status == "running":
logger.info(
"[TIMING] Task still running, starting _stream_listener",
extra={"json_fields": {**log_meta, "task_status": task_status}},
)
listener_task = asyncio.create_task(
_stream_listener(task_id, subscriber_queue, replay_last_id, log_meta)
_stream_listener(task_id, subscriber_queue, replay_last_id)
)
# Track listener task for cleanup on unsubscribe
_listener_tasks[id(subscriber_queue)] = (task_id, listener_task)
else:
# Task is completed/failed - add finish marker
logger.info(
f"[TIMING] Task already {task_status}, adding StreamFinish",
extra={"json_fields": {**log_meta, "task_status": task_status}},
)
await subscriber_queue.put(StreamFinish())
total_time = (time.perf_counter() - start_time) * 1000
logger.info(
f"[TIMING] subscribe_to_task COMPLETED in {total_time:.1f}ms; task={task_id}, "
f"n_messages_replayed={replayed_count}",
extra={
"json_fields": {
**log_meta,
"total_time_ms": total_time,
"n_messages_replayed": replayed_count,
}
},
)
return subscriber_queue
@@ -412,7 +264,6 @@ async def _stream_listener(
task_id: str,
subscriber_queue: asyncio.Queue[StreamBaseResponse],
last_replayed_id: str,
log_meta: dict | None = None,
) -> None:
"""Listen to Redis Stream for new messages using blocking XREAD.
@@ -423,27 +274,10 @@ async def _stream_listener(
task_id: Task ID to listen for
subscriber_queue: Queue to deliver messages to
last_replayed_id: Last message ID from replay (continue from here)
log_meta: Structured logging metadata
"""
import time
start_time = time.perf_counter()
# Use provided log_meta or build minimal one
if log_meta is None:
log_meta = {"component": "StreamRegistry", "task_id": task_id}
logger.info(
f"[TIMING] _stream_listener STARTED, task={task_id}, last_id={last_replayed_id}",
extra={"json_fields": {**log_meta, "last_replayed_id": last_replayed_id}},
)
queue_id = id(subscriber_queue)
# Track the last successfully delivered message ID for recovery hints
last_delivered_id = last_replayed_id
messages_delivered = 0
first_message_time = None
xread_count = 0
try:
redis = await get_redis_async()
@@ -453,39 +287,9 @@ async def _stream_listener(
while True:
# Block for up to 30 seconds waiting for new messages
# This allows periodic checking if task is still running
xread_start = time.perf_counter()
xread_count += 1
messages = await redis.xread(
{stream_key: current_id}, block=30000, count=100
)
xread_time = (time.perf_counter() - xread_start) * 1000
if messages:
msg_count = sum(len(msgs) for _, msgs in messages)
logger.info(
f"[TIMING] xread #{xread_count} returned {msg_count} messages in {xread_time:.1f}ms",
extra={
"json_fields": {
**log_meta,
"xread_count": xread_count,
"n_messages": msg_count,
"duration_ms": xread_time,
}
},
)
elif xread_time > 1000:
# Only log timeouts (30s blocking)
logger.info(
f"[TIMING] xread #{xread_count} timeout after {xread_time:.1f}ms",
extra={
"json_fields": {
**log_meta,
"xread_count": xread_count,
"duration_ms": xread_time,
"reason": "timeout",
}
},
)
if not messages:
# Timeout - check if task is still running
@@ -522,30 +326,10 @@ async def _stream_listener(
)
# Update last delivered ID on successful delivery
last_delivered_id = current_id
messages_delivered += 1
if first_message_time is None:
first_message_time = time.perf_counter()
elapsed = (first_message_time - start_time) * 1000
logger.info(
f"[TIMING] FIRST live message at {elapsed:.1f}ms, type={type(chunk).__name__}",
extra={
"json_fields": {
**log_meta,
"elapsed_ms": elapsed,
"chunk_type": type(chunk).__name__,
}
},
)
except asyncio.TimeoutError:
logger.warning(
f"[TIMING] Subscriber queue full, delivery timed out after {QUEUE_PUT_TIMEOUT}s",
extra={
"json_fields": {
**log_meta,
"timeout_s": QUEUE_PUT_TIMEOUT,
"reason": "queue_full",
}
},
f"Subscriber queue full for task {task_id}, "
f"message delivery timed out after {QUEUE_PUT_TIMEOUT}s"
)
# Send overflow error with recovery info
try:
@@ -567,44 +351,15 @@ async def _stream_listener(
# Stop listening on finish
if isinstance(chunk, StreamFinish):
total_time = (time.perf_counter() - start_time) * 1000
logger.info(
f"[TIMING] StreamFinish received in {total_time/1000:.1f}s; delivered={messages_delivered}",
extra={
"json_fields": {
**log_meta,
"total_time_ms": total_time,
"messages_delivered": messages_delivered,
}
},
)
return
except Exception as e:
logger.warning(
f"Error processing stream message: {e}",
extra={"json_fields": {**log_meta, "error": str(e)}},
)
logger.warning(f"Error processing stream message: {e}")
except asyncio.CancelledError:
elapsed = (time.perf_counter() - start_time) * 1000
logger.info(
f"[TIMING] _stream_listener CANCELLED after {elapsed:.1f}ms, delivered={messages_delivered}",
extra={
"json_fields": {
**log_meta,
"elapsed_ms": elapsed,
"messages_delivered": messages_delivered,
"reason": "cancelled",
}
},
)
logger.debug(f"Stream listener cancelled for task {task_id}")
raise # Re-raise to propagate cancellation
except Exception as e:
elapsed = (time.perf_counter() - start_time) * 1000
logger.error(
f"[TIMING] _stream_listener ERROR after {elapsed:.1f}ms: {e}",
extra={"json_fields": {**log_meta, "elapsed_ms": elapsed, "error": str(e)}},
)
logger.error(f"Stream listener error for task {task_id}: {e}")
# On error, send finish to unblock subscriber
try:
await asyncio.wait_for(
@@ -613,24 +368,10 @@ async def _stream_listener(
)
except (asyncio.TimeoutError, asyncio.QueueFull):
logger.warning(
"Could not deliver finish event after error",
extra={"json_fields": log_meta},
f"Could not deliver finish event for task {task_id} after error"
)
finally:
# Clean up listener task mapping on exit
total_time = (time.perf_counter() - start_time) * 1000
logger.info(
f"[TIMING] _stream_listener FINISHED in {total_time/1000:.1f}s; task={task_id}, "
f"delivered={messages_delivered}, xread_count={xread_count}",
extra={
"json_fields": {
**log_meta,
"total_time_ms": total_time,
"messages_delivered": messages_delivered,
"xread_count": xread_count,
}
},
)
_listener_tasks.pop(queue_id, None)
@@ -857,10 +598,8 @@ def _reconstruct_chunk(chunk_data: dict) -> StreamBaseResponse | None:
ResponseType,
StreamError,
StreamFinish,
StreamFinishStep,
StreamHeartbeat,
StreamStart,
StreamStartStep,
StreamTextDelta,
StreamTextEnd,
StreamTextStart,
@@ -874,8 +613,6 @@ def _reconstruct_chunk(chunk_data: dict) -> StreamBaseResponse | None:
type_to_class: dict[str, type[StreamBaseResponse]] = {
ResponseType.START.value: StreamStart,
ResponseType.FINISH.value: StreamFinish,
ResponseType.START_STEP.value: StreamStartStep,
ResponseType.FINISH_STEP.value: StreamFinishStep,
ResponseType.TEXT_START.value: StreamTextStart,
ResponseType.TEXT_DELTA.value: StreamTextDelta,
ResponseType.TEXT_END.value: StreamTextEnd,

View File

@@ -3,8 +3,8 @@ from typing import TYPE_CHECKING, Any
from openai.types.chat import ChatCompletionToolParam
from backend.copilot.model import ChatSession
from backend.copilot.tracking import track_tool_called
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tracking import track_tool_called
from .add_understanding import AddUnderstandingTool
from .agent_output import AgentOutputTool
@@ -27,7 +27,7 @@ from .workspace_files import (
)
if TYPE_CHECKING:
from backend.copilot.response_model import StreamToolOutputAvailable
from backend.api.features.chat.response_model import StreamToolOutputAvailable
logger = logging.getLogger(__name__)

View File

@@ -6,11 +6,11 @@ import pytest
from prisma.types import ProfileCreateInput
from pydantic import SecretStr
from backend.api.features.chat.model import ChatSession
from backend.api.features.store import db as store_db
from backend.blocks.firecrawl.scrape import FirecrawlScrapeBlock
from backend.blocks.io import AgentInputBlock, AgentOutputBlock
from backend.blocks.llm import AITextGeneratorBlock
from backend.copilot.model import ChatSession
from backend.data.db import prisma
from backend.data.graph import Graph, Link, Node, create_graph
from backend.data.model import APIKeyCredentials

View File

@@ -3,7 +3,7 @@
import logging
from typing import Any
from backend.copilot.model import ChatSession
from backend.api.features.chat.model import ChatSession
from backend.data.understanding import (
BusinessUnderstandingInput,
upsert_business_understanding,

View File

@@ -7,7 +7,15 @@ from typing import Any, NotRequired, TypedDict
from backend.api.features.library import db as library_db
from backend.api.features.store import db as store_db
from backend.data.graph import Graph, Link, Node, get_graph, get_store_listed_graphs
from backend.data.graph import (
Graph,
Link,
Node,
create_graph,
get_graph,
get_graph_all_versions,
get_store_listed_graphs,
)
from backend.util.exceptions import DatabaseError, NotFoundError
from .service import (
@@ -20,6 +28,8 @@ from .service import (
logger = logging.getLogger(__name__)
AGENT_EXECUTOR_BLOCK_ID = "e189baac-8c20-45a1-94a7-55177ea42565"
class ExecutionSummary(TypedDict):
"""Summary of a single execution for quality assessment."""
@@ -659,6 +669,45 @@ def json_to_graph(agent_json: dict[str, Any]) -> Graph:
)
def _reassign_node_ids(graph: Graph) -> None:
"""Reassign all node and link IDs to new UUIDs.
This is needed when creating a new version to avoid unique constraint violations.
"""
id_map = {node.id: str(uuid.uuid4()) for node in graph.nodes}
for node in graph.nodes:
node.id = id_map[node.id]
for link in graph.links:
link.id = str(uuid.uuid4())
if link.source_id in id_map:
link.source_id = id_map[link.source_id]
if link.sink_id in id_map:
link.sink_id = id_map[link.sink_id]
def _populate_agent_executor_user_ids(agent_json: dict[str, Any], user_id: str) -> None:
"""Populate user_id in AgentExecutorBlock nodes.
The external agent generator creates AgentExecutorBlock nodes with empty user_id.
This function fills in the actual user_id so sub-agents run with correct permissions.
Args:
agent_json: Agent JSON dict (modified in place)
user_id: User ID to set
"""
for node in agent_json.get("nodes", []):
if node.get("block_id") == AGENT_EXECUTOR_BLOCK_ID:
input_default = node.get("input_default") or {}
if not input_default.get("user_id"):
input_default["user_id"] = user_id
node["input_default"] = input_default
logger.debug(
f"Set user_id for AgentExecutorBlock node {node.get('id')}"
)
async def save_agent_to_library(
agent_json: dict[str, Any], user_id: str, is_update: bool = False
) -> tuple[Graph, Any]:
@@ -672,10 +721,35 @@ async def save_agent_to_library(
Returns:
Tuple of (created Graph, LibraryAgent)
"""
# Populate user_id in AgentExecutorBlock nodes before conversion
_populate_agent_executor_user_ids(agent_json, user_id)
graph = json_to_graph(agent_json)
if is_update:
return await library_db.update_graph_in_library(graph, user_id)
return await library_db.create_graph_in_library(graph, user_id)
if graph.id:
existing_versions = await get_graph_all_versions(graph.id, user_id)
if existing_versions:
latest_version = max(v.version for v in existing_versions)
graph.version = latest_version + 1
_reassign_node_ids(graph)
logger.info(f"Updating agent {graph.id} to version {graph.version}")
else:
graph.id = str(uuid.uuid4())
graph.version = 1
_reassign_node_ids(graph)
logger.info(f"Creating new agent with ID {graph.id}")
created_graph = await create_graph(graph, user_id)
library_agents = await library_db.create_library_agent(
graph=created_graph,
user_id=user_id,
sensitive_action_safe_mode=True,
create_library_agents_for_sub_graphs=False,
)
return created_graph, library_agents[0]
def graph_to_json(graph: Graph) -> dict[str, Any]:

View File

@@ -7,9 +7,9 @@ from typing import Any
from pydantic import BaseModel, field_validator
from backend.api.features.chat.model import ChatSession
from backend.api.features.library import db as library_db
from backend.api.features.library.model import LibraryAgent
from backend.copilot.model import ChatSession
from backend.data import execution as execution_db
from backend.data.execution import ExecutionStatus, GraphExecution, GraphExecutionMeta

View File

@@ -206,9 +206,9 @@ async def search_agents(
]
)
no_results_msg = (
f"No agents found matching '{query}'. Let the user know they can try different keywords or browse the marketplace. Also let them know you can create a custom agent for them based on their needs."
f"No agents found matching '{query}'. Try different keywords or browse the marketplace."
if source == "marketplace"
else f"No agents matching '{query}' found in your library. Let the user know you can create a custom agent for them based on their needs."
else f"No agents matching '{query}' found in your library."
)
return NoResultsResponse(
message=no_results_msg, session_id=session_id, suggestions=suggestions
@@ -224,10 +224,10 @@ async def search_agents(
message = (
"Now you have found some options for the user to choose from. "
"You can add a link to a recommended agent at: /marketplace/agent/agent_id "
"Please ask the user if they would like to use any of these agents. Let the user know we can create a custom agent for them based on their needs."
"Please ask the user if they would like to use any of these agents."
if source == "marketplace"
else "Found agents in the user's library. You can provide a link to view an agent at: "
"/library/agents/{agent_id}. Use agent_output to get execution results, or run_agent to execute. Let the user know we can create a custom agent for them based on their needs."
"/library/agents/{agent_id}. Use agent_output to get execution results, or run_agent to execute."
)
return AgentsFoundResponse(

View File

@@ -5,8 +5,8 @@ from typing import Any
from openai.types.chat import ChatCompletionToolParam
from backend.copilot.model import ChatSession
from backend.copilot.response_model import StreamToolOutputAvailable
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.response_model import StreamToolOutputAvailable
from .models import ErrorResponse, NeedLoginResponse, ToolResponseBase

View File

@@ -3,7 +3,7 @@
import logging
from typing import Any
from backend.copilot.model import ChatSession
from backend.api.features.chat.model import ChatSession
from .agent_generator import (
AgentGeneratorNotConfiguredError,

View File

@@ -3,9 +3,9 @@
import logging
from typing import Any
from backend.api.features.chat.model import ChatSession
from backend.api.features.store import db as store_db
from backend.api.features.store.exceptions import AgentNotFoundError
from backend.copilot.model import ChatSession
from .agent_generator import (
AgentGeneratorNotConfiguredError,

View File

@@ -3,7 +3,7 @@
import logging
from typing import Any
from backend.copilot.model import ChatSession
from backend.api.features.chat.model import ChatSession
from .agent_generator import (
AgentGeneratorNotConfiguredError,

View File

@@ -2,7 +2,7 @@
from typing import Any
from backend.copilot.model import ChatSession
from backend.api.features.chat.model import ChatSession
from .agent_search import search_agents
from .base import BaseTool

View File

@@ -0,0 +1,193 @@
import logging
from typing import Any
from prisma.enums import ContentType
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool, ToolResponseBase
from backend.api.features.chat.tools.models import (
BlockInfoSummary,
BlockInputFieldInfo,
BlockListResponse,
ErrorResponse,
NoResultsResponse,
)
from backend.api.features.store.hybrid_search import unified_hybrid_search
from backend.data.block import get_block
logger = logging.getLogger(__name__)
class FindBlockTool(BaseTool):
"""Tool for searching available blocks."""
@property
def name(self) -> str:
return "find_block"
@property
def description(self) -> str:
return (
"Search for available blocks by name or description. "
"Blocks are reusable components that perform specific tasks like "
"sending emails, making API calls, processing text, etc. "
"IMPORTANT: Use this tool FIRST to get the block's 'id' before calling run_block. "
"The response includes each block's id, required_inputs, and input_schema."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": (
"Search query to find blocks by name or description. "
"Use keywords like 'email', 'http', 'text', 'ai', etc."
),
},
},
"required": ["query"],
}
@property
def requires_auth(self) -> bool:
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
"""Search for blocks matching the query.
Args:
user_id: User ID (required)
session: Chat session
query: Search query
Returns:
BlockListResponse: List of matching blocks
NoResultsResponse: No blocks found
ErrorResponse: Error message
"""
query = kwargs.get("query", "").strip()
session_id = session.session_id
if not query:
return ErrorResponse(
message="Please provide a search query",
session_id=session_id,
)
try:
# Search for blocks using hybrid search
results, total = await unified_hybrid_search(
query=query,
content_types=[ContentType.BLOCK],
page=1,
page_size=10,
)
if not results:
return NoResultsResponse(
message=f"No blocks found for '{query}'",
suggestions=[
"Try broader keywords like 'email', 'http', 'text', 'ai'",
"Check spelling of technical terms",
],
session_id=session_id,
)
# Enrich results with full block information
blocks: list[BlockInfoSummary] = []
for result in results:
block_id = result["content_id"]
block = get_block(block_id)
# Skip disabled blocks
if block and not block.disabled:
# Get input/output schemas
input_schema = {}
output_schema = {}
try:
input_schema = block.input_schema.jsonschema()
except Exception:
pass
try:
output_schema = block.output_schema.jsonschema()
except Exception:
pass
# Get categories from block instance
categories = []
if hasattr(block, "categories") and block.categories:
categories = [cat.value for cat in block.categories]
# Extract required inputs for easier use
required_inputs: list[BlockInputFieldInfo] = []
if input_schema:
properties = input_schema.get("properties", {})
required_fields = set(input_schema.get("required", []))
# Get credential field names to exclude from required inputs
credentials_fields = set(
block.input_schema.get_credentials_fields().keys()
)
for field_name, field_schema in properties.items():
# Skip credential fields - they're handled separately
if field_name in credentials_fields:
continue
required_inputs.append(
BlockInputFieldInfo(
name=field_name,
type=field_schema.get("type", "string"),
description=field_schema.get("description", ""),
required=field_name in required_fields,
default=field_schema.get("default"),
)
)
blocks.append(
BlockInfoSummary(
id=block_id,
name=block.name,
description=block.description or "",
categories=categories,
input_schema=input_schema,
output_schema=output_schema,
required_inputs=required_inputs,
)
)
if not blocks:
return NoResultsResponse(
message=f"No blocks found for '{query}'",
suggestions=[
"Try broader keywords like 'email', 'http', 'text', 'ai'",
],
session_id=session_id,
)
return BlockListResponse(
message=(
f"Found {len(blocks)} block(s) matching '{query}'. "
"To execute a block, use run_block with the block's 'id' field "
"and provide 'input_data' matching the block's input_schema."
),
blocks=blocks,
count=len(blocks),
query=query,
session_id=session_id,
)
except Exception as e:
logger.error(f"Error searching blocks: {e}", exc_info=True)
return ErrorResponse(
message="Failed to search blocks",
error=str(e),
session_id=session_id,
)

View File

@@ -2,7 +2,7 @@
from typing import Any
from backend.copilot.model import ChatSession
from backend.api.features.chat.model import ChatSession
from .agent_search import search_agents
from .base import BaseTool

View File

@@ -4,9 +4,9 @@ import logging
from pathlib import Path
from typing import Any
from backend.copilot.model import ChatSession
from backend.copilot.tools.base import BaseTool
from backend.copilot.tools.models import (
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
DocPageResponse,
ErrorResponse,
ToolResponseBase,

View File

@@ -5,10 +5,13 @@ from typing import Any
from pydantic import BaseModel, Field, field_validator
from backend.api.features.chat.config import ChatConfig
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tracking import (
track_agent_run_success,
track_agent_scheduled,
)
from backend.api.features.library import db as library_db
from backend.copilot.config import ChatConfig
from backend.copilot.model import ChatSession
from backend.copilot.tracking import track_agent_run_success, track_agent_scheduled
from backend.data.graph import GraphModel
from backend.data.model import CredentialsMetaInput
from backend.data.user import get_user_by_id
@@ -21,7 +24,6 @@ from backend.util.timezone_utils import (
)
from .base import BaseTool
from .helpers import get_inputs_from_schema
from .models import (
AgentDetails,
AgentDetailsResponse,
@@ -259,7 +261,7 @@ class RunAgentTool(BaseTool):
),
requirements={
"credentials": requirements_creds_list,
"inputs": get_inputs_from_schema(graph.input_schema),
"inputs": self._get_inputs_list(graph.input_schema),
"execution_modes": self._get_execution_modes(graph),
},
),
@@ -367,6 +369,22 @@ class RunAgentTool(BaseTool):
session_id=session_id,
)
def _get_inputs_list(self, input_schema: dict[str, Any]) -> list[dict[str, Any]]:
"""Extract inputs list from schema."""
inputs_list = []
if isinstance(input_schema, dict) and "properties" in input_schema:
for field_name, field_schema in input_schema["properties"].items():
inputs_list.append(
{
"name": field_name,
"title": field_schema.get("title", field_name),
"type": field_schema.get("type", "string"),
"description": field_schema.get("description", ""),
"required": field_name in input_schema.get("required", []),
}
)
return inputs_list
def _get_execution_modes(self, graph: GraphModel) -> list[str]:
"""Get available execution modes for the graph."""
trigger_info = graph.trigger_setup_info
@@ -380,7 +398,7 @@ class RunAgentTool(BaseTool):
suffix: str,
) -> str:
"""Build a message describing available inputs for an agent."""
inputs_list = get_inputs_from_schema(graph.input_schema)
inputs_list = self._get_inputs_list(graph.input_schema)
required_names = [i["name"] for i in inputs_list if i["required"]]
optional_names = [i["name"] for i in inputs_list if not i["required"]]

View File

@@ -7,20 +7,15 @@ from typing import Any
from pydantic_core import PydanticUndefined
from backend.copilot.model import ChatSession
from backend.copilot.tools.find_block import (
COPILOT_EXCLUDED_BLOCK_IDS,
COPILOT_EXCLUDED_BLOCK_TYPES,
)
from backend.data.block import AnyBlockSchema, get_block
from backend.api.features.chat.model import ChatSession
from backend.data.block import get_block
from backend.data.execution import ExecutionContext
from backend.data.model import CredentialsFieldInfo, CredentialsMetaInput
from backend.data.model import CredentialsMetaInput
from backend.data.workspace import get_or_create_workspace
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.util.exceptions import BlockError
from .base import BaseTool
from .helpers import get_inputs_from_schema
from .models import (
BlockOutputResponse,
ErrorResponse,
@@ -29,10 +24,7 @@ from .models import (
ToolResponseBase,
UserReadiness,
)
from .utils import (
build_missing_credentials_from_field_info,
match_credentials_to_requirements,
)
from .utils import build_missing_credentials_from_field_info
logger = logging.getLogger(__name__)
@@ -81,6 +73,91 @@ class RunBlockTool(BaseTool):
def requires_auth(self) -> bool:
return True
async def _check_block_credentials(
self,
user_id: str,
block: Any,
input_data: dict[str, Any] | None = None,
) -> tuple[dict[str, CredentialsMetaInput], list[CredentialsMetaInput]]:
"""
Check if user has required credentials for a block.
Args:
user_id: User ID
block: Block to check credentials for
input_data: Input data for the block (used to determine provider via discriminator)
Returns:
tuple[matched_credentials, missing_credentials]
"""
matched_credentials: dict[str, CredentialsMetaInput] = {}
missing_credentials: list[CredentialsMetaInput] = []
input_data = input_data or {}
# Get credential field info from block's input schema
credentials_fields_info = block.input_schema.get_credentials_fields_info()
if not credentials_fields_info:
return matched_credentials, missing_credentials
# Get user's available credentials
creds_manager = IntegrationCredentialsManager()
available_creds = await creds_manager.store.get_all_creds(user_id)
for field_name, field_info in credentials_fields_info.items():
effective_field_info = field_info
if field_info.discriminator and field_info.discriminator_mapping:
# Get discriminator from input, falling back to schema default
discriminator_value = input_data.get(field_info.discriminator)
if discriminator_value is None:
field = block.input_schema.model_fields.get(
field_info.discriminator
)
if field and field.default is not PydanticUndefined:
discriminator_value = field.default
if (
discriminator_value
and discriminator_value in field_info.discriminator_mapping
):
effective_field_info = field_info.discriminate(discriminator_value)
logger.debug(
f"Discriminated provider for {field_name}: "
f"{discriminator_value} -> {effective_field_info.provider}"
)
matching_cred = next(
(
cred
for cred in available_creds
if cred.provider in effective_field_info.provider
and cred.type in effective_field_info.supported_types
),
None,
)
if matching_cred:
matched_credentials[field_name] = CredentialsMetaInput(
id=matching_cred.id,
provider=matching_cred.provider, # type: ignore
type=matching_cred.type,
title=matching_cred.title,
)
else:
# Create a placeholder for the missing credential
provider = next(iter(effective_field_info.provider), "unknown")
cred_type = next(iter(effective_field_info.supported_types), "api_key")
missing_credentials.append(
CredentialsMetaInput(
id=field_name,
provider=provider, # type: ignore
type=cred_type, # type: ignore
title=field_name.replace("_", " ").title(),
)
)
return matched_credentials, missing_credentials
async def _execute(
self,
user_id: str | None,
@@ -135,24 +212,11 @@ class RunBlockTool(BaseTool):
session_id=session_id,
)
# Check if block is excluded from CoPilot (graph-only blocks)
if (
block.block_type in COPILOT_EXCLUDED_BLOCK_TYPES
or block.id in COPILOT_EXCLUDED_BLOCK_IDS
):
return ErrorResponse(
message=(
f"Block '{block.name}' cannot be run directly in CoPilot. "
"This block is designed for use within graphs only."
),
session_id=session_id,
)
logger.info(f"Executing block {block.name} ({block_id}) for user {user_id}")
creds_manager = IntegrationCredentialsManager()
matched_credentials, missing_credentials = (
await self._resolve_block_credentials(user_id, block, input_data)
matched_credentials, missing_credentials = await self._check_block_credentials(
user_id, block, input_data
)
if missing_credentials:
@@ -281,75 +345,29 @@ class RunBlockTool(BaseTool):
session_id=session_id,
)
async def _resolve_block_credentials(
self,
user_id: str,
block: AnyBlockSchema,
input_data: dict[str, Any] | None = None,
) -> tuple[dict[str, CredentialsMetaInput], list[CredentialsMetaInput]]:
"""
Resolve credentials for a block by matching user's available credentials.
Args:
user_id: User ID
block: Block to resolve credentials for
input_data: Input data for the block (used to determine provider via discriminator)
Returns:
tuple of (matched_credentials, missing_credentials) - matched credentials
are used for block execution, missing ones indicate setup requirements.
"""
input_data = input_data or {}
requirements = self._resolve_discriminated_credentials(block, input_data)
if not requirements:
return {}, []
return await match_credentials_to_requirements(user_id, requirements)
def _get_inputs_list(self, block: AnyBlockSchema) -> list[dict[str, Any]]:
def _get_inputs_list(self, block: Any) -> list[dict[str, Any]]:
"""Extract non-credential inputs from block schema."""
inputs_list = []
schema = block.input_schema.jsonschema()
properties = schema.get("properties", {})
required_fields = set(schema.get("required", []))
# Get credential field names to exclude
credentials_fields = set(block.input_schema.get_credentials_fields().keys())
return get_inputs_from_schema(schema, exclude_fields=credentials_fields)
def _resolve_discriminated_credentials(
self,
block: AnyBlockSchema,
input_data: dict[str, Any],
) -> dict[str, CredentialsFieldInfo]:
"""Resolve credential requirements, applying discriminator logic where needed."""
credentials_fields_info = block.input_schema.get_credentials_fields_info()
if not credentials_fields_info:
return {}
for field_name, field_schema in properties.items():
# Skip credential fields
if field_name in credentials_fields:
continue
resolved: dict[str, CredentialsFieldInfo] = {}
inputs_list.append(
{
"name": field_name,
"title": field_schema.get("title", field_name),
"type": field_schema.get("type", "string"),
"description": field_schema.get("description", ""),
"required": field_name in required_fields,
}
)
for field_name, field_info in credentials_fields_info.items():
effective_field_info = field_info
if field_info.discriminator and field_info.discriminator_mapping:
discriminator_value = input_data.get(field_info.discriminator)
if discriminator_value is None:
field = block.input_schema.model_fields.get(
field_info.discriminator
)
if field and field.default is not PydanticUndefined:
discriminator_value = field.default
if (
discriminator_value
and discriminator_value in field_info.discriminator_mapping
):
effective_field_info = field_info.discriminate(discriminator_value)
# For host-scoped credentials, add the discriminator value
# (e.g., URL) so _credential_is_for_host can match it
effective_field_info.discriminator_values.add(discriminator_value)
logger.debug(
f"Discriminated provider for {field_name}: "
f"{discriminator_value} -> {effective_field_info.provider}"
)
resolved[field_name] = effective_field_info
return resolved
return inputs_list

View File

@@ -5,16 +5,16 @@ from typing import Any
from prisma.enums import ContentType
from backend.api.features.store.hybrid_search import unified_hybrid_search
from backend.copilot.model import ChatSession
from backend.copilot.tools.base import BaseTool
from backend.copilot.tools.models import (
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
DocSearchResult,
DocSearchResultsResponse,
ErrorResponse,
NoResultsResponse,
ToolResponseBase,
)
from backend.api.features.store.hybrid_search import unified_hybrid_search
logger = logging.getLogger(__name__)

View File

@@ -6,9 +6,9 @@ from typing import Any
from backend.api.features.library import db as library_db
from backend.api.features.library import model as library_model
from backend.api.features.store import db as store_db
from backend.data import graph as graph_db
from backend.data.graph import GraphModel
from backend.data.model import (
Credentials,
CredentialsFieldInfo,
CredentialsMetaInput,
HostScopedCredentials,
@@ -44,8 +44,14 @@ async def fetch_graph_from_store_slug(
return None, None
# Get the graph from store listing version
graph = await store_db.get_available_graph(
store_agent.store_listing_version_id, hide_nodes=False
graph_meta = await store_db.get_available_graph(
store_agent.store_listing_version_id
)
graph = await graph_db.get_graph(
graph_id=graph_meta.id,
version=graph_meta.version,
user_id=None, # Public access
include_subgraphs=True,
)
return graph, store_agent
@@ -122,7 +128,7 @@ def build_missing_credentials_from_graph(
return {
field_key: _serialize_missing_credential(field_key, field_info)
for field_key, (field_info, _, _) in aggregated_fields.items()
for field_key, (field_info, _node_fields) in aggregated_fields.items()
if field_key not in matched_keys
}
@@ -224,99 +230,6 @@ async def get_or_create_library_agent(
return library_agents[0]
async def match_credentials_to_requirements(
user_id: str,
requirements: dict[str, CredentialsFieldInfo],
) -> tuple[dict[str, CredentialsMetaInput], list[CredentialsMetaInput]]:
"""
Match user's credentials against a dictionary of credential requirements.
This is the core matching logic shared by both graph and block credential matching.
"""
matched: dict[str, CredentialsMetaInput] = {}
missing: list[CredentialsMetaInput] = []
if not requirements:
return matched, missing
available_creds = await get_user_credentials(user_id)
for field_name, field_info in requirements.items():
matching_cred = find_matching_credential(available_creds, field_info)
if matching_cred:
try:
matched[field_name] = create_credential_meta_from_match(matching_cred)
except Exception as e:
logger.error(
f"Failed to create CredentialsMetaInput for field '{field_name}': "
f"provider={matching_cred.provider}, type={matching_cred.type}, "
f"credential_id={matching_cred.id}",
exc_info=True,
)
provider = next(iter(field_info.provider), "unknown")
cred_type = next(iter(field_info.supported_types), "api_key")
missing.append(
CredentialsMetaInput(
id=field_name,
provider=provider, # type: ignore
type=cred_type, # type: ignore
title=f"{field_name} (validation failed: {e})",
)
)
else:
provider = next(iter(field_info.provider), "unknown")
cred_type = next(iter(field_info.supported_types), "api_key")
missing.append(
CredentialsMetaInput(
id=field_name,
provider=provider, # type: ignore
type=cred_type, # type: ignore
title=field_name.replace("_", " ").title(),
)
)
return matched, missing
async def get_user_credentials(user_id: str) -> list[Credentials]:
"""Get all available credentials for a user."""
creds_manager = IntegrationCredentialsManager()
return await creds_manager.store.get_all_creds(user_id)
def find_matching_credential(
available_creds: list[Credentials],
field_info: CredentialsFieldInfo,
) -> Credentials | None:
"""Find a credential that matches the required provider, type, scopes, and host."""
for cred in available_creds:
if cred.provider not in field_info.provider:
continue
if cred.type not in field_info.supported_types:
continue
if cred.type == "oauth2" and not _credential_has_required_scopes(
cred, field_info
):
continue
if cred.type == "host_scoped" and not _credential_is_for_host(cred, field_info):
continue
return cred
return None
def create_credential_meta_from_match(
matching_cred: Credentials,
) -> CredentialsMetaInput:
"""Create a CredentialsMetaInput from a matched credential."""
return CredentialsMetaInput(
id=matching_cred.id,
provider=matching_cred.provider, # type: ignore
type=matching_cred.type,
title=matching_cred.title,
)
async def match_user_credentials_to_graph(
user_id: str,
graph: GraphModel,
@@ -356,8 +269,7 @@ async def match_user_credentials_to_graph(
# provider is in the set of acceptable providers.
for credential_field_name, (
credential_requirements,
_,
_,
_node_fields,
) in aggregated_creds.items():
# Find first matching credential by provider, type, and scopes
matching_cred = next(
@@ -425,6 +337,8 @@ def _credential_has_required_scopes(
# If no scopes are required, any credential matches
if not requirements.required_scopes:
return True
# Check that credential scopes are a superset of required scopes
return set(credential.scopes).issuperset(requirements.required_scopes)

View File

@@ -6,7 +6,7 @@ from typing import Any, Optional
from pydantic import BaseModel
from backend.copilot.model import ChatSession
from backend.api.features.chat.model import ChatSession
from backend.data.workspace import get_or_create_workspace
from backend.util.settings import Config
from backend.util.virus_scanner import scan_content_safe

View File

@@ -19,10 +19,7 @@ from backend.data.graph import GraphSettings
from backend.data.includes import AGENT_PRESET_INCLUDE, library_agent_include
from backend.data.model import CredentialsMetaInput
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.integrations.webhooks.graph_lifecycle_hooks import (
on_graph_activate,
on_graph_deactivate,
)
from backend.integrations.webhooks.graph_lifecycle_hooks import on_graph_activate
from backend.util.clients import get_scheduler_client
from backend.util.exceptions import DatabaseError, InvalidInputError, NotFoundError
from backend.util.json import SafeJson
@@ -374,7 +371,7 @@ async def get_library_agent_by_graph_id(
async def add_generated_agent_image(
graph: graph_db.GraphBaseMeta,
graph: graph_db.BaseGraph,
user_id: str,
library_agent_id: str,
) -> Optional[prisma.models.LibraryAgent]:
@@ -540,92 +537,6 @@ async def update_agent_version_in_library(
return library_model.LibraryAgent.from_db(lib)
async def create_graph_in_library(
graph: graph_db.Graph,
user_id: str,
) -> tuple[graph_db.GraphModel, library_model.LibraryAgent]:
"""Create a new graph and add it to the user's library."""
graph.version = 1
graph_model = graph_db.make_graph_model(graph, user_id)
graph_model.reassign_ids(user_id=user_id, reassign_graph_id=True)
created_graph = await graph_db.create_graph(graph_model, user_id)
library_agents = await create_library_agent(
graph=created_graph,
user_id=user_id,
sensitive_action_safe_mode=True,
create_library_agents_for_sub_graphs=False,
)
if created_graph.is_active:
created_graph = await on_graph_activate(created_graph, user_id=user_id)
return created_graph, library_agents[0]
async def update_graph_in_library(
graph: graph_db.Graph,
user_id: str,
) -> tuple[graph_db.GraphModel, library_model.LibraryAgent]:
"""Create a new version of an existing graph and update the library entry."""
existing_versions = await graph_db.get_graph_all_versions(graph.id, user_id)
current_active_version = (
next((v for v in existing_versions if v.is_active), None)
if existing_versions
else None
)
graph.version = (
max(v.version for v in existing_versions) + 1 if existing_versions else 1
)
graph_model = graph_db.make_graph_model(graph, user_id)
graph_model.reassign_ids(user_id=user_id, reassign_graph_id=False)
created_graph = await graph_db.create_graph(graph_model, user_id)
library_agent = await get_library_agent_by_graph_id(user_id, created_graph.id)
if not library_agent:
raise NotFoundError(f"Library agent not found for graph {created_graph.id}")
library_agent = await update_library_agent_version_and_settings(
user_id, created_graph
)
if created_graph.is_active:
created_graph = await on_graph_activate(created_graph, user_id=user_id)
await graph_db.set_graph_active_version(
graph_id=created_graph.id,
version=created_graph.version,
user_id=user_id,
)
if current_active_version:
await on_graph_deactivate(current_active_version, user_id=user_id)
return created_graph, library_agent
async def update_library_agent_version_and_settings(
user_id: str, agent_graph: graph_db.GraphModel
) -> library_model.LibraryAgent:
"""Update library agent to point to new graph version and sync settings."""
library = await update_agent_version_in_library(
user_id, agent_graph.id, agent_graph.version
)
updated_settings = GraphSettings.from_graph(
graph=agent_graph,
hitl_safe_mode=library.settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=library.settings.sensitive_action_safe_mode,
)
if updated_settings != library.settings:
library = await update_library_agent(
library_agent_id=library.id,
user_id=user_id,
settings=updated_settings,
)
return library
async def update_library_agent(
library_agent_id: str,
user_id: str,

View File

@@ -1,7 +1,7 @@
import asyncio
import logging
from datetime import datetime, timezone
from typing import Any, Literal, overload
from typing import Any, Literal
import fastapi
import prisma.enums
@@ -11,8 +11,8 @@ import prisma.types
from backend.data.db import transaction
from backend.data.graph import (
GraphMeta,
GraphModel,
GraphModelWithoutNodes,
get_graph,
get_graph_as_admin,
get_sub_graphs,
@@ -334,22 +334,7 @@ async def get_store_agent_details(
raise DatabaseError("Failed to fetch agent details") from e
@overload
async def get_available_graph(
store_listing_version_id: str, hide_nodes: Literal[False]
) -> GraphModel: ...
@overload
async def get_available_graph(
store_listing_version_id: str, hide_nodes: Literal[True] = True
) -> GraphModelWithoutNodes: ...
async def get_available_graph(
store_listing_version_id: str,
hide_nodes: bool = True,
) -> GraphModelWithoutNodes | GraphModel:
async def get_available_graph(store_listing_version_id: str) -> GraphMeta:
try:
# Get avaialble, non-deleted store listing version
store_listing_version = (
@@ -359,7 +344,7 @@ async def get_available_graph(
"isAvailable": True,
"isDeleted": False,
},
include={"AgentGraph": {"include": AGENT_GRAPH_INCLUDE}},
include={"AgentGraph": {"include": {"Nodes": True}}},
)
)
@@ -369,9 +354,7 @@ async def get_available_graph(
detail=f"Store listing version {store_listing_version_id} not found",
)
return (GraphModelWithoutNodes if hide_nodes else GraphModel).from_db(
store_listing_version.AgentGraph
)
return GraphModel.from_db(store_listing_version.AgentGraph).meta()
except Exception as e:
logger.error(f"Error getting agent: {e}")

View File

@@ -8,7 +8,6 @@ Includes BM25 reranking for improved lexical relevance.
import logging
import re
import time
from dataclasses import dataclass
from typing import Any, Literal
@@ -363,11 +362,7 @@ async def unified_hybrid_search(
LIMIT {limit_param} OFFSET {offset_param}
"""
try:
results = await query_raw_with_schema(sql_query, *params)
except Exception as e:
await _log_vector_error_diagnostics(e)
raise
results = await query_raw_with_schema(sql_query, *params)
total = results[0]["total_count"] if results else 0
# Apply BM25 reranking
@@ -691,11 +686,7 @@ async def hybrid_search(
LIMIT {limit_param} OFFSET {offset_param}
"""
try:
results = await query_raw_with_schema(sql_query, *params)
except Exception as e:
await _log_vector_error_diagnostics(e)
raise
results = await query_raw_with_schema(sql_query, *params)
total = results[0]["total_count"] if results else 0
@@ -727,87 +718,6 @@ async def hybrid_search_simple(
return await hybrid_search(query=query, page=page, page_size=page_size)
# ============================================================================
# Diagnostics
# ============================================================================
# Rate limit: only log vector error diagnostics once per this interval
_VECTOR_DIAG_INTERVAL_SECONDS = 60
_last_vector_diag_time: float = 0
async def _log_vector_error_diagnostics(error: Exception) -> None:
"""Log diagnostic info when 'type vector does not exist' error occurs.
Note: Diagnostic queries use query_raw_with_schema which may run on a different
pooled connection than the one that failed. Session-level search_path can differ,
so these diagnostics show cluster-wide state, not necessarily the failed session.
Includes rate limiting to avoid log spam - only logs once per minute.
Caller should re-raise the error after calling this function.
"""
global _last_vector_diag_time
# Check if this is the vector type error
error_str = str(error).lower()
if not (
"type" in error_str and "vector" in error_str and "does not exist" in error_str
):
return
# Rate limit: only log once per interval
now = time.time()
if now - _last_vector_diag_time < _VECTOR_DIAG_INTERVAL_SECONDS:
return
_last_vector_diag_time = now
try:
diagnostics: dict[str, object] = {}
try:
search_path_result = await query_raw_with_schema("SHOW search_path")
diagnostics["search_path"] = search_path_result
except Exception as e:
diagnostics["search_path"] = f"Error: {e}"
try:
schema_result = await query_raw_with_schema("SELECT current_schema()")
diagnostics["current_schema"] = schema_result
except Exception as e:
diagnostics["current_schema"] = f"Error: {e}"
try:
user_result = await query_raw_with_schema(
"SELECT current_user, session_user, current_database()"
)
diagnostics["user_info"] = user_result
except Exception as e:
diagnostics["user_info"] = f"Error: {e}"
try:
# Check pgvector extension installation (cluster-wide, stable info)
ext_result = await query_raw_with_schema(
"SELECT extname, extversion, nspname as schema "
"FROM pg_extension e "
"JOIN pg_namespace n ON e.extnamespace = n.oid "
"WHERE extname = 'vector'"
)
diagnostics["pgvector_extension"] = ext_result
except Exception as e:
diagnostics["pgvector_extension"] = f"Error: {e}"
logger.error(
f"Vector type error diagnostics:\n"
f" Error: {error}\n"
f" search_path: {diagnostics.get('search_path')}\n"
f" current_schema: {diagnostics.get('current_schema')}\n"
f" user_info: {diagnostics.get('user_info')}\n"
f" pgvector_extension: {diagnostics.get('pgvector_extension')}"
)
except Exception as diag_error:
logger.error(f"Failed to collect vector error diagnostics: {diag_error}")
# Backward compatibility alias - HybridSearchWeights maps to StoreAgentSearchWeights
# for existing code that expects the popularity parameter
HybridSearchWeights = StoreAgentSearchWeights

View File

@@ -16,7 +16,7 @@ from backend.blocks.ideogram import (
StyleType,
UpscaleOption,
)
from backend.data.graph import GraphBaseMeta
from backend.data.graph import BaseGraph
from backend.data.model import CredentialsMetaInput, ProviderName
from backend.integrations.credentials_store import ideogram_credentials
from backend.util.request import Requests
@@ -34,14 +34,14 @@ class ImageStyle(str, Enum):
DIGITAL_ART = "digital art"
async def generate_agent_image(agent: GraphBaseMeta | AgentGraph) -> io.BytesIO:
async def generate_agent_image(agent: BaseGraph | AgentGraph) -> io.BytesIO:
if settings.config.use_agent_image_generation_v2:
return await generate_agent_image_v2(graph=agent)
else:
return await generate_agent_image_v1(agent=agent)
async def generate_agent_image_v2(graph: GraphBaseMeta | AgentGraph) -> io.BytesIO:
async def generate_agent_image_v2(graph: BaseGraph | AgentGraph) -> io.BytesIO:
"""
Generate an image for an agent using Ideogram model.
Returns:
@@ -54,17 +54,14 @@ async def generate_agent_image_v2(graph: GraphBaseMeta | AgentGraph) -> io.Bytes
description = f"{name} ({graph.description})" if graph.description else name
prompt = (
"Create a visually striking retro-futuristic vector pop art illustration "
f'prominently featuring "{name}" in bold typography. The image clearly and '
f"literally depicts a {description}, along with recognizable objects directly "
f"associated with the primary function of a {name}. "
f"Ensure the imagery is concrete, intuitive, and immediately understandable, "
f"clearly conveying the purpose of a {name}. "
"Maintain vibrant, limited-palette colors, sharp vector lines, "
"geometric shapes, flat illustration techniques, and solid colors "
"without gradients or shading. Preserve a retro-futuristic aesthetic "
"influenced by mid-century futurism and 1960s psychedelia, "
"prioritizing clear visual storytelling and thematic clarity above all else."
f"Create a visually striking retro-futuristic vector pop art illustration prominently featuring "
f'"{name}" in bold typography. The image clearly and literally depicts a {description}, '
f"along with recognizable objects directly associated with the primary function of a {name}. "
f"Ensure the imagery is concrete, intuitive, and immediately understandable, clearly conveying the "
f"purpose of a {name}. Maintain vibrant, limited-palette colors, sharp vector lines, geometric "
f"shapes, flat illustration techniques, and solid colors without gradients or shading. Preserve a "
f"retro-futuristic aesthetic influenced by mid-century futurism and 1960s psychedelia, "
f"prioritizing clear visual storytelling and thematic clarity above all else."
)
custom_colors = [
@@ -102,12 +99,12 @@ async def generate_agent_image_v2(graph: GraphBaseMeta | AgentGraph) -> io.Bytes
return io.BytesIO(response.content)
async def generate_agent_image_v1(agent: GraphBaseMeta | AgentGraph) -> io.BytesIO:
async def generate_agent_image_v1(agent: BaseGraph | AgentGraph) -> io.BytesIO:
"""
Generate an image for an agent using Flux model via Replicate API.
Args:
agent (GraphBaseMeta | AgentGraph): The agent to generate an image for
agent (Graph): The agent to generate an image for
Returns:
io.BytesIO: The generated image as bytes
@@ -117,13 +114,7 @@ async def generate_agent_image_v1(agent: GraphBaseMeta | AgentGraph) -> io.Bytes
raise ValueError("Missing Replicate API key in settings")
# Construct prompt from agent details
prompt = (
"Create a visually engaging app store thumbnail for the AI agent "
"that highlights what it does in a clear and captivating way:\n"
f"- **Name**: {agent.name}\n"
f"- **Description**: {agent.description}\n"
f"Focus on showcasing its core functionality with an appealing design."
)
prompt = f"Create a visually engaging app store thumbnail for the AI agent that highlights what it does in a clear and captivating way:\n- **Name**: {agent.name}\n- **Description**: {agent.description}\nFocus on showcasing its core functionality with an appealing design."
# Set up Replicate client
client = ReplicateClient(api_token=settings.secrets.replicate_api_key)

View File

@@ -278,7 +278,7 @@ async def get_agent(
)
async def get_graph_meta_by_store_listing_version_id(
store_listing_version_id: str,
) -> backend.data.graph.GraphModelWithoutNodes:
) -> backend.data.graph.GraphMeta:
"""
Get Agent Graph from Store Listing Version ID.
"""

View File

@@ -101,6 +101,7 @@ from backend.util.timezone_utils import (
from backend.util.virus_scanner import scan_content_safe
from .library import db as library_db
from .library import model as library_model
from .store.model import StoreAgentDetails
@@ -822,16 +823,18 @@ async def update_graph(
graph: graph_db.Graph,
user_id: Annotated[str, Security(get_user_id)],
) -> graph_db.GraphModel:
# Sanity check
if graph.id and graph.id != graph_id:
raise HTTPException(400, detail="Graph ID does not match ID in URI")
# Determine new version
existing_versions = await graph_db.get_graph_all_versions(graph_id, user_id=user_id)
if not existing_versions:
raise HTTPException(404, detail=f"Graph #{graph_id} not found")
latest_version_number = max(g.version for g in existing_versions)
graph.version = latest_version_number + 1
graph.version = max(g.version for g in existing_versions) + 1
current_active_version = next((v for v in existing_versions if v.is_active), None)
graph = graph_db.make_graph_model(graph, user_id)
graph.reassign_ids(user_id=user_id, reassign_graph_id=False)
graph.validate_graph(for_run=False)
@@ -839,23 +842,27 @@ async def update_graph(
new_graph_version = await graph_db.create_graph(graph, user_id=user_id)
if new_graph_version.is_active:
await library_db.update_library_agent_version_and_settings(
user_id, new_graph_version
)
# Keep the library agent up to date with the new active version
await _update_library_agent_version_and_settings(user_id, new_graph_version)
# Handle activation of the new graph first to ensure continuity
new_graph_version = await on_graph_activate(new_graph_version, user_id=user_id)
# Ensure new version is the only active version
await graph_db.set_graph_active_version(
graph_id=graph_id, version=new_graph_version.version, user_id=user_id
)
if current_active_version:
# Handle deactivation of the previously active version
await on_graph_deactivate(current_active_version, user_id=user_id)
# Fetch new graph version *with sub-graphs* (needed for credentials input schema)
new_graph_version_with_subgraphs = await graph_db.get_graph(
graph_id,
new_graph_version.version,
user_id=user_id,
include_subgraphs=True,
)
assert new_graph_version_with_subgraphs
assert new_graph_version_with_subgraphs # make type checker happy
return new_graph_version_with_subgraphs
@@ -893,15 +900,33 @@ async def set_graph_active_version(
)
# Keep the library agent up to date with the new active version
await library_db.update_library_agent_version_and_settings(
user_id, new_active_graph
)
await _update_library_agent_version_and_settings(user_id, new_active_graph)
if current_active_graph and current_active_graph.version != new_active_version:
# Handle deactivation of the previously active version
await on_graph_deactivate(current_active_graph, user_id=user_id)
async def _update_library_agent_version_and_settings(
user_id: str, agent_graph: graph_db.GraphModel
) -> library_model.LibraryAgent:
library = await library_db.update_agent_version_in_library(
user_id, agent_graph.id, agent_graph.version
)
updated_settings = GraphSettings.from_graph(
graph=agent_graph,
hitl_safe_mode=library.settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=library.settings.sensitive_action_safe_mode,
)
if updated_settings != library.settings:
library = await library_db.update_library_agent(
library_agent_id=library.id,
user_id=user_id,
settings=updated_settings,
)
return library
@v1_router.patch(
path="/graphs/{graph_id}/settings",
summary="Update graph settings",

View File

@@ -40,11 +40,11 @@ import backend.data.user
import backend.integrations.webhooks.utils
import backend.util.service
import backend.util.settings
from backend.blocks.llm import DEFAULT_LLM_MODEL
from backend.copilot.completion_consumer import (
from backend.api.features.chat.completion_consumer import (
start_completion_consumer,
stop_completion_consumer,
)
from backend.blocks.llm import DEFAULT_LLM_MODEL
from backend.data.model import Credentials
from backend.integrations.providers import ProviderName
from backend.monitoring.instrumentation import instrument_fastapi

View File

@@ -38,7 +38,6 @@ def main(**kwargs):
from backend.api.rest_api import AgentServer
from backend.api.ws_api import WebsocketServer
from backend.copilot.executor.manager import CoPilotExecutor
from backend.executor import DatabaseManager, ExecutionManager, Scheduler
from backend.notifications import NotificationManager
@@ -49,7 +48,6 @@ def main(**kwargs):
WebsocketServer(),
AgentServer(),
ExecutionManager(),
CoPilotExecutor(),
**kwargs,
)

View File

@@ -1,28 +0,0 @@
"""ElevenLabs integration blocks - test credentials and shared utilities."""
from typing import Literal
from pydantic import SecretStr
from backend.data.model import APIKeyCredentials, CredentialsMetaInput
from backend.integrations.providers import ProviderName
TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
provider="elevenlabs",
api_key=SecretStr("mock-elevenlabs-api-key"),
title="Mock ElevenLabs API key",
expires_at=None,
)
TEST_CREDENTIALS_INPUT = {
"provider": TEST_CREDENTIALS.provider,
"id": TEST_CREDENTIALS.id,
"type": TEST_CREDENTIALS.type,
"title": TEST_CREDENTIALS.title,
}
ElevenLabsCredentials = APIKeyCredentials
ElevenLabsCredentialsInput = CredentialsMetaInput[
Literal[ProviderName.ELEVENLABS], Literal["api_key"]
]

View File

@@ -1,77 +0,0 @@
"""Text encoding block for converting special characters to escape sequences."""
import codecs
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.model import SchemaField
class TextEncoderBlock(Block):
"""
Encodes a string by converting special characters into escape sequences.
This block is the inverse of TextDecoderBlock. It takes text containing
special characters (like newlines, tabs, etc.) and converts them into
their escape sequence representations (e.g., newline becomes \\n).
"""
class Input(BlockSchemaInput):
"""Input schema for TextEncoderBlock."""
text: str = SchemaField(
description="A string containing special characters to be encoded",
placeholder="Your text with newlines and quotes to encode",
)
class Output(BlockSchemaOutput):
"""Output schema for TextEncoderBlock."""
encoded_text: str = SchemaField(
description="The encoded text with special characters converted to escape sequences"
)
error: str = SchemaField(description="Error message if encoding fails")
def __init__(self):
super().__init__(
id="5185f32e-4b65-4ecf-8fbb-873f003f09d6",
description="Encodes a string by converting special characters into escape sequences",
categories={BlockCategory.TEXT},
input_schema=TextEncoderBlock.Input,
output_schema=TextEncoderBlock.Output,
test_input={
"text": """Hello
World!
This is a "quoted" string."""
},
test_output=[
(
"encoded_text",
"""Hello\\nWorld!\\nThis is a "quoted" string.""",
)
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
"""
Encode the input text by converting special characters to escape sequences.
Args:
input_data: The input containing the text to encode.
**kwargs: Additional keyword arguments (unused).
Yields:
The encoded text with escape sequences, or an error message if encoding fails.
"""
try:
encoded_text = codecs.encode(input_data.text, "unicode_escape").decode(
"utf-8"
)
yield "encoded_text", encoded_text
except Exception as e:
yield "error", f"Encoding error: {str(e)}"

View File

@@ -478,7 +478,7 @@ class ExaCreateOrFindWebsetBlock(Block):
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
try:
webset = await aexa.websets.get(id=input_data.external_id)
webset = aexa.websets.get(id=input_data.external_id)
webset_result = Webset.model_validate(webset.model_dump(by_alias=True))
yield "webset", webset_result
@@ -494,7 +494,7 @@ class ExaCreateOrFindWebsetBlock(Block):
count=input_data.search_count,
)
webset = await aexa.websets.create(
webset = aexa.websets.create(
params=CreateWebsetParameters(
search=search_params,
external_id=input_data.external_id,
@@ -554,7 +554,7 @@ class ExaUpdateWebsetBlock(Block):
if input_data.metadata is not None:
payload["metadata"] = input_data.metadata
sdk_webset = await aexa.websets.update(id=input_data.webset_id, params=payload)
sdk_webset = aexa.websets.update(id=input_data.webset_id, params=payload)
status_str = (
sdk_webset.status.value
@@ -617,7 +617,7 @@ class ExaListWebsetsBlock(Block):
) -> BlockOutput:
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
response = await aexa.websets.list(
response = aexa.websets.list(
cursor=input_data.cursor,
limit=input_data.limit,
)
@@ -678,7 +678,7 @@ class ExaGetWebsetBlock(Block):
) -> BlockOutput:
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
sdk_webset = await aexa.websets.get(id=input_data.webset_id)
sdk_webset = aexa.websets.get(id=input_data.webset_id)
status_str = (
sdk_webset.status.value
@@ -748,7 +748,7 @@ class ExaDeleteWebsetBlock(Block):
) -> BlockOutput:
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
deleted_webset = await aexa.websets.delete(id=input_data.webset_id)
deleted_webset = aexa.websets.delete(id=input_data.webset_id)
status_str = (
deleted_webset.status.value
@@ -798,7 +798,7 @@ class ExaCancelWebsetBlock(Block):
) -> BlockOutput:
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
canceled_webset = await aexa.websets.cancel(id=input_data.webset_id)
canceled_webset = aexa.websets.cancel(id=input_data.webset_id)
status_str = (
canceled_webset.status.value
@@ -968,7 +968,7 @@ class ExaPreviewWebsetBlock(Block):
entity["description"] = input_data.entity_description
payload["entity"] = entity
sdk_preview = await aexa.websets.preview(params=payload)
sdk_preview = aexa.websets.preview(params=payload)
preview = PreviewWebsetModel.from_sdk(sdk_preview)
@@ -1051,7 +1051,7 @@ class ExaWebsetStatusBlock(Block):
) -> BlockOutput:
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
webset = await aexa.websets.get(id=input_data.webset_id)
webset = aexa.websets.get(id=input_data.webset_id)
status = (
webset.status.value
@@ -1185,7 +1185,7 @@ class ExaWebsetSummaryBlock(Block):
) -> BlockOutput:
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
webset = await aexa.websets.get(id=input_data.webset_id)
webset = aexa.websets.get(id=input_data.webset_id)
# Extract basic info
webset_id = webset.id
@@ -1211,7 +1211,7 @@ class ExaWebsetSummaryBlock(Block):
total_items = 0
if input_data.include_sample_items and input_data.sample_size > 0:
items_response = await aexa.websets.items.list(
items_response = aexa.websets.items.list(
webset_id=input_data.webset_id, limit=input_data.sample_size
)
sample_items_data = [
@@ -1362,7 +1362,7 @@ class ExaWebsetReadyCheckBlock(Block):
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
# Get webset details
webset = await aexa.websets.get(id=input_data.webset_id)
webset = aexa.websets.get(id=input_data.webset_id)
status = (
webset.status.value

View File

@@ -202,7 +202,7 @@ class ExaCreateEnrichmentBlock(Block):
# Use AsyncExa SDK
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
sdk_enrichment = await aexa.websets.enrichments.create(
sdk_enrichment = aexa.websets.enrichments.create(
webset_id=input_data.webset_id, params=payload
)
@@ -223,7 +223,7 @@ class ExaCreateEnrichmentBlock(Block):
items_enriched = 0
while time.time() - poll_start < input_data.polling_timeout:
current_enrich = await aexa.websets.enrichments.get(
current_enrich = aexa.websets.enrichments.get(
webset_id=input_data.webset_id, id=enrichment_id
)
current_status = (
@@ -234,7 +234,7 @@ class ExaCreateEnrichmentBlock(Block):
if current_status in ["completed", "failed", "cancelled"]:
# Estimate items from webset searches
webset = await aexa.websets.get(id=input_data.webset_id)
webset = aexa.websets.get(id=input_data.webset_id)
if webset.searches:
for search in webset.searches:
if search.progress:
@@ -329,7 +329,7 @@ class ExaGetEnrichmentBlock(Block):
# Use AsyncExa SDK
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
sdk_enrichment = await aexa.websets.enrichments.get(
sdk_enrichment = aexa.websets.enrichments.get(
webset_id=input_data.webset_id, id=input_data.enrichment_id
)
@@ -474,7 +474,7 @@ class ExaDeleteEnrichmentBlock(Block):
# Use AsyncExa SDK
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
deleted_enrichment = await aexa.websets.enrichments.delete(
deleted_enrichment = aexa.websets.enrichments.delete(
webset_id=input_data.webset_id, id=input_data.enrichment_id
)
@@ -525,13 +525,13 @@ class ExaCancelEnrichmentBlock(Block):
# Use AsyncExa SDK
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
canceled_enrichment = await aexa.websets.enrichments.cancel(
canceled_enrichment = aexa.websets.enrichments.cancel(
webset_id=input_data.webset_id, id=input_data.enrichment_id
)
# Try to estimate how many items were enriched before cancellation
items_enriched = 0
items_response = await aexa.websets.items.list(
items_response = aexa.websets.items.list(
webset_id=input_data.webset_id, limit=100
)

View File

@@ -222,7 +222,7 @@ class ExaCreateImportBlock(Block):
def _create_test_mock():
"""Create test mocks for the AsyncExa SDK."""
from datetime import datetime
from unittest.mock import AsyncMock, MagicMock
from unittest.mock import MagicMock
# Create mock SDK import object
mock_import = MagicMock()
@@ -247,7 +247,7 @@ class ExaCreateImportBlock(Block):
return {
"_get_client": lambda *args, **kwargs: MagicMock(
websets=MagicMock(
imports=MagicMock(create=AsyncMock(return_value=mock_import))
imports=MagicMock(create=lambda *args, **kwargs: mock_import)
)
)
}
@@ -294,7 +294,7 @@ class ExaCreateImportBlock(Block):
if input_data.metadata:
payload["metadata"] = input_data.metadata
sdk_import = await aexa.websets.imports.create(
sdk_import = aexa.websets.imports.create(
params=payload, csv_data=input_data.csv_data
)
@@ -360,7 +360,7 @@ class ExaGetImportBlock(Block):
# Use AsyncExa SDK
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
sdk_import = await aexa.websets.imports.get(import_id=input_data.import_id)
sdk_import = aexa.websets.imports.get(import_id=input_data.import_id)
import_obj = ImportModel.from_sdk(sdk_import)
@@ -426,7 +426,7 @@ class ExaListImportsBlock(Block):
# Use AsyncExa SDK
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
response = await aexa.websets.imports.list(
response = aexa.websets.imports.list(
cursor=input_data.cursor,
limit=input_data.limit,
)
@@ -474,9 +474,7 @@ class ExaDeleteImportBlock(Block):
# Use AsyncExa SDK
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
deleted_import = await aexa.websets.imports.delete(
import_id=input_data.import_id
)
deleted_import = aexa.websets.imports.delete(import_id=input_data.import_id)
yield "import_id", deleted_import.id
yield "success", "true"
@@ -575,14 +573,14 @@ class ExaExportWebsetBlock(Block):
}
)
# Create async iterator for list_all
async def async_item_iterator(*args, **kwargs):
for item in [mock_item1, mock_item2]:
yield item
# Create mock iterator
mock_items = [mock_item1, mock_item2]
return {
"_get_client": lambda *args, **kwargs: MagicMock(
websets=MagicMock(items=MagicMock(list_all=async_item_iterator))
websets=MagicMock(
items=MagicMock(list_all=lambda *args, **kwargs: iter(mock_items))
)
)
}
@@ -604,7 +602,7 @@ class ExaExportWebsetBlock(Block):
webset_id=input_data.webset_id, limit=input_data.max_items
)
async for sdk_item in item_iterator:
for sdk_item in item_iterator:
if len(all_items) >= input_data.max_items:
break

View File

@@ -178,7 +178,7 @@ class ExaGetWebsetItemBlock(Block):
) -> BlockOutput:
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
sdk_item = await aexa.websets.items.get(
sdk_item = aexa.websets.items.get(
webset_id=input_data.webset_id, id=input_data.item_id
)
@@ -269,7 +269,7 @@ class ExaListWebsetItemsBlock(Block):
response = None
while time.time() - start_time < input_data.wait_timeout:
response = await aexa.websets.items.list(
response = aexa.websets.items.list(
webset_id=input_data.webset_id,
cursor=input_data.cursor,
limit=input_data.limit,
@@ -282,13 +282,13 @@ class ExaListWebsetItemsBlock(Block):
interval = min(interval * 1.2, 10)
if not response:
response = await aexa.websets.items.list(
response = aexa.websets.items.list(
webset_id=input_data.webset_id,
cursor=input_data.cursor,
limit=input_data.limit,
)
else:
response = await aexa.websets.items.list(
response = aexa.websets.items.list(
webset_id=input_data.webset_id,
cursor=input_data.cursor,
limit=input_data.limit,
@@ -340,7 +340,7 @@ class ExaDeleteWebsetItemBlock(Block):
) -> BlockOutput:
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
deleted_item = await aexa.websets.items.delete(
deleted_item = aexa.websets.items.delete(
webset_id=input_data.webset_id, id=input_data.item_id
)
@@ -408,7 +408,7 @@ class ExaBulkWebsetItemsBlock(Block):
webset_id=input_data.webset_id, limit=input_data.max_items
)
async for sdk_item in item_iterator:
for sdk_item in item_iterator:
if len(all_items) >= input_data.max_items:
break
@@ -475,7 +475,7 @@ class ExaWebsetItemsSummaryBlock(Block):
# Use AsyncExa SDK
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
webset = await aexa.websets.get(id=input_data.webset_id)
webset = aexa.websets.get(id=input_data.webset_id)
entity_type = "unknown"
if webset.searches:
@@ -495,7 +495,7 @@ class ExaWebsetItemsSummaryBlock(Block):
# Get sample items if requested
sample_items: List[WebsetItemModel] = []
if input_data.sample_size > 0:
items_response = await aexa.websets.items.list(
items_response = aexa.websets.items.list(
webset_id=input_data.webset_id, limit=input_data.sample_size
)
# Convert to our stable models
@@ -569,7 +569,7 @@ class ExaGetNewItemsBlock(Block):
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
# Get items starting from cursor
response = await aexa.websets.items.list(
response = aexa.websets.items.list(
webset_id=input_data.webset_id,
cursor=input_data.since_cursor,
limit=input_data.max_items,

View File

@@ -233,7 +233,7 @@ class ExaCreateMonitorBlock(Block):
def _create_test_mock():
"""Create test mocks for the AsyncExa SDK."""
from datetime import datetime
from unittest.mock import AsyncMock, MagicMock
from unittest.mock import MagicMock
# Create mock SDK monitor object
mock_monitor = MagicMock()
@@ -263,7 +263,7 @@ class ExaCreateMonitorBlock(Block):
return {
"_get_client": lambda *args, **kwargs: MagicMock(
websets=MagicMock(
monitors=MagicMock(create=AsyncMock(return_value=mock_monitor))
monitors=MagicMock(create=lambda *args, **kwargs: mock_monitor)
)
)
}
@@ -320,7 +320,7 @@ class ExaCreateMonitorBlock(Block):
if input_data.metadata:
payload["metadata"] = input_data.metadata
sdk_monitor = await aexa.websets.monitors.create(params=payload)
sdk_monitor = aexa.websets.monitors.create(params=payload)
monitor = MonitorModel.from_sdk(sdk_monitor)
@@ -384,7 +384,7 @@ class ExaGetMonitorBlock(Block):
# Use AsyncExa SDK
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
sdk_monitor = await aexa.websets.monitors.get(monitor_id=input_data.monitor_id)
sdk_monitor = aexa.websets.monitors.get(monitor_id=input_data.monitor_id)
monitor = MonitorModel.from_sdk(sdk_monitor)
@@ -476,7 +476,7 @@ class ExaUpdateMonitorBlock(Block):
if input_data.metadata is not None:
payload["metadata"] = input_data.metadata
sdk_monitor = await aexa.websets.monitors.update(
sdk_monitor = aexa.websets.monitors.update(
monitor_id=input_data.monitor_id, params=payload
)
@@ -522,9 +522,7 @@ class ExaDeleteMonitorBlock(Block):
# Use AsyncExa SDK
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
deleted_monitor = await aexa.websets.monitors.delete(
monitor_id=input_data.monitor_id
)
deleted_monitor = aexa.websets.monitors.delete(monitor_id=input_data.monitor_id)
yield "monitor_id", deleted_monitor.id
yield "success", "true"
@@ -581,7 +579,7 @@ class ExaListMonitorsBlock(Block):
# Use AsyncExa SDK
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
response = await aexa.websets.monitors.list(
response = aexa.websets.monitors.list(
cursor=input_data.cursor,
limit=input_data.limit,
webset_id=input_data.webset_id,

View File

@@ -121,7 +121,7 @@ class ExaWaitForWebsetBlock(Block):
WebsetTargetStatus.IDLE,
WebsetTargetStatus.ANY_COMPLETE,
]:
final_webset = await aexa.websets.wait_until_idle(
final_webset = aexa.websets.wait_until_idle(
id=input_data.webset_id,
timeout=input_data.timeout,
poll_interval=input_data.check_interval,
@@ -164,7 +164,7 @@ class ExaWaitForWebsetBlock(Block):
interval = input_data.check_interval
while time.time() - start_time < input_data.timeout:
# Get current webset status
webset = await aexa.websets.get(id=input_data.webset_id)
webset = aexa.websets.get(id=input_data.webset_id)
current_status = (
webset.status.value
if hasattr(webset.status, "value")
@@ -209,7 +209,7 @@ class ExaWaitForWebsetBlock(Block):
# Timeout reached
elapsed = time.time() - start_time
webset = await aexa.websets.get(id=input_data.webset_id)
webset = aexa.websets.get(id=input_data.webset_id)
final_status = (
webset.status.value
if hasattr(webset.status, "value")
@@ -345,7 +345,7 @@ class ExaWaitForSearchBlock(Block):
try:
while time.time() - start_time < input_data.timeout:
# Get current search status using SDK
search = await aexa.websets.searches.get(
search = aexa.websets.searches.get(
webset_id=input_data.webset_id, id=input_data.search_id
)
@@ -401,7 +401,7 @@ class ExaWaitForSearchBlock(Block):
elapsed = time.time() - start_time
# Get last known status
search = await aexa.websets.searches.get(
search = aexa.websets.searches.get(
webset_id=input_data.webset_id, id=input_data.search_id
)
final_status = (
@@ -503,7 +503,7 @@ class ExaWaitForEnrichmentBlock(Block):
try:
while time.time() - start_time < input_data.timeout:
# Get current enrichment status using SDK
enrichment = await aexa.websets.enrichments.get(
enrichment = aexa.websets.enrichments.get(
webset_id=input_data.webset_id, id=input_data.enrichment_id
)
@@ -548,7 +548,7 @@ class ExaWaitForEnrichmentBlock(Block):
elapsed = time.time() - start_time
# Get last known status
enrichment = await aexa.websets.enrichments.get(
enrichment = aexa.websets.enrichments.get(
webset_id=input_data.webset_id, id=input_data.enrichment_id
)
final_status = (
@@ -575,7 +575,7 @@ class ExaWaitForEnrichmentBlock(Block):
) -> tuple[list[SampleEnrichmentModel], int]:
"""Get sample enriched data and count."""
# Get a few items to see enrichment results using SDK
response = await aexa.websets.items.list(webset_id=webset_id, limit=5)
response = aexa.websets.items.list(webset_id=webset_id, limit=5)
sample_data: list[SampleEnrichmentModel] = []
enriched_count = 0

View File

@@ -317,7 +317,7 @@ class ExaCreateWebsetSearchBlock(Block):
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
sdk_search = await aexa.websets.searches.create(
sdk_search = aexa.websets.searches.create(
webset_id=input_data.webset_id, params=payload
)
@@ -350,7 +350,7 @@ class ExaCreateWebsetSearchBlock(Block):
poll_start = time.time()
while time.time() - poll_start < input_data.polling_timeout:
current_search = await aexa.websets.searches.get(
current_search = aexa.websets.searches.get(
webset_id=input_data.webset_id, id=search_id
)
current_status = (
@@ -442,7 +442,7 @@ class ExaGetWebsetSearchBlock(Block):
# Use AsyncExa SDK
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
sdk_search = await aexa.websets.searches.get(
sdk_search = aexa.websets.searches.get(
webset_id=input_data.webset_id, id=input_data.search_id
)
@@ -523,7 +523,7 @@ class ExaCancelWebsetSearchBlock(Block):
# Use AsyncExa SDK
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
canceled_search = await aexa.websets.searches.cancel(
canceled_search = aexa.websets.searches.cancel(
webset_id=input_data.webset_id, id=input_data.search_id
)
@@ -604,7 +604,7 @@ class ExaFindOrCreateSearchBlock(Block):
aexa = AsyncExa(api_key=credentials.api_key.get_secret_value())
# Get webset to check existing searches
webset = await aexa.websets.get(id=input_data.webset_id)
webset = aexa.websets.get(id=input_data.webset_id)
# Look for existing search with same query
existing_search = None
@@ -636,7 +636,7 @@ class ExaFindOrCreateSearchBlock(Block):
if input_data.entity_type != SearchEntityType.AUTO:
payload["entity"] = {"type": input_data.entity_type.value}
sdk_search = await aexa.websets.searches.create(
sdk_search = aexa.websets.searches.create(
webset_id=input_data.webset_id, params=payload
)

View File

@@ -115,7 +115,6 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
CLAUDE_4_5_OPUS = "claude-opus-4-5-20251101"
CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
CLAUDE_4_5_HAIKU = "claude-haiku-4-5-20251001"
CLAUDE_4_6_OPUS = "claude-opus-4-6"
CLAUDE_3_HAIKU = "claude-3-haiku-20240307"
# AI/ML API models
AIML_API_QWEN2_5_72B = "Qwen/Qwen2.5-72B-Instruct-Turbo"
@@ -271,9 +270,6 @@ MODEL_METADATA = {
LlmModel.CLAUDE_4_SONNET: ModelMetadata(
"anthropic", 200000, 64000, "Claude Sonnet 4", "Anthropic", "Anthropic", 2
), # claude-4-sonnet-20250514
LlmModel.CLAUDE_4_6_OPUS: ModelMetadata(
"anthropic", 200000, 128000, "Claude Opus 4.6", "Anthropic", "Anthropic", 3
), # claude-opus-4-6
LlmModel.CLAUDE_4_5_OPUS: ModelMetadata(
"anthropic", 200000, 64000, "Claude Opus 4.5", "Anthropic", "Anthropic", 3
), # claude-opus-4-5-20251101
@@ -531,12 +527,12 @@ class LLMResponse(BaseModel):
def convert_openai_tool_fmt_to_anthropic(
openai_tools: list[dict] | None = None,
) -> Iterable[ToolParam] | anthropic.Omit:
) -> Iterable[ToolParam] | anthropic.NotGiven:
"""
Convert OpenAI tool format to Anthropic tool format.
"""
if not openai_tools or len(openai_tools) == 0:
return anthropic.omit
return anthropic.NOT_GIVEN
anthropic_tools = []
for tool in openai_tools:
@@ -596,10 +592,10 @@ def extract_openai_tool_calls(response) -> list[ToolContentBlock] | None:
def get_parallel_tool_calls_param(
llm_model: LlmModel, parallel_tool_calls: bool | None
) -> bool | openai.Omit:
):
"""Get the appropriate parallel_tool_calls parameter for OpenAI-compatible APIs."""
if llm_model.startswith("o") or parallel_tool_calls is None:
return openai.omit
return openai.NOT_GIVEN
return parallel_tool_calls

View File

@@ -0,0 +1,246 @@
import os
import tempfile
from typing import Optional
from moviepy.audio.io.AudioFileClip import AudioFileClip
from moviepy.video.fx.Loop import Loop
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class MediaDurationBlock(Block):
class Input(BlockSchemaInput):
media_in: MediaFileType = SchemaField(
description="Media input (URL, data URI, or local path)."
)
is_video: bool = SchemaField(
description="Whether the media is a video (True) or audio (False).",
default=True,
)
class Output(BlockSchemaOutput):
duration: float = SchemaField(
description="Duration of the media file (in seconds)."
)
def __init__(self):
super().__init__(
id="d8b91fd4-da26-42d4-8ecb-8b196c6d84b6",
description="Block to get the duration of a media file.",
categories={BlockCategory.MULTIMEDIA},
input_schema=MediaDurationBlock.Input,
output_schema=MediaDurationBlock.Output,
)
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
# 1) Store the input media locally
local_media_path = await store_media_file(
file=input_data.media_in,
execution_context=execution_context,
return_format="for_local_processing",
)
assert execution_context.graph_exec_id is not None
media_abspath = get_exec_file_path(
execution_context.graph_exec_id, local_media_path
)
# 2) Load the clip
if input_data.is_video:
clip = VideoFileClip(media_abspath)
else:
clip = AudioFileClip(media_abspath)
yield "duration", clip.duration
class LoopVideoBlock(Block):
"""
Block for looping (repeating) a video clip until a given duration or number of loops.
"""
class Input(BlockSchemaInput):
video_in: MediaFileType = SchemaField(
description="The input video (can be a URL, data URI, or local path)."
)
# Provide EITHER a `duration` or `n_loops` or both. We'll demonstrate `duration`.
duration: Optional[float] = SchemaField(
description="Target duration (in seconds) to loop the video to. If omitted, defaults to no looping.",
default=None,
ge=0.0,
)
n_loops: Optional[int] = SchemaField(
description="Number of times to repeat the video. If omitted, defaults to 1 (no repeat).",
default=None,
ge=1,
)
class Output(BlockSchemaOutput):
video_out: str = SchemaField(
description="Looped video returned either as a relative path or a data URI."
)
def __init__(self):
super().__init__(
id="8bf9eef6-5451-4213-b265-25306446e94b",
description="Block to loop a video to a given duration or number of repeats.",
categories={BlockCategory.MULTIMEDIA},
input_schema=LoopVideoBlock.Input,
output_schema=LoopVideoBlock.Output,
)
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
assert execution_context.graph_exec_id is not None
assert execution_context.node_exec_id is not None
graph_exec_id = execution_context.graph_exec_id
node_exec_id = execution_context.node_exec_id
# 1) Store the input video locally
local_video_path = await store_media_file(
file=input_data.video_in,
execution_context=execution_context,
return_format="for_local_processing",
)
input_abspath = get_exec_file_path(graph_exec_id, local_video_path)
# 2) Load the clip
clip = VideoFileClip(input_abspath)
# 3) Apply the loop effect
looped_clip = clip
if input_data.duration:
# Loop until we reach the specified duration
looped_clip = looped_clip.with_effects([Loop(duration=input_data.duration)])
elif input_data.n_loops:
looped_clip = looped_clip.with_effects([Loop(n=input_data.n_loops)])
else:
raise ValueError("Either 'duration' or 'n_loops' must be provided.")
assert isinstance(looped_clip, VideoFileClip)
# 4) Save the looped output
output_filename = MediaFileType(
f"{node_exec_id}_looped_{os.path.basename(local_video_path)}"
)
output_abspath = get_exec_file_path(graph_exec_id, output_filename)
looped_clip = looped_clip.with_audio(clip.audio)
looped_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac")
# Return output - for_block_output returns workspace:// if available, else data URI
video_out = await store_media_file(
file=output_filename,
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_out", video_out
class AddAudioToVideoBlock(Block):
"""
Block that adds (attaches) an audio track to an existing video.
Optionally scale the volume of the new track.
"""
class Input(BlockSchemaInput):
video_in: MediaFileType = SchemaField(
description="Video input (URL, data URI, or local path)."
)
audio_in: MediaFileType = SchemaField(
description="Audio input (URL, data URI, or local path)."
)
volume: float = SchemaField(
description="Volume scale for the newly attached audio track (1.0 = original).",
default=1.0,
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Final video (with attached audio), as a path or data URI."
)
def __init__(self):
super().__init__(
id="3503748d-62b6-4425-91d6-725b064af509",
description="Block to attach an audio file to a video file using moviepy.",
categories={BlockCategory.MULTIMEDIA},
input_schema=AddAudioToVideoBlock.Input,
output_schema=AddAudioToVideoBlock.Output,
)
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
assert execution_context.graph_exec_id is not None
assert execution_context.node_exec_id is not None
graph_exec_id = execution_context.graph_exec_id
node_exec_id = execution_context.node_exec_id
# 1) Store the inputs locally
local_video_path = await store_media_file(
file=input_data.video_in,
execution_context=execution_context,
return_format="for_local_processing",
)
local_audio_path = await store_media_file(
file=input_data.audio_in,
execution_context=execution_context,
return_format="for_local_processing",
)
abs_temp_dir = os.path.join(tempfile.gettempdir(), "exec_file", graph_exec_id)
video_abspath = os.path.join(abs_temp_dir, local_video_path)
audio_abspath = os.path.join(abs_temp_dir, local_audio_path)
# 2) Load video + audio with moviepy
video_clip = VideoFileClip(video_abspath)
audio_clip = AudioFileClip(audio_abspath)
# Optionally scale volume
if input_data.volume != 1.0:
audio_clip = audio_clip.with_volume_scaled(input_data.volume)
# 3) Attach the new audio track
final_clip = video_clip.with_audio(audio_clip)
# 4) Write to output file
output_filename = MediaFileType(
f"{node_exec_id}_audio_attached_{os.path.basename(local_video_path)}"
)
output_abspath = os.path.join(abs_temp_dir, output_filename)
final_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac")
# 5) Return output - for_block_output returns workspace:// if available, else data URI
video_out = await store_media_file(
file=output_filename,
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_out", video_out

View File

@@ -1,77 +0,0 @@
import pytest
from backend.blocks.encoder_block import TextEncoderBlock
@pytest.mark.asyncio
async def test_text_encoder_basic():
"""Test basic encoding of newlines and special characters."""
block = TextEncoderBlock()
result = []
async for output in block.run(TextEncoderBlock.Input(text="Hello\nWorld")):
result.append(output)
assert len(result) == 1
assert result[0][0] == "encoded_text"
assert result[0][1] == "Hello\\nWorld"
@pytest.mark.asyncio
async def test_text_encoder_multiple_escapes():
"""Test encoding of multiple escape sequences."""
block = TextEncoderBlock()
result = []
async for output in block.run(
TextEncoderBlock.Input(text="Line1\nLine2\tTabbed\rCarriage")
):
result.append(output)
assert len(result) == 1
assert result[0][0] == "encoded_text"
assert "\\n" in result[0][1]
assert "\\t" in result[0][1]
assert "\\r" in result[0][1]
@pytest.mark.asyncio
async def test_text_encoder_unicode():
"""Test that unicode characters are handled correctly."""
block = TextEncoderBlock()
result = []
async for output in block.run(TextEncoderBlock.Input(text="Hello 世界\n")):
result.append(output)
assert len(result) == 1
assert result[0][0] == "encoded_text"
# Unicode characters should be escaped as \uXXXX sequences
assert "\\n" in result[0][1]
@pytest.mark.asyncio
async def test_text_encoder_empty_string():
"""Test encoding of an empty string."""
block = TextEncoderBlock()
result = []
async for output in block.run(TextEncoderBlock.Input(text="")):
result.append(output)
assert len(result) == 1
assert result[0][0] == "encoded_text"
assert result[0][1] == ""
@pytest.mark.asyncio
async def test_text_encoder_error_handling():
"""Test that encoding errors are handled gracefully."""
from unittest.mock import patch
block = TextEncoderBlock()
result = []
with patch("codecs.encode", side_effect=Exception("Mocked encoding error")):
async for output in block.run(TextEncoderBlock.Input(text="test")):
result.append(output)
assert len(result) == 1
assert result[0][0] == "error"
assert "Mocked encoding error" in result[0][1]

View File

@@ -1,37 +0,0 @@
"""Video editing blocks for AutoGPT Platform.
This module provides blocks for:
- Downloading videos from URLs (YouTube, Vimeo, news sites, direct links)
- Clipping/trimming video segments
- Concatenating multiple videos
- Adding text overlays
- Adding AI-generated narration
- Getting media duration
- Looping videos
- Adding audio to videos
Dependencies:
- yt-dlp: For video downloading
- moviepy: For video editing operations
- elevenlabs: For AI narration (optional)
"""
from backend.blocks.video.add_audio import AddAudioToVideoBlock
from backend.blocks.video.clip import VideoClipBlock
from backend.blocks.video.concat import VideoConcatBlock
from backend.blocks.video.download import VideoDownloadBlock
from backend.blocks.video.duration import MediaDurationBlock
from backend.blocks.video.loop import LoopVideoBlock
from backend.blocks.video.narration import VideoNarrationBlock
from backend.blocks.video.text_overlay import VideoTextOverlayBlock
__all__ = [
"AddAudioToVideoBlock",
"LoopVideoBlock",
"MediaDurationBlock",
"VideoClipBlock",
"VideoConcatBlock",
"VideoDownloadBlock",
"VideoNarrationBlock",
"VideoTextOverlayBlock",
]

View File

@@ -1,131 +0,0 @@
"""Shared utilities for video blocks."""
from __future__ import annotations
import logging
import os
import re
import subprocess
from pathlib import Path
logger = logging.getLogger(__name__)
# Known operation tags added by video blocks
_VIDEO_OPS = (
r"(?:clip|overlay|narrated|looped|concat|audio_attached|with_audio|narration)"
)
# Matches: {node_exec_id}_{operation}_ where node_exec_id contains a UUID
_BLOCK_PREFIX_RE = re.compile(
r"^[a-zA-Z0-9_-]*"
r"[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}"
r"[a-zA-Z0-9_-]*"
r"_" + _VIDEO_OPS + r"_"
)
# Matches: a lone {node_exec_id}_ prefix (no operation keyword, e.g. download output)
_UUID_PREFIX_RE = re.compile(
r"^[a-zA-Z0-9_-]*"
r"[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}"
r"[a-zA-Z0-9_-]*_"
)
def extract_source_name(input_path: str, max_length: int = 50) -> str:
"""Extract the original source filename by stripping block-generated prefixes.
Iteratively removes {node_exec_id}_{operation}_ prefixes that accumulate
when chaining video blocks, recovering the original human-readable name.
Safe for plain filenames (no UUID -> no stripping).
Falls back to "video" if everything is stripped.
"""
stem = Path(input_path).stem
# Pass 1: strip {node_exec_id}_{operation}_ prefixes iteratively
while _BLOCK_PREFIX_RE.match(stem):
stem = _BLOCK_PREFIX_RE.sub("", stem, count=1)
# Pass 2: strip a lone {node_exec_id}_ prefix (e.g. from download block)
if _UUID_PREFIX_RE.match(stem):
stem = _UUID_PREFIX_RE.sub("", stem, count=1)
if not stem:
return "video"
return stem[:max_length]
def get_video_codecs(output_path: str) -> tuple[str, str]:
"""Get appropriate video and audio codecs based on output file extension.
Args:
output_path: Path to the output file (used to determine extension)
Returns:
Tuple of (video_codec, audio_codec)
Codec mappings:
- .mp4: H.264 + AAC (universal compatibility)
- .webm: VP8 + Vorbis (web streaming)
- .mkv: H.264 + AAC (container supports many codecs)
- .mov: H.264 + AAC (Apple QuickTime, widely compatible)
- .m4v: H.264 + AAC (Apple iTunes/devices)
- .avi: MPEG-4 + MP3 (legacy Windows)
"""
ext = os.path.splitext(output_path)[1].lower()
codec_map: dict[str, tuple[str, str]] = {
".mp4": ("libx264", "aac"),
".webm": ("libvpx", "libvorbis"),
".mkv": ("libx264", "aac"),
".mov": ("libx264", "aac"),
".m4v": ("libx264", "aac"),
".avi": ("mpeg4", "libmp3lame"),
}
return codec_map.get(ext, ("libx264", "aac"))
def strip_chapters_inplace(video_path: str) -> None:
"""Strip chapter metadata from a media file in-place using ffmpeg.
MoviePy 2.x crashes with IndexError when parsing files with embedded
chapter metadata (https://github.com/Zulko/moviepy/issues/2419).
This strips chapters without re-encoding.
Args:
video_path: Absolute path to the media file to strip chapters from.
"""
base, ext = os.path.splitext(video_path)
tmp_path = base + ".tmp" + ext
try:
result = subprocess.run(
[
"ffmpeg",
"-y",
"-i",
video_path,
"-map_chapters",
"-1",
"-codec",
"copy",
tmp_path,
],
capture_output=True,
text=True,
timeout=300,
)
if result.returncode != 0:
logger.warning(
"ffmpeg chapter strip failed (rc=%d): %s",
result.returncode,
result.stderr,
)
return
os.replace(tmp_path, video_path)
except FileNotFoundError:
logger.warning("ffmpeg not found; skipping chapter strip")
finally:
if os.path.exists(tmp_path):
os.unlink(tmp_path)

View File

@@ -1,113 +0,0 @@
"""AddAudioToVideoBlock - Attach an audio track to a video file."""
from moviepy.audio.io.AudioFileClip import AudioFileClip
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.video._utils import extract_source_name, strip_chapters_inplace
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class AddAudioToVideoBlock(Block):
"""Add (attach) an audio track to an existing video."""
class Input(BlockSchemaInput):
video_in: MediaFileType = SchemaField(
description="Video input (URL, data URI, or local path)."
)
audio_in: MediaFileType = SchemaField(
description="Audio input (URL, data URI, or local path)."
)
volume: float = SchemaField(
description="Volume scale for the newly attached audio track (1.0 = original).",
default=1.0,
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Final video (with attached audio), as a path or data URI."
)
def __init__(self):
super().__init__(
id="3503748d-62b6-4425-91d6-725b064af509",
description="Block to attach an audio file to a video file using moviepy.",
categories={BlockCategory.MULTIMEDIA},
input_schema=AddAudioToVideoBlock.Input,
output_schema=AddAudioToVideoBlock.Output,
)
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
assert execution_context.graph_exec_id is not None
assert execution_context.node_exec_id is not None
graph_exec_id = execution_context.graph_exec_id
node_exec_id = execution_context.node_exec_id
# 1) Store the inputs locally
local_video_path = await store_media_file(
file=input_data.video_in,
execution_context=execution_context,
return_format="for_local_processing",
)
local_audio_path = await store_media_file(
file=input_data.audio_in,
execution_context=execution_context,
return_format="for_local_processing",
)
video_abspath = get_exec_file_path(graph_exec_id, local_video_path)
audio_abspath = get_exec_file_path(graph_exec_id, local_audio_path)
# 2) Load video + audio with moviepy
strip_chapters_inplace(video_abspath)
strip_chapters_inplace(audio_abspath)
video_clip = None
audio_clip = None
final_clip = None
try:
video_clip = VideoFileClip(video_abspath)
audio_clip = AudioFileClip(audio_abspath)
# Optionally scale volume
if input_data.volume != 1.0:
audio_clip = audio_clip.with_volume_scaled(input_data.volume)
# 3) Attach the new audio track
final_clip = video_clip.with_audio(audio_clip)
# 4) Write to output file
source = extract_source_name(local_video_path)
output_filename = MediaFileType(f"{node_exec_id}_with_audio_{source}.mp4")
output_abspath = get_exec_file_path(graph_exec_id, output_filename)
final_clip.write_videofile(
output_abspath, codec="libx264", audio_codec="aac"
)
finally:
if final_clip:
final_clip.close()
if audio_clip:
audio_clip.close()
if video_clip:
video_clip.close()
# 5) Return output - for_block_output returns workspace:// if available, else data URI
video_out = await store_media_file(
file=output_filename,
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_out", video_out

View File

@@ -1,167 +0,0 @@
"""VideoClipBlock - Extract a segment from a video file."""
from typing import Literal
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.video._utils import (
extract_source_name,
get_video_codecs,
strip_chapters_inplace,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.exceptions import BlockExecutionError
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class VideoClipBlock(Block):
"""Extract a time segment from a video."""
class Input(BlockSchemaInput):
video_in: MediaFileType = SchemaField(
description="Input video (URL, data URI, or local path)"
)
start_time: float = SchemaField(description="Start time in seconds", ge=0.0)
end_time: float = SchemaField(description="End time in seconds", ge=0.0)
output_format: Literal["mp4", "webm", "mkv", "mov"] = SchemaField(
description="Output format", default="mp4", advanced=True
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Clipped video file (path or data URI)"
)
duration: float = SchemaField(description="Clip duration in seconds")
def __init__(self):
super().__init__(
id="8f539119-e580-4d86-ad41-86fbcb22abb1",
description="Extract a time segment from a video",
categories={BlockCategory.MULTIMEDIA},
input_schema=self.Input,
output_schema=self.Output,
test_input={
"video_in": "/tmp/test.mp4",
"start_time": 0.0,
"end_time": 10.0,
},
test_output=[("video_out", str), ("duration", float)],
test_mock={
"_clip_video": lambda *args: 10.0,
"_store_input_video": lambda *args, **kwargs: "test.mp4",
"_store_output_video": lambda *args, **kwargs: "clip_test.mp4",
},
)
async def _store_input_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store input video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_local_processing",
)
async def _store_output_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store output video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_block_output",
)
def _clip_video(
self,
video_abspath: str,
output_abspath: str,
start_time: float,
end_time: float,
) -> float:
"""Extract a clip from a video. Extracted for testability."""
clip = None
subclip = None
try:
strip_chapters_inplace(video_abspath)
clip = VideoFileClip(video_abspath)
subclip = clip.subclipped(start_time, end_time)
video_codec, audio_codec = get_video_codecs(output_abspath)
subclip.write_videofile(
output_abspath, codec=video_codec, audio_codec=audio_codec
)
return subclip.duration
finally:
if subclip:
subclip.close()
if clip:
clip.close()
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
node_exec_id: str,
**kwargs,
) -> BlockOutput:
# Validate time range
if input_data.end_time <= input_data.start_time:
raise BlockExecutionError(
message=f"end_time ({input_data.end_time}) must be greater than start_time ({input_data.start_time})",
block_name=self.name,
block_id=str(self.id),
)
try:
assert execution_context.graph_exec_id is not None
# Store the input video locally
local_video_path = await self._store_input_video(
execution_context, input_data.video_in
)
video_abspath = get_exec_file_path(
execution_context.graph_exec_id, local_video_path
)
# Build output path
source = extract_source_name(local_video_path)
output_filename = MediaFileType(
f"{node_exec_id}_clip_{source}.{input_data.output_format}"
)
output_abspath = get_exec_file_path(
execution_context.graph_exec_id, output_filename
)
duration = self._clip_video(
video_abspath,
output_abspath,
input_data.start_time,
input_data.end_time,
)
# Return as workspace path or data URI based on context
video_out = await self._store_output_video(
execution_context, output_filename
)
yield "video_out", video_out
yield "duration", duration
except BlockExecutionError:
raise
except Exception as e:
raise BlockExecutionError(
message=f"Failed to clip video: {e}",
block_name=self.name,
block_id=str(self.id),
) from e

View File

@@ -1,227 +0,0 @@
"""VideoConcatBlock - Concatenate multiple video clips into one."""
from typing import Literal
from moviepy import concatenate_videoclips
from moviepy.video.fx import CrossFadeIn, CrossFadeOut, FadeIn, FadeOut
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.video._utils import (
extract_source_name,
get_video_codecs,
strip_chapters_inplace,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.exceptions import BlockExecutionError
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class VideoConcatBlock(Block):
"""Merge multiple video clips into one continuous video."""
class Input(BlockSchemaInput):
videos: list[MediaFileType] = SchemaField(
description="List of video files to concatenate (in order)"
)
transition: Literal["none", "crossfade", "fade_black"] = SchemaField(
description="Transition between clips", default="none"
)
transition_duration: int = SchemaField(
description="Transition duration in seconds",
default=1,
ge=0,
advanced=True,
)
output_format: Literal["mp4", "webm", "mkv", "mov"] = SchemaField(
description="Output format", default="mp4", advanced=True
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Concatenated video file (path or data URI)"
)
total_duration: float = SchemaField(description="Total duration in seconds")
def __init__(self):
super().__init__(
id="9b0f531a-1118-487f-aeec-3fa63ea8900a",
description="Merge multiple video clips into one continuous video",
categories={BlockCategory.MULTIMEDIA},
input_schema=self.Input,
output_schema=self.Output,
test_input={
"videos": ["/tmp/a.mp4", "/tmp/b.mp4"],
},
test_output=[
("video_out", str),
("total_duration", float),
],
test_mock={
"_concat_videos": lambda *args: 20.0,
"_store_input_video": lambda *args, **kwargs: "test.mp4",
"_store_output_video": lambda *args, **kwargs: "concat_test.mp4",
},
)
async def _store_input_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store input video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_local_processing",
)
async def _store_output_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store output video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_block_output",
)
def _concat_videos(
self,
video_abspaths: list[str],
output_abspath: str,
transition: str,
transition_duration: int,
) -> float:
"""Concatenate videos. Extracted for testability.
Returns:
Total duration of the concatenated video.
"""
clips = []
faded_clips = []
final = None
try:
# Load clips
for v in video_abspaths:
strip_chapters_inplace(v)
clips.append(VideoFileClip(v))
# Validate transition_duration against shortest clip
if transition in {"crossfade", "fade_black"} and transition_duration > 0:
min_duration = min(c.duration for c in clips)
if transition_duration >= min_duration:
raise BlockExecutionError(
message=(
f"transition_duration ({transition_duration}s) must be "
f"shorter than the shortest clip ({min_duration:.2f}s)"
),
block_name=self.name,
block_id=str(self.id),
)
if transition == "crossfade":
for i, clip in enumerate(clips):
effects = []
if i > 0:
effects.append(CrossFadeIn(transition_duration))
if i < len(clips) - 1:
effects.append(CrossFadeOut(transition_duration))
if effects:
clip = clip.with_effects(effects)
faded_clips.append(clip)
final = concatenate_videoclips(
faded_clips,
method="compose",
padding=-transition_duration,
)
elif transition == "fade_black":
for clip in clips:
faded = clip.with_effects(
[FadeIn(transition_duration), FadeOut(transition_duration)]
)
faded_clips.append(faded)
final = concatenate_videoclips(faded_clips)
else:
final = concatenate_videoclips(clips)
video_codec, audio_codec = get_video_codecs(output_abspath)
final.write_videofile(
output_abspath, codec=video_codec, audio_codec=audio_codec
)
return final.duration
finally:
if final:
final.close()
for clip in faded_clips:
clip.close()
for clip in clips:
clip.close()
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
node_exec_id: str,
**kwargs,
) -> BlockOutput:
# Validate minimum clips
if len(input_data.videos) < 2:
raise BlockExecutionError(
message="At least 2 videos are required for concatenation",
block_name=self.name,
block_id=str(self.id),
)
try:
assert execution_context.graph_exec_id is not None
# Store all input videos locally
video_abspaths = []
for video in input_data.videos:
local_path = await self._store_input_video(execution_context, video)
video_abspaths.append(
get_exec_file_path(execution_context.graph_exec_id, local_path)
)
# Build output path
source = (
extract_source_name(video_abspaths[0]) if video_abspaths else "video"
)
output_filename = MediaFileType(
f"{node_exec_id}_concat_{source}.{input_data.output_format}"
)
output_abspath = get_exec_file_path(
execution_context.graph_exec_id, output_filename
)
total_duration = self._concat_videos(
video_abspaths,
output_abspath,
input_data.transition,
input_data.transition_duration,
)
# Return as workspace path or data URI based on context
video_out = await self._store_output_video(
execution_context, output_filename
)
yield "video_out", video_out
yield "total_duration", total_duration
except BlockExecutionError:
raise
except Exception as e:
raise BlockExecutionError(
message=f"Failed to concatenate videos: {e}",
block_name=self.name,
block_id=str(self.id),
) from e

View File

@@ -1,172 +0,0 @@
"""VideoDownloadBlock - Download video from URL (YouTube, Vimeo, news sites, direct links)."""
import os
import typing
from typing import Literal
import yt_dlp
if typing.TYPE_CHECKING:
from yt_dlp import _Params
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.exceptions import BlockExecutionError
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class VideoDownloadBlock(Block):
"""Download video from URL using yt-dlp."""
class Input(BlockSchemaInput):
url: str = SchemaField(
description="URL of the video to download (YouTube, Vimeo, direct link, etc.)",
placeholder="https://www.youtube.com/watch?v=...",
)
quality: Literal["best", "1080p", "720p", "480p", "audio_only"] = SchemaField(
description="Video quality preference", default="720p"
)
output_format: Literal["mp4", "webm", "mkv"] = SchemaField(
description="Output video format", default="mp4", advanced=True
)
class Output(BlockSchemaOutput):
video_file: MediaFileType = SchemaField(
description="Downloaded video (path or data URI)"
)
duration: float = SchemaField(description="Video duration in seconds")
title: str = SchemaField(description="Video title from source")
source_url: str = SchemaField(description="Original source URL")
def __init__(self):
super().__init__(
id="c35daabb-cd60-493b-b9ad-51f1fe4b50c4",
description="Download video from URL (YouTube, Vimeo, news sites, direct links)",
categories={BlockCategory.MULTIMEDIA},
input_schema=self.Input,
output_schema=self.Output,
disabled=True, # Disable until we can sandbox yt-dlp and handle security implications
test_input={
"url": "https://www.youtube.com/watch?v=dQw4w9WgXcQ",
"quality": "480p",
},
test_output=[
("video_file", str),
("duration", float),
("title", str),
("source_url", str),
],
test_mock={
"_download_video": lambda *args: (
"video.mp4",
212.0,
"Test Video",
),
"_store_output_video": lambda *args, **kwargs: "video.mp4",
},
)
async def _store_output_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store output video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_block_output",
)
def _get_format_string(self, quality: str) -> str:
formats = {
"best": "bestvideo+bestaudio/best",
"1080p": "bestvideo[height<=1080]+bestaudio/best[height<=1080]",
"720p": "bestvideo[height<=720]+bestaudio/best[height<=720]",
"480p": "bestvideo[height<=480]+bestaudio/best[height<=480]",
"audio_only": "bestaudio/best",
}
return formats.get(quality, formats["720p"])
def _download_video(
self,
url: str,
quality: str,
output_format: str,
output_dir: str,
node_exec_id: str,
) -> tuple[str, float, str]:
"""Download video. Extracted for testability."""
output_template = os.path.join(
output_dir, f"{node_exec_id}_%(title).50s.%(ext)s"
)
ydl_opts: "_Params" = {
"format": f"{self._get_format_string(quality)}/best",
"outtmpl": output_template,
"merge_output_format": output_format,
"quiet": True,
"no_warnings": True,
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(url, download=True)
video_path = ydl.prepare_filename(info)
# Handle format conversion in filename
if not video_path.endswith(f".{output_format}"):
video_path = video_path.rsplit(".", 1)[0] + f".{output_format}"
# Return just the filename, not the full path
filename = os.path.basename(video_path)
return (
filename,
info.get("duration") or 0.0,
info.get("title") or "Unknown",
)
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
node_exec_id: str,
**kwargs,
) -> BlockOutput:
try:
assert execution_context.graph_exec_id is not None
# Get the exec file directory
output_dir = get_exec_file_path(execution_context.graph_exec_id, "")
os.makedirs(output_dir, exist_ok=True)
filename, duration, title = self._download_video(
input_data.url,
input_data.quality,
input_data.output_format,
output_dir,
node_exec_id,
)
# Return as workspace path or data URI based on context
video_out = await self._store_output_video(
execution_context, MediaFileType(filename)
)
yield "video_file", video_out
yield "duration", duration
yield "title", title
yield "source_url", input_data.url
except Exception as e:
raise BlockExecutionError(
message=f"Failed to download video: {e}",
block_name=self.name,
block_id=str(self.id),
) from e

View File

@@ -1,77 +0,0 @@
"""MediaDurationBlock - Get the duration of a media file."""
from moviepy.audio.io.AudioFileClip import AudioFileClip
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.video._utils import strip_chapters_inplace
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class MediaDurationBlock(Block):
"""Get the duration of a media file (video or audio)."""
class Input(BlockSchemaInput):
media_in: MediaFileType = SchemaField(
description="Media input (URL, data URI, or local path)."
)
is_video: bool = SchemaField(
description="Whether the media is a video (True) or audio (False).",
default=True,
)
class Output(BlockSchemaOutput):
duration: float = SchemaField(
description="Duration of the media file (in seconds)."
)
def __init__(self):
super().__init__(
id="d8b91fd4-da26-42d4-8ecb-8b196c6d84b6",
description="Block to get the duration of a media file.",
categories={BlockCategory.MULTIMEDIA},
input_schema=MediaDurationBlock.Input,
output_schema=MediaDurationBlock.Output,
)
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
# 1) Store the input media locally
local_media_path = await store_media_file(
file=input_data.media_in,
execution_context=execution_context,
return_format="for_local_processing",
)
assert execution_context.graph_exec_id is not None
media_abspath = get_exec_file_path(
execution_context.graph_exec_id, local_media_path
)
# 2) Strip chapters to avoid MoviePy crash, then load the clip
strip_chapters_inplace(media_abspath)
clip = None
try:
if input_data.is_video:
clip = VideoFileClip(media_abspath)
else:
clip = AudioFileClip(media_abspath)
duration = clip.duration
finally:
if clip:
clip.close()
yield "duration", duration

View File

@@ -1,115 +0,0 @@
"""LoopVideoBlock - Loop a video to a given duration or number of repeats."""
from typing import Optional
from moviepy.video.fx.Loop import Loop
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.video._utils import extract_source_name, strip_chapters_inplace
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class LoopVideoBlock(Block):
"""Loop (repeat) a video clip until a given duration or number of loops."""
class Input(BlockSchemaInput):
video_in: MediaFileType = SchemaField(
description="The input video (can be a URL, data URI, or local path)."
)
duration: Optional[float] = SchemaField(
description="Target duration (in seconds) to loop the video to. Either duration or n_loops must be provided.",
default=None,
ge=0.0,
le=3600.0, # Max 1 hour to prevent disk exhaustion
)
n_loops: Optional[int] = SchemaField(
description="Number of times to repeat the video. Either n_loops or duration must be provided.",
default=None,
ge=1,
le=10, # Max 10 loops to prevent disk exhaustion
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Looped video returned either as a relative path or a data URI."
)
def __init__(self):
super().__init__(
id="8bf9eef6-5451-4213-b265-25306446e94b",
description="Block to loop a video to a given duration or number of repeats.",
categories={BlockCategory.MULTIMEDIA},
input_schema=LoopVideoBlock.Input,
output_schema=LoopVideoBlock.Output,
)
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
assert execution_context.graph_exec_id is not None
assert execution_context.node_exec_id is not None
graph_exec_id = execution_context.graph_exec_id
node_exec_id = execution_context.node_exec_id
# 1) Store the input video locally
local_video_path = await store_media_file(
file=input_data.video_in,
execution_context=execution_context,
return_format="for_local_processing",
)
input_abspath = get_exec_file_path(graph_exec_id, local_video_path)
# 2) Load the clip
strip_chapters_inplace(input_abspath)
clip = None
looped_clip = None
try:
clip = VideoFileClip(input_abspath)
# 3) Apply the loop effect
if input_data.duration:
# Loop until we reach the specified duration
looped_clip = clip.with_effects([Loop(duration=input_data.duration)])
elif input_data.n_loops:
looped_clip = clip.with_effects([Loop(n=input_data.n_loops)])
else:
raise ValueError("Either 'duration' or 'n_loops' must be provided.")
assert isinstance(looped_clip, VideoFileClip)
# 4) Save the looped output
source = extract_source_name(local_video_path)
output_filename = MediaFileType(f"{node_exec_id}_looped_{source}.mp4")
output_abspath = get_exec_file_path(graph_exec_id, output_filename)
looped_clip = looped_clip.with_audio(clip.audio)
looped_clip.write_videofile(
output_abspath, codec="libx264", audio_codec="aac"
)
finally:
if looped_clip:
looped_clip.close()
if clip:
clip.close()
# Return output - for_block_output returns workspace:// if available, else data URI
video_out = await store_media_file(
file=output_filename,
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_out", video_out

View File

@@ -1,267 +0,0 @@
"""VideoNarrationBlock - Generate AI voice narration and add to video."""
import os
from typing import Literal
from elevenlabs import ElevenLabs
from moviepy import CompositeAudioClip
from moviepy.audio.io.AudioFileClip import AudioFileClip
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.elevenlabs._auth import (
TEST_CREDENTIALS,
TEST_CREDENTIALS_INPUT,
ElevenLabsCredentials,
ElevenLabsCredentialsInput,
)
from backend.blocks.video._utils import (
extract_source_name,
get_video_codecs,
strip_chapters_inplace,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import CredentialsField, SchemaField
from backend.util.exceptions import BlockExecutionError
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class VideoNarrationBlock(Block):
"""Generate AI narration and add to video."""
class Input(BlockSchemaInput):
credentials: ElevenLabsCredentialsInput = CredentialsField(
description="ElevenLabs API key for voice synthesis"
)
video_in: MediaFileType = SchemaField(
description="Input video (URL, data URI, or local path)"
)
script: str = SchemaField(description="Narration script text")
voice_id: str = SchemaField(
description="ElevenLabs voice ID", default="21m00Tcm4TlvDq8ikWAM" # Rachel
)
model_id: Literal[
"eleven_multilingual_v2",
"eleven_flash_v2_5",
"eleven_turbo_v2_5",
"eleven_turbo_v2",
] = SchemaField(
description="ElevenLabs TTS model",
default="eleven_multilingual_v2",
)
mix_mode: Literal["replace", "mix", "ducking"] = SchemaField(
description="How to combine with original audio. 'ducking' applies stronger attenuation than 'mix'.",
default="ducking",
)
narration_volume: float = SchemaField(
description="Narration volume (0.0 to 2.0)",
default=1.0,
ge=0.0,
le=2.0,
advanced=True,
)
original_volume: float = SchemaField(
description="Original audio volume when mixing (0.0 to 1.0)",
default=0.3,
ge=0.0,
le=1.0,
advanced=True,
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Video with narration (path or data URI)"
)
audio_file: MediaFileType = SchemaField(
description="Generated audio file (path or data URI)"
)
def __init__(self):
super().__init__(
id="3d036b53-859c-4b17-9826-ca340f736e0e",
description="Generate AI narration and add to video",
categories={BlockCategory.MULTIMEDIA, BlockCategory.AI},
input_schema=self.Input,
output_schema=self.Output,
test_input={
"video_in": "/tmp/test.mp4",
"script": "Hello world",
"credentials": TEST_CREDENTIALS_INPUT,
},
test_credentials=TEST_CREDENTIALS,
test_output=[("video_out", str), ("audio_file", str)],
test_mock={
"_generate_narration_audio": lambda *args: b"mock audio content",
"_add_narration_to_video": lambda *args: None,
"_store_input_video": lambda *args, **kwargs: "test.mp4",
"_store_output_video": lambda *args, **kwargs: "narrated_test.mp4",
},
)
async def _store_input_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store input video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_local_processing",
)
async def _store_output_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store output video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_block_output",
)
def _generate_narration_audio(
self, api_key: str, script: str, voice_id: str, model_id: str
) -> bytes:
"""Generate narration audio via ElevenLabs API."""
client = ElevenLabs(api_key=api_key)
audio_generator = client.text_to_speech.convert(
voice_id=voice_id,
text=script,
model_id=model_id,
)
# The SDK returns a generator, collect all chunks
return b"".join(audio_generator)
def _add_narration_to_video(
self,
video_abspath: str,
audio_abspath: str,
output_abspath: str,
mix_mode: str,
narration_volume: float,
original_volume: float,
) -> None:
"""Add narration audio to video. Extracted for testability."""
video = None
final = None
narration_original = None
narration_scaled = None
original = None
try:
strip_chapters_inplace(video_abspath)
video = VideoFileClip(video_abspath)
narration_original = AudioFileClip(audio_abspath)
narration_scaled = narration_original.with_volume_scaled(narration_volume)
narration = narration_scaled
if mix_mode == "replace":
final_audio = narration
elif mix_mode == "mix":
if video.audio:
original = video.audio.with_volume_scaled(original_volume)
final_audio = CompositeAudioClip([original, narration])
else:
final_audio = narration
else: # ducking - apply stronger attenuation
if video.audio:
# Ducking uses a much lower volume for original audio
ducking_volume = original_volume * 0.3
original = video.audio.with_volume_scaled(ducking_volume)
final_audio = CompositeAudioClip([original, narration])
else:
final_audio = narration
final = video.with_audio(final_audio)
video_codec, audio_codec = get_video_codecs(output_abspath)
final.write_videofile(
output_abspath, codec=video_codec, audio_codec=audio_codec
)
finally:
if original:
original.close()
if narration_scaled:
narration_scaled.close()
if narration_original:
narration_original.close()
if final:
final.close()
if video:
video.close()
async def run(
self,
input_data: Input,
*,
credentials: ElevenLabsCredentials,
execution_context: ExecutionContext,
node_exec_id: str,
**kwargs,
) -> BlockOutput:
try:
assert execution_context.graph_exec_id is not None
# Store the input video locally
local_video_path = await self._store_input_video(
execution_context, input_data.video_in
)
video_abspath = get_exec_file_path(
execution_context.graph_exec_id, local_video_path
)
# Generate narration audio via ElevenLabs
audio_content = self._generate_narration_audio(
credentials.api_key.get_secret_value(),
input_data.script,
input_data.voice_id,
input_data.model_id,
)
# Save audio to exec file path
audio_filename = MediaFileType(f"{node_exec_id}_narration.mp3")
audio_abspath = get_exec_file_path(
execution_context.graph_exec_id, audio_filename
)
os.makedirs(os.path.dirname(audio_abspath), exist_ok=True)
with open(audio_abspath, "wb") as f:
f.write(audio_content)
# Add narration to video
source = extract_source_name(local_video_path)
output_filename = MediaFileType(f"{node_exec_id}_narrated_{source}.mp4")
output_abspath = get_exec_file_path(
execution_context.graph_exec_id, output_filename
)
self._add_narration_to_video(
video_abspath,
audio_abspath,
output_abspath,
input_data.mix_mode,
input_data.narration_volume,
input_data.original_volume,
)
# Return as workspace path or data URI based on context
video_out = await self._store_output_video(
execution_context, output_filename
)
audio_out = await self._store_output_video(
execution_context, audio_filename
)
yield "video_out", video_out
yield "audio_file", audio_out
except Exception as e:
raise BlockExecutionError(
message=f"Failed to add narration: {e}",
block_name=self.name,
block_id=str(self.id),
) from e

View File

@@ -1,231 +0,0 @@
"""VideoTextOverlayBlock - Add text overlay to video."""
from typing import Literal
from moviepy import CompositeVideoClip, TextClip
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.video._utils import (
extract_source_name,
get_video_codecs,
strip_chapters_inplace,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.exceptions import BlockExecutionError
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class VideoTextOverlayBlock(Block):
"""Add text overlay/caption to video."""
class Input(BlockSchemaInput):
video_in: MediaFileType = SchemaField(
description="Input video (URL, data URI, or local path)"
)
text: str = SchemaField(description="Text to overlay on video")
position: Literal[
"top",
"center",
"bottom",
"top-left",
"top-right",
"bottom-left",
"bottom-right",
] = SchemaField(description="Position of text on screen", default="bottom")
start_time: float | None = SchemaField(
description="When to show text (seconds). None = entire video",
default=None,
advanced=True,
)
end_time: float | None = SchemaField(
description="When to hide text (seconds). None = until end",
default=None,
advanced=True,
)
font_size: int = SchemaField(
description="Font size", default=48, ge=12, le=200, advanced=True
)
font_color: str = SchemaField(
description="Font color (hex or name)", default="white", advanced=True
)
bg_color: str | None = SchemaField(
description="Background color behind text (None for transparent)",
default=None,
advanced=True,
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Video with text overlay (path or data URI)"
)
def __init__(self):
super().__init__(
id="8ef14de6-cc90-430a-8cfa-3a003be92454",
description="Add text overlay/caption to video",
categories={BlockCategory.MULTIMEDIA},
input_schema=self.Input,
output_schema=self.Output,
disabled=True, # Disable until we can lockdown imagemagick security policy
test_input={"video_in": "/tmp/test.mp4", "text": "Hello World"},
test_output=[("video_out", str)],
test_mock={
"_add_text_overlay": lambda *args: None,
"_store_input_video": lambda *args, **kwargs: "test.mp4",
"_store_output_video": lambda *args, **kwargs: "overlay_test.mp4",
},
)
async def _store_input_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store input video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_local_processing",
)
async def _store_output_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store output video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_block_output",
)
def _add_text_overlay(
self,
video_abspath: str,
output_abspath: str,
text: str,
position: str,
start_time: float | None,
end_time: float | None,
font_size: int,
font_color: str,
bg_color: str | None,
) -> None:
"""Add text overlay to video. Extracted for testability."""
video = None
final = None
txt_clip = None
try:
strip_chapters_inplace(video_abspath)
video = VideoFileClip(video_abspath)
txt_clip = TextClip(
text=text,
font_size=font_size,
color=font_color,
bg_color=bg_color,
)
# Position mapping
pos_map = {
"top": ("center", "top"),
"center": ("center", "center"),
"bottom": ("center", "bottom"),
"top-left": ("left", "top"),
"top-right": ("right", "top"),
"bottom-left": ("left", "bottom"),
"bottom-right": ("right", "bottom"),
}
txt_clip = txt_clip.with_position(pos_map[position])
# Set timing
start = start_time or 0
end = end_time or video.duration
duration = max(0, end - start)
txt_clip = txt_clip.with_start(start).with_end(end).with_duration(duration)
final = CompositeVideoClip([video, txt_clip])
video_codec, audio_codec = get_video_codecs(output_abspath)
final.write_videofile(
output_abspath, codec=video_codec, audio_codec=audio_codec
)
finally:
if txt_clip:
txt_clip.close()
if final:
final.close()
if video:
video.close()
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
node_exec_id: str,
**kwargs,
) -> BlockOutput:
# Validate time range if both are provided
if (
input_data.start_time is not None
and input_data.end_time is not None
and input_data.end_time <= input_data.start_time
):
raise BlockExecutionError(
message=f"end_time ({input_data.end_time}) must be greater than start_time ({input_data.start_time})",
block_name=self.name,
block_id=str(self.id),
)
try:
assert execution_context.graph_exec_id is not None
# Store the input video locally
local_video_path = await self._store_input_video(
execution_context, input_data.video_in
)
video_abspath = get_exec_file_path(
execution_context.graph_exec_id, local_video_path
)
# Build output path
source = extract_source_name(local_video_path)
output_filename = MediaFileType(f"{node_exec_id}_overlay_{source}.mp4")
output_abspath = get_exec_file_path(
execution_context.graph_exec_id, output_filename
)
self._add_text_overlay(
video_abspath,
output_abspath,
input_data.text,
input_data.position,
input_data.start_time,
input_data.end_time,
input_data.font_size,
input_data.font_color,
input_data.bg_color,
)
# Return as workspace path or data URI based on context
video_out = await self._store_output_video(
execution_context, output_filename
)
yield "video_out", video_out
except BlockExecutionError:
raise
except Exception as e:
raise BlockExecutionError(
message=f"Failed to add text overlay: {e}",
block_name=self.name,
block_id=str(self.id),
) from e

View File

@@ -165,13 +165,10 @@ class TranscribeYoutubeVideoBlock(Block):
credentials: WebshareProxyCredentials,
**kwargs,
) -> BlockOutput:
try:
video_id = self.extract_video_id(input_data.youtube_url)
transcript = self.get_transcript(video_id, credentials)
transcript_text = self.format_transcript(transcript=transcript)
video_id = self.extract_video_id(input_data.youtube_url)
yield "video_id", video_id
# Only yield after all operations succeed
yield "video_id", video_id
yield "transcript", transcript_text
except Exception as e:
yield "error", str(e)
transcript = self.get_transcript(video_id, credentials)
transcript_text = self.format_transcript(transcript=transcript)
yield "transcript", transcript_text

View File

@@ -1,8 +0,0 @@
"""CoPilot module - AI assistant for AutoGPT platform.
This module contains the core CoPilot functionality including:
- AI generation service (LLM calls)
- Tool execution
- Session management
- Stream registry for SSE reconnection
"""

View File

@@ -1,5 +0,0 @@
"""CoPilot Executor - Dedicated service for AI generation and tool execution.
This module contains the executor service that processes CoPilot tasks
from RabbitMQ, following the graph executor pattern.
"""

View File

@@ -1,18 +0,0 @@
"""Entry point for running the CoPilot Executor service.
Usage:
python -m backend.copilot.executor
"""
from backend.app import run_processes
from .manager import CoPilotExecutor
def main():
"""Run the CoPilot Executor service."""
run_processes(CoPilotExecutor())
if __name__ == "__main__":
main()

View File

@@ -1,462 +0,0 @@
"""CoPilot Executor Manager - main service for CoPilot task execution.
This module contains the CoPilotExecutor class that consumes chat tasks from
RabbitMQ and processes them using a thread pool, following the graph executor pattern.
"""
import logging
import os
import threading
import time
import uuid
from concurrent.futures import Future, ThreadPoolExecutor
from pika.adapters.blocking_connection import BlockingChannel
from pika.spec import Basic, BasicProperties
from prometheus_client import Gauge, start_http_server
from backend.data import redis_client as redis
from backend.data.rabbitmq import SyncRabbitMQ
from backend.executor.cluster_lock import ClusterLock
from backend.util.decorator import error_logged
from backend.util.logging import TruncatedLogger
from backend.util.process import AppProcess
from backend.util.retry import continuous_retry, func_retry
from backend.util.settings import Settings
from .processor import execute_copilot_task, init_worker
from .utils import (
COPILOT_CANCEL_QUEUE_NAME,
COPILOT_EXECUTION_QUEUE_NAME,
GRACEFUL_SHUTDOWN_TIMEOUT_SECONDS,
CancelCoPilotEvent,
CoPilotExecutionEntry,
create_copilot_queue_config,
)
logger = TruncatedLogger(logging.getLogger(__name__), prefix="[CoPilotExecutor]")
settings = Settings()
# Prometheus metrics
active_tasks_gauge = Gauge(
"copilot_executor_active_tasks",
"Number of active CoPilot tasks",
)
pool_size_gauge = Gauge(
"copilot_executor_pool_size",
"Maximum number of CoPilot executor workers",
)
utilization_gauge = Gauge(
"copilot_executor_utilization_ratio",
"Ratio of active tasks to pool size",
)
class CoPilotExecutor(AppProcess):
"""CoPilot Executor service for processing chat generation tasks.
This service consumes tasks from RabbitMQ, processes them using a thread pool,
and publishes results to Redis Streams. It follows the graph executor pattern
for reliable message handling and graceful shutdown.
Key features:
- RabbitMQ-based task distribution with manual acknowledgment
- Thread pool executor for concurrent task processing
- Cluster lock for duplicate prevention across pods
- Graceful shutdown with timeout for in-flight tasks
- FANOUT exchange for cancellation broadcast
"""
def __init__(self):
super().__init__()
self.pool_size = settings.config.num_copilot_workers
self.active_tasks: dict[str, tuple[Future, threading.Event]] = {}
self.executor_id = str(uuid.uuid4())
self._executor = None
self._stop_consuming = None
self._cancel_thread = None
self._cancel_client = None
self._run_thread = None
self._run_client = None
self._task_locks: dict[str, ClusterLock] = {}
# ============ Main Entry Points (AppProcess interface) ============ #
def run(self):
"""Main service loop - consume from RabbitMQ."""
logger.info(f"Pod assigned executor_id: {self.executor_id}")
logger.info(f"Spawn max-{self.pool_size} workers...")
pool_size_gauge.set(self.pool_size)
self._update_metrics()
start_http_server(settings.config.copilot_executor_port)
self.cancel_thread.start()
self.run_thread.start()
while True:
time.sleep(1e5)
def cleanup(self):
"""Graceful shutdown with active execution waiting."""
pid = os.getpid()
logger.info(f"[cleanup {pid}] Starting graceful shutdown...")
# Signal the consumer thread to stop
try:
self.stop_consuming.set()
run_channel = self.run_client.get_channel()
run_channel.connection.add_callback_threadsafe(
lambda: run_channel.stop_consuming()
)
logger.info(f"[cleanup {pid}] Consumer has been signaled to stop")
except Exception as e:
logger.error(f"[cleanup {pid}] Error stopping consumer: {e}")
# Wait for active executions to complete
if self.active_tasks:
logger.info(
f"[cleanup {pid}] Waiting for {len(self.active_tasks)} active tasks to complete (timeout: {GRACEFUL_SHUTDOWN_TIMEOUT_SECONDS}s)..."
)
start_time = time.monotonic()
last_refresh = start_time
lock_refresh_interval = settings.config.cluster_lock_timeout / 10
while (
self.active_tasks
and (time.monotonic() - start_time) < GRACEFUL_SHUTDOWN_TIMEOUT_SECONDS
):
self._cleanup_completed_tasks()
if not self.active_tasks:
break
# Refresh cluster locks periodically
current_time = time.monotonic()
if current_time - last_refresh >= lock_refresh_interval:
for lock in self._task_locks.values():
try:
lock.refresh()
except Exception as e:
logger.warning(
f"[cleanup {pid}] Failed to refresh lock: {e}"
)
last_refresh = current_time
logger.info(
f"[cleanup {pid}] {len(self.active_tasks)} tasks still active, waiting..."
)
time.sleep(10.0)
# Stop message consumers
if self._run_thread:
self._stop_message_consumers(
self._run_thread, self.run_client, "[cleanup][run]"
)
if self._cancel_thread:
self._stop_message_consumers(
self._cancel_thread, self.cancel_client, "[cleanup][cancel]"
)
# Shutdown executor
if self._executor:
logger.info(f"[cleanup {pid}] Shutting down executor...")
self._executor.shutdown(wait=False)
# Release any remaining locks
for task_id, lock in list(self._task_locks.items()):
try:
lock.release()
logger.info(f"[cleanup {pid}] Released lock for {task_id}")
except Exception as e:
logger.error(
f"[cleanup {pid}] Failed to release lock for {task_id}: {e}"
)
logger.info(f"[cleanup {pid}] Graceful shutdown completed")
# ============ RabbitMQ Consumer Methods ============ #
@continuous_retry()
def _consume_cancel(self):
"""Consume cancellation messages from FANOUT exchange."""
if self.stop_consuming.is_set() and not self.active_tasks:
logger.info("Stop reconnecting cancel consumer - service cleaned up")
return
if not self.cancel_client.is_ready:
self.cancel_client.disconnect()
self.cancel_client.connect()
cancel_channel = self.cancel_client.get_channel()
cancel_channel.basic_consume(
queue=COPILOT_CANCEL_QUEUE_NAME,
on_message_callback=self._handle_cancel_message,
auto_ack=True,
)
logger.info("Starting cancel message consumer...")
cancel_channel.start_consuming()
if not self.stop_consuming.is_set() or self.active_tasks:
raise RuntimeError("Cancel message consumer stopped unexpectedly")
logger.info("Cancel message consumer stopped gracefully")
@continuous_retry()
def _consume_run(self):
"""Consume run messages from DIRECT exchange."""
if self.stop_consuming.is_set():
logger.info("Stop reconnecting run consumer - service cleaned up")
return
if not self.run_client.is_ready:
self.run_client.disconnect()
self.run_client.connect()
run_channel = self.run_client.get_channel()
run_channel.basic_qos(prefetch_count=self.pool_size)
run_channel.basic_consume(
queue=COPILOT_EXECUTION_QUEUE_NAME,
on_message_callback=self._handle_run_message,
auto_ack=False,
consumer_tag="copilot_execution_consumer",
)
run_channel.confirm_delivery()
logger.info("Starting to consume run messages...")
run_channel.start_consuming()
if not self.stop_consuming.is_set():
raise RuntimeError("Run message consumer stopped unexpectedly")
logger.info("Run message consumer stopped gracefully")
# ============ Message Handlers ============ #
@error_logged(swallow=True)
def _handle_cancel_message(
self,
_channel: BlockingChannel,
_method: Basic.Deliver,
_properties: BasicProperties,
body: bytes,
):
"""Handle cancel message from FANOUT exchange."""
request = CancelCoPilotEvent.model_validate_json(body)
task_id = request.task_id
if not task_id:
logger.warning("Cancel message missing 'task_id'")
return
if task_id not in self.active_tasks:
logger.debug(f"Cancel received for {task_id} but not active")
return
_, cancel_event = self.active_tasks[task_id]
logger.info(f"Received cancel for {task_id}")
if not cancel_event.is_set():
cancel_event.set()
else:
logger.debug(f"Cancel already set for {task_id}")
def _handle_run_message(
self,
_channel: BlockingChannel,
method: Basic.Deliver,
_properties: BasicProperties,
body: bytes,
):
"""Handle run message from DIRECT exchange."""
delivery_tag = method.delivery_tag
@func_retry
def ack_message(reject: bool, requeue: bool):
"""Acknowledge or reject the message."""
channel = self.run_client.get_channel()
if reject:
channel.connection.add_callback_threadsafe(
lambda: channel.basic_nack(delivery_tag, requeue=requeue)
)
else:
channel.connection.add_callback_threadsafe(
lambda: channel.basic_ack(delivery_tag)
)
# Check if we're shutting down
if self.stop_consuming.is_set():
logger.info("Rejecting new task during shutdown")
ack_message(reject=True, requeue=True)
return
# Check if we can accept more tasks
self._cleanup_completed_tasks()
if len(self.active_tasks) >= self.pool_size:
ack_message(reject=True, requeue=True)
return
try:
entry = CoPilotExecutionEntry.model_validate_json(body)
except Exception as e:
logger.error(f"Could not parse run message: {e}, body={body}")
ack_message(reject=True, requeue=False)
return
task_id = entry.task_id
# Check for local duplicate
if task_id in self.active_tasks:
logger.warning(f"Task {task_id} already running locally")
ack_message(reject=True, requeue=True)
return
# Try to acquire cluster-wide lock
cluster_lock = ClusterLock(
redis=redis.get_redis(),
key=f"copilot_lock:{task_id}",
owner_id=self.executor_id,
timeout=settings.config.cluster_lock_timeout,
)
current_owner = cluster_lock.try_acquire()
if current_owner != self.executor_id:
if current_owner is not None:
logger.warning(f"Task {task_id} already running on pod {current_owner}")
ack_message(reject=True, requeue=False)
else:
logger.warning(
f"Could not acquire lock for {task_id} - Redis unavailable"
)
ack_message(reject=True, requeue=True)
return
# Execute the task
try:
self._task_locks[task_id] = cluster_lock
logger.info(
f"Acquired cluster lock for {task_id}, executor_id={self.executor_id}"
)
cancel_event = threading.Event()
future = self.executor.submit(
execute_copilot_task, entry, cancel_event, cluster_lock
)
self.active_tasks[task_id] = (future, cancel_event)
except Exception as e:
logger.warning(f"Failed to setup execution for {task_id}: {e}")
cluster_lock.release()
if task_id in self._task_locks:
del self._task_locks[task_id]
ack_message(reject=True, requeue=True)
return
self._update_metrics()
def on_run_done(f: Future):
logger.info(f"Run completed for {task_id}")
try:
if exec_error := f.exception():
logger.error(f"Execution for {task_id} failed: {exec_error}")
ack_message(reject=True, requeue=True)
else:
ack_message(reject=False, requeue=False)
except BaseException as e:
logger.exception(f"Error in run completion callback: {e}")
finally:
# Release the cluster lock
if task_id in self._task_locks:
logger.info(f"Releasing cluster lock for {task_id}")
self._task_locks[task_id].release()
del self._task_locks[task_id]
self._cleanup_completed_tasks()
future.add_done_callback(on_run_done)
# ============ Helper Methods ============ #
def _cleanup_completed_tasks(self) -> list[str]:
"""Remove completed futures from active_tasks and update metrics."""
completed_tasks = []
for task_id, (future, _) in self.active_tasks.items():
if future.done():
completed_tasks.append(task_id)
for task_id in completed_tasks:
logger.info(f"Cleaned up completed task {task_id}")
self.active_tasks.pop(task_id, None)
self._update_metrics()
return completed_tasks
def _update_metrics(self):
"""Update Prometheus metrics."""
active_count = len(self.active_tasks)
active_tasks_gauge.set(active_count)
if self.stop_consuming.is_set():
utilization_gauge.set(1.0)
else:
utilization_gauge.set(
active_count / self.pool_size if self.pool_size > 0 else 0
)
def _stop_message_consumers(
self, thread: threading.Thread, client: SyncRabbitMQ, prefix: str
):
"""Stop a message consumer thread."""
try:
channel = client.get_channel()
channel.connection.add_callback_threadsafe(lambda: channel.stop_consuming())
try:
thread.join(timeout=300)
except TimeoutError:
logger.error(
f"{prefix} Thread did not finish in time, forcing disconnect"
)
client.disconnect()
logger.info(f"{prefix} Client disconnected")
except Exception as e:
logger.error(f"{prefix} Error disconnecting client: {e}")
# ============ Lazy-initialized Properties ============ #
@property
def cancel_thread(self) -> threading.Thread:
if self._cancel_thread is None:
self._cancel_thread = threading.Thread(
target=lambda: self._consume_cancel(),
daemon=True,
)
return self._cancel_thread
@property
def run_thread(self) -> threading.Thread:
if self._run_thread is None:
self._run_thread = threading.Thread(
target=lambda: self._consume_run(),
daemon=True,
)
return self._run_thread
@property
def stop_consuming(self) -> threading.Event:
if self._stop_consuming is None:
self._stop_consuming = threading.Event()
return self._stop_consuming
@property
def executor(self) -> ThreadPoolExecutor:
if self._executor is None:
self._executor = ThreadPoolExecutor(
max_workers=self.pool_size,
initializer=init_worker,
)
return self._executor
@property
def cancel_client(self) -> SyncRabbitMQ:
if self._cancel_client is None:
self._cancel_client = SyncRabbitMQ(create_copilot_queue_config())
return self._cancel_client
@property
def run_client(self) -> SyncRabbitMQ:
if self._run_client is None:
self._run_client = SyncRabbitMQ(create_copilot_queue_config())
return self._run_client

View File

@@ -1,252 +0,0 @@
"""CoPilot execution processor - per-worker execution logic.
This module contains the processor class that handles CoPilot task execution
in a thread-local context, following the graph executor pattern.
"""
import asyncio
import logging
import threading
import time
from backend.copilot import service as copilot_service
from backend.copilot import stream_registry
from backend.copilot.response_model import StreamError, StreamFinish, StreamFinishStep
from backend.executor.cluster_lock import ClusterLock
from backend.util.decorator import error_logged
from backend.util.logging import TruncatedLogger, configure_logging
from backend.util.process import set_service_name
from backend.util.retry import func_retry
from .utils import CoPilotExecutionEntry, CoPilotLogMetadata
logger = TruncatedLogger(logging.getLogger(__name__), prefix="[CoPilotExecutor]")
# ============ Module Entry Points ============ #
# Thread-local storage for processor instances
_tls = threading.local()
def execute_copilot_task(
entry: CoPilotExecutionEntry,
cancel: threading.Event,
cluster_lock: ClusterLock,
):
"""Execute a CoPilot task using the thread-local processor.
This function is the entry point called by the thread pool executor.
Args:
entry: The task payload
cancel: Threading event to signal cancellation
cluster_lock: Distributed lock for this execution
"""
processor: CoPilotProcessor = _tls.processor
return processor.execute(entry, cancel, cluster_lock)
def init_worker():
"""Initialize the processor for the current worker thread.
This function is called by the thread pool executor when a new worker
thread is created. It ensures each worker has its own processor instance.
"""
_tls.processor = CoPilotProcessor()
_tls.processor.on_executor_start()
# ============ Processor Class ============ #
class CoPilotProcessor:
"""Per-worker execution logic for CoPilot tasks.
This class is instantiated once per worker thread and handles the execution
of CoPilot chat generation tasks. It maintains an async event loop for
running the async service code.
The execution flow:
1. CoPilot task is picked from RabbitMQ queue
2. Manager submits task to thread pool
3. Processor executes the task in its event loop
4. Results are published to Redis Streams
"""
@func_retry
def on_executor_start(self):
"""Initialize the processor when the worker thread starts.
This method is called once per worker thread to set up the async event
loop, connect to Prisma, and initialize any required resources.
"""
configure_logging()
set_service_name("CoPilotExecutor")
self.tid = threading.get_ident()
self.execution_loop = asyncio.new_event_loop()
self.execution_thread = threading.Thread(
target=self.execution_loop.run_forever, daemon=True
)
self.execution_thread.start()
# Connect to Prisma in the worker's event loop
# This is required because the CoPilot service uses Prisma directly
# TODO: Use DatabaseManager, avoid direct Prisma connection(?)
asyncio.run_coroutine_threadsafe(
self._connect_prisma(), self.execution_loop
).result(timeout=30.0)
logger.info(f"[CoPilotExecutor] Worker {self.tid} started")
async def _connect_prisma(self):
"""Connect to Prisma database in the worker's event loop."""
from backend.data import db
if not db.is_connected():
await db.connect()
logger.info(f"[CoPilotExecutor] Worker {self.tid} connected to Prisma")
@error_logged(swallow=False)
def execute(
self,
entry: CoPilotExecutionEntry,
cancel: threading.Event,
cluster_lock: ClusterLock,
):
"""Execute a CoPilot task.
This is the main entry point for task execution. It runs the async
execution logic in the worker's event loop and handles errors.
Args:
entry: The task payload containing session and message info
cancel: Threading event to signal cancellation
cluster_lock: Distributed lock to prevent duplicate execution
"""
log = CoPilotLogMetadata(
logging.getLogger(__name__),
task_id=entry.task_id,
session_id=entry.session_id,
user_id=entry.user_id,
)
log.info("Starting execution")
start_time = time.monotonic()
try:
# Run the async execution in our event loop
future = asyncio.run_coroutine_threadsafe(
self._execute_async(entry, cancel, cluster_lock, log),
self.execution_loop,
)
# Wait for completion, checking cancel periodically
while not future.done():
try:
future.result(timeout=1.0)
except asyncio.TimeoutError:
if cancel.is_set():
log.info("Cancellation requested")
future.cancel()
break
# Refresh cluster lock to maintain ownership
cluster_lock.refresh()
if not future.cancelled():
# Get result to propagate any exceptions
future.result()
elapsed = time.monotonic() - start_time
log.info(f"Execution completed in {elapsed:.2f}s")
except Exception as e:
elapsed = time.monotonic() - start_time
log.error(f"Execution failed after {elapsed:.2f}s: {e}")
# Ensure task is marked as failed in stream registry
asyncio.run_coroutine_threadsafe(
self._mark_task_failed(entry.task_id, str(e)),
self.execution_loop,
).result(timeout=10.0)
raise
async def _execute_async(
self,
entry: CoPilotExecutionEntry,
cancel: threading.Event,
cluster_lock: ClusterLock,
log: CoPilotLogMetadata,
):
"""Async execution logic for CoPilot task.
This method calls the existing stream_chat_completion service function
and publishes results to the stream registry.
Args:
entry: The task payload
cancel: Threading event to signal cancellation
cluster_lock: Distributed lock for refresh
log: Structured logger for this task
"""
last_refresh = time.monotonic()
refresh_interval = 30.0 # Refresh lock every 30 seconds
try:
# Stream chat completion and publish chunks to Redis
async for chunk in copilot_service.stream_chat_completion(
session_id=entry.session_id,
message=entry.message if entry.message else None,
is_user_message=entry.is_user_message,
user_id=entry.user_id,
context=entry.context,
_task_id=entry.task_id,
):
# Check for cancellation
if cancel.is_set():
log.info("Cancelled during streaming")
await stream_registry.publish_chunk(
entry.task_id, StreamError(errorText="Operation cancelled")
)
await stream_registry.publish_chunk(
entry.task_id, StreamFinishStep()
)
await stream_registry.publish_chunk(entry.task_id, StreamFinish())
await stream_registry.mark_task_completed(
entry.task_id, status="failed"
)
return
# Refresh cluster lock periodically
current_time = time.monotonic()
if current_time - last_refresh >= refresh_interval:
cluster_lock.refresh()
last_refresh = current_time
# Publish chunk to stream registry
await stream_registry.publish_chunk(entry.task_id, chunk)
# Mark task as completed
await stream_registry.mark_task_completed(entry.task_id, status="completed")
log.info("Task completed successfully")
except asyncio.CancelledError:
log.info("Task cancelled")
await stream_registry.mark_task_completed(entry.task_id, status="failed")
raise
except Exception as e:
log.error(f"Task failed: {e}")
await self._mark_task_failed(entry.task_id, str(e))
raise
async def _mark_task_failed(self, task_id: str, error_message: str):
"""Mark a task as failed and publish error to stream registry."""
try:
await stream_registry.publish_chunk(
task_id, StreamError(errorText=error_message)
)
await stream_registry.publish_chunk(task_id, StreamFinishStep())
await stream_registry.publish_chunk(task_id, StreamFinish())
await stream_registry.mark_task_completed(task_id, status="failed")
except Exception as e:
logger.error(f"Failed to mark task {task_id} as failed: {e}")

View File

@@ -1,207 +0,0 @@
"""RabbitMQ queue configuration for CoPilot executor.
Defines two exchanges and queues following the graph executor pattern:
- 'copilot_execution' (DIRECT) for chat generation tasks
- 'copilot_cancel' (FANOUT) for cancellation requests
"""
import logging
from pydantic import BaseModel
from backend.data.rabbitmq import Exchange, ExchangeType, Queue, RabbitMQConfig
from backend.util.logging import TruncatedLogger, is_structured_logging_enabled
logger = logging.getLogger(__name__)
# ============ Logging Helper ============ #
class CoPilotLogMetadata(TruncatedLogger):
"""Structured logging helper for CoPilot executor.
In cloud environments (structured logging enabled), uses a simple prefix
and passes metadata via json_fields. In local environments, uses a detailed
prefix with all metadata key-value pairs for easier debugging.
Args:
logger: The underlying logger instance
max_length: Maximum log message length before truncation
**kwargs: Metadata key-value pairs (e.g., task_id="abc", session_id="xyz")
These are added to json_fields in cloud mode, or to the prefix in local mode.
"""
def __init__(
self,
logger: logging.Logger,
max_length: int = 1000,
**kwargs: str | None,
):
# Filter out None values
metadata = {k: v for k, v in kwargs.items() if v is not None}
metadata["component"] = "CoPilotExecutor"
if is_structured_logging_enabled():
prefix = "[CoPilotExecutor]"
else:
# Build prefix from metadata key-value pairs
meta_parts = "|".join(
f"{k}:{v}" for k, v in metadata.items() if k != "component"
)
prefix = (
f"[CoPilotExecutor|{meta_parts}]" if meta_parts else "[CoPilotExecutor]"
)
super().__init__(
logger,
max_length=max_length,
prefix=prefix,
metadata=metadata,
)
# ============ Exchange and Queue Configuration ============ #
COPILOT_EXECUTION_EXCHANGE = Exchange(
name="copilot_execution",
type=ExchangeType.DIRECT,
durable=True,
auto_delete=False,
)
COPILOT_EXECUTION_QUEUE_NAME = "copilot_execution_queue"
COPILOT_EXECUTION_ROUTING_KEY = "copilot.run"
COPILOT_CANCEL_EXCHANGE = Exchange(
name="copilot_cancel",
type=ExchangeType.FANOUT,
durable=True,
auto_delete=True,
)
COPILOT_CANCEL_QUEUE_NAME = "copilot_cancel_queue"
# CoPilot operations can include extended thinking and agent generation
# which may take 30+ minutes to complete
COPILOT_CONSUMER_TIMEOUT_SECONDS = 60 * 60 # 1 hour
# Graceful shutdown timeout - allow in-flight operations to complete
GRACEFUL_SHUTDOWN_TIMEOUT_SECONDS = 30 * 60 # 30 minutes
def create_copilot_queue_config() -> RabbitMQConfig:
"""Create RabbitMQ configuration for CoPilot executor.
Defines two exchanges and queues:
- 'copilot_execution' (DIRECT) for chat generation tasks
- 'copilot_cancel' (FANOUT) for cancellation requests
Returns:
RabbitMQConfig with exchanges and queues defined
"""
run_queue = Queue(
name=COPILOT_EXECUTION_QUEUE_NAME,
exchange=COPILOT_EXECUTION_EXCHANGE,
routing_key=COPILOT_EXECUTION_ROUTING_KEY,
durable=True,
auto_delete=False,
arguments={
# Extended consumer timeout for long-running LLM operations
# Default 30-minute timeout is insufficient for extended thinking
# and agent generation which can take 30+ minutes
"x-consumer-timeout": COPILOT_CONSUMER_TIMEOUT_SECONDS
* 1000,
},
)
cancel_queue = Queue(
name=COPILOT_CANCEL_QUEUE_NAME,
exchange=COPILOT_CANCEL_EXCHANGE,
routing_key="", # not used for FANOUT
durable=True,
auto_delete=False,
)
return RabbitMQConfig(
vhost="/",
exchanges=[COPILOT_EXECUTION_EXCHANGE, COPILOT_CANCEL_EXCHANGE],
queues=[run_queue, cancel_queue],
)
# ============ Message Models ============ #
class CoPilotExecutionEntry(BaseModel):
"""Task payload for CoPilot AI generation.
This model represents a chat generation task to be processed by the executor.
"""
task_id: str
"""Unique identifier for this task (used for stream registry)"""
session_id: str
"""Chat session ID"""
user_id: str | None
"""User ID (may be None for anonymous users)"""
operation_id: str
"""Operation ID for webhook callbacks and completion tracking"""
message: str
"""User's message to process"""
is_user_message: bool = True
"""Whether the message is from the user (vs system/assistant)"""
context: dict[str, str] | None = None
"""Optional context for the message (e.g., {url: str, content: str})"""
class CancelCoPilotEvent(BaseModel):
"""Event to cancel a CoPilot operation."""
task_id: str
"""Task ID to cancel"""
# ============ Queue Publishing Helpers ============ #
async def enqueue_copilot_task(
task_id: str,
session_id: str,
user_id: str | None,
operation_id: str,
message: str,
is_user_message: bool = True,
context: dict[str, str] | None = None,
) -> None:
"""Enqueue a CoPilot task for processing by the executor service.
Args:
task_id: Unique identifier for this task (used for stream registry)
session_id: Chat session ID
user_id: User ID (may be None for anonymous users)
operation_id: Operation ID for webhook callbacks and completion tracking
message: User's message to process
is_user_message: Whether the message is from the user (vs system/assistant)
context: Optional context for the message (e.g., {url: str, content: str})
"""
from backend.util.clients import get_async_copilot_queue
entry = CoPilotExecutionEntry(
task_id=task_id,
session_id=session_id,
user_id=user_id,
operation_id=operation_id,
message=message,
is_user_message=is_user_message,
context=context,
)
queue_client = await get_async_copilot_queue()
await queue_client.publish_message(
routing_key=COPILOT_EXECUTION_ROUTING_KEY,
message=entry.model_dump_json(),
exchange=COPILOT_EXECUTION_EXCHANGE,
)

View File

@@ -1,245 +0,0 @@
import logging
from typing import Any
from prisma.enums import ContentType
from backend.api.features.store.hybrid_search import unified_hybrid_search
from backend.copilot.model import ChatSession
from backend.copilot.tools.base import BaseTool, ToolResponseBase
from backend.copilot.tools.models import (
BlockInfoSummary,
BlockInputFieldInfo,
BlockListResponse,
ErrorResponse,
NoResultsResponse,
)
from backend.data.block import BlockType, get_block
logger = logging.getLogger(__name__)
_TARGET_RESULTS = 10
# Over-fetch to compensate for post-hoc filtering of graph-only blocks.
# 40 is 2x current removed; speed of query 10 vs 40 is minimial
_OVERFETCH_PAGE_SIZE = 40
# Block types that only work within graphs and cannot run standalone in CoPilot.
COPILOT_EXCLUDED_BLOCK_TYPES = {
BlockType.INPUT, # Graph interface definition - data enters via chat, not graph inputs
BlockType.OUTPUT, # Graph interface definition - data exits via chat, not graph outputs
BlockType.WEBHOOK, # Wait for external events - would hang forever in CoPilot
BlockType.WEBHOOK_MANUAL, # Same as WEBHOOK
BlockType.NOTE, # Visual annotation only - no runtime behavior
BlockType.HUMAN_IN_THE_LOOP, # Pauses for human approval - CoPilot IS human-in-the-loop
BlockType.AGENT, # AgentExecutorBlock requires execution_context - use run_agent tool
}
# Specific block IDs excluded from CoPilot (STANDARD type but still require graph context)
COPILOT_EXCLUDED_BLOCK_IDS = {
# SmartDecisionMakerBlock - dynamically discovers downstream blocks via graph topology
"3b191d9f-356f-482d-8238-ba04b6d18381",
}
class FindBlockTool(BaseTool):
"""Tool for searching available blocks."""
@property
def name(self) -> str:
return "find_block"
@property
def description(self) -> str:
return (
"Search for available blocks by name or description. "
"Blocks are reusable components that perform specific tasks like "
"sending emails, making API calls, processing text, etc. "
"IMPORTANT: Use this tool FIRST to get the block's 'id' before calling run_block. "
"The response includes each block's id, required_inputs, and input_schema."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": (
"Search query to find blocks by name or description. "
"Use keywords like 'email', 'http', 'text', 'ai', etc."
),
},
},
"required": ["query"],
}
@property
def requires_auth(self) -> bool:
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
"""Search for blocks matching the query.
Args:
user_id: User ID (required)
session: Chat session
query: Search query
Returns:
BlockListResponse: List of matching blocks
NoResultsResponse: No blocks found
ErrorResponse: Error message
"""
query = kwargs.get("query", "").strip()
session_id = session.session_id
if not query:
return ErrorResponse(
message="Please provide a search query",
session_id=session_id,
)
try:
# Search for blocks using hybrid search
results, total = await unified_hybrid_search(
query=query,
content_types=[ContentType.BLOCK],
page=1,
page_size=_OVERFETCH_PAGE_SIZE,
)
if not results:
return NoResultsResponse(
message=f"No blocks found for '{query}'",
suggestions=[
"Try broader keywords like 'email', 'http', 'text', 'ai'",
"Check spelling of technical terms",
],
session_id=session_id,
)
# Enrich results with full block information
blocks: list[BlockInfoSummary] = []
for result in results:
block_id = result["content_id"]
block = get_block(block_id)
# Skip disabled blocks
if not block or block.disabled:
continue
# Skip blocks excluded from CoPilot (graph-only blocks)
if (
block.block_type in COPILOT_EXCLUDED_BLOCK_TYPES
or block.id in COPILOT_EXCLUDED_BLOCK_IDS
):
continue
# Get input/output schemas
input_schema = {}
output_schema = {}
try:
input_schema = block.input_schema.jsonschema()
except Exception as e:
logger.debug(
"Failed to generate input schema for block %s: %s",
block_id,
e,
)
try:
output_schema = block.output_schema.jsonschema()
except Exception as e:
logger.debug(
"Failed to generate output schema for block %s: %s",
block_id,
e,
)
# Get categories from block instance
categories = []
if hasattr(block, "categories") and block.categories:
categories = [cat.value for cat in block.categories]
# Extract required inputs for easier use
required_inputs: list[BlockInputFieldInfo] = []
if input_schema:
properties = input_schema.get("properties", {})
required_fields = set(input_schema.get("required", []))
# Get credential field names to exclude from required inputs
credentials_fields = set(
block.input_schema.get_credentials_fields().keys()
)
for field_name, field_schema in properties.items():
# Skip credential fields - they're handled separately
if field_name in credentials_fields:
continue
required_inputs.append(
BlockInputFieldInfo(
name=field_name,
type=field_schema.get("type", "string"),
description=field_schema.get("description", ""),
required=field_name in required_fields,
default=field_schema.get("default"),
)
)
blocks.append(
BlockInfoSummary(
id=block_id,
name=block.name,
description=block.description or "",
categories=categories,
input_schema=input_schema,
output_schema=output_schema,
required_inputs=required_inputs,
)
)
if len(blocks) >= _TARGET_RESULTS:
break
if blocks and len(blocks) < _TARGET_RESULTS:
logger.debug(
"find_block returned %d/%d results for query '%s' "
"(filtered %d excluded/disabled blocks)",
len(blocks),
_TARGET_RESULTS,
query,
len(results) - len(blocks),
)
if not blocks:
return NoResultsResponse(
message=f"No blocks found for '{query}'",
suggestions=[
"Try broader keywords like 'email', 'http', 'text', 'ai'",
],
session_id=session_id,
)
return BlockListResponse(
message=(
f"Found {len(blocks)} block(s) matching '{query}'. "
"To execute a block, use run_block with the block's 'id' field "
"and provide 'input_data' matching the block's input_schema."
),
blocks=blocks,
count=len(blocks),
query=query,
session_id=session_id,
)
except Exception as e:
logger.error(f"Error searching blocks: {e}", exc_info=True)
return ErrorResponse(
message="Failed to search blocks",
error=str(e),
session_id=session_id,
)

View File

@@ -1,139 +0,0 @@
"""Tests for block filtering in FindBlockTool."""
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from backend.copilot.tools.find_block import (
COPILOT_EXCLUDED_BLOCK_IDS,
COPILOT_EXCLUDED_BLOCK_TYPES,
FindBlockTool,
)
from backend.copilot.tools.models import BlockListResponse
from backend.data.block import BlockType
from ._test_data import make_session
_TEST_USER_ID = "test-user-find-block"
def make_mock_block(
block_id: str, name: str, block_type: BlockType, disabled: bool = False
):
"""Create a mock block for testing."""
mock = MagicMock()
mock.id = block_id
mock.name = name
mock.description = f"{name} description"
mock.block_type = block_type
mock.disabled = disabled
mock.input_schema = MagicMock()
mock.input_schema.jsonschema.return_value = {"properties": {}, "required": []}
mock.input_schema.get_credentials_fields.return_value = {}
mock.output_schema = MagicMock()
mock.output_schema.jsonschema.return_value = {}
mock.categories = []
return mock
class TestFindBlockFiltering:
"""Tests for block filtering in FindBlockTool."""
def test_excluded_block_types_contains_expected_types(self):
"""Verify COPILOT_EXCLUDED_BLOCK_TYPES contains all graph-only types."""
assert BlockType.INPUT in COPILOT_EXCLUDED_BLOCK_TYPES
assert BlockType.OUTPUT in COPILOT_EXCLUDED_BLOCK_TYPES
assert BlockType.WEBHOOK in COPILOT_EXCLUDED_BLOCK_TYPES
assert BlockType.WEBHOOK_MANUAL in COPILOT_EXCLUDED_BLOCK_TYPES
assert BlockType.NOTE in COPILOT_EXCLUDED_BLOCK_TYPES
assert BlockType.HUMAN_IN_THE_LOOP in COPILOT_EXCLUDED_BLOCK_TYPES
assert BlockType.AGENT in COPILOT_EXCLUDED_BLOCK_TYPES
def test_excluded_block_ids_contains_smart_decision_maker(self):
"""Verify SmartDecisionMakerBlock is in COPILOT_EXCLUDED_BLOCK_IDS."""
assert "3b191d9f-356f-482d-8238-ba04b6d18381" in COPILOT_EXCLUDED_BLOCK_IDS
@pytest.mark.asyncio(loop_scope="session")
async def test_excluded_block_type_filtered_from_results(self):
"""Verify blocks with excluded BlockTypes are filtered from search results."""
session = make_session(user_id=_TEST_USER_ID)
# Mock search returns an INPUT block (excluded) and a STANDARD block (included)
search_results = [
{"content_id": "input-block-id", "score": 0.9},
{"content_id": "standard-block-id", "score": 0.8},
]
input_block = make_mock_block("input-block-id", "Input Block", BlockType.INPUT)
standard_block = make_mock_block(
"standard-block-id", "HTTP Request", BlockType.STANDARD
)
def mock_get_block(block_id):
return {
"input-block-id": input_block,
"standard-block-id": standard_block,
}.get(block_id)
with patch(
"backend.api.features.chat.tools.find_block.unified_hybrid_search",
new_callable=AsyncMock,
return_value=(search_results, 2),
):
with patch(
"backend.api.features.chat.tools.find_block.get_block",
side_effect=mock_get_block,
):
tool = FindBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID, session=session, query="test"
)
# Should only return the standard block, not the INPUT block
assert isinstance(response, BlockListResponse)
assert len(response.blocks) == 1
assert response.blocks[0].id == "standard-block-id"
@pytest.mark.asyncio(loop_scope="session")
async def test_excluded_block_id_filtered_from_results(self):
"""Verify SmartDecisionMakerBlock is filtered from search results."""
session = make_session(user_id=_TEST_USER_ID)
smart_decision_id = "3b191d9f-356f-482d-8238-ba04b6d18381"
search_results = [
{"content_id": smart_decision_id, "score": 0.9},
{"content_id": "normal-block-id", "score": 0.8},
]
# SmartDecisionMakerBlock has STANDARD type but is excluded by ID
smart_block = make_mock_block(
smart_decision_id, "Smart Decision Maker", BlockType.STANDARD
)
normal_block = make_mock_block(
"normal-block-id", "Normal Block", BlockType.STANDARD
)
def mock_get_block(block_id):
return {
smart_decision_id: smart_block,
"normal-block-id": normal_block,
}.get(block_id)
with patch(
"backend.api.features.chat.tools.find_block.unified_hybrid_search",
new_callable=AsyncMock,
return_value=(search_results, 2),
):
with patch(
"backend.api.features.chat.tools.find_block.get_block",
side_effect=mock_get_block,
):
tool = FindBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID, session=session, query="decision"
)
# Should only return normal block, not SmartDecisionMakerBlock
assert isinstance(response, BlockListResponse)
assert len(response.blocks) == 1
assert response.blocks[0].id == "normal-block-id"

View File

@@ -1,29 +0,0 @@
"""Shared helpers for chat tools."""
from typing import Any
def get_inputs_from_schema(
input_schema: dict[str, Any],
exclude_fields: set[str] | None = None,
) -> list[dict[str, Any]]:
"""Extract input field info from JSON schema."""
if not isinstance(input_schema, dict):
return []
exclude = exclude_fields or set()
properties = input_schema.get("properties", {})
required = set(input_schema.get("required", []))
return [
{
"name": name,
"title": schema.get("title", name),
"type": schema.get("type", "string"),
"description": schema.get("description", ""),
"required": name in required,
"default": schema.get("default"),
}
for name, schema in properties.items()
if name not in exclude
]

View File

@@ -1,106 +0,0 @@
"""Tests for block execution guards in RunBlockTool."""
from unittest.mock import MagicMock, patch
import pytest
from backend.copilot.tools.models import ErrorResponse
from backend.copilot.tools.run_block import RunBlockTool
from backend.data.block import BlockType
from ._test_data import make_session
_TEST_USER_ID = "test-user-run-block"
def make_mock_block(
block_id: str, name: str, block_type: BlockType, disabled: bool = False
):
"""Create a mock block for testing."""
mock = MagicMock()
mock.id = block_id
mock.name = name
mock.block_type = block_type
mock.disabled = disabled
mock.input_schema = MagicMock()
mock.input_schema.jsonschema.return_value = {"properties": {}, "required": []}
mock.input_schema.get_credentials_fields_info.return_value = []
return mock
class TestRunBlockFiltering:
"""Tests for block execution guards in RunBlockTool."""
@pytest.mark.asyncio(loop_scope="session")
async def test_excluded_block_type_returns_error(self):
"""Attempting to execute a block with excluded BlockType returns error."""
session = make_session(user_id=_TEST_USER_ID)
input_block = make_mock_block("input-block-id", "Input Block", BlockType.INPUT)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=input_block,
):
tool = RunBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="input-block-id",
input_data={},
)
assert isinstance(response, ErrorResponse)
assert "cannot be run directly in CoPilot" in response.message
assert "designed for use within graphs only" in response.message
@pytest.mark.asyncio(loop_scope="session")
async def test_excluded_block_id_returns_error(self):
"""Attempting to execute SmartDecisionMakerBlock returns error."""
session = make_session(user_id=_TEST_USER_ID)
smart_decision_id = "3b191d9f-356f-482d-8238-ba04b6d18381"
smart_block = make_mock_block(
smart_decision_id, "Smart Decision Maker", BlockType.STANDARD
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=smart_block,
):
tool = RunBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id=smart_decision_id,
input_data={},
)
assert isinstance(response, ErrorResponse)
assert "cannot be run directly in CoPilot" in response.message
@pytest.mark.asyncio(loop_scope="session")
async def test_non_excluded_block_passes_guard(self):
"""Non-excluded blocks pass the filtering guard (may fail later for other reasons)."""
session = make_session(user_id=_TEST_USER_ID)
standard_block = make_mock_block(
"standard-id", "HTTP Request", BlockType.STANDARD
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=standard_block,
):
tool = RunBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="standard-id",
input_data={},
)
# Should NOT be an ErrorResponse about CoPilot exclusion
# (may be other errors like missing credentials, but not the exclusion guard)
if isinstance(response, ErrorResponse):
assert "cannot be run directly in CoPilot" not in response.message

View File

@@ -246,9 +246,7 @@ class BlockSchema(BaseModel):
f"is not of type {CredentialsMetaInput.__name__}"
)
CredentialsMetaInput.validate_credentials_field_schema(
cls.get_field_schema(field_name), field_name
)
credentials_fields[field_name].validate_credentials_field_schema(cls)
elif field_name in credentials_fields:
raise KeyError(

View File

@@ -36,14 +36,12 @@ from backend.blocks.replicate.replicate_block import ReplicateModelBlock
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
from backend.blocks.talking_head import CreateTalkingAvatarVideoBlock
from backend.blocks.text_to_speech_block import UnrealTextToSpeechBlock
from backend.blocks.video.narration import VideoNarrationBlock
from backend.data.block import Block, BlockCost, BlockCostType
from backend.integrations.credentials_store import (
aiml_api_credentials,
anthropic_credentials,
apollo_credentials,
did_credentials,
elevenlabs_credentials,
enrichlayer_credentials,
groq_credentials,
ideogram_credentials,
@@ -80,7 +78,6 @@ MODEL_COST: dict[LlmModel, int] = {
LlmModel.CLAUDE_4_1_OPUS: 21,
LlmModel.CLAUDE_4_OPUS: 21,
LlmModel.CLAUDE_4_SONNET: 5,
LlmModel.CLAUDE_4_6_OPUS: 14,
LlmModel.CLAUDE_4_5_HAIKU: 4,
LlmModel.CLAUDE_4_5_OPUS: 14,
LlmModel.CLAUDE_4_5_SONNET: 9,
@@ -642,16 +639,4 @@ BLOCK_COSTS: dict[Type[Block], list[BlockCost]] = {
},
),
],
VideoNarrationBlock: [
BlockCost(
cost_amount=5, # ElevenLabs TTS cost
cost_filter={
"credentials": {
"id": elevenlabs_credentials.id,
"provider": elevenlabs_credentials.provider,
"type": elevenlabs_credentials.type,
}
},
)
],
}

View File

@@ -134,16 +134,6 @@ async def test_block_credit_reset(server: SpinTestServer):
month1 = datetime.now(timezone.utc).replace(month=1, day=1)
user_credit.time_now = lambda: month1
# IMPORTANT: Set updatedAt to December of previous year to ensure it's
# in a different month than month1 (January). This fixes a timing bug
# where if the test runs in early February, 35 days ago would be January,
# matching the mocked month1 and preventing the refill from triggering.
dec_previous_year = month1.replace(year=month1.year - 1, month=12, day=15)
await UserBalance.prisma().update(
where={"userId": DEFAULT_USER_ID},
data={"updatedAt": dec_previous_year},
)
# First call in month 1 should trigger refill
balance = await user_credit.get_credits(DEFAULT_USER_ID)
assert balance == REFILL_VALUE # Should get 1000 credits

View File

@@ -1,8 +1,9 @@
import logging
import queue
from collections import defaultdict
from datetime import datetime, timedelta, timezone
from enum import Enum
from multiprocessing import Manager
from queue import Empty
from typing import (
TYPE_CHECKING,
Annotated,
@@ -1199,16 +1200,12 @@ class NodeExecutionEntry(BaseModel):
class ExecutionQueue(Generic[T]):
"""
Thread-safe queue for managing node execution within a single graph execution.
Note: Uses queue.Queue (not multiprocessing.Queue) since all access is from
threads within the same process. If migrating back to ProcessPoolExecutor,
replace with multiprocessing.Manager().Queue() for cross-process safety.
Queue for managing the execution of agents.
This will be shared between different processes
"""
def __init__(self):
# Thread-safe queue (not multiprocessing) — see class docstring
self.queue: queue.Queue[T] = queue.Queue()
self.queue = Manager().Queue()
def add(self, execution: T) -> T:
self.queue.put(execution)
@@ -1223,7 +1220,7 @@ class ExecutionQueue(Generic[T]):
def get_or_none(self) -> T | None:
try:
return self.queue.get_nowait()
except queue.Empty:
except Empty:
return None

Some files were not shown because too many files have changed in this diff Show More