Compare commits

..

1 Commits

Author SHA1 Message Date
Lluis Agusti
51d2028f0c chore: undo flag 2025-12-18 18:07:39 +01:00
1339 changed files with 31074 additions and 129497 deletions

View File

@@ -1,36 +0,0 @@
{
"worktreeCopyPatterns": [
".env*",
".vscode/**",
".auth/**",
".claude/**",
"autogpt_platform/.env*",
"autogpt_platform/backend/.env*",
"autogpt_platform/frontend/.env*",
"autogpt_platform/frontend/.auth/**",
"autogpt_platform/db/docker/.env*"
],
"worktreeCopyIgnores": [
"**/node_modules/**",
"**/dist/**",
"**/.git/**",
"**/Thumbs.db",
"**/.DS_Store",
"**/.next/**",
"**/__pycache__/**",
"**/.ruff_cache/**",
"**/.pytest_cache/**",
"**/*.pyc",
"**/playwright-report/**",
"**/logs/**",
"**/site/**"
],
"worktreePathTemplate": "$BASE_PATH.worktree",
"postCreateCmd": [
"cd autogpt_platform/autogpt_libs && poetry install",
"cd autogpt_platform/backend && poetry install && poetry run prisma generate",
"cd autogpt_platform/frontend && pnpm install"
],
"terminalCommand": "code .",
"deleteBranchWithWorktree": false
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,125 +0,0 @@
---
name: vercel-react-best-practices
description: React and Next.js performance optimization guidelines from Vercel Engineering. This skill should be used when writing, reviewing, or refactoring React/Next.js code to ensure optimal performance patterns. Triggers on tasks involving React components, Next.js pages, data fetching, bundle optimization, or performance improvements.
license: MIT
metadata:
author: vercel
version: "1.0.0"
---
# Vercel React Best Practices
Comprehensive performance optimization guide for React and Next.js applications, maintained by Vercel. Contains 45 rules across 8 categories, prioritized by impact to guide automated refactoring and code generation.
## When to Apply
Reference these guidelines when:
- Writing new React components or Next.js pages
- Implementing data fetching (client or server-side)
- Reviewing code for performance issues
- Refactoring existing React/Next.js code
- Optimizing bundle size or load times
## Rule Categories by Priority
| Priority | Category | Impact | Prefix |
|----------|----------|--------|--------|
| 1 | Eliminating Waterfalls | CRITICAL | `async-` |
| 2 | Bundle Size Optimization | CRITICAL | `bundle-` |
| 3 | Server-Side Performance | HIGH | `server-` |
| 4 | Client-Side Data Fetching | MEDIUM-HIGH | `client-` |
| 5 | Re-render Optimization | MEDIUM | `rerender-` |
| 6 | Rendering Performance | MEDIUM | `rendering-` |
| 7 | JavaScript Performance | LOW-MEDIUM | `js-` |
| 8 | Advanced Patterns | LOW | `advanced-` |
## Quick Reference
### 1. Eliminating Waterfalls (CRITICAL)
- `async-defer-await` - Move await into branches where actually used
- `async-parallel` - Use Promise.all() for independent operations
- `async-dependencies` - Use better-all for partial dependencies
- `async-api-routes` - Start promises early, await late in API routes
- `async-suspense-boundaries` - Use Suspense to stream content
### 2. Bundle Size Optimization (CRITICAL)
- `bundle-barrel-imports` - Import directly, avoid barrel files
- `bundle-dynamic-imports` - Use next/dynamic for heavy components
- `bundle-defer-third-party` - Load analytics/logging after hydration
- `bundle-conditional` - Load modules only when feature is activated
- `bundle-preload` - Preload on hover/focus for perceived speed
### 3. Server-Side Performance (HIGH)
- `server-cache-react` - Use React.cache() for per-request deduplication
- `server-cache-lru` - Use LRU cache for cross-request caching
- `server-serialization` - Minimize data passed to client components
- `server-parallel-fetching` - Restructure components to parallelize fetches
- `server-after-nonblocking` - Use after() for non-blocking operations
### 4. Client-Side Data Fetching (MEDIUM-HIGH)
- `client-swr-dedup` - Use SWR for automatic request deduplication
- `client-event-listeners` - Deduplicate global event listeners
### 5. Re-render Optimization (MEDIUM)
- `rerender-defer-reads` - Don't subscribe to state only used in callbacks
- `rerender-memo` - Extract expensive work into memoized components
- `rerender-dependencies` - Use primitive dependencies in effects
- `rerender-derived-state` - Subscribe to derived booleans, not raw values
- `rerender-functional-setstate` - Use functional setState for stable callbacks
- `rerender-lazy-state-init` - Pass function to useState for expensive values
- `rerender-transitions` - Use startTransition for non-urgent updates
### 6. Rendering Performance (MEDIUM)
- `rendering-animate-svg-wrapper` - Animate div wrapper, not SVG element
- `rendering-content-visibility` - Use content-visibility for long lists
- `rendering-hoist-jsx` - Extract static JSX outside components
- `rendering-svg-precision` - Reduce SVG coordinate precision
- `rendering-hydration-no-flicker` - Use inline script for client-only data
- `rendering-activity` - Use Activity component for show/hide
- `rendering-conditional-render` - Use ternary, not && for conditionals
### 7. JavaScript Performance (LOW-MEDIUM)
- `js-batch-dom-css` - Group CSS changes via classes or cssText
- `js-index-maps` - Build Map for repeated lookups
- `js-cache-property-access` - Cache object properties in loops
- `js-cache-function-results` - Cache function results in module-level Map
- `js-cache-storage` - Cache localStorage/sessionStorage reads
- `js-combine-iterations` - Combine multiple filter/map into one loop
- `js-length-check-first` - Check array length before expensive comparison
- `js-early-exit` - Return early from functions
- `js-hoist-regexp` - Hoist RegExp creation outside loops
- `js-min-max-loop` - Use loop for min/max instead of sort
- `js-set-map-lookups` - Use Set/Map for O(1) lookups
- `js-tosorted-immutable` - Use toSorted() for immutability
### 8. Advanced Patterns (LOW)
- `advanced-event-handler-refs` - Store event handlers in refs
- `advanced-use-latest` - useLatest for stable callback refs
## How to Use
Read individual rule files for detailed explanations and code examples:
```
rules/async-parallel.md
rules/bundle-barrel-imports.md
rules/_sections.md
```
Each rule file contains:
- Brief explanation of why it matters
- Incorrect code example with explanation
- Correct code example with explanation
- Additional context and references
## Full Compiled Document
For the complete guide with all rules expanded: `AGENTS.md`

View File

@@ -1,55 +0,0 @@
---
title: Store Event Handlers in Refs
impact: LOW
impactDescription: stable subscriptions
tags: advanced, hooks, refs, event-handlers, optimization
---
## Store Event Handlers in Refs
Store callbacks in refs when used in effects that shouldn't re-subscribe on callback changes.
**Incorrect (re-subscribes on every render):**
```tsx
function useWindowEvent(event: string, handler: () => void) {
useEffect(() => {
window.addEventListener(event, handler)
return () => window.removeEventListener(event, handler)
}, [event, handler])
}
```
**Correct (stable subscription):**
```tsx
function useWindowEvent(event: string, handler: () => void) {
const handlerRef = useRef(handler)
useEffect(() => {
handlerRef.current = handler
}, [handler])
useEffect(() => {
const listener = () => handlerRef.current()
window.addEventListener(event, listener)
return () => window.removeEventListener(event, listener)
}, [event])
}
```
**Alternative: use `useEffectEvent` if you're on latest React:**
```tsx
import { useEffectEvent } from 'react'
function useWindowEvent(event: string, handler: () => void) {
const onEvent = useEffectEvent(handler)
useEffect(() => {
window.addEventListener(event, onEvent)
return () => window.removeEventListener(event, onEvent)
}, [event])
}
```
`useEffectEvent` provides a cleaner API for the same pattern: it creates a stable function reference that always calls the latest version of the handler.

View File

@@ -1,49 +0,0 @@
---
title: useLatest for Stable Callback Refs
impact: LOW
impactDescription: prevents effect re-runs
tags: advanced, hooks, useLatest, refs, optimization
---
## useLatest for Stable Callback Refs
Access latest values in callbacks without adding them to dependency arrays. Prevents effect re-runs while avoiding stale closures.
**Implementation:**
```typescript
function useLatest<T>(value: T) {
const ref = useRef(value)
useEffect(() => {
ref.current = value
}, [value])
return ref
}
```
**Incorrect (effect re-runs on every callback change):**
```tsx
function SearchInput({ onSearch }: { onSearch: (q: string) => void }) {
const [query, setQuery] = useState('')
useEffect(() => {
const timeout = setTimeout(() => onSearch(query), 300)
return () => clearTimeout(timeout)
}, [query, onSearch])
}
```
**Correct (stable effect, fresh callback):**
```tsx
function SearchInput({ onSearch }: { onSearch: (q: string) => void }) {
const [query, setQuery] = useState('')
const onSearchRef = useLatest(onSearch)
useEffect(() => {
const timeout = setTimeout(() => onSearchRef.current(query), 300)
return () => clearTimeout(timeout)
}, [query])
}
```

View File

@@ -1,38 +0,0 @@
---
title: Prevent Waterfall Chains in API Routes
impact: CRITICAL
impactDescription: 2-10× improvement
tags: api-routes, server-actions, waterfalls, parallelization
---
## Prevent Waterfall Chains in API Routes
In API routes and Server Actions, start independent operations immediately, even if you don't await them yet.
**Incorrect (config waits for auth, data waits for both):**
```typescript
export async function GET(request: Request) {
const session = await auth()
const config = await fetchConfig()
const data = await fetchData(session.user.id)
return Response.json({ data, config })
}
```
**Correct (auth and config start immediately):**
```typescript
export async function GET(request: Request) {
const sessionPromise = auth()
const configPromise = fetchConfig()
const session = await sessionPromise
const [config, data] = await Promise.all([
configPromise,
fetchData(session.user.id)
])
return Response.json({ data, config })
}
```
For operations with more complex dependency chains, use `better-all` to automatically maximize parallelism (see Dependency-Based Parallelization).

View File

@@ -1,80 +0,0 @@
---
title: Defer Await Until Needed
impact: HIGH
impactDescription: avoids blocking unused code paths
tags: async, await, conditional, optimization
---
## Defer Await Until Needed
Move `await` operations into the branches where they're actually used to avoid blocking code paths that don't need them.
**Incorrect (blocks both branches):**
```typescript
async function handleRequest(userId: string, skipProcessing: boolean) {
const userData = await fetchUserData(userId)
if (skipProcessing) {
// Returns immediately but still waited for userData
return { skipped: true }
}
// Only this branch uses userData
return processUserData(userData)
}
```
**Correct (only blocks when needed):**
```typescript
async function handleRequest(userId: string, skipProcessing: boolean) {
if (skipProcessing) {
// Returns immediately without waiting
return { skipped: true }
}
// Fetch only when needed
const userData = await fetchUserData(userId)
return processUserData(userData)
}
```
**Another example (early return optimization):**
```typescript
// Incorrect: always fetches permissions
async function updateResource(resourceId: string, userId: string) {
const permissions = await fetchPermissions(userId)
const resource = await getResource(resourceId)
if (!resource) {
return { error: 'Not found' }
}
if (!permissions.canEdit) {
return { error: 'Forbidden' }
}
return await updateResourceData(resource, permissions)
}
// Correct: fetches only when needed
async function updateResource(resourceId: string, userId: string) {
const resource = await getResource(resourceId)
if (!resource) {
return { error: 'Not found' }
}
const permissions = await fetchPermissions(userId)
if (!permissions.canEdit) {
return { error: 'Forbidden' }
}
return await updateResourceData(resource, permissions)
}
```
This optimization is especially valuable when the skipped branch is frequently taken, or when the deferred operation is expensive.

View File

@@ -1,36 +0,0 @@
---
title: Dependency-Based Parallelization
impact: CRITICAL
impactDescription: 2-10× improvement
tags: async, parallelization, dependencies, better-all
---
## Dependency-Based Parallelization
For operations with partial dependencies, use `better-all` to maximize parallelism. It automatically starts each task at the earliest possible moment.
**Incorrect (profile waits for config unnecessarily):**
```typescript
const [user, config] = await Promise.all([
fetchUser(),
fetchConfig()
])
const profile = await fetchProfile(user.id)
```
**Correct (config and profile run in parallel):**
```typescript
import { all } from 'better-all'
const { user, config, profile } = await all({
async user() { return fetchUser() },
async config() { return fetchConfig() },
async profile() {
return fetchProfile((await this.$.user).id)
}
})
```
Reference: [https://github.com/shuding/better-all](https://github.com/shuding/better-all)

View File

@@ -1,28 +0,0 @@
---
title: Promise.all() for Independent Operations
impact: CRITICAL
impactDescription: 2-10× improvement
tags: async, parallelization, promises, waterfalls
---
## Promise.all() for Independent Operations
When async operations have no interdependencies, execute them concurrently using `Promise.all()`.
**Incorrect (sequential execution, 3 round trips):**
```typescript
const user = await fetchUser()
const posts = await fetchPosts()
const comments = await fetchComments()
```
**Correct (parallel execution, 1 round trip):**
```typescript
const [user, posts, comments] = await Promise.all([
fetchUser(),
fetchPosts(),
fetchComments()
])
```

View File

@@ -1,99 +0,0 @@
---
title: Strategic Suspense Boundaries
impact: HIGH
impactDescription: faster initial paint
tags: async, suspense, streaming, layout-shift
---
## Strategic Suspense Boundaries
Instead of awaiting data in async components before returning JSX, use Suspense boundaries to show the wrapper UI faster while data loads.
**Incorrect (wrapper blocked by data fetching):**
```tsx
async function Page() {
const data = await fetchData() // Blocks entire page
return (
<div>
<div>Sidebar</div>
<div>Header</div>
<div>
<DataDisplay data={data} />
</div>
<div>Footer</div>
</div>
)
}
```
The entire layout waits for data even though only the middle section needs it.
**Correct (wrapper shows immediately, data streams in):**
```tsx
function Page() {
return (
<div>
<div>Sidebar</div>
<div>Header</div>
<div>
<Suspense fallback={<Skeleton />}>
<DataDisplay />
</Suspense>
</div>
<div>Footer</div>
</div>
)
}
async function DataDisplay() {
const data = await fetchData() // Only blocks this component
return <div>{data.content}</div>
}
```
Sidebar, Header, and Footer render immediately. Only DataDisplay waits for data.
**Alternative (share promise across components):**
```tsx
function Page() {
// Start fetch immediately, but don't await
const dataPromise = fetchData()
return (
<div>
<div>Sidebar</div>
<div>Header</div>
<Suspense fallback={<Skeleton />}>
<DataDisplay dataPromise={dataPromise} />
<DataSummary dataPromise={dataPromise} />
</Suspense>
<div>Footer</div>
</div>
)
}
function DataDisplay({ dataPromise }: { dataPromise: Promise<Data> }) {
const data = use(dataPromise) // Unwraps the promise
return <div>{data.content}</div>
}
function DataSummary({ dataPromise }: { dataPromise: Promise<Data> }) {
const data = use(dataPromise) // Reuses the same promise
return <div>{data.summary}</div>
}
```
Both components share the same promise, so only one fetch occurs. Layout renders immediately while both components wait together.
**When NOT to use this pattern:**
- Critical data needed for layout decisions (affects positioning)
- SEO-critical content above the fold
- Small, fast queries where suspense overhead isn't worth it
- When you want to avoid layout shift (loading → content jump)
**Trade-off:** Faster initial paint vs potential layout shift. Choose based on your UX priorities.

View File

@@ -1,59 +0,0 @@
---
title: Avoid Barrel File Imports
impact: CRITICAL
impactDescription: 200-800ms import cost, slow builds
tags: bundle, imports, tree-shaking, barrel-files, performance
---
## Avoid Barrel File Imports
Import directly from source files instead of barrel files to avoid loading thousands of unused modules. **Barrel files** are entry points that re-export multiple modules (e.g., `index.js` that does `export * from './module'`).
Popular icon and component libraries can have **up to 10,000 re-exports** in their entry file. For many React packages, **it takes 200-800ms just to import them**, affecting both development speed and production cold starts.
**Why tree-shaking doesn't help:** When a library is marked as external (not bundled), the bundler can't optimize it. If you bundle it to enable tree-shaking, builds become substantially slower analyzing the entire module graph.
**Incorrect (imports entire library):**
```tsx
import { Check, X, Menu } from 'lucide-react'
// Loads 1,583 modules, takes ~2.8s extra in dev
// Runtime cost: 200-800ms on every cold start
import { Button, TextField } from '@mui/material'
// Loads 2,225 modules, takes ~4.2s extra in dev
```
**Correct (imports only what you need):**
```tsx
import Check from 'lucide-react/dist/esm/icons/check'
import X from 'lucide-react/dist/esm/icons/x'
import Menu from 'lucide-react/dist/esm/icons/menu'
// Loads only 3 modules (~2KB vs ~1MB)
import Button from '@mui/material/Button'
import TextField from '@mui/material/TextField'
// Loads only what you use
```
**Alternative (Next.js 13.5+):**
```js
// next.config.js - use optimizePackageImports
module.exports = {
experimental: {
optimizePackageImports: ['lucide-react', '@mui/material']
}
}
// Then you can keep the ergonomic barrel imports:
import { Check, X, Menu } from 'lucide-react'
// Automatically transformed to direct imports at build time
```
Direct imports provide 15-70% faster dev boot, 28% faster builds, 40% faster cold starts, and significantly faster HMR.
Libraries commonly affected: `lucide-react`, `@mui/material`, `@mui/icons-material`, `@tabler/icons-react`, `react-icons`, `@headlessui/react`, `@radix-ui/react-*`, `lodash`, `ramda`, `date-fns`, `rxjs`, `react-use`.
Reference: [How we optimized package imports in Next.js](https://vercel.com/blog/how-we-optimized-package-imports-in-next-js)

View File

@@ -1,31 +0,0 @@
---
title: Conditional Module Loading
impact: HIGH
impactDescription: loads large data only when needed
tags: bundle, conditional-loading, lazy-loading
---
## Conditional Module Loading
Load large data or modules only when a feature is activated.
**Example (lazy-load animation frames):**
```tsx
function AnimationPlayer({ enabled }: { enabled: boolean }) {
const [frames, setFrames] = useState<Frame[] | null>(null)
useEffect(() => {
if (enabled && !frames && typeof window !== 'undefined') {
import('./animation-frames.js')
.then(mod => setFrames(mod.frames))
.catch(() => setEnabled(false))
}
}, [enabled, frames])
if (!frames) return <Skeleton />
return <Canvas frames={frames} />
}
```
The `typeof window !== 'undefined'` check prevents bundling this module for SSR, optimizing server bundle size and build speed.

View File

@@ -1,49 +0,0 @@
---
title: Defer Non-Critical Third-Party Libraries
impact: MEDIUM
impactDescription: loads after hydration
tags: bundle, third-party, analytics, defer
---
## Defer Non-Critical Third-Party Libraries
Analytics, logging, and error tracking don't block user interaction. Load them after hydration.
**Incorrect (blocks initial bundle):**
```tsx
import { Analytics } from '@vercel/analytics/react'
export default function RootLayout({ children }) {
return (
<html>
<body>
{children}
<Analytics />
</body>
</html>
)
}
```
**Correct (loads after hydration):**
```tsx
import dynamic from 'next/dynamic'
const Analytics = dynamic(
() => import('@vercel/analytics/react').then(m => m.Analytics),
{ ssr: false }
)
export default function RootLayout({ children }) {
return (
<html>
<body>
{children}
<Analytics />
</body>
</html>
)
}
```

View File

@@ -1,35 +0,0 @@
---
title: Dynamic Imports for Heavy Components
impact: CRITICAL
impactDescription: directly affects TTI and LCP
tags: bundle, dynamic-import, code-splitting, next-dynamic
---
## Dynamic Imports for Heavy Components
Use `next/dynamic` to lazy-load large components not needed on initial render.
**Incorrect (Monaco bundles with main chunk ~300KB):**
```tsx
import { MonacoEditor } from './monaco-editor'
function CodePanel({ code }: { code: string }) {
return <MonacoEditor value={code} />
}
```
**Correct (Monaco loads on demand):**
```tsx
import dynamic from 'next/dynamic'
const MonacoEditor = dynamic(
() => import('./monaco-editor').then(m => m.MonacoEditor),
{ ssr: false }
)
function CodePanel({ code }: { code: string }) {
return <MonacoEditor value={code} />
}
```

View File

@@ -1,50 +0,0 @@
---
title: Preload Based on User Intent
impact: MEDIUM
impactDescription: reduces perceived latency
tags: bundle, preload, user-intent, hover
---
## Preload Based on User Intent
Preload heavy bundles before they're needed to reduce perceived latency.
**Example (preload on hover/focus):**
```tsx
function EditorButton({ onClick }: { onClick: () => void }) {
const preload = () => {
if (typeof window !== 'undefined') {
void import('./monaco-editor')
}
}
return (
<button
onMouseEnter={preload}
onFocus={preload}
onClick={onClick}
>
Open Editor
</button>
)
}
```
**Example (preload when feature flag is enabled):**
```tsx
function FlagsProvider({ children, flags }: Props) {
useEffect(() => {
if (flags.editorEnabled && typeof window !== 'undefined') {
void import('./monaco-editor').then(mod => mod.init())
}
}, [flags.editorEnabled])
return <FlagsContext.Provider value={flags}>
{children}
</FlagsContext.Provider>
}
```
The `typeof window !== 'undefined'` check prevents bundling preloaded modules for SSR, optimizing server bundle size and build speed.

View File

@@ -1,74 +0,0 @@
---
title: Deduplicate Global Event Listeners
impact: LOW
impactDescription: single listener for N components
tags: client, swr, event-listeners, subscription
---
## Deduplicate Global Event Listeners
Use `useSWRSubscription()` to share global event listeners across component instances.
**Incorrect (N instances = N listeners):**
```tsx
function useKeyboardShortcut(key: string, callback: () => void) {
useEffect(() => {
const handler = (e: KeyboardEvent) => {
if (e.metaKey && e.key === key) {
callback()
}
}
window.addEventListener('keydown', handler)
return () => window.removeEventListener('keydown', handler)
}, [key, callback])
}
```
When using the `useKeyboardShortcut` hook multiple times, each instance will register a new listener.
**Correct (N instances = 1 listener):**
```tsx
import useSWRSubscription from 'swr/subscription'
// Module-level Map to track callbacks per key
const keyCallbacks = new Map<string, Set<() => void>>()
function useKeyboardShortcut(key: string, callback: () => void) {
// Register this callback in the Map
useEffect(() => {
if (!keyCallbacks.has(key)) {
keyCallbacks.set(key, new Set())
}
keyCallbacks.get(key)!.add(callback)
return () => {
const set = keyCallbacks.get(key)
if (set) {
set.delete(callback)
if (set.size === 0) {
keyCallbacks.delete(key)
}
}
}
}, [key, callback])
useSWRSubscription('global-keydown', () => {
const handler = (e: KeyboardEvent) => {
if (e.metaKey && keyCallbacks.has(e.key)) {
keyCallbacks.get(e.key)!.forEach(cb => cb())
}
}
window.addEventListener('keydown', handler)
return () => window.removeEventListener('keydown', handler)
})
}
function Profile() {
// Multiple shortcuts will share the same listener
useKeyboardShortcut('p', () => { /* ... */ })
useKeyboardShortcut('k', () => { /* ... */ })
// ...
}
```

View File

@@ -1,56 +0,0 @@
---
title: Use SWR for Automatic Deduplication
impact: MEDIUM-HIGH
impactDescription: automatic deduplication
tags: client, swr, deduplication, data-fetching
---
## Use SWR for Automatic Deduplication
SWR enables request deduplication, caching, and revalidation across component instances.
**Incorrect (no deduplication, each instance fetches):**
```tsx
function UserList() {
const [users, setUsers] = useState([])
useEffect(() => {
fetch('/api/users')
.then(r => r.json())
.then(setUsers)
}, [])
}
```
**Correct (multiple instances share one request):**
```tsx
import useSWR from 'swr'
function UserList() {
const { data: users } = useSWR('/api/users', fetcher)
}
```
**For immutable data:**
```tsx
import { useImmutableSWR } from '@/lib/swr'
function StaticContent() {
const { data } = useImmutableSWR('/api/config', fetcher)
}
```
**For mutations:**
```tsx
import { useSWRMutation } from 'swr/mutation'
function UpdateButton() {
const { trigger } = useSWRMutation('/api/user', updateUser)
return <button onClick={() => trigger()}>Update</button>
}
```
Reference: [https://swr.vercel.app](https://swr.vercel.app)

View File

@@ -1,82 +0,0 @@
---
title: Batch DOM CSS Changes
impact: MEDIUM
impactDescription: reduces reflows/repaints
tags: javascript, dom, css, performance, reflow
---
## Batch DOM CSS Changes
Avoid changing styles one property at a time. Group multiple CSS changes together via classes or `cssText` to minimize browser reflows.
**Incorrect (multiple reflows):**
```typescript
function updateElementStyles(element: HTMLElement) {
// Each line triggers a reflow
element.style.width = '100px'
element.style.height = '200px'
element.style.backgroundColor = 'blue'
element.style.border = '1px solid black'
}
```
**Correct (add class - single reflow):**
```typescript
// CSS file
.highlighted-box {
width: 100px;
height: 200px;
background-color: blue;
border: 1px solid black;
}
// JavaScript
function updateElementStyles(element: HTMLElement) {
element.classList.add('highlighted-box')
}
```
**Correct (change cssText - single reflow):**
```typescript
function updateElementStyles(element: HTMLElement) {
element.style.cssText = `
width: 100px;
height: 200px;
background-color: blue;
border: 1px solid black;
`
}
```
**React example:**
```tsx
// Incorrect: changing styles one by one
function Box({ isHighlighted }: { isHighlighted: boolean }) {
const ref = useRef<HTMLDivElement>(null)
useEffect(() => {
if (ref.current && isHighlighted) {
ref.current.style.width = '100px'
ref.current.style.height = '200px'
ref.current.style.backgroundColor = 'blue'
}
}, [isHighlighted])
return <div ref={ref}>Content</div>
}
// Correct: toggle class
function Box({ isHighlighted }: { isHighlighted: boolean }) {
return (
<div className={isHighlighted ? 'highlighted-box' : ''}>
Content
</div>
)
}
```
Prefer CSS classes over inline styles when possible. Classes are cached by the browser and provide better separation of concerns.

View File

@@ -1,80 +0,0 @@
---
title: Cache Repeated Function Calls
impact: MEDIUM
impactDescription: avoid redundant computation
tags: javascript, cache, memoization, performance
---
## Cache Repeated Function Calls
Use a module-level Map to cache function results when the same function is called repeatedly with the same inputs during render.
**Incorrect (redundant computation):**
```typescript
function ProjectList({ projects }: { projects: Project[] }) {
return (
<div>
{projects.map(project => {
// slugify() called 100+ times for same project names
const slug = slugify(project.name)
return <ProjectCard key={project.id} slug={slug} />
})}
</div>
)
}
```
**Correct (cached results):**
```typescript
// Module-level cache
const slugifyCache = new Map<string, string>()
function cachedSlugify(text: string): string {
if (slugifyCache.has(text)) {
return slugifyCache.get(text)!
}
const result = slugify(text)
slugifyCache.set(text, result)
return result
}
function ProjectList({ projects }: { projects: Project[] }) {
return (
<div>
{projects.map(project => {
// Computed only once per unique project name
const slug = cachedSlugify(project.name)
return <ProjectCard key={project.id} slug={slug} />
})}
</div>
)
}
```
**Simpler pattern for single-value functions:**
```typescript
let isLoggedInCache: boolean | null = null
function isLoggedIn(): boolean {
if (isLoggedInCache !== null) {
return isLoggedInCache
}
isLoggedInCache = document.cookie.includes('auth=')
return isLoggedInCache
}
// Clear cache when auth changes
function onAuthChange() {
isLoggedInCache = null
}
```
Use a Map (not a hook) so it works everywhere: utilities, event handlers, not just React components.
Reference: [How we made the Vercel Dashboard twice as fast](https://vercel.com/blog/how-we-made-the-vercel-dashboard-twice-as-fast)

View File

@@ -1,28 +0,0 @@
---
title: Cache Property Access in Loops
impact: LOW-MEDIUM
impactDescription: reduces lookups
tags: javascript, loops, optimization, caching
---
## Cache Property Access in Loops
Cache object property lookups in hot paths.
**Incorrect (3 lookups × N iterations):**
```typescript
for (let i = 0; i < arr.length; i++) {
process(obj.config.settings.value)
}
```
**Correct (1 lookup total):**
```typescript
const value = obj.config.settings.value
const len = arr.length
for (let i = 0; i < len; i++) {
process(value)
}
```

View File

@@ -1,70 +0,0 @@
---
title: Cache Storage API Calls
impact: LOW-MEDIUM
impactDescription: reduces expensive I/O
tags: javascript, localStorage, storage, caching, performance
---
## Cache Storage API Calls
`localStorage`, `sessionStorage`, and `document.cookie` are synchronous and expensive. Cache reads in memory.
**Incorrect (reads storage on every call):**
```typescript
function getTheme() {
return localStorage.getItem('theme') ?? 'light'
}
// Called 10 times = 10 storage reads
```
**Correct (Map cache):**
```typescript
const storageCache = new Map<string, string | null>()
function getLocalStorage(key: string) {
if (!storageCache.has(key)) {
storageCache.set(key, localStorage.getItem(key))
}
return storageCache.get(key)
}
function setLocalStorage(key: string, value: string) {
localStorage.setItem(key, value)
storageCache.set(key, value) // keep cache in sync
}
```
Use a Map (not a hook) so it works everywhere: utilities, event handlers, not just React components.
**Cookie caching:**
```typescript
let cookieCache: Record<string, string> | null = null
function getCookie(name: string) {
if (!cookieCache) {
cookieCache = Object.fromEntries(
document.cookie.split('; ').map(c => c.split('='))
)
}
return cookieCache[name]
}
```
**Important (invalidate on external changes):**
If storage can change externally (another tab, server-set cookies), invalidate cache:
```typescript
window.addEventListener('storage', (e) => {
if (e.key) storageCache.delete(e.key)
})
document.addEventListener('visibilitychange', () => {
if (document.visibilityState === 'visible') {
storageCache.clear()
}
})
```

View File

@@ -1,32 +0,0 @@
---
title: Combine Multiple Array Iterations
impact: LOW-MEDIUM
impactDescription: reduces iterations
tags: javascript, arrays, loops, performance
---
## Combine Multiple Array Iterations
Multiple `.filter()` or `.map()` calls iterate the array multiple times. Combine into one loop.
**Incorrect (3 iterations):**
```typescript
const admins = users.filter(u => u.isAdmin)
const testers = users.filter(u => u.isTester)
const inactive = users.filter(u => !u.isActive)
```
**Correct (1 iteration):**
```typescript
const admins: User[] = []
const testers: User[] = []
const inactive: User[] = []
for (const user of users) {
if (user.isAdmin) admins.push(user)
if (user.isTester) testers.push(user)
if (!user.isActive) inactive.push(user)
}
```

View File

@@ -1,50 +0,0 @@
---
title: Early Return from Functions
impact: LOW-MEDIUM
impactDescription: avoids unnecessary computation
tags: javascript, functions, optimization, early-return
---
## Early Return from Functions
Return early when result is determined to skip unnecessary processing.
**Incorrect (processes all items even after finding answer):**
```typescript
function validateUsers(users: User[]) {
let hasError = false
let errorMessage = ''
for (const user of users) {
if (!user.email) {
hasError = true
errorMessage = 'Email required'
}
if (!user.name) {
hasError = true
errorMessage = 'Name required'
}
// Continues checking all users even after error found
}
return hasError ? { valid: false, error: errorMessage } : { valid: true }
}
```
**Correct (returns immediately on first error):**
```typescript
function validateUsers(users: User[]) {
for (const user of users) {
if (!user.email) {
return { valid: false, error: 'Email required' }
}
if (!user.name) {
return { valid: false, error: 'Name required' }
}
}
return { valid: true }
}
```

View File

@@ -1,45 +0,0 @@
---
title: Hoist RegExp Creation
impact: LOW-MEDIUM
impactDescription: avoids recreation
tags: javascript, regexp, optimization, memoization
---
## Hoist RegExp Creation
Don't create RegExp inside render. Hoist to module scope or memoize with `useMemo()`.
**Incorrect (new RegExp every render):**
```tsx
function Highlighter({ text, query }: Props) {
const regex = new RegExp(`(${query})`, 'gi')
const parts = text.split(regex)
return <>{parts.map((part, i) => ...)}</>
}
```
**Correct (memoize or hoist):**
```tsx
const EMAIL_REGEX = /^[^\s@]+@[^\s@]+\.[^\s@]+$/
function Highlighter({ text, query }: Props) {
const regex = useMemo(
() => new RegExp(`(${escapeRegex(query)})`, 'gi'),
[query]
)
const parts = text.split(regex)
return <>{parts.map((part, i) => ...)}</>
}
```
**Warning (global regex has mutable state):**
Global regex (`/g`) has mutable `lastIndex` state:
```typescript
const regex = /foo/g
regex.test('foo') // true, lastIndex = 3
regex.test('foo') // false, lastIndex = 0
```

View File

@@ -1,37 +0,0 @@
---
title: Build Index Maps for Repeated Lookups
impact: LOW-MEDIUM
impactDescription: 1M ops to 2K ops
tags: javascript, map, indexing, optimization, performance
---
## Build Index Maps for Repeated Lookups
Multiple `.find()` calls by the same key should use a Map.
**Incorrect (O(n) per lookup):**
```typescript
function processOrders(orders: Order[], users: User[]) {
return orders.map(order => ({
...order,
user: users.find(u => u.id === order.userId)
}))
}
```
**Correct (O(1) per lookup):**
```typescript
function processOrders(orders: Order[], users: User[]) {
const userById = new Map(users.map(u => [u.id, u]))
return orders.map(order => ({
...order,
user: userById.get(order.userId)
}))
}
```
Build map once (O(n)), then all lookups are O(1).
For 1000 orders × 1000 users: 1M ops → 2K ops.

View File

@@ -1,49 +0,0 @@
---
title: Early Length Check for Array Comparisons
impact: MEDIUM-HIGH
impactDescription: avoids expensive operations when lengths differ
tags: javascript, arrays, performance, optimization, comparison
---
## Early Length Check for Array Comparisons
When comparing arrays with expensive operations (sorting, deep equality, serialization), check lengths first. If lengths differ, the arrays cannot be equal.
In real-world applications, this optimization is especially valuable when the comparison runs in hot paths (event handlers, render loops).
**Incorrect (always runs expensive comparison):**
```typescript
function hasChanges(current: string[], original: string[]) {
// Always sorts and joins, even when lengths differ
return current.sort().join() !== original.sort().join()
}
```
Two O(n log n) sorts run even when `current.length` is 5 and `original.length` is 100. There is also overhead of joining the arrays and comparing the strings.
**Correct (O(1) length check first):**
```typescript
function hasChanges(current: string[], original: string[]) {
// Early return if lengths differ
if (current.length !== original.length) {
return true
}
// Only sort/join when lengths match
const currentSorted = current.toSorted()
const originalSorted = original.toSorted()
for (let i = 0; i < currentSorted.length; i++) {
if (currentSorted[i] !== originalSorted[i]) {
return true
}
}
return false
}
```
This new approach is more efficient because:
- It avoids the overhead of sorting and joining the arrays when lengths differ
- It avoids consuming memory for the joined strings (especially important for large arrays)
- It avoids mutating the original arrays
- It returns early when a difference is found

View File

@@ -1,82 +0,0 @@
---
title: Use Loop for Min/Max Instead of Sort
impact: LOW
impactDescription: O(n) instead of O(n log n)
tags: javascript, arrays, performance, sorting, algorithms
---
## Use Loop for Min/Max Instead of Sort
Finding the smallest or largest element only requires a single pass through the array. Sorting is wasteful and slower.
**Incorrect (O(n log n) - sort to find latest):**
```typescript
interface Project {
id: string
name: string
updatedAt: number
}
function getLatestProject(projects: Project[]) {
const sorted = [...projects].sort((a, b) => b.updatedAt - a.updatedAt)
return sorted[0]
}
```
Sorts the entire array just to find the maximum value.
**Incorrect (O(n log n) - sort for oldest and newest):**
```typescript
function getOldestAndNewest(projects: Project[]) {
const sorted = [...projects].sort((a, b) => a.updatedAt - b.updatedAt)
return { oldest: sorted[0], newest: sorted[sorted.length - 1] }
}
```
Still sorts unnecessarily when only min/max are needed.
**Correct (O(n) - single loop):**
```typescript
function getLatestProject(projects: Project[]) {
if (projects.length === 0) return null
let latest = projects[0]
for (let i = 1; i < projects.length; i++) {
if (projects[i].updatedAt > latest.updatedAt) {
latest = projects[i]
}
}
return latest
}
function getOldestAndNewest(projects: Project[]) {
if (projects.length === 0) return { oldest: null, newest: null }
let oldest = projects[0]
let newest = projects[0]
for (let i = 1; i < projects.length; i++) {
if (projects[i].updatedAt < oldest.updatedAt) oldest = projects[i]
if (projects[i].updatedAt > newest.updatedAt) newest = projects[i]
}
return { oldest, newest }
}
```
Single pass through the array, no copying, no sorting.
**Alternative (Math.min/Math.max for small arrays):**
```typescript
const numbers = [5, 2, 8, 1, 9]
const min = Math.min(...numbers)
const max = Math.max(...numbers)
```
This works for small arrays but can be slower for very large arrays due to spread operator limitations. Use the loop approach for reliability.

View File

@@ -1,24 +0,0 @@
---
title: Use Set/Map for O(1) Lookups
impact: LOW-MEDIUM
impactDescription: O(n) to O(1)
tags: javascript, set, map, data-structures, performance
---
## Use Set/Map for O(1) Lookups
Convert arrays to Set/Map for repeated membership checks.
**Incorrect (O(n) per check):**
```typescript
const allowedIds = ['a', 'b', 'c', ...]
items.filter(item => allowedIds.includes(item.id))
```
**Correct (O(1) per check):**
```typescript
const allowedIds = new Set(['a', 'b', 'c', ...])
items.filter(item => allowedIds.has(item.id))
```

View File

@@ -1,57 +0,0 @@
---
title: Use toSorted() Instead of sort() for Immutability
impact: MEDIUM-HIGH
impactDescription: prevents mutation bugs in React state
tags: javascript, arrays, immutability, react, state, mutation
---
## Use toSorted() Instead of sort() for Immutability
`.sort()` mutates the array in place, which can cause bugs with React state and props. Use `.toSorted()` to create a new sorted array without mutation.
**Incorrect (mutates original array):**
```typescript
function UserList({ users }: { users: User[] }) {
// Mutates the users prop array!
const sorted = useMemo(
() => users.sort((a, b) => a.name.localeCompare(b.name)),
[users]
)
return <div>{sorted.map(renderUser)}</div>
}
```
**Correct (creates new array):**
```typescript
function UserList({ users }: { users: User[] }) {
// Creates new sorted array, original unchanged
const sorted = useMemo(
() => users.toSorted((a, b) => a.name.localeCompare(b.name)),
[users]
)
return <div>{sorted.map(renderUser)}</div>
}
```
**Why this matters in React:**
1. Props/state mutations break React's immutability model - React expects props and state to be treated as read-only
2. Causes stale closure bugs - Mutating arrays inside closures (callbacks, effects) can lead to unexpected behavior
**Browser support (fallback for older browsers):**
`.toSorted()` is available in all modern browsers (Chrome 110+, Safari 16+, Firefox 115+, Node.js 20+). For older environments, use spread operator:
```typescript
// Fallback for older browsers
const sorted = [...items].sort((a, b) => a.value - b.value)
```
**Other immutable array methods:**
- `.toSorted()` - immutable sort
- `.toReversed()` - immutable reverse
- `.toSpliced()` - immutable splice
- `.with()` - immutable element replacement

View File

@@ -1,26 +0,0 @@
---
title: Use Activity Component for Show/Hide
impact: MEDIUM
impactDescription: preserves state/DOM
tags: rendering, activity, visibility, state-preservation
---
## Use Activity Component for Show/Hide
Use React's `<Activity>` to preserve state/DOM for expensive components that frequently toggle visibility.
**Usage:**
```tsx
import { Activity } from 'react'
function Dropdown({ isOpen }: Props) {
return (
<Activity mode={isOpen ? 'visible' : 'hidden'}>
<ExpensiveMenu />
</Activity>
)
}
```
Avoids expensive re-renders and state loss.

View File

@@ -1,47 +0,0 @@
---
title: Animate SVG Wrapper Instead of SVG Element
impact: LOW
impactDescription: enables hardware acceleration
tags: rendering, svg, css, animation, performance
---
## Animate SVG Wrapper Instead of SVG Element
Many browsers don't have hardware acceleration for CSS3 animations on SVG elements. Wrap SVG in a `<div>` and animate the wrapper instead.
**Incorrect (animating SVG directly - no hardware acceleration):**
```tsx
function LoadingSpinner() {
return (
<svg
className="animate-spin"
width="24"
height="24"
viewBox="0 0 24 24"
>
<circle cx="12" cy="12" r="10" stroke="currentColor" />
</svg>
)
}
```
**Correct (animating wrapper div - hardware accelerated):**
```tsx
function LoadingSpinner() {
return (
<div className="animate-spin">
<svg
width="24"
height="24"
viewBox="0 0 24 24"
>
<circle cx="12" cy="12" r="10" stroke="currentColor" />
</svg>
</div>
)
}
```
This applies to all CSS transforms and transitions (`transform`, `opacity`, `translate`, `scale`, `rotate`). The wrapper div allows browsers to use GPU acceleration for smoother animations.

View File

@@ -1,40 +0,0 @@
---
title: Use Explicit Conditional Rendering
impact: LOW
impactDescription: prevents rendering 0 or NaN
tags: rendering, conditional, jsx, falsy-values
---
## Use Explicit Conditional Rendering
Use explicit ternary operators (`? :`) instead of `&&` for conditional rendering when the condition can be `0`, `NaN`, or other falsy values that render.
**Incorrect (renders "0" when count is 0):**
```tsx
function Badge({ count }: { count: number }) {
return (
<div>
{count && <span className="badge">{count}</span>}
</div>
)
}
// When count = 0, renders: <div>0</div>
// When count = 5, renders: <div><span class="badge">5</span></div>
```
**Correct (renders nothing when count is 0):**
```tsx
function Badge({ count }: { count: number }) {
return (
<div>
{count > 0 ? <span className="badge">{count}</span> : null}
</div>
)
}
// When count = 0, renders: <div></div>
// When count = 5, renders: <div><span class="badge">5</span></div>
```

View File

@@ -1,38 +0,0 @@
---
title: CSS content-visibility for Long Lists
impact: HIGH
impactDescription: faster initial render
tags: rendering, css, content-visibility, long-lists
---
## CSS content-visibility for Long Lists
Apply `content-visibility: auto` to defer off-screen rendering.
**CSS:**
```css
.message-item {
content-visibility: auto;
contain-intrinsic-size: 0 80px;
}
```
**Example:**
```tsx
function MessageList({ messages }: { messages: Message[] }) {
return (
<div className="overflow-y-auto h-screen">
{messages.map(msg => (
<div key={msg.id} className="message-item">
<Avatar user={msg.author} />
<div>{msg.content}</div>
</div>
))}
</div>
)
}
```
For 1000 messages, browser skips layout/paint for ~990 off-screen items (10× faster initial render).

View File

@@ -1,46 +0,0 @@
---
title: Hoist Static JSX Elements
impact: LOW
impactDescription: avoids re-creation
tags: rendering, jsx, static, optimization
---
## Hoist Static JSX Elements
Extract static JSX outside components to avoid re-creation.
**Incorrect (recreates element every render):**
```tsx
function LoadingSkeleton() {
return <div className="animate-pulse h-20 bg-gray-200" />
}
function Container() {
return (
<div>
{loading && <LoadingSkeleton />}
</div>
)
}
```
**Correct (reuses same element):**
```tsx
const loadingSkeleton = (
<div className="animate-pulse h-20 bg-gray-200" />
)
function Container() {
return (
<div>
{loading && loadingSkeleton}
</div>
)
}
```
This is especially helpful for large and static SVG nodes, which can be expensive to recreate on every render.
**Note:** If your project has [React Compiler](https://react.dev/learn/react-compiler) enabled, the compiler automatically hoists static JSX elements and optimizes component re-renders, making manual hoisting unnecessary.

View File

@@ -1,82 +0,0 @@
---
title: Prevent Hydration Mismatch Without Flickering
impact: MEDIUM
impactDescription: avoids visual flicker and hydration errors
tags: rendering, ssr, hydration, localStorage, flicker
---
## Prevent Hydration Mismatch Without Flickering
When rendering content that depends on client-side storage (localStorage, cookies), avoid both SSR breakage and post-hydration flickering by injecting a synchronous script that updates the DOM before React hydrates.
**Incorrect (breaks SSR):**
```tsx
function ThemeWrapper({ children }: { children: ReactNode }) {
// localStorage is not available on server - throws error
const theme = localStorage.getItem('theme') || 'light'
return (
<div className={theme}>
{children}
</div>
)
}
```
Server-side rendering will fail because `localStorage` is undefined.
**Incorrect (visual flickering):**
```tsx
function ThemeWrapper({ children }: { children: ReactNode }) {
const [theme, setTheme] = useState('light')
useEffect(() => {
// Runs after hydration - causes visible flash
const stored = localStorage.getItem('theme')
if (stored) {
setTheme(stored)
}
}, [])
return (
<div className={theme}>
{children}
</div>
)
}
```
Component first renders with default value (`light`), then updates after hydration, causing a visible flash of incorrect content.
**Correct (no flicker, no hydration mismatch):**
```tsx
function ThemeWrapper({ children }: { children: ReactNode }) {
return (
<>
<div id="theme-wrapper">
{children}
</div>
<script
dangerouslySetInnerHTML={{
__html: `
(function() {
try {
var theme = localStorage.getItem('theme') || 'light';
var el = document.getElementById('theme-wrapper');
if (el) el.className = theme;
} catch (e) {}
})();
`,
}}
/>
</>
)
}
```
The inline script executes synchronously before showing the element, ensuring the DOM already has the correct value. No flickering, no hydration mismatch.
This pattern is especially useful for theme toggles, user preferences, authentication states, and any client-only data that should render immediately without flashing default values.

View File

@@ -1,28 +0,0 @@
---
title: Optimize SVG Precision
impact: LOW
impactDescription: reduces file size
tags: rendering, svg, optimization, svgo
---
## Optimize SVG Precision
Reduce SVG coordinate precision to decrease file size. The optimal precision depends on the viewBox size, but in general reducing precision should be considered.
**Incorrect (excessive precision):**
```svg
<path d="M 10.293847 20.847362 L 30.938472 40.192837" />
```
**Correct (1 decimal place):**
```svg
<path d="M 10.3 20.8 L 30.9 40.2" />
```
**Automate with SVGO:**
```bash
npx svgo --precision=1 --multipass icon.svg
```

View File

@@ -1,39 +0,0 @@
---
title: Defer State Reads to Usage Point
impact: MEDIUM
impactDescription: avoids unnecessary subscriptions
tags: rerender, searchParams, localStorage, optimization
---
## Defer State Reads to Usage Point
Don't subscribe to dynamic state (searchParams, localStorage) if you only read it inside callbacks.
**Incorrect (subscribes to all searchParams changes):**
```tsx
function ShareButton({ chatId }: { chatId: string }) {
const searchParams = useSearchParams()
const handleShare = () => {
const ref = searchParams.get('ref')
shareChat(chatId, { ref })
}
return <button onClick={handleShare}>Share</button>
}
```
**Correct (reads on demand, no subscription):**
```tsx
function ShareButton({ chatId }: { chatId: string }) {
const handleShare = () => {
const params = new URLSearchParams(window.location.search)
const ref = params.get('ref')
shareChat(chatId, { ref })
}
return <button onClick={handleShare}>Share</button>
}
```

View File

@@ -1,45 +0,0 @@
---
title: Narrow Effect Dependencies
impact: LOW
impactDescription: minimizes effect re-runs
tags: rerender, useEffect, dependencies, optimization
---
## Narrow Effect Dependencies
Specify primitive dependencies instead of objects to minimize effect re-runs.
**Incorrect (re-runs on any user field change):**
```tsx
useEffect(() => {
console.log(user.id)
}, [user])
```
**Correct (re-runs only when id changes):**
```tsx
useEffect(() => {
console.log(user.id)
}, [user.id])
```
**For derived state, compute outside effect:**
```tsx
// Incorrect: runs on width=767, 766, 765...
useEffect(() => {
if (width < 768) {
enableMobileMode()
}
}, [width])
// Correct: runs only on boolean transition
const isMobile = width < 768
useEffect(() => {
if (isMobile) {
enableMobileMode()
}
}, [isMobile])
```

View File

@@ -1,29 +0,0 @@
---
title: Subscribe to Derived State
impact: MEDIUM
impactDescription: reduces re-render frequency
tags: rerender, derived-state, media-query, optimization
---
## Subscribe to Derived State
Subscribe to derived boolean state instead of continuous values to reduce re-render frequency.
**Incorrect (re-renders on every pixel change):**
```tsx
function Sidebar() {
const width = useWindowWidth() // updates continuously
const isMobile = width < 768
return <nav className={isMobile ? 'mobile' : 'desktop'}>
}
```
**Correct (re-renders only when boolean changes):**
```tsx
function Sidebar() {
const isMobile = useMediaQuery('(max-width: 767px)')
return <nav className={isMobile ? 'mobile' : 'desktop'}>
}
```

View File

@@ -1,74 +0,0 @@
---
title: Use Functional setState Updates
impact: MEDIUM
impactDescription: prevents stale closures and unnecessary callback recreations
tags: react, hooks, useState, useCallback, callbacks, closures
---
## Use Functional setState Updates
When updating state based on the current state value, use the functional update form of setState instead of directly referencing the state variable. This prevents stale closures, eliminates unnecessary dependencies, and creates stable callback references.
**Incorrect (requires state as dependency):**
```tsx
function TodoList() {
const [items, setItems] = useState(initialItems)
// Callback must depend on items, recreated on every items change
const addItems = useCallback((newItems: Item[]) => {
setItems([...items, ...newItems])
}, [items]) // ❌ items dependency causes recreations
// Risk of stale closure if dependency is forgotten
const removeItem = useCallback((id: string) => {
setItems(items.filter(item => item.id !== id))
}, []) // ❌ Missing items dependency - will use stale items!
return <ItemsEditor items={items} onAdd={addItems} onRemove={removeItem} />
}
```
The first callback is recreated every time `items` changes, which can cause child components to re-render unnecessarily. The second callback has a stale closure bug—it will always reference the initial `items` value.
**Correct (stable callbacks, no stale closures):**
```tsx
function TodoList() {
const [items, setItems] = useState(initialItems)
// Stable callback, never recreated
const addItems = useCallback((newItems: Item[]) => {
setItems(curr => [...curr, ...newItems])
}, []) // ✅ No dependencies needed
// Always uses latest state, no stale closure risk
const removeItem = useCallback((id: string) => {
setItems(curr => curr.filter(item => item.id !== id))
}, []) // ✅ Safe and stable
return <ItemsEditor items={items} onAdd={addItems} onRemove={removeItem} />
}
```
**Benefits:**
1. **Stable callback references** - Callbacks don't need to be recreated when state changes
2. **No stale closures** - Always operates on the latest state value
3. **Fewer dependencies** - Simplifies dependency arrays and reduces memory leaks
4. **Prevents bugs** - Eliminates the most common source of React closure bugs
**When to use functional updates:**
- Any setState that depends on the current state value
- Inside useCallback/useMemo when state is needed
- Event handlers that reference state
- Async operations that update state
**When direct updates are fine:**
- Setting state to a static value: `setCount(0)`
- Setting state from props/arguments only: `setName(newName)`
- State doesn't depend on previous value
**Note:** If your project has [React Compiler](https://react.dev/learn/react-compiler) enabled, the compiler can automatically optimize some cases, but functional updates are still recommended for correctness and to prevent stale closure bugs.

View File

@@ -1,58 +0,0 @@
---
title: Use Lazy State Initialization
impact: MEDIUM
impactDescription: wasted computation on every render
tags: react, hooks, useState, performance, initialization
---
## Use Lazy State Initialization
Pass a function to `useState` for expensive initial values. Without the function form, the initializer runs on every render even though the value is only used once.
**Incorrect (runs on every render):**
```tsx
function FilteredList({ items }: { items: Item[] }) {
// buildSearchIndex() runs on EVERY render, even after initialization
const [searchIndex, setSearchIndex] = useState(buildSearchIndex(items))
const [query, setQuery] = useState('')
// When query changes, buildSearchIndex runs again unnecessarily
return <SearchResults index={searchIndex} query={query} />
}
function UserProfile() {
// JSON.parse runs on every render
const [settings, setSettings] = useState(
JSON.parse(localStorage.getItem('settings') || '{}')
)
return <SettingsForm settings={settings} onChange={setSettings} />
}
```
**Correct (runs only once):**
```tsx
function FilteredList({ items }: { items: Item[] }) {
// buildSearchIndex() runs ONLY on initial render
const [searchIndex, setSearchIndex] = useState(() => buildSearchIndex(items))
const [query, setQuery] = useState('')
return <SearchResults index={searchIndex} query={query} />
}
function UserProfile() {
// JSON.parse runs only on initial render
const [settings, setSettings] = useState(() => {
const stored = localStorage.getItem('settings')
return stored ? JSON.parse(stored) : {}
})
return <SettingsForm settings={settings} onChange={setSettings} />
}
```
Use lazy initialization when computing initial values from localStorage/sessionStorage, building data structures (indexes, maps), reading from the DOM, or performing heavy transformations.
For simple primitives (`useState(0)`), direct references (`useState(props.value)`), or cheap literals (`useState({})`), the function form is unnecessary.

View File

@@ -1,44 +0,0 @@
---
title: Extract to Memoized Components
impact: MEDIUM
impactDescription: enables early returns
tags: rerender, memo, useMemo, optimization
---
## Extract to Memoized Components
Extract expensive work into memoized components to enable early returns before computation.
**Incorrect (computes avatar even when loading):**
```tsx
function Profile({ user, loading }: Props) {
const avatar = useMemo(() => {
const id = computeAvatarId(user)
return <Avatar id={id} />
}, [user])
if (loading) return <Skeleton />
return <div>{avatar}</div>
}
```
**Correct (skips computation when loading):**
```tsx
const UserAvatar = memo(function UserAvatar({ user }: { user: User }) {
const id = useMemo(() => computeAvatarId(user), [user])
return <Avatar id={id} />
})
function Profile({ user, loading }: Props) {
if (loading) return <Skeleton />
return (
<div>
<UserAvatar user={user} />
</div>
)
}
```
**Note:** If your project has [React Compiler](https://react.dev/learn/react-compiler) enabled, manual memoization with `memo()` and `useMemo()` is not necessary. The compiler automatically optimizes re-renders.

View File

@@ -1,40 +0,0 @@
---
title: Use Transitions for Non-Urgent Updates
impact: MEDIUM
impactDescription: maintains UI responsiveness
tags: rerender, transitions, startTransition, performance
---
## Use Transitions for Non-Urgent Updates
Mark frequent, non-urgent state updates as transitions to maintain UI responsiveness.
**Incorrect (blocks UI on every scroll):**
```tsx
function ScrollTracker() {
const [scrollY, setScrollY] = useState(0)
useEffect(() => {
const handler = () => setScrollY(window.scrollY)
window.addEventListener('scroll', handler, { passive: true })
return () => window.removeEventListener('scroll', handler)
}, [])
}
```
**Correct (non-blocking updates):**
```tsx
import { startTransition } from 'react'
function ScrollTracker() {
const [scrollY, setScrollY] = useState(0)
useEffect(() => {
const handler = () => {
startTransition(() => setScrollY(window.scrollY))
}
window.addEventListener('scroll', handler, { passive: true })
return () => window.removeEventListener('scroll', handler)
}, [])
}
```

View File

@@ -1,73 +0,0 @@
---
title: Use after() for Non-Blocking Operations
impact: MEDIUM
impactDescription: faster response times
tags: server, async, logging, analytics, side-effects
---
## Use after() for Non-Blocking Operations
Use Next.js's `after()` to schedule work that should execute after a response is sent. This prevents logging, analytics, and other side effects from blocking the response.
**Incorrect (blocks response):**
```tsx
import { logUserAction } from '@/app/utils'
export async function POST(request: Request) {
// Perform mutation
await updateDatabase(request)
// Logging blocks the response
const userAgent = request.headers.get('user-agent') || 'unknown'
await logUserAction({ userAgent })
return new Response(JSON.stringify({ status: 'success' }), {
status: 200,
headers: { 'Content-Type': 'application/json' }
})
}
```
**Correct (non-blocking):**
```tsx
import { after } from 'next/server'
import { headers, cookies } from 'next/headers'
import { logUserAction } from '@/app/utils'
export async function POST(request: Request) {
// Perform mutation
await updateDatabase(request)
// Log after response is sent
after(async () => {
const userAgent = (await headers()).get('user-agent') || 'unknown'
const sessionCookie = (await cookies()).get('session-id')?.value || 'anonymous'
logUserAction({ sessionCookie, userAgent })
})
return new Response(JSON.stringify({ status: 'success' }), {
status: 200,
headers: { 'Content-Type': 'application/json' }
})
}
```
The response is sent immediately while logging happens in the background.
**Common use cases:**
- Analytics tracking
- Audit logging
- Sending notifications
- Cache invalidation
- Cleanup tasks
**Important notes:**
- `after()` runs even if the response fails or redirects
- Works in Server Actions, Route Handlers, and Server Components
Reference: [https://nextjs.org/docs/app/api-reference/functions/after](https://nextjs.org/docs/app/api-reference/functions/after)

View File

@@ -1,41 +0,0 @@
---
title: Cross-Request LRU Caching
impact: HIGH
impactDescription: caches across requests
tags: server, cache, lru, cross-request
---
## Cross-Request LRU Caching
`React.cache()` only works within one request. For data shared across sequential requests (user clicks button A then button B), use an LRU cache.
**Implementation:**
```typescript
import { LRUCache } from 'lru-cache'
const cache = new LRUCache<string, any>({
max: 1000,
ttl: 5 * 60 * 1000 // 5 minutes
})
export async function getUser(id: string) {
const cached = cache.get(id)
if (cached) return cached
const user = await db.user.findUnique({ where: { id } })
cache.set(id, user)
return user
}
// Request 1: DB query, result cached
// Request 2: cache hit, no DB query
```
Use when sequential user actions hit multiple endpoints needing the same data within seconds.
**With Vercel's [Fluid Compute](https://vercel.com/docs/fluid-compute):** LRU caching is especially effective because multiple concurrent requests can share the same function instance and cache. This means the cache persists across requests without needing external storage like Redis.
**In traditional serverless:** Each invocation runs in isolation, so consider Redis for cross-process caching.
Reference: [https://github.com/isaacs/node-lru-cache](https://github.com/isaacs/node-lru-cache)

View File

@@ -1,26 +0,0 @@
---
title: Per-Request Deduplication with React.cache()
impact: MEDIUM
impactDescription: deduplicates within request
tags: server, cache, react-cache, deduplication
---
## Per-Request Deduplication with React.cache()
Use `React.cache()` for server-side request deduplication. Authentication and database queries benefit most.
**Usage:**
```typescript
import { cache } from 'react'
export const getCurrentUser = cache(async () => {
const session = await auth()
if (!session?.user?.id) return null
return await db.user.findUnique({
where: { id: session.user.id }
})
})
```
Within a single request, multiple calls to `getCurrentUser()` execute the query only once.

View File

@@ -1,79 +0,0 @@
---
title: Parallel Data Fetching with Component Composition
impact: CRITICAL
impactDescription: eliminates server-side waterfalls
tags: server, rsc, parallel-fetching, composition
---
## Parallel Data Fetching with Component Composition
React Server Components execute sequentially within a tree. Restructure with composition to parallelize data fetching.
**Incorrect (Sidebar waits for Page's fetch to complete):**
```tsx
export default async function Page() {
const header = await fetchHeader()
return (
<div>
<div>{header}</div>
<Sidebar />
</div>
)
}
async function Sidebar() {
const items = await fetchSidebarItems()
return <nav>{items.map(renderItem)}</nav>
}
```
**Correct (both fetch simultaneously):**
```tsx
async function Header() {
const data = await fetchHeader()
return <div>{data}</div>
}
async function Sidebar() {
const items = await fetchSidebarItems()
return <nav>{items.map(renderItem)}</nav>
}
export default function Page() {
return (
<div>
<Header />
<Sidebar />
</div>
)
}
```
**Alternative with children prop:**
```tsx
async function Layout({ children }: { children: ReactNode }) {
const header = await fetchHeader()
return (
<div>
<div>{header}</div>
{children}
</div>
)
}
async function Sidebar() {
const items = await fetchSidebarItems()
return <nav>{items.map(renderItem)}</nav>
}
export default function Page() {
return (
<Layout>
<Sidebar />
</Layout>
)
}
```

View File

@@ -1,38 +0,0 @@
---
title: Minimize Serialization at RSC Boundaries
impact: HIGH
impactDescription: reduces data transfer size
tags: server, rsc, serialization, props
---
## Minimize Serialization at RSC Boundaries
The React Server/Client boundary serializes all object properties into strings and embeds them in the HTML response and subsequent RSC requests. This serialized data directly impacts page weight and load time, so **size matters a lot**. Only pass fields that the client actually uses.
**Incorrect (serializes all 50 fields):**
```tsx
async function Page() {
const user = await fetchUser() // 50 fields
return <Profile user={user} />
}
'use client'
function Profile({ user }: { user: User }) {
return <div>{user.name}</div> // uses 1 field
}
```
**Correct (serializes only 1 field):**
```tsx
async function Page() {
const user = await fetchUser()
return <Profile name={user.name} />
}
'use client'
function Profile({ name }: { name: string }) {
return <div>{name}</div>
}
```

View File

@@ -1,9 +1,6 @@
# Ignore everything by default, selectively add things to context
*
# Documentation (for embeddings/search)
!docs/
# Platform - Libs
!autogpt_platform/autogpt_libs/autogpt_libs/
!autogpt_platform/autogpt_libs/pyproject.toml
@@ -19,7 +16,6 @@
!autogpt_platform/backend/poetry.lock
!autogpt_platform/backend/README.md
!autogpt_platform/backend/.env
!autogpt_platform/backend/gen_prisma_types_stub.py
# Platform - Market
!autogpt_platform/market/market/

View File

@@ -160,7 +160,7 @@ pnpm storybook # Start component development server
**Backend Entry Points:**
- `backend/backend/api/rest_api.py` - FastAPI application setup
- `backend/backend/server/server.py` - FastAPI application setup
- `backend/backend/data/` - Database models and user management
- `backend/blocks/` - Agent execution blocks and logic
@@ -219,7 +219,7 @@ Agents are built using a visual block-based system where each block performs a s
### API Development
1. Update routes in `/backend/backend/api/features/`
1. Update routes in `/backend/backend/server/routers/`
2. Add/update Pydantic models in same directory
3. Write tests alongside route files
4. For `data/*.py` changes, validate user ID checks
@@ -285,7 +285,7 @@ Agents are built using a visual block-based system where each block performs a s
### Security Guidelines
**Cache Protection Middleware** (`/backend/backend/api/middleware/security.py`):
**Cache Protection Middleware** (`/backend/backend/server/middleware/security.py`):
- Default: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
- Uses allow list approach for cacheable paths (static assets, health checks, public pages)

View File

@@ -49,7 +49,7 @@ jobs:
- name: Create PR ${{ env.BUILD_BRANCH }} -> ${{ github.ref_name }}
if: github.event_name == 'push'
uses: peter-evans/create-pull-request@v8
uses: peter-evans/create-pull-request@v7
with:
add-paths: classic/frontend/build/web
base: ${{ github.ref_name }}

View File

@@ -42,7 +42,7 @@ jobs:
- name: Get CI failure details
id: failure_details
uses: actions/github-script@v8
uses: actions/github-script@v7
with:
script: |
const run = await github.rest.actions.getWorkflowRun({
@@ -93,5 +93,5 @@ jobs:
Error logs:
${{ toJSON(fromJSON(steps.failure_details.outputs.result).errorLogs) }}
claude_code_oauth_token: ${{ secrets.CLAUDE_CODE_OAUTH_TOKEN }}
anthropic_api_key: ${{ secrets.ANTHROPIC_API_KEY }}
claude_args: "--allowedTools 'Edit,MultiEdit,Write,Read,Glob,Grep,LS,Bash(git:*),Bash(bun:*),Bash(npm:*),Bash(npx:*),Bash(gh:*)'"

View File

@@ -7,7 +7,7 @@
# - Provide actionable recommendations for the development team
#
# Triggered on: Dependabot PRs (opened, synchronize)
# Requirements: CLAUDE_CODE_OAUTH_TOKEN secret must be configured
# Requirements: ANTHROPIC_API_KEY secret must be configured
name: Claude Dependabot PR Review
@@ -41,7 +41,7 @@ jobs:
python-version: "3.11" # Use standard version matching CI
- name: Set up Python dependency cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
@@ -74,11 +74,11 @@ jobs:
- name: Generate Prisma Client
working-directory: autogpt_platform/backend
run: poetry run prisma generate && poetry run gen-prisma-stub
run: poetry run prisma generate
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
- name: Set up Node.js
uses: actions/setup-node@v6
uses: actions/setup-node@v4
with:
node-version: "22"
@@ -91,7 +91,7 @@ jobs:
echo "PNPM_HOME=$HOME/.pnpm-store" >> $GITHUB_ENV
- name: Cache frontend dependencies
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}
@@ -124,7 +124,7 @@ jobs:
# Phase 1: Cache and load Docker images for faster setup
- name: Set up Docker image cache
id: docker-cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/docker-cache
# Use a versioned key for cache invalidation when image list changes
@@ -308,8 +308,7 @@ jobs:
id: claude_review
uses: anthropics/claude-code-action@v1
with:
claude_code_oauth_token: ${{ secrets.CLAUDE_CODE_OAUTH_TOKEN }}
allowed_bots: "dependabot[bot]"
anthropic_api_key: ${{ secrets.ANTHROPIC_API_KEY }}
claude_args: |
--allowedTools "Bash(npm:*),Bash(pnpm:*),Bash(poetry:*),Bash(git:*),Edit,Replace,NotebookEditCell,mcp__github_inline_comment__create_inline_comment,Bash(gh pr comment:*), Bash(gh pr diff:*), Bash(gh pr view:*)"
prompt: |

View File

@@ -57,7 +57,7 @@ jobs:
python-version: "3.11" # Use standard version matching CI
- name: Set up Python dependency cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
@@ -90,11 +90,11 @@ jobs:
- name: Generate Prisma Client
working-directory: autogpt_platform/backend
run: poetry run prisma generate && poetry run gen-prisma-stub
run: poetry run prisma generate
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
- name: Set up Node.js
uses: actions/setup-node@v6
uses: actions/setup-node@v4
with:
node-version: "22"
@@ -107,7 +107,7 @@ jobs:
echo "PNPM_HOME=$HOME/.pnpm-store" >> $GITHUB_ENV
- name: Cache frontend dependencies
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}
@@ -140,7 +140,7 @@ jobs:
# Phase 1: Cache and load Docker images for faster setup
- name: Set up Docker image cache
id: docker-cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/docker-cache
# Use a versioned key for cache invalidation when image list changes
@@ -323,7 +323,7 @@ jobs:
id: claude
uses: anthropics/claude-code-action@v1
with:
claude_code_oauth_token: ${{ secrets.CLAUDE_CODE_OAUTH_TOKEN }}
anthropic_api_key: ${{ secrets.ANTHROPIC_API_KEY }}
claude_args: |
--allowedTools "Bash(npm:*),Bash(pnpm:*),Bash(poetry:*),Bash(git:*),Edit,Replace,NotebookEditCell,mcp__github_inline_comment__create_inline_comment,Bash(gh pr comment:*), Bash(gh pr diff:*), Bash(gh pr view:*), Bash(gh pr edit:*)"
--model opus

View File

@@ -39,7 +39,7 @@ jobs:
python-version: "3.11" # Use standard version matching CI
- name: Set up Python dependency cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
@@ -72,11 +72,11 @@ jobs:
- name: Generate Prisma Client
working-directory: autogpt_platform/backend
run: poetry run prisma generate && poetry run gen-prisma-stub
run: poetry run prisma generate
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
- name: Set up Node.js
uses: actions/setup-node@v6
uses: actions/setup-node@v4
with:
node-version: "22"
@@ -89,7 +89,7 @@ jobs:
echo "PNPM_HOME=$HOME/.pnpm-store" >> $GITHUB_ENV
- name: Cache frontend dependencies
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}
@@ -108,16 +108,6 @@ jobs:
# run: pnpm playwright install --with-deps chromium
# Docker setup for development environment
- name: Free up disk space
run: |
# Remove large unused tools to free disk space for Docker builds
sudo rm -rf /usr/share/dotnet
sudo rm -rf /usr/local/lib/android
sudo rm -rf /opt/ghc
sudo rm -rf /opt/hostedtoolcache/CodeQL
sudo docker system prune -af
df -h
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
@@ -132,7 +122,7 @@ jobs:
# Phase 1: Cache and load Docker images for faster setup
- name: Set up Docker image cache
id: docker-cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/docker-cache
# Use a versioned key for cache invalidation when image list changes

View File

@@ -1,78 +0,0 @@
name: Block Documentation Sync Check
on:
push:
branches: [master, dev]
paths:
- "autogpt_platform/backend/backend/blocks/**"
- "docs/integrations/**"
- "autogpt_platform/backend/scripts/generate_block_docs.py"
- ".github/workflows/docs-block-sync.yml"
pull_request:
branches: [master, dev]
paths:
- "autogpt_platform/backend/backend/blocks/**"
- "docs/integrations/**"
- "autogpt_platform/backend/scripts/generate_block_docs.py"
- ".github/workflows/docs-block-sync.yml"
jobs:
check-docs-sync:
runs-on: ubuntu-latest
timeout-minutes: 15
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 1
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Set up Python dependency cache
uses: actions/cache@v5
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
restore-keys: |
poetry-${{ runner.os }}-
- name: Install Poetry
run: |
cd autogpt_platform/backend
HEAD_POETRY_VERSION=$(python3 ../../.github/workflows/scripts/get_package_version_from_lockfile.py poetry)
echo "Found Poetry version ${HEAD_POETRY_VERSION} in backend/poetry.lock"
curl -sSL https://install.python-poetry.org | POETRY_VERSION=$HEAD_POETRY_VERSION python3 -
echo "$HOME/.local/bin" >> $GITHUB_PATH
- name: Install dependencies
working-directory: autogpt_platform/backend
run: |
poetry install --only main
poetry run prisma generate
- name: Check block documentation is in sync
working-directory: autogpt_platform/backend
run: |
echo "Checking if block documentation is in sync with code..."
poetry run python scripts/generate_block_docs.py --check
- name: Show diff if out of sync
if: failure()
working-directory: autogpt_platform/backend
run: |
echo "::error::Block documentation is out of sync with code!"
echo ""
echo "To fix this, run the following command locally:"
echo " cd autogpt_platform/backend && poetry run python scripts/generate_block_docs.py"
echo ""
echo "Then commit the updated documentation files."
echo ""
echo "Regenerating docs to show diff..."
poetry run python scripts/generate_block_docs.py
echo ""
echo "Changes detected:"
git diff ../../docs/integrations/ || true

View File

@@ -1,95 +0,0 @@
name: Claude Block Docs Review
on:
pull_request:
types: [opened, synchronize]
paths:
- "docs/integrations/**"
- "autogpt_platform/backend/backend/blocks/**"
jobs:
claude-review:
# Only run for PRs from members/collaborators
if: |
github.event.pull_request.author_association == 'OWNER' ||
github.event.pull_request.author_association == 'MEMBER' ||
github.event.pull_request.author_association == 'COLLABORATOR'
runs-on: ubuntu-latest
timeout-minutes: 15
permissions:
contents: read
pull-requests: write
id-token: write
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Set up Python dependency cache
uses: actions/cache@v5
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
restore-keys: |
poetry-${{ runner.os }}-
- name: Install Poetry
run: |
cd autogpt_platform/backend
HEAD_POETRY_VERSION=$(python3 ../../.github/workflows/scripts/get_package_version_from_lockfile.py poetry)
curl -sSL https://install.python-poetry.org | POETRY_VERSION=$HEAD_POETRY_VERSION python3 -
echo "$HOME/.local/bin" >> $GITHUB_PATH
- name: Install dependencies
working-directory: autogpt_platform/backend
run: |
poetry install --only main
poetry run prisma generate
- name: Run Claude Code Review
uses: anthropics/claude-code-action@v1
with:
claude_code_oauth_token: ${{ secrets.CLAUDE_CODE_OAUTH_TOKEN }}
claude_args: |
--allowedTools "Read,Glob,Grep,Bash(gh pr comment:*),Bash(gh pr diff:*),Bash(gh pr view:*)"
prompt: |
You are reviewing a PR that modifies block documentation or block code for AutoGPT.
## Your Task
Review the changes in this PR and provide constructive feedback. Focus on:
1. **Documentation Accuracy**: For any block code changes, verify that:
- Input/output tables in docs match the actual block schemas
- Description text accurately reflects what the block does
- Any new blocks have corresponding documentation
2. **Manual Content Quality**: Check manual sections (marked with `<!-- MANUAL: -->` markers):
- "How it works" sections should have clear technical explanations
- "Possible use case" sections should have practical, real-world examples
- Content should be helpful for users trying to understand the blocks
3. **Template Compliance**: Ensure docs follow the standard template:
- What it is (brief intro)
- What it does (description)
- How it works (technical explanation)
- Inputs table
- Outputs table
- Possible use case
4. **Cross-references**: Check that links and anchors are correct
## Review Process
1. First, get the PR diff to see what changed: `gh pr diff ${{ github.event.pull_request.number }}`
2. Read any modified block files to understand the implementation
3. Read corresponding documentation files to verify accuracy
4. Provide your feedback as a PR comment
Be constructive and specific. If everything looks good, say so!
If there are issues, explain what's wrong and suggest how to fix it.

View File

@@ -1,194 +0,0 @@
name: Enhance Block Documentation
on:
workflow_dispatch:
inputs:
block_pattern:
description: 'Block file pattern to enhance (e.g., "google/*.md" or "*" for all blocks)'
required: true
default: '*'
type: string
dry_run:
description: 'Dry run mode - show proposed changes without committing'
type: boolean
default: true
max_blocks:
description: 'Maximum number of blocks to process (0 for unlimited)'
type: number
default: 10
jobs:
enhance-docs:
runs-on: ubuntu-latest
timeout-minutes: 45
permissions:
contents: write
pull-requests: write
id-token: write
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 1
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Set up Python dependency cache
uses: actions/cache@v5
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
restore-keys: |
poetry-${{ runner.os }}-
- name: Install Poetry
run: |
cd autogpt_platform/backend
HEAD_POETRY_VERSION=$(python3 ../../.github/workflows/scripts/get_package_version_from_lockfile.py poetry)
curl -sSL https://install.python-poetry.org | POETRY_VERSION=$HEAD_POETRY_VERSION python3 -
echo "$HOME/.local/bin" >> $GITHUB_PATH
- name: Install dependencies
working-directory: autogpt_platform/backend
run: |
poetry install --only main
poetry run prisma generate
- name: Run Claude Enhancement
uses: anthropics/claude-code-action@v1
with:
claude_code_oauth_token: ${{ secrets.CLAUDE_CODE_OAUTH_TOKEN }}
claude_args: |
--allowedTools "Read,Edit,Glob,Grep,Write,Bash(git:*),Bash(gh:*),Bash(find:*),Bash(ls:*)"
prompt: |
You are enhancing block documentation for AutoGPT. Your task is to improve the MANUAL sections
of block documentation files by reading the actual block implementations and writing helpful content.
## Configuration
- Block pattern: ${{ inputs.block_pattern }}
- Dry run: ${{ inputs.dry_run }}
- Max blocks to process: ${{ inputs.max_blocks }}
## Your Task
1. **Find Documentation Files**
Find block documentation files matching the pattern in `docs/integrations/`
Pattern: ${{ inputs.block_pattern }}
Use: `find docs/integrations -name "*.md" -type f`
2. **For Each Documentation File** (up to ${{ inputs.max_blocks }} files):
a. Read the documentation file
b. Identify which block(s) it documents (look for the block class name)
c. Find and read the corresponding block implementation in `autogpt_platform/backend/backend/blocks/`
d. Improve the MANUAL sections:
**"How it works" section** (within `<!-- MANUAL: how_it_works -->` markers):
- Explain the technical flow of the block
- Describe what APIs or services it connects to
- Note any important configuration or prerequisites
- Keep it concise but informative (2-4 paragraphs)
**"Possible use case" section** (within `<!-- MANUAL: use_case -->` markers):
- Provide 2-3 practical, real-world examples
- Make them specific and actionable
- Show how this block could be used in an automation workflow
3. **Important Rules**
- ONLY modify content within `<!-- MANUAL: -->` and `<!-- END MANUAL -->` markers
- Do NOT modify auto-generated sections (inputs/outputs tables, descriptions)
- Keep content accurate based on the actual block implementation
- Write for users who may not be technical experts
4. **Output**
${{ inputs.dry_run == true && 'DRY RUN MODE: Show proposed changes for each file but do NOT actually edit the files. Describe what you would change.' || 'LIVE MODE: Actually edit the files to improve the documentation.' }}
## Example Improvements
**Before (How it works):**
```
_Add technical explanation here._
```
**After (How it works):**
```
This block connects to the GitHub API to retrieve issue information. When executed,
it authenticates using your GitHub credentials and fetches issue details including
title, body, labels, and assignees.
The block requires a valid GitHub OAuth connection with repository access permissions.
It supports both public and private repositories you have access to.
```
**Before (Possible use case):**
```
_Add practical use case examples here._
```
**After (Possible use case):**
```
**Customer Support Automation**: Monitor a GitHub repository for new issues with
the "bug" label, then automatically create a ticket in your support system and
notify the on-call engineer via Slack.
**Release Notes Generation**: When a new release is published, gather all closed
issues since the last release and generate a summary for your changelog.
```
Begin by finding and listing the documentation files to process.
- name: Create PR with enhanced documentation
if: ${{ inputs.dry_run == false }}
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
# Check if there are changes
if git diff --quiet docs/integrations/; then
echo "No changes to commit"
exit 0
fi
# Configure git
git config user.name "github-actions[bot]"
git config user.email "github-actions[bot]@users.noreply.github.com"
# Create branch and commit
BRANCH_NAME="docs/enhance-blocks-$(date +%Y%m%d-%H%M%S)"
git checkout -b "$BRANCH_NAME"
git add docs/integrations/
git commit -m "docs: enhance block documentation with LLM-generated content
Pattern: ${{ inputs.block_pattern }}
Max blocks: ${{ inputs.max_blocks }}
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <noreply@anthropic.com>"
# Push and create PR
git push -u origin "$BRANCH_NAME"
gh pr create \
--title "docs: LLM-enhanced block documentation" \
--body "## Summary
This PR contains LLM-enhanced documentation for block files matching pattern: \`${{ inputs.block_pattern }}\`
The following manual sections were improved:
- **How it works**: Technical explanations based on block implementations
- **Possible use case**: Practical, real-world examples
## Review Checklist
- [ ] Content is accurate based on block implementations
- [ ] Examples are practical and helpful
- [ ] No auto-generated sections were modified
---
🤖 Generated with [Claude Code](https://claude.com/claude-code)" \
--base dev

View File

@@ -88,7 +88,7 @@ jobs:
run: echo "date=$(date +'%Y-%m-%d')" >> $GITHUB_OUTPUT
- name: Set up Python dependency cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
@@ -134,7 +134,7 @@ jobs:
run: poetry install
- name: Generate Prisma Client
run: poetry run prisma generate && poetry run gen-prisma-stub
run: poetry run prisma generate
- id: supabase
name: Start Supabase
@@ -176,7 +176,7 @@ jobs:
}
- name: Run Database Migrations
run: poetry run prisma migrate deploy
run: poetry run prisma migrate dev --name updates
env:
DATABASE_URL: ${{ steps.supabase.outputs.DB_URL }}
DIRECT_URL: ${{ steps.supabase.outputs.DB_URL }}

View File

@@ -17,7 +17,7 @@ jobs:
- name: Check comment permissions and deployment status
id: check_status
if: github.event_name == 'issue_comment' && github.event.issue.pull_request
uses: actions/github-script@v8
uses: actions/github-script@v7
with:
script: |
const commentBody = context.payload.comment.body.trim();
@@ -55,7 +55,7 @@ jobs:
- name: Post permission denied comment
if: steps.check_status.outputs.permission_denied == 'true'
uses: actions/github-script@v8
uses: actions/github-script@v7
with:
script: |
await github.rest.issues.createComment({
@@ -68,7 +68,7 @@ jobs:
- name: Get PR details for deployment
id: pr_details
if: steps.check_status.outputs.should_deploy == 'true' || steps.check_status.outputs.should_undeploy == 'true'
uses: actions/github-script@v8
uses: actions/github-script@v7
with:
script: |
const pr = await github.rest.pulls.get({
@@ -98,7 +98,7 @@ jobs:
- name: Post deploy success comment
if: steps.check_status.outputs.should_deploy == 'true'
uses: actions/github-script@v8
uses: actions/github-script@v7
with:
script: |
await github.rest.issues.createComment({
@@ -126,7 +126,7 @@ jobs:
- name: Post undeploy success comment
if: steps.check_status.outputs.should_undeploy == 'true'
uses: actions/github-script@v8
uses: actions/github-script@v7
with:
script: |
await github.rest.issues.createComment({
@@ -139,7 +139,7 @@ jobs:
- name: Check deployment status on PR close
id: check_pr_close
if: github.event_name == 'pull_request' && github.event.action == 'closed'
uses: actions/github-script@v8
uses: actions/github-script@v7
with:
script: |
const comments = await github.rest.issues.listComments({
@@ -187,7 +187,7 @@ jobs:
github.event_name == 'pull_request' &&
github.event.action == 'closed' &&
steps.check_pr_close.outputs.should_undeploy == 'true'
uses: actions/github-script@v8
uses: actions/github-script@v7
with:
script: |
await github.rest.issues.createComment({

View File

@@ -11,7 +11,6 @@ on:
- ".github/workflows/platform-frontend-ci.yml"
- "autogpt_platform/frontend/**"
merge_group:
workflow_dispatch:
concurrency:
group: ${{ github.workflow }}-${{ github.event_name == 'merge_group' && format('merge-queue-{0}', github.ref) || format('{0}-{1}', github.ref, github.event.pull_request.number || github.sha) }}
@@ -27,22 +26,13 @@ jobs:
runs-on: ubuntu-latest
outputs:
cache-key: ${{ steps.cache-key.outputs.key }}
components-changed: ${{ steps.filter.outputs.components }}
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Check for component changes
uses: dorny/paths-filter@v3
id: filter
with:
filters: |
components:
- 'autogpt_platform/frontend/src/components/**'
- name: Set up Node.js
uses: actions/setup-node@v6
uses: actions/setup-node@v4
with:
node-version: "22.18.0"
@@ -54,7 +44,7 @@ jobs:
run: echo "key=${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}" >> $GITHUB_OUTPUT
- name: Cache dependencies
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ steps.cache-key.outputs.key }}
@@ -74,7 +64,7 @@ jobs:
uses: actions/checkout@v4
- name: Set up Node.js
uses: actions/setup-node@v6
uses: actions/setup-node@v4
with:
node-version: "22.18.0"
@@ -82,7 +72,7 @@ jobs:
run: corepack enable
- name: Restore dependencies cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}
@@ -99,11 +89,8 @@ jobs:
chromatic:
runs-on: ubuntu-latest
needs: setup
# Disabled: to re-enable, remove 'false &&' from the condition below
if: >-
false
&& (github.ref == 'refs/heads/dev' || github.base_ref == 'dev')
&& needs.setup.outputs.components-changed == 'true'
# Only run on dev branch pushes or PRs targeting dev
if: github.ref == 'refs/heads/dev' || github.base_ref == 'dev'
steps:
- name: Checkout repository
@@ -112,7 +99,7 @@ jobs:
fetch-depth: 0
- name: Set up Node.js
uses: actions/setup-node@v6
uses: actions/setup-node@v4
with:
node-version: "22.18.0"
@@ -120,7 +107,7 @@ jobs:
run: corepack enable
- name: Restore dependencies cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}
@@ -140,7 +127,7 @@ jobs:
token: ${{ secrets.GITHUB_TOKEN }}
exitOnceUploaded: true
e2e_test:
test:
runs-on: big-boi
needs: setup
strategy:
@@ -153,7 +140,7 @@ jobs:
submodules: recursive
- name: Set up Node.js
uses: actions/setup-node@v6
uses: actions/setup-node@v4
with:
node-version: "22.18.0"
@@ -164,19 +151,11 @@ jobs:
run: |
cp ../.env.default ../.env
- name: Copy backend .env and set OpenAI API key
run: |
cp ../backend/.env.default ../backend/.env
echo "OPENAI_INTERNAL_API_KEY=${{ secrets.OPENAI_API_KEY }}" >> ../backend/.env
env:
# Used by E2E test data script to generate embeddings for approved store agents
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Cache Docker layers
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: /tmp/.buildx-cache
key: ${{ runner.os }}-buildx-frontend-test-${{ hashFiles('autogpt_platform/docker-compose.yml', 'autogpt_platform/backend/Dockerfile', 'autogpt_platform/backend/pyproject.toml', 'autogpt_platform/backend/poetry.lock') }}
@@ -231,7 +210,7 @@ jobs:
fi
- name: Restore dependencies cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}
@@ -247,62 +226,14 @@ jobs:
- name: Run Playwright tests
run: pnpm test:no-build
continue-on-error: false
- name: Upload Playwright report
if: always()
- name: Upload Playwright artifacts
if: failure()
uses: actions/upload-artifact@v4
with:
name: playwright-report
path: playwright-report
if-no-files-found: ignore
retention-days: 3
- name: Upload Playwright test results
if: always()
uses: actions/upload-artifact@v4
with:
name: playwright-test-results
path: test-results
if-no-files-found: ignore
retention-days: 3
- name: Print Final Docker Compose logs
if: always()
run: docker compose -f ../docker-compose.yml logs
integration_test:
runs-on: ubuntu-latest
needs: setup
steps:
- name: Checkout repository
uses: actions/checkout@v4
with:
submodules: recursive
- name: Set up Node.js
uses: actions/setup-node@v6
with:
node-version: "22.18.0"
- name: Enable corepack
run: corepack enable
- name: Restore dependencies cache
uses: actions/cache@v5
with:
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
- name: Install dependencies
run: pnpm install --frozen-lockfile
- name: Generate API client
run: pnpm generate:api
- name: Run Integration Tests
run: pnpm test:unit

View File

@@ -32,7 +32,7 @@ jobs:
uses: actions/checkout@v4
- name: Set up Node.js
uses: actions/setup-node@v6
uses: actions/setup-node@v4
with:
node-version: "22.18.0"
@@ -44,7 +44,7 @@ jobs:
run: echo "key=${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}" >> $GITHUB_OUTPUT
- name: Cache dependencies
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ steps.cache-key.outputs.key }}
@@ -56,7 +56,7 @@ jobs:
run: pnpm install --frozen-lockfile
types:
runs-on: big-boi
runs-on: ubuntu-latest
needs: setup
strategy:
fail-fast: false
@@ -68,7 +68,7 @@ jobs:
submodules: recursive
- name: Set up Node.js
uses: actions/setup-node@v6
uses: actions/setup-node@v4
with:
node-version: "22.18.0"
@@ -85,10 +85,10 @@ jobs:
- name: Run docker compose
run: |
docker compose -f ../docker-compose.yml --profile local up -d deps_backend
docker compose -f ../docker-compose.yml --profile local --profile deps_backend up -d
- name: Restore dependencies cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}

View File

@@ -11,7 +11,7 @@ jobs:
stale:
runs-on: ubuntu-latest
steps:
- uses: actions/stale@v10
- uses: actions/stale@v9
with:
# operations-per-run: 5000
stale-issue-message: >

View File

@@ -61,6 +61,6 @@ jobs:
pull-requests: write
runs-on: ubuntu-latest
steps:
- uses: actions/labeler@v6
- uses: actions/labeler@v5
with:
sync-labels: true

2
.gitignore vendored
View File

@@ -178,6 +178,4 @@ autogpt_platform/backend/settings.py
*.ign.*
.test-contents
.claude/settings.local.json
CLAUDE.local.md
/autogpt_platform/backend/logs
.next

View File

@@ -16,34 +16,6 @@ See `docs/content/platform/getting-started.md` for setup instructions.
- Format Python code with `poetry run format`.
- Format frontend code using `pnpm format`.
## Frontend guidelines:
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
1. **Pages**: Create in `src/app/(platform)/feature-name/page.tsx`
- Add `usePageName.ts` hook for logic
- Put sub-components in local `components/` folder
2. **Components**: Structure as `ComponentName/ComponentName.tsx` + `useComponentName.ts` + `helpers.ts`
- Use design system components from `src/components/` (atoms, molecules, organisms)
- Never use `src/components/__legacy__/*`
3. **Data fetching**: Use generated API hooks from `@/app/api/__generated__/endpoints/`
- Regenerate with `pnpm generate:api`
- Pattern: `use{Method}{Version}{OperationName}`
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
- Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component
- Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts)
- Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible
- Avoid large hooks, abstract logic into `helpers.ts` files when sensible
- Use function declarations for components, arrow functions only for callbacks
- No barrel files or `index.ts` re-exports
- Avoid comments at all times unless the code is very complex
- Do not use `useCallback` or `useMemo` unless asked to optimise a given function
- Do not type hook returns, let Typescript infer as much as possible
- Never type with `any`, if not types available use `unknown`
## Testing
- Backend: `poetry run test` (runs pytest with a docker based postgres + prisma).
@@ -51,8 +23,22 @@ See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
Always run the relevant linters and tests before committing.
Use conventional commit messages for all commits (e.g. `feat(backend): add API`).
Types: - feat - fix - refactor - ci - dx (developer experience)
Scopes: - platform - platform/library - platform/marketplace - backend - backend/executor - frontend - frontend/library - frontend/marketplace - blocks
Types:
- feat
- fix
- refactor
- ci
- dx (developer experience)
Scopes:
- platform
- platform/library
- platform/marketplace
- backend
- backend/executor
- frontend
- frontend/library
- frontend/marketplace
- blocks
## Pull requests

View File

@@ -54,7 +54,7 @@ Before proceeding with the installation, ensure your system meets the following
### Updated Setup Instructions:
We've moved to a fully maintained and regularly updated documentation site.
👉 [Follow the official self-hosting guide here](https://agpt.co/docs/platform/getting-started/getting-started)
👉 [Follow the official self-hosting guide here](https://docs.agpt.co/platform/getting-started/)
This tutorial assumes you have Docker, VSCode, git and npm installed.

View File

@@ -6,30 +6,152 @@ This file provides guidance to Claude Code (claude.ai/code) when working with co
AutoGPT Platform is a monorepo containing:
- **Backend** (`backend`): Python FastAPI server with async support
- **Frontend** (`frontend`): Next.js React application
- **Shared Libraries** (`autogpt_libs`): Common Python utilities
- **Backend** (`/backend`): Python FastAPI server with async support
- **Frontend** (`/frontend`): Next.js React application
- **Shared Libraries** (`/autogpt_libs`): Common Python utilities
## Component Documentation
## Essential Commands
- **Backend**: See @backend/CLAUDE.md for backend-specific commands, architecture, and development tasks
- **Frontend**: See @frontend/CLAUDE.md for frontend-specific commands, architecture, and development patterns
### Backend Development
## Key Concepts
```bash
# Install dependencies
cd backend && poetry install
# Run database migrations
poetry run prisma migrate dev
# Start all services (database, redis, rabbitmq, clamav)
docker compose up -d
# Run the backend server
poetry run serve
# Run tests
poetry run test
# Run specific test
poetry run pytest path/to/test_file.py::test_function_name
# Run block tests (tests that validate all blocks work correctly)
poetry run pytest backend/blocks/test/test_block.py -xvs
# Run tests for a specific block (e.g., GetCurrentTimeBlock)
poetry run pytest 'backend/blocks/test/test_block.py::test_available_blocks[GetCurrentTimeBlock]' -xvs
# Lint and format
# prefer format if you want to just "fix" it and only get the errors that can't be autofixed
poetry run format # Black + isort
poetry run lint # ruff
```
More details can be found in TESTING.md
#### Creating/Updating Snapshots
When you first write a test or when the expected output changes:
```bash
poetry run pytest path/to/test.py --snapshot-update
```
⚠️ **Important**: Always review snapshot changes before committing! Use `git diff` to verify the changes are expected.
### Frontend Development
```bash
# Install dependencies
cd frontend && pnpm i
# Generate API client from OpenAPI spec
pnpm generate:api
# Start development server
pnpm dev
# Run E2E tests
pnpm test
# Run Storybook for component development
pnpm storybook
# Build production
pnpm build
# Format and lint
pnpm format
# Type checking
pnpm types
```
**📖 Complete Guide**: See `/frontend/CONTRIBUTING.md` and `/frontend/.cursorrules` for comprehensive frontend patterns.
**Key Frontend Conventions:**
- Separate render logic from data/behavior in components
- Use generated API hooks from `@/app/api/__generated__/endpoints/`
- Use function declarations (not arrow functions) for components/handlers
- Use design system components from `src/components/` (atoms, molecules, organisms)
- Only use Phosphor Icons
- Never use `src/components/__legacy__/*` or deprecated `BackendAPI`
## Architecture Overview
### Backend Architecture
- **API Layer**: FastAPI with REST and WebSocket endpoints
- **Database**: PostgreSQL with Prisma ORM, includes pgvector for embeddings
- **Queue System**: RabbitMQ for async task processing
- **Execution Engine**: Separate executor service processes agent workflows
- **Authentication**: JWT-based with Supabase integration
- **Security**: Cache protection middleware prevents sensitive data caching in browsers/proxies
### Frontend Architecture
- **Framework**: Next.js 15 App Router (client-first approach)
- **Data Fetching**: Type-safe generated API hooks via Orval + React Query
- **State Management**: React Query for server state, co-located UI state in components/hooks
- **Component Structure**: Separate render logic (`.tsx`) from business logic (`use*.ts` hooks)
- **Workflow Builder**: Visual graph editor using @xyflow/react
- **UI Components**: shadcn/ui (Radix UI primitives) with Tailwind CSS styling
- **Icons**: Phosphor Icons only
- **Feature Flags**: LaunchDarkly integration
- **Error Handling**: ErrorCard for render errors, toast for mutations, Sentry for exceptions
- **Testing**: Playwright for E2E, Storybook for component development
### Key Concepts
1. **Agent Graphs**: Workflow definitions stored as JSON, executed by the backend
2. **Blocks**: Reusable components in `backend/backend/blocks/` that perform specific tasks
2. **Blocks**: Reusable components in `/backend/blocks/` that perform specific tasks
3. **Integrations**: OAuth and API connections stored per user
4. **Store**: Marketplace for sharing agent templates
5. **Virus Scanning**: ClamAV integration for file upload security
### Testing Approach
- Backend uses pytest with snapshot testing for API responses
- Test files are colocated with source files (`*_test.py`)
- Frontend uses Playwright for E2E tests
- Component testing via Storybook
### Database Schema
Key models (defined in `/backend/schema.prisma`):
- `User`: Authentication and profile data
- `AgentGraph`: Workflow definitions with version control
- `AgentGraphExecution`: Execution history and results
- `AgentNode`: Individual nodes in a workflow
- `StoreListing`: Marketplace listings for sharing agents
### Environment Configuration
#### Configuration Files
- **Backend**: `backend/.env.default` (defaults) → `backend/.env` (user overrides)
- **Frontend**: `frontend/.env.default` (defaults) → `frontend/.env` (user overrides)
- **Platform**: `.env.default` (Supabase/shared defaults) → `.env` (user overrides)
- **Backend**: `/backend/.env.default` (defaults) → `/backend/.env` (user overrides)
- **Frontend**: `/frontend/.env.default` (defaults) → `/frontend/.env` (user overrides)
- **Platform**: `/.env.default` (Supabase/shared defaults) → `/.env` (user overrides)
#### Docker Environment Loading Order
@@ -45,12 +167,75 @@ AutoGPT Platform is a monorepo containing:
- Backend/Frontend services use YAML anchors for consistent configuration
- Supabase services (`db/docker/docker-compose.yml`) follow the same pattern
### Common Development Tasks
**Adding a new block:**
Follow the comprehensive [Block SDK Guide](../../../docs/content/platform/block-sdk-guide.md) which covers:
- Provider configuration with `ProviderBuilder`
- Block schema definition
- Authentication (API keys, OAuth, webhooks)
- Testing and validation
- File organization
Quick steps:
1. Create new file in `/backend/backend/blocks/`
2. Configure provider using `ProviderBuilder` in `_config.py`
3. Inherit from `Block` base class
4. Define input/output schemas using `BlockSchema`
5. Implement async `run` method
6. Generate unique block ID using `uuid.uuid4()`
7. Test with `poetry run pytest backend/blocks/test/test_block.py`
Note: when making many new blocks analyze the interfaces for each of these blocks and picture if they would go well together in a graph based editor or would they struggle to connect productively?
ex: do the inputs and outputs tie well together?
If you get any pushback or hit complex block conditions check the new_blocks guide in the docs.
**Modifying the API:**
1. Update route in `/backend/backend/server/routers/`
2. Add/update Pydantic models in same directory
3. Write tests alongside the route file
4. Run `poetry run test` to verify
**Frontend feature development:**
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
1. **Pages**: Create in `src/app/(platform)/feature-name/page.tsx`
- Add `usePageName.ts` hook for logic
- Put sub-components in local `components/` folder
2. **Components**: Structure as `ComponentName/ComponentName.tsx` + `useComponentName.ts` + `helpers.ts`
- Use design system components from `src/components/` (atoms, molecules, organisms)
- Never use `src/components/__legacy__/*`
3. **Data fetching**: Use generated API hooks from `@/app/api/__generated__/endpoints/`
- Regenerate with `pnpm generate:api`
- Pattern: `use{Method}{Version}{OperationName}`
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
### Security Implementation
**Cache Protection Middleware:**
- Located in `/backend/backend/server/middleware/security.py`
- Default behavior: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
- Uses an allow list approach - only explicitly permitted paths can be cached
- Cacheable paths include: static assets (`/static/*`, `/_next/static/*`), health checks, public store pages, documentation
- Prevents sensitive data (auth tokens, API keys, user data) from being cached by browsers/proxies
- To allow caching for a new endpoint, add it to `CACHEABLE_PATHS` in the middleware
- Applied to both main API server and external API applications
### Creating Pull Requests
- Create the PR against the `dev` branch of the repository.
- Ensure the branch name is descriptive (e.g., `feature/add-new-block`)
- Use conventional commit messages (see below)
- Fill out the .github/PULL_REQUEST_TEMPLATE.md template as the PR description
- Create the PR aginst the `dev` branch of the repository.
- Ensure the branch name is descriptive (e.g., `feature/add-new-block`)/
- Use conventional commit messages (see below)/
- Fill out the .github/PULL_REQUEST_TEMPLATE.md template as the PR description/
- Run the github pre-commit hooks to ensure code quality.
### Reviewing/Revising Pull Requests

View File

@@ -6,14 +6,12 @@ start-core:
# Stop core services
stop-core:
docker compose stop
docker compose stop deps
reset-db:
docker compose stop db
rm -rf db/docker/volumes/db/data
cd backend && poetry run prisma migrate deploy
cd backend && poetry run prisma generate
cd backend && poetry run gen-prisma-stub
# View logs for core services
logs-core:
@@ -35,7 +33,6 @@ init-env:
migrate:
cd backend && poetry run prisma migrate deploy
cd backend && poetry run prisma generate
cd backend && poetry run gen-prisma-stub
run-backend:
cd backend && poetry run app
@@ -61,4 +58,4 @@ help:
@echo " run-backend - Run the backend FastAPI server"
@echo " run-frontend - Run the frontend Next.js development server"
@echo " test-data - Run the test data creator"
@echo " load-store-agents - Load store agents from agents/ folder into test database"
@echo " load-store-agents - Load store agents from agents/ folder into test database"

View File

@@ -57,9 +57,6 @@ class APIKeySmith:
def hash_key(self, raw_key: str) -> tuple[str, str]:
"""Migrate a legacy hash to secure hash format."""
if not raw_key.startswith(self.PREFIX):
raise ValueError("Key without 'agpt_' prefix would fail validation")
salt = self._generate_salt()
hash = self._hash_key_with_salt(raw_key, salt)
return hash, salt.hex()

View File

@@ -1,25 +1,29 @@
from fastapi import FastAPI
from fastapi.openapi.utils import get_openapi
from .jwt_utils import bearer_jwt_auth
def add_auth_responses_to_openapi(app: FastAPI) -> None:
"""
Patch a FastAPI instance's `openapi()` method to add 401 responses
Set up custom OpenAPI schema generation that adds 401 responses
to all authenticated endpoints.
This is needed when using HTTPBearer with auto_error=False to get proper
401 responses instead of 403, but FastAPI only automatically adds security
responses when auto_error=True.
"""
# Wrap current method to allow stacking OpenAPI schema modifiers like this
wrapped_openapi = app.openapi
def custom_openapi():
if app.openapi_schema:
return app.openapi_schema
openapi_schema = wrapped_openapi()
openapi_schema = get_openapi(
title=app.title,
version=app.version,
description=app.description,
routes=app.routes,
)
# Add 401 response to all endpoints that have security requirements
for path, methods in openapi_schema["paths"].items():

File diff suppressed because it is too large Load Diff

View File

@@ -9,25 +9,25 @@ packages = [{ include = "autogpt_libs" }]
[tool.poetry.dependencies]
python = ">=3.10,<4.0"
colorama = "^0.4.6"
cryptography = "^46.0"
cryptography = "^45.0"
expiringdict = "^1.2.2"
fastapi = "^0.128.0"
google-cloud-logging = "^3.13.0"
launchdarkly-server-sdk = "^9.14.1"
pydantic = "^2.12.5"
pydantic-settings = "^2.12.0"
pyjwt = { version = "^2.11.0", extras = ["crypto"] }
fastapi = "^0.116.1"
google-cloud-logging = "^3.12.1"
launchdarkly-server-sdk = "^9.12.0"
pydantic = "^2.11.7"
pydantic-settings = "^2.10.1"
pyjwt = { version = "^2.10.1", extras = ["crypto"] }
redis = "^6.2.0"
supabase = "^2.27.2"
uvicorn = "^0.40.0"
supabase = "^2.16.0"
uvicorn = "^0.35.0"
[tool.poetry.group.dev.dependencies]
pyright = "^1.1.408"
pyright = "^1.1.404"
pytest = "^8.4.1"
pytest-asyncio = "^1.3.0"
pytest-mock = "^3.15.1"
pytest-cov = "^7.0.0"
ruff = "^0.15.0"
pytest-asyncio = "^1.1.0"
pytest-mock = "^3.14.1"
pytest-cov = "^6.2.1"
ruff = "^0.12.11"
[build-system]
requires = ["poetry-core"]

View File

@@ -58,13 +58,6 @@ V0_API_KEY=
OPEN_ROUTER_API_KEY=
NVIDIA_API_KEY=
# Langfuse Prompt Management
# Used for managing the CoPilot system prompt externally
# Get credentials from https://cloud.langfuse.com or your self-hosted instance
LANGFUSE_PUBLIC_KEY=
LANGFUSE_SECRET_KEY=
LANGFUSE_HOST=https://cloud.langfuse.com
# OAuth Credentials
# For the OAuth callback URL, use <your_frontend_url>/auth/integrations/oauth_callback,
# e.g. http://localhost:3000/auth/integrations/oauth_callback
@@ -152,7 +145,6 @@ REPLICATE_API_KEY=
REVID_API_KEY=
SCREENSHOTONE_API_KEY=
UNREAL_SPEECH_API_KEY=
ELEVENLABS_API_KEY=
# Data & Search Services
E2B_API_KEY=
@@ -179,10 +171,5 @@ AYRSHARE_JWT_KEY=
SMARTLEAD_API_KEY=
ZEROBOUNCE_API_KEY=
# PostHog Analytics
# Get API key from https://posthog.com - Project Settings > Project API Key
POSTHOG_API_KEY=
POSTHOG_HOST=https://eu.i.posthog.com
# Other Services
AUTOMOD_API_KEY=

View File

@@ -18,7 +18,3 @@ load-tests/results/
load-tests/*.json
load-tests/*.log
load-tests/node_modules/*
migrations/*/rollback*.sql
# Workspace files
workspaces/

View File

@@ -1,170 +0,0 @@
# CLAUDE.md - Backend
This file provides guidance to Claude Code when working with the backend.
## Essential Commands
To run something with Python package dependencies you MUST use `poetry run ...`.
```bash
# Install dependencies
poetry install
# Run database migrations
poetry run prisma migrate dev
# Start all services (database, redis, rabbitmq, clamav)
docker compose up -d
# Run the backend as a whole
poetry run app
# Run tests
poetry run test
# Run specific test
poetry run pytest path/to/test_file.py::test_function_name
# Run block tests (tests that validate all blocks work correctly)
poetry run pytest backend/blocks/test/test_block.py -xvs
# Run tests for a specific block (e.g., GetCurrentTimeBlock)
poetry run pytest 'backend/blocks/test/test_block.py::test_available_blocks[GetCurrentTimeBlock]' -xvs
# Lint and format
# prefer format if you want to just "fix" it and only get the errors that can't be autofixed
poetry run format # Black + isort
poetry run lint # ruff
```
More details can be found in @TESTING.md
### Creating/Updating Snapshots
When you first write a test or when the expected output changes:
```bash
poetry run pytest path/to/test.py --snapshot-update
```
⚠️ **Important**: Always review snapshot changes before committing! Use `git diff` to verify the changes are expected.
## Architecture
- **API Layer**: FastAPI with REST and WebSocket endpoints
- **Database**: PostgreSQL with Prisma ORM, includes pgvector for embeddings
- **Queue System**: RabbitMQ for async task processing
- **Execution Engine**: Separate executor service processes agent workflows
- **Authentication**: JWT-based with Supabase integration
- **Security**: Cache protection middleware prevents sensitive data caching in browsers/proxies
## Testing Approach
- Uses pytest with snapshot testing for API responses
- Test files are colocated with source files (`*_test.py`)
## Database Schema
Key models (defined in `schema.prisma`):
- `User`: Authentication and profile data
- `AgentGraph`: Workflow definitions with version control
- `AgentGraphExecution`: Execution history and results
- `AgentNode`: Individual nodes in a workflow
- `StoreListing`: Marketplace listings for sharing agents
## Environment Configuration
- **Backend**: `.env.default` (defaults) → `.env` (user overrides)
## Common Development Tasks
### Adding a new block
Follow the comprehensive [Block SDK Guide](@../../docs/content/platform/block-sdk-guide.md) which covers:
- Provider configuration with `ProviderBuilder`
- Block schema definition
- Authentication (API keys, OAuth, webhooks)
- Testing and validation
- File organization
Quick steps:
1. Create new file in `backend/blocks/`
2. Configure provider using `ProviderBuilder` in `_config.py`
3. Inherit from `Block` base class
4. Define input/output schemas using `BlockSchema`
5. Implement async `run` method
6. Generate unique block ID using `uuid.uuid4()`
7. Test with `poetry run pytest backend/blocks/test/test_block.py`
Note: when making many new blocks analyze the interfaces for each of these blocks and picture if they would go well together in a graph-based editor or would they struggle to connect productively?
ex: do the inputs and outputs tie well together?
If you get any pushback or hit complex block conditions check the new_blocks guide in the docs.
#### Handling files in blocks with `store_media_file()`
When blocks need to work with files (images, videos, documents), use `store_media_file()` from `backend.util.file`. The `return_format` parameter determines what you get back:
| Format | Use When | Returns |
|--------|----------|---------|
| `"for_local_processing"` | Processing with local tools (ffmpeg, MoviePy, PIL) | Local file path (e.g., `"image.png"`) |
| `"for_external_api"` | Sending content to external APIs (Replicate, OpenAI) | Data URI (e.g., `"data:image/png;base64,..."`) |
| `"for_block_output"` | Returning output from your block | Smart: `workspace://` in CoPilot, data URI in graphs |
**Examples:**
```python
# INPUT: Need to process file locally with ffmpeg
local_path = await store_media_file(
file=input_data.video,
execution_context=execution_context,
return_format="for_local_processing",
)
# local_path = "video.mp4" - use with Path/ffmpeg/etc
# INPUT: Need to send to external API like Replicate
image_b64 = await store_media_file(
file=input_data.image,
execution_context=execution_context,
return_format="for_external_api",
)
# image_b64 = "..." - send to API
# OUTPUT: Returning result from block
result_url = await store_media_file(
file=generated_image_url,
execution_context=execution_context,
return_format="for_block_output",
)
yield "image_url", result_url
# In CoPilot: result_url = "workspace://abc123"
# In graphs: result_url = "data:image/png;base64,..."
```
**Key points:**
- `for_block_output` is the ONLY format that auto-adapts to execution context
- Always use `for_block_output` for block outputs unless you have a specific reason not to
- Never hardcode workspace checks - let `for_block_output` handle it
### Modifying the API
1. Update route in `backend/api/features/`
2. Add/update Pydantic models in same directory
3. Write tests alongside the route file
4. Run `poetry run test` to verify
## Security Implementation
### Cache Protection Middleware
- Located in `backend/api/middleware/security.py`
- Default behavior: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
- Uses an allow list approach - only explicitly permitted paths can be cached
- Cacheable paths include: static assets (`static/*`, `_next/static/*`), health checks, public store pages, documentation
- Prevents sensitive data (auth tokens, API keys, user data) from being cached by browsers/proxies
- To allow caching for a new endpoint, add it to `CACHEABLE_PATHS` in the middleware
- Applied to both main API server and external API applications

View File

@@ -48,8 +48,7 @@ RUN poetry install --no-ansi --no-root
# Generate Prisma client
COPY autogpt_platform/backend/schema.prisma ./
COPY autogpt_platform/backend/backend/data/partial_types.py ./backend/data/partial_types.py
COPY autogpt_platform/backend/gen_prisma_types_stub.py ./
RUN poetry run prisma generate && poetry run gen-prisma-stub
RUN poetry run prisma generate
FROM debian:13-slim AS server_dependencies
@@ -62,12 +61,10 @@ ENV POETRY_HOME=/opt/poetry \
DEBIAN_FRONTEND=noninteractive
ENV PATH=/opt/poetry/bin:$PATH
# Install Python, FFmpeg, and ImageMagick (required for video processing blocks)
# Install Python without upgrading system-managed packages
RUN apt-get update && apt-get install -y \
python3.13 \
python3-pip \
ffmpeg \
imagemagick \
&& rm -rf /var/lib/apt/lists/*
# Copy only necessary files from builder
@@ -102,7 +99,6 @@ COPY autogpt_platform/backend/migrations /app/autogpt_platform/backend/migration
FROM server_dependencies AS server
COPY autogpt_platform/backend /app/autogpt_platform/backend
COPY docs /app/docs
RUN poetry install --no-ansi --only-root
ENV PORT=8000

View File

@@ -108,7 +108,7 @@ import fastapi.testclient
import pytest
from pytest_snapshot.plugin import Snapshot
from backend.api.features.myroute import router
from backend.server.v2.myroute import router
app = fastapi.FastAPI()
app.include_router(router)
@@ -138,7 +138,7 @@ If the test doesn't need the `user_id` specifically, mocking is not necessary as
#### Using Global Auth Fixtures
Two global auth fixtures are provided by `backend/api/conftest.py`:
Two global auth fixtures are provided by `backend/server/conftest.py`:
- `mock_jwt_user` - Regular user with `test_user_id` ("test-user-id")
- `mock_jwt_admin` - Admin user with `admin_user_id` ("admin-user-id")
@@ -149,7 +149,7 @@ These provide the easiest way to set up authentication mocking in test modules:
import fastapi
import fastapi.testclient
import pytest
from backend.api.features.myroute import router
from backend.server.v2.myroute import router
app = fastapi.FastAPI()
app.include_router(router)

View File

@@ -1,25 +0,0 @@
from fastapi import FastAPI
from backend.api.middleware.security import SecurityHeadersMiddleware
from backend.monitoring.instrumentation import instrument_fastapi
from .v1.routes import v1_router
external_api = FastAPI(
title="AutoGPT External API",
description="External API for AutoGPT integrations",
docs_url="/docs",
version="1.0",
)
external_api.add_middleware(SecurityHeadersMiddleware)
external_api.include_router(v1_router, prefix="/v1")
# Add Prometheus instrumentation
instrument_fastapi(
external_api,
service_name="external-api",
expose_endpoint=True,
endpoint="/metrics",
include_in_schema=True,
)

View File

@@ -1,107 +0,0 @@
from fastapi import HTTPException, Security, status
from fastapi.security import APIKeyHeader, HTTPAuthorizationCredentials, HTTPBearer
from prisma.enums import APIKeyPermission
from backend.data.auth.api_key import APIKeyInfo, validate_api_key
from backend.data.auth.base import APIAuthorizationInfo
from backend.data.auth.oauth import (
InvalidClientError,
InvalidTokenError,
OAuthAccessTokenInfo,
validate_access_token,
)
api_key_header = APIKeyHeader(name="X-API-Key", auto_error=False)
bearer_auth = HTTPBearer(auto_error=False)
async def require_api_key(api_key: str | None = Security(api_key_header)) -> APIKeyInfo:
"""Middleware for API key authentication only"""
if api_key is None:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED, detail="Missing API key"
)
api_key_obj = await validate_api_key(api_key)
if not api_key_obj:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid API key"
)
return api_key_obj
async def require_access_token(
bearer: HTTPAuthorizationCredentials | None = Security(bearer_auth),
) -> OAuthAccessTokenInfo:
"""Middleware for OAuth access token authentication only"""
if bearer is None:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Missing Authorization header",
)
try:
token_info, _ = await validate_access_token(bearer.credentials)
except (InvalidClientError, InvalidTokenError) as e:
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail=str(e))
return token_info
async def require_auth(
api_key: str | None = Security(api_key_header),
bearer: HTTPAuthorizationCredentials | None = Security(bearer_auth),
) -> APIAuthorizationInfo:
"""
Unified authentication middleware supporting both API keys and OAuth tokens.
Supports two authentication methods, which are checked in order:
1. X-API-Key header (existing API key authentication)
2. Authorization: Bearer <token> header (OAuth access token)
Returns:
APIAuthorizationInfo: base class of both APIKeyInfo and OAuthAccessTokenInfo.
"""
# Try API key first
if api_key is not None:
api_key_info = await validate_api_key(api_key)
if api_key_info:
return api_key_info
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid API key"
)
# Try OAuth bearer token
if bearer is not None:
try:
token_info, _ = await validate_access_token(bearer.credentials)
return token_info
except (InvalidClientError, InvalidTokenError) as e:
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail=str(e))
# No credentials provided
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Missing authentication. Provide API key or access token.",
)
def require_permission(permission: APIKeyPermission):
"""
Dependency function for checking specific permissions
(works with API keys and OAuth tokens)
"""
async def check_permission(
auth: APIAuthorizationInfo = Security(require_auth),
) -> APIAuthorizationInfo:
if permission not in auth.scopes:
raise HTTPException(
status_code=status.HTTP_403_FORBIDDEN,
detail=f"Missing required permission: {permission.value}",
)
return auth
return check_permission

View File

@@ -1,340 +0,0 @@
"""Tests for analytics API endpoints."""
import json
from unittest.mock import AsyncMock, Mock
import fastapi
import fastapi.testclient
import pytest
import pytest_mock
from pytest_snapshot.plugin import Snapshot
from .analytics import router as analytics_router
app = fastapi.FastAPI()
app.include_router(analytics_router)
client = fastapi.testclient.TestClient(app)
@pytest.fixture(autouse=True)
def setup_app_auth(mock_jwt_user):
"""Setup auth overrides for all tests in this module."""
from autogpt_libs.auth.jwt_utils import get_jwt_payload
app.dependency_overrides[get_jwt_payload] = mock_jwt_user["get_jwt_payload"]
yield
app.dependency_overrides.clear()
# =============================================================================
# /log_raw_metric endpoint tests
# =============================================================================
def test_log_raw_metric_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
test_user_id: str,
) -> None:
"""Test successful raw metric logging."""
mock_result = Mock(id="metric-123-uuid")
mock_log_metric = mocker.patch(
"backend.data.analytics.log_raw_metric",
new_callable=AsyncMock,
return_value=mock_result,
)
request_data = {
"metric_name": "page_load_time",
"metric_value": 2.5,
"data_string": "/dashboard",
}
response = client.post("/log_raw_metric", json=request_data)
assert response.status_code == 200, f"Unexpected response: {response.text}"
assert response.json() == "metric-123-uuid"
mock_log_metric.assert_called_once_with(
user_id=test_user_id,
metric_name="page_load_time",
metric_value=2.5,
data_string="/dashboard",
)
configured_snapshot.assert_match(
json.dumps({"metric_id": response.json()}, indent=2, sort_keys=True),
"analytics_log_metric_success",
)
@pytest.mark.parametrize(
"metric_value,metric_name,data_string,test_id",
[
(100, "api_calls_count", "external_api", "integer_value"),
(0, "error_count", "no_errors", "zero_value"),
(-5.2, "temperature_delta", "cooling", "negative_value"),
(1.23456789, "precision_test", "float_precision", "float_precision"),
(999999999, "large_number", "max_value", "large_number"),
(0.0000001, "tiny_number", "min_value", "tiny_number"),
],
)
def test_log_raw_metric_various_values(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
metric_value: float,
metric_name: str,
data_string: str,
test_id: str,
) -> None:
"""Test raw metric logging with various metric values."""
mock_result = Mock(id=f"metric-{test_id}-uuid")
mocker.patch(
"backend.data.analytics.log_raw_metric",
new_callable=AsyncMock,
return_value=mock_result,
)
request_data = {
"metric_name": metric_name,
"metric_value": metric_value,
"data_string": data_string,
}
response = client.post("/log_raw_metric", json=request_data)
assert response.status_code == 200, f"Failed for {test_id}: {response.text}"
configured_snapshot.assert_match(
json.dumps(
{"metric_id": response.json(), "test_case": test_id},
indent=2,
sort_keys=True,
),
f"analytics_metric_{test_id}",
)
@pytest.mark.parametrize(
"invalid_data,expected_error",
[
({}, "Field required"),
({"metric_name": "test"}, "Field required"),
(
{"metric_name": "test", "metric_value": "not_a_number", "data_string": "x"},
"Input should be a valid number",
),
(
{"metric_name": "", "metric_value": 1.0, "data_string": "test"},
"String should have at least 1 character",
),
(
{"metric_name": "test", "metric_value": 1.0, "data_string": ""},
"String should have at least 1 character",
),
],
ids=[
"empty_request",
"missing_metric_value_and_data_string",
"invalid_metric_value_type",
"empty_metric_name",
"empty_data_string",
],
)
def test_log_raw_metric_validation_errors(
invalid_data: dict,
expected_error: str,
) -> None:
"""Test validation errors for invalid metric requests."""
response = client.post("/log_raw_metric", json=invalid_data)
assert response.status_code == 422
error_detail = response.json()
assert "detail" in error_detail, f"Missing 'detail' in error: {error_detail}"
error_text = json.dumps(error_detail)
assert (
expected_error in error_text
), f"Expected '{expected_error}' in error response: {error_text}"
def test_log_raw_metric_service_error(
mocker: pytest_mock.MockFixture,
test_user_id: str,
) -> None:
"""Test error handling when analytics service fails."""
mocker.patch(
"backend.data.analytics.log_raw_metric",
new_callable=AsyncMock,
side_effect=Exception("Database connection failed"),
)
request_data = {
"metric_name": "test_metric",
"metric_value": 1.0,
"data_string": "test",
}
response = client.post("/log_raw_metric", json=request_data)
assert response.status_code == 500
error_detail = response.json()["detail"]
assert "Database connection failed" in error_detail["message"]
assert "hint" in error_detail
# =============================================================================
# /log_raw_analytics endpoint tests
# =============================================================================
def test_log_raw_analytics_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
test_user_id: str,
) -> None:
"""Test successful raw analytics logging."""
mock_result = Mock(id="analytics-789-uuid")
mock_log_analytics = mocker.patch(
"backend.data.analytics.log_raw_analytics",
new_callable=AsyncMock,
return_value=mock_result,
)
request_data = {
"type": "user_action",
"data": {
"action": "button_click",
"button_id": "submit_form",
"timestamp": "2023-01-01T00:00:00Z",
"metadata": {"form_type": "registration", "fields_filled": 5},
},
"data_index": "button_click_submit_form",
}
response = client.post("/log_raw_analytics", json=request_data)
assert response.status_code == 200, f"Unexpected response: {response.text}"
assert response.json() == "analytics-789-uuid"
mock_log_analytics.assert_called_once_with(
test_user_id,
"user_action",
request_data["data"],
"button_click_submit_form",
)
configured_snapshot.assert_match(
json.dumps({"analytics_id": response.json()}, indent=2, sort_keys=True),
"analytics_log_analytics_success",
)
def test_log_raw_analytics_complex_data(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test raw analytics logging with complex nested data structures."""
mock_result = Mock(id="analytics-complex-uuid")
mocker.patch(
"backend.data.analytics.log_raw_analytics",
new_callable=AsyncMock,
return_value=mock_result,
)
request_data = {
"type": "agent_execution",
"data": {
"agent_id": "agent_123",
"execution_id": "exec_456",
"status": "completed",
"duration_ms": 3500,
"nodes_executed": 15,
"blocks_used": [
{"block_id": "llm_block", "count": 3},
{"block_id": "http_block", "count": 5},
{"block_id": "code_block", "count": 2},
],
"errors": [],
"metadata": {
"trigger": "manual",
"user_tier": "premium",
"environment": "production",
},
},
"data_index": "agent_123_exec_456",
}
response = client.post("/log_raw_analytics", json=request_data)
assert response.status_code == 200
configured_snapshot.assert_match(
json.dumps(
{"analytics_id": response.json(), "logged_data": request_data["data"]},
indent=2,
sort_keys=True,
),
"analytics_log_analytics_complex_data",
)
@pytest.mark.parametrize(
"invalid_data,expected_error",
[
({}, "Field required"),
({"type": "test"}, "Field required"),
(
{"type": "test", "data": "not_a_dict", "data_index": "test"},
"Input should be a valid dictionary",
),
({"type": "test", "data": {"key": "value"}}, "Field required"),
],
ids=[
"empty_request",
"missing_data_and_data_index",
"invalid_data_type",
"missing_data_index",
],
)
def test_log_raw_analytics_validation_errors(
invalid_data: dict,
expected_error: str,
) -> None:
"""Test validation errors for invalid analytics requests."""
response = client.post("/log_raw_analytics", json=invalid_data)
assert response.status_code == 422
error_detail = response.json()
assert "detail" in error_detail, f"Missing 'detail' in error: {error_detail}"
error_text = json.dumps(error_detail)
assert (
expected_error in error_text
), f"Expected '{expected_error}' in error response: {error_text}"
def test_log_raw_analytics_service_error(
mocker: pytest_mock.MockFixture,
test_user_id: str,
) -> None:
"""Test error handling when analytics service fails."""
mocker.patch(
"backend.data.analytics.log_raw_analytics",
new_callable=AsyncMock,
side_effect=Exception("Analytics DB unreachable"),
)
request_data = {
"type": "test_event",
"data": {"key": "value"},
"data_index": "test_index",
}
response = client.post("/log_raw_analytics", json=request_data)
assert response.status_code == 500
error_detail = response.json()["detail"]
assert "Analytics DB unreachable" in error_detail["message"]
assert "hint" in error_detail

View File

@@ -1,939 +0,0 @@
"""Chat API routes for chat session management and streaming via SSE."""
import logging
import uuid as uuid_module
from collections.abc import AsyncGenerator
from typing import Annotated
from autogpt_libs import auth
from fastapi import APIRouter, Depends, Header, HTTPException, Query, Response, Security
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from backend.copilot import service as chat_service
from backend.copilot import stream_registry
from backend.copilot.completion_handler import (
process_operation_failure,
process_operation_success,
)
from backend.copilot.config import ChatConfig
from backend.copilot.executor.utils import enqueue_copilot_task
from backend.copilot.model import (
ChatSession,
create_chat_session,
get_chat_session,
get_user_sessions,
)
from backend.copilot.response_model import StreamFinish, StreamHeartbeat
from backend.copilot.tools.models import (
AgentDetailsResponse,
AgentOutputResponse,
AgentPreviewResponse,
AgentSavedResponse,
AgentsFoundResponse,
BlockListResponse,
BlockOutputResponse,
ClarificationNeededResponse,
DocPageResponse,
DocSearchResultsResponse,
ErrorResponse,
ExecutionStartedResponse,
InputValidationErrorResponse,
NeedLoginResponse,
NoResultsResponse,
OperationInProgressResponse,
OperationPendingResponse,
OperationStartedResponse,
SetupRequirementsResponse,
UnderstandingUpdatedResponse,
)
from backend.util.exceptions import NotFoundError
config = ChatConfig()
logger = logging.getLogger(__name__)
async def _validate_and_get_session(
session_id: str,
user_id: str | None,
) -> ChatSession:
"""Validate session exists and belongs to user."""
session = await get_chat_session(session_id, user_id)
if not session:
raise NotFoundError(f"Session {session_id} not found.")
return session
router = APIRouter(
tags=["chat"],
)
# ========== Request/Response Models ==========
class StreamChatRequest(BaseModel):
"""Request model for streaming chat with optional context."""
message: str
is_user_message: bool = True
context: dict[str, str] | None = None # {url: str, content: str}
class CreateSessionResponse(BaseModel):
"""Response model containing information on a newly created chat session."""
id: str
created_at: str
user_id: str | None
class ActiveStreamInfo(BaseModel):
"""Information about an active stream for reconnection."""
task_id: str
last_message_id: str # Redis Stream message ID for resumption
operation_id: str # Operation ID for completion tracking
tool_name: str # Name of the tool being executed
class SessionDetailResponse(BaseModel):
"""Response model providing complete details for a chat session, including messages."""
id: str
created_at: str
updated_at: str
user_id: str | None
messages: list[dict]
active_stream: ActiveStreamInfo | None = None # Present if stream is still active
class SessionSummaryResponse(BaseModel):
"""Response model for a session summary (without messages)."""
id: str
created_at: str
updated_at: str
title: str | None = None
class ListSessionsResponse(BaseModel):
"""Response model for listing chat sessions."""
sessions: list[SessionSummaryResponse]
total: int
class OperationCompleteRequest(BaseModel):
"""Request model for external completion webhook."""
success: bool
result: dict | str | None = None
error: str | None = None
# ========== Routes ==========
@router.get(
"/sessions",
dependencies=[Security(auth.requires_user)],
)
async def list_sessions(
user_id: Annotated[str, Security(auth.get_user_id)],
limit: int = Query(default=50, ge=1, le=100),
offset: int = Query(default=0, ge=0),
) -> ListSessionsResponse:
"""
List chat sessions for the authenticated user.
Returns a paginated list of chat sessions belonging to the current user,
ordered by most recently updated.
Args:
user_id: The authenticated user's ID.
limit: Maximum number of sessions to return (1-100).
offset: Number of sessions to skip for pagination.
Returns:
ListSessionsResponse: List of session summaries and total count.
"""
sessions, total_count = await get_user_sessions(user_id, limit, offset)
return ListSessionsResponse(
sessions=[
SessionSummaryResponse(
id=session.session_id,
created_at=session.started_at.isoformat(),
updated_at=session.updated_at.isoformat(),
title=session.title,
)
for session in sessions
],
total=total_count,
)
@router.post(
"/sessions",
)
async def create_session(
user_id: Annotated[str, Depends(auth.get_user_id)],
) -> CreateSessionResponse:
"""
Create a new chat session.
Initiates a new chat session for the authenticated user.
Args:
user_id: The authenticated user ID parsed from the JWT (required).
Returns:
CreateSessionResponse: Details of the created session.
"""
logger.info(
f"Creating session with user_id: "
f"...{user_id[-8:] if len(user_id) > 8 else '<redacted>'}"
)
session = await create_chat_session(user_id)
return CreateSessionResponse(
id=session.session_id,
created_at=session.started_at.isoformat(),
user_id=session.user_id,
)
@router.get(
"/sessions/{session_id}",
)
async def get_session(
session_id: str,
user_id: Annotated[str | None, Depends(auth.get_user_id)],
) -> SessionDetailResponse:
"""
Retrieve the details of a specific chat session.
Looks up a chat session by ID for the given user (if authenticated) and returns all session data including messages.
If there's an active stream for this session, returns the task_id for reconnection.
Args:
session_id: The unique identifier for the desired chat session.
user_id: The optional authenticated user ID, or None for anonymous access.
Returns:
SessionDetailResponse: Details for the requested session, including active_stream info if applicable.
"""
session = await get_chat_session(session_id, user_id)
if not session:
raise NotFoundError(f"Session {session_id} not found.")
messages = [message.model_dump() for message in session.messages]
# Check if there's an active stream for this session
active_stream_info = None
active_task, last_message_id = await stream_registry.get_active_task_for_session(
session_id, user_id
)
if active_task:
# Filter out the in-progress assistant message from the session response.
# The client will receive the complete assistant response through the SSE
# stream replay instead, preventing duplicate content.
if messages and messages[-1].get("role") == "assistant":
messages = messages[:-1]
# Use "0-0" as last_message_id to replay the stream from the beginning.
# Since we filtered out the cached assistant message, the client needs
# the full stream to reconstruct the response.
active_stream_info = ActiveStreamInfo(
task_id=active_task.task_id,
last_message_id="0-0",
operation_id=active_task.operation_id,
tool_name=active_task.tool_name,
)
return SessionDetailResponse(
id=session.session_id,
created_at=session.started_at.isoformat(),
updated_at=session.updated_at.isoformat(),
user_id=session.user_id or None,
messages=messages,
active_stream=active_stream_info,
)
@router.post(
"/sessions/{session_id}/stream",
)
async def stream_chat_post(
session_id: str,
request: StreamChatRequest,
user_id: str | None = Depends(auth.get_user_id),
):
"""
Stream chat responses for a session (POST with context support).
Streams the AI/completion responses in real time over Server-Sent Events (SSE), including:
- Text fragments as they are generated
- Tool call UI elements (if invoked)
- Tool execution results
The AI generation runs in a background task that continues even if the client disconnects.
All chunks are written to Redis for reconnection support. If the client disconnects,
they can reconnect using GET /tasks/{task_id}/stream to resume from where they left off.
Args:
session_id: The chat session identifier to associate with the streamed messages.
request: Request body containing message, is_user_message, and optional context.
user_id: Optional authenticated user ID.
Returns:
StreamingResponse: SSE-formatted response chunks. First chunk is a "start" event
containing the task_id for reconnection.
"""
import asyncio
import time
stream_start_time = time.perf_counter()
log_meta = {"component": "ChatStream", "session_id": session_id}
if user_id:
log_meta["user_id"] = user_id
logger.info(
f"[TIMING] stream_chat_post STARTED, session={session_id}, "
f"user={user_id}, message_len={len(request.message)}",
extra={"json_fields": log_meta},
)
_session = await _validate_and_get_session(session_id, user_id) # noqa: F841
logger.info(
f"[TIMING] session validated in {(time.perf_counter() - stream_start_time)*1000:.1f}ms",
extra={
"json_fields": {
**log_meta,
"duration_ms": (time.perf_counter() - stream_start_time) * 1000,
}
},
)
# Create a task in the stream registry for reconnection support
task_id = str(uuid_module.uuid4())
operation_id = str(uuid_module.uuid4())
log_meta["task_id"] = task_id
task_create_start = time.perf_counter()
await stream_registry.create_task(
task_id=task_id,
session_id=session_id,
user_id=user_id,
tool_call_id="chat_stream", # Not a tool call, but needed for the model
tool_name="chat",
operation_id=operation_id,
)
logger.info(
f"[TIMING] create_task completed in {(time.perf_counter() - task_create_start)*1000:.1f}ms",
extra={
"json_fields": {
**log_meta,
"duration_ms": (time.perf_counter() - task_create_start) * 1000,
}
},
)
# Enqueue the task to RabbitMQ for processing by the CoPilot executor
await enqueue_copilot_task(
task_id=task_id,
session_id=session_id,
user_id=user_id,
operation_id=operation_id,
message=request.message,
is_user_message=request.is_user_message,
context=request.context,
)
setup_time = (time.perf_counter() - stream_start_time) * 1000
logger.info(
f"[TIMING] Task enqueued to RabbitMQ, setup={setup_time:.1f}ms",
extra={"json_fields": {**log_meta, "setup_time_ms": setup_time}},
)
# SSE endpoint that subscribes to the task's stream
async def event_generator() -> AsyncGenerator[str, None]:
import time as time_module
event_gen_start = time_module.perf_counter()
logger.info(
f"[TIMING] event_generator STARTED, task={task_id}, session={session_id}, "
f"user={user_id}",
extra={"json_fields": log_meta},
)
subscriber_queue = None
first_chunk_yielded = False
chunks_yielded = 0
try:
# Subscribe to the task stream (this replays existing messages + live updates)
subscriber_queue = await stream_registry.subscribe_to_task(
task_id=task_id,
user_id=user_id,
last_message_id="0-0", # Get all messages from the beginning
)
if subscriber_queue is None:
yield StreamFinish().to_sse()
yield "data: [DONE]\n\n"
return
# Read from the subscriber queue and yield to SSE
logger.info(
"[TIMING] Starting to read from subscriber_queue",
extra={"json_fields": log_meta},
)
while True:
try:
chunk = await asyncio.wait_for(subscriber_queue.get(), timeout=30.0)
chunks_yielded += 1
if not first_chunk_yielded:
first_chunk_yielded = True
elapsed = time_module.perf_counter() - event_gen_start
logger.info(
f"[TIMING] FIRST CHUNK from queue at {elapsed:.2f}s, "
f"type={type(chunk).__name__}",
extra={
"json_fields": {
**log_meta,
"chunk_type": type(chunk).__name__,
"elapsed_ms": elapsed * 1000,
}
},
)
yield chunk.to_sse()
# Check for finish signal
if isinstance(chunk, StreamFinish):
total_time = time_module.perf_counter() - event_gen_start
logger.info(
f"[TIMING] StreamFinish received in {total_time:.2f}s; "
f"n_chunks={chunks_yielded}",
extra={
"json_fields": {
**log_meta,
"chunks_yielded": chunks_yielded,
"total_time_ms": total_time * 1000,
}
},
)
break
except asyncio.TimeoutError:
yield StreamHeartbeat().to_sse()
except GeneratorExit:
logger.info(
f"[TIMING] GeneratorExit (client disconnected), chunks={chunks_yielded}",
extra={
"json_fields": {
**log_meta,
"chunks_yielded": chunks_yielded,
"reason": "client_disconnect",
}
},
)
pass # Client disconnected - background task continues
except Exception as e:
elapsed = (time_module.perf_counter() - event_gen_start) * 1000
logger.error(
f"[TIMING] event_generator ERROR after {elapsed:.1f}ms: {e}",
extra={
"json_fields": {**log_meta, "elapsed_ms": elapsed, "error": str(e)}
},
)
finally:
# Unsubscribe when client disconnects or stream ends to prevent resource leak
if subscriber_queue is not None:
try:
await stream_registry.unsubscribe_from_task(
task_id, subscriber_queue
)
except Exception as unsub_err:
logger.error(
f"Error unsubscribing from task {task_id}: {unsub_err}",
exc_info=True,
)
# AI SDK protocol termination - always yield even if unsubscribe fails
total_time = time_module.perf_counter() - event_gen_start
logger.info(
f"[TIMING] event_generator FINISHED in {total_time:.2f}s; "
f"task={task_id}, session={session_id}, n_chunks={chunks_yielded}",
extra={
"json_fields": {
**log_meta,
"total_time_ms": total_time * 1000,
"chunks_yielded": chunks_yielded,
}
},
)
yield "data: [DONE]\n\n"
return StreamingResponse(
event_generator(),
media_type="text/event-stream",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no", # Disable nginx buffering
"x-vercel-ai-ui-message-stream": "v1", # AI SDK protocol header
},
)
@router.get(
"/sessions/{session_id}/stream",
)
async def resume_session_stream(
session_id: str,
user_id: str | None = Depends(auth.get_user_id),
):
"""
Resume an active stream for a session.
Called by the AI SDK's ``useChat(resume: true)`` on page load.
Checks for an active (in-progress) task on the session and either replays
the full SSE stream or returns 204 No Content if nothing is running.
Args:
session_id: The chat session identifier.
user_id: Optional authenticated user ID.
Returns:
StreamingResponse (SSE) when an active stream exists,
or 204 No Content when there is nothing to resume.
"""
import asyncio
active_task, _last_id = await stream_registry.get_active_task_for_session(
session_id, user_id
)
if not active_task:
return Response(status_code=204)
subscriber_queue = await stream_registry.subscribe_to_task(
task_id=active_task.task_id,
user_id=user_id,
last_message_id="0-0", # Full replay so useChat rebuilds the message
)
if subscriber_queue is None:
return Response(status_code=204)
async def event_generator() -> AsyncGenerator[str, None]:
chunk_count = 0
first_chunk_type: str | None = None
try:
while True:
try:
chunk = await asyncio.wait_for(subscriber_queue.get(), timeout=30.0)
if chunk_count < 3:
logger.info(
"Resume stream chunk",
extra={
"session_id": session_id,
"chunk_type": str(chunk.type),
},
)
if not first_chunk_type:
first_chunk_type = str(chunk.type)
chunk_count += 1
yield chunk.to_sse()
if isinstance(chunk, StreamFinish):
break
except asyncio.TimeoutError:
yield StreamHeartbeat().to_sse()
except GeneratorExit:
pass
except Exception as e:
logger.error(f"Error in resume stream for session {session_id}: {e}")
finally:
try:
await stream_registry.unsubscribe_from_task(
active_task.task_id, subscriber_queue
)
except Exception as unsub_err:
logger.error(
f"Error unsubscribing from task {active_task.task_id}: {unsub_err}",
exc_info=True,
)
logger.info(
"Resume stream completed",
extra={
"session_id": session_id,
"n_chunks": chunk_count,
"first_chunk_type": first_chunk_type,
},
)
yield "data: [DONE]\n\n"
return StreamingResponse(
event_generator(),
media_type="text/event-stream",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no",
"x-vercel-ai-ui-message-stream": "v1",
},
)
@router.patch(
"/sessions/{session_id}/assign-user",
dependencies=[Security(auth.requires_user)],
status_code=200,
)
async def session_assign_user(
session_id: str,
user_id: Annotated[str, Security(auth.get_user_id)],
) -> dict:
"""
Assign an authenticated user to a chat session.
Used (typically post-login) to claim an existing anonymous session as the current authenticated user.
Args:
session_id: The identifier for the (previously anonymous) session.
user_id: The authenticated user's ID to associate with the session.
Returns:
dict: Status of the assignment.
"""
await chat_service.assign_user_to_session(session_id, user_id)
return {"status": "ok"}
# ========== Task Streaming (SSE Reconnection) ==========
@router.get(
"/tasks/{task_id}/stream",
)
async def stream_task(
task_id: str,
user_id: str | None = Depends(auth.get_user_id),
last_message_id: str = Query(
default="0-0",
description="Last Redis Stream message ID received (e.g., '1706540123456-0'). Use '0-0' for full replay.",
),
):
"""
Reconnect to a long-running task's SSE stream.
When a long-running operation (like agent generation) starts, the client
receives a task_id. If the connection drops, the client can reconnect
using this endpoint to resume receiving updates.
Args:
task_id: The task ID from the operation_started response.
user_id: Authenticated user ID for ownership validation.
last_message_id: Last Redis Stream message ID received ("0-0" for full replay).
Returns:
StreamingResponse: SSE-formatted response chunks starting after last_message_id.
Raises:
HTTPException: 404 if task not found, 410 if task expired, 403 if access denied.
"""
# Check task existence and expiry before subscribing
task, error_code = await stream_registry.get_task_with_expiry_info(task_id)
if error_code == "TASK_EXPIRED":
raise HTTPException(
status_code=410,
detail={
"code": "TASK_EXPIRED",
"message": "This operation has expired. Please try again.",
},
)
if error_code == "TASK_NOT_FOUND":
raise HTTPException(
status_code=404,
detail={
"code": "TASK_NOT_FOUND",
"message": f"Task {task_id} not found.",
},
)
# Validate ownership if task has an owner
if task and task.user_id and user_id != task.user_id:
raise HTTPException(
status_code=403,
detail={
"code": "ACCESS_DENIED",
"message": "You do not have access to this task.",
},
)
# Get subscriber queue from stream registry
subscriber_queue = await stream_registry.subscribe_to_task(
task_id=task_id,
user_id=user_id,
last_message_id=last_message_id,
)
if subscriber_queue is None:
raise HTTPException(
status_code=404,
detail={
"code": "TASK_NOT_FOUND",
"message": f"Task {task_id} not found or access denied.",
},
)
async def event_generator() -> AsyncGenerator[str, None]:
import asyncio
heartbeat_interval = 15.0 # Send heartbeat every 15 seconds
try:
while True:
try:
# Wait for next chunk with timeout for heartbeats
chunk = await asyncio.wait_for(
subscriber_queue.get(), timeout=heartbeat_interval
)
yield chunk.to_sse()
# Check for finish signal
if isinstance(chunk, StreamFinish):
break
except asyncio.TimeoutError:
# Send heartbeat to keep connection alive
yield StreamHeartbeat().to_sse()
except Exception as e:
logger.error(f"Error in task stream {task_id}: {e}", exc_info=True)
finally:
# Unsubscribe when client disconnects or stream ends
try:
await stream_registry.unsubscribe_from_task(task_id, subscriber_queue)
except Exception as unsub_err:
logger.error(
f"Error unsubscribing from task {task_id}: {unsub_err}",
exc_info=True,
)
# AI SDK protocol termination - always yield even if unsubscribe fails
yield "data: [DONE]\n\n"
return StreamingResponse(
event_generator(),
media_type="text/event-stream",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no",
"x-vercel-ai-ui-message-stream": "v1",
},
)
@router.get(
"/tasks/{task_id}",
)
async def get_task_status(
task_id: str,
user_id: str | None = Depends(auth.get_user_id),
) -> dict:
"""
Get the status of a long-running task.
Args:
task_id: The task ID to check.
user_id: Authenticated user ID for ownership validation.
Returns:
dict: Task status including task_id, status, tool_name, and operation_id.
Raises:
NotFoundError: If task_id is not found or user doesn't have access.
"""
task = await stream_registry.get_task(task_id)
if task is None:
raise NotFoundError(f"Task {task_id} not found.")
# Validate ownership - if task has an owner, requester must match
if task.user_id and user_id != task.user_id:
raise NotFoundError(f"Task {task_id} not found.")
return {
"task_id": task.task_id,
"session_id": task.session_id,
"status": task.status,
"tool_name": task.tool_name,
"operation_id": task.operation_id,
"created_at": task.created_at.isoformat(),
}
# ========== External Completion Webhook ==========
@router.post(
"/operations/{operation_id}/complete",
status_code=200,
)
async def complete_operation(
operation_id: str,
request: OperationCompleteRequest,
x_api_key: str | None = Header(default=None),
) -> dict:
"""
External completion webhook for long-running operations.
Called by Agent Generator (or other services) when an operation completes.
This triggers the stream registry to publish completion and continue LLM generation.
Args:
operation_id: The operation ID to complete.
request: Completion payload with success status and result/error.
x_api_key: Internal API key for authentication.
Returns:
dict: Status of the completion.
Raises:
HTTPException: If API key is invalid or operation not found.
"""
# Validate internal API key - reject if not configured or invalid
if not config.internal_api_key:
logger.error(
"Operation complete webhook rejected: CHAT_INTERNAL_API_KEY not configured"
)
raise HTTPException(
status_code=503,
detail="Webhook not available: internal API key not configured",
)
if x_api_key != config.internal_api_key:
raise HTTPException(status_code=401, detail="Invalid API key")
# Find task by operation_id
task = await stream_registry.find_task_by_operation_id(operation_id)
if task is None:
raise HTTPException(
status_code=404,
detail=f"Operation {operation_id} not found",
)
logger.info(
f"Received completion webhook for operation {operation_id} "
f"(task_id={task.task_id}, success={request.success})"
)
if request.success:
await process_operation_success(task, request.result)
else:
await process_operation_failure(task, request.error)
return {"status": "ok", "task_id": task.task_id}
# ========== Configuration ==========
@router.get("/config/ttl", status_code=200)
async def get_ttl_config() -> dict:
"""
Get the stream TTL configuration.
Returns the Time-To-Live settings for chat streams, which determines
how long clients can reconnect to an active stream.
Returns:
dict: TTL configuration with seconds and milliseconds values.
"""
return {
"stream_ttl_seconds": config.stream_ttl,
"stream_ttl_ms": config.stream_ttl * 1000,
}
# ========== Health Check ==========
@router.get("/health", status_code=200)
async def health_check() -> dict:
"""
Health check endpoint for the chat service.
Performs a full cycle test of session creation and retrieval. Should always return healthy
if the service and data layer are operational.
Returns:
dict: A status dictionary indicating health, service name, and API version.
"""
from backend.data.user import get_or_create_user
# Ensure health check user exists (required for FK constraint)
health_check_user_id = "health-check-user"
await get_or_create_user(
{
"sub": health_check_user_id,
"email": "health-check@system.local",
"user_metadata": {"name": "Health Check User"},
}
)
# Create and retrieve session to verify full data layer
session = await create_chat_session(health_check_user_id)
await get_chat_session(session.session_id, health_check_user_id)
return {
"status": "healthy",
"service": "chat",
"version": "0.1.0",
}
# ========== Schema Export (for OpenAPI / Orval codegen) ==========
ToolResponseUnion = (
AgentsFoundResponse
| NoResultsResponse
| AgentDetailsResponse
| SetupRequirementsResponse
| ExecutionStartedResponse
| NeedLoginResponse
| ErrorResponse
| InputValidationErrorResponse
| AgentOutputResponse
| UnderstandingUpdatedResponse
| AgentPreviewResponse
| AgentSavedResponse
| ClarificationNeededResponse
| BlockListResponse
| BlockOutputResponse
| DocSearchResultsResponse
| DocPageResponse
| OperationStartedResponse
| OperationPendingResponse
| OperationInProgressResponse
)
@router.get(
"/schema/tool-responses",
response_model=ToolResponseUnion,
include_in_schema=True,
summary="[Dummy] Tool response type export for codegen",
description="This endpoint is not meant to be called. It exists solely to "
"expose tool response models in the OpenAPI schema for frontend codegen.",
)
async def _tool_response_schema() -> ToolResponseUnion: # type: ignore[return]
"""Never called at runtime. Exists only so Orval generates TS types."""
raise HTTPException(status_code=501, detail="Schema-only endpoint")

View File

@@ -1,353 +0,0 @@
import asyncio
import logging
from typing import Any, List
import autogpt_libs.auth as autogpt_auth_lib
from fastapi import APIRouter, HTTPException, Query, Security, status
from prisma.enums import ReviewStatus
from backend.data.execution import (
ExecutionContext,
ExecutionStatus,
get_graph_execution_meta,
)
from backend.data.graph import get_graph_settings
from backend.data.human_review import (
create_auto_approval_record,
get_pending_reviews_for_execution,
get_pending_reviews_for_user,
get_reviews_by_node_exec_ids,
has_pending_reviews_for_graph_exec,
process_all_reviews_for_execution,
)
from backend.data.model import USER_TIMEZONE_NOT_SET
from backend.data.user import get_user_by_id
from backend.executor.utils import add_graph_execution
from .model import PendingHumanReviewModel, ReviewRequest, ReviewResponse
logger = logging.getLogger(__name__)
router = APIRouter(
tags=["v2", "executions", "review"],
dependencies=[Security(autogpt_auth_lib.requires_user)],
)
@router.get(
"/pending",
summary="Get Pending Reviews",
response_model=List[PendingHumanReviewModel],
responses={
200: {"description": "List of pending reviews"},
500: {"description": "Server error", "content": {"application/json": {}}},
},
)
async def list_pending_reviews(
user_id: str = Security(autogpt_auth_lib.get_user_id),
page: int = Query(1, ge=1, description="Page number (1-indexed)"),
page_size: int = Query(25, ge=1, le=100, description="Number of reviews per page"),
) -> List[PendingHumanReviewModel]:
"""Get all pending reviews for the current user.
Retrieves all reviews with status "WAITING" that belong to the authenticated user.
Results are ordered by creation time (newest first).
Args:
user_id: Authenticated user ID from security dependency
Returns:
List of pending review objects with status converted to typed literals
Raises:
HTTPException: If authentication fails or database error occurs
Note:
Reviews with invalid status values are logged as warnings but excluded
from results rather than failing the entire request.
"""
return await get_pending_reviews_for_user(user_id, page, page_size)
@router.get(
"/execution/{graph_exec_id}",
summary="Get Pending Reviews for Execution",
response_model=List[PendingHumanReviewModel],
responses={
200: {"description": "List of pending reviews for the execution"},
404: {"description": "Graph execution not found"},
500: {"description": "Server error", "content": {"application/json": {}}},
},
)
async def list_pending_reviews_for_execution(
graph_exec_id: str,
user_id: str = Security(autogpt_auth_lib.get_user_id),
) -> List[PendingHumanReviewModel]:
"""Get all pending reviews for a specific graph execution.
Retrieves all reviews with status "WAITING" for the specified graph execution
that belong to the authenticated user. Results are ordered by creation time
(oldest first) to preserve review order within the execution.
Args:
graph_exec_id: ID of the graph execution to get reviews for
user_id: Authenticated user ID from security dependency
Returns:
List of pending review objects for the specified execution
Raises:
HTTPException:
- 404: If the graph execution doesn't exist or isn't owned by this user
- 500: If authentication fails or database error occurs
Note:
Only returns reviews owned by the authenticated user for security.
Reviews with invalid status are excluded with warning logs.
"""
# Verify user owns the graph execution before returning reviews
graph_exec = await get_graph_execution_meta(
user_id=user_id, execution_id=graph_exec_id
)
if not graph_exec:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=f"Graph execution #{graph_exec_id} not found",
)
return await get_pending_reviews_for_execution(graph_exec_id, user_id)
@router.post("/action", response_model=ReviewResponse)
async def process_review_action(
request: ReviewRequest,
user_id: str = Security(autogpt_auth_lib.get_user_id),
) -> ReviewResponse:
"""Process reviews with approve or reject actions."""
# Collect all node exec IDs from the request
all_request_node_ids = {review.node_exec_id for review in request.reviews}
if not all_request_node_ids:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="At least one review must be provided",
)
# Batch fetch all requested reviews (regardless of status for idempotent handling)
reviews_map = await get_reviews_by_node_exec_ids(
list(all_request_node_ids), user_id
)
# Validate all reviews were found (must exist, any status is OK for now)
missing_ids = all_request_node_ids - set(reviews_map.keys())
if missing_ids:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=f"Review(s) not found: {', '.join(missing_ids)}",
)
# Validate all reviews belong to the same execution
graph_exec_ids = {review.graph_exec_id for review in reviews_map.values()}
if len(graph_exec_ids) > 1:
raise HTTPException(
status_code=status.HTTP_409_CONFLICT,
detail="All reviews in a single request must belong to the same execution.",
)
graph_exec_id = next(iter(graph_exec_ids))
# Validate execution status before processing reviews
graph_exec_meta = await get_graph_execution_meta(
user_id=user_id, execution_id=graph_exec_id
)
if not graph_exec_meta:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=f"Graph execution #{graph_exec_id} not found",
)
# Only allow processing reviews if execution is paused for review
# or incomplete (partial execution with some reviews already processed)
if graph_exec_meta.status not in (
ExecutionStatus.REVIEW,
ExecutionStatus.INCOMPLETE,
):
raise HTTPException(
status_code=status.HTTP_409_CONFLICT,
detail=f"Cannot process reviews while execution status is {graph_exec_meta.status}. "
f"Reviews can only be processed when execution is paused (REVIEW status). "
f"Current status: {graph_exec_meta.status}",
)
# Build review decisions map and track which reviews requested auto-approval
# Auto-approved reviews use original data (no modifications allowed)
review_decisions = {}
auto_approve_requests = {} # Map node_exec_id -> auto_approve_future flag
for review in request.reviews:
review_status = (
ReviewStatus.APPROVED if review.approved else ReviewStatus.REJECTED
)
# If this review requested auto-approval, don't allow data modifications
reviewed_data = None if review.auto_approve_future else review.reviewed_data
review_decisions[review.node_exec_id] = (
review_status,
reviewed_data,
review.message,
)
auto_approve_requests[review.node_exec_id] = review.auto_approve_future
# Process all reviews
updated_reviews = await process_all_reviews_for_execution(
user_id=user_id,
review_decisions=review_decisions,
)
# Create auto-approval records for approved reviews that requested it
# Deduplicate by node_id to avoid race conditions when multiple reviews
# for the same node are processed in parallel
async def create_auto_approval_for_node(
node_id: str, review_result
) -> tuple[str, bool]:
"""
Create auto-approval record for a node.
Returns (node_id, success) tuple for tracking failures.
"""
try:
await create_auto_approval_record(
user_id=user_id,
graph_exec_id=review_result.graph_exec_id,
graph_id=review_result.graph_id,
graph_version=review_result.graph_version,
node_id=node_id,
payload=review_result.payload,
)
return (node_id, True)
except Exception as e:
logger.error(
f"Failed to create auto-approval record for node {node_id}",
exc_info=e,
)
return (node_id, False)
# Collect node_exec_ids that need auto-approval
node_exec_ids_needing_auto_approval = [
node_exec_id
for node_exec_id, review_result in updated_reviews.items()
if review_result.status == ReviewStatus.APPROVED
and auto_approve_requests.get(node_exec_id, False)
]
# Batch-fetch node executions to get node_ids
nodes_needing_auto_approval: dict[str, Any] = {}
if node_exec_ids_needing_auto_approval:
from backend.data.execution import get_node_executions
node_execs = await get_node_executions(
graph_exec_id=graph_exec_id, include_exec_data=False
)
node_exec_map = {node_exec.node_exec_id: node_exec for node_exec in node_execs}
for node_exec_id in node_exec_ids_needing_auto_approval:
node_exec = node_exec_map.get(node_exec_id)
if node_exec:
review_result = updated_reviews[node_exec_id]
# Use the first approved review for this node (deduplicate by node_id)
if node_exec.node_id not in nodes_needing_auto_approval:
nodes_needing_auto_approval[node_exec.node_id] = review_result
else:
logger.error(
f"Failed to create auto-approval record for {node_exec_id}: "
f"Node execution not found. This may indicate a race condition "
f"or data inconsistency."
)
# Execute all auto-approval creations in parallel (deduplicated by node_id)
auto_approval_results = await asyncio.gather(
*[
create_auto_approval_for_node(node_id, review_result)
for node_id, review_result in nodes_needing_auto_approval.items()
],
return_exceptions=True,
)
# Count auto-approval failures
auto_approval_failed_count = 0
for result in auto_approval_results:
if isinstance(result, Exception):
# Unexpected exception during auto-approval creation
auto_approval_failed_count += 1
logger.error(
f"Unexpected exception during auto-approval creation: {result}"
)
elif isinstance(result, tuple) and len(result) == 2 and not result[1]:
# Auto-approval creation failed (returned False)
auto_approval_failed_count += 1
# Count results
approved_count = sum(
1
for review in updated_reviews.values()
if review.status == ReviewStatus.APPROVED
)
rejected_count = sum(
1
for review in updated_reviews.values()
if review.status == ReviewStatus.REJECTED
)
# Resume execution only if ALL pending reviews for this execution have been processed
if updated_reviews:
still_has_pending = await has_pending_reviews_for_graph_exec(graph_exec_id)
if not still_has_pending:
# Get the graph_id from any processed review
first_review = next(iter(updated_reviews.values()))
try:
# Fetch user and settings to build complete execution context
user = await get_user_by_id(user_id)
settings = await get_graph_settings(
user_id=user_id, graph_id=first_review.graph_id
)
# Preserve user's timezone preference when resuming execution
user_timezone = (
user.timezone if user.timezone != USER_TIMEZONE_NOT_SET else "UTC"
)
execution_context = ExecutionContext(
human_in_the_loop_safe_mode=settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=settings.sensitive_action_safe_mode,
user_timezone=user_timezone,
)
await add_graph_execution(
graph_id=first_review.graph_id,
user_id=user_id,
graph_exec_id=graph_exec_id,
execution_context=execution_context,
)
logger.info(f"Resumed execution {graph_exec_id}")
except Exception as e:
logger.error(f"Failed to resume execution {graph_exec_id}: {str(e)}")
# Build error message if auto-approvals failed
error_message = None
if auto_approval_failed_count > 0:
error_message = (
f"{auto_approval_failed_count} auto-approval setting(s) could not be saved. "
f"You may need to manually approve these reviews in future executions."
)
return ReviewResponse(
approved_count=approved_count,
rejected_count=rejected_count,
failed_count=auto_approval_failed_count,
error=error_message,
)

View File

@@ -1,199 +0,0 @@
from typing import Literal, Optional
import autogpt_libs.auth as autogpt_auth_lib
from fastapi import APIRouter, Body, HTTPException, Query, Security, status
from fastapi.responses import Response
from prisma.enums import OnboardingStep
from backend.data.onboarding import complete_onboarding_step
from .. import db as library_db
from .. import model as library_model
router = APIRouter(
prefix="/agents",
tags=["library", "private"],
dependencies=[Security(autogpt_auth_lib.requires_user)],
)
@router.get(
"",
summary="List Library Agents",
response_model=library_model.LibraryAgentResponse,
)
async def list_library_agents(
user_id: str = Security(autogpt_auth_lib.get_user_id),
search_term: Optional[str] = Query(
None, description="Search term to filter agents"
),
sort_by: library_model.LibraryAgentSort = Query(
library_model.LibraryAgentSort.UPDATED_AT,
description="Criteria to sort results by",
),
page: int = Query(
1,
ge=1,
description="Page number to retrieve (must be >= 1)",
),
page_size: int = Query(
15,
ge=1,
description="Number of agents per page (must be >= 1)",
),
) -> library_model.LibraryAgentResponse:
"""
Get all agents in the user's library (both created and saved).
"""
return await library_db.list_library_agents(
user_id=user_id,
search_term=search_term,
sort_by=sort_by,
page=page,
page_size=page_size,
)
@router.get(
"/favorites",
summary="List Favorite Library Agents",
)
async def list_favorite_library_agents(
user_id: str = Security(autogpt_auth_lib.get_user_id),
page: int = Query(
1,
ge=1,
description="Page number to retrieve (must be >= 1)",
),
page_size: int = Query(
15,
ge=1,
description="Number of agents per page (must be >= 1)",
),
) -> library_model.LibraryAgentResponse:
"""
Get all favorite agents in the user's library.
"""
return await library_db.list_favorite_library_agents(
user_id=user_id,
page=page,
page_size=page_size,
)
@router.get("/{library_agent_id}", summary="Get Library Agent")
async def get_library_agent(
library_agent_id: str,
user_id: str = Security(autogpt_auth_lib.get_user_id),
) -> library_model.LibraryAgent:
return await library_db.get_library_agent(id=library_agent_id, user_id=user_id)
@router.get("/by-graph/{graph_id}")
async def get_library_agent_by_graph_id(
graph_id: str,
version: Optional[int] = Query(default=None),
user_id: str = Security(autogpt_auth_lib.get_user_id),
) -> library_model.LibraryAgent:
library_agent = await library_db.get_library_agent_by_graph_id(
user_id, graph_id, version
)
if not library_agent:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=f"Library agent for graph #{graph_id} and user #{user_id} not found",
)
return library_agent
@router.get(
"/marketplace/{store_listing_version_id}",
summary="Get Agent By Store ID",
tags=["store", "library"],
response_model=library_model.LibraryAgent | None,
)
async def get_library_agent_by_store_listing_version_id(
store_listing_version_id: str,
user_id: str = Security(autogpt_auth_lib.get_user_id),
) -> library_model.LibraryAgent | None:
"""
Get Library Agent from Store Listing Version ID.
"""
return await library_db.get_library_agent_by_store_version_id(
store_listing_version_id, user_id
)
@router.post(
"",
summary="Add Marketplace Agent",
status_code=status.HTTP_201_CREATED,
)
async def add_marketplace_agent_to_library(
store_listing_version_id: str = Body(embed=True),
source: Literal["onboarding", "marketplace"] = Body(
default="marketplace", embed=True
),
user_id: str = Security(autogpt_auth_lib.get_user_id),
) -> library_model.LibraryAgent:
"""
Add an agent from the marketplace to the user's library.
"""
agent = await library_db.add_store_agent_to_library(
store_listing_version_id=store_listing_version_id,
user_id=user_id,
)
if source != "onboarding":
await complete_onboarding_step(user_id, OnboardingStep.MARKETPLACE_ADD_AGENT)
return agent
@router.patch(
"/{library_agent_id}",
summary="Update Library Agent",
)
async def update_library_agent(
library_agent_id: str,
payload: library_model.LibraryAgentUpdateRequest,
user_id: str = Security(autogpt_auth_lib.get_user_id),
) -> library_model.LibraryAgent:
"""
Update the library agent with the given fields.
"""
return await library_db.update_library_agent(
library_agent_id=library_agent_id,
user_id=user_id,
auto_update_version=payload.auto_update_version,
graph_version=payload.graph_version,
is_favorite=payload.is_favorite,
is_archived=payload.is_archived,
settings=payload.settings,
)
@router.delete(
"/{library_agent_id}",
summary="Delete Library Agent",
)
async def delete_library_agent(
library_agent_id: str,
user_id: str = Security(autogpt_auth_lib.get_user_id),
) -> Response:
"""
Soft-delete the specified library agent.
"""
await library_db.delete_library_agent(
library_agent_id=library_agent_id, user_id=user_id
)
return Response(status_code=status.HTTP_204_NO_CONTENT)
@router.post("/{library_agent_id}/fork", summary="Fork Library Agent")
async def fork_library_agent(
library_agent_id: str,
user_id: str = Security(autogpt_auth_lib.get_user_id),
) -> library_model.LibraryAgent:
return await library_db.fork_library_agent(
library_agent_id=library_agent_id,
user_id=user_id,
)

View File

@@ -1,833 +0,0 @@
"""
OAuth 2.0 Provider Endpoints
Implements OAuth 2.0 Authorization Code flow with PKCE support.
Flow:
1. User clicks "Login with AutoGPT" in 3rd party app
2. App redirects user to /auth/authorize with client_id, redirect_uri, scope, state
3. User sees consent screen (if not already logged in, redirects to login first)
4. User approves → backend creates authorization code
5. User redirected back to app with code
6. App exchanges code for access/refresh tokens at /api/oauth/token
7. App uses access token to call external API endpoints
"""
import io
import logging
import os
import uuid
from datetime import datetime
from typing import Literal, Optional
from urllib.parse import urlencode
from autogpt_libs.auth import get_user_id
from fastapi import APIRouter, Body, HTTPException, Security, UploadFile, status
from gcloud.aio import storage as async_storage
from PIL import Image
from prisma.enums import APIKeyPermission
from pydantic import BaseModel, Field
from backend.data.auth.oauth import (
InvalidClientError,
InvalidGrantError,
OAuthApplicationInfo,
TokenIntrospectionResult,
consume_authorization_code,
create_access_token,
create_authorization_code,
create_refresh_token,
get_oauth_application,
get_oauth_application_by_id,
introspect_token,
list_user_oauth_applications,
refresh_tokens,
revoke_access_token,
revoke_refresh_token,
update_oauth_application,
validate_client_credentials,
validate_redirect_uri,
validate_scopes,
)
from backend.util.settings import Settings
from backend.util.virus_scanner import scan_content_safe
settings = Settings()
logger = logging.getLogger(__name__)
router = APIRouter()
# ============================================================================
# Request/Response Models
# ============================================================================
class TokenResponse(BaseModel):
"""OAuth 2.0 token response"""
token_type: Literal["Bearer"] = "Bearer"
access_token: str
access_token_expires_at: datetime
refresh_token: str
refresh_token_expires_at: datetime
scopes: list[str]
class ErrorResponse(BaseModel):
"""OAuth 2.0 error response"""
error: str
error_description: Optional[str] = None
class OAuthApplicationPublicInfo(BaseModel):
"""Public information about an OAuth application (for consent screen)"""
name: str
description: Optional[str] = None
logo_url: Optional[str] = None
scopes: list[str]
# ============================================================================
# Application Info Endpoint
# ============================================================================
@router.get(
"/app/{client_id}",
responses={
404: {"description": "Application not found or disabled"},
},
)
async def get_oauth_app_info(
client_id: str, user_id: str = Security(get_user_id)
) -> OAuthApplicationPublicInfo:
"""
Get public information about an OAuth application.
This endpoint is used by the consent screen to display application details
to the user before they authorize access.
Returns:
- name: Application name
- description: Application description (if provided)
- scopes: List of scopes the application is allowed to request
"""
app = await get_oauth_application(client_id)
if not app or not app.is_active:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail="Application not found",
)
return OAuthApplicationPublicInfo(
name=app.name,
description=app.description,
logo_url=app.logo_url,
scopes=[s.value for s in app.scopes],
)
# ============================================================================
# Authorization Endpoint
# ============================================================================
class AuthorizeRequest(BaseModel):
"""OAuth 2.0 authorization request"""
client_id: str = Field(description="Client identifier")
redirect_uri: str = Field(description="Redirect URI")
scopes: list[str] = Field(description="List of scopes")
state: str = Field(description="Anti-CSRF token from client")
response_type: str = Field(
default="code", description="Must be 'code' for authorization code flow"
)
code_challenge: str = Field(description="PKCE code challenge (required)")
code_challenge_method: Literal["S256", "plain"] = Field(
default="S256", description="PKCE code challenge method (S256 recommended)"
)
class AuthorizeResponse(BaseModel):
"""OAuth 2.0 authorization response with redirect URL"""
redirect_url: str = Field(description="URL to redirect the user to")
@router.post("/authorize")
async def authorize(
request: AuthorizeRequest = Body(),
user_id: str = Security(get_user_id),
) -> AuthorizeResponse:
"""
OAuth 2.0 Authorization Endpoint
User must be logged in (authenticated with Supabase JWT).
This endpoint creates an authorization code and returns a redirect URL.
PKCE (Proof Key for Code Exchange) is REQUIRED for all authorization requests.
The frontend consent screen should call this endpoint after the user approves,
then redirect the user to the returned `redirect_url`.
Request Body:
- client_id: The OAuth application's client ID
- redirect_uri: Where to redirect after authorization (must match registered URI)
- scopes: List of permissions (e.g., "EXECUTE_GRAPH READ_GRAPH")
- state: Anti-CSRF token provided by client (will be returned in redirect)
- response_type: Must be "code" (for authorization code flow)
- code_challenge: PKCE code challenge (required)
- code_challenge_method: "S256" (recommended) or "plain"
Returns:
- redirect_url: The URL to redirect the user to (includes authorization code)
Error cases return a redirect_url with error parameters, or raise HTTPException
for critical errors (like invalid redirect_uri).
"""
try:
# Validate response_type
if request.response_type != "code":
return _error_redirect_url(
request.redirect_uri,
request.state,
"unsupported_response_type",
"Only 'code' response type is supported",
)
# Get application
app = await get_oauth_application(request.client_id)
if not app:
return _error_redirect_url(
request.redirect_uri,
request.state,
"invalid_client",
"Unknown client_id",
)
if not app.is_active:
return _error_redirect_url(
request.redirect_uri,
request.state,
"invalid_client",
"Application is not active",
)
# Validate redirect URI
if not validate_redirect_uri(app, request.redirect_uri):
# For invalid redirect_uri, we can't redirect safely
# Must return error instead
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=(
"Invalid redirect_uri. "
f"Must be one of: {', '.join(app.redirect_uris)}"
),
)
# Parse and validate scopes
try:
requested_scopes = [APIKeyPermission(s.strip()) for s in request.scopes]
except ValueError as e:
return _error_redirect_url(
request.redirect_uri,
request.state,
"invalid_scope",
f"Invalid scope: {e}",
)
if not requested_scopes:
return _error_redirect_url(
request.redirect_uri,
request.state,
"invalid_scope",
"At least one scope is required",
)
if not validate_scopes(app, requested_scopes):
return _error_redirect_url(
request.redirect_uri,
request.state,
"invalid_scope",
"Application is not authorized for all requested scopes. "
f"Allowed: {', '.join(s.value for s in app.scopes)}",
)
# Create authorization code
auth_code = await create_authorization_code(
application_id=app.id,
user_id=user_id,
scopes=requested_scopes,
redirect_uri=request.redirect_uri,
code_challenge=request.code_challenge,
code_challenge_method=request.code_challenge_method,
)
# Build redirect URL with authorization code
params = {
"code": auth_code.code,
"state": request.state,
}
redirect_url = f"{request.redirect_uri}?{urlencode(params)}"
logger.info(
f"Authorization code issued for user #{user_id} "
f"and app {app.name} (#{app.id})"
)
return AuthorizeResponse(redirect_url=redirect_url)
except HTTPException:
raise
except Exception as e:
logger.error(f"Error in authorization endpoint: {e}", exc_info=True)
return _error_redirect_url(
request.redirect_uri,
request.state,
"server_error",
"An unexpected error occurred",
)
def _error_redirect_url(
redirect_uri: str,
state: str,
error: str,
error_description: Optional[str] = None,
) -> AuthorizeResponse:
"""Helper to build redirect URL with OAuth error parameters"""
params = {
"error": error,
"state": state,
}
if error_description:
params["error_description"] = error_description
redirect_url = f"{redirect_uri}?{urlencode(params)}"
return AuthorizeResponse(redirect_url=redirect_url)
# ============================================================================
# Token Endpoint
# ============================================================================
class TokenRequestByCode(BaseModel):
grant_type: Literal["authorization_code"]
code: str = Field(description="Authorization code")
redirect_uri: str = Field(
description="Redirect URI (must match authorization request)"
)
client_id: str
client_secret: str
code_verifier: str = Field(description="PKCE code verifier")
class TokenRequestByRefreshToken(BaseModel):
grant_type: Literal["refresh_token"]
refresh_token: str
client_id: str
client_secret: str
@router.post("/token")
async def token(
request: TokenRequestByCode | TokenRequestByRefreshToken = Body(),
) -> TokenResponse:
"""
OAuth 2.0 Token Endpoint
Exchanges authorization code or refresh token for access token.
Grant Types:
1. authorization_code: Exchange authorization code for tokens
- Required: grant_type, code, redirect_uri, client_id, client_secret
- Optional: code_verifier (required if PKCE was used)
2. refresh_token: Exchange refresh token for new access token
- Required: grant_type, refresh_token, client_id, client_secret
Returns:
- access_token: Bearer token for API access (1 hour TTL)
- token_type: "Bearer"
- expires_in: Seconds until access token expires
- refresh_token: Token for refreshing access (30 days TTL)
- scopes: List of scopes
"""
# Validate client credentials
try:
app = await validate_client_credentials(
request.client_id, request.client_secret
)
except InvalidClientError as e:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail=str(e),
)
# Handle authorization_code grant
if request.grant_type == "authorization_code":
# Consume authorization code
try:
user_id, scopes = await consume_authorization_code(
code=request.code,
application_id=app.id,
redirect_uri=request.redirect_uri,
code_verifier=request.code_verifier,
)
except InvalidGrantError as e:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=str(e),
)
# Create access and refresh tokens
access_token = await create_access_token(app.id, user_id, scopes)
refresh_token = await create_refresh_token(app.id, user_id, scopes)
logger.info(
f"Access token issued for user #{user_id} and app {app.name} (#{app.id})"
"via authorization code"
)
if not access_token.token or not refresh_token.token:
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail="Failed to generate tokens",
)
return TokenResponse(
token_type="Bearer",
access_token=access_token.token.get_secret_value(),
access_token_expires_at=access_token.expires_at,
refresh_token=refresh_token.token.get_secret_value(),
refresh_token_expires_at=refresh_token.expires_at,
scopes=list(s.value for s in scopes),
)
# Handle refresh_token grant
elif request.grant_type == "refresh_token":
# Refresh access token
try:
new_access_token, new_refresh_token = await refresh_tokens(
request.refresh_token, app.id
)
except InvalidGrantError as e:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=str(e),
)
logger.info(
f"Tokens refreshed for user #{new_access_token.user_id} "
f"by app {app.name} (#{app.id})"
)
if not new_access_token.token or not new_refresh_token.token:
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail="Failed to generate tokens",
)
return TokenResponse(
token_type="Bearer",
access_token=new_access_token.token.get_secret_value(),
access_token_expires_at=new_access_token.expires_at,
refresh_token=new_refresh_token.token.get_secret_value(),
refresh_token_expires_at=new_refresh_token.expires_at,
scopes=list(s.value for s in new_access_token.scopes),
)
else:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"Unsupported grant_type: {request.grant_type}. "
"Must be 'authorization_code' or 'refresh_token'",
)
# ============================================================================
# Token Introspection Endpoint
# ============================================================================
@router.post("/introspect")
async def introspect(
token: str = Body(description="Token to introspect"),
token_type_hint: Optional[Literal["access_token", "refresh_token"]] = Body(
None, description="Hint about token type ('access_token' or 'refresh_token')"
),
client_id: str = Body(description="Client identifier"),
client_secret: str = Body(description="Client secret"),
) -> TokenIntrospectionResult:
"""
OAuth 2.0 Token Introspection Endpoint (RFC 7662)
Allows clients to check if a token is valid and get its metadata.
Returns:
- active: Whether the token is currently active
- scopes: List of authorized scopes (if active)
- client_id: The client the token was issued to (if active)
- user_id: The user the token represents (if active)
- exp: Expiration timestamp (if active)
- token_type: "access_token" or "refresh_token" (if active)
"""
# Validate client credentials
try:
await validate_client_credentials(client_id, client_secret)
except InvalidClientError as e:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail=str(e),
)
# Introspect the token
return await introspect_token(token, token_type_hint)
# ============================================================================
# Token Revocation Endpoint
# ============================================================================
@router.post("/revoke")
async def revoke(
token: str = Body(description="Token to revoke"),
token_type_hint: Optional[Literal["access_token", "refresh_token"]] = Body(
None, description="Hint about token type ('access_token' or 'refresh_token')"
),
client_id: str = Body(description="Client identifier"),
client_secret: str = Body(description="Client secret"),
):
"""
OAuth 2.0 Token Revocation Endpoint (RFC 7009)
Allows clients to revoke an access or refresh token.
Note: Revoking a refresh token does NOT revoke associated access tokens.
Revoking an access token does NOT revoke the associated refresh token.
"""
# Validate client credentials
try:
app = await validate_client_credentials(client_id, client_secret)
except InvalidClientError as e:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail=str(e),
)
# Try to revoke as access token first
# Note: We pass app.id to ensure the token belongs to the authenticated app
if token_type_hint != "refresh_token":
revoked = await revoke_access_token(token, app.id)
if revoked:
logger.info(
f"Access token revoked for app {app.name} (#{app.id}); "
f"user #{revoked.user_id}"
)
return {"status": "ok"}
# Try to revoke as refresh token
revoked = await revoke_refresh_token(token, app.id)
if revoked:
logger.info(
f"Refresh token revoked for app {app.name} (#{app.id}); "
f"user #{revoked.user_id}"
)
return {"status": "ok"}
# Per RFC 7009, revocation endpoint returns 200 even if token not found
# or if token belongs to a different application.
# This prevents token scanning attacks.
logger.warning(f"Unsuccessful token revocation attempt by app {app.name} #{app.id}")
return {"status": "ok"}
# ============================================================================
# Application Management Endpoints (for app owners)
# ============================================================================
@router.get("/apps/mine")
async def list_my_oauth_apps(
user_id: str = Security(get_user_id),
) -> list[OAuthApplicationInfo]:
"""
List all OAuth applications owned by the current user.
Returns a list of OAuth applications with their details including:
- id, name, description, logo_url
- client_id (public identifier)
- redirect_uris, grant_types, scopes
- is_active status
- created_at, updated_at timestamps
Note: client_secret is never returned for security reasons.
"""
return await list_user_oauth_applications(user_id)
@router.patch("/apps/{app_id}/status")
async def update_app_status(
app_id: str,
user_id: str = Security(get_user_id),
is_active: bool = Body(description="Whether the app should be active", embed=True),
) -> OAuthApplicationInfo:
"""
Enable or disable an OAuth application.
Only the application owner can update the status.
When disabled, the application cannot be used for new authorizations
and existing access tokens will fail validation.
Returns the updated application info.
"""
updated_app = await update_oauth_application(
app_id=app_id,
owner_id=user_id,
is_active=is_active,
)
if not updated_app:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail="Application not found or you don't have permission to update it",
)
action = "enabled" if is_active else "disabled"
logger.info(f"OAuth app {updated_app.name} (#{app_id}) {action} by user #{user_id}")
return updated_app
class UpdateAppLogoRequest(BaseModel):
logo_url: str = Field(description="URL of the uploaded logo image")
@router.patch("/apps/{app_id}/logo")
async def update_app_logo(
app_id: str,
request: UpdateAppLogoRequest = Body(),
user_id: str = Security(get_user_id),
) -> OAuthApplicationInfo:
"""
Update the logo URL for an OAuth application.
Only the application owner can update the logo.
The logo should be uploaded first using the media upload endpoint,
then this endpoint is called with the resulting URL.
Logo requirements:
- Must be square (1:1 aspect ratio)
- Minimum 512x512 pixels
- Maximum 2048x2048 pixels
Returns the updated application info.
"""
if (
not (app := await get_oauth_application_by_id(app_id))
or app.owner_id != user_id
):
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail="OAuth App not found",
)
# Delete the current app logo file (if any and it's in our cloud storage)
await _delete_app_current_logo_file(app)
updated_app = await update_oauth_application(
app_id=app_id,
owner_id=user_id,
logo_url=request.logo_url,
)
if not updated_app:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail="Application not found or you don't have permission to update it",
)
logger.info(
f"OAuth app {updated_app.name} (#{app_id}) logo updated by user #{user_id}"
)
return updated_app
# Logo upload constraints
LOGO_MIN_SIZE = 512
LOGO_MAX_SIZE = 2048
LOGO_ALLOWED_TYPES = {"image/jpeg", "image/png", "image/webp"}
LOGO_MAX_FILE_SIZE = 3 * 1024 * 1024 # 3MB
@router.post("/apps/{app_id}/logo/upload")
async def upload_app_logo(
app_id: str,
file: UploadFile,
user_id: str = Security(get_user_id),
) -> OAuthApplicationInfo:
"""
Upload a logo image for an OAuth application.
Requirements:
- Image must be square (1:1 aspect ratio)
- Minimum 512x512 pixels
- Maximum 2048x2048 pixels
- Allowed formats: JPEG, PNG, WebP
- Maximum file size: 3MB
The image is uploaded to cloud storage and the app's logoUrl is updated.
Returns the updated application info.
"""
# Verify ownership to reduce vulnerability to DoS(torage) or DoM(oney) attacks
if (
not (app := await get_oauth_application_by_id(app_id))
or app.owner_id != user_id
):
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail="OAuth App not found",
)
# Check GCS configuration
if not settings.config.media_gcs_bucket_name:
raise HTTPException(
status_code=status.HTTP_503_SERVICE_UNAVAILABLE,
detail="Media storage is not configured",
)
# Validate content type
content_type = file.content_type
if content_type not in LOGO_ALLOWED_TYPES:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"Invalid file type. Allowed: JPEG, PNG, WebP. Got: {content_type}",
)
# Read file content
try:
file_bytes = await file.read()
except Exception as e:
logger.error(f"Error reading logo file: {e}")
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="Failed to read uploaded file",
)
# Check file size
if len(file_bytes) > LOGO_MAX_FILE_SIZE:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=(
"File too large. "
f"Maximum size is {LOGO_MAX_FILE_SIZE // 1024 // 1024}MB"
),
)
# Validate image dimensions
try:
image = Image.open(io.BytesIO(file_bytes))
width, height = image.size
if width != height:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"Logo must be square. Got {width}x{height}",
)
if width < LOGO_MIN_SIZE:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"Logo too small. Minimum {LOGO_MIN_SIZE}x{LOGO_MIN_SIZE}. "
f"Got {width}x{height}",
)
if width > LOGO_MAX_SIZE:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"Logo too large. Maximum {LOGO_MAX_SIZE}x{LOGO_MAX_SIZE}. "
f"Got {width}x{height}",
)
except HTTPException:
raise
except Exception as e:
logger.error(f"Error validating logo image: {e}")
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="Invalid image file",
)
# Scan for viruses
filename = file.filename or "logo"
await scan_content_safe(file_bytes, filename=filename)
# Generate unique filename
file_ext = os.path.splitext(filename)[1].lower() or ".png"
unique_filename = f"{uuid.uuid4()}{file_ext}"
storage_path = f"oauth-apps/{app_id}/logo/{unique_filename}"
# Upload to GCS
try:
async with async_storage.Storage() as async_client:
bucket_name = settings.config.media_gcs_bucket_name
await async_client.upload(
bucket_name, storage_path, file_bytes, content_type=content_type
)
logo_url = f"https://storage.googleapis.com/{bucket_name}/{storage_path}"
except Exception as e:
logger.error(f"Error uploading logo to GCS: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail="Failed to upload logo",
)
# Delete the current app logo file (if any and it's in our cloud storage)
await _delete_app_current_logo_file(app)
# Update the app with the new logo URL
updated_app = await update_oauth_application(
app_id=app_id,
owner_id=user_id,
logo_url=logo_url,
)
if not updated_app:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail="Application not found or you don't have permission to update it",
)
logger.info(
f"OAuth app {updated_app.name} (#{app_id}) logo uploaded by user #{user_id}"
)
return updated_app
async def _delete_app_current_logo_file(app: OAuthApplicationInfo):
"""
Delete the current logo file for the given app, if there is one in our cloud storage
"""
bucket_name = settings.config.media_gcs_bucket_name
storage_base_url = f"https://storage.googleapis.com/{bucket_name}/"
if app.logo_url and app.logo_url.startswith(storage_base_url):
# Parse blob path from URL: https://storage.googleapis.com/{bucket}/{path}
old_path = app.logo_url.replace(storage_base_url, "")
try:
async with async_storage.Storage() as async_client:
await async_client.delete(bucket_name, old_path)
logger.info(f"Deleted old logo for OAuth app #{app.id}: {old_path}")
except Exception as e:
# Log but don't fail - the new logo was uploaded successfully
logger.warning(
f"Failed to delete old logo for OAuth app #{app.id}: {e}", exc_info=e
)

File diff suppressed because it is too large Load Diff

View File

@@ -1,621 +0,0 @@
"""
Content Type Handlers for Unified Embeddings
Pluggable system for different content sources (store agents, blocks, docs).
Each handler knows how to fetch and process its content type for embedding.
"""
import logging
from abc import ABC, abstractmethod
from dataclasses import dataclass
from pathlib import Path
from typing import Any
from prisma.enums import ContentType
from backend.data.db import query_raw_with_schema
logger = logging.getLogger(__name__)
@dataclass
class ContentItem:
"""Represents a piece of content to be embedded."""
content_id: str # Unique identifier (DB ID or file path)
content_type: ContentType
searchable_text: str # Combined text for embedding
metadata: dict[str, Any] # Content-specific metadata
user_id: str | None = None # For user-scoped content
class ContentHandler(ABC):
"""Base handler for fetching and processing content for embeddings."""
@property
@abstractmethod
def content_type(self) -> ContentType:
"""The ContentType this handler manages."""
pass
@abstractmethod
async def get_missing_items(self, batch_size: int) -> list[ContentItem]:
"""
Fetch items that don't have embeddings yet.
Args:
batch_size: Maximum number of items to return
Returns:
List of ContentItem objects ready for embedding
"""
pass
@abstractmethod
async def get_stats(self) -> dict[str, int]:
"""
Get statistics about embedding coverage.
Returns:
Dict with keys: total, with_embeddings, without_embeddings
"""
pass
class StoreAgentHandler(ContentHandler):
"""Handler for marketplace store agent listings."""
@property
def content_type(self) -> ContentType:
return ContentType.STORE_AGENT
async def get_missing_items(self, batch_size: int) -> list[ContentItem]:
"""Fetch approved store listings without embeddings."""
from backend.api.features.store.embeddings import build_searchable_text
missing = await query_raw_with_schema(
"""
SELECT
slv.id,
slv.name,
slv.description,
slv."subHeading",
slv.categories
FROM {schema_prefix}"StoreListingVersion" slv
LEFT JOIN {schema_prefix}"UnifiedContentEmbedding" uce
ON slv.id = uce."contentId" AND uce."contentType" = 'STORE_AGENT'::{schema_prefix}"ContentType"
WHERE slv."submissionStatus" = 'APPROVED'
AND slv."isDeleted" = false
AND uce."contentId" IS NULL
LIMIT $1
""",
batch_size,
)
return [
ContentItem(
content_id=row["id"],
content_type=ContentType.STORE_AGENT,
searchable_text=build_searchable_text(
name=row["name"],
description=row["description"],
sub_heading=row["subHeading"],
categories=row["categories"] or [],
),
metadata={
"name": row["name"],
"categories": row["categories"] or [],
},
user_id=None, # Store agents are public
)
for row in missing
]
async def get_stats(self) -> dict[str, int]:
"""Get statistics about store agent embedding coverage."""
# Count approved versions
approved_result = await query_raw_with_schema(
"""
SELECT COUNT(*) as count
FROM {schema_prefix}"StoreListingVersion"
WHERE "submissionStatus" = 'APPROVED'
AND "isDeleted" = false
"""
)
total_approved = approved_result[0]["count"] if approved_result else 0
# Count versions with embeddings
embedded_result = await query_raw_with_schema(
"""
SELECT COUNT(*) as count
FROM {schema_prefix}"StoreListingVersion" slv
JOIN {schema_prefix}"UnifiedContentEmbedding" uce ON slv.id = uce."contentId" AND uce."contentType" = 'STORE_AGENT'::{schema_prefix}"ContentType"
WHERE slv."submissionStatus" = 'APPROVED'
AND slv."isDeleted" = false
"""
)
with_embeddings = embedded_result[0]["count"] if embedded_result else 0
return {
"total": total_approved,
"with_embeddings": with_embeddings,
"without_embeddings": total_approved - with_embeddings,
}
class BlockHandler(ContentHandler):
"""Handler for block definitions (Python classes)."""
@property
def content_type(self) -> ContentType:
return ContentType.BLOCK
async def get_missing_items(self, batch_size: int) -> list[ContentItem]:
"""Fetch blocks without embeddings."""
from backend.data.block import get_blocks
# Get all available blocks
all_blocks = get_blocks()
# Check which ones have embeddings
if not all_blocks:
return []
block_ids = list(all_blocks.keys())
# Query for existing embeddings
placeholders = ",".join([f"${i+1}" for i in range(len(block_ids))])
existing_result = await query_raw_with_schema(
f"""
SELECT "contentId"
FROM {{schema_prefix}}"UnifiedContentEmbedding"
WHERE "contentType" = 'BLOCK'::{{schema_prefix}}"ContentType"
AND "contentId" = ANY(ARRAY[{placeholders}])
""",
*block_ids,
)
existing_ids = {row["contentId"] for row in existing_result}
missing_blocks = [
(block_id, block_cls)
for block_id, block_cls in all_blocks.items()
if block_id not in existing_ids
]
# Convert to ContentItem
items = []
for block_id, block_cls in missing_blocks[:batch_size]:
try:
block_instance = block_cls()
# Skip disabled blocks - they shouldn't be indexed
if block_instance.disabled:
continue
# Build searchable text from block metadata
parts = []
if hasattr(block_instance, "name") and block_instance.name:
parts.append(block_instance.name)
if (
hasattr(block_instance, "description")
and block_instance.description
):
parts.append(block_instance.description)
if hasattr(block_instance, "categories") and block_instance.categories:
# Convert BlockCategory enum to strings
parts.append(
" ".join(str(cat.value) for cat in block_instance.categories)
)
# Add input/output schema info
if hasattr(block_instance, "input_schema"):
schema = block_instance.input_schema
if hasattr(schema, "model_json_schema"):
schema_dict = schema.model_json_schema()
if "properties" in schema_dict:
for prop_name, prop_info in schema_dict[
"properties"
].items():
if "description" in prop_info:
parts.append(
f"{prop_name}: {prop_info['description']}"
)
searchable_text = " ".join(parts)
# Convert categories set of enums to list of strings for JSON serialization
categories = getattr(block_instance, "categories", set())
categories_list = (
[cat.value for cat in categories] if categories else []
)
items.append(
ContentItem(
content_id=block_id,
content_type=ContentType.BLOCK,
searchable_text=searchable_text,
metadata={
"name": getattr(block_instance, "name", ""),
"categories": categories_list,
},
user_id=None, # Blocks are public
)
)
except Exception as e:
logger.warning(f"Failed to process block {block_id}: {e}")
continue
return items
async def get_stats(self) -> dict[str, int]:
"""Get statistics about block embedding coverage."""
from backend.data.block import get_blocks
all_blocks = get_blocks()
# Filter out disabled blocks - they're not indexed
enabled_block_ids = [
block_id
for block_id, block_cls in all_blocks.items()
if not block_cls().disabled
]
total_blocks = len(enabled_block_ids)
if total_blocks == 0:
return {"total": 0, "with_embeddings": 0, "without_embeddings": 0}
block_ids = enabled_block_ids
placeholders = ",".join([f"${i+1}" for i in range(len(block_ids))])
embedded_result = await query_raw_with_schema(
f"""
SELECT COUNT(*) as count
FROM {{schema_prefix}}"UnifiedContentEmbedding"
WHERE "contentType" = 'BLOCK'::{{schema_prefix}}"ContentType"
AND "contentId" = ANY(ARRAY[{placeholders}])
""",
*block_ids,
)
with_embeddings = embedded_result[0]["count"] if embedded_result else 0
return {
"total": total_blocks,
"with_embeddings": with_embeddings,
"without_embeddings": total_blocks - with_embeddings,
}
@dataclass
class MarkdownSection:
"""Represents a section of a markdown document."""
title: str # Section heading text
content: str # Section content (including the heading line)
level: int # Heading level (1 for #, 2 for ##, etc.)
index: int # Section index within the document
class DocumentationHandler(ContentHandler):
"""Handler for documentation files (.md/.mdx).
Chunks documents by markdown headings to create multiple embeddings per file.
Each section (## heading) becomes a separate embedding for better retrieval.
"""
@property
def content_type(self) -> ContentType:
return ContentType.DOCUMENTATION
def _get_docs_root(self) -> Path:
"""Get the documentation root directory."""
# content_handlers.py is at: backend/backend/api/features/store/content_handlers.py
# Need to go up to project root then into docs/
# In container: /app/autogpt_platform/backend/backend/api/features/store -> /app/docs
# In development: /repo/autogpt_platform/backend/backend/api/features/store -> /repo/docs
this_file = Path(
__file__
) # .../backend/backend/api/features/store/content_handlers.py
project_root = (
this_file.parent.parent.parent.parent.parent.parent.parent
) # -> /app or /repo
docs_root = project_root / "docs"
return docs_root
def _extract_doc_title(self, file_path: Path) -> str:
"""Extract the document title from a markdown file."""
try:
content = file_path.read_text(encoding="utf-8")
lines = content.split("\n")
# Try to extract title from first # heading
for line in lines:
if line.startswith("# "):
return line[2:].strip()
# If no title found, use filename
return file_path.stem.replace("-", " ").replace("_", " ").title()
except Exception as e:
logger.warning(f"Failed to read title from {file_path}: {e}")
return file_path.stem.replace("-", " ").replace("_", " ").title()
def _chunk_markdown_by_headings(
self, file_path: Path, min_heading_level: int = 2
) -> list[MarkdownSection]:
"""
Split a markdown file into sections based on headings.
Args:
file_path: Path to the markdown file
min_heading_level: Minimum heading level to split on (default: 2 for ##)
Returns:
List of MarkdownSection objects, one per section.
If no headings found, returns a single section with all content.
"""
try:
content = file_path.read_text(encoding="utf-8")
except Exception as e:
logger.warning(f"Failed to read {file_path}: {e}")
return []
lines = content.split("\n")
sections: list[MarkdownSection] = []
current_section_lines: list[str] = []
current_title = ""
current_level = 0
section_index = 0
doc_title = ""
for line in lines:
# Check if line is a heading
if line.startswith("#"):
# Count heading level
level = 0
for char in line:
if char == "#":
level += 1
else:
break
heading_text = line[level:].strip()
# Track document title (level 1 heading)
if level == 1 and not doc_title:
doc_title = heading_text
# Don't create a section for just the title - add it to first section
current_section_lines.append(line)
continue
# Check if this heading should start a new section
if level >= min_heading_level:
# Save previous section if it has content
if current_section_lines:
section_content = "\n".join(current_section_lines).strip()
if section_content:
# Use doc title for first section if no specific title
title = current_title if current_title else doc_title
if not title:
title = file_path.stem.replace("-", " ").replace(
"_", " "
)
sections.append(
MarkdownSection(
title=title,
content=section_content,
level=current_level if current_level else 1,
index=section_index,
)
)
section_index += 1
# Start new section
current_section_lines = [line]
current_title = heading_text
current_level = level
else:
# Lower level heading (e.g., # when splitting on ##)
current_section_lines.append(line)
else:
current_section_lines.append(line)
# Don't forget the last section
if current_section_lines:
section_content = "\n".join(current_section_lines).strip()
if section_content:
title = current_title if current_title else doc_title
if not title:
title = file_path.stem.replace("-", " ").replace("_", " ")
sections.append(
MarkdownSection(
title=title,
content=section_content,
level=current_level if current_level else 1,
index=section_index,
)
)
# If no sections were created (no headings found), create one section with all content
if not sections and content.strip():
title = (
doc_title
if doc_title
else file_path.stem.replace("-", " ").replace("_", " ")
)
sections.append(
MarkdownSection(
title=title,
content=content.strip(),
level=1,
index=0,
)
)
return sections
def _make_section_content_id(self, doc_path: str, section_index: int) -> str:
"""Create a unique content ID for a document section.
Format: doc_path::section_index
Example: 'platform/getting-started.md::0'
"""
return f"{doc_path}::{section_index}"
def _parse_section_content_id(self, content_id: str) -> tuple[str, int]:
"""Parse a section content ID back into doc_path and section_index.
Returns: (doc_path, section_index)
"""
if "::" in content_id:
parts = content_id.rsplit("::", 1)
return parts[0], int(parts[1])
# Legacy format (whole document)
return content_id, 0
async def get_missing_items(self, batch_size: int) -> list[ContentItem]:
"""Fetch documentation sections without embeddings.
Chunks each document by markdown headings and creates embeddings for each section.
Content IDs use the format: 'path/to/doc.md::section_index'
"""
docs_root = self._get_docs_root()
if not docs_root.exists():
logger.warning(f"Documentation root not found: {docs_root}")
return []
# Find all .md and .mdx files
all_docs = list(docs_root.rglob("*.md")) + list(docs_root.rglob("*.mdx"))
if not all_docs:
return []
# Build list of all sections from all documents
all_sections: list[tuple[str, Path, MarkdownSection]] = []
for doc_file in all_docs:
doc_path = str(doc_file.relative_to(docs_root))
sections = self._chunk_markdown_by_headings(doc_file)
for section in sections:
all_sections.append((doc_path, doc_file, section))
if not all_sections:
return []
# Generate content IDs for all sections
section_content_ids = [
self._make_section_content_id(doc_path, section.index)
for doc_path, _, section in all_sections
]
# Check which ones have embeddings
placeholders = ",".join([f"${i+1}" for i in range(len(section_content_ids))])
existing_result = await query_raw_with_schema(
f"""
SELECT "contentId"
FROM {{schema_prefix}}"UnifiedContentEmbedding"
WHERE "contentType" = 'DOCUMENTATION'::{{schema_prefix}}"ContentType"
AND "contentId" = ANY(ARRAY[{placeholders}])
""",
*section_content_ids,
)
existing_ids = {row["contentId"] for row in existing_result}
# Filter to missing sections
missing_sections = [
(doc_path, doc_file, section, content_id)
for (doc_path, doc_file, section), content_id in zip(
all_sections, section_content_ids
)
if content_id not in existing_ids
]
# Convert to ContentItem (up to batch_size)
items = []
for doc_path, doc_file, section, content_id in missing_sections[:batch_size]:
try:
# Get document title for context
doc_title = self._extract_doc_title(doc_file)
# Build searchable text with context
# Include doc title and section title for better search relevance
searchable_text = f"{doc_title} - {section.title}\n\n{section.content}"
items.append(
ContentItem(
content_id=content_id,
content_type=ContentType.DOCUMENTATION,
searchable_text=searchable_text,
metadata={
"doc_title": doc_title,
"section_title": section.title,
"section_index": section.index,
"heading_level": section.level,
"path": doc_path,
},
user_id=None, # Documentation is public
)
)
except Exception as e:
logger.warning(f"Failed to process section {content_id}: {e}")
continue
return items
def _get_all_section_content_ids(self, docs_root: Path) -> set[str]:
"""Get all current section content IDs from the docs directory.
Used for stats and cleanup to know what sections should exist.
"""
all_docs = list(docs_root.rglob("*.md")) + list(docs_root.rglob("*.mdx"))
content_ids = set()
for doc_file in all_docs:
doc_path = str(doc_file.relative_to(docs_root))
sections = self._chunk_markdown_by_headings(doc_file)
for section in sections:
content_ids.add(self._make_section_content_id(doc_path, section.index))
return content_ids
async def get_stats(self) -> dict[str, int]:
"""Get statistics about documentation embedding coverage.
Counts sections (not documents) since each section gets its own embedding.
"""
docs_root = self._get_docs_root()
if not docs_root.exists():
return {"total": 0, "with_embeddings": 0, "without_embeddings": 0}
# Get all section content IDs
all_section_ids = self._get_all_section_content_ids(docs_root)
total_sections = len(all_section_ids)
if total_sections == 0:
return {"total": 0, "with_embeddings": 0, "without_embeddings": 0}
# Count embeddings in database for DOCUMENTATION type
embedded_result = await query_raw_with_schema(
"""
SELECT COUNT(*) as count
FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" = 'DOCUMENTATION'::{schema_prefix}"ContentType"
"""
)
with_embeddings = embedded_result[0]["count"] if embedded_result else 0
return {
"total": total_sections,
"with_embeddings": with_embeddings,
"without_embeddings": total_sections - with_embeddings,
}
# Content handler registry
CONTENT_HANDLERS: dict[ContentType, ContentHandler] = {
ContentType.STORE_AGENT: StoreAgentHandler(),
ContentType.BLOCK: BlockHandler(),
ContentType.DOCUMENTATION: DocumentationHandler(),
}

View File

@@ -1,215 +0,0 @@
"""
Integration tests for content handlers using real DB.
Run with: poetry run pytest backend/api/features/store/content_handlers_integration_test.py -xvs
These tests use the real database but mock OpenAI calls.
"""
from unittest.mock import patch
import pytest
from backend.api.features.store.content_handlers import (
CONTENT_HANDLERS,
BlockHandler,
DocumentationHandler,
StoreAgentHandler,
)
from backend.api.features.store.embeddings import (
EMBEDDING_DIM,
backfill_all_content_types,
ensure_content_embedding,
get_embedding_stats,
)
@pytest.mark.asyncio(loop_scope="session")
async def test_store_agent_handler_real_db():
"""Test StoreAgentHandler with real database queries."""
handler = StoreAgentHandler()
# Get stats from real DB
stats = await handler.get_stats()
# Stats should have correct structure
assert "total" in stats
assert "with_embeddings" in stats
assert "without_embeddings" in stats
assert stats["total"] >= 0
assert stats["with_embeddings"] >= 0
assert stats["without_embeddings"] >= 0
# Get missing items (max 1 to keep test fast)
items = await handler.get_missing_items(batch_size=1)
# Items should be list (may be empty if all have embeddings)
assert isinstance(items, list)
if items:
item = items[0]
assert item.content_id is not None
assert item.content_type.value == "STORE_AGENT"
assert item.searchable_text != ""
assert item.user_id is None
@pytest.mark.asyncio(loop_scope="session")
async def test_block_handler_real_db():
"""Test BlockHandler with real database queries."""
handler = BlockHandler()
# Get stats from real DB
stats = await handler.get_stats()
# Stats should have correct structure
assert "total" in stats
assert "with_embeddings" in stats
assert "without_embeddings" in stats
assert stats["total"] >= 0 # Should have at least some blocks
assert stats["with_embeddings"] >= 0
assert stats["without_embeddings"] >= 0
# Get missing items (max 1 to keep test fast)
items = await handler.get_missing_items(batch_size=1)
# Items should be list
assert isinstance(items, list)
if items:
item = items[0]
assert item.content_id is not None # Should be block UUID
assert item.content_type.value == "BLOCK"
assert item.searchable_text != ""
assert item.user_id is None
@pytest.mark.asyncio(loop_scope="session")
async def test_documentation_handler_real_fs():
"""Test DocumentationHandler with real filesystem."""
handler = DocumentationHandler()
# Get stats from real filesystem
stats = await handler.get_stats()
# Stats should have correct structure
assert "total" in stats
assert "with_embeddings" in stats
assert "without_embeddings" in stats
assert stats["total"] >= 0
assert stats["with_embeddings"] >= 0
assert stats["without_embeddings"] >= 0
# Get missing items (max 1 to keep test fast)
items = await handler.get_missing_items(batch_size=1)
# Items should be list
assert isinstance(items, list)
if items:
item = items[0]
assert item.content_id is not None # Should be relative path
assert item.content_type.value == "DOCUMENTATION"
assert item.searchable_text != ""
assert item.user_id is None
@pytest.mark.asyncio(loop_scope="session")
async def test_get_embedding_stats_all_types():
"""Test get_embedding_stats aggregates all content types."""
stats = await get_embedding_stats()
# Should have structure with by_type and totals
assert "by_type" in stats
assert "totals" in stats
# Check each content type is present
by_type = stats["by_type"]
assert "STORE_AGENT" in by_type
assert "BLOCK" in by_type
assert "DOCUMENTATION" in by_type
# Check totals are aggregated
totals = stats["totals"]
assert totals["total"] >= 0
assert totals["with_embeddings"] >= 0
assert totals["without_embeddings"] >= 0
assert "coverage_percent" in totals
@pytest.mark.asyncio(loop_scope="session")
@patch("backend.api.features.store.embeddings.generate_embedding")
async def test_ensure_content_embedding_blocks(mock_generate):
"""Test creating embeddings for blocks (mocked OpenAI)."""
# Mock OpenAI to return fake embedding
mock_generate.return_value = [0.1] * EMBEDDING_DIM
# Get one block without embedding
handler = BlockHandler()
items = await handler.get_missing_items(batch_size=1)
if not items:
pytest.skip("No blocks without embeddings")
item = items[0]
# Try to create embedding (OpenAI mocked)
result = await ensure_content_embedding(
content_type=item.content_type,
content_id=item.content_id,
searchable_text=item.searchable_text,
metadata=item.metadata,
user_id=item.user_id,
)
# Should succeed with mocked OpenAI
assert result is True
mock_generate.assert_called_once()
@pytest.mark.asyncio(loop_scope="session")
@patch("backend.api.features.store.embeddings.generate_embedding")
async def test_backfill_all_content_types_dry_run(mock_generate):
"""Test backfill_all_content_types processes all handlers in order."""
# Mock OpenAI to return fake embedding
mock_generate.return_value = [0.1] * EMBEDDING_DIM
# Run backfill with batch_size=1 to process max 1 per type
result = await backfill_all_content_types(batch_size=1)
# Should have results for all content types
assert "by_type" in result
assert "totals" in result
by_type = result["by_type"]
assert "BLOCK" in by_type
assert "STORE_AGENT" in by_type
assert "DOCUMENTATION" in by_type
# Each type should have correct structure
for content_type, type_result in by_type.items():
assert "processed" in type_result
assert "success" in type_result
assert "failed" in type_result
# Totals should aggregate
totals = result["totals"]
assert totals["processed"] >= 0
assert totals["success"] >= 0
assert totals["failed"] >= 0
@pytest.mark.asyncio(loop_scope="session")
async def test_content_handler_registry():
"""Test all handlers are registered in correct order."""
from prisma.enums import ContentType
# All three types should be registered
assert ContentType.STORE_AGENT in CONTENT_HANDLERS
assert ContentType.BLOCK in CONTENT_HANDLERS
assert ContentType.DOCUMENTATION in CONTENT_HANDLERS
# Check handler types
assert isinstance(CONTENT_HANDLERS[ContentType.STORE_AGENT], StoreAgentHandler)
assert isinstance(CONTENT_HANDLERS[ContentType.BLOCK], BlockHandler)
assert isinstance(CONTENT_HANDLERS[ContentType.DOCUMENTATION], DocumentationHandler)

View File

@@ -1,391 +0,0 @@
"""
E2E tests for content handlers (blocks, store agents, documentation).
Tests the full flow: discovering content → generating embeddings → storing.
"""
from pathlib import Path
from unittest.mock import MagicMock, patch
import pytest
from prisma.enums import ContentType
from backend.api.features.store.content_handlers import (
CONTENT_HANDLERS,
BlockHandler,
DocumentationHandler,
StoreAgentHandler,
)
@pytest.mark.asyncio(loop_scope="session")
async def test_store_agent_handler_get_missing_items(mocker):
"""Test StoreAgentHandler fetches approved agents without embeddings."""
handler = StoreAgentHandler()
# Mock database query
mock_missing = [
{
"id": "agent-1",
"name": "Test Agent",
"description": "A test agent",
"subHeading": "Test heading",
"categories": ["AI", "Testing"],
}
]
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
return_value=mock_missing,
):
items = await handler.get_missing_items(batch_size=10)
assert len(items) == 1
assert items[0].content_id == "agent-1"
assert items[0].content_type == ContentType.STORE_AGENT
assert "Test Agent" in items[0].searchable_text
assert "A test agent" in items[0].searchable_text
assert items[0].metadata["name"] == "Test Agent"
assert items[0].user_id is None
@pytest.mark.asyncio(loop_scope="session")
async def test_store_agent_handler_get_stats(mocker):
"""Test StoreAgentHandler returns correct stats."""
handler = StoreAgentHandler()
# Mock approved count query
mock_approved = [{"count": 50}]
# Mock embedded count query
mock_embedded = [{"count": 30}]
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
side_effect=[mock_approved, mock_embedded],
):
stats = await handler.get_stats()
assert stats["total"] == 50
assert stats["with_embeddings"] == 30
assert stats["without_embeddings"] == 20
@pytest.mark.asyncio(loop_scope="session")
async def test_block_handler_get_missing_items(mocker):
"""Test BlockHandler discovers blocks without embeddings."""
handler = BlockHandler()
# Mock get_blocks to return test blocks
mock_block_class = MagicMock()
mock_block_instance = MagicMock()
mock_block_instance.name = "Calculator Block"
mock_block_instance.description = "Performs calculations"
mock_block_instance.categories = [MagicMock(value="MATH")]
mock_block_instance.disabled = False
mock_block_instance.input_schema.model_json_schema.return_value = {
"properties": {"expression": {"description": "Math expression to evaluate"}}
}
mock_block_class.return_value = mock_block_instance
mock_blocks = {"block-uuid-1": mock_block_class}
# Mock existing embeddings query (no embeddings exist)
mock_existing = []
with patch(
"backend.data.block.get_blocks",
return_value=mock_blocks,
):
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
return_value=mock_existing,
):
items = await handler.get_missing_items(batch_size=10)
assert len(items) == 1
assert items[0].content_id == "block-uuid-1"
assert items[0].content_type == ContentType.BLOCK
assert "Calculator Block" in items[0].searchable_text
assert "Performs calculations" in items[0].searchable_text
assert "MATH" in items[0].searchable_text
assert "expression: Math expression" in items[0].searchable_text
assert items[0].user_id is None
@pytest.mark.asyncio(loop_scope="session")
async def test_block_handler_get_stats(mocker):
"""Test BlockHandler returns correct stats."""
handler = BlockHandler()
# Mock get_blocks - each block class returns an instance with disabled=False
def make_mock_block_class():
mock_class = MagicMock()
mock_instance = MagicMock()
mock_instance.disabled = False
mock_class.return_value = mock_instance
return mock_class
mock_blocks = {
"block-1": make_mock_block_class(),
"block-2": make_mock_block_class(),
"block-3": make_mock_block_class(),
}
# Mock embedded count query (2 blocks have embeddings)
mock_embedded = [{"count": 2}]
with patch(
"backend.data.block.get_blocks",
return_value=mock_blocks,
):
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
return_value=mock_embedded,
):
stats = await handler.get_stats()
assert stats["total"] == 3
assert stats["with_embeddings"] == 2
assert stats["without_embeddings"] == 1
@pytest.mark.asyncio(loop_scope="session")
async def test_documentation_handler_get_missing_items(tmp_path, mocker):
"""Test DocumentationHandler discovers docs without embeddings."""
handler = DocumentationHandler()
# Create temporary docs directory with test files
docs_root = tmp_path / "docs"
docs_root.mkdir()
(docs_root / "guide.md").write_text("# Getting Started\n\nThis is a guide.")
(docs_root / "api.mdx").write_text("# API Reference\n\nAPI documentation.")
# Mock _get_docs_root to return temp dir
with patch.object(handler, "_get_docs_root", return_value=docs_root):
# Mock existing embeddings query (no embeddings exist)
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
return_value=[],
):
items = await handler.get_missing_items(batch_size=10)
assert len(items) == 2
# Check guide.md (content_id format: doc_path::section_index)
guide_item = next(
(item for item in items if item.content_id == "guide.md::0"), None
)
assert guide_item is not None
assert guide_item.content_type == ContentType.DOCUMENTATION
assert "Getting Started" in guide_item.searchable_text
assert "This is a guide" in guide_item.searchable_text
assert guide_item.metadata["doc_title"] == "Getting Started"
assert guide_item.user_id is None
# Check api.mdx (content_id format: doc_path::section_index)
api_item = next(
(item for item in items if item.content_id == "api.mdx::0"), None
)
assert api_item is not None
assert "API Reference" in api_item.searchable_text
@pytest.mark.asyncio(loop_scope="session")
async def test_documentation_handler_get_stats(tmp_path, mocker):
"""Test DocumentationHandler returns correct stats."""
handler = DocumentationHandler()
# Create temporary docs directory
docs_root = tmp_path / "docs"
docs_root.mkdir()
(docs_root / "doc1.md").write_text("# Doc 1")
(docs_root / "doc2.md").write_text("# Doc 2")
(docs_root / "doc3.mdx").write_text("# Doc 3")
# Mock embedded count query (1 doc has embedding)
mock_embedded = [{"count": 1}]
with patch.object(handler, "_get_docs_root", return_value=docs_root):
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
return_value=mock_embedded,
):
stats = await handler.get_stats()
assert stats["total"] == 3
assert stats["with_embeddings"] == 1
assert stats["without_embeddings"] == 2
@pytest.mark.asyncio(loop_scope="session")
async def test_documentation_handler_title_extraction(tmp_path):
"""Test DocumentationHandler extracts title from markdown heading."""
handler = DocumentationHandler()
# Test with heading
doc_with_heading = tmp_path / "with_heading.md"
doc_with_heading.write_text("# My Title\n\nContent here")
title = handler._extract_doc_title(doc_with_heading)
assert title == "My Title"
# Test without heading
doc_without_heading = tmp_path / "no-heading.md"
doc_without_heading.write_text("Just content, no heading")
title = handler._extract_doc_title(doc_without_heading)
assert title == "No Heading" # Uses filename
@pytest.mark.asyncio(loop_scope="session")
async def test_documentation_handler_markdown_chunking(tmp_path):
"""Test DocumentationHandler chunks markdown by headings."""
handler = DocumentationHandler()
# Test document with multiple sections
doc_with_sections = tmp_path / "sections.md"
doc_with_sections.write_text(
"# Document Title\n\n"
"Intro paragraph.\n\n"
"## Section One\n\n"
"Content for section one.\n\n"
"## Section Two\n\n"
"Content for section two.\n"
)
sections = handler._chunk_markdown_by_headings(doc_with_sections)
# Should have 3 sections: intro (with doc title), section one, section two
assert len(sections) == 3
assert sections[0].title == "Document Title"
assert sections[0].index == 0
assert "Intro paragraph" in sections[0].content
assert sections[1].title == "Section One"
assert sections[1].index == 1
assert "Content for section one" in sections[1].content
assert sections[2].title == "Section Two"
assert sections[2].index == 2
assert "Content for section two" in sections[2].content
# Test document without headings
doc_no_sections = tmp_path / "no-sections.md"
doc_no_sections.write_text("Just plain content without any headings.")
sections = handler._chunk_markdown_by_headings(doc_no_sections)
assert len(sections) == 1
assert sections[0].index == 0
assert "Just plain content" in sections[0].content
@pytest.mark.asyncio(loop_scope="session")
async def test_documentation_handler_section_content_ids():
"""Test DocumentationHandler creates and parses section content IDs."""
handler = DocumentationHandler()
# Test making content ID
content_id = handler._make_section_content_id("docs/guide.md", 2)
assert content_id == "docs/guide.md::2"
# Test parsing content ID
doc_path, section_index = handler._parse_section_content_id("docs/guide.md::2")
assert doc_path == "docs/guide.md"
assert section_index == 2
# Test parsing legacy format (no section index)
doc_path, section_index = handler._parse_section_content_id("docs/old-format.md")
assert doc_path == "docs/old-format.md"
assert section_index == 0
@pytest.mark.asyncio(loop_scope="session")
async def test_content_handlers_registry():
"""Test all content types are registered."""
assert ContentType.STORE_AGENT in CONTENT_HANDLERS
assert ContentType.BLOCK in CONTENT_HANDLERS
assert ContentType.DOCUMENTATION in CONTENT_HANDLERS
assert isinstance(CONTENT_HANDLERS[ContentType.STORE_AGENT], StoreAgentHandler)
assert isinstance(CONTENT_HANDLERS[ContentType.BLOCK], BlockHandler)
assert isinstance(CONTENT_HANDLERS[ContentType.DOCUMENTATION], DocumentationHandler)
@pytest.mark.asyncio(loop_scope="session")
async def test_block_handler_handles_missing_attributes():
"""Test BlockHandler gracefully handles blocks with missing attributes."""
handler = BlockHandler()
# Mock block with minimal attributes
mock_block_class = MagicMock()
mock_block_instance = MagicMock()
mock_block_instance.name = "Minimal Block"
mock_block_instance.disabled = False
# No description, categories, or schema
del mock_block_instance.description
del mock_block_instance.categories
del mock_block_instance.input_schema
mock_block_class.return_value = mock_block_instance
mock_blocks = {"block-minimal": mock_block_class}
with patch(
"backend.data.block.get_blocks",
return_value=mock_blocks,
):
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
return_value=[],
):
items = await handler.get_missing_items(batch_size=10)
assert len(items) == 1
assert items[0].searchable_text == "Minimal Block"
@pytest.mark.asyncio(loop_scope="session")
async def test_block_handler_skips_failed_blocks():
"""Test BlockHandler skips blocks that fail to instantiate."""
handler = BlockHandler()
# Mock one good block and one bad block
good_block = MagicMock()
good_instance = MagicMock()
good_instance.name = "Good Block"
good_instance.description = "Works fine"
good_instance.categories = []
good_instance.disabled = False
good_block.return_value = good_instance
bad_block = MagicMock()
bad_block.side_effect = Exception("Instantiation failed")
mock_blocks = {"good-block": good_block, "bad-block": bad_block}
with patch(
"backend.data.block.get_blocks",
return_value=mock_blocks,
):
with patch(
"backend.api.features.store.content_handlers.query_raw_with_schema",
return_value=[],
):
items = await handler.get_missing_items(batch_size=10)
# Should only get the good block
assert len(items) == 1
assert items[0].content_id == "good-block"
@pytest.mark.asyncio(loop_scope="session")
async def test_documentation_handler_missing_docs_directory():
"""Test DocumentationHandler handles missing docs directory gracefully."""
handler = DocumentationHandler()
# Mock _get_docs_root to return non-existent path
fake_path = Path("/nonexistent/docs")
with patch.object(handler, "_get_docs_root", return_value=fake_path):
items = await handler.get_missing_items(batch_size=10)
assert items == []
stats = await handler.get_stats()
assert stats["total"] == 0
assert stats["with_embeddings"] == 0
assert stats["without_embeddings"] == 0

View File

@@ -1,965 +0,0 @@
"""
Unified Content Embeddings Service
Handles generation and storage of OpenAI embeddings for all content types
(store listings, blocks, documentation, library agents) to enable semantic/hybrid search.
"""
import asyncio
import logging
import time
from typing import Any
import prisma
from prisma.enums import ContentType
from tiktoken import encoding_for_model
from backend.api.features.store.content_handlers import CONTENT_HANDLERS
from backend.data.db import execute_raw_with_schema, query_raw_with_schema
from backend.util.clients import get_openai_client
from backend.util.json import dumps
logger = logging.getLogger(__name__)
# OpenAI embedding model configuration
EMBEDDING_MODEL = "text-embedding-3-small"
# Embedding dimension for the model above
# text-embedding-3-small: 1536, text-embedding-3-large: 3072
EMBEDDING_DIM = 1536
# OpenAI embedding token limit (8,191 with 1 token buffer for safety)
EMBEDDING_MAX_TOKENS = 8191
def build_searchable_text(
name: str,
description: str,
sub_heading: str,
categories: list[str],
) -> str:
"""
Build searchable text from listing version fields.
Combines relevant fields into a single string for embedding.
"""
parts = []
# Name is important - include it
if name:
parts.append(name)
# Sub-heading provides context
if sub_heading:
parts.append(sub_heading)
# Description is the main content
if description:
parts.append(description)
# Categories help with semantic matching
if categories:
parts.append(" ".join(categories))
return " ".join(parts)
async def generate_embedding(text: str) -> list[float]:
"""
Generate embedding for text using OpenAI API.
Raises exceptions on failure - caller should handle.
"""
client = get_openai_client()
if not client:
raise RuntimeError("openai_internal_api_key not set, cannot generate embedding")
# Truncate text to token limit using tiktoken
# Character-based truncation is insufficient because token ratios vary by content type
enc = encoding_for_model(EMBEDDING_MODEL)
tokens = enc.encode(text)
if len(tokens) > EMBEDDING_MAX_TOKENS:
tokens = tokens[:EMBEDDING_MAX_TOKENS]
truncated_text = enc.decode(tokens)
logger.info(
f"Truncated text from {len(enc.encode(text))} to {len(tokens)} tokens"
)
else:
truncated_text = text
start_time = time.time()
response = await client.embeddings.create(
model=EMBEDDING_MODEL,
input=truncated_text,
)
latency_ms = (time.time() - start_time) * 1000
embedding = response.data[0].embedding
logger.info(
f"Generated embedding: {len(embedding)} dims, "
f"{len(tokens)} tokens, {latency_ms:.0f}ms"
)
return embedding
async def store_embedding(
version_id: str,
embedding: list[float],
tx: prisma.Prisma | None = None,
) -> bool:
"""
Store embedding in the database.
BACKWARD COMPATIBILITY: Maintained for existing store listing usage.
DEPRECATED: Use ensure_embedding() instead (includes searchable_text).
"""
return await store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id=version_id,
embedding=embedding,
searchable_text="", # Empty for backward compat; ensure_embedding() populates this
metadata=None,
user_id=None, # Store agents are public
tx=tx,
)
async def store_content_embedding(
content_type: ContentType,
content_id: str,
embedding: list[float],
searchable_text: str,
metadata: dict | None = None,
user_id: str | None = None,
tx: prisma.Prisma | None = None,
) -> bool:
"""
Store embedding in the unified content embeddings table.
New function for unified content embedding storage.
Uses raw SQL since Prisma doesn't natively support pgvector.
Raises exceptions on failure - caller should handle.
"""
client = tx if tx else prisma.get_client()
# Convert embedding to PostgreSQL vector format
embedding_str = embedding_to_vector_string(embedding)
metadata_json = dumps(metadata or {})
# Upsert the embedding
# WHERE clause in DO UPDATE prevents PostgreSQL 15 bug with NULLS NOT DISTINCT
# Use unqualified ::vector - pgvector is in search_path on all environments
await execute_raw_with_schema(
"""
INSERT INTO {schema_prefix}"UnifiedContentEmbedding" (
"id", "contentType", "contentId", "userId", "embedding", "searchableText", "metadata", "createdAt", "updatedAt"
)
VALUES (gen_random_uuid()::text, $1::{schema_prefix}"ContentType", $2, $3, $4::vector, $5, $6::jsonb, NOW(), NOW())
ON CONFLICT ("contentType", "contentId", "userId")
DO UPDATE SET
"embedding" = $4::vector,
"searchableText" = $5,
"metadata" = $6::jsonb,
"updatedAt" = NOW()
WHERE {schema_prefix}"UnifiedContentEmbedding"."contentType" = $1::{schema_prefix}"ContentType"
AND {schema_prefix}"UnifiedContentEmbedding"."contentId" = $2
AND ({schema_prefix}"UnifiedContentEmbedding"."userId" = $3 OR ($3 IS NULL AND {schema_prefix}"UnifiedContentEmbedding"."userId" IS NULL))
""",
content_type,
content_id,
user_id,
embedding_str,
searchable_text,
metadata_json,
client=client,
)
logger.info(f"Stored embedding for {content_type}:{content_id}")
return True
async def get_embedding(version_id: str) -> dict[str, Any] | None:
"""
Retrieve embedding record for a listing version.
BACKWARD COMPATIBILITY: Maintained for existing store listing usage.
Returns dict with storeListingVersionId, embedding, timestamps or None if not found.
"""
result = await get_content_embedding(
ContentType.STORE_AGENT, version_id, user_id=None
)
if result:
# Transform to old format for backward compatibility
return {
"storeListingVersionId": result["contentId"],
"embedding": result["embedding"],
"createdAt": result["createdAt"],
"updatedAt": result["updatedAt"],
}
return None
async def get_content_embedding(
content_type: ContentType, content_id: str, user_id: str | None = None
) -> dict[str, Any] | None:
"""
Retrieve embedding record for any content type.
New function for unified content embedding retrieval.
Returns dict with contentType, contentId, embedding, timestamps or None if not found.
Raises exceptions on failure - caller should handle.
"""
result = await query_raw_with_schema(
"""
SELECT
"contentType",
"contentId",
"userId",
"embedding"::text as "embedding",
"searchableText",
"metadata",
"createdAt",
"updatedAt"
FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" = $1::{schema_prefix}"ContentType" AND "contentId" = $2 AND ("userId" = $3 OR ($3 IS NULL AND "userId" IS NULL))
""",
content_type,
content_id,
user_id,
)
if result and len(result) > 0:
return result[0]
return None
async def ensure_embedding(
version_id: str,
name: str,
description: str,
sub_heading: str,
categories: list[str],
force: bool = False,
tx: prisma.Prisma | None = None,
) -> bool:
"""
Ensure an embedding exists for the listing version.
Creates embedding if missing. Use force=True to regenerate.
Backward-compatible wrapper for store listings.
Args:
version_id: The StoreListingVersion ID
name: Agent name
description: Agent description
sub_heading: Agent sub-heading
categories: Agent categories
force: Force regeneration even if embedding exists
tx: Optional transaction client
Returns:
True if embedding exists/was created
Raises exceptions on failure - caller should handle.
"""
# Check if embedding already exists
if not force:
existing = await get_embedding(version_id)
if existing and existing.get("embedding"):
logger.debug(f"Embedding for version {version_id} already exists")
return True
# Build searchable text for embedding
searchable_text = build_searchable_text(name, description, sub_heading, categories)
# Generate new embedding
embedding = await generate_embedding(searchable_text)
# Store the embedding with metadata using new function
metadata = {
"name": name,
"subHeading": sub_heading,
"categories": categories,
}
return await store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id=version_id,
embedding=embedding,
searchable_text=searchable_text,
metadata=metadata,
user_id=None, # Store agents are public
tx=tx,
)
async def delete_embedding(version_id: str) -> bool:
"""
Delete embedding for a listing version.
BACKWARD COMPATIBILITY: Maintained for existing store listing usage.
Note: This is usually handled automatically by CASCADE delete,
but provided for manual cleanup if needed.
"""
return await delete_content_embedding(ContentType.STORE_AGENT, version_id)
async def delete_content_embedding(
content_type: ContentType, content_id: str, user_id: str | None = None
) -> bool:
"""
Delete embedding for any content type.
New function for unified content embedding deletion.
Note: This is usually handled automatically by CASCADE delete,
but provided for manual cleanup if needed.
Args:
content_type: The type of content (STORE_AGENT, LIBRARY_AGENT, etc.)
content_id: The unique identifier for the content
user_id: Optional user ID. For public content (STORE_AGENT, BLOCK), pass None.
For user-scoped content (LIBRARY_AGENT), pass the user's ID to avoid
deleting embeddings belonging to other users.
Returns:
True if deletion succeeded, False otherwise
"""
try:
client = prisma.get_client()
await execute_raw_with_schema(
"""
DELETE FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" = $1::{schema_prefix}"ContentType"
AND "contentId" = $2
AND ("userId" = $3 OR ($3 IS NULL AND "userId" IS NULL))
""",
content_type,
content_id,
user_id,
client=client,
)
user_str = f" (user: {user_id})" if user_id else ""
logger.info(f"Deleted embedding for {content_type}:{content_id}{user_str}")
return True
except Exception as e:
logger.error(f"Failed to delete embedding for {content_type}:{content_id}: {e}")
return False
async def get_embedding_stats() -> dict[str, Any]:
"""
Get statistics about embedding coverage for all content types.
Returns stats per content type and overall totals.
"""
try:
stats_by_type = {}
total_items = 0
total_with_embeddings = 0
total_without_embeddings = 0
# Aggregate stats from all handlers
for content_type, handler in CONTENT_HANDLERS.items():
try:
stats = await handler.get_stats()
stats_by_type[content_type.value] = {
"total": stats["total"],
"with_embeddings": stats["with_embeddings"],
"without_embeddings": stats["without_embeddings"],
"coverage_percent": (
round(stats["with_embeddings"] / stats["total"] * 100, 1)
if stats["total"] > 0
else 0
),
}
total_items += stats["total"]
total_with_embeddings += stats["with_embeddings"]
total_without_embeddings += stats["without_embeddings"]
except Exception as e:
logger.error(f"Failed to get stats for {content_type.value}: {e}")
stats_by_type[content_type.value] = {
"total": 0,
"with_embeddings": 0,
"without_embeddings": 0,
"coverage_percent": 0,
"error": str(e),
}
return {
"by_type": stats_by_type,
"totals": {
"total": total_items,
"with_embeddings": total_with_embeddings,
"without_embeddings": total_without_embeddings,
"coverage_percent": (
round(total_with_embeddings / total_items * 100, 1)
if total_items > 0
else 0
),
},
}
except Exception as e:
logger.error(f"Failed to get embedding stats: {e}")
return {
"by_type": {},
"totals": {
"total": 0,
"with_embeddings": 0,
"without_embeddings": 0,
"coverage_percent": 0,
},
"error": str(e),
}
async def backfill_missing_embeddings(batch_size: int = 10) -> dict[str, Any]:
"""
Generate embeddings for approved listings that don't have them.
BACKWARD COMPATIBILITY: Maintained for existing usage.
This now delegates to backfill_all_content_types() to process all content types.
Args:
batch_size: Number of embeddings to generate per content type
Returns:
Dict with success/failure counts aggregated across all content types
"""
# Delegate to the new generic backfill system
result = await backfill_all_content_types(batch_size)
# Return in the old format for backward compatibility
return result["totals"]
async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
"""
Generate embeddings for all content types using registered handlers.
Processes content types in order: BLOCK → STORE_AGENT → DOCUMENTATION.
This ensures foundational content (blocks) are searchable first.
Args:
batch_size: Number of embeddings to generate per content type
Returns:
Dict with stats per content type and overall totals
"""
results_by_type = {}
total_processed = 0
total_success = 0
total_failed = 0
all_errors: dict[str, int] = {} # Aggregate errors across all content types
# Process content types in explicit order
processing_order = [
ContentType.BLOCK,
ContentType.STORE_AGENT,
ContentType.DOCUMENTATION,
]
for content_type in processing_order:
handler = CONTENT_HANDLERS.get(content_type)
if not handler:
logger.warning(f"No handler registered for {content_type.value}")
continue
try:
logger.info(f"Processing {content_type.value} content type...")
# Get missing items from handler
missing_items = await handler.get_missing_items(batch_size)
if not missing_items:
results_by_type[content_type.value] = {
"processed": 0,
"success": 0,
"failed": 0,
"message": "No missing embeddings",
}
continue
# Process embeddings concurrently for better performance
embedding_tasks = [
ensure_content_embedding(
content_type=item.content_type,
content_id=item.content_id,
searchable_text=item.searchable_text,
metadata=item.metadata,
user_id=item.user_id,
)
for item in missing_items
]
results = await asyncio.gather(*embedding_tasks, return_exceptions=True)
success = sum(1 for result in results if result is True)
failed = len(results) - success
# Aggregate errors across all content types
if failed > 0:
for result in results:
if isinstance(result, Exception):
error_key = f"{type(result).__name__}: {str(result)}"
all_errors[error_key] = all_errors.get(error_key, 0) + 1
results_by_type[content_type.value] = {
"processed": len(missing_items),
"success": success,
"failed": failed,
"message": f"Backfilled {success} embeddings, {failed} failed",
}
total_processed += len(missing_items)
total_success += success
total_failed += failed
logger.info(
f"{content_type.value}: processed {len(missing_items)}, "
f"success {success}, failed {failed}"
)
except Exception as e:
logger.error(f"Failed to process {content_type.value}: {e}")
results_by_type[content_type.value] = {
"processed": 0,
"success": 0,
"failed": 0,
"error": str(e),
}
# Log aggregated errors once at the end
if all_errors:
error_details = ", ".join(
f"{error} ({count}x)" for error, count in all_errors.items()
)
logger.error(f"Embedding backfill errors: {error_details}")
return {
"by_type": results_by_type,
"totals": {
"processed": total_processed,
"success": total_success,
"failed": total_failed,
"message": f"Overall: {total_success} succeeded, {total_failed} failed",
},
}
async def embed_query(query: str) -> list[float]:
"""
Generate embedding for a search query.
Same as generate_embedding but with clearer intent.
Raises exceptions on failure - caller should handle.
"""
return await generate_embedding(query)
def embedding_to_vector_string(embedding: list[float]) -> str:
"""Convert embedding list to PostgreSQL vector string format."""
return "[" + ",".join(str(x) for x in embedding) + "]"
async def ensure_content_embedding(
content_type: ContentType,
content_id: str,
searchable_text: str,
metadata: dict | None = None,
user_id: str | None = None,
force: bool = False,
tx: prisma.Prisma | None = None,
) -> bool:
"""
Ensure an embedding exists for any content type.
Generic function for creating embeddings for store agents, blocks, docs, etc.
Args:
content_type: ContentType enum value (STORE_AGENT, BLOCK, etc.)
content_id: Unique identifier for the content
searchable_text: Combined text for embedding generation
metadata: Optional metadata to store with embedding
force: Force regeneration even if embedding exists
tx: Optional transaction client
Returns:
True if embedding exists/was created
Raises exceptions on failure - caller should handle.
"""
# Check if embedding already exists
if not force:
existing = await get_content_embedding(content_type, content_id, user_id)
if existing and existing.get("embedding"):
logger.debug(f"Embedding for {content_type}:{content_id} already exists")
return True
# Generate new embedding
embedding = await generate_embedding(searchable_text)
# Store the embedding
return await store_content_embedding(
content_type=content_type,
content_id=content_id,
embedding=embedding,
searchable_text=searchable_text,
metadata=metadata or {},
user_id=user_id,
tx=tx,
)
async def cleanup_orphaned_embeddings() -> dict[str, Any]:
"""
Clean up embeddings for content that no longer exists or is no longer valid.
Compares current content with embeddings in database and removes orphaned records:
- STORE_AGENT: Removes embeddings for rejected/deleted store listings
- BLOCK: Removes embeddings for blocks no longer registered
- DOCUMENTATION: Removes embeddings for deleted doc files
Returns:
Dict with cleanup statistics per content type
"""
results_by_type = {}
total_deleted = 0
# Cleanup orphaned embeddings for all content types
cleanup_types = [
ContentType.STORE_AGENT,
ContentType.BLOCK,
ContentType.DOCUMENTATION,
]
for content_type in cleanup_types:
try:
handler = CONTENT_HANDLERS.get(content_type)
if not handler:
logger.warning(f"No handler registered for {content_type}")
results_by_type[content_type.value] = {
"deleted": 0,
"error": "No handler registered",
}
continue
# Get all current content IDs from handler
if content_type == ContentType.STORE_AGENT:
# Get IDs of approved store listing versions from non-deleted listings
valid_agents = await query_raw_with_schema(
"""
SELECT slv.id
FROM {schema_prefix}"StoreListingVersion" slv
JOIN {schema_prefix}"StoreListing" sl ON slv."storeListingId" = sl.id
WHERE slv."submissionStatus" = 'APPROVED'
AND slv."isDeleted" = false
AND sl."isDeleted" = false
""",
)
current_ids = {row["id"] for row in valid_agents}
elif content_type == ContentType.BLOCK:
from backend.data.block import get_blocks
current_ids = set(get_blocks().keys())
elif content_type == ContentType.DOCUMENTATION:
# Use DocumentationHandler to get section-based content IDs
from backend.api.features.store.content_handlers import (
DocumentationHandler,
)
doc_handler = CONTENT_HANDLERS.get(ContentType.DOCUMENTATION)
if isinstance(doc_handler, DocumentationHandler):
docs_root = doc_handler._get_docs_root()
if docs_root.exists():
current_ids = doc_handler._get_all_section_content_ids(
docs_root
)
else:
current_ids = set()
else:
current_ids = set()
else:
# Skip unknown content types to avoid accidental deletion
logger.warning(
f"Skipping cleanup for unknown content type: {content_type}"
)
results_by_type[content_type.value] = {
"deleted": 0,
"error": "Unknown content type - skipped for safety",
}
continue
# Get all embedding IDs from database
db_embeddings = await query_raw_with_schema(
"""
SELECT "contentId"
FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" = $1::{schema_prefix}"ContentType"
""",
content_type,
)
db_ids = {row["contentId"] for row in db_embeddings}
# Find orphaned embeddings (in DB but not in current content)
orphaned_ids = db_ids - current_ids
if not orphaned_ids:
logger.info(f"{content_type.value}: No orphaned embeddings found")
results_by_type[content_type.value] = {
"deleted": 0,
"message": "No orphaned embeddings",
}
continue
# Delete orphaned embeddings in batch for better performance
orphaned_list = list(orphaned_ids)
try:
await execute_raw_with_schema(
"""
DELETE FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" = $1::{schema_prefix}"ContentType"
AND "contentId" = ANY($2::text[])
""",
content_type,
orphaned_list,
)
deleted = len(orphaned_list)
except Exception as e:
logger.error(f"Failed to batch delete orphaned embeddings: {e}")
deleted = 0
logger.info(
f"{content_type.value}: Deleted {deleted}/{len(orphaned_ids)} orphaned embeddings"
)
results_by_type[content_type.value] = {
"deleted": deleted,
"orphaned": len(orphaned_ids),
"message": f"Deleted {deleted} orphaned embeddings",
}
total_deleted += deleted
except Exception as e:
logger.error(f"Failed to cleanup {content_type.value}: {e}")
results_by_type[content_type.value] = {
"deleted": 0,
"error": str(e),
}
return {
"by_type": results_by_type,
"totals": {
"deleted": total_deleted,
"message": f"Deleted {total_deleted} orphaned embeddings",
},
}
async def semantic_search(
query: str,
content_types: list[ContentType] | None = None,
user_id: str | None = None,
limit: int = 20,
min_similarity: float = 0.5,
) -> list[dict[str, Any]]:
"""
Semantic search across content types using embeddings.
Performs vector similarity search on UnifiedContentEmbedding table.
Used directly for blocks/docs/library agents, or as the semantic component
within hybrid_search for store agents.
If embedding generation fails, falls back to lexical search on searchableText.
Args:
query: Search query string
content_types: List of ContentType to search. Defaults to [BLOCK, STORE_AGENT, DOCUMENTATION]
user_id: Optional user ID for searching private content (library agents)
limit: Maximum number of results to return (default: 20)
min_similarity: Minimum cosine similarity threshold (0-1, default: 0.5)
Returns:
List of search results with the following structure:
[
{
"content_id": str,
"content_type": str, # "BLOCK", "STORE_AGENT", "DOCUMENTATION", or "LIBRARY_AGENT"
"searchable_text": str,
"metadata": dict,
"similarity": float, # Cosine similarity score (0-1)
},
...
]
Examples:
# Search blocks only
results = await semantic_search("calculate", content_types=[ContentType.BLOCK])
# Search blocks and documentation
results = await semantic_search(
"how to use API",
content_types=[ContentType.BLOCK, ContentType.DOCUMENTATION]
)
# Search all public content (default)
results = await semantic_search("AI agent")
# Search user's library agents
results = await semantic_search(
"my custom agent",
content_types=[ContentType.LIBRARY_AGENT],
user_id="user123"
)
"""
# Default to searching all public content types
if content_types is None:
content_types = [
ContentType.BLOCK,
ContentType.STORE_AGENT,
ContentType.DOCUMENTATION,
]
# Validate inputs
if not content_types:
return [] # Empty content_types would cause invalid SQL (IN ())
query = query.strip()
if not query:
return []
if limit < 1:
limit = 1
if limit > 100:
limit = 100
# Generate query embedding
try:
query_embedding = await embed_query(query)
# Semantic search with embeddings
embedding_str = embedding_to_vector_string(query_embedding)
# Build params in order: limit, then user_id (if provided), then content types
params: list[Any] = [limit]
user_filter = ""
if user_id is not None:
user_filter = 'AND "userId" = ${}'.format(len(params) + 1)
params.append(user_id)
# Add content type parameters and build placeholders dynamically
content_type_start_idx = len(params) + 1
content_type_placeholders = ", ".join(
"$" + str(content_type_start_idx + i) + '::{schema_prefix}"ContentType"'
for i in range(len(content_types))
)
params.extend([ct.value for ct in content_types])
# Build min_similarity param index before appending
min_similarity_idx = len(params) + 1
params.append(min_similarity)
# Use unqualified ::vector and <=> operator - pgvector is in search_path on all environments
sql = (
"""
SELECT
"contentId" as content_id,
"contentType" as content_type,
"searchableText" as searchable_text,
metadata,
1 - (embedding <=> '"""
+ embedding_str
+ """'::vector) as similarity
FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" IN ("""
+ content_type_placeholders
+ """)
"""
+ user_filter
+ """
AND 1 - (embedding <=> '"""
+ embedding_str
+ """'::vector) >= $"""
+ str(min_similarity_idx)
+ """
ORDER BY similarity DESC
LIMIT $1
"""
)
results = await query_raw_with_schema(sql, *params)
return [
{
"content_id": row["content_id"],
"content_type": row["content_type"],
"searchable_text": row["searchable_text"],
"metadata": row["metadata"],
"similarity": float(row["similarity"]),
}
for row in results
]
except Exception as e:
logger.warning(f"Semantic search failed, falling back to lexical search: {e}")
# Fallback to lexical search if embeddings unavailable
params_lexical: list[Any] = [limit]
user_filter = ""
if user_id is not None:
user_filter = 'AND "userId" = ${}'.format(len(params_lexical) + 1)
params_lexical.append(user_id)
# Add content type parameters and build placeholders dynamically
content_type_start_idx = len(params_lexical) + 1
content_type_placeholders_lexical = ", ".join(
"$" + str(content_type_start_idx + i) + '::{schema_prefix}"ContentType"'
for i in range(len(content_types))
)
params_lexical.extend([ct.value for ct in content_types])
# Build query param index before appending
query_param_idx = len(params_lexical) + 1
params_lexical.append(f"%{query}%")
# Use regular string (not f-string) for template to preserve {schema_prefix} placeholders
sql_lexical = (
"""
SELECT
"contentId" as content_id,
"contentType" as content_type,
"searchableText" as searchable_text,
metadata,
0.0 as similarity
FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" IN ("""
+ content_type_placeholders_lexical
+ """)
"""
+ user_filter
+ """
AND "searchableText" ILIKE $"""
+ str(query_param_idx)
+ """
ORDER BY "updatedAt" DESC
LIMIT $1
"""
)
try:
results = await query_raw_with_schema(sql_lexical, *params_lexical)
return [
{
"content_id": row["content_id"],
"content_type": row["content_type"],
"searchable_text": row["searchable_text"],
"metadata": row["metadata"],
"similarity": 0.0, # Lexical search doesn't provide similarity
}
for row in results
]
except Exception as e:
logger.error(f"Lexical search failed: {e}")
return []

View File

@@ -1,669 +0,0 @@
"""
End-to-end database tests for embeddings and hybrid search.
These tests hit the actual database to verify SQL queries work correctly.
Tests cover:
1. Embedding storage (store_content_embedding)
2. Embedding retrieval (get_content_embedding)
3. Embedding deletion (delete_content_embedding)
4. Unified hybrid search across content types
5. Store agent hybrid search
"""
import uuid
from typing import AsyncGenerator
import pytest
from prisma.enums import ContentType
from backend.api.features.store import embeddings
from backend.api.features.store.embeddings import EMBEDDING_DIM
from backend.api.features.store.hybrid_search import (
hybrid_search,
unified_hybrid_search,
)
# ============================================================================
# Test Fixtures
# ============================================================================
@pytest.fixture
def test_content_id() -> str:
"""Generate unique content ID for test isolation."""
return f"test-content-{uuid.uuid4()}"
@pytest.fixture
def test_user_id() -> str:
"""Generate unique user ID for test isolation."""
return f"test-user-{uuid.uuid4()}"
@pytest.fixture
def mock_embedding() -> list[float]:
"""Generate a mock embedding vector."""
# Create a normalized embedding vector
import math
raw = [float(i % 10) / 10.0 for i in range(EMBEDDING_DIM)]
# Normalize to unit length (required for cosine similarity)
magnitude = math.sqrt(sum(x * x for x in raw))
return [x / magnitude for x in raw]
@pytest.fixture
def similar_embedding() -> list[float]:
"""Generate an embedding similar to mock_embedding."""
import math
# Similar but slightly different values
raw = [float(i % 10) / 10.0 + 0.01 for i in range(EMBEDDING_DIM)]
magnitude = math.sqrt(sum(x * x for x in raw))
return [x / magnitude for x in raw]
@pytest.fixture
def different_embedding() -> list[float]:
"""Generate an embedding very different from mock_embedding."""
import math
# Reversed pattern to be maximally different
raw = [float((EMBEDDING_DIM - i) % 10) / 10.0 for i in range(EMBEDDING_DIM)]
magnitude = math.sqrt(sum(x * x for x in raw))
return [x / magnitude for x in raw]
@pytest.fixture
async def cleanup_embeddings(
server,
) -> AsyncGenerator[list[tuple[ContentType, str, str | None]], None]:
"""
Fixture that tracks created embeddings and cleans them up after tests.
Yields a list to which tests can append (content_type, content_id, user_id) tuples.
"""
created_embeddings: list[tuple[ContentType, str, str | None]] = []
yield created_embeddings
# Cleanup all created embeddings
for content_type, content_id, user_id in created_embeddings:
try:
await embeddings.delete_content_embedding(content_type, content_id, user_id)
except Exception:
pass # Ignore cleanup errors
# ============================================================================
# store_content_embedding Tests
# ============================================================================
@pytest.mark.asyncio(loop_scope="session")
async def test_store_content_embedding_store_agent(
server,
test_content_id: str,
mock_embedding: list[float],
cleanup_embeddings: list,
):
"""Test storing embedding for STORE_AGENT content type."""
# Track for cleanup
cleanup_embeddings.append((ContentType.STORE_AGENT, test_content_id, None))
result = await embeddings.store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id=test_content_id,
embedding=mock_embedding,
searchable_text="AI assistant for productivity tasks",
metadata={"name": "Test Agent", "categories": ["productivity"]},
user_id=None, # Store agents are public
)
assert result is True
# Verify it was stored
stored = await embeddings.get_content_embedding(
ContentType.STORE_AGENT, test_content_id, user_id=None
)
assert stored is not None
assert stored["contentId"] == test_content_id
assert stored["contentType"] == "STORE_AGENT"
assert stored["searchableText"] == "AI assistant for productivity tasks"
@pytest.mark.asyncio(loop_scope="session")
async def test_store_content_embedding_block(
server,
test_content_id: str,
mock_embedding: list[float],
cleanup_embeddings: list,
):
"""Test storing embedding for BLOCK content type."""
cleanup_embeddings.append((ContentType.BLOCK, test_content_id, None))
result = await embeddings.store_content_embedding(
content_type=ContentType.BLOCK,
content_id=test_content_id,
embedding=mock_embedding,
searchable_text="HTTP request block for API calls",
metadata={"name": "HTTP Request Block"},
user_id=None, # Blocks are public
)
assert result is True
stored = await embeddings.get_content_embedding(
ContentType.BLOCK, test_content_id, user_id=None
)
assert stored is not None
assert stored["contentType"] == "BLOCK"
@pytest.mark.asyncio(loop_scope="session")
async def test_store_content_embedding_documentation(
server,
test_content_id: str,
mock_embedding: list[float],
cleanup_embeddings: list,
):
"""Test storing embedding for DOCUMENTATION content type."""
cleanup_embeddings.append((ContentType.DOCUMENTATION, test_content_id, None))
result = await embeddings.store_content_embedding(
content_type=ContentType.DOCUMENTATION,
content_id=test_content_id,
embedding=mock_embedding,
searchable_text="Getting started guide for AutoGPT platform",
metadata={"title": "Getting Started", "url": "/docs/getting-started"},
user_id=None, # Docs are public
)
assert result is True
stored = await embeddings.get_content_embedding(
ContentType.DOCUMENTATION, test_content_id, user_id=None
)
assert stored is not None
assert stored["contentType"] == "DOCUMENTATION"
@pytest.mark.asyncio(loop_scope="session")
async def test_store_content_embedding_upsert(
server,
test_content_id: str,
mock_embedding: list[float],
cleanup_embeddings: list,
):
"""Test that storing embedding twice updates instead of duplicates."""
cleanup_embeddings.append((ContentType.BLOCK, test_content_id, None))
# Store first time
result1 = await embeddings.store_content_embedding(
content_type=ContentType.BLOCK,
content_id=test_content_id,
embedding=mock_embedding,
searchable_text="Original text",
metadata={"version": 1},
user_id=None,
)
assert result1 is True
# Store again with different text (upsert)
result2 = await embeddings.store_content_embedding(
content_type=ContentType.BLOCK,
content_id=test_content_id,
embedding=mock_embedding,
searchable_text="Updated text",
metadata={"version": 2},
user_id=None,
)
assert result2 is True
# Verify only one record with updated text
stored = await embeddings.get_content_embedding(
ContentType.BLOCK, test_content_id, user_id=None
)
assert stored is not None
assert stored["searchableText"] == "Updated text"
# ============================================================================
# get_content_embedding Tests
# ============================================================================
@pytest.mark.asyncio(loop_scope="session")
async def test_get_content_embedding_not_found(server):
"""Test retrieving non-existent embedding returns None."""
result = await embeddings.get_content_embedding(
ContentType.STORE_AGENT, "non-existent-id", user_id=None
)
assert result is None
@pytest.mark.asyncio(loop_scope="session")
async def test_get_content_embedding_with_metadata(
server,
test_content_id: str,
mock_embedding: list[float],
cleanup_embeddings: list,
):
"""Test that metadata is correctly stored and retrieved."""
cleanup_embeddings.append((ContentType.STORE_AGENT, test_content_id, None))
metadata = {
"name": "Test Agent",
"subHeading": "A test agent",
"categories": ["ai", "productivity"],
"customField": 123,
}
await embeddings.store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id=test_content_id,
embedding=mock_embedding,
searchable_text="test",
metadata=metadata,
user_id=None,
)
stored = await embeddings.get_content_embedding(
ContentType.STORE_AGENT, test_content_id, user_id=None
)
assert stored is not None
assert stored["metadata"]["name"] == "Test Agent"
assert stored["metadata"]["categories"] == ["ai", "productivity"]
assert stored["metadata"]["customField"] == 123
# ============================================================================
# delete_content_embedding Tests
# ============================================================================
@pytest.mark.asyncio(loop_scope="session")
async def test_delete_content_embedding(
server,
test_content_id: str,
mock_embedding: list[float],
):
"""Test deleting embedding removes it from database."""
# Store embedding
await embeddings.store_content_embedding(
content_type=ContentType.BLOCK,
content_id=test_content_id,
embedding=mock_embedding,
searchable_text="To be deleted",
metadata=None,
user_id=None,
)
# Verify it exists
stored = await embeddings.get_content_embedding(
ContentType.BLOCK, test_content_id, user_id=None
)
assert stored is not None
# Delete it
result = await embeddings.delete_content_embedding(
ContentType.BLOCK, test_content_id, user_id=None
)
assert result is True
# Verify it's gone
stored = await embeddings.get_content_embedding(
ContentType.BLOCK, test_content_id, user_id=None
)
assert stored is None
@pytest.mark.asyncio(loop_scope="session")
async def test_delete_content_embedding_not_found(server):
"""Test deleting non-existent embedding doesn't error."""
result = await embeddings.delete_content_embedding(
ContentType.BLOCK, "non-existent-id", user_id=None
)
# Should succeed even if nothing to delete
assert result is True
# ============================================================================
# unified_hybrid_search Tests
# ============================================================================
@pytest.mark.asyncio(loop_scope="session")
async def test_unified_hybrid_search_finds_matching_content(
server,
mock_embedding: list[float],
cleanup_embeddings: list,
):
"""Test unified search finds content matching the query."""
# Create unique content IDs
agent_id = f"test-agent-{uuid.uuid4()}"
block_id = f"test-block-{uuid.uuid4()}"
doc_id = f"test-doc-{uuid.uuid4()}"
cleanup_embeddings.append((ContentType.STORE_AGENT, agent_id, None))
cleanup_embeddings.append((ContentType.BLOCK, block_id, None))
cleanup_embeddings.append((ContentType.DOCUMENTATION, doc_id, None))
# Store embeddings for different content types
await embeddings.store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id=agent_id,
embedding=mock_embedding,
searchable_text="AI writing assistant for blog posts",
metadata={"name": "Writing Assistant"},
user_id=None,
)
await embeddings.store_content_embedding(
content_type=ContentType.BLOCK,
content_id=block_id,
embedding=mock_embedding,
searchable_text="Text generation block for creative writing",
metadata={"name": "Text Generator"},
user_id=None,
)
await embeddings.store_content_embedding(
content_type=ContentType.DOCUMENTATION,
content_id=doc_id,
embedding=mock_embedding,
searchable_text="How to use writing blocks in AutoGPT",
metadata={"title": "Writing Guide"},
user_id=None,
)
# Search for "writing" - should find all three
results, total = await unified_hybrid_search(
query="writing",
page=1,
page_size=20,
)
# Should find at least our test content (may find others too)
content_ids = [r["content_id"] for r in results]
assert agent_id in content_ids or total >= 1 # Lexical search should find it
@pytest.mark.asyncio(loop_scope="session")
async def test_unified_hybrid_search_filter_by_content_type(
server,
mock_embedding: list[float],
cleanup_embeddings: list,
):
"""Test unified search can filter by content type."""
agent_id = f"test-agent-{uuid.uuid4()}"
block_id = f"test-block-{uuid.uuid4()}"
cleanup_embeddings.append((ContentType.STORE_AGENT, agent_id, None))
cleanup_embeddings.append((ContentType.BLOCK, block_id, None))
# Store both types with same searchable text
await embeddings.store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id=agent_id,
embedding=mock_embedding,
searchable_text="unique_search_term_xyz123",
metadata={},
user_id=None,
)
await embeddings.store_content_embedding(
content_type=ContentType.BLOCK,
content_id=block_id,
embedding=mock_embedding,
searchable_text="unique_search_term_xyz123",
metadata={},
user_id=None,
)
# Search only for BLOCK type
results, total = await unified_hybrid_search(
query="unique_search_term_xyz123",
content_types=[ContentType.BLOCK],
page=1,
page_size=20,
)
# All results should be BLOCK type
for r in results:
assert r["content_type"] == "BLOCK"
@pytest.mark.asyncio(loop_scope="session")
async def test_unified_hybrid_search_empty_query(server):
"""Test unified search with empty query returns empty results."""
results, total = await unified_hybrid_search(
query="",
page=1,
page_size=20,
)
assert results == []
assert total == 0
@pytest.mark.asyncio(loop_scope="session")
async def test_unified_hybrid_search_pagination(
server,
mock_embedding: list[float],
cleanup_embeddings: list,
):
"""Test unified search pagination works correctly."""
# Use a unique search term to avoid matching other test data
unique_term = f"xyzpagtest{uuid.uuid4().hex[:8]}"
# Create multiple items
content_ids = []
for i in range(5):
content_id = f"test-pagination-{uuid.uuid4()}"
content_ids.append(content_id)
cleanup_embeddings.append((ContentType.BLOCK, content_id, None))
await embeddings.store_content_embedding(
content_type=ContentType.BLOCK,
content_id=content_id,
embedding=mock_embedding,
searchable_text=f"{unique_term} item number {i}",
metadata={"index": i},
user_id=None,
)
# Get first page
page1_results, total1 = await unified_hybrid_search(
query=unique_term,
content_types=[ContentType.BLOCK],
page=1,
page_size=2,
)
# Get second page
page2_results, total2 = await unified_hybrid_search(
query=unique_term,
content_types=[ContentType.BLOCK],
page=2,
page_size=2,
)
# Total should be consistent
assert total1 == total2
# Pages should have different content (if we have enough results)
if len(page1_results) > 0 and len(page2_results) > 0:
page1_ids = {r["content_id"] for r in page1_results}
page2_ids = {r["content_id"] for r in page2_results}
# No overlap between pages
assert page1_ids.isdisjoint(page2_ids)
@pytest.mark.asyncio(loop_scope="session")
async def test_unified_hybrid_search_min_score_filtering(
server,
mock_embedding: list[float],
cleanup_embeddings: list,
):
"""Test unified search respects min_score threshold."""
content_id = f"test-minscore-{uuid.uuid4()}"
cleanup_embeddings.append((ContentType.BLOCK, content_id, None))
await embeddings.store_content_embedding(
content_type=ContentType.BLOCK,
content_id=content_id,
embedding=mock_embedding,
searchable_text="completely unrelated content about bananas",
metadata={},
user_id=None,
)
# Search with very high min_score - should filter out low relevance
results_high, _ = await unified_hybrid_search(
query="quantum computing algorithms",
content_types=[ContentType.BLOCK],
min_score=0.9, # Very high threshold
page=1,
page_size=20,
)
# Search with low min_score
results_low, _ = await unified_hybrid_search(
query="quantum computing algorithms",
content_types=[ContentType.BLOCK],
min_score=0.01, # Very low threshold
page=1,
page_size=20,
)
# High threshold should have fewer or equal results
assert len(results_high) <= len(results_low)
# ============================================================================
# hybrid_search (Store Agents) Tests
# ============================================================================
@pytest.mark.asyncio(loop_scope="session")
async def test_hybrid_search_store_agents_sql_valid(server):
"""Test that hybrid_search SQL executes without errors."""
# This test verifies the SQL is syntactically correct
# even if no results are found
results, total = await hybrid_search(
query="test agent",
page=1,
page_size=20,
)
# Should not raise - verifies SQL is valid
assert isinstance(results, list)
assert isinstance(total, int)
assert total >= 0
@pytest.mark.asyncio(loop_scope="session")
async def test_hybrid_search_with_filters(server):
"""Test hybrid_search with various filter options."""
# Test with all filter types
results, total = await hybrid_search(
query="productivity",
featured=True,
creators=["test-creator"],
category="productivity",
page=1,
page_size=10,
)
# Should not raise - verifies filter SQL is valid
assert isinstance(results, list)
assert isinstance(total, int)
@pytest.mark.asyncio(loop_scope="session")
async def test_hybrid_search_pagination(server):
"""Test hybrid_search pagination."""
# Page 1
results1, total1 = await hybrid_search(
query="agent",
page=1,
page_size=5,
)
# Page 2
results2, total2 = await hybrid_search(
query="agent",
page=2,
page_size=5,
)
# Verify SQL executes without error
assert isinstance(results1, list)
assert isinstance(results2, list)
assert isinstance(total1, int)
assert isinstance(total2, int)
# If page 1 has results, total should be > 0
# Note: total from page 2 may be 0 if no results on that page (COUNT(*) OVER limitation)
if results1:
assert total1 > 0
# ============================================================================
# SQL Validity Tests (verify queries don't break)
# ============================================================================
@pytest.mark.asyncio(loop_scope="session")
async def test_all_content_types_searchable(server):
"""Test that all content types can be searched without SQL errors."""
for content_type in [
ContentType.STORE_AGENT,
ContentType.BLOCK,
ContentType.DOCUMENTATION,
]:
results, total = await unified_hybrid_search(
query="test",
content_types=[content_type],
page=1,
page_size=10,
)
# Should not raise
assert isinstance(results, list)
assert isinstance(total, int)
@pytest.mark.asyncio(loop_scope="session")
async def test_multiple_content_types_searchable(server):
"""Test searching multiple content types at once."""
results, total = await unified_hybrid_search(
query="test",
content_types=[ContentType.BLOCK, ContentType.DOCUMENTATION],
page=1,
page_size=20,
)
# Should not raise
assert isinstance(results, list)
assert isinstance(total, int)
@pytest.mark.asyncio(loop_scope="session")
async def test_search_all_content_types_default(server):
"""Test searching all content types (default behavior)."""
results, total = await unified_hybrid_search(
query="test",
content_types=None, # Should search all
page=1,
page_size=20,
)
# Should not raise
assert isinstance(results, list)
assert isinstance(total, int)
if __name__ == "__main__":
pytest.main([__file__, "-v", "-s"])

Some files were not shown because too many files have changed in this diff Show More